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Preface

This comprehensive reference work presents an up-to-date survey of the
current scientific understanding of the metabolic syndrome, as well as an
overview of the most significant advances in the field. The book provides a
thorough reference for obesity and the metabolic syndrome and will prove an
indispensable resource for clinicians and researchers at all levels. The obesity
epidemic has generated immense interest in recent years due to the wide-
ranging and significant adverse health and economic consequences that sur-
round the problem. Much attention has been focused on excessive consump-
tion of energy-dense food, sedentary lifestyle, and other behaviors that
contribute to the pathogenesis of obesity. However, obesity is a highly com-
plex condition that is influenced by genetic as well as environmental factors.
The metabolic syndrome comprises of central obesity, impaired glucose tol-
erance or diabetes, hypertension, and dyslipidemia. The incidence of meta-
bolic syndrome is growing worldwide, affecting more than one-third of adults
in some countries. The metabolic syndrome increases the risk of developing
coronary artery disease and stroke, and it is also closely associated with fatty
liver, dementia, cancer, sleep apnea, kidney failure, infertility, and other
diseases. This reference work covers the full range of scientific and clinical
aspects of obesity and metabolic syndrome: epidemiology, genetics, environ-
mental factors, pathophysiology, diseases associated with obesity, and clinical
management.
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Overview of Metabolic Syndrome 1
Rexford S. Ahima

Abstract
The diagnosis of metabolic syndrome is based on the presence of abdom-
inal obesity, increased blood pressure, elevated glucose and triglycerides,
and low high-density lipoprotein cholesterol (HDL-C) levels. The preva-
lence of metabolic syndrome has increased globally mainly due to exces-
sive intake of energy-dense foods and reduced physical activity. Metabolic
syndrome increases the risk of developing type 2 diabetes (T2D), cardio-
vascular diseases, nonalcoholic fatty liver disease (NAFLD), cancer, infer-
tility, dementia, and other diseases. The purpose of this book is to highlight
the epidemiology, pathophysiology, clinical features, and treatment of
metabolic syndrome. We are hopeful the chapters will provide valuable
current insights as well as critical questions to guide future research.

Keywords
Metabolic syndrome • Obesity • Hypertension • Cholesterol • Glucose •
Diabetes • Cardiovascular

The term “metabolic syndrome” was first used in
the National Cholesterol Education Program
(NCEP) Adult Treatment Panel III (ATP III)
to describe the co-occurrence of obesity,

dyslipidemia, hypertension, and abnormal glu-
cose metabolism (Expert Panel on Detection and
Treatment of High Blood Cholesterol in 2001).
However, the association of metabolic disorders
and cardiovascular risk factors had been recog-
nized for many decades (Sarafidis and Nilsson
2006; Albrink et al. 1980). In his American Dia-
betes Association Banting lecture in 1988,
Reaven (1988) used the term “syndrome X” to
describe the relationship of insulin resistance,
hypertension, type 2 diabetes (T2D), and cardio-
vascular diseases. Other investigators have
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referred to the clustering of metabolic and cardio-
vascular risk factors as the “insulin resistance
syndrome” (DeFronzo and Ferrannini 1991;
Haffner et al. 1992).

Various organizations have proposed different
criteria to describe the relationship of cardiovas-
cular and metabolic diseases (Table 1). The Inter-
national Diabetes Federation (IDF) characterized
themetabolic syndrome as symptoms and physical
or biochemical findings coexistingmore often than
could be explained by chance alone (Alberti
et al. 2006). The American Diabetes Association
(ADA) acknowledged the clustering of clinical
and laboratory features in metabolic syndrome
but questioned the utility of insulin resistance as
a biomarker for cardiovascular risk (Kahn
et al. 2005). In 1998, the World Health Organiza-
tion (WHO) proposed a working definition for
metabolic syndrome focusing on the presence of

insulin resistance, impaired glucose tolerance
(IGT), or T2D, as well as two of the following
conditions: dyslipidemia (reduced HDL-C and
increased triglycerides), hypertension, and
microalbuminuria (Alberti and Zimmet 1998).
The European Group for the Study of Insulin
Resistance (EGIR) criteria for metabolic syn-
drome were similar to those of the WHO but did
not include microalbuminuria (Balkau and Charles
1999). The NCEPATP III defined metabolic syn-
drome based on increased waist circumference
(WC), lipids, blood pressure, and fasting glucose
levels (Grundy et al. 2004;Marchesini et al. 2004).
The American Association of Clinical Endocrinol-
ogists’ (AACE) definition of metabolic syndrome
focuses on the presence of insulin resistance and
not diabetes. In order to account for population
differences, the IDF recently proposed specific
racial/ethnic cutoffs (Grundy et al. 2005;

Table 1 Definitions of metabolic syndrome

WHO (1998)
AACE
(2003)

NCEPATP III
(2005) IDF (2005) IDF (2009)

Criteria IGT, IFG, T2D,
or reduced
insulin
sensitivity plus
any two of the
following

IGT or IFG
plus any of
the
following

Any three of the
following

Increased WC plus
any two of the
following

Three out of five
of the following

Obesity Men: WHR
>0.90; Women:
WHR >0.85
and/or BMI
>30 kg/m2

BMI �25
kg/m2

WC �102 cm in
men or �88 cm in
women

Population-specific
increased WC
cutoffs

Population- and
country-specific
WC cutoffs

Glucose IGT, IFG, or
T2D

IGT or lFG �100 mg/dl
(including T2D)

�100 mg/dl
(including T2D)

�100 mg/dL

Triglycerides
(TG)

TG �150 mg/dl TG �150
mg/dl

TG �150 mg/dl or
on therapy
lowering TG

TG �150 mg/dl or
on therapy
lowering TG

TG �150 mg/dl

HDL-
cholesterol
(HDL-C)

HDL-C <40
mg/dl in men or
HDL-C <50
mg/dl in women

HDL-C<40
mg/dl in
men or
HDL-C<50
mg/dl in
women

HDL-C <40 mg/dl
in men or HDL-C
<50 mg/dl in
women on therapy
increasing HDL-C

HDL-C <40 mg/dl
in men or HDL-C
<50 mg/dl in
women on therapy
increasing HDL-C

HDL-C <40 mg/
dl in men or HDL-
C <50 mg/dl in
women

Blood
pressure

�140/90 mmHg �130/85
mmHg

�130/85 mmHg or
on antihypertensive
therapy

�130/85 mmHg or
on antihypertensive
therapy

�130/85 mmHg
or on
antihypertensive
therapy

Abbreviations:HDL-CHDL-cholesterol, IGT impaired glucose tolerance, IFG impaired fasting glucose, TG triglycerides,
T2D type 2 diabetes, WC waist circumference, WHR waist/hip ratio
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Bloomgarden 2003). Moreover, the new IDF met-
abolic syndrome criteria focused on fasting plasma
glucose concentration and not insulin resistance
(Alberti et al. 2005, 2009). These differences in
metabolic syndrome definitions by various orga-
nizations are unlikely to be resolved. However,
given our current and evolving knowledge of the
pathogenesis of obesity, T2D, and related diseases,
future criteria for metabolic syndromemay need to
consider the contributions of adipokines,
pro-inflammatory cytokines, and other humoral
factors linked to insulin resistance, diabetes, and
cardiovascular diseases.

Figures 1, 2, 3, 4, and 5 illustrate global patterns
of body mass index (BMI), elevated glucose,

cholesterol and blood pressure, and mortality
rates due to diabetes or cardiovascular diseases.
Diseases associated with metabolic syndrome
have increased worldwide, and these trends are
influenced by age, sex, race/ethnicity, low physical
activity, and other lifestyle factors (Mozumdar and
Liguori 2011; Ford et al. 2002; Nestel et al. 2007;
Lim et al. 2011; Jeppesen et al. 2007; Lorenzo
et al. 2006; Harzallah et al. 2006; Chien et al.
2008; Zabetian et al. 2007; Mattsson et al. 2007;
Ilanne-Parikka et al. 2004; Jorgensen et al. 2004).
The prevalence of metabolic syndrome in youth
also varies according to the definition, age, and
population under study (Berenson et al. 1998; Li
et al. 2003; Raitakari et al. 2003; Sun et al. 2008;

Men

Women

Mean BMI
22.5
22.6–24.9
25–27.4
27.5–29.9
≥30
Data not available
Not applicable

Mean BMI
22.5
22.6–24.9
25–27.4
27.5–29.9
≥30
Data not available
Not applicable

Fig. 1 Mean body mass index (BMI) in adults 20 years or older in 2008 (World Health Organization Global Health
Observatory Map Gallery http://gamapserver.who.int/mapLibrary/app/searchResults.aspx)
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Cook et al. 2003, 2008; de Ferranti et al. 2004;
Cruz et al. 2004; Weiss et al. 2004). Studies
suggest that metabolic syndrome in youth is a
strong predictor of future risk for diabetes and
cardiovascular disease (Berenson et al. 1998; Li
et al. 2003; Raitakari et al. 2003). The high global
prevalence of metabolic syndrome has been attrib-
uted to overconsumption of energy-dense foods,
sedentary lifestyle, low socioeconomic status, and
rapid urbanization (Alberti and Zimmet 1998;
Grundy et al. 2004). An inverse association
between the level of education and the risk of
metabolic syndrome has been described (Lucove
et al. 2007; Wamala et al. 1999; Silventoinen
et al. 2005; Brunner et al. 1997; Park et al. 2007).

In developing countries, the prevalence of meta-
bolic syndrome is higher in urban compared to
rural areas (Jeppesen et al. 2007; Lorenzo
et al. 2006; Harzallah et al. 2006; Chien
et al. 2008; Zabetian et al. 2007;Weng et al. 2007).

A hallmark of metabolic syndrome is insulin
resistance, a pathological condition in which high
insulin concentrations fail to produce a normal
response in peripheral target tissues. Insulin resis-
tance is commonly associated with abdominal
obesity (Petersen and Shulman 2006; Gill
et al. 2005), though some insulin-resistant indi-
viduals who are not obese may have ectopic fat
accumulation in the liver and muscle (Jensen
et al. 1989; Lim and Meigs 2014). In adipose

Men

Women

Prevalence of raised blood glucose (%)

<5
5–7.4
7.5–9.9
10–12.4
≥12.5
Data not available
Not applicable * ≥7.0 mmol/L or on medication for raised blood glucose

Prevalence of raised blood glucose (%)

8
8.1–10
10.1–15
15.1–17
≥17
Data not available
Not applicable * ≥7.0 mmol/L or on medication for raised blood glucose

Fig. 2 Prevalence (%) of elevated fasting glucose in adults 25 years or older in 2008 (World Health Organization Global
Health Observatory Map Gallery http://gamapserver.who.int/mapLibrary/app/searchResults.aspx)
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tissue, insulin resistance attenuates the anti-
lipolytic effect of insulin which leads to elevated
fatty acid levels. Insulin resistance in the muscle
disrupts insulin-mediated glucose uptake and
decreases glycogen biosynthesis. Insulin resis-
tance in the liver impairs the ability of insulin to
suppress glucose production. Insulin resistance is
very common in obesity, and this metabolic
setting increases the demand for pancreatic
β-cells to synthesize and secrete more insulin.
Hyperinsulinemia in obesity promotes lipogenesis
and steatosis and contributes to salt retention and
hypertension. The inability of pancreatic β-cells to
produce enough insulin leads to elevated fasting
glucose, glucose intolerance, and ultimately T2D
(Petersen and Shulman 2006; Gill et al. 2005).

Studies have also shown that metabolic syn-
drome is associated with low-grade inflammation
and oxidative stress, partly mediated by
adipokines, nutrients, and other factors (Dandona
et al. 2004; Festa et al. 2000). There is a positive
correlation between high-sensitivity C-reactive
protein (hs-CRP) and metabolic dysfunction
(Festa et al. 2000; Han et al. 2002; Laaksonen
et al. 2004). Other biomarkers, including fibrino-
gen, apolipoprotein B, uric acid, and adhesion
molecules, are associated with metabolic syn-
drome (Onat et al. 2006, 2007, 2009; Rubin
et al. 2008). Atherogenic dyslipidemia in meta-
bolic syndrome manifested by high triglycerides
and low HDL-C levels is associated with inflam-
mation and oxidative stress (Ruotolo and Howard

Men

Women

Prevalence of raised cholesterol (%)
<30
30–39.9
40–49.9
50–59.9
≥60
Data not available
Not applicable * ≥5.0 mmol/L

Prevalence of raised cholesterol (%)
<30
30–39.9
40–49.9
50–59.9
≥60
Data not available
Not applicable * ≥5.0 mmol/L

Fig. 3 Prevalence (%) of elevated cholesterol in adults 25 years or older in 2008 (World Health Organization Global
Health Observatory Map Gallery http://gamapserver.who.int/mapLibrary/app/searchResults.aspx)
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2002; Onat and Hergenc 2011). Activation of the
renin-angiotensin system (RAS) in obesity has
been linked to insulin resistance, inflammation,
oxidative injury, ectopic fat accumulation, and
hypertension (Frigolet et al. 2013).

Despite the controversies surrounding the def-
inition of metabolic syndrome, there is little doubt
about the close association of putative metabolic
syndrome components and excess cardiovascular
risk (Galassi et al. 2006). Hence, interventions to
ameliorate obesity, hyperglycemia, dyslipidemia,
and hypertension are likely to decrease the risk of
developing cardiovascular diseases and other
complications of metabolic syndrome. Successful
weight loss from dietary management, adequate
physical activity, pharmacotherapy, and surgery is

highly recommended for metabolic syndrome
patients. Available weight loss drugs in the United
States include phentermine, extended release
phentermine/topiramate, lorcaserin, orlistat,
sustained release bupropion/naltrexone, and the
glucagon-like peptide (GLP)-1 agonist liraglutide
(Smith et al. 2010, 2013; Coomans et al. 2013;
Apovian et al. 2013; Billes et al. 2014; Vilsboll
et al. 2012). Metformin improves insulin sensitiv-
ity in patients with impaired glucose tolerance or
T2D. GLP-1 agonists and sodium glucose
co-transporter 2 (SGLT2) inhibitors improve gly-
cemic control in T2D without increasing body
weight and adiposity (Orchard et al. 2005;
Bolinder et al. 2012). Statins are drugs of choice
for atherogenic dyslipidemia, and fibrates can be

Men

Women

Prevalence of raised blood pressure (%)
<35
35–39.9
40–44.9
45–49.9
≥50
Data not available
Not applicable * SBP ≥140 and/or DBP ≥90 or using medication to lower blood pressure

Prevalence of raised blood pressure (%)
<35
35–39.9
40–44.9
45–49.9
≥50
Data not available
Not applicable * SBP ≥140 and/or DBP ≥90 or using medication to lower blood pressure

Fig. 4 Prevalence (%) of hypertension in adults 25 years or older in 2008 (World Health Organization Global Health
Observatory Map Gallery http://gamapserver.who.int/mapLibrary/app/searchResults.aspx)
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used to decrease triglycerides and increase
HDL-C (Colhoun et al. 2004; Baigent
et al. 2005; Cholesterol Treatment Trialists
et al. 2012; Koo 2014). Antihypertensive drugs,
especially RAS blockers, are crucial for reducing
blood pressure and cardiac complications
(Chrysant et al. 2010; Borghi and Santi 2012;
Watanabe et al. 2005; Zreikat et al. 2014).

This comprehensive reference book presents
an up-to-date survey of the current scientific
understanding of the metabolic syndrome, as
well as an overview of the most significant
advances in the field over the past 30 years. The
references provide thorough information for obe-
sity and metabolic syndrome and will prove an
indispensable resource for clinicians, researchers,
and students. The book covers a full range of
scientific and clinical aspects: epidemiology,

genetics, environmental factors, pathophysiology,
diseases associated with obesity, and evidence-
based management of metabolic syndrome.
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Abstract
The prevalence of obesity has risen dramati-
cally in the United States over the past several
decades, leading to a public health crisis that
disproportionately impacts racial/ethnic
minorities and Americans of lower socioeco-
nomic status. This chapter examines the histor-
ical trends in obesity, as well as the scientific
evidence for specific behavioral and environ-
mental correlates of this disease. The chapter
also focuses on subpopulations impacted by
obesity, including children. The idea of mov-
ing beyond body mass index (BMI) as an iso-
lated measure of obesity is presented, along
with evidence of the importance of other mea-
sures, such as waist circumference, particularly
among certain ethnic groups. The obesity par-
adox – a finding that in observational data,
some adults who are overweight or obese
have lower mortality than their normal-weight
counterparts – is reviewed as well. Finally, the
chapter considers the implications of the obe-
sity epidemic in an aging US population and
the rising prevalence of more severe degrees of
obesity in recent years.

Keywords
Obesity • Epidemiology • Body mass index •
Prevalence

1 Introduction

In the early nineteenth century, the Belgian astron-
omer, mathematician, statistician, and sociologist
Adolphe Quetelet described a standard for under-
standing the growth of children as they emerged
into adolescents and adults. The weight of a child,
Quetelet found, could be divided by the square of
its height to monitor a child’s progress and observe
their growth trajectory with respect to their risk of
stunting, wasting, or – more rarely in the nine-
teenth century – obesity (Hall and Cole 2006).

In the 1950s, the scientist Ancel Keys – known
most famously for having conducted seminal
studies on the importance of cholesterol to cardio-
vascular health – renamed weight per height

squared “the body mass index” (BMI). The
squared term appeared to correct growth curves
for both height and age, providing a simple strat-
egy for assessing growth and anthropometrics
across the life-course and over entire populations.
Yet the term did not gain widespread use until the
late 1970s, when body mass index was observed
to correlate with measures of body fat mass and
more importantly to adverse health status among
children (Cole 1979).

Today, BMI – particularly elevated BMI that
we now term “overweight” (BMI �25 kg/m2) or
“obese” (BMI �30 kg/m2) – has been correlated
to a series of concerning health outcomes. Abun-
dant studies have correlated elevated BMI to pre-
mature cardiovascular and metabolic disease
markers – including hypertension, hyperlipid-
emia, and abnormal glucose tolerance (World
Health Organization 2000). Notable variations,
however, have been observed in the epidemiolog-
ical literature relating obesity to long-term health,
generating interest in whether the risks of over-
weight and obesity are contingent upon high BMI
per se, or more on the site of body fat deposition,
and biological mechanisms associating regional
adiposity with heightened morbidity in some
populations more than others – a dilemma we
will discuss in detail in this chapter (Kissebah
et al. 1989). Nevertheless, BMI remains the
world’s leading marker for abnormally heavy
weight, being of particular importance as a risk
factor for cardiovascular disease, which has
become the leading cause of death worldwide
(Lim et al. 2012). In addition to cardiovascular
disease, obesity is increasingly related to rarer
disease manifestations, ranging from
pseudotumor cerebri, premature obstructive
sleep apnea, and Blount’s disease among children
(Dietz 1998) to rising rates of knee and hip oste-
oarthritis among older persons (Zamboni
et al. 2005). In addition, people with high BMI
have been found to bear long-term psychological
stigma for their body size and shape (Dietz 1998) –
highlighting that the epidemiology of obesity is
not merely a study of measurement, but a science
that is intimately tied to very real social
consequences for many individuals, families, and
communities worldwide.
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In this chapter, wewill discuss the epidemiology
of obesity in the United States, where – at the time
of this writing – over one-third of adults are now
classified as obese (Ogden et al. 2014). Our discus-
sion will begin with an overview of the historical,
sociodemographic, and environmental correlates to
rising obesity in the United States and then proceed
to emerging issues concerning the changing trajec-
tories of obesity among both children and the
elderly. We will focus in particular on epidemio-
logical puzzles such as the variations in obesity and
in obesity-health correlations among different
sociodemographic groups and the “obesity para-
dox” in which some studies find lower mortality
rates among overweight individuals. We also dis-
cuss emerging issues in the field such as sarcopenic
obesity and the question of whether pediatric obe-
sity is truly beginning to plateau or decline in the
United States. Our presentation intends to touch
upon the major questions emerging in the field
around why obesity has risen dramatically in the
United States, what epidemiological correlates to
its rise may highlight opportunities for effective
public health interventions, and how refinements
of our understanding of body size and shape may
further enhance our understanding of who is at
greatest risk for the health consequences of excess
body weight.

2 Historical Trends in Obesity

2.1 Obesity in the United States
During the First Half
of the Twentieth Century

Estimates of obesity prevalence during the first
half of the twentieth century are difficult to obtain,
owing to the lack of routine surveillance data on
both height and weight in a representative sample
of the population during this period. Nonetheless,
some data are available to suggest that Americans
were slowly gaining weight around the turn of the
twentieth century. For example, repeated samples
of men aged 30–34 years between the late 1800s
and 1950 show that the average man of 50800

increased from a weight of 150 lbs to just over
160 lbs during that span, corresponding to a shift

from a BMI near ideal body weight (22.8 kg/m2)
to one bordering on overweight (24.6 kg/m2) by
the mid-1900s (Van Itallie 1978).

According to USDA data, the per capita food
supply actually declined during the first half of the
twentieth century (Swinburn et al. 2011; Barnard
2010; Gortner 1975; US Department of Agriculture
2014) (Fig. 1). Although decreased production of
wheat products during this time was arguably the
most important driver of decreased caloric produc-
tion, there was a similar decrease in availability of
meats in the food supply that lasted fromWorldWar
I through the Great Depression, only beginning to
reverse course during the 1940s (Barnard 2010).
Despite this period of declining food availability
(and presumed lower caloric intake), as was
suggested by the weight and height data from
middle-agedmen above, Americans did not become
appreciably thinner during these decades. Some
have hypothesized that a simultaneous decrease in
energy expenditure, due to a shift away from hard
labor jobs and greater mechanization of many pro-
cesses, including transport, may have counteracted
(or contributed to – through decreased hunger)
decreased energy intake, to result in weight mainte-
nance or a slow gain over time (Swinburn
et al. 2011; Van Itallie 1978).

2.2 Obesity in the United States:
1960–1979

Beginning in 1960, more routine estimates of
obesity prevalence in the United States were
obtained through surveys conducted by the Cen-
ters for Disease Control and Prevention (CDC).
The National Health Examination Survey
(NHES) paved the way for later iterations of
these critical health surveillance activities, includ-
ing the National Health and Nutrition Examina-
tion Survey (NHANES, beginning 1971) and the
Behavioral Risk Factor Surveillance System
(BRFSS, beginning in 1984) (CDC 2011, 2013).
Through these public health surveillance systems,
data from self-report telephone interviews
(BRFSS) and physical examinations (NHANES)
on repeated samples representative of the US pop-
ulation have been compiled to yield prevalence
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estimates for a number of different conditions,
including obesity. Reviewing the prevalence of
obesity among American adults over the latter
half of the twentieth century is facilitated tremen-
dously by these surveillance efforts.

In 1960, when NHES was originally
conducted, the age-adjusted prevalence of obesity
among adults aged 20–74 years was 13.4 %. By
1971, during the first wave of NHANES, the
prevalence had risen only slightly, to 14.5 %.
This upward creep in prevalence continued in
the latter half of the 1970s, with NHANES II
(1976–1980) estimating that 15 % of American
adults were obese (Ogden 2010). Thus, for the
entire two-decade period from 1960 to 1980, the
prevalence of obesity among American adults
rose by less than 2 %.

Although this rise seems gradual relative to the
dramatic upswing in obesity that was to come
beginning in the 1980s, it coincided with the
beginnings of some major changes in the US
agricultural and food supply systems. Whereas
in the first half of the twentieth century, wheat
products and caloric supply per capita were in
decline, beginning in the 1960s, there was a rever-
sal of this trend, such that year after year, more
and more calories were becoming available for

consumption by Americans (Swinburn
et al. 2011). At the same time, physical activity
levels remained low. This shift toward higher
energy intake and lower energy expenditures has
been referred to, by some experts, as “the energy
balance flipping point” and is hypothesized to be a
major driver of the obesity epidemic that was to
follow (Swinburn et al. 2011).

2.3 Obesity in the United States:
1980–2000

The 1980s represented a critical inflection point in
the upward trend of obesity among American
adults. In contrast to the slow and steady rise
that was exhibited in the previous 20 years,
1980–2000 was a period of dramatic increase in
obesity prevalence. A review of data from
NHANES shows that between the end of
NHANES II in 1980 and NHANES III, which
ended in 1994, the age-adjusted prevalence of
obesity skyrocketed from 15 % of adults aged
20–74 to 23.2 %. This upswing continued in the
1990s, such that by 2000, 30.9 %, or nearly
one-third of American adults, were considered
obese (Ogden 2010).
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Another emerging phenomenon from the
1980s onward was that of extreme obesity (BMI
�40 kg/m2). This phenotype was relatively rare in
the 1970s, hovering around 1 % of the population.
By the year 2000, however, a fivefold increase in
this rate had been observed, with 1 in 20 American
adults (5 %) classified as having extreme obesity
(Ogden 2010). It is important to note that while
the NHANES estimates referenced above repre-
sent an average trend, there were important differ-
ences between socioeconomic and demographic
groups with respect to increasing obesity rates.
Although all groups were affected to some degree,
racial and ethnic minority groups, particularly
African-Americans and Mexican-Americans,
experienced a much steeper rise in obesity rates
(Mokdad et al. 1999), a pattern that is addressed in
detail in section “Sociodemographic/Geographic
Correlates” of this chapter.

The historical context for this sharp upswing in
obesity prevalence from 1970 to the 1990s includes
some sweeping changes in the American food sup-
ply that have raised questions about specific dietary
correlates, or even causes of obesity (section
“Behavioral Correlates of Obesity” of this chapter).
Data from NHANES show that, during this time
period, American adults reported markedly higher
energy intakes than in previous decades. For exam-
ple, men aged 20–74 reported consuming an aver-
age of 2,439 kcal/day between 1976 and 1980
(relatively stable compared to the 2,450 kcal/day
reported for the period 1971–1974), but by
1988–1994, when NHANES III was conducted,
this same group reported consuming an average of
2,666 kcal/day, a daily increase of over 200 kcal, or
nearly 1,600 kcal per week.Women reported similar
increases, going from an average of 1,522 kcal/day
reported during NHANES II (1976–1980) to 1,798
kcal/day during NHANES III (1988–1994) (Briefel
and Johnson 2004).

2.4 Obesity in the United States:
2000–Present

From 2000 onward, public health surveillance
systems have documented a slowing in the rise
of adult obesity in the United States. Estimates of

obesity prevalence have also been conducted with
much greater regularity from 2000 onward, as
NHANES has shifted to being done on 2-year
cycles as opposed to the more spaced out and
sporadic cycling of surveillance in the
1970s–1990s.

Between 2000 and 2007, the age-adjusted
prevalence of obesity in adults aged 20–74 years
rose from 30.9 % to 34.3 % (Ogden 2010). Pooled
data from BRFSS, NHANES, and other CDC
surveillance systems then show a relative leveling
off of obesity rates among adults around 35 %
from 2007 to 2013 (Johnson et al. 2014). Of
concern, however, during the time period between
2005 and 2012, the average increase in obesity
rates among children was 1.4 % per year, com-
pared to 0.6 % per year for adults (Johnson
et al. 2014). Also of concern, despite the relative
plateauing observed for overall BMI in adults,
rates of abdominal obesity, a key component of
the metabolic syndrome (defined as a waist cir-
cumference greater than 102 cm in men or 88 cm
in women), have continued to rise (Ford
et al. 2014). Mirroring the obesity epidemic as a
whole, abdominal circumference has displayed
especially large increases among racial and ethnic
minority groups such as non-Hispanic blacks and
Mexican-Americans (Ford et al. 2014).
Age-adjusted prevalence of abdominal obesity in
adults went from 46.4 % during 1999–2000 to
over half of Americans (54.2 %) in 2011–2012
(Ford et al. 2014).

3 Sociodemographic/Geographic
Correlates

Differences in obesity epidemiology across
sociodemographic groups offer important insights
into why obesity has become so prevalent in the
United States. For example, differences in BMI
between the two sexes have changed dramatically
over the last three decades in correspondence with
changes in nutrition and physical activity behav-
iors. In the early 1970s, men had a mean BMI of
25.3 versus 24.4 among women; the two groups
reversed trends in the mid-1990s, such that by the
year 2000, men had a mean BMI of 27.6 versus
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28.2 among women. These changes correspond to
rising calorie intake and reduced physical activity
among women at a greater pace than among men
(Zhang and Wang 2004b).

3.1 Race/Ethnic Disparities

Evenmore pronounced are differences across race/
ethnic and socioeconomic groups. The racial and
ethnic disparities in obesity prevalence within the
United States have generated a large literature in
the field of epidemiology in part because they
suggest differential risk of adverse outcomes in
populations facing discrimination – implying that
social or political factors unfairly put disadvan-
taged groups at risk. Because most information
concerning obesity prevalence comes from the
National Health and Nutrition Examination Survey
(NHANES), however, the study of race/ethnic dis-
parities in obesity across the United States is often
limited by the race/ethnic categories used by the
Centers for Disease Control and Prevention in the
NHANES survey. These are defined as “non-His-
panic White,” “non-Hispanic Black,” “Mexican-
American,” “Other Hispanic,” and “Other Race-
including multiracial.” Only the Mexican-
American and non-Hispanic Black categories
have sufficient sample size to track obesity preva-
lence over time. The changing composition of
“Other Hispanic” and “Other race” also makes it
difficult to understand whether obesity prevalence
changes in these groups are real changes in body
composition or changes in underlying demo-
graphic group due to immigration. Other surveys
are available from Asian and Pacific Islanders or
other race/ethnic minority groups, though much of
the information is either self-reported (rather than
directly measured) or from smaller regional sur-
veys and cohort studies with limited age ranges.

The NHANES data reveal that since the 1970s,
non-Hispanic Blacks and Mexican-Americans
have had higher combined prevalence rates of
obesity than non-Hispanic Whites, averaging
about 10 percentage points higher through the
1990s and 2000s (Wang and Beydoun 2007).
Most of this difference is driven by disparities
among women. Age-adjusted obesity prevalence

among adult men averaged around 12.5 % for
Whites versus 15.7 % and 16.5 % for Mexican-
Americans and Blacks, respectively, in the late
1970s (1976–1980 waves of NHANES) and then
increased at a nearly linear rate to 31.1 % among
Whites, 31.6 % among Mexican-Americans, and
34.0 % among Blacks in 2003–2004, after which
prevalence rates increased by another 2–3 %
among all groups during the 2000s through the
most recent NHANES wave (2011–2012). Dis-
parities were more pronounced among women,
among whom age-adjusted prevalence among
Whites was 15.4 % in the late 1970s versus
26.6 % among Mexican-Americans and 31 %
among Blacks and then grew linearly among all
groups to 30.2 % in Whites, 42.3 % in Mexican-
Americans, and 53.9 % among Blacks by
2003–2004, and similarly slowing to a 2–3 %
further increase over the 2000s until themost recent
2011–2012 study wave. In other words, all groups
increased linearly in obesity, with Blacks starting at
the highest prevalence rates and increasing themost
and Whites starting lowest and increasing the least
during the critical period of pronounced obesity rise
in the 1980s and 1990s (Wang and Beydoun 2007;
Ogden et al. 2014).

These data are supplemented by self-reported
data from the nation’s largest telephone survey,
the Behavioral Risk Factor Surveillance System
(BRFSS), which revealed similarly high preva-
lence rates among Native Americans as among
Blacks, but consistently low prevalence (around
11 %) of obesity among Asian-Americans (Cen-
ters for Disease Control and Prevention 2015).
Time trends to describe secular changes among
these groups remain unreliable due to sample size
and definitional changes.

3.2 Socioeconomic Disparities

Two critical questions have emerged in the epide-
miological literature to understand the reasons
behind race/ethnic disparities. First, are these dis-
parities emblematic of socioeconomic disparities
that are merely manifest as race/ethnic differences
due to the correlation of socioeconomic class to
race in the United States? Secondly, are these
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differences consequential for health, meaning that
the same degree of obesity has different health
consequences among race/ethnic groups, or that
the disparities in obesity are magnified in terms of
their consequences for disease outcomes between
groups?

To address the first question, several studies
included both markers of socioeconomic status
(e.g., wealth, annual income) and race/ethnic cat-
egory as statistical predictors of obesity preva-
lence rates, finding consistently that
socioeconomic status did not fully explain the
race/ethnic disparities in obesity prevalence
(Robert and Reither 2004; Zhang and Wang
2004a; Ogden et al. 2006; Wang and Zhang
2006). Nevertheless, low income was generally a
significant risk factor for obesity. Within minority
groups, socioeconomic status mattered less than
among Whites; furthermore, low socioeconomic
status has been most important for men and for
middle-aged groups (Zhang and Wang 2004a;
Chang and Lauderdale 2005).

But some of the socioeconomic and race/ethnic
disparities have been in opposite directions from
those typically hypothesized; for example, obesity
prevalence increases among more educated Black
women, possibly because rising incomes can cor-
respond to increased overall calorie intake (Wang
and Beydoun 2007). These findings influenced
the field to further study community-level and
environmental factors that would lead to social
influences on obesity risk, not merely income
alone, as we discuss further in the section “Envi-
ronmental Correlates.”

3.3 Different BMI Cut Points
for Ethnic Minorities

To address the second issue –whether obesity may
differ in health consequence among groups – a
series of studies evaluated the risk of
cardiometabolic disease among different race/eth-
nic groups based on BMI cut points. Some studies
have shown that for the same BMI, Black children
have less body fat than their White counterparts
(Yanovski et al. 1996; Daniels et al. 1997),
suggesting less consequential problems with

higher BMI in this group, though the long-term
morbidity and mortality implications of obesity
(discussed below) seem to profoundly outweigh
these findings. More extensive studies have found
that race/ethnic differences in the implication of
BMI for health are most important for South and
East Asians rather than for the Black-White dis-
parity. In particular, the risk of type 2 diabetes and
associated cardiovascular outcomes appear at
lower BMI among South and East Asians than
among other race/ethnic groups (Deurenberg
et al. 1998; Misra 2003; Chiu et al. 2011). This is
thought to be due to the inability for BMI to fully
capture risk among lower-height populations, in
particular populations with more “abdominal” or
“central” obesity in which the distribution and
quantity of body fat is centrally located (Gallagher
et al. 1996; Deurenberg-Yap et al. 2000); hence,
waist-to-hip ratio has increasingly been used as a
substitute for BMI among diabetes risk assess-
ments in Asian populations (Chaturvedi
et al. 2008; Kanaya et al. 2010). Studies of abdom-
inal obesity at a population level in the United
States using waist circumference measures have
generally shown continued increases over time in
obesity among all groups, as compared to the more
stagnant prevalence trends among studies using
BMI to assess obesity rates (Ford et al. 2014).
Hence, the study of ethnic differences in BMI cut
points contributed to the overall discovery that
waist circumference or waist-to-hip ratio may be
better for capturing ongoing epidemiological
trends in body size and shape change in the United
States, as opposed to BMI.

3.4 Environmental Correlates

Revisiting the issue of socioeconomic disparities
in obesity risk, a series of studies over the last
decade have found that the elevated risk of obesity
among the poor may be better characterized as not
merely linked to low socioeconomic status, but
rather as a manifestation of the interaction
between poverty and place. A consistent epidemi-
ological observation is that spatial disparities
across state, county, and local area obesity preva-
lence persist over time and remain robustly related
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to larger socioeconomic and race/ethnic segrega-
tion in the country (Singh et al. 2008a, 2010).
Indeed, area-level obesity prevalence disparities
(e.g., disparities in obesity between zip codes) are
larger than those associated with individual-level
income markers or race/ethnicity (Drewnowski
et al. 2007). Numerous studies have therefore
correlated heightened obesity risk to interactions
between low income, minority race, and local or
regional environmental factors such as neighbor-
hood or community features including: high
prices of healthy foods (Drewnowski and Specter
2004), limited accessibility of healthy foods
(Powell et al. 2007b; Ploeg et al. 2009), abundant
availability of energy-dense low-quality foods
(Powell et al. 2007a; Drewnowski 2010), and
limited availability of built environment spaces
conducive to physical activity (Gordon-Larsen
et al. 2006; Sallis and Glanz 2006).

These mechanistic pathways linking these
environmental factors to heightened obesity risk
are plausible. What remains controversial is
whether these correlates are necessarily consistent
across the country or can persist despite biases in
study design. For example, healthy foods studied
in large databases are not as expensive as com-
monly believed and do not explain much of the
variation in obesity prevalence rates across com-
munities as implied by single-location studies
(Rao et al. 2013). Food “deserts”, or locations
with poor healthy food access, also do not seem
to explain as much of the variation in obesity as
once believed, particularly when analyzed
through large-scale rather than anecdotal data
sources (An and Sturm 2012; Lee 2012). Simi-
larly, selection effects may explain some of the
relations between neighborhood built environ-
ment and physical activity (i.e., those people
who are already more active seek out more
activity-enhancing neighborhoods) (Boone-
Heinonen et al. 2011).

Confounding and biasing factors make causal
inference from epidemiological data challenging
and may explain some disappointing results from
early intervention trials that have attempted to
improve nutrition and physical activity environ-
ments but have not generated significant obesity
prevalence changes. For example, new

supermarkets selling affordable healthy foods to
low-income populations have not resulted the die-
tary or obesity effects intended (Cummins
et al. 2005, 2014). Similar negative findings
have been observed from interventions in the
community that rely on education through health
promotion messages to encourage use of physical
activity spaces or available healthy food products
(Ebrahim et al. 2006). The disappointing results
suggest that while environment correlates may be
statistically related to obesity risk, neutralizing
their effects may require more attention to the
complexities of how behaviors develop and per-
sist in neighborhoods (Van der Horst et al. 2007).
As discussed further in this volume, behavioral
economic interventions such as taxes on high-
calorie beverages have been of substantial interest
because of their potential to produce a strong
influence on food purchasing behavior, leading
to the formation of healthier purchasing habits
(Brownell et al. 2009; Powell et al. 2013). At the
time of this writing, the further introduction and
testing of such interventions to produce
population-level obesity prevalence reductions
remains a subject of active investigation (Wang
et al. 2012; Basu et al. 2014).

4 Behavioral Correlates
of Obesity

Evidence from numerous epidemiologic studies
has begun to suggest that particular dietary and
lifestyle factors may have played important
roles in the development of the obesity
epidemic in the United States. As was reviewed
in section “Historical Trends in Obesity” of this
chapter, American adults reported increasing their
daily caloric intake by around 200 kcals per per-
son between 1980 and the mid-1990s (Briefel and
Johnson 2004). Interestingly, this change in intake
appears to have been driven in large part by an
increase in the consumption of certain types of
foods but also by a shift toward eating more meals
prepared away from home. Here we review evi-
dence around several frequently discussed dietary
and behavioral correlates of rising obesity rates in
the United States.
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4.1 Sugar-Sweetened Beverage
Intake

The term “sugar-sweetened beverages” (SSBs)
refers to a group of items that includes regular
soft drinks, flavored waters, and juice drinks
(Malik et al. 2013). In the past decade, policy
makers and members of the public health research
community have increasingly focused on SSBs as
important correlates of obesity, as historic
increases in SSB consumption across most age
groups in the United States seem to run parallel
to the steep increase in obesity rates. For example,
between 1977 and 1994, survey data on the die-
tary behavior of US children and adolescents
(aged 6–17 years) show a doubling in the daily
intake of SSBs (from 5 oz/day up to 12 oz/day, on
average) (Briefel and Johnson 2004). American
adults also increased their consumption of SSBs
during this period (Brownell et al. 2009). The
timing of increased SSB intake also correlates
with a major documented increase in fructose
use by food manufacturers, mostly in the form of
high-fructose corn syrup (HFCS). Namely, the per
capita availability of HFCS increased by about
60 % between 1978 and 2004 (Marriott
et al. 2009). Although SSB consumption has
somewhat stabilized in recent years, it is still
quite pervasive. As of 2012, BRFSS data showed
that about a quarter of adults in surveyed states
reported consuming at least one SSB daily
(Kumar et al. 2014).

Most of the evidence supporting a link
between SSBs and weight gain comes from
observational cohort studies, although random-
ized controlled trial evidence has started to
emerge (Ebbeling et al. 2012; de Ruyter
et al. 2012). A recent large systematic review
and meta-analysis on this topic suggested that,
for both children and adults, there is a positive
association between SSB consumption and
weight gain over time (Malik et al. 2013) Some
in the nutrition research community believe that
SSBs may have a special causal relationship
with weight gain. Several mechanisms to
explain this weight-gain promoting effect of
SSBs have been hypothesized. These include:
(1) humans experience decreased satiety cues

when calories are consumed in liquid form (bev-
erage) as opposed to solid form (food) leading
them to consume excess calories when SSBs are
part of the diet; (2) SSBs have a high glycemic
load, meaning they cause large insulin spikes
and increase subsequent hunger; and (3) the
liver metabolizes fructose (from high-fructose
corn syrup in SSBs) differently than it does
glucose, possibly leading to differential fat
deposition when large amounts of fructose are
consumed (Malik et al. 2013). Despite these
hypotheses, research in this field is relatively
nascent and requires further evaluation before a
causal link between SSBs and obesity can be
firmly established. Regardless, there is a clear
correlation between the timing of increased SSB
consumption in the United States and the sharp
increase in obesity rates, leading public health
professionals to recommend decreasing SSB
consumption as one possible tactic to combat
obesity (Hu 2013).

4.2 Fiber Intake

Another dietary factor that has been cited as a
potential correlate of rising obesity rates is low
fiber intake (Van Itallie 1978). It has been true for
some time now that many Americans do not meet
the recommendation of eating five servings of
fruits and vegetables daily. Numerous public
health campaigns have therefore focused on try-
ing to increase fruit and vegetable intake, because,
among other reasons, low fiber intake has been
associated with the development of gastrointesti-
nal, cardiovascular, and other health problems
(Anderson et al. 2009; Threapleton et al. 2013).
When it comes to obesity, researchers have pos-
ited that foods high in fiber may protect against
weight gain by promoting satiety while contribut-
ing relatively small amounts of energy (Tohill
et al. 2004; Alinia et al. 2009). The largest source
of dietary fiber for most Americans has histori-
cally been vegetables, followed by fruit and bread
(Block and Lanza 1987). Counter to what would
be expected, however, fruit and vegetable intake
has gradually increased in recent decades in the
United States, alongside obesity prevalence. For
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example, in 1989–1991 the average FVI for ages
2 years and up was 4.1 servings per day, which
increased to 4.7 servings per day by 1994–1996
(Briefel and Johnson 2004).

Reviews on the topic of fiber intake and obesity
have been inconclusive and are unable to demon-
strate a clear correlation between total fiber
(or fruit and vegetable) intake and weight gain
(Tohill et al. 2004; Alinia et al. 2009). In part,
this is probably due to the mostly epidemiologic
nature of the data reviewed and potential con-
founders of the relationship between fiber intake
and obesity, including socioeconomic determi-
nants of diet and behavior, and the fact that diets
low in fiber are often higher in other items (e.g.,
high-calorie density junk foods, SSBs) that do
have a strong correlation with weight gain.

4.3 Fat Intake

The intake of dietary fats has been a controversial
topic with respect to obesity. Analysis of longitu-
dinal trends reveals that, coincident with the
so-called low-fat craze (after dietary fats were
linked to cardiovascular disease), American
adults dropped their fat intake by about 11 %
between 1977 and 1987, while obesity rates con-
tinued to rise sharply during that same period
(Heini et al. 1997; Willett 2002). Despite this
observed inverse relationship between
population-level fat intakes and weight gain,
there has been continued concern that fat intake
could have a particularly strong impact on obesity.
Because fat has a high energy density compared to
carbohydrates and protein, it is hypothesized that
decreasing the fat content of the diet should result
in an overall calorie deficit and thus weight loss or
diminished weight gain (Bray and Popkin 1998;
Hill et al. 2000). Upon review of clinical trial and
epidemiologic data, it appears to be true that
reducing fat intake results in weight loss, provided
that the fat is not replaced over time by a larger
number of calories from other sources (Bray and
Popkin 1998). However, at least in the United
States, there is not compelling evidence that fat
intake, in particular, has contributed to the
increasing prevalence of obesity.

4.4 Eating Meals Away from Home

In addition to Americans changing what they eat
or drink over the past few decades, there has also
been a dramatic shift in how they eat. Many stud-
ies examining the sharp rise in obesity prevalence
have identified a parallel trend among Americans
toward eating more meals prepared outside of the
home. This trend may have originated with a
societal shift where more women entered the
workforce beginning in the mid-twentieth cen-
tury. Because of this shift, it is believed that the
food marketplace began to demand more quick
and convenient options for feeding families, as
women had less time to devote to meal prepara-
tion (Cawley and Liu 2007).

The phenomenon of eating out or eating pre-
pared meals appeared to really take off beginning
in the 1970s. Across all age groups in the United
States, the estimated energy intake from restau-
rants and fast-food establishments more than dou-
bled between 1977 and 1996 (Nielsen et al. 2002).
By the mid-1990s over half of Americans (57 %)
reported eating at least one meal per day away
from home (Briefel and Johnson 2004). Fast-food
restaurants complicated the picture, representing a
growing share of the food away from home mar-
ket from the 1970s onward. Food and drink por-
tion sizes at these fast-food restaurants increased
sharply between the 1970s and 2000, more so than
for other categories of food or drink (Briefel and
Johnson 2004).

4.5 Reduced Physical Activity/
Sedentary Lifestyle

Starting in the early twentieth century, many
Americans adopted sedentary lifestyles as more
processes became mechanized, reducing the need
for manual labor and active transport (Swinburn
et al. 2011). It is believed that physical activity
levels continued to drop throughout the century as
more people relied on motor vehicles for transpor-
tation and the use of devices such as televisions
and computers gradually increased (Jeffery and
Utter 2003). By 2001, fewer than half of Ameri-
can adults met recommended levels of leisure time
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physical activity (30 min per day on most days of
the week) (Macera et al. 2005). Because reduced
energy expenditure, coupled with stable caloric
intake, would be expected to produce weight
gain, this more sedentary modern lifestyle has
been proposed as a driver of the obesity epidemic
in the United States.

A sedentary lifestyle has been shown to corre-
late with obesity in cross-sectional and longitudi-
nal epidemiologic studies (Giovannucci
et al. 1995, 1996); however individuals who
report more physical activity in these studies are
also more likely to report other lifestyle choices,
such as being nonsmokers and eating a more
healthful diet. Physical activity does appear to
have a strong correlation with an ability to main-
tain weight loss in previously overweight or obese
individuals (Fogelholm and Kukkonen-Harjula
2000), but even in cohort studies designed to
look at predictors of weight loss maintenance
over time, the specific dose-response effect of
exercise is difficult to tease out, with successful
maintainers of weight loss displaying a wide array
of activity levels (Catenacci et al. 2008). A gen-
eral consensus has emerged that while a more
sedentary lifestyle contributed to population-
level weight gain over time, increased caloric
intake probably played a stronger role in the obe-
sity epidemic (Bleich et al. 2008). Importantly,
there is a more nuanced view of physical activity
emerging as a result of much of this research.
Physical activity is now being viewed as a protec-
tive factor for health that varies according to a
person’s weight status (Michaud et al. 2001).
The notion of “healthy obese” patients, whose
BMI is in the overweight or obese category, but
who are “fit” from a cardiovascular perspective
due to regular exercise, has generated a new line
of inquiry about the complex relationship between
physical activity and weight (Kriska et al. 2003).

4.6 Summary of Behavioral
Correlates

Although there were clear shifts in several aspects
of the American lifestyle that correlated with ris-
ing obesity levels in the United States from the

1970s onward, it is quite difficult to isolate the
individual influences of these different factors on
weight, as they occurred contemporaneously, and
to different extents across the population. Further-
more, beyond the changing diets and physical
activity levels of Americans, there are a host of
other changes we have not explored in this chapter
but that have occurred broadly in our population
during this same period. These include the wide-
spread use of new chemicals that are known endo-
crine disruptors, the spread of medications that
promote weight gain, the growing use of antibi-
otics in children, decreased sleep time, and many
other factors that likely interact with an individ-
ual’s genetics to promote obesity (McAllister
et al. 2009). There is a clear need for further
study on all of these topics, including more con-
trolled trial data and studies using quasi-
experimental designs, to better understand how
physical activity level and diet behaviors interact
with other factors to result in long-term changes in
weight (Jeffery and Utter 2003).

5 Childhood Obesity

5.1 Choosing BMI Cut Points
for Children

A major concern in tracking childhood obesity is
how to appropriately set cut points for what is
considered excess weight among children. Two
critical dilemmas in the epidemiology of obesity
are presented by studying children: first, weight
and height do not increase perfectly in parallel
through children’s normal growth curves; sec-
ondly, early childhood weight is statistically a
poor predictor of adult weight and health out-
comes (Goldhaber-Fiebert et al. 2012). The risk
of adult obesity is nevertheless twice as high for
obese children as for non-obese children, but this
finding appears to be driven by statistical correla-
tions among older child and adolescent obesity
and adult obesity, not early child obesity and
adult obesity, in most assessments (Serdula
et al. 1993; Power et al. 1997; Wright
et al. 2001). Hence, it is important not to poten-
tially stigmatize children who are simply
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manifesting “normal variation” but also critical to
not miss the opportunity to correct problematic
early weight trajectories that may lead to adverse
health outcomes that are difficult to reverse later
in life.

The International Obesity Task Force (IOTF) is
arguably the group that has most carefully
reviewed the epidemiology of obesity among chil-
dren and has defined BMI-for-age cut points spe-
cific to each sex that take into account the
variability in weight per height squared across
age groups from birth to age 18; these cut points
gradually change with age to eventually match the
conventional BMI cut points for overweight and
obesity by age 18 (Dietz and Bellizzi 1999). The
cut points are intended to capture individuals who
exceed the 85th (overweight) or 95th (obese) per-
centiles to further identify pathological weight,
normalizing individuals against historical peers
to more precisely identify individuals with high
body fat, given that BMI itself does not necessar-
ily correspond to body fat among minority chil-
dren (Yanovski et al. 1996; Daniels et al. 1997).
Another problem with using BMI alone rather
than calibrating BMI to age- and sex-specific cut
points is that among populations with significant
undernutrition, metabolic changes in early life
may lead to high weight-for-height despite having
a normal or low body fat content (Trowbridge
et al. 1987).

5.2 Trends and Disparities Among
Children

Using the standard IOTF cut points, which are
incorporated into CDC growth charts used by
pediatricians, it is evident that overall adult trends
in obesity and disparities in obesity prevalence
among race/ethnic and socioeconomic groups
are developed during early childhood and adoles-
cence. According to NHANES measures, over
one-fifth of children are overweight or obese by
the time they are in the 2–5-year-old age group,
and the disparity across White, Black, and
Mexican-American children is statistically signif-
icant by age 6 (Hedley et al. 2004). The rise in
obesity among children corresponded to the rise

among adults, with most of the increase occurring
during the 1980s and 1990s (Freedman
et al. 2006). Socioeconomic disparities among
children and adolescents have been more com-
plex. Socioeconomic disadvantage is associated
with increased risk among young children but is
not universally the case among adolescents, for
whom higher-social class Black girls had a higher
risk of obesity (Kimm et al. 1996; Gordon-Larsen
et al. 2003; Whitaker and Orzol 2006). As among
adults, the race/ethnic disparities in obesity
among children are not fully explained by socio-
economic disparities among children, as the two
factors of race/ethnicity and socioeconomic status
seem to have some statistically independent and
compounding effects on one another (Singh
et al. 2008b). Furthermore, spatial variations in
childhood and adolescent obesity follow the same
trends as in adult obesity, in that geographic dis-
parities between neighborhoods persist in associ-
ation with income inequality, poverty, violence,
and other socioeconomic clustering that manifests
as both income and race/ethnic segregation
between communities (Singh et al. 2008a).

5.3 Risk Factors and Consequences
of Obesity Among Children

Studies of early child obesity have suggested that
significant learning of dietary behaviors occurs
during the transition from breastfeeding or for-
mula feeding to the consumption of solid foods
(Birch and Fisher 1998), as well as related transi-
tions to the preschool period and the transition to
adolescence when peer influences become partic-
ularly salient (Fowler and Christakis 2008). These
data suggest that the natural predispositions
toward sweet foods may be substantially
influenced by parental (among younger and
older children) and peer (among older children)
social behaviors and the learning of appropriate
social responses to internal cues of hunger, crav-
ing, and satiety (Birch and Fisher 1998; Campbell
et al. 2007). Concordant with this notion, family-
based obesity reduction interventions suggest that
child weights tend to follow those of parents,
which may be due both to household-level
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nutrition and physical activity improvements, as
well as secondary benefits through social model-
ing (Epstein et al. 1994; Wrotniak et al. 2004).
Notably, there remains active debate about
whether the correlations of “obesogenic” behav-
iors among peers are truly due to social network
effects or due to common contextual factors that
influence individuals without behaviors necessar-
ily being “infectious” over networks (Cohen-Cole
and Fletcher 2008), although the two possibilities
are not mutually exclusive.

Although most risk factors for childhood obe-
sity correspond to adult risk factors (poor nutrition
and physical inactivity), some additional studies
have suggested unique risk factors for children.
Maternal BMI is predictive of early childhood
BMI due in part to gestational obesity and diabe-
tes (Butte et al. 2007), although whether the per-
sistent association between material BMI and
child BMI in older children is due to purely bio-
logical or mostly social reasons remains debat-
able. In addition, breastfeeding has been
correlated to lower obesity rates, as opposed to
formula feeding (Armstrong and Reilly 2002;
Singhal and Lanigan 2007). A trial in Belarus,
however, did not confirm these findings but was
underpowered to find an effect (Kramer
et al. 2007). The question therefore remains open
as to whether breastfeeding may have a protective
effect or if the epidemiological correlation
between breastfeeding and lower obesity risk is
driven by selection bias (e.g., as higher socioeco-
nomic classes breastfeeding more commonly).

Additional behavioral predictors of obesity
have been studied extensively in children and
adolescents. Television watching and related
sedentary behaviors have been found to be a
key risk factor throughout childhood and adoles-
cents, with a randomized trial suggesting that
the risk is causal (Robinson 1999). Psychiatric
comorbidities among adolescents have also been
found to be predictive of heightened obesity risk.
In particular, depression among adolescents was
found to increase the risk of incident obesity and
the persistence of obesity during adolescence
(as opposed to only the converse finding of higher
depression among those adolescents who are
already obese); this is thought to manifest from

unhealthy eating behaviors as a self-nurturing
behavior for depressed adolescents or due to fatal-
ism leading to unhealthy behaviors as long-term
health prospects seem unimportant (Goodman
and Whitaker 2002; Stice et al. 2005). Both
binge eating and dieting among adolescents has
been observed to increase the risk of future adult
obesity, suggesting that steady self-regulation as a
skill, as opposed to fluctuating and irregular eat-
ing behaviors, may be key to obesity prevention in
this group (Tanofsky-Kraff et al. 2006).

Addressing these risk factors for childhood
obesity appears important to reducing numerous
premature adverse health events. In addition to
manifesting early cardiovascular and metabolic
disease risk factors (e.g., hypertension, hyperlip-
idemia, abnormal glucose tolerance), obese chil-
dren appear to be at an increased risk for rarer
diseases (e.g., pseudotumor cerebri) and for social
problems arising from peer and adult stigmatiza-
tion that potentially persists into adulthood (Dietz
1998). Health-related quality of life among obese
children and adolescents is significantly lower
than among their non-obese counterparts across
all domains including physical functioning, emo-
tional functioning, social functioning, and school
functioning; the quality of life scores were similar
to those among children with cancers
(Schwimmer et al. 2003).

6 The Obesity Paradox

Any overview of obesity in the United States
would be incomplete without discussing the
so-called obesity paradox. This term refers to a
pattern observed in epidemiologic studies
whereby individuals whose weights are in the
overweight (or even class I obese) category have
lower mortality risk compared to individuals with
normal BMI (Flegal et al. 2013; Romero-Corral
et al. 2006). The finding has been particularly
strong in selected patient populations with chronic
illness, such as those with congestive heart failure
(Horwich et al. 2001), and coronary artery disease
(Kennedy et al. 2005). The finding is considered
paradoxical because obesity and overweight are
associated with a number of conditions that
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should theoretically increase mortality relative to
normal-weight individuals, including diabetes,
hypertension, stroke, and cancer.

The notion of a paradoxical relationship
between overweight or obesity and mortality has
caused considerable debate in the obesity research
community and spurred many studies in an
attempt to sort out possible sources of bias or
confounding that might lead to an erroneous asso-
ciation. For example, if smokers or patients with
severe chronic disease such as cancer (groups
with lower average BMIs but very high mortality
risk) are included in the at-risk population, then it
is likely that smoking or cancer acts as confounder
or creates a situation of reverse causation in the
BMI-mortality relationship. As a result, there
have now been several large studies demonstrat-
ing that when smokers and those with known
cancer are eliminated from the analysis, mortality
increases in a linear fashion with weight for over-
weight, obese, and severely obese participants,
relative to those in the normal-weight category
(Berrington de Gonzalez et al. 2010; Tobias
et al. 2014; Preston and Stokes 2014).

On the other hand, hypotheses about why over-
weight or mild obesity might be protective for
some individuals have also been generated.
These include the idea that extra adipose tissue
could provide a “metabolic reserve” in times of
acute illness (Doehner et al. 2010) or that it may
allow patients to better tolerate certain medica-
tions (e.g., anticoagulation or blood pressure low-
ering in the case of treatment for acute myocardial
infarction) (Kennedy et al. 2005). Other possible
explanations for the findings include treatment
bias that results in overweight or obese patients
being more readily identified and treated for con-
ditions such as cardiovascular disease than their
normal-weight counterparts, thereby reducing
their mortality due to the disease being treated
earlier on (Greenberg 2013).

There have also been studies where adjusting
for factors such as smoking status did not seem to
resolve the obesity paradox (Flegal et al. 2013;
Greenberg 2013), calling into question the general
utility of BMI as a stand-alone predictor of health,
particularly in chronically ill populations. Given
that BMI does not provide an accurate measure of

body fat distribution on its own, some experts
have called for revisions to the way obesity is
classified, asking that predictors of visceral adi-
pose tissue, such as waist circumference or waist-
to-hip ratio, be used in conjunction with BMI to
provide a more complete picture of the
cardiometabolic risk for a given individual
(Carmienke et al. 2013).

7 What Does the Future Hold?

7.1 Obesity in an Aging Population

Among the critical issues facing obesity epidemi-
ologists is the question of how obesity should be
tracked among an increasing aging population.
Emerging literature suggests that health risks
related to weight among older adults cannot be
accurately evaluated purely in terms of body fat-
ness or fat distribution. Rather, because older
adults have less bone and muscle mass, reduced
body cell mass, and increased extracellular fluid
volumes in their bodies, nonfat components of the
body play critical roles in functional and physical
functioning as well as comorbid disease risk. As a
result, geriatricians and others studying obesity
among older adults have increasingly used the
term “sarcopenic obesity” to describe the phe-
nomenon in which skeletal muscle atrophy
(sarcopenia) in the context of elevated BMI is at
greatest risk for morbidity and disability
(Baumgartner 2000; Stenholm et al. 2008; Lim
et al. 2010). Sarcopenic obesity appears to be
associated with the incidence of disability inde-
pendently from age, sex, physical activity level,
prevalent morbidity, and length of follow-up, pos-
sibly due to reductions in anabolic metabolism
and increased catabolism in older adults
(Baumgartner et al. 2004), particularly due to
pro-inflammatory cytokines (Schrager
et al. 2007) and peptides produced by adipose
tissue (Zamboni et al. 2005). Furthermore,
reduced muscle mass decreases insulin-
responsive tissue stores, which may promote insu-
lin resistance and obesity (Roubenoff 2004). In
some studies, however, obesity itself has been
found to be more important than sarcopenia in
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contributing to the lower capacity (Bouchard
et al. 2009); similarly, sarcopenia itself is often
not seen to cause disability apart from when it is
accompanied by obesity (Rolland et al. 2009).
Obesity itself also has also been linked to the
onset of “frailty,”which includes weakness, slow-
ness, and exhaustion (Blaum et al. 2005).

7.2 Potential Plateau of Childhood
Obesity Rates

Shortly before this writing, a new wave of
NHANES data analyses suggested that while no
significant improvements have occurred in obe-
sity prevalence amongmost populations, there is a
significant decrease in obesity among 2- to 5-year-
old children (from 13.9 % to 8.4 %) (Ogden
et al. 2014). The result was widely celebrated in
both the popular and social media, even including
attributions of causality to theWhite House “Let’s
Move” initiative, despite the likelihood that the
prevalence changes actually occurred prior to the
initiative’s existence (Kass 2013). Among epide-
miological observers, several concerns were
raised about whether these findings were “real.”
In particular, differences in sampling over study
waves (e.g., oversampling of Asians in the latest
survey) and inadequate correction for multiple
testing error (false findings by chance) may have
produced a false sense of prevalence reduction in
this young age group (Appel 2014; Rimm 2014).
At the time of this writing, it remains premature to
conclude that the finding is indicative of a true
trend in improved obesity prevalence among chil-
dren, which would be the first such decline
observed in any developed country (Stuckler and
Siegel 2011).

7.3 Trends in Severe Obesity

While overall obesity prevalence has plateaued,
this may be due to the cut point for BMI that is
defined as obese. That is, a large and stable pop-
ulation exceeds the cut point for obesity, but
within this obese group, weight-for-height con-
tinues to increase. In particular, the prevalence of

severe obesity (BMI GE 35 kg/m2) continues to
rise, with at least 14.5% of the American adult
population meeting these criteria in 2011–2012
(Ogden et al. 2007, 2014).

Hence, obesity prevalence remains relatively
stable, but the severity of obesity – and, in turn,
the severity of complications related to obesity –
continues to worsen among the general adult pop-
ulation (Andreyeva et al. 2004).

8 Cross-References

▶Childhood Environment and Obesity
▶Diet and Obesity (Macronutrients, Micro-
nutrients, Nutritional Biochemistry)

▶Diet, Exercise, and Behavior Therapy in the
Treatment of Obesity and Metabolic Syndrome

▶Obesity and Cardiac Disease
▶ Sarcopenic Obesity
▶ Social and Community Networks and Obesity
▶The Built Environment and Obesity
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Abstract
Obesity in Latin America has become a serious
health problem. The highest prevalence in
adults is now seen in Mexico (more than
30 %), and in children, it is seen in girls in
Uruguay (more than 15 %). Obesity is the driv-
ing force for the epidemic of diabetes mellitus
which has also extended to Latin America, and
the increasing frequency of these twometabolic
problems runs in parallel together with the met-
abolic syndrome. Abdominal obesity has been
ill defined in Latin America until recently when
the regional cutoffs for waist circumference
were set at 94 cm for men and 88–90 cm for
women. A high waist-hip ratio is associated
with a two- to fourfold increase in the risk of
having an acute myocardial infarction. Latin
America is going through an accelerated urban-
ization process, and in some countries in Cen-
tral America, this may lead to a steep rise in
obesity and associated metabolic problems
when the transition takes momentum. By the
year 2030 overweight and obesity are expected
to affect 50 % of males and 60 % of females in
Latin America. Its burden reflects in the
alarming increase of cases of diabetes, hyper-
tension, CHD, stroke, cancer, and knee osteo-
arthritis. That could be minimized significantly
if the mean BMI was reduced by 1 % and even
more with a 5 % reduction and would save
billions of US dollars in the next 30–40 years.
A systematic review supports school-based
interventions to improve lifestyle in children
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and healthcare interventions among overweight
adults in Latin America. Many governments in
Latin America are now developing innovative
population strategies to reduce the obesity
epidemic.

Keywords
Obesity • Latin America • Abdominal obesity

1 Introduction

Obesity in Latin America has become a serious
health problem. Its frequency has rapidly increased
in parallel with economic growth as a consequence
of urbanization and industrialization, leading to
changes in lifestyle including sedentarism and
nutritional transition. The so-called coca-coloniza-
tion entices even the most traditional communities
where habits such as drinking bottled sweet drinks
are now part of their lifestyle.

2 Epidemiology

Among the Latin American countries, Mexico has
now the highest prevalence of obesity in adults.
Their last national survey in 2012 (Barquera
et al. 2013) revealed that 32.4 % of the adult pop-
ulation (ages �20 years) was obese (BMI �30
kg/m2) and an additional 38.8 % was overweight
(BMI 25–29.9 kg/m2). Obesity was more prevalent
in women and overweight in men. Greater

proportion of both was observed in people with
higher income, living in urban settings, and located
in the north of the country (nearer to the USA). In
the last 12 years, the prevalence of obesity and
overweight had increased by 15.2 %. In Table 1
the Latin American countries are listed according to
their age-standardized prevalence range of obesity
estimated for 2013 (Ng et al. 2014).

In children, the prevalence of obesity as
defined by the International Obesity Task Force
is also increasing (Ng et al. 2014). It is alarmingly
high in Uruguayan girls and high in most of the
countries which also have the highest prevalence
of obesity in adults. In Table 2 the Latin American
countries are listed according to their
age-standardized prevalence range of obesity in
children estimated for 2013.

3 Obesity and Metabolic Disease

Obesity is the driving force for the epidemic of
diabetes mellitus (DM) which has also extended
to Latin America. Around 8 % of the adult popu-
lation (20–79 years) in the SACA region of the
IDF (excluding Mexico) has diabetes, and for
each subject with the disease, there is roughly
one with prediabetes (prevalence 7.5 %) (Aschner
et al. 2014). In a cross-sectional study of adults
(ages 25–64 years) in seven Latin American cities,
Mexico City had the highest prevalence of diabe-
tes (8.9 %) which coincided with the highest prev-
alence of obesity (31 %) and metabolic syndrome
(27.2 %). Prevalence of diabetes in the other six

Table 1 Age-standardized prevalence of obesity (BMI�30 kg/m2), adults ages�20 years, 2013 (Adapted fromNg et al.
2014)

Prevalence range (%) Men Women

30–40 Chile, El Salvador, Honduras, Mexico, Nicaragua,
Paraguay

20–30 Argentina, Chile, Mexico, Paraguay,
Uruguay

Argentina, Bolivia, Brazil, Colombia, Costa Rica,
Cuba, Dominican Republic, Peru, Uruguay,
Venezuela

15–20 Costa Rica, Cuba Ecuador, Guatemala, Panama

10–15 Bolivia, Brazil, Colombia, Dominican
Republic, Nicaragua, Panamá,
Venezuela

5–10 Ecuador, El Salvador, Guatemala,
Honduras, Peru
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cities (Barquisimeto in Venezuela, Bogotá in
Colombia, Buenos Aires in Argentina, Lima in
Peru, Quito in Ecuador, and Santiago in Chile)
ranged between 4.4 % and 8.1 %, obesity between
16.3 % and 26.6 %, and metabolic syndrome
between 13.7 % and 25.8 % (Schargrodsky
et al. 2008). The latter was diagnosed by the
Expert Panel on Detection, Evaluation, and Treat-
ment of High Blood Cholesterol in Adults
(ATPIII) criteria.

4 Abdominal Obesity

The ATPIII criteria for diagnosing the metabolic
syndrome include abdominal obesity defined by a
waist circumference>102 cm inmen and>88 cm
in women (Grundy et al. 2005). The International
Diabetes Federation (IDF) proposed to use
ethnicity-specific values for the waist circumfer-
ence in non-Europid groups (Alberti et al. 2005),
and this was corroborated in the latest joint state-
ment of the IDF and other institutions mainly from
North America and Europe (Alberti et al. 2009).
Nevertheless, since the ethnic-specific data for
Latin America was not available, in the statement,
it was recommended to use the Asian criteria in
our region (abdominal obesity diagnosed by a
waist circumference �90 cm in men and
�80 cm in women) until new data appeared.

The IDEA study, which compared the waist
circumference of more than 160,000 primary care
patients from 63 countries around the world,
clearly showed that the mean values for Asian
men and women were around 10 cm lower than

the rest of the regions, including Latin America
(Balkau et al. 2007). The mean circumference
value for our region was comparable to Eastern
Europe. We analyzed our regional data in more
than 28,000 patients and found a strikingly high
frequency of abdominal obesity in women with
normal BMI (42 %) using the IDF criteria for
Asia, suggesting that an evidence-based definition
of abdominal adiposity was needed (Aschner
et al. 2009). Recently, we investigated the waist
circumference value that identified subjects with
excess visceral fat measured by CT scan using a
standardized method in 457 voluntaries from five
Latin American countries (Colombia, El Salvador,
Mexico, Paraguay, and Venezuela), and by ROC
curves, we found that the cutoffs for waist circum-
ference in our population were 94 cm in men and
90 cm in women (Aschner et al. 2011). There have
been other attempts in Latin America to establish
the cutoffs using cardio-metabolic endpoints
(lipids, blood pressure, CVD surrogates), but they
have been limited to local populations, and the
cutoff values for waist circumference were similar
to those found in our study (Sanchez-Castillo
et al. 2000; Perez et al. 2003; Bastos Barbosa
et al. 2006; Medina-Lezama et al. 2010). A multi-
national study of almost 4,000 postmenopausal
women attending routine consultation at 12 gyne-
cology centers in major Latin American cities
found that the optimal WC cutoff value best
predicting at least two other components of the
metabolic syndrome was 88 cm (Bl€umel
et al. 2012). In the INTERHEART case-control
study, the waist-hip ratio (higher vs. lower tertile)
in Latin American population was associated with

Table 2 Age-standardized prevalence of obesity (based on IOTF cutoffs), children 2–19 years, 2013 (Adapted from Ng
et al. 2014)

Prevalence
range (%) Boys Girls

15–20 Uruguay

10–15 Chile, Mexico Chile, Costa Rica, Cuba

7.5–10 Argentina, Uruguay Brazil, Mexico, Venezuela

5–7.5 Costa Rica, Cuba, Brazil, Paraguay, Venezuela Argentina, Dominican Republic, El
Salvador, Nicaragua, Panama, Paraguay

2.5–5 Bolivia, Colombia, Dominican Republic, Ecuador, El
Salvador, Guatemala, Nicaragua, Panama, Peru

Bolivia, Colombia, Ecuador, Guatemala,
Honduras, Peru

0–2.5 Honduras
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a twofold risk of having an acute myocardial
infarction in men and a fourfold risk in women,
and the population attributable risk was 36 % and
63 %, respectively (Lanas et al. 2007).

5 Burden of Obesity

Many countries in Latin America are still going
through an accelerated urbanization process.
Although in some countries such as Argentina,
Uruguay, and Venezuela more than 90 % of the
population lives in the cities, there are still coun-
tries in Central America such as Guatemala, Hon-
duras, and Nicaragua where more than 40% of the
population lives in the rural area (Aschner
et al. 2014). Overweight and obesity affect more
people living in urban than in rural areas, and the
latter are expected to be more physically fit. Obe-
sity has been associated with low socioeconomic
status and low educational level, but in communi-
ties where the transition is taking place, it pene-
trates first households with higher income
(Rivera-Andrade et al. 2014). In that population
being moderately fat is a sign of wealth, prosper-
ity, and good health. It is worrisome that those
Central American countries where the proportion
of rural population is still high have also the
highest prevalence of obesity (Table 1) and diabe-
tes (12.5 % in Nicaragua and 10.9 % in Guate-
mala) (Aschner et al. 2014) which means that the
problem can get much worse when full transition
occurs.

Overweight and obesity are expected to affect
50 % of males and 60 % of females by 2030 in
Latin America. The increase in the prevalence of
overweight and obesity was estimated in some
Latin American countries, and the highest
projected rates for males were in Brazil and
Cuba and for females in Nicaragua and Panama
(Webber et al. 2012; Rtveladze et al. 2013a, b;
Fig. 1). In Brazil the high rates of obesity have
been associated with a significant increase in the
burden of other chronic diseases. Prevalence of
diabetes and knee osteoarthritis will double
between 2010 and 2050. Hypertension will
increase more than 1.5-fold, and CHD, stroke,
and cancer will triple. A reduction of 1 % in the
mean BMI of the Brazilian population would save
in 2050 nearly 10,000 cases of cancer and over
222,000 cases of CHD/stroke as well as over 0.7
million cases of knee osteoarthritis, nearly 0.8
million cases of type 2 diabetes, and 1.6 million
cases of hypertension. If the mean BMI decreased
by 5 %, the figures would be 21,000, 600,000, 2.5
million, 2.1 million, and 5.4 million, respectively.
A 1% reduction in mean BMI by 2050 would lead
to a reduction in healthcare expenditure, saving
over US$ 27 billion which would increase to US$
56 billion with a 5 % decrease in mean BMI
(Rtveladze et al. 2013a). A similar result was
found in Mexico where obesity-related CHD,
stroke, cancers, and diabetes are projected to
more than double between 2010 and 2050. The
rates will also nearly double for hypertension and
knee osteoarthritis. A reduction of 1 % in the

Fig. 1 Estimated increase
in the prevalence of
overweight and obesity
from 2010 to 2050 in some
Latin American countries
(Adapted from Webber
et al. 2012; Rtveladze
et al. 2013a, b)
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mean BMI will result in 28,277 fewer cases of
cancer, 400,227 fewer cases of CHD/stroke, and
877,311 fewer cases of diabetes in 2050. With a
5 % reduction in BMI, there would be a reduction
of 82,655, 1.2 million, and 2.5 million cases of
cancer, CHD/stroke, and diabetes, respectively.
Such a reduction would save US$ 85 million in
2050 (Rtveladze et al. 2013b).

6 Strategies to Reduce Obesity

Unfortunately, few trials have been reported on
the efficacy of obesity-related interventions in
Latin America. In a recent systematic review of
such interventions in Latinos in the USA and in
Latin America (mostly Mexico, Brazil, and Chile)
which was published between 1965 and 2010, the
authors found sufficient evidence to recommend
school-based interventions to improve physical
activity, particularly those which included a com-
ponent for parent participation (Lobelo
et al. 2013). They also found evidence to recom-
mend interventions to improve healthy eating and
physical activity in the healthcare context for chil-
dren who are already overweight or obese. In this
context, the most successful interventions
included longer intervention time (e.g.,
16 weeks) and a multidisciplinary approach
involving psychologists, physical trainers, and
endocrinologists. The healthcare setting may
have a stronger influence on individuals’ health
behaviors in developing countries and for cultures
that hold physicians in high regard. The authors
also found sufficient evidence to recommend
healthcare interventions aimed at improving phys-
ical activity and healthy eating among overweight
adults in Latin America but not to support preven-
tion interventions for adults (Holub et al. 2013;
Mehta et al. 2013). In fact, promoting better nutri-
tion in undernourished communities without edu-
cating on healthy lifestyle may lead to obesity,
particularly if the aid is given in terms of extra
income (Forde et al. 2012).

There are initiatives ongoing on prevention of
obesity at the population level in Latin America
(Elder and Arredondo 2013). The Centre for Dis-
ease Control (CDC) in the USA has been

developing a guide to obesity prevention in
Latin America and the USA (project GOL) in
collaboration with the Mexican National Institute
of Public Health (Instituto Nacional de Salud
Pública, INSP) to better understand, assess, and
develop evidence-based strategies and recom-
mendations to effectively prevent obesity in
Latin American communities and populations
(Project GOL 2015). The project has examined
and synthesized published literature related to
policy, community, and organizational change
strategies to promote physical activity and healthy
diets (Holub et al. 2013), and now it has focused
on different methods that would promote water
consumption in elementary school students,
including the Water for Kids project aimed at
increasing the accessibility of water to children
by providing each student with a water bottle. The
walk and water team was derived from the previ-
ous study that provided students with water bot-
tles and classroom education on drinking water
and physical activity. The study utilized a system
to monitor students’ physical activity by counting
the number of laps each student ran or walked. In
general they have succeeded in changing some
lifestyle habits (Project GOL 2015). The Mexican
government has also launched the National
Agreement on Nutritional Health (Acuerdo
Nacional para la Salud Alimentaria, ANSA)
which includes ten strategies based on increased
physical activity; access to drinking water;
reduced consumption of sugar and fat in bever-
ages; increased consumption of fruits, vegetables,
whole grain cereals, and fiber; food labeling; pro-
motion of breastfeeding up to 6 months; reduction
of added sweeteners; reduction of saturated and
trans fats; reduction of portion sizes; and less
sodium in the diet (ANSA 2015). Following a
similar trend, Brazil launched a strategic plan for
preventing chronic disease supported by national
legislation that will scale up physical activity pro-
motion programs built around community classes
to 4,000 municipalities in Brazil. This appears to
be the largest and most comprehensive national
commitment to physical activity promotion in the
world to date (Pratt et al. 2014). Colombia has
been doing this through a program called Ciclovía
Recreativa in which streets are closed to
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motorized transport, transforming them into tem-
porary linear parks focused on recreational activ-
ities. It started in Bogotá more than 40 years ago,
and now during Sundays and festivity days, more
than one million individuals walk, jog, run, or
cycle along the main streets which are closed for
vehicles. The Ciclovía program has been incorpo-
rated into the Colombian National Public Health
Plan as a strategy for promoting physical activity
and reducing chronic diseases, and since 2009, it
became part of the national obesity law. It serves
as a model for more than 300 programs in Colom-
bia and beyond. Studies conducted in Bogotá and
in the USA show that users of the open streets or
Ciclovía programs are more likely to meet phys-
ical activity guidelines and that Ciclovía programs
are cost beneficial (Montes et al. 2012).

LatinAmerica is in a strong position to implement
prevention strategies.Most LatinAmerican countries
have strong and well-established infrastructures,
health systems, education, communications, and an
active and engaged civil society. In general there is
abundant availability of fruits and vegetables all year-
round. There is still an opportunity to preserve some
of the traditional lifestyle advantages such as home
cooking and walking. Thus, there is every reason to
believe that, with appropriate planning and imple-
mentation, Latin America can reduce obesity preva-
lence (Editorial 2014).

7 Cross-References

▶Body Composition Assessment
▶Global, National, and Community Obesity
Prevention Programs

▶ Prevention and Treatment of Childhood
Obesity and Metabolic Syndrome

▶Type 2 Diabetes: Etiology, Epidemiology, Path-
ogenesis, Treatment
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Abstract
This chapter outlines the epidemiology of
overweight and obesity in sub-Saharan Africa,
their determinants, and the relationship with
cardiovascular diseases (CVDs) and diabetes.
The review shows that overweight and obesity
rates are increasing in all African regions with
Southern African region being the most
affected. The rate of overweight and obesity
is higher among women than among men and
in urban areas compared to rural areas. Socio-
economic status, age, parity, marital status,
physical inactivity, body weight perceptions,
and increased energy are powerful predictors
of overweight and obesity in sub-Saharan
Africa. The rapid urbanization accompanied
by nutrition transition is changing the disease
landscape in sub-Saharan Africa with CVD
and its related risk factors gaining prominent
position. The rising levels of overweight and
obesity in sub-Saharan Africa are likely to
exacerbate the burden of CVD and diabetes if
measures are not taken to curb the problem.
Public health strategies focusing on healthy
diet, physical activity, weight reduction, and
maintenance strategies are urgently needed in
sub-Saharan African countries.
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1 Introduction

Obesity is a significant contributing factor for
various chronic diseases such as cardiovascular
diseases (CVD), type 2 diabetes (T2D), musculo-
skeletal disorders, and some cancers (Prospective
Studies Collaboration 2009). Obesity and its
related conditions lead to reduced quality of life
and premature death. A meta-analysis of 97 stud-
ies, for example, showed that, compared with
normal weight, being obese was associated with
higher all-cause mortality for all grades of obesity
combined (Flegal et al. 2013). Obesity is truly a
global burden. In 2014, more than 1.9 billion
adults were overweight. Of these over 600 million
were obese (WHO 2015).

The fundamental cause of overweight and obe-
sity is an energy imbalance between calories con-
sumed and calories expended. The nutrition
transition, characterized by the change from diets
of high nutritional quality to those in low poor
diets, is occurring globally (Popkin et al. 2011).
The nutrition transition coupled with the epidemi-
ological and demographic transitions has set
population health toward high prevalence and
incidence of obesity and related sequelae such as
hypertension, diabetes, strokes, cancers, heart
attacks, and other chronic noncommunicable dis-
eases (NCDs) (Lancet 2011; Martorell et al. 2000;
Rutter 2011). Africa is also experiencing these
transitions (Abubakari et al. 2008; Awuah
et al. 2014; Steyn and McHiza 2014).

In Africa, a complex coexistence of undernu-
trition and overnutrition has been reported.
Between 1992 and 2005, the prevalence of over-
weight and obesity increased by almost a third in
sub-Saharan Africa (Ziraba et al. 2009). Until
recently, this increase was reported among
women and urban residents (Martorell
et al. 2000); however, current data show consis-
tent increase in overweight and obesity among

men and rural residents as well (Afolabi
et al. 2004; Kimani- Murage et al. 2011). The
trend toward rising overweight and obesity poses
both health and socioeconomic challenges to indi-
viduals and the region.

Reviews examining the prevalence of over-
weight and obesity have been limited in African
nations (Chukwuonye et al. 2013; Micklesfield
et al. 2013) and regions of Africa (Abubakari
et al. 2008; Steyn and McHiza 2014). However,
given the fast increasing prevalence of over-
weight- and obesity-related illnesses such as
T2D, it is highly relevant to map the current
information about overweight and obesity preva-
lence in Africa to help health workers, govern-
ment agencies, and policy makers toward setting
priorities and for designing interventions. In this
chapter, therefore, we aimed to outline the epide-
miology of overweight and obesity in sub-
Saharan Africa. Secondly, we examined the deter-
minants of overweight and obesity and their
impact on CVDs and diabetes.

Box 1 Search Strategy
Two kinds of data were used for this review
study: the World Health Organization
(WHO) Global InfoBase on overweight
and obesity (https://apps.who.int/infobase/
Index.aspx) and a review of determinants
of overweight and obesity in Africa. WHO
Global InfoBase database was used to pro-
vide prevalence estimates by sex, region,
residence, and socioeconomic status and to
depict trends of overweight and obesity
over time in various African regions. In
addition, we conducted a review on deter-
minants of overweight and obesity in Africa
using several electronic databases including
ScienceDirect, EBSCOhost, Academic
OneFile, eLibrayUSA, PubMed, JSTOR,
and AJOL. In webpages where the
advanced search option was allowed, the
search was limited to English language,
human studies, and peer review journal
articles.
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1.1 Measurement of Overweight
and Obesity

Body mass index (BMI) is a simple index of
weight for height that is commonly used to clas-
sify adult with overweight and obesity. It is
defined as a person’s weight in kilograms divided
by the square of his height in meters (kg/m2). A
BMI of 25–29.9 kg/m2 is classified as overweight
and BMI �30 kg/m2 is classified as obesity.

2 Prevalence and Overweight
and Obesity in Africa

Figure 1a, b shows prevalence of overweight in
46WHOAfrican countries. Amongmen (Fig. 1a),
the prevalence of obesity ranged from 3.5 % in
Eritrea to about 64 % in Seychelles in 2010. The
top five countries with the highest prevalence of
overweight were Seychelles (64 %) followed by
Mauritius (44.8 %), Cameroon (43.9 %),
Botswana (41.6 %), and South Africa (41 %).
Conversely, the top five countries with the lowest
rates include Eritrea (3.5 %), Democratic Repub-
lic of Congo (5.7 %), Kenya (7.7 %), Central
African Republic (8.0 %), and Rwanda (8.1 %).
Women in general have higher prevalence of
overweight than men in all countries with the
prevalence rates ranging from 3.7 % in Ethiopia
to 74 % in Seychelles. The top five countries
with the highest prevalence of overweight were
Seychelles (73.8 %), Lesotho (70.8 %),
South Africa (68.5 %), Mauritania (56.8 %), and
Mauritius (53.5 %). The top five countries with
the lowest rates include Ethiopia (3.7 %), Eritrea
(6.3 %), Democratic Republic of Congo (15.8 %),
and Central African Republic and Zambia
with 20 %.

Figure 2a, b shows the prevalence of obesity in
various WHO African countries. The prevalence
of obesity ranged from 0 % in Eritrea to about
21 % in Seychelles in men and from 0 % in
Ethiopia to about 43 % in Seychelles in women.
In men, only two countries (Seychelles and Cam-
eroon) out of the 46 countries had obesity preva-
lence of more than 10 %. Among women,

however, 17 countries of the 46 countries (37 %)
had prevalence of obesity of more than 10 %.

2.1 Regional Differences
Overweight

Figure 3 shows the time trend prevalence of over-
weight in various African regions. Overweight
has been on the increase in all regions since
1990, although the extent of the increase has dif-
fered between regions. In 1990, the prevalence of
overweight was highest in the Northern Africa
(7.5 %) followed by Southern Africa (6.4 %),
Eastern Africa (4.5 %), Middle Africa (3.7 %),
and Western Africa (2.6 %). There has been a
staggering increase of overweight in Southern
African region since 1990 with average preva-
lence rate of 21 % in 2015 (330 % increase in
the last 25 years) compared to other regions.
Northern African region has also experienced
rapid increase in overweight since 1990 with
prevalence of 13 % in 2015 (73 % increase in
the last 25 years). In other regions, the percentage
increase in the last 25 years has been modest
ranging from 9 % in Eastern Africa to 70 % in
Western Africa.

2.2 Urban and Rural Differences
in Overweight and Obesity

Urbanization has been linked to increased risk of
overweight and obesity in Africa; therefore, most
urban populations have higher overweight and
obesity rates than rural populations (Benkeser
et al. 2012; Agyemang et al. 2009; Abubakari
et al. 2008; Amoah 2003; Kandala and Stranges
2014). This reflects on the clear differences in
the prevalence of obesity between rural and
urban communities across sub-Saharan African
countries (Fig. 4). As Fig. 4 shows, the
percentage difference in the prevalence of obe-
sity ranges from 4 % higher in rural Chad to
about 10 % higher in urban Lesotho and Uganda
compared with rural communities in these
countries.
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3 Determinants of Obesity

From the review the determinants of overweight
and obesity were categorized into three:
sociodemographic factors, socioeconomic status,
and perceptions of weight and lifestyle factors.

3.1 Sociodemographic Factors
and Obesity

Generally, obesity rates are higher among females
than among males in Africa as indicated above. In
2006, obesity was six times as common in women
as in men in Ghana, four times in Morocco, and in
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South Africa three times as common in women as
in men (Prentice 2006). Pereko et al. (2013) in
Ghana reported that females were about eight
times more likely to be overweight/obese than
males. In addition, Njelekela et al. (2009) reported
that Tanzanian women were 4.5 times more likely
to be obese compared to men. Similarly, obesity
prevalence was higher among South African
women compared with men (Malhotra et al. 2008).

Although body weight varies by sex, it is
related to a specific stage of life. A number of
studies in Africa have reported a positive

association between age and obesity (Biritwum
et al. 2005; Amoah 2003; Duda et al. 2007;
Muhihi et al. 2012; Dake et al. 2010; Pobee
et al. 2013; Iloh et al. 2011; Pereko et al. 2013;
Atek et al. 2013; Shayo andMugusi 2011; Masibo
et al. 2013). While obesity increases with age, it
increases up to a certain age and declines after-
ward. For instance, six papers reported that obe-
sity prevalence increases for women from age
35 to 64 and declines after 64 years of age. For
men, obesity increases until age 45 and usually
remains constant.
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WHO Global InfoBase)

4 Obesity in Sub-Saharan Africa 45



Marital status is also an important determinant
of obesity on the continent. Being married
increases the likelihood of being overweight or
obese. Mogre et al. (2014) in a study among
Ghanaian medical students found that individuals
who were married were nearly six times more
likely to be obese compared to those who were
never married. Other Ghanaian studies including
Pobee et al. (2013), Benkeser et al. (2012), Pereko
et al. (2013), and Dake et al. (2010) found that
married women were more likely to be obese
compared to unmarried women). In
South Africa, Malhotra et al. (2008) and Case

and Menendez (2009) reported that never married
participants were at a lower risk of being over-
weight/obese than those currently married. In
Tanzania, married and cohabiting respondents
showed significant increase risk for obesity
compared to unmarried respondents (Shayo and
Mugusi 2011). Similarly, Masibo et al.’s (2013)
study in Kenya reported that women who were
currently married were 1.9 times more likely to be
overweight/obese compared to those who were
not married.

Obesity also increases with parity. Women
who had one or more children were more likely

Fig. 4 Prevalence of obesity by rural and urban residence in selected African countries (Source: WHOGlobal InfoBase).
The year represents the period the study was done
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to be overweight or obese compared to those with
no children (Dake et al. 2010; Pobee et al. 2013;
Appiah et al. 2014; Agbeko et al. 2013).

3.2 Socioeconomic Status
and Obesity

Among studies that examined the influence of
SES on obesity, the results were inconsistent.
Studies that used the wealth index as measure of
SES in relation to obesity consistently found
higher prevalence of obesity in rich households
than poor households (Fezue et al. 2006; Case and
Menendez 2009; Steyn et al. 2011), while studies
that used the level of education as measure of
SES found mixed results (Alaba and Chola
2014; Amoah 2003). As Fig. 5 shows, in all
the regions, obesity rates were higher in rich
households compare to the poor households. In
some countries such as Benin, the richest quintile
of the population has nearly 17 % higher preva-
lence of obesity than the poorest quintile of the
population.

Women with secondary or higher education
were about 60 % more likely to be obese than
those with no formal education, and working
women were 13 % more likely to be obese com-
pared to those who were not working (Ziraba
et al. 2009). Agbeko et al. (2013) in Ghana also

reported that women with higher education were
about two times more likely to be overweight or
obese compared to those with no formal educa-
tion. However, a study among Ibos in Nigeria by
Anyanwu et al. (2010) observed a negative rela-
tionship between education and obesity. Although
obesity was worse for all females of the various
education groups, it was worst for those in the
least educated group. A negative association
between education and obesity has also been
observed in South Africa and Ghana (Alaba and
Chola 2014; Amoah 2003).

3.3 Perception of Body Size
and Obesity

Preferred body size has been associated with obe-
sity particularly among African women. In some
parts of Africa, obesity is associated with wealth,
beauty, good health, strength, and respect
(Holdsworth et al. 2004; Prentice 2006; Siervo
et al. 2006; Amoah 2003). Appiah et al. (2014)
reported that a point increase in preferred body
size increases the likelihood of being overweight
or obese. However, recent studies indicate that
this perception is changing (Duda et al. 2007;
Tlili et al. 2008; Puoane et al. 2013). In Tanzania,
women associated obesity with greediness and the
likelihood to develop chronic diseases such as

Fig. 5 Prevalence of obesity by wealth quintiles in selected African countries (Source: WHO InfoBase). The year
represents the period the study was done
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diabetes, heart disease, and cancer. Majority (77.9
%) of overweight and obese women therefore
indicated preference for a slimmer body size
(Tlili et al. 2008). Puoane et al. (2013) observed
a contradictory opinion of body size preference
among South African adolescent girls. Although
participants expressed positive feelings about
being thin and being fat, majority (63 %)
expressed preference for a low body weight. A
Ghanaian study among women indicated the
desire for a moderate or healthy weight, and this
was influenced by the weight strategies of their
partners. Moreover, obese women were more
likely to have a greater dissatisfaction score with
their bodies than women of all other categories
(Duda et al. 2007).

3.4 Lifestyle Factors
and Overweight and Obesity

Unhealthy diet, physical inactivity, smoking, and
alcohol consumption are among the lifestyle fac-
tors that have been shown to be associated with
overweight and obesity in sub-Saharan Africa.
Regarding diet, the consumption of calorie-dense
foods, low intake of fruits and vegetables, and
drinking of tea have been related to obesity
(Manyema et al. 2014). In Ghana, consuming
less servings of fruit has been shown to be asso-
ciated with increasing the likelihood of being
overweight and obese (Biritwum et al. 2005).
Physical inactivity also has a negative effect on
obesity. Individuals who engaged in vigorous
activities had lower risks for obesity as compared
to those who did less rigorous activities (Shayo
and Mugusi 2011).

The association between alcohol consumption,
smoking, and obesity is not consistent. While
some studies report a positive association, others
report the inverse. Women who consumed alcohol
were 1.37 ( p = 0.002) times more likely to be
overweight or obese compared with those who did
not consume alcohol (Agbeko 2013). In Malawi,
however, the proportion of current drinkers who
were obese (22.9 %) was less likely than non-
drinkers (17.3 %) to be obese (Msyamboza
et al. 2013). In terms of smoking, obesity was

high among smokers. In Malawi, nonsmokers
were 24 % more likely to be obese compared to
10 % of current smokers.

3.5 Relationship Between
Overweight and Obesity
and CVD and Diabetes in Africa

Obese individuals develop more CVD risk factors
than persons of normal weight (Ayah et al. 2013;
Njelekela et al. 2009; Okpechi et al. 2013). Six of
the papers included in the review examined the
impact of obesity on CVD risk and diabetes in
Africa. Among the risk factors of CVD, obesity
was considered the most dominant. Overweight
and obese persons had higher systolic blood pres-
sure and diastolic blood pressure compared with
normal weight persons (Msyamboza et al. 2013).
The data suggest that the risk is higher for men
than for women (Mufunda et al. 2006; Njelekela
et al. 2009). In Tanzania, a unit increase in BMI
was associated with a 10 % increase odds of
hypertension (Njelekela et al. 2009). In Nigeria,
a BMI greater than 25 increased the odds of
hypertension by 12 % (Okpechi et al. 2013). In
addition, the risk of diabetes was higher among
obese than normal weight people (Tibazarwa
et al. 2009). In Kenya, the age-sex adjusted odds
for diabetes increased by 3.2 % among obese
compared to persons of normal weight (Ayah
et al. 2013). Obesity was also positively related
to hypercholesterolemia. In South Africa, the total
cholesterol levels of overweight women increased
by 3 % compared to the normal weight
(Tibazarwa et al. 2009).

4 Discussion

The aim of this study was to outline the epidemi-
ology of obesity in sub-Saharan Africa, obesity
determinants, and the risk of CVDs and diabetes
due to obesity. The review shows that obesity
rates have been increasing in all African regions.
In addition, the rate of obesity is higher among
women than among men and in urban areas com-
pared to rural areas. Sex, age, marital status and
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parity, socioeconomic status, body weight percep-
tions, and lifestyle factors are among the determi-
nants of obesity. The study also identified that
obesity increases the risk of CVDs and diabetes.

The increasing prevalence of obesity in Africa
over the last few decades could be explained by
changes in livelihood and economic conditions.
During the late 1980s, for example (a period
described as the lost decades), the continent was
in economic crisis: living standards fell and dep-
rivation increased for a growing number of citi-
zens in affected countries (Aryeetey et al 2012;
Agyei-Mensah and de-Graft Aikins 2010). The
first major wave of rural-urban migration occurred
during this period (Agyei-Mensah and de-Graft
Aikins 2010). There was a corresponding chal-
lenge of limited food availability and quality, and
the region recorded high prevalence of undernu-
trition for both children and adults. This period
was also characterized by the advent of the HIV/
AIDS crises (Iliffe 2006). During this period the
stigma attached to thinness intensified as thinness
became associated not only with deprivation but
also with HIV/AIDS status (Kruger et al. 2005).
At the turn of the millennium, economic growth
was reported in some African countries (Aryeetey
et al. 2012). Globalization changed the sociocul-
tural landscape of many countries with food mar-
ket globalization playing a major role. African
countries signed trade agreements that allowed
increased importation of processed foods high in
fat, sugar, and salt into the continent, the avail-
ability of which lessened the appeal and consump-
tion of traditional wholesome foods (Agyei-
Mensah and de-Graft Aikins 2010). The change
in economic growth in combination with globali-
zation forces led to changes in demographic pro-
file, urban population, weight perceptions, and
lifestyle behaviors. These factors are currently
fuelling Africa’s obesity crisis.

In demographic terms, socioeconomic status of
individuals was first affected. For example, school
enrolment rates increased on the continent.
Between 1999 and 2008 gross enrolment ratios
increased from 19 % to 27 % for upper secondary
and 3 % to 6 % for tertiary education (UNESCO
Institute for Statistics 2010). This educated popu-
lation contributed to the growth of the urban

wealthy who had access to a globalized food
economy and engaged in sedentary work patterns
and lifestyles. As a result this group may have
maintained a positive energy balance over a long
period of time (Addo et al. 2009; Mogre
et al. 2012). It is not surprising therefore that
until recently, wealthy persons were at higher
risk of obesity in Africa compared to the poor
(Ziraba et al. 2009). In terms of gender, research
suggests that the gap between men and women
can be explained by the low levels of physical
activity among women (Amoah 2003; Averett
et al. 2014; Puoane et al. 2003). In urban areas,
processed foods high in fat, sugar, and salt are
accessible, easy to cook, and preferred to tradi-
tional meals (Freidberg 2003; Kgaphola and
Viljoen 2004; Kifleyesus 2002). As a result there
is an increase in consumption of these calorie-
dense foods but without the needed physical activ-
ity (Delisle et al. 2012).

The positive relationship between wealth and
obesity reflects the epidemiological transition in
sub-Saharan Africa (Agyei-Mensah and de-Graft
Aikins 2010). The pattern is generally in line with
the “diffusion theory” of the epidemic of coronary
heart disease (CHD) as demonstrated in high-
income countries (Mackenbach et al. 2000). The
‘diffusion theory’ postulates that the rise of CHD
starts in high socioeconomic groups, because they
are the first groups who can afford diets rich in
saturated fats and associated with overweight and
obesity, which in turn increase the risk of CHD.
With time, the disease spreads to lower socioeco-
nomic groups as living standards improve for all.
When the CHD epidemic starts to decline, the
higher socioeconomic groups are once again the
first groups to reap the benefit as they are the first
to adopt healthy behavioral changes. Accordingly,
it is expected that the current socioeconomic gra-
dient in obesity which favors the poor in
sub-Saharan Africa will reverse as standards of
living improve unless measures are put in place to
protect the poor. Evidence from Egypt suggests
that the gradient is changing in favor of the rich. In
Asfaw’s (2007) study, poor people who had lived
in urban areas for long periods were more likely
than their rich peers to be obese due to their access
to relatively inexpensive calorie-dense foods.
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In terms of perceptions of body weight, the
association of fat with wealth, health, and beauty
has coexisted with the stigmatization of thinness
in many African countries over a long period. The
HIV/AIDS pandemic intensified the stigmatiza-
tion of thinness, as strong associations were
made between the emaciated body and HIV/AIDS
status. Yet, current evidence suggests that percep-
tions of body weight and of fatness, in particular,
are more nuanced than originally reported. In a
number of empirical studies, lay communities
appear to value healthy body weight, which cor-
responds to a buxom rather than obese body size
(Benkeser et al. 2012; Brown 1991; Duda
et al. 2006). There is also increasing awareness
of the relationship between obesity and health
risks including diabetes and CVD.

Evidence shows that obesity increases the risk
of CVDs and related intermediate risk factors such
as hypertension, diabetes, and hypercholesterol-
emia in several African countries (Agyemang
2006; Medeiros et al. 2012). The increasing bur-
den of CVDs has increased in line with the rising
levels of obesity in Africa. These conditions
reduce the quality of life through disabilities and
deaths (Bertram et al. 2013; Mayosi et al. 2009).
The increasing burden of CVD is occurring at a
time when infectious diseases are still highly prev-
alent, placing a great demand on the overburdened
and impoverished healthcare systems in most of
these countries. Given the rising numbers of urban

population, accompanied by nutrition transition
throughout sub-Saharan Africa (Population Ref-
erence Bureau 2013), the prevalence of obesity
and its related problems such as diabetes and
hypertension are likely to increase further if mea-
sures are not taken to address the problem head on
(Sanuade et al. 2014). The potential impact of the
changing environment on obesity has been dem-
onstrated among sub-Saharan Africanmigrants in
Europe. In Agyemang et al.’s study (2009), the
odds of overweight and obesity among Ghanaian
migrant men and women in Amsterdam were
19 times and 11 times higher than their compatriot
men and women living in rural Ghana (Fig. 6).

5 Conclusion

The rapid urbanization accompanied by nutrition
transition is changing the disease landscape in
Africa with CVD and its related risk factors
gaining a prominent position. The rising levels of
overweight and obesity in African are likely to
exacerbate the burden of CVD if measures are
not taken to curb the problem. Public health strat-
egies focusing on healthy diet, physical activity,
weight reduction, and maintenance strategies are
clearly needed in sub-Saharan African countries,
particularly in urban areas. Strategies must include
measures such as price reduction for healthy foods
(e.g., fruits and vegetables) and promotion of

Fig. 6 Age-adjusted odds ratios (95 % CI) of overweight/obesity among Ghanaians living in different locations
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physical activity in workplace and schools. These
strategies need to take gender, socioeconomic, and
culturally specific factors into account.

6 Cross-References

▶Genetics of Obesity
▶Obesity in East Asia
▶Obesity in Latin America
▶Obesity in Middle East
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Abstract
The Middle East and North Africa region
(MENA) encompasses 18 countries at various
levels of economic development – high-
income (Qatar, Saudi Arabia), upper-middle-
income (Jordan, Morocco), and lower-middle-
income countries (Yemen). As in the rest of the
world, rising obesity prevalence has also been
documented in the MENA countries, with
roughly one fifth of the adult population in
the region considered as obese. Against this
background, this article (i) documents the
prevalence of obesity in the region (both from
the literature and official statistical sources),
(ii) identifies the major correlates of obesity,
and (iii) assesses and documents the literature
that links obesity with some of the most prev-
alent noncommunicable diseases (inter alia,
diabetes and cardiovascular diseases). We
argue that the levels of obesity in the region
are high and still increasing, with gender, age,
income, education, nutrition patterns, and
urbanization acting as the most prominent and
robust correlates of obesity in the MENA
region. Finally we argue that, in the context
of MENA countries, there is robust link
between obesity and certain chronic conditions
(e.g., diabetes).
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1 Introduction

The Middle East and North Africa region
(MENA) encompasses 18 countries at various
levels of economic development – high-income
(Qatar, Saudi Arabia), upper-middle-income
(Jordan, Morocco), and lower-middle-income
countries (Yemen). The global obesity epidemic
has also engulfed the MENA countries with
roughly 19 % of the people living in the Eastern
Mediterranean region considered obese (i.e.,
having BMI index higher than 30) (WHO
2008). Globally, the literature has distilled a
few important correlates of obesity – income,
age, and gender are the most prominent ones.
The fast pace of urbanization and the associated
sedentary lifestyle have both played a role in
exacerbating the obesity pandemic. These fac-
tors, as this literature review shows, act as sig-
nificant correlates of obesity in the MENA
region as well, particularly in countries that had
undergone a rapid economic growth and devel-
opment due to their richness with natural
resources (e.g., the Gulf countries). Finally, the
rising global obesity rates are responsible for the
substantial increase in the overall global burden
of disease associated with noncommunicable
diseases (NCD). In the MENA region, roughly
three quarters of the total deaths are due to
noncommunicable diseases (WDI 2014). More-
over, the percentage of people living with NCDs
particularly associated with obesity (e.g., diabe-
tes, cardiovascular disease) is high. For instance,
WHO reports that 11.3 % of adults older than
25 years report raised fasting blood glucose
levels, hence satisfying the basic diagnostic con-
ditions for diabetes (WHO 2008).

Against this background, the aim of the litera-
ture review is to take stock and synthesize the

current knowledge on obesity in the countries of
theMENA region. In doing so, we have organized
the review in three major parts: (i) a section that
documents the overall prevalence of obesity
across the countries in the region, (ii) a section
that sheds light on the main correlates of obesity in
the MENA region, and (iii) a final section that
documents the literature on the risk factors asso-
ciated with obesity such as diabetes, cardiovascu-
lar diseases, stroke, and cancer.

In conducting this literature review on obesity,
correlates of obesity, and obesity-related diseases,
we grouped the countries of the Middle East and
North Africa (MENA) region in three major
groups corresponding to their level of develop-
ment: lower-middle-income countries, upper-
middle-income countries, and high-income coun-
tries. The country classifications correspond to the
latest updates provided by the World Bank
Research Department. Accordingly, the groups
include the following countries:

(i) Lower-middle-income countries (Djibouti,
Egypt, Morocco, Syria, the Palestinian
National Authority, and Yemen)

(ii) Upper-middle-income countries (Algeria,
Iran, Iraq, Jordan, Lebanon, Libya, and
Tunisia)

(iii) High-income countries (Bahrain, Kuwait,
Oman, Qatar, Saudi Arabia, and the United
Arab Emirates)

Before moving onto summarizing and
discussing the literature on obesity and obesity-
related diseases in the region, we present a snap-
shot of the economic development (as captured by
GDP per capita and the Human Development
Index) in the three respective country groups.

From Fig. 1, we see a significant discrepancy
in GDP per capita among the countries in the
region, with the average per capita GDP ranging
from 6109 USD in the lower-middle-income
countries, 14517 USD in the upper-middle-
income countries, and 67657 USD in the high-
income countries. In order to “control” for the
effect of abundance of natural resources and their
impact on the overall GDP per capita in the
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respective countries, we also present the latest
figures for the UNDP’s Human Development
Index (HDI). Here again, we see significant gap
between the country groups in the region, with

HDI ranging from 0.585 in the lower-middle-
income countries, 0.732 in the upper-middle-
income countries, to 0.821 in the high-income
countries (Fig. 2).
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Fig. 1 MENA countries: GDP per capita (international USD, constant), 2013 (Source: World Development Indicators
and authors’ calculations)
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Fig. 2 MENA countries: Human Development Index, 2013 (Source: UNDP and authors’ calculations)
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2 Evidence on Obesity
in the Middle East and North
Africa Region

2.1 Evidence from Official Sources

Figure 3 captures the obesity rates per country,
and it also provides the averages for the three
country groups (Data for Fig. 3 comes from the
World Health Organization (WHO)). There are a
few observations that stem from Fig. 3. First, we
see a positive correlation between the level of
obesity and the level of economic development.
Indeed, as we move up the income ladder, the
obesity prevalence increases. For instance, the
average prevalence of obesity in the lower-mid-
dle-income countries is 20.5 %, 25.4 % in the
upper-middle-income countries, and 33.1 % in
the high-income countries. Second, in the lower-
middle-income country group, there is a signifi-
cant variation in the prevalence of obesity (for
instance, the obesity prevalence in Djibouti is
10.4 %, while it is as high as 33 % in Egypt –
almost as high as in some of the countries in the
Gulf). The variation of the obesity prevalence
rates is much smaller for the upper-middle-
income and high-income country groups.

2.2 Evidence from the Literature

2.2.1 Lower-Middle-Income Countries
While there is no harmonized data on prevalence
of obesity in the lower-middle-income countries
inMENA, isolated studies point to a rising obesity
trend, especially among the urban population
(Musaiger et al. 2011). Obesity prevalence in
some countries such as Egypt and Morocco has
been rapidly increasing and risks reaching levels
similar to the ones found in Gulf countries
(Musaiger et al. 2011). For instance, a study has
found that obesity prevalence rates in Morocco
are as high as 31.2 % (Berraho et al. 2012). Sim-
ilarly, a study on Syria found that 43 % of the
population was obese (Al Ali et al. 2011), while
the prevalence of obesity among the Palestinians
has reached the level of 22.1 % among men and
37.2 % among women (Abu-Rmeileh et al. 2013).

2.2.2 Upper-Middle-Income Countries
The existing literature also indicates that obesity
rates in the upper-middle-income countries
in the region are high (Al-Kaabi et al. 2009).
Overweight and obesity prevalence in the upper-
middle-income countries have been reported as
high as 40 %. Similarly high and alarming
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overweight and obesity prevalence rates are also
registered among school children (Musaiger
et al. 2011). More specifically, prevalence of obe-
sity has been particularly high in Algeria (30.1 %
among women and 9.1 % among men) and Tuni-
sia (37 % among women and 13 % among men)
(Atek et al. 2013). Finally, a significant body of
knowledge has documented the high and rising
obesity rates in Iran (Ayatollahi and
Ghoreshizadeh 2010).

2.2.3 High-Income Countries
The literature documents the high prevalence of
obesity among Gulf countries, especially in Saudi
Arabia (Mandil et al. 2013; Ahmed et al. 2014). A
recent study has reported that the obesity rates in
Saudi Arabia reached 40 %, with prevalence
higher among women than men and among
nationals than expatriates (Al-Daghri et al. 2011;
Amin et al. 2014). High prevalence of obesity has
also been reported in Oman (Al-Sharafi and
Gunaid 2014; Al-Saadi et al. 2011) and Qatar
(Ali et al. 2014).

3 Correlates of Obesity in Middle
East and North Africa Region

3.1 Gender

An overview of the existing literature reveals that
gender is one of the main correlates of over-
weight and obesity, with women being more
prone to being overweight and obese (Mandil
et al. 2013). For instance, obesity prevalence in
Syria among women reached 51.8 % (high prev-
alence has also been reported in Saudi Arabia and
Bahrain, reaching levels of 80 % in Bahrain)
(Mandil et al. 2013). A literature review on the
topic of gender and obesity has found higher
prevalence of obesity among women in Algeria,
Egypt, Morocco, and Tunisia (Bos and
Agyemang 2013). Similar findings stem from a
study by Zenki et al. (2012). In addition, a sig-
nificant number of studies conducted in Iran have
found higher obesity prevalence among women
compared to men (Ayatollahi and Ghoreshizadeh
2010). Moreover, studies in Iran have found that

the trend of obesity among women has worsened
over the last two decades (Mirzazadeh
et al. 2009).

There are a number of reasons why prevalence
of obesity is particularly high among women in
the Middle East. Marriage and unemployment
(which, as evidenced by the existing literature, is
found to be negatively correlated to the obesity
rates) are considered as the most important corre-
lates of weight gain among women. A study on
Kuwait, for instance, shows that roughly half of
the unemployed women were obese, compared to
only a third of the employed ones. Similar find-
ings stem from studies on Saudi Arabia and Tuni-
sia, though with different ratios (79 % and 53 % in
Saudi Arabia and 24 % and 15 % in Tunisia)
(Musaiger 2007). Other significant correlates of
weight gain among women include higher inac-
tivity rates and cultural factors. Due to cultural
and religious reasons, the access to exercises
venues for women is limited. Hence, television
and the Internet have become the main leisure
activities among women in the region, further
exacerbating the growing obesity rates. In addi-
tion, given the level of affluence in the Gulf coun-
tries as well as the availability of foreign workers,
most of the women from affluent families in the
region employ domestic helpers (Musaiger
et al. 2011). All of these factors lead to somewhat
sedentary lifestyles and increase in the rates of
overweigh and obesity (Al Nohair 2014). Finally,
the cultural norms associated with large families
and hence leading to multiple pregnancies are
another reason why women in the region gain
weight (Al Nohair 2014).

3.2 Age

Age is another important correlate of obesity, and
the extant literature points to a nonlinear relation-
ship between age and obesity. A study on
Morocco finds that the turning point of the
inverted U curve that depicts the relationship
between age and obesity occurs at year 64 for
women and somewhat earlier (45–54 years) for
men (El Rhazi et al. 2011). These findings from
theMoroccan study were mirrored in other studies
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from Kuwait and Yemen (Al-Sharafi and Gunaid
2014; Ahmed et al. 2012).

3.3 Income and Socioeconomic
Class

Income (proxied either by socioeconomic class, par-
ents’ education, or material possessions) is another
important correlate of obesity in the Middle East.
Higher income is associated with higher consump-
tion, which in turn puts wealthier individuals at
higher risk of becoming overweight and obese
(Fatemeh et al. 2012). For instance, a study on
Kuwait has found that affluent households in
Kuwait consume more dairy products and meat,
compared to the poorer households (Al Nohair
2014). Obesity is found to increase with household
wealth in both Algeria and Tunisia (Atek
et al. 2013). A positive link between income and
obesity was also found in a study on Morocco
(El Rhazi et al. 2011). A study on Palestine has
found that child obesity is higher among children
who come from better off families (Mikki
et al. 2009). A study among students in UAE has
documented that students coming from richer
households have higher propensity of becoming
overweight and obese (Katsaiti and Anshasy
2014). Given the cultural importance of housing in
the Middle East, the extant literature has often
proxied income by the quality of a household’s
housing. Using quality of housing as a benchmark
for income, a study on Morocco has found that
individuals living in better houses tend to have
higher probability of being obese compared to
those living in slums or similar poor housing condi-
tions (El Rhazi et al. 2011).

3.4 Education

The existing literature on global level suggests
that education is negatively linked with obesity
(Ahmed et al. 2012), and this link is resonated
among countries in the MENA region. Studies in
Iran (Hajian-Tilaki and Heidari 2006) and Kuwait
(Al Isa 1997) noted a negative link between levels
of education and the likelihood of obesity (Ahmed

et al. 2012). Similar findings stem from a study
conducted in Morocco. The study finds that the
prevalence of obesity and overweight was highest
in illiterate women and lowest in women who had
obtained a university degree (El Rhazi
et al. 2011). Over time, the highest increases in
prevalence of obesity were registered among
women who had no education or only had primary
education (Aitsi-Selmi et al. 2012). Similar find-
ings were observed in the rest of the region. For
instance, 28 % of Syrians with university educa-
tion are obese (compared to 51 % of the illiterate
ones). In Jordan, people with less than a high
school education (less than 12 years of formal
education) are roughly twice more likely to be
obese compared to those who have, at least, com-
pleted a high school education. Almost identi-
cally, in Lebanon, the prevalence of obesity is
negatively correlated with the years of formal
education (Al Nohair 2014).

3.5 Exercise/Activity

Lack of exercise is another important correlate of
obesity in the MENA region. Hot climate coupled
with increased air pollution and rapidly increased
urbanization and industrialization has led to a sig-
nificant decrease of physical activity among the
people in the region. In addition, and as evidenced
from the introductory part of the chapter, the rapid
economic development has allowed the Gulf coun-
tries to achieve some of the highest levels of devel-
opment in the world. This rapid economic
development, however, brought with itself signifi-
cant changes in the lifestyle, with more and more
households relying on cars and mechanical appli-
ances for work and television and the Internet for
leisure, leading to sedentary lifestyle and hence
increasing the prevalence of obesity in the region.
A study on Saudi Arabia, for instance, has found
that more than half of boys in Riyadh do not par-
ticipate in some form of physical activity. Same
source goes on to argue that the percentage is
much higher among adults, with roughly four fifths
of adults being physically inactive (FAO 2008).

Similarly, in UAE, the inactivity rates among
young urbanites are as high as 40 % and as high as
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70 % among older residents of urban areas (Hajat
et al. 2012). Among children, those with seden-
tary lifestyle are almost twice as likely to become
obese (Bamoshmoosh et al. 2013). In Morocco,
the prevalence of obesity was lower among study
participants who undertook at least 30 min of
physical activity per day than in other individuals
(El Rhazi et al. 2011). A study on Egypt has
documented that among the leisurely activities
performed on a daily basis, physical exercise
was the least favorite. Roughly 2 % of respon-
dents have reported practicing some sport on a
daily basis (though almost 10 % have reported
that they practice regular physical activity during
weekends) (Yasin 1998). The situation is even
worse in Saudi Arabia where roughly half respon-
dents of a study did not participate in any physical
activity lasting for roughly 10 min (Al-Hazzaa
2007). Low levels of physical activity have been
noted in other countries in region. A study on six
MENA countries has found that the inactivity rate
is highest among Saudis (roughly 86 %) and low-
est among Syrians (33 %) (WHO 2009). Similar
trends on the physical activity/obesity nexus have
also been documented among young people
(Al-Hazzaa et al. 2012; Sweeting 2008).

3.6 Nutrition

The changes in lifestyle marked over the last few
decades and closely connected with the economic
development of some of the MENA subregions
have also brought with itself changes in the nutri-
tion patterns among the countries in the region.
However, as documented by the literature, the
changes in the nutrition patterns have not been
same across the region. Changes in nutrition pat-
terns have been most drastic in the high-income
countries, where traditional diet that consists of
fiber (fruits and vegetables) and milk and limited
intake of dairy products have been replaced with a
diet marked by heavy intake of calorific food,
especially fat and carbohydrate. This has resulted
to an average daily caloric intake in the Gulf
countries amounting to 3,000 kcal per adult indi-
vidual. Interestingly, sugar and fat combined now
comprise roughly 45 % of the daily energy intake

of an adult living in the high-income countries in
the MENA region (Musaiger et al. 2011). In Saudi
Arabia, for instance, a recent study has
documented that the intake of fresh fruits and
vegetables occurs only twice weekly. The con-
sumption of fried food has been found to be rela-
tively high (Al-Rethaiaa et al. 2010; Bazhan
et al. 2011).

Changes in the caloric intake have also been
noted in the upper-middle-income countries in the
region (Musaiger et al. 2011). While the situation
is not as drastic as in the high-income countries,
roughly 28 % to 45 % of the daily calorific intake
in the countries of the region comes from sugars
and fat combined, while cereals contribute to
roughly a half of the daily caloric intake, leaving
little space for fruits, vegetable, and other foods
high in fiber (FAO 2008).

The nutrition patterns in the lower-middle-
income countries in the region have remained
broadly stable resembling those of the rest of the
developing world. The sugar and fat consumption
ismoderate, while cereals represent the staple food.
However, the extant literature documents that
higher social classes in these countries have similar
food intake patterns to individuals in the high-
income countries of the Middle East (FAO 2008).

3.7 Fat Intake

As evidenced from the previous section, fat intake,
especially in the upper-middle-income and high-
income countries in the region, has increased. In
addition, studies point out that the fat intake has
particularly increased in the high-income countries
in the region, with fat calories increasing much
more rapidly compared to the increase of the total
daily caloric intake. In some of the countries in the
region, the increase in the daily intake of fat calo-
ries has been as high as 50 % (FAO 2008). More-
over, a special strand of the literature has emerged
that has documented the type of fat consumed by
households in theMENA region. A study in Egypt,
for instance, found that almost 40 % of the fat
consumed by women was saturated fat (Mahmood
2004). Similar findings emerge from a study in
Bahrain, which points out that almost half of the
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school children intake more saturated fat than they
should (Gharib and Raseed 2011).

3.8 Fiber Intake

As indicated in the previous sections in this
review, one of the reasons for increased preva-
lence of obesity in the MENA region is the
change in nutrition patterns that, inter alia,
involved increase in the daily intake of fat and
decrease in daily intake of fiber. Indeed, data on
Saudi Arabia suggests that the average daily
intake of fiber is alarmingly low averaging
roughly 25 g, with most of the daily intake com-
ing from vegetables, cereals, and fruits. In addi-
tion, the low intake of fiber is further exacerbated
by the food preparation practices, thus involving
boiling and peeling of fruits and vegetables, ulti-
mately reducing the daily average intake of fiber
(Musaiger 2002). A cross-country survey in the
region has found that the low intake (below five
servings per day) of fresh fruit and vegetables
(food that is high in fiber) ranged as high as
80 % in Egypt and 96 % in Syria (WHO 2014).
Moreover, the intake of fiber-rich foods by chil-
dren and adolescents in most Arab countries is
alarmingly low. The literature documents that
school children and adolescents follow similar
nutrition patterns as adult individuals (Musaiger
et al. 2011).

3.9 Urbanization

In contrast to the high-income countries in the
West, across the MENA region, obesity is higher
among the urban population. This is connected
with some of the correlates mentioned above –
urbanization is highly correlated with Western
living and eating habits as well as sedentary life-
style which significantly contribute to rising obe-
sity rates. A study in Jordan has found that almost
60 % of urban residents are obese compared to
45 % in rural areas. Studies on Tunisia, Morocco,
Oman, and Egypt have documented similar trends
(Musaiger 2011). The existing research evidence
points to the fact that adult urban women in UAE

are more prone to being obese compared to
women living in rural areas (Ng et al. 2011).
Finally, the literature has documented that indi-
viduals that have maintained their Bedouin life-
style (in selected countries in the region) and have
remained living in small isolated villages have
lower rates of overweight and obesity (Malik
and Bakir 2007).

4 Obesity-Related
Noncommunicable Diseases
in the MENA Region

The rapidly increasing prevalence of overweight
and obesity in the MENA region, coupled with
progressively poorer diets and insufficient physi-
cal activity, has contributed to a significant transi-
tion in health risks in MENA countries (Bank
2011; Rahim et al. 2014; Diabetes UK 2014).
Over the past 30 years, the burden of
noncommunicable diseases (NCD) in the region
has increased substantially to overtake the disease
burden from communicable diseases and maternal
mortality (GBD 2013; Rahim et al. 2014). In
2008, approximately 1.2 million people in the
MENA region died from NCDs, accounting for
60 % of all deaths (Rahim et al. 2014). The
increased prevalence of these NCDs is partly
attributable to a rise in life expectancy but is
primarily driven by an upsurge in population
exposure to modifiable risk factors such as poor
diet, obesity, lack of physical activity, and tobacco
use (Bank 2011; Rahim et al. 2014; Hauner 2010).
Excess weight remains the primary modifiable
risk factor for development of NCDs in the region,
with overweight and obesity estimated to be
responsible for 8 % of all deaths in the Eastern
Mediterranean region in 2004, the fourth leading
risk factor in the region after high blood pressure
(15 % of deaths), underweight (10 %), and high
blood glucose (9 %) (WHO 2009a). In this sec-
tion, we explore the available evidence on the
association between rising obesity rates in the
MENA region and prevalence of a number of
major obesity-related NCDs, including diabetes,
cardiovascular disease, chronic kidney disease,
and cancer.
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4.1 Diabetes Prevalence
in the MENA Region

4.1.1 Evidence from Official Sources
The International Diabetes Federation estimates
that 35 million people aged 20–79 were living
with diabetes in MENA countries in 2013, with
48.0 % of these cases undiagnosed (IDF 2014).
The age-standardized average prevalence of 10.9%
of adults living with diabetes represents the highest
regional prevalence globally. By 2035, projection
modeling indicates that diabetes prevalence in the
region will almost double to affect 67.9 million
people (IDF 2014).

WHO data indicates a positive correlation
between the prevalence of diagnosed diabetes in
adults aged 25 years and over and level of eco-
nomic development (Fig. 4). In 2008, average
diabetes prevalence was 9.7 % in lower-middle-
income countries, 11.6 % in the upper-middle-
income countries, and 12.4 % in high-income
countries. Diabetes prevalence varies widely
between countries, ranging from 6.5 % in Egypt
to 12.9 % in Syria among lower-middle-income
countries, from 8.0 % in Algeria to 14.4 % in
Jordan and Libya in the upper-middle-income
group, and from 9.5 % in Qatar to 21.8 % in
Saudi Arabia in the high-income country group
(WHO/EMRO 2015).

In a number of high-income countries, diabetes
prevalence has risen dramatically in the last
5 years (IDF 2014). In 2013, diabetes prevalence
in adults aged 20 years and over was estimated to
be over 19.0 % in Bahrain, Kuwait, Qatar, and the
United Arab Emirates (UAE) and had reached
23.9 % in Saudi Arabia (IDF 2014). Kuwait,
Qatar, and Saudi Arabia now rank among the top
10 countries globally with the highest diabetes
prevalence (IDF 2014).

4.1.2 Evidence from the Literature
A number of systematic reviews have been
conducted on diabetes in the MENA region, with
these reviews indicating that diabetes prevalence
varies widely between countries and has increased
substantially in the last two decades, particularly in
high-income Gulf countries. For example, a meta-
analysis of studies on type 2 diabetes in Arabian

Gulf states found that overall estimated prevalence
of diabetes was 14.9 %, ranging from 5.9 % in the
UAE to 32.1 % in Saudi Arabia (Alharbi
et al. 2014). Over time, the prevalence of diabetes
among the Saudi population more than doubled
from 12.4 % in 1987 to 27.7 % in 2011. Although
this study found no significant difference in the
prevalence of diabetes between males and females,
the rate of increase of diabetes prevalence was
reported to be significantly higher in men than
women. A further review on type 2 diabetes in
the Eastern Mediterranean region also found that
diabetes prevalence has increased rapidly over
time (Musaiger and Al-Hazzaa 2012). In Tunisia,
the prevalence of diabetes was reported to have
doubled in the past 15 years, while in Jordan dia-
betes prevalence increased by 31.5 % from 1994 to
2006. The highest prevalence of raised blood glu-
cose in the EMR was found among Saudi men
(22 %) and women (21.7 %). A third review
found that diabetes prevalence ranged from
15.8 % in Beirut, Lebanon, to 31.6 % in Riyadh,
Saudi Arabia (Zabetian et al. 2013). High
prevalence rates were also found in urban areas
of Bahrain (28.1 %), Kuwait (21.4 %), Jordan
(17.1 %), and Qatar (16.7 %). Over time, diabetes
prevalence was shown to have increased from
2.5 % in Saudi Arabia in 1982 to 31.6 % in 2011.

Additional studies from low- and upper-
middle-income countries show that diabetes prev-
alence is lower than in high-income countries but
still represents a significant health issue of con-
cern. In Syria, a study using household survey
data from 2006 showed that diabetes prevalence
was 15.6 % (Al Ali et al. 2011), with a study from
the Palestinian National Authority reporting that
diabetes prevalence among refugees aged
40 years or over was 10.5 % in the West Bank
and 11.8 % in the Gaza Strip (Husseini
et al. 2009). In Yemen, the age-standardized rate
of diabetes prevalence was reported to be 6.3 %,
while the age-standardized rate of having either
impaired fasting glucose or impaired glucose tol-
erance was 9.0 % (Gunaid and Assabri 2008). In
Jordan, previously diagnosed diabetes prevalence
was 9.0 % compared with 16.9 % diagnosed by
laboratory testing (Zindah et al. 2008). In Leba-
non, prevalence of laboratory diagnosed type
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2 diabetes in adults aged 25 or over was found to
be 8.5 % (Costanian et al. 2014).

Studies from Iran suggest that the country has a
relatively low prevalence of diabetes in compari-
son to other MENA countries. For example, in
one study, diabetes prevalence was found to be
3 and 7 % in rural and urban areas, respectively
(Azimi-Nezhad et al. 2009). In two longitudinal
studies using data from the Tehran Lipid and
Glucose Study (TLGS), 3.7 % of study subjects
developed diabetes after 3.6 years of follow-up
(Hadaegh et al. 2007; Hosseinpanah et al. 2007).
However, as found in other MENA countries,
there has been a significant upward trend in dia-
betes prevalence over time, with one study dem-
onstrating that diabetes prevalence almost
doubled from 2.5 % in 1999 to 4.6 % in 2007
(Esteghamati et al. 2010).

4.1.3 Association Between Diabetes
and Excess Weight in the MENA
Region

The existing literature shows a strong correlation
between excess weight and diabetes risk in the
MENA region. In a review of diabetes in MENA
countries, diabetes prevalence was found to be

significantly associated with living in urban
areas, older age, and lower educational attainment
but was most commonly associated with higher
body mass index (Zabetian et al. 2013). Similarly,
a further review reported that diabetes prevalence
in Middle Eastern countries was significantly and
positively correlated with obesity in all included
studies assessing the association between the two
variables (Motlagh et al. 2009).

In lower-middle-income countries, age and
waist circumference were found to be signifi-
cantly and positively related to total glucose intol-
erance in Yemen (Gunaid and Assabri 2008).
However, a Syrian study from 2006 found that
although diabetes diagnosis was significantly and
positively correlated with hypertension, it was not
significantly related to obesity (Al Ali et al. 2011).
In upper-middle-income countries, the risk of
having diabetes was found to be significantly
and positively associated with BMI in Jordan
(Zindah 2008) and Lebanon (Costanian
et al. 2014). In a longitudinal study from Iran,
general obesity and high waist-to-hip ratio were
shown to significantly raise the risk of developing
diabetes in individuals aged less than 60 years,
while high waist circumference was the only
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independent predictor of diabetes in individuals
aged 60 years or over (Hadaegh et al. 2007). A
further Iranian longitudinal study showed that
BMI was significantly and positively associated
with risk of diabetes; after adjusting for other
socioeconomic and health factors, excess weight
was found to account for more than half of the
diabetes burden in the study (Hosseinpanah
et al. 2007).

In high-income countries, overweight or obese
individuals aged over 50 in Kuwait were reported
to be 40 % more likely to have diabetes than
counterparts with a normal BMI (Badr
et al. 2013). An additional study from Kuwait
further demonstrated that risk of diabetes was
significantly associated with obesity prevalence
(Alarouj et al. 2013). In a study from Saudi Ara-
bia, a BMI of�25 was associated with greater risk
of diabetes, although this relationship was not
significant (Alqurashi et al. 2011). A further
study from Saudi Arabia conducted laboratory
testing and found that risk of diabetes was lower
in females and was significantly associated with
older age and previous diagnosis of hypertension;
however, obesity and physical activity were not
shown to be associated with risk of developing
diabetes (El Bcheraoui et al. 2014). In Qatar,
diabetes risk in two studies was found to be sig-
nificantly higher in individuals with BMI of �25
(Ali et al. 2014; Christos et al. 2014). Christos
et al. (2014) estimated that eliminating obesity
and improving educational attainment could
reduce diabetes cases by one third for all Qatari
residents and by 50.0 % for Qatari nationals.

4.2 Cardiovascular Disease
and Hypertension

Cardiovascular disease (CVD) is the leading
cause of death in theMENA region, with ischemic
heart disease and stroke accounting for two of the
top five causes of death in all country income
groups (GBD 2013; Rahim et al. 2014). WHO
estimates indicate that hypertension is the primary
CVD risk factor globally, accounting for 13 % of
global CVD deaths (WHO 2009a). The causes of
the majority of hypertension cases are unknown;

however, the condition has been linked to excess
salt intake, lack of physical activity, and over-
weight and obesity (Kang 2013; Kotchen 2008).
Excess weight has also been shown to be an
independent risk factor for CVD in general and
is estimated to be the primary cause of 5 % of
CVD deaths globally (WHO 2009a).

4.2.1 Hypertension

Evidence from Official Sources
WHO estimates indicate that the global preva-
lence of hypertension ranges from an average of
35 % in theWHORegion of the Americas to 46%
in the WHO Africa Region (WHO 2009a). In the
MENA region, the prevalence of hypertension is
relatively low in comparison to other regions, with
31.2 % of individuals aged 25 years or over esti-
mated to have raised blood pressure (SBP >140
or DBP > 90) (Fig. 5). There is little variation
between country income groups, with the percent-
age of individuals with high blood pressure rang-
ing from 30.5 % in the high-income country group
to 32.0 % in the lower-middle-income group. In
Djibouti and Morocco, raised blood pressure was
found in over 35.0 % of individuals, while Libya
had the highest regional percentage of raised
blood pressure at 42.2 %.

Evidence from the Literature
Estimates of hypertension prevalence in the
MENA region varies markedly between
published studies. A systematic review of CVD
risk factors in Gulf countries found an estimated
average hypertension prevalence of 29.5 %
(Tailakh et al. 2014), similar to the percentage
calculated using WHO data (Fig. 5). However, a
clinical study of outpatients across the region
found that the prevalence of hypertension was
above 40.0 % in a number of MENA countries,
including Algeria, Egypt, Jordan, Kuwait, Leba-
non, Saudi Arabia, and UAE (Alsheikh-Ali
et al. 2014). In Iran, the prevalence of hyperten-
sion in urban and rural areas was found to be
28.8 % and 26.5 %, respectively (Azimi-Nezhad
et al. 2009). Conversely, a further Iranian
study on CVD risk factors found a far
lower age-adjusted prevalence of hypertension
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of 9.6 % (Fakhrzadeh et al. 2008). In a study from
Kuwait, prevalence of hypertension was found to
be 52.0% inmen and 49.0% in women, far higher
than WHO estimates (Badr et al. 2013).

Hypertension was shown to be correlated with
excess weight in the few studies that explored the
association between these factors. In an Iranian
study of women aged between 18 and 74 years,
BMI and waist circumference were found to be
significantly and positively associated with hyper-
tension (Bahrami et al. 2006; Esmaillzadeh
et al. 2006). In a study from Jordan on healthy
male adults aged 30–50 years, prevalence of
hypertension was found to be significantly and
positively correlated with BMI (Alboqai
et al. 2006). Similarly, a study from Kuwait
found that risk of hypertension was significantly
and positively related to BMI (Badr et al. 2013).

4.2.2 Cardiovascular Disease
The existing literature provides mixed evidence
on the prevalence of CVD and its association with
obesity in the MENA region. In the Palestinian
National Authority, cardiac diseases were
reported to be the leading cause of death in
2005, accounting for 56.5 deaths per 100 000

people and 21.0 % of all deaths (Husseini
et al. 2009). In a systematic review of CVD mor-
tality in Syria, overall mortality ranged from45.0%
to 49.0 % in included studies (Barakat
et al. 2012). In an Iranian study, the prevalence of
ischemic heart disease according to ECG findings
was 36.5 %, and the prevalence of myocardial
infarction according to ECG findings and clinical
evidence was 4.9 % (Fakhrzadeh et al. 2008). In a
study fromKuwait, cardiac diseases were identified
in 21.0 % of men and 15.0 % of women (Badr
et al. 2013).

No clear patterns are observed in studies explor-
ing the relationship between excess weight and
CVD. In Syria, obesity was found to be the primary
risk factor for CVD in the majority of individuals,
with the exception of men aged over 65 years,
where smoking and hypertension were the most
common risk factors (Barakat et al. 2012). In Iran
the prevalence of ischemic ECG changes was sig-
nificantly higher in patients with hypertension, but
was not significantly related to BMI (Fakhrzadeh
et al. 2008). However, an additional Iranian study
showed a significant and positive association
between waist circumference and incidence of
ischemic heart disease (Talaei et al. 2012). In
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Kuwait, one study found that being overweight or
obese was not significantly associated with risk of
developing cardiac disease (Badr et al. 2013). In
contrast, another Kuwaiti study found that being
obese and aged over 40 years and having diabetes
mellitus, positive family history of diabetes, hyper-
tension, or dyslipidemia were all significant inde-
pendent risk factors for developing CVD (Alarouj
et al. 2013).

In a systematic review of stroke in Arabic
countries, stroke incident ranged from 27.5 per
100,000 population in Kuwait to 63 per 100,000
in Libya (Benamer and Grosset 2009). In a sys-
tematic review of stroke in Iran, the annual stroke
incidence was reported to range from 23 to
103 per 100,000 population (Hosseini
et al. 2010). In both reviews, the most common
risk factors for stroke were identified as hyperten-
sion, diabetes, smoking, and cardiac disease, but it
was not frequently found to be independently
associated with overweight and obesity.

4.3 Chronic Kidney Disease

Chronic kidney disease (CKD) is a growing issue
of concern in the MENA region and represents a
major public health challenge. Studies on the
Global Burden of Disease estimate that the prev-
alence of CKD rose significantly between 1990
and 2010 to become one of the top ten most
common causes of death in the upper-middle-
income and high-income MENA countries
(GBD 2013; Rahim et al. 2014). Although CKD
can be caused by a number of conditions such as
infection, inflammation, and inherited conditions,
the two principal causes of CKD globally are
hypertension and diabetes (Turner et al. 2012).
Excess weight remains the primary modifiable
risk factor for CKD, largely due to the increased
risk of hypertension and diabetes in overweight
and obese individuals (Kopple 2010; Wickman
and Kramer 2013). However, obesity also has
independent effects on CKD risk through its
impact on renal physiology and metabolism, mak-
ing obese people more likely to suffer CKD and
end-stage renal failure (Kopple 2010; Wickman
and Kramer 2013).

Despite representing a significant and rapidly
growing burden of disease, little research has been
conducted on CKD in the MENA region and its
association with obesity (Shaheen and Souqiyyeh
2010). Some evidence from Iran is available,
showing mixed results on the association between
CKD and obesity. In one Iranian cohort study,
18.0 % of participants developed CKD after
9 years of follow-up (Barzin et al. 2014). Changes
to waist circumference over this period were not
found to be significantly associated with the risk
of developing CKD in women, but a mild to
moderate increase in waist circumference in men
raised the risk of developing CKD by 70.0 %. A
further cohort study found a crude cumulative
incidence of 21.8 % of stage 3–5 CKD after
10 years of follow-up (Tohidi et al. 2012). Age
over 50 years, hypertension and known diabetes
were reported to be significantly associated with
raised CKD risk, but abdominal obesity was not
shown to be an independent risk factor for disease
development. In contrast, a cross-sectional Iranian
study reported that BMI was strongly and posi-
tively correlated with risk of CKD in both men
and women (Khajehdehi et al. 2014). A further
Iranian study exploring the association between
metabolic syndrome and CKD in people aged
60 and over found a strong, positive, and indepen-
dent correlation between metabolic syndrome and
risk of developing CKD (Fakhrzadeh et al. 2009).

4.4 Cancer

Cancer represents an increasing burden of disease
in the MENA region. WHO mortality statistics
indicate that cancer is responsible for 270,000
deaths per year in the EMRand is the fourth leading
cause of death overall (WHO 2009b). By 2035, it is
predicted that the prevalence of cancer in the region
will increase by between 100 % and 180 %
(Rastogi et al. 2004; WHO 2009b). This rise is
partly due to an expected increase in life expectancy
but is also linked to increased prevalence of modi-
fiable risk factors including smoking, unhealthy
diets, lack of physical activity, and obesity.

Despite the growing burden of cancer in the
region, evidence from published studies on the
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relationship between modifiable risk factors,
including overweight and obesity, and cancer in
MENA countries is sparse. In one of the few
studies exploring cancer risk factors, breast cancer
in Iran was shown to be significantly and posi-
tively associated with BMI in both pre- and post-
menopausal women, while waist circumference
was significantly and positively associated with
risk of breast cancer in premenopausal women
only (Hajian-Tilaki et al. 2011). A further study
on colon cancer in rapidly developing countries
linked increased prevalence of the disease to ris-
ing levels of physical activity, obesity, alcohol
consumption, smoking, and high consumption of
red meat and fat (Bener 2011).

5 Conclusion

Over the past 30 years, the MENA region has
undergone a rapid economic transformation that
has generated increased modernization and dra-
matic improvements in living standards. How-
ever, these changes have led to a proliferation in
unhealthy behaviors linked to developed econ-
omy lifestyles; levels of physical activity have
declined substantially, and consumption patterns
have evolved away from traditional diets
containing fruit, nuts, and seeds, toward diets
with a high fat, sugar, and salt content. The adop-
tion of these behaviors has led to an alarming
increase in overweight and obesity, which has
become an important health threat in many coun-
tries in the region. In high-income Gulf states,
obesity levels have increased substantially, and
many countries now rank among the most obese
countries in the world. Although overall obesity
prevalence is lower in low- and upper-middle-
income MENA countries, rates of overweight
and obesity are still high and are rapidly increas-
ing. Across countries of all income levels, obesity
is more prevalent in richer, urban areas where
sedentary lifestyles andWestern diets are predom-
inant. Furthermore, in the majority of countries,
the obesity epidemic disproportionately affects
women as cultural factors restrict access to sports
and exercise activities and employment
opportunities.

The rapid increase in overweight and obesity in
the region has contributed to a rising prevalence in
a number of noncommunicable diseases. Avail-
able evidence strongly indicates that excess
weight is the primary modifiable risk factor driv-
ing the alarming increase in diabetes in the region.
Although evidence on the relationship between
obesity and other NCDs is less clear, it has been
linked to a considerable recent rise in the preva-
lence of hypertension, cancer, chronic kidney dis-
ease, and cardiovascular disease in a number of
countries. These NCDs are now the leading
causes of morbidity and mortality in the region
and represent a critical and growing public health
challenge. If the rapid upward trend in obesity
prevalence in the MENA region continues, it is
likely to contribute to a substantial increase in
premature deaths and morbidity from these lead-
ing NCDs, generating significant costs for health
systems and potentially reversing recent gains in
life expectancy (Finucane et al. 2011; GBD 2013;
WHO 2009).

In order to respond appropriately to the obesity
epidemic and manifest increase in NCDs, it is
important that all MENA countries fully under-
stand the epidemiology of obesity in their country.
However, there is currently little evidence on the
importance of excess weight on the etiology of
NCDs in the MENA region. Few studies have
been conducted on the relationship between over-
weight and obesity and the development of chronic
kidney disease, CVD, and cancer. Studies that do
exist are primarily concentrated on Iran and high-
income Gulf states and largely neglect lower- and
upper-middle-income countries. It is therefore
important that more studies are available from a
wider range of countries to help inform appropriate
national responses to the growing obesity crisis
and NCD burden. Future research should also
explore how socioeconomic factors, in particular
gender and education, may affect the relationship
between excess weight and NCD outcomes. These
research findings can be used to develop targeted
prevention and outreach campaigns to reduce the
disproportionate burden of obesity among women
and other vulnerable groups.

Responding quickly and appropriately to the
alarming rise in obesity and obesity-related NCDs
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is fundamentally important in MENA countries of
all income levels. A significant first step to respond
to the crisis in the region was taken in 2012 with
the development of the Riyadh Declaration on
healthy lifestyles in the Arab World and Middle
East (Riyadh Declaration 2012). However, it is
now imperative that momentum from this Decla-
ration is continued and recommendations from the
resolution implemented. National policies
targeting fat, salt, and sugar content in food and
the introduction of labeling systems on fast-food
items should be considered in all countries. Fur-
thermore, health education campaigns should be
developed to increase awareness of the benefits of
healthy diets, physical activity, and maintaining a
healthy weight. Lastly, health systems should be
developed to ensure that NCDs can be appropri-
ately treated and managed (Rahim et al. 2014).
Investing in effective measures to curb the rise in
overweight and obesity and obesity-related NCDs
will ultimately improve the health of the region and
reduce long-term health-care spending.
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Abstract
Cardiovascular disease (CVD) is an important
global health problem causing significant mor-
bidity, disability, and premature mortality. The
overall impact of CVD on the society is enor-
mous – chronic disease burden, frequent hos-
pitalizations, loss of productivity, and
impairment of quality of life. While multiple
individual risk factors such as hypertension,
diabetes, hyperlipidemia, obesity, and tobacco
consumption can cause CVD, it is the constel-
lation of these risk factors (termed metabolic
syndrome) which creates the milieu for athero-
sclerosis and other manifestations of CVD.
The problem of metabolic syndrome is escalat-
ing all over the world irrespective of cultural,
genetic, gender, and geographical differences.
Thus, metabolic syndrome can be labeled as a
merciless equal opportunity killer. This chapter
covers the epidemiology of metabolic syn-
drome in South Asians and the implications
for the society. The escalating prevalence and
degree of metabolic syndrome in South Asians
required applicable public health interventions
at the societal level to decrease chronic disease
burden.
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1 Introduction

Metabolic syndrome is a major public health
problem in South Asia requiring urgent preven-
tive and therapeutic actions. Paradoxically, met-
abolic syndrome in South Asia is equally
prevalent in the obese and non-obese subjects.
The escalating prevalence of metabolic syn-
drome in South Asia correlates with rising inci-
dence of hypertension, diabetes, and premature
cardiovascular disease (CVD). The universal
criteria to define metabolic syndrome may not
be applicable to South Asians because CVD
complications occur at lower body mass index
(BMI) and waist circumference (WC). It is timely
and appropriate to address the epidemic of meta-
bolic syndrome in South Asia and to create a
private-public consensus to establish policies
for early detection and prevention of this danger-
ous problem. Until refined guidelines emerge, the
health-care providers should manage metabolic
syndrome effectively to reduce the disease
burden on the country.

Cardiovascular disease (CVD) remains themost
common cause of death in developed countries.
However, cardiovascular disease is not limited to
developed countries, and multiple epidemiologic
studies have demonstrated a dramatic increase in
the incidence, prevalence, and severity of athero-
sclerosis in developing countries and so-called
emerging economies (Reddy and Yusuf 1998).
Vascular disease is a syndrome with various risk
factors, and a unifying hypothesis which explains
all aspects of the initiation and progress of vascular
disease has remained inconclusive. The concept of
risk factor identification and gradation is necessary
for the early identification of subjects who have an
increased likelihood for atherosclerosis prior to a
clinical event. Observational studies have demon-
strated that risk factors appear in clusters in certain
individuals. Pioneering studies performed over two
decades ago demonstrated the clustering of multi-
ple risk factors such as obesity, hypertension, and
dyslipidemia with the theory that insulin resistance
is the unifying factor in these apparently disparate
hemodynamic or metabolic conditions (Reaven
1988). The term insulin resistance syndrome was
initially introduced to encompass these multiple

risk factors and mechanisms. The term metabolic
syndrome was subsequently proposed as an alter-
native term to avoid the implication that insulin
resistance is the sole cause of the syndrome
(Grundy et al. 2004). While the controversy
remains, the term metabolic syndrome has gained
credence as ameans to identifymultiple risk factors
which appeared to share metabolic pathways and
clusters in individuals more often than would be
expected by chance alone. The increasing inci-
dence of cardiovascular disease in South Asia has
given rise to considerable interest in the role of the
metabolic syndrome as a predisposing factor for
atherosclerosis in developing countries.

A significant clinical and pathological connec-
tion between insulin resistance and cardiovascular
risk factors was revealed nearly three decades ago.
The latest definition of metabolic syndrome
appeared in the Adult Treatment Panel III
(ATP-III) report of the National Cholesterol Edu-
cation Program (NCEP). The standard diagnosis
of metabolic syndrome requires the presence of at
least three out of five criteria: increased fasting
plasma glucose level >110 mg/dL, waist circum-
ference >30 in. in men and >35 in. in women,
blood pressure>130/85 mmHg, triglyceride level
>150 mg/dL, and a low concentration of HDL
(<50 mg/dL in women and <40 mg/dL in men).

2 Metabolic Syndrome

The metabolic syndrome is a grouping of several
interrelated risk factors which have been demon-
strated to be associated with an enhanced hazard
ratio for the development of premature or accel-
erated CVD. The conceptual model of the meta-
bolic syndrome is supported by the common soil
hypothesis for the development of atherosclerosis
(Donati 2010). The common soil hypothesis was
proposed following the determination that inflam-
mation and oxidative stress coexist in the early
phase of multiple risk factors – hypertension,
dyslipidemia, diabetes, and obesity. The preva-
lence of these risk factors has been increasing in
a worldwide distribution due to lifestyle changes
such as increased caloric consumption with resul-
tant obesity coupled with the reduction in physical
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activity common with urbanization. Controversy
has been generated relative to the prognostic util-
ity of the diagnostic criteria which had been uti-
lized to define the metabolic syndrome when
compared to established algorithms such as the
Framingham Risk Score (Reaven 2011). How-
ever, a consensus has arisen that the concept of
risk factor clustering is useful and allows a
focused approach to risk reduction. The term syn-
drome is defined as a clustering of factors which
coexist at a higher rate than would be explained by
chance alone and have an uncertain pathogenesis.
The clinical usefulness of the term metabolic syn-
drome is supported by epidemiologic studies
which have demonstrated that patients who met
the diagnostic criteria for the metabolic syndrome
have been shown to exhibit a twofold risk for the
development of CVD (Alberti et al. 2009). More-
over, the lifetime risk for the development of
atherosclerosis would be considered to be signif-
icantly increased in subjects with prolonged expo-
sure to the components of the metabolic
syndrome. The American Heart Association has
established criteria for the clinical diagnosis of the
metabolic syndrome (Grundy et al. 2005). The
diagnosis of the metabolic syndrome requires
any three of the five major criteria:

1. Waist circumference: Increased waist circum-
ference greater than or equal to 102 cm (greater
than equal to 40 in.) in men or greater than or
equal to 88 cm (greater than or equal to 35 in.)
in women (see Table 1).

2. High-density lipoprotein (HDL cholesterol):
HDL cholesterol less than 40 mg/dL (1.03
mmol/L) in men or less than 50 mg/dL
(1.3 mmol/L) in women. Additionally, the uti-
lization of pharmacologic therapy for lowHDL
is also considered a diagnostic criterion.

3. Hypertriglyceridemia: Elevated triglycerides
in excess of or equal to 150 mg/dL (1.7
mmol/L) or pharmacologic treatment for
hypertriglyceridemia is considered a diagnos-
tic criterion.

4. Hypertension: Elevated blood pressure is
defined as measurements greater than or equal
to 130 mm Hg systolic pressure or greater than
or equal to 85 mm Hg diastolic pressure.

Additionally, the use of antihypertensive ther-
apy in a patient with a history of hypertension
is also considered a diagnostic criterion.

5. Hyperglycemia: Elevated fasting blood glu-
cose in excess or equal to 100 mg per deciliter
or drug therapy for hyperglycemia.

Multiple other criteria have been proposed for
inclusion as criteria of the metabolic syndrome
including inflammatory markers, prothrombotic
state, body mass index, urinary albumin excre-
tion, and others although controversies exist as
to the usefulness of these additional or inter-
dependent markers (Third Report of the National
Cholesterol Education Program (NCEP) 2002).

3 General Implications
of the Metabolic Syndrome

The diagnosis of the metabolic syndrome has
several clinical implications for therapy and pre-
vention. Obesity is a major predisposing or
accompanying cause for the development of
CVD, and the Adult Treatment Panel (ATP-III)
of the National Cholesterol Education Program
(NCEP) has recommended that reduction of
increased body mass index be a primary therapeu-
tic target to reduce cardiovascular risk. The rec-
ommendation from the ATP-III for the primary
focus on weight reduction in management of the
metabolic syndrome stems a large body of clinical
and epidemiologic data which links increased
body mass index with insulin resistance, hyper-
tension, dyslipidemia, and coronary heart disease
risk (Abbasi et al. 2002). The reduction of body

Table 1 Ethnic factors for abnormal waist circumference

Ethnic group
Waist
circumference

Europids Male �94 cm

Female �80 cm

South Asians including
Indians

Male �90 cm

Female �80 cm

Chinese Male �90 cm

Female �80 cm

Japanese Male �90 cm

Female �80 cm
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weight by calorie restriction and increased level of
physical activity may secondarily improve
dyslipidemia, blood pressure, and glucose levels.
Additionally, weight loss has been associated with
a reduction in inflammatory markers and
prothrombotic mediators. Insulin resistance has
been long been recognized as a major underlying
factor in the pathogenesis in several components
of the metabolic syndrome (Ferrannini
et al. 1991). Insulin resistance has been demon-
strated to be a major factor in the pathogenesis of
dyslipidemia in the metabolic syndrome. Individ-
uals with insulin resistance exhibit increased pro-
duction and impaired catabolism of triglyceride-
rich lipoproteins with resultant hypertrigly-
ceridemia. The reduction in the catabolism of
very low-density lipoprotein and secondary
hypertriglyceridemia is correlated with low levels
of HDL due to the resultant impaired transport of
cholesterol between these two lipoproteins. Insu-
lin resistance may be a primary phenomenon or
secondarily related to increased body mass index.
The concept of improvement of insulin resistance
by hygienic interventions is theoretically attrac-
tive in the management of subjects with the met-
abolic syndrome. Dietary restriction of caloric
intake and increased physical activity have clearly
been demonstrated to improve insulin sensitivity
with the potential to improve metabolic parame-
ters. Pharmacologic agents have also been an
attractive approach to insulin resistance in sub-
jects who do not optimize metabolic parameters
by weight loss or exercise. The two major phar-
macologic agents which have been demonstrated
to alter insulin sensitivity are metformin and the
thiazolidinediones (TZDs). The insulin sensitizers
such as the thiazolidinediones are theoretically
attractive although the use of these agents has
become controversial as a means to improve car-
diovascular outcomes. A controversial meta-
analysis has demonstrated an increase in myocar-
dial infarction but without a concomitant increase
in cardiovascular or total mortality with
rosiglitazone (Nissen and Wolski 2010;
Schernthaner and Chilton 2010). Furthermore,
another meta-analysis of 16 clinical studies
which evaluated 810,000 subjects has suggested

an increase in sodium retention and congestive
heart failure with these agents (Loke et al. 2011).
Metformin therapy has been utilized for diabetes
for many years. The United Kingdom Prospective
Diabetes Study (UKPDS) did demonstrate a
reduction in the incidence of coronary heart dis-
ease with metformin administration in subjects
with increased body mass index coupled with
the presence of type 2 diabetes (Krentz and Bailey
2005). Additionally, in the Diabetes Prevention
Program, individuals who demonstrated impaired
glucose tolerance and received metformin therapy
were demonstrated to exhibit reduction in the
onset of type 2 diabetes (Knowler et al. 2009).
However, while specific prospective-controlled
clinical trials in subjects with the metabolic syn-
drome had not been performed utilizing metfor-
min therapy, it would appear that this agent would
be a logical therapy. Additionally, individuals
who have impaired glucose tolerance have been
demonstrated to exhibit a delayed onset of type
2 diabetes following the implementation of met-
formin therapy.

Dyslipidemia is a major feature of the meta-
bolic syndrome. Subjects with the metabolic syn-
drome frequently exhibit the atherogenic lipid
phenotype which is characterized by a relatively
normal total cholesterol but elevated triglycer-
ides, low HDL, and small dense low-density
lipoprotein (Eckel et al. 2010). The use of
non-HDL cholesterol targets Apo B-containing
particles and has been advocated as a therapeutic
target for optimization of the lipid profile. The
utilization of non-HDL cholesterol has been
demonstrated to be a more accurate predictor of
cardiovascular risk than LDL cholesterol alone
(Liu et al. 2005). A proposed advantage of the
utilization of non-HDL cholesterol as a therapeu-
tic target obviates the controversy relative to the
role of isolated hypertriglyceridemia as a cardio-
vascular risk factor. Non-HDL cholesterol levels
are frequently abnormal in subjects with the met-
abolic syndrome. The administration of statin
therapy has a predominant effect on low-density
lipoprotein but also improves HDL and lowers
triglycerides albeit to a lesser degree. Statin ther-
apy should be considered to be a mainstay
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intervention for the pharmacologic management
of dyslipidemia in subjects with metabolic syn-
drome whose lipid profiles are not optimized by
lifestyle modification. Subgroup analysis of
statin trials demonstrates a reduction in cardiac
events in patients who fit the diagnostic criteria
of the metabolic syndrome (Ballantyne
et al. 2001). The use of fibric acid derivatives is
also theoretically attractive as the mechanism of
PPAR agonists is to increase the activity of lipo-
protein lipase with reduction in triglycerides and
an increase in HDL. Post hoc analysis of primary
prevention trials with gemfibrozil demonstrates a
reduction of cardiac events in individuals with
the lipid triad (Manttari et al. 1990). However,
the Fenofibrate Intervention and Event Reduc-
tion in Diabetes (FIELD) trial which employed
fenofibrate in diabetic subjects was disappoint-
ing although methodological problems
were encountered in the trial design (Keech
et al. 2005).

Elevated blood pressure is a major factor in the
determination of cardiovascular risk in subjects
with the metabolic syndrome. Lifestyle interven-
tions are always considered to be the first line of
therapy in risk factor management. Lifestyle
changes should always be given an adequate
trial prior to consideration of antihypertensive
pharmacologic therapy. Modulators of the renin-
angiotensin system (angiotensin-converting
enzyme inhibitors and angiotensin receptor
blockers) are theoretically advantageous in the
metabolic syndrome as there are no adverse
effects on lipids or glucose tolerance. Factors
governing the modulators of the renin-angiotensin
system has not been evaluated in prospective trials
with cardiovascular endpoints have not been
performed specifically in subjects with the meta-
bolic syndrome. However, the use of ramipril in
the Heart Outcomes Prevention Evaluation
(HOPE) trial appeared to demonstrate the
decrease on the incidence of diabetes mellitus in
normotensive patients with multiple risk factors
(Sleight et al. 2001). However, no class of antihy-
pertensive agents is considered to be globally
efficacious in subjects with the metabolic
syndrome.

4 Metabolic Syndrome in Asians

Epidemiologic studies from South Asia have
demonstrated a progressive and alarming increase
in the incidence of cardiovascular disease over the
past several decades. Additionally, the incidence
and prevalence of type 2 diabetes has also been
demonstrated to be significantly increasing which
has profound implications for the development of
coronary artery disease. Epidemiologic studies
have demonstrated that the prevalence of type
2 diabetes has increased twofold over the past
30 years in South Asia (Gupta et al. 2003;
Ramachandran et al. 2001). The reasons which
underlie this disturbing trend are multifactorial
and have been related in varying degrees to urban-
ization, lifestyle alterations (diet and exercise),
economic influences, and increased life expec-
tancy. The availability of Western fast-food out-
lets which supply foods high in both calories and
content of saturated fat has proliferated over the
past two decades in South Asia. Additionally,
observational studies have documented a reduc-
tion in the level of physical activity which is
particularly manifest in children. The lifestyle
changes occurring in South Asia have progres-
sively been manifest by an increasing prevalence
of the components of the metabolic syndrome.
The progressive urbanization has been a major
factor in the increased incidence and prevalence
of the metabolic syndrome in South Asia. The
bulk of epidemiologic data analyzing the preva-
lence of the metabolic syndrome and its cardio-
vascular implications have been conducted in
India. Epidemiologic studies conducted in Indian
population centers have estimated a prevalence of
the metabolic syndrome to encompass approxi-
mately one third of subjects residing in large cities
(Ramachandran et al. 2003).

The prevalence rate of the components of the
metabolic syndrome may also have a genetic basis
with different expressions in various populations
although quantification of the relative contribution
of lifestyle modifications relative to interactions of
genetic tendencies is difficult to separate. How-
ever, several studies have analyzed that the phe-
notypic expression of body mass index and fat
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distribution have significant differences in the
Indian population. South Asians who do not live
in urban centers tend to have a low body mass
index when compared to other populations. How-
ever, the progressive urbanization in the Indian
subcontinent has been demonstrated to exhibit a
modification of body phenotype when compared
to rural populations. Individuals and their progeny
who migrate to urban centers have been demon-
strated to exhibit a significant increase in body
mass index. Additionally, South Asians tend to
have a higher prevalence of truncal obesity, fatty
infiltration of the liver, and ectopic fat deposition.
South Asians tend to have a higher percentage of
body fat compared to other populations despite the
lower-average BMI values. Importantly, excess
adiposity in South Asians appears to manifest by
an increased prevalence of the major components
of the metabolic syndrome including hyperten-
sion, diabetes, and dyslipidemia (Misra
et al. 2007; Basit and Shera 2008). The anatomic
distribution of adiposity may also be different in
South Asians. Abdominal obesity is increased
especially when associated with a body mass
index of greater than 25 kg/m2 (Vikram
et al. 2003). The distribution of intra-abdominal
adipose tissue is increased in South Asians. Intra-
abdominal adipose tissue has been demonstrated
to be metabolically active and is associated with
increased release of free fatty acids into the circu-
lation with a secondary increase in the degree of
hypertriglyceridemia and impaired glucose toler-
ance. The term metabolically obese has been uti-
lized to explain these risk factor alterations in the
presence of a relatively normal body mass index
(Misra and Khurana 2008). The recognition of
differing metabolic characteristics has resulted in
a revision of normal values for South Asians. The
National Obesity and Metabolic Syndrome Sum-
mit presented a consensus paper on diagnostic
cutoffs for body mass index and waist circumfer-
ence. The normal values for South Asian body
mass index in kilograms/meter squared were
established to be 18–22.9 kg/m2. The definition
of an overweight body mass index was 23–24.9
kg/m2 and the diagnosis of obesity was established

if the body mass index exceeded 25 kg/m2. Addi-
tionally, the waist circumference for males was
considered to be abnormal when the measure-
ments exceeded 90 cm. The abnormal value for
waist circumference in women was defined as
greater than or equal to 80 cm (Misra 2003).

The role that diet and exercise play in body
mass index and waist circumference in South
Asians has been not adequately studied. The tra-
ditional Indian vegetarian diet was low in satu-
rated fat and simple carbohydrates and is
accompanied by a relatively higher level of insol-
uble dietary fiber. The consumption of the tradi-
tional diet has gradually declined with the
progressive urbanization of the subcontinent with
a resultant increase in insulin resistance and the
metabolic syndrome (Misra et al. 2009a; Wasir
and Misra 2004). Despite the fact that the diet is
considered to be “vegetarian,” Asian Indians have
been demonstrated to consume a higher concen-
tration of saturated fats and hydrogenated oils
which may negate the nutritional benefit of a
pure vegetarian diet (Popkin et al. 2001). Addi-
tionally, South Asians had been demonstrated to
have a reduced consumption of omega-3 polyun-
saturated fatty acids and monounsaturated fatty
acids coupled with a higher intake of omega-6
polyunsaturated fatty acids when compared to
Caucasians. The increase in simple carbohydrates
and fat intake coupled with a reduction in fiber
intake has been postulated to play a significant
role in the interrelationship between obesity and
type 2 diabetes which has been documented in the
Indian population. Additionally, the progressive
urbanization which is prevalent on the Indian sub-
continent has led to a more sedentary lifestyle
relative to other ethnic groups.

Societal factors and metabolic syndrome in
South Asians
1. Increased affluence
2. Urbanization
3. Rural-urban population shifts
4. Change in dietary habits, fast high-calorie

foods
5. Decreased physical activity
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Certain characteristics of metabolic syndrome
in South Asians
1. Metabolic obesity with normal or low BMD
2. Truncal obesity
3. Increased intra-abdominal adipose tissue
4. Higher percentage of body fat
5. Comorbid conditions like diabetes and hyper-

tension with normal BMI

The increasing prevalence of a sedentary lifestyle
has led to a consensus statement recommending a
nationwide increase in aerobic activity as a means
to reduce the risk for the development of the met-
abolic syndrome and other cardiovascular issues
(Misra et al. 2009b). Additionally, the type of
leisure-time activity practice by Indians has shifted
from aerobic outdoor sporting activity to more
sedentary forms of entertainment. The shifts in
leisure activities which have occurred as a result
of socioeconomic and behavioral changes have
resulted in a significant increase in central obesity
which is especially manifest in women (Ghosh
2006). In addition to the alteration of dietary and
physical activities in the urban Indian population, a
number of genetic factors may interplay with life-
style changes in the development of the metabolic
syndrome in Asian Indians.

The presence of several gene polymorphisms
which are present in South Asians has been dem-
onstrated to alter lipid and carbohydrate metabo-
lism and may play a significant role in the
development of the components of the metabolic
syndrome. For instance, the glucokinase enzyme
system is involved in the facilitation of the phos-
phorylation of glucose to glucose-6 phosphate.
The glucokinase enzyme system plays a pivotal
role in carbohydrate metabolism by acting as a
glucose sensor. Polymorphisms of glucokinase
exist which play a role in insulin sensitivity and
diabetes. The glucokinase gene polymorphisms
are present in Asian Indians and may have a
significantly adverse impact on hepatic and
whole body insulin sensitivity (Chiu et al. 2000).
Additionally, the presence of increased levels of
plasma cell glycoprotein (PC)-1K121Q and insu-
lin receptor substrate-1 G972A polymorphisms

are associated with primary insulin resistance,
and the gene frequencies have been demonstrated
to increase in South Asians and provide a genetic
predisposition for the development of glucose
intolerance (Abate et al. 2003). Triglyceride-rich
lipoproteins such as very low-density lipoprotein
and chylomicrons carry both Apo CII and Apo
CIII on their surface. Apo CII is an agonist for
lipoprotein lipase and the resultant enhanced
catabolism of very low-density lipoproteins and
is a major factor in the metabolism of both chylo-
microns and very low-density lipoprotein. Con-
versely, Apo CIII is an inhibitor to lipoprotein
lipase and results in impaired catabolism of very
low-density lipoprotein and chylomicrons with
resultant circulating hypertriglyceridemia. South
Asian subjects who express polymorphisms of the
Apo CIII gene complex are characterized by an
increased predisposition for the development of
dyslipidemia due to impaired catabolism of very
low-density lipoprotein and subsequent increases
in triglyceride levels (Miller et al. 2007). Addi-
tionally, a predilection for elevated blood pressure
coupled with a subsequent enhanced risk of the
metabolic syndrome has been described in South
Asians who express these polymorphisms.
Abnormal indices of vascular inflammation and
thrombosis have been described in South Asians
with metabolic syndrome (Kain et al. 2003; Wasir
et al. 2007).

Dyslipidemia is felt to be a major modifiable
cause of the excess burden of atherosclerosis in
Asian Indians. Dyslipidemia is a major conse-
quence of the dietary increase in the quantity and
percentage of saturated fat, genetic tendencies,
reduced level of physical activity, and increased
body mass index which has been demonstrated in
South Asians. The characteristic lipid pattern of
the metabolic syndrome is a triad comprised of the
combination of hypertriglyceridemia, low HDL
cholesterol, and small dense LDL particles. The
total cholesterol may be normal or only slightly
elevated despite the presence of the atherogenic
lipid phenotype. The lipid phenotype of the met-
abolic syndrome is highly atherogenic and has
been demonstrated to have characteristic
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differences in the South Asian population. How-
ever, difficulty has arisen in defining the true
normal level of the various lipoprotein fractions
which has become controversial both in the gen-
eral population and in subjects with the metabolic
syndrome. The average level of LDL cholesterol
in normal humans is 50 mg/dL at birth. LDL
cholesterol levels of 50 mg/dL appear to be suffi-
cient to supply all of the metabolic needs of the
body relative to the production of steroid hor-
mones, membrane synthesis, neuron integrity,
etc. The level of low-density lipoprotein in urban
India has significantly increased in the recent
years (Joseph et al. 2000). The high prevalence
of a vegetarian diet would be predicted to be
associated with a relatively low total cholesterol
levels. However, while vegetarianism was previ-
ously the rule, the recent trend in urbanization has
altered conventional dietary habits. The Asian
Indian population has been analyzed for dietary
trends, lipid phenotypes, and the subsequent risk
for coronary artery disease. Epidemiologic studies
have demonstrated that vegetarian and
non-vegetarian Indians express a similar lipid
phenotype and risk for the development of coro-
nary artery disease which would appear to be
counterintuitive. The precise mechanism for the
lack of an improved lipid profile in vegetarians is
multifactorial and may be secondary to alteration
of the traditional methods in the preparation of
food. One explanation for the failure of South
Asian vegetarians to exhibit an improved lipid
profile is in the utilization of high quantities of
saturated fats and trans-fatty acids in the process
of deep frying of vegetables. Additionally, the
practice of overcooking has been demonstrated
to result in the destruction of multiple nutrients
including folic acid. The reduced level of circu-
lating folic acid has been linked to risk for coro-
nary artery disease. The components of the lipid
profile may also be different in Asian Indians.
Low-density lipoprotein exists in a family of cir-
culating particles which vary in size, lipid compo-
sition, density, and risk for the development of
atherosclerosis. The larger, more buoyant
subforms of low-density lipoprotein have been
associated with a relative decrease in cardiovas-
cular risk when compared to the smaller more

dense particles. Low-density lipoprotein is com-
posed of a family of seven definable subforms.
However, for clinical purposes the low-density
lipoprotein fraction may be divided into large
buoyant forms (type A) and small dense forms
(type B). The plasma level of small dense LDL
cholesterol is correlated with a significant statisti-
cally increased risk for the development of coro-
nary artery disease relative to the larger, more
buoyant forms. The mechanism by which the
presence of small dense LDL induces atheroscle-
rosis is multifactorial. Small dense LDL particles
are cytotoxic and induce endothelial dysfunction.
The endothelial damage associated with increased
levels of small dense LDL reduces the endothelial
barrier function for circulating lipoproteins and
allows increased migration into the subendothelial
space. Additionally, small dense LDL particles are
more susceptible to oxidation which enhances
recognition by the scavenger receptor and subse-
quent uptake by the monocyte macrophage sys-
tem. The progressive unregulated uptake of
oxidized LDL particles generates the foam cell
which is the first pathologic marker of atheroscle-
rosis. The precise quantification of the levels of
small dense LDL requires sophisticated measure-
ment techniques such as nuclear magnetic reso-
nance (NMR). However, the presence of small
dense LDL particles can be predicted on clinical
grounds by the presence of hypertriglyceridemia
(greater than or equal to 150 mg/dL). Addition-
ally, HDL cholesterol levels lower than 35 mg/dL
are also associated with the presence of small
dense LDL particles. The utilization of the triglyc-
eride/HDL ratio has also been recommended as a
means to estimate the presence of small dense
LDL particles. Ratios in excess of 3.8 have been
determined to be indicative of the presence of
small dense LDL in South Asian individuals and
may provide an indication for intensive lipid mod-
ification (Bhalodkar et al. 2006). The utilization of
both statin therapy and fibric acid derivatives has
been demonstrated to alter the structure of
low-density lipoprotein to a less atherogenic phe-
notype (Sirtori et al. 2005; Superko et al. 2005).
Hypertriglyceridemia is frequently associated
with an atherogenic lipid profile. However, the
role of hypertriglyceridemia as an independent
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risk factor for the development of coronary ath-
erosclerosis is controversial. Hypertrigly-
ceridemia frequently coexists with obesity,
tobacco usage, diabetes mellitus, reduced physi-
cal activity, and medications (such as nonselective
beta-blockers), and its independent contribution
to cardiovascular risk is difficult to quantify due to
statistical issues. Very low-density lipoprotein is
the major endogenous triglyceride-rich particle
produced by the liver. Very low-density lipopro-
tein does carry Apo B which is considered to be a
significant marker for particle atherogenicity.
Clinical data is accumulating that the
atherogenicity of partially metabolized very
low-density lipoprotein remnant particles is sig-
nificant and associated with increased cardiovas-
cular risk. Genetic conditions such as familial
dysbetalipoproteinemia are characterized by the
persistence in the circulation of partially metabo-
lized very low-density remnant particles and are
associated with increased cardiovascular risk
(Smelt and de Beer 2004). The utilization of
non-HDL cholesterol may be employed as a
marker for cardiovascular risk and circumvents
the problems associated with remnant particles
which are common in the metabolic syndrome
due to the impaired catabolism associated with
endothelial dysfunction in combination with
impaired clearance. Non-HDL cholesterol would
include very low-density lipoprotein, lipoprotein
remnant particles, and low-density lipoprotein
and lipoprotein (a). The utilization of the degree
of non-HDL cholesterol elevations has gained
credence as a therapeutic target for the
dyslipidemia associated with the metabolic syn-
drome. The non-HDL cholesterol goals are
30 mm per deciliter higher than the targets for
LDL cholesterol levels. Asian Indians appear to
have generally similar levels of non-HDL choles-
terol when compared to Americans and
Europeans (Enas et al. 1996). However, when
hypertriglyceridemia is associated with an
increase in non-HDL cholesterol which includes
all Apo B-containing lipoproteins, an increase
cardiovascular risk has been determined.

High-density lipoprotein also exists in a family
of particles with a variable impact on cardiovascu-
lar risk. The level of HDL cholesterol is generally

inversely related to cardiovascular risk and has
been classified as a negative risk factor by the
ATP-III of the National Cholesterol Education Pro-
gram. However, significant exceptions to rule exist
and the measurement of HDL cholesterol in and of
itself does not determine the physical characteris-
tics of the particle, functionality, or relation to risk.
Reverse cholesterol transport involves the mobili-
zation of cholesterol from peripheral stores by
high-density lipoprotein and is felt to be the
major mechanism by which HDL exhibits protec-
tion from atherosclerosis. The large HDL particles
such as HDL-2 are higher in cholesterol and imply
more efficient reverse cholesterol transport activity.
Conversely, smaller HDL particles such as HDL-3
are relatively depleted in cholesterol which would
suggest an impaired removal of cholesterol from
peripheral stores. Asian Indians have been demon-
strated to exhibit a significant decrease in the larger
more protective HDL particles coupled with an
increase in smaller particles (Cromwell 2007;
Bhalodkar et al. 2004). An unknown factor is the
interpretation of the prognostic implications of ele-
vated HDL cholesterol is the concept of dysfunc-
tional HDL (Farmer and Liao 2011). Despite
relatively normal levels of HDL cholesterol, its
exposure to inflammation and oxidative stress has
been demonstrated to be associated with a
decreased functionality of this particle. HDL is a
naturally occurring antioxidant which protects
low-density lipoprotein from oxidation. Exposure
to inflammatory stimuli has been demonstrated to
be associated with a reduction in a variety of anti-
oxidant enzymes associated with HDL such as
paraoxonase which is associated with reduced pro-
tective functionality of the particle.

Lipoprotein (a) is a complex lipoprotein which
consists of a LDL molecule coupled to Apo (a) by
the presence of sulfhydryl groups (Scanu 2003).
The levels of lipoprotein (a) are primarily geneti-
cally determined and display minimal response to
pharmacologic therapy (with the exception of nic-
otinic acid and estrogens), diet, or physical activ-
ity. The role of lipoprotein (a) in the pathogenesis
of atherosclerosis is complex. Lipoprotein (a) is
felt to provide a pathophysiologic link between
dyslipidemia, atherosclerosis, and the thrombo-
lytic cascade. The presence of the low-density
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lipoprotein moiety in the lipoprotein (a) molecule
provides the capacity to deliver cholesterol to the
subendothelial space where it may be scavenged
by the monocyte macrophage system. Addition-
ally, Apo (a) exhibits a structural similarity to
plasminogen although lipoprotein (a) is lacking
in serine protease activity. High circulating levels
of lipoprotein (a) interfere with the capacity of
tissue plasminogen activators to lyse an intravas-
cular clot. Individuals who exhibit high levels of
lipoprotein (a) are at risk for atherosclerosis and
this particle is generally not measured in standard
lipid profiles. Asian Indians have been demon-
strated to have increased circulating levels of lipo-
protein (a) with a mean level of 20 mg/dL which is
considered to be the threshold for increased ath-
erosclerotic risk (Enas et al. 2006). Determina-
tions of lipoprotein (a) in Asian Indians have
been correlated with the presence and severity of
atherosclerosis. However, the quantification of the
atherosclerotic risk transmitted by lipoprotein
(a) is complicated by the presence of a variety of
isoforms which have a variable impact on risk and
are not generally determined with standard bio-
chemical assays.

Elevated blood pressure is the most common
risk factor for cardiovascular morbidity and mor-
tality. The prevalence of hypertension is progres-
sively increasing in developing countries due to
lifestyle modifications, increased body mass
index, reduced physical activity, increased sodium
intake, and increased survival to older age groups
where vascular pathology is more prevalent.
Developing countries that are in economic transi-
tion have been demonstrated to express a signifi-
cant increase in the incidence and prevalence of
elevated blood pressure. Epidemiologic studies
which were conducted in the decade including the
1940s demonstrated a prevalence of hypertension
of 1.2–4.2 % in India. However, the prevalence of
elevated blood pressure has risen to a rate of 15–25
% in the decade encompassing the 1990s (Gupta
1997). The increase in blood pressure in Asian
Indians is not limited to adults. School-age children
in the 11–17-year-old age group have a prevalence
of hypertension of 6.6 % in urban areas which
would be predicted to increase if trends in obesity
and reduced physical activity continue (Mohan

et al. 2004). The burden of hypertension in South
Asia and its underlying causes are multifactorial.
The high prevalence of diabetes and insulin resis-
tance in India may play a significant role in the risk
for the development of hypertension. The preva-
lence of type 2 diabetes mellitus was estimated to
be 23 million subjects in the year 2000 with a
projected increase to 57 million by the year 2025
(King et al. 1998). The presence and severity of
insulin resistance may play a significant role in the
pathogenesis of hypertension in South Asian sub-
jects. Elevated levels of insulin have been demon-
strated to have multiple adverse effects on blood
pressure which include endothelial dysfunction,
increased sympathetic tone, enhanced proximal
renal absorption by the kidney, and vascular
remodeling. The presence of endothelial dysfunc-
tion has been demonstrated to result in a significant
alteration of flow through both resistance and con-
duit vessels. The endothelial dependent dilation is
partially a function of the balance between the local
production of vasoconstrictors such as thrombox-
ane and vasodilators such as prostacyclin. The
resultant effect of insulin resistance on endothelial
function is impaired vasodilation which can be
measured clinically. The presence of endothelial
progenitor cells and endothelial progenitor cell
colony-forming units (which are a marker of endo-
thelial function) has been demonstrated to be lower
in healthy South Asian individuals compared to
Caucasians. The presence of endothelial dysfunc-
tion, insulin resistance, and reduced endothelial
progenitor cells may contribute to the increased
vascular risk from hypertension in South Asians
(Murphy et al. 2007). The role and physiologic
implications of endothelial function may
be assessed in both conduit and resistance vessels
by utilizing flow-mediated dilation in response to a
variety of stimulants. Both conduit and
resistance vessels had been demonstrated to exhibit
impaired dilation in dyslipidemia, obesity,
tobacco usage, and diabetes. The impaired vascular
function in South Asians relative to Caucasians
may play a role in progressive vascular remodeling
which has been implicated in the pathogenesis of
hypertension. The presence of endothelial
dysfunction in South Asians has also been linked
to an increase prevalence of visceral and abdominal
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obesity when compared to Caucasians (Chambers
et al. 1999). The presence of endothelial dysfunc-
tion would have multiple implications for the path-
ogenesis of hypertension and subsequent vascular
disease in the metabolic syndrome.

Dietary influences have also been demon-
strated to play a major role in the pathogenesis
of hypertension in South Asia. Studies performed
in urban centers of India have demonstrated a
significant increase in sodium intake with resul-
tant hypertension (Radhika et al. 2007). The mean
dietary intake was determined to be 8.5 g per day
which is significantly higher than the amount
recommended by the World Health Organization
of 5 g per day. The progressive rise in elevated
blood pressure in South Asian has implications for
the development of the metabolic syndrome, cor-
onary artery disease, and cerebrovascular disease.
However, epidemiologic data for the prevalence
of severity and hypertension is conflicting when
comparing South Asians to other ethnic groups.
Epidemiologic studies performed in the UK have
demonstrated an increased prevalence of elevated
blood pressure in South Asian individuals
although the data is not striking (McKeigue
et al. 1991; Cappuccio et al. 1997). Additionally,
meta-analysis of multiple blood pressure studies
in South Asians has provided conflicting results.
The heterogeneity within different South Asian
ethnic groups has been reflected in multiple vari-
ables including differences in smoking, physical
activity, dietary factors, and socioeconomic con-
ditions (Bhopal 2002).

4.1 Implications

The term metabolic syndrome was initially pro-
posed to describe a grouping of cardiovascular
risk factors which appeared to coexist with a
greater frequency than would be expected by
chance alone with the implications for metabolic
pathways. The metabolic syndrome is character-
ized by hypertension, hypertriglyceridemia, low
HDL cholesterol, increased waist circumference,
and glucose intolerance. National organizations
have established differing criteria for the diagno-
sis of the metabolic syndrome. The epidemiologic

data has demonstrated that the prevalence of the
metabolic syndrome is significantly increased in
South Asians. The cardiovascular risk relative to
risk factor clustering is significantly increased in
the South Asian population and begins at an early
age. The rapidly occurring impacts of rapid urban-
ization, mechanization, and socioeconomic factor
alterations of traditional diet have been felt to play
a major role in the increased incidence and prev-
alence of the metabolic syndrome in South Asian
populations which has been demonstrated across
the age spectrum and in both rural and urban
populations. The metabolic syndrome in South
Asians is correlated with a distinct phenotype
including excess body fat, abdominal obesity,
truncal subcutaneous fat, and ectopic fat deposi-
tion. Prevention relative to the alteration of trends
occurring in dietary intake of fat in simple carbo-
hydrates and reduced physical activity is the pri-
mary thrust in the reduction of the incidence of the
metabolic syndrome. Community-based pro-
grams aimed at creating awareness relative to the
various aspects of lifestyle modifications had been
recommended as a means to reduce the prevalence
of the metabolic syndrome of and lifestyle and
exercise (Misra and Khurana 2009).
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Abstract
The prevalence of obesity has been dramati-
cally increased for the last three decades
worldwide.

Since there is a difference in defining obe-
sity, especially in abdominal obesity, direct
comparison of the obesity prevalence may not
be appropriate between Asian countries and
others. However, based on data for the recent
two decades, obesity epidemic is also observed
in the countries in East Asia in parallel with
marked environmental and lifestyle changes.
This review focuses on the recent trends of
general and abdominal obesity in East Asian
countries including China, Japan, South Korea,
and Taiwan.

In addition to data for obesity epidemic, a
large body of evidence on the “metabolically
obese” phenotype in a normal weight popula-
tion has been reported in the population in east
countries. This phenotype is important in the
public health perspective, because normal
weight individuals with metabolic obesity
may have obesity-related morbidities as well,
especially in an Asian population who are
more liable to increased visceral fat and insulin
resistance than any other race or ethnicity with
the same level of body mass index. In the other
way, “healthy obesity” in an obese population
has been proposed, based on the fact that not all
obese individuals are uniformly affected with
cardio-metabolic abnormalities; however, this
may not be the case in East Asian population.
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1 Definition of Obesity
in East Asia

For the epidemiological purpose, general obesity
and abdominal (central) obesity measured by body
mass index (BMI) and waist circumference,
respectively, are the commonly used anthropomet-
ric measurements. By the recommendation from
the International Obesity Task Force (IOTF) and
the World Health Organization (WHO) Regional
Office for the Western Pacific Region, general
obesity has been defined as BMI � 25 kg/m2

(World Health Organization 2000). WHO expert
consultation also proposed an alternative criterion
for general obesity in Asians as BMI � 27.5
kg/m2 (WHO, Expert Consultation 2004).

However, there is no consensus on a standard
definition for abdominal obesity. Thus, several cut-
offs have been proposed to determine abdominal
obesity according to different countries or ethnici-
ties. Each country in East Asia has its own
recommended waist circumference threshold for
abdominal obesity (Table 1). In addition to this

recommendation, a number of studies have been
conducted to identify the appropriate cutoff for
abdominal obesity in East Asian countries, based
on reflecting or predicting metabolic syndrome
or its components (Lee et al. 2007; Bao et al. 2008;
Oka et al. 2008; Baik 2009; Seo et al. 2009; Wang
et al. 2010;Kawada et al. 2011;Limet al. 2012;Hou
et al. 2014), multiple cardiovascular risk factors
(Narisawa et al. 2008; Kashihara et al. 2009;
Nakamura et al. 2011; Zeng et al. 2014), or insulin
resistance (Koh et al. 2010; Park et al. 2010;
Kamezaki et al. 2012). However, most studies had
cross-sectional design in which inaccurate conclu-
sions could not be ruled out in the association
between abdominal obesity and health outcomes.
Well-designed prospective studies with representa-
tive populations would be warranted to determine
optimal cutoff values for abdominal obesity.

2 Obesity Prevalence and Trend
in East Asia

Due to the shifts in diet and lifestyle resulting from
rapid socioeconomic transition and urbanization,
the epidemic of obesity from childhood to adult-
hood has become a substantial public health issue
in eastern Asia including China, Japan, South

Table 1 Recommended waist
circumference thresholds for
abdominal (central) obesity

Population Organization Male, cm Female, cm

Europid IDF �94 �80

Caucasian WHO �94
(increased risk)
�102 (higher risk)

�80
(increased risk)
�88 (higher risk)

United States AHA/NHLBI
(ATP III)

�102 �88

Asian IDF/WHO �90 �80

Korea KSSO �90 �85

China Cooperative
task force

�85 �80

Japan Japanese
obesity society

�85 �90

Middle East,
Mediterranean,
sub-Saharan Africa

IDF �94 �80

Adapted from Yoon, Rev Endocrinol Metab 2014;29:418–426 with permission from
Korean Endocrine Society (Yoon and Oh 2014)
Abbreviations: IDF International Diabetes Federation,WHOWorldHealth Organization,
AHA American Heart Association, NHLBI National Heart, Lung, and Blood Institute,
ATP III Adult Treatment Panel III, KSSO Korean Society for the Study of Obesity
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Korea, and Taiwan, a province of China. In this
chapter, we will focus on the prevalence and
trends of children and adult general and central
obesity perspectives. The purpose of this chapter
is to provide basic information on the magnitude
and trends of the obesity problem in East Asian
countries for children and adult, respectively.

2.1 General Obesity Versus
Abdominal Obesity for Adults

In accompaniment with the rapid economic devel-
opment of East Asian countries over the last several
decades, behavioral shifts have accelerated at a
historically unprecedented pace and scale in East
Asia by the adoption of “western lifestyle,” diet,
and physical activity patterns. Correspondingly, the
epidemic of obesity in both children and adults has
become a serious issue due to the dramatic number
of affected individuals within the population.

In China, the most important source of data on
the estimate of obesity prevalence for both adult
and children is the China Health and Nutrition
Survey (CHNS), an ongoing open cohort and an
international collaborative project between the
Carolina Population Center at the University of
North Carolina at Chapel Hill and the National
Institute of Nutrition and Food Safety at the Chi-
nese Center for Disease Control and Prevention.
The CHNS is a large-scale, national cross-
sectional survey designed for exploring how the
health and nutritional status of the Chinese popu-
lation has been affected by social and economic
changes. Amultistage, random cluster process was
used to draw samples from nine provinces (Liao-
ning, Heilongjiang, Jiangsu, Shandong, Henan,
Hubei, Hunan, Guangxi, and Guizhou). Similar
to Mainland China, the Nutrition and Health Sur-
vey in Taiwan (NAHSIT) is the most commonly
used data information from national survey for
estimating the prevalence of general and central
obesity in Taiwan. Another national representative
source of data information is the National Health
Research Institute Survey (NHRIS).

The Korea National Health and Nutrition
Examination Survey (KNHANES) is the most
important source of data on the prevalence of

general and central obesity in Korea. For children,
the National Growth Survey is another source of
data to estimate the trend of obesity prevalence.

In Japan, the most used data for estimating the
trend of obesity in adult and children is the Japan
National Nutrition Survey. Table 2 shows the
prevalence and trend of general and central obe-
sity in adults among China, Taiwan, Korea, and
Japan using national representative surveys.
Table 3 shows the prevalence and trend of general
and central obesity in children among China, Tai-
wan, Korea, and Japan using national representa-
tive surveys.

3 Metabolic Health and Obesity
in East Asia

The risk of developing obesity-related complica-
tions is generally well correlated with the degree
of obesity; however, not all obese individuals are
uniformly affected. Even in the same BMI cate-
gory, a subgroup of obese individuals with normal
cardio-metabolic characteristics has been desig-
nated as “metabolically healthy obese (MHO),”
compared with “metabolically unhealthy obese
(MUO)” (Kim et al. 2014a; Primeau et al. 2010;
Karelis et al. 2004). In the same context, a sub-
group of normal weight individuals who are vul-
nerable to cardio-metabolic abnormalities due to
their adverse body composition has been identi-
fied as “metabolically obese normal weight
(MONW) or normal weight obesity (NWO),”
compared with their metabolically normal coun-
terparts with the same category of BMI
representing “metabolically healthy normal
weight (MHNW)” (Kim et al. 2014b; Choi
et al. 2013a; Lee et al. 2011b; Yajnik and Yudkin
2004; Ruderman et al. 1981).

3.1 Epidemiological and Clinical
Implications of MONW
Phenotype

It is important to recognize the MONW individ-
uals in East Asian populations who are more liable
to increased visceral fat and insulin resistance than
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Table 2 Prevalence and trend of general obesity and abdominal obesity for adults among East Asian countries

Survey year Sample
Age
range Definition criteria

Prevalence of
overweight Prevalence of obesity

General obesity
Taiwan

1993–1996 (Lin
et al. 2003)

NAHSIT �20 OW,
25 < BMI < 30;
obese, BMI > 30

21.10 % 4.00 %

2000–2001 (Chu
2005)

NHRIS �20 OW, BMI > = 24;
obese, BMI > = 27

28.9 % (M),
18.7 % (F)

15.9 % (M),
10.7 % (F)

2005–2008
(Yeh et al. 2011)

NAHSIT �18 OW, BMI > = 24;
obese, BMI > = 27

31.87 % (M),
19.75 % (F)

18.90 % (M),
17.13 % (F)

2013
(Ng et al. 2014)

�18 OW, BMI 25–30;
obese, BMI > = 30

33.8 % (M),
30.9 % (F)

4.3 % (M), 6.4 % (F)

China
1993
(Xi et al. 2012)

CHNS �18 OW, BMI 25–27.49;
obese, > = 27.5

Overall: 9.4 %;
8 % (M); 10.7 % (F)

Overall: 4 %;
2.9 %(M); 5.0 % (F)

1997
(Xi et al. 2012)

CHNS �18 OW, BMI 25–27.49;
obese, > = 27.5

Overall: 11.3%;
10.4%(M);12.1%(F)

Overall: 6.2 %; 5.5 %
(M); 6.7 % (F)

2000
(Xi et al. 2012)

CHNS �18 OW, BMI 25–27.49;
obese, > = 27.5

Overall: 13.8 %; 13.7
%( M); 13.9 % (F)

Overall: 8.0 %; 7.2 %
(M); 8.6 % (F)

2004
(Xi et al. 2012)

CHNS �18 OW, BMI 25–27.49;
obese, > = 27.5

Overall: 14.9 %; 15.0
% (M); 14.9 % (F)

Overall: 8.7 %; 8.2 %
(M); 9.2 % (F)

2006
(Xi et al. 2012)

CHNS �18 OW, BMI 25–27.49;
obese: > = 27.5

Overall: 15.4; 16.5 %
(M); 14.4 % (F)

Overall: 9.2 %; 9.4 %
(M); 9.0 % (F)

2009
(Xi et al. 2012)

CHNS �18 OW, BMI 25–27.49;
obese, > = 27.5

Overall: 15.7 %; 17.1
% (M); 14.4 % (F)

Overall: 10.7 %; 11.4
% (M); 10.1 % (F)

2013
(Ng et al. 2014)

�18 OW: BMI 25–30;
Obese: BMI > = 30

28.3 % (M); 27.4 %
(F)

3.8 % (M); 4.9 % (F)

South Korea
2001 K-NHANES �20 BMI > = 25 Overall: 30.6 %, 32.4

% (M); 29.4 % (F)

1998 (Kang
et al. 2014)

K-NHANES �20 OW, BMI > = 23;
obese, BMI > = 25

50.8 % (M); 47.3 %
(F)

26.0 % (M); 26.5 %
(F)

2001 (Kang
et al. 2014)

K-NHANES �20 OW, BMI > = 23;
obese, BMI > = 25

57.4 % (M); 51.9 %
(F)

32.4 % (M); 29.3 %
(F)

2005 (Kang
et al. 2014)

K-NHANES �20 OW, BMI > = 23;
obese BMI > = 25

62.5 % (M); 50.0 %
(F)

35.1 % (M); 28.0 %
(F)

2007–2009
(Kang
et al. 2014)

K-NHANES �20 OW, BMI > = 23;
obese, BMI > = 25

62.6 % (M); 48.9 %
(F)

36.3 % (M); 27.6 %
(F)

2013
(Ng et al. 2014)

�18 OW, BMI 25–30;
obese, BMI > = 30

36.9 % (M); 27.2 %
(F)

6.8 % (M); 5.8 % (F)

Japan
1976–1980
(Yoshiike
et al. 2002)

JNNS �20 Preobese, 25–29.9;
obese, BMI > = 30

14.5 % (M); 15.7 %
(F)

0.84 % (M); 2.33 %
(F)

1991–1995
(Yoshiike
et al. 2002)

JNNS �20 Preobese, 25–29.9;
obese, BMI > = 30

20.5 % (M); 14.7 %
(F)

2.01 % (M); 2.30 %
(F)

2013
(Ng et al. 2014)

�18 OW, BMI25–30;
obese, BMI > = 30

28.9 % (M); 17.6 %
(F)

4.5 % (M); 3.3 % (F)

(continued)
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any other race or ethnicity with the same level of
BMI (Nazare et al. 2012). The prevalence of
MONW phenotype varies from 10 % to 40 %
according to the definition of metabolic obesity
and populations used in each study (Table 4).
Multiple studies have reported that the MONW
phenotype is associated with increased risk of
cardio-metabolic morbidity and mortality in East
Asian population. Lee et al. demonstrated that
MONW phenotype was independently associated
with abnormal lipid profiles such as high total
cholesterol and triglycerides in both men and
women (Lee et al. 2011b). Kim et al. evaluated

2,078 normal weight (18.5 � BMI < 25 kg/m2)
subjects and analyzed the data from atherosclero-
sis using coronary computed tomography angiog-
raphy and pulse wave velocity (Kim et al. 2015).
They found that NWO phenotype defined by
highest tertile of gender-specific body fat percent-
age by sex (men � 25.4% and women � 31.4%)
was independently associated with the presence of
soft plaques, meaning that NWO individuals may
have a higher risk of subclinical atherosclerosis
compared with MHNW individuals. Yoo
et al. also demonstrated that MONW phenotype,
defined by the presence of metabolic syndrome in

Table 2 (continued)

Survey year Sample
Age
range Definition criteria

Prevalence of
overweight Prevalence of obesity

Abdominal obesity
China

Prevalence of central obesity
1993
(Xi et al. 2012)

CHNS �18 WC > = 90 cm
(M) and > = 80 cm
(F)

Overall: 18.6 %; 8.5
% (M); 27.8 % (F)

1997
(Xi et al. 2012)

CHNS �18 WC > = 90 cm
(M) and > = 80 cm
(F)

Overall: 22.6 %; 13.8
% (M); 30.8 % (F)

2000
(Xi et al. 2012)

CHNS �18 WC > = 90 cm
(M) and > = 80 cm
(F)

Overall: 28.8 %; 19.5
% (M); 37.1 % (F)

2004
(Xi et al. 2012)

CHNS �18 WC > = 90 cm
(M) and > = 80 cm
(F)

Overall: 31.4 %; 21.6
% (M); 40.3 % (F)

2006
(Xi et al. 2012)

CHNS �18 WC > = 90 cm
(M) and > = 80 cm
(F)

Overall: 32.8 %; 23.2
% (M); 41.4 % (F)

2009
(Xi et al. 2012)

CHNS �18 WC > = 90 cm
(M) and > = 80 cm
(F)

Overall: 37.4 %; 27.8
(M); 45.9 % (F)

South Korea
1998 (Oh 2011) K-NHANES �20 WC > = 90 cm

(M) and > = 85 cm
(F)

Overall: 22.4 %; 20.6
% (M); 24.1 % (F)

2005 (Oh 2011) K-NHANES �20 WC > = 90 cm
(M) and > = 85 cm
(F)

Overall: 23.9 %; 24.0
% (M); 23.8 % (F)

2007–2009
(Oh 2011)

K-NHANES �20 WC > = 90 cm
(M) and > = 85 cm
(F)

Overall: 24.1 %, 24.8
% (M); 23.5 % (F)

Note: NAHSIT Nutrition and Health Surveys in Taiwan, NHRIS National Health Research Institute Survey, CHNS China Health
and Nutrition Surveys, KNHANES Korea National Health and Nutrition Examination Survey, JNNS Japan National Nutrition
Survey, OW overweight, WC waist circumference
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Table 3 Prevalence and trend of general obesity of children among East Asian countries

Survey year Sample
Age
range Overweight and obesity criteria

Prevalence of
overweight

Prevalence of
obese

Taiwan

1980–1982
(Lin et al. 1985)

NS 12–15 OW: 110 � 120 % of age and
sex-specific mean body weight; obese
is >120 % of mean body weight

13.0 %(B);
11.3 %(G)

12.4 %(B);
10.1 %(G)

1986–1988
(Kao
et al. 1991)

NS 12–15 OW: 110 � 120 % of age and
sex-specific mean body weight; obese
is >120 % of mean body weight

10.9 %(B);
13.1 %(G)

14.8 %(B);
11.1 %(G)

1994–1996
(Chu 2001)

TCHS 12–15 Overweight is defined as body weight at
110 � 120 % of mean body weight and
obese is defined as >120 % of mean
body weight at same age and gender
stratum

11.6 %(B);
10.2 %(G)

16.4 %(B);
11.1 %(G)

2001–2002
(Chu and Pan
2007)

NAHSIT 6–12 > = 85th BMI; > = 95th of BMI Overall: 15.0
%; 15.5 %
(B) and 14.4
% (G)

Overall: 12.0
%; 14.7 %
(B) and 9.1%
(G)

China

1993 (Liang
et al. 2012)

CHNS 6–17 IOTF 6.10 %

1997 (Liang
et al. 2012)

CHNS 6–17 IOTF 7.00 %

2000 (Liang
et al. 2012)

CHNS 6–17 IOTF 7.40 %

2004 (Liang
et al. 2012)

CHNS 6–17 IOTF 10.10 %

2006 (Liang
et al. 2012)

CHNS 6–17 IOTF 10.30 %

2009 (Liang
et al. 2012)

CHNS 6–17 IOTF 13.10 %

2010 (Sun
et al. 2014)

CNSSCH 7–18 100–119.9 % of standard weight for
height by age and sex; > = 120 % of
standard weight for height

Overall: 19.2
%; 23.4 %
(B); 14.5 %
(G)

Overall: 8.1
%; 10.9 %
(B);5.1 %
(G)

Korea

1997
(Oh et al. 2008)

NGS 2–18 BMI � 85th; BMI � 95th Overall: 13.0
%; 12.4 %
(B); 13.8 %
(G)

Overall: 5.8
%; 6.1 %(B);
5.5 %(G)

2005
(Oh et al. 2008)

NGS 2–18 BMI � 85th; BMI � 95th Overall: 19.0
%; 19.7 %
(B); 18.2 %
(G)

Overall: 9.7
%; 11.3 %
(B);8.0 %(G)

2001 (Khang
and Park 2011)

KNHANES 2–9 IOTF 21.1 %(B);
16.9 %(G)

5.5 %(B); 3.8
%(G)

2005 (Khang
and Park 2011)

KNHANES 2–9 IOTF 15.6 %(B);
17.3 %(G)

3.2 %(B); 3.8
%(G)

2007 (Khang
and Park 2011)

KNHANES 2–9 IOTF 24.4 %
(B);15.7 %
(G)

10.5 %
(B);1.9 %(G)
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Table 3 (continued)

Survey year Sample
Age
range Overweight and obesity criteria

Prevalence of
overweight

Prevalence of
obese

1998 (Khang
and Park 2011)

KNHANES 10–19 IOTF 16.2 %
(B);13.8 %
(G)

2.0 %(B),1.0
%(G)

2001 (Khang
and Park 2011)

KNHANES 10–19 IOTF 27.8 %(B);
16.7 %(G)

5.8 %(B);1.6
%(G)

2005 (Khang
and Park 2011)

KNHANES 10–19 IOTF 27.3 %
(B);16.9 %
(G)

5.6 %(B);2.8
%(G)

2007 (Khang
and Park 2011)

KNHANES 10–19 IOTF 29.4 %
(B);16.4 %
(G)

6.0 %(B);1.0
%(G)

Japan

1976–1980
(Matsushita
et al. 2004)

NNS-J 6–8 IOTF 7.9 %(B); 8.7
%(G)

1.8 %(B); 1.8
%(G)

9–11 IOTF 10.7 %(B);
9.3 %(G)

1.6 %(B); 1.3
%(G)

12–14 IOTF 9.2 %(B); 8.6
%(G)

1.0 %(B); 0.5
%(G)

1981–1985
(Matsushita
et al. 2004)

NNS-J 6–8 IOTF 9.1 %(B);
10.8 %(G)

2.1 %(B); 1.9
%(G)

9–11 IOTF 11.9 %(B);
10.3 %(G)

2.1 %(B); 0.9
%(G)

12–14 IOTF 12.6 %(B);
9.6 %(G)

2.1 %(B); 0.5
%(G)

1986–1990
(Matsushita
et al. 2004)

NNS-J 6–8 IOTF 12.5 %(B);
13.2 %(G)

3.8 %(B); 2.8
% (G)

9–11 IOTF 15.4 %(B);
12.8 %(G)

3.3 %(B); 1.2
%(G)

12–14 IOTF 12.2 %(B);
10.0 %(G)

2.1 %(B); 1.2
%(G)

1991–1995
(Matsushita
et al. 2004)

NNS-J 6–8 IOTF 13.9 %(B);
14.7 %(G)

3.7 %(B); 3.1
%(G)

9–11 IOTF 19.1 %(B);
14.8 %(G)

4.1 %(B); 2.0
%(G)

12–14 IOTF 14.6 %(B);
9.0 %(G)

2.5 %(B); 1.6
%(G)

1996–2000
(Matsushita
et al. 2004)

NNS-J 6–8 IOTF 15.3 %(B);
14.6 %(G)

4.6 %(B); 4.6
%(G)

9–11 IOTF 18.4 %(B);
17.2 %(G)

4.0 %(B); 3.0
%(G)

12–14 IOTF 14.9 %(B);
11.2 %(G)

2.7 %(B); 1.0
%(G)

Note: CNSSCH Chinese National Survey on Students Constitution and Health, IOTF the International Obesity Task Force:
BMI > = age-sex-specific BMI cutoff that corresponds to a BMI of 30 kg/m2 at age 18, NNS-J Japan National Nutrition Survey,
NGSNational Growth Survey, NSNational Survey, TCHS Taipei Children Heart Study, NHSNutrition and Health Survey, CHNS
China Health and Nutrition Survey
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Table 4 Prevalence of metabolically obese normal weight (MONW) phenotype in East Asia

Study Country

Nationally
representative
sample

Population
characteristic Definition

Prevalence
among normal
weight
population

(Lee 2009) South
Korea

Yes 5,267 participants
(2,227 men, 3,040
women) (�20 years)

BMI < 25 kg/m2

with metabolic
syndrome, defined by
NCEP-ATP III
guideline (2002)

12.7 % (15.6 %
in men, 10.7 %
in women)

(Lee et al. 2011a) South
Korea

No 8,987 nondiabetic
subjects (3,632 men
and 5,355 women)
(�40 years)

18.5 � BMI < 23
kg/m2 with a HOMA-
IR in the highest
quartile

Men (14.2 %),
women (12.9 %)

(Choi
et al. 2013a)

South
Korea

Yes 1,736 nondiabetic
women (1,197
premenopausal
women and
539 postmenopausal
women) (�19 years)

18.5 � BMI < 25
kg/m2 with (HOMA-
IR) in the highest
quartile

18.7 % for
premenopausal
women and 19.2
% for
postmenopausal
women

(Kim
et al. 2014b)

South
Korea

Yes 5,313 men and 6,904
women (�20 years)

18.5 � BMI < 23
kg/m2 greater than
26 % body fat in men
and greater than 36 %
body fat in women

36 % for men,
29 % for women

(Lee
et al. 2015b)

South
Korea

Yes 17,029 nondiabetic
subjects (7,185 men
and 9,844 women)
(�20 years)

18.5 � BMI < 23
kg/m2 with HOMA-
IR in the highest
quartile

10.54 % for men
and 13.26 % for
women

(Yeh et al. 2005) Taiwan Yes 2,143 participants
(1,020 men and
1,123 women) (�20
years)

BMI < 24 kg/m2,
high waist
circumference
(�80 cm for women
and �90 cm for men)

1.7 % for men
and 4.0 % for
women among
total population

(Tsou 2012) Taiwan No 1,180 participants
(�65 years)

18.5 � BMI < 24
kg/m2 with metabolic
syndrome defined by
NCEP-ATP III
guideline (2002),
Wildman criterion

16.3 %

(Heianza
et al. 2014a)

Japan No 8,090 nondiabetic
subjects (5,884 men
and 2,206 women)
(aged 24–80 years)

BMI < 25 kg/m2

with two or more of
metabolic syndrome
components defined
by IDF

21.1 % among
total population

(Heianza
et al. 2014b)

Japan No 27,478 nondiabetic
subjects (17,730 men
and 9,748 women)

BMI < 25 kg/m2

with two or more of
metabolic syndrome
components defined
by IDF

14.9 % among
total population

(Du et al. 2015a) China Yes 3,552 participants
(�18 years)

18.5 � BMI < 23
kg/m2, Wildman
criterion

47.9 %

Abbreviations: HOMA-IR homeostasis model assessment of insulin resistance, NCEP-ATP III (2002) the National
Cholesterol Education Program Adult Treatment Panel III (NCEP-ATPIII 2002), IDF International Diabetes Federation
(Alberti et al. 2006); Wildman criterion (Wildman et al. 2008)
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the category of 18.5 � BMI < 25 kg/m2, was
independently associated with carotid atheroscle-
rosis compared to MHNW phenotype in the 1,012
health examinees (Yoo et al. 2014). Choi
et al. conducted a prospective cohort study with
10-year follow-up in 2,317 elderly people aged
over 60 years in which MONW individuals were
designated as a BMI < 23 kg/m2 with metabolic
syndrome determined by modified NCEP-ATP III
criteria (Choi et al. 2013b). They found that
all-cause and CVD mortality were significantly
higher in MONW individuals compared to over-
weight or obese individuals.

No consensus has been made in defining
MONW phenotype. Thus, several studies have
explored the novel criteria for identifying NWO
phenotype and related risk factors in East Asia.
Kim et al. investigated the optimal cutoffs of per-
centage body fat (BF) to identify the NWO pheno-
type with the presence of at least one
cardiovascular risk factor as the outcome, using
data from the Korea NHANES (Kim
et al. 2014b). They suggested that 26 % BF in
men and 36 % BF in women would be the best
cutoff for defining NWO individuals. Lee
et al. proposed a novel criterion for defining
MONW phenotype using the TyG index, calcu-
lated as ln[fasting triglycerides (mg/dL) � fasting
plasma glucose (mg/dL)/2] (Lee et al. 2014,
2015a). They determined the cutoff value of TyG
index using 7,541 nondiabetic nationally represen-
tative normal weight (18.5 � BMI < 25 kg/m2)
subjects in Korea and found that TyG index pre-
dicts incident diabetes using 3,185 participants
from a prospective community-based cohort
study (Lee et al. 2015a). Du et al. assessed the
capability of lipid accumulation product (LAP)
and visceral adiposity index (VAI) to determine
MONWphenotype using data from the nationwide
China Health and Nutrition Survey and found that
both LAP and VAI were highly associated with
MONW phenotype independent of the different
several MONW criteria (Du et al. 2015a).

A number of studies have provided the evi-
dence of risk factors for MONW phenotype. In a
study of a representative Korean population,
MONW phenotype was associated with older
age, lower education, moderate alcohol

consumption, and moderate-intensity exercise
(Lee 2009). In addition, Choi et al. found that
the MONW characteristics vary before and after
menopause, indicating that young age, rural resi-
dence, higher BMI, high systolic blood pressure,
low HDL-C, high white blood cell count, and lack
of regular exercise were associated with the
MONW phenotype in premenopausal women,
whereas only high alanine aminotransferase was
associated in postmenopausal women (Choi
et al. 2013a). For the association between
MONW phenotype and dietary patterns, Choi
et al. showed that a reduced intake of carbohy-
drates and carbohydrate snacks is inversely asso-
ciated with a MONW phenotype, especially in
women, in which a MONW phenotype was
defined as a 18.5 � BMI < 25 kg/m2 with meta-
bolic syndrome based on the International Diabe-
tes Federation consensus (Choi et al. 2012). Yoo
et al. demonstrated that higher serum ferritin
levels are associated with MONW phenotype,
defined by modified NCEP-ATP III criteria, in a
representative Korean normal weight (18.5 �
BMI < 25 kg/m2) young adults aged 19–39
(Yoo et al. 2012). In a recent Korea NHANES
study of 1,813 normal weight (18.5 � BMI < 25
kg/m2) adults, the findings revealed that lower
serum zinc levels are associated with MONW
phenotype defined by the highest quartile on
HOMA-IR (Yang et al. 2015).

3.2 Epidemiological and Clinical
Implications of MHO Phenotype

Since there is no standard universal definition of
metabolic health, large variations have been
observed in the prevalence of MHO phenotype
ranging from 10 % to 57 % according to the defi-
nition of metabolic obesity and populations exam-
ined in each study (Table 5). In addition, much
debate remains around whether MHO phenotype
is definitely healthy (Kramer et al. 2013).

Chen et al. investigated the association
between metabolic health and the presence of
chronic kidney disease (Chen et al. 2014). They
demonstrated that MUO, but not MHO pheno-
type, is associated with an increased risk of
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chronic kidney disease compared to normal
weight individuals. However, a number of stud-
ies have shown that MHO phenotype may be at
increased risk of CVD in East Asia. Chang

et al. assessed the coronary artery calcium
(CAC) scores in MHO individuals in apparently
healthy 14,828 adults in which metabolic health
was determined as not having any metabolic

Table 5 Prevalence of metabolically healthy obese (MHO) phenotype in East Asia

Study Country

Nationally
representative
sample

Population
characteristic Definition

Prevalence
among
obese
population

(Lee 2009) South
Korea

Yes 5,267 participants
(2,227 men, 3,040
women) (�20
years)

BMI � 25 kg/m2 without
metabolic syndrome defined
by NCEP-ATP III guideline
(2002)

47.9 %
(44.3 % in
men, 51.0
% in
women)

(Lee et al. 2011a) South
Korea

No 8,987 nondiabetic
subjects (3,632
men and 5,355
women) (�40
years)

BMI � 25 kg/m2 with a
HOMA-IR in the lowest
quartile

Men (10.7
%), women
(14.5 %)

(Choi
et al. 2013b)

South
Korea

No 2,317 participants
(2,227 men, 3,040
women) (�60
years)

BMI � 25 kg/m2 without
metabolic syndrome defined
by NCEP-ATP III guideline
(2002)

57.6 %

(Lee et al. 2013) South
Korea

No 2,352 participants
(aged 40–69 years)

BMI � 25 kg/m2 with none
of metabolic syndrome
components defined by
NCEP-ATP III guideline
(2002)

18.1 %

(Chen
et al. 2014)

China No 2,324 subjects
(�18 years)

BMI � 24 kg/m2 with no
insulin resistance or any
metabolic syndrome
components except
abdominal obesity

11.8 %
among
total
population

(Du et al. 2015b) China Yes 7,765 participants
(�18 years)

BMI � 27.5 kg/m2 with
none or one of metabolic
syndrome components
defined by NCEP-ATP III
guideline (2002)

10.7 %

(Heianza
et al. 2014a)

Japan No 8,090 nondiabetic
subjects (5,884
men and 2,206
women) (aged
24–80 years)

BMI � 25 kg/m2 with none
or one of metabolic syndrome
components defined by IDF

44.1 %

(Heianza
et al. 2014b)

Japan No 27,478 nondiabetic
subjects (17,730
men and 9,748
women)

BMI � 25 kg/m2 with none
or one of metabolic syndrome
components defined by IDF

11.0 %

(Hwang
et al. 2012)

Taiwan Yes 1,547 participants
(629 men and
918 women) (aged
18–59 years)

BMI � 25 kg/m2 without
metabolic syndrome defined
by modified Grundy (2005)

28.5 %
(24.2 % for
men and
34.8 % for
women)

Abbreviations: HOMA-IR homeostasis model assessment of insulin resistance, NCEP-ATP III (2002) the National
Cholesterol Education Program Adult Treatment Panel III (NCEP-ATPIII 2002), IDF International Diabetes Federation
(Alberti et al. 2006); Grundy et al. (2005); Wildman criterion (Wildman et al. 2008)
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syndrome component and having a HOMA-IR
<2.5. They found that MHO individuals had a
higher prevalence of subclinical coronary atheroscle-
rosis compared with MHNW individuals (Chang
et al. 2014). Jung et al. also found that MHO pheno-
type is associated with the prevalent subclinical cor-
onary atherosclerotic burden defined by >50 %
stenosis, plaque, and CAC scores, compared with
MHNW individuals in 4,009 health examinees in
which MHO was determined as BMI � 25 kg/m2

with Wildman criteria (Jung et al. 2014). Lee
et al. examined the association between MHO phe-
notype and the risk of hypertension in the 8-year
follow-up community-based prospective cohort
study. They demonstrated that MHO individuals
had higher risk of incident hypertension, compared
with MHNW individuals (Lee et al. 2013). Heianza
et al. studied the risk of incident diabetes across
various metabolic phenotypes and found that meta-
bolically healthy overweight phenotype was associ-
ated with a higher risk of developing diabetes than
MHNW phenotype (Heianza et al. 2015).

The transition to an unhealthy metabolic pheno-
type contributes to adverse health outcomes.
Heianza et al. evaluated stability and changes in
metabolic health status in a prospective cohort
study using nondiabetic Japanese population
(Heianza et al. 2014b). They found that persistent
MUO status was a considerable increase risk of
incident diabetes, and transition from MHO to
MUO status was also associated with incident dia-
betes compared tomaintainingMHNWphenotype.

4 Cross-References

▶Epidemiology of Obesity in the United States
▶Metabolic Syndrome in South Asians
▶Obesity in Middle East
▶Obesity in Sub-Saharan Africa

References

Alberti KG, Zimmet P, Shaw J. Metabolic syndrome – a
new world-wide definition. A Consensus Statement
from the International Diabetes Federation. Diabet
Med. 2006;23(5):469-480. doi:10.1111/j.1464-5491.
2006.01858.x.

Baik I. Optimal cutoff points of waist circumference for the
criteria of abdominal obesity: comparison with the
criteria of the International Diabetes Federation. Circ
J. 2009;73(11):2068-2075.

Bao Y, Lu J, Wang C, et al. Optimal waist circumference
cutoffs for abdominal obesity in Chinese. Atheroscle-
rosis. 2008;201(2):378-384. doi:10.1016/j.atheroscle-
rosis.2008.03.001.

Chang Y, Kim BK, Yun KE, et al. Metabolically-healthy
obesity and coronary artery calcification. J Am Coll
Cardiol. 2014;63(24):2679-2686. doi:10.1016/j.
jacc.2014.03.042.

Chen S, Zhou S, Wu B, et al. Association between meta-
bolically unhealthy overweight/obesity and chronic
kidney disease: the role of inflammation. Diabetes
Metab. 2014;40(6):423-430. doi:10.1016/j.diabet.
2014.08.005.

Choi J, Se-Young O, Lee D, et al. Characteristics of diet
patterns in metabolically obese, normal weight adults
(Korean National Health and Nutrition Examination
Survey III, 2005). Nutr Metab Cardiovasc Dis.
2012;22(7):567-574. doi:10.1016/j.numecd.2010.09.
001.

Choi JY, Ha HS, Kwon HS, et al. Characteristics of meta-
bolically obese, normal-weight women differ by men-
opause status: the Fourth Korea National Health and
Nutrition Examination Survey. Menopause. 2013a;20
(1):85-93. doi:10.1097/gme.0b013e31825d26b6.

Choi KM, Cho HJ, Choi HY, et al. Higher mortality in
metabolically obese normal-weight people than in met-
abolically healthy obese subjects in elderly Koreans.
Clin Endocrinol (Oxf). 2013b;79(3):364-370.
doi:10.1111/cen.12154.

Chu NF. Prevalence and trends of obesity among school
children in Taiwan – the Taipei Children Heart Study.
Int J Obes Relat Metab Disord. 2001;25(2):170-176.
doi:10.1038/sj.ijo.0801486.

Chu NF. Prevalence of obesity in Taiwan. Obes Rev.
2005;6(4):271-274. doi:10.1111/j.1467-789X.2005.
00175.x.

Chu NF, Pan WH. Prevalence of obesity and its
comorbidities among schoolchildren in Taiwan. Asia
Pac J Clin Nutr. 2007;16(Suppl 2):601-607.

Du T, Yu X, Zhang J, et al. Lipid accumulation product and
visceral adiposity index are effective markers for iden-
tifying the metabolically obese normal-weight pheno-
type. Acta diabetologica. 2015a. doi:10.1007/s00592-
015-0715-2.

Du T, Zhang J, Yuan G, et al. Nontraditional risk factors for
cardiovascular disease and visceral adiposity index
among different body size phenotypes. Nutr Metab
Cardiovasc Dis. 2015b;25(1):100-107. doi:10.1016/j.
numecd.2014.07.006.

Expert Consultation WHO. Appropriate body-mass index
for Asian populations and its implications for policy
and intervention strategies. Lancet. 2004;363
(9403):157-163. doi:10.1016/s0140-6736(03)15268-3.

Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and
management of the metabolic syndrome: an American

7 Obesity in East Asia 97

http://dx.doi.org/10.1007/978-3-319-11251-0_2
http://dx.doi.org/10.1007/978-3-319-11251-0_7
http://dx.doi.org/10.1007/978-3-319-11251-0_6
http://dx.doi.org/10.1007/978-3-319-11251-0_5


Heart Association/National Heart, Lung, and Blood
Institute Scientific Statement. Circulation. 2005;112
(17):2735-2752. doi:10.1161/circulationaha.105.
169404.

Heianza Y, Arase Y, Tsuji H, et al. Metabolically healthy
obesity, presence or absence of fatty liver, and risk of
type 2 diabetes in Japanese individuals: Toranomon
Hospital Health Management Center Study 20
(TOPICS 20). J Clin Endocrinol Metab. 2014a;99
(8):2952-2960. doi:10.1210/jc.2013-4427.

Heianza Y, Kato K, Kodama S, et al. Stability and changes
in metabolically healthy overweight or obesity and risk
of future diabetes: Niigata wellness study. Obesity (Sil-
ver Spring). 2014b;22(11):2420-2425. doi:10.1002/
oby.20855.

Heianza Y, Kato K, Kodama S, et al. Risk of the develop-
ment of Type 2 diabetes in relation to overall obesity,
abdominal obesity and the clustering of metabolic
abnormalities in Japanese individuals: does metaboli-
cally healthy overweight really exist? The Niigata
Wellness Study. Diabet Med. 2015;32(5):665-672.
doi:10.1111/dme.12646.

Hou XG, Wang C, Ma ZQ, et al. Optimal waist circumfer-
ence cut-off values for identifying metabolic risk fac-
tors in middle-aged and elderly subjects in Shandong
Province of China. Biomed Environ Sci. 2014;27
(5):353-359. doi:10.3967/bes2014.060.

Hwang LC, Bai CH, Sun CA, et al. Prevalence of meta-
bolically healthy obesity and its impacts on incidences
of hypertension, diabetes and the metabolic syndrome
in Taiwan. Asia Pac J Clin Nutr. 2012;21(2):227-233.

Jung CH, Lee MJ, Hwang JY, et al. Association of meta-
bolically healthy obesity with subclinical coronary ath-
erosclerosis in a Korean population. Obesity (Silver
Spring). 2014;22(12):2613-2620. doi:10.1002/
oby.20883.

Kamezaki F, Sonoda S, Nakata S, et al. Proposed cutoff
level of waist circumference in Japanese men: evalua-
tion by homeostasis model assessment of insulin resis-
tance levels. Intern Med. 2012;51(16):2119-2124.

Kang HT, Shim JY, Lee HR, et al. Trends in prevalence of
overweight and obesity in Korean adults, 1998–2009:
the Korean National Health and Nutrition Examination
Survey. J Epidemiol. 2014;24(2):109-116.

KaoMD, Huang HI, TzengMS, et al. The nutritional status
in Taiwan – anthropometric measurement, 1986–1988
(1) Body weight and body height. J Chin Nutr Soc.
1991;16:63-84.

Karelis AD, St-Pierre DH, Conus F, Rabasa-Lhoret R,
Poehlman ET. Metabolic and body composition factors
in subgroups of obesity: what do we know? J Clin
Endocrinol Metab. 2004;89(6):2569-2575.
doi:10.1210/jc.2004-016589/6/2569 [pii].

Kashihara H, Lee JS, Kawakubo K, et al. Criteria of waist
circumference according to computed tomography-
measured visceral fat area and the clustering of cardio-
vascular risk factors. Circ J. 2009;73(10):1881-1886.

Kawada T, Otsuka T, Inagaki H, et al. Optimal cut-off
levels of body mass index and waist circumference in

relation to each component of metabolic syndrome
(MetS) and the number of MetS component. Diabetol
Metab Syndr. 2011;5(1):25-28. doi:10.1016/j.
dsx.2010.05.012.

Khang YH, Park MJ. Trends in obesity among Korean
children using four different criteria. Int J Pediatr
Obes. 2011;6(3–4):206-214. doi:10.3109/17477166.
2010.490270.

Kim HY, Kim CW, Lee CD, et al. Can “healthy” normal
alanine aminotransferase levels identify the metaboli-
cally obese phenotype? Findings from the Korea
national health and nutrition examination survey
2008–2010. Dig Dis Sci. 2014a;59(6):1330-1337.
doi:10.1007/s10620-013-2995-0.

Kim MK, Han K, Kwon HS, et al. Normal weight obesity
in Korean adults. Clin Endocrinol (Oxf). 2014b;80
(2):214-220. doi:10.1111/cen.12162.

Kim S, Kyung C, Park JS, et al. Normal-weight obesity is
associated with increased risk of subclinical atheroscle-
rosis. Cardiovasc Diabetol. 2015;14:58. doi:10.1186/
s12933-015-0220-5.

Koh JH, Koh SB, Lee MY, et al. Optimal waist circumfer-
ence cutoff values for metabolic syndrome diagnostic
criteria in a Korean rural population. J KoreanMed Sci.
2010;25(5):734-737. doi:10.3346/jkms.2010.25.5.734.

Kramer CK, Zinman B, Retnakaran R. Are metabolically
healthy overweight and obesity benign conditions?A
systematic review and meta-analysis. Ann Intern Med.
2013;159(11):758-769. doi:10.7326/0003-4819-159-
11-201312030-00008.

Lee K. Metabolically obese but normal weight (MONW)
and metabolically healthy but obese (MHO) pheno-
types in Koreans: characteristics and health behaviors.
Asia Pac J Clin Nutr. 2009;18(2):280-284.

Lee SY, Park HS, Kim DJ, et al. Appropriate waist circum-
ference cutoff points for central obesity in Korean
adults. Diabetes Res Clin Pract. 2007;75(1):72-80.
doi:10.1016/j.diabres.2006.04.013.

Lee S-H, Ha H-S, Park Y-J, et al. Prevalence and charac-
teristics of metabolically obese but normal weight and
metabolically healthy but obese in middle-aged
Koreans: the Chungju Metabolic Disease
Cohort (CMC) Study. Endocrinol Metab. 2011a;26
(2):133-141.

Lee SH, Ha HS, Park YJ, et al. Identifying metabolically
obese but normal-weight (MONW) individuals in a
nondiabetic Korean population: the ChungjuMetabolic
disease Cohort (CMC) study. Clin Endocrinol (Oxf).
2011b;75(4):475-481. doi:10.1111/j.1365-2265.2011.
04085.x.

Lee SK, Kim SH, Cho GY, et al. Obesity phenotype and
incident hypertension: a prospective community-based
cohort study. J Hypertens. 2013;31(1):145-151.
doi:10.1097/HJH.0b013e32835a3637.

Lee SH, Kwon HS, Park YM, et al. Predicting the devel-
opment of diabetes using the product of triglycerides
and glucose: the Chungju Metabolic Disease Cohort
(CMC) study. PLoS One. 2014;9(2):e90430.
doi:10.1371/journal.pone.0090430.

98 Y.-M.M. Park and J. Liu



Lee SH, Han K, Yang HK, et al. A novel criterion for
identifying metabolically obese but normal weight
individuals using the product of triglycerides and
glucose. Nutr Diab. 2015a;5:e149. doi:10.1038/
nutd.2014.46.

Lee SH, Han K, Yang HK, et al. Identifying subgroups of
obesity using the product of triglycerides and glucose:
the Korea National Health and Nutrition Examination
Survey, 2008–2010. Clin Endocrinol (Oxf). 2015b;82
(2):213-220. doi:10.1111/cen.12502.

Liang YJ, Xi B, Song AQ, Liu JX, Mi J. Trends in general
and abdominal obesity among Chinese children and
adolescents 1993–2009. Pediatr Obes. 2012;7(5):355-
364. doi:10.1111/j.2047-6310.2012.00066.x.

Lim S, Kim JH, Yoon JW, et al. Optimal cut points of waist
circumference (WC) and visceral fat area (VFA)
predicting for metabolic syndrome (MetS) in elderly
population in the Korean Longitudinal Study on Health
and Aging (KLoSHA). Arch Gerontol Geriatr. 2012;54
(2):e29-e34. doi:10.1016/j.archger.2011.07.013.

Lin Y-M, Chu C-L, Hong C-L, et al. Assessment of nutri-
tional status of the youth in Taiwan: 1. Body height and
body weight. J Chin Nutr Soc. 1985;10:91-105.

Lin YC, Yen LL, Chen SY, et al. Prevalence of overweight
and obesity and its associated factors: findings from
National Nutrition and Health Survey in Taiwan,
1993–1996. Prev Med. 2003;37(3):233-241.

Matsushita Y, Yoshiike N, Kaneda F, et al. Trends in
childhood obesity in Japan over the last 25 years from
the national nutrition survey. Obes Res. 2004;12
(2):205-214. doi:10.1038/oby.2004.27.

Nakamura K, Nanri H, Hara M, et al. Optimal cutoff values
of waist circumference and the discriminatory perfor-
mance of other anthropometric indices to detect the
clustering of cardiovascular risk factors for metabolic
syndrome in Japanese men and women. Environ Health
Prev Med. 2011;16(1):52-60. doi:10.1007/s12199-
010-0165-y.

Narisawa S, Nakamura K, Kato K, et al. Appropriate waist
circumference cutoff values for persons with multiple
cardiovascular risk factors in Japan: a large cross-sec-
tional study. J Epidemiol/Jpn Epidemiol Assoc.
2008;18(1):37-42.

Nazare JA, Smith JD, Borel AL, et al. Ethnic influences on
the relations between abdominal subcutaneous and vis-
ceral adiposity, liver fat, and cardiometabolic risk profile:
the international study of prediction of intra-abdominal
adiposity and its relationship with cardiometabolic risk/
intra-abdominal adiposity. Am J Clin Nutr. 2012;96
(4):714-726. doi:10.3945/ajcn.112.035758.

NCEP-ATPIII. Third Report of the National Cholesterol
Education Program (NCEP) Expert Panel on Detection,
Evaluation, and Treatment of High Blood Cholesterol
in Adults (Adult Treatment Panel III) final report. Cir-
culation. 2002;106(25):3143-3421.

Ng M, Fleming T, Robinson M, et al. Global, regional, and
national prevalence of overweight and obesity in chil-
dren and adults during 1980–2013: a systematic analy-
sis for the Global Burden of Disease Study 2013.

Lancet. 2014;384(9945):766-781. doi:10.1016/S0140-
6736(14)60460-8.

Oh SW. Obesity and metabolic syndrome in Korea. Dia-
betes Metab J. 2011;35(6):561-566. doi:10.4093/
dmj.2011.35.6.561.

Oh K, Jang MJ, Lee NY, et al. Prevalence and trends in
obesity among Korean children and adolescents in
1997 and 2005. Korean J Pediatr. 2008;51(9):950-955.

Oka R, Kobayashi J, Yagi K, et al. Reassessment of the
cutoff values of waist circumference and visceral fat
area for identifying Japanese subjects at risk for the
metabolic syndrome. Diabetes Res Clin Pract.
2008;79(3):474-481. doi:10.1016/j.diabres.2007.10.
016.

Park YM, Kwon HS, Lim SY, et al. Optimal waist circum-
ference cutoff value reflecting insulin resistance as a
diagnostic criterion of metabolic syndrome in a
nondiabetic Korean population aged 40 years and
over: the Chungju Metabolic Disease Cohort (CMC)
study. Yonsei Med J. 2010;51(4):511-518.
doi:10.3349/ymj.2010.51.4.511.

Primeau V, Coderre L, Karelis A, et al. Characterizing the
profile of obese patients who are metabolically healthy.
Int J Obes (Lond). 2010;35(7):971-981.

Ruderman NB, Schneider SH, Berchtold P. The “metabol-
ically-obese”, normal-weight individual. Am J Clin
Nutr. 1981;34(8):1617-1621.

Seo JA, Kim BG, Cho H, et al. The cutoff values of visceral
fat area and waist circumference for identifying sub-
jects at risk for metabolic syndrome in elderly Korean:
Ansan Geriatric (AGE) cohort study. BMC Public
Health. 2009;9:443. doi:10.1186/1471-2458-9-443.

Sun H, Ma Y, Han D, et al. Prevalence and trends in obesity
among China’s children and adolescents, 1985–2010.
PloS one. 2014;9(8):e105469. doi:10.1371/journal.
pone.0105469.

Tsou M-T. Metabolic syndrome in metabolic obese, non-
obese elderly in northern Taiwan. 2012.

Wang W, Luo Y, Liu Y, et al. Prevalence of metabolic
syndrome and optimal waist circumference cut-off
points for adults in Beijing. Diabetes Res Clin Pract.
2010;88(2):209-216. doi:10.1016/j.diabres.2010.01.
022.

Wildman RP, Muntner P, Reynolds K, et al. The obese
without cardiometabolic risk factor clustering and the
normal weight with cardiometabolic risk factor cluster-
ing: prevalence and correlates of 2 phenotypes among
the US population (NHANES 1999–2004). Arch Intern
Med. 2008;168(15):1617-1624.

World Health Organization, International Association for
the Study of Obesity/International Obesity Task Force.
The Asia-Pacific Perspective: Redefining Obesity and
Its Treatment. Sydney: Health Communications; 2000.

Xi B, Liang Y, He T, et al. Secular trends in the prevalence
of general and abdominal obesity among Chinese
adults, 1993–2009. Obes Rev. 2012;13(3):287-296.
doi:10.1111/j.1467-789X.2011.00944.x.

Yajnik CS, Yudkin JS. The YYparadox. Lancet. 2004;363
(9403):163.

7 Obesity in East Asia 99



Yang HK, Lee SH, Han K, et al. Lower serum zinc levels
are associated with unhealthy metabolic status in nor-
mal-weight adults: the 2010 Korea National Health and
Nutrition Examination Survey. Diabetes Metab. 2015.
doi:10.1016/j.diabet.2015.03.005.

Yeh WT, Chang HY, Yeh CJ, et al. Do centrally obese
Chinese with normal BMI have increased risk of met-
abolic disorders? Int J Obes (Lond). 2005;29(7):818-
825. doi:10.1038/sj.ijo.0802975.

Yeh CJ, Chang HY, Pan WH. Time trend of obesity, the
metabolic syndrome and related dietary pattern in Tai-
wan: from NAHSIT 1993–1996 to NAHSIT 2005–
2008. Asia Pac J Clin Nutr. 2011;20(2):292-300.

Yoo KD, Ko SH, Park JE, et al. High serum ferritin levels
are associated with metabolic risk factors in non-obese
Korean young adults: Korean National Health and
Nutrition Examination Survey (KNHANES) IV. Clin
Endocrinol (Oxf). 2012;77(2):233-240. doi:10.1111/
j.1365-2265.2011.04248.x.

Yoo HJ, Hwang SY, Hong HC, et al. Association of met-
abolically abnormal but normal weight (MANW) and
metabolically healthy but obese (MHO) individuals
with arterial stiffness and carotid atherosclerosis. Ath-
erosclerosis. 2014;234(1):218-223. doi:10.1016/j.
atherosclerosis.2014.02.033.

Yoon YS, Oh SW. Optimal waist circumference cutoff
values for the diagnosis of abdominal obesity in korean
adults. Endocrinol Metab (Seoul). 2014;29(4):418-
426. doi:10.3803/EnM.2014.29.4.418.

Yoshiike N, Seino F, Tajima S, et al. Twenty-year changes
in the prevalence of overweight in Japanese adults: the
National Nutrition Survey 1976–95. Obes Rev. 2002;3
(3):183-190.

Zeng Q, He Y, Dong S, et al. Optimal cut-off values of
BMI, waist circumference and waist:height ratio for
defining obesity in Chinese adults. Br J Nutr.
2014;112(10):1735-1744. doi:10.1017/s0007114514
002657.

100 Y.-M.M. Park and J. Liu



Part II

Genetic Factors



Evolution of Obesity 8
John R. Speakman

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

2 Why Do Animals and Humans Have
Adipose Tissue? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3 Why Do We Get Obese? . . . . . . . . . . . . . . . . . . . . . . . 105

4 Adaptive Interpretations of Obesity . . . . . . . . . . 105

5 The Neutral Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 The Maladaptive Scenario . . . . . . . . . . . . . . . . . . . . . 114

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8 Cross-References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Abstract
Obesity is the result of a gene by environment
interaction. A genetic legacy from our evolu-
tionary past interacts with our modern environ-
ment to make some people obese. Why we
have a genetic predisposition to obesity is
problematical, because obesity has many neg-
ative consequences. How could natural selec-
tion favor the spread of such a disadvantageous
trait? From an evolutionary perspective, three
different types of explanation have been pro-
posed to resolve this anomaly. The first is that
obesity was once adaptive, in our evolutionary
past. For example, it may have been necessary
to support the development of large brains, or it
may have enabled us to survive (or sustain
fecundity) through periods of famine. People
carrying so-called thrifty genes that enabled
the efficient storage of energy as fat between
famines would be at a selective advantage. In
the modern world, however, people who have
inherited these genes deposit fat in preparation
for a famine that never comes, and the result is
widespread obesity. The key problem with
these adaptive scenarios is to understand why,
if obesity was historically so advantageous,
many people did not inherit these alleles and
in modern society remain slim. The second
type of explanation is that most mutations in
the genes that predispose us to obesity are
neutral and have been drifting over evolution-
ary time – so-called drifty genes, leading some
individuals to be obesity prone and others
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obesity resistant. The third type of explanation
is that obesity is neither adaptive nor neutral
and may never even have existed in our evolu-
tionary past, but it is favored today as a mal-
adaptive by-product of positive selection on
some other trait. Examples of this type of
explanation are the suggestion that obesity
results from variation in brown adipose tissue
thermogenesis, or the idea that we over con-
sume energy to satisfy our needs for protein
(the protein leverage hypothesis). This chapter
reviews the evidence for and against these dif-
ferent scenarios, concluding that adaptive sce-
narios are unlikely, but the other ideas may
provide possible evolutionary contexts in
which to understand the modern obesity
phenomenon.

Keywords
Obesity • Evolution • Adaptation • Natural
selection • Thrifty genotype • Drifty genes •
Genetic drift • Brown adipose tissue • Protein
leverage hypothesis

1 Introduction

The obesity epidemic is a recent phenomenon
(▶Chap. 1, “Overview of Metabolic Syndrome”
on “Epidemiology”). In as little as 50 years, there
has been a progressive rise in the worldwide prev-
alence of obesity. A trend that started in the West-
ern world (Flegal et al. 1998) has rapidly spread to
developing countries; until today, the only places
yet to experience the epidemic are a few areas in
sub-Saharan Africa. This change in the fatness of
individuals over such a short timescale cannot
reflect a change in the genetic makeup of the
populations involved (Power and Schulkin
2009). Most of the recent changes must therefore
be driven by environmental factors (▶Chap. 15,
“Diet and Obesity (Macronutrients,
Micronutrients, Nutritional Biochemistry)” on
“Environmental Factors”). Yet, even among the
most obese countries, there remain large
populations of individuals who remain lean (e.g.,
Ogden et al. 2006; Flegal et al. 2010). These
individual differences in obesity susceptibility

mostly reflect genetic factors (Allison
et al. 1996; Ginsburg et al. 1998; Segal and
Allison 2002; ▶Chap. 9, “Genetics of Obesity”
on “Genetic Factors”). The obesity epidemic is
therefore a consequence of a gene by environment
interaction (Speakman 2004; Levin 2010;
Speakman et al. 2011). Some people have a
genetic predisposition to deposit fat, reflecting
their evolutionary history, which results in obesity
when exposed to the modern environment.

However, this interpretation of why we
become obese has a major problem. We know
that obesity is a predisposing factor for several
serious noncommunicable diseases (▶Chap. 35,
“Metabolic Syndrome, GERD, Barrett’s Esopha-
gus” on “Diseases Associated with Obesity”). The
fact that a large contribution to obesity is genetic
yet obesity leads to an increase in the risk of
developing these serious diseases is an issue,
because the theory of evolution suggests that nat-
ural selection will only favor individuals that
exhibit phenotypic traits that lead to increases in
fitness (survival or fecundity). How is it possible
for natural selection to have favored the spread of
genes for obesity – a phenotype that has a negative
impact on survival? This might be explained if
obesity led to increases in fecundity that offset the
survival disadvantage, but in fact obese people
also have reduced fecundity (Zaadstra
et al. 1993; but see Rakesh and Syam 2015),
making the anomaly even worse. How did the
predisposition to obesity evolve? What were the
key events in our evolutionary history that led us
to the current situation?

2 Why Do Animals and Humans
Have Adipose Tissue?

The first law of thermodynamics states that
energy can be neither created nor destroyed,
but only transformed, and the second law states
that there is an overall direction in the transfor-
mation, such that disorder (entropy) increases.
Living organisms must obey these fundamental
physical laws, and they have major conse-
quences. Being low entropy systems, living
things need to continuously fight against the
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impetus for entropy to increase. Complex
organic molecules like proteins, lipids, DNA,
and RNA become damaged and corrupted and
must be continuously recycled and rebuilt to
maintain their function. Doing this requires the
continuous transformation of large amounts of
energy. Hence, even when an organism is out-
wardly doing nothing, it still uses up large
amounts of energy to maintain its low entropy
state. However, living organisms must also
grow, move around to find mates and food,
defend themselves against attack by pathogens,
and reproduce: processes which all require
energy. The requirement for energy by living
beings is continuous. Although energy sustains
many different life processes, in animals, it can
be obtained only by feeding, and feeding is dis-
continuous. Since energy cannot be created or
destroyed, this means that animals need to have
some mechanism(s) to store energy so that the
episodic supply can be matched to the continu-
ous requirement. The key storage mechanisms
that allow us to get from one meal to the next are
glucose and particularly glycogen in the liver
and skeletal muscle. A useful analogy for this
system is a regular bank account (Speakman
2014). Money is periodically deposited into the
account (similar to food intake) where it is stored
temporarily (like glucose and glycogen stores)
and is depleted by continuous spending (energy
expenditure). The presence of the bank account
acts as an essential buffer between discontinuous
income and continuous spending.

There are, however, numerous situations
where animals struggle to get enough food to
meet the demands. In these instances, animals
need a more long-term storage mechanism than
glucose and glycogen stores, and this is generally
provided by body fat. Returning to the analogy of
a bank account – body fat is like a savings
account. During periods when food is abundantly
available, animals can deposit energy into their
body fat (savings account), so that it is available
for periods in the future when demand will exceed
supply (Johnson et al. 2013). So adipose tissue
exists primarily as a buffer that is used to supply
energy during periods when food supply is insuf-
ficient to meet energy demands.

3 Why Do We Get Obese?

Given this background to why adipose tissue
exists, there have been three different types of
evolutionary explanation for why in modern soci-
ety we fill up these fat stores to tremendous levels
(Table 1: also reviewed in Speakman 2013a,
2014). First, there is the adaptive viewpoint.
This suggests that obesity was adaptive in the
past, but in the changed environment of the mod-
ern world, the positive consequences of being
obese have been replaced by negative impacts.
Second, there is the neutral viewpoint. This sug-
gests that obesity has not been subject to strong
selection in the past, but rather the genetic predis-
position has arisen by neutral evolutionary pro-
cesses like genetic drift. Finally there is the
maladaptive viewpoint. This suggests that obesity
has never been advantageous and that historically
people were never obese (except some rare
genetic mutations). However, the modern propen-
sity to become obese is a by-product of positive
selection on some other advantageous trait.
Because evolution is by definition a genetic pro-
cess, evolutionary explanations seek to explain
where the genetic variation that causes a predis-
position to obesity comes from. There is another
set of ideas that are related to evolutionary expla-
nations but do not concern genetic changes – for
example, the “thrifty phenotype” hypothesis
(Hales and Barker 1992; Wells 2007; Prentice
et al. 2005), the “thrifty epigenotype” hypothesis
(Stoger 2008), and the oxymoronic “nongenetic
evolution” hypothesis (Archer 2015) (Table 1).
This chapter does not concern these
non-evolutionary ideas, but a treatment of some
of them can be found elsewhere in this volume
(▶Chap. 13, “Fetal Metabolic Programming,”
Aitkin).

4 Adaptive Interpretations
of Obesity

The primary adaptive viewpoint is that during our
evolution accumulation of fat tissue provided a
fitness advantage and was therefore positively
selected by natural selection. This positive
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selection in the past is why some individuals have
a predisposition to become obese today in spite of
its negative effects. Humans are not the only ani-
mals to become obese (Johnson et al. 2013). There
are several other groups of mammals and birds
that deposit large amounts of body fat at levels
equivalent to human obesity, for example, depo-
sition of fat in some mammals prior to the hiber-
nation (e.g., Krulin and Sealander 1972;Ward and
Armitage 1981; Boswell et al. 1994; Kunz
et al. 1998; Speakman and Rowland 1999; Martin
2008) and the deposition of fat in some birds prior
to migration (e.g., Moore and Kerlinger 1987;
Klaasen and Biebach 1994; Moriguchi
et al. 2010; Repenning and Fontana 2011). Sev-
eral other animals show cycles in fat storage in
relation to the annual cycle even though they do
not engage in migration or hibernation – including
voles (Krol et al. 2005; Li and Wang 2005; Krol
and Speakman 2007) and hamsters (Bartness and
Wade 1984; Wade and Bartness 1984) –mostly to
facilitate breeding. These animal examples of
obesity have in common the fact that deposition

of fat is a preparatory response for a future short-
fall in energy supply or an increase in demand
(Johnson et al. 2013). For the hibernating animal,
it will be unable to feed during winter, and for the
migrating animal, it will also have no access to
food when crossing barriers such as large deserts
or oceans. Although humans neither seasonally
hibernate nor migrate, a number of authors have
made direct comparisons between these processes
in wild animals and obesity in humans (Johnson
et al. 2013). This is because humans must often
deal with shortfalls of energy supply during
periods of famine. Famine reports go back almost
as long as people have been able to write
(McCance 1975; Harrison 1988; Elia 2000). The
argument was therefore made that human obesity
in our ancient past probably served the function of
facilitating survival through famines (Neel 1962),
like fat storage in hibernators facilitates survival
through hibernation. Famines would have pro-
vided a strong selection on genes that favored
the deposition of fat during periods between fam-
ines. Individuals with alleles that favored efficient

Table 1 A summary of the main “evolutionary” and “quasi-evolutionary” ideas about the origins of obesity. Evolution-
ary ideas pertain to the genetic variation in susceptibility to obesity, while “quasi-evolutionary” arguments include trans-
generational effects that are nongenetic. The “thrifty epigenome” model is a hybrid where genetic effects are fixed by
epigenetic effects. The present chapter only concerns the evolutionary theories

Evolutionary theories

1 Adaptive scenarios

Hypothesis Main feature References

Thrifty gene hypothesis Famine survival Neel 1962 + many others

Famine fecundity Prentice 2001, Prentice
et al. (2005)

Loss of uricase Efficiency of fructose use Johnson et al. 2013

Brain development Fat required to support large brain Power and Shulkin 2009

Fitness first Obesity paradox Rakesh and Syam 2015

2. Neutral scenarios

Drifty gene hypothesis Release from predation Speakman 2007, 2008

3. Maladaptive scenarios

Protein leverage hypothesis Regulation of protein intake Simpson and Raubenheimer 2005

Thermogenic variation Variation in BAT activity Rothwell and Stock 1979

Himms-Hagen 1979

Selleyah et al. 2013

Quasi-evolutionary theories

Hypothesis Main feature References

Thrifty phenotype Fetal programming Hales and Barker 1992

Thrifty epigenotype Epigenetic consolidation of genotype Stoger 2008

Nongenetic evolution Trans-generational maternal effects Archer 2015
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fat deposition would survive subsequent famines,
while individuals with alleles that were inefficient
at fat storage would not (Neel 1962). This idea,
called the “thrifty gene hypothesis” was first
published more than 50 years ago (more in the
context of selection for genes predisposing to
diabetes than obesity which was presumed to
underpin the efficiency of fat storage) (Neel
1962). It has since been reiterated in various
forms specifically with respect to obesity (Eaton
et al. 1988; Lev-Ran 1999, 2001; Prentice 2001,
2005a, b, 2006; Campbell and Cajigal 2001;
Chakravarthy and Booth 2004; Eknoyan 2006;
Watnick 2006; Wells 2006; Prentice et al. 2008;
O’Rourke 2014).

In detail, the hypothesis is as follows. When
humans were experiencing periodic famines,
thrifty alleles were advantageous because individ-
uals carrying them would become fat between
famines, and this fat would allow them to survive
the next famine. They would pass their versions of
the thrifty genes to their offspring, who would
then also have a survival advantage in subsequent
famines. In contrast, individuals not carrying such
alleles would not prepare for the next famine by
depositing as much fat, and would die, along with
their unthrifty alleles. Because food supplies were
presumed to be always low, even between fam-
ines, the levels of obesity attained, even in those
individuals who carried the thrifty alleles, were
probably quite modest, and so individuals never
became fat enough to experience the detrimental
impacts of obesity on health. What changed since
the 1950s was that the food supply in Europe and
North America increased dramatically due to
enormous increases in agricultural production.
This elevation in food supply has gradually spread
through the rest of the world. The consequence is
people in modern society who carry the thrifty
alleles more efficiently eat the abundant food
and deposit enormous amounts of fat. Obese peo-
ple are like boy scouts: always prepared. In this
way, the alleles that were once advantageous have
been rendered detrimental by progress (Neel
1962).

Advocates of the thrifty gene idea agree on
some fundamental details. First, that famines are
frequent. Estimates vary, but values of once every

10 years or so are often cited after Keys
et al. 1950. Second, famines cause massive mor-
tality (figures of 15–30%mortality are commonly
quoted). However, they differ in some important
aspects. One area of discrepancy is how far back
in our history humans have been exposed to peri-
odic famine. Some have suggested that famine has
been an “ever present” feature of our history
(Chakravarthy and Booth 2004; Prentice 2005a).
There is a problem, however, with this suggestion.
If the “thrifty alleles” provided a strong selective
advantage to survive famines and famines have
been with us for this period of time, then these
alleles would have spread to fixation in the entire
population (Speakman 2006a, b, 2007).Wewould
all have the thrifty alleles, and in modern society
we would all be obese. Yet, even in the most obese
societies, there remains a population of lean peo-
ple comprising about 20 % of the population
(Ogden et al. 2006; Flegal et al. 2010). If famine
provided a strong selective force for the spread of
thrifty alleles, it is relevant to ask how come so
many people managed to avoid inheriting them
(Speakman 2006a, b, 2007).

We can illustrate this issue in a more quantita-
tive manner. If a thrifty allele existed that pro-
moted greater fat storage such that individuals
carrying two versions of that allele survived 3 %
better and those who carry one version would
survive 1.5 % better, then a random mutation to
create the thrifty allele would spread from being in
just one individual to the entire population of the
ancient world in about 600 famine events. Using
the most conservative estimate of famine fre-
quency, of once per 150 years, this is about
90,000 years or about 1/500th the time since
Australopithecus. Any mutation therefore that
produced a thrifty allele within the first 99.8 %
of hominin history with this effect on mortality
would therefore have gone to fixation. We would
therefore all have inherited these alleles, and we
would all be obese (Speakman 2006a, b).

This calculation reveals a large difference
between the “obesity” phenomena observed in
animals and the obesity epidemic in humans. In
animals, when a species prepares for hibernation,
migration, or breeding, the entire population
becomes obese. The reasons are clear (Speakman
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and O’Rahilly 2012). If a bird migrates across an
area of ocean and does not deposit enough fat for
the journey, it plunges into the ocean short of its
destination and the genes that caused it to not
deposit enough fat are purged from the popula-
tion. Selection is intense, and consequently all the
animals become obese. If the same intense selec-
tion processes had operated in humans, as
suggested by advocates of adaptive interpreta-
tions of obesity like the thrifty gene hypothesis
(Prentice 2001b, 2005), then we too would all
become obese when the environmental conditions
proved favorable for us to do so. We do not.

Another school of thought, however, is that
famine has not been a feature of our entire history
but is linked to the development of agriculture
(Prentice et al. 2008). Benyshek and Watson
(2006) suggested that hunter-gatherer lifestyles
are resilient to food shortages because individuals
can be mobile, and when food becomes short in
one area, they can seek food elsewhere or modify
their diet to exploit whatever is abundant. In con-
trast, agricultural-based societies are dependent
on fixed crops, and if these fail due, for example,
to adverse weather conditions, food supply can
immediately become a problem (see also
Berbesque et al. 2014). Because mutations hap-
pening in the last 12,000 years would not have
had chance to spread through the entire popula-
tion, this shorter timescale for the process of
selection might then explain why in modern soci-
ety some of us become obese, but others
remain lean.

The problem with this scenario, however, is
opposite to the problem with the “ever present”
idea. Humans developed agriculture only within
the last 12,000 years (Diamond 1995), which
would be only about 80 famine events with sig-
nificant mortality. To be selected a mutation caus-
ing a thrifty allele would consequently have to
provide an enormous survival advantage to gen-
erate the current prevalence of obesity. Calcula-
tions suggest the per-allele survival benefit would
need to be around 10 %. Although it is often
suggested that mortality in famines is very high
and therefore a per-allele mortality effect of this
magnitude could be theoretically feasible, such
large mortality effects of famines are generally

confounded by the problem of emigration, and
true mortality is probably considerably lower.
An additional problem is that for a mutation to
be selected, all of this mortality would need to
depend on differences in fat content attributable to
a single genetic mutation. This also makes the
critical assumption that the reason people die in
famines is because they starve to death, and thus
individuals with greater fat reserves would on
average be expected to survive longer than indi-
viduals with lower fat reserves. Although there are
some famines where it is clear that starvation has
been the major cause of death (e.g., Hionidou
2002), for most famines this is not the case, and
the major causes of death are generally disease
related (Harrison 1988; Toole andWaldman 1988;
Mokyr and Grada 1999; Adamets 2002). This
does not necessarily completely refute the idea
that body fatness is a key factor influencing fam-
ine survival. The spread of disease among famine
victims is probably contributed to by individuals
having compromised immune systems. A key
player in the relationship between energy status
and immune status is leptin (Lord et al. 1998;
Matarese 2000; Faggioni et al. 2001). Low levels
of leptin may underpin the immunodeficiency of
malnutrition. Because circulating leptin levels are
directly related to adipose tissue stores, it is con-
ceivable that leaner people would have more
compromised immune systems and hence be
more susceptible to disease during famines.

One way to evaluate the role of body fatness in
famine survival is to examine patterns of famine
mortality with respect to major demographic vari-
ables such as age and sex and compare these to the
expectation based on known effects of sex and age
on body fat storage and utilization (Speakman
2013b). Females have greater body fat stores and
lower metabolic rates compared with men of
equivalent body weight and stature. In theory
therefore, females should survive famines longer
than males if body fatness plays a major role in
survival (Henry 1990; Macintyre 2002). With
respect to age, older individuals have declining
metabolic rate, but they tend to preserve their fat
stores until they are quite old (Speakman and
Westerterp 2010). Consequently, older individ-
uals would be expected to survive famines longer
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than younger adults if body fatness was the over-
riding consideration. Patterns of mortality during
actual famines suggest that males have higher
mortality than females (Macintyre 2002). How-
ever, with respect to age, the highest mortality
usually occurs among the very young (less than
5 years of age, including elevated fetal losses) and
elderly (increasing probability of mortality with
age from the age of about 40 onwards) (Watkins
and Menken 1985; Harrison 1988; Menken and
Campbell 1992; Scott et al. 1995; Cai and Feng
2005). The age-related pattern of mortality in
adults is the opposite of that predicted if body
fatness is the most important consideration. How-
ever, the impact of sex is in agreement with the
theoretical expectation. Despite this apparent cor-
respondence in many famines, the magnitude of
the female mortality advantage massively exceeds
the expectation from body fatness differences
(Speakman 2013b). Yet in other famines, there is
no female mortality advantage at all. This points
to famine mortality being a far more complex
phenomenon than simple reserve exhaustion. For
instance, with respect to age, older individuals
that have passed reproductive age may sacrifice
themselves to provide food to enable survival of
their offspring. Alternatively, they may succumb
to diseases more rapidly because of an age-related
decline in immune function. The exaggerated
effect of sex may be similarly explained by social
factors – females, for example, may exchange sex
for extra food or may have more access to food
because they do more of the family cooking – the
“proximity to the pot” phenomenon (Macintyre
2002). Overall, the data on causes of mortality
during famine points to an extremely complex
picture, where differences in body fatness proba-
bly play a relatively minor role in defining who
lives and who dies.

Recognizing the problem with the suggestion
that selection for genes that cause obesity has only
been in force for the past 12,000 years, Prentice
et al. (2008) suggested that the impact of body
fatness during famines on fitness is not on survival
probability but mostly on fertility. There is strong
support for this suggestion (e.g., Razzaque 1988).
For many famines, we have considerable evidence
that fertility is reduced. During the Dutch hunger

winter, for example, when Nazi Germany
imposed a blockade on some areas of the Nether-
lands, there was a clear reduction in the number of
births from the affected regions that could be
picked up in enrolments to the army 18 years
later, while adjacent regions that were not block-
aded and did not suffer famine show no such
reduction. The effect is profound with a decline
during the famine amounting to almost 50 %.
Tracing back the exact time that effects were
manifest suggests that the major impact was on
whether females became pregnant or not, rather
than an impact on fetal or infant mortality rates
(Stein et al. 1975; Stein and Susser 1975). Unlike
the effect of fatness on mortality, there is also
good reason to anticipate that differences in fertil-
ity would be strongly linked to differences in body
fatness. This is because we know from eating
disorders such as anorexia nervosa that individ-
uals with chronically low body fat stop menstru-
ating and become functionally infertile. Leptin
appears to be a key molecule involved in the
association between body fatness and reproduc-
tive capability (Ahima et al. 1997). This effect is
not just restricted to females. Both male and
female ob/ob mice which cannot produce func-
tional leptin are both sterile: a phenotype that can
be reversed by administration of leptin in both
sexes (females, Chehab et al. 1996; males,
Mounzih et al. 1997). Note however, that leptin
is also responsive to chronic food shortage as well
as body composition (Weigle et al. 1997), and
there is a school of thought that amenorrhea in
anorexia nervosa is not due to low body fatness
but low food intake. If this was the case, then
lowered fertility need not necessarily be restricted
to lean individuals. This argument may also apply
to the link between fat stores and immune status
elaborated above. Moreover, there is another
argument why reduced fertility is unlikely to be
a major selective force during famines and that is
because following famines, there is usually a com-
pensatory boom in fertility that offsets any reduc-
tion during the famine years. Individuals that fail
to get pregnant during famines tend to become
immediately pregnant once the famine is over.
Thus if one looks at the period including only
the famine years, then fertility seems to have a
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major impact on demography (and hence selec-
tion), but expanding the period to include the
famine and the post famine period revealing the
net impact of altered fertility on demographics
(and hence selection) is negligible and certainly
insufficient to provide the selective advantage
necessary to select genes for obesity over the
period since humans invented agriculture.

These arguments about selection on genes
favoring obesity were made before we had good
information about the common polymorphisms
that cause obesity or their effect sizes on fat stor-
age. Without such information, it was plausible to
suggest that genes might exist that have a large
impact on fat storage and hence survival or fertil-
ity during famines. This view became untenable
with the advent of genome-wide association stud-
ies (GWAS) which identified the main genes with
common polymorphisms associated with
increased obesity risk (Day and Loos 2011).
These GWAS studies revolutionized our view of
the genetics of obesity since the majority of iden-
tified SNPs had nothing to do with the established
hunger signaling pathway, and their effect sizes
were all relatively small. At present, there are
about 50 genes (SNPs) suggested to be associated
with BMI that that have per-allele effect sizes
between 1.5 kg and 100 g (Willer et al. 2009;
Speliotes et al. 2010; Okada et al. 2012; Paternos-
ter et al. 2012; Wen et al. 2012). On this basis, it
has been suggested that the genetic architecture of
obesity may involve hundreds or even thousands
of genes each with a very small effect (Hebebrand
et al. 2010). This reality about the genetic archi-
tecture of obesity makes the proposed model by
Prentice et al. (2008) that selection on these genes
has only occurred over the past 12,000 years
completely untenable, because SNPs causing dif-
ferences in fat storage of 100–1000 g could not
possibly cause differential survival or fecundity
during famines of 10 %.

Setting aside the suggestion that famines are a
phenomenon of the age of agriculture, if periodic
food crises sufficient to cause significant mortality
did affect us throughout our evolutionary history,
it is possible to imagine a scenario where genes of
small effect might have such a small impact on fat
storage, and hence famine survival (or fecundity),

that their spread in the population would be
incredibly slow. Therefore, they might not pro-
gress to fixation over the duration of our evolu-
tionary history, and we would be left today with
the observed genetic architecture of many incom-
pletely fixed genes of small effect. Speakman and
Westerterp (2013) evaluated this idea by first
predicting the impact of such polymorphisms of
small effect on famine survival and then modeling
the spread of such genes over the 4 million years
of hominin evolution (assuming a 150-year fre-
quency of famines). Using a mathematical model
of body fat utilization under total starvation, com-
bined with estimates of energy demand across the
lifespan, it was shown that genes that had a
per-allele effect on fat storage of 80 g would
cause a mortality difference of about 0.3 %. That
is 10x lower than the assumed effect that had been
previously used to model the spread of thrifty
genes (Speakman 2006b). Nevertheless, despite
this very low impact on famine survival, a muta-
tion causing such a difference in fat storage would
move to fixation in about 6000 famine events
(about 900,000 years). Thus the scenario of
genetic polymorphisms moving slowly to fixation
is correct, but it implies that all the mutations
identified as important in GWAS studies had
occurred in the last million years or so – which
we know is not correct. In addition, if the selection
model is correct, we would anticipate, all else
being equal, that genes with greater effect size
would have greater prevalence, but that is not
observed in the known GWAS SNPs (Speakman
and Westerterp 2013 using data from Speliotes
et al. 2010).

Overall, the idea that the genetic basis of obe-
sity is adaptive, resulting from selection in our
evolutionary history which favored “thrifty”
alleles, because of elevated survival or fecundity
of the obese during famines, is not supported by
the available data. Other adaptive scenarios could
be envisioned. For example, Power and Shulkin
(2009) argue that we are fat because of the need to
support development of our large brains. Rakesh
and Syam (2015) point to the benefits of milder
levels of obesity for disease survival and fecun-
dity. An alternative idea is that fat storage in
human ancestors was promoted by the loss of the
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uricase gene in the Miocene (Johnson et al. 2013),
which enabled more efficient utilization of fruc-
tose to deposit fat. This fat then enabled greater
survival during periods of famine. A common
problem faced by such scenarios is the fact that
even in the most obesogenic modern environ-
ments, many individuals do not become fat. Any
proposed adaptive scenario must explain this var-
iation. Perhaps the closest any adaptive idea
comes to explaining this variation is the sugges-
tion of Johnson et al. (2013) that we lost the
uricase gene early in our evolution because of
the advantages for conversion of fruit sugars to
fat (i.e., everyone inherited this mutation), but this
only leads to obesity in modern society in individ-
uals with high intakes of fructose. This however
does not explain the known genetic variation
between individuals that predisposes to obesity
(Allison et al. 1996).

5 The Neutral Viewpoint

Evolution is a complex process. We often regard
natural selection as being the primary force gen-
erating genetic change. However, this is a naive
viewpoint, and among evolutionary biologists, it
is well recognized that natural selection is one of a
number of processes including phyletic heritage,
founder effects, neutral mutations, and genetic
drift that underlie genetic variations between indi-
viduals in a population. We should be cautious not
to interpret everything biological from the per-
spective of adaptation by natural selection. The
emerging field of “evolutionary medicine” is rap-
idly learning to appreciate this fact, and there is an
increasing recognition that other “nonadaptive”
evolutionary processes may be important to
understand the evolutionary background to many
human diseases (Zinn 2010; Puzyrev and Kucher
2011; Valles 2012; Dudley et al. 2012). The
“drifty gene” hypothesis is a nonadaptive expla-
nation for the evolutionary background of the risk
of developing obesity (Speakman 2007, 2008).
This hypothesis starts from the observation that
many wild animals can accurately regulate their
body fatness. Several models are available to
understand this regulation (Speakman

et al. 2011), but a particularly useful idea is the
suggestion that body weight is bounded by upper
and lower limits or intervention points (Herman
and Polivy 1984; Levitsky 2002; Speakman
2007), called the dual intervention point model
(Speakman et al. 2011). If an individual varies in
weight between the two limits, then nothing hap-
pens, but if its body weight decreases below the
lower limit or above the upper limit, it will inter-
vene physiologically to control its weight. Body
weight is kept relatively constant (between the
two limits) in the face of environmental chal-
lenges. These upper and lower limits may be
selected for by different evolutionary pressures:
the lower limit by the risk of starvation and the
upper limit by the risk of predation.

Considerable research suggests that this funda-
mental balance of risks of starvation keeping body
masses up (i.e., setting the lower intervention
point) and risks of predation keeping body masses
down (i.e., setting the upper intervention point) is
a key component of body mass regulation in birds
(Gosler et al. 1995; Kullberg et al. 1996; Fransson
and Weber 1997; Cresswell 1998; Adriaensen
et al. 1998; van der Veen 1999; Cuthill
et al. 2000; Brodin 2001; Gentle and Gosler
2001; Covas et al. 2002; Zimmer et al. 2011),
small mammals (Norrdahl and Korpimaki 1998;
Carlsen et al. 1999, 2000; Banks et al. 2000;
Sundell and Norrdahl 2002), and larger animals
such as cetaceans (MacLeod et al. 2007). The
“starvation-predation” trade-off has become a
generalized framework for understanding the reg-
ulation of adiposity between and within species
(Lima 1986; Houston et al. 1993; Witter and
Cuthill 1993; Higginson et al. 2012), and labora-
tory studies are now starting to probe the meta-
bolic basis of the effects of stochastic food supply
and predation risk on body weight regulation
(Tidhar et al. 2007; Zhang et al. 2012; Monarca
et al. 2015a, b).

The drifty gene hypothesis suggests that early
hominins probably also had such a regulation
system. During the early period of human evolu-
tion between 6 and 2 million years ago (Pliocene),
large predatory animals were far more abundant
(Hart and Susman 2005). Our ancestors
(Paranthropines and Australopithecines) were
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also considerably smaller than modern humans,
making them potential prey to a wide range of
predators. At this stage of our evolution, it seems
most likely that upper and lower intervention
points evolved to be relatively close together,
and the early hominids probably had close control
over their body weights.

Several major events however happened in our
evolutionary history around 2.5 million to 2.0
million years ago. The first was the evolution of
social behavior. This would have allowed several
individuals to band together to enhance their abil-
ity to detect predators and protect each other from
their attacks. In a similar manner, some modern
primates, for example, vervet monkeys, have
evolved complex signaling systems to warn
other members of their social groups about the
approach of potential predators (Cheney and
Seyfarth 1985; Baldellou and Henzi 1992). This
alone may have been sufficient to dramatically
reduce predation risk. A second change was the
discovery of fire and weapons (Stearns 2001;
Platek et al. 2002), powerful means for early
Homo to protect themselves against predation.
Social structures would have greatly augmented
these capacities. Modern non-hominid apes such
as chimpanzees (Pan troglodytes) also use
weapons such as sticks to protect themselves
against predators such as large snakes, and it has
been concluded that bands of early hominids with
even quite primitive tools could easily succeed in
defending themselves in confrontations with
potential predators (Treves and Naughton-Treves
1999).

The consequence was that the predation pres-
sure that maintained the upper intervention point
effectively disappeared. It has been suggested that
because there was no selective pressure causing
this intervention point to change, the genes that
defined it were then subject to mutation and ran-
dom drift (Speakman 2007) – hence, the “drifty”
gene hypothesis (Speakman 2008). Genetic drift
is a process that is favored by low effective pop-
ulation size. The suggestion that early Homo spe-
cies had a small effective population size (around
10,000 despite a census population of around one
million) (Harding et al. 1997; Eller et al. 2009)
would create a genetic environment where drift

effects could be common. Mutations and drift for
2 million years would generate the necessary
genetic architecture, but this is insufficient to
cause an obesity epidemic. By this model virtu-
ally, the same genetic architecture would also
have been present 20,000 years ago (after
1,980,000 years of mutation and drift compared
to 2 million years today). Why did the obesity
epidemic not happen then? There have been two
separate factors of importance that restricted the
potential for people to achieve their drifted upper
intervention points – the level of food supply and
the social distribution of it (Power and Schulkin
2009). Before the Neolithic, the most important
factor was probably the level of food supply.
Paleolithic individuals probably could not
increase their body masses sufficiently to reach
their drifted upper intervention points because
there was insufficient food available. At this
stage, each individual or small group would be
foraging entirely for their own needs. Things
changed in the Neolithic with the advent of agri-
culture. Subsistence agriculture is not much dif-
ferent from hunter-gathering – in that each
individual grows and harvests food for themselves
and/or a small group. As yields from agricultural
practice improved, however, the numbers of peo-
ple needed to grow and harvest food as a percent-
age of the total population declined. It is at this
stage that more complex human societies emerged
(Diamond 1995).

Human societies are only feasible because it is
possible for a subset of individuals to grow and
harvest food to sustain a larger number of individ-
uals. This wider group of individuals is then able
to perform activities that would be unfeasible if
they had to spend all their time growing and
harvesting food. Such activities include religion,
sport, politics, the arts and war, as well as building
projects with stone, making pottery, iron, and
bronze-ware which all require high temperatures
of a kiln and mining ores. These activities were
only possible when yields from crops became
high enough to allow some individuals to stop
raising crops and do other things. However, a
crucial additional element was the societal control
of food supply, so that food produced by one
section of society can be distributed to those that

112 J.R. Speakman



do not produce it. This effectively requires the
development of monetary and class systems,
most of which have their origins in the wake of
Neolithic agriculture. This central control of food
supply is important because people can only attain
their drifted upper intervention points if there is an
adequate supply of food for them to do so.

In the Paleolithic, most people could not get
access to these resources because there were
insufficient resources available. After the Neo-
lithic, most people could also not get access to
unlimited food supplies because of the central
control of food supply. Because most people
would normally have body weights in the region
between their upper and lower intervention points,
they would not experience a physiological drive
forcing them to seek out such food. An exception
might be during the rare periods of famine (see
above). This pattern of food access led to the
development of a class-related pattern of variation
in body weight. In the lower classes, where food
supply was restricted, people did not move to their
upper intervention points, whereas in higher
levels of society, where access to food was effec-
tively unlimited, attainment of the drifted upper
intervention point became possible. Consequently
at this stage, obesity was restricted to the wealthy
and powerful. Not all wealthy and powerful peo-
ple became obese (only those with the genetic
predisposition to do so – i.e., with high drifted
upper intervention points), but none of the poorer
classes did. Obesity became a status symbol
(Power and Shulkin 2009; Brewis 2010). Reports
of obese people date from at least early Greek
times. In the fifth Century BC, Hippocrates
suggested some potential cures for obesity
(Procope 1952). This implies two things. There
would be no need for a cure for obesity if nobody
suffered from it, so it must have been common
enough to warrant his attention. Second, Hippoc-
rates did not regard obesity as advantageous or
desirable – but something that needed to be
“cured.” This provides additional evidence
against the famine-based “thrifty gene” hypothe-
sis, since obesity 2500 years ago, when famines
were still supposed to be a major selective pres-
sure, should have been viewed as advantageous if
that theory was correct.

Estimates by agricultural historians of the
levels of food production support the idea that
most people in the past were under socially
restricted food supply. In the late 1700s, for exam-
ple, it has been estimated that 70 % of Britain and
90 % of France were consuming less than
12 MJ/day. If only 10 % of the population had
free access to unlimited energy, then only people
in this proportion of the population would be
expected to reach their drifted upper intervention
points. Obesity prevalence would be expected to
be less than 3%. This was the actual prevalence of
obesity in the USA in 1890. It seems that the
social control of food supply only started to
change in Western societies after the First World
War. This period (1920s) saw a wave of obesity in
Western societies (Dubois 1936), but this was
reversed when the Western world went back to
war in the 1940s, especially in countries where
food rationing was introduced. The modern obe-
sity epidemic reflects a second wave of obesity as
easy access to nutritional resources became wide-
spread across all social levels after World War II
ended. Nowadays, anyone in the West can afford
to overconsume energy (Speakman 2014). For
example, a person in the USA earning the mini-
mum wage of 7.25$ per hour (2013) and working
a standard 38 h week would have an annual
income of about 14,300 US$. Assuming half of
this was available to buy food, this person could
buy annually 2865 McDonalds’ happy meals
(about eight per day), containing about 3700 cal,
about 47 % more energy than the daily intake
requirement of a man and 84 % more than the
daily intake requirement of a woman. In 2013, it
was estimated that earners of minimum wage had
lower income than those on welfare in the major-
ity of states in the USA. It has been frequently
noted that obesity increases coincidental with the
economic transition from being largely rural to
largely urban. Explanations for this trend have
largely concerned alterations in levels of physical
activity and increased access to food resources.
The current model is completely consistent with
these interpretations because it suggests that only
following such economic transitions are individ-
uals able to achieve their drifted upper interven-
tion points.
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The GWAS provides some support for this
model. SNPs predisposing to obesity have not
been under strong positive selection (Southam
et al. 2010; Koh et al. 2014), and similar lack of
strong positive selection is also observed in GWAS
targets linked to type 2 diabetes (Ayub et al. 2014).
This absence of selection is also supported by the
absence of any link between prevalence and effect
size among these SNPs (Speakman andWesterterp
2013). Finally, the genes that have been identified
appear to include a large proportion of centrally
acting genes that are related to appetite and food
intake (e.g., Fredriksson et al. 2008). It is entirely
conceivable that the centrally acting genes that
have been identified to date somehow define the
upper intervention point. Overall, this model pro-
vides a nonadaptive explanation for why some
people get obese but others do not.

6 The Maladaptive Scenario

The maladaptive viewpoint is that obesity has
never been advantageous. Historically, it may
have never even existed, except in some rare
individuals with unusual genetic abnormalities –
perhaps represented in Paleolithic sculptures such
as the “Venus ofWillendorf.”However, the idea is
that genes that ultimately predispose us to obesity
become selected as a by-product of selection on
some other trait that was advantageous. The best
example of a “maladaptive” interpretation of the
evolution of obesity is the suggestion that it is
caused by individual variability in the capacity
of brown adipose tissue to burn off excess caloric
intake (Sellayah et al. 2014).

Brown adipose tissue is found uniquely in
mammals (▶Chap. 21, “Adipose Structure
(White, Brown, Beige),” Vidal-puig et al.).
Contrasting white fat which contains a single
large fat droplet, brown adipocytes typically con-
tain large multilocular lipid droplets and abundant
mitochondria. These mitochondria contain a
unique protein called uncoupling protein
1 (UCP-1) which resides on the inner membrane.
UCP-1 acts as a pore via which protons in the
intermembrane space can return to the mitochon-
drial matrix. However, unlike protons traveling

from the intermembrane space to the matrix via
ATP synthase, the protons moving via UCP-1 are
not coupled to the formation of ATP (hence, the
name “uncoupling protein”). The chemiosmotic
potential energy carried by the protons traveling
via UCP-1 is therefore released directly as heat,
which is the primary function of BAT – to gener-
ate heat for thermoregulation. Unsurprisingly,
then BAT is found abundantly in small mammals
and in the neonates of larger mammals (including
humans), which have an unfavorable surface-to-
volume ratio for heat loss. The weight of BAT, and
hence its capacity to generate heat, varies in rela-
tion to thermoregulatory demands. During winter,
the amount of BAT and UCP-1 increases (Feist
and Feist 1986; Feist and Rosenmann 1976;
McDevitt and Speakman 1994). During summer,
BAT and UCP-1 are lower (Feist and Feist 1986;
Wunder et al. 1977; McDevitt and Speakman
1996).

During the late 1970s, it was suggested that
BAT might have an additional function: to “burn
off” excess calorie intake (Rothwell and Stock
1979; Himms-Hagen 1979). This idea fell out of
favor because it was commonly believed that
adult humans do not have significant deposits of
BAT. However, active BAT was discovered in
adult humans in 2007 (Nedergaard et al. 2007),
and since that time the idea that variability in BAT
function might result in the variable susceptibility
to obesity has reemerged (Sellayah et al. 2014).
This has been supported by observations that the
amount and activity of BAT is inversely related to
obesity (Cypress et al. 2009; van Marken-
Lichtenbelt et al. 2009) and that there is an
age-related reduction in BAT activity, correlated
with the age-related increase in body fatness
(Cypress et al. 2009; Yoneshiro et al. 2011).
Moreover, the seasonal changes and responses to
cold exposure in animals are also observed in
humans (Saito et al. 2009), suggesting important
functional activity. Experimental studies in
rodents have established that transplanting extra
BAT tissue into an individual can protect both
against diet-induced (Stanford et al. 2013; Liu
et al. 2013) and genetic obesity (Liu et al. 2015).

The “maladaptive” scenario for the evolution
of obesity is therefore as follows. Individuals are
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presumed to vary in their brown adipose tissue
thermogenesis as a result of their variation in
evolutionary exposure to cold (Sellayah
et al. 2014), which necessitated the use of BAT
for thermogenesis. Some individuals might have
high levels of active BAT, while others might have
lower levels, either because their exposure to cold
was lower or because they avoided cold exposure
by other mechanisms such as development of
clothing and the use of fire. Consequently, high
levels of BATwould be one of a number of alter-
native adaptive strategies for thermoregulation.
Because of this diversity of potential strategies, a
genetic predisposition to develop high and active
levels of BAT would only be present in some
individuals and populations. This would lead to
individual and population variation in the ability
to recruit BAT for its secondary function: burning
off excess energy intake.

A key question, however, is why individuals
might have excessive intake of energy in the first
place. Especially since this notion appears diamet-
rically opposed to the fundamental assumption
underlying the thrifty gene hypothesis that energy
supply is almost always limited, one potential
explanation for this effect is that individuals may
not only eat food for energy but also for some
critical nutrient. When food is of high quality, it
may be that by eating enough food to meet the
daily energy demands is enough to also meet
demands for the critical nutrient. Any excess
nutrient intake could be excreted. Two scenarios
might alter this situation. Energy demands might
decline. This could, for example, be precipitated
by an increase in sedentary behavior in modern
society (Prentice and Jebb 1995; Church
et al. 2011). If individuals continued to eat food
to meet their energy demands, then they would
reduce their intake, but this might mean their
intake of the critical nutrient was now below
requirements, and they would be nutrient defi-
cient. However, direct measurements of energy
demand in humans in both Europe and North
America since the 1980s do not support the idea
that activity energy demands have declined
(Westerterp and Speakman 2008; Swinburn
et al. 2009). Nevertheless, another scenario is
that the quality of the food might change and the

ratio of energy to the critical nutrient might
increase. Again, if individuals continued to eat to
meet their energy requirements, then intake of the
nutrient would become deficient. In both of these
scenarios to avoid nutrient deficiency, individuals
might consume more food to meet their demands
for the nutrient. The result would be that their
consumption of energy would then exceed their
demands.

A strong candidate for the nutrient that may
drive overconsumption of energy is protein. This
idea is called the “protein leverage hypothesis”
(Simpson and Raubenheimer 2005) and is elabo-
rated in full detail in the book The Nature of Nutri-
tion by Simpson and Raubenheimer (2010). By this
hypothesis, the main driver of food intake is always
the demand for protein. That is, people and animals
primarily eat to satisfy their protein requirements,
and energy balance comes along as a passenger.
The idea has lots to commend it. Across human
societies, the intake of protein, despite very diverse
diets, is almost constant – consistent with this being
the primary regulated nutrient. In contrast, energy
intakes are widely divergent. Moreover, we know
that diets which include a high ratio of protein to
energy (e.g., the Atkins diet) are effective for
weight loss. A review of 34 studies of dietary intake
showed that dietary protein was negatively associ-
atedwith energy intake (Gosby et al. 2014). Several
experimental studies of diet choice in rodents also
point to protein content as the factor regulating
energy intake and hence body weight (e.g.,
Sorensen et al. 2008; Huang et al. 2013). Hence,
the protein leverage theory may provide a neces-
sary backdrop to the brown adipose tissue idea. It
has also been noted that the protein leverage
hypothesis may also explain why inmodern society
individuals increase their body mass to their upper
intervention points as part of the “drifty gene” idea
detailed above (Speakman 2014). Note however
that other studies suggest little evidence in support
of the protein leverage hypothesis in food intake
records over time in the USA (Bender and Dufour
2015), but this may reflect the poverty of the food
intake reports rather than the theory (Dhurandhar
et al. 2015).

If humans do overconsume energy because of
the requirement for protein, then the ability to
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burn off the excess energy might then depend on
levels of brown adipose tissue. Individuals with
large BAT depots might burn off the excess and
remain lean, while those with lower levels of BAT
might be unable to burn off the excess consump-
tion and become obese. By this interpretation,
obesity is a maladaptive consequence of variation
in adaptive selection on brown adipose tissue
capacity. The environmental trigger is the change
in the energy to nutrient ratio in modern food that
stimulates overconsumption of energy. There is
no need by this viewpoint to infer that obesity has
ever provided an advantage or even that we have
in our history ever been fat.

If brown adipose tissue is a key factor that
influences the propensity to become fat, then one
would anticipate that knocking out the UCP-1
gene in mice would lead to obesity. Enerbäck
et al. (1997) knocked out UCP-1, but the result
did not support the hypothesis, because the mice
did not become any more obese than wild-type
mice when exposed to a high-fat diet. One poten-
tial issue with this experiment was that the genetic
background of these mice was a mix of two
strains, one susceptible and the other not suscep-
tible to weight gain on a high-fat diet. The exper-
iment was repeated but with the mice now
backcrossed onto a pure C57BL/6 background
(a strain that is susceptible to high-fat diet-induced
weight gain) (Liu et al. 2003). However, now the
mice lacking UCP-1 were actually more resistant
to the high-fat diet-induced obesity than the wild-
type mice, but the protective effect was abolished
when the mice were raised at 27 �C. This confu-
sion was further compoundedwhen the samemice
were studied at 30 �C, at which temperature the
KO mice became fat even on a chow diet, and this
effect was multiplied with high-fat feeding
(Feldmann et al. 2009). This is very confusing
because at 30 �C, one would anticipate that
UCP-1 would not be active in the mice that had
it, and hence they should not differ from the KO
animals. So the impact of knocking out the UCP-1
gene ranges from being protective from obesity at
20 �C to neutral at 27 �C to highly susceptible at
30 �C. These data for the UCP-1 KO mouse raise
some interesting questions about the hypothetical
role of BAT in the development of obesity in

humans. In particular in some circumstances, not
having functional BAT is not an impediment to
burning off excess intake (i.e., the UCP1 KOmice
at 20 �C). It is unclear then why humans could not
also burn off excess intake by other methods – for
example, physical activity or shivering.

A second major problem with this BAT idea is
that the obesity genes identified so far from the
GWAS studies (Willer et al. 2009; Speliotes
et al. 2010) are not associated with brown adipose
tissue function but instead appear mostly linked to
development or expressed in the brain and linked
to individual variation in food intake (e.g., the
gene FTO: Cecil et al. 2008; Speakman 2015).
This lack of a link to the genetics suggests that
evolutionary variability in thermoregulatory
requirements probably did not drive individual
variations in BAT thermogenic capacity (but see
Takenaka et al. (2012) for a perspective on the
evolution of human thermogenic capacity relative
to the great apes). Finally, there are other potential
explanations for why there might be an associa-
tion between BAT depot size and obesity
(Cypress et al. 2009; van Marken-Lichtenbelt
et al. 2009). Adipose tissue acts as an insulator,
and thermoregulatory demands in the obese are
reduced because of shift downwards in the
thermoneutral zone (Kingma et al. 2012).
Severely obese people may be under heat stress
because of their reduced capacity to dissipate heat
at ambient temperatures where lean people are in
the thermoneutral zone. In these circumstances,
the requirement for thermoregulatory heat pro-
duction would be reduced, and hence it is poten-
tially the case that the association between BAT
activity and adiposity comes about because obe-
sity reduces the need for BAT and not because
variation in BAT causes variation in the capacity
to burn off excess intake.

7 Conclusion

Many ideas have been presented that try to explain
the evolutionary background of the genetic con-
tribution to the obesity epidemic. These can be
divided into three basic types of idea. Adaptive
interpretations suggest that fat has been
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advantageous during our evolutionary history.
Theories include the thrifty gene hypothesis and
the idea that high body fat was necessary to sup-
port our brain development. These ideas generally
struggle to explain the diverse in obesity levels
observed in modern society. Neutral interpreta-
tions emphasize that the propensity to become
obese does not have any advantage but is a
by-product of mutation and genetic drift in some
key control features. The dominant idea is the
drifty gene hypothesis. Finally, obesity may be a
maladaptive consequence of positive selection on
some other systems. Examples of this type of
explanation are the brown adipose tissue hypoth-
esis and the protein leverage hypothesis.

8 Cross-References
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Abstract
All definitions of the metabolic syndrome
include some form of obesity as one of the
possible features. Body mass index (BMI) has
a known genetic component, currently esti-
mated to account for about 70 % of the popu-
lation variance in weight status for
non-syndromal obesity. Much research effort
has been expended in trying to identify the
specific genes which contain polymorphisms
that account for individual differences in BMI.
The largest genome-wide association study
(GWAS) to date confirmed and identified
almost 100 genes where variation contributes
to BMI in individuals of European ancestry.
This GWAS validated numerous variants
which give insights into the pathophysiology
of obesity centering on altered glucose and
lipid metabolism and differences in adipocyte
formation. The most novel contribution was
identifying numerous genes expressed in the
brain, which likely have behavioral conse-
quences. This fits well with contemporary
work showing that eating behaviors are a key,
heritable contribution to common obesity.
Future work will expand this putative gene
list and continue to give insights into the etiol-
ogy of common obesity which may one day
contribute to individualized risk profiles and
treatment options.

Keywords
Genetics • GWAS • Obesity • BMI • Common
obesity • Syndromic obesity •Monogenic obe-
sity • Polygenic obesity •Missing heritability •
Meta-analysis • Review

1 Introduction

Although several clinical definitions of the meta-
bolic syndrome exist, all agree that excess body
weight is an important component. For the World
Health Organization (WHO), central obesity
(waist/hip ratio >0.9 in men and >0.85 in women
and/or BMI>30 kg/m2) is not a necessary compo-
nent, but forms one of four features, of which two

must be present (Alberti and Zimmet 1998). These
features are similar to those of the European Group
for the Study of Insulin Resistance (Alberti
et al. 2005) and of the National Cholesterol Educa-
tion Program Adult Treatment Panel III, although
the latter defines five features, of which any three
must be present (Lorenzo et al. 2007). The Interna-
tional Diabetes Federation (IDF) includes central
obesity as a core (necessary) component, in addi-
tion to which any two of four other metabolic
features must also be present, although recent
moves have been made to move the IDF definition
as more in line with others (Alberti et al. 2009). As
one of the defining features, it is clear that the
etiology of obesity will give important mechanistic
and predictive insights into the metabolic syn-
drome. Although readily available highly caloric
and palatable food (the so-called “obesogenic”
environment) has been blamed for the rise of obe-
sity in the general population, it is clear that there
are individual differences in susceptibility to this
environment, which is attributable in part to genetic
differences between individuals.

This chapter focuses on the genetic etiology of
obesity discussing the most recent findings on
genes which influence BMI. We will argue that
now is an exciting time in the quest to understand
the genetic underpinnings of body weight, since
themost recent large-scale genetic study, published
in 2015, not only confirmed the role of variants
involved in metabolism but highlighted the role of
genes expressed in the brain in the pathogenesis of
obesity – suggesting a strong link with behavior.
We will detail these findings, delineating the func-
tions (where known) of genes associating with
obesity. Further, wewill discuss important research
directions needed not only to identify a fuller com-
plement of genes associated with BMI, but further
how to use these results in preventing or treating
the accumulation of excess body weight.

2 Three Forms of Obesity
with Differing Etiologies

A distinction is often made between three types of
obesity: monogenic, syndromic, and polygenic
forms of obesity. In monogenic obesity,
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differences within a single gene result in severe
and pervasive obesity in the absence of cognitive
changes or nonfood-related behavioral changes.
Syndromic obesity also results in severe obesity,
but the obesity arises as part of a more complex
disorder which includes severe intellectual dis-
ability, dysmorphic features, and/or morphologi-
cal changes in organ development. Polygenic
obesity, sometimes called common obesity, has a
complex etiology involving many genes of small
effect which act in addition to, and interact with,
environmental contributors to obesity.

3 Monogenic Forms of Obesity

Due to the high penetrance of monogenic forms of
obesity and the increased statistical power that
arises from its relatively homogenous genetic eti-
ology, monogenic forms of obesity have been well
characterized. One of the earliest models came
through the development of the ob/ob mouse
strain at the Jackson Laboratory in 1950 (Ingalls
et al. 1950). Ob/ob mice lack the OB protein and
have body weights approximately three times
higher than wild type mice. In addition to obesity,
ob/ob mice show reduced physical activity, hyper-
phagia, and have impaired glucose tolerance and
hyperglycemia to the point of diabetes. Injection
of the recombinant OB protein into ob/ob mice
results in increases in activity levels and basal
metabolic rate and a reduction in food intake,
suggesting the OB protein regulates body weight
via both metabolic and behavioral means
(Pelleymounter et al. 1995).

The position of the OB gene was later localized
(Zhang et al. 1994) and the OB protein and gene
named leptin (LEP) after the Greek “leptos”
meaning “thin.” Deficiencies in the LEP gene
akin to the ob/ob mice mutations which lead to a
complete lack of circulating leptin are extremely
rare in humans (Dubern and Clement 2012).
Patients are characterized by severe early-onset
obesity with hyperphagia alongside additional
endocrine abnormalities (Ozata et al. 1999). As
in ob/ob mice hyperinsulinemia with diabetes is
observed (Ozata et al. 1999). Obesity arising from
leptin deficiency is one of the few forms of obesity

with effective therapeutic options. Daily lifelong
injections of leptin result in a reduction in fat
mass attributed mostly to treating the hyperphagic
aspect of leptin deficiency (Farooqi et al. 2002).

Ob/ob mice lack the leptin protein, and db/db
mice lack the leptin receptor. Although db/db mice
have a similar phenotype to ob/ob mice, db/db
mice are not responsive to leptin therapy. Muta-
tions in the leptin receptor gene (LEPR) directly
resulting in a severe obesity are as rare as those
resulting in a lack of circulating leptin, affecting
only 3 % of obese patients (Farooqi et al. 2007;
Dubern and Clement 2012). Affected individuals
produce leptin, but the receptor binds to the leptin,
preventing its uptake, leading to extreme serum
leptin levels. Similar to leptin-deficient patients,
those with LEPR mutation-dependent obesity
exhibit severe hyperphagia and endocrine abnor-
malities. As in mice, no treatment for this form of
monogenic obesity has yet been found.

Other monogenic forms of human obesity
result in less severe obesity and, unlike those
arising from homozygous mutations in LEP/
LEPR as described above, are not fully penetrant
(Farooqi et al. 2006; Stutzmann et al. 2008).
Melanocortin 4 receptor (MC4R) mutations are
the most common, seen in over 0.05 % of the
population (Govaerts et al. 2005). Although less
well characterized than leptin deficiency, MC4R
deficiency is present in greater numbers, being the
primary cause of obesity in 1–6 % of obese indi-
viduals.MC4Rmutations present different pheno-
types across the lifespan; prepuberty, the extent of
functional impairment in MC4R signaling, corre-
lates positively with adiposity and hyperphagic
behaviors, but this association disappears
postpuberty. Alongside the hyperphagia reduc-
tion, feelings of satiety increase and the adiposity
and hyperinsulinemia reduce.

Other genes associated with forms of mono-
genic obesity include proopiomelanocortin
(POMC) and prohormone convertase
1 (PCSK1), which are involved in the leptin–me-
lanocortin signaling pathway. The primary mech-
anism of action is not metabolic but rather
behavioral as leptin acts to inhibit food intake
leading to obesity from excess food caloric intake
in these cases (Zhou and Rui 2013).
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Monogenic forms of obesity were initially
thought to provide the starting block to examine
causes of common (polygenic) obesity – it was
thought that mutations with less deleterious
effects (a reduction in circulating leptin, for exam-
ple, rather than its absence) may explain a great
proportion of the heritable variance on BMI.
However, as discussed later, this does not appear
to be the case with common obesity involving far
more genes and far more environmental interac-
tions than previously thought.

4 Syndromic Obesity

At least 20 syndromes characterized by extremely
lowered intellectual ability and obesity, as well as
marked changes in behavior, are caused by dis-
crete genetic mutations or chromosomal abnor-
malities. The most frequent of these syndromes
affecting 1 in 25,000 births is Prader–Willi syn-
drome (Whittington et al. 2001), an autosomal-
dominant disorder that is characterized by obesity
arising from hyperphagia. Prader–Willi syndrome
arises from a deletion at 15q11.2–q12, most often
inherited from the paternal allele. Obesity in
Prader–Willi arises from a sustained increase in
food intake, which appears to be from reduced
satiety rather than increased hunger (Lindgren
et al. 2000). Food behavior phenotypes in
Prader–Willi are consistent with a number of
endocrine abnormalities arising from hypotha-
lamic impairments. For example, ghrelin stimu-
lates hunger, and fasting levels of ghrelin are
increased in both adults and children with
Prader–Willi (Cummings et al. 2002). Postpran-
dial secretion of the pancreatic polypeptide from
the gastrointestinal tract, which reduces food
intake, is decreased in patients with Prader–Willi,
and infusions of pancreatic polypeptide reduce
food intake, although this effect may be specific
to females (Berntson et al. 1993). The full cause of
hyperphagia in Prader–Willi syndrome remains
elusive, although Prader–Willi syndrome pheno-
types are consistent with a combined hypotha-
lamic impairment, causing several endocrine
abnormalities. Contributing to obesity in
Prader–Willi is also a significant reduction in

physical activity, the hormonal mechanisms
behind which are poorly understood (Davies and
Joughin 1993).

Mutations across 15 Bardet–Biedl genes have
been associated with different forms of
Bardet–Biedl syndrome (BBS). Although there
is a strong link between BBS and obesity, one
study concluded that only just over one half of
patients were obese, and the functional role of
mutations in the BBS network of genes is poorly
characterized. The single-minded homologue
1 (SIM1) gene is the other well-characterized
gene associated with syndromic obesity (although
there are other forms of syndromic obesity, where
the genetics are not identified and so not discussed
here). Mice that are homozygous for a null allele
of SIM1 show brain abnormalities which cause
perinatal death, whereas those with only one null
SIM1 allele show milder structural differences in
the hypothalamus resulting in hyperphagia and
early-onset obesity (Michaud et al. 2001). In
humans, deletion of the SIM1 region results in
similar excessive food intake and early-onset
obesity.

Whereas therapeutic options for Prader–Willi
are available, the pervasive hyperphagia in
syndromic obesity is difficult to eliminate. Behav-
ioral therapy for syndromic obesity is minimally
successful possibly due to the accompanying
intellectual disabilities, and more success may be
found with the restrictive diets. Better character-
izing the underlying genetics of syndromic obe-
sity remains important for understanding the
patterns of eating behaviors underlying excess
adiposity in these disorders; this will have impli-
cations for treatment of syndromic obesity, but
also for understanding mechanistic pathways to
the eating behaviors which also underpin common
obesity, although the magnitude of their effects on
this latter form of obesity is likely to be much
smaller.

5 Common Obesity

Common, or polygenic, obesity is thought to
account for the dramatic increase in obesity prev-
alence over the last decade (Ogden et al. 2006).
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Common obesity tracks in families, but is not
inherited in the predictable pattern seen in mono-
genic obesity. Nor is common obesity accompa-
nied by pervasive changes in nonfood behaviors
or marked cognitive changes such as intellectual
disability. The complex segregation pattern of
common obesity suggests that it is polygenic and
influenced by many genes of small effect, none
necessary nor sufficient to convey obese status on
their own. This etiological model of traits is
known as the “quantitative trait locus (QTL)
approach,” and a corollary of this model is that
disorders or diseases are seen as the extreme end
of the normal spectrum. Whereas monogenic
forms of obesity are seen as having discrete causes
and discrete consequences which are not present
in those without these forms of obesity, common
obesity is seen as arising from an excess of the risk
factors which operate across the whole spectrum
of BMI. Thus, research into the causes of common
obesity often uses BMI as the outcome, rather
than weight status, such as overweight
(25�BMI<30 in adults) or obese (BMI � 30).

6 Twin Studies of BMI

6.1 Rationale

The classic twin study design uses the known
amount of genetic and environmental sharing
between members of twin pairs to parse the vari-
ance in a trait, for a given population, into additive
genetic (A), dominant genetic (D) or common
environment (C; note that C and D cannot be
simultaneously estimated in the classic twin
design; see Wood et al. 2010), and individual-
specific environmental (E; which subsumes mea-
surement error) influences. In child studies, the
following three assumptions are made: (1) mono-
zygotic (MZ; identical) twins share 100 % of their
segregating alleles and correlate at r = 1.00 for
genetic influences, whereas dizygotic (DZ; frater-
nal) twins share on average only 50 % of their
segregating alleles and correlate at r = 0.50;
(2) both MZ and DZ twins share the influences
in the environment which make themmore similar
(C) to the same extent, and so members of a pair

for both types of twin pairs correlate at r = 1.00;
and (3) MZ and DZ twins are discordant for fac-
tors in the environment which make them pheno-
typically different (E) and so do not correlate for
these. From this it follows that if you take a groups
of twins and compare the average within-pair
correlation for the MZ and DZ twin groups, MZ
correlations higher than DZ correlations indicate
A or D influences to a trait; MZ correlations on a
trait of less than one indicate E influences, and the
remaining variance is accounted for by C (denoted
by MZ correlations that are less than half DZ).

6.2 Heritability of BMI

Twin studies suggest a strong heritability to BMI
of around 58–84 % (Stunkard et al. 1986a;
Schousboe et al. 2004) and that the relative stabil-
ity of BMI as individuals age is attributable to
those genetic influences exerting their effects
across the lifespan, although new genetic influ-
ences are seen to emerge as individuals get older
(Fabsitz et al. 1992). The findings from twin stud-
ies of a strong heritability of BMI are supported by
adoption studies which show that adopted chil-
dren have BMIs that more closely resemble that of
their estranged biological parents (with whom
they share genetics) than those of their adoptive
parents (with whom they do not share genetics)
(Stunkard et al. 1986b), and while focusing on
exact point estimates in twin studies is
ill-advised (see Wood et al. 2010), the over-
whelming conclusion is that BMI is a moderately
to highly heritable trait across populations defined
by geography, ethnicity, gender, and age.

6.3 The Relationship of BMI
to the Metabolic Syndrome

Multivariate twin studies employ cross-trait
within-pair correlations to give insight into the
etiology of trait covariance. That is, comparing
the ratio of MZ:DZ correlations using the logic
above on, for example, one twin’s score on BMI
with their co-twin’s score on blood pressure can
parse the known correlation between these two
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traits into genetic and environmental influences
(see Rijsdijk and Sham 2002). The overall picture
is of some shared, but some etiologically distinct,
pathways between components of the metabolic
syndrome. For example, central abdominal fat, a
stronger risk factor the metabolic syndrome that
overall adiposity, is highly heritable (~92 %) and
has a genetic etiology which is somewhat distinct
from overall BMI (Carey et al. 1996). The rela-
tionship of obesity, diabetes, and hypertension is
best explained by a common genetic factor
(Carmelli et al. 1994); however, lipids have a
separable etiology more influenced by the envi-
ronment (Poulsen et al. 2001).

6.4 Using Twin Studies
to Understand Molecular
Genetic Studies and the Missing
Heritability

Quantitative genetic (heritability) studies show
that common obesity has a strong genetic compo-
nent, and the challenge has been in identifying the
genes to account for this heritability using molec-
ular genetic methods. The failure to account for
more than 5 % of the heritable variance has been
termed the “missing heritability” (Manolio
et al. 2009). In reviewing the molecular genetic
evidence for genes which associate with BMI, it is
important to learn the lessons of over a decade of
GWASs, brought to light in discussion on the
missing heritability, and use these to carefully
select which studies provide the best evidence
for variant-BMI associations.

7 Methodological Issues
with Identifying the Genetic
Basis of Complex Traits

As with all complex trait analysis, attributing the
heritable variance in BMI to specific known genes
has met with less success than expected at the start
of the genome era (Manolio et al. 2009). Candi-
date gene studies were the mainstay of initial
attempts to identify genes for BMI: carefully
selected variants within genes hypothesized to

have a function related to BMI were analyzed
for their associations with BMI or obesity (see
Bell et al. 2005 for an excellent review). However,
candidate gene studies failed to elucidate the
genetic basis of BMI due, principally, to two
main limitations: (1) the underlying mechanisms
were more complex and less known than antici-
pated, making the selection of genes for analysis
inadequate; (2) significant findings often failed to
replicate making firm conclusions about associ-
ated variants difficult to draw. On the back of
these disappointments, much optimism was felt
at the start of GWAS era.

In the mid-2000s, several methodological
advances occurred simultaneously to provide an
alternative to candidate gene studies. Firstly, the
advent of DNA chip technology allowed us to
sequence numerous variants (dependent on the
chip technology, this could typically be between
500 K and one million in the early days, although
this has been somewhat superseded now) simul-
taneously across the genome with little personnel
effort compared to that of PCR and candidate gene
studies (and eventually, with minimal cost). In
addition, the International HapMap Project pro-
vided an open resource which elucidated the com-
plex linkage disequilibrium structure of variants
across the genome (Gibbs et al. 2003; Thorisson
et al. 2005). What the HapMap project allowed
was the imputation of up to 2.5 million variants
across the genome, based on the known correla-
tional structure of different SNPs (this has been
superseded by The Human Genome Project which
allows imputation of closer to 80 million variants
(Siva 2008)). In effect, this allowed us to look
across the whole genome (current coverage can
be up to 80%) in a hypothesis-free manner to look
for those variants which showed significant asso-
ciations with a complex trait. However, GWAS
too suffered from flaws.

Even after a decade of GWAS, approximately
95 % of the heritable variance in all complex traits
remains unaccounted for – for BMI this figure
stands at ~97 % (Locke et al. 2015). The reasons
for this are complex, debated, and manifold – and
an in-depth discussion is beyond the scope of this
chapter (but see Maher 2008; Manolio
et al. 2009). Of relevance to this discussion, they
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likely include the difficulties of dealing with 2.5
million + statistical tests in a single study and the
trade-off between type I and type II errors this
necessitates. The stringent corrections for multi-
ple testing means we have likely missed the asso-
ciations of small effect size. However, even with a
Bonferroni correction, GWAS fell into the same
trap as candidate gene studies: difficulties with
replication. Now, many journals have demanded
replication in at least one independent sample for
any purported “hit” before publishing any GWA
studies (see “Asking for More” (2012). Whether
GWAS can have been considered to have “failed”
is a matter of debate (Visscher et al. 2012); what is
important are the steps scientists are taking to
overcome the limitations of GWAS. For traits
like BMI, which are measured in many studies
and easily comparable between populations, the
move has been for cohorts with the relevant phe-
notype and genotype data to come together within
a consortium and meta-analyze their data. This
neatly deals with the suspected GWAS difficulties
of expected small effect sizes and the false posi-
tives that occur.

8 The GIANT GWAS

Given the difficulties of replication in GWAS, we
will follow the leading scientists and focus only
on those large meta-analyzed studies. The most
recent example of which was from the Genetic
Investigations of Anthropometric Traits (GIANT)
consortium who replicated the 32 loci associated
with BMI detected in their previous analysis and
added 65 new loci (Locke et al. 2015). This study
analyzed data from up to 339,224 individuals
across 125 studies (approximately two-thirds of
the participants had GWAS results, others had
genotypes from Metabochip). In addition to
confirming existing and identifying new
genotype-BMI associations in genes with a
known function in obesity metabolism (Table 1),
as well as identifying genes with no known func-
tion, or for which the function in obesity is not
known, the unique contribution of the GIANT
GWAS was the observation that 87 % of the
newly identified body mass index (BMI) variants

were expressed in the central nervous system,
with enrichment in the hypothalamus and pitui-
tary gland – key sites of appetite regulation
(Table 2; Locke et al. 2015).

When GWASs were first devised, they were
meant to be hypothesis generating: that is, given
the lack of an a priori hypothesis for each variant,
the significant associations were supposed to be
followed up with careful candidate gene and ani-
mal studies which delineated the functionality of
new single nucleotide polymorphisms (SNPs).
We will follow this model: taking the work by
GIANT as the forefront of those loci known to be
associated with BMI, we will follow the ideal
model and combed the literature for clues into
the functionality of the associated SNPs.

9 Genes with Known Metabolic
Functions Which Relate
to Obesity

9.1 Insulin Signaling and Glycemic
Control

Insulin resistance is the hallmark of the metabolic
syndrome; the reduced ability of muscle cells to
react to the release of insulin and the ensuing
hyperinsulinemia lead to a host of metabolic
abnormalities, one of which includes increased
adiposity. Insulin has numerous adiposity-
promoting functions, for example, fostering the
differentiation of preadipocytes to adipocytes
and inhibiting lipolysis. Adipose tissues are, in
themselves, insulin resistant, and the extent to
which insulin resistance is a cause and not a con-
sequence of obesity is unclear. The functionality
of many BMI-associated genes in the insulin sig-
naling pathway, or with insulin resistance, further
illustrates the mechanistic links between the two
traits.

FTO is one of the genes most consistently
related to BMI across a number of GWAS and
candidate gene studies (Dina et al. 2007; Hinney
et al. 2007; Scuteri et al. 2007; Hunt et al. 2008;
Speliotes et al. 2010). The association between
FTO and BMI is not isolated to the oft-studied
“adults of European ancestry” group, for example,
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FTO has been associated with BMI or obesity
status in Chinese (Chang et al. 2008), Korean
(Lee et al. 2010), and pediatric (Dina et al. 2007;
Frayling et al. 2007; Haworth et al. 2008;

Sovio et al. 2011) populations. A recent review
summarized that each FTO risk allele increases
the BMI equivalent to �0.40–0.66 BMI points
such that the risk of overweight and obesity

Table 1 Genes with known functions in metabolism related to BMI

Gene name Common nomenclature

Adenylate cyclase 3 ADCY3

Apolipoprotein B receptor APOBR

Apolipoprotein C-I APOC1

Apolipoprotein E APOE

Bardet–Biedl syndrome 4 BBS4

Cytochrome P450, family 27, subfamily A, polypeptide 1 CYP27Aa

Double C2-like domains, alpha DOC2Aa

V-Ets avian erythroblastosis virus E26 oncogene homologue 2 ETS2

Ets variant 5 ETV5

Fas apoptotic inhibitory molecule 2 FAIM2

Forkhead box O FOXO3

Fat mass and associated FTO

Growth differentiation factor 15 GDF-15

Gastric inhibitory polypeptide receptor GIPR

3-Hydroxy-3-methylglutaryl-coenzyme A reductase HMGCR

Insulin receptor substrate 1 IRS1

Kruppel-like factor 7 KLF7

Mitogen-activated protein kinase 3 MAPK3

Mitochondrial carrier 2 MTCH2

Nuclear receptor coactivator 1 NCOA1

Protein kinase D1 PRKD1

Regulatory associated protein of MTOR, complex 1 RPTOR

Scavenger receptor class B, member 2 SCARB2

Secretogranin III SCG3

SEC16 homologue B SEC16B

SH2B adaptor protein 1 SH2B1

Sulfotransferase family, cytosolic, 1A, phenol-preferring, member 2 SULT1A2

Transcription factor 7-like 2 TCF7L2

Transcription factor AP-2 beta TFAP2B

Toll-like receptor 4 TLR4

Translocase of outer mitochondrial membrane 40 homologue TOMM40

Tubby gene TUB

Subset of genes known to interact with dietary intake/physical activity on metabolism

V-Erb-B2 avian erythroblastic leukemia viral oncogene homologue 4 ERBB4

Fas apoptotic inhibitory molecule 2 FAIM2

Gastric inhibitory polypeptide receptor GIPR

Glucosamine-6-phosphate deaminase 2 GNPDA2

3-Hydroxy-3-methylglutaryl-coenzyme A reductase HMGCR

Neuronal growth regulator 1 NEGR1

SEC16 homologue B SEC16B

Transcription factor 7-like 2 TCF7L2

Transcription factor AP-2 beta TFAP2B

Tu translation elongation factor mitochondrial gene TUFM
aExpressed in the brain but not behavioral related

130 A.C. Frazier-Wood and Z. Wang



increases by �1.2 and �1.3 odds, respectively
(Loos and Bouchard 2008). Those carrying two
FTO risk alleles weigh 3–4 kg more than those
with no risk allele (Loos and Bouchard 2008).
Although the role of FTO in obesity appears to
be mostly behavioral (see below), FTO appears to
have truly pleiotropic effects as the risk alleles
may reduce insulin response in the brain
(Tschritter et al. 2007).

KLF7 encodes a protein which inhibits insulin
expression and secretion in pancreatic beta cells. In
addition to association between KLF7 and obesity,
KLF7 is considered a risk gene for type 2 diabetes
(Kanazawa et al. 2005; Zobel et al. 2009). APOC1
is expressed primarily in the liver, where
overexpression of APOC1 in ob/ob mice leads to
hepatic steatosis and severe hepatic insulin resis-
tance (Muurling et al. 2004).

APOE may also exert its influence on BMI
through altered insulin sensitivity; obese men
with the APOE4 genotype presented with higher
levels of insulin and glucose than obese men in the
other genotype groups (Elosua et al. 2003). In
addition to associations between the SH2B1 and
whole body fat mass in females (Jamshidi
et al. 2007; Hotta et al. 2011), the distribution of
body fat and the amount of visceral adipose tissue
(Hotta et al. 2011) and the amount of visceral fat
area (Haupt et al. 2010), SH2B1 variants have also
been associated with type 2 diabetes indepen-
dently of BMI (Sandholt et al. 2011). Circulating
GDF-15 concentrations are increased with type
2 diabetes (Dostálová et al. 2009; Vila
et al. 2011), and GDF-15 predicts future insulin
resistance glucose control (Kempf et al. 2012).
IRS1 encodes a protein which is phosphorylated

Table 2 Genes associated with BMI which are expressed in the brain

Gene name Common nomenclature

Known function related to obesity

Brain-derived neurotrophic factor BDNF

CAMP responsive element-binding protein 1 CREB1

Glutamate receptor, ionotropic, delta 1 GRID1

Low-density lipoprotein-related protein 1B LRP1B

Melanocortin 4 receptor MC4R

Neuronal growth regulator 1 NEGR1

Niemann–Pick disease, type C1 NPC1

Proopiomelanocortin POMC

Zinc finger CCCH-type containing 4 ZC3H4

Known function not related to obesity

ATP/GTP-binding protein-like 4 AGBL4

Calcitonin receptor CALCR

Cerebellin 1 precursor CBLN1

ELAV-like neuron-specific RNA-binding protein 4 ELAVL4

V-Erb-B2 avian erythroblastic leukemia viral oncogene homologue ERBB4

Gamma-aminobutyric acid (GABA) A receptor, gamma 1 GABRG1

G protein-coupled receptor, class C, group 5, member B GPRC5Ba

Potassium channel, subfamily K, member 3 KCNK3

Leucine-rich repeat and fibronectin type III domain containing 2 LRFN2

Neurexin 3 NRXN3

Protocadherin 9 PCDH9

Polypyrimidine tract-binding protein 2 PTBP2

RALY RNA-binding protein-like RALYL

Ras-like without CAAX 2 RIT2

SH3 domain binding kinase 1 SBK1

Syntaxin 1B STX1B
aSpecific function unknown
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by insulin receptor tyrosine kinase. Mutations in
this gene are associated with type 2 diabetes and
susceptibility to insulin resistance (Hotamisligil
et al. 1996; Rung et al. 2009). PRKD1 regulates
insulin secretion; blocking PKD in vitro cells
inhibited insulin secretion, but not insulin produc-
tion (Sumara et al. 2009). TCF7L2 is expressed in
most human tissues, including mature pancreatic
β-cells and adipose tissue, with the exception of
the skeletal muscle (Cauchi et al. 2006). Variants
in this gene are strongly associated with type
2 diabetes (Chandak et al. 2007; Helgason
et al. 2007; Herder et al. 2008) and reduce the
insulin response to glucose in nondiabetic indi-
viduals (Saxena et al. 2006). Toll-like receptor
4 (TLR4) activation was associated with insulin
resistance in adipocytes (Song et al. 2006), which
suggested that activation of TLR4 in adipocyte
might be implicated in the onset of insulin resis-
tance in obesity and type 2 diabetes. TLR4 knock-
out mice are insulin resistance in diet-induced
obesity (Kim et al. 2007). TUB mutations in
mouse models are the cause of maturity-
onset obesity and insulin resistance and are
not directly supported by human functional
studies but mirror a C. elegans model
(Mukhopadhyay et al. 2005).

Inflammation is considered to be a causal link
between insulin resistance and obesity. Several
genes associating with BMI also are associated
with pro-inflammatory statues, for example, FTO
mediates the expression of inflammatory genes
upregulated in adipose tissue. Together, these
studies support those from twin studies which
suggest a shared etiology between insulin resis-
tance and adiposity, supporting a causal
connection.

9.2 The Adipocyte Cycle

Adipocytes, energy storage cells, were originally
thought to be inert or nonfunctional. However,
more recent research has revealed active roles
for adipocytes in fat mass regulation and nutrient
homeostasis, in addition to other homeostatic pro-
cesses (Trayhurn 2005; Rosen and Spiegelman

2006). Functional studies across a variety of spe-
cies show that KLF7 inhibits preadipocyte differ-
entiation (Kawamura et al. 2006; Zhang
et al. 2013). APOC1 is associated not only with
total adipose cells but also average adipocyte size
(Jong et al. 2001). ETS2 encodes transcription
factors which are regulated during early
adipogenesis and are essential for the normal pro-
gression of the adipocyte differentiation program
in vitro (Birsoy et al. 2011). MTCH2 is highly
expressed in human white adipose tissue (WAT)
alongside NEGR1 which is involved in adipocyte
differentiation (Bernhard et al. 2013).

As the activity of adipocyte cells in fat regula-
tion is a fairly new discovery a promising avenue
of research is to fully delineate the genes involved
and their roles in obesity.

9.3 Lipid and Fatty Acid
Metabolism

Studies using GIPR null mice established the
importance of GIPR signaling in regulating lipid
metabolism (Song et al. 2007; Kim et al. 2011).
HMGCR (also commonly called HMG-CoA) is
the rate-limiting enzyme for cholesterol biosyn-
thesis (Dietschy et al. 1993). This enzyme is
suppressed by cholesterol derived from
low-density lipoprotein (LDL) catabolism via the
LDL receptor. APOE binds with high affinity to
the low-density lipoprotein (LDL) receptor and
facilitates catabolism (Mahley 1988). SCARB2
mediates selective uptake of cholesteryl esters
from HDL particle (Eckhardt et al. 2004), and
while the role of TOMM40 in lipid metabolism
is not known, studies associate TOMM40 variants
with triglyceride levels (Aulchenko et al. 2009).
In C. elegans, loss of tub-1, the worm orthologue
of TUB, increases in the storage of triglycerides
(Mukhopadhyay et al. 2005). FOXO3 gene
expressions can reduce LDL-cholesterol levels
through regulation of the PCSK9 gene. FTO
mediated the downregulation of some genes
involved in fatty acid catabolism which might
explain, in part, the increased adiposity (Fawcett
and Barroso 2010).
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9.4 Endocrine System Functions

Obesity leads to altered metabolism of hormones;
for example, increased serum estrogen levels have
been associated with obesity (Glatt et al. 2001).
Obesity increases the serum concentration of the
steroid hormones estradiol (17-β-estradiol),
estrone, and also estrone sulfate, which are all
substrates of SULT1A2 (Mahabir et al. 2006;
Emaus et al. 2008). A plausible mechanism of
association with BMI is through genes that influ-
ence sex hormone secretion and response. The
association of SULT1A2 on body weight has
been posited to be mediated by the regulation of
sex hormones (Harris et al. 2000). The absence of
NCOA1, a coactivator for steroid and nuclear hor-
mone receptors, causes obesity in knockout mice
(Picard et al. 2002; Maquoi et al. 2005).

The role of leptin in obesity through food
intake alterations is known via monogenic stud-
ies. ERK1 protected leptin-deficient mice from
insulin resistance which indicates that deregula-
tion of the ERK1 pathway could be an important
component in insulin-associated obesity, although
the ensuing changes to BMI have yet to be dem-
onstrated (Jager et al. 2011). SH2B1 is associated
with serum leptin levels in females, as well as the
broad spectrum of obesity measures outlined
above (Jamshidi et al. 2007; Hotta et al. 2011).

Further elucidating the associations of
hormone-related genes involved in obesity is
likely to need a two-pronged approach. One
angle will need to map out the roles from genes
to obesity via biological pathways, but this should
be complemented by an approach which better
understand the role of hormonal perturbations in
obesity, via, for example, effects on food intake
behaviors (Klump et al. 2011; Cao et al. 2014).

9.5 Gene Interactions with Energy
Intake and Expenditure

One hypothesized mechanism for the missing her-
itability is gene–environment interactions for
which, in the case of obesity, may be most likely
to operate through interactions between genetic

variants and dietary intake or physical activity.
We have recently reviewed the evidence for
gene–diet interactions in metabolic health and
concluded that while there is a compelling ratio-
nale for the existence of these, there is little empir-
ical evidence (Frazier-Wood 2015). Since this
arises from a number of methodological concerns
including the difficulty in selecting genes for anal-
ysis versus the power needed for genome-wide
interaction studies (GWIS), we argued that it is
not to say that gene–diet interactions do not exist,
rather techniques for identifying them need to be
developed and refined. In terms of those variants
identified as associating with BMI, there is some
evidence they may exert their effects through
interactions with physical activity or dietary
intake (Table 1). For example, the G allele in
HMGCR showed a greater response in lower
triacylglycerol levels with a diet reduced in satu-
rated fat intake and increased in fiber intake
(Freitas et al. 2010). ADCY3 null mice are more
susceptible to obesity induced by high-fat feeding
(Wang et al. 2009). The expression of FAIM2 gene
may be affected by nutritional state (Boender
et al. 2012). Overall, a recent study also reported
that a number of “obesity susceptibility genes”
(FAIM2, FLJ35779, FTO, LRRN6C, RBJ, and
SEC16B) interact with sugar-sweetened beverage
intake to increase BMI (Qi et al. 2012). TUFM is
upregulated on a high-fat diet in rats (Gutierrez-
Aguilar et al. 2012) and CYP27A, one of the key
genes involved in vitamin D metabolism pathway
(Prosser and Jones 2004). However, vitamin D is
synthesized as well as ingested, and candidate
gene association studies showed that the vitamin
D pathway genes are unlikely to have a major role
in obesity-related traits in the general population
(Dorjgochoo et al. 2012; Vimaleswaran
et al. 2013) urging caution in interpreting these
findings in relation to BMI. Gene–diet interaction:
Kallio and colleagues recently suggested that
diets rich in whole-grain cereals and foods with
a low glycemic index may protect against T2D
through the regulation of several genes in adipose
tissue (Kallio et al. 2007). After 12 weeks of the
rye–pasta diet, they found a decrease in TCF7L2
expression. A randomized controlled trial showed

9 Genetics of Obesity 133



that TFAP2B-rs987237 genotype AA was associ-
ated with 1.0 kg greater mass reduction on a
low-fat diet than other variants and G homozy-
gotes with 2.6 kg greater loss on the high-fat diet
(Stocks et al. 2012).

Physical activity may also interact with genetic
variants to influence BMI. In diet-induced obese
rats, low-intensity endurance training and well-
balanced diet activate the NRG1-ERBB4 pathway
in the skeletal muscle (Ennequin et al. 2015),
while at the other end of the physical activity
spectrum, high levels of leisure screen time
(a measure of physical inactivity) exacerbate the
influence ofGNPDA2 on BMI, although this find-
ing has been limited to African-American popu-
lation (Graff et al. 2013).

Together, these studies emphasize the difficul-
ties and lack of firm conclusions in identifying
gene–diet or gene–activity interactions in health,
not just BMI. It is doubtless an important avenue
to pursue, but will take collaborative efforts and
careful consideration to dietary differences
between groups to achieve (Frazier-Wood 2015).

10 Genetic Insights into
the Behavioral Causes
of Obesity

10.1 Obesogenic Behaviors

In the recent GIANT GWAS, nearly nine out of
every ten newly identified variants associating
with BMI were expressed in the brain (Locke
et al. 2015). Although the study was not able to
isolate all individual areas where BMI-associated
variants were expressed, there was enrichment for
those areas involved in appetite regulation. These
gene findings are meaningful in the light of recent
work which has examined not so much food
intake as a precursor of BMI but a full comple-
ment of appetitive behaviors, such as satiety
responsiveness, eating in the absence of hunger,
emotional overeating, slowness in eating, the
inability to delay the gratifying reinforcement of
food, and enjoyment of food which have been
associated with BMI in numerous populations

(Hughes et al. 2015; Fisher and Birch 2002;
Butte et al. 2007; Carnell and Wardle 2008;
Carnell and Wardle 2009; Seeyave et al. 2009).
Supporting the notion that these obesogenic eat-
ing behaviors may lie on the pathways from genes
to obesity, these behaviors have been shown to be
moderately heritable (~40–70 %) (Butte
et al. 2006; Fisher et al. 2007; Carnell
et al. 2008). Further enrichment for BMI-related
variant expression was seen in the hippocampus
and limbic system, tissues that have a role in
learning, cognition, emotion, and memory. Our
own work has been built on work showing that
self-regulation, a construct closely linked to exec-
utive function involving the initiating and inhibi-
tion of behaviors, is associated with weight status,
to show that approximately 30 % of the genes
involved in some cognitive tasks are shared with
BMI (Frazier-Wood et al. 2014).

10.2 Insights from Monogenic
Obesity

Leptin therapy exerts its BMI-reducing effect in
leptin-deficient obesity by inducing a slower rate
of eating and diminished duration of eating of
every meal (Farooqi et al. 2002). Leptin treatment
is also able to regulate motivation to eat during
mealtimes (Williamson and Stewart 2005). Indi-
viduals with POMC monogenic conditions
respond well to hypocaloric dietary or multidis-
ciplinary (exercise, behavior, nutrition therapy)
behavioral interventions (Santoro et al. 2006).
Thus, it seems clear that monogenic forms of
obesity are reduced through behavioral interven-
tions, implicating behavior in the pathogenesis.

10.3 Behavioral Genes and Obesity

FTO is the best known BMI variant and mainly
exerts its effects through food intake behaviors, as
evidenced by associations with increased food
intake, but not reduced basal metabolic rate
(Speakman et al. 2008). FTO variants are associ-
ated with self-reported hunger and satiety in
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adults (den Hoed et al. 2009) and diminished
satiety in children as measured by the tendency
to eat after reporting being full (also called eating
in the absence of hunger; (Wardle et al. 2008)).
Specifically, FTO variants may be associated with
eating more highly palatable foods (which are
usually more energy dense) presented immedi-
ately after an ad libitum meal (Wardle et al. 2009).

POMC encodes a protein which is synthesized
mainly in cells of the anterior pituitary (brain).
POMC was identified as a causal variant in
cases of severe early-onset obesity influencing
the leptin–melanocortin pathway (Krude et al.
1998), with whichMC4R gene variants also inter-
act (Vaisse et al. 1998; Yeo et al. 1998). POMC is
implicated in nutrient intake (Cai et al. 2004), as
well as leptin levels (Hixson et al. 1999) and
physical activity (Simonen et al. 2003). MC4R is
specifically associated with higher dietary fat
intake (Qi et al. 2008) and emotional overeating
(Yilmaz et al. 2015). CREB1 is a transcription
factor mostly expressed in the brain, which can
drive the expression of numerous genes (Blendy
et al. 1996; Cha-Molstad et al. 2004), and postu-
lated to play a key role downstream of the MC4R
in the paraventricular nucleus (Sarkar et al. 2002).
Like MC4R, ZC3H4 was positively associated
with emotional and uncontrolled (binge) eating
in both men and women (Cornelis et al. 2014).

BDNF is associated with depression and in turn
associated with BMI changes, although the direc-
tion of association is not always consistent. BDNF
is associated with anorexia nervosa and bulimia
(Friedel et al. 2005; Gratacòs et al. 2007)
suggesting a link to altered eating behaviors,
although these disorders have a very complex psy-
chological etiology and may or may not inform us
on the etiology of common obesity. GRID1 regu-
lates appetite although the specific eating behaviors
affected are not well delineated (Justice et al. 2013).

Genes that may account for the association
between cognition and BMI are less well identi-
fied. The BMI-associated alleles of LRP1B have
been inversely associated with cognitive restraint
(also called inhibition) behaviors (Cornelis
et al. 2014). A fruitful avenue of future research
will be to examine whether genes associate with

BMI via their direct effects on changes in behav-
ior which manifest in both food- and nonfood-
related behaviors.

11 Synthesis and Conclusions

Clearly, obesity has a strong genetic influence,
although this does not in any way indicate that envi-
ronmental, or behavioral, interventions will not be
effective treatments. Over 97 % of the heritable var-
iance inBMIhasyet tobeaccountedforbyvariants in
names of genes, and further identification of
BMI-raising variants will give important insights
into the molecular pathways to obesity – be they
metabolic or behavioral. Understanding this will
help us devise not only targeted interventions but
also prevention efforts. The prevalence of obesity in
US adults may be leveling off, but it still remains the
maincontributor to theprimarycausesofpreventable
death (heart disease and cancer). Genetic research
offers promise for reducing this health burden via
better delineated etiological pathways to disease.
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Abstract
The promise of high-throughput genomics has
started to deliver novel insights in the genetic
etiology of type 2 diabetes and its related traits.
In particular, genome-wide association studies
have revealed new biological underpinnings to
metabolic traits, with particular focus being on
the strongest loci TCF7L2 and FTO. However,
many challenges still lie ahead as much of the
“missing heritability” of such traits remains to
be elucidated, with only a minority of the
genetic component to type 2 diabetes being
characterized to date. Undeterred, investigators
are aiming to use what has been found to
already attempt risk prediction models, while
lab-based researchers are trying to elucidate
functional mechanism. However, the latter
has a number of challenges as these well-
established signals still require full characteri-
zation of the causal tissue, the causal variant,
and often the actual causal gene. However,
once advances are made of these fronts, the
future looks bright with respect to the develop-
ment of novel therapeutics and diagnostics for
type 2 diabetes and its related traits.

Keywords
Gene • Diabetes • Obesity • Metabolic syn-
drome • Insulin • Islet

1 Introduction

Type 2 diabetes (T2D) is a member of the complex
traits that are both common and known to have a
genetic component. The reason it is considered
complex is that there are two primary processes
underpinning the disorder, namely, contributions
from defects in insulin resistance and insulin
secretion. It is widely believed that discrete
genetic factors play a role in these two mecha-
nisms, which in turn influence T2D susceptibility.
Insulin resistance is widely influenced by obesity,
where a separate genetic etiology has also been
implicated. However, teasing out the genetic fac-
tors contributing to the pathogenesis of T2D,
where there is also such a marked environmental

influence on risk, has proved challenging. So
much so, that before the era of genome-wide
association studies (GWAS), the disease was
referred to as the “geneticist’s nightmare,” and
the prospect of discovering the underlying genetic
factors in this polygenic trait was equated to
discovering the “Holy Grail.”

Before one embarks on a genetic hunt for
variants contributing to the pathogenesis of a
disease, one has to convince oneself that there is
indeed a genetic component to the trait. In the
context of T2D, there is evidence from concor-
dance observations when contrasting monozy-
gotic twins with dizygotic twins while
segregation analyses in families have led to the
conclusion that the sibling risk for T2D is approx-
imately 3.5-fold (Rich 1990). As such, investiga-
tors have been motivated to seek out the genetic
contributors to this common disease blighting
many societies.

2 Candidate Gene and Family-
Based Studies

In the relative dark ages before GWAS (i.e., prior
to 2005), the only approach to assess genes and
their putative role in complex traits was the can-
didate gene approach. Although a number of
genes were robustly implicated in T2D during
that period, this approach was heavily blighted
by the “winner’s curse” (Lohmueller
et al. 2003), where an investigator would select
their favorite gene based on an already known
obvious role in the pathogenesis of the trait but
would only formally report the study if an associ-
ation with a variant reached the significance bar of
P = 0.05. As such, there was an inherent bias in
what ended up getting reported, and thus, very
many of these loci were not replicated by peer
investigative groups.

The handful of genes that did hold up in the
candidate gene era include peroxisome
proliferator-activated receptor gamma (PPARG),
calpain 10 (CAPN10), and “potassium inwardly
rectifying channel, subfamily J, member 11”
(KCNJ11) (Altshuler et al. 2000; Gloyn
et al. 2003; Horikawa et al. 2000).
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The first opportunity to carry out a more
hypothesis-free approach was with the advent of
genome-wide linkage studies. These were enabled
by panels of hundreds of microsatellites in com-
plete linkage equilibrium, and thus, if a region of
the genome was shared within and across families
with a given trait, it could be detected by this
approach. When it came to complex traits includ-
ing T2D, regions of significant linkage were
indeed detected (Reynisdottir et al. 2003), but
the resolution of the approach was very crude,
resulting in an average region of approximately
10–20 Mb, meaning that many hundreds of genes
were harbored in such a wide location, i.e., the
short list of genes was still very long. Trying to
drill down on the linked region using follow-up
association testing with additional microsatellites
and/or with SNPs proved challenging. Although
relatively successful for syndromic disorders, this
approach did not yield many robust novel genes
for complex diseases, largely due to the fact that
the principal drivers of linkage signals are rare
variants with high risk while it is now widely
considered that the modest effect “common vari-
ant, common disease” hypothesis is more likely to
underpin complex traits. As such, if a variant is
common, it is unlikely that it will have very high
impact as the selective pressure against it is so
high. Thus, the “age of enlightenment” came
about in 2005, when GWAS was able to detect
such variants.

3 Genome-Wide Association
Studies (GWAS)

In order to allow for genome-wide assessment of
association, technological advances were required
to move away from simple single gene assess-
ments. The outcomes from the HapMap Project
(The International HapMap Project 2003; A hap-
lotype map of the human genome 2005) proved
feasible to leverage for this endeavor as it was
observed that SNPs “travel” in blocks, i.e.,
regions of linkage disequilibrium (LD) occur in
discrete “LD blocks.” It became clear that a given
LD block harbors a lot of redundancy with respect
to information content, where there is a limited

amount of haplotype diversity and which thus can
be captured by small subset of the variants in the
LD block, and the rest can be subsequently
inferred or “imputed” (Stephens et al. 2001).

As such, rather than having to genotype the
millions of common SNPs in the genome (minor
allele frequency >5 %) in order to assess the
genome for association with complex traits, one
can leverage hand-picked “tag SNPs” that capture
all common variation and can be boiled down to
just hundreds of thousands of SNPs. As a conse-
quence, this number of SNPs can be arrayed on a
single chip, thus facilitating high-throughput
genotyping in a cost-effect manner.

By typically genotyping thousands of patients
and thousands of controls with such arrays, the
discovery of novel loci associated with common
diseases has been facilitated, including for T2D
(see below). Indeed, now many hundreds of var-
iants have been reported for various common
diseases, but unlike the candidate gene era in the
relative “dark ages,” these variants are generally
highly replicatable and coincide with genes that
suggest novel biology underpinning such traits.
Indeed, for the first time in complex trait genetics
research, there is strong consensus among inves-
tigators on the robustness of vast majority of these
observations. The NIH maintains a queriable
record of these reports that can be found at
http://www.genome.gov/gwastudies.

The resulting data can be presented in a simple
graph, where the x-axis represents the geograph-
ical order down each chromosome in turn while
the y-axis reveals the strength of the association
via a P-value. One requires a large number of
cases and controls in order to overcome the inev-
itable correction for multiple testing given the
large number of SNPs being tested; after all,
every 20th SNP will yield a P-value of 0.05 by
chance, so this cannot be considered the appropri-
ate bar for significance in this setting; rather, it has
been calculated that there is a finite level of com-
mon diversity in the genome, so a specific bar for
significance at the genome-wide level is P = 5
� 10�8. If that level of significance is achieved,
there is a strong likelihood that this signal will
replicate, a step which is indeed expected from a
GWAS observation before it is considered
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publishable. These signals appear as spikes in
these graphs, thus rendering them as plots resem-
bling the New York skyline; indeed, they are
referred to as “Manhattan plots”, and what
researchers are looking for are these “Empire
State Building”-type signals.

When one turns to the specific signals resulting
from GWAS efforts of T2D, the first such report
was in 2007 (Sladek et al. 2007). In that study, a
number of loci achieved genome-wide signifi-
cance, with the strongest “Empire State Building”
signal being across the gene encoding transcrip-
tion factor 7-like 2 (TCF7L2, formerly known as
TCF4) (Sladek et al. 2007). Indeed, the author of
this review first published this association a year
before through a rare success story of an associa-
tion follow-up effort to a linkage signal (Grant
et al. 2006) which has gone on to be replicated
in a diversity of cohorts, ranging from Europe to
Asia to Africa (Cauchi et al. 2007), and is now
considered the strongest genetic association with
T2D in most ethnicities (Zeggini and McCarthy
2007; Weedon 2007). Findings related to func-
tional studies of TCF7L2 and T2D are described
below to exemplify the challenges with such
follow-up efforts.

In addition to agreeing on the TCF7L2 signal,
the first T2D GWAS reports (Sladek et al. 2007;
Wellcome Trust Case Control Consortium 2007;
Saxena et al. 2007; Zeggini et al. 2007; Scott
et al. 2007) revealed signals within loci that har-
bored the following genes: “hematopoietically
expressed homeobox” (HHEX), “solute carrier
family 30 (zinc transporter), member 8”
(SLC30A8), “CDK5 regulatory subunit associated
protein 1-like 1” (CDKAL1), “insulin-like growth
factor 2 mRNA-binding protein 2” (IGF2BP2),
“cyclin-dependent kinase inhibitor 2A/B”
(CDKN2A/B), and an intragenic region on
11p12. However, GWAS efforts in East Asians,
where the haplotypic structure is substantially
different from Europeans, revealed a different set
of signals, with “KQT-like subfamily, member 1”
(KCNQ1) being the gene harboring the strongest
association (Unoki et al. 2008; Yasuda
et al. 2008). Furthermore, strong association
with common variants within the gene encoding
“solute carrier family 16, member 11”

(SLC16A11) has been shown to confer risk for
T2D in Mexicans (Williams et al. 2014).

When one has exhausted the mining of the
initial GWAS efforts in a given cohort, and in
order to get the most of the large financial invest-
ment, investigators combine their datasets in order
to find additional “Chrysler” and “Woolworth
Building”-type signals. The first such “meta-anal-
ysis” of T2D GWAS efforts in cohorts of
European ancestry (Zeggini et al. 2008) revealed
six additional loci corresponding to the following
genes: “ADAM metallopeptidase with
thrombospondin type 1 motif, 9” (ADAMTS9),
“tetraspanin 8”/“leucine-rich repeat-containing G
protein-coupled receptor 5” (TSPAN8-LGR5),
“cell division cycle 123 homolog”/“calcium/cal-
modulin-dependent protein kinase ID” (CDC123-
CAMK1D), NOTCH2, “thyroid adenoma associ-
ated” (THADA), and “juxtaposed with another
zinc finger gene 1” (JAZF1).

Larger and larger subsequent meta-analyses
through the combination of more and more
datasets revealed additional common variants
but with diminishingly small effects (Zeggini
et al. 2008; Morris et al. 2012; Steinthorsdottir
et al. 2007; Voight et al. 2010; Rung et al. 2009;
Gudmundsson et al. 2007; Dupuis et al. 2010;
DIAbetes Genetics Replication And Meta-
analysis (DIAGRAM) Consortium; Cho
et al. 2011; Kooner et al. 2011; DIAbetes Genetics
Replication And Meta-analysis (DIAGRAM)
Consortium 2014; Bouatia-Naji et al. 2009;
Lyssenko et al. 2009; Ng et al. 2014), with the
latest and largest trans-ethnic meta-analysis
derived from European, East Asian, South
Asian, Mexican, and Mexican American cohorts,
made up of 26,488 cases and 83,964 controls,
revealing genome-wide significant signals across
the following genes: transmembrane protein
154 (TMEM154), signal sequence receptor,
alpha/ras responsive element binding protein
1 (SSR1-RREB1), Fas-associated factor
1 (FAF1), POU class 5 homeobox 1/transcription
factor 19 (POU5F1-TCF19), ADP-ribosylation
factor-like 15 (ARL15), andM-phase phosphopro-
tein 9 (MPHOSPH9) (DIAbetes Genetics Repli-
cation And Meta-analysis (DIAGRAM)
Consortium 2014).

144 S.F.A. Grant



Although in excess of 80 loci have now been
established for T2D, it appears that only approx-
imately 20 % of the “missing heritability”
(Manolio et al. 2009) for the disease has been
found; thus, the bulk of the genetic etiology of
this disease still remains to be characterized.

4 T2D Risk Prediction

Undeterred by the fact that only a minority of the
missing heritability has been predicted to be
uncovered for T2D, investigators have already
aimed to look at the predictive power of the robust
variants established to date, especially if one is to
consider the cumulative risk.

When the first “low-hanging fruit” variants had
been uncovered, it was initially suggested that
they did not add sufficient predictive power to
other nongenetic predictors already known. For
instance, a study of 18 variants did show that the
risk of T2D was increased by 12 % per risk allele
(Meigs et al. 2008) and that risk was increased by
2.6-fold when contrasting subjects who had the
lowest genotype risk score with those who had the
highest. However, this risk score model did not
aid in prediction when one considered familial
history of diabetes and/or other known risk fac-
tors. A parallel study published in the same issue
of the New England Journal of Medicine made a
similar conclusion, with only marginal improve-
ment in predictive power when contrasted with
clinical risk factors alone (Lyssenko et al. 2008).

However, as more and more loci have been
established to be associated over time, there is a
general opinion that the risk predictive power is
improving. A study of 40 SNPs suggested that the
predicted risk of developing T2D was better in
younger people (de Miguel-Yanes et al. 2011).
Subsequent studies have suggested a degree of
predictive power if harnessing in excess of 30 var-
iants, particularly if combined with clinical risk
factors (Hivert et al. 2011; Andersson et al. 2013;
Talmud et al. 2015). But as long as the bulk of the
missing heritability remains elusive, the predic-
tive power of such collections of variants remains
far from optimal and hinders diagnostic attempts,
including direct to consumer testing efforts.

5 Sequencing Efforts: Missense
Variants

The prevailing view is that much of the missing
heritability is beyond the detection bandwidth of
GWAS, where the still-to-be-characterized vari-
ants are not as common and do not confer very
sizable risk of T2D. In order to detect such vari-
ants, one will need to collect larger and larger
cohorts and carry out extensive sequencing
efforts, of which the analytical challenges will be
very demanding.

However, some success stories have been
described, particularly when looking at specific
geographic regions using sequencing technolo-
gies. The most obvious example is the common
Arg684Ter missense variant within the “TBC1
domain family, member 4” (TBC1D4) gene
uncovered in Greenland, which confers a stagger-
ing tenfold risk for homozygotes, but its effects
appear limited to that country. Although limited in
its diagnostic applicability, this approach in an
isolated population did uncover a bona fide
novel possible generalizable therapeutic target
for the disease.

Rare variants contributing to T2D have also
been reported in other contexts, with Iceland prov-
ing a rich source of such events, including
uncovering variants in the genes encoding cyclin
D2 (CCND2), peptidylglycine alpha-amidating
monooxygenase (PAM), and pancreatic and duo-
denal homeobox 1 (PDX1) (Steinthorsdottir
et al. 2014). In addition, an investigative group
uncovered rare loss-of-function variants in the
“solute carrier family 30” (SLC30A8) gene that
actually confers protection from T2D, suggesting
a rich possibility for intervention opportunities
(Flannick et al. 2014). Furthermore, a rare variant
in the HNF1 homeobox A (HNF1A) gene has
been found specifically in Latinos (Estrada
et al. 2014).

Collectively, these newly sequencing-
identified variants do not explain much more of
the missing heritability of T2D than what was
found solely with GWAS, and the remaining
such variants are going to be increasingly difficult
to uncover. But as analytical and technical break-
throughs occur, then the portfolio of rare,
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impactful, and not-so-impactful missense variants
should be detected on a more regular basis. How-
ever, rare variants with modest effects in noncod-
ing regions will prove far more challenging to
fully elucidate.

6 GWAS Outcomes for Obesity

T2D and increased body mass index (BMI) are
very well known to be heavily correlated. And as
for other complex traits, many loci have been
implicated in conferring risk for obesity. How-
ever, the first such locus suggested by this
approach, insulin-induced gene 2 (INSIG2), failed
to be widely replicated by others (Loos et al. 2007;
Dina et al. 2007; Rosskopf et al. 2007; Lyon
et al. 2007; Hotta et al. 2008).

However, now 97 loci have been robustly
established by GWAS as a consequence of larger
and larger meta-analyses (Loos et al. 2008; Willer
et al. 2009; Thorleifsson et al. 2009; Speliotes
et al. 2010; Okada et al. 2012; Monda
et al. 2013; Wen et al. 2012; Locke et al. 2015;
Okada et al. 2012; Wen et al. 2012). In fact the
“Empire State Building” signal on chromosome
16 for obesity/increased BMI was initially uncov-
ered in a GWAS of T2D (Frayling et al. 2007), but
the authors of the study observed that the associ-
ation was ablated when corrected for BMI.
Another study published around the same time
also implicated the same locus as a consequence
of a study of population markers (Dina
et al. 2007). This signal resides within the “fat
mass and obesity associated” (FTO) gene and
accounts for only approximately 1 % of the
predicted genetic component to obesity.

Indeed, subjects homozygous for the FTO
BMI-increasing allele have been found to weigh
on average 3 kg more than subjects carrying the
other allele (Church et al. 2010). Interestingly,
children homozygous for the BMI-decreasing
allele of FTO eat significantly less than those
carrying the BMI-increasing allele, pointing to a
possible mechanism where the BMI-decreasing
allele protects against overeating due to neurolog-
ical signaling for satiety (Cecil et al. 2008; Wardle
et al. 2008).

7 Functional Follow-Up of
GWAS-Implicated Loci

The fact that the loci uncovered fromGWASdo not
explain the entire genetic architecture of complex
traits has not deterred researchers from starting to
look at the functional role of the signals already
reported. After all, even though each locus does not
explain a big proportion of the genetic component
of common traits, these highly reproducible signals
could represent generalizable targets for novel ther-
apeutic intervention opportunities.

The loci that have received the most attention
in this context have been the “Empire State Build-
ing” signals that have come up in T2D and obe-
sity. As such, this section is going to highlight
what has been found with efforts on TCF7L2
and FTO loci to exemplify the sort of approaches
that can be used to translate these findings.

The main challenge is that when a signal is
observed in a given GWAS, all that one really is
observing is a signal that is overrepresented in the
DNA of a set of patients as compared to a set of
controls, so one has very little clue on what the
causal variant or causal tissue is with respect to
where the site of action is. Furthermore, there is
even doubt if the actual causal gene has been
identified. These issues are tackled below as we
go through the functional studies outlined.

8 Causal Variant

Before one can go about resolving the function of
a GWAS-implicated locus, the best place to start is
to determine what precisely the tag SNPs are
capturing. As mentioned above, it is very unlikely
the actual causal variant was physically present on
the genotyping array; rather an SNP in LD with
the causal variant has “traveled” through the gen-
erations with it. Elucidating the actual causal
lesion at the multitude of GWAS loci has proved
very challenging, and to date only a handful of
loci in the complex trait area have been resolved
(Maller et al. 2012).

However, given that the TCF7L2 locus for T2D
was reported nearly a decade ago, it has received
widespread attention and thus represents one of the
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few loci where the causal variant is presumed to
have been identified. By leveraging the fact that
different ethnicities have different haplotypic
structures, and assuming the same locus contrib-
utes to a trait across multiple races, one can fine
map down the number of variants that the causal
variant must be. These are known as “credible
sets” and allow investigators to have a manageable
short list of variants to work with (Maller
et al. 2012).

Following on from refinement studies in Afri-
cans and resequencing efforts in African Ameri-
cans (Helgason et al. 2007; Palmer et al. 2011),
Bayesian modeling strongly supported the previ-
ous reports by implicating rs7903146 within the
third intron as being the causal variant at this locus
(Maller et al. 2012). Of particular note is that the
risk T allele of rs7903146 is common in
populations of European and African ancestry
but not in East Asians, which is consistent with
the fact that the association is present in that pop-
ulation but is often too difficult to detect at the
variant that is somewhat more rare in that ethnicity
(Chang et al. 2007; Ng et al. 2007, 2008; Ren
et al. 2008; Yu et al. 2010; Zheng et al. 2012).

The same approach has now implicated short
lists of variants for other GWAS-implicated T2D
and obesity loci (Locke et al. 2015; Maller
et al. 2012).

9 Causal Tissue

9.1 TCF7L2

Although there is wide consensus that the causal
susceptibility variant at the TCF7L2 locus is the T
allele of rs7903146, it is still very unclear in which
tissue(s) it exerts its effect. But with the causal
lesion now determined, that gives this locus a
head start over its contemporary loci which have
not received the same amount of attention. Given
that the variant resides in an intronic region, many
researchers have investigated it from a regulatory
point of view by studying aspects of allele-
specific expression, splicing, and chromatin state
(Gaulton et al. 2010). Many studies have been
carried out to understand the mechanism by

which TCF7L2 plays a regulatory role in T2D
pathogenesis. With the fact that T2D is a meta-
bolic disease, the primary tissues that have
received most attention have been the pancreatic
islet (Lyssenko et al. 2007), liver (Boj et al. 2012),
adipose (Kaminska et al. 2012), and the intestinal
endocrine L cell (Yi et al. 2005). This work is
outlined below.

10 Pancreatic Islet

As the TCF7L2 locus association is stronger in
cohorts with leaner T2D cases (Palmer
et al. 2011), the prevailing view is that the lesion
is involved in insulin secretion as opposed to
insulin resistance. It is therefore not surprising
that the majority of studies published to date
have focused on the pancreatic islet, with many
key studies suggesting that the risk variant influ-
ences beta-cell function and thus subsequent pro-
gression to diabetes (Florez et al. 2006; Le
Bacquer et al. 2012).

Leveraging small interfering RNA in human
islets to deplete levels of TCF7L2 has led to an
observation of reduced β-cell proliferation plus
elevated β-cell apoptosis. In addition, glucose-
stimulated insulin secretion has been shown to be
impacted by the loss of TCF7L2 in islets derived
from either mice or humans, while conversely
when TCF7L2 was overexpressed in this setting,
the islets turned out to be resistant to glucose and
cytokine-induced apoptosis (Shu et al. 2008). Fur-
thermore, using a dominant-negative TCF7L2
model in rodent INS-1 cells led to the repression
of proliferation, leading to the conclusion that
TCF7L2 is involved in the maintenance of beta-
cell mass (Liu and Habener 2008).

There have been some reports that TCF7L2
mRNA levels in human pancreatic islets are ele-
vated as the number of T2D risk alleles increases
and that the overexpression of TCF7L2 in the
same tissue leads to reduced insulin secretion
(Cauchi and Froguel 2008; Lyssenko
et al. 2007), but some other reports have not
observed such an effect (Elbein et al. 2007). How-
ever, one key study did show that the risk allele of
rs7903146 was more abundant in the open
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chromatin fraction of pancreatic islets using
formaldehyde-assisted isolation of DNA com-
bined with sequencing (FAIRE-seq), suggesting
that the role of this variant is related to an allele-
specific effect on transcriptional activity, pro-
moter usage, and/or splicing (Gaulton et al. 2010).

Despite the abundance of interesting mRNA
expression results, the main debate concerning
TCF7L2 in beta cells is the distinct paucity of
TCF7L2 protein levels in the beta cell. Indeed, an
immunohistochemical staining effort in adult
mouse pancreatic islets failed to detect the
TCF7L2 protein at all (Yi et al. 2005), and compa-
rable results were seen in human beta cells (Zhao
et al. 2010). Furthermore, the generation of a con-
ditional TCF7L2 knockout mouse model (Boj
et al. 2012; da Silva Xavier et al. 2012; Savic
et al. 2011) revealed that deleting the gene from β
cells had no impact on embryonic development of
the endocrine pancreas, β-cell proliferation, or
expression of the key genes operating in that tissue.
As such, there is still scope to look in other tissues.

11 Liver

When one turns to the liver-specific deletion in the
TCF7L2 knockout mouse model, hepatic lipid
metabolism did turn out to be impaired (Boj
et al. 2012), suggesting that the gene’s function
impacts postnatal metabolic adaptation rather than
during the development of the embryo. Connected
to this, it became clear that key genes related to
glycogen metabolism were significantly reduced
in TCF7L2 knockout rodent newborn livers in
contrast with their wild-type littermates, including
glycogen synthase 2 (GYS2). Genes related to
gluconeogenesis were also impacted, such as
phosphoenolpyruvate carboxykinase 1(PCK1)
and glucose-6-phosphate, catalytic subunit
(G6PC) (Boj et al. 2012).

12 Gastrointestinal Tract

The gastrointestinal tract remains a popular area to
investigate the role of TCF7L2 function in the
context of T2D. After all, the full knockout

mouse turns out to be embryonic lethal as a con-
sequence of a defect in the proliferation of crypt
stem cells in the small intestine (Korinek
et al. 1998, 1998).

Those studying this tissue area are motivated
by the hypothesis that TCF7L2 plays a pivotal role
in glucose homeostasis via the insulinotropic hor-
mone glucagon-like peptide 1 (GLP-1), which is
known to be produced in the enteroendocrine L
cells of the small intestine (Hansson et al. 2010).
It is also well known that TCF7L2 occupies the
promoter of the proglucagon gene, a crucial pre-
cursor to GLP-1, and is involved in its transcrip-
tional control based on work in intestinal GLUTag
cells. In this setting, the dominant-negative
mutant for TCF7L2 depletes proglucagon
mRNA levels (Yi et al. 2005), thus dramatically
impacting GLP-1 levels in the intestinal tract
(Yi et al. 2005).

Furthermore, immunohistochemistry with a
TCF7L2-specific monoclonal antibody in human
cells revealed a very restricted expression pattern
that was limited to normal intestinal and mam-
mary epithelium, together with the related carci-
nomas observed in the same tissues (Barker
et al. 1999).

And finally, it has been known for over
15 years that missense mutations in TCF7L2 (for-
merly TCF4) cause colorectal cancer (Duval
et al. 2000), thus further implicating the role of
this gene in the intestinal tract – see more details
below.

13 Adipose Tissue

Despite there being less motivation to investigate
a role for TCF7L2 in insulin resistance, there have
been reports showing that TCF7L2 expression
levels are reduced in subcutaneous adipose tissue
from patients with T2D (Cauchi et al. 2006). In
addition, tissue-specific alternative splicing of
TCF7L2 has been reported, in particular in the
adipose setting (Kaminska et al. 2012;
Prokunina-Olsson et al. 2009, 2009), suggesting
that the coordinated expression of this gene in this
tissue is physiologically relevant and meaningful
to metabolic control.

148 S.F.A. Grant



14 Connection to Cancer

As mentioned above, prior to its reported associ-
ation with T2D, TCF7L2 was already well
established as a colorectal cancer susceptibility
gene (Duval et al. 1999, 2000). This is partly
due to the fact that TCF7L2 plays a role in regu-
lating the expression of key genes involved in the
control of the G1 to S phase transition in the cell
cycle, including cyclin D1 and c-Myc (Baker
et al. 2000; Tetsu and McCormick 1999). Further-
more, extensive resequencing of genomic DNA
from colorectal adenocarcinomas has revealed
recurrent TCF7L2 gene fusions with its neighbor-
ing gene, VTI1A, thus contributing to the patho-
genesis of this cancer (Bass et al. 2011).

However, the cancer TCF7L2 plot thickens
further. When one conducts a GWAS in most of
the common cancers, the “Empire State Building”
signal is located in a gene desert on chromosome
8q24 (Amundadottir et al. 2006; Yeager
et al. 2007; Haiman et al. 2007a; Gudmundsson
et al. 2007; Witte 2007; Haiman et al. 2007b;
Zanke et al. 2007; Tomlinson et al. 2007). Subse-
quent follow-up of this multi-cancer locus
revealed that the mechanism was through an
extreme upstream TCF7L2 occupancy site that
was involved in the transcriptional control of the
MYC gene (Pomerantz et al. 2009; Tuupanen
et al. 2009; Sur et al. 2012).

Going beyond TCF7L2, an interesting pattern
is beginning to emerge, where many of the stron-
gest associated GWAS-implicated T2D risk
alleles protect against prostate cancer (Frayling
et al. 2008), including THADA, JAZF1, and
TCF2 (also known as HNF1B) (Zeggini
et al. 2008; Gudmundsson et al. 2007; Echwald
et al. 1997).

As such, the link between T2D and cancer at the
GWAS level is very clear and is a potential clue on
the functional mechanism of many of these key
loci in metabolism. However, irrespective of the
actual causal tissue (and indeed it may be all of the
above as opposed to being restricted to just one),
TCF7L2 is now extensively considered a “master
regulator” of the canonicalWnt signaling pathway,
where it plays a crucial role in multiple develop-
ment processes (He 2003; Es et al. 2003;

He et al. 1998; Kinzler and Vogelstein 1996).
Indeed, the mining of ChIP-seq data derived from
multiple tissue-derived cell lines reveals that the
list of genes bound by TCF7L2 is consistently and
significantly enriched for both endocrine-related
pathways and GWAS-implicated loci for various
cardio-metabolic traits (Zhao et al. 2010; Johnson
et al. 2014; Norton et al. 2011).

14.1 FTO

The FTO gene has received extensive attention,
including being the subject of a science paper
when it was characterized as encoding a
“2-oxoglutarate-dependent nucleic acid
demethylase” (Gerken et al. 2007). The areas of
the body where it is most expressed, namely, in
key areas of the brain that influence appetite (Lein
et al. 2007; Gerken et al. 2007) make a lot of sense
with respect to the role in the pathogenesis of
obesity from an increased energy intake perspec-
tive (Cecil et al. 2008).

The mouse model lacking the Fto gene showed
increased energy expenditure and was leaner,
suggesting that targeting FTO could protect
against obesity (Church et al. 2009, 2010; Fischer
et al. 2009). Conversely, the Fto ubiquitously
overexpressing mouse reveals an increase in
body and fat mass, primarily related to increased
food intake (Church et al. 2010).

Putting all this data together suggests that FTO
operates in a neuropsychiatric manner via the
hypothalamus impacting appetite control. These
data caused a lot of excitement as FTO was
increasingly looking like a generalizable target
for therapeutic intervention for obesity. Then
investigators looked at the locus and drilled fur-
ther on what could be the actual causal gene at this
genomic region.

15 Causal Gene

GWAS has now delivered a large number of geno-
mic signals that are associated with a myriad of
common diseases and complex traits. Many of
these loci have been widely validated and are thus
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considered robust observations by the community.
However, these reports only represent a genomic
signal and not necessarily, as often presumed, the
localization of a culprit gene. This is due to the fact
that gene expression can be controlled locally or via
large genomic distances; indeed, most regulatory
elements do not control the nearest genes and can
reside tens or hundreds of kb away.

One clear example of this in highlighting how
ignoring this basic concept in molecular biology
can lead to misdirected research efforts is the
strong associated signal with common obesity
and FTO. Hundreds of scientific papers have
been published studying the role of FTO in the
context of obesity and/or BMI determination;
however, a paper published in Nature in March
2014 revealed that this signal was actually an
enhancer for the neighboring IRX3 gene (Smemo
et al. 2014) leveraging chromatin conformation
capture (3C)-based techniques. Such approaches
can aid in the identification of causal genes at such
loci by identifying genomic regions that are in
physical contact with the locus of interest. Once
the causal genes are actually identified with
greater confidence, development can take place
for therapeutic and diagnostic purposes.

16 Genetics of Early Life:
Implications for T2D
in Later Life

It is well established thatmany of the risk factors for
common diseases of middle and old age often have
their origins in childhood. If one can determine the
genetic basis to these observations, then possible
early stage interventions could be developed.

For instance, a link between low birth weight
and the development of metabolic disease in
adulthood has been established (Whincup
et al. 2008). Genetic variation at the locus harbor-
ing the glucokinase (GCK) gene, which encodes a
protein involved in pancreatic glucose sensing
and has been implicated by GWAS analyses of
T2D-related traits, has been shown to have differ-
ing effects on birth weight depending on whether
it is carried by the mother or the fetus (Hattersley
et al. 1998). This exemplifies the importance of

endogenous fetal insulin-secreting capacity in
order to determine antenatal growth, which is
also known as the “fetal insulin hypothesis”
(Hattersley and Tooke 1999).

Taking this concept one step further, a study
consisting of in excess of 15,000 subjects and
over 8,000 mothers showed that each maternal
risk-conferring rs7903146 allele within TCF7L2
increased birth weight while the combined effect
of three to four maternal risk-conferring alleles of
TCF7L2 and GCK showed an even more marked
impact (Freathy et al. 2007); however, the TCF7L2
interaction with birth weight is not universally
agreed upon (Mook-Kanamori et al. 2009; Pulizzi
et al. 2009), possibly due to statistical power
differences between study designs.

Such reports have led to subsequent studies
looking at other T2D GWAS loci in the context
of birth weight, with positive reports for loci
including CDKAL1, HHEX-IDE, CDKN2A/B,
JAZF1, and IGFBP2 (Pulizzi et al. 2009; van
Hoek et al. 2009; Freathy et al. 2009; Zhao
et al. 2009; Morgan et al. 2010). However, the
full significance of these observations requires
additional follow-up to fully understand the
mechanism of action.

A meta-analysis of six European ancestry
cohorts with GWAS data for birth weight identi-
fied variants associated with lower birth weight
(Freathy et al. 2010), with a subsequent larger
meta-analysis from the same consortium reveal-
ing additional loci (Horikoshi et al. 2013). Of
particular note were the adenylate cyclase
5 (ADCY5) and CDKAL1 loci, as they are already
established for T2D; however, it appears that their
primary role is in much earlier life.

Another influence of childhood on adulthood
is in the context of obesity. Indeed, approximately
70 % of children who are obese during adoles-
cence go on to become obese adults (Nicklas
et al. 2001; Whitaker et al. 1997; Parsons
et al. 1999) and are thus at much higher risk of
disease in later life, including T2D. It has there-
fore been important to uncover the genetic deter-
minants of childhood obesity as it would not only
have implications for pediatric health but also for
diseases of old age. Furthermore, it is also highly
likely that it is easier to distill out genetic loci
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contributing to obesity in the pediatric setting
where the influence of environmental con-
founders is lessened.

Cross-sectional cohort studies have consis-
tently reported an age-dependent effect of high-
risk FTO variants on BMI. The first reports
revealed that there was no influence on fetal
growth or birth weight, while the effect on BMI
becamemost pronounced by the age of 7 years old
(Frayling et al. 2007). Indeed, a subsequent study
found a negative association between the key FTO
variant and BMI before the age of two years old
and only took effect after that time point (Hardy
et al. 2010). Furthermore, there is a growing pic-
ture that very few of the risk alleles first detected
in the adult GWAS analyses of BMI have an
influence on birth weight (Andersson
et al. 2010), which is in contrast to risk variants
reported for T2D (Manco and Dallapiccola 2012).

The Early Growth Genetics Consortium went
on to conduct the largest GWAS for childhood
obesity reported to date (Bradfield et al. 2012)
and observed many of the detected loci in adults
but with a much lower sample number, supporting
the notion that the pediatric setting is a more
sensitive setting to uncover obesity genes. The
study also uncovered two novel loci, homeobox
B5 (HOXB5) and olfactomedin 4 (OLFM4).

17 LADA: A Major Confounder
in Genetic Studies of T2D

With the hunt for more and more subtle effect size
variants in T2D-related traits, there is an increasing
risk that artifactswill be detected and inappropriate
assignment of loci to the disease. After all, the
TCF7L2 locus confers a relative risk of 1.4 while
the more recent loci are closer to 1.1. As sample
sizes increase in ever bigger meta-analyses, the
likelihood that comorbidities are driving some
new signals is ever more likely, especially when
hunting for loci that yield sub 1.1 odds ratios.

A clear example of this is the fact that among
any given group of random T2D patients, there
will be in fact antibody-positive subjects present
at a frequency of 8–10% (Grant et al. 2010; Basile
et al. 2014). There is good recent evidence to

believe that subjects, often referred to as “latent
autoimmune diabetes in adults” (LADA) cases
will be driving some of the more recent signals
reported in massive meta-analyses of T2D
GWAS. Indeed, the well-established autoimmune
loci harboring the GLIS family zinc finger
3 (GLIS3) and “zinc finger, MIZ-type containing
1” (ZMIZ1) genes have been reported to be asso-
ciated with T2D (Andersen et al. 2014). Added to
that, the most recent GWASmeta-analysis of T2D
in African Americans reported two loci
(Ng et al. 2014), HLA-B and INS-IGF2, both of
which are well-known type 1 diabetes loci.

18 Summary

Although there have been huge advances in eluci-
dating the genetics of T2D-related traits, much is
still to be uncovered. Apart from the missing heri-
tability that remains to be characterized, there
remain challenges when it comes to determining
the causal tissue, the causal variant, and even the
causal gene for many of the establishedGWAS loci.
Once advances are made in these key areas, a better
understanding of the genetic etiology of T2D will
be in place, and new therapeutic and diagnostic
opportunities should present themselves.
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Abstract
This chapter focuses on the genetics of com-
mon lipid disorders, collectively referred to as
“dyslipidemia,” a component of the metabolic
syndrome (MetSyn). We begin by providing a
brief background on the lipids discussed in this
chapter. Then, we discuss specific variants in
key candidate genes and their role in related
pathways that have been associated with indi-
vidual lipid levels and dyslipidemia in larger-
scale studies. In addition, we comment on
associations observed in genome-wide associ-
ation studies (GWAS) and sequencing studies.
We also discuss how the use of more sophisti-
cated statistical methods (e.g., genetic risk
scores and pathway modeling) are helping to
better understand the collective effects of mul-
tiple variants in multiple genes on these lipid
traits. We conclude by providing perspectives
for future directions.

Keywords
Obesity •Metabolic syndrome •Dyslipidemia •
Genetics • Cholesterol • Triglycerides

1 Introduction

Dyslipidemia is characterized by an aggregation of
lipoprotein abnormalities including high serum tri-
glycerides (TG), low high-density lipoprotein cho-
lesterol (HDL-C), and high or increased small
low-density lipoprotein cholesterol (LDL-C). Lipo-
proteins, which contain lipids and apolipoproteins
(APO), are responsible for transporting water-
insoluble lipids (e.g., cholesterol and TG) in plasma
from the intestines and liver, where they are
absorbed and synthesized, respectively, to periph-
eral tissues (e.g., muscle, adipose) for utilization,
processing, and/or storage (Kwan et al. 2007).

There are several subtypes of lipoproteins that
have specific functions including the following
(from smallest to largest): (1) chylomicrons,
which transport dietary TG from the intestines to
the peripheral tissue and liver; (2) very LDL
(VLDL) particles, which transport TG from the
liver to peripheral tissues; (3) intermediate density

lipoproteins (IDL), which are produced from
VLDL particle metabolism and may be taken up
by the liver or further hydrolyzed to LDL; and
(4) HDL, which is key in “reverse cholesterol
transport” or shuttling cholesterol from peripheral
cells to the liver (Kwan et al. 2007). When LDL
becomes lipid-depleted, small dense LDL
(sdLDL) particles are formed that have a lower
affinity for the LDL receptor (LDLR), more sus-
ceptibility to oxidation and a higher affinity for
macrophages, and, thus, sdLDL particles can also
contribute to the atherosclerotic process (Austin
et al. 1990; Littlewood and Bennett 2003). Plasma
triglycerides (TG) integrate multiple TG-rich lipo-
protein particles, predominantly, intestinally syn-
thesized chylomicrons in the postprandial state and
hepatically synthesized VLDL in the fasted state.

Dyslipidemia is defined within the context of
the metabolic syndrome (MetSyn), which is a
clustering of metabolic traits including
dyslipidemia as well as hypertension (raised sys-
tolic and/or diastolic blood pressure), dysglycemia
(high fasting glucose), and obesity (high body
mass index (BMI) and/or waist circumference).
Multiple definitions for MetSyn have been pro-
posed by organizations including the World
Health Organization (WHO) (Alberti and Zimmet
1998), European Group Insulin Resistance
(EGIR) (Balkau and Charles 1999), National Cho-
lesterol Education ProgramAdult Treatment Panel
III (NCEPATP III) (2001), International Diabetes
Federation (IDF) (Alberti et al. 2005), American
Heart Association/National Heart, Lung, and
Blood Institute (AHA/NHLBI) (Grundy
et al. 2006), and the joint interim statement pro-
posed by the AHA/NHLBI, IDF, and others
(Alberti et al. 2009). The dyslipidemia component
of MetSyn has been fairly consistently defined as
having TG �150 mg/l, HDL-C <40 mg/dl (1.03
mmol/l, in males) or <50 mg/dl (1.29 mmol/l in
females) or drug treatment for elevated TG or low
HDL-C (2001; Alberti et al. 2005, 2009). How-
ever, the World Health Organization (WHO)
(Alberti and Zimmet 1998) proposed slightly
lower limits for HDL-C (male: <0.9 mmol/l
(35 mg/dl); female: <1.0 mmol/l (39 mg/dl)),
and the EGIR (Balkau and Charles 1999)
recommended that dyslipidemia be defined by
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HDL-C <1.0 mmol/l (39 mg/dl) or TG >2.0
mmol/l (177mg/dl). Although the aforementioned
guidelines exist, many authors have chosen to use
cut points other than those specific in the context
of MetSyn when defining dyslipidemia; therefore,
in this chapter, we attempt to clarify the specific
values and parameters used when referring to
dyslipidemia. Furthermore, although LDL-C
remains the primary target of therapy for the man-
agement of high blood cholesterol, there is cur-
rently no recommended value for LDL-C levels in
the context of MetSyn. However, we note that the
NCEP ATPIII guidelines for recommended drug
therapy are based on LDL-C values ranging from
�100 mg/dl to �190 mg/dl, depending on the
presence/absence of other coronary heart disease
(CHD) risk factors (Grundy et al. 2004).

Dyslipidemia is quite common in developed
nations, and its prevalence is rising worldwide,
which may be attributed, in part, to the rising rates
of overweight and obesity (Halpern et al. 2010).
According to the National Health and Nutrition
Examination Survey (NHANES) III, conducted in
1988–1994 in the USA, which used the NCEP
ATP III criteria, the age-adjusted prevalence of
dyslipidemia defined by high TG or low HDL-C
was approximately 30.0 % and 37.1 %, respec-
tively (Ford et al. 2002). In a study using the
Health Survey for England (HSE) (2003–2006)
survey data and NHANES (1999–2006) data, the
prevalence of low HDL-C (defined in both males
and females as<40mg/dl) was 10.0 % in England
and 19.2 % in the USA (Martinson et al. 2011).
Interestingly, trends in the USA and England have
indicated that during the past two decades, there
has been an increase in the proportion of individ-
uals diagnosed with high cholesterol (�240
mg/dl) that achieve therapeutic control (Roth
et al. 2010). In the USA, 54.0 % of men (95 %
CI, 47.6–60.4) and 49.7 % of women (95 % CI,
44.3–55.0) in 2006 compared to 10.8 % of men
(95 % CI, 8.0–13.6) and 8.6 % (95 % CI,
6.7–10.6) of women in 1993 had high total
serum cholesterol and were on cholesterol-
lowering medication (Roth et al. 2010). In
England, in 2006, 35.5 % of men (95 % CI,
32.8–38.3) and 25.7 % of women (95 % CI,
23.4–28.1) were on cholesterol-lowering

medication as opposed to 0.6 % of men (95 %
CI, 0.3–1.3) and 0.4 % of women (95 % CI,
0.1–0.7 %) in 1993 (Roth et al. 2010). Prevalence
rates may also vary by whether or not relevant
drug treatments have been considered, which
should include not only cholesterol-lowering ther-
apies (e.g., statins) but other drugs (e.g., tamoxi-
fen, glucocorticoids) that are known to alter TG
and cholesterol levels (Garg and Simha 2007).

Although the environment plays a substantive
role in the manifestation of dyslipidemia, there is a
strong genetic component. Heritability estimates
reported for dyslipidemia typically range from
0.20 to 0.60 (Edwards et al. 1997; Goode
et al. 2007; Herbeth et al. 2010; Kronenberg
et al. 2002; Wang and Paigen 2005), and a recent
review suggests HDL-C heritability may even
extend up to 80 % (Rankinen et al. 2015). There
have been many common genetic variants in the
form of single nucleotide polymorphisms (SNPs)
that have been associated with dyslipidemia. In
this chapter, we update our previous summary of
associations that have been reported between
SNPs with a minor allele frequency (MAF) greater
than 0.05 and HDL-C, LDL-C, and TG levels
(Nock and Chandran Pillai 2012). We note that,
together, common variants have been estimated to
explain less than 10 % of HDL-C levels in the
general population (Kronenberg et al. 2002); how-
ever, we purport that this is likely an underestima-
tion of the genetic contribution and that more
elegant statistical modeling methods that combine
SNPs in a more biologically meaningful way will
enable a better estimate and understanding of the
collective role that genetic variants play in the
manifestation of dyslipidemia and MetSyn. In the
last section of this chapter, we review studies that
have undertaken such more complex modeling
strategies to better understand the aggregate effects
of SNPs in dyslipidemia and MetSyn and provide
insights to additional potential future directions.

2 Genetics of HDL-C

In Table 1, we list common SNPs associated with
HDL-C that were initially tabulated in Boes
et al. (2009), which reviewed studies with sample
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sizes of 500 or greater, as well as other common
SNPs in large studies that were identified in and
since our previous review (Nock and Chandran
Pillai 2012). Variants in Table 1 are organized by
gene acronyms which are listed in alphabetical
order. Below, we describe variants in genes
based on their involvement in relevant biological
pathways including HDL-C synthesis and metab-
olism as well as relevant transport, receptor, and
ligand-binding (via apolipoproteins) mechanisms.

2.1 Variation in Genes Involved
in HDL-C Synthesis
and Metabolism

One of the most notable genes involved in HDL-C
synthesis and metabolism is the cholesterol ester
transfer protein (CETP) gene located on chromo-
some 16 (16q21) whose variants have been asso-
ciated with HDL-C. CETP is a key plasma protein
that mediates the transfer of esterified cholesterol
from HDL to APOB (see section “Variation in
Genes Involved in HDL-C Transport and Bind-
ing”) containing particles in exchange for
TG. Three common polymorphisms (Table 1:
TaqIB (rs708272); �629C > A (rs1800775);
Ile405Val (rs5882)) can all modestly inhibit
CETP activity and have been consistently associ-
ated with higher HDL-C levels (Bernstein
et al. 2003; Blankenberg et al. 2004; Boekholdt
and Thompson 2003; Boekholdt et al. 2005;
Borggreve et al. 2005; Eiriksdottir et al. 2001;
Freeman et al. 2003; Kathiresan et al. 2008;
Klerkx et al. 2003; Tai et al. 2003b; Thompson
et al. 2008; Shakhtshneider et al. 2014).

Another key gene involved in HDL-C metabo-
lism is lipoprotein lipase (LPL) located on chromo-
some 8 (8p22), which encodes an enzyme involved
in lipolysis of TG-containing lipoproteins such as
VLDL and chylomicrons (Miller and Zhan 2004)
that generate free fatty acids (FFA) that can be
taken up by the liver, muscle, and adipose tissues
(Kwan et al. 2007). Thus, LPL may only affect
HDL-C levels indirectly (Lewis and Rader 2005)
but can affect LDL levels directly (see section
“Genetics of LDL-C”). Several SNPs in LPL
have been associated with HDL-C (Table 1)

(Ahn et al. 1993; Corella et al. 2002; Holmer
et al. 2000; Klos et al. 2006; Komurcu-Bayrak
et al. 2007; Lee et al. 2004; Nettleton et al. 2007;
Senti et al. 2001; Wittrup et al. 1999), and many of
these SNPs are in strong linkage disequilibrium
(LD) with each other (e.g., rs320, rs326, rs13702,
rs10105606) (Boes et al. 2009; Heid et al. 2008).

The hepatic lipase (HL; LIPC) gene located on
chromosome 15 (15q21) encodes a glycoprotein
that is synthesized by liver cells (hepatocytes) and
catalyzes the hydrolysis of TG and phospholipids
(Miller et al. 2003), and following hydrolysis of
TG by LPL, VLDL particles are reduced to IDL
particles that may be further hydrolyzed by
HL/LIPC to LDL or taken up by the liver (Kwan
et al. 2007). Several HL/LIPC SNPs have been
associated with HDL-C with, perhaps, the most
consistent associations with rs1800588 and
rs2070895 (Table 1; Andersen et al. 2003;
Costanza et al. 2005; de Andrade et al. 2004;
Fang and Liu 2002; Grarup et al. 2008; Iijima
et al. 2008; Isaacs et al. 2004; Kathiresan
et al. 2008; Ko et al. 2004; McCaskie
et al. 2006; Nettleton et al. 2007; Tai
et al. 2003a; Talmud et al. 2002b; Whiting
et al. 2005; Yamada et al. 2007).

The endothelial lipase (EL; LIPG) gene, located
on chromosome 18 (18q21.1), is an enzyme
expressed in endothelial cells that, in the presence
of HL/LIPC, metabolizes larger (HDL3) to smaller
(HDL2) HDL-C particles and increases the catab-
olism of APOA-I (see section “Variation in Genes
Involved in HDL-C Transport and Binding”) (Jaye
and Krawiec 2004). Several EL/LPIG polymor-
phisms have been associated with HDL-C levels
(Table 1; Hutter et al. 2006; Ma et al. 2003; Mank-
Seymour et al. 2004; Paradis et al. 2003; Tang
et al. 2008; Yamakawa-Kobayashi et al. 2003).
Only the nonsynonymous SNP, rs2000813, has
been consistently associated with HDL-C levels
in African-Americans (Hutter et al. 2006; Tang
et al. 2008; Yamakawa-Kobayashi et al. 2003).

The lecithin-cholesterol acyltransferase
(LCAT) gene, located on chromosome
16 (16q22.1), catalyzes the esterification of free
cholesterol and metabolizes larger HDL-C parti-
cles to smaller HDL-C particles in the presence
of cofactor APOA-I (Klos and Kullo 2007;
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Miller and Zhan 2004). However, polymor-
phisms in LCAT have only been inconsistently
associated with changes in HDL-C levels
(Table 1; Zhu et al. 2006; Zhang et al. 2004;
Pare et al. 2007; Miettinen et al. 1998; Boekholdt
et al. 2006).

Paraoxonase 1 (PON1), which is located on chro-
mosome 7 (7q21.3), inhibits the oxidation of LDL
(Mackness et al. 1991) and may, therefore, only
indirectly affect antioxidant properties of HDL-C.
Several SNPs in PON1 have been associated with
HDL-C levels including two nonsynonymous
SNPs, rs662 and rs3202100, which are in strong
LD; however, results have been inconsistent across
studies (Table 1; Blatter Garin et al. 2006; Hegele
et al. 1995;Manresa et al. 2006; Rios et al. 2007; van
Aalst-Cohen et al. 2005).

2.2 Variation in Genes Involved
in HDL-C Transport and Binding

Many common variants in genes involved in
HDL-C transport and binding have been impli-
cated. The scavenger receptor class B type
1 (SCARB1; SR-B1) gene located on chromosome
12 (12q24.31) is a key gene, which has been shown
to participate in the uptake of HDL in animals by
transferring cholesterol from the HDL-C particle
and releasing the lipid-depleted HDL particle into
the circulation (Acton et al. 1996; Miller
et al. 2003). Polymorphisms in SCARB1 have
been associated with HDL-C levels with the most
notable being rs5888 (Table 1; Boekholdt
et al. 2006; Costanza et al. 2005; Hsu et al. 2003;
Morabia et al. 2004; Osgood et al. 2003; Roberts
et al. 2007; Smalinskiene et al. 2013).

The LDL receptor (LDLR) gene located on
chromosome 19 (19p13.2) participates in the
uptake of LDL and chylomicron remnants by hepa-
tocytes (Kwan et al. 2007) and may only indirectly
affect HDL-C levels. However, a few polymor-
phisms in LDLR have been associated with
HDL-C levels (Table 1; Costanza et al. 2005;
Hegele et al. 1995; Yamada et al. 2008), but their
impact is greater on LDL-C levels.

The ATP-binding cassette transporter A1
(ABCA1), located on chromosome 9 (9q31.1),

plays a key role in “reverse cholesterol transport”
by mediating the efflux of cholesterol and phos-
pholipids from macrophages to the nascent lipid-
free, APOA-1 HDL particle (Cavelier et al. 2006;
Miller et al. 2003). Several polymorphisms have
been fairly consistently associated with HDL-C
levels, but different variants appear to drive this
association in different ethnic groups (Table 1; Clee
et al. 2001; Costanza et al. 2005; Frikke-Schmidt
et al. 2004; Hodoglugil et al. 2005; Kathiresan
et al. 2008; Klos and Kullo 2007; Porchay
et al. 2006; Shioji et al. 2004b;Whiting et al. 2005).

The apolipoproteinA-1 (APOA1;APOA-I) gene,
located on chromosome 11 (11q23-24), encodes a
ligand required for HDL-C binding to its receptors
including SCARB1 andABCA1 and is an important
cofactor in “reverse cholesterol transport” (Miller
et al. 2003; Remaley et al. 2001; Rigotti
et al. 1997). Polymorphisms in APOA-I have been
associated with HDL-C levels, but results across
studies have been inconsistent (Table 1; Brown
et al. 2006; Kamboh et al. 1999; Larson et al. 2002;
Shioji et al. 2004a). Apolipoprotein A-4 (APOA4;
APOA-IV) gene is part of the “APOA1/C3/A4/A5
gene cluster” and a potent activator of LCATwhich
modulates the activation of LPL and transfer of
cholesteryl esters from HDL to LDL (Kwan
et al. 2007). Polymorphisms in APOA4 have not
been as well studied, but rs5110 (Gln360His) and
rs675 have been associated with reduced HDL-C
levels (Ota et al. 2011; Qi et al. 2007).

Apolipoprotein A-5 (APOA5; APOA-V),
located predominantly on TG-rich chylomicrons
and VLDL, activates LPL (Hubacek 2005). A few
APOA5 SNPs have been associated with HDL-C
levels with rs651821 and rs662799 having themost
consistent results across studies (Table 1; Grallert
et al. 2007; Hubacek 2005; Klos et al. 2006; Lai
et al. 2004; Qi et al. 2007; Talmud et al. 2002a;
Yamada et al. 2007; Yamada et al. 2008). Recently,
rs964184 in the APOA5-A4-C3-A1 cluster was
associated with HDL-C in the SMART (Second
Manifestations of ARTerial disease) cohort (van
de Woestijne et al. 2014a).

Apolipoprotein C-3 (APOC3; APOC-III), an
inhibitor of LPL and transferred to HDL during
the hydrolysis of TG-rich lipoproteins (Kwan
et al. 2007; Miller et al. 2003), has several SNPs
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that have been identified, but associations with
HDL-C levels have been inconsistent (Table 1;
Arai and Hirose 2004; Brown et al. 2006; Corella
et al. 2002; Hegele et al. 1995; Kamboh et al. 1999;
Lahiry et al. 2007; Pallaud et al. 2001; Qi et al. 2007;
Russo et al. 2001). Apolipoprotein E (APOE), a
critical ligand for binding to hepatic receptors that
remove VLDL and LDL particles from the circula-
tion, has several SNPs that have been fairly consis-
tent associated with HDL-C levels (Costanza
et al. 2005; Frikke-Schmidt et al. 2000; Gronroos
et al. 2008; Kataoka et al. 1996; Srinivasan
et al. 1999; Volcik et al. 2006; Wilson et al. 1994;
Wu et al. 2007; Smalinskiene et al. 2013).

2.3 Variation in Genes Involved
in Cell Proliferation,
Inflammation, and Related
Pathways

The M-RAS gene located on chromosome
3 (3q22.2) encodes a member of the membrane-
associated family of Ras small GTPase proteins
engaged in tumor necrosis factor-alpha-stimu-
lated lymphocyte function that appears to play a
role in adhesion signaling, which is an important
aspect of atherosclerotic pathways (Galkina and
Ley 2007). Interestingly, a few common variants
in M-RAS, most notably, rs6782181, have
recently been associated with low HDL-C levels
in a large study involving CAD cases and “con-
trols” with “no significant coronary stenosis by
angiography” (Alshahid et al. 2013); however,
this finding does not appear to have been repli-
cated yet in other populations.

GATA2, an endothelial transcription factor,
located on chromosome 3 (3q21.3), is a multi-
catalytic transcription factor that plays a major
role in controlling growth factor responsiveness
and regulating inflammatory processes (Tsai
et al. 1994). The rs7431368 SNP of the GATA2
gene has recently been associated with low
HDL-C levels in a large Saudi case-control study
involving 2,386 CAD cases and 2,171
angiographed controls (Muiya et al. 2014).

Peroxisome proliferator-activated receptor
gamma (PPARγ) may play a key role in lipid

metabolism by inducing the transcription of related
genes. Recently, the rs3856808 variant in PPARγ
was associated with HDL-C levels in a random
sample of 820 Chinese from the prevention of mul-
tiple metabolic disorders and metabolic syndrome
in the Jiangsu province cohort (Gu et al. 2014b).

The butyrophilin subfamily 2 member A1
(BTN2A1) gene, located on chromosome
6 (6p22.1), encodes proteins that help in the pro-
duction ofmilk fat globules and regulating immune
function (Ogg et al. 2004). The rs6929846 variant
of BTN2A1 has been associated with HDL-C
levels in large cohorts of Japanese and Korean
individuals (Fujimaki et al. 2011). The combina-
tion of the rs6929846 T allele of BTN2A1 with the
rs662799 C allele of APOA5 has also been associ-
ated with 35 % lower HDL-C levels in Japanese
individuals (Hiramatsu et al. 2012).

2.4 Genetic Variants Associated
with HDL-C Identified
Through GWAS

Results from genome-wide association studies
(GWAS) have confirmed associations between
polymorphisms in viable candidate genes includ-
ing CETP, LPL, HL/LIPIC, EL/LIPG, ABCA1,
LCAT, and the APOA1/C3/A4/A5 gene cluster
and HDL-C levels (Boes et al. 2009). GWAS
have also identified two novel putative loci asso-
ciated with HDL-C levels in a large Chinese pedi-
atric population (Shen et al. 2013). Twenty-four
novel loci, all of which hadMAF>0.05 (Table 1),
were recently identified in a joint GWAS and
Metabochip meta-analysis in 188,577 individuals
of European East Asian, South Asian, and African
ancestry (Willer et al. 2013). Other novel and
candidate loci from GWAS have been summa-
rized nicely in other reviews (Teslovich
et al. 2010; Rankinen et al. 2015).

3 Genetics of LDL-C

Table 1 lists genetic variants associated with
LDL-C in larger-scale studies. Below, we describe
variants in genes based on their involvement in
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relevant biological pathways including LDL-C-
related enzymes, receptors and transporters, lipo-
protein, and protease mechanisms.

3.1 Genetic Variation in Enzymes,
Receptors and Transporters,
and LDL-C

The most marketed drugs for lowering LDL-C are
statins, which inhibit hydroxy-3-methylglutaryl
coenzyme A reductase (HMGCR), the rate-
limiting enzyme in cholesterol synthesis that is
normally suppressed (Endo 1992). The human
HMGCR gene is located on chromosome
5 (5q13.3-14). Only a few common HMGCR
polymorphisms have been associated with
LDL-C levels including rs3846662 (Table 2)
(Burkhardt et al. 2008; Hiura et al. 2010; Polisecki
et al. 2008; Teslovich et al. 2010).

As mentioned above, the LDL receptor
(LDLR) gene, located on chromosome
19 (19p13.2), helps to regulate the uptake of
LDL and chylomicron remnants by hepatocytes
(Kwan et al. 2007). Although not the focus of
this review, we note that familial (monogenic)
hypercholesterolemia (FH: OMIM No. 143890)
is one of the most common inherited metabolic
diseases due to mutations in LDLR (a frequency of
approximately 1 in 500 (heterozygotes) to 1 in
1,000,000 (homozygotes)) with heterozygotes
having a decreased receptors and a two to threefold
increase in LDL-C levels and homozygotes having
a complete loss of LDLR function and a greater
than fivefold increase in LDL-C (Garg and Simha
2007). Several common polymorphisms in LDLR
have also been identified and associated with more
modest changes in LDL-C levels, including
rs17248720, which was associated with LDL-C
levels in Spanish “normolipemic” controls from
the Aragon Workers Health Study (AWHS)
(De Castro-Oros et al. 2014), and rs6511720,
which was associated with LDL-C in a meta-
analysis (Teslovich et al. 2010; Willer et al. 2008).

The ATP-binding cassette transporters G5 and
G8 (ABCG5/8) gene cluster, located on chromo-
some 2 (2p21), regulates the efflux of cholesterol
back into the intestinal lumen and, in hepatocytes,

the efflux of cholesterol into bile (Graf
et al. 2003). A few common variants in ABCG5/
8 have been associated with LDL-C levels
(Table 2); however, a recent meta-analysis failed
to find an association between the ABCG5/G8
polymorphism, rs6544718, and plasma lipid
levels (Jakulj et al. 2010; Teslovich et al. 2010).

3.2 Genetic Variation
in Lipoproteins and LDL-C

Apolipoprotein B (APOB; main isoform: ApoB-
100), located on chromosome 2 (2p23-24), is
responsible for the uptake of LDL by LDLR,
which clears approximately 60–80 % of the LDL
in “normal” individuals with the remaining taken
up by LRP or SCARB1 (Kwan et al. 2007). Com-
mon polymorphisms in APOB have been identi-
fied and associated with changes in LDL-C
(Table 2; Haas et al. 2011; Teslovich et al. 2010;
Waterworth et al. 2010; Willer et al. 2008).

As mentioned above, APOE, located on chro-
mosome 19 (19q13.2), is a critical ligand for
binding chylomicron remnants, VLDL, and IDL
particles to hepatic receptors to remove these par-
ticles from the circulation (Kwan et al. 2007). The
structural APOE gene is polymorphic with three
common alleles, designated as ε2, ε3, and ε4,
which encode for E2, E3, and E4 proteins, respec-
tively. Recently, the ε2 allele has been associated
with high LDL-C levels in Lithuanian women
(Smalinskiene et al. 2013); however, the APOE
ε4 allele has been the most consistently associated
with LDL-C levels (Anoop et al. 2010; Chang
et al. 2010; Eichner et al. 2002; Teslovich
et al. 2010; Willer et al. 2008).

3.3 Genetic Variation in Proteases
and LDL-C Levels

Proprotein convertase subtilisin-like kexin type
9 (PCSK9), located on chromosome 1 (1p32.3),
is a serine protease that degrades hepatic LDLR in
endosomes (Maxwell et al. 2005). Over 50 vari-
ants in PCSK9 have been shown to affect circu-
lating levels of cholesterol; however, most of
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these are relatively rare (Davignon et al. 2010).
However, a few common polymorphisms in
PCSK9 have been associated with LDL-C levels
(Table 2) (Chen et al. 2005; Evans and Beil 2006;
Huang et al. 2009; Teslovich et al. 2010; Willer
et al. 2008).

3.4 Genetic Variation
in Inflammatory and Immune
Systems and LDL-C

As mentioned above, the BTN2A1 gene, located
on chromosome 6 (6p22.1), encodes proteins that
help in the production of milk fat globules and
regulating immune function (Ogg et al. 2004).
The rs6929846 variant of BTN2A1 has been asso-
ciated with HDL-C levels in a large community-
dwelling cohort of Japanese individuals (Horibe
et al. 2014).

Insulin-induced gene 2 (INSIG2) located on
chromosome 2 (2q14.2) plays a role in regulating
lipid storage as well as blocking further choles-
terol synthesis when sterols are present in the cell
(Yabe et al. 2002). Recently, a common variant in
INSIG2, rs12464355, has been associated with
LDL-C levels in a random sample of
non-Hispanic white children from the Princeton
School District Study, a prospective cohort of fifth
through 12th graders (Kaulfers et al. 2015). How-
ever, in this same study, rs1352083, rs13393332,
and rs2042492, all in strong LD (but not
rs12464355) in the INSIG2 gene, were associated
with LDL-C levels in African-American children
(Kaulfers et al. 2015).

3.5 GWAS, Exome Sequencing,
and LDL-C

GWAS have confirmed associations between
polymorphisms in viable candidate genes includ-
ing APOB, APOE, LDLR, and PCSK9 and have
identified novel SNPs associated with LDL-C
levels with strong biological plausibility includ-
ing an inhibitor of lipase (ANGPTL3) and a
transcription factor activating triglyceride syn-
thesis (MLXIPL) (Teslovich et al. 2010).

GWAS have also identified four novel putative
loci associated with LDL-C levels in a large
Chinese pediatric population (Shen et al. 2013).
Fifteen novel loci, 13 of which had MAF > 0.05
(and are listed in Table 2), were recently identi-
fied in a joint GWAS and Metabochip meta-
analysis in 188,577 individuals of European
East Asian, South Asian, and African ancestry
(Willer et al. 2013).

Exome sequencing can help to identify rare,
low-frequency variants and confirm known can-
didate loci. Recently, 2005 individuals (1,854
African-American, 1,153 European-American)
from seven population-based cohorts were
exome sequenced (with at least 20� coverage
over 70 % of the exome target) and evaluated for
associations with LDL-C levels (Lange
et al. 2014). Interestingly, single-variant (uni-
variate/multivariable) analyses only identified
one variant near APOE that was statistically
significant (rs1160983, p = 7.6 � 10�14)
(Lange et al. 2014); however, more elegant
statistical methods identified additional novel
variants and confirmed associations with candi-
date loci.

4 Genetics of Triglycerides (TG)

Table 3 lists genetic variants associated with
TG in larger-scale studies. Below, we describe
variants in genes based on their involvement in
relevant biological pathways including binding
(via apolipoproteins) as well as relevant enzymes,
receptors, and transporter mechanisms. Because
plasma TG integrate multiple TG-rich lipoprotein
particles, it is not surprising that there is consid-
erable overlap between the genetic variants asso-
ciated with TG levels and the genetic variants
associated with HDL-C and LDL-C levels. The
Global Lipids Genetics Consortium (GLGC)
found that 15 of the 32 loci associated with
TG levels were also jointly associated with
HDL-C levels, explaining 9.6 % of the total
variation in plasma TG, which corresponded to
25–30 % of the total genetic contribution to TG
variability (Teslovich et al. 2010). However,
most loci appear to be more strongly associated
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Table 3 Genetic polymorphisms associated with TG (see Table 1 legend for details)

Polym. rs number MAF Ethn.
Sample
size

Results (effect size,
p-value) Reference

AKR1C4 G > A rs1832007 0.10
(A)

EA
AA,
A

188,577
(Meta)

p = 2 � 10–12 Willer
et al. (2013)

ANGPTL3 rs2131925 0.32
(G)

E 96,598
(Meta)

�4.94 mg/dl; p = 9 �
10�43

Teslovich
et al. (2010)

ANGPTL3 rs1748195 0.70
(G)

Va 9,559 7.12 mg/dl; p = 5.4 �
10–8

Willer
et al. (2008)

APOA5 rs964184 0.13
(G)

E 96,598
(Meta)

+16.95 mg/dl; p = 7 �
10–240

(Teslovich
et al. 2010)

APOA5-
A4/A1

rs964184 0.14
(G)

C 5547 0.12 (0.10 � 0.15); p =
1.1 � 10–19

van de Woestijne
et al. (2014)

APOA5/A
4/C3/A1

rs12286037 0.94
(C)

Va 9,738 25.82 mg/dl; p = 1.6 �
10–22

Willer
et al. (2008)

APOA5 rs662799 0.05
(A)

Va 3,248 16.88 mg/dl; p = 2.7 �
10–10

Willer
et al. (2008)

APOA5/A
4/C3/A1

rs2000571 0.17
(G)

Va 3,209 6.93 mg/dl; p = 8.7 �
10–5

Willer
et al. (2008)

APOA5/A
4/C3/A1

rs486394 0.28
(A)

Va 3,597 1.50 mg/dl; p = 0.0073 Willer
et al. (2008)

APOE rs439401 0.40
(C)

C 4.192 p = 2.2 � 10–5 Liu et al. (2011)

APOE rs439401 0.64
(C)

Va Meta p = 5.5 � 10–30 Johansen
et al. (2010)

BTN2A1 C > T rs6929846 J 5958 T allele; p = 0.001 Horibe
et al. (2014)

GATA2 C > A rs7431368 S 2386
CAD
2171 C

B = �1.49; s.e. = 0.67; p
= 0.03; p = 0.ppp

Muiya
et al. (2014)

INSIG2 G > A rs889904 0.58
(A)

B 497
(child)

B = �0.06 � 0.03; p =
0.01

Kaulfers
et al. (2015)

INSR A > G rs7248104 0.42
(G)

EA
AA,
A

188,577
(Meta)

p = 5 � 10–10 Willer
et al. (2013)

LRPAP1 G > A rs6831256 0.42
(A)

EA
AA,
A

188,577
(Meta)

p = 2 � 10–12 Willer
et al. (2013)

LIPC/HL rs4775041 0.67
(G)

Va 8,462 3.62 mg/dl; p = 2.9 �
10–5

Willer
et al. (2008)

LIPC/HL rs261342 0.22
(G)

Va Meta p = 2.0 � 10–13 Johansen
et al. (2010)

LPL rs12678919 0.12
(G)

E 96,598
(Meta)

�13.64 mg/dl; p = 2 �
10–115

Teslovich
et al. (2010)

LPL rs10503669 0.90
(A)

Va 9,711 11.57 mg/dl; p = 1.6 �
10–14

Willer
et al. (2008)

LPL rs2197089 0.58
(A)

Va 3,202 3.38 mg/dl; p = 0.0029 Willer
et al. (2008)

LPL rs6586891 0.66
(A)

Va 3,622 4.60 mg/dl; p= 5� 10�4 Willer
et al. (2008)

LPL S447X rs328 0.90
(C)

EA 24,258 p = 4.16E-30 Dumitrescu
et al. (2011)

(continued)
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with one lipid phenotype, while only a few
loci have similar effect sizes across lipid
phenotypes. Furthermore, there is substantial
genetic heterogeneity between major ethnic
groups (e.g., between Caucasians and African-
Americans).

4.1 Genetic Variation
in Apolipoproteins and TG

As mentioned above, APOB, located on chromo-
some 2 (2p23–24), is the backbone of atherogenic
lipoproteins. APOB polymorphisms have been

Table 3 (continued)

Polym. rs number MAF Ethn.
Sample
size

Results (effect size,
p-value) Reference

LPL S447X rs328 0.10
(X)

Va 43,242 �0.15 (�0.12 to �0.19)
mmol/l

Sagoo
et al. (2008)

LPL D9N rs1801177 0.03
(N)

Va 21,040 0.14 (0.08–0.20) mmol/l Sagoo
et al. (2008)

LPL N291S rs368 0.03
(S)

Va 27,204 0.19 (0.12–0.26) mmol/l Sagoo
et al. (2008)

LPL rs326 0.18
(G)

C 4,192 p = 2.3 � 10�6 Liu et al. (2011)

LRP1 rs11613352 0.23
(T)

E 96,598
(Meta)

�2.70 mg/dl; p = 4 �
10�10

Teslovich
et al. (2010)

MET G > A rs38855 0.47
(A)

EA
AA,
A

188,577
(Meta)

p = 1 � 10–8 Willer
et al. (2013)

MPP3 C > A rs8077889 0.22
(A)

EA
AA,
A

188,577
(Meta)

p = 1 � 10–8 Willer
et al. (2013)

MLXIPL rs17145738 0.12
(T)

E 96,598
(Meta)

�9.32 mg/dl; p = 6 �
10–58

Teslovich
et al. (2010)

MLXIPL rs17145738 0.84
(T)

Va 9,741 8.21 mg/dl; p = 5 � 10–8 Willer
et al. (2008)

MLXIPL rs7811265 0.81
(A)

Va Meta 7.91 mg/dl p = 9.0 �
10�59

Johansen
et al. (2011)

PDXDC1 T > C rs3198697 0.43
(C)

EA
AA,
A

188,577
(Meta)

p = 2 � 10–8 Willer
et al. (2013)

PEPD G > A rs731839 0.35
(A)

EA
AA,
A

188,577
(Meta)

p = 3 � 10–9 Willer
et al. (2013)

PPAR γ Pro12
Ala

rs180592 0.26
(Ala)

C 820 p <0.01 Gu SJ
et al. (2014)

SULF2 A > G rs2281279 C 1319 “G” allele; p = 0.049 Hassing
et al. (2014)

VEGFA A > C rs998584 0.49
(C)

EA
AA,
A

188,577
(Meta)

p = 3 � 10–15 Willer
et al. (2013)

Abbreviations: MAF minor allele frequency, A Asians, AA African-Americans, Am Amish, A-I Asian Indian, B Blacks,
C Chinese, CH Caribbean Hispanics, E European, EA European America, I Inuit, Ma Malays, N Netherlands, NHW
non-Hispanic whites, H Hispanics, Hu Hutterites, J Japanese, K Korean, L Lithuanian, S Saudi Arabian, Tu Turks, UK
United Kingdom,W-BraCaucasian Brazilians,WWhites/Caucasians,WSWestern Siberian Caucasians, Va various, Non-
DMC0 non diabetic control subjects,MImyocardial infarction,NGT normal glucose tolerance,DMDiabetes mellitus,Ho
Sta hospital staff, HBP hypertensive patients, He Ex health examination, Cor Ang coronary angiography, hyperCH
hypercholesterolemia patients, CVD cardiovascular disease, C controls, Ho Co hospital-based controls, GP general
population, Meta meta-analysis, P population based, M males, F females, + increase, � decrease, n.s. not significant;
see text for full gene names. Adapted from Nock and Pillai (2012) and Boes et al. (2009) with permission from Elsevier
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predominantly associated with LDL-C
(Benn 2009), but GWAS revealed that a common
SNP in APOB, rs1042034, has been associated
with TG (Johansen and Hegele 2011; Teslovich
et al. 2010). Further, polymorphisms in the
APOA1/C3/A4/A5 gene cluster, located on chro-
mosome 11 (11q23), have been associated with
TG as well as HDL-C levels (Teslovich
et al. 2010; Willer et al. 2008; van de Woestijne
et al. 2014). An SNP in the APOE gene, rs439401,
has been shown to be strongly associated with TG
levels (Hegele et al. 1995; Johansen and Hegele
2011; Teslovich et al. 2010). The combination of
the rs662799 C allele of APOA5 and the
rs6929846 T allele of BTN2A1 has been associ-
ated with 41 % higher TG levels in Japanese and
24 % higher TG levels in Korean individuals
(Hiramatsu et al. 2012; Aung et al. 2014). Fur-
thermore, the BUD13/ZNF259 A-C—A-G-C-C
haplotype (ZNF259 rs2075290, ZNF259
rs964184, BUD13 rs10790162, BUD13
rs17119975, BUD13 rs11556024, BUD13
rs35585096), near APOA5 on chromosome
11q23.3 and involved in cell proliferation and
signal transduction, has been associated with
high TG in a random sample of 1181 Chinese
individuals (Aung et al. 2014).

Angiopoietin-like 3 protein (ANGPTL3)
inhibits LPL catalytic activity, but this process is
reversible (Shan et al. 2009; Shimizugawa
et al. 2002). Polymorphisms in ANGPTL3, most
notably, rs2131925, have been associated with
TG levels (Johansen and Hegele 2011; Keebler
et al. 2009; Lanktree et al. 2009; Teslovich
et al. 2010; Willer et al. 2008). In addition, several
nonsynonymous ANGPTL3 variants have been
associated with TG levels (Musunuru
et al. 2010) in the Dallas Heart Study, but these
SNPs have not been validated yet in other
populations.

4.2 Genetic Variation in Enzymes
and Transcription Factors
and TG

As mentioned above, LPL is an enzyme that
hydrolyzes TG-rich particles in peripheral tissues

(muscle, macrophages, adipose) generating FFA
and glycerol for energy metabolism and storage
(Goldberg 1996). Although more than 100 muta-
tions in LPL have been identified (Murthy
et al. 1996), only a few common nonsynonymous
SNPs have been consistently associated with TG
levels including rs1801177, rs328, and rs268
(Mailly et al. 1995; Rip et al. 2006; Sagoo
et al. 2008; Teslovich et al. 2010; Willer
et al. 2008). Two of these SNPs, rs1801177 and
rs328, have been shown to be in strong LD in
Caucasians (Sagoo et al. 2008).

The MLX interacting protein-like (MLXIPL)
gene, located on located on chromosome
7 (7q11.23), encodes a transcription factor of the
Myc/Max/Mad superfamily that activates, in a
glucose-dependent manner, carbohydrate
response element-binding protein (CREBP),
which is expressed in lipogenic tissues coordinat-
ing the subsequent activation of lipogenic
enzymes such as fatty acid synthase (FAS) to
convert dietary carbohydrate to TG (Iizuka and
Horikawa 2008). The rs1745738 polymorphism,
initially identified via GWAS, has been associated
with TG levels in several studies (Johansen and
Hegele 2011; Teslovich et al. 2010; Wang
et al. 2008; Willer et al. 2008).

As mentioned above, GATA2, an endothelial
transcription factor, is a multi-catalytic transcrip-
tion factor that plays a major role in controlling
growth factor responsiveness and regulating
inflammatory processes (Tsai et al. 1994). The
rs7431368 SNP of the GATA2 gene has recently
been associated with high TG levels in a large
Saudi case-control study involving 2,386 CAD
cases and 2,171 angiographed controls (Muiya
et al. 2014).

Peroxisome proliferator-activated receptor
gamma (PPARγ) may play a key role in lipid
metabolism by inducing the transcription of
related genes that sense and regulate lipid metab-
olism, and, recently, the rs180592 variant in
PPARγwas associated with TG levels in a random
sample of 820 Chinese from the prevention of
multiple metabolic disorders and metabolic syn-
drome in the Jiangsu province cohort
(Gu et al. 2014b). In addition, the PPARα “V”
allele of rs1800206 and the “G” allele of
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rs4253778 (haplotype) have been shown to be
associated with high TG in a Chinese Han popu-
lation (Gu et al. 2014a).

4.3 Genetic Variation in Storage
and Inflammatory and Immune
Systems and TG

The INSIG2 gene, located on chromosome
2 (2q14.2), plays a role in regulating lipid storage
as well as blocking further cholesterol synthesis
when sterols are present in the cell (Yabe
et al. 2002). Recently, a common variant in
INSIG2, rs889904, was associated with TG levels
in African-American children (Kaulfers
et al. 2015). However, none of the 13 SNPs eval-
uated in the INSIG2 gene were associated with the
non-Hispanic white children in this study
(Kaulfers et al. 2015).

The sulfatase-2 (SULF2) gene, located on chro-
mosome 20 (20q13.12), encodes for the heparin
sulfate glucosamine-6-O-ensosulfatase that
removes 6-O sulfate groups (Rosen and
Lemjabbar-Alaoui 2010) and is a hepatic heparan
sulfate proteoglycan (HSPG) remodeling enzyme
involved in TG-rich lipoprotein (TRL) remnant
clearance (Foley et al. 2013; Chen and Williams
2013). Recently, the “G” allele of rs2281279 in
SULF2 has been found to lower SULF2 mRNA
expression in liver biopsies of “healthy” subjects
(Matikainen et al. 2013), and the “G” allele of
rs2281279 has been associated with TG in the
Diabetes Care System cohort (Hassing et al. 2014).

Further, the BTN2A1 gene, mentioned above,
located on chromosome 6 (6p22.1), encodes pro-
teins that help in the production of milk fat glob-
ules and regulating immune function (Ogg
et al. 2004). The rs6929846 variant of BTN2A1
has been associated with TG levels in a large
community-dwelling cohort of Japanese individ-
uals (Horibe et al. 2014).

4.4 GWAS and TG

GWAS have identified novel mutations and con-
firmed associations between polymorphisms in

viable candidate genes including APOB, APOE,
LPL, and MLXIPL (Teslovich et al. 2010). A
recent GWAS in a large Chinese pediatric popu-
lation has identified six additional novel loci asso-
ciated with TG levels (Shen et al. 2013).
Furthermore, eight novel loci, all of which had
MAF >0.05 (Table 3), were recently identified in
a joint GWAS and Metabochip meta-analysis in
188,577 individuals of European East Asian,
South Asian, and African ancestry (Willer
et al. 2013).

5 Genetics of Dyslipidemia

Several investigators have also evaluated many of
the aforementioned genetic variants on
“dyslipidemia” in addition to individual lipid phe-
notypes. For example, the rs6929846 variant of
BTN2A1 has been associated with dyslipidemia
(defined as HDL-C <1.04 mmol/l, LDL-C �3.64
mmol/l, TG�1.65 mmol/l, or on antidyslipidemic
drugs), as well as high LDL (section “Genetic
Variation in Inflammatory and Immune Systems
and LDL-C”) and high TG (section “Genetic
Variation in Enzymes and Transcription Factors
and TG”) levels in a large community-dwelling
cohort of Japanese individuals (Horibe
et al. 2014). The PPARγ rs3856806 “T” allele,
the PPARγ rs1805192 “Ala” allele, and the
PPARα rs1800206 “V” allele have all been asso-
ciated with an increased risk of dyslipidemia
(defined as HDL-C <1.04 mmol/l for men,
HDL-C <1.30 mmol/l for women, LDL-C
�4.14 mmol/l, TG �2.26 mmol/l, or total choles-
terol (TC) �6.24 mmol/l) in a Chinese Han pop-
ulation (Gu et al. 2014a). In addition, the PPARα
“V” allele of rs1800206 and the “G” allele of
rs4253778 (haplotype) have been shown to be
associated with a fivefold increased risk of
dyslipidemia in this Chinese Han population
(Gu et al. 2014a).

The Niemann-Pick C1-like 1 (NPC1L1)
gene, located on chromosome 7 (7p13), plays a
role in intestinal cholesterol absorption, and
decreases in LDL-C levels in response to
Ezetimibe, a pharmacologic inhibitor of NPC1L1,
have been observed (Cohen et al. 2006).
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The rs2072183, rs217428, and rs217434 polymor-
phisms in NPC1L1 have been associated with
dyslipidemia in several studies (Kashiwabara
et al. 2014; Maeda et al. 2010; Hegele et al. 2005).

5.1 Genetics of Dyslipidemia Using
More Complex Modeling
Approaches

Given the polygenic nature and complexity of
dyslipidemia, a better understanding of the collec-
tive integration of these genetic determinants is
needed, which will undoubtedly require more ele-
gant statistical modeling methods. As stated
throughout this chapter, there is some overlap
between genetic variants associated with
HDL-C, LDL-C, and TG levels as well as
MetSyn, since dyslipidemia is a component of
MetSyn. As a result, we need to better understand
the aggregate effects of multiple variants as well
as how the effects of variation in one gene are
modified in the presence of other genes and their
variants. Below, we discuss some more advanced
approaches which have attempted to better under-
stand the effects of multiple variants on lipid
levels and dyslipidemia.

5.2 Genetics of Dyslipidemia Using
Genetic Risk Scores

Methods to evaluate the aggregate effects of multi-
ple variants in genes affecting dyslipidemia and
MetSyn traits have included calculation of genetic
“risk scores,” which add the number of “risk
alleles” in a weighted or unweighted manner. For
example, higher genotype risk scores (GRS),
constructed by simply summing risk alleles in
nine common SNPs, have been associated with
decreasing HDL-C levels (Kathiresan et al. 2008).
In addition, unweighted risk scores have been
constructed by summing the number of “TG-rais-
ing” alleles at 32 loci and then placed in “risk bins”
(categories) to show that higher risk scores were
significantly associated with patients with high TG
(hypertriglyceridemia, HTG) compared to controls
(Johansen and Hegele 2011; Teslovich et al. 2010).

GRS constructed using a weighted sum where
the weight was based on the effect size and the
number of SNPs (i.e., 47 SNPs for HDL-C,
37 SNPs for LDL-C, 32 SNPs for TG) were
found to be strongly associated with HDL-C,
LDL-C and TG in all age groups of children and
adults, ages 3–45 years, in the Cardiovascular Risk
in Young Finns Study; however, the total variance
explained in these lipid levels decreased slightly
with increasing age (3–6 years, 11.8–26.7 %;
18 years, 11.3–18.4 %; 33–45 years, 7.4–13.1 %)
(Tikkanen et al. 2011). Using the area under the
(AUC) receiver operating curve (ROC) and the
Venkatraman test for correlated ROCs
(Venkatraman ES 1996) and integrated model dis-
crimination improvement, which compares the
mean differences between predicted probabilities
(Pencina and D’Agostino 2008), they concluded
that the discrimination of high TG (HTG) in adult-
hood increased when the TG GRS were added to a
model that also contained the childhood lipid mea-
surement (Tikkanen et al. 2011). We note that the
GRS in the Tikkanen et al. (2011) study contained
SNPs in many of the genes summarized in this
chapter including ABCA1, ANGPTL3, APOA1-
C3-A4-A5, APOB, APOE, CETP, GALNT2,
LDLR, LIPC, LIPG, LPA, LPL, MLXIPL,
NPC1L1, PCSK9, PLTP, and SCARB1.

Additional studies in adults have also not found
improved discrimination with the addition of
GRS. For example, quantiles of unweighted GRS
have been evaluated in two large British cohorts
(British Women’s Heart and Health Study,
BWHS: n = 3414; Whitehall II, WHII: n =
5059), and when comparing the highest to the
lowest quintiles of LDL-C GRS (derived from
23 SNPs), they observed higher LDL-C levels
(mean difference: BWHS, 0.63 (0.50–0.76);
WHII, 0.85 (0.76–0.94)) and an increased odds
of developing coronary heart disease (CHD)
(BWHS, 1.43 (1.02–2.00); WHII, 1.31
(0.99–1.72)) (Shah et al. 2013). However, the
GRS did not improve discrimination over the Fra-
mingham Risk Score, which incorporates age,
gender, smoking, diabetes status, SBP, TC, and
HDL-C for assessing the 10-year risk of develop-
ing CVD (Anderson et al. 1991) when using AUC
ROC methods (Shah et al. 2013).
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In addition, weighted GRS constructed using
13 SNPs and 30 SNPs identified through associa-
tions with CVD in GWAS were found to be asso-
ciated with CVD mortality (l3 SNPs, 1.35
(1.10–1.81); 30 SNPs, 1.46 (1.08–1.16)), but nei-
ther AUC ROC analyses nor the net classification
index approach indicated the addition of the GRS
(both 13 and 30 SNP versions) did not signifi-
cantly improve prediction capacity of CVD mor-
tality (Cox et al. 2014). Therefore, other more
elegant methods may be needed to better under-
stand the aggregate effects of multiple SNPs and
their potential ability to predict disease.

5.3 Genetics of Dyslipidemia Using
Multi-locus Burden and
Dimension Reduction Methods

Using exome sequencing data from 2005 individ-
uals from seven cohort studies, genetic burden
tests, which evaluate aggregate effects of rare
variants with low MAF, confirmed associations
with APOE, LDLR, and PCSK9 genes and iden-
tified novel variants in PNPLA5 which were sub-
sequently replicated in an independent study of
2,084 individuals of European descent (Lange
et al. 2014).

Multifactor dimensionality reduction (MDR)
(Ritchie et al. 2001) and generalized multifactor
dimensionality reduction (GMDR) methods
(Lou et al. 2007) have been used to evaluate
genetic interactions at multiple loci. Interest-
ingly, when six SNPs in the ZNF259/BUD13
region were evaluated using single-locus ana-
lyses in a sample of 1181 Chinese individuals,
only one SNP (BUD13 rs17119975) was found
to be marginally associated with TG ( p= 0.064),
but GMDR analyses revealed significant associ-
ations between two loci (BUD13 rs17119975,
BUD13 rs10790162) and three loci (ZNF259
rs2075290, BUD13 rs17119975, BUD13
rs10790162) interaction models using cross-
validation and permutation testing procedures
(Aung et al. 2014), which suggests that GMDR
may provide better insight to genetic interactions
that may not be obviously revealed in single-
locus analyses.

5.4 Genetics of Dyslipidemia
and MetSyn Using Causal
Modeling and Pathway
Approaches

We have used the multivariate statistical frame-
work of structural equation modeling (SEM) to
evaluate multiple genetic determinants of MetSyn
and aggregate effects of individual genes bymodel-
ing MetSyn as a second-order factor supported by
lower-order factor traits (e.g., dyslipidemia)
together with multiple latent candidate gene con-
structs, which we mathematically define by multi-
ple SNPs in each respective gene (Nock
et al. 2009). Using this approach with the Framing-
ham Heart Study (Offspring Cohort, Exam 7;
Affymetrix 50 k Human Gene Panel) data, we
found that the CETP gene had a very strong asso-
ciation with the dyslipidemia factor but was not
statistically significantly associated with MetSyn
directly. Furthermore, we found that the association
between the CSMD1 gene andMetSyn diminished
when modeled simultaneously with six other can-
didate genes, most notably CETP and STARD13
(Nock et al. 2009). Our approach might also help
identify and explain novel signals (e.g., CSMD1)
in GWAS studies (Parra et al. 2011). Furthermore,
we have evaluated the latent gene construct
approach in the 1000 Genomes Project exon
5 sequencing data (24,497 SNPs in 697 unrelated
individuals in seven populations), and we found
that the approach provides a viable framework for
modeling the aggregate effects of rare and common
variants in multiple genes, but more elegant
methods are needed to better identify the initial
list of candidate loci (Nock and Zhang 2011).

The use of other forms of “causal modeling”
(edge/node; integrative genetics) has been pro-
posed to more fully address the complexity of
MetSyn by integrating potential effects of maternal
nutrition and epigenetics (Lusis et al. 2008; Wu
et al. 2010). Furthermore, using gene enrichment
analysis and protein-protein interaction network
approaches, the retinoid X receptor and farnesoid
X receptor (FXR), which have multiple interac-
tions in metabolism, cell proliferation, and oxida-
tive stress pathways, have been identified as key
players in MetSyn (Sookoian and Pirola 2011).
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Various other types of pathway and network
analyses have also been used to model multiple
variants and identify candidate pleiotropic loci. In
a secondary analysis of the GWAS data from
188,577 individuals from Willer et al. (2013)
where 62 SNPs were associated with HDL-C,
30 SNPs associated with LDL-C, and 32 SNPs
associated with TG (157 unique loci), which were
integrated with several other data sets of other
components of MetSyn (BMI, SBP, DBP, BMI,
CRP) and disease phenotypes (CAD, T2DM),
87 autosomal regions with 181 SNPs in 56 genes
were found to be pleiotropic (Rankinen
et al. 2015). Further evaluation of these data
using interactome analysis (via the Reactome FI
plug-in (Croft et al. 2011; Shannon et al. 2003))
and functionally interacting networks (via the Dis-
ease Association Protein-Protein Link Evaluator
software (Rosen et al. 2011)) identified a network
of 18 genes that showed statistically significant
direct connectivity including direct connections
with a cluster of genes consistently implicated in
lipid disorders (APOA1, APOB, APOC1, APOE,
ABCA1, CETP, LDLR, LIPC, LPL, PCSK9,
PLTP), which contributed to the authors’ conclu-
sion that they found strong evidence for pleiotropy
in CAD and lipid traits (Rankinen et al. 2015).

5.5 Pharmacogenomics
for Dyslipidemia and MetSyn

However, more elegant kinetic models may be
required to understand the true influence of
genetic variants on dyslipidemia andMetSyn phe-
notypes given the presence of multiple feedback
loops and reversible reactions (Bakker et al. 2010;
Gutierrez-Cirlos et al. 2011), and pharmaco-
genomics is likely to have the most impact on
the future of personalized medicine for lipid dis-
orders. For example, statins remain the corner-
stone for lowering lipids; however, the
individual response to statins is influenced by
the patient’s underling genetics. Decent progress
has already been made in understanding how
genetic variation in CETP, HMGRC, ABCB1,
CYP3A4, PCSK9, LDLR, and solute carrier
organic anion transporter family member 1B1

(SLCOB1), which transports statins from the
blood to the liver, affects statin pharmacology
and lipid response (Kitzmiller et al. 2013). How-
ever, a better understanding of statin pharmaco-
genomics utilizing relevant pathway and network
analysis will undoubtedly help to improve person-
alized response to statins and, in turn, help reduce
the burden of CAD and CVD.

6 Cross-References

▶Dyslipidemia in Obesity
▶Genetics of Cardiovascular Risk in Obesity
▶Genetics of Obesity
▶Genetics of Type 2 Diabetes
▶Nonalcoholic Fatty Liver Disease
▶Overview of Metabolic Syndrome
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Abstract
Genetic risk assessment for cardiovascular dis-
ease (CVD) in obese patients requires consid-
ering all the background traits beginning as
early as possible. Traits for both CVD and
type 2 diabetes (T2D) first appear in gestation
and childhood when birth weight and child-
hood weight gain influence; the traits and risk
factors are more reversible than when they
present later. Subsequently, gains in body fat
leading to obesity, ectopic lipid deposition in
liver and muscle, dyslipidemia, and hyperten-
sion expressed in the β-cells, hypothalamus,
adipocytes, myocytes, liver, and kidney are
associated with worsening insulin resistance
and β-cell failure leading to both diabetes and
CVD. In addition to being a central and caus-
ative factor for the metabolic syndrome, obe-
sity is an increasingly common trait associated
with energy balance under tightly regulated
genetic control. Although nonalcoholic fatty
liver disease (NAFLD) has an independent
genetic background, it is strongly associated
with obesity and is considered as a new addi-
tion to the metabolic syndrome and is also
associated with dyslipidemia and CVD. Ath-
erogenic dyslipidemia occurring in insulin-
resistant states such as obesity consists of
increased triglyceride, low high-density lipo-
protein (HDL) cholesterol, small dense LDL
particles, and dysfunctional HDL particles. It is
greatly impacted by environmental and genetic
effects. Like other preceding traits, the genetic

P.R. Blackett (*)
Department of Pediatrics, Section of Diabetes and
Endocrinology, University of Oklahoma Health Sciences
Center, Oklahoma City, OK, USA
e-mail: piers-blackett@ouhsc.edu

D.K. Sanghera (*)
Department of Pediatrics, Section of Genetics, University
of Oklahoma Health Sciences Center, Oklahoma City,
OK, USA
e-mail: dharambir-sanghera@ouhsc.edu

# Springer International Publishing Switzerland 2016
R.S. Ahima (ed.), Metabolic Syndrome,
DOI 10.1007/978-3-319-11251-0_13

195

mailto:piers-blackett@ouhsc.edu
mailto:dharambir-sanghera@ouhsc.edu


background for commonly encountered hyper-
tension is independent of that for diabetes,
although it remains a predictive trait for both
CVD and diabetes. Increasing evidence sup-
ports a role for the renin-angiotensin system in
oxidative stress, CVD, and insulin resistance.
In this review, we discuss how sequential pro-
gression of obesogenic environment leads to
CVD with overlapping effects on β-cell,
inflammation, and endothelial dysfunction.
This review also provides current update on
the discovery of novel predictive genes
through genome-wide association studies and
how they may illuminate novel disease path-
ways. Ultimately, these may help identify
novel risk factors/biomarkers leading to the
design of more effective treatment and/or pre-
vention strategies.

Keywords
Metabolic syndrome •Cardiovascular disease •
Type 2 diabetes • Pleiotropism • Gestation •
Birth weight •Childhood •Adolescence •Obe-
sity • Dyslipidemia • Hypertension • Glucose
levels • β-cell • Endothelial dysfunction

1 Introduction

Recent worldwide trends toward increasing rates
of obesity have been instrumental in increasing
the prevalence of both cardiovascular disease
(CVD) and type 2 diabetes (T2D). Although
there is some leveling off in obesity trends in the
United States (Flegal et al. 2010), global trends in
overweight and obesity are increasing (Stevens
et al. 2012) with serious implications for health.
Obesity is often unrecognized, and screening and
treatments are generally inaccessible and often
ineffective (Wang and Lobstein 2006) accounting
for secular changes in BMI in children (Ogden
et al. 2012). This leads to obesity-associated dis-
ease beginning in childhood (Weiss et al. 2004)
that progresses over time (Weiss et al. 2009) with
increased loss of β-cell function and insulin resis-
tance (Gungor et al. 2005) and the metabolic
syndrome (Meigs et al. 2004). Associated meta-
bolic changes include ectopic fat deposition

(Cali and Caprio 2009), fat-induced insulin resis-
tance (Samuel et al. 2010), β-cell dysfunction
(Boden and Shulman 2002), and endoplasmic
reticulum stress leading to β-cell apoptosis (Cui
et al. 2013; Kharroubi et al. 2004). Waist circum-
ference or BMI are strongly associated with insu-
lin resistance (Farin et al. 2006) and are both
highly correlated; however, BMI is the obesity
quantitative trait in most genetic studies because
of its availability and widespread acceptance.

The Metabolic Syndrome (According to
ATP III Criteria) (Carr et al. 2004)
• Central obesity (also known as visceral,

male-pattern, or apple-shaped adiposity)
waist-hip ratio >0.90 (male) and >0.85
(female) or body mass index >30 kg/m2

• Raised blood pressure (BP): systolic BP
>130 or diastolic BP >85 mmHg

• Reduced high-density lipoprotein (HDL)
cholesterol: <40 mg/dL (1.03 mmol/L)
in males and <50 mg/dL (1.29 mmol/L)
in females

• Raised serum triglyceride level: >150
mg/dL (1.695 mmol/L)

• Raised fasting plasma glucose: >100
mg/dL (5.6 mmol/L)

• Insulin resistance or prediabetes

Accumulating evidence suggests that insulin
resistance and associated traits, traditionally
known as the “metabolic syndrome,” are associ-
ated with both diabetes and CVD and the more
years that an individual carries the metabolic syn-
drome, the greater the risk for both T2D and CVD
(Meigs et al. 2004; Haffner et al. 2000). These
observations suggest that there is a window of
time during which metabolic syndrome, as a pre-
dictive marker, could be used for timely interven-
tion to prevent CVD. This window may extend
further back than adulthood. Antecedent traits,
similar to those of the metabolic syndrome, have
been identified in the fetus, child, and adolescent
suggesting early stages of pathogenesis. Although
the age of onset for obesity-associated risk factors
has been decreasing, the likelihood of appearance
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of risk factors increases with age. This has been
shown in epidemiological and genetic studies,
most of which have been conducted on adult
populations over 18 years of age. Typically, age
is included as a confounder in data analysis. Nev-
ertheless, early onset of obesity, in childhood or
adolescence, may have a greater lifetime effect
than later onset of obesity. Since components of
the metabolic syndrome precede CVD and T2D
(Haffner et al. 2000), it is important to recognize
the onset of these risk traits during gestation and
their persistence through childhood to adulthood
(Morrison et al. 2008; Ford et al. 2008a). How-
ever, despite this association between metabolic
syndrome traits and subsequent T2D, genetic
studies have found that genetic variants associated
with obesity or other metabolic syndrome traits do
not usually overlap with genetic variants associ-
ated with T2D, suggesting relatively independent
genetic backgrounds (Grarup et al. 2014). These
findings suggest that shared interaction with life-
style- and obesity-related environmental factors is
significant and appear throughout life in a distinct
sequence (Fig. 1). Furthermore, the traits them-
selves are known to activate additional metabolic
pathways.

An analogy for the indirect effects on the final
clinical outcomes is comparable to a railway
transport system. A train with a sequence of
coaches loaded with cargo in a city of origin for
travel and delivery of goods to a destination city
also delivers to towns en route. For example,
delivery of tractors for a rural agricultural town
and boats for a coastal town may result in a sig-
nificant number of empty coaches. When the
effect of the load on the economy of the destina-
tion city is assessed over a 10-year period based
on the depleted coaches, an economist would
arrive at an erroneous conclusion. More thorough
investigation would reveal that delivered goods in
regions along the train route caused increased
production and economy in the respective regions
of the country. The resulting ocean and agricul-
tural produce, delivered from the respective
regions, result in substantially increased purchase
and consumption in the destination city. The envi-
ronmental contributions from five rural and
coastal regions surrounding the stations en route

account for highly significant boost for the desti-
nation city, meaning that the initial appearance of
empty coaches gave the false impression. Simi-
larly, genome-wide association studies (GWAS)
have only explained a small proportion of the
genetic variance (up to 5 %) – implying only a
minor role of genetic variation in the etiology of
T2D and CVD phenotypes. Therefore, like the
train analogy, perhaps it would be more instruc-
tive to identify the genetic variation determining
hidden traits (endophenotypes or intermediary
traits) and their respective biochemical effects
that may accelerate insulin resistance and β-cell
failure leading to onset of T2D. This may account
for large proportion of the genetic variation that is
missed in studies restricted to just CVD or T2D
phenotypes as an endpoint. This is supported by
findings that prediction models based on clinical
risk factors such as age, sex, race, parental history
of CVD and T2D, BMI, mean arterial pressure,
fasting glucose, triglyceride, and HDL choles-
terol, predict as well as a gene score as shown in
the CARDIA study (Vassy et al. 2012a). Also,
demographics, family history, physical examina-
tion, and routine biomarkers were predicted in
T2D in adolescents from the Bogalusa study
(Vassy et al. 2012b). These findings suggest that
the clinical characteristics and biomarkers
representing preceding traits have a strong effect
on T2D and therefore could add to or alter effects
of the genotype. Similarly multiple clinical traits
could be superimposed on genetic background to
influence overlapping pathways leading to CVD
outcomes.

In this chapter, we present current evidence
for genetic determination of obesity-associated
prediabetic traits such as abnormal fetal and
childhood growth, nonalcoholic fatty liver
disease, dyslipidemia, and hypertension during
childhood and adolescence and how each of
these may activate metabolic pathways that lead
to prediabetes, T2D, and CVD. Evidence is
presented supporting the hypothesis that quantifi-
able obesity-related traits precede and
predict CVD and T2D despite these traits and
outcomes having distinct genetic backgrounds.
Figure 2 summarizes major known variants asso-
ciated with each of these antecedent phenotypes.
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2 Genetic Determinants
of Obesity

Hypothalamic control of appetite has been associ-
ated with uncommon forms of monogenic obesity.
However, despite being uncommon, these have
provided insight into mechanisms for the develop-
ment of obesity in the general population (Farooqi
and O’Rahilly 2007). Studies on monogenic

obesity cases and their families have led to defini-
tion ofmetabolic pathways using animalmodels, in
particular the leptin-melanocortin pathway
involved in satiation (Farooqi and O’Rahilly
2005). MC4R encoding the melanocortin-4 recep-
tor is the commonest of the clinically occurring
single-gene defects associated with severe obesity
(Farooqi et al. 2003). Apart from these specific
defects, genetic polymorphisms within these
known genes are also involved in polygenic

GENETIC AND EPIGENETIC
FACTORS

Gastric
Malnutrition Maternal

Obesity

High Birth
Weight

Beta-cell lipid
filtration

Endothelial Dysfunction
Atherosclerosis

Dyslipidemia

Chyfomicron VLDL IDL LDL HDL

Low Birth
Weight
Rapid “Catch-
up” Weight
Gain

Insulin
Deficiency

OBESITY

T2D

Systemic
Inflammation

Oxidative Stress

Hypertension CVD
GLOBAL

RISK

NAFLD-Liver inflammation
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Fig. 1 A sequence of obesity-driven phenotypes
interacting with genetic and epigenetic effects leading to
CVD. The sequence of events begins in the fetus with
maternal gestational nutrition and interaction with genetic
endowment, affecting growth of the baby. Maternal mal-
nutrition or fetal growth restriction causes small babies,
and maternal overnutrition or hyperglycemia with gesta-
tional diabetes results in large babies. During childhood,
exposure to nutritional excess results in obesity associated
with rapid catch-up fat deposition and weight gain in small

babies. The onset of obesity, dyslipidemia, and
nonalcoholic fatty liver disease (NAFLD) occurs in chil-
dren and adults and affects the β-cell resulting in insulin
deficiency. Muscle and liver fat storage and hypertension
are associated with insulin resistance, but the biochemical
relationships are complex and bidirectional. Both insulin
resistance and β-cell failure lead to T2D and to factors
affecting the arterial wall such as inflammation and endo-
thelial dysfunction ultimately leading to CVD which may
be compounded by primary genetic susceptibility
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inheritance of obesity in the general population.
Moreover, ~60 % of the BMI variance within a
general population is accounted for by genetic var-
iance (Stunkard et al. 1990). A large GWAS study
on BMI conducted on 123,865 individuals using
2.8 million single nucleotide polymorphisms
(SNPs) and follow-up in significant numbers
revealed 14 known obesity susceptibility loci and
identified 18 new loci (Speliotes et al. 2010). Some
of the variants near loci, such as MC4R, POMC,
SH2B1, and BDNF, were known hypothalamic
regulators of energy balance. Another BMI locus
detected byGWASwas nearGIPR. TheGIPR gene
encodes for an incretin receptor present on β-cells
and is regulated by intestinal incretions (Speliotes
et al. 2010). These observations support a predis-
position to T2D with pleiotropic effects in the
hypothalamus and β-cell.

An intronic variant (rs9939609) in the FTO (fat
mass and obesity-associated) gene was found to be
associated with T2D GWAS, but the association
was abolished when adjusting for BMI suggesting
that the FTO variant influences T2D via its effect
on obesity, a powerful diabetes-determining factor

(Frayling et al. 2007). The association of FTOwith
obesity has been well replicated in longitudinal
studies in childhood (Hallman et al. 2011; Liu
et al. 2011). Additionally, a Dutch study reported
association of FTO with higher BMI, fat mass
index, and leptin concentrations during puberty
but declining at ages 13–14 years, a finding thought
to be consistent with hormonal effects at pubertal
onset (Rutters et al. 2011). The association of
severe obesity with FTO has been studied using a
haplotype approach. Using linkage disequilibrium
(LD) block structure of a region surrounding the
candidate FTO rs9939609 SNP, a haplotype com-
posed of a three-SNP combinationwas shown to be
associated with severe obesity. The calculation of a
risk score based on the FTO haplotype yielded an
attributable risk of 34 % for severe obesity
suggesting that the approach has clinical use for
examining risk in predisposed families (Gonzalez
et al. 2011).

Abundance of FTO mRNA transcripts has
been reported in mouse hypothalamic nuclei
encoding 2-oxoglutarate-dependent nucleic acid
demethylase that supports a regulatory role in
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ARRDC3, SH2B3, TBX3-TBX5
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Fig. 2 Genetic variants undergo transcription, organ-
specific expression, and alter metabolic pathways. The
resulting plasma markers act on the arterial wall to cause

cardiovascular disease. The effects of the variants can be
interactive with each other (gene-gene) and the effects of
altered metabolic pathways, which are additive
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energy balance, appetite, and sympathetic outflow
to the circulatory system (Gerken et al. 2007).
The mouse model studies further validated the
role of FTO in controlling food intake, energy
homeostasis, and energy expenditure (Church
et al. 2009). Based on the findings in African
and European American youth, the genetic effects
on obesity occur early and affect the rate of weight
gain (Liu et al. 2011). Consistent with these find-
ings, another study reported that the high-fat
intake and low physical activity modify the asso-
ciation between the FTO genotype and obesity
(Sonestedt et al. 2009). Quantitative traits (QTs)
of obesity such as BMI and waist circumference
were associated with FTO as was seen in
Europeans, but the association with T2D is only
partly accounted for by BMI (Rees et al. 2011)
suggesting that FTO has pleiotropic effects.
Phenotypic interactions of the FTO variant
(rs9939609) appear to be diabetogenic and have
been explored in a recent large-scale meta-ana-
lyses study conducted on 96,551 individuals from
East and South Asia confirming the association
with T2D independent of obesity (Li et al. n.d.).

3 Hyperglycemia Precedes T2D
and CVD

The risk factors preceding T2D vary in sequence
and in the number of components reflecting both
individual and population differences in inheri-
tance and environments. However, detectable
changes in glucose-insulin metabolism precede
T2D and have been studied as QTs in genetic
studies and as targets for reversal or prevention
of T2D onset. Therefore, there has been interest
not only in searching for genetic association but
also in finding the glucose levels which accu-
rately reflect T2D and risk for T2D. Conse-
quently, The American Diabetes Association
Expert Committee established the impaired
fasting glucose range as 100–125 mg/dl and
impaired glucose tolerance levels after ingestion
of a glucose load as 140–199 mg/dl (The Expert
Committee of the Diagnosis and Classification of
Diabetes Mellitus 2000). These cut points were
selected to facilitate early diagnosis of risk and

have subsequently been of great significance
since the defined prediabetic state is reversible
by lifestyle (Knowler et al. 2002), suggesting
that differences in lifestyle could affect outcomes
in association studies.

Approximately 60 % of people who develop
diabetes have either IGT (impaired glucose toler-
ance) or IFG (impaired fasting glucose) about
5 years before T2D onset, with 40 % having
normal glucose tolerance (Unwin et al. 2002).
Some studies suggest that IGT is more strongly
associated with hypertension and dyslipidemia
with worse cardiovascular outcomes (Unwin
et al. 2002). Also, it is known that progression of
IGT to T2D is potentially reversible with lifestyle
(Knowler et al. 2002). However, insulin-mediated
glucose disappearance becomes impaired in cases
with IFG and IGT, who also have increased car-
diovascular risk (Basu et al. 2013; Bock
et al. 2007). The rs553668 of the ADRA2A gene
predicts worsening of fasting glucose values in a
prediabetic cohort (Bo et al. 2012). Variants asso-
ciated with fasting glucose levels discovered
through GWAS such as GCK, GCKR, G6PC2,
MTNR1B, and DGKB-TMEM195 (Takeuchi
et al. n.d.) in the normoglycemic population do
not always influence risk for T2D (in contrast to
TCF7L2 and SLC30A8), but their effect appears
confined to fasting glucose homeostasis (Reiling
et al. 2009; Chen et al. 2008). The data support
recognition of early hyperglycemic phenotypes
derived from regulatory polymorphisms on the
genes affecting interacting pathways leading to
T2D. Meta-analysis of 21 GWAS identified nine
new loci influencing fasting blood glucose
(ADCY5, MADD, ADRA2A, CRY2, FADS1,
GLIS3, SLC2A2, PROX1, and C2CD4B), but of
these, only ADCY5 and PROX1 were associated
with T2D. These data suggest that although there
is overlap, the genetic background for fasting
glucose is different from that of T2D (Dupuis
et al. 2010). Similarly, the 2-h glucose levels,
after a standard oral glucose load, can be defined
as a separate trait to T2D with overlap in the
associated variants. Meta-analysis identified new
loci,GIPR andUPS13C, uniquely influencing 2-h
glucose (Saxena et al. 2010) supporting the
hypothesis that there are separate glucose-related
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QTs representing specific modes of carbohydrate
metabolism (Bonnefond et al. 2010).

There is a prevailing hypothesis that excess
weight gain precedes type 1 diabetes (T1D) and
accounts for the increased prevalence over the
past decade (Wilkin 2009); furthermore, T1D
patients who become obese have increased risk
for CVD. One possible mechanism for this is that
hypersecretion of insulin during states of insulin
resistance, a consequence of excess weight gain,
is antigenic, triggering or contributing to an
unregulated immune response when predisposed
by genetic variants coding for aberrant T-cell
responses and T-cell-mediated β-cell destruction.
Dietary factors have also been implicated, includ-
ing the timing of introduction of solid foods and
cow’s milk to the infant’s diet (Kostraba
et al. 1993). Like T2D, T1D is associated with
CVD and is a major cause of death among T1D
individuals (Secrest et al. 2010).

Increased prevalence of T2D in adolescents
over the past two decades has coincided with an
increase in adults with descending age of onset for
both obesity and T2D (Pinhas-Hamiel et al. 1996).
Resistance to insulin action occurs in the liver, fat
cell, and muscle, and respective pathways may
contribute to T2D (Samuel et al. 2010). Further-
more, longitudinal studies indicate association of
insulin resistance and obesity in youth with gender
and ethnic-specific tracking of BMI and lipids to
middle-age adulthood (Juhola et al. 2011).Not only
is themetabolic syndrome a predictor of T2D (Ford
et al. 2008a, b) but also the syndrome traits or QTs
are associated with insulin resistance (Salazar
et al. 2011). Also, the prevalence of the metabolic
syndrome increases with progression from normal
glucose tolerance to IGT to onset of T2D when it
often exceeds 60%depending on the definition and
study population (Isomaa et al. 2001; Xiang
et al. 2012). Based on population studies and ani-
mal models, it has been proposed that T2D has a
progressive pathogenesis beginning with insulin
resistance and advancing to β-cell failure (Doria
et al. 2008) and that it may involve several genes,
sometimes with significant interaction (Bruning
et al. 1997). For example, using knockout models
for both IRS-1 and the insulin receptor, it was
shown that neither model alone had much effect

on diabetes onset, but the combined effect resulted
in more than 50 % developing diabetes at young
ages (Bruning et al. 1997).

Glucose cut points for the diagnosis of diabetes
have been based on arbitrary glucose thresholds.
Based on evidence for a bimodal distribution, the
National Diabetes Data Group in the United States
initially used the glucose levels that best distin-
guished overlapping populations (Classification
and diagnosis of diabetes mellitus and other
categories of glucose intolerance. National Diabe-
tes Data Group 1979). Two decades later, it was
observed that the levels appeared too high since
cases below the cut points developed retinopathy;
consequently, the American Diabetes Association
Expert Committee decreased the thresholds based
on cross-sectional association between glucose
levels and the development of retinopathy (Report
of the Expert Committee on the Diagnosis and
Classification of Diabetes Mellitus 1997). Accord-
ingly, a fasting glucose greater than or equal to
126 mg/dl and 2 h post-glucose load level �200
mg/dl have become cut points for diabetes. Also,
HbA1c is increasingly being introduced as support-
ive diagnostic evidence for T2D (Saudek et al.
2008) in addition to its use in defining prediabetes.
Since it does not require fasting conditions and has
become generally available as a standardized assay
with less interindividual biologic variability than
glucose, it has a potential for diagnostic use in
clinics and for screening. However, conditions
that influence hemoglobin production or disposal
influence the levels and when used alone can lead
to missed diagnoses even when using a relatively
high cut point of 6.5 % (Herman and Fajans 2010).

Since the diagnosis of T2D has been based on
glucose thresholds defining overt diabetes, it is
possible that variants determining β-cell function
interact with secondary metabolic derangements
since subjects are assessed at a point when the
β-cells are likely to be undergoing failure or cell
death. This is supported by observations that the
majority of GWAS variants associated with T2D
such as TCF7L2, CDKAL1, CDKN2A/B, HHEX-
IDE, IGF2BP2, SLC30A8, KCNJ11, WFS1,
JAZF1, TSPAN8, CD123/CAMK1D, and
MTNR1B (Table 1) are implicated in β-cell func-
tions such as glucose-stimulated insulin secretion,
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Table 1 Established genetic determinants of the traits preceding type 2 diabetes and cardiovascular disease

Trait Gene Chromosome

Entrez
gene
ID Role

Fetal growth INS 11 p15.5 3630 Signaling hormone increases permeability to
monosaccharides, amino acids, and fatty acids

INSR 19 p13.3 3643 Signaling hormone receptor tyrosine kinase

IPF1/
PDX1

13q12.1 3651 Activates insulin, glucokinase, and glucose transporter
T2D gene transcription

KCNJ1 11q24.3 3758 Associated with Bartter syndrome characterized by salt
wasting, hypercalciuria, and low blood pressure

ABCC8 11p15.1 6833 Regulator of ATP-sensitive K(+) channels and insulin
release

HNF1B 17q12 6928 Involved in diabetes syndrome and noninsulin-dependent
diabetes mellitus

ADCY5 3q21.1 111 Gene variants influence fasting glycemic traits and insulin
resistance

HHEX-
IDE

10q23.33 3087/
3416

Transcription factor involved in hematopoietic
differentiation, pancreatic development, and insulin
secretion

GCK 7p14 2645 Modulates insulin secretion, glycolysis, energy pathways

TCF7L2 10 q25.2 6934 Transcription regulator influences insulin secretion

HNF1A 12q24.31 6927 Regulates tissue-specific expression of genes especially in
pancreatic islets and liver

Obesity FTO 16q12.2 79068 Severe obesity/insulin resistance

MC4R 18q21.32 4160 Member of G protein-coupled receptor family, signaling
hormone involved in energy homoeostasis

PPARG 3p25.2 5468 Transcription factor involved in adipogenesis and type
2 diabetes risk

ADIPOQ 3q27.3 9370 Adipose tissue-specific protein involved in insulin
sensitizing and anti-atherosclerotic properties

LEPTIN 7q31.3 3952 Signaling hormone affects central nervous system to
inhibit food intake and energy expenditure

POMC 2p23.3 5443 Mutations in this gene linked with early onset obesity

SH2B1 16p11.2 25970 Obesity locus associated with myocardial infarction in
T2D patients

BDNF 11p14.1 627 Development, survival, and differentiation of selected
neuronal populations

NAFLDa ADIPOR2 12p13.31 79602 Hormone secreted by adipocytes with antidiabetic effects

MTTP 4q23 4547 Catalyzes the transport of triglyceride, cholesterol ester,
and phospholipids between phospholipid surfaces

APOCIII 11q23.3 345 Inhibits lipoprotein lipase; delays catabolism of
triglyceride-rich particles

PNPLA3 22q13.31 80339 Triacylglycerol lipase that mediates triacylglycerol
hydrolysis in adipocytes

Dyslipidemia APOE-CI-
CII-CIV

19q13.32 2282 Cluster of triglyceride-rich lipoprotein receptor ligands for
LDL receptor-related proteins

APOAV-
AIV-CIII-
AI

11q23.3 117536 Cluster of apolipoproteins plays an important role in
regulating the plasma triglyceride levels

PCSK9 1p32.3 255738 Decreases plasma and LDL cholesterol and provides
protection from coronary artery disease

(continued)
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Table 1 (continued)

Trait Gene Chromosome

Entrez
gene
ID Role

CETP 16q13 1071 Exchanges cholesterol esters for triglycerides from HDL
and triglyceride-rich lipoproteins

LCAT 16q22.1 3931 Required for remodeling HDL particles into their spherical
forms

ABCA1 2p23.3 2646 Mutations cause Tangier’ disease and familial HDL
deficiency

Hypertension WNK1 12p13.33 65125 A key regulator of blood pressure by controlling the
transport of sodium and chloride ions

KCNJ1 11q24.3 3758 Associated with Bartter syndrome characterized by salt
wasting, hypercalciuria, and low blood pressure

NPR3 5p13.3 4883 Regulate blood volume and pressure, pulmonary
hypertension, and cardiac function

GUCY1A3 4q32.1 2982 Regulate blood volume and Na+ balance

GNAS 20q13.32 4686 Involved as modulators or transducers in various
transmembrane signaling systems

NPPA-
NPPB

1q36.22 9757 Associated with intracellular guanylyl cyclase activity and
involved in homeostasis of body fluid volume

CYP17A1 10q24.32 1586 Variants associated with hypertension

ARRDC3 5q14.3 57561 Variants associated with diastolic blood pressure

C21orf91 21q21.1 54149 Variants associated with hypertension

Hyperglycemic traits

(Pre-T2D) GCKR 2p23.3 2646 Enzyme regulators, controls activity of glucokinase in the
liver and brain

Fasting
glucose

G6PC2 2q24.3 57818 Enzyme, transport channel, key role in glucose
homeostasis

MTNR1B 11q21-q22 4544 Melatonin receptor regulates physiological and
neuroendocrine functions

DGKB-
TMEM195

7p21.2 1607/
392636

Play a key role in cellular processes

GCK 7p14 2645 Modulates insulin secretion, glycolysis, energy pathways

ADCY5 3q21.1 111 Variants influence fasting glycemic traits and insulin
resistance

MADD 11p11.2 8567 Variants influence fasting glycemic traits and insulin
resistance

CRY2 11p11.2 1408 Variants influence fasting glycemic traits and insulin
resistance

FADS1 11q12.2 3992 Variants influence fasting glycemic traits and insulin
resistance

GLIS3 9p24.2 169792 Variants affect fasting glucose and T2D

SLC2A2 3q26.1 6514 Plays role in human beta cell function and impacts
glycemic traits

PROX1 1q41 5629 Gene variants affect fasting glucose and insulin

2 h glucose GIPR 19q13.3 2696 Stimulate insulin release in the presence of elevated
glucose

VPS13C 15q22.2 54832 Gene variants influence glycemic traits and insulin
resistance

(continued)
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incretin effects on β-cell stimulation, and proinsu-
lin to insulin conversion (Schafer et al. n.d.; De
Silva and Frayling 2010). It also appears likely
that many of the secondary events described for
each of the preceding phenotypes have significant
effects on both insulin resistance and β-cell
failure.

4 Fetal and Early Childhood
Growth and the Metabolic
Syndrome

Over the past two decades, accumulating evidence
shows a strong relationship of low birth weight
(usually defined as <2.5 kg) to metabolic syn-
drome traits in adulthood including hypertension
and progression to T2D (Chernausek 2012).
Based on initial studies that showed a relationship
of birth weight to impaired glucose tolerance at
age 64 years, Barker et al. (Hales and Barker
1992) proposed the “thrifty phenotype” hypothe-
sis. It states that T2D and metabolic syndrome
traits result from the effects of poor nutrition in
early life, which produces permanent changes in
glucose-insulin metabolism. Their pioneering
work showed a link between birth weight and
both diabetes and CVD in adulthood. The initial
observations were well replicated, supporting the

argument that fetal growth restriction may result
in permanent and progressive changes leading to
T2D. It has also been shown that subsequent rapid
catch-up shown as an increase in BMI in children
who were born small predicts disease risk in adult-
hood. This suggests that risk is increased when
infant nutrition exceeds gestational nutrition but
not when the nutritional supply is matched
(Eriksson et al. 2000; Forsen et al. 2000). For
instance, weight gain in the first 3 months may
determine insulin resistance as early as adoles-
cence (Fabricius-Bjerre et al. 2011) or late child-
hood (Barker et al. 2002). Furthermore, fetal
growth restriction by genetic or nutritional causes
could set the stage for the small baby to gain fat as
the preferential tissue resulting in a “catch-up fat”
phenotype (Dulloo et al. 2006) but programmed
by restriction of nutrient-dependent pathways
during fetal growth.

It is also evident that gestational weight gain of
the mother is an independent predictor of obesity
during infancy, even occurring when the maternal
prepregnancy weight is normal (Dello Russo
et al. 2013). Thus maternal weight gain during
pregnancy predisposes the child to become
obese continuing to adulthood (Schack-Nielsen
et al. 2010). In addition, exposure to high maternal
glucose during gestation can result in large babies
giving rise to observations that risk for T2D is

Table 1 (continued)

Trait Gene Chromosome

Entrez
gene
ID Role

β-cell function
(T2D) TCF7L2 10 q25.2 6934 Transcription regulator influences insulin secretion

SLC30A8 8q24.11 169026 Facilitates transportation of zinc from cytoplasm into
insulin containing vesicles

IGF2BP2 3q27.2 10644 Regulatory enzyme influences insulin secretion

CDC123 10p13 8872 Involved in transcription regulation, insulin secretion

HHEX-
IDE

10q23.33 3087 Transcription factor involved in hematopoietic
differentiation, pancreatic development, insulin secretion

CDKN2A/
B

9p21.3 1029 Enzyme, anti-oncogene involved in pancreatic carcinomas,
type 2 diabetes

KCNJ11 11 p15.1 3767 Ion channel transporter

KCNQ1 11p15.5 3784 Encodes a voltage-gated K channel required for
repolarization phase of the cardia action, associated with
T2D

aNAFLD Nonalcoholic fatty liver disease

204 P.R. Blackett and D.K. Sanghera



determined by large birth weight, meaning that the
relationship of both low and high birth weight to
subsequent T2D can be characterized as bimodal
(Tamashiro and Moran 2010). Also, maternal fat
intake during gestation influences glucose toler-
ance of the offspring. Therefore it appears likely
that excess maternal nutrient supply, particularly
as fat, may have long-term effects (Dabelea and
Pettitt 2001). A review of 11 animal model studies
investigating glycemic control in offspring of
mothers exposed to a high-fat diet during gesta-
tion has identified risk for T2D and obesity in the
offspring. The effect was stronger in males, and
glucose intolerance was independent of maternal
obesity, birth weight, or postweaning macronutri-
ent intake (Ainge et al. 2011). Studies have shown
that fetal systems are also modulated by metabolic
factors such as the hypoxic effect of changes in
blood supply, oxidative stress, DNA methylation,
histone acetylation, transcription factors, and hor-
mones such as cortisol, insulin, and leptin. These
factors could serve as a basis for prevention, treat-
ment, and for further studies to determine interac-
tion of the metabolic factors with genotypes
(Sebert et al. 2011). Epigenetic effects in the
form of biochemical modification of DNA, such
as methylation, may not only occur in the fetus but
continue in later life (Sinclair et al. 2007; Gemma
et al. 2010) and influence traits such as
nonalcoholic fatty liver disease (NAFLD)
(Sookoian et al. 2010).

Evidence for a genetic background for fetal
growth is increasing significantly supporting pos-
sible interaction with gestational factors. Obser-
vation that mutations in the glucokinase gene
(GCK) resulted in reduced birth weight gave rise
to the hypothesis that rare variants that modify
insulin secretion or action could not only cause
monogenic diabetes but also low birth weight
(Hattersley et al. 1998; Hattersley and Tooke
1999). This has been supported by findings that
reduced birth weights occur due to other known
monogenic mutations causing early onset diabe-
tes, such as INS, INSR, IPF1, KCNJ11, ABCC8,
and HNF1B (Stoy et al. 2007; Edghill et al. 2006;
Slingerland and Hattersley 2006; Babenko
et al. 2006). A GWAS for birth weight has
revealed association of fetal loci near ADCY5,

CDKAL1, and HHEX-IDE genes. The same risk
allele at the ADCY5, associated with low birth-
weight, also predisposes to T2D (Yaghootkar and
Freathy 2012). Incidentally, the effects on fetal
growth restriction can potentially be offset by
maternal alleles at GCK and TCF7L2 that result
in reduced maternal insulin and consequent
growth stimulation by fetal hyperinsulinemia sec-
ondary to transplacental passage of maternal glu-
cose (Yaghootkar and Freathy 2012). The
hyperglycemic effect on the fetus is known to
interact with fetal HNF1A, a known maturity
onset diabetes of young (MODY) gene, resulting
in earlier onset of the diabetes (Stride et al. 2002).
GWAS conducted by the “Meta-Analyses of Glu-
cose- and Insulin-related traits Consortium”
(MAGIC) has identified seven maternal loci asso-
ciated with birth weight accounting for a similar
proportion of variance to maternal smoking. Two
of the loci, ADCY5 and CDKAL1, were replicated
from previous studies (Freathy et al. 2009) and
predicted T2D supporting association of common
variants with fetal growth and subsequent meta-
bolic events predisposing to T2D (Horikoshi
et al. 2013). However, due to possible population
differences, the low birth weight was not
explained by genetic variation in the ADCY5 in
Asian Indians, although these variants were asso-
ciated with elevated glucose and reduced insulin
response in early adulthood (Vasan et al. 2011).

5 Thrifty Genes, Obesity,
and the Risk of CVD

To explain the relationship of obesity to T2D and
CVD, it has been proposed that an array of
“thrifty” genes are latent in the normal state and
efficiently store nutrients for times of need (Neel
1999); but with constant nutritional excess over
extended periods, dyslipidemia and ectopic fat
deposition in the liver and muscle lead to insulin
resistance and diabetes (Samuel et al. 2010;
Shulman 2000). Constant and excessive nutri-
tional intake, common in modern cultures, has
contributed to the worldwide escalation in obesity
and subsequent morbidities by interacting with
the genetic backgrounds beginning with
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measurable traits for fetal growth, fatty liver dis-
ease, dyslipidemia and hypertension, and their
metabolic effects. However, common genetic var-
iation in few obesity or T2D genes has been
identified to promote excess nutrient storage,
suggesting that trait-specific metabolic processes
are primed to promote excessive nutrient storage
and subsequently lead to dysfunctional carbohy-
drate homeostasis and fat metabolism. For exam-
ple, accumulation of excessive diacylglycerol in
the liver is associated with accumulation of liver
and muscle fat leading to defective insulin action
(Kumashiro et al. 2011), particularly in geneti-
cally susceptible populations such as Asian
Indian men (Petersen et al. 2006). Ectopic liver
fat is highly associated with atherogenic
dyslipidemia, even in adolescents (Targher
et al. 2005; Cali et al. 2007).

6 Nonalcoholic Fatty Liver
Disease (NAFLD), Obesity,
and CVD Risk

NAFLD is the buildup of extra fat in liver cells
that is not caused by alcohol and results from
excessive obesity. There is a growing evidence
to support that traits representing NAFLD are
also significant pre-T2D phenotypes. NAFLD is
also regarded as a new component of the meta-
bolic syndrome (Kotronen and Yki-Jarvinen
2008) with an independent genetic background.
Predisposition to T2D is supported by observa-
tions that liver fat is increased in T2D compared to
equally obese nondiabetic patients (Kotronen
et al. 2008). Also patients with NAFLD have
insulin-resistant adipose tissue and tend to have
higher rates of glucose intolerance which is asso-
ciated with increased risk for T2D (Ortiz-Lopez
et al. 2012; Lomonaco et al. 2012). The associa-
tion of NAFLD with insulin resistance begins in
childhood and adolescence (Ciba and Widhalm
2007) and with increased visceral fat and low
adiponectin in adolescence (Burgert et al. 2006),
supporting association with adiponectin’s effects
via adiponectin receptor 2 (ADIPOR2) in three
independent Finnish cohorts (Kotronen
et al. 2009). The association between insulin

resistance and NAFLD has been confirmed in a
meta-analysis of 21 prospective population-based
studies of fatty liver disease diagnosed by liver
ultrasonography (Fraser et al. 2009). Also there is
evidence for NAFLD progressing to T2D (Ekstedt
et al. 2006). Excess storage of fat in the liver is
associated with activation of inflammation and
production of cytokines, particularly IL-6
(Kumar et al. 2012), which may lead to further
insulin resistance activated via signaling path-
ways such as toll-like receptors (Petrasek
et al. 2013) and possibly by the receptor activator
of nuclear factor-kB (RANKL) (Kiechl
et al. 2013). Simple steatosis progresses to inflam-
mation with risk for cirrhosis and liver cancer
(Kotronen and Yki-Jarvinen 2008) and is inde-
pendently associated with increased risk of coro-
nary artery disease (CAD) (Targher et al. 2010).

Large-sized VLDL has been observed in
NAFLD in an adolescent population independent
of adiposity and insulin resistance, and the NMR
(nuclear magnetic resonance) lipid profile was
characterized by small dense LDL and reduced
number of large HDL particles (Cali et al. 2007),
revealing the association of NAFLD with a lipid
profile predisposing to atherosclerosis in adults
(Targher and Arcaro 2007) and with increased
intima-media thickness (IMT) in adolescents
(Pacifico et al. 2008). These data suggest pleiotro-
pic effects, or alternatively, the effects arise from a
biochemical cascade leading to excessive hepatic
fat storage, inflammation, and lipoprotein abnor-
malities. Maturation of the VLDL particle in the
golgi, at the stage when triglyceride is transferred
to apoB by microsomal triglyceride transfer pro-
tein encoded by MTTP, determines liver fat stor-
age and if defective may lead to NAFLD (Sparks
and Sparks 2008). Carriers of the MTTP-493 G/T
allele also have a more atherogenic lipid profile
(Gambino et al. 2007), which may have a delete-
rious effect on β-cell function (Musso et al. 2010).
Furthermore, the MTTP-I128T variant is associ-
ated with central obesity, elevated liver enzymes
in fatty liver disease with and without association
with alcoholism (Jun et al. 2009). In addition, a
manganese superoxide dismutase (MnSOD) vari-
ant was associated, possibly working by reducing
mitochondrial fatty acid oxidation. Genetic
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determinants of VLDL formation and disposal
may result in both atherosclerosis and fatty liver
disease. In a study conducted on Asian Indianmen
revealed that the carriers of two APOCIII variant
alleles (C-482T, T-455C, or both) had a 30 %
increase in apoC-III levels and a 60 % increase
in triglyceride, as compared with the wild-type
homozygotes. The prevalence of NAFLD was
38 % among variant allele carriers compared to
0 % among wild-type homozygote carriers show-
ing a significant correlation with insulin resistance
(Petersen et al. 2010). Furthermore, the apoC-III
overexpression model is predisposed to diet-
induced hepatic steatosis and hepatic insulin resis-
tance (Lee et al. 2011).

A GWAS of 2,111 participants of the Dallas
Heart Study revealed a robust association of liver
fat defined by magnetic spectroscopy with the
I148M allele of the PNPLA3 gene (Romeo
et al. 2008), and the association was replicated in
children and adolescents (Romeo et al. 2010a),
when it may act jointly with GCKR (Santoro
et al. 2012). A meta-analysis of 16 studies showed
association of PNPLA3with disease severity with
strong effect on more aggressive disease suscep-
tibility indicated by higher inflammation indices
and progression to fibrosis (Sookoian and Pirola
2011). The gene PNPLA3 codes for patatin-like
phospholipase domain-containing protein 3, or
adiponutrin, which plays a role in hepatic triglyc-
eride hydrolysis. It catalyzes conversion of
lysophosphatidic acid into phosphatidic acid, an
important regulatory reaction in lipid synthesis.
Adiponutrin is upregulated by sucrose feeding in
the mouse model, and the PNPLA3 l148M variant
results in increased cellular lipid accumulation
providing a plausible mechanism for its impres-
sive association with NAFLD (Kumari
et al. 2012). In addition to PNPLA3, diet-induced
obesity increases adiponutrin expression (Oliver
et al. 2012) which is associated with increased
alanine transaminase, a marker of fatty liver dis-
ease, in Europeans, Hispanics, and Asian Indians
(Romeo et al. 2010b; Yuan et al. 2008). The
homozygous carriers of the PNPLA3 I148M var-
iant showed increased fasting glucose levels
(Krawczyk et al. 2011), and the PNPLA3 S453I
allele was associated with lower hepatic fat

content and was more frequent in African Amer-
icans who had the lowest hepatic fat content,
suggesting a protective effect from NAFLD
(Romeo et al. 2008).

7 Atherogenic and Diabetogenic
Dyslipidemia

The classic atherogenic dyslipidemia associated
with the metabolic syndrome not only precedes
and predicts T2D but abnormal LDL and HDL
particles have biochemical associations with T2D
pathogenesis. Insulin-resistant states such as obe-
sity promote increased triglyceride, low HDL
cholesterol, and molding of triglyceride-
containing lipoproteins to form atherogenic LDL
particles and dysfunctional HDL particles partic-
ularly when there is increased abdominal fat (Carr
and Brunzell 2004). As in the case of other predi-
abetic traits, independent genetic determinants of
dyslipidemia (discussed below) interact with
nutritional excesses and obesity-generated insulin
resistance.

In vitro studies have shown that the addition of
LDL to human and rat islets decreases glucose-
stimulated insulin secretion and is attributed to
cholesterol uptake by islet LDL receptors and
intracellular cholesterol-mediated toxicity (Rutti
et al. 2009). Intracellular accumulation of choles-
terol is dependent on HDL-mediated cholesterol
efflux via the ATP-binding cassette transporter A1
(ABCA1), which is rate limiting supporting a
critical protective role for HDL (Kruit
et al. 2010a). Further studies have revealed that
high cholesterol content in the β-cell membrane
downregulates insulin secretion by influencing
membrane depolarization, the signal for calcium
influx, and calcium-mediated insulin secretion
(Hao and Bogan 2009). Since the classic
dyslipidemia associated with the metabolic syn-
drome precedes T2D onset by several years (Ford
et al. 2008a), the effect of low HDL, which is a
predictor of CVD, is operative over an extensive
time period depending on the duration of a
low HDL.

In addition, elevated triglyceride is associated
with increased fatty acid levels, which enter the
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β-cell and undergo glucose-dependent esterifica-
tion resulting in lipotoxicity (Briaud et al. 2001).
Since not all obese individuals have elevated tri-
glycerides and nonobese cases can present with
elevated levels (Lim et al. 2011; Musso
et al. 2011), genetic predisposition can account
for abnormal levels and for gene-environment
interactions with obesity and dietary intake. Four
commonly encountered classic hypertrigly-
ceridemia phenotypes (IIb, III, IV, and V) origi-
nally described at the National Institutes of Health
have been characterized as having an elevated
level of triglyceride. Type III hyperlipidemia is
an exception since it has a distinct monogenic
association with APOE polymorphism with
homozygous effects of apoE2 isoform when the
individual becomes obese. Type IIb, IV, and V
phenotypes were associated with common vari-
ants which had previously been identified in
GWAS performed on subjects with mild triglyc-
eride elevations (Alvarez Caro et al. 2011). Thus
clinically relevant dyslipidemia with high triglyc-
eride can often be associated with common
triglyceride-associated variants. Homozygous
expression of rare variants such as APOAV and
APOE can result in severely increased triglyceride
(Hunter et al. 1979); severe cases were found to be
carriers of APOAV variants, S19W or �1,131
T>C. Epidemiological studies suggest that ele-
vated serum triglyceride concentration is a strong
independent risk factor for CAD and ischemic
stroke (Hokanson and Austin 1996; Freiberg
et al. 2008). Chromosome region 11q23.3 com-
prising a cluster representing APOA5-A4-C3-A1
genes has a profound effect on elevating plasma
triglyceride levels in animal and human studies
(Coram et al. 2013; Baroukh et al. 2004). Recent
GWAS and meta-analysis studies using thousands
of participants have confirmed SNPs within
11q23.3 (BUD13, ZNF259, and APOA5-A4-C3-
A1), and other candidate gene regions
representing LPL, GCKR, MLXIPL, ANGPTL3,
APOC1, APOC2, and TRIB1 have been reported
to be strongly associated with elevated triglycer-
ide concentrations in multiple GWAS and meta-
analysis studies (Coram et al. 2013; Teslovich
et al. n.d.; Kathiresan et al. 2008, 2009; Willer
et al. 2013; Kamatani et al. 2010). A strong

association signal for triglyceride represented by
rs964184 (BUD13-ZNF259, p = 1.1 � 10�39)
was replicated in on 8,530 South Asians from
LOLIPOP (UK) and Punjabi Sikhs (Braun
et al. 2012).

The �455 T>C variant in the APOCIII gene
promoter region is associated with increased tri-
glyceride levels. The �455C and �482T alleles,
located in the insulin response element (IRE), fail
to respond to insulin-mediated downregulation
via Foxo1 so that transcription remains active
and plasma apoC-III is increased (Chen
et al. 1994). This mechanism explains the associ-
ation of apoC-III levels in non-HDL lipoproteins
with insulin resistance in children and adolescents
(Blackett et al. 2005). Since apoC-III transcription
is activated in insulin resistance, increases in
plasma apoC-III and triglyceride (Li et al. 1995)
occur in insulin resistance due to obesity. Since
transfer proteins and lipolytic enzymes mediate
triglyceride and apoC-III transfer, there are
increases in the atherogenicity of both LDL
(Mendivil et al. 2011) and HDL (Jensen
et al. 2012). The finding that apoC-III content of
HDL predicts T2D (Onat et al. 2009) could be
attributed to change in HDL function. Further-
more, the higher diabetes prediction in females
(Onat et al. 2009) follows the appearance of
higher levels of plasma apoC-III relative to
apoA-I in teenage girls possibly accounting for a
higher prevalence of T2D in young females than
males (Blackett et al. 2012). In a multiethnic pop-
ulation sample, the serum triglyceride levels were
20 % higher among individuals carrying �455C,
particularly in females who were also shown to
have low HDL-C (Dallongeville et al. 2001).

It has long been known that cultural, environ-
mental, and hormonal factors determine HDL-C.
However, a genetic component accounts for up to
76 % of its variation (Snieder et al. 1999),
suggesting that genetic variants may affect HDL
regulation and expression of HDL-associated
traits with environmental interaction (Vaziri
2006). Regulatory genes involved in HDL metab-
olism mediated by apoA-I, LCAT, ABCA1, and
endothelial lipase have been associated with
severe HDL deficiencies (Qin et al. 2000), but
only 20 % of cases have been explained by gene
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mutations, and the population frequencies of the
major gene abnormalities are very low. However,
association of these rare variants with atheroscle-
rosis has been ambivalent (Larsen et al. 2002),
supporting a case for functional assays to repre-
sent the HDL phenotype such as measures of
cholesterol efflux (Posadas Romero 2007).

Gene mapping and association studies have
identified quantitative trait loci (QTLs) for
apoA-I and HDL-C levels at chromosome 6p,
9q, and 15q (Le Goff et al. 2004). Since the
studies were done in a predominantly American
Indian population, the findings could lead to asso-
ciation of SNPs with insulin-resistant phenotypes
including T2D (Alaupovic et al. 2008). The 15q
region has been recognized to have a significant
interaction with diabetes, BMI, smoking, alcohol
intake, and gender (Sakai et al. 1995). After serial
adjustments, the LOD score increased from 1.75
to 4.52, supporting multiple endogenous and
environmental influences including obesity.
A region on 9q contains the ABCA1 gene coding
for the cholesterol transporter regulating efflux
from cells to HDL. The gene was found to contain
the ABCA1-C230 variant which was associated
with low HDL cholesterol exclusively in Ameri-
can Indian populations who have increased risk
for T2D (Joy and Hegele 2009). This is important
since carriers of loss of function mutations in
ABCA1 display pancreatic β-cell dysfunction
supporting a role for ABCA1 in removing choles-
terol from β-cells (Kruit et al. 2010b).

Susceptibility to changes in HDL composition
and function occurs in obesity in part due to
triglyceride elevation. Triglyceride enrichment of
HDL is mediated by cholesterol ester transfer
protein (CETP) and is followed by degradation
of HDL by hepatic triglyceride lipase, dissocia-
tion of apoA-I, and subsequent renal catabolism
(Thompson et al. 2008). It follows that in hypertri-
glyceridemic conditions, CETP activity has an
HDL-reducing role. Conversely, CETP deficiency
secondary to a gene defect results in extreme
elevations in HDL-C (Nagano et al. 2001) while
maintaining function. Consequently CETP inhi-
bition is the basis for use of pharmaceutical agents
designed to raise HDL-C with encouraging recent
trial results despite previous setbacks (Bochem

et al. 2013). Genetic variation in CETP has been
studied for association with variation in HDL-C in
different populations (Yilmaz et al. 2005;
Padmaja et al. 2007). A meta-analysis reported
CETP genotypes to be associated with moderate
inhibition of CETP activity and inverse associa-
tion with CVD, but the findings are inconsistent
(Rhyne et al. 2006). Other studies have reported
greater risk associated with low CETP activity
secondary to severe genetic deficiency (Bruce
and Nishimura 1998). A recent prospective study
from the community-based Framingham Heart
Study also reported greater cardiovascular risk
with low CETP activity (Vasan et al. 2009).
More recently, it has been shown that polymor-
phisms in the CETP promoter region determine
activity. GWAS in Caucasians has revealed asso-
ciation of the variant �2,568 C/A (rs3764261)
with HDL-C, and the finding has been replicated
in different ethnic groups (Willer et al. 2008;
Hegele 2009). SNPs in the CETP promoter region
(�2,568 C/A, �1,700 C/T), �998 A/G) and the
well-known noncoding SNP (397 A/G) identified
as a restriction fragment (Taq1b) in the first intron
were studied in the unique Sikh population of
Northern India who are known to have a high
prevalence of T2D and cardiovascular disease
despite much lower obesity rates (Sanghera
et al. 2006). The �2,568 C/A allele showed a
strong association with increased HDL-C and
decreased blood pressure. Although none of the
SNPs were individually associated with CETP
activity, low activity was associated with greater
risk for CAD, and there was significant interaction
between the CETP SNPs studied as haplotypes
and CETP activity for affecting HDL-C (Schierer
et al. 2011). These results suggest that more com-
plete genotyping could serve to define individual
risk and response to therapies designed to raise
HDL-C by inhibiting CETP.

8 Hypertension Pathway to CVD

Obesity has been identified as the most important
risk factor for diabetes and hypertension
(He et al. 2009). Abundance of evidence supports
a strong association of high blood pressure with
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insulin resistance (Reaven 2011). This association
is attributed to enhanced sympathetic nervous
activity, adrenal activity, oxidative stress, and
enhanced renin-angiotensin-aldosterone system
(Reaven 2011; Cooper et al. 2007). Angiotensin
II has a direct effect on increasing insulin resis-
tance independent of alterations in blood flow and
interstitial insulin concentration (Richey
et al. 1999), but angiotensin II is equally respon-
sible for triggering vascular inflammation and
inducing oxidative stress (Ogihara et al. 2002;
Savoia and Schiffrin 2007). The insulin resistance
is reversible by selective inhibitors of angiotensin
II at AT1 receptors (Sloniger et al. 2005). Similar
selective antagonism using irbesartan, a clinically
used AT1 receptor blocker (ARB), has been
shown to improve insulin action in the obese
Zucker rat- associated with upregulation of
GLUT4, the main glucose transporter in skeletal
muscle (Henriksen et al. 2001).

Given substantial experimental evidence for
the renin-angiotensin system’s involvement in
hypertension and vascular pathophysiology,
there has been interest in investigating associa-
tion of common variants such as ACE
(angiotensin-converting enzyme) and AGT
(angiotensinogen) with hypertension, but results
have not been conclusive (Norton et al. 2010) and
they have not been associated with T2D (Conen
et al. 2008). However, variants in ACE and
CYP11B2 genes have been associated with insu-
lin resistance in hypertensive families in Taiwan
(Hsiao et al. 2012). Gene variants in ACE, AGT,
and AT1R predicted T2D in a Tunisian population
(Mehri et al. 2010). Data from the National
Health and Nutrition Examination Survey
(NHANES) showed the prevalence of hyperten-
sion to be 40 % in African Americans compared
to 27 % in European Americans (Hertz
et al. 2005; Cutler et al. 2008) leading to the
hypothesis that part of the excess burden in Afri-
can Americans is due to genetic susceptibility
(Fox et al. 2011). GWAS and candidate genes
examined in the Candidate Gene Association
Resource Consortium consisting of 8,591 African
Americans identified novel associations for dia-
stolic blood pressure on chromosome 5 near
GPR98 and ARRDC3 and for systolic blood

pressure on chromosome 21 in C21orf 91. How-
ever, none of these variants were associated with
T2D (Fox et al. 2011).

Interestingly, monogenic forms of hyperten-
sion have provided evidence for a regulatory role
of key metabolic pathways and have been the
basis for candidate gene population studies, but
none have involved carbohydrate metabolism or
insulin action. Using such an approach, 24 h
ambulatory blood pressure has been associated
with five polymorphisms in the KCNJ1 gene,
which has the potential to cause Bartter syndrome
Type 2 when the abnormal allele is inherited
(Tobin et al. 2008a). Also ambulatory blood pres-
sure is associated with common variations in the
WNK1 gene known to cause pseudohypoaldos-
teronism Type 2 or Gordon syndrome. Associa-
tion of WNK1 with blood pressure in childhood
underscores its possible association with evolving
hypertension at young ages (Tobin et al. 2008b).
Additional association with variants in CASR,
NR3C2, SCNN1B, and SCNN1B, all of which
are known to have had mutations causing rare
Mendelian defects in blood pressure regulation,
provides support for the hypothesis that relevant
polymorphisms influence conventional pathways
involved in blood pressure regulation (Tobin
et al. 2008a). However, only a few variants have
been discovered in GWAS in the earlier known
genes, suggesting new pathways involved in
hypertension. A large meta-analysis performed
by the International Consortium for Blood Pres-
sure on 200,000 individuals of European descent
identified 16 loci of which only 6 contained genes
that are known or suspected to regulate blood
pressure, which include NPR3, GUCY1A3-
GUCY1B3, ADM, GNAS-EDN3, NPPA-NPPB,
and CYP17A1 (Ehret et al. 2011). CYP17A1
achieved the most robust GWAS significance
and is the site for a known Mendelian-inherited
mutation causing hypertension by increasing
mineralocorticoids in the adrenal steroid pathway
and causing a rare form of congenital adrenal
hyperplasia. Diabetes and hypertension
share common pathways such as renin-
angiotensin system’s involvement in insulin
resistance and vascular inflammation. However,
the evidence from genetic studies, specifically
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from GWAS, points to separate genetic back-
grounds for hypertension and T2D.

9 Endothelial Dysfunction

Vascular endothelial cells play a pivotal role in
regulating blood flow in the entire circulatory
system. The endothelium maintains and regulates
a wide range of homeostatic functions through the
presence of membrane-bound receptors for vari-
ous molecules including proteins, lipid-
transporting particles, metabolites, and hormones.
Endothelial dysfunction is characterized by
impaired endothelium-dependent vasodilation
and increased procoagulant and
pro-inflammatory activity (Widlansky
et al. 2003). Endothelial dysfunction has also
been linked with obesity and elevated C-reactive
protein (CRP). CRP is a pro-inflammatory marker
whose concentrations are markedly increased in
patients with T2D, hypertension, and metabolic
syndrome (Ridker et al. 2003). The development
of atherosclerosis is considered to be a conse-
quence of a chronic inflammatory process, perpet-
uated in part by LDL that is trapped and oxidized
within the vessel wall (Ross 1993). Specifically,
oxidative stress increases vascular endothelial
permeability and promotes leukocyte adhesion,
which is coupled with alterations in endothelial
signal transduction and redox-regulated transcrip-
tion factors (Lum and Roebuck 2001). On the
other hand, oxidized LDL may impair signal
transduction activation of nitric oxide synthase,
thus lowers the synthesis of nitric oxide
(Kugiyama et al. 1990). Reduced nitric oxide
could also stimulate the synthesis and release of
endothelin, producing enhanced vasoconstrictor
tone; release and activity of growth factors;
increased smooth muscle cell migration into the
intima; and synthesis and release of
pro-inflammatory cytokines. Additionally,
reduced nitric oxide could promote platelet attach-
ment and release of growth factors in the vessel
wall. These consequences of endothelial dysfunc-
tion such as lipid peroxidation along with reduced
nitric oxide bioactivity may be important in the
initiation and progression of atherosclerosis and

ultimately result in clinical manifestation of CVD.
Angiotensin II is also involved in triggering vas-
cular inflammation and oxidative stress in endo-
thelium by stimulating NAPH/NADPH oxidase,
protein kinase C, and mitogen-activated protein
kinase (MAPK) (Griendling et al. 1994;
Yamakawa et al. 2000). Peripheral endothelial
function correlates well with coronary endothelial
vasodilation and is reduced in patients with CVD
risk factors such as obesity, hypercholesterolemia,
hypertension, and diabetes (Anderson et al. 1995).

10 Conclusions

Recognition of risk factors in obese individuals
that precede both CVD events and T2D is an
essential strategy to achieve reductions in preva-
lence. Early recognition of traits and their role in
increasing risk involves recognition of their inde-
pendent genetic origins, gene-gene interaction,
interacting metabolic pathways, and epigenetic
modifications. The respective traits also interact
with environmental effects and increase suscepti-
bility. Fetal growth restriction, NAFLD,
dyslipidemia, hypertension, and early hypergly-
cemia all interact with the obesity phenotype
progressing from prediabetes to T2D and CVD.
A role for primary and secondary metabolic
events with separate genetic backgrounds
interacting with pathways involving insulin resis-
tance and insulin secretion is likely to be a central
factor in pathogenesis of CVD. Early metabolic
programming during gestation not only has a
genetic background but also is susceptible to met-
abolic and nutritional changes in the fetal envi-
ronment and predisposes to metabolic syndrome
traits that begin to express in childhood. Individ-
uals with genetic predisposition to obesity are
sensitive to early environmental influences begin-
ning during gestation and continuing in childhood
to adulthood. Obesity itself like the other pheno-
types generates insulin resistance and worsens
dyslipidemia and in some cases leads to increased
hepatic fat synthesis and storage (NAFLD),
suggesting that liver-expressed variants may com-
pound the risk of diabetes and CVD. The classic
lipid derangement observed in insulin resistance
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consisting of elevated triglyceride (often associ-
ated with increased free fatty acid levels), small
LDL particles in increased numbers, and low
HDL cholesterol has significant association with
insulin resistance and progression of β-cell failure
and predicts both CVD and T2D onset. GWA
studies are identifying hundreds of common risk
variants for T2D, obesity, and related intermediate
phenotypes. However, these genes collectively
account for only 8–10 % of total heritability
linked with these conditions. Major efforts are
still needed to gain biological knowledge from
these genome-wide discoveries. Although obesity
has been directly linked with the diabetes and
hypertension, the shared genetic etiology of obe-
sity, T2D, and hypertension discovered in GWA
studies is limited. Therefore, more work is needed
to fully understand the underlying genetic archi-
tecture of overlapping disease phenotypes to elu-
cidate mechanisms of pathogenesis and
identification of therapeutic targets for prevention
and early intervention. Importantly, the screening
approaches beginning during early developmental
phases could allow assessment of more precise
interrelationships of obesity and T2D phenotypes
to each other and to CVD.
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Abstract
The global increase in the burden of metabolic-
related disease, particularly obesity and type
2 diabetes, means that insights into factors con-
tributing to such conditions are of increasing
importance. Evidence from both human studies
and animal models suggests that suboptimal con-
ditions in early lifemay play a role in determining
the risk of later metabolic dysfunction. Under-
standing how later metabolic dysfunction arises
at least in part from the early-life environment
could lead to exciting new routes to tackle
adverse later-life outcomes, either in the index
pregnancy via maternal intervention or early in
the life of the offspring. Currently, our under-
standing of the mechanisms of developmental
programming of metabolic dysfunction arises
primarily from work in animal models, and
much remains to be recapitulated and validated
in human populations. An ability to tackle meta-
bolic dysfunction early in life and to offset
adverse programming of metabolism could
prove protective to some degree against many
later-life metabolic diseases. Of particular impor-
tance is the idea that adverse metabolic pheno-
types may not only be seen in the offspring
directly exposed to adverse conditions in utero
but may also be transmitted or re-propagated
across generations. This allows developmental
programming of metabolic phenotypes to be
viewed on a longer-term basis than a single gen-
eration and underscores the idea that early inter-
ventions to improve the intrauterine and early
postnatal environment could have significant
metabolic health benefits to both the children of
affected individuals and to future generations.

Keywords
Developmental programming •Metabolic dys-
function • Intrauterine environment • Maternal
nutrition

1 Introduction

The developmental origins of health and disease
have been an area of intense and productive
research over the last 30 years. The concept that

events at the very start of life can “program” later
outcomes was first proposed by Professor David
Barker and colleagues in Southampton, UK, in the
late 1980s (Barker 1998). He proposed that there
are critical “windows” during early development,
in utero, and postnatal life, where exposure to
suboptimal conditions causes permanent changes
to key metabolic and growth pathways, which
then influence the health of the offspring in adult-
hood through irreversible changes in structure and
function of tissues and organs (Gluckman
et al. 2008). Since this hypothesis was first
suggested, a wide variety of offspring outcomes
have been investigated and found to be influenced
by the early-life environment. These include such
diverse outcomes as reproductive function (Aiken
et al. 2013), anxiety and stress behaviors (Sullivan
et al. 2010), and longevity (Ozanne et al. 2004).
However, one of the most commonly studied out-
comes of developmental programming is meta-
bolic function, including type 2 diabetes,
obesity, and dyslipidemia (Dong et al. 2013).
Obese and metabolically deranged offspring phe-
notypes are well described in human epidemio-
logical studies and in animal models of
programming via nutrition and other interven-
tions. Obesity, dyslipidemia, and abnormal glu-
cose/insulin regulation are among the best-
understood phenotypes influenced by develop-
mental programming. In contrast to many other
developmental programming effects, metabolic
dysfunction is widely reported in programmed
offspring of both sexes (Aiken and Ozanne
2013) and at various ages.

The idea that an individual’s diet in adulthood
affects metabolic parameters is intuitively clear,
but the idea that alterations to physiology in early
life can “program” later metabolism is a relatively
new concept. However there is now a substantial
body of evidence supporting the idea that the in
utero and early neonatal life environment can have
a profound influence on the way that metabolic
pathways are established, leading to obesity and
other adverse effects in adulthood. The “thrifty
phenotype” hypothesis (proposed by Hales and
Barker in 1992 (Hales and Barker 1992)) proposes
that fetuses developing within a suboptimal intra-
uterine environment maximize their chances of
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survival via metabolic adaptations to utilize avail-
able resources more efficiently. Viewed in the con-
text of an ongoing suboptimal environment in
postnatal life, this is a helpful adaptation of the
organism to its surroundings and of evolutionary
benefit. The pathology in the system is introduced
when a mismatch occurs between the suboptimal
intrauterine environment and a nutrient-replete
environment after birth (Gluckman et al. 2008).
Fetuses born in such conditions display the phe-
nomenon of “catch-up growth” – a rapid postnatal
increase in body mass, which has been suggested
to be particularly detrimental in terms of metabolic
function in later life (Ezzahir et al. 2005; Ong
2007). In particular, catch-up growth is associated
with central adiposity (with all its attendant health
risks (Kensara et al. 2005)) and with a lower lean
mass. Even infants whose birth weight does not fall
into the category of small-for-gestational age may
have failed to reach their full growth potential in
utero and subsequently undergo catch-up growth,
meaning that raw birth weight is a less good pre-
dictor of future metabolic function than is the
infant’s growth trend in early life (Ong and Loos
2006). The precise mechanisms by which these
changes are regulated are not fully established,
but important roles for maternal hyperglycemia,
hyperleptinemia, inflammation, and oxidative
stress contributing to the suboptimal uterine envi-
ronment are emerging.

In this chapter, current evidence for early-life
programming of metabolic dysregulation is
reviewed, and the potential underlyingmechanisms
explored. More recently, research efforts have been
focused on ways to prevent or ameliorate develop-
mental programming, and current thinking on this
topic is reviewed at the end of the chapter.

2 Evidence for Fetal Metabolic
Programming of Obesity

2.1 Human Studies

Childhood obesity is an increasing problem in
developed countries (Ogden et al. 2012) and is
predictive of later metabolic dysregulation in
adulthood (Ziyab et al. 2014); however,

disentangling the developmental aspects of the
trend is problematic. Studies of the effects of the
environment on adult outcomes are often
hampered in humans by long generation times,
which influence recall and increase the chances
of confounding by postnatal conditions.
Furthermore, it can be particularly difficult in
cohorts to separate out the effects of genetics,
the prenatal, and the postnatal familial
environment.

The concepts of developmental programming
originally arose from studies of adults who were
exposed to famine while in utero. The paradigm of
such studies reported higher rates of obesity
among adult males whose mothers were exposed
to severe undernutrition during the Dutch Hunger
Winter (the extreme famine conditions experi-
enced in the Netherlands over the winter of
1944–1945) in late pregnancy (Ravelli
et al. 1976). Similar findings have been reported
from studies of other famines in human
populations, including the Chinese famine of the
late 1950s (Li et al. 2010). More recently,
increased adiposity later in life has been demon-
strated in infants born small-for-gestational age
(Jaquet et al. 2005).

Conversely, maternal overnutrition is also
highly correlated with offspring obesity later in
life. In developed countries, where obesity levels
are rising, maternal overnutrition is an increas-
ingly serious population health concern (2011).
Maternal obesity is associated with both low
(Rajasingam et al. 2009) and high birth weight
(Oken and Gillman 2003) and with childhood
obesity (Oken et al. 2007; Wrotniak et al. 2008).
In the offspring of obese mothers, even small
increases in maternal body mass index can corre-
spond to a significantly increased risk of infant
adiposity (Modi et al. 2011). Human studies of
obese mother/infant pairs are subject to obvious
confounding from genetic, social, and environ-
mental factors; however, it is notable that the
chance of offspring obesity in conjunction with
maternal obesity is higher than with paternal obe-
sity (Lee et al. 1997). Furthermore, the relation-
ship between maternal obesity and early
childhood obesity persists even after controlling
for other maternal factors, perinatal factors, and
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childhood eating behavior (Oken et al. 2007).
Maternal imprinting could account for many of
these findings; however, an alternative explana-
tion centers on the pivotal role of the intrauterine
environment in influencing offspring obesity in
later life.

Human studies of childhood and later-life obe-
sity are subject to bias that arises because mothers
who are themselves overweight are more likely to
provide an obesogenic environment to their off-
spring postnatally. Some of this bias is accounted
for by studies that look only at weight gain during
pregnancy (gestational weight gain, GWG) rather
than mothers who were obese prior to commenc-
ing pregnancy. A large prospective UK cohort
study demonstrates that gestational weight gain
is independently associated with childhood obe-
sity. This association is greater with weight gain
that is earlier in pregnancy and >500 g/week
(Fraser et al. 2010). More recently, the specific
link between maternal obesity in pregnancy and
later obesity in children has been explored in
studies of mothers who have undergone bariatric
surgery. Compared to siblings born prior to bar-
iatric surgery, those children born after the mother
had attained normal weight had a lower risk of
later obesity (Kral et al. 2006) and demonstrated
improvements in other metabolic parameters
including insulin sensitivity, lipid levels, and
ghrelin levels (Smith et al. 2009). Conversely, it
has been demonstrated that in sibling pairs where
the mother experienced significant weight during
the inter-pregnancy interval, the later sibling was
at increased risk of obesity in later life (Villamor
et al. 2008). Other attempts have been made to
control for family environment and maternal-
related factors by using sibling controls to isolate
the effects of gestational diabetes on offspring
adiposity. Increased adiposity was observed in
children where the mother was diabetic during
pregnancy compared to their siblings where dia-
betes was not present. In particular a large Scan-
dinavian cohort, in which male sibling pairs
discordant for maternal gestational diabetes
were followed up until age 18, demonstrated
that the offspring in utero during diabetic

pregnancies had significantly higher BMIs than
their siblings from normoglycemic pregnancies
(Lawlor et al. 2011).

Children with both very low and very high
birth weights are at increased risk of obesity
later in life (Parsons et al. 2001). This finding
fits with the idea that birth weight per se may be
less important in terms of later outcome than
perinatal catch-up growth. In terms of growth
and nutrition, rapid postnatal weight gain (within
the first 9 months of life) is strongly correlated
with both increased adiposity in later childhood
in both sexes and earlier age at menarche in girls
(Ekelund et al. 2006; Ong et al. 2009). As detailed
in the thrifty phenotype hypothesis, rapid postna-
tal growth often signifies a mismatch between the
intrauterine and postnatal environment, which
makes metabolic pathology considerably more
likely. Rapid postnatal catch-up growth is associ-
ated with metabolic dysregulation in adulthood
(including obesity), even when the birth weight
falls within normal range (Tzoulaki et al. 2010).
The profound effects of early neonatal growth are
seen in studies where infants fed “growth-pro-
moting” formula (which entailed not only
increased calorie consumption but also signifi-
cantly increased protein intake) had a greater
chance of developing obesity in mid-childhood
(Singhal et al. 2010). These studies demonstrate
the importance not only of in utero programming
but also of the interaction between fetal and post-
natal growth in determining later metabolic
outcomes.

2.2 Animal Models

In animal models of developmental program-
ming, particularly rodent models, a range of die-
tary, surgical, and other interventions (Seckl and
Meaney 2004) have been shown to increase the
prevalence of obesity in the offspring in adult-
hood. Animal work both allows increased insight
into the mechanistic aspects of developmental
programming and allows increased scope to per-
form early interventional studies.
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In rodent models of maternal undernutrition,
obesity can be induced in male offspring along-
side a phenotype of hyperphagia (Vickers
et al. 2000). Offspring obesity is seen in conjunc-
tion with important changes in gene expression
that suggest it may be linked to mitochondrial
dysfunction and an increased stress res-
ponse (Bispham et al. 2005; Stocker et al. 2005).
Similarly, in sheep developmental programming
models, maternal undernutrition during gestation
results in greater offspring adiposity in later life
(Greenwood et al. 1998).

Conversely, maternal overnutrition has also
been demonstrated to program offspring obesity
in rodent models (Desai et al. 2005). In the sheep
model of maternal overnutrition, there is evidence
not only of increased adiposity of the offspring in
later life, but a possible clue to the mechanism by
which this may be brought about. Maternal
overnutrition has been observed to lead to
dysregulation of leptin levels in the neonate,
which may have profound consequences for
later body mass and appetite regulation (Long
et al. 2011). Subsequent studies have also demon-
strated that the offspring obesity in rodent devel-
opmental programming models is associated with
hyperphagia (Rooney and Ozanne 2011), even
when weaned onto a normal diet (Kirk
et al. 2009). Hypothalamic programming of
energy balance in adult offspring of rat mothers
exposed to low-protein diet during gestation is
permanently altered in favor of orexigenesis,
with increased expression of neuropeptide Y and
decreased expression of pro-opiomelanocortin
(POMC, which is an important regulator of
energy homeostasis) (Cottrell et al. 2009). Aside
from hyperphagia resulting in increased offspring
obesity, a further important factor modulating off-
spring obesity may be a tendency demonstrated in
some studies toward increased sedentary behavior
and decreased physical activity in developmen-
tally programmed offspring (Vickers et al. 2003;
Bellinger et al. 2006). Importantly, this effect is
seen in maternal undernutrition models as well as
in offspring whose mothers were obese during
pregnancy (Bellinger et al. 2006). The precise

composition of experimental maternal
overnutrition diets utilized to program long-term
adverse metabolic consequences in offspring is
highly variable within the literature, with some
studies using increased caloric intake, increased
fat, or increased sugar. More recently, highly pal-
atable high-fat/high-sugar diets that most closely
mimic a modern Western diet have been used and
induce obesity in offspring of both sexes (Samu-
elsson et al. 2008).

Evidence for developmental programming of
obesity in the nonhuman primate is limited, but a
maternal high-fat diet in macaques results in a
phenotype of increased adiposity (independent
of postnatal feeding), which may be a result of
hormonal and inflammatory changes (Grayson
et al. 2010). Other nonhuman primate studies
have added to the weight of evidence suggesting
that maternal high-fat diets during pregnancy,
even in the absence of maternal obesity, are strong
risk factors for increased adiposity in the offspring
(McCurdy et al. 2009).

Animal models further demonstrate the impor-
tance of the interaction between the pre- and post-
natal nutritional environment for long-term
programming of obesity (Desai et al. 2005). In
rats whose mothers ate a low-protein diet during
pregnancy, those offspring who also consumed a
low-protein postnatal diet showed no increased
body mass later in life relative to the control ani-
mals. However those who were weaned onto a
normal diet after delivery became obese in adult-
hood (Ozanne et al. 2004). Evidence points to
central leptin resistance as an important mediator
of obesity in developmentally programmed off-
spring. It is proposed that exposure to suboptimal
conditions early in life can permanently alter the
leptin sensitivity of the arcuate nucleus of the hypo-
thalamus, hence increasing the susceptibility to
obesity when exposed to high-fat diet. Leptin resis-
tance in the neurons of the arcuate nucleus has been
demonstrated in the neonatal offspring of mouse
dams who were diabetic during pregnancy
(Steculorum and Bouret 2011). It is unknown pre-
cisely how leptin resistance is programmed in early
development, but it has been suggested that leptin
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transport across the blood-brain barrier may be
impaired by elevated circulating triglycerides dur-
ing early life, and this may account for the impair-
ment in later leptin sensitivity.

3 Evidence for Fetal
Programming of Glucose/
Insulin Metabolism

3.1 Human Studies

Secondary fetal hyperinsulinemia is believed to
result from exposure to high glucose loads
throughout gestation in infants whose mothers
are obese, are over-nourished, have high gesta-
tional weight gain, or develop gestational diabetes
(Oken and Gillman 2003). A fetus with a normally
functioning pancreas will have the capability to
respond to transplacental glucose loads with
increased insulin production, which acts a growth
hormone in addition to directly driving
macrosomia in this capacity. Support for this
hypothesis comes from studies that show
increased levels of insulin in the amniotic fluid
of neonates who become obese later in childhood
(Metzger et al. 1990). There may however be
some degree of placental modification of the
nutrient supply that can ameliorate some develop-
mental programming effects, potentially via Igf2
(Burton and Fowden 2012).

Infants who were born small-for-gestational
age have increased risk of insulin resistance in
early adulthood (Jaquet et al. 2000). In particular
the infants of mothers who were obese and
hyperinsulinemic during their pregnancies have
a higher likelihood of experiencing insulin resis-
tance in later life (Dorner and Plagemann 1994;
O’Reilly and Reynolds 2013). Defining contri-
bution of the suboptimal pregnancy environ-
ment, as opposed to genetic or social factors, as
driving the later offspring phenotype is compli-
cated in human studies. This complexity is
increased by the role that early postnatal dietary
modification is likely to play in defining the pro-
pensity to glucose intolerance later in life. In one
interventional study, infants randomized to early
feeding with a high-protein formula showed a

pattern of increased circulating branched-chain
amino acids that is known to be associated with
later development of insulin resistance (Socha
et al. 2011).

3.2 Animal Models

Although abundant evidence exists for the devel-
opmental programming of offspring glycemic
control (Pinney and Simmons 2012; Sandovici
et al. 2013), the multitude of maternal interven-
tions and study protocols giving rise to these
phenotypes makes dissecting out the mechanism
by which these effects are mediated difficult
(Ainge et al. 2011). It is hoped that future inves-
tigations using targeted metabolomics might help
to better define these interventions and outcomes
in both human and animal studies (Hivert
et al. 2015).

Multiple rodent studies have demonstrated
increased circulating insulin levels in offspring
of mothers fed high-fat diets during pregnancy.
Hyperinsulinemia is usually observed in the con-
text of hyperphagic obese offspring (Samuelsson
et al. 2008; Tamashiro et al. 2009; Fernandez-
Twinn et al. 2012). A similar phenotype has
recently been observed in adult rat offspring
whose mothers were exposed to intermittent
chronic hypoxia during pregnancy (Iqbal and
Ciriello 2013), with both hyperinsulinemia and
frank hyperglycemia present in the obese adult
offspring. However, dysregulation of offspring
insulin sensitivity has been observed prior to the
development of adult metabolic dysfunction
(including obesity) in the nonhuman primate.
These results suggest that exposure to an excess
of androgens during in utero development can
alter insulin sensitivity in early postnatal life and
precede the development of a frankly adverse
metabolic phenotype (Abbott et al. 2010). While
much attention has focused on the ability of
maternal overnutrition in pregnancy to provoke
glucose intolerance in the offspring, multiple
studies have also observed impaired glucose tol-
erance and dysregulation of the development of
the endocrine pancreas in undernutrition models
(Fernandez-Twinn and Ozanne 2010),
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particularly low-protein maternal diets (Snoeck
et al. 1990; Alejandro et al. 2014).

Separating the phenotypes of glucose and insu-
lin resistance is difficult even in animal models,
and studies often conflate these with little regard
as to the metabolic driving factors. Interestingly,
the offspring of mice that are hyperinsulinemic
(via an IRS-1 insufficiency) but remain
normoglycemic during pregnancy show evidence
of early weight gain and early hyperinsulinemia,
with later development of frank hyperglycemia
(Isganaitis et al. 2014). This suggests that the
simple hypothesis of maternal hyperglycemia dur-
ing pregnancy driving in utero hyperinsulinemia
in the offspring, with subsequent effects on later
insulin sensitivity accounting for the developing
phenotype, is not sufficient to explain the effects
of maternal diet on offspring glucose/insulin sen-
sitivity. Further elucidation of the driving mecha-
nisms behind the offspring response to maternal
diet comes from a low-protein maternal diet
murine model, in which decreased insulin levels
and reduced beta cell fraction in the pancreas were
observed in neonatal offspring, followed by glu-
cose intolerance in adulthood (Alejandro
et al. 2014). In this study, disruption of endocrine
pancreas development was driven by a decrease in
mTOR signaling (known to be a key regulator of
beta cell mass and function during development as
well as in adulthood (Rachdi et al. 2012)). mTOR
signaling in this model was inhibited by an abun-
dance of specific microRNAs directly blocking
mTOR expression. When the levels of inhibiting
microRNAs were experimentally reduced, mTOR
protein levels were restored and the offspring
phenotype “rescued” (Alejandro et al. 2014), giv-
ing important insight into the epigenetic mecha-
nisms that may underlie impaired glucose/insulin
tolerance programming in early life. Downstream
of regulation of pancreatic development, further
evidence from a rat maternal low-protein model
demonstrates downregulation of Pdx1 expression
(at both the mRNA and protein levels) leading to
decreased expression of Glut2 and impaired glu-
cose tolerance (Abuzgaia et al. 2015).

As one of the better established developmental
programming phenotypes, with a reliable induc-
tion of hyperinsulinemia in the first generation of

offspring, particularly by maternal high-fat diets,
glucose/insulin resistance has been the target phe-
notype for a number of pioneering studies looking
at transgenerational aspects of developmental pro-
gramming (reviewed in Aiken and Ozanne 2014).
Insulin/glucose dysregulation has been observed
in a second generation of offspring following an
initial maternal programming stimulus in several
rodent models. In a particularly interesting exam-
ple, maternal high-fat mouse model, the F1 off-
spring exhibited the classic phenotypic findings of
obesity, hyperphagia, hyperinsulinemia, and glu-
cose intolerance (Graus-Nunes et al. 2015). In the
F2 generation, however, while hyperinsulinemia
and hyperleptinemia were observed, this was in
conjunction with normoglycemia and normal
body weight. The F2 generation were studied at
3 months of age and may have developed a phe-
notype of glucose intolerance later in life how-
ever, as evidenced by findings of dysregulation of
pancreatic development including hypertrophied
islets of Langerhans with altered distribution of
alpha and beta cells within the islets (Graus-
Nunes et al. 2015). By contrast, a different
mouse model of maternal obesogenic diet demon-
strated a phenotype of hyperinsulinemia and alter-
ations in hepatic gene expression in the second-
generation offspring but intriguingly without an
apparent phenotype in the first generation (King
et al. 2013). A transgenerational effect on glucose/
insulin tolerance has also been demonstrated in
the sheep. First-generation offspring who were
exposed to a maternal obesogenic diet in utero
exhibited hyperinsulinemia and hyperglycemia
during their own pregnancies, and the resulting
second-generation offspring had increased fat
mass at birth, with accompanying higher fasting
glucose and insulin levels (Shasa et al. 2014).

4 Evidence for Fetal
Programming of Dyslipidemia

4.1 Human Studies

Serum dyslipidemia is less well studied in human
cohorts than either obesity or glucose/insulin resis-
tance. However observations from a large
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prospective UK cohort demonstrate that the off-
spring of women who had excessive gestational
weight gain during pregnancy were more likely to
have adverse lipid profiles in childhood (measured
at 9 years of age) (Fraser et al. 2010). The offspring
in this study showed not only lower levels of HDLc
and apolipoprotein A1 but also higher leptin levels
in the increased gestational weight gain group.
There was no association however with triglycer-
ide or apolipoprotein B1 levels (Fraser et al. 2010).

Recently, the dramatic increase in prevalence
of pediatric nonalcoholic fatty liver disease
(NAFLD), which has accompanied increased
levels of childhood obesity in developed coun-
tries, has generated interest in the developmental
basis for liver steatosis (Schwimmer et al. 2006).
It has been proposed that exposure to a
suboptimal intrauterine environment may be the
driver behind development of fatty liver via pro-
gramming of mitochondrial dysfunction,
increased levels of oxidative stress, and inflam-
mation (Stewart et al. 2013). Both the children of
mothers who are diabetic during pregnancy
(Brumbaugh et al. 2013) and also those exposed
in utero to maternal obesity have been shown to
have an increased risk of pediatric NAFLD
(Modi et al. 2011).

4.2 Animal Models

In rodent models, those offspring exposed to
maternal hyperinsulinemia in pregnancy show
increased circulating fatty acids and hepatic lipid
accumulation in older offspring (Isganaitis
et al. 2014). Maternal obesity during gestation
also gives rise to a phenotype recapitulating the
features of early-onset NAFLD (Buckley
et al. 2005; Bruce et al. 2009; Oben et al. 2010),
which has been demonstrated in other rodent
models to persist at least until the offspring have
entered adolescence (Bayol et al. 2010). The pre-
cise mechanism of this effect is unclear, but some
evidence suggests that dysregulation of mitochon-
drial function may play a key role (Bruce
et al. 2009) and that the hepatic changes are
accompanied by an increase in molecular markers
of inflammation (Ashino et al. 2012).

Many animal models have shown a phenotype
of increased lipogenesis in offspring following
intrauterine exposure to a high-fat maternal diet
(Bruce et al. 2009; Li et al. 2012). A potential
mechanism driving the increase in circulating
fatty acids is a relatively insulin resistance in the
offspring impairing the normal inhibition of lipol-
ysis by circulating insulin (Isganaitis et al. 2014). It
is of particular interest from a mechanistic point of
view to note that the offspring phenotype of
NAFLD occurs after the onset of hyperinsulinemia,
but prior to the development of obesity or glucose
intolerance (Alfaradhi et al. 2014), potentially
under the control of up-regulated peroxisome
proliferator-activated receptor gamma (PPAR
gamma), which plays a vital role in regulating
fatty acid storage. Up-regulation of PPAR gamma
is a particularly important finding, as it not only
increases storage of triglycerides in mature adipo-
cytes but also stimulates proliferation and differen-
tiation of new adipocytes from the preadipocyte
progenitor population. Aside from evidence that
serum triglycerides are influenced by developmen-
tal programming stimuli, there is important evi-
dence from the offspring of obese mothers in the
sheep that levels of triglycerides are elevatedwithin
skeletal muscle (Yan et al. 2011). In common with
the findings in rodent models, these changes are
also accompanied by increased expression of fatty
acid transporters and PPAR gamma.

In the nonhuman primate, similar effects are seen.
Maternal high-fat diet during pregnancy (regardless
of whether the mothers themselves were obese)
programmed an increase in liver triglycerides,
accompanied by elevation of fetal glycerol levels
and changes consistent with the development of
nonalcoholic fatty liver disease. These changes
persisted in adulthood and were accompanied by
later offspring obesity (McCurdy et al. 2009).

5 Mechanisms of Fetal Metabolic
Programming of Metabolic
Dysfunction

Multiple different mechanisms have been pro-
posed to contribute to the basis of the develop-
mental programming effects observed in animal
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models and human studies. Major candidate
mechanisms are summarized in Fig. 1 and
discussed in more detail below.

5.1 Structural Effects in Early
Development

The earliest studies of developmental program-
ming focused on structural changes during devel-
opment of the programmed offspring as the most
obvious and attractive candidate mechanisms to
explain the later phenotypic effects. There is evi-
dence from both rodent and sheep (Zhang
et al. 2011) models of developmental program-
ming to suggest that the total cell mass of the
beta islets of Langerhans is irreversibly reduced
in fetuses exposed to maternal dietary manipula-
tions, and that this leads to pancreatic dysfunction
in later life (Cerf et al. 2007). One particularly
interesting study tracked fetal beta cell develop-
ment through pregnancy in obese mothers and
found that there was an initial increase in beta
cell mass early in gestation (with a corresponding
increase in circulating insulin levels), but by late

gestation beta cell mass was considerably lower
than in control animals (Zhang et al. 2011),
suggesting that there may be an initial physiolog-
ical response to increased glucose availability,
which is then decompensated by the time of
birth. Other evidence, however, despite
confirming the findings of decreased beta cell
mass in adulthood following a suboptimal intra-
uterine environment, suggests that glucose intoler-
ance in adulthood is the result of impaired insulin
secretion rather than the effect of a decreased beta
cell mass per se (Alejandro et al. 2014).

Offspring obesity in developmental program-
ming models is usually associated with hyperpha-
gia and dysregulation of normal appetite control.
A large body of evidence suggests that this effect
may also be driven by a permanent structural
change at the level of the hypothalamus. Evidence
is derived from examination of the hypothalamus
in the offspring of mothers exposed to high-fat
diet during pregnancy, where there was an
increase in the number of peptide-producing hor-
mones in the hypothalamus, leading to increased
appetite and subsequent obesity (Chang
et al. 2008).

Oocyte mitochondria

Epigenetic somatic

Glucocorticoid exposure

Accelerated senescence

Stress and inflammation

Reproductive tract environment

Epigenetic germ-line

Propagation
Directly transmitted inheritance

Obesity
Hyperglycaemia
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Dyslipidaemia

Early post-natal life

Fetal development

Pre-implantation development

Structural modifications
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Over-nutrition
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Hypoxia
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Exogenous steroid
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Fig. 1 Potential mechanisms by which interventions in early life may lead to metabolic programming effects in
adulthood and in future generations. Possible mechanisms are shown in light gray boxes
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Other permanent structural modifications that
have been demonstrated in developmentally
programmed offspring are present in the cardio-
vascular system, including a reduction in the num-
ber of cardiac myocytes at birth in a rodent model
(Corstius et al. 2005). Multiple variants of cardio-
vascular structural modifications have been
observed in programmed offspring, including a
decrease in aortic wall thickness and elastin con-
tent in a rodent undernutrition model (Skilton
et al. 2006) and total cardiac mass, left ventricular
free wall hypertrophy, and cardiac myocyte width
in a rodent overnutrition model (Fernandez-Twinn
et al. 2012). These non-recoverable early differ-
ences in the structure of heart and major vessel
formation may go some way toward explaining
the phenotypes of hypertension and cardiovascu-
lar dysfunction often observed in association with
fetal metabolic programming (Herrera et al. 2010;
Blackmore et al. 2014).

5.2 Glucocorticoid-Mediated
Pathways

Maternal stress signals (deriving from both phys-
iological and psychological stressors) have been
observed in association with reduced offspring
birth weight and accelerated postnatal growth
(Street et al. 2012; Entringer 2013). Dissecting
out the key regulators from stress pathways that
influence fetal growth has been the subject of
intense research. The activity of the maternal
hypothalamic-pituitary-placental axis determines
the fetal exposure to glucocorticoids; however, a
direct relationship between fetal development and
exposure to glucocorticoids of maternal origin has
been difficult to define (Khan et al. 2011; Duthie
and Reynolds 2013). Recently, the role of placen-
tal corticotropin-releasing hormone (pCRH),
which is of placental rather than maternal origin,
has been further elucidated. Placental CRH is an
attractive candidate for influencing fetal meta-
bolic programming as it is known to be involved
in regulating fetal growth (Wadhwa et al. 2004),
and has an effect on length of gestation (Sandman
et al. 2006). Furthermore, pCRH is up-regulated
in response to expression of other maternal stress

pathway components including cortisol (Cheng
et al. 2000; Sandman et al. 2006), inflammatory
signals (Petraglia et al. 1989), and catecholamines
(Voltolini and Petraglia 2014). A pattern of catch-
up growth has recently been observed in associa-
tion with high levels of pCRH in a prospective
human cohort (Stout et al. 2014), suggesting a
potential role in mediating developmental pro-
gramming effects.

5.3 Stress- and Inflammation-
Mediated Pathways

It is well established that maternal obesity is asso-
ciated with higher levels of proinflammatory cyto-
kines (Hans et al. 2009), adipokines (Ouchi
et al. 2011), and oxidative stress (Matsuda and
Shimomura 2013) in fetal and offspring tissues.
Recently, the endoplasmic reticulum stress
response has been highlighted as a key mediator
of the relationship between the maternal obesity
environment and fetal programming of metabolic
dysfunction (Li et al. 2012; Westermeier
et al. 2014). An extensive body of literature links
the development of insulin resistance, and its sub-
sequent consequences of obesity and diabetes,
with oxidative stress via interference with normal
insulin signaling pathways (Furukawa
et al. 2004). Importantly, in insulin-responsive
tissues such as white adipose tissue and liver, the
changes associated with oxidative stress precede
those derived from insulin resistance and may be
rescued by addition of antioxidant therapy (Cam-
pion et al. 2006). A phenotype of up-regulated
oxidative stress markers has been observed in
many diverse developmental programming
models across different organ systems and species
(McCurdy et al. 2009; Aiken et al. 2013;
Alfaradhi et al. 2014). Oxidative stress may con-
stitute a final common pathway linking offspring
phenotypes across a variety of study protocols.

Attention has also focused on the key role of
mitochondria in generating free radical species,
particularly when subjected to a substrate influx,
stress, or age-associated damage. Mitochondrial
mass, DNA copy number, and electron transport
chain dysfunction are implicated in the
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pathogenesis of a number of developmentally
programmed phenotypes in various model sys-
tems (Aiken et al. 2013; Tarry-Adkins
et al. 2013). All cells have a normal free radical
“leak” from the electron transport chain, which is
balanced by a variety of intrinsic cellular antiox-
idant defense mechanisms. These antioxidant
defense mechanisms are themselves altered in
the tissues of programmed offspring, suggesting
that permanent programming effects occur when
the limits of normal physiological compensation
for mitochondrial-induced oxidative stress are
exceeded (Tarry-Adkins et al. 2013b). Beyond
this point, a positive feedback of reduced oxida-
tive capacity and increasing free radicals can
result in an ever-increasing cellular stress pheno-
type, leading ultimately to the irrecoverable phe-
notype of metabolic dysfunction arising from
developmental programming. In support of this,
an up-regulation of electron transport chain com-
plex I and II activity has been observed in
response to a developmental programming chal-
lenge in the hepatic tissue of young offspring
(Alfaradhi et al. 2014), but may then decline
with increasing offspring age (Bruce et al. 2009).
This cycle is often the end result of initial expo-
sure to a suboptimal substrate balance for cellular
metabolism in utero, for example, lipid availabil-
ity that far outstrips normal mitochondrial oxida-
tive capacity (Wei et al. 2008). During early
development, mitochondria are actively replicat-
ing their DNA at key periods when maternal
nutritional insult may program the fetus (Aiken
et al. 2008), and there is some evidence that expo-
sure to high-fat maternal diet may influence mito-
chondrial function at these very early stages
(Luzzo et al. 2012). Furthermore, key regulators
of mitochondrial function and ability to buffer
stress such as Sirtuin-3 (SIRT3) have been
shown to be down-regulated in the offspring of
rodent mothers fed a high-fat diet during preg-
nancy (Borengasser et al. 2011).

5.4 Epigenetic Pathways

Epigenetic effects, including DNA methylation
patterns, histone modifications, or the influence

of small noncoding RNA molecules (miRNA,
mir), are frequently postulated to be the primary
mechanism by which developmental program-
ming effects on metabolic and other fetal param-
eters are mediated. The effect of the maternal
nutritional environment and overall energy bal-
ance on the abundance and distribution of epige-
netic modifications provides a link between the
early-life environment and stable long-term off-
spring gene expression. Studies of epigenetic
mechanisms in developmental programming
have largely focused on the influence of methyla-
tion patterns on offspring phenotype, although
exciting new data regarding the role of miRNAs
are emerging (Alejandro et al. 2014). The ability
of maternal dietary alterations and other
suboptimal in utero stimuli to provoke a
programmed phenotype in the offspring may be
the result of an altered pool of available methyl
donors early in development. During the very
earliest stages of development, there are at least
three windows of opportunity to reset methylation
patterns: at the germ cell stage, during preimplan-
tation development, and during the post-
implantation phase. During preimplantation
development, methylation patterns are reset asyn-
chronously, first from the paternal and then from
the maternal alleles (Rivera and Ross 2013). The
re-methylation of key promoter genes germane to
metabolic pathways may account for observed
developmental programming effects in many
model systems, in an attempt to adapt the off-
spring to a metabolic phenotype in keeping with
maternal diet (Godfrey et al. 2007). Numerous
loci playing key roles in regulation of glucose
homeostasis and other important metabolic
parameters have been shown to be differentially
methylated following maternal interventions,
including pancreatic-duodenal homeobox
1 (Pdx1, which is a key regulator of beta cell
development) (Park et al. 2008) and hepatic fatty
acid-metabolizing enzymes (Lane et al. 2001). In
rat pups exposed to an increased nutritional plane
by litter culling early in postnatal life,
hypermethylation of the POMC and insulin recep-
tor promoter regions were observed and could be
responsible for the later offspring phenotype of
obesity and insulin resistance (Plagemann
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et al. 2009). Aside from methylation, develop-
mental programming phenotypes have also been
observed in association with key histone modifi-
cations (MacLennan et al. 2004), including those
that regulate expression of glucose transporter
4 (Raychaudhuri et al. 2008). A small human
study of placental tissue and cord blood has dem-
onstrated different methylation patterns in the
fetal tissues from pregnancies complicated by
gestational diabetes compared to those where the
mother was normoglycemic (Finer et al. 2015).

Epigenetic modification is a particularly attrac-
tive candidate molecular mechanism to explain
developmental programming results, as it takes
account of effects passed via the paternal as well
as the maternal line. Furthermore, modification of
the epigenome is a useful model to consider the
transgenerational developmental programming
effects reported by many studies (reviewed in
Aiken and Ozanne (2014)), particularly where
transgenerational effects are mediated via the
paternal line or can be induced via either parent.

5.5 Utero-placental Effects

In nonhuman primates, maternal overnutrition has
been demonstrated to have a direct effect on uter-
ine blood volume and to increase the rate of still-
birth and placental infarcts, with an exacerbation
of the phenotype when the mothers are frankly
obese (Frias et al. 2011). Other placental changes
in both structure (Jones et al. 2013a) and function
(Farley et al. 2009; Zhu et al. 2010) have also been
demonstrated as a result of maternal dietary
manipulations, across species including rats
(Jones et al. 2013b), sheep (Zhu et al. 2010), and
nonhuman primates (Farley et al. 2009). In the rat,
it has been demonstrated that exposure to a mater-
nal low-protein diet can cause accumulation of
oxidative stress and accelerated aging within the
tissues of the female reproductive tract itself
(Aiken et al. 2013), suggesting that the reproduc-
tive tract environment, rather than direct effects on
the conceptus, may be key in modulating the
transgenerational effects seen in many develop-
mental programming models (Aiken and
Ozanne 2014).

5.6 Cellular Senescence and
Accelerated Aging

Telomeric shortening is associated with tissue
aging (Haussmann et al. 2003), particularly in
response to accumulated oxidative stress (Richter
and von Zglinicki 2007) and can activate cellular
senescence and apoptosis pathways (Sharpless
and DePinho 2004). Oxidative stress is increas-
ingly emerging as a common mechanism under-
lying a variety of fetal metabolic programming
effects. The increased accumulation of cellular
level oxidative stress in tissues of animals exposed
to suboptimal conditions in utero is well described
across a variety of organ systems (Simmons 2012;
Aiken et al. 2013). Similarly, nitrosative stress has
been associated with exposure to developmental
programming stimuli in cardiac tissue (Tarry-
Adkins et al. 2013b). This is especially relevant
to the programming of fetal metabolic dysfunc-
tion, as telomere length in the islet of Langerhans
is particularly susceptible to premature shorten-
ing, under the influence of the excess free radical
damage generated by suboptimal conditions in
utero (Tarry-Adkins et al. 2009). Telomeric short-
ening in this context is accompanied by impair-
ment of the mitochondrial antioxidant defense
mechanisms and an increase in other markers of
cellular senescence (Tarry-Adkins et al. 2009).
Interestingly, increased oxidative stress may result
in a significant downregulation of DNA repair
mechanisms in affected tissues, leaving them par-
ticularly susceptible to telomeric shortening as the
animal ages (Tarry-Adkins et al. 2013b).

6 Improving Outcomes in Fetal
Metabolic Programming

Much current research effort has been invested in
understanding initially the phenotype and, more
recently, the mechanisms of fetal metabolic pro-
gramming. Thirty years from the initial studies
describing the developmental origins of health
and disease, our knowledge is approaching the
crucial juncture where attention can usefully turn
toward ways to ameliorate offspring outcomes.
There are two basic strategies that might be
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adopted in preventing the development of adverse
metabolic phenotypes; the first is to intervene in
the index pregnancy by improving the metabolic
milieu of the mother and hence preventing fetal
programming of the offspring. The second is to
find a way to “rescue” or improve the function of
the already-programmed offspring later in life.
While the first strategy, preventing programming
from ever occurring, is the obviously more attrac-
tive candidate for intervention, it poses a number
of practical and theoretical challenges. One such
problem is identifying pregnancies at risk. Many
pregnant women globally who face metabolic
challenges during gestation do not have access
to adequate health care and do not present at
stages of pregnancy where interventions might
be possible. There is also the risk of inadvertently
exposing fetuses not at high risk of developmental
programming complications to harm by
mis-identifying those pregnancies in which inter-
vention would be beneficial. Furthermore, while
pregnant women may be highly motivated during
pregnancy to make lifestyle changes for the ben-
efit of their developing fetus, changes within the
immediate preconception and gestational period
may be insufficient in which to reverse the adverse
effects of previous lifestyle, for example, in the
case of maternal obesity where weight loss during
pregnancy itself would not be advisable. Pregnant
women are also, on the whole, highly conserva-
tive regarding medications and supplements dur-
ing pregnancy, as adverse fetal effects are widely
feared. The second strategy, intervening postna-
tally to attempt to ameliorate the phenotype of the
already-programmed fetus, may therefore be a
more plausible as a strategy to improve outcomes
in human populations. This approach however is
complicated by the relative lack of plausible
mechanisms for correction.

6.1 Maternal Interventions
in Animal Models to Improve
Metabolic Programming
Outcomes

Several different types of maternal intervention to
improve developmental programming outcomes

have been trialed in various animal models includ-
ing nutritional manipulations, exercise, and phar-
maceutical interventions.

Early data suggested that taurine supplementa-
tion to mother’s exposed to a low-protein diet
might have a role in preventing dysregulation of
fetal pancreatic islet development (Reusens
et al. 2008). Other maternal supplements that
may have a role in preventing developmental pro-
gramming include folic acid supplementation,
which has been shown to prevent epigenetic mod-
ification of fetal hepatic gene expression
(Lillycrop et al. 2005). Recently, attention has
been focused on antioxidants as a maternal inter-
vention to improve offspring outcomes, the ratio-
nale for this being the rapid accumulation of
oxidative stress seen in the metabolic tissues of
many developmentally programmed offspring.
Some initial success has been seen with these
strategies, in particular maternal supplementation
with a mixture of antioxidants (vitamins A, C, E,
and selenium) can improve offspring phenotype
in terms of both decreased adiposity and improved
glucose tolerance following maternal high-fat diet
during gestation (Sen and Simmons 2010). Other
studies have demonstrated roles for maternal anti-
oxidant supplementation in preventing cardiovas-
cular phenotypes in adult offspring (Cambonie
et al. 2007; Giussani et al. 2012). The drawback
to applying these results in human populations is
that many of the antioxidant doses used in animal
studies have been at supra-therapeutic,
nonphysiological concentrations.

In relation to the programming of obesity and
metabolic dysfunction in human populations,
there is also much that remains unknown regard-
ing subtypes of obesity and particularly those
individuals who are overweight but metabolically
healthy (in terms of lipid profiles, cytokines, and
other inflammatory markers such as C-reactive
protein) (Karelis 2008) and conversely the “met-
abolically unhealthy normal weight” individual
(Thomas et al. 2012). Amore detailed understand-
ing of these phenotypes may help to improve our
understanding of the variable offspring outcomes
of apparently similar nutritional environments and
thus to better target primary interventions that
would ameliorate these outcomes.

13 Fetal Metabolic Programming 235



6.2 Postnatal Interventions
in Animal Models to Improve
Metabolic Programming
Outcomes

Awide variety of studies have attempted to exac-
erbate developmental programming phenotypes
by altering postnatal diet relative to maternal
diet; however, fewer specific interventions have
been trialed to prevent the development of
programmed metabolic effects.

One such study demonstrated in a rat model
that neonatal leptin administration in the early
postnatal period (during the time when maternal
dietary interventions can blunt the usual high
levels of leptin in the neonate) can prevent the
phenotype of hyperphagia, sedentary behavior,
obesity, and glucose intolerance seen in control
offspring subjected to maternal undernutrition in
pregnancy (Vickers et al. 2005). This is an impor-
tant demonstration of the potential for plasticity in
developmental programming phenotypes through
the postnatal period and provides important
insight into the neonatal period as a window of
opportunity for intervention in developmental
programming. A later study using the same treat-
ment in the rat illustrated the very important point
that interventions should only be considered
where there is a clear rationale that the pregnancy
is at high risk of developmental programming
effects. When male rats whose mothers ate a nor-
mal chow diet during pregnancy were subjected to
the same neonatal leptin treatment, they showed
hyperinsulinemia and increased adiposity, which
were not phenotypic features in offspring whose
mothers were undernourished during pregnancy
(Vickers et al. 2008). This study very clearly illus-
trates the problems with applying interventions
across populations without being able to ade-
quately characterize pregnancies at risk.

More recently however studies have evaluated
a role for supplementing postnatal offspring diets
with antioxidants at normal therapeutic doses. In
particular, in a rodent model of maternal
low-protein diet, supplementation of the offspring
diet with coenzyme Q (ubiquinone) has shown
great promise in reducing levels of oxidative and
nitrosative stress in tissues and hence preventing

premature telomere shortening in the heart (Tarry-
Adkins et al. 2013a). Coenzyme Q is the most
abundant and powerful endogenous antioxidant
and has data demonstrating safety in human
populations, making this a potential target for
clinical trials in the future.

There is further limited evidence for the bene-
ficial effects of postnatal exercise in the offspring
of mothers who experienced undernutrition dur-
ing pregnancy (Miles et al. 2009) in a rat model. In
this study, a moderate daily exercise intervention
(running on a wheel) prevented the development
of obesity and improved glucose handling in the
offspring. Postnatal exercise is a promising inter-
vention that may be suitable for application in
human populations.

6.3 Human Population
Interventions

Data regarding interventions to improve develop-
mental programming outcomes in human
populations are currently limited. More work
establishing the feasibility and safety of interven-
tions in animal models is required prior to
adopting human interventional studies on a large
scale. Some early work has attempted to study the
effect of exercise in obese pregnant women in
order to try to improve offspring outcomes
(Hayes et al. 2014). However, diet and exercise
interventions in human cohorts remain methodo-
logically problematic, with many subjects finding
it onerous to adhere closely to study protocols.
This was the case with the pilot study of exercise
in obese pregnant women, where no objective
difference in physical activity could ultimately
be measured between those randomized to control
and exercise interventions (Hayes et al. 2014).
Specific supplementation and pharmaceutical
interventions in humans remain some way off,
although animal model work looks promising in
this regard. As more is understood about the
mechanisms by which longer-term exercise leads
to improvements in metabolic function (Huffman
et al. 2011), more targeted interventions suitable
for use in human pregnancy may become avail-
able in this area. Evaluation of the efficacy and

236 C.E. Aiken



safety of human interventions is also problematic
in terms of study design because of the long
generation time in humans and the very high
potential for confounding of the effects of the
early-life environment by widely varying postna-
tal experiences of human offspring. Such studies
may be made more feasible by improved under-
standing of robust markers that can reliably pre-
dict later metabolic dysfunction. A number of
markers, particularly circulating levels of
branched-chain amino acids, look promising in
this regard (Hivert et al. 2015) and may be key
in assessing the efficacy of early interventions to
improve later metabolic function in humans.

7 Conclusions

The remarkable increase in recent decades of met-
abolic-related disease, particularly obesity and
type 2 diabetes, worldwide means that insights
into factors contributing to such conditions are of
increasing importance. While various genetic sus-
ceptibilities to type 2 diabetes and obesity have
been identified, known genetic variants contribute
relatively little to the overall predisposition to
metabolic dysfunction. This suggests that other
factors are important in determining risk of meta-
bolic disease, and suboptimal conditions in early
life may play a vital role. Particularly in view of
the rising incidence of metabolic dysfunction
observed in young populations and even in child-
hood, increasing knowledge of contributory fac-
tors is of significant global concern.
Understanding that later metabolic dysfunction
arises at least in part from the early-life environ-
ment could lead to exciting new routes to tackle
adverse later-life outcomes, either in the index
pregnancy via maternal intervention or early in
the life of the offspring. Currently, our understand-
ing of the mechanisms of developmental program-
ming of metabolic dysfunction arises primarily
from work in animal models, and much remains
to be recapitulated and validated in human
populations. However, an increasing number of
human pregnancy cohorts are including plans to
follow up the long-term development of the chil-
dren including growth and metabolic parameters.

These new observational studies should help to
confirm many of the valuable findings from ani-
mal model work and pave the way for the initial
interventional studies in human cohorts. An abil-
ity to tacklemetabolic dysfunction early in life and
to offset adverse programming of metabolism
could prove protective to some degree against
many later-life metabolic diseases. Of particular
importance is the idea that adverse metabolic phe-
notypes may not only be seen in the offspring
directly exposed to adverse conditions in utero
but may also be transmitted or re-propagated
across generations (Aiken and Ozanne 2014).
This allows developmental programming of met-
abolic phenotypes to be viewed on a longer-term
basis than a single generation and underscores the
idea that early interventions to improve the intra-
uterine environment could have significant meta-
bolic health benefits to both the children of
affected individuals and to future generations.
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Abstract
US children are at risk for developing child-
hood obesity. Currently, 23 % of children ages
2–5 are overweight or obese, i.e., at or above
the 85th percentile. This prevalence becomes
even higher as children age, with 34 % of
children ages 6–11 being overweight or
obese. Ethnic minority children are at a higher
risk for overweight/obesity with 46 % of His-
panic and 38 % of Black school age children
above the 85th percentile. This is an important
area of interest because childhood obesity is
associated with health risks and social/emo-
tional problems while children are young as
well as long-term health risks when they
reach adulthood. Because identifying the envi-
ronmental factors that contribute to childhood
obesity will help practitioners develop effec-
tive prevention and treatment programs for
childhood obesity and metabolic syndrome,
the purpose of this chapter is to provide a
brief overview of the literature in this area.
Because the literature is voluminous, the
review is selective – focusing on the primary
environmental risk factors that have been iden-
tified for the development of childhood obe-
sity. Five major areas are addressed: diet and
food environment, physical activity and seden-
tary behaviors, feeding practices, parenting
styles, and family routines.
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1 Introduction

US children are at risk for developing childhood
obesity. Currently, 23 % of children ages 2–5 are
overweight or obese, i.e., at or above the 85th
percentile. This prevalence becomes even higher
as children age, with 34 % of children ages 6–11
being overweight or obese (Ogden et al. 2014).
Ethnic minority children are at a higher risk for

overweight/obesity with 46 % of Hispanic and
38 % of Black school age children above the
85th percentile (Ogden et al. 2014). Childhood
obesity tracks into adulthood with 80 % of over-
weight/obese children maintaining their over-
weight/obese status as adults (Parsons
et al. 1999). Childhood obesity has been associ-
ated with health risks in childhood such as Type II
diabetes (Dietz 1998), cardiovascular disease
(Goran and Gower 1998), and social/emotional
problems (Sgrenci and Faith 2011) (Fig. 1).

Childhood obesity, as measured by BMI�95th
percentile for age and sex (Centers for Disease
Control and Prevention 2005), also is a major
risk for the development of metabolic syndrome
among children. US data on children 12–19 years

Micro

School, Home

Child Weight

Child Screen / Media Use

Child Diet Child Physical Activity

Social

Friends, Family, Parent

Macro

Neighborhood,
Government, Policy

Fig. 1 Social, micro, and
macro influences on child
weight (adapted from
Davison and Birch 2001)
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old from the National Health and Nutrition Exam-
ination Survey (NHANES) found that obese chil-
dren were at 16 times the risk of having metabolic
syndrome (using criteria slightly different from
the International Diabetes Federation) than
healthy weight children (BMI �95th percentile
for age and sex) (Centers for Disease Control
and Prevention 2005) (5.1 % vs. 0.9 %,
p < 0.0001) (International Diabetes Federation
2007).

Because identifying the environmental factors
that contribute to childhood obesity will help prac-
titioners develop effective prevention and treat-
ment programs for childhood obesity and
metabolic syndrome, the purpose of this chapter
is to provide a brief overview of the literature in this
area. Because the literature is voluminous, the
review is selective – focusing on the primary envi-
ronmental risk factors that have been identified for
the development of childhood obesity. Five major
areas are addressed: diet and food environment,
physical activity and sedentary behaviors, feeding
practices, parenting styles, and family routines.

2 Diet and Childhood Obesity

Proper nutrition promotes the optimal growth and
development of children (Dietary Guidelines
Advisory Committee 2010). Healthy eating
helps prevent high cholesterol and high blood
pressure and helps reduce the risk of developing
obesity and other chronic diseases such as cardio-
vascular disease and diabetes (Dietary Guidelines
Advisory Committee 2010). The Dietary Guide-
lines for Americans recommend a diet rich in
fruits and vegetables, whole grains, and fat-free
and low-fat dairy products for persons aged
2 years and older. The guidelines also recommend
that children, adolescents, and adults limit intake
of solid fats (major sources of saturated and trans-
fatty acids), cholesterol, sodium, added sugars,
and refined grains (The US Department of Agri-
culture 2010). Unfortunately, most young people
are not following the recommendations set forth
in the Dietary Guidelines for Americans (Briefel
and Johnson 2004; The US Department of

Agriculture 2010). A poor diet can lead to energy
imbalance (e.g., eating more calories than one
expends through physical activity) and can
increase one’s risk for overweight and obesity
(Koplan et al. 2005; Dietary Guidelines Advisory
Committee 2010). Research has shown that indi-
viduals who eat fast food one or more times per
week are at increased risk for weight gain, over-
weight, and obesity (Dietary Guidelines Advisory
Committee 2010). In addition, drinking sugar-
sweetened beverages can result in weight gain
and obesity over time (Dietary Guidelines Advi-
sory Committee 2010). Among children from
low-income families, hunger and food insecurity
(i.e., reduced food intake and disrupted eating
patterns because a household lacks money and
other resources for food) also might increase the
risk for lower dietary quality and obesity (Kaiser
and Townsend 2005).

3 Food Environment and
Childhood Obesity

What children choose to eat plays a large role in
determining their risk of gaining too much weight.
However, their choices are shaped by the complex
world in which they live – by the kinds of food
their parents make available at home, by how far
they live from the nearest supermarket or fast-
food restaurant, and even by the ways that gov-
ernments support nutrition policies (Khan
et al. 2009; Larson and Story 2009). In the United
States and many parts of the world, the food
environment, both physical and social, that influ-
ence what children eat makes it far too hard to
choose healthy foods and all too easy to choose
not so healthy foods. Such an environment is also
referred to as “toxic” because of the way it cor-
rodes healthy lifestyles and promotes obesity.
These environments include the home, schools,
childcare facilities, and the neighborhoods. With
the high prevalence of childhood obesity in the
United States, supporting healthy food environ-
ments is a key strategy to reach the public health
goals of reducing childhood obesity and improv-
ing nutrition.
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4 Food Environment Research by
Setting

4.1 Home

Families influence children’s dietary choices and
risk of obesity, and children develop food prefer-
ences at home that can last well into adulthood
(Gruber and Haldeman 2009). The food that fam-
ilies keep at home and how family members share
meals influence what and how much they eat. A
recent review of published studies found a strong
association between the availability of fruits and
vegetables at home and whether children, adoles-
cents, and adults eat these foods (Jago et al. 2007).
Eating meals as a family has also been linked with
increased child and adolescent intake of fruit and
vegetables and other healthy foods (Larson
et al. 2007). More information on family meals
can be found in the section below titled “Family
Routines.”

Low-income families face additional barriers
to healthy eating that may contribute to the higher
rates of obesity seen in lower-income groups
(Singh et al. 2011). Low-income groups perceive
fruits, vegetables, and whole grains as more
expensive than less healthful foods, such as
refined grains and sweets (Darmon and
Drewnowski 2008). In addition, lower-income
households often have single parents working
full time and taking care of children, who may
have less time for meal preparation (Dubowitz
et al. 2010). Thus, it is a matter of lack of time
and convenience for them to buy convenience
foods or fast food.

4.2 Childcare Facilities

More than 3.5 million children younger than 6 not
yet in kindergarten attend childcare facilities and
receive meals through the Child and Adult Care
Food Program (Food Research and Action Center
2013). In addition to the childcare facilities such
as Head Start centers, a substantial number of
children also attend commercial childcare facili-
ties operated in caregivers’ homes (family
childcare homes) (America’s Children: Key

National Indicators of Well-Being 2009). How-
ever, state regulations regarding nutrition and
physical activity are not consistent in their treat-
ment of childcare centers and family childcare
homes. Regulations that ensure both types of
facilities maintain healthy food environments
could help instill healthy eating habits among a
large proportion of America’s young children.

State regulations restrict sugar drinks in
childcare centers and family childcare homes and
require access to drinking water throughout the day
in childcare centers and family childcare homes.
Ensuring the availability of drinking water and
limiting access to sugar drinks are ways to improve
the food environment of childcare facilities.
Displacing sugar drinks with drinking water, a
calorie-free and thirst-quenching beverage, can
substantially reduce excess energy intake among
children (Wang et al. 2009). Staff can also teach the
importance and healthfulness of drinkingwater and
nonfat/low-fat milk as primary beverages.

4.3 Schools

Children spend much of their day at school. In the
United States, the National School Lunch Pro-
gram and related federal school meal programs,
administered by the US Department
of Agriculture, serve more than 30 million chil-
dren every day, including breakfast, lunch, and
after-school snacks (The US Department of
Agriculture – Food and Nutrition Service 2013).
Researchers have found that participating in the
School Breakfast Program is associated with
lower BMI in children, while participating in the
lunch program did not impact obesity (Gleason
and Dodd 2009). Students participating in the
School Breakfast Program were also less likely
to skip breakfast, which may reduce risk of over-
weight (Gleason and Dodd 2009).

Most schools sell foods to students outside of
the school meal programs. These competitive
foods are widely available in the cafeteria, vending
machines, and school stores (Finkelstein
et al. 2008). Eating competitive foods has been
linked with poorer quality diets and increased risk
of obesity in several studies (Larson and Story
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2010). However, based on the Institute ofMedicine
recommendations, the sale of competitive foods in
schools are now limited (Institute of Medicine
2007). Schools are uniquely positioned to facilitate
and reinforce healthful eating behaviors by elimi-
nating sugar drinks and high energy density foods
(foods high in calories for their volume) from the
selection of foods offered on the school campus.

Although sodas are prohibited in an increasing
number of schools, other sugar drinks that may
not be commonly perceived as sources of added
sugar and excess calories (Ranjit et al. 2010) may
be available, such as sports drinks and fruit-
flavored drinks that are not 100 % juice. Schools
should consider adopting policies that limit access
to all sugar drinks in vending machines and
schools stores. Policies that curb access to sugary
drinks on school property could be a promising
strategy for helping children cut back. Boston
banned sugary drinks in public schools in 2004
and researchers found that after the policy change
took place, students’ intake of overall sugary
drinks decreased (Cradock et al. 2011).

4.4 Neighborhoods

Several aspects of the neighborhood food envi-
ronment have drawn research attention, specifi-
cally how the presence or lack of supermarkets,
convenience stores, and fast-food restaurants
relates to obesity risk. Researchers have also
examined whether economic and racial/ethnic dis-
parities in neighborhood food environments may,
in part, explain the higher rates of obesity found in
children from low-income families (Darmon and
Drewnowski 2008) and in Blacks and Hispanics
(Flegal et al. 2012; Ogden et al. 2012).

Researchers have used the term “food desert”
to refer to neighborhoods with limited or lack of
access to full-service grocery stores or supermar-
kets (Walker et al. 2010). Living in food deserts
has been associated with a lower-quality diet
(Zenk et al. 2009) and increased risk of obesity
(Giskes et al. 2011). Likewise, some studies sug-
gest that greater access to convenience stores and
fast-food restaurants, where healthy choices may
not be readily available and may cost more, has

been associated with greater likelihood of obesity
and lower dietary quality (Larson et al. 2009).
There is evidence that low-income neighbor-
hoods, as well as Black or Hispanic neighbor-
hoods, are less likely to have access to large
supermarkets offering high-quality and low-cost
food, compared to middle-income neighborhoods
and white neighborhoods (Zenk et al. 2006). Not
only does lack of access to supermarkets seem to
be associated with an increased risk of obesity, but
simply having greater access to small food stores
may increase the risk as well (Powell et al. 2007),
though again, not all studies find this relationship
(Lee 2012). Convenience stores often offer less
variety, higher prices, and lower-quality produce
than supermarkets (Zenk and Powell 2008). When
small stores do stock healthier foods, however,
people living nearby eat better (Sturm 2008). If
small stores changed the food that they stock, they
could have a positive influence on community
members’ diets and obesity risks.

In addition to lack of access to supermarkets,
fast food has been shown to increase caloric intake
and the risk of becoming obese (Rosenheck
2008). Some studies have found that living near
fast-food restaurants is linked to increased risk of
obesity (Boone-Heinonen et al. 2011). Fast-food
restaurants are more likely to locate near schools
(Austin et al. 2005), and close proximity of fast-
food restaurants to schools has been linked to
increased risk of obesity in schoolchildren
(Davis and Carpenter 2009).

4.5 Food Marketing

Children and adolescents represent a vast market
opportunity for food companies. In the United
States, these age groups spend an estimated $200
billion per year, much of it on food products
(Institute of Medicine 2005). The extent of mar-
keting targeted directly to children and adoles-
cents is striking, but the content also alarms
health experts. Many researchers have
documented the predominance of advertising for
calorie-dense, low-nutrient foods on children’s
television (Folta et al. 2006; Institute of Medicine
2005). In a review of the reviews, Livingstone
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(2005) concludes that there is tacit consensus
among reviewers that, “food promotion has a
causal and direct effect on children’s food prefer-
ences, knowledge and behavior.” In addition, the
Institute of Medicine has concluded that “food
advertising to children affects their preferences,
purchase behaviors, and consumption habits for
different food and beverage categories, as well as
for different product brands” (Institute of Medi-
cine 2005). In schools, advertising can take the form
of posters and signage; logos or brand names on
food and beverage coolers, cups, and plates or
vending machines; food sales as fundraisers and
corporate sponsorship of events; advertising in
school publications; and corporate-sponsored class-
room curricula and scholarships (Institute of Medi-
cine 2005). Such advertising may impact children’s
ability to make healthy choices in their diets.

5 Physical Activity and Sedentary
Behaviors

Both physical activity (Janssen and LeBlanc
2011) and sedentary behaviors (Tremblay
et al. 2011) have been linked to children’s risk of
obesity and are independently associated with
children’s metabolic risk (Ekelund et al. 2006)
and physical fitness (Moore et al. 2013). Seden-
tary behaviors can be measured objectively with
activity monitors, called accelerometers, but more
commonly have been measured by quantity of TV
viewing and other screen media used by children
(Marshall et al. 2004; Biddle 2007; Tremblay
et al. 2011). A meta-analysis found that children’s
sedentary time only had a small negative effect on
their physical activity, suggesting that children’s
physical activity and screen media use do not
strongly correlate (Marshall et al. 2004). There-
fore we will discuss physical activity and seden-
tary behaviors separately in this chapter.

5.1 Physical Activity Among
Children

There is an ongoing debate as to how much chil-
dren’s physical activity has contributed to the

increased rates of overweight and obesity in the
past several decades. Some reviews have found
that children are experiencing a decline in context
specific physical activity (e.g., physical education
opportunities in schools, active transport, and
organized sports) over time, but available data
across decades and countries is limited, making
it difficult to draw strong conclusions (Dollman
et al. 2005). European studies also found
decreased fitness levels in adolescents over the
last two-to-three decades (Matton et al. 2007;
Huotari et al. 2010). US data from NHANES
found 70 % of 6–11-year-old children in
2009–2010 met US guidelines for physical activ-
ity (�1 h physical activity/day) (Fakhouri
et al. 2013). In Europe, the “Identification and
prevention of dietary- and lifestyle-induced health
effects in children and infants” (IDEFICS) Study
assessed physical activity among children 2–10
years old across eight countries and found that the
majority of children (61.7 % boys and 58.2 %
girls) did not achieve their recommended 2 h of
physical activity per day (Santaliestra-Pasias
et al. 2013).

Cross-sectional (Belcher et al. 2010; Fakhouri
et al. 2013) and longitudinal (Basterfield et al.
2011) studies have found that children’s physical
activity decreases as children get older. For exam-
ple, elementary school age children (6–11 years
old) average 88 min/day of moderate to vigorous
physical activity as measured by accelerometers,
but this is reduced to 26min/day in 16–19-year-old
adolescents (Belcher et al. 2010). From a develop-
mental viewpoint, it follows that there are likely
different influences on children’s physical activity
as they grow up.

Among preschool age children, a systematic
review found that child sex (with boys more active
than girls), having active parents, and time spent
outdoors were most consistently associated with
preschoolers’ physical activity (Hinkley
et al. 2008); however, age and weight status
were not associated with preschooler’s physical
activity (Hinkley et al. 2008). The importance of
time outdoors as a determinant of younger chil-
dren’s physical activity has been of interest among
researchers. A study investigating 5-year-olds
found that the family environment, parental habit
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strength, and rules were the strongest predictors of
children’s outdoor play over a 2-year period
(Remmers et al. 2014). As children grow older,
child sex (male) remains an important correlate of
objectively measured physical activity for 6–19-
year-olds, as was younger age, and lower weight
status (Belcher et al. 2010). In addition to these,
less TV viewing/videogame playing and greater
access to recreational facilities were associated
with more after-school physical activity among
8–14-year-olds (Stanley et al. 2012).

To date, the majority of interventions to
increase children’s physical activity have been
conducted through schools. Systematic reviews
of physical activity interventions found that such
school-based interventions had no significant
effect on children’s weight or weight status as
assessed by BMI (Harris et al. 2009; Guerra
et al. 2013). Other reviews also found that phys-
ical activity interventions were not effective in
impacting children’s physical activity (Metcalf
et al. 2012), suggesting that our current methods
for promoting physical activity are not sufficient.
This supports the need for alternative methods of
intervention. Reviews have identified that involv-
ing parents directly in ways to encourage child’s
physical activity (O’Connor et al. 2009) and
targeting physical activity parenting practices
(Van Lippevelde et al. 2012) may be promising
methods for promoting increased child’s physical
activity for children and warrant further study.

In part due to these findings, there has been a
growing interest to understand how parents influ-
ence their children’s physical activity to better
inform interventions. A few studies have investi-
gated the role of parenting styles on children’s
physical activity. One study of a rural US sample
found that children whose parents reported an
uninvolved parenting style had less physical
activity, while permissive parenting style moder-
ated the effect of parental monitoring on chil-
dren’s physical activity such that monitoring had
a positive influence on children’s physical activity
in families with permissive parents, but not other
parents (Hennessy et al. 2010). A larger study
among urban 10–11-year-olds in the UK found
that permissive parenting style was associated
with greater physical activity among children

compared to the authoritative parenting (Jago
et al. 2011). Both of these studies illustrate that
promoting authoritative parenting for better child
outcomes may not be correct for all contexts.

The majority of the observational studies how-
ever have focused on parenting practices, rather
than parenting styles. A systematic review identi-
fied that paternal and maternal physical activity,
engaging in physical activity with one’s parent,
and parental logistic support were the most con-
sistent correlates of children’s physical activity
(Verloigne et al. 2012). Mothers and fathers may
also have different influences depending on the
sex of their child, with fathers having a greater
impact on their son’s physical activity and
mother’s on their daughters (Jago et al. 2011).
However, limitations in the current methods used
to measure physical activity parenting practices
have been identified (Trost et al. 2013), including
significant variability in the conceptualization of
physical activity parenting and validity of the
instruments used (Sleddens et al. 2012). There is
a need for a better conceptualization of physical
activity parenting based on developmental and
behavioral theory (Davison et al. 2013).

There is some evidence to suggest that
targeting parents to help promote physical activity
among their children is important to facilitate
behavior change leading to child obesity preven-
tion. However, the optimal way of targeting par-
ents has not been identified. A review of home-
based programs found little support for this
approach, although the number of studies is lim-
ited (Showell et al. 2013).

5.2 Sedentary Behavior Among
Children

US data from 2009 to 2010 NHANES found 54 %
of 6–11-year-old children met US guidelines for
screen viewing (�2 h/day) (Fakhouri et al. 2013),
and only 38 % met both physical activity and
screen-viewing recommendations. Similarly to
physical activity, screen use changes over time,
with children spending more time using screen
media as they get older (Fakhouri et al. 2013). A
longitudinal study similarly found that objectively
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measured sedentary time among elementary
school age children increased from 78 % of their
day to 81 % of their day from 7 to 9 years of age
(Basterfield et al. 2011). Among European chil-
dren 2–10 years old, screen use was greater on
weekends (52 % viewed >2 h/day) than week-
days (20 % viewed >2 h/day) and increased with
age and gender (boys watched more)
(Santaliestra-Pasias et al. 2013).

Screen media use is believed to be related to
children’s weight status through its influence on
children’s dietary intake, physical activity, and
sleep (O’Connor et al. 2013a; Biddle et al.
2014). Therefore, targeting screen time has
become an increasing priority for public health
programs with greater evidence of success than
for physical activity interventions. Meta-analyses
found that interventions that targeted a reduction
in sedentary behaviors had a significant effect on
reducing children’s weight status (Tremblay
et al. 2011; Liao et al. 2014).

A systematic review of family and school-
based correlates of children’s sedentary behaviors
emphasizes the need to focus more on parents.
They found the strongest evidence for parental
rules/restriction of screen-based media as a corre-
late, which had an inverse association with both
children’s screen media use and sedentary time
(Verloigne et al. 2012). Having a TV in the child’s
bedroom has also been consistently identified as
an important correlate of children’s screen time
(Santaliestra-Pasias et al. 2013). Ultimately, the
decision to allow a TV in the child’s room is up to
the parents.

While physical activity parenting research lags
behind the nutrition-related parenting field by sev-
eral years, screen media parenting is really just
emerging. Few studies have thoroughly assessed
screen media parenting. Several studies have
combined the concept of promoting physical
activity and restricting screen time into one con-
cept (Larios et al. 2009). However, parents appear
to use these concepts differently, with supportive
physical activity practices associated with greater
amount of child’s physical activity, while restric-
tive TV practices were associated with less phys-
ical activity (O’Connor et al. 2013a) when one
might expect them to have a similar influence on

children’s activity. This study was conducted in a
small cross-sectional sample, but it illustrates the
need to better understand how parents interact
with their children regarding sedentary behaviors
differently from physical activities. Analogous to
the call for improved conceptualization of physi-
cal activity parenting practices, a working group
of experts have proposed a better understanding of
how parents influence their child’s screen media
use across three domains: content, context, and
amount, all of which may be influencing the
child’s weight status through different mecha-
nisms (O’Connor et al. 2013b).

Interventions to reduce children’s sedentary
time that include a family component have some
promising findings (Biddle et al. 2014; Marsh
et al. 2014). A systematic review found that
greater parental involvement was associated with
greater intervention effect (Marsh et al. 2014).
Interventions targeting younger children were
also found to be more effective. Interestingly, the
intervention effects appeared to be related to
energy consumption rather than children’s physi-
cal activity (Marsh et al. 2014). In fact, sedentary
behaviors have been linked to less healthy eating
patterns among children, adolescents, and adults
(Pearson and Biddle 2011) including less fruit and
vegetable consumption, greater intake of energy-
dense snacks, and total energy intake.

6 Feeding Practices Among
Parents

Parents play a major role in the development of
child obesity – not only through the foods that they
serve their children as described above but through
the ways that they feed them – especially in the
preschool and middle childhood years (Ventura
and Birch 2008). The major feeding practices that
researchers have focused on to date are parental
restriction and pressure to eat. The assumption
behind these studies is that highly controlling feed-
ing practices (e.g., having the child finish all of the
food on the plate, bribing the child to eat, restricting
access to palatable foods) lead children to focus
more on external cues (e.g., parent demands, food
characteristics, food left on the plate) than internal
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cues (e.g., feelings of hunger and fullness) in deter-
mining whether they had eaten enough (Birch
et al. 1987; Johnson and Birch 1994; Fisher and
Birch 1999a). As a consequence, especially in
today’s obesogenic environment (Wansink 2004;
Lake and Townshend 2006), children who are fed
in this way may eat more in the absence of hunger
(Fisher and Birch 1999b) or not stop eating when
they are full (Johnson and Birch 1994).

A number of experimental studies in laboratory
settings (using research assistants, not parents) con-
firm these hypotheses. For example, in experiments
where children were either bribed with another
food or pressured to eat (Birch et al. 1982, 1984;
Newman and Taylor 1992; Galloway et al. 2006),
children typically showed more consumption of
the target food in the short term, but showed less
consumption when later given the opportunity to
freely eat the target food. In such situations, they
were also less likely to develop a preference for the
target food over time. Similar results have been
found in experimental studies of restriction –
restricting access to a food decreased consumption
in the short term, but increased preferences and
consumption of these same foods in the long term
(Fisher and Birch 1999a, b). Experimental labora-
tory studies have shown that themost effective way
for children to develop preferences for new foods is
through low-pressure, repeated exposure (often
taking 8–12 separate presentations) (Cooke
2007), although recent studies have shown that
the use of small nonfood rewards (e.g., stickers)
can increase preferences for novel foods as well
(Cooke et al. 2011). In recent experimental studies
in the home using parents rather than research
assistants, Wardle and colleagues demonstrated
the effects of repeated exposure (Wardle
et al. 2003) and small nonfood rewards (Remington
et al. 2012) on the development of food
preferences.

Correlational studies examining parental feed-
ing practices and child obesity partially confirm
these conclusions. The most consistent data are
for restriction – several longitudinal studies show
that parents who restrict their children’s consump-
tion of high-calorie, low-nutrient-dense foods
have children who show greater weight gain
over time (even after controlling for children’s

initial weight status) (Ventura and Birch 2008).
Restriction also is associated with poor regulation
of energy intake. Birch and colleagues (2003), for
example, found that maternal restriction at age
5 predicted the greatest increase in eating in the
absence of hunger from ages 5 to 9. Similarly,
Johnson and Birch (1994), in a cross-sectional
study, found that mothers who engaged in more
control over their preschooler’s eating had chil-
dren who demonstrated the poorest self-regulation
in a compensation trial (an assessment of chil-
dren’s ability to stop eating when full). Correla-
tional studies of pressure to eat, in contrast, show
it is more common in mothers of healthy weight
children, probably reflecting their tendency to use
this strategy with picky eaters. Most of these
studies, however, are cross-sectional (Ventura
and Birch 2008). The results of longitudinal stud-
ies are mixed. Two studies by Gregory and col-
leagues (2010, 2011) found that pressure to eat
was associated with lower interest in food and less
fruit consumption 1 year later, whereas two other
studies (Webber et al. 2010; Jansen et al. 2014)
found that child BMI predicted maternal restric-
tion and pressure to eat over time, rather than
maternal feeding predicting child BMI.

Besides restriction and pressure to eat,
researchers have examined a wide range of other
feeding practices, including those thought to be
positively associated with child obesity
(e.g., soothing with food, using food to reward
good behavior) and those thought to be negatively
associated (e.g., providing healthy choices, encour-
agement, praise, support, reasoning), but research
on the relationships of these strategies with
child obesity to date is limited or inconsistent
(de Lauzon-Guillain et al. 2012; Vaughn
et al. 2013).

7 Parenting Styles and Feeding
Styles

Parents influence their children through both their
practices and their styles of parenting. Parenting
practices are goal-oriented parenting behaviors
specific to a context (Maccoby and Martin 1983;
Baumrind 1989), whereas styles refer to the
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overall attitude the parent has about child-rearing.
General parenting styles are characterized by
levels of demandingness/control (setting clear
expectations and monitoring the child’s behavior)
and responsiveness/nurturance (warmth and
approval). These dimensions translate into four
styles of general parenting: authoritative (high
demandingness, high responsiveness) character-
ized by parental involvement, nurturance, and
structure; authoritarian (high demandingness,
low responsiveness) characterized by restrictive,
punitive, and power-assertive behaviors; permis-
sive/indulgent (low demandingness and high
responsiveness) characterized by warmth and
acceptance in conjunction with a lack of monitor-
ing; and uninvolved (low demandingness, low
responsiveness) characterized by little control
and involvement. The authoritative style provides
the most protective parenting resulting in better
child health outcomes (Vollmer and Mobley
2013). Children of authoritative parents consume
greater amounts of fruit and vegetables (Lytle
et al. 2003; Pearson et al. 2010; Park and
Walton-Moss 2012; Rodenburg et al. 2012) and
fewer amounts of high fat and/or sugar (Chen and
Kennedy 2005; Van der Horst et al. 2007; Pearson
et al. 2010). In a study of predominantly White
families, childhood overweight was least preva-
lent in children with authoritative parents (Rhee
et al. 2006). In this same study, the indulgent
parenting style – those who were highly nurturing
but made few demands on their child – was asso-
ciated with an increased risk for childhood over-
weight (Chen and Kennedy 2005; Rhee
et al. 2006; Wake et al. 2007).

More recently, the concept of feeding styles has
been introduced into the literature which uses a
framework similar to general parenting styles. A
feeding style refers to the overall attitude and emo-
tional climate a parent creates with their child dur-
ing eating episodes. Feeding styles are measured
along two dimensions of feeding: parental demand-
ingness and responsiveness (Hughes et al. 2005).
Demandingness refers to the number of demands
parents place on their child to eat, while responsive-
ness refers to how sensitive parents are to the child’s
needs in the eating domain. Differences on the two
dimensions result in four styles of feeding similar to

general parenting styles: authoritative parents (high
demandingness/high responsiveness) place reason-
able nutritional demands on their child as well as
being sensitive to the child’s needs; authoritarian
parents (high demandingness/low responsiveness)
are highly controlling during feeding episodes
showing little sensitivity toward the child; indul-
gent parents (low demandingness/high responsive-
ness) are highly responsive to their child’s needs,
but provide few rules and little structure allowing
the child the freedom to determine their own nutri-
tional intake; and uninvolved parents (low demand-
ingness/low responsiveness) exhibit little control
and involvement during feeding.

Across a series of studies with African Ameri-
can,White, andHispanic low-income families with
children ages 3–11, the indulgent feeding style has
been associatedwith higher child weight status (see
El-Behadli et al. 2015 for a review). The indulgent
feeding style has also been associated with self-
selected portion sizes and intake in children ages
4–6 (Fisher et al. 2013); lower intake of fruit,
vegetables, and dairy in low-income preschoolers
(Hoerr et al. 2009); and higher intake of
low-nutrient energy-dense snacks in rural
low-income ethnically diverse children (Hennessy
et al. 2012). The uninvolved feeding style was also
associated with higher intake of energy-dense
foods in preschoolers (Hoerr et al. 2009). Con-
versely, the authoritative feeding style was associ-
atedwith lower child intake of low-nutrient energy-
dense snacks (Hennessy et al. 2012). In general,
these studies support the theory that parents who
are highly responsive to their children during eat-
ing episodes but do not set appropriate boundaries
around food deter the development of appropriate
eating behaviors that may contribute to child
weight gain.

Cultural differences have been observed across
feeding styles. Among the two permissive feeding
styles, Hispanic parents were more likely to be
indulgent, whereas African Americans were more
likely to be uninvolved (Hughes et al. 2005). In a
separate study conducted among immigrant
mother-child dyads of Brazilian, Haitian, or
Latino descent living in the Boston area, the
majority of mothers were either authoritarian or
indulgent in their feeding style (Tovar et al. 2012).
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Higher stress among these immigrant mothers
was associated with an authoritarian feeding style.

Although the information provided above sup-
ports evidence for the promotion of authoritative
parenting and/or feeding in the fight against child-
hood obesity, to date, few interventions have been
developed that directly address general parenting
or feeding styles in the prevention of childhood
obesity (Gerards et al. 2011).

8 Family Routines

Family routines are considered the ways that par-
ents organize family activities taking into consid-
eration family goals, values, and individual
differences in their children. The goal of family
routines is to provide a predictable structure that is
sustainable over time (Spagnola and Fiese 2007).
Because parents control the home environment
including what, when, and how the family eats,
one important way that parents influence the
development child’s eating behaviors is through
family eating routines such as the frequency of
family meals. Frequency of family meals has been
associated with lower rates of obesity in children
(Hammons and Fiese 2011). Hammons and Fiese
(2011) conducted a meta-analysis of 17 studies
including over 180,000 children and adolescents
and found that regularly sharing meals as a family
reduced the odds for child and adolescent over-
weight by 12 % and increased the odds for eating
healthy foods by 24 %. However, this meta-
analysis did not account for whether the study
design was cross-sectional or longitudinal nor
did it account for possible confounders (e.g.,
sex, age, ethnicity). In a separate review, incon-
clusive evidence was found regarding the protec-
tive nature of family meals on childhood obesity
(Valdes et al. 2013). In this review of 15 studies,
6 out of 11 cross-sectional studies and 1 out of
4 longitudinal studies found a statistically signif-
icant inverse relationship between frequency of
family meals and the child being overweight
(odds ratios from 0.11 to 0.93) (Valdes
et al. 2013). However, only one study adjusted
for all relevant confounding factors (sex, age,
ethnicity, SES, diet, and physical activity-related

variables), and this study did not find any associ-
ation between frequency of family meals and
child weight after stratifying for sex and age
(Fulkerson et al. 2008). Furthermore, of the
reported studies, there was no standard definition
for what was considered a family meal (at home or
away from home, seated at a table or not, number
of family members present, length of meal, food
served and consumed, and whether the TV was on
or not). In summation, some studies have shown
that family meals are associated with greater fruit
and vegetable consumption (Gillman 2000;
Neumark-Sztainer et al. 2010) and more family
cohesion (Neumark-Sztainer et al. 2003). One can
argue that family meals help children establish
firm routines around food (e.g., eating breakfast
and avoiding snacking) (Anderson and Whitaker
2010; Fulkerson et al. 2009). However, based on
current information, it is still unclear whether
sharing family meals prevents childhood obesity
after controlling for other associated variables
(Valdes et al. 2013).

9 Structure of the Home
Environment

Besides familymeals, there are also other ways that
the structure of the home food environment can be
important in the development of child obesity.
These include such aspects as (with examples
representing behaviors that likely decrease child
obesity risk) organization of meals (e.g., is there a
designated space for eating? are distractions mini-
mized?), the meal preparation process (e.g., is the
child involved in food preparation?), availability
and accessibility of food (e.g., are healthy foods
available and easily accessible to the child and
unhealthy foods not present or not easily accessed
by the child?), parent modeling of food consump-
tion (e.g., do parents model healthy patterns of
consumption?), rules and limits on consumption
(e.g., do parents have clear expectations for what,
when, and where children eat?), and parental mon-
itoring of consumption (e.g., are parents aware of
their children’s consumption patterns – especially
unhealthy foods?) (Hughes et al. 2008; Vaughn
et al. 2013).
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Unfortunately, insufficient research has been
conducted in most of these areas on their direct
relationship with child weight status. Monitoring
is the only variable with sufficient research, and the
results are inconsistent (Jansen et al. 2012). Indirect
evidence comes from studies of the correlates of
children’s food consumption – especially fruits
and vegetables. Both availability of fruits and
vegetables in the home and parental modeling of
their consumption are positively associated
with children’s fruit and vegetable consumption
(Pearson et al. 2010). Although some research on
other aspects of parental structure is promising
(De Bourdeaudhuij 1997; Verzeletti et al. 2010),
additional research is necessary to clarify their
relationships with child obesity and child
obesity risk.

10 Conclusions

Despite a considerable amount of research on the
environmental factors that contribute to childhood
obesity, most of this research is cross-sectional
and correlational and does not allow for strong
inferences about the direction of causality. As
described throughout this review, most interven-
tion studies have been school based and have not
led to long-term changes in children’s behavior or
to long-term reductions in childhood obesity rates.
As a consequence, some researchers are now turn-
ing to family based programs in an attempt to
change the home feeding environment (Hingle
et al. 2010) to lead to long-term effects.

Another limitation of research in this area is
that most studies have been conducted on young
children and less attention has been paid to middle
childhood and adolescence. An assumption of
many researchers is that they should focus on
young children since eating habits develop early
(Birch and Ventura 2009), but there is evidence
that obesity rates continue to increase into adoles-
cence and young adulthood, as physical activity
levels decrease (Belcher et al. 2010), sedentary
behavior increases (Basterfield et al. 2011;
Santaliestra-Pasias et al. 2013), and individuals
begin to make more choices about their food

intake (Lytle et al. 2000). Further studies on the
risk and protective factors during these later
developmental periods could help us better under-
standing the increasing obesity rates with age.

Despite these limitations, the literature has
identified a large number of factors associated
with the development of child obesity, ranging
from individual eating behaviors to family factors
to neighborhood to cultural factors (Davison and
Birch 2001). Very few studies to date, however,
have examined how these factors interact with one
another in predicting childhood obesity risk. For
example, do certain parenting practices protect
children from the development of childhood
obesity in high-risk neighborhoods (e.g., neigh-
borhoods with few supermarkets and a large num-
ber of fast-food restaurants) or do high levels of
physical activity protect children from obesity
even though they consume a large number of
calories?

Finally, the role of culture in childhood obesity
deserves more attention. Childhood obesity rates
vary considerably across cultures (Ogden
et al. 2014), and second-generation immigrants
from Asia and Latina America have higher obe-
sity rates than first-generation immigrants (Popkin
and Udry 1998; Hernandez-Valero et al. 2007).
However, our understanding of the risk and pro-
tective factors that account for these differences is
limited. Are these differences in obesity rates due
to diet, to physical activity, to parenting practices,
or to some combination of all three?

Future research needs to examine the interac-
tions between the various risk and protective fac-
tors identified here, with close attention to the
cultural context. Studies should be longitudinal,
employ multiple measures and methods, and con-
temporary approaches to the analysis of longitu-
dinal data (Singer and Willett 2003; Little 2013).
Moreover, a greater number of intervention stud-
ies must be conducted that not only demonstrate
causal impact on the development of childhood
obesity but also to identify the critical intervention
components that contribute to their effects. Such
studies would go a long way in helping us identify
effective approaches to addressing this important
societal problem.
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11 Cross-References

▶Diet and Obesity (Macronutrients,
Micronutrients, Nutritional Biochemistry)

▶ Fetal Metabolic Programming
▶ Prevention and Treatment of Childhood
Obesity and Metabolic Syndrome

▶The Built Environment and Obesity
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Abstract
The global prevalence of overweight and obe-
sity as a public health concern is well
established and reflects the overall worldwide
lack of success in achieving and maintaining a
healthy body weight. The major concern is that
overweight and obesity is associated with
numerous comorbidities and is a risk factor
for several of the leading causes of death,
including cardiovascular disease, diabetes
mellitus, and many types of cancer. These are
for the large part preventable diseases. The
cornerstone of therapy has been diet, exercise,
and behavioral modification. Considering the
plethora of existing diet programs and the
global expansion of the obesity crisis, a con-
clusion can be drawn that no one diet has been
universally successful at inducing and
maintaining weight loss and improving meta-
bolic parameters. This enigma provides some
evidence as to the complexity of obesity and
weight management. The achievement of a
healthy body weight is far more complex than
a simple reduction of caloric intake relative to
energy expenditure. The factors affecting obe-
sity are complicated, dynamic, and interrelated
and involve numerous host factors as well as
the environment. This chapter will review the
physiological basis of scientifically validated
weight loss diets, their effects on energy
expenditure, body weight, body composition,
and metabolic parameters.
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1 Introduction

Obesity, and its related comorbidities, is no longer
a disease of Western cultures and has become a
global epidemic (WHO 2000). In June of 2013,
the American Medical Association recognized
obesity as a disease (AMA 2013). It has become
a serious public health problem, including child-
hood obesity, in many countries worldwide
(Janssen 2005; Wang and Beydoun 2007; Wang
and Lim 2012). Obesity is a chronic disease that
contributes to the development of diabetes, car-
diovascular disease, hypertension, cancers, and
seriousmedical conditions, resulting in an adverse
effect on quality of life and an estimated economic
burden of $2.0 trillion annually (WHO 2015;
Patel and Abate 2013). The seriousness of this
disease has led to the search for an effective and
lasting treatment. There are three main categories
for treatment of obesity: (1) lifestyle modification
including dietary intervention, physical activity,
and behavioral modification, (2) pharmacother-
apy, and (3) surgery. Although the mechanisms
differ, each of these interventions is designed to
generate a negative energy balance, stimulate
lipolysis, and induce weight loss. This chapter
will focus on dietary interventions including mac-
ronutrients, micronutrients, and the nutritional
biochemistry forming the basis for the design of
the specific diet.

2 Popularized Weight Loss Diets

There are well over 1,000 weight loss diets that
have been popularized in the lay literature and
throughout the media. The sheer number of avail-
able diets would suggest that as a global society,
we have not been successful in managing this
disease. Most of these weight loss plans have little
to no scientific evidence behind them. They may

recommend intermittent fasting, eliminate one or
more food groups, or suggest consumption of a
particular type of food or a specific macronutrient.
In the short term, these diets may produce weight
loss, but their effects are generally not lasting.
There are, however, some diets that are based on
sound nutritional, physiological, and biochemical
principles which have been studied under con-
trolled conditions.

3 The Weight Loss Equation:
Is It Simple Math?

The induction of weight loss has been thought of in
terms of an equation; energy intake exceeding
expenditure leads to weight gain; intake less than
expenditure results in weight loss; and intakes
equivalent to expenditure result in weight mainte-
nance. This concept is often attributed to the laws of
thermodynamics which define the fundamentals of
heat and work. But when these laws which govern
the physical aspects of temperature, energy, and
entropy are applied to living biological systems,
the equation becomes far more complex. Biological
systems are complicated. The second law of ther-
modynamics, the law of dissipation, states that the
entropy increases during any spontaneous process
and that for any irreversible reaction, there is a loss
or dissipation of energy in that reaction. This is the
law that describes the inefficiency in biological
systems associated with metabolic processes.
From a metabolic standpoint, it is impossible for a
biological system to turn a given amount of energy
into an equivalent amount of work. Thus, a “calo-
rie” is not always a “calorie.” Calories are not
converted to energy on a one-to-one basis because
of this loss of energy, this inefficiency, described by
the second law of thermodynamics. Oxidation of
carbohydrates is more thermodynamically efficient
and requires less energy than oxidation of protein or
fat which is why it is the preferential fuel for the
body. The inefficient protein and fat oxidation leads
to extra energy loss, thus creating a metabolic
advantage during weight loss interventions
(Fine and Feinman 2004). Whether or not this met-
abolic advantage is clinically significant has been
debated.
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4 Other Factors Affecting
Weight Loss

To consider weight loss as the mere application of
an intervention designed to reduce intake and
increase expenditure in order to mobilize adipose
stores for fuel is an oversimplification. There are
numerous biochemical, physiological, psycholog-
ical, emotional, economic, and social factors asso-
ciated with weight loss and gain (Fig. 1). To
complicate matters, they are multifaceted, interre-
lated, and dynamic such that a change in one
factor will affect others.

It is intriguing to think that there may be a
genetic component to this disease and that alter-
ation of the genetic expression could influence the
progression to obesity or that some of these
obesogenic or leptogenic genes may influence
the response to weight loss interventions (Hainer
et al. 2008). The existence of one or more family
members who are overweight or obese suggests
that there may be a genetic component and that it
may also be associated with specific socio-
environmental factors (Serene et al. 2011). Yet, it

is not unusual to find both lean and obese mem-
bers within the same family. The obese gene that
is located on chromosome 7 encodes for leptin
which regulates energy intake and energy expen-
diture (Green et al. 1995). The percentage of obe-
sity that can be attributed to genetics varies
widely, depending on the population examined,
and ranges from 6 % to 85 % (Yang et al. 2007). It
is also possible that the development of obesity
begins in utero during fetal development at which
time nutritional, hormonal, physical, and psycho-
logical processes are preprogrammed to activate
specific physiological functions at defined periods
later in life (Tounian 2011). At least 71 genes have
been implicated in the development of obesity
(Doo and Kim 2011). One of the genes known to
contribute to polygenic obesity is the fat
mass–obesity-associated (FTO) gene (Baturin
et al. 2011). There are other gene mutations that
have been associated with morbid obesity includ-
ing Alstrom syndrome, Bardet–Biedl syndrome,
Cohen syndrome, Ayazi syndrome, MOMO
syndrome, and Prader–Willi syndrome. These
observations provide a strong argument for a
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genetic component. Yet obesity cannot be attrib-
uted to genetics in all cases.

One cannot overlook the contribution of phys-
ical activity to weight management. Engagement
in physical activity, particularly aerobic exercise,
will influence the metabolic rate and caloric
expenditure. Physical activity also affects insulin
sensitivity and insulin resistance. The positive
changes on insulin sensitivity and insulin resis-
tance are sustained as long as exercise is sustained
(Houmard et al. 1996). This in turn may affect the
success of a planned dietary intervention. With
aging, there is a reduction in lean body mass,
metabolic rate, energy expenditure, and physical
activity, all of which will result in increased
weight gain if one continues to consume the
same level of calories throughout the life span.

If weight gain and loss are related to insulin, does
it matter if someone is insulin sensitive or insulin
resistant? Cornier and colleagues conducted a small
study on obese nondiabetic women over a 4-month
feeding period (Cornier et al. 2005). The subjects
received a high-carbohydrate low-fat (60:20) or
a low-carbohydrate high-fat (40:40) diet. Both
diets were hypocaloric. The high-carbohydrate
low-fat diet wasmore effective in producing weight
loss in the insulin-sensitive women, and the
low-carbohydrate high-fat diet was more effective
for the insulin-resistant woman. The differences
were not explained by intake, activity, or resting
metabolic rate. A similar study was conducted by
Ebbeling and colleagues. In this study, a
low-glycemic diet resulted in greater weight loss
in those individuals who were insulin resistant
(Ebbeling et al. 2007). Thus, reducing the glycemic
load may be important to achieve weight loss in
those individuals with high insulin secretion.

Our food supply has changed dramatically
over the years and has become far more processed
and inclusive of highly refined sugars, chemicals,
and preservatives. The role that these chemicals
and preservatives have on hunger, satiety, and
ultimately food consumption is unclear . The over-
all refinement in the diet has also led to a reduction
in fiber intake which in turn affects satiety value.
The influence of the food supply on the develop-
ment of obesity is also closely related to

socioeconomic factors. When there are economic
constraints, people will purchase low-cost foods,
which tend to be low in nutritional value but high
in calories, fat, and refined carbohydrates.

There clearly is a role of hormones such as
ghrelin and leptin in the development of obesity.
Leptin is derived from adipose tissue and is
released into the circulation at a level which is
proportional to the increased energy stores in fat.
Leptin is a product of the OB gene and stimulates
the neural circuits that decrease food intake and
increase energy expenditure (Friedman and
Halaas 1998). In contrast, ghrelin is an orexigenic
gut hormone which is decreased in obesity
(Tschop et al. 2001). These hormones affect appe-
tite and satiety level, and the differences among
individuals and populations are still being eluci-
dated. The ability to manipulate the secretion of
these hormones may someday aid in the preven-
tion and cure of obesity.

All of these factors affect the gut microbiota,
which in turn influences the storage and release of
energy from the adipocytes. However, the precise
mechanism by which these alterations occur is
still unclear. Most of the data has been extrapo-
lated from epidemiological or animal studies. For
example, fiber has been shown to be protective
and reduce body weight in a number of conditions
(Anderson and Pasupuleti 2008). Women who
consume more refined grains tend to have greater
weight gain than those who consume viscous or
fermentable fibers (Liu et al. 2003). The use of
fiber supplements has been shown to result in
greater weight loss (Anderson et al. 2009). Fiber
is a prebiotic and can change the microbiota of the
gut. Thus, diet can influence commensal
microbiota. There are numerous factors which
affect the ecology of gut microbiota. Even the
process of aging will influence the gut microbiota
(Biagi et al. 2012). There are differences in indi-
vidual characteristics such as changes in diet,
lifestyle, antibiotic use, bile acids, country of res-
idence, and, eventually, frailty. The aged-type
microbiota shows a low microbial biodiversity,
and it is characterized by an increase in opportu-
nistic environmental facultative aerobes, Staphy-
lococcus, Streptococcus, and Enterobacteriaceae,
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as well as a reduction in anaerobes, such as Clos-
tridium clusters IV and XIVa and Bacteroidetes.
However, differently from the infant-type
microbiota, the aged type is characterized by a
low abundance of Bifidobacterium (Biagi
et al. 2012). For bifidobacteria, a consistent dif-
ference was found in the meta-analysis between
159 obese subjects and 189 controls from six
published studies showing that the digestive
microbiota of the obese group was significantly
depleted in bifidobacteria (Angelakis et al. 2012).
Recently, the use of artificial sweeteners was
linked to the changes in the gut microbiota (Suez
et al. 2014). There are two phyla, mainly anaer-
obes, that appear to be linked to obesity,
Firmicutes (positively) and Bacteroidetes (nega-
tively). However, it is not certain if these micro-
organisms cause obesity or are a result of obesity.
Obese mice have altered gut flora. When gut flora
is transferred from an obese mouse to a lean
mouse, the lean mouse gains weight (Ley
et al. 2005; Turnbaugh et al. 2006). Short-chain
fatty acid (SCFA) content of mice that are ob/ob
has higher SCFAs than lean mice – meaning they
ferment carbohydrates and are more efficient
energy extractors. There is less energy in the
stool of the obese mice than lean mice because
of more efficient extraction of energy via
enhanced fermentation by the gut microbiota.
The question becomes can we modulate the gut
microbiota to induce weight loss? At this point it
is important to recognize that there is no substitute
for a healthy lifestyle. Other things such as anti-
biotics, probiotics, synbiotics, genetically modi-
fied bacteria, and fecal microbial transplantation
do modify the gut microbiota.

5 Dietary Macronutrients

Most dietary interventions center on modification
of the macronutrient portion of the diet (i.e., car-
bohydrate, protein, and fat) and may or may not
include an overall energy restriction. When the
percentage of one macronutrient is changed,
there will be a corresponding increase or decrease
in the other macronutrients. The particular diet

may or may not define the characteristics of each
of these macronutrients. For example, a carbohy-
drate is not a uniform organic compound and may
be defined as simple or complex, by the glycemic
index (GI), glycemic load (GL), or fiber content
(viscous vs. fermentable). Proteins have varying
amino acid profiles and may be derived from
animal, plant, or marine sources. In addition,
these protein sources may contain varying
amounts and types of fat. There are also some
protein sources such as those derived from dairy
sources which contain some carbohydrate. Fat
sources include monosaturated, polyunsaturated,
saturated, and trans fats. Depending on the com-
position included in the weight loss diet will vary
in the content of omega-3, omega-6, and omega-9
fatty acids. Foods are generally composites of
each of these macronutrients. This lack of preci-
sion in defining the dietary prescription makes
comparisons of weight loss diets difficult.

6 Low-Carbohydrate and
Ketogenic Diets: Metabolic
Rationale

The use of low-carbohydrate and ketogenic diets
has been extensively studied. The metabolic ratio-
nale for the restriction is that when the carbohydrate
content of the diet is sufficiently reduced, especially
simple and highly refined carbohydrates, there will
be a decline in blood glucose and insulin levels,
which in turnwill shiftmetabolism from lipogenesis
to lipolysis, resulting in weight loss. Accordingly,
when the carbohydrate content of the diet is
reduced, there is a corresponding increase in the
protein and fat content. The oxidation of protein
and fat for energy results in the production of
ketones, which causes an increase in the satiety
value and a voluntary caloric reduction. The oxida-
tion of protein and fat is less efficient than the
oxidation of carbohydrate. The extra energy
required to oxidize protein and fat may be as high
as 400–600 kcal/day (Fine and Feinman 2004).
Aside from the additional energy required to metab-
olize protein and fat, increasing the protein content
of the diet has been shown to have a beneficial effect
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on resting energy expenditure (REE) and total
energy expenditure (TEE) during weight loss
(Pereira et al. 2004; Ebbeling et al. 2012). Lipolysis
is maintained even if there is an excess of calories
because glycerol from fat is needed as a
gluconeogenic precursor. Thus the rapid weight
loss observed during the use of these diets is prob-
ably multifactorial and results from a combination
of increased lipolysis and decreased de novo lipo-
genesis, increased energy expenditure from the con-
version of glycerol and glycogenic amino acids to
glucose, as well as the satiety value associated with
ketone bodies and higher protein intakes.

The exact amount of carbohydrate required to
produce these metabolic alterations has been
debated and not clearly elucidated. It should also
be noted that a low-carbohydrate diet is not nec-
essarily a ketogenic diet. Considering the wide
range of carbohydrate levels used in studies
throughout the literature, Feinman and colleagues
proposed that the low-carbohydrate diet be
defined as less than 130 g/day or less than 26 %
of total energy and the very low-carbohydrate
ketogenic diet defined as carbohydrate between
20 % and 50 g/day or less than 10 % of a 2,000
kcal/day diet, whether or not ketosis occurs
(Feinman et al. 2015).

Another approach to controlling carbohydrate
intake has been with the utilization of the glyce-
mic index (GI) which measures the rate at which
blood glucose levels rise when a particular food is
ingested and how quickly the blood glucose levels
drop. This ranking system was originally devel-
oped to aid those with diabetes and manage their
carbohydrate intake relative to insulin require-
ments. Pure glucose has a rating of 100; thus, the
closer a food is to 100, the higher the GI rating
is. Foods with a low GI rating will be absorbed
more slowly, keeping blood glucose levels lower
and more sustained. The GI has some inherent
irregularities. For example, white bread and
whole wheat bread have very similar rankings as
do brown and white rice, yet clearly the whole
grain choices are healthier. The glycemic load
(GL) is the mathematical product of the GI and
the amount of carbohydrate in the diet. Diets with
a high GL result in higher postprandial insulin
concentration than those with a low GL.

7 Low-Fat and Very Low-Fat
Diets: Metabolic Rationale

Fat is the most calorically dense of all the macro-
nutrients with 9 kcal/g. It was therefore logical to
assume that reduction in fat would result in a reduc-
tion of energy intake and body weight. As with the
other macronutrients, the exact composition of the
low-fat diet varied but generally contained between
20 % and 30 % of calories from fat and the very
low-fat diet often be as low as 10 %. As the fat
content is reduced, the carbohydrate is increased
and in some instances theremay be a slight increase
in the protein content of the diet. These diets tended
to be lower in calories when properly employed
and resulted in weight loss when done correctly.
Unfortunately, for many the diet was low in satiety
value and often led to overconsumption. Others
believed that a low-fat diet meant they could eat
as many calories as desired as long as these foods
were low in fat. Dietary fat was replaced with
carbohydrates, primarily in the form of simple
sugars and refined carbohydrates, increasing calo-
ric intake by 200 cal a day (Volek and Phinney
2013; Feinman et al. 2015). Overall, the low-fat
diet prescribed for the management of obesity and
lowering of cardiovascular risk factors failed to
produce the desired results (Feinman et al. 2015).
The use of the low-fat diet without calorie restric-
tion will not result in weight loss.

8 Dietary Intervention Trials

Comparisons of interventional trials of weight
loss diets are difficult due to differences in study
design and outcome parameters. There are numer-
ous differences in the composition of the diets, the
length of time of the intervention, the outcome
parameters (i.e., weight loss, metabolic parame-
ters, body composition), adherence, and setting
(inpatient vs. outpatient). Additionally, some of
the diet interventions employed an isocaloric pre-
scription, while others allowed the patients to
consume an unrestricted amount in order to eval-
uate the effects on appetite.

There have been a number of human trials
(Table 1) which compared isocaloric diets
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containing a low versus high carbohydrate content
(Young et al. 1971; Rabast et al. 1978, 1981; Piatti
et al. 1994; Golay et al. 1996a, b; Lean et al. 1997;
Baba et al. 1999; Greene et al. 2003; Layman
et al. 2003). The fact that these studies were
isocaloric is an important point and permits
the examination of effect based on the macronu-
trient percentages. Overall, greater weight
loss was observed in the lower-carbohydrate
diets in comparison with the higher-carbohydrate
diets.

If diet is modified relative to the individual’s
usual intake, it is likely to produce weight loss
regardless of the composition of the diet. To inves-
tigate the effects of altering the macronutrient con-
tent of weight loss diets, Shai and colleagues
conducted a 2-year trial in which 322 moderately
obese individuals were randomized to one of three
diets: a calorie-restricted low-fat diet providing less
than 30 % fat, a calorie-restricted Mediterranean
diet supplying less than 35 % fat, or a very
low-carbohydrate (less than 20 g initially up to
120 g carbohydrate) diet with no calorie restrictions
(Shai et al. 2008). Each of the diets resulted in
weight loss. However, the low-carbohydrate diet
produced the greatest weight loss followed by the
Mediterranean diet and then low fat (Fig. 2). The
ratio of serum total cholesterol toHDL-Cdecreased
in all groups, with the low-carbohydrate group
showing the greatest improvement with a relative
decrease of 20 % compared with the low-fat group
with a decrease of 12 % (Fig. 3).

One of the few studies that evaluated the effect
of the low-carbohydrate diet on body composition
beyond absolute weight loss was conducted by
Brehm and colleagues (2003). Healthy women
were randomized to receive a low-fat or very
low-carbohydrate diet. Weight loss and reduction
of body fat as measured by DXA was greatest in
the group receiving the very low-carbohydrate
diet both at 3 and 6 months. Blood pressure,
lipids, fasting glucose, and insulin were within
normal limits for both groups at the beginning of
the trial but continued to improve throughout the
study period. The greatest weight loss occurred in
the low-carbohydrate diet, and those subjects had
the greatest reduction in body fat.

Gardner and colleagues attempted to evaluate
the effects of four popular weight loss diets with
varying levels of carbohydrate in a public health
setting over the course of 1 year (Gardner
et al. 2007). They randomized 311 overweight
premenopausal women to the Atkins diet (<20 g
CHO/day, no calorie restriction), Zone (40 %
CHO, calorie restricted), LEARN (55–60 %
CHO, calorie restricted), and Ornish (<10 % fat,
no calorie restriction). Subjects were provided
with books explaining the diet and attended
weekly instructions for 2 months. Subjects on
the Atkins diet (low CHO) had the greatest weight
loss and had the highest retention in the study. The
Atkins group also experienced the greatest
improvement in metabolic effects, with positive
changes in HDL cholesterol, triglycerides, and

Table 1 Isocaloric weight loss intervention trials with varying CHO contentsa

Reference

% CHO % CHO Wt loss (kg) � SEM

P(Low) (High) Low CHO High CHO

Young et al. (1971) 7 23 16.2 � 0.9 11.9 � 0.8 <0.05

Rabast et al. (1978) 10 68 14.0 � 1.4 9.8 � 1.0 0.10

Rabast et al. (1981) 12 70 12.5 � 0.9 9.5 � 0.7 <0.01

Piatti et al. (1994) 35 60 4.5 � 0.4 6.4 � 0.9 0.3

Golay et al. (1996b) 15 45 8.9 � 0.6 7.5 � 0.5 0.1

Golay et al. (1996a) 25 45 10.2 � 0.7 8.6 � 0.8 0.13

Lean et al. (1997) 35 58 6.8 � 0.8 5.6 � 0.8 0.1

Baba et al. (1999) 25 68 8.3 � 0.7 6.0 � 0.6 <0.05

Greene et al. (2003) 5 55 10.4 � 2.1 7.7 � 1.1 0.25

Layman et al. (2003) 44 59 7.5 � 1.4 7.0 � 1.4 0.8
aAdapted with permission from Fine and Feinman (2004)
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systolic blood pressure. These studies demon-
strate that the low-carbohydrate diet, despite
unrestricted caloric intake, is at least as effective
if not more efficacious as other dietary plans with
regard to weight loss and improvement in meta-
bolic parameters.

The effects of the low-carbohydrate or a
low-fat diet on weight loss and cardiovascular
risk factors were evaluated over the course of
1 year in a randomized trial (Bazzano
et al. 2014). Subjects without cardiovascular dis-
ease or diabetes (n = 148) were randomized to a
low-carbohydrate or low-fat diet along with die-
tary counseling at regular intervals throughout the
trial. The low-carbohydrate diet proved to be more
effective for weight loss and cardiovascular risk
factor reduction than the low-fat diet.

Because of the difficulties in evaluating these
diets, a number of systematic reviews and meta-
analyses have been conducted to try and discern if
there are advantages of one approach over the
other. Hession and colleagues conducted a sys-
tematic review of the effects of low-carbohydrate
diets with low-fat diets on weight loss and coro-
nary disease risk factors (Hession et al. 2008). A
total of 13 studies that lasted at least 6 months
with a total of 1,222 participants were included.
The data demonstrates that low-carbohydrate,
high-protein diets are more effective at 6 months
and are as effective, if not more, as low-fat diets in
reducing weight and cardiovascular risk parame-
ters for up to 1 year. In addition, higher retention
rates were found in the low-carbohydrate group
compared with the low-fat group.

Johnston and colleagues conducted a meta-
analysis of popular weight loss diet programs
(Johnston et al. 2014). The outcome parameters
were weight loss at 6 and 12 months. There was
no evaluation of other metabolic parameters. A
total of 48 studies including 7,268 subjects were
included in the analysis. Although not statistically
significant, the largest weight loss was associated
with low-carbohydrate diet both at 6 and
12 months. With a lack of statistical significance
between the different weight loss interventions, it
may be that the best practice should be to recom-
mend a diet that a patient is likely to adhere to in
order to lose weight.

9 Micronutrients

In general, the major focus of weight loss diets has
been on the modification of the macronutrient por-
tion of the diet. However, along with altering the
macronutrient content of the diet, attention must
be given to the micronutrient portion to ensure
adequate intake of vitamins, minerals, and trace
elements. This is especially important since over-
weight and obese individuals may have deficiencies
of micronutrients prior to initiation of a diet inter-
vention due to previous poor food choices. The data
is limited and this aspect of weightmanagement has
not beenwell studied. There have been somemicro-
nutrient evaluations of sample menus from various
weight loss diets using a nutrient analysis database
(Anderson et al. 2000; Freedman et al. 2001; Ma
et al. 2007). Overall, these analyses demonstrate
that the proposed diet plans were deficient in
many micronutrients. There were some studies
that attempted to evaluate micronutrient intake dur-
ing weight loss interventions but presented only
partial data from a small percentage of the sample
population (Yancy et al. 2004) or included only
select nutrients (Brehm et al. 2003; Clifton
et al. 2008; Shai et al. 2008). Some of the weight
loss programs included multivitamin supplementa-
tion as part of the protocol. Others did or did not
address it in the report. Brehm and colleagues
observed a significantly lower vitamin C intake in
participants consuming a very low-carbohydrate
diet at an intermediate 3-month time point (Brehm
et al. 2003). Inadequate intakes of vitamin C, cal-
cium, iron, and magnesium were reported among
18 adults in a 4-week study of the high-protein
low-carbohydrate Atkins diet (Miller et al. 2003).
Gardner and colleagues evaluated themicronutrient
intake of overweight or obese women randomly
assigned to four popular diets, Atkins, Zone,
LEARN, and Ornish, using a 3-day unannounced
24-h recall at baseline and after 8 weeks of instruc-
tion (Gardner et al. 2010). At 8 weeks, there was a
significant proportion of individuals whose intakes
were associated with the risk of inadequacy. These
varied with the type of diet. The Atkins group was
at risk for thiamine, folic acid, vitamin C, iron, and
magnesium. Although Atkins recommends includ-
ing multivitamin and calcium supplementation,
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only three of the participants in the Gardner study
actually took a multivitamin supplement and six
participants took a calcium supplement. Partici-
pants in the LEARN group had an increased risk
for vitamin E, thiamine, and magnesium, and the
Ornish group were at risk for vitamins E and B-12
and zinc. Those participants following the Zone diet
actually had a reduction in the risk of inadequacy
for vitamins A, E, K, and C. Although this study
provides some insight into the potential deficien-
cies, it should be noted that the information
on vitamin and mineral intake was obtained by
self-reported dietary recall. Nonetheless, it points
out the potential risk of multiple vitamin and
mineral deficiencies with weight loss diets.

9.1 Chromium

Aside from the issues of nutrient deficiencies
associated with various weight loss diets, there
has been interest in providing specific nutrients
to promote weight loss, such that these nutrients
would act in a pharmacologic manner. Chromium
(III), the biologically active form found in food, is
essential for carbohydrate and lipid metabolism; it
acts as a cofactor in the action of insulin. Chro-
mium may play a role in regulating appetite,
reducing carbohydrate cravings, and increasing
lean body mass. Supplemental chromium is avail-
able in several forms with chromium picolinate
being the most common over-the-counter supple-
ment used to enhance weight loss.

There have been several trials which have
investigated the use of chromium to induce weight
loss, alter body composition, and change resting
metabolic rate. A longitudinal, double-blind study
of obese female subjects over the course of
16 months with supplementation of 200 μg chro-
mium picolinate along with a very low-energy
diet did not demonstrate any significant changes
in body composition or metabolic parameters
(Pasman et al. 1997). Volpe and colleagues studied
the effects of chromium supplementation and exer-
cise on body composition, resting metabolic rate,
and selected biochemical parameters in moderately
obese women following an exercise program

(Volpe et al. 2001). This was a double-blind trial
in which women received either 400 μg/day of
elemental chromium as chromium picolinate or
placebo and participated in a supervised weight
training and walking program 2 days per week for
12weeks. Body composition and resting metabolic
rate were measured at baseline, 6 and 12 weeks.
Supplementation with chromium picolinate did not
affect body composition or resting metabolic rate.
A meta-analysis of ten double-blind, placebo-
controlled trials provides evidence of a relatively
small reduction in body weight (1.1–1.2 kg over
10–13 weeks) in overweight and obese individuals
receiving chromium picolinate (Pittler et al. 2003).
In a pilot study Yazaki and colleagues assessed the
effects of chromium picolinate supplementation
alone and combined with a nutrition education
intervention on weight loss and body fat distribu-
tion (Yazaki et al. 2010). Subjects were randomly
assigned to daily ingestion of 1,000 μg of chro-
mium picolinate or placebo for 24 weeks along
with passive nutritional education at the 12-week
point. There was no change observed in BMI in the
intervention group as compared to placebo at 12 or
24 weeks. Overall, supplementation of 1,000 μg of
chromium picolinate alone, and in combination
with passive nutrition education, did not affect
weight loss in this patient population. There have
been a number of trials which have looked at the
use of chromium picolinate inmale football players
and wrestlers as well as female softball athletes
undergoing the standard training for each of their
respective sports (Clancy et al. 1994; Walker
et al. 1998; Trent and Thieding-Cancel 1995;
Livolsi et al. 2001). Supplementation with chro-
mium picolinate failed to demonstrate any differ-
ence in body composition or performance in any of
the athletic groups studied. Although chromium
plays an important role in carbohydrate and lipid
metabolism, the data thus far does not demonstrate
efficacy in weight management.

9.2 Calcium

Intracellular calcium has been shown to play a
role in the insulin resistance associated with
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obesity (Draznin et al. 1988; Byyny et al. 1992).
It was therefore logical to consider calcium’s role
in the induction of weight loss. The specific mech-
anisms by which calcium and dairy foods regulate
body weight have not been unequivocally eluci-
dated. A number of hypotheses have been
suggested. It is possible that adequate dietary cal-
cium lowers parathyroid levels which suppress
intracellular adipocyte calcium levels enhancing
lipolysis and decreasing lipogenesis (Zemel
et al. 2004). Increased calcium intake may
increase fat oxidation (Melanson et al. 2003)
and/or increase fecal fat excretion through the
formation of insoluble calcium–fatty acid com-
plexes (Bendsen et al. 2008). It has also been
suggested that calcium intake may affect satiety
level (Major et al. 2009). The effects of both
dairy-enriched diet and calcium supplementation
on weight loss have been extensively studied.
Some of these trials included energy restriction;
others did not. In a review of 49 randomized
controlled trials, 42 showed no effect and two
trials actually demonstrated an increase in body
weight with consumption of dairy foods when
there was no energy restriction suggesting that
the increase in dairy foods also added additional
calories to the diet (Lanou and Barnard 2008).
There were four trials in which energy was
restricted demonstrating weight loss with dairy
or calcium supplementation (Zemel et al. 2004,
2005a, b). Each of these was from the same
investigator (two of which were reported in the
same manuscript) with commercial funding. The
possibility that calcium may increase fecal
fat loss was evaluated in a meta-analysis
(Christensen et al. 2009). There were 15 random-
ized controlled trials included which showed
increased fecal fat loss with increase calcium
intake. It appears that calcium may help with
appetite control but only when calcium intake is
low (Major et al. 2009). Certainly, calcium is an
important nutrient in human nutrition and dairy
products are high in calcium. However, the stud-
ies to date provide little evidence that consump-
tion of dairy foods or calcium supplementation
provides any benefit in reducing body weight or
fat mass.

10 Conclusion

Obesity has become a global problem and a
major health concern due to the associated
comorbidities. The foundation of therapy has
been diet, exercise, and behavioral modification.
Unfortunately, no one diet has been universally
successful at inducing and maintaining weight
loss and improving metabolic parameters
reflecting the complexity of the disease. The fac-
tors affecting obesity are complex, dynamic, and
interrelated and involve numerous host factors as
well as the environment. Interventions to induce
weight loss should have solid physiological and
metabolic basis and be scientifically validated.
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Abstract
The built, or physical, environment consists of
its man-made, constructed components – roads
and sidewalks, buildings and houses, parks and
plazas, and more. Currently, our physical envi-
ronment is built to accommodate and prioritize
motorized transport, cars especially. Travel has
been redirected to cars, reducing opportunities
for active travel. In examining the built envi-
ronment and its relationship to obesity, we
must acknowledge that the built environment
has no direct or immediate effect on obesity;
rather, obesity is linked to the built environ-
ment as a consequence of human behavior – in
this case physical activity. This chapter strives
to objectively connect the built environment at
varying urban scales – macro, meso, and
micro – to the issue of obesity. Aspects of the
built environment – specifically, conditions
attributable to walkability and urban sprawl –
are examined as contributing factors to
(in)active travel. Also discussed is the impor-
tance of and need for more longitudinal studies
to counter the plethora of cross-sectional stud-
ies. While cross-sectional studies can ade-
quately define conditions at a point in time,
longitudinal studies provide opportunities to
establish causality. Self-selection bias is also
considered, as it is a source of concern in some
studies. We conclude by noting that rates of
obesity have risen as our cities have become
less walkable and more auto-dependent.
Research at all three urban scales finds some
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relationship between the built environment and
active travel but research is not without its
shortcomings. More research is still needed,
longitudinal and that which controls for self-
selection bias in particular, and remains an
important arena for further inquiry.

Keywords
Urban design • Physical activity • Walkability

1 Introduction

The built environment is, increasingly, an urban
environment. As of 2008, more than half of the
world’s population lived in a city, in widely vary-
ing built environments. In 1970, the French
urbanist and philosopher (Lefebvre 2003)
declared, rather controversially: “Society has
been completely urbanized.” He argued that
even rural hinterlands had become urbanized by
virtue of a social relationship to cities. It is in this
spirit that, in the process of examining obesity and
the built environment, we focus on the urban –
including suburban – built environment. In doing
so, we must also acknowledge that the built envi-
ronment has no direct or immediate effect on
obesity; rather, obesity is linked to the built envi-
ronment as a consequence of human behavior – in
this case physical activity. One further caveat is
that while research points to an associative rela-
tionship between specific built environments
(sprawl, e.g.,) and levels of physical activity,
there is scant evidence as of yet of a causal
relationship.

The built, or physical, environment consists of
its man-made, constructed components – roads
and sidewalks, buildings and houses, parks and
plazas, and more. It also consists of in-between
spaces, spaces of flow, and movement. Currently,
our physical environment is built to accommodate
and prioritize motorized transport, cars especially,
and shaped by Euclidean zoning – municipal pol-
icies that regulate how land can be used, typically
locating shops and jobs far from housing. Move-
ment from home to work, home to school, and
home to shopping has been redirected to cars,
reducing opportunities for active travel.

According to the Centers for Disease Control,
the two primary modifiable risk factors for obesity
are unhealthy diets and physical inactivity, and the
greatest areas for prevention and treatment are
behavior modification and environmental change
(Centers for Disease Control 2009; Danaei
et al. 2009; McGinnis and Foerge 1993; Mokdad
et al. 2004). The built environment may affect
both levels of physical activity and access to
healthy foods. That is to say, both may have a
spatial component.

The forces that contribute to active travel or the
relative degree of walkability of a community
occur at all scales, from macro to micro. In this
chapter, the characteristics of the built environ-
ment at various urban scales and in varying forms,
the forces that shape them, and their respective
relationships to obesity are discussed in three
parts: the macro or regional scale, the meso- or
neighborhood scale, and the micro- or block scale.
Environmental determinism, the theory that the
built environment influences human behavior, is
of necessity discussed briefly, first in this intro-
duction. In addition, two research considerations
are also discussed: longitudinal studies and self-
selection bias.

As a theory, environmental determinism
continues to be debated across a number of disci-
plines – social science, planning, and architecture,
to name a few. An alternate to the theory that the
physical or built environment has greater influ-
ence over human behavior is the assertion that
sociocultural or structural conditions more greatly
influence human behavior. These two theories are
also viewed as representing opposite ends of a
spectrum and as complementary (Gans 1968).
The either-or problem may be overcome by
addressing two specific shortcomings identified
by Franck (1984): overstating the effects of the
environment while understating sociocultural fac-
tors and assuming that the effects of the physical
environment are direct, static, and uninfluenced
by human agency (Franck 1984). Rather than
negating or invalidating environmental determin-
ism, these shortcomings, when addressed and
combined with a complementary environment-
structural approach, point the way to creating a
rigorous theoretical framework that recognizes
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the built environment as first and foremost a
sociocultural product that exercises influence
over structurally mediated behavior.

Environmental determinism notwithstanding,
identifying the degree to which the built environ-
ment can be said to have causal effect on behav-
iors related to obesity remains a significant
challenge to researchers. One challenge to
research is that the bulk of research is based on
cross-sectional data. Additionally, self-selection,
or the choice to be present and (in)active within a
specific environment, cannot be ruled out and
carries merit as an explanation for some of this
research (these issues will be discussed separately,
below).

It bears noting that the literature on the built
environment and obesity is vast, too vast to be
covered in this short chapter. A recent literature
research uncovered 5,642 articles on the subject
(Mackenbach et al. 2014). The reviewers selected
a random sample of 500 titles and abstracts and
further narrowed the sample to 212 full articles that
were read by the first two authors of the review. Of
these articles, 92 were included in the final litera-
ture review. We concur with the conclusion: “With
the exception of urban sprawl and land use mix in
the US the results of the current review confirm that
the available research does not allow robust iden-
tification of ways in which that physical environ-
ment influences adult weight status, even after
taking into account methodological quality”
(Mackenbach et al. 2014). The following sections
present a selection of research that strives to objec-
tively connect the built environment, at varying
urban scales, to the issue of obesity.

2 Built Environment at the
Macro Scale

The earliest recognized article on the built
environment and obesity correlated urban
(or suburban) sprawl with obesity (Ewing
et al. 2003). At the macro level, the built environ-
ment comes in varying degrees of two basic
forms, sprawling and compact (and of course
everything in between). Initial attempts to mea-
sure urban sprawl emphasized the one

characteristic often attributed to sprawl, low den-
sity. Density has the advantage of being easy to
measure with available data, and so initial
attempts to measure sprawl in the early 2000s
focused primarily on metropolitan average popu-
lation density. However, this produced curious
results, including ranking Portland, OR (with its
strict urban growth boundary), and New York (the
ultimate of American vertical cities) metropolitan
areas as more sprawling than Los Angeles, the
typical bastion of congestion and development
spread (Fulton et al. 2001; Nasser and Overberg
2001; Malpezzi and Guo 2001; Burchfield
et al. 2006; Lopez and Hynes 2003). Clearly, an
additional means of measuring regional urban
form was necessary. Accessibility, or the relative
ease with which a person can access or reach
goods and services within a community (Litman
2014), has become one such measure.

If poor accessibility is also a common denomi-
nator of sprawl, then sprawl is understood as more
than low-density development. A study by the US
Environmental Protection Agency and Smart
Growth America aimed to better address this com-
plexity (Ewing et al. 2002). The study examined
22 different land use and street network variables,
producingmetropolitan and county indices of com-
pactness for four primary factors: (1) density, com-
pact development concentrates activity at medium
to high densities; (2) mix, compact development
mixes homes, shops, and workplaces; (3) centered-
ness, compact development has distinct, thriving
activity centers, such as strong downtowns or sub-
urban town centers, as opposed to commercial
strips; and (4) street connectivity, compact devel-
opment has streets marked by small blocks and
high connectivity (Ewing et al. 2003).

Taking these four characteristics into consider-
ation, Ewing and Hamidi (2014) created new
indices for metropolitan areas, urbanized areas,
and counties in the USA. All indices have a
mean value of 100 and a standard deviation of
25, and higher scores are more compact while
lower scores are more sprawling. Using the new
indices for 2010 data, New York County (which
includes Manhattan) was the most compact
county in the USA – index value 425.2. Ogle-
thorpe County in Georgia, on the other hand,
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was the most sprawling – index value of 45.5.
This is one of the important tools researchers are
using to establish clearer understanding and stron-
ger relationship between our built environments
and risk of obesity.

Research has now established statistically sig-
nificant links between various measures of sprawl
and the risk of obesity (Papas et al. 2007). It may be
that some environments are more “obesogenic”
than others (Black and Macinko 2008). After con-
trolling for age, education, fruit and vegetable
consumption, and other sociodemographic and
behavioral covariates, Ewing et al. (2003) found
that adults living in sprawling counties had higher
body mass index (BMI) and were more likely to be
obese (BMI >30) than those living in compact
counties. The effect was statistically significant,
though small compared to sociodemographic influ-
ences. We would not expect the built environment
to overwhelm the many genetic, behavioral, and
other environmental influences that contribute to
overweight and obesity, and it does not.

Other studies linking the Ewing et al.’s earlier
sprawl indices to obesity include Cho et al.
(2006), Doyle et al. (2006), Fan and Song
(2009), Griffin et al. (2013), Joshua et al. (2008),
Kelly-Schwartz et al. (2004), Kim et al. (2006),
Kostova (2011), Lee et al. (2009), and Plantinga
and Bernell (2005, 2007). To update the earlier
findings, Ewing et al. (2014) replicated the origi-
nal 2003 study and found a slightly stronger rela-
tionship between urban sprawl and obesity.
Residents of the more compact counties were
found to have lower BMI values and less preva-
lence of chronic diseases such as high blood pres-
sure, coronary heart disease, and diabetes. The
positive impacts of urban sprawl on obesity at
the macro level have been also confirmed by
other recent studies (Guettabi and Munasib
2014; James et al. 2013; Zhao and Kaestner
2010). For instance, Guettabi and Munasib
(2014), using the 1979 National Longitudinal Sur-
vey of Youth, found that urban sprawl is signifi-
cantly and positively related to child BMI among
girls and middle/high school children.

Feng et al. (2010) and some others such as
Plantinga and Bernell (2007) and Gregson (2011)

are less convinced that characteristics of the built
environment are strong risk factors for obesity. By
evaluating studies according to their methods of
research and analysis, as well as comparing their
results, Feng et al.’s review found that little can be
determined from the available findings. Almost all
of the studies considered were cross sectional,
making it difficult to infer causality, and there
were various definitions of foundational concepts,
such as “place,” “walkability,” and “sprawl,” leav-
ing the authors to wonder whether the studies were
really measuring the same variables.

3 Built Environment at
the Mesoscale

The above definition of sprawl may describe met-
ropolitan areas or counties, but is there any com-
parable way of describing built environment at the
neighborhood (or meso) scale, where people of all
ages and ability perform most of their active
behaviors? In the 1990s, planners began describ-
ing neighborhoods in terms of “D variables.” The
original three Ds, coined by Cervero and
Kockleman (1997), were density, diversity, and
design. The Ds were later expanded to include
destination accessibility and distance to transit
(Ewing and Cervero 2010). Development scale
is a sixth D, included in a few studies. While not
part of the environment, demographics are the
seventh D, controlled as confounding influences
in travel and physical activity studies.

Table 1 shows the most common D variables in
the travel and the built environment literature. A
recent meta-analysis of more than 200 individual
studies of the built environment and travel con-
cluded that all of the D variables influence house-
hold travel decisions, but the strongest influences
are diversity, design, and destination accessibility,
while the weakest influence is density (Ewing and
Cervero 2010).

Note that these are rough categories, divided
by ambiguous and unsettled boundaries that may
change in the future. Additionally, some variables
overlap (e.g., diversity and destination accessibil-
ity). Nonetheless, it is still useful to use the D
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variables to organize the empirical literature and
provide order-of-magnitude insights.

Several studies have found an association
between obesity and the built environment at the
neighborhood scale. The earliest of these studies
was done by Larry Frank and his colleagues
(2004). They objectively measured three built
environmental variables (land use mix, net resi-
dential density, and street connectivity) within a
1-km network distance of individuals and con-
cluded that land use mix has the strongest associ-
ation with obesity. They found each quartile
increase in land use mix to be associated with a
12.2 % reduction in the likelihood of obesity
across gender and ethnicity. In a series of
coauthored studies, Frank found similar relation-
ships for adults living in sprawling neighborhoods
versus compact, walkable neighborhoods (Frank
et al. 2006, 2007, 2008). This is in line with the
findings of Pendola and Gen (2007) that having a
mix of commercial and residential land uses
within walkable distance contributes to a greater
reduction in a risk of obesity than higher popula-
tion density. Several studies since Frank

et al. (2004) confirmed the significant and nega-
tive effects of low land use mix on obesity
(Mobley et al. 2006; Rundle et al. 2007; Li
et al. 2008; Rutt and Coleman 2005).

Brown et al. (2009) and Yamada et al. (2012),
however, argue that the presence and distance to
walkable destinations (parks and transit stations)
are more important than having an equal mixture of
land uses or “entropy” in relation to healthy weight.
This assertion is supported by other studies that
found proximity to parks (Berry et al. 2010b.;
Rundle et al. 2013; West et al. 2012) and transit
stations (Rundle et al. 2007; Brown and Werner
2009) is associated with lower rate of obesity.
Other relevant built environment characteristics
may include measures of food access and types of
food outlets. Proximity of supermarkets and gro-
cery stores, in particular, is associated with lower
rates of obesity (Black and Macinko 2009; Block
et al. 2011; Chen et al. 2010; Drewnowski et al.
2012; Inagami et al. 2006; Wang et al. 2007). and
the presence of convenience stores and fast-food
restaurants is associated with higher rates of obe-
sity (Pereira et al. 2005).

Table 1 The most common D variables in travel and the built environment literature

D variable Measurement

Density Density is always measured using a variable of interest per unit of area. The area can be gross or
net, and the variable of interest can be population, dwelling units, employment, or building floor
area

Diversity Diversity measures pertain to the number of different land uses in a given area and the degree to
which they are balanced in land area, floor area, or employment. Entropy measures of diversity,
wherein low values indicate single-use environments and higher values more varied land uses,
are widely used in travel studies. Jobs-to-housing or jobs-to-population ratios are less frequently
used

Design Design measures include average block size, proportion of four-way intersections, and number
of intersections per square mile. Design is also occasionally measured as sidewalk coverage
(percent of block faces with sidewalks); average building setbacks; average street widths; or
numbers of pedestrian crossings, street trees, or other physical variables that differentiate
pedestrian-oriented environments from auto-oriented ones

Destination
accessibility

Destination accessibility measures ease of access to trip attractions. It may be regional or local
(Handy 1993). In some studies, regional accessibility is simply distance to the central business
district. In others, it is the number of jobs or other attractions reachable within a given travel time,
which tends to be highest at central locations and lowest at peripheral ones. The gravity model of
trip attraction measures destination accessibility

Distance to transit Distance to transit is usually measured as an average of the shortest street routes from the
residences or workplaces to the nearest rail station or bus stop. Alternatively, it may be measured
as transit route density, distance between transit stops, or the number of stations per unit area. In
this literature, frequency and quality of transit service are overlooked
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4 Built Environment at
the Microscale

Shifting to the microscale allows us to zero in on
the individual within the built environment – the
pedestrian, in particular. This urban scale relates
to the on-the-ground experience, where the subtle
conditions of the built environment are most
keenly felt. Block level details such as shade
from street trees, the visual interest provided by
store windows, and the widths of sidewalks are
noticed by pedestrians. This is where the most
nuanced and qualitative D variable, design,
becomes intimate and human scaled. This is an
important point of contact among community
members (including children) and where face-to-
face social networks can be experienced as well.
At this urban scale, design is often assessed in
terms of walkability.

One challenge for walkability research is that
some of the more salient features cannot be cap-
tured by way of remote or secondary data, such as
GIS (geographic information systems) (Neckerman
et al. 2009). Direct observation is effective but time
(and cost) consuming (Rundle et al. 2011). Criteria
such as aesthetics are also identified as important to
walkability yet are elusive without direct observa-
tion (Neckerman et al. 2009); definitions are like-
wise variable and subjective.

Awalkability audit instrument is a data collec-
tion instrument used to quantify different aspects
of the pedestrian environment such as sidewalks,
traffic calming devices, and building setbacks.
The Active Living Research (2015) website
hosts more than a dozen such instruments. The
website also provides a summary of micro fea-
tures covered by leading instruments (The Audit
Tools Comparison Table).

One audit instrument in particular seeks to
build on the classic urban design literature (e.g.,
that of Kevin Lynch, Jane Jacobs, and Jan Gehl).
Ewing (2005, Ewing et al. 2006b) identified nine
key urban design qualities for which measurement
protocols were developed: imageability, enclo-
sure, human scale, transparency, complexity,
coherence, linkage, legibility, and tidiness. The
operationalization of the first five qualities has
provided researchers, planners, and designers

with a set of empirical design metrics with which
to understand and implement walkable environ-
ments (see Table 2).

Subsequent research has sought to validate
the five urban design qualities previously
operationalized (Ewing 2005; Ewing et al.
2006b). In New York City, Neckerman (2013)
conducted pedestrian counts at 588 locations
within the city. This study confirmed that as a
group the design metrics helped explain the pres-
ence of pedestrians, with one metric – transpar-
ency – standing out as more significant than the
other four. Indeed, the urban design quality of
transparency – measured in terms of windows

Table 2 Streetscape features contributing to urban design
qualities

Urban design
quality Significant physical features

Imageabilitya Proportion of historic buildings

Courtyards/plazas/parks (#)

Outdoor dining (y/n)

Buildings with non-rectangular
silhouettes (#)

Noise level (rating)

Major landscape features (#)

Buildings with identifiers (#)

Enclosure Proportion street wall – same side

Proportion street wall – opposite side

Proportion sky across

Long sight lines (#)

Proportion sky ahead

Human scale Long sight lines (#)

All street furniture and other street
items (#)

Proportion first floor with windows

Building height – same side

Small planters (#)

Transparency Proportion first floor with windows

Proportion active uses

Proportion street wall – same side

Complexitya Buildings (#)

Dominant building colors (#)

Accent colors (#)

Outdoor dining (y/n)

Public art (#)
aNumber of people on the street was also a significant
determinant of imageability and complexity ratings. How-
ever, as it is our dependent variable, it has been dropped as
an analytic variable
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overlooking the street, continuous building
facades forming a street wall, and active street
frontage – had a stronger relationship to pedes-
trian counts than any of the standard D variables
that were also modeled. A subsequent study
conducted in Salt Lake City sought to validate
the design metrics in a less dense and more auto-
dependent urban environment (Ameli et al. 2015).
This research also found that the metrics as a
whole and transparency in particular are signifi-
cant predictors of pedestrian counts.

What is the relationship between the built envi-
ronment at the microscale and obesity? The ques-
tion remains largely unanswered. Neckerman and
colleagues correlated their measurements of urban
design qualities with BMIs of New York resi-
dents. They found that the quality of imageability
was negatively related to BMI after controlling for
population density. The quality of human scale
had the opposite relationship. Transparency was
not significant. All of this is to say that we are just
in the beginning stages of relating the microenvi-
ronment to obesity.

A literature search uncovered only one other
study using a walkability audit instrument to assess
the association between the microenvironment and
obesity. Boehmer et al. (2007) developed a com-
prehensive audit instrument to measure the built
environment in Savannah and St Louis. Street seg-
ment data from the audit were summarized within a
400-m radius (an approximately 5-min walk) sur-
rounding each participant’s residence. They found
that being obese is significantly associated with the
absence of sidewalks, lack of interesting sites, and
observed indicators of poor sidewalk quality, phys-
ical disorder, and presence of garbage (Boehmer
et al. 2007).

5 Longitudinal Studies

The majority of studies on the built environment
and obesity are cross sectional in design and in
general support the idea that certain neighborhood
characteristics are associated with a lower preva-
lence of overweight and obesity and higher levels
of physical activity (Mackenbach et al. 2014). One
major limitation of cross-sectional studies is their

failure to establish causality as opposed to only
correlation. As the National Research Council
(2005) report, Does the Built Environment Influ-
ence Physical Activity? Examining the Evidence,
states: “Cross-sectional studies can quantify the
presence and magnitude of associations between
variables. Unlike longitudinal studies, however,
they cannot be used to determine the temporal
relationship between variables, and evidence of
cause and effect cannot be assumed” (p. xiv).

A recent literature review by Mackenbach
et al. (2014) reported that only 8 studies out of
92 in their sample used longitudinal data, with a
follow-up time ranging from 4 to 25 years. Our
own search of literature found only 12 longitudinal
studies. Of the 12, only 3 studies focused on the
characteristics of the built environment and its
relation to changes in obesity and BMI (Bell
et al. 2008; Berry et al. 2010a; Coogan
et al. 2011). Eight studies focused on residential
location of participants who moved to investigate
the effects of changes in the built environment
before and after moving on obesity (Arcaya
et al. 2014; Berry et al. 2010b; Eid et al. 2008;
Ewing et al. 2006a; Hirsch 2014; Mumford
et al. 2011; Beenackers et al. 2012; Plantinga
and Bernell 2007). One study alone focused on
the relationship between changes in the built envi-
ronment and changes in obesity over a 30-year
time period (Michael et al. 2014).

Longitudinal studies have reported mixed
results. Despite fairly consistent cross-sectional
literature, most of these longitudinal analyses do
not show a significant relationship between the
environment and a risk for obesity (Berry
et al. 2010a; Eid et al. 2008; Ewing et al. 2006a;
Michael et al. 2013, 2014). Additional longitudi-
nal evidence is needed to increase our understand-
ing of how the built environment at different
urban scales affects the risk of obesity (Ding
et al. 2011; Hirsch 2014).

6 Self-Selection Bias

Within this area of research, one consistently iden-
tified confounder is residential self-selection. The
theory of residential self-selection suggests that
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individuals choose where they live based on travel
preferences. Individuals who prefer to be physi-
cally active choose to live in neighborhoods that
facilitate physical activity. These individuals will
likely be more physically active than their neigh-
bors, regardless of where they lived. The question
becomes one of the chicken or the egg. Do people
choose to live in particular neighborhoods
because those neighborhoods facilitate a particu-
lar activity or behavior, or do individuals engage
in certain behaviors regardless of the opportuni-
ties available in their neighborhood? According to
a National Research Council report (2005): “If
researchers do not properly account for the choice
of neighborhood, their empirical results will be
biased in the sense that features of the built envi-
ronment may appear to influence activity more
than they in fact do. (Indeed, this single potential
source of statistical bias casts doubt on the major-
ity of studies on the topic to date) (p. 5–7).”

In the travel (movement and transportation)
literature, more than anything else, the possibility
of self-selection bias has engendered doubt about
the magnitude of travel benefits associated with
compact urban development patterns. At least
38 studies using nine different research
approaches have attempted to control for residen-
tial self-selection (Mokhtarian and Cao 2008; Cao
et al. 2009a). Nearly all of them found decisive
evidence of statistically significant associations
between the built environment and travel behav-
ior, independent of self-selection influences (Cao
et al. 2009a, p. 389). However, nearly all of them
also found that residential self-selection attenu-
ates the effects of the built environment on travel.

Periodically, household travel surveys are
conducted across the USA (and other nations) to
better understand travel needs; travel diaries are
used to collect this data. Using travel diary data
from the New York/New Jersey/Connecticut
regional travel survey, Salon (2006) concluded
that the built environment accounted for one-half
to two-thirds of the difference in walking levels
associated with changes in population density in
most areas of New York City. Using travel diary
data from the Austin travel survey, Zhou and
Kockelman (2008) found that the built environ-
ment accounted for 58–90 % of the total influence

of residential location on vehicle miles traveled
(VMT), depending on model specifications.
Using travel diary data from northern California,
Cao (2010) reported that, on average, neighbor-
hood type accounted for 61 % of the observed
effect of the built environment on utilitarian walk-
ing frequency and 86 % of the total effect on
recreational walking frequency. Using data from
a regional travel diary survey in Raleigh, NC,
Cao, Xu, and Fan (2009b) estimated that any-
where from 48 % to 98 % of the difference in
VMTwas due to direct environmental influences,
the balance being due to self-selection. Using data
from the 2000 San Francisco Bay Area travel
survey, Bhat and Eluru (2009) found that 87 %
of the VMT difference between households resid-
ing in conventional suburban and traditional
urban neighborhoods is due to “true” built envi-
ronment effects, while the remainder is due to
residential self-selection. So while the environ-
ment seems to play a more important role in travel
behavior than do attitudes and residential prefer-
ences, both effects are present.

The literature on residential self-selection and
obesity is not as rich as that on residential self-
selection and travel, but the same cautions have
been raised (Boone-Heinonen et al. 2011). There
is some evidence that self-selection contributes to
the association between the built environment,
physical activity, and weight (Berry et al. 2010a;
Frank et al. 2007). Research suggests that residen-
tial self-selection can be both negative and posi-
tive depending on the selection motivation (Berry
et al. 2010a).

A longitudinal research design is one strategy
that can be used to control for residential self-
selection bias (Boone-Heinonen et al. 2010;
Frank et al. 2007), particularly if it focuses on the
effects of changes in an individual’s built environ-
ment on changes in obesity (see, e.g., Michael
et al. 2014). Using a longitudinal study design,
two studies have garnered media attention by
contending that residential self-selection, not envi-
ronmental determinism, accounts for the relation-
ship between sprawl and obesity (Plantigna and
Bernell 2007; Eid et al. 2008). Both conclude that
people with higher body mass indices choose to
live in sprawling neighborhoods, and those with
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lower body mass indices choose to live in compact
neighborhoods. Intuitively, it is hard to see why
obese people would have a preference for environ-
ments that discourage physical activity. At most, it
seems they would be indifferent to the walkability
of their neighborhoods. It is easier, however, to see
why those wishing to be physically active would
prefer walkable neighbors. Let it suffice to say that
this is an area of obesity research that requires a lot
more study, particularly of the kind of study being
conducted in travel research.

7 Discussion

What, if any, relationship does the built environ-
ment have to human obesity? To address this
question, this chapter examined the built environ-
ment at various urban scales in relation to human
activity – the primary link between the built envi-
ronment and obesity. It has been said that “[f]irst
we shape the cities – then they shape us” (Gehl
2010, p. 9). How, then, have we shaped our cities,
and in doing so, how have they shaped us?

We know that obesity is on the rise as our cities
have become generally less walkable and more
auto-dependent. At the macro or regional scale,
research on the characteristics of the built envi-
ronment is making use of increasingly nuanced
and updated sprawl measures. At this scale,
researchers are able to identify and track major
trends, information critical to understanding how
regional environments impact daily lives. Five
“D” variables describe characteristics of the
meso- or neighborhood scale built environment
that most influence household travel decisions:
diversity (of land uses), design, destination acces-
sibility, distance to transit, and density (Ewing and
Cervero 2010). While research does indicate a
relationship to active travel and the D variables,
there is no agreement as to how much each vari-
able impacts active travel. This remains an impor-
tant arena for further research. At the microscale,
research continues on identifying which qualities
contribute to walkability and how we might mea-
sure or quantify these qualities. By better under-
standing the contributing factors to walkability,
planners and designers will be more equipped to

replicate walkable conditions, providing ever
more opportunities for active travel.

How we study is as important as what we study.
Studies reviewing the methodologies of previous
research have identified areas for improvement as
the discipline matures. One such area for improve-
ment is in self-reports, which are often used
to evaluate activity behaviors and neighborhood
environments. Self-reports are found to lead to
perception bias as well as low agreement on neigh-
borhood characteristics. Few studies attempt to
verify reported information, which would be an
important step in assuring accurate results (Black
and Macinko 2008; Booth et al. 2005). Booth and
associates also suggest that instruments of mea-
surement may present problems. Many studies
gather information about the built environment
from indirect sources, such as geographic informa-
tion system (GIS) software and publicly available
data sets. While easy to obtain, they may not accu-
rately represent the area at the time of the study.
Feng et al. also criticized the often-used practice of
combining the various environmental factors into
composite indices (Feng et al. 2010). Presenting an
additional challenge at the microscale is that data at
this scale is often unavailable as secondary data,
making field-based research necessary though
costly and time consuming.

Research on the relationship between the built
environment and obesity must continue and con-
tinue to improve in rigor and methodology, before
we can confirm any causal relationships. Longi-
tudinal studies will add significantly to our under-
standing, as will a broader range of methodologies
including mixed methods and qualitative studies.
Opportunities for active travel and increased
physical activity are increasingly seen as desirable
qualities in a built environment. And, research
such as that presented in this chapter is helping
to identify how to make these opportunities avail-
able in the built environment.

8 Cross-References

▶Childhood Environment and Obesity
▶ Social and Community Networks and Obesity
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Abstract
The aim of the paper is to describe the first
results of a research about therapeutic educa-
tion, with biofeedback and personalization tak-
ing into account the place of a chronic patient
inside his social network. The techniques used
are (i) serious games in their pedagogical
dimension of elaboration of therapeutic educa-
tion scenarios and their local dimension of
information capture using specific sensors and
biofeedback processes allowing the customiza-
tion of the game and (ii) tools of visualization
of social networks to which the patient
belongs, in order to bring him to an awareness
of belonging to a community sharing the same
pathology and therapy. We built three scenar-
ios, dealing with (i) the dietary of a type II
diabetic, (ii) the detection and monitoring of
diabetic retinitis, and (iii) the detection and
monitoring of diabetic foot ulcers. We have
also developed a software for the representa-
tion of the dynamics of a new category of
social network called “homophilic.” The intro-
duction of computer techniques such as serious
games and biofeedback processing in the field
of therapeutic education is not new and dates
about 10 years, but the coupling with individ-
ual identification techniques in a social group
for the visualization and customization of the
game is original. The joint use of new educa-
tional methods of therapeutic education, com-
bined with the recognition of the presence of
the patient in a local social network of people

J. Demongeot (*) • A. Elena
AGIM, Laboratory of Ageing Imaging and Modelling,
FRE CNRS 3405, University J. Fourier, La Tronche,
France
e-mail: Jacques.Demongeot@yahoo.fr;
Adrien.Elena@agim.eu

C. Taramasco
Escuela de Ingeniería Civil en Informática, Universidad de
Valparaíso, Valparaíso, Chile
e-mail: Carla.Taramasco@polytechnique.edu

# Springer International Publishing Switzerland 2016
R.S. Ahima (ed.), Metabolic Syndrome,
DOI 10.1007/978-3-319-11251-0_19

287

mailto:Jacques.Demongeot@yahoo.fr
mailto:Adrien.�Elena@agim.eu
mailto:Carla.Taramasco@polytechnique.edu


suffering from the same disease, will maximize
the effectiveness of serious games and biofeed-
back necessary to the educational
personalization.

Keywords
Obesity • Type II diabetes • Social networks •
Therapeutic education • Serious games

1 Introduction

Obesity can be considered as one of the most
characteristic social “contagious” diseases. Both
stigmatization and mimicking (Myers and Rosen
1999) constitute the way of dissemination of obe-
sity into a familial or social network. Obesity is
defined as an excessive accumulation of fat in
adipose tissue, leading to important health prob-
lems at the individual level (diabetes, cardiovas-
cular diseases, etc.). Currently, obesity would
reach a pandemic state everywhere in the world,
with a rate of development suggesting that this
pathology involves a sociocultural problem
grafted into a predisposition at the individual
level.

All specialists agree that, for decades, we are
witnessing an increase in worldwide obesity prev-
alence. This is true in developed as well as in
developing countries. No society seems to be
immunized against this epidemic. Classical data
from the WHOMONICA project (Tunstall-Pedoe
2003) show that obesity prevalence in the major-
ity of the European countries increased in 10 years
(1992–2002), going from 10 % to 20 % in men
and from 10 % to 25 % among women. In France,
between 1980 and 2006, obesity prevalence went
from 6.4 % to 16 % in men and from 6.3 % to 17.6
% among women (International Association for
the Study of Obesity 2000; Maillard et al. 1999).
In the UK, 36 % of men and 33 % of women are
predicted to be obese in 2030 compared with 26%
of both sexes in 2010, and the percentages are
predicted to be 74 % for men and 64 % for
women being overweight in 2030 compared with
respectively 70 % and 59 % in 2010 (Breda 2015;
Cauchi et al. 2015; Jones and Breda 2015). In
France, 25 % of men and 29 % of women are

predicted to be obese in 2030 compared with
respectively 14 % and 16 % in 2010, and the
percentages are predicted to be 66 % for men
and 58 % for women being overweight in 2030
compared with respectively 54 % and 43 % in
2010. Greece, Spain, Austria, and the Czech
Republic are also European countries facing
growing obesity with no evidence of reaching a
plateau in their evolution, the Netherlands being
the only exception (Kriaucioniene et al. 2015;
Shaw et al. 2015).

Based on these facts, several studies have
been performed to identify risk factors associated
with this affection as well as to contain the epi-
demic, because obesity became a real public
health problem (Barth 2002). It is well known
that obesity has a genetic component as a familiar
predisposition toward this affection testifies.
However, the genetic component does not
explain the increasing progression in disease
prevalence. Additional behavioral, social, and
economic factors must be considered (Laitinen
et al. 2001; de Saint-Pol 2008; Scharoun-Lee
et al. 2009). In this context, in Christakis and
Fowler (2007), authors showed the possibility
of person-to-person obesity contagion in a social
network. Moreover, in Cohen-Cole and Fletcher
(2008), it is suggested that obesity diffusion
could occur via a common exogenous source
applied to a set of individuals.

Realistic models of contagious diseases incor-
porate new information about the social networks
through which the disease spreads out as well as
data about demographic and genetic changes in
the susceptible population (Diehl et al. 2013;
Fouquet et al. 2013; Franco et al. 2015; Noury
et al. 2009; Demongeot 2011; Virone et al. 2002,
2014; Vukadinovic Greetham 2011). They also
include all the possible knowledge about the con-
tacts between susceptible and sick individuals. In
section “Social Network Framework,” we will
present the mathematical framework necessary
to take into account at a microscopic level the
dynamics of contacts between susceptible and
obese individuals. Then we will introduce the
description of the dynamics of obesity in section
“Serious Games Design and Setting,” taking into
account collective behaviors mimicking some
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dominant habits of nutrition transmitted through
social networks. Obesity spread modeling will use
the notion of homophilic graphs: to investigate
obesity in a multifactorial manner, we have
taken into account the impact through time that
obese individual transformation may have on the
social structure, by developing a network model
in which individual interactions are in part due to
homophilic selection/deselection, i.e., a process of
preferential attachment and detachment of
interindividual links according to characteristics
of the individuals involved. Homophily is here
defined as the tendency of an individual to create
links with other individuals sharing similar attri-
butes with him and to cut links with other dissim-
ilar individuals. Homophily suggests that
individuals tend to interact with those who resem-
ble them. Second, and reciprocally, we study if
obesity can be considered as a “contagious” social
disease through the role which could be played by
the structure of the social fabric in its current
development: we evaluate the impact of relations
between individuals (micro-level) as well as the
impact of relations between districts (meso-level)
and between countries (macro-level). This
approach highlights the necessity to integrate the
dynamics of each scale to better understand the
evolution of the pathology. It is proposed through
an individual-centered network model, consider-
ing three influences: exogenous heterogeneous
(individual-cultural), exogenous homogeneous
(individual-social), and endogenous (individual-
individual).

Then, in order to improve the prevention of
obesity, we propose in section “Serious Games
Design and Setting,” to use e-health technology,
which allows accessing to all the facilities of the
cloud, the local data acquisition devices, and the
processing power of the domestic electronic
devices, helping a patient suffering from a
chronic disease to know about it and manage his
treatment in the framework of a personalized
health information system at home. Both the per-
sonalized electronic health records (PeHRs) and
the therapeutic education tools can be used for
improving the patient empowerment, account-
ability, and engagement for preventing and
detecting early the complications. Moreover, a

social approach that accounts for these elements
is required to address the effectiveness, safety,
security, integrity, and confidentiality of the ther-
apeutic educative system. We conducted a
research first on three different serious games
devoted to nutrition, vision, and locomotion of a
person suffering from type II diabetes, in order to
detect and prevent its complications (Talbot
2011; Demongeot 2013a; Demongeot
et al. 2013b; Diabeo 2015). In order to improve
the efficiency of the system, we propose to per-
sonalize it by taking into account the environ-
ment of the patient, i.e., to introduce
demographic, geographic, professional, familial,
and associative aspects coming from civil and
social data concerning the networks to which
the person belongs. After presenting the method-
ology corresponding to this research, we will
give in section “Coupling Between Surveillance
in Social Networks and Serious Games” the main
results and, then, propose in section “Conclu-
sion” some perspectives for the future work to
perform in order to achieve the main aim of the
system, that is, to involve the patient through the
proposed education techniques inside his social
network.

2 Social Network Framework

Given that each individual is immersed in a social
system, linked together with other individuals
through diverse and complex interactions, each
individual i can then be characterized, in a first
approach, by their number of neighbors ki,,
whereas the overall system is characterized by
the connection structure between individuals. To
study the role played by the social interactions in
obesity spreading, five simple network topologies
are considered to describe interindividual connec-
tions: random Erdös-Renyi, scale-free, small-
world, and two empirical networks.

The empirical networks are built from degree
distributions found by Christakis and Fowler
(2007) in real networks. On Fig. 1, we can find
examples of architecture simulated following the
above topologies. We will use these architectures
for starting from initial configurations of the
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network, before applying the homophilic rule and
converging to an “attractor” of its dynamics, i.e., a
stable configuration of links and node states of the
interaction graph related to the social network
involved in contagion of the obesity.

2.1 Homophilic Hebbian Graphs

The function homophily (resp. heterophily) will
be defined as the tendency of an individual to
create links with other individuals sharing similar

Individual

a b

c

d

e f

Social

Inter-
individual

Cultural

Fig. 1 Representation of interaction graphs in case of
random (a), small-world (b), and scale-free (c) networks.
(d) Different types of links, blue between individuals, red
between groups of individuals, and orange with the

environment (like cultural interactions). Representation
of interaction graphs in case of empirical type I (e) and II
(f) social networks
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attributes with him and to cut links with other
dissimilar individuals, by playing with the proba-
bility to have an infectious contact between agents
having the same given state (e.g., normal weight
susceptible S, overweight W, and obese O). The
tendency an agent or node i has to create or cut a
link with another agent j in a social interaction
graph G having N agents depends on similarity
distances d(i,j) in the graph, like the Hebbian rule
of pruning/strengthening in neural networks,
which is based on state correlations, destroying
(resp. reinforcing) links between nodes weakly
(resp. highly) correlated.

For example, if the state x(t,i) of the node i at
time t equals 1 (S), 2 (W ) or 3 (O), are considered
as well as some biological characteristics like age
A(t,i) and body adiposity index B(t,i) (Bergman
et al. 2011), social variables like sizes of the
family F(t,i) and of the circle of friends C(t,i),
environmental parameters like the numbers of
accessible green areas G(t,i) and supermarkets M
(t,i), behavioral variables like sedentary lifestyle
index L(t,i) (resp. sport index S(t,i)), that is, the
number of hours at home (resp. on a sports area)
during the last 24 h, they are all the components of
a large state vector V(t,i), we can correlate with the
vector V(t,j), e.g., by calculating the average
cross-correlation between the V components.

Then, the Hebbian rule eliminates links
between uncorrelated nodes and builds a positive
(resp. negative) link between positively (resp.
negatively) sufficiently correlated nodes. The
dynamics of creation/cancelation of links can be
separated from the state dynamics, if it is slower.
Then, we can first study with a fixed architecture
the fast state dynamics, considered as autono-
mous, and then study the bifurcations (in number
and nature) of the attractors due to the slow link
dynamics.

Let us suppose that there are states x and y in
the social graph and denote at time t by Lx,y(t)
(resp. Lx,x(t), Lx(t), and L(t)) the number of
heterophilic links (resp. homophilic links of type
x, links coming from type x nodes, and total links)
and by τ the relaxation time. We suppose in each
time lapse of duration τ a certain proportion of
nodes (agents) create (resp. cancel) links toward
nodes being in the same (resp. different) state,

with a certain tolerance threshold, supposed to
be the same in each state group. The simulation
follows the successive steps:

1. At t = t0, generate a random value τ from an
exponential distribution of parameter 1/ß.

2. At t = t0 + τ, do the following operations:
– Choose a fraction ϕ of nodes in the interac-

tion graph G. Let M = ϕN.
– For each node i of theseM nodes (i = 1,. . .,

M ), define its state x(k,i) (known initial con-
ditions, denoted x(k) in the following if
there is no ambiguity) and its out-degree ki
� IN (equal to the number of links exiting
from i); generate the tolerance to difference,
a real number 0 � hi � 1, from a probabil-
ity distribution g(h); and do the following
operations:
– For ki = 0, connection from i to j:

– Choose a node j by chance among
N–1 other nodes.

– Create a link from i to j with proba-
bility hi

d(i,j ), where d(i,j) is the direct
distance between i and j, with three
levels, 0, 1, and 2, as follows:

d i, jð Þ ¼ 0, if x ið Þ ¼ x jð Þ ¼ 1,

if x ið Þ ¼ S, x jð Þ ¼ W and vice versa

¼ 1, if x ið Þ ¼ W, x jð Þ ¼ O and vice versa

¼ 2, if

x ið Þ ¼ S, x jð Þ ¼ O and vice versa

– For ki � 1, connection or disconnection
from i to j:
– If Vi denotes the set of neighbors of i,

let choose a node j among the jVij
neighbors of i with the probability 1/
ki and Vj

i denotes the set of neighbors
of j minus i

– Let r(i, j) be the total similarity dis-
tance between nodes i and j. The link
between i and j will be cut with the

probability 1� h
r i, jð Þ
l , where the total

distance r is defined by:

r i, jð Þ ¼ d i, jð Þ, if c i, jð Þ ¼ 0 ¼ αd i, jð Þþ
1� αð Þ � c i, jð Þ, if c i, jð Þ 6¼ 0;
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where the indirect distance c is given by:

c i, jð Þ ¼
X

k�Vji
d i, kð Þ= kj � 1

� �

¼ 0, if kj ¼ 1:

– If the link between i and j has been cut, we
choose by chance a new node k inG \Vi \ Vj

i,
and we create a link from i to k with the
connection probability:

P i ! kð Þ ¼ f d i, kð Þð Þnx kð Þhid i, kð Þ=
X

l�GnVinVjinx lð Þhid i, lð Þ
h i

, where nx(k) is the

number of nodes in the set G\Vi\Vj
i having

the same state as k, i.e., nx(k) = nS (resp. nW
and nO) if k is susceptible (resp. overweight
and obese). We will consider in simulations
three versions for function f:
– Version 1: f(d(i,j)) = 1, if d(i,j) = 0;

= 0 elsewhere
– Version 2: f(d(i,j)) = 1, if d(i,j) = 0 or

1; = 0 elsewhere
– Version 3: f(d(i,j)) = 1, if d(i,j) = 0,

1 or 2
These versions are being used in the

individual-centered social network for
representing three types of progressively
increasing influence: exogenous heteroge-
neous (individual-cultural, version 1),
exogenous homogeneous (individual-
social, version 2), endogenous (individual-
individual, version 3).

3. Change the states x( j), for all j at the end of
links created, by increasing their obesity
weight of one level (S to W, W to O, O to O).

4. Generate a new τ and go to 2.
5. Stop when the graph G is no more changing.

2.2 Social Contagion

On Fig. 2b, we have fixed the corporal states
(obese, overweight, and normal) following the
distribution of the BMI (body mass index) in a
Chilean child (between 5 and 17 years by popula-
tion) in 2010 (MinSal 2010): obese (9.6 %), over-
weight (23.2 %,), and normal (67.2 %). The
tolerance has been taken at the level 0.25, and
the connection probability has been chosen

following the version 1. Directed (not directed)
networks with 1000 nodes each have been simu-
lated, with a probability to have forward direc-
tional (resp. bidirectional) links equal to a = 0.6
(resp. b = 0.2). The node positioning has been
done following the attraction-repulsion by
Fruchterman and Reingold algorithm (1991).

On Fig. 2, each individual is represented in its
social neighborhood: he can influence (red arrow)
the narrow contexts to which he belongs. Hence,
each individual in a given social subnetwork will
receive indirect influence linked to his context.
Under these influences, some individuals (in blue
on Fig. 2) can become obese and others not
(in green on Fig. 2). We can now simulate this
model of the social contagionmechanisms through
which the disease can propagate from individuals
to individuals or from environmental sources over
populations, individuals changing of state like in
biological regulatory networks for which many
theoretical and numerical tools have been recently
developed (Demongeot et al. 2009a, b, 2010,
2011, 2012, 2013a, b, c, 2014, 2015).

We have developed LIVENET®, a software to
represent the person, their environment, and their
evolution in the framework of their social net-
work. This system allows you to track their phys-
ical condition with BMI or BAI (body adiposity
index, cf. Dauphinot et al. 2009), eating habits
(amount of food, type of food), physical activity
(by counting weekly sedentary hours as well as
physical activity hours), and social environment
(including family and friends). In this software,
each individual can answer a questionnaire in his
smartphone or computer, which allows obtaining
information from individuals and then about their
relating environment. The system allows also to
study the behavior “homophilic”, i.e., to describe
social relations established between people with
similar attributes and the corresponding dynamics
of both the individuals and the networks. On
Fig. 2c, we see the scholar network of a class in
a French secondary school, red nodes
corresponding to overweight or obese students
and blue nodes to normal students (based on
BMI). The size of the nodes represents their
in-degree (number of arrows entering in a node
of the network). We can see the nodes most
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connected have normal weight and nodes with
fewer connections have obesity or overweight.
This kind of visualization allows us to detect
changes in social relationships (creating new

relations or loosing interactions). With this sys-
tem, we can characterize real-time individuals in
their environment and see, for example, on
Fig. 2d, that the distribution of the in-degree

Individual

Interindividual

Individual

Interindividual

Individual

Interindividual

Individual

Interindividual

Social Social

25
Nb

20

15
Normal Weight

Overweight or obese

10

5

0
0 or 1 2 or 3 4 or 5 6 or 7 8 or 9

In-degree
10 or 11 12 or 13 more 14

a

b

c d

Fig. 2 (a) Interindividual relationships between obese
(in blue) and nonobese people (in green) in a social con-
text. (b) Dynamics with a progressive clusterization (from
left to right) inside a small-world-directed network with
initial proportion of obese individuals in red (14.5 %),
overweight in pink (31.9 %,), and normal in white (53.6
%) with 0.25 tolerance and connection probability of the
version 1. (c) Real network (similar to the empirical type II

network) in a class of a French high school, with over-
weight and obese in red and normal scholars in blue, the
size of the ellipses representing them being proportional to
their in-degree (number of their neighbors). (d) Distribu-
tion of the values of in-degree for overweight and obese
(violet) and normal (green) scholars from four classes of
the studied high school

17 Social and Community Networks and Obesity 293



inside the whole population of scholars is
unimodal for overweight and obese and bimodal
for normal, which is due to the classical gender
effect on size and weight for normal individuals
and to the disappearance of this sexual influence
on growth in the case of abnormal weight.

2.3 Equilibrium Configurations

Under the homophilic rule, the networks are con-
verging until an equilibrium configuration of both

links of the interaction graph architecture and
node states, independently of the initial architec-
ture and initial state distribution (Fig. 3). By using
the simulation engine of the social network
described in section “Homophilic Hebbian
Graphs,” we can study the speed of convergence
to this equilibrium for all the topologies proposed.
The relaxation time to the steady state (related to
speed of convergence to equilibrium) depends on
the network topology (Fig. 4c). The shape of the
initial and final “in-degree” distributions is about
the same after applying the homophilic dynamics,

RANDOM

SCALE-FREE

INITIAL NETWORK

a b c

NETWORK AT TIME 100 FINAL CONFIGURATION

INITIAL NETWORK

a b c

NETWORK AT TIME 100 FINAL CONFIGURATION

INITIAL NETWORK

a b c

NETWORK AT TIME 100 FINAL CONFIGURATION

SMALL-WORLDS

Fig. 3 Initial, intermediate, and final configurations for architectures and initial distribution of states of section
“Social Network Framework,” with tolerance equal to 0.25 and connection probability of version 3
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but we can show that paradoxically in the small-
world initial topology, the mean clustering coef-
ficient diminishes, but the marginal clustering
coefficient calculated by states increases (this
phenomenon being due to the modification of
the state distribution). The final value of the

homophily coefficient H ¼
X

x¼S,W,O
Lx, x=L

depends weakly on the topology (Fig. 4a, b). The
final configuration of the network has always the
homophily maximum, the three groups of the final
segregation depending on the topology (Fig. 3).
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Fig. 4 (a) Evolution of the homophily coefficient (equal

to
X

x¼S,W,O
Lx, x=L) at equilibrium as function of time t,

with tolerance equal to 0.25 and connection probability of
the version 2. (b) Evolution of the homophily coefficient at

equilibrium as function of the mean tolerance h. (c) Evo-
lution of the relaxation time to equilibrium as function of
the mean tolerance h
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2.4 Examples of Dynamics
of Obesity

Homophily as defined above suggests that indi-
viduals tend to interact with those who resemble
them in terms of alimentary education and behav-
ior, and the structure of the social fabric is
involved in the increase and current development
of obesity (Baranova et al. 2005; Demetrius
et al. 2010a; Demetrius and Tuszynski 2010b).
By using the simulation rules of section
“Homophilic Hebbian Graphs,” we can compare
the simulated graphs with real graphs. The
approach described above has highlighted the
necessity to integrate randomness at each scale
to better understand the evolution of the obesity
pathology, e.g., in Fig. 4, the connectivity of the
real social network of Fig. 2c representing the
obesity spread corresponds better to the
homophilic empirical network type II version
2 (the qualitative differences between versions
being small), than in the other architectures: ran-
dom, scale-free, small-world, or empirical type I.

3 Serious Games Design
and Setting

In order to prevent the obesity spread through the
social networks, we propose to use educative tools
called serious games. The general objectives of such
serious games are (Talbot 2011; McCallum 2012):

– Acquire progressively self-care skills, taking
into account the experience of the disease man-
agement by the patient himself.

– Relieve symptoms, by self-monitoring and
maintaining sensors.

– Adjust the dose of medication.
– Change the lifestyle (diet balance, adapted

physical activity program, etc.).
– Prevent and detect early avoidable

complications.
– Involve familial helpers and professional care-

givers in the management of the disease.
– Acquire coping skills based on the develop-

ment of the engagement, empowerment, and

accountability by the patient himself (Joubert
et al. 2007).

– Capitalize treasury skills, in areas of weight
control, diet, and exercise.

– Know the disease and get self-confidence.
– Know how to manage emotions and control

stress.
– Develop creative and critical behavior

concerning his disease.
– Favor the discussion with other patients suffer-

ing from the same disease in order to exchange
about the recent therapies and lifestyles
influencing the evolution of the disease.

The life cycle of the development of a health
serious game is the following:

1. Validation by patients and by a medical com-
mittee of a prioritization (in time) in the devel-
opment of the serious game, namely:
(a) In the case of diabetic retinitis, explanation

of the genesis of the microcirculatory dis-
ease and presentation of its impact through
functional tests about capacity of visual
illusions

(b) Presentation of the metabolic and endo-
crine mechanisms behind type II diabetes

(c) Information on physical activity, dietary
recommendations, and biofeedback on
their practice

(d) Information on drug therapy and biofeed-
back on its observance

(e) Building tests of compliance of type II
diabetic patients

2. Use of the end-user patient to write the general
specifications of the game

3. Creating the game scenario
4. Developing the game prototype
5. Assesment final of the game in routine
6. Rewriting the game 2 years after the initial

prototyping phase in order to take into account
all the observations of the end user and of his
helpers and also to introduce the most recent
techniques coming from a field in constant
development

We will present in the following three different
serious games using the software Unity®.
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3.1 Nutrition Serious Game

We have first studied the state of the art consti-
tuted of different already developed serious games
like:

(a) “L’affaire Birman” is designed by an associa-
tion of type 1 diabetics and the endocrinology-
diabetology department of the University
Hospital of Caen and is accessible on a web
site (Glucifer 2015).

(b) The “Diabeo” application is designed to help
type 1 diabetic patients to manage their dis-
ease on a daily basis (Diabeo 2015). It pro-
vides to the patient a support to real-time
calculation of doses of slow and fast insulin,
depending on his diet and physical activity,
as prescribed by his doctor. Using self-learn-
ing techniques, a patient can, for example,
learn the best behavior in case of hypo- or
hyperglycemia before and after meals,
Diabeo offering to revise upwards or down-
wards his doses. The purpose of Diabeo is to
strengthen the doctor/patient relationship
with automatic transmission of glycemia
results. An automatic analysis tool is inte-
grated for alerting the patient, his familial
helpers, and professional caregivers in case
of abnormalities (e.g., hypoglycemia). Nine-
teen different alert messages have been
defined.

(c) The “Sophia” system is dedicated to
diabetic patients giving information about
their disease. It is created by the French
National “Assurance Maladie,” which
intends now to implement the system in
the framework of a serious game (Sophia
2015).

(d) The application “Escape from Diab” is a seri-
ous game that emphasizes the virtues for the
patient of preventive diet and adequate phys-
ical activity (Escape from Diab 2015).

(e) Sometimes the serious games are aimed at
practitioners, like “InsuOnline,” a game for
education of primary care physicians on the
initiation and adjustment of insulin treatment
of diabetes, which was designed to be
(a) educationally adequate, (b) self-

motivating and attractive, and
(c) informative, e.g., by reminding them
about the most recent procedures of glycemic
surveillance and insulin injection (InsuOnline
2015).

(f) The “Power Defense” game is for the two
types of diabetes therapeutic education. It
gives a good information on diet and appro-
priate physical activity that teaches and helps
diabetic patient practice (Power Defense
2015).

The risk of a bad alimentation, too rich in
carbohydrates, during the phase of early type II
diabetes, is to increase the imbalance of insulin
control and cause a preprandial coma, due to a
poor utilization of glycogen. It is therefore appro-
priate to advise the diabetic patient about the use
of carbohydrates, avoiding snacking and an
excessive load of fast sugars. A healthy diet,
balancing carbohydrate intake for an energy bal-
ance corresponding to a given physical activity, is
recommended in the game: the player disposes of
several menus he composes entirely in his own
way, and a virtual coach reminds him during the
game food mistakes he made and advises other
behaviors, virtuous this time, corresponding to a
nutrition adapted to his diabetic condition (Fig. 5).
Depending on the quality of the patient’s
responses, progressive exercises are proposed as
well as the opportunity to build a collection of
tailored menus for all periods of the year and all
sedentary conditions or physical activities moti-
vating the patient and allowing him to avoid acci-
dents of hypo- or hyperglycemic types. Two
levels of the game are proposed, the first for the
starting diabetic patient, who ignores the mecha-
nism of the disease and the consequences of a bad
nutrition, and the second for the complicated dia-
betic patient, which takes into account the com-
plications already installed (like retinitis or
nephropathy) proposing more than dietary
advises, an actual combined adapted alimentation
and physical activity (AAPA) diminishing the
effects of the evolution of the disease to the com-
plications observed and described by the patient
(Wijers 2009; Kahol 2011; Rizzo et al. 2011;
Shaw et al. 2014).
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3.2 Vision Serious Game

Very few examples of serious games are testing
visual acuity and still less the capacity to perceive
visual illusions (Yoshino et al. 2006). But it is
important to explain to a diabetic patient what is
occurring progressively in his retina, provoking
the diabetic retinitis: to understand deeply this
complication, we must present evolutive scenar-
ios about the progressive disappearance (due to a
loss of interactions between retinal cells caused by
a defect in the microvessels) of the lateral inhibi-
tion phenomenon, where excitable cells are acti-
vated at short range and inhibited at medium range
(Demongeot et al. 2009b). The simulation of this
phenomenon allows, for example, to understand
the visual illusions, like the Hermann illusion
(Fig. 6). It is easy to see, if the retina retains the
integrity of its cellular interactions, in particular
the lateral inhibition, white (resp. gray) squares at
the edges of small (resp. large) white lines,
obtained by continuation from the four corners
of the surrounding squares.

Depending on the degree of retinal disease due
to the disappearance first of the rods and second of
the cones due to the loss of a cone growth factor
coming from the rods (Léveillard and Sahel 2010)
in diabetic retinitis, causing the loss of lateral
inhibition, the conservation of the Hermann illu-
sion can be quantified by the liminal value of the
distance between the edges of the structure. Sim-
ilarly, other illusions of Fig. 6 can all be related to
the integrity of lateral inhibition, and their disap-
pearance can be quantified by parameters on the
geometry of the items offered (Optical illusions
2009; Tayyab et al. 2009). Repeated tests about
illusions in biofeedback conditions at home are a
means of prevention and alarm for the establish-
ment of the earlier treatment possible, for exam-
ple, gene therapy to restore the cone growth
factors (like p53, GDNF, RdCVF, etc.), which
seem to be the most promising (Léveillard and
Sahel 2010). The serious game devoted to the
vision aims to detect early defects in the percep-
tion of visual illusions by the type II diabetic
patient.

Energy & 
glycemic charges 

are too 
important!!

Energy charge  Glycemic charge

Menu 104

Validate

Dietetic 
knowledge
insufficient!
see bad red 

choices

Patient choice

Which contains most fibers?

Asparagus Onions

Fig. 5 Nutrition game showing the comments of the
coach about the energy and glycemic charges (top left)
and dietetic content (bottom left) of menus chosen by the

patient (top right), leading to exercises about the real
dietetic value of some ingredients (bottom right)
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Wewill present now successively six sub-games
concerning different aspects of the vision, based on
different features of the perception and allowing the
measure of threshold psychophysical variables
related to the visual illusion recognition. We give
in the following only some examples of such vari-
ables (cf. Bach 2015 for more illusions):

1. Geometric illusions
1.1 Fraser’s illusion; threshold variable: black

and white square side giving a
nonparallelism feeling (Fig. 7e)

1.2 “Curved square” illusion; threshold vari-
able: number of concentric circles giving
the perception of curvature of the square
sides (Fig. 7f)

1.3 Jastrow’s illusion; threshold variable: shift
of circular bands giving the sensation of
different lengths for the bands (Fig. 6c)

1.4 Poggendorff’s illusion; threshold variable:
thickness of the vertical band giving the
impression of no continuation of the
oblique line (Fig. 7a)

2. Contrast illusions
2.1 Hermann’s illusion; threshold variable:

relative thickness of the black and white
lines giving the feeling to have white or
gray squares at their intersections (Fig. 7b)

2.2 Bergen’s illusion; threshold variable: size
of the black squares with rounded corners
with critical value causing the vision of
blurring spots at the intersections of
white lines (Fig. 6b)

2.3 “Simultaneous contrast” illusion; thresh-
old variable: gray level of the periphery
of the central square chosen on a grayscale
to annulate the feeling of difference of
gray inside the central squares (Fig. 7c).
The same with a gradient of gray on the
periphery giving the feeling of a counter-
gradient inside the central band (Fig. 7d)

2.4 Exchequer illusion; threshold variable: the
gray level of squares A and B chosen on a
grayscale to describe the perceived gap
between the gray levels of these squares
(Fig. 6a)

Fig. 6 (a) Vision game searching for the sensitivity
threshold of perception of Exchequer visual illusion due
to an artifactual difference of gray due to the shadowing of
B square. (b) Hermann and Bergen illusions due to an

artifactual perception of white or gray at the intersection
of white lines. (c) Jastrow illusion due to an artifactual
difference in length between circular bands A and
B (bottom)
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Fig. 7 Different visual
illusions with correcting
procedures: (a)
Poggendorff’s illusion with
feeling of no continuation
of the oblique line. (b)
Hermann’s illusion with
feeling to have white or
gray squares at their
intersections. (c)
“Simultaneous contrast”
illusion with feeling of
difference of gray inside
central squares. (d) Same
with a gray gradient on the
periphery with feeling of a
counter-gradient inside the
central band. (e) Fraser’s
illusion giving a
nonparallelism feeling. (f)
“Curved square” illusion
with perception of curvature
of the square sides
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3. Contour illusions
3.1 Ehrenstein’s illusion; threshold variables:

radius value of the virtual circles and num-
ber of afferent rays causing viewing circles

3.2 Kanizsa 2D illusion; threshold variable:
value of the distance between peripheral
black vertices and search for its critical
value causing the feeling to view a 2D
triangle

3.3 Kanizsa 3D illusion; threshold variable:
value of the distance between concentric
black squares and search for the critical
value causing the feeling to view a 3D
pyramid (Demongeot et al. 2009b)

3.4 “Square that tracks itself” illusion; thresh-
old variable: binary variable, diameter of
the light-gray dots giving the impression
to be the vertices of a virtual square

4. Motion illusions
4.1 “Rotating cylinders” illusion; threshold

variable: value of the size of the blue ellip-
ses and research for the critical value caus-
ing first the feeling that cylinders rotate

4.2 “Rotating circles” illusion; threshold vari-
able: value of the radius of tricolor circles
and search for the critical value causing
first the circles rotation

4.3 “Floating disk” illusion; threshold vari-
able: distance to the screen which displays
or not floating

4.4 “Double rotation black” illusion; threshold
variable: distance to screen displaying or
not rotating

The other types of illusions are persistence
illusions like “French flag” and “moving pink
points” illusions and cognitive illusions like
Schroeder’s scale and Necker’s cube illusions
(cf. Bach 2015).

3.3 Locomotion Serious Game

The feedback information of the locomotion seri-
ous game is provided by a smart sock made of a
textile from Texisense® sensitive to pressure of
the foot on the ground (Texisense 2015) and able

to record pathologic analgetic postures on the foot
sole, due to the attempt to avoid walking on the
diabetic foot sores (Vuillerme et al. 2007; Chenu
et al. 2012). The patient is invited to walk and run
with the smart sock, and his successive positions
on the foot sole are recorded (see Fig. 8). An
extension of the game compares the bad positions
of the foot with the bone defects (coming from a
pathologic trabecular reconstruction caused by the
bad pressures of the foot on the ground due to
pathologic positions during an analgetic walk
avoiding the sore pain) thanks to a 3D osteoden-
sitometry of the foot bones, notably the calca-
neum. The three bricks of the game already
completed consist to record pressure data at the
level of the foot sole, basin, and shoulders with the
help of smart socks done with the sensitive textile
Texisense®, as well as the restitution of these data
on various devices of the patient:

1. Basin and shoulder data
The smart fabric can be placed in the form

of a pressure-sensing mat; on a wheelchair, an
armchair, or a bed; or optionally at ground
level, where it continuously records and dis-
plays (in case of alert) some pressure data at
critical levels for the genesis of ulcers (includ-
ing shoulders, iliac crest, and sacrum).

These data are monitored especially in a
person by decubitus (hence rarely standing or
walking) or working in a sitting posture. The
loss (due to vascular complications of type II
diabetes) of pressure-sensitive organs indeed
often causes the local anoxia of the peripheral
tissues, due to the constant position of the
patient on the same side; the alert (usually
nonconscious) is given by four varieties of
cutaneous corpuscles that are pressure sensi-
tive, three dermal and one epidermal. The first
varieties are encapsulated near nerve endings:
Meissner (superficial dermal), Pacini (median
dermal), and Ruffini (deep dermal) corpuscles.
The latter variety corresponds to free nerve
endings associated with the Merkel cells,
which arrive until the epidermis. The type II
diabetes keeps intact and functional the noci-
ceptive sensors of the cutaneous pain due to
pressure, called mechanical nociceptors and
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located in the skin, muscles, and joints. The
analgetic response often leads to a vicious cir-
cle of postures that gradually induce, to escape
the pain, other ulcerative locations in the zones
of antalgic avoidance.

2. Foot sole data
The plantar pressure data are recorded by

the smart sock Texisense® (cf. Texisense 2015,
and Fig. 8 thumbnail). As for the basin, the
analgetic avoidance of an ulcer on the heel
can cause a permanent steppage causing sec-
ondarily a forefoot ulcer.

3. Pressure data integration and restitution
The pressure card is presented (Fig. 8 bot-

tom), with the critical areas in red
(corresponding to a compression for a time
exceeding the threshold of anoxia) on a
smartphone, a watch, a screen placed on the
wheelchair, etc. (Fleury et al. 2013; Franco

et al. 2013a). The initial alert is audible or
vibrating, and in case of blindness or deafness,
information can be given on the palate,
tongue, or teeth in the form of non-painful
electrical stimuli or vibrations (Vuillerme
et al. 2007).

4 Coupling Between Surveillance
in Social Networks and Serious
Games

The coupling between the actimetry, i.e., the sur-
veillance of the successive tasks in different
rooms of the house or outside (Demongeot
et al. 2002, 2008; Franco et al. 2010, 2013b;
Mokhtari et al. 2012; Meeks et al. 2014), and
therapeutic education consists in:

Calcaneum

Sore Pressure

100

75

50

25

Fig. 8 Locomotion game
showing the pressure on
feet recorded with a smart
textile from Texisense®

through different media
(top) and the information
taken by smart sock and
sole (upper thumbnail)
matched on a ultrasonic
image of foot bones
(bottom)
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Validate the recipe

Energetic charge Glycemic charge

50
Nb cases

Nb cases

Nb cases

Nb cases
20
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10Normal

Overweight

obese

Normal

Overweight

obese

Normal

Overweight

obese

Normal

Overweight

obese

5

0

40

30

20

10

0
Pizza Kebab Sandwich

Extra-family food

Opinion of the father concerning his girl Network Cluster

Menu 102Pineapple shrimp

Family food

Else Salad Fries Fruits Choco Meat Veget. Ice Puree Chips Cheese Else

40

32

60

50

40

30

20

10

0
More 3 2 to 3 1 to 2

Nb hours sport / week
Less 1

24

16

8

0
Pretty Ugly Tall Big Fat Short Thin Light Strong Weak

Fig. 9 Top: histograms showing the distribution inside a
scholar network (3rd class) among extra- (left) and
intrafamilial food choices (right). Middle: opinion of the
father about his girl (left) inside a subcluster identified

(in green) inside the network using k-means (right). Bot-
tom: personalization of the nutrition game using the knowl-
edge about the sport practice inside the green cluster
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– Reinforcing the reliability of the subjective
data requested during the game by objective
data from sources of information external to
the patient, for example, data from an infrared
or RFID localizer (e.g., giving the exact num-
ber of hours dedicated to sport as in Fig. 9
bottom), can be compared to the program of
the daily activities provided by the patient for
calculating the energy and glucose loads
needed.

– Delivering any alarms to authorized persons,
located in the place of performance of
activities.

Customizing a serious game in therapeutic
education requires a good knowledge of the per-
son in his familial and social environment. For
example, the knowledge of its food heritage or

that of his friends in their educational, friendly, or
professional environment allows adjusting menu
proposals if family food and extra-family diet
include lots of meat (Fig. 9 top): even if the
opinion of the relatives considers that there is no
risk of obesity (Fig. 9 middle), the game will
advise eating proteins coming rather from fishes
and plants and monitor this alimentation thanks to
a food pyramid adapted to the individual
(Fig. 10).

5 Conclusion

We have presented in this chapter simulations of
the homophilic dynamics of the social network
explaining the obesity spread. In order to
improve this study, a theoretical estimation of
the speed of convergence to the equilibrium

sweet

fat

meat

milk

vegetable

cereals

water

Composition

Taboulé Lamb with spices Orange

Family food Fast food

Fig. 10 Explanation given by the nutrition game about the
choice of intra- (bottom left) and extrafamilial food (bottom
right) showing in green good ingredients and in red

ingredients missed and their global decomposition inside
the dietary pyramid (top)
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configuration could be made, as well as the con-
sideration of the robustness of the process: does
only one or more equilibrium states exist, and if
yes, are other “attractors” only fixed states or
possibly periodic configurations? Which net-
work parameters are critical, i.e., at which
parameter perturbation (provoking a change in
the number or nature of attractors) is sensitive to
the dynamics? Which perturbation of the initial
configuration of the social network leads to a
change of attraction (or stability) basin? All
these problems will be addressed in a
future work.

Concerning the serious games, they have been
developed in the framework of national French
and Chilean projects, the research aiming to
improve the chronic patient engagement, empow-
erment, and accountability through an interactive
system based on these new therapeutic education
techniques. Improvements can be made in these
games, leading in the future to the inclusion of
social elements of human environment of the
patient to refine the game and, hence, reduce the
duration of the period of learning. Eventually, a
continuum should exist between the individual
medical case file and the exchange internet facility
within the framework of a social network of peo-
ple suffering from the same disease, taking into
account the transmission of synergistic or antago-
nistic eating habits in the population of persons
involved in the pathological sequence “over-
weight/obesity/type II diabetes.” The long-term
use of an education and prevention method will
develop in the patient’s feelings of empowerment,
accountability, and engagement in his own treat-
ment and efforts to push the latest possible the
occurrence of complications of its initial chronic
pathology. The appropriation, involvement, and
implication in the tool improvement by the
patients themselves, for example, in an associative
framework, should provide a product well
accepted, effective and scalable, and regarded as
the product of creativity of a community of
patients, rather than a new software “parachuted”
by the medical community, away from the real
needs of the end user, who suffers from a con-
stantly evolving progression of his specific
pathology.
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Abstract
Mammals have evolved complex mechanisms
to obtain energy from food; store excess energy
in the forms of glycogen, fat, and protein; and
utilize energy efficiently for vital functions.
Obesity develops when energy intake exceeds
energy expenditure. While obesity treatment is
mostly focused on reducing food intake, stud-
ies suggest that increasing energy expenditure
through physical activity and adaptive thermo-
genesis is an important strategy for weight loss
and maintenance of health. This chapter will
describe fundamental concepts of bioenerget-
ics and provide a framework for understanding
the pathogenesis and treatment of metabolic
syndrome.

Keywords
Obesity • Diet • Energy intake • Energy expen-
diture • ATP • Thermogenesis • Physical
activity

1 Introduction

Energy metabolism is controlled by genetic and
environmental factors which affect energy intake
and energy expenditure (Fig. 1a). Energy balance
is attained when energy intake is equal to energy
expenditure. When energy intake exceeds energy
expenditure, a state of positive energy balance
occurs, and this leads to obesity, a condition char-
acterized by increased body weight, especially fat,
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in adipose tissue and other organs. A state of
negative energy balance ensues when energy
intake in markedly reduced in relation to energy
expenditure. There is profound individual vari-
ability in the time to attain energy balance and
the patterns of weight gain and weight loss. Over
the past two decades, we have gained substantial
insights into the genetic, epigenetic, and environ-
mental factors favoring overeating, obesity, and

metabolic syndrome (Leibel et al. 1995; Redman
et al. 2009). It is difficult to lose weight and
maintain weight loss over long periods due to
metabolic, behavioral, neuroendocrine, and auto-
nomic responses that promote weight regain and
maintain energy stores in adipose tissue (Leibel
et al. 1995; Redman et al. 2009; Ahima 2011).
Multiple neuronal and hormonal signals oppose
the state of weight reduction and predispose

Genes
Hunger/satiety/hedonic

Fuel homeostasis
Metabolic rate

Hormones

Food
Intake

a

b

Energy
Expenditure

Intrauterine programming
Food

Socio-cultural
Physical environment

Environment

Liver glycogen
400 kcal

Liver triglycerides
450 kcal

Muscle triglycerides
3000 kcal

Muscle glycogen
2500 kcal

Adipose tissue triglycerides
120,000 kcal

Fig. 1 (a) Energy
homeostasis. Genetic and
environmental factors affect
food intake and energy
expenditure. Energy
balance is achieved when
energy intake is equal to
expenditure. Obesity is a
state of positive energy
balance in which the excess
energy is stored mainly as
fat. (b) Body energy stores
of a lean 70 kg man
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toward positive energy storage. For example, the
fall in leptin counteracts weight loss by stimulat-
ing appetite and decreasing energy expenditure
(Ahima 2011). Hyperinsulinemia promotes
energy storage in the forms of glycogen, fat, and
protein (Leibel et al. 1995; Redman et al. 2009).
Important inferences about the pathogenesis and
treatment of obesity and metabolic syndrome can
be drawn from fundamental concepts of energy
metabolism.

2 Energy Intake

Energy needed for metabolic and physiological
functions is derived from the chemical energy
bound in macronutrient components of food, i.
e., carbohydrates, fats, proteins, and ethanol.
Food digestion is facilitated by cooking,
chewing, mixing with saliva, gastric move-
ments, and enzymes which blend the food into
chyme (Spiller 1994; Elia and Cummings 2007).
In the upper intestine, the chyme is digested
further to produce glucose, fatty acids, and
amino acids which are absorbed (Spiller 1994;
Elia and Cummings 2007). The chemical energy
in nutrients is released and converted into heat,
mechanical, and other forms of energy. Fats and
carbohydrates are the main sources of dietary
energy (Human energy requirements: report of
a joint FAO/WHO/UNU Expert Consultation
2005; Joint 2007). Proteins are also an important
source of energy, especially when total dietary
energy intake is limited (Human energy require-
ments: report of a joint FAO/WHO/UNU Expert
Consultation 2005; Joint 2007). Ethanol is often
overlooked as a source of energy in food, but its
contribution to total energy intake is significant
in people who regularly consume alcoholic
beverages (Human energy requirements:
report of a joint FAO/WHO/UNU Expert
Consultation 2005).

The unit of energy in the International System
of Units is the joule (J), which is the energy
expended when 1 kg is moved 1 meter by a
force of 1 Newton (Joint 2007). The conversion
factors for joules and calories are 1 kJ =

0.239 kcal and 1 kcal = 4.184 kJ. The ingested
energy (IE) or gross energy (GE) is the maximum
amount of energy measured after complete com-
bustion to carbon dioxide and water in a bomb
calorimeter. Incomplete digestion of food in the
small intestine, and fermentation of unabsorbed
carbohydrate in the colon, results in the loss of
fecal energy (FE) and gaseous energy (GaE).
Short-chain fatty acids are formed in the intestine,
some of which are absorbed and available as
energy. Some energy is lost as urinary energy
(UE) in the form of urea and other nitrogenous
waste compounds derived from incomplete catab-
olism of protein. Food energy remaining after
accounting for these losses is known as metabo-
lizable energy (ME), most of which is available
for the production of ATP. Some of the ME is
utilized during metabolic processes associated
with digestion, absorption, and intermediary
metabolism of food and can be measured as heat
production referred to as diet-induced thermogen-
esis (DIT) or thermic effect of food (TEF). The net
metabolizable energy (NME) is obtained by
subtracting the energy lost to microbial fermenta-
tion and DIT from the ME.

The ME was classically defined as the food
energy available for heat production and recently
defined as the amount of energy available for
whole body (total) heat production in a state of
nitrogen and energy balance (Joint 2007). The
NME is defined on the basis of the
ATP-producing capacity of food instead of the
total heat-producing capacity. Strictly, the NME
refers to the food energy available for body func-
tions requiring ATP. The measurement of food
energy content is by chemical analysis or esti-
mated from food composition tables. The Atwater
general factor system of food energy is based on
the heat of combustion of protein, fat, and carbo-
hydrate, corrected for energy losses via digestion,
absorption, and urinary excretion. The ME values
are 17 kJ/g (4.0 kcal/g) for protein, 37 kJ/g (9.0
kcal/g) for fat, 17 kJ/g (4.0 kcal/g) for carbohy-
drates, and 29 kJ/g (7.0 kcal/g) for ethanol
(Human energy requirements: report of a joint
FAO/WHO/UNU Expert Consultation 2005;
Joint 2007).
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Dietary recommendations must meet energy
requirements in addition to providing all essential
nutrients necessary for attainment andmaintenance
of optimal health and physiological functions. The
daily human energy requirement is estimated from
the measurement of energy expenditure plus the
extra energy needed for growth, pregnancy, and
lactation. A state of energy balance is attained
when the dietary energy intake is equal to total
energy expenditure. A person is considered to be
in a steady state when the energy balance is
maintained over a long period. Recommended
food intake, referred to as daily requirement or
recommended daily intake, represents an average
of energy needs over a certain number of days and
does not indicate exactly how much energy should
be consumed daily. Energy requirements are esti-
mated from data from group of individuals of the
same gender, age, BMI, and physical activity level
(PAL) (Human energy requirements: report of a
joint FAO/WHO/UNU Expert Consultation 2005;
Joint 2007). However, there may be individual
variations due to differences in lifestyle and other
factors that alter energy requirements within a pop-
ulation (Human energy requirements: report of a
joint FAO/WHO/UNU Expert Consultation 2005;
Joint 2007).

The food energy density is defined as the amount
of energy contained in a gram of food. Very low
energy density foods contain less than 0.6 calories/
gram, e.g., lettuce, apple, tomato, strawberry, broc-
coli, grapefruit, nonfat milk, carrot, and vegetable
soup. Low energy density foods contain 0.6–1.5
calories/gram, e.g., oatmeal, whole milk, beans,
banana, broiled fish, fat-free yogurt, baked potato,
and cooked whole grain rice. Medium energy den-
sity foods contain 1.5–4 calories/gram, e.g., egg,
roast chicken, bagel, white bread, ham, cream
cheese, raisin, pretzel, cake with frosting, and ched-
dar cheese. High energy density foods contain more
than 4 calories/gram, e.g., mayonnaise dressing,
chocolate chip cookies, potato chips, bacon, butter,
and peanut butter. Low energy density foods have a
high content of water, complex carbohydrate, and
fiber content, while the high energy density foods
have a low content of water and fiber content and a
content of high sugar and fat.

3 Energy Expenditure

Basal metabolism. This refers to the energy
required to maintain the functions essential for
life, such as the maintenance of cellular structure,
metabolic pathways, temperature, cardiorespira-
tory, and brain functions (Rolfe and Brown
1997; Bosy-Westphal et al. 2004; Rising
et al. 1992; Bogardus et al. 1986; Johnstone
et al. 2005). The Basal Metabolic Rate (BMR),
also known as the Standard Metabolic Rate, is the
rate of energy expenditure measured under stan-
dard conditions that include being awake in the
supine position after 10–12 h of overnight fasting,
8 h of physical rest, a state of mental relaxation,
and thermoneutral conditions, i.e., an environ-
mental temperature that does not elicit heat gen-
eration or dissipation. The BMR is the largest
component of energy expenditure and represents
45–70 % of the daily total energy expenditure
(TEE). The BMR is heritable, correlated with
body size, body composition, sex, age, and
sympathetic nervous system (SNS) activity
(Rising et al. 1992; Bogardus et al. 1986;
Johnstone et al. 2005; Bouchard et al. 1989;
Saad et al. 1991; Spraul et al. 1993). The Fat-
Free Mass (FFM) accounts for two-thirds of the
BMR variance between individuals (Bosy-
Westphal et al. 2003; Keys et al. 1973). Men
have higher BMR compared to women, and
aging is associated with a decline in BMR, and
these differences are attributable to FFM (Bosy-
Westphal et al. 2003; Keys et al. 1973). The BMR
can be estimated based on age, sex, and weight
(Table 1).

In contrast to the BMR, the Resting Metabolic
Rate (RMR) measures the amount of energy used
in a relaxed, but not a postabsorptive state, and
requires the subject to be in a thermoneutral envi-
ronment (Weststrate 1993). The less stringent
criteria make the RMR more practical than BMR
for clinical and research studies.

Energy expenditure related to feeding. Eating
requires energy for ingestion and digestion of
food and for absorption, transport, interconver-
sion, oxidation, and storage of nutrients. These
processes increase oxygen consumption and heat
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production and are known by various terms such
as thermic effect of food (TEF), diet-induced ther-
mogenesis (DIT), and specific dynamic action
(SDA) (Tataranni et al. 1995; Brundin
et al. 1992). The TEF is dependent on the dietary
composition and may account for about 10 % of
the TEE in a person eating a mixed diet.

Adaptive thermogenesis. This refers to heat
production in response to ambient temperature.
Cold exposure induces non-shivering thermogen-
esis in brown adipose tissue and shivering ther-
mogenesis in skeletal muscle. Non-shivering
thermogenesis is a major thermoregulatory mech-
anism against cold exposure in rodents, and it is
mediated through activation of SNS activity and
generation of heat by uncoupling protein (UCP)-1
(Golozoubova et al. 2001). As discussed later,
browning of adipose tissue occurs in humans
and plays an important role is adaptive thermo-
genesis and pathogenesis of obesity.

Physical activity. This is the most variable
component of TEE. Physical activity may be
divided into obligatory and discretionary activi-
ties. Obligatory activities include work, other
daily activities such as self-care, caring for the
family and other home activities, going to school,
and other demands imposed by the economic,
social, and cultural environment. Discretionary
activities include exercise for fitness and health
and other optional but desirable activities for

social interaction. The physical activity level
(PAL) can be estimated from the 24-h TEE and
BMR ratio (PAL = TEE/BMR) (Joint 2007). A
sedentary or light activity person has a PAL of
1.40–1.69, a moderately active or active person
has a PAL of 1.70–1.99, and a very active person
has a PAL of 2.0–2.4.

Growth, pregnancy, and lactation. The energy
required for growth comprises of energy needed
for the synthesis of growing tissues and energy
deposited in growth tissues. The energy cost of
growth is about 35 % of TEE in the first 3 months
of age, falls to 5 % at 12 months and 3 % in the
second year, remains at 1–2 % until
mid-adolescence, and is minimal in the late teen-
age years (Joint 2007). During pregnancy, energy
is needed for growth of the fetus, placenta, and
maternal tissues, such as the uterus, breasts, and
fat stores, as well as meeting the demands of
maternal metabolism at rest and during physical
activity. The energy cost of lactation comprises of
energy required to produce and secrete breast
milk. In addition to increasing their food intake,
lactating women derive part of the higher energy
requirement from fat stores accumulated during
pregnancy.

3.1 Measurement of Energy
Expenditure

The concept that energy expenditure is related to
chemical combustion was proposed by Lavoisier
(Green and Zande 1981). Energy expenditure can
be measured by direct calorimetry. The subject is
housed in a testing chamber, and the
non-evaporative heat loss is measured from the
temperature gradient across the walls of an insu-
lated chamber, and evaporative heat loss is mea-
sured in the water vapor in the test chamber. The
total heat loss is measured as the sum of evapora-
tive and non-evaporative loss. Direct calorimetry
is accurate, but it requires a specialized testing
facility (Jequier et al. 1987).

Indirect calorimetry is based on the principle
that the combustion of food to generate energy
requires oxygen consumption. Indirect

Table 1 Estimates of Basal Metabolic Rate from body
weight

Age (Years) BMR: MJ/day BMR: kcal/day

Males

<3 0.249 kg � 0.127 59.512 kg � 30.4

3–10 0.095 kg + 2.110 22.706 kg + 504.3

10–18 0.074 kg + 2.754 17.686 kg + 658.2

18–30 0.063 kg + 2.896 15.057 kg + 692.2

30–60 0.048 kg + 3.653 11.472 kg + 873.1

>60 0.049 kg + 2.459 11.711 kg + 587.7

Females

<3 0.244 kg � 0.130 58.317 kg � 31.1

3–10 0.085 kg + 2.033 20.315 kg + 485.9

10–18 0.056 kg + 2.898 13.384 kg + 692.6

18–30 0.062 kg + 2.036 14.818 kg + 486.6

30–60 0.034 kg + 3.538 8.126 kg + 845.6

>60 0.038 kg + 2.755 9.082 kg + 658.5
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calorimetry estimates the energy expenditure
from the rates of respiratory gas exchange and
nitrogen excretion (Livesey and Elia 1988;
Ravussin et al. 1986). The heat produced by the
utilization of oxygen varies according to the con-
tents of carbohydrate, fat, and protein. Indirect
calorimetry is often used to measure BMR or
RMR for hours using a ventilation hood or for
days in a respiratory chamber. A constant supply
of fresh air is provided to the subject, and the
respiratory gas exchange is measured by analyz-
ing the air inflow and outflow and the flow rate.
Oxygen consumption, carbon dioxide production,
and urinary nitrogen excretion are measured.
Energy expenditure = MR (kcal/day) =
3.941 VO2 (L/day) + 1.106 VCO2 (L/day) –
2.17 N Urine (g/day), where MR = metabolic
rate, VO2 = oxygen consumption, VCO2 =
carbon dioxide production, and NUrine = nitro-
gen excreted in urine. The urinary nitrogen
derived from incomplete combustion of protein
is small, and it is estimated to be 12 g/day (0.5
g/h). The ratio of VCO2 and VO2 is known as the
respiratory quotient (RQ) or respiratory exchange
ratio (RER) and ranges from 0.7 to1.0. The RQ is
1 when carbohydrate is the sole fuel being oxi-
dized and 0.7 when fat is the sole fuel being
oxidized. The proportion of energy utilized from
carbohydrate or fat can be estimated using stan-
dard equations (Livesey and Elia 1988; Ravussin
et al. 1986).

The doubly labeled water technique enables
the TEE to be measured under free-living condi-
tions (Schoeller 1999; Ravussin et al. 1991;
Speakman 1998). A single oral dose of water
enriched in deuterium (2H) and 18oxygen (18O)
is given orally to label the body water. After
equilibrium is reached in 3–6 h, 18O is lost as
CO18O and H2

18O, and deuterium is lost in
water. 18O and 2H enrichment is measured by
isotope ratio mass spectrometry in the urine or
saliva. Carbon dioxide production rate is based
on the difference in turnover rates between the
oxygen and hydrogen labels. The difference
between the slopes for the log-transformed disap-
pearance rates of 2H and 18O is proportional to the
amount of carbon dioxide produced. Based on a
24-h respiratory quotient value of 0.85, the

oxygen consumption and TEE values are calcu-
lated (Schoeller 1999; Ravussin et al. 1991;
Speakman 1998).

Assessment of body movement using
accelerometry is a popular method for measuring
physical activity (Plasqui et al. 2013). Accelerom-
eters can measure body movement and provide
information about physical activity patterns over
long periods. Recent advancements in sensor
technologies have enabled the development of
accelerometers with different capabilities. Piezo-
resistive or piezo-capacitive sensors differentiate
between physical activity intensity and postures.
In order to capture physical activity patterns, the
monitoring needs to be done over several days and
weeks. Detection of specific types of activities
may require a multiple sensor system (Plasqui
et al. 2013). It is noteworthy that accelerometers
do not measure energy expenditure; therefore, the
data may need to be compared to energy expendi-
ture measured by the doubly labeled water
method.

The TEE can be estimated by factorial calcu-
lations based on the time and energy cost of habit-
ual activities (Joint 2007) (Table 2). Factorial
calculations combine the energy spent while
sleeping, resting, working, and doing social or
discretionary household and leisure activities,
and the energy expenditure estimate is based on
the time allocated to each activity and the
corresponding energy cost.

4 Energy Partitioning

Most of the energy in the body is stored as fat in
adipose tissue (Fig. 1b). Figure 2 shows the
weights and energy expenditure of key metabolic
organs that contribute to the total energy expendi-
ture. Various organs are involved in the produc-
tion, storage, and utilization of energy (Schulz and
Schoeller 1994; Redman et al. 2009; Rosenbaum
et al. 2005; Flatt et al. 1985; Smith et al. 2000; Hill
et al. 1991; Frayn 2002) (Fig. 3). The liver is the
main distributor of energy to other organs and
maintains blood glucose levels within a narrow
range in response to intermittent food intake. The
liver also produces urea and other nitrogenous
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waste products. After a carbohydrate-rich meal,
glucose enters hepatocytes via GLUT2, and the
glucose is phosphorylated by glucokinase to form
glucose 6-phosphate (G6-P). Glucokinase has a
higher Km for glucose, 10 mM, than other

hexokinase isozymes, which allows hepatocytes
to continue phosphorylating glucose when the
blood glucose concentration is very high after
eating. Conversely, the high Km of glucokinase
limits glucose phosphorylation when the blood

Table 2 Factorial calculations of total energy expenditure

Main daily activities

Time
allocation
(h)

Energy
costa

(PAR)
Time �
energy cost

Mean PALb

(multiple of 24-h
BMR)

Sedentary or light activity lifestyle

Sleeping 8 1 8.0

Personal care (dressing, bathing) 1 2.3 2.3

Eating 1 1.5 1.5

Cooking 1 2.1 2.1

Sitting (e.g., office work, selling produce, tending
shop)

8 1.5 12.0

General household work 1 2.8 2.8

Driving car to and from work 1 2.0 2.0

Walking at varying paces without a load 1 3.2 3.2

Light leisure activities (e.g., watching TV,
chatting)

2 1.4 2.8

Total 24 36.7 36.7/24 = 1.53

Active or moderately active lifestyle

Sleeping 8 1 8.0

Personal care (dressing, bathing) 1 2.3 2.3

Eating 1 1.5 1.5

Standing, carrying light loads (e.g., waiting on
tables, arranging merchandise)c

8 2.2 17.6

Commuting to and from work on the bus 1 1.2 1.2

Walking at varying paces without a load 1 3.2 3.2

Low intensity aerobic exercise 1 4.2 4.2

Light leisure activities (e.g., watching TV,
chatting)

3 1.4 4.2

Total 24 42.2 42.2/24 = 1.76

Vigorous or vigorously active lifestyle

Sleeping 8 1 8.0

Personal care (dressing, bathing) 1 2.3 2.3

Eating 1 1.4 1.4

Cooking 1 2.1 2.1

Non-mechanized strenuous work (e.g.,
agricultural work-planting, weeding, gathering)

6 4.1 24.6

Collecting water and wood 1 4.4 4.4

Non-mechanized domestic chores (sweeping,
washing clothes and dishes by hand)

1 2.3 2.3

Walking at varying paces without a load 1 3.2 3.2

Miscellaneous light leisure activities 4 1.4 5.6

Total 24 53.9 53.9/24 = 2.25
aEnergy costs of activities expressed as multiples of the BMR or PAR
bPAL = physical activity level or energy requirement expressed as a multiple of 24-hour BMR
cComposite of the energy cost of standing, walking slowly, and serving meals or carrying a light load
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glucose concentration is low during fasting,
thereby preventing the liver from consuming glu-
cose. During fasting, G6-P is dephosphorylated
by G6-Pase to supply blood glucose to the brain
and other tissues. Some of the G6-P undergoes
glycolysis to form pyruvate, decarboxylated to
form acetyl-CoA, which is then oxidized by the
citric acid cycle to produce ATP. Acetyl-CoA also
serves as a precursor of fatty acids, used for tri-
glyceride, phospholipid, and cholesterol synthe-
sis. G6-P can also enter the pentose phosphate
pathway, producing NADPH for the synthesis of
fatty acids and cholesterol and D-ribose 5-phos-
phate, a precursor for nucleotides.

Amino acids entering hepatocytes are used as
precursors for protein synthesis or exported to
other organs. Amino acids are transaminated,
deaminated, and degraded in hepatocytes to pro-
duce pyruvate and other intermediates in the citric

acid cycle. Ammonia released from amino acid
catabolism is excreted as urea. Pyruvate generated
from amino acids is converted to glucose and
glycogen via gluconeogenesis, or to acetyl-CoA
to be oxidized via the citric acid cycle and oxida-
tive phosphorylation to produce ATP or converted
to lipids. During the period between meals, a
small amount of muscle protein is degraded to
amino acids, which donate their amino groups
via transamination to pyruvate, producing ala-
nine, which is transported to the liver and deam-
inated into pyruvate, which is then converted to
glucose via gluconeogenesis.

The liver plays an important role in lipid
metabolism. Triglycerides are synthesized de
novo or from the esterification of glycerol and
fatty acyl-CoA. Fatty acids are the primary fuel
for oxidative metabolism in hepatocytes, generat-
ing acetyl-CoA and NADH. Acetyl-CoA is

Fig. 2 (a) Organ weight
(% body weight) and (b)
organ energy expenditure
(% whole body energy
expenditure) in a healthy
adult (Adapted from
Kummitha et al. 2014. This
is an open access article
under the terms of the
Creative Commons
Attribution License, which
permits use, distribution,
and reproduction in any
medium, provided the
original work is properly
cited)
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Metabolic Pathways
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Fig. 3 (a). Organ-specific pathways for energy metabo-
lism. Gray panels indicate the existence of a particular
metabolic pathway (b). Cellular metabolism of carbohy-
drate, fat, and amino acid. Abbreviations: ADP adenosine
diphosphate, ATP adenosine triphosphate, ACoA acetyl-
CoA, AA amino acids, GLC glucose, G6P glucose-6-phos-
phate, GAP glyceraldehyde-3-phosphate, GLR glycerol,

GRP glycerol-3-phosphate, GLY glycogen, FFA free fatty
acid, LAC lactate, PYR pyruvate, TG triglycerides
(Adapted from Kummitha et al. 2014. This is an open
access article under the terms of the Creative Commons
Attribution License, which permits use, distribution, and
reproduction in any medium, provided the original work is
properly cited)
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oxidized via the citric acid cycle to produce ATP,
and the excess acetyl-CoA is converted to
acetoacetate and beta-hydroxybutyrate. These
ketones are important fuels for the heart and
brain during prolonged fasting. Acetyl-CoA
derived from fatty acids is used for the synthesis
of cholesterol, needed for membrane assembly,
and for the synthesis of steroid hormones and
bile salts. Fatty acids are also converted to phos-
pholipids and triglycerides, which are exported
via lipoproteins to adipose tissue for storage.
Nonesterified fatty acids are bound to serum albu-
min and transported to the heart and skeletal mus-
cles to be used as fuel.

White adipose tissue (WAT) is the main energy
storage organ and comprises 15–20 % of the mass
of a normal adult (Fig. 1b). Adipocytes interact
with the brain, liver, skeletal muscles, heart, and
other organs. During periods of high carbohydrate
intake, adipocytes are capable of converting glu-
cose into fatty acids and fatty acids to triglycer-
ides. However, most of the triglycerides stored in
human adipocytes are derived from the VLDL
exported from liver and chylomicrons from the
intestinal tract. When energy demand rises, adi-
pocyte lipases release free fatty acids from triglyc-
erides which are transported to skeletal muscles
and heart. Epinephrine stimulates adipocyte lipol-
ysis via hormone-sensitive lipase (HSL), while
insulin inhibits lipolysis. Most of the fatty acids
generated by triacylglycerol lipase in adipocytes
are re-esterified to triglycerides by glycerol kinase
which uses glycerol phosphate derived mainly
from pyruvate via glyceroneogenesis.

Skeletal muscle performs mechanical work
necessary for maintaining body posture, breath-
ing, and locomotion. Type I (slow-twitch; red)
myofiber has low tension, is highly resistant to
fatigue, and produces ATP via oxidative phos-
phorylation. Red muscle fiber is very rich in mito-
chondria and blood supply. Type II (fast-twitch;
white) myofiber has fewer mitochondria than red
muscle, is less vascular, generates greater tension
and faster contraction, and is quicker to fatigue.
Resting muscle uses mostly free fatty acids from
adipose tissue and ketone bodies from the liver.
These fuels are oxidized and degraded into acetyl-
CoA, which enters the citric acid cycle for

oxidative phosphorylation and ATP production.
Moderately active muscle uses glucose in addition
to fatty acids and ketones. The glucose is
converted to pyruvate via glycolysis and then to
acetyl-CoA and oxidized via the citric acid cycle.
Maximum contraction of fast-twitch muscle rap-
idly depletes ATP, and this cannot be replenished
by aerobic respiration. Glycogen stored in muscle
is broken down to produce lactate, but the amount
of glycogen in skeletal muscle is small and cannot
sustain glycolysis during prolonged exercise.
Thus, skeletal muscle also generates phosphocre-
atine to provide energy. After exercise, the lactate
is transported from muscle to liver, and glucose is
produced via gluconeogenesis and transported
back to muscle to replenish the glycogen stores.

The brain has a very active oxidative metabo-
lism, accounting for about 20 % of oxygen
consumption. The brain uses glucose as its main
fuel, but it can also use fatty acids and ketones
during starvation. The liver is the main source
of glucose for the brain. Neurons metabolize
glucose via glycolysis and the citric acid cycle,
and this provides most of the ATP needed to
establish and maintain the membrane electrical
potential and also generate action potentials
during neurotransmission.

5 Hormones Mediating Energy
Homeostasis

The effects of gut hormones, adipokines, and
other circulating factors involved in energy
metabolism are described in other chapters. The
blood glucose concentration is maintained within
a narrow range around 4.5 mM. During feeding,
insulin stimulates glucose uptake by muscle
and adipose tissue and stimulates the synthesis
of glycogen and triglycerides from glucose.
Excess triglycerides are exported from the liver
as VLDL. Insulin stimulates triglyceride synthesis
in adipocytes from fatty acids released from the
VLDL. During fasting, glucagon and epinephrine
levels are increased and stimulate glycogenolysis
by activating glycogen phosphorylase and
inactivating glycogen synthase. As fasting is
prolonged, glucagon inhibits glucose breakdown
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via glycolysis in the liver and stimulates glucose
synthesis by gluconeogenesis by reducing the
concentration of fructose 2,6-bisphosphate, an
allosteric inhibitor of fructose 1,6-bisphosphatase
and an activator of phosphofructokinase. Gluca-
gon inhibits pyruvate kinase, leading to accumu-
lation of phosphoenolpyruvate, which drives
gluconeogenesis. Glucagon also stimulates the
synthesis of phosphoenolpyruvate carboxykinase
(PEPCK) which promotes gluconeogenesis.
Ultimately, these effects of glucagon culminate
in an increase in hepatic glucose output to supply
glucose to the brain and other vital organs. During
prolonged fasting, the fall in insulin and rise in
glucagon and epinephrine levels trigger a switch
from carbohydrate-based to fat-based metabo-
lism. Epinephrine stimulates acetyl-CoA produc-
tion via fatty acid oxidation and promotes the
formation of ketones which are exported from
the liver to heart, skeletal muscle, and brain to be
used as energy substrates.

The conversion of cortisol to active or inactive
metabolites has profound effects on carbohydrate,
fat, and protein metabolism. Plasma cortisol is
increased during starvation, acute infection, and
in response to other stressors and stimulates glu-
cose production, lipolysis, and proteolysis. In
contrast to glucagon and epinephrine, cortisol
acts relatively slowly through nuclear transcrip-
tional mechanisms to control energy metabolism.

6 Brown Adipose Thermogenesis

Oxidative metabolism occurs within mitochon-
dria through the citric acid cycle and electron
transport chain (Green and Zande 1981). Oxygen
is consumed, water and carbon dioxide are pro-
duced, and the ATP generated is used for various
cellular functions, including the maintenance of
Na+/K+ and Ca2+ pumps. H+, Na+, K+, and Ca2+

leak across membrane channels along electro-
chemical gradients, and the H+ leak dissipates
free energy in the form of heat and decreases the
amount of ATP generated per molecule of oxygen
split by the electron transport chain (Harper
et al. 2008). The uncoupling of oxidative phos-
phorylation is very prominent in brown adipose

tissue (BAT) and is mediated by UCP1, a 32 kDa
protein located in the inner mitochondrial trans-
membrane of brown adipocytes, which allows
protons to reenter the mitochondrial matrix from
the inner membrane space. BAT uses glucose and
fatty acids as fuel, and the heat is liberated by H+

rushing down its electrochemical gradient. BAT
plays a critical role in thermogenesis in rodents
(Golozoubova et al. 2001; Enerback et al. 1997;
Kontani et al. 2005; Feldmann et al. 2009). UCP1-
deficient mice are hypersensitive to cold temper-
ature and prone to obesity, whereas UCP1 expres-
sion in WAT results prevents obesity (Enerback
et al. 1997; Kontani et al. 2005; Feldmann
et al. 2009; Kopecky et al. 1995).

BAT is located in the interscapular region of
neonates, and it has been detected in the cervical
and supraclavicular regions of adults, using 18F-
FDG-PET-CT scans and histological analysis of
fat biopsies (Cypess et al. 2009; Virtanen
et al. 2009; van Marken Lichtenbelt et al. 2009;
Saito et al. 2009; Zingaretti et al. 2009). BAT
activity is increased in response to cold exposure,
β3-adrenergic agonist, and ephedrine and results
in weight loss (Astrup 1986; Weyer et al. 1998;
Astrup et al. 1985; Shekelle et al. 2003; Baba
et al. 2007). Other factors implicated in the brow-
ning of adipose tissue include thyroid hormone,
bile acids, leptin, melanocortin-4-receptor ago-
nists, and FGF-21 (Harms and Seale 2013).

7 Muscle Thermogenesis

Skeletal muscle plays an important role in ther-
mogenesis (Wijers et al. 2008; Vybiral et al. 2000;
van Ooijen et al. 2005; Rosenbaum et al. 2005).
Fidgeting and other non-exercise activities dissi-
pate heat and prevent obesity (Zurlo et al. 1992;
Levine et al. 1999; Johannsen and Ravussin
2008). Shivering thermogenesis occurs in skeletal
muscle in response to cold exposure (Wijers
et al. 2008; van Ooijen et al. 2005). Chronic
exercise increases the expression of genes
involved in mitochondrial respiration and fatty
acid oxidation, which protect against obesity, dia-
betes, and hyperlipidemia (Vybiral et al. 2000).
Cold exposure also promotes a switch from white
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(glycolytic) to red (oxidative) myofibers by induc-
ing the expression of nuclear co-activator PGC1α,
which is also induced in brown fat in response to
cold (Puigserver et al. 1998; Lin et al. 2002).

Another mechanism for skeletal muscle ther-
mogenesis is linked to the control of ATP turnover
and Ca2+ gradient by the sarcoplasmic reticulum
Ca2+ ATPase (SERCA) (Bal et al. 2012; Maurya
et al. 2015). Ca2+ promotes heat production from
ATP hydrolysis during muscle relaxation or
sustained contraction. The heat energy is released
when the Ca2+ is pumped back into the sarcoplas-
mic reticulum by SERCA. Cold exposure induces
the expression and activity of SERCA1 in skeletal
muscle to increase muscle oxidative metabolism
and heat production. Normally, the opening of
sodium channels leads to the release of Ca2+ into
the cytoplasm from sources outside the cell and
the sarcoplasmic reticulum through ryanodine
receptor (RyR). The RyR-mediated Ca2+ leak is
an important mechanism for SERCA-activated
heat production (Bal et al. 2012; Maurya
et al. 2015). Sarcolipin interacts with SERCA in
the presence of Ca2+, leading to uncoupling of the
SERCA pump (Bal et al. 2012). Mice lacking
sarcolipin develop diet-induced obesity,
confirming an important role of this pathway in
muscle thermogenesis and energy homeostasis
(Bal et al. 2012).

8 Energy Dysregulation
in Obesity

The worldwide increase in obesity and metabolic
syndrome is attributed to overconsumption of
food, especially energy-dense foods rich in fat
and sugar. The excess energy is deposited mainly
as fat in adipose tissue, as well as in the liver,
muscle, pancreatic beta-cells, and other tissues.
Ectopic fat deposition (steatosis) leads to insulin
resistance, oxidative injury, inflammation, and
other changes that predispose to type 2 diabetes
and greater cardiovascular risk. Food restriction is
the main strategy for obesity treatment, but this
alone is often unsuccessful due to an adaptive
reduction in energy expenditure, increased hun-
ger, and other physiological and behavioral

responses that oppose weight loss (Weyer
et al. 2000; Sims et al. 1973; Larson et al. 1995;
Tataranni et al. 1997). Discoveries in molecular
genetics, in addition to population and laboratory
studies, have enriched our knowledge of mecha-
nisms underlying obesity and related diseases.
Pathway analyses provide strong support for
genetic loci related to CNS circuits and molecules
related to energy metabolism and glucose homeo-
stasis (Loos and Bouchard 2008; Loos et al. 2008;
Locke et al. 2015).

Some studies have demonstrated associations
of RMR, TEF, RQ, or SNS activity with weight
gain or weight loss (Saad et al. 1991; Spraul
et al. 1993; Flatt et al. 1985; Smith et al. 2000;
Hill et al. 1991; Ravussin et al. 1988; Astrup
et al. 1999; Amatruda et al. 1993; Tataranni
et al. 1997). A seminal experiment by Bouchard
et al. (Bouchard et al. 1990) showed that mono-
zygotic twins who were overfed displayed similar
gains in body weight and fat between each twin
pair, indicating a strong genetic influence on
energy metabolism. It is possible that genetic fac-
tors predispose toward obesity by affecting mul-
tiple factors, such as food digestion, absorption,
availability of metabolizable energy (ME), TEF,
and mitochondrial energy metabolism. Reduced
physical activity is often cited as a cause of obe-
sity, but the evidence is debatable. Some studies
have suggested that the increasing obesity trend
parallels the sedentary lifestyle in various
populations (Swinburn et al. 2011; Caleyachetty
et al. 2015). Non-exercise physical activity may
prevent the development of obesity (Villablanca
et al. 2015). Reduced physical activity may pre-
dispose to sarcopenia, insulin resistance, and met-
abolic syndrome, especially among older people
(Kim and Choi 2015; Batsis et al. 2014). How-
ever, other researchers have found no major
changes in physical activity to explain the increas-
ing trend of obesity (Westerterp and Speakman
2008). It has been proposed that energy balance
may be easier to achieve at a higher level of
energy expenditure (Hill et al. 2012). Above a
threshold physical activity level, the energy intake
and energy expenditure are very sensitive to
changes in each other within the “regulated
zone” of energy balance (Hill et al. 2012). In
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contrast, the energy intake and expenditure are
weakly sensitive to changes in each other in the
“unregulated zone” below the physical activity
threshold, and this promotes overeating and
weight regain following caloric restriction (Hill
et al. 2012).

9 Conclusions

The mechanisms of energy metabolism respond
more robustly to negative energy balance than to
positive energy balance. The energy balance con-
cept predicts that it would be easier to prevent the
transition from a normal to obese weight than to
produce a sustained weight loss in an obese per-
son (Eckel et al. 2011). This concept offers a
rational biological basis for the implementation
of obesity prevention programs, aimed at pro-
moting healthier food choices, increasing energy
expenditure through physical activity in individ-
uals and among the wider population, and devel-
oping cognitive skills and behaviors to sustain
long-term healthy weight (Eckel et al. 2011).
Obesity prevention demands changes in the
“built environment” and a transformation of soci-
etal perceptions and practices regarding the
causes and treatment of obesity and related
diseases.

A better understanding of the principles of
bioenergetics will facilitate new preventive and
treatment approaches for obesity and metabolic
diseases. Novel technologies to precisely measure
energy intake, expenditure, and storage under
free-living conditions will help in the develop-
ment of accurate diagnostic tools and a better
stratification of metabolic syndrome risk. Bioen-
ergetic pathways of the gastrointestinal tract, liver,
brown fat, white fat, skeletal muscle, and other
tissues need to be thoroughly investigated to
determine their contributions to whole body
metabolism and how these pathways can be
targeted specifically and safely for therapeutic
purposes.
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Abstract
Macronutrient metabolism is essential for
transferring energy contained in food to usable
forms of cellular energy. The balance between
energy fuels flowing to cells and being released
as cellular work will determine the body size.
In the last decades, energy homeostasis has
been challenged by an overwhelming macro-
nutrient availability that imposes a need for
further expansion of adipose mass. The capac-
ity to handle such higher energy and macronu-
trient fluxes will determine metabolic
disturbances (e.g., insulin resistance) at tissue
and whole organism level. Herein, we
reviewed carbohydrate, fat, and protein metab-
olism with special emphasis to the comparison
between lean and obese individuals.

Keywords
Fuel oxidation • Energy balance • Fuel
partitioning • Cellular work • Energy transfer

1 Introduction

All forms of life require exogenous energy supply
and the biochemical machinery for transforming
fuels to usable forms of cellular energy. This
energy is required to sustain multiple processes
that are pivotal for survival of living organisms,
including the maintenance of electrochemical gra-
dients, macromolecule synthesis and breakdown,
and thermogenesis, among many others (Rolfe
and Brown 1997). Energy resides in the carbon-
hydrogen bonds of carbohydrate, fat, and protein
and only can be used by cells after being trans-
ferred to suitable energy carriers. In the mitochon-
dria, a sequence of complex reactions removes
hydrogen atoms (i.e., dehydrogenation) from
energy substrates. The energy contained in the
resulting transmembrane proton (H+) gradient is
ultimately transferred to cellular energy carrier
molecules (i.e., phosphorylated adenosine
nucleosides).

Thermodynamically, obesity pathogenesis
requires a chronic positive energy balance in

which exogenous energy supply surpasses body
energy expenditure. The most notorious biologi-
cal consequence of this energy unbalance is the
expansion of white adipose tissue (WAT). This
adaptation allows massive amounts of metabolic
energy accumulate as triacylglycerols (TAG).
Every time that body energy balance is shifted, a
new homeostatic level is set between exogenous
and endogenous energy fluxes. Thus, obese sub-
jects have increased energy turnover, which is due
to higher body mass rather than to higher physical
activity-dependent energy expenditure. These
individuals often develop insulin resistance, a
condition in which insulin action is abnormal.
Because of the pivotal roles of insulin on macro-
nutrient metabolism regulation, insulin resistance
may determine impaired carbohydrate, lipid, and
protein metabolism. In turn, altered macronutrient
metabolism may eventually lead to insulin resis-
tance. Herein, we offer a condensed analysis of
macronutrient metabolism with focus on aspects
that appear to be especially relevant for the under-
standing of obesity-related metabolic disorders
such as insulin resistance.

2 Role of Energy Homeostasis
Regulation on Obesity
Pathogenesis

The maintenance of stable body mass and com-
position requires that cumulative energy intake
over a long period of time (days to weeks)
matches cumulative energy demand, resulting in
null energy balance. Upon these conditions, net
macronutrient storage is also null, and thus,
whole-body mass and composition are constant.
Therefore, null energy balance necessarily derives
from that the average proportion of macronutrient
oxidized (respiratory quotient, RQ) equals the
proportion of dietary macronutrients available
for oxidation (food quotient, FQ) over a period
(Hill et al. 1991; Westerterp 1993).

Nonetheless, long-term energy flux stability is
the integrated result of the intra- and inter-day
fluctuations in both energy/macronutrient intake
and energy expenditure that lead to either slightly
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positive or negative energy/macronutrient bal-
ance. Such short-term variations in the energy
balance are buffered by rapid adjustment of
carbohydrate and protein oxidation and fat storage
(Abbott et al. 1988). Thus, states of negative
energy balance, in which the energy intake is
lower than its demand, are mostly compensated
by net fatty acid release from fat stores that cope
energy deficit. Conversely, positive energy bal-
ance states, in which energy intake is greater
than its demand, lead to net fatty acid storage in
adipose tissue (Frayn 2002). Carbohydrate and
protein oxidation follows their respective fluctua-
tions in carbohydrate and protein dietary avail-
ability (Abbott et al. 1988). These
aforementioned concepts have critical implica-
tions for understanding of obesity, where particu-
lar modifications in macronutrient balance
without significant changes in energy balance
have no impact on body weight.

A number of mechanisms have evolved to
compensate restricted energy intake, including
increased appetite and lower metabolic rate (Pren-
tice et al. 1991). When negative energy balance
extends for longer periods, metabolic adaptation
includes increased energy efficiency in order to
prevent further weight loss (Rosenbaum
et al. 2005; Redman et al. 2009; Goldsmith
et al. 2010). On the contrary, increased energy
intake normally results in suppression of appetite
and eventual reduction in the efficiency of energy
production (Stock 1999). Interestingly, metabolic
adaptation to energy availability appears to be
more efficient in preventing energy depletion
than in preventing body weight gain.

Thus, in individuals that gain weight, the finely
tuned interplay of metabolic and behavioral adap-
tations aimed to ensure appropriate balance
between energy supply, storage, and utilization is
overwhelmed by constant macronutrient surplus.
The nature and identity of external (e.g., food
availability and composition, social and environ-
mental cues) and internal (e.g., genetic and epige-
netic background, physiological and pathological
determinants) factors sustaining long-lasting pos-
itive energy balance are still puzzling the scientific
community (Speakman 2013).

Obesogenic environment undoubtedly plays a
role. For instance, Swinburn et al. estimated that
most of the positive energy gap and excess body
weight over the past three decades can be entirely
accounted by the higher food energy availability
(Swinburn et al. 2009). Decreased energy expen-
diture may also contribute to positive energy
balance. Few decades ago, it was postulated
that basal energy expenditure (i.e., the minimal
energy needed for vital functions) was lower in
obese versus lean individuals, suggesting that
decreased energy utilization contributes to the
obese phenotype. Nowadays, it is accepted that
these findings must be interpreted under the con-
cept that the relationship between body mass
(in kg) and metabolic rate (kcal per day) is allo-
metric (i.e., metabolic rate and body mass do not
change in direct proportion) (Poehlman and Toth
1995). As a consequence of this fact, metabolic
rate (kcal�kg�1) of obese individuals will expect-
edly be lower than that of leaner individuals
(Tschop et al. 2012; Speakman et al. 2013). Con-
cordantly, proper analysis of lean versus obese
individuals has consistently showed similar met-
abolic rates between them, which suggests that
cellular energy homeostasis is not significantly
influenced by obesity.

Nevertheless, most of the comparisons of the
energy expenditure between lean and obese indi-
viduals have been reported in the literature taking
into account their differential body mass and com-
position. It is known that organ mass, particularly
of high metabolic rate organs (the liver, brain, and
heart), significantly influences whole-body meta-
bolic rate (Wang et al. 2001; Javed et al. 2010;
Muller et al. 2013). In addition, individual organ
size does not proportionally correlate with whole-
body mass (Muller et al. 2011). This aspect can be
particularly relevant in the well-described, but
otherwise not well-understood, metabolic adapta-
tion in response to weight loss (Bosy-Westphal
et al. 2009). Therefore, analysis of metabolic rate
by taking into account organ size between lean
and obese as well as in response to changes in
whole-body energy flux is required for a better
understanding of the mechanisms linking chronic
energy unbalance and obesity.
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3 Carbohydrate Metabolism
in Obesity

3.1 Overview of Glucose
Metabolism

Carbohydrate is normally the main source of die-
tary energy for humans, and glucose is the major
energy substrate for cells. Red blood cells lack
mitochondria and thus depend exclusively on glu-
cose for energy provision. Similarly, although due
to other mechanisms, the brain and renal medulla
also rely primarily on glucose as their energy
source. Indeed, the sole brain, due to its high
metabolic rate [~20 % of whole-body basal meta-
bolic rate (Rolfe and Brown 1997)], requires
~100 g per day of glucose (A Report of the
Panel on Macronutrients et al. 2002).

Dietary carbohydrate and glucose intake fluc-
tuate over 24 h, being null during the sleeping
time and episodic over the awaking period. On
the other hand, cells have continuous glucose
requirements. This metabolic conundrum is com-
pensated by a complex neuroendocrine regulatory
system that provides constant glucose supply
while prevents hyperglycemia after meals and
hypoglycemia over the fasting periods (Mizgier
et al. 2014).

After a standard glucose load in healthy
humans, ~70 % and ~20 % of this glucose are
taken up by peripheral (mainly skeletal muscle)
and splanchnic (mainly liver) tissues, respectively
(Ferrannini et al. 1985). This efficient glucose
uptake buffers the massive increase in blood glu-
cose levels that otherwise dietary glucose will
impose. In fact, both insulin-dependent and
insulin-independent glucose uptake (Baron
et al. 1988) in coordination with increased glucose
oxidation and glycogen synthesis prevents post-
prandial hyperglycemia. Thus, high blood glucose
concentration is the main driver of hepatic glucose
uptake (Ferrannini et al. 1985), while
hyperinsulinemia is the main promotor of glucose
uptake and utilization in the skeletal muscle
(Ferrannini et al. 1985; Baron et al. 1988). Post-
prandial suppression of hepatic glucose produc-
tion is also a major mechanism to prevent

hyperglycemia and maintaining glycemia within
a physiological range (Ferrannini et al. 1985;
Bonuccelli et al. 2009).

In contrast, under conditions of null exogenous
glucose supply, the concentration gradient of glu-
cose between the extra- and intracellular compart-
ments is sustained by the ability of the liver to
release glucose into circulation. This process is
accomplished through hydrolysis of hepatic gly-
cogen and the conversion of specific metabolites
(lactate, pyruvate, glycerol, and some amino
acids) to glucose (Brosnan 1999). Concomitantly,
other tissues such as skeletal muscle spares glu-
cose by adapting its energy demand to alternative
energy substrates (e.g., fatty acids) (Cahill 2006).

Finally, energy sufficiency at cellular, organ,
and whole-body level is achieved after adapting
fuel oxidation to fuel availability, a process known
as metabolic flexibility (Galgani et al. 2008b). In
this metabolic scenario, insulin plays a pivotal
role in determining fuel partitioning, so dietary
macronutrient availability matches their
oxidation rate.

3.2 Glucose Uptake/
Phosphorylation

Glucose uptake occurs through facilitated trans-
port in a process involving 14 glucose transporter
(GLUT) isoforms (Thorens and Mueckler 2010).
GLUT1 is expressed ubiquitously and is constitu-
tively located in plasma membrane. GLUT2 is
present in the pancreatic beta (β) cells, hepato-
cytes, and basolateral membrane of intestinal and
kidney epithelial cells. Its high capacity for glu-
cose transport allows translocation of glucose
between the extra- and intracellular compartments
depending on glucose concentration gradient.
GLUT2 also mediates the efflux of glucose from
the liver into the circulation under conditions of
limited exogenous glucose supply. GLUT3 is
expressed in the brain and has high affinity for
glucose. This feature allows it to provide a rela-
tively constant glucose supply to the neurons,
even upon low extracellular glucose concentra-
tion. GLUT4 is found in striated myocytes as
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well as in adipocytes and is largely responsible for
insulin-stimulated glucose uptake in those cells.
In addition, GLUT4 translocation from the cyto-
sol to the plasma membrane is also stimulated by
muscle contraction, and this seems to be driven by
a decrease in cellular oxygen concentration (Egan
and Zierath 2013).

To prevent the outflow of newly incorporated
glucose, this sugar is rapidly phosphorylated. This
is an ATP-dependent reaction catalyzed by hexo-
kinases. The isoform found in the liver (type
4 hexokinase, glucokinase) has relatively low
affinity for glucose, with a Km that doubles the
fasting blood glucose concentration (~5 mM).
This kinetic feature allows hepatocytes to phos-
phorylate glucose that massively comes from
intestine after meals. Once glucose is converted
to glucose-6-phosphate (G6P), it has two major
metabolic fates: (i) glycolytic oxidation to pyru-
vate and further conversion to lactate (anaerobic
condition) or oxidation to acetyl-CoA (aerobic
condition) and (ii) conversion to glucose-1-phos-
phate (G1P), the precursor of glycogen synthesis.

Under non-insulin-stimulated conditions (e.g.,
overnight fasting), circulating glucose is mostly
taken up by nonskeletal muscle tissues (e.g., cen-
tral nervous system), with about 20 % being
cleared up by the skeletal muscle (Baron
et al. 1988). Interestingly, both lean and obese
individuals have similar glucose clearance rates
(Kelley et al. 1999a), which is consistent with the
observation that most of the glucose uptake in
fasting conditions relies on insulin-independent
mechanisms. Concordantly, the transport of a
non-metabolizable glucose analog (3-O-
methylglucose) (Dohm et al. 1988) and the con-
tent of G6P (Allenberg et al. 1988) were similar in
muscle biopsies from lean and obese donors.

Under insulin-stimulated conditions,
Bonadonna et al. compared glucose uptake at
different insulin doses (4–400 mU�m�2�min�1)
in lean and obese volunteers by the glucose
clamp procedure (Bonadonna et al. 1990). They
found that insulin dose-response curve was right
shifted in obese when compared with lean indi-
viduals indicating impaired insulin action. Laakso
et al. (Laakso et al. 1990) reported that the most

important contributor to the decreased whole-
body glucose uptake in obese patients was the
diminished insulin-stimulated glucose clearance
by skeletal muscle. At the molecular level,
insulin-stimulated GLUT4 translocation is quan-
titatively lower in insulin-resistant obese individ-
uals versus their normal counterparts, which is
consistent with the impaired insulin-stimulated
glucose transport detected in muscle biopsies of
obese versus lean subjects (Dohm et al. 1988;
Goodyear et al. 1995).

In response to a dietary challenge (i.e., inges-
tion of a fixed glucose dose or a mixed meal) and
in contrast to the glucose clampmethod, on which
a fixed insulin dose is infused and the adminis-
tered glucose is continuously adjusted so
euglycemia is maintained, whole-body glucose
uptake mostly depends on the capacity of pancre-
atic beta (β) cells to release as much insulin as
required to compensate any eventual defect on
insulin action in tissues. Thus, in obese individ-
uals with normal beta (β)-cell function,
hyperinsulinemia might well be sufficient to com-
pensate the defect in peripheral insulin action and
maintain normal glucose uptake (Fig. 1). How-
ever, contrary to this prediction, (Baron
et al. 1990) found that both whole-body and skel-
etal muscle glucose uptake were both reduced
after an oral glucose dose (1 g per kg body weight)
in obese when compared with lean individuals
(Laakso et al. 1990).

3.3 Glycolysis and Oxidation

The glycolytic processing of one mole of G6P
yields two moles of pyruvate and two moles of
ATP (net production). In turn, pyruvate can be
converted to lactate through the action of lactate
dehydrogenase or oxidized to acetyl-CoA through
the action of the mitochondrial pyruvate dehydro-
genase complex (PDH). In the mitochondria,
acetyl-CoA is integrated in the tricarboxylic acid
(TCA) cycle, and its oxidation results in the
release of CO2 and the generation of reducing
equivalents (NADH and FADH2). The energy
contained in these molecules is used to build an
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H+ gradient across the internal membrane of the
mitochondria and ultimately drive mitochondrial
ATP synthesis.

There is a plethora of studies aimed to assess
whole-body and skeletal muscle glucose oxida-
tion as well as the ratio between glucose-to-fat
oxidation in obese patients in comparison with
lean individuals (Galgani et al. 2008b). Most of
these studies have been conducted in fasted indi-
viduals, which is hardly distinguishable whether
the reported differences among obese and lean
subjects correspond to intrinsic metabolic alter-
ations of obesity or are merely result from inaccu-
rate control of previous dietary and metabolic
conditions. Interestingly, when macronutrient
intake and energy balance were carefully con-
trolled, fasting respiratory quotient, measured in

a respiratory chamber for 48 h, was similar in
obese and lean subjects (Weyer et al. 2001).

Regarding postprandial conditions, we
assessed whole-body glycolysis and glucose oxi-
dation rates in insulin-sensitive and insulin-
resistant individuals, defined by the glucose
clamp technique (Galgani and Ravussin 2012).
In this study, the insulin-resistant group also
resulted to be heavier than the insulin-sensitive
group (29 � 4 [SD] vs. 25 � 4 kg�m�2, respec-
tively). Despite these contrasting characteristics,
whole-body glycolysis and glucose oxidation
over 4 h of ingesting a standard oral glucose
dose were similar between groups. In line with
this finding, no differences in the oxidative dis-
posal of glucose and other macronutrients in
obese compared to lean subjects were observed

Postprandial

Lean-insulin sensitive

Insulin Glucose

CO2

Obese-insulin resistant

Insulin Glucose

Glucose clamp

Insulin Glucose

Lean-insulin sensitive

CO2

Insulin Glucose

Obese-insulin resistant

CO2 CO2

Fig. 1 The figure represents glucose uptake in lean,
insulin-sensitive and obese, insulin-resistant individuals
under two insulin-stimulated conditions: glucose clamp
(supraphysiological) and postprandial (physiological). In
the glucose clamp, insulin-stimulated glucose uptake is by
definition impaired in insulin-resistant versus insulin-
sensitive subjects. This leads to diminished intracellular
glucose utilization and glucose oxidation (CO2 produc-
tion). Instead, in the postprandial condition, circulating

insulin concentration eventually compensates any defec-
tive tissue insulin action, which might even prevent the
decrease in glucose uptake and further glucose oxidation.
Thus, during the glucose clamp condition, insulin resis-
tance is manifested by decreased glucose uptake and oxi-
dation at a similar circulating glucose and insulin
concentration. In turn, in the postprandial condition, insu-
lin resistance is mainly characterized by hyperinsulinemia
with eventually normal glucose utilization
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over an 8-h feeding protocol (Owen et al. 1992).
Using a more prolonged feeding paradigm (96 h),
McDevitt et al. (McDevitt et al. 2000) delivered a
hypercaloric diet (50 % excess energy over indi-
viduals’ energy requirements) to lean and obese
volunteers and monitor them in a whole-body
metabolic chamber. Interestingly, both groups
showed a similar capacity to handle energy
excess, with macronutrient oxidative disposal
remaining similar between groups.

Whole-body glucose oxidation has also been
assessed during euglycemic-hyperinsulinemic
clamp conditions, where the extent at which RQ
increases upon insulin stimulation is used as a
marker of metabolic flexibility (Galgani
et al. 2008b). It has been reported that insulin
resistance is accompanied by an impaired ability
to increase whole-body and muscle-specific glu-
cose oxidation in the clamping, indicating meta-
bolic inflexibility (Kelley et al. 1999b; Galgani
et al. 2008a) (Fig. 1). On the other hand, improve-
ment of insulin sensitivity, for example, after
weight loss, is paralleled by enhanced metabolic
flexibility (Kelley et al. 1999a; Galgani
et al. 2008a). Traditionally, these findings have
been considered a feature of intrinsic cellular
defects, mostly at the mitochondrial level, owing
to reduced ability to switch off lipid oxidation and
simultaneously switch on glucose oxidation in the
transition from fasting to insulin-stimulated con-
ditions (Muoio 2014).

An alternative explanation for the impaired
capacity to raise glucose oxidation over lipid
oxidation that insulin-resistant individuals
exhibit in the glucose clamping is that this phe-
nomenon results from the lower intracellular glu-
cose availability of these individuals in
comparison with insulin-sensitive subjects
(Galgani et al. 2008a) (Fig. 1). Indeed, when
insulin-stimulated glucose disposal rate was
taken into account, the increase in the RQ
remained equivalent in obese, nondiabetic
vs. obese, type 2 diabetic patients. In addition,
similar metabolic flexibility after correcting for
insulin-stimulated glucose disposal rate was also
observed when obese, type 2 diabetic patients
were studied before and after a one-year weight
loss intervention (Galgani et al. 2008a).

Another aspect deserving further analysis is the
observation that obese vs. lean individuals show
relatively elevated blood lactate levels (Lovejoy
et al. 1990, 1992). In fact, obesity and insulin
resistance are both independently associated
with increased lactacidemia (Galgani et al. 2013;
Adeva-Andany et al. 2014). Furthermore, direct
assessment of lactate turnover showed increased
conversion of lactate to glucose and from glucose
to lactate in obese vs. lean children (Stunff and
Bougneres 1996). The pathophysiological rele-
vance of this finding and its mechanistic basis
remain unclear. At the molecular level, the ability
to convert pyruvate to lactate or acetyl-CoA is
pivotal for cellular metabolic flexibility. In this
regard, an animal model having defective PDH
activity (by hyperacetylation of PDH E1 alpha (α)
subunit) has impaired metabolic flexibility,
reduced glucose oxidation, enhanced lactate pro-
duction, and higher fatty acid oxidation even in
the fed state (Jing et al. 2013). Future studies
should focus in investigating the molecular basis
of metabolic inflexibility as well as its pathophys-
iological meaning.

3.4 Glucose Storage

Conversion of G6P to G1P is mediated through
phosphoglucomutase. G1P is then converted to
uridine diphosphate (UDP) glucose and finally
bounded to a growing glycogen polymer. Insulin
stimulates glycogen synthesis by relieving the
inhibition that glycogen synthase kinase 3 exerts
on glycogen synthase. Also, insulin-mediated
GLUT4 translocation to plasma membrane results
in higher glucose flux and thus higher availability
of the substrates for glycogen synthase action
(Yki-Jarvinen et al. 1987). Glycogen is synthe-
sized by both the liver and skeletal muscle. The
former has a higher content per gram of wet tissue,
whereas the latter has a greater contribution to
total body glycogen because of its larger contri-
bution to the body mass (~50 % of fat-free mass in
adult individuals).

Hepatic glycogen has a systemic role because
it contributes to sustain hepatic glucose produc-
tion and normoglycemia during periods of fasting.
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In contrast, skeletal muscle glycogen mostly sus-
tains local ATP production during contraction.
Under conditions of limited exogenous glucose
supply, glycogen is hydrolyzed in order to
increase G6P supply, which is then converted to
glucose by action of glucose-6-phosphatase in the
liver. G6P cannot be converted to glucose in skel-
etal muscle because it lacks glucose-6-phospha-
tase, so G6P is metabolized to pyruvate. It has
been reported that obese individuals have
decreased glycogen synthase activity under
fasting conditions, although muscle glycogen
content remained unaltered (Allenberg
et al. 1988).

Under glucose clamp conditions, non-oxida-
tive glucose disposal, mostly dependent on glyco-
gen synthesis, is decreased in obese when
compared with lean individuals (Young
et al. 1988), possibly owed to decreased intracel-
lular glucose availability and lower insulin-depen-
dent glycogen synthase activity (Cline et al. 1999;
Hojlund et al. 2009). However, under feeding
conditions, whole-body non-oxidative glucose
disposal was similar in lean and obese females
studied for 96 h in a whole-body metabolic cham-
ber (McDevitt et al. 2000).

3.5 Hepatic Glucose Production

Hepatic cells can produce glucose out of two
different mechanisms: (i) glycogenolysis, i.e.,
hydrolysis of stored glycogen, and
(ii) gluconeogenesis, i.e., de novo glucose produc-
tion out of nonsugar precursors. Conditions of
limited exogenous glucose supply are character-
ized by low blood insulin-to-glucagon ratio. This
hormonal milieu promotes glycogenolysis as well
as gluconeogenesis. Biochemically, gluconeogen-
esis follows the reverse glycolytic flux, although
some reactions are exclusive for glycolysis (i.e.,
glucose phosphorylation and the synthesis of fruc-
tose-6-phosphate and phosphoenolpyruvate).
Thus, gluconeogenesis requires specific energy-
demanding enzymes to convert precursors such as
pyruvate, alanine, lactate, and glycerol to glucose.

Increased basal (fasting) hepatic glucose pro-
duction as well as impaired ability of insulin to

suppress this process is observed in obese individ-
uals (Bonadonna et al. 1990). Epidemiological
studies have consistently found a direct correlation
between abdominal obesity and insulin resistance
and its systemic consequences, the so-called meta-
bolic syndrome. However, at the tissue level,
intrahepatic rather visceral fat associates with
impaired hepatic glucose control (Fabbrini
et al. 2009). These findings suggest that the meta-
bolic dysfunction of the liver, more than any other
intra-abdominal organ, is central in the pathogene-
sis of insulin resistance. In concordance with this
hypothesis, the surgical removal of visceral adi-
pose tissue appeared to have little impact on insulin
sensitivity in humans (Fabbrini et al. 2010; Dunn
et al. 2012; Lima et al. 2013). The fact that less than
20 % of portal vein free fatty acids (FFA) comes
from visceral fat in lean and obese humans while
~10 % of the total FFA found in peripheral blood
circulation is derived from visceral fat challenges
any causative role of visceral fat on metabolic
disturbances (Nielsen et al. 2004).

3.6 De Novo Lipogenesis

Although the main metabolic fates of glucose are
oxidation or glycogen synthesis, under special
metabolic circumstances, glucose can also be
converted into palmitate, the main product of
endogenous fatty acid synthesis pathway. Oxida-
tion of acetyl-CoA in the mitochondria originates
citrate, a TCA intermediary. Under conditions of
excess glucose supply, citrate leaves the mito-
chondria and is converted to acetyl-CoA and oxa-
loacetate by the action of citrate lyase in the
cytosol. Acetyl-CoA is then carboxylated to
malonyl-CoA in a reaction stimulated by insulin
and catalyzed by acetyl-CoA carboxylase.
Malonyl-CoA is the substrate of fatty acid
synthase that generates palmitate in a multistep
sequence of NADPH-dependent reactions. There-
fore, de novo lipogenesis (DNL) only occurs
when cellular energy status is high (e.g., it
requires of NADPH) and excess glucose is largely
available.

Decades ago, it was postulated that DNL was
partially responsible for increased adiposity of
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obese patients, by converting carbohydrate
excess in fat, particularly in those individuals
eating high-carbohydrate diets. Acheson et al.
(Acheson et al. 1988) evaluated the RQ of indi-
viduals consuming large amounts of glucose
(500 g per day) and found that RQ values above
1.00 were transitorily observed, indicating that net
DNL was minimal after short-term carbohydrate
overfeeding.

Later studies based on the stable isotopic label-
ing of metabolic substrates aimed to quantify
in vivo hepatic very low-density lipoprotein
(VLDL) secretion as a marker of hepatic DNL.
Using this approach, McDevitt et al. (2001) evalu-
ated hepatic DNL after 4 days of overfeeding in
lean and obese females in response to 50% surplus
of energy as glucose or sucrose. They found that
hepatic DNL was stimulated at a similar extent in
lean and obese individuals regardless of carbohy-
drate type. Total hepatic DNL ranged between 0.7
and 4.5 g�day�1, equivalent to less than 3 % of the
carbohydrate energy supply and less than 2 % of
the total energy balance. Additional studies
performed over shorter periods of time concluded
that hepatic DNL is a process of minor metabolic
relevance in humans (Hellerstein et al. 1996) and
highlighted the potential role of adipose tissue in
this process (Aarsland and Wolfe 1998). Thus,
adipose tissue DNL was approached by deuterium
incorporation in fatty acids and gene expression
analysis of lipogenic enzymes in lean and obese
individuals (Guo et al. 2000; Minehira et al. 2004).
Overall, those studies showed that carbohydrate
feeding did not stimulate adipose tissue DNL or
expression of lipogenic enzymes at a greater extent
in obese when compared with lean participants.

These findings can be interpreted under the
consideration that fatty acids are largely available
in human diets, and then there is no need for lipid
synthesis from an alternative precursor. In addi-
tion, when carbohydrate is provided at a level
below total energy needs, DNL does not play a
metabolically relevant role. By contrast, the con-
tribution of hepatic DNL to the total fatty acid
pool in subjects with nonalcoholic fatty liver dis-
ease, a frequent condition in obese subjects with
insulin resistance, appears significant as discussed
below.

3.7 Fructose Metabolism and
Obesity

Fructose is also a hexose abundant in human diet,
although its presence in foods is mostly restricted
to sucrose, honey, and fruits. Lately, with the
introduction of a corn-derived product (high-fruc-
tose corn syrup) to many processed foods, fruc-
tose consumption has been drastically increased,
especially in societies with elevated consumption
of industrialized food stuffs (Bray and Popkin
2014). This situation has renewed the interest in
fructose metabolism, in particular, its effect on
human metabolic disease.

Fructose metabolism is unique in many
aspects. For instance, fructose is primarily metab-
olized in the liver; therefore, its blood concentra-
tion is minimally increased after ingestion. Once
inside hepatic cells, fructose is phosphorylated to
fructose-1-phosphate through fructokinase, and
two metabolites are generated:
(i) dihydroxyacetone phosphate, which is a gly-
colytic intermediate, and (ii) glyceraldehyde,
which can be converted to glycolytic intermedi-
ates. Because fructokinase is not subjected to allo-
steric control by cellular energy status,
dihydroxyacetone and glyceraldehyde production
will proceed according to fructose availability.
Thus, fructose is quickly oxidized and spares glu-
cose and fatty acids as energy fuels. In addition, it
provides precursors for TAG synthesis.

In line with these particular metabolic proper-
ties, elevated blood TAG concentration and exac-
erbated visceral and ectopic fat accumulation
were detected in humans fed with large doses of
fructose versus glucose for several weeks (>100 g
per day) (Stanhope and Havel 2009; Stanhope
et al. 2009). However, fructose can also speed up
hepatic glucose metabolism because fructose-1-
phosphate prevents the inhibition of hexokinase,
which leads to enhanced glycolytic disposal and
hepatic insulin sensitivity (Hawkins et al. 2002).
Indeed, some authors have reported that small
doses of fructose consumed in a meal (~20 g)
may have beneficial impact on glycemic control
(Sievenpiper et al. 2012).

The role of fructose on human metabolic reg-
ulation and disease remains highly controversial,
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with some authors proposing that dietary fructose
is intrinsically harmful for humans (Bray and
Popkin 2014), whereas others postulate that
energy overconsumption is the major factor lead-
ing to metabolic disturbances, regardless of the
energy source (Kahn and Sievenpiper 2014).

4 Fat Metabolism in Obesity

4.1 Overview of Fat Metabolism

Fats are integral components of all cellular sys-
tems and fulfill energetic, structural, and regula-
tory roles. Fatty acids and cholesterol are the most
abundant dietary lipids. Dietary fatty acids are
mostly found as TAG in WAT, which is able to
store a vast amount of energy (~7,000 kcal/kg).
Because of its ability to buffer short- and long-
term fluctuations in calorie intake, WAT is a major
evolutionary adaptation against starvation in ver-
tebrates. WAT also secretes a variety of endocrine
factors, called adipokines, which integrate whole-
body energy balance, feeding behavior, basal met-
abolic rate, insulin sensitivity, and vascular func-
tion. WAT also regulates fertility, mating
selection, offspring growth, immune function,
and even bone accrual (Norgan 1997; Trujillo
and Scherer 2006).

Fatty acid oxidation fulfills 25–45 % of daily
energy needs in humans, which in an average
healthy adult represents about 60–110 g of fat per
day. Unlike fatty acids, cholesterol cannot be oxi-
dized for energy production and can only be
converted to derivative sterols, steroids, and biliary
acids for disposal. Abnormal lipid accumulation in
non-adipose tissues, such as blood, muscle, and the
liver, is a frequent abnormality in obesity, and it is
possibly connected with the insulin resistance pre-
sent in these individuals (McGarry 2002).

Dietary TAG is hydrolyzed in the lumen of
small intestine by pancreatic lipase, and the
released fatty acids are absorbed and reesterified
by enterocytes into TAG. Small intestine incorpo-
rates this TAG and other lipid nutrients and vita-
mins in chylomicrons, which ultimately reach
systemic circulation. Upon extracellular hydroly-
sis mediated by lipoprotein lipase (LPL),

chylomicrons deliver their lipid load mostly to
the WAT, skeletal muscle, and heart. Finally, chy-
lomicron remnants are cleared by the liver. In turn,
hepatocytes incorporate TAG into secreted
VLDL, which can then be hydrolyzed by LPL
and the released FFA taken up by WAT and
muscle.

LPL is located on the endothelial surface of
WAT capillaries and is potently regulated by insu-
lin. Circulating as well as LPL-released FFA are
internalized by a number of binding proteins pre-
sent in the plasma membrane of adipocytes,
including the scavenger receptor FAT/CD36 and
members of fatty acid transport protein (FATP)
family (Hajri and Abumrad 2002). Importantly,
whereas FAT/CD36 is abundant in adipose tissue
and skeletal muscle, it is expressed at very low
levels in the adult liver. Inside the cell, fatty acids
are rapidly esterified with coenzyme A (CoA) by
the action of acyl-CoA synthetase. Acyl-CoAs are
then esterified to glycerol-3-phosphate backbone
for glycerolipid and glycerophospholipid synthe-
sis in a series of reactions catalyzed by
acyltransferases and phosphatases. In the muscle
and liver, acyl-CoAs are mainly destined to mito-
chondrial beta (β)-oxidation for ATP synthesis. In
the brown adipose tissue, acyl-CoAs are burnt out
for heat generation upon cold and/or adrenergic
stimulation (Ravussin and Galgani 2011). Fatty
acids can also be esterified to sphingosine to form
ceramide. Some of these lipids (e.g.,
diacylglycerol, DAG, and ceramide) are well-
characterized second messengers in signaling
pathways and have been consistently implicated
in the pathogenesis of insulin resistance (Coen
and Goodpaster 2012).

In fasted individuals, circulating FFA are the
main source for the synthesis of hepatic TAG, and
they constitute the bulk of fatty acids incorporated
in TAG of secreted VLDL particles (Parks
et al. 1999). In addition, low insulin-to-counter-
regulatory hormone ratio triggers intracellular
lipolysis of TAG in adipocyte lipid droplets.
FFA are released to the extracellular space and
circulate bound to plasma proteins, mostly albu-
min. Then, FFA are taken up in non-adipose tis-
sues for reesterification, oxidation, or hepatic
conversion to ketone bodies.
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At the transcriptional level, endogenous fatty
acid and TAG synthesis are mostly regulated by
sterol regulatory element-binding protein
(SREBP) 1c, carbohydrate-responsive element-
binding protein (ChREBP), and peroxisomal
proliferator-activated receptor (PPAR) gamma
(γ). Although SREBP1c, ChREBP, and PPAR
gamma (γ) have extensively overlapped control
of gene expression of enzymes involved in
lipogenesis, they diverge on their primary regu-
latory stimuli, suggesting cooperative rather
than redundant physiological roles. In fact,
while SREBP1c is regulated by insulin,
ChREBP is responsive to glucose, and PPAR
gamma (γ) appears to be directly regulated by
fatty acids.

PPAR gamma (γ) is the only lipogenic tran-
scriptional regulator that is currently targeted by
drugs approved for clinical use. In fact, thiazoli-
dinediones (pioglitazone and rosiglitazone) are
effective insulin sensitizers used in type 2 dia-
betic patients. Ironically, PPAR gamma (γ)
endogenous ligand still remains unknown. It is
possible that some of proposed lipid ligands
identified in in vitro assays (polyunsaturated
fatty acids and prostanoids) correspond to phys-
iological agonist/antagonist of this nuclear recep-
tor; however, the support for this assertion is
circumstantial. By contrast, 1-palmitoyl-2-
oleoyl-sn-glycerol-3-phosphocholine was
recently identified as the endogenous ligand of
PPAR alpha (α) isoform in the liver of mouse
(Chakravarthy et al. 2009).

Whereas all these three transcriptional regula-
tors are expressed in the human adipose tissue,
only SREBP1c and ChREBP are present in the
normal liver. By contrast, upon steatotic condi-
tions, hepatic PPAR gamma (γ) is increased at the
mRNA and protein level (Browning and Horton
2004). It is plausible that PPAR gamma (γ)
ectopic expression further contributes to the
excessive TAG accumulation and abnormal gene
expression observed in nonalcoholic fatty liver
disease (Gavrilova et al. 2003; Matsusue
et al. 2003). The extent at which these metabolic
pathways proceed will determine tissue lipid bal-
ance and insulin action on critical tissues such as
the liver and skeletal muscle.

4.2 Fatty Acid Uptake

After extracellular LPL-mediated hydrolysis of
TAG, resulting FFA are taken up by tissues
through FATPs that facilitate fatty acid influx
from extra- to intracellular compartment (Bonen
et al. 2007). Then, fatty acids bind to cytosolic
fatty acid-binding proteins for intracellular trans-
port and utilization (Glatz et al. 2010). At the
physiological level, both LPL and FAT/CD36
are critical determinants of fatty acid uptake.
Mice with specific overexpression of LPL in the
skeletal muscle show reduced levels of circulat-
ing TAG along with increased muscle fatty acid
uptake and augmented peroxisomal and mito-
chondrial proliferation. Importantly, these meta-
bolic changes were accompanied by progressive
myopathy (Levak-Frank et al. 1995), indicating
cellular toxicity triggered by excessive tissue
lipid accumulation. Although FFA (Levak-
Frank et al. 1995) and TAG (Hoefler
et al. 1997) levels were increased in skeletal
muscle of these mice, the effect of muscle LPL
overexpression on insulin resistance remains
uncertain as animals with different genetic back-
grounds have divergent phenotypes (Jensen
et al. 1997; Ferreira et al. 2001; Voshol
et al. 2001). In addition, specific liver or muscle
LPL overexpression led to elevated intrahepatic
or intramuscular TAG contents as well as accu-
mulation of long-chain acyl-CoAs, DAG, and
ceramides. In addition, these three lipid species
were directly correlated with tissue-specific insu-
lin resistance (Kim et al. 2001).

FAT/CD36 may also determine tissue lipid
load as suggested from a mouse knockout model
(Hajri and Abumrad 2002), which shows reduced
VLDL clearance and muscle fatty acid uptake
while increased plasma TAG levels. Noteworthy,
FAT/CD36 deficiency determined reduced muscle
TAG content and increased DAG-to-TAG ratio
(Coburn et al. 2000; Goudriaan et al. 2005).
Such changes were associated with improved
skeletal muscle insulin sensitivity but, unexpect-
edly, impaired hepatic insulin sensitivity
(Goudriaan et al. 2003). Conversely, skeletal
muscle-specific FAT/CD36 overexpression ele-
vated plasma glucose and insulin concentrations,
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which suggests impaired insulin-dependent glu-
cose homeostasis (Ibrahimi et al. 1999).

In humans, the assessment of tissue fatty acid
uptake has been restricted to skeletal muscle and
adipose tissues. In vitro determinations performed
in giant sarcolemmal vesicles have suggested that
obese and type 2 diabetic patients have increased
fatty acid uptake as well as increased membrane-
associated FAT/CD36 and intramuscular TAG
content (Bonen et al. 2004). However, gene
expression analysis of muscle FATP has showed
inconsistent results in both lean and obese indi-
viduals (Simoneau et al. 1999; Bonen et al. 2004;
Pelsers et al. 2007). On the other hand, in vivo
studies found similar skeletal muscle fatty acid
uptake rate in fasted and insulin-stimulated lean
and obese subjects (Kelley et al. 1999a).

4.3 Fatty Acid Oxidation

Fatty acids are the main metabolic fuel for oxida-
tion in the transition from fed to fasted condition.
Fatty acid oxidation is regulated at three enzyme-
mediated steps: (i) fatty acid activation to acyl-
CoA in cytosol, (ii) acyl-carnitine translocation to
the mitochondrial matrix (catalyzed by carnitine
palmitoyltransferase [CPT] 1), and (iii) mito-
chondrial beta (β)-oxidation through four sequen-
tial enzymatic reactions.

Impaired fatty acid oxidation attributed to
mitochondrial abnormalities has been postulated
as a major driver of muscle and hepatic fat accu-
mulation leading to insulin resistance (Kelley and
Mandarino 2000; Shulman 2014). In line with this
hypothesis, Kim et al. found reduced palmitate
(CPT1-dependent) and palmitoyl-carnitine
(CPT1-independent) oxidation as well as lower
CPT1 activity in muscle biopsies from obese ver-
sus lean donors (Kim et al. 2000). In vivo human
studies have only partially corroborated this find-
ing (Galgani et al. 2008b). On the other hand,
experimental inhibition of in vivo fatty acid oxi-
dation through administration of etomoxir (a drug
that decreases CPT1 activity) led to expectedly
higher glucose-to-fat oxidation ratio, which was
accompanied by higher sarcolemmal GLUT4

content and lower circulating glucose, indicative
of enhanced insulin sensitivity. In turn, etomoxir-
treated mice had increased muscle TAG and DAG
content in parallel with improved insulin-
stimulated GLUT4 translocation (Timmers
et al. 2012). Taken together, these findings suggest
that reduced fat oxidation does not necessarily
impair insulin sensitivity by itself.

4.4 Fatty Acid Turnover

Fatty acids are stored as TAG in lipid droplets,
which are dynamic structures that appear to regu-
late intracellular fatty acid trafficking (Walther
and Farese 2012). Thus, the signaling cascade
mediating lipolysis converges in the elevation of
intracellular cAMP and activation of protein
kinase A. This enzyme phosphorylates lipid
droplet-associated protein perilipin to allow adi-
pose TAG lipase (ATGL, also known as patatin-
like phospholipase domain-containing protein
2 and desnutrin) to physically interact with the
lipid droplet surface and hydrolyze TAG in the
sn-1 position (Zimmermann et al. 2004).
Resulting sn-2,3 DAG is subsequently hydro-
lyzed by hormone-sensitive lipase and monoacyl-
glycerol lipase (Walther and Farese 2012; Badin
et al. 2013).

The balance between glycerolipid synthesis
and intracellular lipolysis ultimately determines
tissue lipid balance as well as the synthesis of
lipid intermediates (Badin et al. 2013). Thus, the
increase in lipolytic rates led to higher fatty acid
availability as well as de novo ceramide synthesis
in a muscle cell line overexpressing ATGL (Liu
et al. 2007). Alternatively, incomplete TAG
hydrolysis might also favor DAG accumulation
(Badin et al. 2011).

The relevance of fatty acid turnover is
highlighted by studies showing that whole-body
adiposity associates directly with intramyo-
cellular lipid content, but not with muscle content
of DAG or ceramide (Moro et al. 2009). Thus,
muscle-specific lipid metabolism is a determinant
of muscle fatty acid turnover that is independent
of total body adiposity level. In this regard, the

338 J.E. Galgani et al.



DAG-to-TAG hydrolase activity ratio (an index of
incomplete TAG hydrolysis) seems to be lower in
obese individuals, which is accompanied by
increased muscle ceramide and DAG content as
well as impaired insulin sensitivity (Itani
et al. 2002; Moro et al. 2009).

4.5 Consequences of Altered Tissue
Lipid Balance

Obesity is characterized by increased WAT mass at
the subcutaneous and intra-abdominal level. As
mentioned above, obese people commonly have
augmented tissue lipid accumulation in the liver,
skeletal muscle, and heart (Shulman 2014). It
appears that elevated fat content in ectopic versus
eutopic (i.e., WAT) location is more deleterious for
whole-body and tissue metabolic homeostasis. In
fact, clinical and experimental observations suggest
that excessive fat accumulation in non-adipose cells
is causative of insulin resistance in obese individ-
uals (Krssak et al. 1999; McGarry 2002; Virtue and
Vidal-Puig 2008; Moro et al. 2009). Upon this
hypothesis, chronic caloric overload results in a
series of pathologic changes in the WAT, including
exaggerated hypertrophy of adipocytes, activated
immune cells infiltration, abnormal vascular sup-
ply, and fibrotic extracellular matrix (Rutkowski
et al. 2015). This pathologically remodeled adipose
tissue lacks the ability to fully expand and thus
leaks fatty acids toward cells and tissues that are
not adapted to store massive amounts of these mol-
ecules (Rutkowski et al. 2015).

In support of this hypothesis, type 2 diabetic
patients have increased intramyocellular TAG
content (Anastasiou et al. 2009; Nielsen
et al. 2010) as well as postprandial hepatic and
skeletal muscle fat storage (Ravikumar
et al. 2005). These findings are in line with the
observation that intrahepatic fat correlates with
impaired glucose tolerance, systemic insulin resis-
tance, and increased circulating levels of enlarged
VLDL particles (Despres 1998; Adiels et al. 2006;
Fabbrini et al. 2009).

Interventions that decrease ectopic tissue lipid
load are usually associated with improved insulin

sensitivity, further supporting the role of exces-
sive lipid levels in insulin resistance pathogenesis.
For instance, thiazolidinediones reduce plasma
FFA concentration and liver TAG content while
enhancing insulin-stimulated glucose disposal
rate in type 2 diabetic subjects (Mayerson
et al. 2002; Promrat et al. 2004). Importantly, the
role of exercise, a well-established insulin-sensi-
tizing tool, on intramuscular TAG remains con-
troversial. Some studies have shown that physical
training decreases intramyocellular TAG (Berg-
man et al. 1999), whereas others found the oppo-
site result (Hoppeler et al. 1985). What seems to
be consistent is that the increased intramyocellular
lipid content normally observed in endurance-
trained athletes does not associate with impaired
muscle insulin sensitivity, and this phenomenon
has been referred as the athlete’s paradox
(Goodpaster et al. 2001).

Ectopic fat accumulation is also instrumental
to explain why lipodystrophic patients, who have
severe paucity of adipose tissue mass, show
severe insulin resistance. These individuals are
characterized by substantial accumulation of
lipids in the liver and skeletal muscle (Gan
et al. 2002; Simha et al. 2003). Remarkably,
leptin, the most potent insulin sensitizer for
patients with generalized lipodystrophy, also
decreases lipid overload in the liver and skeletal
muscle (Oral et al. 2002; Simha et al. 2003).

5 Protein Metabolism in Obesity

5.1 Overview of Protein
Metabolism

Proteins are heterogeneous macromolecules with
a broad range of molecular mass, structure, and
functions. All the biological properties of proteins
are determined by their unique sequence of amino
acids. Amino acids are organic structures
containing at least one atom of nitrogen. Essential
amino acids, i.e., those that cannot be synthesized
in human cells, and nitrogen must be obtained
from diet to match amino acid requirement for
protein synthesis.
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Dietary amino acids as well as those derived
from endogenous protein hydrolysis are signifi-
cant energy substrates for humans, normally
corresponding to 10–20 % (70–100 g per day) of
total energy needs. As a by-product of amino acid
oxidation, nitrogen is lost in urine, mainly in the
form of urea, implying that amino acids undergo-
ing oxidation must be replaced by dietary amino
acids. Thus, the balance between protein degrada-
tion (mainly assessed by nitrogen loss in urine),
synthesis, and intake is critical for preserving
whole-body lean mass.

Dietary amino acids reach the liver via portal
vein, and a significant proportion is retained by
hepatic tissue. Interestingly, branched-chain
amino acids (BCAA), i.e., valine, leucine, and
isoleucine, are poorly metabolized by hepatocytes
and are preferentially channeled to skeletal muscle
for energy production as well as conversion into
alanine and glutamine. These two latter amino
acids are then released from muscle and taken up
by the liver and other tissues for further utilization.

Amino acid turnover is dependent on the level
of energy sufficiency that determines the extent at
which amino acids are spared as energy source
including the balance between protein synthesis
and degradation. Insulin is a key regulator of this
balance, although its effect depends on circulating
insulin concentration. Thus, low circulating insu-
lin concentration (similar to observed in insulin-
sensitive fasted individuals) in the presence of
elevated amino acid supply stimulates muscle
protein synthesis without affecting skeletal mus-
cle protein breakdown (Greenhaff et al. 2008).
However, increasing blood insulin concentration
does not further enhance protein synthesis, while
it strongly suppresses protein degradation
(Greenhaff et al. 2008).

At the molecular level, insulin increases AKT
(also referred as PKB) activity, which then
relieves the inhibition over mammalian target of
rapamycin (mTOR). As a consequence, the activ-
ity of eukaryotic initiation factor-binding protein
1 (4E-BP1) and ribosomal protein S6 kinase
(p70S6K) increases leading ultimately to higher
protein synthesis. Insulin also decreases protein
degradation by inhibiting proteasome activity
(Chondrogianni et al. 2014).

5.2 Protein Turnover in Obesity

Theoretically, obesity-related hyperinsulinemia
should promote protein accretion unless defective
insulin action also extends to amino acid utiliza-
tion. However, empirical demonstration of this
proposition has resulted inconclusive. In fact,
many studies have been carried out to compare
whole-body and tissue-specific amino acid metab-
olism between lean and obese individuals. Some
of these studies found that, in fasting condition,
obese patients have increased protein degradation
in comparison with lean individuals (Nair
et al. 1983; Bruce et al. 1990; Welle et al. 1992;
Chevalier et al. 2005); however, several other
studies did not confirm that finding (Luzi
et al. 1996; Solini et al. 1997; Guillet
et al. 2009). Upon insulin stimulation, obese sub-
jects have either impaired (Jensen and Haymond
1991; Luzi et al. 1996) or unchanged (Caballero
and Wurtman 1991; Welle et al. 1994; Solini
et al. 1997; Chevalier et al. 2005) suppression of
protein degradation.

Regarding protein synthesis, similar controver-
sial results also exist (Luzi et al. 1996; Solini
et al. 1997; Chevalier et al. 2005, 2006; Guillet
et al. 2009). Therefore, it is uncertain what role
plays insulin resistance in amino acid and
protein metabolism. Differences in study design
(e.g., adjustment in protein kinetic by body size,
relative versus absolute expression, insulin dose,
duration, etc.) as well as in subject characteristics
including body fat distribution (Jensen and
Haymond 1991; Solini et al. 1997) can partly
explain the lack of consistency across studies.
Alternatively, insulin regulation of glucose and
amino acid metabolism may not lie on the same
molecular pathways or insulin dose-response
kinetic.

5.3 Branched-Chain Amino Acids
(BCAA) and Obesity

For over 50 years, it has been known that circu-
lating BCAA concentration is elevated in human
obesity (Newgard 2012). Even more, there is evi-
dence suggesting that increased blood BCAA is
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an independent risk factor for insulin resistance
(McCormack et al. 2013) and type 2 diabetes
(Wang et al. 2011); however, a mechanistic expla-
nation of these findings is elusive (Lynch
and Adams 2014). Importantly, Everman
et al. recently challenged the notion that BCAA
may actually be a causal determinant of insulin
resistance. Thus, they found that a short-term
infusion of BCAA in healthy individuals did not
change insulin sensitivity (Everman et al. 2015).
Still the question why blood BCAA is increased in
obesity and what is its pathophysiological rele-
vance remain unsolved. One possible explanation
comes from the fact that most of dietary BCAA
reach peripheral circulation, which prompts the
idea that increased protein intake in obese indi-
viduals may lead to higher circulating BCAA.
Indeed, there is a tight direct correlation between
BCAA intake and blood BCAA concentration
(Meguid et al. 1986a, b).

Impaired tissue clearance of circulating BCAA
might also play a role. In this regard, decreased
content of enzymes involved in the oxidation of
BCAA in skeletal muscle biopsies of obese
donors has been reported at the protein (Lefort
et al. 2010) and the mRNA levels (Lackey
et al. 2013). Furthermore, the content of mito-
chondrial BCAA aminotransferase and
branched-chain keto acid dehydrogenase
subunit E1 (two important catabolic enzymes of
BCAA) was increased after gastric bypass-
induced weight loss in the WAT of obese individ-
uals, and this was paralleled by a reduction in
circulating BCAA concentration (She
et al. 2007). Although the possible contribution
of WAT to whole-body BCAA metabolism seems
minor (Lackey et al. 2013), these studies suggest
that high blood BCAA concentration in obesity
may not just be a consequence of higher food/
protein intake.

6 Concluding Remarks

Obesity is the result of a chronic mismatch
between energy intake and expenditure. This
unbalance challenges the capacity of the body to
properly handle and dispose glucose and lipid

macronutrients. Over the time, positive energy
balance leads to a new steady state, set at a higher
energy flux levels, in which macronutrient over-
flowmatches macronutrient oxidation.Why when
individuals reach this new steady state cannot
resolve the metabolic disturbance associated
with excessive adiposity remains unknown.

It is possible that abnormally high steady-state
energy flux, attributed to increased body size
rather than to elevated physical activity, might
itself determine metabolic stress. On the other
hand, tissue-specific metabolic disturbances
may be undetectable when a whole-body
approach is utilized. On this regard, the fact that
whole-body macronutrient oxidative and
non-oxidative disposal under physiological con-
ditions (e.g., in the transition from fasting to
feeding conditions or over a 24-h period) is fairly
similar in lean and obese individuals may
underscore subtle tissue-specific macronutrient
unbalances.

It is very likely that our common notion of
obesity as a single metabolic entity may be
wrong. In fact, it has lately been described two
types of obese individuals: the metabolically
healthy and unhealthy obese (Samocha-Bonet
et al. 2014). The identification of tissue, cellular,
and molecular determinants of metabolic adapta-
tion to high-energy fluxes will require the expan-
sion of our capabilities to study in vivo tissue
metabolic dynamics. It will be critical to identify
the key biological features that promote metabolic
stress during overfeeding and weight gain and
understand the mechanisms underlying
interindividual variation in the adaptation to over-
feeding. Answering these questions should accel-
erate our comprehension of obesity-related
metabolic disorders.

References

A Report of the Panel on Macronutrients, S. o. U. R. L. o.
N. a. I. a. U. o. D. R. I.; the Standing Committee on the
Scientific Evaluation of Dietary Reference Intakes, ed.
Dietary Reference Intakes for Energy, Carbohydrate,
Fiber, Fat, Fatty Acids, Cholesterol, Protein, and
Amino Acids. Washington, DC: The National Acade-
mies Press; 2002.

19 Carbohydrate, Fat, and Protein Metabolism in Obesity 341



Aarsland A, Wolfe RR. Hepatic secretion of VLDL fatty
acids during stimulated lipogenesis in men. J Lipid Res.
1998;39(6):1280-1286.

Abbott WG, Howard BV, et al. Short-term energy balance:
relationship with protein, carbohydrate, and fat bal-
ances. Am J Physiol. 1988;255(3 Pt 1):E332-E337.

Acheson KJ, Schutz Y, et al. Glycogen storage capacity
and de novo lipogenesis during massive carbohydrate
overfeeding in man. Am J Clin Nutr. 1988;48(2):
240-247.

Adeva-Andany M, Lopez-Ojen M, et al. Comprehensive
review on lactate metabolism in human health. Mito-
chondrion. 2014;17:76-100.

Adiels M, Taskinen MR, et al. Overproduction of large
VLDL particles is driven by increased liver fat content
in man. Diabetologia. 2006;49(4):755-765.

Allenberg K, Nilsson M, et al. Glycogen and lactate syn-
thetic pathways in human skeletal muscle in relation to
obesity, weight reduction and physical training. Eur J
Clin Invest. 1988;18(3):250-255.

Anastasiou CA, Kavouras SA, et al. Diabetes mellitus is
associated with increased intramyocellular triglyceride,
but not diglyceride, content in obese humans. Metabo-
lism. 2009;58(11):1636-1642.

Badin PM, Louche K, et al. Altered skeletal muscle lipase
expression and activity contribute to insulin resistance
in humans. Diabetes. 2011;60(6):1734-1742.

Badin PM, Langin D, et al. Dynamics of skeletal muscle
lipid pools. Trends Endocrinol Metab. 2013;24(12):
607-615.

Baron AD, Brechtel G, et al. Rates and tissue sites of non-
insulin- and insulin-mediated glucose uptake in
humans. Am J Physiol. 1988;255(6 Pt 1):E769-E774.

Baron AD, Laakso M, et al. Reduced postprandial skeletal
muscle blood flow contributes to glucose intolerance in
human obesity. J Clin Endocrinol Metab. 1990;70(6):
1525-1533.

Bergman BC, Butterfield GE, et al. Evaluation of exercise
and training on muscle lipid metabolism. Am J Physiol.
1999;276(1 Pt 1):E106-E117.

Bonadonna RC, Groop L, et al. Obesity and insulin resis-
tance in humans: a dose–response study. Metabolism.
1990;39(5):452-459.

Bonen A, Parolin ML, et al. Triacylglycerol accumulation
in human obesity and type 2 diabetes is associated with
increased rates of skeletal muscle fatty acid transport
and increased sarcolemmal FAT/CD36. FASEB J.
2004;18(10):1144-1146.

Bonen A, Chabowski A, et al. Is membrane transport of
FFA mediated by lipid, protein, or both? Mechanisms
and regulation of protein-mediated cellular fatty acid
uptake: molecular, biochemical, and physiological evi-
dence. Physiology (Bethesda). 2007;22:15-29.

Bonuccelli S, Muscelli E, et al. Improved tolerance to
sequential glucose loading (Staub-Traugott effect):
size and mechanisms. Am J Physiol Endocrinol
Metab. 2009;297(2):E532-E537.

Bosy-Westphal A, Kossel E, et al. Contribution of individ-
ual organ mass loss to weight loss-associated decline in

resting energy expenditure. Am J Clin Nutr. 2009;
90(4):993-1001.

Bray GA, Popkin BM. Dietary sugar and body weight:
have we reached a crisis in the epidemic of obesity
and diabetes? Health be damned! Pour on the sugar.
Diabetes Care. 2014;37(4):950-956.

Brosnan JT. Comments on metabolic needs for glucose and
the role of gluconeogenesis. Eur J Clin Nutr. 1999;53
(Suppl 1):S107-S111.

Browning JD, Horton JD. Molecular mediators of hepatic
steatosis and liver injury. J Clin Invest. 2004;114(2):
147-152.

Bruce AC, McNurlan MA, et al. Nutrient oxidation pat-
terns and protein metabolism in lean and obese sub-
jects. Int J Obes. 1990;14(7):631-646.

Caballero B, Wurtman RJ. Differential effects of insulin
resistance on leucine and glucose kinetics in obesity.
Metabolism. 1991;40(1):51-58.

Cahill GF Jr. Fuel metabolism in starvation. Annu Rev
Nutr. 2006;26:1-22.

Chakravarthy MV, Lodhi IJ, et al. Identification of a phys-
iologically relevant endogenous ligand for PPARalpha
in liver. Cell. 2009;138(3):476-488.

Chevalier S, Marliss EB, et al. Whole-body protein ana-
bolic response is resistant to the action of insulin in
obese women. Am J Clin Nutr. 2005;82(2):355-365.

Chevalier S, Burgess SC, et al. The greater contribution of
gluconeogenesis to glucose production in obesity is
related to increased whole-body protein catabolism.
Diabetes. 2006;55(3):675-681.

Chondrogianni N, Petropoulos I, et al. Protein damage,
repair and proteolysis. Mol Aspects Med. 2014;35:
1-71.

Cline GW, Petersen KF, et al. Impaired glucose transport as
a cause of decreased insulin-stimulated muscle glyco-
gen synthesis in type 2 diabetes. N Engl J Med.
1999;341(4):240-246.

Coburn CT, Knapp FF Jr, et al. Defective uptake and
utilization of long chain fatty acids in muscle and
adipose tissues of CD36 knockout mice. J Biol Chem.
2000;275(42):32523-32529.

Coen PM, Goodpaster BH. Role of intramyocelluar lipids
in human health. Trends Endocrinol Metab. 2012;23
(8):391-398.

Despres JP. The insulin resistance-dyslipidemic syndrome
of visceral obesity: effect on patients’ risk. Obes Res.
1998;6(Suppl 1):8S-17S.

Dohm GL, Tapscott EB, et al. An in vitro human muscle
preparation suitable for metabolic studies. Decreased
insulin stimulation of glucose transport in muscle from
morbidly obese and diabetic subjects. J Clin Invest.
1988;82(2):486-494.

Dunn JP, Abumrad NN, et al. Hepatic and peripheral insulin
sensitivity and diabetes remission at 1 month after Roux-
en-Y gastric bypass surgery in patients randomized to
omentectomy. Diabetes Care. 2012;35(1):137-142.

Egan B, Zierath JR. Exercise metabolism and the molecu-
lar regulation of skeletal muscle adaptation. Cell
Metab. 2013;17(2):162-184.

342 J.E. Galgani et al.



Everman S, Mandarino LJ, et al. Effects of acute exposure
to increased plasma branched-chain amino acid con-
centrations on insulin-mediated plasma glucose turn-
over in healthy young subjects. PLoS One. 2015;10(3):
e0120049.

Fabbrini E, Magkos F, et al. Intrahepatic fat, not visceral
fat, is linked with metabolic complications of obesity.
Proc Natl Acad Sci U S A. 2009;106(36):15430-15435.

Fabbrini E, Tamboli RA, et al. Surgical removal of omental
fat does not improve insulin sensitivity and cardiovas-
cular risk factors in obese adults. Gastroenterology.
2010;139(2):448-455.

Ferrannini E, Bjorkman O, et al. The disposal of an oral
glucose load in healthy subjects. A quantitative study.
Diabetes. 1985;34(6):580-588.

Ferreira LD, Pulawa LK, et al. Overexpressing human
lipoprotein lipase in mouse skeletal muscle is associ-
ated with insulin resistance. Diabetes. 2001;50
(5):1064-1068.

Frayn KN. Adipose tissue as a buffer for daily lipid flux.
Diabetologia. 2002;45(9):1201-1210.

Galgani JE, Ravussin E. Postprandial whole-body glycol-
ysis is similar in insulin-resistant and insulin-sensitive
non-diabetic humans. Diabetologia. 2012;55(3):
737-742.

Galgani JE, Heilbronn LK, et al. Metabolic flexibility in
response to glucose is not impaired in people with type
2 diabetes after controlling for glucose disposal rate.
Diabetes. 2008a;57(4):841-845.

Galgani JE, Moro C, et al. Metabolic flexibility and insulin
resistance. Am J Physiol Endocrinol Metab. 2008b;295
(5):E1009-E1017.

Galgani JE, Vasquez K, et al. Enhanced skeletal muscle
lipid oxidative efficiency in insulin-resistant vs insulin-
sensitive nondiabetic, nonobese humans. J Clin
Endocrinol Metab. 2013;98(4):E646-E653.

Gan SK, Samaras K, et al. Altered myocellular and abdom-
inal fat partitioning predict disturbance in insulin action
in HIV protease inhibitor-related lipodystrophy. Diabe-
tes. 2002;51(11):3163-3169.

GavrilovaO,HaluzikM, et al. Liver peroxisome proliferator-
activated receptor gamma contributes to hepatic steatosis,
triglyceride clearance, and regulation of body fat mass. J
Biol Chem. 2003;278(36):34268-34276.

Glatz JF, Luiken JJ, et al. Membrane fatty acid transporters
as regulators of lipid metabolism: implications for met-
abolic disease. Physiol Rev. 2010;90(1):367-417.

Goldsmith R, Joanisse DR, et al. Effects of experimental
weight perturbation on skeletal muscle work efficiency,
fuel utilization, and biochemistry in human subjects.
Am J Physiol Regul Integr Comp Physiol. 2010;
298(1):R79-R88.

Goodpaster BH, He J, et al. Skeletal muscle lipid content
and insulin resistance: evidence for a paradox in endur-
ance-trained athletes. J Clin Endocrinol Metab.
2001;86(12):5755-5761.

Goodyear LJ, Giorgino F, et al. Insulin receptor phosphor-
ylation, insulin receptor substrate-1 phosphorylation,
and phosphatidylinositol 3-kinase activity are

decreased in intact skeletal muscle strips from obese
subjects. J Clin Invest. 1995;95(5):2195-2204.

Goudriaan JR, Dahlmans VE, et al. CD36 deficiency
increases insulin sensitivity in muscle, but induces
insulin resistance in the liver in mice. J Lipid Res.
2003;44(12):2270-2277.

Goudriaan JR, den Boer MA, et al. CD36 deficiency in
mice impairs lipoprotein lipase-mediated triglyceride
clearance. J Lipid Res. 2005;46(10):2175-2181.

Greenhaff PL, Karagounis LG, et al. Disassociation
between the effects of amino acids and insulin on
signaling, ubiquitin ligases, and protein turnover in
human muscle. Am J Physiol Endocrinol Metab.
2008;295(3):E595-E604.

Guillet C, Delcourt I, et al. Changes in basal and insulin
and amino acid response of whole body and skeletal
muscle proteins in obese men. J Clin Endocrinol
Metab. 2009;94(8):3044-3050.

Guo ZK, Cella LK, et al. De novo lipogenesis in adipose
tissue of lean and obese women: application of deuter-
ated water and isotope ratio mass spectrometry. Int J
Obes Relat Metab Disord. 2000;24(7):932-937.

Hajri T, Abumrad NA. Fatty acid transport across mem-
branes: relevance to nutrition and metabolic pathology.
Annu Rev Nutr. 2002;22:383-415.

Hawkins M, Gabriely I, et al. Fructose improves the ability
of hyperglycemia per se to regulate glucose production
in type 2 diabetes. Diabetes. 2002;51(3):606-614.

Hellerstein MK, Schwarz JM, et al. Regulation of hepatic
de novo lipogenesis in humans. Annu Rev Nutr.
1996;16:523-557.

Hill JO, Peters JC, et al. Nutrient balance in humans:
effects of diet composition. Am J Clin Nutr. 1991;
54(1):10-17.

Hoefler G, Noehammer C, et al. Muscle-specific
overexpression of human lipoprotein lipase in mice
causes increased intracellular free fatty acids and induc-
tion of peroxisomal enzymes. Biochimie. 1997;79
(2–3):163-168.

Hojlund K, Birk JB, et al. Dysregulation of glycogen
synthase COOH- and NH2-terminal phosphorylation
by insulin in obesity and type 2 diabetes mellitus. J
Clin Endocrinol Metab. 2009;94(11):4547-4556.

Hoppeler H, Howald H, et al. Endurance training in
humans: aerobic capacity and structure of skeletal mus-
cle. J Appl Physiol. 1985;59(2):320-327.

Ibrahimi A, Bonen A, et al. Muscle-specific
overexpression of FAT/CD36 enhances fatty acid oxi-
dation by contracting muscle, reduces plasma triglyc-
erides and fatty acids, and increases plasma glucose and
insulin. J Biol Chem. 1999;274(38):26761-26766.

Itani SI, Ruderman NB, et al. Lipid-induced insulin resis-
tance in human muscle is associated with changes in
diacylglycerol, protein kinase C, and IkappaB-alpha.
Diabetes. 2002;51(7):2005-2011.

Javed F, He Q, et al. Brain and high metabolic rate organ
mass: contributions to resting energy expenditure
beyond fat-free mass. Am J Clin Nutr. 2010;91(4):
907-912.

19 Carbohydrate, Fat, and Protein Metabolism in Obesity 343



JensenMD, HaymondMW. Protein metabolism in obesity:
effects of body fat distribution and hyperinsulinemia on
leucine turnover. Am J Clin Nutr. 1991;53(1):172-176.

Jensen DR, Schlaepfer IR, et al. Prevention of diet-induced
obesity in transgenic mice overexpressing skeletal
muscle lipoprotein lipase. Am J Physiol. 1997;273(2
Pt 2):R683-R689.

Jing E, O’Neill BT, et al. Sirt3 regulates metabolic flexi-
bility of skeletal muscle through reversible enzymatic
deacetylation. Diabetes. 2013;62(10):3404-3417.

Kahn R, Sievenpiper JL. Response to comment on Kahn
and Sievenpiper. Dietary sugar and body weight: have
we reached a crisis in the epidemic of obesity and
diabetes?We have, but the pox on sugar is overwrought
and overworked. Diabetes Care 2014;37:957-962. Dia-
betes Care 37(8):e189.

Kelley DE,Mandarino LJ. Fuel selection in human skeletal
muscle in insulin resistance: a reexamination. Diabetes.
2000;49(5):677-683.

Kelley DE, Goodpaster B, et al. Skeletal muscle fatty acid
metabolism in association with insulin resistance, obe-
sity, and weight loss. Am J Physiol. 1999a;277(6 Pt 1):
E1130-E1141.

Kelley DE, Williams KV, et al. Insulin regulation of glu-
cose transport and phosphorylation in skeletal muscle
assessed by PET. Am J Physiol. 1999b;277(2 Pt 1):
E361-E369.

Kim JY, Hickner RC, et al. Lipid oxidation is reduced in
obese human skeletal muscle. Am J Physiol Endocrinol
Metab. 2000;279(5):E1039-E1044.

Kim JK, Fillmore JJ, et al. Tissue-specific overexpression
of lipoprotein lipase causes tissue-specific insulin resis-
tance. Proc Natl Acad Sci U S A. 2001;98(13):
7522-7527.

Krssak M, Falk Petersen K, et al. Intramyocellular lipid
concentrations are correlated with insulin sensitivity in
humans: a 1H NMR spectroscopy study. Diabetologia.
1999;42(1):113-116.

Laakso M, Edelman SV, et al. Kinetics of in vivo muscle
insulin-mediated glucose uptake in human obesity.
Diabetes. 1990;39(8):965-974.

Lackey DE, Lynch CJ, et al. Regulation of adipose
branched-chain amino acid catabolism enzyme expres-
sion and cross-adipose amino acid flux in human obe-
sity. Am J Physiol Endocrinol Metab. 2013;304(11):
E1175-E1187.

Lefort N, Glancy B, et al. Increased reactive oxygen spe-
cies production and lower abundance of complex I
subunits and carnitine palmitoyltransferase 1B protein
despite normal mitochondrial respiration in insulin-
resistant human skeletal muscle. Diabetes. 2010;59
(10):2444-2452.

Levak-Frank S, Radner H, et al. Muscle-specific
overexpression of lipoprotein lipase causes a severe
myopathy characterized by proliferation of mitochon-
dria and peroxisomes in transgenic mice. J Clin Invest.
1995;96(2):976-986.

Lima MM, Pareja JC, et al. Visceral fat resection in
humans: effect on insulin sensitivity, beta-cell function,

adipokines, and inflammatory markers. Obesity (Silver
Spring). 2013;21(3):E182-E189.

Liu L, Zhang Y, et al. Upregulation of myocellular DGAT1
augments triglyceride synthesis in skeletal muscle and
protects against fat-induced insulin resistance. J Clin
Invest. 2007;117(6):1679-1689.

Lovejoy J, Mellen B, et al. Lactate generation following
glucose ingestion: relation to obesity, carbohydrate
tolerance and insulin sensitivity. Int J Obes. 1990;
14(10):843-855.

Lovejoy J, Newby FD, et al. Insulin resistance in obesity is
associated with elevated basal lactate levels and dimin-
ished lactate appearance following intravenous glucose
and insulin. Metabolism. 1992;41(1):22-27.

Luzi L, Castellino P, et al. Insulin and hyperaminoacidemia
regulate by a different mechanism leucine turnover and
oxidation in obesity. Am J Physiol. 1996;270(2 Pt 1):
E273-E281.

Lynch CJ, Adams SH. Branched-chain amino acids in
metabolic signalling and insulin resistance. Nat Rev
Endocrinol. 2014;10(12):723-736.

Matsusue K, Haluzik M, et al. Liver-specific disruption of
PPARgamma in leptin-deficient mice improves fatty
liver but aggravates diabetic phenotypes. J Clin Invest.
2003;111(5):737-747.

Mayerson AB, Hundal RS, et al. The effects of
rosiglitazone on insulin sensitivity, lipolysis, and
hepatic and skeletal muscle triglyceride content in
patients with type 2 diabetes. Diabetes. 2002;51(3):
797-802.

McCormack SE, Shaham O, et al. Circulating branched-
chain amino acid concentrations are associated with
obesity and future insulin resistance in children and
adolescents. Pediatr Obes. 2013;8(1):52-61.

McDevitt RM, Poppitt SD, et al. Macronutrient disposal
during controlled overfeeding with glucose, fructose,
sucrose, or fat in lean and obese women. Am J Clin
Nutr. 2000;72(2):369-377.

McDevitt RM, Bott SJ, et al. De novo lipogenesis during
controlled overfeeding with sucrose or glucose in
lean and obese women. Am J Clin Nutr. 2001;74(6):
737-746.

McGarry JD. Banting lecture 2001: dysregulation of fatty
acid metabolism in the etiology of type 2 diabetes.
Diabetes. 2002;51(1):7-18.

Meguid MM, Matthews DE, et al. Leucine kinetics at
graded leucine intakes in young men. Am J Clin Nutr.
1986a;43(5):770-780.

Meguid MM,Matthews DE, et al. Valine kinetics at graded
valine intakes in young men. Am J Clin Nutr. 1986b;43
(5):781-786.

Minehira K, Vega N, et al. Effect of carbohydrate over-
feeding on whole body macronutrient metabolism and
expression of lipogenic enzymes in adipose tissue of
lean and overweight humans. Int J Obes Relat Metab
Disord. 2004;28(10):1291-1298.

Mizgier ML, Casas M, et al. Potential role of skeletal
muscle glucose metabolism on the regulation of insulin
secretion. Obes Rev. 2014;15(7):587-597.

344 J.E. Galgani et al.



Moro C, Galgani JE, et al. Influence of gender, obesity, and
muscle lipase activity on intramyocellular lipids in
sedentary individuals. J Clin Endocrinol Metab.
2009;94(9):3440-3447.

Muller MJ, Langemann D, et al. Effect of constitution on
mass of individual organs and their association with
metabolic rate in humans–a detailed view on allometric
scaling. PLoS One. 2011;6(7):e22732.

Muller MJ, Wang Z, et al. Advances in the understanding
of specific metabolic rates of major organs and tissues
in humans. Curr Opin Clin Nutr Metab Care. 2013;
16(5):501-508.

Muoio DM. Metabolic inflexibility: when mitochondrial
indecision leads to metabolic gridlock. Cell. 2014;159
(6):1253-1262.

Nair KS, Garrow JS, et al. Effect of poor diabetic control
and obesity on whole body protein metabolism in man.
Diabetologia. 1983;25(5):400-403.

Newgard CB. Interplay between lipids and branched-chain
amino acids in development of insulin resistance. Cell
Metab. 2012;15(5):606-614.

Nielsen S, Guo Z, et al. Splanchnic lipolysis in human
obesity. J Clin Invest. 2004;113(11):1582-1588.

Nielsen J, Mogensen M, et al. Increased subsarcolemmal
lipids in type 2 diabetes: effect of training on localiza-
tion of lipids, mitochondria, and glycogen in sedentary
human skeletal muscle. Am J Physiol Endocrinol
Metab. 2010;298(3):E706-E713.

Norgan NG. The beneficial effects of body fat and adipose
tissue in humans. Int J Obes Relat Metab Disord.
1997;21(9):738-746.

Oral EA, Simha V, et al. Leptin-replacement therapy
for lipodystrophy. N Engl J Med. 2002;346(8):
570-578.

Owen OE, Mozzoli MA, et al. Oxidative and nonoxidative
macronutrient disposal in lean and obese men after
mixed meals. Am J Clin Nutr. 1992;55(3):630-636.

Parks EJ, Krauss RM, et al. Effects of a low-fat, high-
carbohydrate diet on VLDL-triglyceride assembly, pro-
duction, and clearance. J Clin Invest. 1999;104(8):
1087-1096.

Pelsers MM, Tsintzas K, et al. Skeletal muscle fatty acid
transporter protein expression in type 2 diabetes
patients compared with overweight, sedentary men
and age-matched, endurance-trained cyclists. Acta
Physiol (Oxf). 2007;190(3):209-219.

Poehlman ET, Toth MJ. Mathematical ratios lead to spuri-
ous conclusions regarding age- and sex-related differ-
ences in resting metabolic rate. Am J Clin Nutr.
1995;61(3):482-485.

Prentice AM, Goldberg GR, et al. Physiological responses
to slimming. Proc Nutr Soc. 1991;50(2):441-458.

Promrat K, Lutchman G, et al. A pilot study of pioglitazone
treatment for nonalcoholic steatohepatitis. Hepatology.
2004;39(1):188-196.

Ravikumar B, Carey PE, et al. Real-time assessment of
postprandial fat storage in liver and skeletal muscle in
health and type 2 diabetes. Am J Physiol Endocrinol
Metab. 2005;288(4):E789-E797.

Ravussin E, Galgani JE. The implication of brown adipose
tissue for humans. Annu Rev Nutr. 2011;31:33-47.

Redman LM, Heilbronn LK, et al. Metabolic and behav-
ioral compensations in response to caloric restriction:
implications for the maintenance of weight loss. PLoS
One. 2009;4(2):e4377.

Rolfe DF, Brown GC. Cellular energy utilization and
molecular origin of standard metabolic rate in mam-
mals. Physiol Rev. 1997;77(3):731-758.

Rosenbaum M, Goldsmith R, et al. Low-dose leptin
reverses skeletal muscle, autonomic, and neuroendo-
crine adaptations to maintenance of reduced weight. J
Clin Invest. 2005;115(12):3579-3586.

Rutkowski JM, Stern JH, et al. The cell biology of fat
expansion. J Cell Biol. 2015;208(5):501-512.

Samocha-Bonet D, Dixit VD, et al. Metabolically healthy
and unhealthy obese – the 2013 Stock Conference
report. Obes Rev. 2014;15(9):697-708.

She P, Van Horn C, et al. Obesity-related elevations in
plasma leucine are associated with alterations in
enzymes involved in branched-chain amino acid
metabolism. Am J Physiol Endocrinol Metab. 2007;
293(6):E1552-E1563.

Shulman GI. Ectopic fat in insulin resistance,
dyslipidemia, and cardiometabolic disease. N Engl J
Med. 2014;371(23):2237-2238.

Sievenpiper JL, Chiavaroli L, et al. ‘Catalytic’ doses of
fructose may benefit glycaemic control without
harming cardiometabolic risk factors: a small meta-
analysis of randomised controlled feeding trials. Br J
Nutr. 2012;108(3):418-423.

Simha V, Szczepaniak LS, et al. Effect of leptin replace-
ment on intrahepatic and intramyocellular lipid content
in patients with generalized lipodystrophy. Diabetes
Care. 2003;26(1):30-35.

Simoneau JA, Veerkamp JH, et al. Markers of capacity to
utilize fatty acids in human skeletal muscle: relation to
insulin resistance and obesity and effects of weight loss.
FASEB J. 1999;13(14):2051-2060.

Solini A, Bonora E, et al. Protein metabolism in human
obesity: relationship with glucose and lipid metabolism
and with visceral adipose tissue. J Clin Endocrinol
Metab. 1997;82(8):2552-2558.

Speakman JR. Evolutionary perspectives on the obesity
epidemic: adaptive, maladaptive, and neutral view-
points. Annu Rev Nutr. 2013;33:289-317.

Speakman JR, Fletcher Q, et al. The ‘39 steps’: an algo-
rithm for performing statistical analysis of data on
energy intake and expenditure. Dis Model Mech.
2013;6(2):293-301.

Stanhope KL, Havel PJ. Fructose consumption: consider-
ations for future research on its effects on adipose
distribution, lipid metabolism, and insulin sensitivity
in humans. J Nutr. 2009;139(6):1236S-1241S.

Stanhope KL, Schwarz JM, et al. Consuming fructose-
sweetened, not glucose-sweetened, beverages increases
visceral adiposity and lipids and decreases insulin sen-
sitivity in overweight/obese humans. J Clin Invest.
2009;119(5):1322-1334.

19 Carbohydrate, Fat, and Protein Metabolism in Obesity 345



StockMJ. Gluttony and thermogenesis revisited. Int J Obes
Relat Metab Disord. 1999;23(11):1105-1117.

Stunff CL, Bougneres PF. Alterations of plasma lactate and
glucose metabolism in obese children. Am J Physiol.
1996;271(5 Pt 1):E814-E820.

Swinburn B, Sacks G, et al. Increased food energy supply
is more than sufficient to explain the US epidemic of
obesity. Am J Clin Nutr. 2009;90(6):1453-1456.

Thorens B, Mueckler M. Glucose transporters in the 21st
century. Am J Physiol Endocrinol Metab. 2010;298(2):
E141-E145.

Timmers S, Nabben M, et al. Augmenting muscle
diacylglycerol and triacylglycerol content by blocking
fatty acid oxidation does not impede insulin sensitivity.
Proc Natl Acad Sci U S A. 2012;109(29):11711-11716.

Trujillo ME, Scherer PE. Adipose tissue-derived factors:
impact on health and disease. Endocr Rev. 2006;27(7):
762-778.

Tschop MH, Speakman JR, et al. A guide to analysis of
mouse energy metabolism. Nat Methods. 2012;9(1):
57-63.

Virtue S, Vidal-Puig A. It’s not how fat you are, it’s what
you do with it that counts. PLoS Biol. 2008;6(9):e237.

Voshol PJ, Jong MC, et al. In muscle-specific lipoprotein
lipase-overexpressing mice, muscle triglyceride con-
tent is increased without inhibition of insulin-stimu-
lated whole-body and muscle-specific glucose uptake.
Diabetes. 2001;50(11):2585-2590.

Walther TC, Farese RV Jr. Lipid droplets and cellular lipid
metabolism. Annu Rev Biochem. 2012;81:687-714.

Wang Z, O’Connor TP, et al. The reconstruction of
Kleiber’s law at the organ-tissue level. J Nutr.
2001;131(11):2967-2970.

Wang TJ, LarsonMG, et al. Metabolite profiles and the risk
of developing diabetes. Nat Med. 2011;17(4):448-453.

Welle S, Barnard RR, et al. Increased protein turnover in
obese women. Metabolism. 1992;41(9):1028-1034.

Welle S, Statt M, et al. Differential effect of insulin on
whole-body proteolysis and glucose metabolism in
normal-weight, obese, and reduced-obese women.
Metabolism. 1994;43(4):441-445.

Westerterp KR. Food quotient, respiratory quotient, and
energy balance. Am J Clin Nutr. 1993;57(5
Suppl):59S-764S; discussion 764S-765S.

Weyer C, Vozarova B, et al. Changes in energy metabolism
in response to 48 h of overfeeding and fasting in Cau-
casians and Pima Indians. Int J Obes Relat Metab
Disord. 2001;25(5):593-600.

Yki-Jarvinen H, Mott D, et al. Regulation of glycogen
synthase and phosphorylase activities by glucose and
insulin in human skeletal muscle. J Clin Invest.
1987;80(1):95-100.

Young AA, Bogardus C, et al. Muscle glycogen synthesis
and disposition of infused glucose in humans with
reduced rates of insulin-mediated carbohydrate storage.
Diabetes. 1988;37(3):303-308.

Zimmermann R, Strauss JG, et al. Fat mobilization in
adipose tissue is promoted by adipose triglyceride
lipase. Science. 2004;306(5700):1383-1386.

346 J.E. Galgani et al.



Brain Regulation of Feeding
and Energy Homeostasis 20
Martin G. Myers Jr., David P. Olson, Malcolm J. Low, and
Carol F. Elias

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

2 Sensing Metabolic Cues: Humoral and
Neural Components . . . . . . . . . . . . . . . . . . . . . . . . . . 349

2.1 Humoral Components . . . . . . . . . . . . . . . . . . . . . . . . . 349
2.2 Neural Components: Visceral Inputs . . . . . . . . . . 350

3 Brain Stem Pathways: Transducing
Visceral and Humoral Inputs . . . . . . . . . . . . . . . . 352

4 Hypothalamic Systems that Control
Energy Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

4.1 Overall Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
4.2 Arcuate Nucleus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
4.3 Dorsomedial Nucleus . . . . . . . . . . . . . . . . . . . . . . . . . . 357
4.4 Paraventricular Nucleus: Hypothalamic

Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
4.5 Ventromedial Nucleus . . . . . . . . . . . . . . . . . . . . . . . . . 359
4.6 Lateral Hypothalamic Area and Mesolimbic

Dopaminergic System . . . . . . . . . . . . . . . . . . . . . . . . . 361

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

6 Cross-References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

M.G. Myers Jr. • M.J. Low
Department of Internal Medicine, University of Michigan,
Ann Arbor, MI, USA

Department of Molecular and Integrative Physiology,
University of Michigan, Ann Arbor, MI, USA
e-mail: mgmyers@med.umich.edu; mjlow@umich.edu

D.P. Olson
Department of Pediatrics and Communicable Diseases,
University of Michigan, Ann Arbor, MI, USA
e-mail: dpolson@umich.edu

C.F. Elias (*)
Department of Molecular and Integrative Physiology,
University of Michigan, Ann Arbor, MI, USA

Department of Obstetrics and Gynecology, University of
Michigan, Ann Arbor, MI, USA
e-mail: cfelias@umich.edu

# Springer International Publishing Switzerland 2016
R.S. Ahima (ed.), Metabolic Syndrome,
DOI 10.1007/978-3-319-11251-0_22

347

mailto:mgmyers@med.umich.edu
mailto:mjlow@umich.edu
mailto:dpolson@umich.edu
mailto:cfelias@umich.edu


Abstract
In the past decades, it has become clear that the
brain plays a key role in the control of feeding
and energy homeostasis. These are complex
systems that require the integration of diverse
physiological components, from sensing
energy demands and storage to behavioral
responses, motor function, and reflex adjust-
ments. Studies in different organisms from
worms to flies and rodents to humans have
identified key molecular pathways, conserved
genes, and neural circuits crucial for the under-
standing of the control of distinct components
of energy homeostasis. Among them, the brain
plays a fundamental role in food intake (e.g.,
meal frequency and size), energy expenditure,
body weight and body composition, feeding
behavior, satiety, reward or hedonic consump-
tion, and glucose homeostasis. Although the
brain function in metabolic control has been
explored for almost a century, the discovery of
leptin and its cognate receptor in the
mid-1990s and advances in molecular and
genetic tools propelled the field toward an
unprecedented development. In this chapter,
we will highlight the main findings in recent
years using these scientific tools with emphasis
on the brain pathways and circuitry associated
with the control of the metabolic function.

Keywords
Hypothalamus • Neuroendocrinology • Auto-
nomic nervous system •Melanocortin • Lateral
parabrachial nucleus • Paraventricular nucleus
of the hypothalamus • Arcuate nucleus •
Mesolimbic dopaminergic system

1 Introduction

The fundamental role of the central nervous sys-
tem (CNS) in the regulation of feeding and energy
homeostasis has been known for decades. Clinical
observations in patients with Fröhlich’s syndrome
(adiposogenital dystrophy) displaying excessive
subcutaneous fat due to adenopituitary tumors
gave rise to an important debate on the relative

contributions of the pituitary gland versus the
overlying hypothalamus in the genesis of the met-
abolic aspects of the syndrome (Fröhlich 1901).
While Fröhlich, Crowe, and Cushing supported
the importance of the pituitary gland in the adi-
posity, Aschner, a few years later, demonstrated
that removal of the pituitary gland alone did not
affect adiposity in dogs, suggesting that damage
of the hypothalamus was the main cause of the
obese phenotype seen in Fröhlich’s syndrome
(Crowe et al. 1910; Aschner 1912; Elmquist
et al. 1999). With the development of experimen-
tal tools to lesion restricted areas of the brain,
Hetherington and Ranson reinforced Aschner’s
findings and proposed a crucial role for the hypo-
thalamus in food intake and body weight regula-
tion (Hetherington and Ranson 1940). They
observed that bilateral lesions of the medial hypo-
thalamus of rats (without disturbing the pituitary
gland) produced a profound increase in body
weight and adiposity. On the other hand, lesions
of the lateral hypothalamic area induced
hypophagia leading to death by starvation, in
some cases (Anand and Brobeck 1951). Together,
these observations gave rise to the classic “dual
center” model proposed by Stellar in 1954, com-
prised of a “satiety center” (i.e., the ventromedial
nucleus of the hypothalamus, the VMH) and a
“feeding center” (i.e., the lateral hypothalamic
area, the LHA) (Stellar 1954).

These ideas were later revised with the devel-
opment of more refined and precise techniques.
For example, small electrolytic or excitotoxic
lesions of the VMH and adjacent areas, knife
cuts of projecting fibers, and subdiaphragmatic
vagotomy challenged the concept of the VMH as
the satiety center (King 2006; Gold 1973; Cox and
Powley 1981). Concurrently, others questioned
the interpretation of data from lesions of the
LHA due to the potential interruption of the
medial forebrain bundle (which contains the
ascending dopaminergic system), which might
cause movement disorders or other behavioral
changes (Stricker and Verbalis 1990; Bernardis
and Bellinger 1996).

The discovery of the adipocyte-derived hor-
mone leptin and its cognate receptor (LepRb) in
the mid-1990s, together with the development of
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new molecular and genetic tools, has permitted
the identification of chemically defined neuronal
populations associated with specific physiological
components of energy homeostasis and the
molecular dissection of relevant neural circuits
(Zhang et al. 1994; Tartaglia et al. 1995; Chua
et al. 1996; Lee et al. 1999; Myers and Leibel
2015).

As a starting point, the neural control of meta-
bolic function recapitulates the basic organiza-
tional principles of the CNS in general. The
sensory (input) arm perceives and conveys infor-
mation on nutritional state and energy stores to
specific brain nuclei (integrative centers) that
integrate multiple physiological signals and
orchestrate a coordinated response via the motor
(output) arm. The sensory arm relies on hor-
mones, peptides, and other signals from periph-
eral organs and tissues that function as “metabolic
cues.” In this chapter, we will summarize what we
have learned in the past decade or so with the use
of animal models and genetic tools. We will give
special emphasis to the brain circuitry unraveled
by studies performed in rodents, the preclinical
animal model of choice in the field.

2 Sensing Metabolic Cues:
Humoral and Neural
Components

The sensory (input) arm of the neural control of
the metabolic function may be subdivided in
humoral and neural components, according to
the route used by the metabolic cues to access
the CNS. Most of these signals enter the CNS
via the hypothalamus (mostly humoral signals)
and brain stem (humoral and neural signals).

2.1 Humoral Components

Most metabolic cues derived from peripheral tis-
sues are released into the circulation and directly
act in specific hypothalamic and brain stem nuclei
to control food intake, energy expenditure, and
glucose homeostasis. Among them, hormones
secreted by adipocytes (e.g., leptin), endocrine

pancreas (e.g., insulin), and gut (e.g., ghrelin)
have been widely investigated in the context of
the neural control of the metabolic function.

Leptin, encoded by the Lep/LEP gene (previ-
ously called ob for obese), is primarily synthe-
sized and secreted by white adipose tissue
(Zhang et al. 1994). During negative energy bal-
ance, the fall in leptin levels represents a key
signal for the neuroendocrine adaptations
prompted by states of energy insufficiency (Flier
1998; Chan and Mantzoros 2005; Ahima
et al. 2000; Casanueva and Dieguez 1999).
These adaptive responses include decreased loco-
motor activity and thermogenesis, increased appe-
tite and motivation for food, inhibition of the
thyroid and reproductive axes, and activation of
the adrenal axis (Ahima 2006). Leptin acts via
LepRb (encoded by the Lepr/LEPR gene), which
is highly expressed in several regions of the hypo-
thalamus, including the arcuate nucleus (Arc), the
VMH, the dorsomedial nucleus (DMH), and the
LHA. In the brain stem, the ventral tegmental area
(VTA), the periaqueductal gray matter, the lateral
parabrachial nucleus (lPBN), and the nucleus of
the solitary tract (NTS) also express LepRb
(Tartaglia et al. 1995; Chua et al. 1996; Mercer
et al. 1996; Fei et al. 1997; Elmquist et al. 1998a;
Scott et al. 2009; Myers et al. 2009).

Insulin, produced by the pancreatic β cells, is
crucial for the control of blood glucose; it stimu-
lates glucose uptake by peripheral organs includ-
ing liver, muscle, and adipose tissue (Weyer
et al. 1999; Biddinger and Kahn 2006). Glucose
uptake by neurons and glia is mediated by insulin-
insensitive glucose transporters; hence, the acqui-
sition and use of glucose by the brain are indepen-
dent of insulin action (McEwen and Reagan 2004;
Banks et al. 2012). Insulin receptors are wide-
spread in the CNS, however, and growing evi-
dence supports a role for brain insulin action in
the control of energy balance (along with periph-
eral glucose homeostasis). For example, mice
with neuronal deletion of insulin receptor display
increased adiposity and higher susceptibility to
obesogenic diet (Plum et al. 2006; Kleinridders
et al. 2014; Bruning et al. 2000).

Ghrelin is primarily produced and released by
endocrine cells of the stomach and small intestine
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(Kojima et al. 1999). It was initially described as a
potent growth hormone (GH) secretagogue, act-
ing via the GH secretagogue receptor (GHSR).
Soon after its discovery, several laboratories
reported that peripheral or central injections of
ghrelin potently stimulate food intake and
decrease energy expenditure, leading to weight
gain (Nakazato et al. 2001). Ghrelin is also an
important modulator of glucose homeostasis.
Loss-of-function mutations in the ghrelin gene
(Ghrl) increase glucose-stimulated insulin secre-
tion, as well as insulin sensitivity (Sun
et al. 2006). Similarly, ghrelin infusion reduces
insulin sensitivity and increases glucose levels.
Some of ghrelin’s actions may be mediated by
direct effects in pancreatic islets (Dezaki
et al. 2006), but many lines of evidence demon-
strate major roles for GHSR in the brain
(Nogueiras et al. 2008). GHSR is abundant in
the Arc and VMH, as well as relevant brain stem
sites, including the VTA, lPBN, and NTS
(Nakazato et al. 2001; Zigman et al. 2006).

To exert their effects, circulating hormones
must pass the blood–brain barrier (BBB) to access
their receptors in the brain parenchyma. The BBB
is composed of closely adjoined endothelial cells,
glia, and (in some areas) tanycytes. It is present in
the entire brain with the exception of small areas
located adjacent to the cerebral ventricles, called
circumventricular organs (CVOs). The CVOs
contain fenestrated blood vessels that allow diffu-
sion and interchange of bigger molecules (pep-
tides and hormones) between the brain
parenchyma and the bloodstream, presumably
without the need for active transport across the
BBB (Ganong 2000; Johnson and Gross 1993;
Broadwell and Brightman 1976). Among the
seven well-described CVOs, the median emi-
nence and the area postrema are of particular
interest here, given their proximity to metabolic
sensing neurons in the Arc and the NTS, respec-
tively. These are sites where metabolic signals
may passively penetrate the brain and bind to
receptors. Alternatively, hormones in the circula-
tion may cross the BBB by two mechanisms:
(a) via lipid-mediated free diffusion or (b) via
carrier- or receptor-mediated active transport.
Most of the metabolic hormones (e.g., leptin,

insulin, and ghrelin) have BBB transporters that
permit access to deep structures in the brain, not
just CVO-adjacent regions (Banks et al. 1996,
2012; Balland et al. 2014; Banks 2008).

2.2 Neural Components: Visceral
Inputs

The CNS control of energy homeostasis also
relies on information conveyed by visceral inputs.
Sensory information is generated in each segment
of the alimentary tract, from food taste, tempera-
ture, and texture in the mouth to mechanical and
chemical signals in the stomach and intestine.
These signals are conveyed by several cranial
nerves carrying different modalities of sensory
inputs. The upper segments of the alimentary
tract (mouth and tongue) convey gustatory inputs
(taste signals) to the rostral subdivision of the
NTS via the facial (VII) and glossopharyngeal
(IX) cranial nerves; the mid- and lower segments
(pharynx, larynx, esophagus, stomach, and intes-
tine, as well as the liver and the portal vein)
transmit mechanical and chemical inputs to the
intermediary and caudal subdivisions of the NTS
via the vagus (cranial nerve X). The different
modalities of sensory inputs convey distinct infor-
mation to the brain. For example, while gustatory
inputs are associated with food selection and
hedonic responses, mechano- and chemoreceptors
signal nutritional content. In this regard, the vagus
nerve is the primary neural component in the
transmission of visceral inputs to the CNS
(Chung and Andrea 2011; Pavlov and Tracey
2012).

The vagus nerve is comprised of afferent (sen-
sory) and efferent (motor) fibers. The afferent
vagal branch is organized as a typical sensory
nerve, i.e., pseudounipolar neurons with cell bod-
ies located in a ganglion outside the CNS, the
nodose ganglion (aka inferior ganglion of the
vagus nerve (Fig. 1)). Vagal dendrites, which con-
tain specialized receptors, are distributed in a
topographic manner along the mid- and lower
segments of the alimentary tract. The mechanore-
ceptors are concentrated in the pharynx, esopha-
gus, and stomach, and the chemoreceptors are
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more abundant in the stomach, liver, and intestine
(Berthoud 2002). The mechanoreceptors are
found throughout the myenteric plexus and exter-
nal smooth muscle layers. In the stomach, they
sense gastric distension and provide signals that
promote satiation (Fox et al. 2001). The chemo-
receptors are distributed in the mucosal and

submucosal layers of the gastrointestinal
(GI) tract and in the liver and portal vein; these
may sense changes in glucose, amino acids, and
fatty acids. The chemoreceptor cells are also
responsive to peptides produced in the GI mucosa
in response to food intake, including ghrelin, cho-
lecystokinin (CCK), amylin, peptide YY, and

Fig. 1 Sensory and motor arms of the vagus nerve (XN).
Sensory terminals innervate the area postrema (AP) and the
nucleus of the solitary tract (NTS, pseudocolor yellow,
using Nav1.8 reporter mice). Motor neurons in the motor
nucleus of the vagus nerve (DMV) are represented in blue

(choline acetyltransferase/ChAT-reporter mice). This
image was kindly provided by Dr. Laurent Gautron from
the University of Texas Southwestern Medical Center,
Dallas, Texas, USA
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glucagon-like peptide-1 (GLP-1) among others in
response to food intake (Berthoud 2002; Chaudhri
et al. 2008). The viscerosensory inputs (via the
vagus nerve) and humoral signals (via the area
postrema) reach the CNS via direct actions upon
NTS neurons. This neuronal relay functions as the
primary brain stem entry site in metabolic
regulation.

3 Brain Stem Pathways:
Transducing Visceral
and Humoral Inputs

Many humoral and neural signals of energy bal-
ance, including a variety of gut-derived signals,
converge on the NTS (Fig. 2; Grill and Hayes
2012; Myers and Olson 2014). In addition to
receiving the vagally encoded information from
gut distension, a variety of humorally conveyed
signals (including gut peptides, such as amylin

and CCK) activate cells in the area postrema that
project onto an overlapping set of neurons in the
medial NTS; medial NTS responses contribute to
short-term satiety. Additionally, many of the neu-
rons in the medial NTS that receive vagal and area
postrema-derived information also express LepRb
and respond to leptin (Huo et al. 2008). Leptin
augments the response of these cells to gut pep-
tide- and vagally encoded signals, thus amplifying
the effects of feeding on these satiety-promoting
circuits (Huo et al. 2008; Morton et al. 2005).

The gut- and nutrient-responsive neurons of
the medial NTS contain a variety of neurotrans-
mitters; most are glutamatergic, but many also
contain neuropeptide transmitters including
proopiomelanocortin (POMC)-derived peptides,
CCK, and GLP-1 (Huo et al. 2008; Garfield
et al. 2012). Subpopulations of these cells express
the transcription factor Phox2B, and Phox2b-Cre-
mediated deletion of LepRb interferes with satiety
signaling, as does virally mediated suppression of

Fig. 2 Flow of information in the hindbrain. The area
postrema (AP), a circumventricular organ that has direct
access to the circulation, receives information about feed-
ing status by sensing gut peptides (e.g., GLP1 and amylin).
These cells project to the nucleus of the solitary tract
(NTS), where the area postrema-derived information is
integrated with information conveyed by vagal sensory
afferents from the gut. This integrated information is not
only passed to the dorsal motor nucleus of the vagus nerve

(DMV) to stimulate vagal motor neurons efferent to the gut
(controlling peristalsis, etc.) but is also passed forward to
the lateral parabrachial nucleus (lPBN), an important center
for anorexia, and to a variety of hypothalamic sites, includ-
ing the paraventricular nucleus (PVH). Hypothalamic sites
also project to the lPBN and NTS. The output of these
nuclei promotes satiety. A subset of lPBN neurons projects
to the central nucleus of the amygdala (CeA) to mediate a
powerful anorectic signal

352 M.G. Myers Jr. et al.



NTS LepRb expression (Aponte et al. 2011).
Medial NTS neurons project to a variety of
regions, including the adjacent dorsal motor
nucleus of the vagus (DMV) –where they mediate
gut reflexes that alter peristalsis, etc. (Grill and
Hayes 2012). Medial NTS cells also project to the
lPBN, where they synapse on neurons that contain
calcitonin gene-related peptide (CGRP), among
others (Wu et al. 2012). lPBN CGRP neurons
project to the central nucleus of the amygdala to
promote anorexia. Medial NTS neurons also
make direct projections into more rostral areas,
including hypothalamic sites (such as the
paraventricular nucleus of the hypothalamus, the
PVH), the amygdala, and the thalamus.

Importantly, in addition to roles played by
brain stem nuclei in conveying gut- and nutrient-
derived information rostrally, the NTS and lPBN
receive information from hypothalamic structures
and play an important role in mediating the con-
trol of food intake by these sites (Grill and Hayes
2012; Myers and Olson 2014). Both the NTS and
lPBN receive direct inputs from the hypothalamus
– especially from the PVH and the Arc nuclei; the
lPBN plays prominent roles in the control of food
intake by cells in both of these areas. Indeed, the
lPBN also plays important roles in the anorexia
associated with gut sickness-derived signals, as
well as normal satiety signals.

4 Hypothalamic Systems that
Control Energy Balance

4.1 Overall Organization

Many of the neural systems that control energy
balance lie in the hypothalamus. Like the brain
stem (and unlike more recently developed brain
areas such as the neocortex and hippocampus),
the hypothalamus is not organized in a laminar
manner but rather consists of clusters of neuro-
nal soma (nuclei). The cells within each nucleus
connect to other cells in the same region and/or
other nuclei to generate an integrated signal,
which is then passed to output nuclei that ulti-
mately relay the signal to motor neurons that
control autonomic and endocrine systems or

influence feeding behavior. While each of these
nuclei contains heterogeneous (and even oppo-
sitely acting) types of neurons, the neurons of
each nucleus often control related functions.
While many hypothalamic nuclei contribute to
the control of energy balance at some level,
several of these nuclei play defined and espe-
cially important roles.

Within the medial region, the Arc, which lies
immediately above the median eminence, enjoys
rapid access to circulating factors (see Humoral
Components discussed above) that mediate
important signals of energy balance (Myers and
Olson 2014). The Arc makes strong reciprocal
connections with the dorsomedial nucleus of the
hypothalamus (DMH), which integrates the
Arc-derived signals with information (e.g., circa-
dian cues, body temperature) from other hypotha-
lamic regions (Fig. 3). The Arc and DMH each
also make strong reciprocal connections with the
PVH, which lies anterior to these other structures.
As noted above, the PVH also receives direct
input from the brain stem. The PVH represents a
crucial output nucleus for the hypothalamus: PVH
efferents to the brain stem and spinal cord control
autonomic function, projections to the median
eminence and posterior pituitary control endo-
crine function, and projections to the brain stem
regulate feeding.

The VMH, especially the dorsomedial VMH
(dmVMH, which mediates most of the energy
balance function of the VMH), though nestled
between the anterior portions of the Arc and
DMH, makes relatively few connections with
these two nuclei but rather projects to rostral and
brain stem regions associated with autonomic
function (e.g., the bed nucleus of the stria
terminalis and the periaqueductal gray matter)
(Canteras et al. 1994). Lateral to the Arc, VMH,
and DMH lies a more loosely defined structure,
the lateral hypothalamic area (LHA), through
which course projections among several limbic
regions rostral and caudal to the hypothalamus.
The LHA contains many cell bodies, as well;
many of these receive metabolic signals and pro-
ject to the midbrain (including the dopaminergic
ventral tegmental area or VTA) or to rostral limbic
regions (such as the nucleus accumbens). The
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LHA represents a major conduit linking the hypo-
thalamus to the mesolimbic dopamine system and
other circuits that control motivation (Opland
et al. 2010).

4.2 Arcuate Nucleus

The Arc in rodents (tuberal nucleus in humans) is
located in the medioventral portion of the hypothal-
amus surrounding the third ventricle and intimately

connected to the median eminence and hypophyseal
portal vascular system by the infundibular stalk. It
contains a heterogeneous group of projection neu-
rons producing proopiomelanocortin (POMC),
agouti-related peptide (AgRP), or Kisspeptin,
hypophysiotropic neurons producing growth-
hormone-releasing hormone (GHRH), somato-
statin, or dopamine, plus glial-like tanycytes
(in addition to astrocytes and microglia). A Golgi
impregnation study showed that the majority of Arc
neurons are bipolar with two major, relatively

Fig. 3 Flow of information in the hypothalamus and roles
of hypothalamic nuclei. The arcuate nucleus (Arc), which
is located directly above the median eminence, has the
most direct exposure to circulating hormones and nutrients
and is enriched in receptors for these substances. Arc
neurons, including the important POMC and AgRP neu-
rons that comprise the inception site of the hypothalamic
melanocortin system, project densely to the dorsomedial
hypothalamic nucleus (DMH, where information is inte-
grated with circadian, temperature, and other inputs) and to
the paraventricular nucleus of the hypothalamus (PVH, the
major output nucleus for the medial hypothalamus). The
DMH makes reciprocal connections with the Arc and
PVH. Projections from the PVH target the median

eminence and pituitary gland for the regulation of endo-
crine function, the spinal cord to control sympathetic ner-
vous system (SNS) function, and the hindbrain to modulate
satiety. The ventromedial hypothalamic nucleus (VMH)
senses glucose, along with some hormones that are sensed
by the Arc, and projects to forebrain and hindbrain regions
that control autonomic function, thereby controlling
energy expenditure and blood glucose levels. The lateral
hypothalamic area (LHA) contains many types of neurons
that project into areas associated with attention, reward,
and wanting, such as the mesolimbic dopamine system.
The LHA represents a major conduit from hypothalamic
homeostatic circuits into the brain’s motivational circuitry
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aspiny dendrites (van den Pol and Cassidy 1982).
Tanycyte cell bodies are located in the ventral-most
ependymal lining of the third ventricle and elaborate
their characteristic arching projections laterally and
ventrally (Langlet 2014). The median eminence is
one of the circumventricular organs with fenestrated
capillaries and therefore provides neurons of the Arc
with relatively unfettered access to circulating hor-
mones, cytokines, nutrients, and metabolites. Mod-
ulation of tanycytes by peripheral signals, including
leptin, appears to be capable of further opening the
blood–brain barrier to allow access of circulating
factors deeper into the Arc parenchyma (Balland
et al. 2014; Mullier et al. 2010).

Neuropeptidergic neurons of the Arc, includ-
ing those that contain POMC and somatostatin,
are among the earliest differentiated neurons of
the CNS, at E10.5 in the mouse. The
homeodomain transcription factor Isl1 has
recently been shown to be essential for the spec-
ification of POMC neuron identity and transcrip-
tion of the Pomc gene by its interaction with two
distinct neural-specific enhancers (Lam
et al. 2015; Nasif et al. 2015). Similarly, the
homeodomain transcription factor Bsx has been
implicated in transcription of the Agrp gene
(Sakkou et al. 2007). The early POMC-positive
neurons in the developing Arc appear to be inter-
mediate progenitors that ultimately give rise to
mature POMC neurons, as well as subpopulations
of mature AgRP and Kisspeptin neurons (Padilla
et al. 2010; Sanz et al. 2015). Another defining
feature of the developing Arc is the trophic action
of the postnatal surge in leptin secretion to stimu-
late neural projections from the Arc to other hypo-
thalamic nuclei (Bouret et al. 2004). There is
increasing evidence that the epithelial lining of
the third ventricle contains a stem cell population
that together with tanycytes is capable of generat-
ing newly born and differentiated Arc neurons in
the adult mouse brain (Kokoeva et al. 2007;
McNay et al. 2012; Lee et al. 2012), although the
physiological significance of these discoveries
remains to be fully defined. Excitingly, recent
reports have outlined the in vitro conditions essen-
tial to generate differentiated cells representative of
the full range of Arc neurons from either human ES
(embryonic stem) cells or IPSC (induced

puripotential stem cells) cells (Merkle et al. 2015;
Wang et al. 2015a). These groundbreaking findings
will likely permit a more complete analysis of the
factors underlying the development of the Arc and
exploration of the genetic disturbances associated
with Arc dysfunction in hereditary hypothalamic
obesity syndromes.

Abundant genetic evidence from the clinic,
together with animal studies, has identified the
CNS melanocortin system, including POMC and
AgRP neurons and their projections to distal neu-
rons expressing the melanocortin MC3 and MC4
receptors, as a critical component of the homeo-
static neural circuitry regulating energy balance
(Cone 2005). Melanocortin peptides (α-, β-, and
γ-MSH in humans, only α- and γ-MSH in rodents)
are endogenous agonists of the two CNS recep-
tors, while AgRP is a competitive antagonist/
inverse agonist at both receptors (Ollmann
et al. 1997). The remainder of this section will
therefore focus on the dyad of Arc POMC and
AgRP neurons.

A study by Cowley et al. (2001) first proposed
a model to explain the homeostatic basis of body
weight control, whereby leptin stimulation of
POMC neurons is balanced by their inhibition
from nearby AgRP neurons. In this useful (albeit
simplistic) model, the two subpopulations of neu-
rons largely project to similar sites in the CNS
(Bagnol et al. 1999; Wang et al. 2015b) but have
opposing actions, α-MSH ultimately leading to
decreased food intake and increased energy
expenditure and AgRP increasing food intake
and decreasing energy expenditure. The model is
conceptually very similar to the earlier, but now
debatable, notion of opposing mediobasal hypo-
thalamic anorexigenic and lateral hypothalamic
orexigenic zones. More recent evidence has
greatly elaborated on the dyadic model without
nullifying its heuristic value.

AgRP neurons also produce neuropeptide Y
(NPY) (Hahn et al. 1998) and the fast inhibitory
neurotransmitter GABA (Cowley et al. 2001).
Although AgRP and NPY both stimulate food
intake following injection into the cerebrospinal
fluid or specific hypothalamic nuclei, this pharma-
cological action does not fully reflect the com-
plexity of endogenous AgRP neuron function.
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Researchers were puzzled by the demonstration
that mutant mice engineered to lack AgRP and/or
NPY did not exhibit the predicted phenotype of
decreased body weight, adiposity, and food intake
(Qian et al. 2002). However, ablation of AgRP
neurons in the adult, but not in neonatal mouse,
causes starvation and death, and this phenotype is
independent of melanocortin signaling (Luquet
et al. 2005; Wu et al. 2008). These paradoxical
findings have at least been partially explained by
the primary role of GABA signaling from AgRP
neurons in their acute actions to stimulate feeding,
with the neuropeptides playing accessory or mod-
ulatory roles (Tong et al. 2008; Wu et al. 2009).
Stimulation of AgRP neurons by either
optogenetic or chemogenetic technology leads to
the rapid onset of feeding behavior, even in sated
mice (Aponte et al. 2011; Krashes et al. 2011).
However, further experiments have demonstrated
that endogenous AgRP release does indeed stim-
ulate feeding but on a longer time scale than either
GABA or NPY release (Krashes et al. 2013).
There are apparently at least two parallel neural
pathways mediating these effects, one a direct
projection of AgRP neurons to the lPBN
(Wu et al. 2012; Betley et al. 2013) and a second
polysynaptic circuit involving an inhibitory AgRP
projection to MC4R-expressing glutamatergic
neurons within the PVH that in turn project by a
descending pathway to the lPBN (Garfield
et al. 2015). It is not yet known if the latter target
neurons are identical to each other for both path-
ways originating from the Arc.

Like AgRP neurons, subpopulations of Arc
POMC neurons are characterized by diverse affer-
ent signaling pathways, including activation by
the humoral factors leptin and insulin via LepRb
and InsR (Qiu et al. 2010, 2014), respectively,
either direct activation or inhibition by glucose
(Ibrahim et al. 2003; Parton et al. 2007),
transsynaptic excitation by glutamatergic inputs
(Kiss et al. 2005; Sternson and Shepherd 2005),
and transsynaptic inhibition by GABAergic
inputs (including those from local AgRP/NPY/
GABA neurons), opioid peptides via μ-opioid
receptors (Pennock and Hentges 2011), and sero-
tonin via 5-HT2C receptors (Berglund
et al. 2013). POMC neurons also synthesize

cocaine- and amphetamine-regulated transcript
(CART) and dynorphin peptides and are capable
of the synaptic release of both GABA and gluta-
mate (Hentges et al. 2009; Jarvie and Hentges
2012), although the physiological importance of
these co-modulators and co-transmitters is still
unknown. However, there is abundant and
unequivocal evidence from pharmacological,
genetic, and electrophysiological experiments
that melanocortin peptides derived from POMC
neurons play a critical physiological role in the
reduction of food intake by promoting early sati-
ation and in the reduction of energy expenditure
via effects on the autonomic nervous system
(Yaswen et al. 1999; Huszar et al. 1997; Butler
et al. 2000; Chen et al. 2000; Xu et al. 2011). The
actions of β-endorphin, an opioid peptide that is
generated stoichiometrically with melanocortins
during posttranslational processing of the
prohormone, are less certain (Wardlaw 2011).
β-Endorphin injected into the nucleus accumbens
acutely stimulates feeding, particularly of highly
palatable food (Majeed et al. 1986; Will
et al. 2003); however, mice with a specific genetic
loss of β-endorphin exhibit a mild obesity pheno-
type with increased food intake (Appleyard
et al. 2003). The explanation for these contradic-
tory findings has not been adequately explained.

Unlike the rapid stimulatory effects on food
intake produced by the remote activation of
AgRP neurons, activation of Arc POMC neurons
has only produced delayed inhibitory effects on
food intake after as much as 24 h (Aponte
et al. 2011; Atasoy et al. 2012; Zhan et al. 2013).
Similarly, only long-term inhibition of POMC
neurons was capable of increasing food intake
(Atasoy et al. 2012). Because the feeding inhibi-
tory effects from optogenetic activation of POMC
neurons were blocked by a melanocortin antago-
nist and POMC neuron activation could overcome
coincident inhibition from AgRP neurons, the
most parsimonious explanation for the delayed
response is that melanocortin peptide release,
and not the other putative peptide and amino
acid transmitters produced in POMC neurons, is
of principal importance to POMC neuron function
in the control of energy homeostasis. However, it
is worth noting that the loss of Pomc gene
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expression selectively from the Arc has no detect-
able effect on body weight in mice until they are
weaned at age 3 weeks (Bumaschny et al. 2012).
The absence of Pomc expression also does not
prevent the maturation of POMC neurons and
the development of their widespread axonal pro-
jections throughout the brain.

The most recent advances in our understanding
of the intrinsic activity of POMC and AgRP neu-
rons and their role in energy balance come from a
pair of elegant studies using in vivo Ca2+ imaging
of the Arc with either fiber photometry or minia-
turized confocal optics in freely behaving mice
(Chen et al. 2015; Betley et al. 2015). These
experiments revealed unexpected aspects of neu-
ronal activity that have not been possible to assess
using ex vivo slice electrophysiology. Fasted mice
were shown to have tonically active AgRP neu-
rons and tonically inhibited POMC neurons. Food
presentation alone or even olfactory cues from a
hidden food pellet were sufficient to immediately
reverse the activity state of the two populations of
Arc neurons. Furthermore, the magnitude of these
responses was increased directly with the hedonic
value of the presented food, and, conversely, food
removal slowly restored the original activation
states. Extrinsic excitation of the AgRP neurons
conditioned mice to avoid a previously associated
neutral flavor or preferred chamber in a place
preference test. These results suggest that AgRP
neuron activation has a negative valence, and, as a
corollary, the state of food deprivation associated
with tonically active AgRP neuron firing is intrin-
sically aversive. Therefore, the natural drive to
eat, with consequent achievement of reward,
may bemotivated not only by the positive hedonic
reinforcement from food but also by the reduction
of negative reinforcement encoded by AgRP neu-
ron activity. Although not explicitly tested, it is
logical to propose that POMC neuron activation
may have an opposing positive valence that is
unrelated to its induction of satiation. Finally,
these demonstrations of rapid alterations in Arc
neuronal firing in anticipation of food consump-
tion, rather than as a response to it, provide new
insights concerning the role of the melanocortin
system in both homeostatic and non-homeostatic
control of energy balance.

4.3 Dorsomedial Nucleus

Even among the complex nuclei of the hypothal-
amus, the size and functional diversity of the
DMH is substantial (Fontes et al. 2011; Dimicco
et al. 2007). While there are many recognized
subdivisions of the DMH, it is probably most
useful to distinguish among the dorsal component
(DMHd, which borders the dorsal hypothalamic
area or DHA), the compact central zone, and the
ventral region (DMHv). The DMH plays a role in
the control of many autonomic functions, includ-
ing thermogenesis, heart rate, and blood pressure.
Like the Arc, the DMH contains a substantial
number of LepRb-expressing cells (Scott
et al. 2009; Patterson et al. 2011). Dorsal
DMH/DHA LepRb neurons interact with the ther-
mal control systems of the medial preoptic area
and PVH and play an important role in the control
of body temperature by leptin (Rezai-Zadeh
et al. 2014). Consistently, deletion of LepRb in
the prolactin-releasing hormone-expressing neu-
rons of this region decreases body temperature
and energy expenditure, promoting obesity in
high-fat-fed animals (Dodd et al. 2014). A variety
of data also suggest that the LepRb neurons in this
region modulate blood pressure and contribute to
the increase in blood pressure associated with the
hyperleptinemia of obesity (Simonds et al. 2014).

Some brain lesion experiments also suggest a
role for the DMH in the control of food intake. It
is possible that the DMH contains oppositely
acting sets of neurons (similar to the POMC and
AgRP neurons of the Arc but more evenly bal-
anced), which could limit the ability to detect
roles in the control of food intake following tra-
ditional lesioning. It is also possible that the
variable effects on feeding that result from
DMH lesions may reflect differences in the sub-
regions of the DMH targeted in various studies;
certainly, DMHd/DHA LepRb neurons control
autonomic output but do not modulate feeding
(Rezai-Zadeh et al. 2014). Correlative evidence
suggests the potential for DMH leptin action
(presumably the ventral DMH) in the control of
feeding, however. The deletion of LepRb from
distributed populations of hypothalamic cells
that express the vesicular GABA transporter
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(vGat, Slc32a1 gene) or neuronal nitric oxide
synthase (nNOS, Nos1 gene) each produces dra-
matic hyperphagia and obesity (Leshan
et al. 2012; Vong et al. 2011). The distributions
of these cells overlap mainly in the DMH,
suggesting a potential role for DMH LepRb neu-
rons in the suppression of feeding.

4.4 Paraventricular Nucleus:
Hypothalamic Output

The PVH is a critical hypothalamic center that
receives and integrates energy balance signals
from a variety of brain regions and coordinates
physiologic responses to maintain energy homeo-
stasis predominantly through the autonomic ner-
vous system. The PVH is a complex structure
composed of a heterogeneous group of mostly
glutamatergic neurons that have been classically
described as parvocellular or magnocellular based
on cell size and axonal projection patterns. The
magnocellular neurons in the PVH, including
those that express oxytocin (OXT) or vasopressin
(AVP), project primarily to the posterior pituitary
and release their contents directly into the general
circulation to regulate peripheral tissue function.
Importantly, however, dendritic release of these
neuropeptides has been implicated in the overall
control and coordination of PVH function.

The PVH parvocellular cells are more diverse
and send projections within the central nervous
system to three main areas: (1) the median emi-
nence where secreted factors (e.g., corticotropin-
releasing hormone or CRH) enter the portal hypo-
physeal circulation and regulate pituitary func-
tion; (2) the brain stem, including the dorsal
vagal complex (composed of the NTS and
DMV) and the lPBN – both of which have been
implicated in feeding (Wu et al. 2009; Wan
et al. 2008; Wu and Palmiter 2011; Zheng
et al. 2005; Berthoud et al. 2006); and (3) the
preganglionic, sympathetic output centers such
as the intermediolateral cell column of the spinal
cord (Sawchenko and Swanson 1982; Swanson
et al. 1980; Biag et al. 2012). Parvocellular PVH
neurons that respond to satiety signals, such as
leptin, have been proposed to regulate feeding by

modulating hindbrain responses to ascending
feeding signals from the gut and periphery (Mor-
ton et al. 2005; Atasoy et al. 2012; Blevins
et al. 2004, 2009). However, it is important to
point out that hypothalamic factors secreted into
the portal hypophyseal circulation at the median
eminence undoubtedly contribute to both energy
and metabolic homeostasis via regulation of pitu-
itary function.

The overall importance of the PVH in the reg-
ulation of energy balance is underscored by the
massive obesity and metabolic abnormalities
associated with alterations in PVH development
or function. Rodents and humans harboring dele-
terious mutations in the hypothalamic transcrip-
tion factor single minded-1 (Sim1) develop a
hypocellular PVH and hyperphagic obesity.
Moreover, lesions of the PVH also result in hyper-
phagic obesity and glucose dysregulation. Neither
the neural architecture nor the molecular mecha-
nisms used by the PVH to maintain energy and
metabolic homeostasis are well understood. This
is in large part due to the cellular heterogeneity of
the PVH, the density of its projection targets, and
the array of PVH afferent inputs from different
brain regions (Sawchenko and Swanson 1983;
Ferguson et al. 2008).

The PVH serves as an important regulatory
output center for peptides and conditions known
to modulate food intake, including leptin,
melanocortins (from the Arc), GLP-1 (presumably
from the NTS), GLP-1 agonists, and dehydration
(Tung et al. 2008; Acuna-Goycolea and van den
Pol 2004; Baraboi et al. 2011; Dalvi et al. 2012;
Salter-Venzon et al. 2008). The melanocortin sys-
tem is perhaps the best studied of these pathways,
as it is essential for energy balance in rodents and
humans and is directly linked to PVH function
(Cone 2005; Garfield et al. 2015; Farooqi and
O’Rahilly 2006; Farooqi et al. 2003). POMC and
AgRP neurons in the Arc produce melanocortin
agonists and antagonists, respectively, and project
to PVH neurons that express melanocortin recep-
tors (Ellacott and Cone 2004; Kishi et al. 2003;
Mountjoy 2010). Endogenous and pharmacologic
melanocortin agonists stimulate melanocortin
receptor-bearing neurons to activate effector path-
ways that inhibit food intake and stimulate energy

358 M.G. Myers Jr. et al.



expenditure. Melanocortin action in PVH Sim1
neurons suppresses food intake (Balthasar
et al. 2005; Shah et al. 2014), and ablation of
most Sim1 neurons in adult mice results in pro-
found hyperphagic obesity with decreased energy
expenditure and altered locomotor activity
(Xi et al. 2012). In addition, selective deletion of
MC4R from Sim1 cells leads to hyperphagic obe-
sity (Shah et al. 2014).

Subsets of PVH neurons contain a variety of
neuropeptides implicated in neuroendocrine and
energy balance control, including OXT, CRH,
AVP, thyrotropin-releasing hormone, and somato-
statin. The anorectic effects of pharmacologic
doses of OXT and CRH agonists generated a
great deal of interest in PVH OXT and CRH
neurons as potential regulators of energy balance.
At odds with this formulation are the findings that
rodents lacking OXT or OXT neurons (or CRH/
CRH receptors) demonstrate minimal energy bal-
ance phenotypes; neither does the activation of
PVH OXT or CRH neurons alter feeding (Sutton
et al. 2014). Whether the contradiction between
pharmacologic studies and genetic approaches
reflects developmental compensation to the sys-
temic inactivation of these neuropeptides is not
clear, but the profound effects of Sim1 neuron
(pan-PVH) manipulation suggest that yet-to-be-
defined PVH neurons distinct from OXT and
CRH cells represent crucial mediators of energy
balance.

With the recent development of an array of
genetic tools, cell-specific genetic changes in
PVH cells have confirmed the critical role of the
PVH in feeding regulation and have extended our
understanding of the molecular components and
neural circuitry of PVH function/action. MC4R
action on Sim1 cells in the PVH is sufficient to
normalize feeding in animals that lack MC4Rs
elsewhere, and this is not attributable to direct
MC4R action on OXT, CRH, or AVP neurons.
Moreover, MC4R expression in Sim1 PVH neu-
rons is required for body weight maintenance,
indicating that PVH MC4R action is both neces-
sary and sufficient for normal energy homeostasis
(Balthasar et al. 2005; Shah et al. 2014). Remote
activation of Sim1 PVH neurons using
chemogenetic approaches suppresses feeding

and increases energy utilization (Garfield
et al. 2015; Sutton et al. 2014). The effects of
pan-PVH activation on parameters of energy bal-
ance are not assignable to PVH OXT, CRH, or
AVP neurons, since chemogenetic manipulation
of these populations had minor (if any) effects on
energy balance. In contrast, cell-specific activa-
tion of neuronal nitric oxidase synthase (NOS1)-
expressing PVH neurons (a subset of Sim1 PVH
cells) alters feeding to a similar extent as pan-PVH
activation, suggesting that PVH NOS1 neurons
play an important role in feeding.

The PVH sends projections to a variety of brain
regions within the central nervous system. For the
purposes of this discussion, we will highlight the
functional roles of PVH projections to brain areas
known to be important for food intake/energy
expenditure, including the lPBN (feeding), NTS,
and spinal cord (autonomic control). The impor-
tance of these specific PVH projections has been
inferred based on published data demonstrating
the importance of these target regions in energy
balance. The combination of stereotaxic delivery
of cell-specific viral tools into transgenic animals
with technologies such as light-dependent neural
activation (optogenetics) has made it possible to
interrogate the physiologic function of specific
PVH neuronal projections. Indeed, recent studies
using these technologies have revealed a PVH !
Arc orexigenic circuit and established the impor-
tance of PVH ! lPBN projections for
melanocortin action in the CNS (Garfield
et al. 2015; Krashes et al. 2014). Similar
approaches targeting other PVH projections will
undoubtedly uncover additional important biolog-
ical mechanisms underpinning energy balance
regulation.

4.5 Ventromedial Nucleus

For several decades following the seminal studies
of Hetherington and Ranson, in which the bilat-
eral medial hypothalamic lesions (that included
the VMH) produced hyperphagic obesity, the
VMH was the main focus of attention regarding
the neural control of energy homeostasis
(Hetherington and Ranson 1940). Following
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intense debate, these studies were dismissed by
findings suggesting that the electrolytic lesions
likely disrupted the neural connections of the
medial hypothalamus, including projections
from the Arc to and from the PVH (Elmquist
et al. 1999; King 2006). While still not completely
resolved, the role for the VMH in energy balance
has been clarified by recent studies using more
specific molecular and cellular methods.

The VMH contains glucose-sensing neurons
that are highly responsive to changes in glucose
levels, as well as those that express receptors for
metabolic hormones (e.g., leptin and insulin) or
for neuropeptides associated with energy balance
(Scott et al. 2009; Elmquist et al. 1997; Routh
2003; Song et al. 2001; Kang et al. 2004). How-
ever, the VMH, like most hypothalamic nuclei, is
not a homogeneous structure, and it is comprised
of neurons with distinct neurochemical identities
and characteristic projection patterns. For exam-
ple, the ventrolateral subdivision (VMHvl)
expresses sex steroid receptors and projects to
sites related to behavioral control, whereas neu-
rons in the dorsomedial subdivision (VMHdm)
respond to metabolic cues (e.g., glucose, leptin,
and insulin) and innervate areas associated with
autonomic and circadian regulation (Canteras
et al. 1994; Kim et al. 2011a; Elmquist
et al. 1998b; Klockener et al. 2011). Among
these, VMHdm projects densely to the lateral
aspect of the bed nucleus of the stria terminalis
and to the subparaventricular zone of the hypo-
thalamus (Canteras et al. 1994; Elmquist
et al. 1998b; Dong and Swanson 2004). The lat-
eral bed nucleus of stria terminalis is part of the
central autonomic circuitry preferentially inner-
vating the central amygdala, periaqueductal gray
matter, lPBN, and NTS (Dong and Swanson
2004). On the other hand, the subparaventricular
zone receives dense innervation from the
suprachiasmatic nucleus, the main circadian
clock of the mammalian brain (Moore 1983;
Watts et al. 1987). The neuroanatomical organiza-
tion of the VMHdm suggests roles in energy bal-
ance by the control of autonomic function (e.g.,
thermogenesis, hepatic glucose production, glu-
cose utilization, and secretion of insulin and glu-
cagon) and the circadian oscillations of circulating

hormones (e.g., corticosterone) in response to
changes in energy stores (Kim et al. 2011a;
Bernardis and Frohman 1971; Luo et al. 1999;
Niijima et al. 1984; Krieger 1980; Choi
et al. 1996).

To better understand the regulation and func-
tion of VMH circuits, several groups examined
the temporal and anatomic distribution of gene
expression in the VMH. Of the identified genes,
steroidogenic factor 1 (SF1, Nr5a1 gene) received
a great deal of attention due to its VMH-specific
expression within the CNS (Ikeda et al. 1995;
Segal et al. 2005). The restricted expression of
SF1 has allowed the development of a series of
genetically modified mouse models to interrogate
VMHdm function. Mice with global loss-of-func-
tion mutations in the SF1 gene show disrupted
VMH development (Ikeda et al. 1995; Sadovsky
et al. 1995; Luo et al. 1994; Shinoda et al. 1995),
and neuron-specific deletion of SF1 results in
morbid obesity – primarily due to decreased
energy expenditure (Kim et al. 2011a, b; Majdic
et al. 2002). Two independent groups also dem-
onstrated that leptin signaling in VMH SF1 neu-
rons is required for energy expenditure, glucose
homeostasis, and adaptive thermogenesis and
hence for the control of body weight (Dhillon
et al. 2006; Bingham et al. 2008). On the other
hand, selective deletion of insulin receptor from
SF1 neurons induced resistance to obesogenic diet
and altered glucose metabolism (Klockener
et al. 2011).

The VMH also plays a prominent role in the
control of glucose homeostasis (Routh 2003).
VMH neuron responses to glucose are heteroge-
nous: Glucose-excited (GE) VMH neurons
increase and glucose-inhibited (GI) VMH neurons
decrease their firing rate when glucose rises
(Song et al. 2001). Intra-VMH 2-deoxyglucose
(a non-metabolizable glucose analog that mimics
low glucose) injection increases plasma glucose,
glucagon, noradrenaline, and adrenaline,
suggesting a role in the counter-regulatory
response to hypoglycemia, presumably by activat-
ing GI neurons. Recent studies have also suggested
that VMH innervation by brain stem sites also
plays a role in this response (Garfield Alastair
et al. 2014; Flak et al. 2014). Conversely, leptin
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or melanocortin action in the VMH increases glu-
cose uptake into tissues and/or decreases blood
glucose (presumably via GE neurons). These find-
ings support the notion that the VMH is a key
component in the control of glucose homeostasis
via sensing changes in glucose levels and modula-
tion of autonomic responses (Routh 2003).

Targeted deletion of leptin- or insulin-regu-
lated intracellular signaling pathways has
unraveled some of the molecular mechanisms
involved in the humoral control of the VMH func-
tion. For example, reduced activity of phosphati-
dylinositol 3-kinase (PI3K) in SF1 neurons
decreased the adaptive autonomic response to
high caloric intake without changes in glucose
homeostasis (Xu et al. 2010). In addition, deletion
of FOXO1 (a transcription factor downstream of
PI3K signaling) resulted in improved insulin sen-
sitivity and in a lean phenotype due to increase in
energy expenditure (Kim et al. 2011b).

Non-SF1 neurons (such as those that contain
brain-derived neurotrophic factor or BDNF) may
also play an important role in metabolic regula-
tion: Viral blockade of VMH BDNF induces
hyperphagic obesity in mice (Unger et al. 2007).
Also, deletion of estrogen receptor α (ERα) in the
entire VMH results in more profound adiposity
than that observed in selective ERα deletion from
SF1 neurons (Xu et al. 2011;Musatov et al. 2007).
Hence, VMH SF1 neurons appear to primarily
control energy expenditure and glucose homeo-
stasis, whereas non-SF1 neurons may have a more
prominent role in the regulation of food intake.
The specific neural pathways that lie downstream
of distinct VMH neurons to control each aspect of
energy homeostasis remain poorly understood,
however.

4.6 Lateral Hypothalamic Area
and Mesolimbic Dopaminergic
System

Unlike the control of autonomic and endocrine func-
tion, foraging for and eating food require the initia-
tion and coordination of complex behaviors. While
the neural circuits that generate motor patterns rep-
resent the ultimate outputs for these behaviors, these

circuits serve the brain’s motivational systems
(Berthoud 2007). The central control of motivation
is mediated by the mesolimbic dopamine
(DA) system, at the core of which lie DA neurons
of the midbrain ventral tegmental area (VTA)
(Berridge 2004). The VTA DA neurons project to
many places, including the nucleus accumbens,
where DA release modulates motivation.

Several decades-old observations also
suggested a role for the LHA in motivation. Not
only does lesioning the LHA promote anhedonia
and abrogate the motivation to feed in experimen-
tal animals, but also animals will self-administer
activating current to the LHA, suggesting that
LHA activation is rewarding/motivating (Fulton
et al. 2000). Since the medial forebrain bundle,
which carries axons from (among others) the VTA
to the nucleus accumbens, courses through the
LHA, it was not initially clear whether the pertur-
bation of the medial forebrain bundle or rather
LHA neurons mediate these effects, however.

With the discovery and functional characteri-
zation of several discrete sets of LHA neurons, it
became clear that LHA neurons themselves play
an important role in the control of motivation,
including the mesolimbic DA system. Indeed,
the LHA integrates metabolic (e.g., leptin and
melanocortins) and other homeostatic signals
from the hypothalamus to modulate mesolimbic
DA-dependent activity, attention, and motivation
(Myers et al. 2009; Berthoud 2007). Like the Arc,
VMH, and DMH, the LHA contains many groups
of neurons, some of which function antagonisti-
cally. Important LHA neurons include orexin (aka
hypocretin)-containing cells, which project to a
variety of midbrain and hindbrain sites. Orexin
neurons are activated by signals of energy deficit
(fasting, ghrelin, etc.) to promote arousal and food
seeking; conversely, leptin inhibits orexin neurons
(Myers et al. 2009; Berthoud 2007). Melanin-
concentrating hormone (MCH)-expressing neu-
rons in the LHA project widely through the fore-
brain, including to the nucleus accumbens, and
stimulate feeding (Georgescu et al. 2005).
Overexpression of MCH promotes increased
feeding and weight gain, while the ablation of
MCH or MCH neurons decreases feeding and
promotes leanness.
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While both orexin and MCH neurons are
glutamatergic, the LHA also contains a substantial
population of GABAergic neurons, many of
which contain neuropeptides, including
neurotensin and galanin. While orexin neurons
contain GHSR (the receptor for orexigenic
ghrelin), neither orexin nor MCH cells
contain LepRb (Leinninger et al. 2009). Rather,
a substantial subset of LHA GABA neurons
coexpresses LepRb. Like the larger population
of LHA GABA neurons, many LHA LepRb neu-
rons also contain neurotensin and/or galanin
(Laque et al. 2013).

LHA LepRb neurons contribute to the control
of feeding, energy expenditure, and energy bal-
ance by leptin, since intra-LHA leptin suppresses
feeding in leptin-deficient animals, and deletion of
LepRb in LHA neurotensin neurons decreases
activity and energy expenditure, while increasing
adiposity (Leinninger et al. 2011). LHA LepRb
neurons project locally onto orexin (but notMCH)
neurons, in addition to innervating the VTA and
other midbrain sites (Louis et al. 2010). While the
action of Arc-derived melanocortins apparently
drives the control of MCH neurons by leptin and
energy balance, leptin action via LHA LepRb
neurons inhibits the activity of orexin neurons, at
least in part via galanin (Opland et al. 2010;
Goforth et al. 2014). LHA leptin action also pro-
motes the expression of orexin; this somewhat
counterintuitive bidirectional regulation of orexin
neurons presumably reflects the need for leptin to
reduce acute foraging activity, while supporting
the normal function of orexin to permit alertness
and attention (Louis et al. 2010).

Leptin action via LHA neurotensin neurons
also modulates the mesolimbic DA function,
decreasing nucleus accumbens DA transport
activity (hence increasing synaptic DA transmis-
sion) (Leinninger et al. 2011). Since the
chemogenetic activation of LHA neurotensin neu-
rons increases nucleus accumbens DA concentra-
tion via the release of neurotensin in the VTA,
intra-VTA neurotensin release by LHA LepRb
neurons presumably represents a mechanism by
which LHA LepRb neurons control mesolimbic

DA function (Patterson et al. 2015). While LHA
LepRb neurons represent a major mechanism by
which leptin and energy status control the
mesolimbic DA system, some VTA cells also
contain LepRb (Leshan et al. 2010; Fulton
et al. 2006; Hommel et al. 2006). VTA LepRb
neurons mainly project locally and to the central
nucleus of the amygdala (rather than the nucleus
accumbens), and the ablation of LepRb from DA
neurons fails to alter energy balance or tested
parameters of mesolimbic DA function. Thus,
LHA LepRb neurons represent the primary link
between leptin and the control of mesolimbic DA
function and motivation.

5 Conclusions

The physiological regulation of varied compo-
nents of the metabolic function relies on a coordi-
nated action of humoral and neural signals,
integrated brain circuits and orchestrated motor,
and behavioral and reflex responses. With the use
of molecular and genetic tools and new technol-
ogy, we have a much clear picture of the role of
specific neuronal populations and brain pathways
associated with the control of many aspects of
energy homeostasis. The “dual center” hypothesis
has its heuristic value, but recent evidence using
more precise tools has demonstrated the complex-
ity of the system with the action of a series of
hypothalamic and brain stem nuclei. We have also
gained knowledge on the relevance of selective
neurotransmitters/peptides and neural pathways
in several aspects of the metabolic regulation.
The next challenge will be to determine how
each of these components is interconnected and
integrated to generate a highly coordinated phys-
iological system.
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Abstract
Our understanding of adipose tissue physiology
and pathophysiology has substantially
increased during the last decade. Notably,
white adipose tissue (WAT) dysfunction has
been proposed as a key determinant of
obesity-associated metabolic complications.
WAT is a complex metabolic organ composed
of many cell types, including adipocytes as the
main cell type involved in energy storage. Adi-
pocytes also synthesize numerous molecules
involved in the regulation of energy balance,
vascular homeostasis, and insulin sensitivity.
In obesity, WAT expansion is associated with
intensified structural remodeling that compro-
mises the tissue’s metabolic and secretory func-
tions. Failure to efficiently store lipids in WAT
results in a “spillover” of the excess of lipids
into non-adipose tissues, which further disrupts
metabolic homeostasis and contributes to the
development of obesity-related pathologies,
known collectively as metabolic syndrome. In
contrast, brown adipose tissue (BAT) is an
energy-dissipating thermogenic organ that pro-
duces heat by uncoupling mitochondrial fatty
acid oxidation. Activation of BAT thermogene-
sis can ameliorate the effects of WAT dysfunc-
tion in metabolically compromised mouse
models. The recent rediscovery of BAT in
humans has raised the possibility that BAT
could be a therapeutic target for metabolic syn-
drome. In this chapter, we will discuss impor-
tant structural and cellular features of the WAT
and BAT and how obesity alters WAT and BAT
structure and function.

Keywords
White adipocyte • Brown adipose tissue •
Beige adipocyte •Angiogenesis • Extracellular
matrix

1 Introduction

Fundamentally, obesity is caused by sustained
positive energy balance. Adipose tissue (AT) is
the major organ for energy storage in mammals,

and excessive expansion of AT plays a central role
in the pathology of obesity. AT is also an impor-
tant endocrine organ, regulating several aspects of
metabolism from appetite to nutrient partitioning
and uptake by other tissues. Therefore it is impor-
tant to understand the consequences of obesity on
AT biology and function.

AT is a connective tissue composed predomi-
nantly of adipocytes, whose main functions are the
storage of energy as triglycerides (TGs) in lipid
droplets and the coordinated mobilization of these
lipids to provide fuel to other organs. The AT also
secretes hormones termed “adipokines” that help
to coordinate these functions, as well as to inform
the central nervous system of energy supplies as a
permissive level of control for costly physiological
processes such as a pregnancy. AT is distributed
throughout the body in various depots with
location-specific differences in their structure,
composition, and functions. For example, white
AT (WAT) can be found subcutaneously (subcuta-
neous WAT, scWAT) and in the intra-abdominal
cavity (visceral WAT, visWAT). WAT is character-
ized by its ability to expand to meet the storage
demands determined by nutrient excess in the con-
text of positive energy balance. These lipids should
be efficiently stored but also released when energy
supply to peripheral tissues is required.

The primary function of brown adipose tissue
(BAT) is heat generation (thermogenesis) to main-
tain body temperature. Until recently BATwas not
much more than a “rodent curiosity.” However the
realization that human infants and adults have BAT
has reinvigorated the research in this area. Brown
adipocytes are uniquely adapted to thermogenesis
by the expression of uncoupling protein 1 (UCP1)
in their mitochondria. UCP1 uncouples substrate
oxidation from ATP synthesis, so heat is produced
instead, a process known as thermogenesis, which
primarily serves to defend the core body tempera-
ture in the face of heat loss to the environment.

WAT structure and function are maladapted in
human obesity particularly when associated with
metabolic complications. We have proposed the
AT expandability hypothesis that suggests that
WAT dysfunction is a key determinant of
obesity-associated metabolic complications.
Healthy WAT maintains metabolic homeostasis

370 V. Peirce et al.



by sequestering excess nutrients and expands and
retracts dynamically as energy availability fluctu-
ates between surplus and shortfall. In contrast, in a
chronic state of positive energy balance, WAT –
especially visWAT – is constantly compelled to
expand. WAT expansion capacity is not infinite,
and beyond a genetically/epigenetically deter-
mined limit, WAT is functionally impaired both
as a storage and endocrine organ. The excess of
lipid species then accumulates in key metabolic
organs such as skeletal muscles and the liver
(referred to as ectopic lipid accumulation) which
negatively affects their function (known as
“lipotoxicity”) and can be considered as one of
the key pathogenic mechanisms associated with
the development of the metabolic syndrome.

From experiments with obese rodents, it is
known that BAT activation removes nutrient
excess by oxidizing lipids and glucose; this can
limit weight gain and mitigate the negative impact
of obesity on WAT and other organs. Therefore
promoting BAT thermogenesis has recently been
considered as a potential therapeutic approach to
treat human obesity and its associated complica-
tions. However, the success of this strategy relies
on a better understanding of BAT structure and
function in humans, areas that have only been
rigorously investigated since 2009.

This chapter outlines the cellular and structural
features and the biological functions of WAT and
BAT; their anatomical distribution, plasticity, and
development; as well as the roles of immune cells,
the vascular network, the extracellular matrix, and
the nervous system in regulating AT function. The
impact of obesity on each of these aspects will
also be described.

2 White and Brown Adipose
Tissue: Cellular and Structural
Features

2.1 Adipose Tissue Cellular
and Structural Components

Adipocytes are the main cellular components of
AT. In WAT, adipocytes are spherical cells that
store fat in the form of TGs in a unilocular lipid

droplet. Adipocyte diameter varies from 30 μm to
180 μm, depending on the anatomical location
and lipid content. The lipid droplet is a dynamic
structure, growing and shrinking as lipids are
added or removed, a process enabled by enzymes,
lipid droplet proteins, and the cytoskeleton.

In contrast, BAT adipocytes store lipid in mul-
tiple, smaller lipid droplets. Multilocularity
increases lipid droplet surface area and is more
suited for the quick and titrated release of stored
lipids for oxidation. Brown adipocytes also have
more and more specialized mitochondria, which
express UCP1, the mitochondrial inner membrane
protein that enables heat production by
uncoupling substrate oxidation from adenosine
triphosphate (ATP) production. In rodents,
UCP1-expressing multilocular adipocytes can
also be found dispersed in scWAT under condi-
tions that require increased heat production (e.g.,
chronic cold exposure). These UCP1-positive
cells are termed as “beige” or “brite” (brown-in-
white) adipocytes. Whereas brown adipocytes
exist as a homogenous population demarcated by
connective tissue, beige adipocytes exist inter-
spersed among white adipocytes within scWAT.

Adipocytes interact with other cellular compo-
nents in AT, including the nonmyelinated nerve
endings of noradrenergic sympathetic fibers, res-
ident immune cells, and vascular cells, such as
endothelial cells and pericytes. In addition, spe-
cific AT cellular components can be replenished
by progenitor populations of preadipocytes and
mesenchymal stem cells. Cells in AT also interact
with the extracellular matrix (ECM), which is
composed mainly of collagens and provides struc-
tural support and regulation of critical cellular
functions such as survival and differentiation.
The cellular composition of BAT and WAT are
distinct and reflect their different functions. For
example, there are more sympathetic nerve end-
ings and capillaries per adipocyte in BAT com-
pared to WAT. This is partly due to smaller
adipocyte size and is adapted to the increased
requirements in BAT for gas exchange and the
supply of oxidative substrates. Furthermore, at
least in rodents the developmental origins of
BAT and WAT adipocytes are different, and even
different WAT depots derive from distinct
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lineages (Carobbio et al. 2013). Though this is
impossible to interrogate in humans, the selective
loss of particular WAT depots in different types of
partial lipodystrophies suggests distinct origins
for adipocytes of different WAT depots (Agarwal
and Garg 2006).

2.2 Anatomical Distribution of WAT

WAT is anatomically distributed into two main
depots: subcutaneous (scWAT) and visceral
(visWAT) (Fig. 1a). ScWAT is found below the
skin, and depending on their anatomical loca-
tion, different scWAT depots have different
structural and ultrastructural features (Sbarbati
et al. 2010). For example, the scWAT depots
localized to the abdominal area are characterized
by large, tightly packed adipocytes, relatively
poor vascularization, and a weak ECM.
The structural scWAT is more fibrous and
vascularized and is located in the limbs and
hips. Finally, the fibrous scWAT is composed of
smaller adipocytes and is particularly suited to
tolerate mechanical stress in areas such as the
heel by its enrichment with ECM components.
Visceral WAT (visWAT) is composed of
intraperitoneal/intra-abdominal depots, includ-
ing omental, mesenteric, and gonadal depots
(epididymal and paratesticular in males,
periovarial and periuterine in females). Discrete
visWAT depots are also found in contact with
organs such as the heart (pericardial), arteries
(perivascular), and kidneys (retroperitoneal).
Other AT depots include mammary AT and
bone marrow AT. Morphologically, adipocytes
in visWAT are smaller than those in scWAT.

The amount and distribution of lipids between
visWAT and scWAT depots differ depending on
gender and age. For example, in females, scWAT
is preferentially located in the gluteofemoral area,
whereas in males it is predominantly located in the
abdominal area (Tchernof et al. 2006). In males,
abdominal WATmass increases with age indepen-
dently of adiposity, and in females the postmeno-
pausal period is associated with an increase in
visWAT potentially due to a relative increase in
testosterone levels (Janssen et al. 2010).

2.3 Anatomical Redistribution
of WAT in Obesity

Obesity is characterized by an excessive increase
in fat mass that predisposes to the development of
metabolic complications such as cardiovascular
diseases and type 2 diabetes. To accommodate
the excess of nutrients, existing adipocytes
become enlarged (hypertrophy) and new adipo-
cytes are recruited (hyperplasia). Furthermore, in
obesity there is an anatomical repartitioning of
WAT mass from scWAT to visWAT (Tchernof
and Després 2013). Compared to scWAT, visWAT
releases more pro-inflammatory cytokines and is
more metabolically active, tending to liberate
more free fatty acids (FFAs) into the circulation
(Giorgino et al. 2005; Fain 2006). Therefore the
accumulation of intra-abdominal fat may nega-
tively affect the function of other metabolic
organs by increasing systemic inflammation and
elevating FFA levels in the blood.

VisWAT dysfunction is associated with
ectopic lipid accumulation in important meta-
bolic organs such as the liver, heart, pancreas,
and skeletal muscle (Fig. 1b). These lipids can
accumulate as intracellular lipids (e.g., within
hepatocytes in the liver or within myocytes
in muscle), form a new fat depot (e.g.,
intermuscular AT), or accumulate in preexisting
visWAT depots (e.g., pericardial and perivascular
depots). Ectopic lipid accumulation is associated
with the so-called lipotoxic effects. For example,
intracellular lipids can impair insulin sensitivity,
especially in myocytes and hepatocytes
(Borén et al. 2013).

2.4 Anatomical Distribution of BAT

BAT has long been known to exist in infants.
Infants are at a higher risk of losing core body
temperature when exposed to a cooler environment
than adults, due to their larger surface-area-to-vol-
ume ratio. Though newborns are born with scWAT
for insulation, they require BAT thermogenesis to
counteract excessive heat loss. BAT represents
about 1 % of body weight in newborns and is
distributed strategically in multiple depots to
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protect key organs and areas of the body and
to warm the blood flow to these areas (Fig. 1c)
(Lean 1989).

Postnatally, many infant BAT depots such as the
interscapular depot lose their “brown” phenotype,
including loss of UCP1 expression and increased
adipocyte size (Lean 1989). However, some deeper
infant BAT depots (e.g., the perirenal depot) are
known to persist into adulthood (Fig. 1d). The use
of metabolic image technology in the form of
2-[18F]fluoro-2-deoxyglucose positron emission
tomography coupled with computed tomography
(FDG-PET/CT) has evidenced the presence of
BAT in adult humans. FDG-PET measures the
uptake and accumulation of FDG, a radioactive
analogue of glucose that cannot be metabolized.
FDG-accumulating tissues are visualized using
PET and identified as AT using CT. Biopsies have
demonstrated the presence of UCP1 in several
FDG-accumulating adipose tissue depots
(Fig. 1d) (Cypess et al. 2009; Lichtenbelt
et al. 2009; Virtanen et al. 2009).

As a percentage of body weight, adults have
much less BAT compared to infants. Also, the
likelihood of BAT detection is higher in females
(Ouellet et al. 2011). An exception to the gradual
loss of BAT from birth through adulthood is the
observed increased prevalence of BAT during
puberty compared to childhood (Gilsanz
et al. 2013). It is notable that BAT activity
decreases with age, whereas the incidence of met-
abolic diseases increases with age. Indeed,
decreased BAT activity is associated with surro-
gate parameters of metabolic dysfunction, such as
increasing BMI, percent body fat, and plasma
glucose levels (Ouellet et al. 2011).

Considering beige cells, data from rodents
indicates that cold exposure preferentially recruits
beige cells in scWAT compared to visWAT. How-
ever, it is unclear whether UCP1-expressing adi-
pocytes can be recruited inWAT depots of healthy
humans. UCP1-expressing multilocular adipo-
cytes have been reported in WAT of patients with
pheochromocytomas and paragangliomas
(Frontini et al. 2013; Søndergaard et al. 2014).
These catecholamine-secreting cancers may
mimic the effects of chronically increased sympa-
thetic nervous tone to WAT in response to long-

term cold exposure, which is the stimulus for
beige cell recruitment in rodents. However, the
recruitment of UCP1-expressing adipocytes has
not been demonstrated in the WAT of healthy
humans under physiological conditions, and
unfortunately FDG-PET/CT is not sensitive
enough to distinguish clusters of thermogenic adi-
pocytes in WAT (Muzik et al. 2013).

In addition to the question of whether beige
adipocyte recruitment is a physiological phenome-
non in humans, the question of whether the adipo-
cytes in human BAT depots are more similar to
rodent beige adipocytes or rodent brown adipocytes
is also unresolved. For example, the UCP1-
expressing adipocytes in adult human
supraclavicular BAT occur in clusters interspersed
among white adipocytes, a pattern reminiscent of
the beige cells in rodent scWAT. In contrast, the
human infant interscapular BAT depot is dominated
bymultilocular UCP1-expressing adipocytes and is
separated from surrounding WAT by connective
tissue, a structural arrangement reminiscent of the
rodent interscapular BAT depot (Lidell et al. 2013).

3 Metabolic Functions of Brown
and White Adipose Tissue

3.1 Metabolic Function of WAT

Classically described as an organ for energy stor-
age, WAT is also a key metabolic endocrine organ.
WAT releases circulating factors that are central to
the coordinated regulation of energy metabolism.
Here we will consider the mechanisms regulating
WAT energy storage and mobilization, as this is
most directly related to WAT structure, and we
point the readers to the chapter on adipokines
(▶Chap. 22, “Adipokines and Metabolism”) for
further information on the endocrine function
of WAT.

3.1.1 Triglyceride Storage
and Mobilization of Energy
Reserves

In the postprandial state, nutrients are absorbed by
the intestinal tract and enter the blood stream.
Most of the absorbed nutrients are stored in liver
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and WAT in the form of glycogen and triglycer-
ides, respectively. Insulin is the major anabolic
hormone orchestrating in this process. To be
stored in WAT, triglycerides (TGs) from blood
are hydrolyzed into FFAs, taken up by the adipo-
cyte, and re-esterified into TGs that are incorpo-
rated to the lipid droplet (Fig. 2a).

In the postabsorptive state, energy reserves are
mobilized in response to catecholamines such as
adrenaline, released by the adrenal medulla, and
noradrenaline, released by nerve endings of the
sympathetic nervous system (SNS) within WAT.
In a process termed lipolysis, catecholamines bind
to β-adrenergic receptors (ARs) (primarily β3
subtype in mice and β1/2 in humans), activating
protein kinase A (PKA) to initiate the breakdown
of intracellular TGs into FFAs and glycerol, which
are released into the circulation (Fig. 2a). These
are taken up by the liver and muscles (sites of FFA
oxidation), and glycerol is used as a substrate for
hepatic gluconeogenesis. Glucagon, which is
secreted by endocrine pancreatic α-cells in
response to catecholamines, plays a complemen-
tary role by promoting gluconeogenesis by the
liver and in rodents lipolysis by WAT as well.
Importantly, cold exposure also increases WAT
lipolysis via the SNS; in this context, FFAs
released by WAT are taken up by BAT and used
as substrates for thermogenesis.

In the absence of a lipolytic stimulus, lipolysis
is repressed by basal levels of catecholamines
engaging α 2-ARs; these inhibitory receptors
have a higher affinity for catecholamines com-
pared to β-ARs. α 2-AR-mediated suppression of
lipolysis is overwhelmed when the local concen-
tration of catecholamines increases, activating
pro-lipolytic β-ARs. Postprandially, lipolysis is
also repressed by insulin.

Energy storage and mobilization show depot-
specific differences. In particular, higher lipolytic
rates are observed in visceral adipocytes com-
pared to subcutaneous adipocytes, due to
increased lipolytic responsiveness to adrenergic
stimulation and reduced sensitivity to the anti-
lipolytic effects of insulin and α 2-AR signaling
(Giorgino et al. 2005). Because the blood supply
of visWAT drains into the portal vein, in obesity
hepatic metabolism may be particularly impaired

by the redistribution of fat mass to the more met-
abolically active visWAT and the consequent
increased load of FFAs into the blood.

3.1.2 Altered Metabolic Function During
Obesity

Obese WAT is characterized by an altered secre-
tion profile of adipokines, discussed in chapter
(▶Chap. 22, “Adipokines and Metabolism”),
and functionally altered energy storage and mobi-
lization. Firstly, FFA uptake and triglyceride stor-
age are facilitated by the upregulation of FFA
uptake mechanisms. For instance, LPL expression
and activity are increased in obese scWAT and
visWAT, and LPL expression positively correlates
with BMI (Clemente-Postigo et al. 2011). Addi-
tionally, CD36 expression is induced during obe-
sity and positively correlated with increased
visWAT mass (Love-Gregory and Abumrad
2011). These processes promote WAT expansion.
Secondly, the regulation of lipolysis is impaired
due to reduced lipase activity and decreased
responsiveness to catecholamines (Lafontan and
Langin 2009).

3.2 Metabolic Function of BAT

Themetabolic function of BAT has been primarily
studied in rodents. Their small size, and therefore
relatively increased surface-area-to-volume ratio,
means that adult rodents are dependent on BAT
thermogenesis to maintain their core body tem-
perature. Heat production is an energy expensive
process that has negative effects on energy bal-
ance and affects whole-body substrate utilization
in rodents and likely in humans as well.

3.2.1 Thermogenesis
Brown adipocytes are uniquely optimized for
thermogenic function by UCP1. UCP1 resides in
and regulates the proton permeability of the inner
mitochondrial membrane (IMM). In mitochon-
dria, substrate oxidation is coupled to electron
transport in order to generate a proton gradient
and a potential difference across the IMM. ATP is
made using the energy released when protons flow
down their electrochemical gradient across the
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IMM through ATP synthases. When activated by
FFAs, UCP1 increases IMM proton permeability
and thereby “uncouples” substrate oxidation from
ATP synthesis, so heat is produced instead.

The metabolic rate of activated BAT is so ele-
vated that intracellular lipid stores are quickly
depleted, so oxidative substrates must be
replenished by the uptake of lipids and glucose
from the blood. The substrate uptake machinery
of brown adipocytes is similar to that of white
adipocytes. Like in WAT, insulin increases sub-
strate uptake by BAT, coordinating BAT metabo-
lism with the fasted or fed state. However, the
SNS is the primary regulator of BAT activation.
In response to a thermogenic stimulus – that is, a
signal indicating an increased demand for heat
production such as a decrease in environmental
temperature – norepinephrine is released by sym-
pathetic nerve endings in BAT and binds to β
3-ARs on brown adipocytes. The downstream
signaling pathways have been studied primarily
in rodent models. Lipolysis is activated similarly
as in white adipocytes except for a few key differ-
ences (Fig. 2b). Firstly, the FFAs freed from intra-
cellular triglycerides are used for oxidation and
UCP1 activation. Secondly, lipolysis in BAT is
coordinated to a non-insulin-dependent
upregulation of the substrate uptake machinery
to increase the uptake of oxidative substrates,
such as FFAs released into the blood by WAT
lipolysis. Finally, sympathetic stimulation
increases the transcription of key thermogenic
genes such as UCP1. In addition to cold exposure,
BAT is also activated in rodents in response to
excess nutrient consumption, for example, due to
high-fat diet (HFD) feeding, a process known as

diet-induced thermogenesis (Rothwell and Stock
1983).

Independently from the SNS, brown and beige
adipocytes are regulated by a number of endocrine
factors in rodents (Fig. 2b). Thyroid hormone is a
key endocrine regulator of BAT thermogenesis.
Though triiodothyronine (T3) has central effects
that can regulate sympathetic tone to BAT, T3 is
also generated locally by brown adipocytes
(López et al. 2013). T3 regulates the transcription
of the UCP1 gene via thyroid hormone response
elements in its promoter. The unliganded thyroid
hormone receptor acts as a transcriptional repres-
sor, and the binding of T3 to its receptor relieves
this repression (Rabelo et al. 1996).

Other endocrine factors regulate the respon-
siveness of brown adipocytes to adrenergic stim-
ulation by interacting with the cAMP/PKA
pathway and its effectors. For example, BMP8b
increases the maximal thermogenic response of
brown adipocytes to adrenergic stimulation by
potentiating PKA activity (Whittle et al. 2012).
In addition, PKA shares many intracellular targets
with protein kinase G (PKG). As a result, cardiac
natriuretic peptides (CNPs), which act via PKG,
can induce lipolysis and the expression of thermo-
genic genes in brown and white adipocytes, a
response which is additive to that of norepineph-
rine (Bordicchia et al. 2012). Recently, endocrine
factors that bypass the sympathetic nervous path-
ways altogether to regulate brown and beige adi-
pocyte activity have also been identified (Table 1).

The relevance of endocrine activators to
human BAT is under investigation. For example,
in an isolated case, levothyroxine treatment for
thyroid cancer also increased BAT mass and

�

Fig. 2 (continued) kinase A (PKA) activation. PKA phosphorylates lipid droplet membrane proteins and lipases to
stimulate lipolysis, releasing FFAs and glycerol that leave the adipocyte. In absence of a lipolytic stimulus, lipolysis is
repressed by basal levels of catecholamines engaging a 2-ARs, which are coupled to Gi subunits that inhibit adenylate
cyclase. Postprandially, lipolysis is repressed by insulin through activation of the phosphodiesterase (PDE3B), which
limits PKA activation by degrading cyclic AMP. (b) The intracellular signaling pathways that mediate the response of
brown adipocytes to extracellular signals (catecholamines, natriuretic peptides, triiodothyronine, BMP8b) that mediate
thermogenesis. Abbreviations: acylglycerol (AG), adenosine triphosphate (ATP), adipose triglyceride lipase (ATGL),
cyclic AMP (cAMP), cyclic GMP (cGMP), diacylglycerol (DAG), fatty acid-binding protein 4 (FABP4), fatty acid
translocase (CD36), free fatty acid (FFA), glucose transporter 4 (GLUT4), glycerol-3-phosphate (glycerol-3-P), lipopro-
tein lipase (LPL), monoacylglycerol (MAG), phosphodiesterase 3 B (PDE3B), protein kinase A (PKA), triglyceride (TG),
triiodothyronine (T3), uncoupling protein 1 (UCP1)
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activity as a side effect, and upon withdrawal of
levothyroxine treatment BAT activity and mass
decreased (Skarulis et al. 2010). Recent evidence
that circulating levels of FGF21 and irisin are
increased with cold exposure in humans also sug-
gests that these factors may be involved in cold-
induced thermogenesis (Lee et al. 2014a).

3.2.2 Regulation of Whole-Body Energy
Metabolism

BAT activity can promote a negative energy bal-
ance and weight loss. In rodents, BAT thermogen-
esis is responsible for the ~60 % increase in
metabolic rate caused by decreasing housing tem-
perature from 30 �C to 23 �C (Cannon and
Nedergaard 2011). Indeed, BAT ablation or dys-
function in rodents decreases energy expenditure,
causing an obese phenotype (Lowell et al. 1993;
Feldmann et al. 2009). Conversely, BAT simula-
tion by cold exposure or β 3-AR agonism
increases energy expenditure, attenuates weight
gain, and decreases adiposity in rodent models
of obesity (Vallerand et al. 1986; Himms-Hagen
et al. 1994). The full impact of BAT activation on
human energy expenditure has not been fully clar-
ified, but it is likely less than in rodents due to a
reduced dependence on BAT thermogenesis and
lower BAT mass as a percent of body weight.
However, a direct link between increased BAT
activity and adiposity is suggested by the evidence
that 2-h bouts of exposure to 17 �C for 6 weeks

increased BATactivity and also decreased adipos-
ity in healthy volunteers (Yoneshiro et al. 2013).

In terms of whole-body metabolism, increased
energy expenditure by BAT requires increased
substrate uptake and utilization. Increased glucose
and lipid disposal by activated BAT is sufficient to
normalize hyperglycemia and hyperlipidemia in
mouse models of diabetes and dyslipidemia
(Arbeeny et al. 1995; Bartelt et al. 2011). The
fact that sustained BAT activation introduces a
negative energy balance may indicate that the
main beneficial effects of BAT activation on dia-
betes and dyslipidemia are secondary to its effects
in body weight. However, in some experiments
activation of BAT by chronic treatment with a β
3-AR agonist did not decrease body weight but
did decrease serum levels of glucose and FFAs
and also increased peripheral insulin sensitivity
(Liu et al. 1998). This suggests that BAT activa-
tion directly improves glucose homeostasis, so the
fact that BAT activation can also protect against
obesity is an added advantage. BAT endocrine
activity may also regulate of whole-body energy
metabolism. Some of the molecules described
previously as thermogenic activators are also fac-
tors secreted by BAT itself. In particular, BAT
production of certain factors known to regulate
metabolism is sufficient to have a systemic impact
(Table 2), suggesting that BAT may be an impor-
tant node for the regulation of energy and glucose
homeostasis.

Table 1 Endocrine factors that bypass the sympathetic nervous pathways to regulate brown and beige adipocyte activity

Molecules Mechanism of action References

FGF21 Release of FGF21 by the liver within hours of birth is an
important signal promoting thermogenesis in neonatal
mice. FGF21 is also released by brown adipocytes
themselves, acting locally to further increase BAT
thermogenesis and systemically to induce beige adipocyte
recruitment in WAT

Hondares et al. 2011a, b;
Fisher et al. 2012

Irisin, cardiotrophin-1 Recruit beige adipocytes in white adipose tissue by acting
on white adipocytes and their precursors

Moreno-Aliaga et al. 2011;
Boström et al. 2012

Lactate, nitrate,
β-aminoisobutyric acid,
adenosine

Activate brown adipocytes and recruit beige adipocytes Carrière et al. 2014; Gnad
et al. 2014; Roberts
et al. 2014a, b

Meteorin Induces M2 polarization of macrophages to recruit beige
adipocytes in WAT

Rao et al. 2014

References: Hondares et al. 2011a, b; Moreno-Aliaga et al. 2011; Boström et al. 2012; Fisher et al. 2012; Carrière
et al. 2014; Gnad et al. 2014; Rao et al. 2014; Roberts et al. 2014a, b
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In humans, the glucose uptake rate of cold-
stimulated BAT per gram of tissue exceeds that
of insulin-stimulated skeletal muscle, and evi-
dence suggests that activated BAT may regulate
glycemia (Orava et al. 2011). Indeed, fasting glu-
cose levels are lower in individuals with detect-
able BAT than in those without detectable BAT,
though a causal link has not been established (Lee
et al. 2010). In terms of an endocrine function for
human BAT, FGF21 expression has been detected
in neonatal BAT and in adult BAT induced by
pheochromocytoma (Hondares et al. 2014). How-
ever, the secretion profile of physiological adult
BAT has not been analyzed, neither in healthy
conditions nor in the context of obesity and met-
abolic disease.

3.2.3 Effect of Obesity
on Thermogenesis and Regulation
of Energy Metabolism

Though increasing BAT activity in rodent models
of obesity has beneficial effects on energy balance
and metabolism, BAT does become dysfunctional
in the context of obesity in rodents. For example,
in ob/ob mice BAT is insulin resistant, suggesting
that like other insulin-sensitive tissues, BAT is
also negatively affected by hyperinsulinemia and
hyperglycemia in the context of obesity (Collins
et al. 1994). In line with this, a study specifically
investigating BAT activation by cold and insulin

stimulation in humans measured reduced respon-
siveness to both of these stimuli in obese patients
in terms of glucose uptake and blood flow (Orava
et al. 2013). These results imply that BAT activity
may be impaired in human obesity.

4 Adipose Tissue Plasticity

4.1 Adipogenesis

Both BAT and WAT are established in utero. In
animal models, WAT depots have been found to
derive from both the mesoderm and the neural
crest, so distinct developmental origins may under-
lie the different gene expression patterns found in
differentWATdepots in humans (Berry et al. 2013).
Rodent studies have shown that brown adipocytes
derive from the paraxial mesoderm and interest-
ingly share a Myf5+ lineage origin with myocytes,
whereas most white adipocytes have a Myf5�

lineage origin (Fig. 3) (Carobbio et al. 2013).
ATexpansion in the adult is fundamental to the

functional roles of WAT and BAT. As we have
seen, to act as an effective storage organ, WAT
must expand if calorie consumption is excessive
and conversely contract by releasing FFAs in
fasting conditions. BAT is equally plastic and
can expand or contract to match its thermogenic
capacity to the thermogenic needs of the organ-
ism. In both cases, AT expansion requires the
production of new adipocytes. Adipocytes are
nondividing cells, so new adipocytes are made
from undifferentiated precursor cells with prolif-
erative capacity that persist in adult AT: mesen-
chymal stem cells and preadipocytes. Adipocyte
differentiaiton encompasses the production of
preadipocytes – which are committed to produc-
ing adipocytes – from mesenchymal stem cells,
and the terminal differentiation of preadipocytes
into mature adiopcytes.

4.1.1 White Adipocyte Differentiation
The first step of white adipocyte differentiation is
the generation of preadipocytes from mesenchy-
mal precursors. In vitro, mesenchymal precursors
can be maintained in an undifferentiated, prolifer-
ating state by factors such as FGF2 and activin A

Table 2 Factors with endocrine functions that are
released by brown adipocytes

Molecules Importance References

T3 Regulates whole-body
energy expenditure

Hondares
et al. 2011b

FGF21,
IL-6

Regulate glucose
homeostasis

Li et al. 2002;
Hondares
et al. 2011b

Leptin,
adiponectin

Regulate appetite and
glucose and lipid
metabolism.
Expression is
downregulated with
increased BAT activity
and therefore may be
of lesser importance

Cannon and
Nedergaard
2004

References: Li et al. 2002; Cannon and Nedergaard 2004;
Hondares et al. 2011a
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and committed to the adipocyte cell lineage by
BMP4 (Tang et al. 2004; Zaragosi et al. 2006,
2010). Adipogenesis is the production of adipo-
cytes from preadipocytes, and extensive studies of
this process in vitro have highlighted a cascade
of transcription factors that regulates
adipocyte differentiation (Fig. 3) (Rosen and
Spiegelman 2000). C/EBPβ and C/EBPδ are

induced first during mitotic clonal expansion of
preadipocytes and subsequently induce C/EBPα
(alpha) and PPARγ 2, which maintain the terminal
differentiation of the adipocyte. This is character-
ized by cell cycle arrest and the induction of
mature white adipocyte machinery, such as the
lipogenic program, which is regulated by the
transcription factor SREBP1c.

Fig. 3 Origins of adipocytes and transcriptional regulation
of adipocyte differentiation. Mesenchymal stem cells and
preadipocytes with proliferative and adipogenic capacity
persist in adult AT. Rodent brown adipocytes derive from
a MYF5+ lineage, unlike most white adipocytes (Carobbio
et al. 2013). Beige adipocytesmay derive from precursors or
directly from white adipocytes (Lee et al. 2012; Rosenwald
et al. 2013). C/EBPs and PPARγ transcription factors regu-
late adipogenesis, which is biased toward a thermogenic
brown or beige phenotype by factors such as FOXC2,
PGC1α, and PRDM16 (transcriptional control in blue
boxes) (Puigserver et al. 1998; Rosen and Spiegelman

2000; Hansen and Kristiansen 2006; Lidell et al. 2011;
Seale et al. 2011). Extracellular signals can maintain the
undifferentiated, proliferating state of mesenchymal stem
cells (purple box) and promote (green boxes) or inhibit
(red boxes) adipocyte differentiation (Valverde 2002; Tang
et al. 2004; Rosen and MacDougald 2006; Zaragosi
et al. 2006, 2010; Tseng et al. 2008). References: Puigserver
et al. 1998; Rosen and Spiegelman 2000; Valverde 2002;
Tang et al. 2004; Hansen and Kristiansen 2006; Zaragosi
et al. 2006, 2010; Rosen and MacDougald 2006; Tseng
et al. 2008; Lidell et al. 2011; Seale et al. 2011; Lee
et al. 2012; Carobbio et al. 2013; Rosenwald et al. 2013
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In vitro, thewhite adipogenic transcriptional cas-
cade can be initiated or suppressed by extracellular
signals (Fig. 3) (Rosen andMacDougald 2006). For
example, insulin, insulin-like growth factor
1 (IGF-1), andglucocorticoids induce adipogenesis.
Although FGF2 stimulates mesenchymal stem cell
proliferation, this factor andother FGF familymem-
bers (FGF1, FGF10) have also been shown to pro-
moteadipogenesis. Incontrast,Wntfamilymembers
(such as WNT10b), TGF-β, and inflammatory
cytokines (such as TNFα inhibit adipogenesis).

The identification of adipocyte precursors in
the vasculature of murine and human scWAT
(and rodent BAT) suggests that angiogenesis (the
generation of new capillaries, discussed later) and
adipogenesis are spatially and temporally
coupled, linking the production of new adipocytes
to the expansion of important ancillary compo-
nents such as capillary networks (Tang et al. 2008;
Tran et al. 2012).

4.1.2 Brown and Beige Adipocyte
Differentiation

Like in WAT, mesenchymal stem cells and
preadipocytes with proliferative and adipogenic
capacity persist in adult BAT. Because, at least in
rodents, brown adipocytes share a Myf5+ lineage
origin with myocytes, a unique component of
brown adipocyte differentiation is the repression
of myogenic genes, a role ascribed to co-activator
PRDM16 (Seale et al. 2008). The source of beige
adipocytes in rodent WAT is debated. It is possible
that these cells arise by transdifferentiation of
white adipocyte or by adipogenesis from beige-
specific precursors (Lee et al. 2012; Rosenwald
et al. 2013).

In vitro studies using rodent cells suggest that
the transcriptional cascade that controls terminal
differentiation into mature brown, and presum-
ably beige, adipocytes shares many similarities
to that of white adipocytes, including transcrip-
tional control by C/EBPs and PPARγ 2 (Hansen
and Kristiansen 2006). However, certain tran-
scription factors direct this process toward a
brown versus white adipocyte cell fate. For exam-
ple, FOXC2 modulates the expression and activ-
ity of adrenergic signaling molecules, PGC1α
regulates both mitochondrial and thermogenic

gene expressions, and PRDM16 represses white
adipocyte genes during beige adipocyte recruit-
ment (Fig. 3) (Puigserver et al. 1998; Lidell
et al. 2011; Seale et al. 2011).

Similar to brown adipocyte activation, brown
adipogenesis is also regulated by the SNS and
endocrine mechanisms. For example, brown
preadipocyte proliferation can be stimulated by
insulin, IGF-1, and catecholamines (via the β
1-AR) (Valverde 2002). Adrenergic signaling via
the β 3-AR induces differentiation by promoting
the transcription of thermogenic genes via tran-
scriptional machinery such as PGC1α, CREB, and
ATFII. Relief of thyroid hormone receptor repres-
sion of UCP1 transcription by T3 is important for
terminal brown adipocyte differentiation, as is
insulin’s induction of lipogenic genes during
adipogenesis (Valverde 2002). Interestingly,
BMP7 alone can stimulate the differentiation of
brown preadipocytes and commit mesenchymal
precursors to a brown adipocyte cell fate (Tseng
et al. 2008).

4.2 Adipose Tissue Expansion

WAT expansion can be achieved by increasing
adipocyte number (hyperplasia) and increasing
the size of the preexisting adipocytes (hypertro-
phy). At early stages of obesity, adipocyte size
can increase up to 20-fold. More adipocytes are
also made to increase the storage capacity of
AT. In order to maintain proper WAT function
in spite of an increased caloric burden, hyperpla-
sia rather than hypertrophy is the preferable
adaptation because hypertrophy negatively
affects adipocyte function as suggested by the
positive correlation between adipocyte size,
insulin resistance, and increased risk of type
2 diabetes (Lundgren et al. 2007). Adipocyte
hypertrophy is also associated with inflammatory
gene expression and an altered secretory profile
(Skurk et al. 2007). Unfortunately, hypertrophic
AT displays a decreased adipogenic capacity,
which aggravates hypertrophy by limiting the
production of new adipocytes that could increase
the tissue’s storage capacity (Isakson et al. 2009).
The overall failure of WAT as a storage organ of
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lipids occurs when its maximum storage capacity
is reached, leading to lipotoxicity in non-adipose
tissues.

The body’s demand for heat production by
BAT also regulates BAT expansion. The amount
of heat BAT is able to generate depends on the
number of brown adipocytes. In rodents, when
BAT thermogenesis is insufficient to maintain
core body temperature, for example, in response
to an acute reduction in environmental tempera-
ture, thermogenesis by muscle shivering makes
up the difference. Over the course of 4 weeks at
the cooler temperature, BAT thermogenesis is
“adapted” to fully meet the thermogenic require-
ment of the organism. This is achieved by increas-
ing BATmass (“recruitment”) and its thermogenic
capacity. BAT recruitment is stimulated by a
sustained increase in sympathetic tone to BAT.
Incidentally, chronic sympathetic stimulation of
WAT also recruits beige cells. The term “acclima-
tion” refers to the physiological regulation of BAT
mass so that BAT thermogenesis balances heat
loss to the environment at a new environmental
temperature. BAT can expand or atrophy
depending on the changing thermogenic demands
of the organism.

Three recent studies have demonstrated that
chronic cold exposure is able to activate and
recruit BAT in humans (van der Lans et al. 2013;
Yoneshiro et al. 2013; Lee et al. 2014b). This is
promising evidence that human BAT is an active,
highly plastic “trainable” tissue responsive to
physiological stimuli and that lessons learned
from BAT recruitment in rodents have transla-
tional value. The effect of obesity on the ability
to recruit BAT in humans has not been explored
directly. However, as we have seen, insulin plays a
key role in brown preadipocyte proliferation and
differentiation. In the context of obesity, BAT is
insulin resistant, and the likelihood of BAT detec-
tion decreases as BMI and adiposity increase
(Ouellet et al. 2011). Though it is impossible to
assign cause or consequence, given the evidence
from rodent models, it is reasonable to hypothe-
size that insulin resistance in BAT may contribute
to its reduced mass in obesity. The effect of obe-
sity on beige adipocyte recruitment is even less
well understood.

5 Immunity in WAT and BAT

5.1 Macrophages

Macrophages are found in WAT even in lean indi-
viduals; indeed, in rodents resident macrophages
may contribute to the maintenance of WAT
metabolic homeostasis (Cancello et al. 2006;
Odegaard et al. 2007). These macrophages have
a so-called anti-inflammatory “M2” phenotype
(Lumeng et al. 2007a). Obesity is characterized
by increased local inflammation in WAT, espe-
cially visWAT, in association with a general
increase in systemic inflammation levels
(Cancello et al. 2006; Kim et al. 2006).
Local inflammation is promoted by adipocyte
hypertrophy and hypoxia, which causes increased
expression by adipocytes of inflammatory cyto-
kines (e.g., TNFα, IL-6, and IL-1β) and
chemokines (e.g., CCL2, CCL5, CXCL1,
CXCL2, CXCL8).

Chemokines are chemoattractant cytokines
that recruit and activate a variety of immune
cells, most importantly macrophages. Macro-
phages bind to and migrate through the endothe-
lium (the single layer of endothelial cells of a
capillary) by binding to adhesion molecules that
are expressed by endothelial cells and induced
by inflammatory cytokines (Fig. 4) (Springer
1990). In human obesity, macrophage infiltra-
tion is more pronounced in visWAT compared
to scWAT (Cancello et al. 2006). Inflammatory
cytokines and FFAs released by adipocytes con-
tribute to polarizing infiltrating macrophages
(and potentially resident M2 macrophages) to a
“M1” phenotype, which is characterized by pro-
duction of inflammatory cytokines (Saganami
et al. 2005; Lumeng et al. 2008). Macrophages
that secrete high levels of inflammatory
cytokines in spite of expressing M2 markers
such as CD206 have also been found in obese
visWAT and scWAT (Zeyda et al. 2007). Within
obese WAT, macrophages accumulate around
the dead adipocytes forming the so-called
crown-like structures, taking up cellular debris,
and accumulating lipids (Cinti et al. 2005).
Overall, this leads to a positive feedback loop
that reinforces local inflammation and WAT
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dysfunction (Fig. 4): inflammatory cytokines
released by macrophages and adipocytes
alike further promote adipocyte inflammation,
insulin resistance, altered production of
adipokines, impaired adipogenesis, and
vascular remodeling (Saganami et al. 2005;
Permana et al. 2006; Lumeng et al. 2007b;
Bourlier et al. 2008).

5.2 Other Immune Cells
in Obese WAT

Immune cell infiltration into obese WAT is not
limited to macrophages. In fact in HFD-induced
obese mice, the accumulation of T lymphocytes
precedes macrophage infiltration into visWAT
(Kintscher et al. 2008). In the same model,

Fig. 4 Immune cell infiltration into obese adipose tissue
and macrophage polarization. In obese WAT, hypertrophic
and necrotic adipocytes secrete cytokines and chemokines
that result in the accumulation of immune cells and tissue
inflammation. Cytokines (TNFα, IL-6, and IL-1β) activate
endothelial cells (ECs) to express various cellular adhesion
molecules, including selectins, I-CAM, V-CAM, and
PECAM-1 (intracellular, vascular, and platelet-endothelial
cell adhesion molecule, respectively) (Springer 1990).
Immune cells (monocytes, mast cells, neutrophils, and lym-
phocytes) are recruited to the endothelium by chemokines
(CCL2, CCL5, CXCL1, CXCL2, CXCL8) binding to che-
mokine receptors. In a process termed diapedesis, the
immune cells bind to the endothelium, become activated

by cytokines, roll along the endothelium, and finally adhere,
enabling their transmigration through the endothelium.
Except neutrophils, which remain adherent to endothelium,
most of immune cells infiltrate AT either through para- or
transcellular mechanisms (Springer 1990). Monocytes dif-
ferentiate within WAT into M1 (CD11c and NOS2
expressing) or M2 (CD206 and Arg1 expressing) macro-
phages according to their initial circulating phenotype
and/or in response to the local microenvironment. Macro-
phages expressing M1 and/or M2 markers are organized in
crown-like structures around dead adipocytes and partici-
pate, along with hypertrophic adipocytes and other infiltrat-
ing immune cells, to the maintenance of AT inflammation.
References: (Springer 1990)
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early infiltration of B lymphocytes was also
described in visWAT before any changes in
body weight and insulin sensitivity (Duffaut
et al. 2009). Furthermore, neutrophil accumula-
tion in the lumen of the vasculature of scWATand
visWAT positively correlates with BMI (Nijhuis
et al. 2009). The accumulation of activated neu-
trophils in AT vessels may promote endothelial
cell senescence and chemokine production,
which could increase the infiltration of immune
cells and further aggravate AT inflammation
(Rouault et al. 2013). Finally, though the abso-
lute number of mast cells remains unchanged,
mast cell degranulation activity is increased in
the AT of obese patients, further contributing to
inflammatory cytokine release (Divoux
et al. 2012). Taken together, these alterations
highlight how profoundly obesity induces
inflammation in WAT.

5.3 The Lymphatic System in WAT

There is a greater density of lymphoid structures
in visWAT compared to scWAT, which may be
significant in the context of inflammation in obe-
sity (Pond 2005). Apart from its roles in lipid
absorption and immunity, the lymphatic system
may also be a conduit for adipokines, which have
been found in higher concentrations in lymph
compared to the blood in humans (Miller
et al. 2011). Adipocyte-derived pro-inflammatory
cytokines including IL-6 and TNFα were also
found in lymph in lean subjects (Miller
et al. 2011). Therefore it is possible that local
inflammation in visWAT in obesity may contrib-
ute to increased systemic inflammation due to the
close association between visWAT and the lym-
phatic system.

5.4 Role of Macrophages in BAT

Macrophages seem to have an important physio-
logical role controlling BAT activation in rodents.
As well as regulating sympathetic tone to BAT,
cold exposure also affects the phenotype of resi-
dent macrophages in rodent BAT, polarizing them

to an M2 phenotype. These M2 macrophages then
release norepinephrine, contributing to adrenergic
activation of brown adipocytes (Nguyen
et al. 2011). If and how this mechanism is altered
in rodent models of obesity has not yet been
investigated. Furthermore, M2 polarization of
WAT macrophages also has been shown in
rodents to contribute to beige cell recruitment
via norepinephrine secretion (Qiu et al. 2014).
Though brown adipocytes, like white adipocytes,
become hypertrophic in rodent models of obesity,
an inflammatory phenotype in BATof obese mice
has not been demonstrated as a mediator of BAT
dysfunction in obesity.

6 Vascularization of Adipose
Tissue

6.1 Mechanisms of Angiogenesis
in WAT

Blood is supplied to adipose tissues via arterioles
that branch into capillary beds. Arterioles are
composed of a layer of smooth muscle cells sur-
rounding a layer of endothelial cells (the endothe-
lium). Capillaries are smaller in diameter and lack
a smooth muscle cell layer. The vasculature is a
key structure contributing to WAT function,
transporting lipids intended for storage in WAT
and adipokines and FFAs released by WAT. AT
perfusion can be regulated by vasodilatation or
vasoconstriction mediated by factors secreted by
endothelial cells and by the SNS via ARs
expressed on smooth muscle cells.

The vascular network must be remodeled dur-
ing AT expansion. Angiogenesis is the develop-
ment of a vascular network from a preexisting one
and requires the proliferation and migration of
endothelial cells to form a new capillary (Fig. 5).
Upon maturation, the new vessel is stabilized by
the production of ECM components, which form
the basement membrane, and the recruitment of
pericytes, which are mural cells of blood vessels.
Microvascular pericytes stabilize new vessels by
producing factors such as angiopoietins that pro-
mote endothelial survival and also represent a
pool of adipocyte progenitors (Imhof and
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Aurrand-Lions 2006; Traktuev et al. 2008).
Angiogenesis is regulated by angiogenic factors
produced by adipocytes, adipocyte precursors,
vascular cells, and even macrophages (Fig. 5).

6.2 Vascular Dysfunction
in Obese WAT

Obese WAT is characterized by increased angio-
genic activity due to inflammation and hypoxia.

For example, many inflammatory factors that are
increased in obese WAT also have angiogenic
properties, including cytokines (TNFα, IL-6,
IL-1β) and some chemokines (CXCL2, CXCL8)
(Coppack 2001). Additionally, the expression of
hypoxia-responsive angiogenic factors, such as
VEGF, is upregulated in obese WAT and more so
in visWAT compared to scWAT (Villaret
et al. 2010). However, angiogenesis is insufficient
to prevent the development of hypoxia,
particularly in visWAT (Villaret et al. 2010).

Fig. 5 Mechanisms of angiogenesis in obese adipose
tissue. The main structural cells of blood vessels are endo-
thelial cells and pericytes. Angiogenesis is driven by
pro-angiogenic factors released by pericytes
(angiopoietins) and adipocytes (VEGF-A, FGF2, apelin,
Angptl4, leptin, potentially adiponectin) (Cao et al. 2001;
Sundberg et al. 2002; Bråkenhielm et al. 2004; Ouchi
et al. 2004; Kunduzova et al. 2008; Gealekman
et al. 2011). Macrophages and hypertrophic adipocytes in
obese WAT secrete inflammatory factors with angiogenic
properties, including cytokines (TNFα, IL-6, IL-1β) and

some chemokines (CXCL2, CXCL8) (Coppack 2001).
Hypoxia also drives VEGF expression (Elias et al. 2013).
The formation of a new vessel is initiated by the migration
of endothelial “tip cells” at the tip of the new capillary and
proliferating endothelial “stalk” cells that drive elongation.
Endothelial cells produce ECM components to generate a
new basement membrane, and pericytes stabilize the new
vessel (Sundberg et al. 2002). References: Cao et al. 2001;
Coppack 2001; Sundberg et al. 2002; Bråkenhielm
et al. 2004; Ouchi et al. 2004; Kunduzova et al. 2008;
Gealekman et al. 2011; Elias et al. 2013
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This may be caused by an impairment in vascular
function, especially due to dysfunctional endothe-
lial cells.

As well as playing a key role in angiogenesis,
endothelial cells are important regulators of vas-
cular integrity. Firstly, they control the passage of
materials from the tissue to the blood and vice
versa. On top of acting as a semipermeable barrier,
endothelial cells also respond to various stimuli
by releasing factors that regulate vasodilation and
vasoconstriction, such as such as nitric oxide
(NO) and endothelin-1 (ET-1), respectively.
Importantly, insulin is one such stimulus, so it is
not surprising that endothelial cell dysfunction is
linked to insulin resistance. Insulin resistance
decreases NO production and also increases endo-
thelial cell expression of immune cell adhesion
molecules, which facilitates monocyte infiltration
(Potenza et al. 2009). Furthermore, inflammatory
factors such as IL-6 and TNFα inhibit insulin-
induced NO production and vasodilatation while
increasing the secretion of the vasoconstrictor
ET-1 (Rask-Madsen et al. 2003; Andreozzi
et al. 2007). Overall, endothelial cell insulin resis-
tance favors inflammation and vasoconstriction.
Furthermore, endothelial cells from the visWATof
obese patients show increased expression of
inflammatory markers, which may contribute to
premature endothelial cell senescence, thereby
further impairing vascular integrity (Villaret
et al. 2010).

Endothelial cell senescence could also be pro-
moted by the angiogenic environment of obese
WAT, given that adipocyte-derived VEGF-A
causes endothelial cell senescence in vitro
(Villaret et al. 2010). Indeed, the altered secretion
profile of hypertrophic adipocytes may directly
contribute to endothelial cell dysfunction. For
example, adiponectin and leptin positively regu-
late endothelial cell function: both promote NO
production, and adiponectin has anti-
inflammatory and antiapoptotic effects (Chen
et al. 2003; Kobayashi et al. 2004; Kobashi
et al. 2005). Thus, leptin resistance and reduced
expression of adiponectin in obesity may limit
their beneficial actions of these adipokines on
endothelial cells. Finally, in vitro experiments
suggest that endothelial cell dysfunction has a

direct negative impact on adipocyte function.
Cocultures of visWAT endothelial cells and adi-
pocytes from obese subjects showed reduced lipo-
lytic and insulin responses and increased
inflammatory secretion profiles compared to
cocultures of cells from lean subjects
(Pellegrinelli et al. 2014b). Treatment with
angiopoietin-1, a pericyte-derived factor, reduced
the inflammatory profile endothelial cells from
obese visWAT, and coculture of these treated
cells with adipocytes from obese visWAT reduced
cytokine secretion by the adipocytes (Pellegrinelli
et al. 2014b).

In summary, the combination of inflammation,
altered adipokine secretion, and endothelial cell
dysfunction undermines vascular integrity in
obese WAT. Therefore in spite of an adaptive
increase in angiogenic activity in obese WAT,
hypoxic areas still develop.

6.3 Angiogenesis in BAT

BAT is more vascularized than WAT. The vascula-
ture plays a fundamental role in BAT thermogene-
sis as it is required to conduct BAT-generated heat
throughout the body. In line with this, BAT activa-
tion is coupled to SNS-mediated vasodilatation and
increased blood flow, which also ensures adequate
gas exchange (Orava et al. 2013). Furthermore,
angiogenesis accompanies BAT expansion in
rodents in response to chronic cold exposure,
ensuring the vascularization of newly formed
brown adipocytes, which can derive from precur-
sors residing in the vasculature (Tran et al. 2012).
Mature brown adipocytes themselves stimulate
vascular remodeling by secreting angiogenic fac-
tors including VEGF, FGF2, and NO. This
response is not triggered by hypoxia; rather, it
may be a direct effect of adrenergic stimulation of
brown adipocytes (Xue et al. 2009). A reduction in
capillary density accompanied by hypoxia is found
in the BAT of diet-induced obese mice, in associa-
tion with “whitening” of brown adipocytes (accu-
mulation of lipid, loss of mitochondria, and
reduced adrenergic signaling) (Shimizu
et al. 2014). Interestingly, in this model BAT func-
tionality was rescued by delivery to VEGF-A to
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BAT, highlighting the dependence of thermogene-
sis on adequate vascularization.

Finally, beige cell recruitment inWAT is coupled
to increased vascular density as well, and experi-
mentally increasing vascularization in adipose tissue
by overexpression of VEGF is sufficient to recruit
beige cells in WAT (Xue et al. 2009).

7 Adipose Tissue Extracellular
Matrix

7.1 Structure, Composition,
and Physiological Role
of the Extracellular Matrix
in WAT

The extracellular matrix (ECM) is a complex net-
work of macromolecules that is produced by and
surrounds the component cells of AT (Fig. 6a1).
Collagen and elastin fibers are the major structural
proteins of the ECM, and they are bound by other
components, such as fibronectin, laminins, and pro-
teoglycans. The ECM provides structural support
for the cells in ATand can also directly regulate AT
function. For example, proteoglycans can regulate
the release of secreted factors such as chemokines
and growth factors. Additionally, the ECM commu-
nicates bidirectionally with cells via the binding of
cellular integrins to ECM components such as
fibronectin. Integrins are plasma membrane trans-
membrane proteins that are involved in both “out-
side-in” (ECM binding activates downstream
signaling in cells) and “inside-out” signals (intra-
cellular regulation of integrin/ECM binding activ-
ity) (Hu and Luo 2013). An important example of
“outside-in” signaling is the interaction of ECM
components with adipocyte cytoskeletal structures
at focal adhesion complexes via integrins, thereby
regulating cell shape (Fig. 6a2). This is relevant for
adipogenesis, a process that requires drastic
changes in cellular morphology as spindle-shaped
preadipocytes grow larger and rounder as they
differentiate into mature adipocytes (Rodríguez
Fernández and Ben-Ze’ev 1989).

The ECM of adipocytes, known as the base-
ment membrane (BM), is particularly enriched
with collagen types IV and XVIII, laminin, and

the glycoprotein entactin (Mariman and Wang
2010). In contrast, the ECM of preadipocytes is
composed primarily of collagen types I and II and
fibronectin (Mariman and Wang 2010). Therefore
during adipogenesis the preadipocyte ECM must
be degraded and the mature adipocyte BM synthe-
sized (Fig. 6a3). ECM turnover is mediated by
enzymes that degrade existing ECM structures,
such as fibrinolytic plasmin and matrix metallopro-
teinases (MMPs), and by enzymes involved in the
modification and cross-linking of newly synthe-
sized components, such as ADAM proteases and
lysyl oxidase (LOX), respectively (Mariman and
Wang 2010). These processes are especially rele-
vant to WAT expansion, when existing ECM com-
ponents must be degraded to create room for new
and larger adipocytes, and the ECM must be
restructured around the expanded tissue. Interest-
ingly, ECM composition and evolution during
adipogenesis differ between WAT depots. For
example, collagen IV and fibronectin expressions
are higher in visWAT, whereas collagen I expres-
sion is higher in scWAT (Mori et al. 2014).

7.2 WAT Fibrosis in Obesity

Fibrosis, the excessive deposition of ECM pro-
teins, is induced in obese scWAT and visWAT
around adipocytes and blood vessels (Divoux
et al. 2010). Transcriptomic analyses of scWAT
from obese subjects show an induction of ECM
components such as integrins, collagens, proteo-
glycans, laminins, proteases, and LOX (Henegar
et al. 2008). This upregulation positively correlates
with BMI and the expression of inflammatory
markers (Henegar et al. 2008). Indeed, it is likely
that chronic low-grade inflammation in obeseWAT
contributes to the development of fibrosis. In a
time-course microarray study of the WAT of diet-
induced obese mice, inflammatory-related genes
were induced in visWAT prior to genes involved
in fibrosis (Kwon et al. 2012). Furthermore, mac-
rophage accumulation into visWAT preceded the
appearance of fibrosis in the same model (Strissel
et al. 2007). Immune cells may promote fibrosis by
promoting TGF-β signaling, either by secreting
TGF-β and its family member activin A or by
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releasing MMP9, a protease that can activate
TGF-β (Yu and Stamenkovic 2000; Dreier
et al. 2004; Tracy 2012). Activin A and TGF-β
(beta) induce preadipocytes, endothelial cells, and
mature adipocytes to synthesize ECMcomponents;
in particular, preadipocytes from obese scWAT
adopt a fibroblast-like phenotype (Fig. 6b)
(Keophiphath et al. 2009; Divoux et al. 2010;
Hocking et al. 2010). The resulting fibrosis
can impose mechanical constraints that may nega-
tively impact adipocyte function and limit adipose
tissue expansion, exacerbating metabolic
dysfunction.

7.3 Structure, Composition,
and Physiological Role
of the Extracellular Matrix
in BAT

Although the ECM is a well-described WAT, few
studies focus on the BAT ECM and its remodeling
in pathophysiological conditions. The BM of
rodent brown adipocytes is known to contain col-
lagen IV, laminin, and fibronectin and may be
more enriched with heparin sulfate proteoglycan
compared to the white adipocyte BM (Haraida
et al. 1996). It would be expected that brown

adipocytes in BAT might interact with their
ECM in a similar way to white adipocytes inWAT.

A few recent studies have specifically
highlighted how the BAT ECM may regulate
BAT function. For example, MAGP-1 (microfi-
bril-associated glycoprotein 1) stabilizes microfi-
bril networks to confer tissue elasticity and also
regulates cellular signaling by interacting with
cell-surface receptors and modulating the bio-
availability of growth factors such as TGF-β.
MAGP-1-deficient mice displayed increased
TGF-β activity in BAT and reduced thermogene-
sis and UCP1 gene expression, a phenotype which
was rescued by TGF-β neutralization (Craft
et al. 2014). Fibrosis in BAT may also impair
thermogenesis. In one study, BAT inflammation
and fibrosis were genetically induced in rodents
by overexpression of endotrophin (a C-terminal
cleavage product of the COL6α 3 chain), and this
was accompanied by reduced energy expenditure
(Sun et al. 2014). Fibrosis was induced in another
rodent model by VEGF neutralization; this led to
capillary dropout in BAT, local hypoxia, immune
cell infiltration, fibrosis, and ultimately brown
adipocyte apoptosis (Bagchi et al. 2013). It
remains to be seen whether obesity is associated
with BAT fibrosis and whether fibrosis negatively
affects BAT activity in humans.

��

Fig. 6 The extracellular matrix of adipose tissue. (a) ECM
composition, signaling, and remodeling in adipocytes. (1)
The ECM is a network of macromolecules composed of
structural proteins (collagens and elastin), adhesion proteins
(fibronectin), and proteoglycans. (2) The ECM regulates
cell functions such as migration and differentiation through
interactions with extracellular receptors such as integrins
(Hu and Luo 2013). This can occur via the activation of
FAK (focal adhesion kinase) in focal adhesion complexes
and downstream MAP kinase/actin-dependent signaling or
directly though mechanical cues transmitted into cells via
cytoskeleton of microtubules (MT) and intermediary fila-
ments. (3) ECM remodeling is a key component of
adipogenesis. The preadipocyte ECM is composed primar-
ily of collagen I, collagen III, and fibronectin (Mariman and
Wang 2010). The basement membrane (BM) is a specialized
ECM surrounding mature adipocytes composed of collagen
IV, collagen XVIII, entactin, and laminin (LeBleu
et al. 2007). During differentiation, the preadipocyte ECM
is degraded by proteases (MMPs, ADAMT, and cathepsins)
(Mariman and Wang 2010). This liberates growth factors
and matricellular proteins that are important for the

synthesis of the new mature adipocyte BM, which is stim-
ulated by insulin, TGF-β, and cytokine signaling (Mariman
and Wang 2010). The ECM is also involved in the changes
to cellular morphology associated with adipogenesis
(Rodríguez Fernández and Ben-Ze’ev 1989). (b) Cellular
and physiological contributors to fibrosis in WAT.
Preadipocytes, immune cells, endothelial cells, and mature
adipocytes all contribute to WAT fibrosis. Inflammation
likely precedes fibrosis, as macrophages accumulate in
obese WAT prior to fibrosis, where they promote inflamma-
tion (TNFα) as well as ECM synthesis via TGF-β and
activin A signaling (Yu and Stamenkovic 2000; Dreier
et al. 2004; Kwon et al. 2012; Tracy 2012; Dani 2013).
Preadipocytes are proposed as the major effectors of AT
fibrosis. Fibrosis negatively impacts adipocyte metabolism
by decreasing metabolic functions such as lipolysis and
adipokine secretion and by inducing an inflammatory
response (Pellegrinelli et al. 2014a). References: Rodríguez
Fernández and Ben-Ze’ev 1989; Yu and Stamenkovic 2000;
Dreier et al. 2004; LeBleu et al. 2007; Mariman and Wang
2010; Kwon et al. 2012; Tracy 2012; Dani 2013; Hu and
Luo 2013; Pellegrinelli et al. 2014a
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8 Innervation of Adipose Tissue

8.1 Nervous Networks in Adipose
Tissue

Efferent sensory and afferent sympathetic nerves
have been identified in rodent WAT and BAT
(Giordano et al. 1996; De Matteis et al. 1998). In
rodents, sympathetic innervation is greater in BAT
compared toWATand greater in scWATcompared
to visWAT (Murano et al. 2009). Nerve endings
are in contact with adipocytes and blood vessels.
As we have seen, the norepinephrine released
from sympathetic nerves regulates AT perfusion
and several components of AT function, from
WAT lipolysis to BAT thermogenesis. In rodents,
sympathetic stimulation of WAT also suppresses
the release of leptin and adiponectin from WAT
and can induce the secretion of autocrine and
endocrine factors including BMP8b, FGF21, and
T3 (Fernandez et al. 1987; Hondares et al. 2011a;
Whittle et al. 2012).

Sympathetic activity is regulated by the hypo-
thalamus, which receives information related to
energy availability to regulate lipolysis and envi-
ronmental and core body temperature to regulate
thermogenesis. When a sympathetic response is
required, this information is transmitted to sym-
pathetic premotor neurons located in the rostral
raphe pallidus and parapyramidal areas of the
hindbrain, as determined by neuronal viral tracer
studies in rodents (Tupone et al. 2014). These
premotor neurons synapse with preganglionic
neurons whose cell bodies reside in the spinal
intermediolateral nucleus. Finally, these pregan-
glionic neurons regulate the activity of the
norepinephrine-releasing postganglionic neurons
with nerve endings in AT (Tupone et al. 2014).
Distinct regulation of sympathetic tone to differ-
ent WAT and BAT depots has been observed in
animal models because different depots are inner-
vated by distinct populations of postganglionic
neurons (Brito et al. 2008). Along with norepi-
nephrine, sympathetic nerves in rodent WAT and
BAT also release neuropeptide Y (NPY), which
has been shown to inhibit lipolysis and promote
leptin release by human white adipocytes in vitro
(Giordano et al. 1996; Serradeil-Le Gal

et al. 2000). Interestingly, feedback loops between
the sympathetic and sensory nervous systems in
both WAT and BAT have been identified
(Niijima 1999; Ryu et al. 2015). Finally, the pres-
ence and significance of parasympathetic
innervation of rodent WAT are under debate
(Kreier and Buijs 2007).

8.2 Nervous Remodeling in AT

In rodents, cold exposure increases the density of
sympathetic innervation in BAT and WAT depots
(Vitali et al. 2012). Indeed, during BAT recruit-
ment in rodents, the nervous network is
remodeled to innervate new brown adipocytes
(Vitali et al. 2012). The expression of several
neurotrophins that regulate neuron survival and
plasticity has been detected human or rodent WAT
and BATandmay underlie these observations. For
example, nerve growth factor (NGF) is required
for sympathetic neuron survival and is secreted by
white and brown adipocytes (Néchad et al. 1994;
Peeraully et al. 2004). Neurotrophins with
chemoattractant (neuregulin 4) and
chemorepellent (semaphorins) properties have
also been detected (Giordano et al. 2001; Mejhert
et al. 2013; Wang et al. 2014).

Obesity is associated with reduced adrenergic
responsiveness of BAT and WAT, a phenomenon
that has been attributed to adipocyte dysfunction.
Additionally, changes at a central level, such as
hypothalamic insulin resistance and
neuroinflammation, have downstream effects on
the nervous regulation of AT (Purkayastha and
Cai 2013). However, impairment of or damage
to the nervous network within AT as a result of
obesity has not been highlighted to date.

9 Conclusions

In conclusion, proper AT function depends on the
coordinated interaction of adipocytes, precursor
cells, immune cells, blood vessels, nerves, and
the ECM. Obesity is characterized by an absolute
increase in and an anatomical redistribution of
WAT mass, which leads to insulin resistance and
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other metabolic complications. Obesity also alters
the ultrastructure and cellular composition of
WAT, negatively affecting WAT function and ulti-
mately impairing its ability to buffer excess nutri-
ents. This can lead to ectopic lipid accumulation
in non-adipose tissues that further exacerbates
metabolic dysfunction.

The rediscovery of BAT, a type of AT uniquely
specialized for calorie burning, in adult humans
has created the opportunity for novel therapeutic
strategies to treat obesity and metabolic syn-
drome. Although WAT far outstrips BAT in
terms of percent of body mass, in rodents the
high activity of BAT is an important contributor
to nutrient partitioning and utilization and body
weight regulation. Conceptually, therapeutically
increasing BAT activity could eliminate excess
nutrients, improving WAT function with knock-
on effects on whole-body metabolism. The suc-
cess of this approach will depend on a better
understanding of BAT structure and function in
healthy adult humans and whether potential
BAT-based therapeutic strategies can overcome
any limitations caused by the negative impact of
obesity on BAT function.
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Abstract
Adipose tissue is the main site of energy stor-
age in the form of triglycerides. Mature adipo-
cytes also produce enzymes, growth factors,
cytokines, chemokines, and hormones
(adipokines) implicated in the modulation of
feeding, energy homeostasis, lipid and glucose
metabolism, inflammation, coagulation, and
cardiovascular system. Obesity alters the
expression, circulating levels, and signaling
mechanisms of adipose-secreted factors, and
these changes have been linked to the develop-
ment of insulin resistance, type 2 diabetes,
dyslipidemia, atherosclerosis, cancer, and
other diseases.

Keywords
Adipose tissue • Adipokine • Leptin •
Adiponectin • Resistin • Insulin • Obesity

1 Introduction

White adipose tissue (WAT), the main type of
adipose tissue in mammals, is composed of spe-
cialized cells for lipid storage (adipocytes)
embedded in a highly vascularized and innervated
loose connective tissue. Mature white adipocytes
contain a single large fat droplet occupying
>90 % of the cell volume, and the nucleus and
cytoplasm are squeezed into the remaining cell
volume, creating a signet ring appearance. In
addition to adipocytes, WAT contains adipocyte
progenitor cells, macrophages, leukocytes, fibro-
blasts, and endothelial cells. The highest amounts
of WATare found in the subcutaneous regions and
surrounding abdominal and thoracic organs.

Triglycerides stored in white adipocytes repre-
sent themajor energy reserves of the body and are in
a constant state of flux in relation to feeding and
fasting. Insulin is increased in response to meals,
binds to the insulin receptor, and suppresses lipoly-
sis via activation of phosphodiesterase 3B which
hydrolyzes cAMP and inactivates protein kinase A
(PKA). Insulin also suppresses lipolysis through a
cAMP-independent pathway mediated by

stimulation of protein phosphatase-1 which inacti-
vates hormone-sensitive lipase (HSL). Epinephrine
and norepinephrine levels increase during fasting
and bind to their cognate receptors on adipocytes
triggering activation of adenylate cyclase, increas-
ing cAMP which activates PKA leading to phos-
phorylation and activation of HSL. In addition to
HSL, adipocytes express other triglyceride hydro-
lases including desnutrin/ATGL, triacylglycerol
hydrolase, and adiponutrin. Other proteins impli-
cated in triglyceride metabolism in adipose tissue
include perilipins, adipose fatty acid-binding protein
(aP2), caveolin-1, aquaporin 7, and lipotransin.
Perilipin-1 coats lipid droplets and prevents access
of triglyceride lipases, thus limiting basal lipolysis.
aP2 transports fatty acids to the plasmamembrane to
be released into plasma. Glycerol released from
triglyceride hydrolysis is exported via aquaporin
7. Lipotransin may be involved in shuttling HSL
from the cytosol to the lipid droplet during adipo-
cyte stimulation.

In addition to enzymes and transporters
involved in fuel homeostasis, adipose tissue pro-
duces and secretes several proteins including adhe-
sion molecules, growth factors, adipokines,
cytokines, chemokines, and complement and coag-
ulation factors (Table 1). This review will focus on
the biology of leptin, adiponectin, and resistin.

2 Leptin

Leptin is a 167-amino-acid peptide which is
mainly produced and secreted by WAT and to a
lesser extent by placenta, mammary gland, ovary,
skeletal muscle, stomach, pituitary gland, and
lymphoid tissue (Margetic et al. 2002). Plasma
leptin concentrations are proportional to the
amount of body fat. In addition, leptin levels
increase in response to overfeeding and during
starvation (Considine et al. 1996; Chan
et al. 2003). Leptin is secreted in a pulsatile man-
ner and displays a circadian rhythmwith a nadir at
midafternoon and peak levels at midnight. The
pulsatile leptin secretion is similar in obese and
lean people, but the pulse amplitude is higher in
obesity (Licinio et al. 1997). Leptin levels exhibit

398 R.S. Ahima et al.



a sexual dimorphism, being higher in
premenopausal women than men and declining
in postmenopausal women (Rosenbaum and
Leibel 1999). Subcutaneous fat produces more
leptin than visceral fat, and this may in part

contribute to higher leptin levels in women com-
pared to men (Montague et al. 1997). Besides sex
steroids, leptin is increased by insulin and gluco-
corticoids and reduced by catecholamines and
inflammatory cytokines (Ahima and Osei 2004).

Table 1 Proteins produced
by adipose tissue

Enzymes and
transporters Receptors Secreted proteins

Lipid metabolism
LPL
HSL
ATGL
Triacylglycerol

hydrolase
Adiponutrin
CETP
aP2
CD36
ApoE
Perilipins
Caveolin-1
Aquaporin 7
Lipotransin

Glucose
metabolism
IRS-1, IRS-2
PI3K
Akt
Protein kinase

λ/ζ
GSK-3α
GLUT4

Steroid
metabolism
Aromatase
11β-HSD-1
17β-HSD
Estrogen

sulfotransferase

Peptide and
glycoprotein

Insulin
Glucagon
FSH
GH
Ang-II
CCK-B/

gastrin
Adiponectin

Nuclear
PPARγ

Glucocorticoid
Estrogen
Progesterone
Androgen
Thyroid
Vitamin D
NF-κB

Adipokines
Leptin
Adiponectin
Resistin (rodents)
Angiotensinogen
Fasting-induced adipose factor

(angiopoietin-like protein-4)
Apelin
Omentin
Retinol-binding protein (RBP4)
Visfatin
Vaspin

Cytokines
TNF-α
MIF
IL-1β, IL-4, IL-6, IL-8, IL-10, IL-18

Chemokines
Chemerin
MCP-1
MIP-1α

Complement factors
Adipsin
Acylation-stimulating protein

Acute phase proteins
CRP
Serum amyloid A3 (SAA3)
Haptoglobin

Growth/angiogenic/coagulation factors
FGF-1, FGF-2, FGF-7, FGF-9, FGF-10,

FGF-18
IGF-1
HGF
NGF
VEGF
TGF-β
Angiopoietin-1 and angiopoietin-2
Tissue factor
PAI-1

Extracellular matrix
α2-Macroglobulin
VCAM-1
ICAM-1
Collagen I, III, IV, VI
Fibronectin
MMP1, MMP7, MMP9, MMP10,

MMP11, MMP14, MMP15
Lysyl oxidase
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2.1 Leptin Signaling

Leptin exerts its effects via leptin receptors
(LepRs) located throughout the central nervous
system (CNS). Four alternatively spliced isoforms
of LepR have been identified in humans. The long
isoform of leptin receptor (LepRb) is abundantly
expressed in the hypothalamus and other brain
regions, where it regulates energy homeostasis
and neuroendocrine function, and considered as
the main leptin receptor (Kelesidis et al. 2010).
LepRb is mainly responsible for inhibition of food
intake and stimulation of energy expenditure,
while the short isoforms of LepR are thought to
mediate the transport of leptin across the
blood–brain barrier (Bjorbaek et al. 1998).

Evidence suggests that leptin transport into the
hypothalamus is mediated by tanycytes through
LepR (Balland et al. 2014).

Leptin binds to LepRb leading to activation of
Janus kinase 2 (JAK2)–signal transducer and acti-
vator of transcription 3 (STAT3) (Fig. 1). Leptin
signaling also interacts with insulin receptor
substrate (IRS)–phosphatidylinositol 3-kinase
(PI3K), SH2-containing protein tyrosine phospha-
tase 2 (SHP2)–mitogen-activated protein kinase
(MAPK), 50 adenosine monophosphate-activated
protein kinase (AMPK)/acetyl-CoA carboxylase
(ACC), and other signaling pathways. Activation
of JAK2–STAT3 signaling plays a crucial role in
leptin’s ability to regulate energy homeostasis
(Bates et al. 2003; Dardeno et al. 2010). Leptin

Fig. 1 Leptin signaling. Leptin binds to LepRb resulting
in its dimerization and formation of LepRb/JAK2 com-
plex. Activated JAK2 autophosphorylates and also phos-
phorylates Tyr985, Tyr1077, and Tyr1138 in LepRb. STAT3
and STAT5 bind to phospho-Tyr1138 and phospho-Tyr1077

in LepRb and are subsequently phosphorylated. The active
STAT3 and STAT5 dimers translocate to the nucleus and
activate the transcription of neuropeptides and other target
genes. SOCS3, a target gene of STAT3, inhibits JAK2/
STAT3 by interacting with phospho-Tyr985 or JAK2 and
acting as a feedback inhibitor of leptin signaling. PTP1B
inhibits leptin signaling through dephosphorylation of
JAK2. After JAK2 activation, SH2-containing protein
tyrosine phosphatase 2 (SHP2) binds to phospho-Tyr985

in LepRb and recruits the adaptor protein growth factor

receptor-bound protein 2 (Grb2), leading to activation of
the mitogen-activated protein kinase (MAPK) signaling
pathway. Leptin activates MAPK independently of SHP2
and also regulates PI3K signaling through IRS phosphor-
ylation. Forkhead box O1 (FoxO1), mammalian target of
rapamycin (mTOR), and phosphodiesterase 3B (PDE3B)
are important downstream targets of PI3K in the leptin
signaling pathway. Leptin also regulates feeding and
metabolism through 50 adenosine monophosphate-
activated protein kinase (AMPK) and acetyl-CoA carbox-
ylase (ACC) in the brain and peripheral organs (From Park
HK, Ahima RS. F1000Prime Rep. 2014 Sep 4;6:73. doi:
10.12703/P6-73. eCollection 2014. Used with permission
under the Creative Commons License)
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signaling is terminated by suppressor of cytokine
signaling 3 (SOCS3) which inhibits JAK2–STAT3.
Induction of protein tyrosine phosphatase 1B
(PTP1B) also inhibits leptin signaling (Dalamaga
et al. 2013;Moon et al. 2013;Morris andRui 2009).

Leptin acts directly on anorexigenic neurons
that synthesize pro-opiomelanocortin (POMC)
and cocaine- and amphetamine-regulated transcript
(CART) and orexigenic neurons that synthesize
Agouti-related peptide (AgRP) and neuropeptide
Y (NPY). During fasting, plasma leptin levels
decline rapidly leading to stimulation of AgRP
and NPY and suppression of POMC and CART,
thereby increasing food intake and decreasing
energy expenditure (Ahima et al. 1999; Cowley
et al. 2001). The lateral hypothalamus contains
neurons that express melanin-concentrating hor-
mone (MCH) and orexins. These neuropeptides
are decreased by leptin resulting in suppression of
feeding (Robertson et al. 2008; Dalamaga
et al. 2013; Abizaid et al. 2006). Other leptin targets
in the lateral hypothalamus innervate the ventral
tegmental area (VTA), linking leptin to the hedonic
control of feeding mediated by the mesolimbic
dopaminergic system (Leinninger et al. 2009). Lep-
tin also acts on ventromedial hypothalamic neurons
that express the transcription factor steroidogenic
factor 1 (SF-1) (Kim et al. 2011a). Mice with SF-1
deletion in the Ventromedial Hypothalamus are
susceptible to obesity associated with impaired
thermogenesis (Kim et al. 2011b). Brain-derived
neurotrophic factor in the Ventromedial Hypothal-
amus has been linked to leptin’s effects on feeding
and energy balance (Liao et al. 2012). Subpopula-
tions of neurons in the nucleus tractus solitarius
(NTS) express LepRb, glucagon-like peptide
1 (GLP-1), and cholecystokinin (CCK), and leptin
acts synergistically with GLP-1 and CCK in the
NTS to increase satiety (Garfield et al. 2012).

In addition to regulating food intake, leptin stim-
ulates sympathetic nervous activity and brown adi-
pose tissue (BAT) thermogenesis (Haynes
et al. 1997; Scarpace et al. 1997). The thermogenic
effect of leptin ismediated partly via suppression of
MCH and Forkhead box O1 (FoxO1) (Segal-
Lieberman et al. 2003; Kim et al. 2012). Mice
lacking leptin and MCH are less obese than
leptin-deficient ob/ob mice and display greater

energy expenditure and locomotor activity com-
pared to ob/ob mice (Leinninger 2011). Leptin
has neurotrophic effects on hypothalamic neurons
implicated in feeding and energy homeostasis.
Neural projections from the arcuate to
paraventricular nucleus (PVN) are reduced in ob/
obmice and restored by leptin treatment in neonatal
mice (Bouret et al. 2004). Leptin administration in
ob/ob mice rapidly normalizes synaptic inputs to
POMC and AgRP neurons to levels seen in wild-
type mice (Pinto et al. 2004). Leptin’s actions in
neurodevelopment have been demonstrated as well
inmurine cerebral cortex and hippocampus (Bouret
2010). Brain imaging studies have also revealed
structural and functional deficits reversible by lep-
tin treatment in congenital leptin deficiency
(Matochik et al. 2005; London et al. 2011).

The role of leptin in energy homeostasis is most
evident in leptin deficiency. ob/ob mice develop
hyperphagia, low metabolic rate, and early onset
obesity, associated with high expression of NPY
and MCH and low expression of POMC in the
hypothalamus (Ahima and Osei 2004;
Pelleymounter et al. 1995). Congenital leptin defi-
ciency in humans also leads to hyperphagia and
morbid obesity reversible by leptin treatment
(Farooqi et al. 1999, 2002). In contrast, most
obese people have high levels of leptin expression
in adipose tissue and plasma leptin levels, and they
respond poorly to leptin treatment (Fig. 2). This
suggests “leptin resistance” in common forms of
obesity arising from overnutrition and sedentary
lifestyle (Hukshorn et al. 2002; Moon et al. 2011b;
Mittendorfer et al. 2011). Specific mechanisms
underlying leptin resistance in “common obesity”
are unknown andmay include impaired leptin trans-
port across blood–brain barrier and disruption of
leptin signaling via hypothalamic inflammation,
endoplasmic reticulum stress, and unknown factors
(Myers et al. 2012; Jung and Kim 2013).

2.2 Effects of Leptin
on Neuroendocrine System

Reduced leptin levels during fasting trigger vari-
ous hormonal responses (Ahima and Osei 2004;
Boden et al. 1996), including hypogonadotropic
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hypogonadism, suppression of thyroid and
growth hormone (GH) levels, and activation of
the hypothalamic–pituitary–adrenal axis in mice,
which are prevented by leptin treatment (Ahima
et al. 1996; Chan et al. 2003, 2008) (Fig. 2).
Leptin replacement restores thyroid hormone, tes-
tosterone, and luteinizing hormone (LH) levels in
fasted mice (Ahima et al. 1996) and LH pulsatility
and testosterone levels in starved human volun-
teers (Ahima et al. 1996; Chan et al. 2003, 2006).
Leptin replacement facilitates pubertal develop-
ment in ob/ob mice and leptin-deficient humans,
establishing a crucial role of leptin in reproduction
(Chehab et al. 1996; Farooqi et al. 2002; Licinio
et al. 2004). Leptin also prevents the pubertal
delay associated with starvation and exerts a per-
missive effect on puberty in normal mice (Gruaz
et al. 1998; Cheung et al. 2001; Elias and Purohit
2013). Low leptin levels are also linked to
impaired leptin pulsatility and hypogonadism in
hypothalamic amenorrhea and lipoatrophy (Miller

et al. 1998; Chan and Mantzoros 2005). Leptin
treatment increases LH levels, LH pulse fre-
quency, and estradiol levels and corrects abnormal
thyroid and cortisol levels in hypothalamic amen-
orrhea (Welt et al. 2004; Chou et al. 2011).
Similarly, leptin replacement normalizes LH and
sex steroid levels in individuals with generalized
lipoatrophy (Musso et al. 2005).

These findings suggest that leptin is an impor-
tant signal linking energy stores to the neuroen-
docrine axis. However, the underlying
mechanisms are still unclear. Gonadotropin-
releasing hormone (GnRH) neurons lack LepR;
thus, it is likely that leptin acts indirectly to regu-
late the reproductive axis (Quennell et al. 2009;
Hausman et al. 2012). Although kisspeptin may
mediate the effects of leptin, mice with selective
deletion of LepR from hypothalamic Kiss1 neu-
rons show normal pubertal development and fer-
tility, indicating that leptin action in Kiss1 neurons
is not essential for puberty and reproduction

Fig. 2 Physiology of leptin in starvation and obesity.
Leptin levels fall during starvation and stimulate food
intake by increasing expression of orexigenic neuropep-
tides and decreasing expression of anorexigenic neuropep-
tides. In addition, the decline of leptin level modulates
mesolimbic dopamine system and hindbrain circuits to
increase food intake and also has effects on sympathetic
nervous system to decrease energy expenditure. Low leptin

levels trigger neuroendocrine adaptations resulting in sup-
pression of thyroid hormone, reproductive hormone, and
growth hormone. Leptin levels are increased in obesity, but
the feedback response in the brain is blunted due to leptin
resistance (From Park HK, Ahima RS. Metabolism. 2015
Jan;64(1):24–34. doi: 10.1016/j.metabol.2014.08.004.
Epub 2014 Aug 15. License number 3674271217804,
Elsevier Publishers)
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(Donato et al. 2011). Kiss1 neurons in the arcuate
nucleus express LepR (Louis et al. 2011; Sanchez-
Garrido and Tena-Sempere 2013), but leptin
signaling in these neurons occurs after completion
of sexual maturation and is not crucial for leptin
action during puberty (Cravo et al. 2013;
Elias 2014).

Leptin regulates thyroid hormone by stimulat-
ing thyrotropin-releasing hormone (TRH) via
upregulation of proTRH gene expression and
increasing the processing of proTRH (Legradi
et al. 1997; Sanchez et al. 2004). Healthy humans
have circadian and pulsatile levels of leptin and
TSH, while congenital leptin deficiency results in
a highly disorganized secretion of TSH
(Mantzoros et al. 2001). After leptin replacement,
leptin-deficient individuals exhibit an increase in
thyroid hormone levels but no change in TSH
(Farooqi et al. 2002). Leptin administration pre-
vents the fasting-induced suppression of TSH
pulses but does not reverse the fall in
tri-iodothyronine (T3) levels (Chan et al. 2003).
In women with hypothalamic amenorrhea, leptin
administration increases free T3 and T4 levels
(Welt et al. 2004). Leptin treatment also reverses
the declines in T3 and T4 levels during weight
loss (Rosenbaum et al. 2005; Kissileff et al. 2012).

2.3 Metabolic Effects of Leptin

Leptin treatment decreases glucose, insulin, and
lipids before weight loss is achieved in ob/obmice
(Pelleymounter et al. 1995; Schwartz et al. 1996).
In individuals with congenital leptin deficiency,
leptin replacement rapidly decreases insulin resis-
tance, steatosis, and plasma lipids and glucose
(Farooqi et al. 2002; Licinio et al. 2004). Simi-
larly, leptin treatment decreases insulin resistance,
steatosis, and glucose in generalized lipoatrophy
(Shimomura et al. 1999; Gavrilova et al. 2000;
Asilmaz et al. 2004; Musso et al. 2005; Oral
et al. 2002; Mulligan et al. 2009; Petersen
et al. 2002). Leptin decreases visceral fat in nor-
mal rats (Barzilai et al. 1997) and in patients with
lipoatrophy (Lee et al. 2006; Mulligan
et al. 2009). CNS leptin administration inhibits
de novo lipogenesis and enhances lipolysis in

the adipose and liver (Gallardo et al. 2007;
Buettner et al. 2008). Leptin also stimulates fatty
acid oxidation by activating AMPK in skeletal
muscle and preventing the accumulation of lipid
metabolites associated with lipotoxicity
(Minokoshi et al. 2002).

Studies in diabetic mice suggest that leptin
administration normalizes glucose levels by
suppressing glucagon and hepatic intermediary
metabolites (Wang et al. 2010). CNS leptin treat-
ment decreases glucose and glucagon through
insulin-independent mechanisms (Fujikawa
et al. 2010). Leptin suppresses hepatic glucose
production by ameliorating hyperglucagonemia
and increasing peripheral glucose uptake, partly
by targeting POMC- and AgRP-expressing neu-
rons in the arcuate nucleus (Coppari et al. 2005;
Huo et al. 2009; German et al. 2011; Berglund
et al. 2012). Restoration of LepR expression in the
arcuate nucleus decreases insulin and glucose in
LepR-null mice. Moreover, a selective expression
of LepRb in hypothalamic POMC neurons pre-
vents diabetes in LepR-deficient db/dbmice, inde-
pendently of changes in feeding and weight
(Coppari et al. 2005; Huo et al. 2009; Berglund
et al. 2012). Deletion of leptin targets, SOCS3 or
PTP1B, in POMC neurons also improves glucose
metabolism (Kievit et al. 2006; Banno
et al. 2010). Furthermore, genetically mediated
alteration of PI3K activity in POMC neurons
affects hepatic insulin sensitivity (Hill
et al. 2009). A selective re-expression of LepRb
in AgRP neurons mediates antidiabetic actions of
leptin in db/db mice by suppressing glucagon
(Goncalves et al. 2014). Leptin inhibits insulin
gene expression and glucose-stimulated insulin
secretion, and insulin stimulates both leptin syn-
thesis and secretion, thus establishing an adipose
tissue–islet axis (Seufert 2004). Leptin also pro-
tects pancreatic β-cells from lipotoxicity (Seufert
2004; Lee et al. 2011b).

Leptin has been linked to bone metabolism. In
rodents, leptin alters cortical bone formation via
β-adrenergic stimulation or GH/insulin-like
growth factor (IGF)-1 effects on trabecular bone
remodeling. Leptin may influence cortical bone
metabolism through hypothalamic neuropeptides,
e.g., NPY, which inhibits cortical bone formation
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(Baldock et al. 2006; Hamrick and Ferrari 2008).
Leptin acts directly on marrow stromal cells to
increase osteoblast differentiation and inhibit adi-
pocyte differentiation. Leptin stimulates osteo-
blast proliferation and mineralization (Thomas
et al. 1999; Gordeladze et al. 2002). Leptin’s
effect on bone biology is evident in leptin-
deficient states in humans. Leptin treatment stim-
ulates bone formation, bone mineral density, and
content in the lumbar spine of patients with hypo-
thalamic amenorrhea (Welt et al. 2004; Chou
et al. 2011; Sienkiewicz et al. 2011). Potential
actions of leptin on bone may involve increased
IGF-1 and estrogen and reduction of cortisol. Fur-
thermore, leptin may inhibit bone formation via
sympathetic nervous activation (Takeda
et al. 2002) (Elefteriou et al. 2005; Takeda and
Karsenty 2008).

2.4 Effects of Leptin on Immunity

Leptin has important roles in modulating innate
and adaptive immunity (Carbone et al. 2012).
Leptin stimulates neutrophil chemotaxis and mac-
rophage phagocytosis, and production of
pro-inflammatory cytokines, e.g., IL-6, IL-12,
and TNF-α (Lord et al. 1998; Loffreda
et al. 1998). Leptin inhibits the proliferation of
regulatory T cells, stimulates T helper 1 cells
(Carbone et al. 2012; De Rosa et al. 2007), and
may contribute to protection from infections and
the development of autoimmunity (Carbone
et al. 2012; Moon et al. 2013). Leptin treatment
in ob/ob mice and short-term fasted wild-type
mice reverses immune dysfunction associated
with hypoleptinemia (Howard et al. 1999). Con-
genital leptin deficiency is associated with a
higher incidence of infection, likely due to a
reduction of circulating CD4+ T cells and
impaired T cell proliferation and cytokine release
(Farooqi et al. 2002). In women with hypotha-
lamic amenorrhea and chronic leptin deficiency,
leptin replacement increases soluble TNF-α
receptor and restores CD4+ T cell counts and
proliferative responses, suggesting that leptin pro-
motes immune reconstitution in chronic
hypoleptinemia (Chan et al. 2005, 2006; Matarese

et al. 2013). Leptin treatment exacerbates experi-
mental autoimmune encephalomyelitis, while lep-
tin deficiency in ob/ob mice is protective against
encephalomyelitis (Matarese et al. 2001; Sanna
et al. 2003). Patients with multiple sclerosis have
increased leptin levels in blood and cerebrospinal
fluid and reduced peripheral regulatory T cells
(Matarese et al. 2005). These findings suggest
potential roles of leptin in the pathogenesis of
autoimmune diseases.

2.5 Clinical Uses of Leptin

Leptin has potent effects in states of leptin defi-
ciency (Vatier et al. 2012). Leptin replacement
reduces body weight and fat and reverses neuro-
endocrine and metabolic abnormalities in congen-
ital leptin deficiency (Farooqi et al. 2002; Licinio
et al. 2004). Leptin treatment restores menstrual
cycles, normalizes the gonadal, thyroid, and adre-
nal axes, and improves bone mineral density and
bone formation in women with hypothalamic
amenorrhea and hypoleptinemia (Chou
et al. 2011; Sienkiewicz et al. 2011). Leptin treat-
ment also improves insulin sensitivity,
dyslipidemia, and hepatic steatosis in patients
with lipoatrophy (Oral et al. 2002; Mulligan
et al. 2009; Chan et al. 2011).

In contrast to leptin deficiency, most forms of
obesity are associated with leptin resistance (Moon
et al. 2011b; Mittendorfer et al. 2011). Amylin acts
synergistically with leptin to reduce adiposity in
obese rodents, while preventing the compensatory
reduction in energy expenditure associated with
weight loss (Trevaskis et al. 2008; Roth
et al. 2008). Clinical studies have shown that a
combination of leptin and an amylin analog,
pramlintide, induces greater weight loss compared
to leptin or pramlintide alone (Roth et al. 2008;
Ravussin et al. 2009). Unlike rodents, leptin and
pramlintide have additive effects on body weight
(Moon et al. 2011a). Metformin, exendin-4, and
fibroblast growth factor (FGF)-21 have all been
shown to increase leptin sensitivity in rodents
(Kim et al. 2006; Muller et al. 2012). Exercise
also increases leptin sensitivity in human skeletal
muscle (Guerra et al. 2011).
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Leptin replacement overcomes hunger,
reduced energy expenditure, and neuroendocrine
adaptation which drives weight regain in response
to weight loss. In clinical studies, leptin replace-
ment therapy restored thyroid hormone levels,
sympathetic nervous activity, and energy expen-
diture and reversed declines in satiation in weight-
reduced individuals (Rosenbaum et al. 2005;
Kissileff et al. 2012). Brain imaging studies have
shown that leptin prevents alterations in neuronal
activity associated with weight loss-induced
homeostatic, emotional, and cognitive control of
food intake (Rosenbaum et al. 2008). These find-
ings raise the possibility that leptin treatment can
promote weight loss maintenance (Mantzoros
et al. 2011).

Another potential clinical use of leptin is in the
area of neurodegenerative disorders such as
Alzheimer disease. Some studies indicate that lep-
tin promotes neurogenesis, axonal growth,
synaptogenesis, and neuroprotection (Bouret
2010; Paz-Filho et al. 2010). Prospective studies
have shown that low leptin levels are associated

with higher risk of dementia and Alzheimer
disease (Holden et al. 2009; Lieb et al. 2009;
Davis et al. 2014).

3 Adiponectin

Adiponectin is expressed mainly in adipose tissue
and circulates in different multimeric forms
(Schraw et al. 2008; Wang and Scherer 2008)
(Fig. 3). The trimeric adiponectin is the main
form in human cerebrospinal fluid (Kusminski
et al. 2007). The high molecular weight (HMW,
18–36) multimer of adiponectin is abundant in
plasma in females, and the trimeric and hexameric
forms are abundant in plasma in males (Pajvani
et al. 2003; Peake et al. 2005; Hamilton
et al. 2011). Unlike leptin, plasma adiponectin
levels are reduced in obesity, increased following
fasting, and decreased by refeeding (Arita
et al. 1999). The levels of HMW adiponectin are
highly predictive of insulin sensitivity (Pajvani
et al. 2004). Insulin-sensitizing thiazolidinediones

Fig. 3 Adiponectin proteins and target organs. The glob-
ular form of adiponectin, expressed in E. coli, stimulates
fatty acid oxidation when it is administered in mice. The

globular form of adiponectin is not detectable in mamma-
lian tissues and unlikely to have a physiological function
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increase the levels of HMWadiponectin in human
and mice (Nawrocki et al. 2006). Mice lacking
adiponectin do not respond to thiazolidinedione
treatment confirming that adiponectin plays an
essential role in mediating the antidiabetic effect
of thiazolidinediones (Nawrocki et al. 2006).

The adiponectin promoter contains binding
elements for C/EBPα, PPARγ, Sterol Regulatory
Element-Binding Proteins, and LRH-1 (liver
receptor homolog-1) (Liu and Liu 2010).
FoxO1-C/EBPα complex activates adiponectin
gene transcription, and this process is facilitated
by SIRT1 (Qiao and Shao 2006). In contrast,
FoxO1 binds to PPARγ and blocks its target
genes (Fan et al. 2009). Although the transcrip-
tional regulation of adiponectin is important, stud-
ies indicate that the levels of adiponectin are
mainly regulated through post-translational mod-
ification, involving folding and processing in the
endoplasmic reticulum and trafficking through the
Golgi apparatus. Endoplasmic reticulum chaper-
ones, ERp44 and Ero1α, are required for the for-
mation of adiponectin complexes (Wang
et al. 2007; Xie et al. 2006).

3.1 Adiponectin Signaling

Adiponectin signals through two seven-
transmembrane domain-containing proteins,
AdipoR1 and AdipoR2, which are widely
expressed and induce AMPK phosphorylation
and activity (Amin et al. 2010). AdipoR1 mRNA
is abundant in the skeletal muscle, spleen, lung,
heart, kidney, and liver. AdipoR1 stimulates
AMPK activation and inhibits gluconeogenesis
and lipogenesis (Miller et al. 2011). AdipoR2 is
expressed in the liver, induces PPARα, increases
glucose uptake and fatty acid oxidation, and
reduces oxidative injury and inflammation
(Yamauchi et al. 2007). In addition to AMPK
and PPARα, adiponectin signaling involves other
downstream effectors such as APPL1 (Xin
et al. 2011), Ca2+, and SIRT1 (Iwabu et al. 2010;
Yamauchi and Kadowaki 2013). Adiponectin
decreases ceramide levels in various tissues, and
this effect may explain the insulin-sensitizing,
anti-inflammatory, and antiapoptotic actions of

adiponectin. Adiponectin also binds to
T-cadherin, which lacks transmembrane and intra-
cellular signaling domains but could serve as a
receptor for high-order adiponectin multimers
(Hug et al. 2004). Plasma adiponectin levels are
increased in T-cadherin-deficient mice suggesting
a role of this protein as a transporter of
adiponectin (Denzel et al. 2010).

3.2 Metabolic Effects
of Adiponectin

Adiponectin deficiency has been linked to obesity,
insulin resistance, and metabolic syndrome.
AdipoR1 and AdipoR2 levels are reduced in
livers of obese mice, and this has been related to
attenuation of AMPK activity and insulin resis-
tance (Yamauchi et al. 2007). Adenovirus-
mediated expression of AdipoR1 and AdipoR2
reverses these defects. AdipoR1 and AdipoR2
may have different roles since ablation of
AdipoR1 in the liver prevents the ability of
adiponectin to activate AMPK while ablation of
AdipoR2 decreases PPARα signaling (Yamauchi
et al. 2007; Liu et al. 2007). Deficiency of both
AdipoR1 and AdipoR2 prevents adiponectin
binding and induces steatosis, inflammation, oxi-
dative stress, and insulin resistance. AdipoR1
deficiency decreases energy expenditure,
increases body fat, and induces insulin resistance,
while AdipoR2 deficiency increases energy
expenditure, decreases body weight and fat, and
improves glucose metabolism (Liu et al. 2007;
Bjursell et al. 2007).

AdipoR1 and AdipoR2 are widely distributed in
the brain, and some studies indicate that
adiponectin affects energy and glucose metabolism
by targeting the brain (Spranger et al. 2006; Pan
et al. 2006; Qi et al. 2004). Trimeric and LMW
forms of adiponectin are present in cerebrospinal
fluid (Kusminski et al. 2007; Ebinuma et al. 2007;
Kubota et al. 2007), and the concentration of
adiponectin in cerebrospinal fluid increases after
intravenous injection, consistent with blood-to-
brain transport (Qi et al. 2004; Kubota
et al. 2007). Intracerebroventricular administration
of adiponectin increases energy expenditure and
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fatty acid oxidation, and these effects may be medi-
ated through Corticotropin Releasing Hormone and
melanocortin signaling (Qi et al. 2004). Other stud-
ies suggest an opposite effect of adiponectin on
energy balance (Combs et al. 2004; Kim
et al. 2007). Overexpression of adiponectin in
wild-type and Lepob/ob mice resulted in obesity;
however, insulin resistance and inflammation were
reduced in these obese mice (Kim et al. 2007). Sys-
temic administration of adiponectin increased
AMPK activity in the arcuate nucleus through
AdipoR1 signaling, resulting in hyperphagia and
weight gain (Kubota et al. 2007). In contrast,
adiponectin-deficient mice displayed reduced
AMPK activation in the hypothalamus, associated
with reduced food intake, increased energy expen-
diture, and resistance to obesity. Adiponectin levels
in cerebrospinal fluid are increased in response to
fasting and decreased after refeeding, suggesting
that adiponectin may act as a starvation signal
(Kubota et al. 2007).

AdipoR1 and AdipoR2 are expressed in pan-
creatic β-cells (Kharroubi et al. 2003), and
adiponectin enhances glucose-stimulated insulin
secretion and prevents apoptosis of β-cells.
PPARγ (Rao et al. 2012), MEK–ERK, and
PI3K–Akt signaling mediate the effects of
adiponectin on insulin secretion (Wijesekara
et al. 2010), while activation of ERK and Akt
mediates the antiapoptotic effects of adiponectin
(Brown et al. 2010). Adiponectin decreases blood
glucose by inhibiting hepatic glucose production
(Berg et al. 2001; Combs et al. 2001). Studies
have shown that adiponectin inhibits hepatic lipo-
genesis in mice (Yamauchi et al. 2001; Kim
et al. 2007; Asterholm and Scherer 2010) by
suppressing the expression of SREBP1c via
AdipoR1–LKB1–AMPK signaling (Awazawa
et al. 2009). Adiponectin may also modulate
hepatic insulin signaling via IRS2–IL6–STAT3
signaling (Awazawa et al. 2011).

Adiponectin stimulates differentiation, glucose
uptake, and triglyceride accumulation in 3T3-L1
adipocytes (Fu et al. 2005). Leptin-deficient ob/ob
mice overexpressing adiponectin developed
excessive fat storage in subcutaneous depots, but
they were protected from visceral adiposity,
steatosis, and inflammation, indicative of

metabolically healthy phenotype (Kim
et al. 2007). High plasma adiponectin levels are
also associated with metabolically healthy obesity
in humans (Karelis et al. 2005), a condition char-
acterized by increased subcutaneous fat, preserva-
tion of insulin sensitivity, reduced oxidative stress
and inflammation, and lower cardiovascular risk.

Earlier studies demonstrated potent effects of
the globular (head) form of adiponectin on fatty
acid oxidation in skeletal muscle (Fruebis
et al. 2001) (Fig. 3). Adiponectin stimulates
AMPK phosphorylation and activity, inhibits ace-
tyl-CoA carboxylase (Yamauchi et al. 2002;
Tomas et al. 2002), increases expression of
acetyl-CoA oxidase, Uncoupling Protein-2, and
Uncoupling Protein-3 (Yamauchi et al. 2003),
and activates p38 MAPK and PPARα (Yoon
et al. 2006). Adiponectin also signals through
calcium-mediated pathway via AMPK to affect
mitochondrial function in myocytes (Iwabu
et al. 2010). Adiponectin acting through AdipoR1
in skeletal muscle triggers extracellular Ca2+

influx, leading to activation of Ca2+/calmodulin-
dependent protein kinase kinase β (CaMKKβ),
AMPK, SIRT1, and PGC-1α, which enhances
mitochondrial function and fatty acid oxidation
(Iwabu et al. 2010).

3.3 Effects of Adiponectin
on Inflammation
and Cardiovascular Risk

Adiponectin exerts major cardioprotective effects
by modulating LDL, HDL, and total cholesterol
and glucose levels and inflammation (Pischon
et al. 2004; Rothenbacher et al. 2005; Schulze
et al. 2005; Otsuka et al. 2006). Adiponectin
knockout mice are more vulnerable to vascular
and myocardial injury, while adenovirus
overexpression of adiponectin protects
adiponectin knockout and wild-type mice from
myocardial ischemia (Shibata et al. 2005). These
effects may be mediated through AdipoR1 and
AdipoR2 acting via ceramidase activity (Holland
et al. 2011). T-cadherin binds adiponectin in
cardiomyocytes and may be involved in
cardioprotection, as evident by the increased
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susceptibility of T-cadherin knockout mice to
myocardial injury (Denzel et al. 2010).

Adiponectin reduces oxidative stress and
improves endothelial function through activation
of AMPK–eNOS and PKA signaling (Ouedraogo
et al. 2007; Wong et al. 2011; Lee et al. 2011a).
Calreticulin/CD91-PI3K-Akt-COX2 signaling
also serves as a downstream mediator of
adiponectin in blood vessels (Ohashi et al. 2009).
Population studies have demonstrated associations
of adiponectin and proteinuria in patients with
chronic kidney disease (Zoccali et al. 2003; Lo
et al. 2011; Zoccali and Mallamaci 2011). In
mice, adiponectin decreases oxidative injury and
albumin permeability in podocytes and ameliorates
renal interstitial fibrosis (Rutkowski et al. 2013).
Adiponectin has direct anti-inflammatory effects
on macrophages in adipose tissue, promoting a
switch from pro-inflammatory M1 to anti-
inflammatory M2 macrophages (Ohashi et al.
2010). Adiponectin stimulates transcription of
IL-6, and this has been linked to elevated plasma
IL-6 levels and IRS-2 expression and hepatic insu-
lin signaling (Awazawa et al. 2011).

3.4 Role of Adiponectin in Cancer

Epidemiological studies have established a strong
association of adiponectin and cancer (Dalamaga
et al. 2012), particularly endometrium (Petridou
et al. 2003), breast (Mantzoros et al. 2004), colon
(Wei et al. 2005), and kidney (Spyridopoulos
et al. 2007). Adiponectin levels are also associated
with leukemia (Petridou et al. 2006), lymphoma
(Petridou et al. 2009), myeloma (Dalamaga
et al. 2009), and chronic lymphocytic leukemia
(Dalamaga et al. 2010). The underlying mecha-
nisms are unclear and may involve effects of
adiponectin on other tumorigenic factors or direct
AdipoR-mediated cellular signaling regulating
insulin sensitivity, tumor growth, and angiogene-
sis. Some in vitro studies have shown potent
pro-angiogenic and tumorigenic effects of
adiponectin mediated partly by local changes in
sphingosine levels and ceramidase activity
(Landskroner-Eiger et al. 2009; Hefetz-Sela and
Scherer 2013).

4 Resistin

Resistin is a cysteine-rich protein that was discov-
ered during a search for genes downregulated by
thiazolidinedione drugs (Steppan et al. 2001).
Murine resistin is mainly expressed in mature
white adipocytes and suppressed by thiazolidi-
nediones (Shojima et al. 2002; Hartman
et al. 2002) and insulin treatment (Shojima
et al. 2002; Haugen et al. 2001) and upregulated
by glucose (Shojima et al. 2002; Rajala et al. 2002).
Resistin expression in mouse adipocytes is also
inhibited by inflammatory cytokines, e.g., TNF-α
(Shojima et al. 2002; Fasshauer et al. 2001).
Resistin is decreased in the adipose tissue during
fasting and increased in response to refeeding in
mice (Steppan et al. 2001; Rajala et al. 2002, 2004).
Obese mice have high plasma resistin levels; how-
ever, resistin mRNA expression is suppressed in
adipose tissue in these mice (Rajala et al. 2004;
Barnes and Miner 2009). Unlike murine resistin,
human resistin is expressed in monocytes and mac-
rophages and is induced by TNF-α (Kaser
et al. 2003; Lehrke et al. 2004). The lack of resistin
expression in human adipocytes may be due to loss
of a genomic binding site for PPARγwhich controls
resistin gene (retn) expression in mouse adipocytes
(Tomaru et al. 2009).

Murine resistin circulates mainly as a
disulfide-linked hexamer, but a smaller trimeric
protein is also detected. The trimeric form of
resistin is more potent in decreasing hepatic insu-
lin sensitivity in mice (Patel et al. 2004). How-
ever, oligomerization is necessary for the
inhibitory action of resistin on glucose uptake
in cardiomyocytes (Graveleau et al. 2005).
Human resistin also circulates as trimeric and
oligomeric forms, and the latter is thought to be
more potent in stimulating the production of
inflammatory cytokines (Gerber et al. 2005;
Aruna et al. 2008; Filkova et al. 2009).

4.1 Resistin Signaling

The resistin receptor has not yet been clarified;
however, studies indicate that decorin and tyrosine
kinase-like orphan receptor 1 resistin receptors
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may mediate effects of resistin on WAT expansion
or modulate glucose homeostasis (Daquinag
et al. 2011; Sanchez-Solana et al. 2012). Murine
resistin decreases the phosphorylation of AMPK in
the liver, skeletal muscle, and WAT (Muse
et al. 2004; Banerjee et al. 2004; Satoh
et al. 2004). Resistin inhibits the phosphorylation
of insulin receptor substrates and activation of
phosphatidylinositol-3-kinase (PI3K) and protein
kinase B/Akt in the liver, muscle, and WAT
(Muse et al. 2004; Satoh et al. 2004; Steppan
et al. 2005). Resistin induces SOCS3, a known
inhibitor of insulin signaling, in the liver, muscle,
and WAT (Barnes and Miner 2009; Qi et al. 2006;
Steppan et al. 2005; Muse et al. 2007; Lazar 2007).

Adenylyl cyclase-associated protein 1 (CAP1)
has been identified as a functional resistin receptor
(Lee et al. 2014). Human resistin binds directly to
CAP1 in monocytes and increases cAMP, PKA
activity, and NF-κB-mediated transcription of
inflammatory cytokines (Lee et al. 2014). CAP1
overexpression in monocytes enhances the effects
of resistin treatment. In contrast, a reduction of
CAP1 expression reduced the effects of resistin on
inflammatory activity in monocytes as well as in
transgenic mice expressing human resistin (Lee
et al. 2014).

4.2 Metabolic Effects of Resistin
in Rodents

Earlier studies demonstrated potent effects of
resistin on glucose homeostasis in mice. Neutral-
ization of resistin with anti-resistin antibody
enhanced insulin sensitivity in obese mice
(Steppan et al. 2001). CNS or systemic resistin
treatment or transgenic overexpression of resistin
induced hepatic insulin resistance in mice
(Steppan et al. 2001; Rajala et al. 2003; Muse
et al. 2004; Li et al. 2009). In contrast, the deletion
or knockdown of resistin increased hepatic insulin
sensitivity in obese mice (Banerjee et al. 2004; Qi
et al. 2006). Resistin knockout mice developed
hypoglycemia during fasting, associated with sup-
pression of gluconeogenic enzymes in the liver
(Banerjee et al. 2004). Resistin treatment of
3T3-L1 adipocytes, murine cardiomyocytes, and

skeletal muscle cells decreased insulin-stimulated
glucose uptake (Steppan et al. 2001; Graveleau
et al. 2005; Palanivel et al. 2006; Fan et al. 2007),
indicating that resistin plays an important role in
glucose homeostasis in rodents. Resistin also pro-
motes fatty liver and cirrhosis in mouse models
(Singhal et al. 2008; Roth et al. 2012; Dong
et al. 2013).

4.3 Biological Effects of Human
Resistin

The expression of human resistin is increased in
peripheral mononuclear cells as they differentiate
into macrophages (Patel et al. 2003; Lehrke
et al. 2004; Savage et al. 2001). Thiazolidinedione
drugs suppress the expression of human resistin in
macrophages (Lehrke et al. 2004; Samaha
et al. 2006). Resistin is also detectable in the
stromal vascular fraction in the WAT, cirrhotic
liver, and atherosclerotic lesions, consistent with
the view that macrophages are the main source of
human resistin (Savage et al. 2001; Fain
et al. 2003; Bertolani et al. 2006; Burnett
et al. 2005; Jung et al. 2006; Pagano et al. 2005).
Given the potent metabolic effects of murine
resistin, there are questions concerning the bio-
logical actions of human resistin.

Epidemiological studies have revealed
conflicting associations of resistin and obesity in
humans (Azuma et al. 2003; Moschen et al. 2009;
de Luis et al. 2011; McTernan et al. 2003; Lee
et al. 2003; Reilly et al. 2005; Jain et al. 2009).
However, some studies have suggested positive
associations of resistin and inflammation, insulin
resistance, and cardiovascular diseases. Several
single-nucleotide polymorphisms (SNPs) are
associated with resistin levels (Menzaghi
et al. 2006). The �638 G > A, �420 C > G,
and�358 G > A polymorphisms in the promoter
region of human resistin gene (RETN) were asso-
ciated with resistin levels in Japanese obese indi-
viduals (Azuma et al. 2004). The G/G genotype at
SNP �420 in RETN was associated with suscep-
tibility to type 2 diabetes and also was correlated
with monocyte resistin expression and plasma
resistin levels (Osawa et al. 2004, 2005). A
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cross-sectional study in Japanese subjects showed
that plasma resistin was associated with SNP
�420 and also correlated with insulin resistance
(Osawa et al. 2007). The �420G and �537A
alleles were associated with increased resistin
levels but not with T2DM in a Korean cohort
(Cho et al. 2004). Among Chinese, both �420G
and +62A alleles were strongly predictive of glu-
cose levels (Xu et al. 2007). A study in Italy
showed that the presence of �420 C/G SNP in
RETN was associated with obesity and metabolic
syndrome (Norata et al. 2007). In the Framingham
Offspring Study, SNPs in the 30 region of RETN
were associated with resistin levels (Hivert
et al. 2009). El-Shal et al. (El-Shal et al. 2013)
found that both �420 C > G and +299 G > A
SNP were significantly associated with resistin,
obesity, and insulin resistance in obese people in
Egypt.

Tang et al. (Tang et al. 2008) have reported that
�420 C/G SNP in RETN is associated with coro-
nary artery disease, but studies of the �420 vari-
ant in Europeans and Caucasians found no
correlation with atherosclerosis (Norata
et al. 2007; Qasim et al. 2009). How may resistin
affect the development of atherosclerosis? Human
resistin increases the proliferation and migration
of human endothelial and vascular smooth muscle
cells, mediated through PI3K or p38 mitogen-
activated protein kinase signaling pathways
(Mu et al. 2006; Calabro et al. 2004; Shen
et al. 2006). Resistin attenuates insulin signaling,
inhibits endothelial nitric oxide synthase, and
increases oxidative stress in endothelial cells
(Shen et al. 2006; Chen et al. 2010). In addition,
resistin increases intercellular adhesion molecule-
1, vascular cell adhesion molecule-1, P-selectin,
fractalkine, Monocyte Chemoattractant Protein-1,
PAI-1, endothelin-1, matrix metalloproteinases,
and vascular endothelial growth factor receptors,
which increase monocyte adhesion in vascular
endothelial cells (Barnes and Miner 2009; Jung
et al. 2006; Verma et al. 2003; Mu et al. 2006; Hsu
et al. 2011; Manduteanu et al. 2010). Resistin
promotes foam cell transformation (Burnett
et al. 2005; Jung et al. 2006; Xu et al. 2006; Rae
et al. 2007) and induces thrombosis via tissue
factor expression in human coronary artery

endothelial cells (Calabro et al. 2011; Jamaluddin
et al. 2012).

Plasma resistin levels correlate with inflamma-
tory and fibrinolytic markers such as C-reactive
protein (CRP), TNF-α, IL-6, or plasminogen acti-
vator inhibitor (PAI)-1 in type 2 diabetes, coro-
nary artery disease, chronic kidney disease, and
sepsis (Lehrke et al. 2004; McTernan et al. 2003;
Reilly et al. 2005; Shetty et al. 2004; Axelsson
et al. 2006; Senolt et al. 2007; Sunden-Cullberg
et al. 2007) as well as the general population
(Reilly et al. 2005; Osawa et al. 2007; Bo
et al. 2005; Kunnari et al. 2006; Qi et al. 2008;
Fargnoli et al. 2010; Konrad et al. 2007). Hyper-
resistinemia has been observed in patients with
rheumatoid arthritis and inflammatory bowel dis-
ease and tracks well with disease activity (Filkova
et al. 2009; Senolt et al. 2007; Konrad et al. 2007).
Elevated resistin levels are related to disease
severity of sepsis and acute pancreatitis and pre-
dictive of mortality in critically ill patients
(Sunden-Cullberg et al. 2007; Schaffler
et al. 2010; Koch et al. 2009).

To understand the molecular pathways mediat-
ing the biology of human resistin, Qatanani
et al. (Qatanani et al. 2009) produced a transgenic
mouse expressing human resistin via a macro-
phage promoter and bred them with resistin
knockout mice. The “humanized” resistin mice
developed inflammation and insulin resistance
consistent with epidemiological studies (Chen
et al. 2009; Schwartz and Lazar 2011). To further
elucidate the biology of human resistin, Park
et al. (Park et al. 2011) generated mice lacking
murine resistin but transgenic for a bacterial arti-
ficial chromosome containing human resistin
(BAC-Retn). Lipopolysaccharide treatment
increased resistin levels in this model and resulted
in mild hypoglycemia. The BAC-Retn mice
developed hepatic insulin resistance under
chronic endotoxemia, accompanied by inflamma-
tion in the liver and skeletal muscle (Park
et al. 2011). These results are in agreement with
a study showing that resistin competes with lipo-
polysaccharide (LPS) for binding to Toll-like
receptor 4 (TLR4) to mediate the
pro-inflammatory action of resistin (Tarkowski
et al. 2010).
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5 Conclusion

This review highlights the roles of adipose
tissue in energy homeostasis and the biology
of adipokines and other secreted proteins that
mediate a variety of local and systemic functions.
A better understanding of the production and
signaling pathways of adipokines will benefit
the diagnosis and treatment of diabetes,
lipid disorders, cardiovascular diseases, cancer,
and other diseases associated with obesity.
Future research requires systematic approaches
in human and animal models to elucidate
how adipokines specifically affect energy
homeostasis and other physiological processes
via hormonal, paracrine, or autocrine mechanisms
and how these affect the pathogenesis of
various diseases.
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Abstract
Feeding is ultimately controlled by the central
nervous system but is strongly influenced by
numerous physiological signals arising from
the periphery that either promote or limit
energy intake. Broadly speaking, these gut hor-
mones act via neuroendocrine mechanisms to
communicate information on changing energy
status from the periphery to the brain. Some of
these peptides are produced by the gastrointes-
tinal tract itself. Most of these gastrointestinal-
derived signals, including cholecystokinin,
glucagon-like peptide-1, and peptide YY, pro-
mote meal termination; in contrast, the hunger
hormone ghrelin promotes the ingestion of
food when readily available energy is low.
Additionally, supporting organs like the pan-
creas release feeding-relevant neuroendocrine
signals that regulate the internal milieu during
nutrient influx. Together, these gut peptides
control energy balance through a complicated
interplay of physiological, behavioral, and
neuroendocrine events. Individual signals are
well investigated for their role in the mainte-
nance of normal energy balance, but their roles
in obesity – whether relating to the develop-
ment or consequences of elevated body weight
– are often understudied. This represents a
critical area of ongoing research. Here, we
review several of the major gastrointestinal-
and pancreatic-derived gut hormones that con-
tribute to the control of food intake. We discuss
their impact on the control of energy balance in
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lean (i.e., nonobese) individuals and summa-
rize some of the major findings regarding the
role of each peptide in the obese state.

Keywords
Ghrelin • Cholecystokinin • Glucagon-like
peptide-1 • Peptide YY • Insulin • Amylin

1 Introduction

While energy balance is ultimately regulated by
the central nervous system (CNS), the organs of
the alimentary canal and supporting organs of the
peritoneal cavity supply numerous neuroendo-
crine signals that are necessary for the physiolog-
ical and behavioral processes that affect energy
balance. This chapter will provide a brief over-
view of some of these “gut hormones” and their
contribution to energy balance regulation. We
focus our attention on the gastrointestinal- and
pancreatic-derived peptides that have been exten-
sively studied both in the context of normal phys-
iology and in the pathophysiological state of
obesity. Accordingly, the hormonal systems
reviewed here are, in our opinion, those systems
that represent the greatest opportunity for future
pharmacological targets to treat obesity. Impor-
tantly, some of the gut peptides discussed below
are also synthesized centrally within the brain and
are more accurately referred to as neuropeptides.
Thus, an important consideration for all of the
peptides described is a discussion about the mech-
anisms (behavioral, endocrine, and autonomic)
and neuroanatomical sites of action within the
brain and periphery for each of these hormonal
systems.

All gut peptides regulate feeding behavior by
either negatively or positively influencing food
intake during a meal and/or between meals,
influencing the intermeal interval and the fre-
quency of meal taking (Ritter 2004; Grill and
Hayes 2012; Moran 2006). This involves a con-
stant stream of gut-to-brain communication
through humoral mechanisms, as well as neuronal
signaling via the vagus nerve. Once a meal has
begun and food enters the oral cavity, cranial
nerves VII, IX, and X relay various properties of

the ingesta (e.g., taste and texture of the food) to
the brainstem that promote further feeding if the
food is perceived as palatable (Norgren 1983).
As food is swallowed and enters into the gastro-
intestinal (GI) tract, information about the volume
of the ingested food through the mechanical dis-
tension of the stomach is relayed to the nucleus
tractus solitarius (NTS) by the vagus nerve. These
gastric-inhibitory signals subsequently begin to
counteract the positive meal-promoting signals
from the oral cavity. Additionally, the various
chemical and nutritive properties of the food result
in the release of a number of gut peptides and
neurotransmitters from the GI tract and supporting
organs of the alimentary canal (e.g., pancreas)
that also communicate to the brain via humoral
(i.e., endocrine) and neuronal pathways about the
ongoing status of the meal. The majority of these
signals are referred to as satiation signals, or
within-meal food intake-inhibitory signals (Ritter
2004). The accumulation of these satiation signals
eventually leads to satiety or meal termination.
Satiety then persists from the end of one meal to
the start of the next meal.

Gut peptide-mediated activation of vagal
afferents is thought to occur largely through a
paracrine-like mechanism of action on specific
receptors expressed on the dendritic terminals of
vagal afferent neurons whose cell bodies are
found in the nodose ganglia [see (Ritter 2004;
Grill and Hayes 2012) for review]. These den-
dritic vagal afferent terminals innervate all
organs in the peritoneal cavity, and the receptors
for gut peptides are expressed in close cellular
proximity to the specialized endocrine cells that
are responsible for the synthesis and secretion of
the particular hormone. Support for vagal affer-
ent mediation of many GI-derived satiation sig-
nals comes from basic science studies showing
that chemical or surgical ablation of the vagal
afferents attenuates the intake-inhibitory
response to the peripherally administered satia-
tion signal [see (Ritter 2004; Grill and Hayes
2012) for review]. Where possible, for each of
the hormones reviewed within this chapter, we
will discuss the requirement of vagal afferent
mediation for any energy balance effects
produced by that signal.
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Given the remarkable number of redundant
gut peptide, neuropeptide, and neurotransmitter
systems that exist in the body to regulate energy
balance, it seems initially paradoxical that obe-
sity rates continue to rise worldwide
(Ng et al. 2014), a fact which suggests an absence
of homeostatic equilibrium when it comes to
energy balance. Many theories have been pro-
posed, discussed, heavily reviewed, and cited
on this topic (McAllister et al. 2009; Thomas
et al. 2012). We and others (Rosenbaum
et al. 2010) view the evolutionary development
of energy balance regulation as one designed not
to maintain leanness or normal energy equilib-
rium, but rather to defend adiposity and the sur-
plus of energy storage. From this perspective it is
worth noting that the brain initiates autonomic,
behavioral, and endocrine responses not just in
response to the accumulation of a given neuro-
peptide signal and receptor activation but also in
response to the reduction of a given signal. In this
chapter, while we discuss the impact obesity has
on each of the gut peptide systems in comparison
to physiological effects mediated by each hor-
mone in a nonobese state, we also note, where
appropriate, opportunities for future pharmaco-
logical targets to treat obesity. A brief summary
of the major facts presented in this chapter is
provided in Table 1.

2 Gastrointestinal Hunger
Signaling

Meal initiation occurs in response to both inter-
nal hunger signals that communicate energy
need, as well as external environmental cues
and appetite signals that include entrainment,
social, memory, and cognitive and sensory
aspects of feeding behavior. Importantly though,
the subjective feeling of hunger is generated by
both the reduction of GI-derived satiation sig-
nals as the previous meal has been digested and
absorbed, as well as an accumulation of central
and peripheral orexigenic signals that
promote feeding. Here we discuss the sole gut
peptide that is classified as a hunger (orexigenic)
hormone.

2.1 Ghrelin

The hormone ghrelin was initially recognized for
its ability to promote growth hormone secretion
(Kojima et al. 1999; Date et al. 2000b), but a role
for this peptide in the control of energy balance
was identified shortly after its discovery
(Nakazato et al. 2001; Wren et al. 2001a; Tschop
et al. 2000). The function of ghrelin in energy
homeostasis is unique, in that it is the only cur-
rently known gut hormone that increases feeding
and body weight gain. Ghrelin is thus commonly
referred to as the “hunger hormone.”

Ghrelin is produced primarily in the X/A-like
cells of the stomach (Date et al. 2000a), although
it may also be synthesized within the brain
(Cowley et al. 2003). Ghrelin exists in two major
forms in the body, des-acyl ghrelin and acylated
ghrelin (Hosoda et al. 2000). Acylation is accom-
plished by the actions of an enzyme called ghrelin
O-acyltransferase (GOAT) (Yang et al. 2008).
Circulating levels of acylated ghrelin are lower
than des-acyl ghrelin (Murakami et al. 2002;
Hosoda et al. 2000); however, the orexigenic
effects of ghrelin are attributed predominantly to
its acylated form (Asakawa et al. 2005). The
effects of des-acyl ghrelin on energy balance are
less clear and somewhat controversial (Inhoff
et al. 2009). At least one study indicates a hyper-
phagic effect of des-acyl ghrelin (Toshinai
et al. 2006), but more recent studies suggest that
it reduces feeding and body weight (Heppner
et al. 2014; Zhang et al. 2008) and may in fact
antagonize some of the effects of the acylated
form (Delhanty et al. 2012; Stevanovic
et al. 2014). Thus, throughout this section,
“ghrelin” refers to the acylated form of the peptide
unless otherwise specified.

Circulating levels of ghrelin increase with
fasting (Tschop et al. 2001a). Ghrelin secretion
during periods of hunger is stimulated by a num-
ber of physiological factors, including reduced
blood glucose levels (Lauritzen et al. 2015),
changes in levels of feeding- and glycemic-
relevant hormones such as insulin (Flanagan
et al. 2003), as well as alterations in intracellular
signaling molecules such as mTOR
(Xu et al. 2009). In addition, individuals who
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take meals on a regular schedule from day to day
will eventually exhibit an entrainment of ghrelin
levels to their meal times (Cummings et al. 2001).
This temporal link between peak ghrelin levels
and the onset of feeding has led to the notion
that ghrelin may serve as a meal initiation signal
(Cummings et al. 2001). Once food is ingested,
circulating ghrelin declines (Tschop et al. 2001a).
This reduction is influenced by a number of
postingestive factors (Williams et al. 2003)
including overall energy intake (Callahan
et al. 2004) and increased tonicity in the gastroin-
testinal tract (Overduin et al. 2014). Interestingly,
the postprandial suppression of ghrelin is related
to the macronutrient content of the meal. Research
indicates that intake of carbohydrates is more
effective to reduce ghrelin than intake of fats or
proteins (Overduin et al. 2005; Erdmann
et al. 2004).

Ghrelin stimulates feeding by binding and acti-
vating its receptor, the growth hormone secreta-
gogue receptor (GHS-R) (Shuto et al. 2002;
Asakawa et al. 2003). This is a G protein-coupled
receptor that is coupled predominantly to the Gq

pathway and possibly the Gs pathway (Falls
et al. 2006; Cuellar and Isokawa 2011). The
GHS-R is widely distributed throughout the
body, including in the brain (Dass et al. 2003;
Gnanapavan et al. 2002; Shuto et al. 2001; Guan
et al. 1997). As ghrelin can cross the blood-brain
barrier (Banks et al. 2002, 2008), the circulating
peptide can potentially activate both central and
peripheral receptor populations. Although some
of the energy balance effects of ghrelin may be
vagally mediated (le Roux et al. 2005; Page
et al. 2007), most of the research on ghrelin’s
hyperphagic effects has focused on its actions
within the brain. In particular, the ability of
ghrelin to regulate feeding via effects in the arcu-
ate nucleus of the hypothalamus (ARC) is well
established (Cowley et al. 2003; Currie
et al. 2005; Traebert et al. 2002). The GHS-R is
expressed on neuropeptide Y (NPY)/agouti-
related peptide (AgRP) neurons in the ARC
(Willesen et al. 1999). When ghrelin binds to its
receptor on these neurons, it increases expression
of NPYand AgRP (Kamegai et al. 2001; Shintani
et al. 2001), neuropeptides with orexigenic

effects. In addition, GHS-R activation of
NPY/AgRP neurons stimulates the release of
GABA onto proopiomelanocortin (POMC) neu-
rons within the ARC (Cowley et al. 2003), reduc-
ing the activity of this hypophagia-producing
neuronal population. These complementary
effects of increasing NPY/AgRP activity, while
concomitantly suppressing POMC activity, con-
tribute to the overall stimulation of feeding by
ghrelin.

In addition to its effects within the hypothala-
mus, ghrelin acts at a number of other structures
within the brain to promote positive energy bal-
ance. These include hindbrain sites such as the
dorsal vagal complex (Faulconbridge et al. 2003)
as well as a number of forebrain nuclei including
the paraventricular nucleus of the hypothalamus
(Currie et al. 2005; Olszewski et al. 2003a), the
lateral hypothalamus (Olszewski et al. 2003b), the
hippocampus (Kanoski et al. 2013), and the
amygdala (Alvarez-Crespo et al. 2012). Several
recent studies have focused on the ability of
ghrelin to modulate activity of the mesolimbic
dopamine pathway, including the ventral tegmen-
tal area (VTA) (Skibicka et al. 2011; Naleid
et al. 2005; Egecioglu et al. 2010; King
et al. 2011; Cone et al. 2014). This is an intriguing
direction of research, as the mesolimbic system is
known to be involved in food reward and moti-
vated behavior (Narayanan et al. 2010; Vucetic
and Reyes 2010). Studies show that ghrelin can
act directly in mesolimbic nuclei such as the VTA
to increase food intake and the motivation to
obtain a palatable food (Skibicka et al. 2011;
Egecioglu et al. 2010; King et al. 2011). Further-
more, ghrelin influences dopaminergic neuro-
transmission in the mesolimbic pathway. A
recent study from Roitman’s group shows that
intracerebroventricular administration of ghrelin
enhances phasic dopamine responses in the
nucleus accumbens evoked by a food-related
cue, but has no effect on responses to a neutral
(non-food) cue (Cone et al. 2014). Collectively,
these studies suggest that ghrelin may have inter-
esting effects on reward and motivational pro-
cesses for feeding.

The control of energy balance involves not
only regulation of energy intake but also energy
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expenditure. In addition to its orexigenic actions,
ghrelin also promotes positive energy balance by
reducing energy expenditure (Yasuda et al. 2003;
Asakawa et al. 2001). Rodent studies demonstrate
that ghrelin reduces body temperature and
increases respiratory quotient (Rq) (Yasuda
et al. 2003; Currie et al. 2005; De Smet
et al. 2006). This shift in fuel utilization reflected
by the change in Rq is thought to contribute to the
ability of ghrelin to increase adiposity (Tschop
et al. 2000; Wren et al. 2001b).

Obese individuals typically have lower plasma
levels of ghrelin than do lean individuals. This is
observed in fasting levels of ghrelin, but addition-
ally, the postprandial suppression of ghrelin is not
as large in obese individuals compared to lean
(English et al. 2002; Tschop et al. 2001a, b; Shiiya
et al. 2002). Weight loss results in an increase in
plasma ghrelin (Hansen et al. 2002; Cummings
et al. 2002), which may contribute to the increased
hunger experienced during and after dieting-
induced weight loss. Because ghrelin stimulates
hunger and increases feeding, reducing the bioac-
tivity of ghrelin may promote weight loss. In
animal models, reduction of ghrelin levels has
been accomplished through the use of technolo-
gies such as anti-ghrelin immunoglobulins
(Takagi et al. 2013) and Spiegelmers (Shearman
et al. 2006; Teubner and Bartness 2013); indeed,
these strategies reduce feeding and body weight.
However, a number of issues, including bioavail-
ability concerns and side effects, have limited the
translatability of these types of approaches to
humans (Schellekens et al. 2010). Another idea
has been to reduce active ghrelin by blocking the
GOAT enzyme, thus blocking acylation (Gualillo
et al. 2008). This possibility has not yet been
widely examined.

3 Gastrointestinal Satiation
Signals

The abundant vagal afferent innervation (Wang
and Powley 2000) and proximal location of the
stomach within the GI tract provide an early mon-
itoring system for the status of meal ingestion.
Specifically, the food intake-inhibitory signals

produced by the stomach arise from the mechan-
ical distension of the stomach (rather than the
chemical/nutritive properties of the ingested
food) (Powley and Phillips 2004; Phillips and
Powley 1996; Mathis et al. 1998). Unlike the
satiation signals that arise from the intestine, the
intake-inhibitory signals arising from the stomach
are not mediated by gut peptides. Rather, a portion
of the dendritic vagal sensory endings innervating
the stomach are specialized to be responsive to
stretch and/or tension and are referred to as
intraganglionic laminar endings and intramuscu-
lar arrays [see (Ritter 2004) for review]. The vagal
dendritic detection of tension and stretch within
the gastric wall results in glutamatergic neuronal
transmission from vagal axon projections to NTS
neurons in the caudal brainstem [see (Grill and
Hayes 2012) for review]. In addition, as the gas-
tric wall is distended, the neurotransmitter seroto-
nin (5-HT) is secreted from gastric
enterochromaffin (EC) cells and is thought to
provide the principal stomach-derived intake-
inhibitory signal. This 5-HT-mediated
hypophagic response engaged by gastric disten-
sion occurs principally by the activation of
ionotropic 5-HT type-3 receptors (5-HT3R)
expressed on the dendritic terminals of vagal
afferents innervating the stomach in a paracrine-
like mediated fashion (Hayes et al. 2004a, 2006;
Hayes and Covasa 2006; Mazda et al. 2004;
Glatzle et al. 2002). Below, where appropriate,
we discuss how gastric distension and
GI-derived satiation signaling interact with gut
peptides to control energy balance.

3.1 Cholecystokinin (CCK)

The neuropeptide CCK, released peripherally
from intestinal “I” cells in response to ingestion
of nutrients, is arguably one of the most biologi-
cally potent satiation signals [see (Ritter 2004;
Moran 2006) for review]. Indeed, over four
decades ago, Gibbs, Young, and Smith first
reported that exogenous systemic administration
of CCK produces a dose-dependent decrease in
meal size (Gibbs et al. 1973). This initial finding
was the first to demonstrate that a GI-derived
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peptide was negatively influencing food intake,
providing the seminal discovery for future scien-
tific fields looking at the gut-to-brain communica-
tion involved in the control of energy balance.

Systemic CCK acts via CCK-1 receptors
which are densely distributed in the periphery on
the afferent terminals of the vagus nerve and in
select regions of the CNS. Importantly though, the
primary site of action for either endogenous or
exogenous systemic CCK is not the CNS, but
rather the vagal afferents (Smith et al. 1985). Sup-
port for the physiological requirement of endoge-
nous CCK-1 receptor signaling in controlling
meal size, and energy balance more broadly,
comes from the findings that blockade of CCK-1
receptors using selective antagonists results in a
short-term increase in food intake (Moran
et al. 1992; Hayes and Covasa 2005; Hayes
et al. 2004b; Reidelberger and O’Rourke 1989;
Reidelberger et al. 1991), as well as data showing
that rats with genetic deletion of the CCK-1 recep-
tor are chronically hyperphagic and obese
(De Jonghe et al. 2005; Moran et al. 1998;
Takiguchi et al. 1997).

CCK-induced suppression of intake is
enhanced when combined with other GI-derived
satiation signals. For example, data from
Schwartz and Moran (1996; Schwartz
et al. 1993) show that when CCK and gastric
distension are applied in combination, there is a
dose- and volume-dependent increase in firing
rate and total spike number of electrophysiologi-
cal recordings made on single vagal afferent
fibers. Thus, the vagus is postulated to integrate
these GI-derived satiation signals, leading to an
enhanced behavioral suppression of food intake
when CCK and gastric distension are combined
(Schwartz and Moran 1996; Moran et al. 2001;
Ritter 2004). Interestingly, these two GI-derived
satiation signals also mechanistically interact
within a meal to suppress the ongoing meal. Spe-
cifically, CCK-1 receptor activation reduces gas-
tric emptying and thereby enhances gastric
distension as the animal continues to feed
(Bozkurt et al. 1999; Moran and McHugh 1982;
Schwartz et al. 1991a). Further, the vagal interac-
tions between CCK and gastric distension involve
participation of other GI-derived satiating signals,

such as 5-HT, which is both released in response
to gastric distension (Mazda et al. 2004) and inter-
acts with CCK to reduce food intake (Hayes and
Covasa 2005). Indeed, blockade of 5-HT3R atten-
uates the suppression of food intake by CCK
(Daughters et al. 2001; Hayes et al. 2004a).

Recent evidence also suggests that in addition
to the traditional role of CCK as a within-meal
intake-inhibitory signal, CCK interacts with hor-
monal systems like insulin or leptin (Matson
et al. 1997, 2000; Emond et al. 1999; Riedy
et al. 1995) that serve as a readout of long-term
energy stores to control energy balance [see (Begg
and Woods 2012; Grill and Hayes 2012) for
review]. In the case of leptin, it is thought that
leptin potentiates the anorectic effects of CCK and
other GI-derived satiation signals [see (Grill and
Hayes 2012) for review]. This interaction between
leptin and CCK is not confined to one nucleus
within the brain, but rather involves distributed
sites of action throughout the body that include
but are not limited to vagal afferents (Peters
et al. 2004, 2006), the NTS (Hayes et al. 2010b),
parabrachial nucleus (Flak et al. 2014), and hypo-
thalamic nuclei (Barrachina et al. 1997; Emond
et al. 1999).

Despite the abundant literature that exists
examining the role of the CCK system in control
of feeding and evidence indicating its requirement
for normal energy balance regulation (Moran
et al. 1992; Hayes and Covasa 2005; Hayes
et al. 2004b; Reidelberger and O’Rourke 1989;
Reidelberger et al. 1991), there have been a num-
ber of road blocks that have precluded the devel-
opment of safe and efficacious pharmacological
tools targeting CCK as a means for weight loss in
obese humans. One major hurdle that will need to
be overcome is the reduced sensitivity to the
intake-inhibitory effects of exogenous CCK
when animals are maintained on a high-fat diet
(Covasa and Ritter 1998; Savastano and Covasa
2005). This response is independent of obesity,
yet the diminished sensitivity seems to be exacer-
bated by obesity (Duca et al. 2013). Similarly,
detrimental to future CCK-based pharmacother-
apies for obesity is the pronounced tachyphylaxis
that develops with repetitive CCK administrations
(Crawley and Beinfeld 1983). Finally and perhaps
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most important for CCK-1 receptor agonists will
be a need for analogs that remain efficacious with-
out producing pancreatitis, a well-known
response to chronic CCK-like treatments in mam-
mals (Lampel and Kern 1977; Makovec
et al. 1986). To this end, at least one compound,
GI181771X (GlaxoSmithKline), appears to have
little effect on pancreatic endpoints in overweight/
obese humans (Myer et al. 2014); unfortunately,
chronic treatment with this therapeutic did not
reduce food intake and body weight in overweight
and obese humans (Jordan et al. 2008), possibly
for the physiological reasons described above.

3.2 Glucagon-Like Peptide-1
(GLP-1)

The biological processes regulated by the GLP-1
system are abundant and include insulin secretion,
blood glucose regulation, suppression of gastric
emptying, visceral stress, cardiovascular and ther-
mogenic effects, modulation of reward- and goal-
directed behaviors, and, importantly, a critical role
in the control of food intake and energy balance
[see (Holst 2007; Hayes et al. 2014) for review].
Here, we focus our attention on summarizing
aspects of the GLP-1 system in the regulation of
energy intake. We also discuss the utility of
GLP-1-based drugs as realistic pharmacother-
apies for the treatment of obesity.

GLP-1 promotes negative energy balance by
reducing food intake and body weight [see (Hayes
et al. 2010a) for review]. Within the periphery,
GLP-1 is principally secreted by enteroendocrine
“L” cells of the distal small intestine and large
intestine in response to the ingestion of food.
GLP-1 is rapidly degraded by the enzyme
dipeptidyl peptidase-4 (DPP-4) to inactive metab-
olites and therefore has a short circulating half-life
of less than 10 min (Holst 2007), rendering native
GLP-1 inappropriate for therapeutic use. GLP-1
acts on the GLP-1 receptor (GLP-1R), a G
protein-coupled receptor, which has a varied tis-
sue distribution in mammals (pancreas, intestine,
brain, heart, etc.) (Goke et al. 1995;
Merchenthaler et al. 1999; Wei and Mojsov
1995). Under normal physiological

circumstances, intestinally derived GLP-1 acti-
vates GLP-1R expressed on the dendritic termi-
nals of the vagal afferents innervating the GI tract
in a paracrine-like mode of action [see (Hayes
et al. 2014) for review]. However, the relevant
GLP-1R populations mediating the food intake-
suppressive effects of GLP-1R pharmacological
agonists (e.g., liraglutide, exendin-4) or inhibitors
of DPP-4 (e.g., sitagliptin) are more diverse. For
example, when the long-lasting GLP-1R agonists
liraglutide or exendin-4 are administered system-
ically, each can sufficiently penetrate the blood-
brain barrier and gain access to the brain in
amounts sufficient to drive physiological and
behavioral responses (Kanoski et al. 2011,
2012). Indeed, activation of GLP-1R expressed
in the CNS will recapitulate many of the same
behavioral and physiological responses that are
observed following peripheral GLP-1R ligand
administration (Hayes et al. 2008; Kinzig
et al. 2002; Knauf et al. 2005; Schick
et al. 2003), making it difficult to disentangle the
effects originating in the periphery from those
effects mediated by direct CNS activation. There-
fore, one of the current challenges of the obesity
field is to characterize the energy balance
responses mediated by individual GLP-1R-
expressing nuclei and the physiological mecha-
nisms mediating these responses.

To date, studies have shown a physiological
and/or pharmacological role for food intake con-
trol by GLP-1R activation in a variety of CNS
nuclei, including the NTS, paraventricular,
dorsomedial, ventromedial, and lateral hypothal-
amus, as well as the ventral hippocampus, VTA,
parabrachial nucleus, and nucleus accumbens
shell and core [see (Hayes et al. 2014) for
review]. While research pursuant to the explora-
tion of GLP-1-mediated effects in all of these
nuclei is certainly warranted, of particular inter-
est is research aimed at identifying GLP-1-mod-
ulation of food reward processes. Indeed, with
the growing appreciation that the excessive food
intake that contributes to human obesity is not
driven by metabolic need, a number of laborato-
ries have made major advances in our under-
standing of the role that GLP-1 signaling in the
nuclei of the mesolimbic reward system has on
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energy balance control (Alhadeff et al. 2012;
Dickson et al. 2012; Dossat et al. 2011). Perhaps
most attractive from an obesity treatment per-
spective is the finding that GLP-1R activation
in the VTA and nucleus accumbens core selec-
tively reduces intake of highly palatable, energy
dense foods and does not suppress intake of
standard bland diet (Alhadeff et al. 2012;
Mietlicki-Baase et al. 2013a, 2014). Further, at
least in the case of the VTA, systemic adminis-
tration of GLP-1R agonists is able to directly
activate VTA-expressing GLP-1R to suppress
food intake and body weight gain in rats
(Mietlicki-Baase et al. 2013a). With the recent
approval of the GLP-1R agonist liraglutide for
the treatment of obesity (Mordes et al. 2015), we
now need further basic science investigations
that aim to identify adjunct behavioral and phar-
macological therapies that can be combined with
GLP-1R ligands to enhance the food intake- and
body weight-suppressive effects of these
pharmacotherapies.

3.3 Peptide YY (PYY)

Peptide YY (PYY), a member of a peptide family
that also includes neuropeptide Y (NPY) and pan-
creatic polypeptide (PP), is named for the pres-
ence of two tyrosine (Y) residues that flank the
ends of the peptide sequence. It is co-released with
GLP-1 from the L cells of the small and large
intestine after the ingestion of food (Eissele
et al. 1992; Lundberg et al. 1982; Adrian
et al. 1987). PYY is initially secreted in a longer
form [PYY(1-36)] that has no effect on food
intake (Sloth et al. 2007) but is rapidly cleaved
by dipeptidyl peptidase-IV (DPP-IV) to form
PYY(3-36) (Medeiros and Turner 1994).
Although first identified in the early 1980s
(Tatemoto 1982), the effects of PYY(3-36) on
energy balance remained controversial for many
years (Batterham and Bloom 2003; Batterham
et al. 2002; Tschop et al. 2004; Boggiano
et al. 2005). Contributing in part to this contro-
versy is the fact that the two endogenous circulat-
ing isoforms of PYY [PYY(1-36) and PYY
(3-36)] bind to Y1, Y2, and Y5 receptors

(Blomqvist and Herzog 1997; Silva et al. 2002)
with different affinities; while PYY(1-36) binds to
all of these receptors, PYY(3-36) is thought to
have the highest affinity for the Y2 receptor
(Keire et al. 2002). Further, while it is now
accepted that peripheral administration of PYY
(3-36) suppresses feeding and body weight in
humans and in animal models (Batterham and
Bloom 2003; Batterham et al. 2002; Scott
et al. 2005), in contrast, central [lateral, third,
and fourth intracerebroventricular (ICV)] admin-
istration of either PYY(1-36) or PYY(3-36)
potently stimulates food intake (Morley
et al. 1985; Corp et al. 1990, 2001; Raposinho
et al. 2001; Clark et al. 1987). Thus, while there is
growing attention being devoted to the PYY
system as a potential future target for obesity
treatment, it is clear that an abundance of work
is still needed to discern the physiological effects
mediated by PYY Y-receptor signaling. Here, we
provide a brief overview of PYY-mediated effects
on energy balance with attention devoted to site
and mechanism of action for the PYY isoforms.

During fasting, plasma levels of both PYY
(1-36) and PYY(3-36) are low, but during meal
taking and in a postprandial state, plasma PYY
levels rise rapidly (Adrian et al. 1985). The
amount of the peptide that is released is propor-
tional to caloric intake (Degen et al. 2005), but it is
worth noting that the macronutrient content of the
meal can influence PYY secretion (Gibbons
et al. 2013; El Khoury et al. 2010; Seimon
et al. 2009). Peripherally released PYY is hypoth-
esized to act as a satiation signal in concert with
other GI-derived neuroendocrine signals like
GLP-1, ultimately providing an ever-
accumulating negative feedback satiation signal
that eventually leads to meal termination (Moran
et al. 2005). This hypothesis is consistent with
rodent data demonstrating that acute peripheral
administration of PYY(3-36) reduces meal size
(Stadlbauer et al. 2013). One possible mechanism
mediating the meal size-suppressive effects of
systemic PYY(3-36) could involve the ability of
systemic PYY to reduce gastric emptying (Allen
et al. 1984; Chen et al. 1996), thus simultaneously
providing less gastric capacity for further meal
taking, as well as increasing vagally mediated
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satiation signaling from the volumetric distension
of the stomach.

From the perspective of creating pharmaco-
therapies to treat obesity, it is worth noting that
chronic systemic administration of PYY(3-36)
also reduces food intake (Vrang et al. 2006;
Reidelberger et al. 2008; Moriya et al. 2009).
This peptide can cross the blood-brain barrier
(Nonaka et al. 2003) and is thought to primarily
act within the CNS to exert its hypophagic effects,
although vagal mediation also likely contributes
to the intake inhibition (Koda et al. 2005). Like
ghrelin, particular attention has been paid to the
actions of PYY on the neuropeptide Y (NPY)
system (Ballantyne 2006; Ueno et al. 2008). How-
ever, PYY differs from ghrelin in that it can
directly activate the Y receptors (Aicher
et al. 1991; Chen et al. 1997). Indeed, PYY
(3-36) is thought to exert its anorectic effects via
agonism of the Y2 receptor (Abbott et al. 2005),
specifically Y2 receptors expressed on ARC
NPY/AgRP neurons (Abbott et al. 2005; Teubner
and Bartness 2013). Support for this hypothesis is
provided by data showing that pharmacological
antagonism of Y2 receptors in the ARC attenuates
the ability of peripherally administered PYY
(3-36) to suppress feeding (Abbott et al. 2005).
However, as discussed above, the suppression of
intake by PYY activation of ARC Y2 receptors
appears to be in contrast to PYY’s actions on other
nuclei distributed throughout the brain, where
PYY(3-36) results in an increase in food intake
(Morley et al. 1985; Corp et al. 1990, 2001;
Raposinho et al. 2001; Clark et al. 1987). Thus,
further research is needed to determine all of the
CNS sites of action for systemically delivered
PYY-like agonists in the hope for treatment of
obesity in humans.

Mice with diet-induced obesity exhibits low
plasma levels of PYY(3-36) (Rahardjo
et al. 2007). As experimental suppression of
PYY(3-36) signaling induces obesity in mice
(Boey et al. 2006), there may be a causal link
between PYY(3-36) and the development of obe-
sity. Supporting this notion, a study in mice
tracking the development of diet-induced obesity
showed that PYY(3-36) levels declined as body
weight increased (Chandarana et al. 2011).

Studies in humans are largely consistent with
the rodent literature, showing that obese individ-
uals have low fasting levels of PYY(3-36) as well
as reduced postprandial PYY(3-36) release
(Meyer-Gerspach et al. 2014; Gatta-Cherifi
et al. 2012; Zwirska-Korczala et al. 2007;
Batterham et al. 2003). In fact, even after weight
loss, levels of PYY(3-36) remain persistently
low (Lien et al. 2009), which may make mainte-
nance of reduced body weight difficult
(Chandarana et al. 2011). The fact that PYY
(3-36) is decreased in obesity has led to interest
in the idea that restoring PYY(3-36) levels may
reduce food intake and body weight and thus may
be an effective treatment for obesity
(Zac-Varghese et al. 2011; Troke et al. 2014; De
Silva and Bloom 2012). Indeed, acute adminis-
tration of PYY(3-36) reduces energy intake not
only in lean but also in obese humans (Batterham
et al. 2003). To date, the potential utility of PYY
(3-36) as an antiobesity pharmacotherapy has
been limited due to side effects and low efficacy
(Gantz et al. 2007; Troke et al. 2014). However,
an alternative strategy is to increase PYY by
engaging in more frequent exercise; several
reports describe a positive association
between plasma levels of PYY(3-36) and aerobic
exercise (Ueda et al. 2009; Broom et al. 2009;
Jones et al. 2009).

4 Pancreatic Beta-Cell-Derived
Hormones

The influx of nutrients that occurs during a meal
presents a challenge to many aspects of homeo-
stasis, including glycemia. Proper processing of
the ingested food is required to maintain glucose
homeostasis. Blood glucose levels are regulated
largely by insulin, which is released from pancre-
atic beta cells. Communication between the GI
tract, pancreas, and brain is therefore required
for glycemic control. However, the hormonal sig-
nals produced by the pancreas also have potent
effects on feeding and body weight. Here, we
consider the roles of insulin and another pancre-
atic peptide, amylin, in the control of energy
balance.
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4.1 Insulin

Insulin has arguably been the most well studied of
the pancreatic-derived hormones for its effects on
glycemic control (see Boucher et al. 2014; Schwartz
et al. 2013 for review). In addition to its ability to
regulate glucose levels, insulin receptor signaling
can also affect food intake, although the reliability
of insulin-mediated energy balance effects is some-
times questioned [see (Begg and Woods 2012;
Woods and Langhans 2012) for review]. While
insulin obviously promotes the lowering of plasma
blood glucose, an effect which may impact subse-
quent food intake, the energy balance effects of
insulin receptor signaling are independent from its
effects on glycemia (Woods et al. 1984). Thus,
while some of the energy balance effects of insulin
may be mediated by peripheral organs such as the
liver (Surina-Baumgartner et al. 1995), the majority
of the intake-suppressive effects of peripheral insu-
lin are thought to be centrally mediated (Woods
et al. 2003; Banks 2004). Circulating insulin enters
the CNS via facilitated transport (Baura et al. 1993).
Additionally, while insulin may be produced cen-
trally (Gerozissis 2004; Clarke et al. 1986), the
predominant source of CNS insulin is thought to
be from beta cells (Banks 2004; Banks et al. 1997).

Within the CNS, insulin receptor signaling has
been shown to reduce food intake and body weight
in several species (e.g., baboons, rats, sheep, mice,
etc.) (Woods et al. 1979, 1984; Brief and Davis
1984; Brown et al. 2006; Foster et al. 1991).
Many studies have examined the ability of insulin
to regulate feeding via its actions in the hypothala-
mus and in particular theARC. Insulin receptors are
tyrosine kinase receptors that are expressed on
NPY-containing as well as POMC-expressing
ARC neurons, and insulin is known to modulate
the activity of both of these neuronal populations
(Qiu et al. 2014; Williams et al. 2010; Sato
et al. 2005; Malabu et al. 1992; Kim et al. 1999;
Wang and Leibowitz 1997; Schwartz et al. 1991b,
1992; Sipols et al. 1995). In particular, intracereb-
roventricular administration of insulin reduces
NPY expression in the ARC (Schwartz
et al. 1991b; Wang and Leibowitz 1997) as well
as the paraventricular nucleus (Schwartz
et al. 1992), possibly via recruitment ofGABAergic

circuits (Sato et al. 2005). Insulin also increases
POMC expression (Kim et al. 1999), consistent
with an overall reduction in food intake.

Activation of the insulin receptor results in
rapid phosphorylation of insulin receptor sub-
strate (IRS). In particular, IRS-2 appears to be
important for the control of energy balance by
insulin, as whole body (Burks et al. 2000; Lin
et al. 2004) or hypothalamic knockdown (Kubota
et al. 2004) of IRS-2 promotes obesity. A number
of intracellular pathways downstream of IRS have
been documented as required signaling events to
mediate the intake-suppressive effects of insulin
receptor activation. Principal among these is the
PI3K signaling pathway (Niswender et al. 2003).
Intracerebroventricular administration of insulin
activates hypothalamic PI3K, as well as its down-
stream target Akt (Niswender et al. 2003). Phar-
macological inhibition of PI3K attenuates the
ability of centrally delivered insulin to suppress
food intake (Niswender et al. 2003), indicating the
requirement of PI3K activation for the anorectic
effects of insulin. Engagement of the PI3K path-
way is also important for insulin-mediated control
of energy balance in extra-hypothalamic sites
such as the amygdala (Castro et al. 2013).

Intriguingly, converging evidence suggests
that insulin activation of the IRS-2/PI3K pathway
in the VTA may have a role in reward processing.
Insulin receptors (Figlewicz et al. 2003) and
IRS-2 (Pardini et al. 2006) are expressed in the
VTA, and direct intra-VTA administration of insu-
lin increases PIP3, a product of PI3K activation
(Figlewicz et al. 2007). Furthermore, VTA PI3K
blockade may antagonize the ability of intra-VTA
insulin to reduce dopamine release in the
mesolimbic reward system (Mebel et al. 2012).
Insulin-mediated activation of the IRS-2/PI3K/
Akt pathway has been associated with changes
in reward in various experimental paradigms, but
the direction of effect appears to depend on the
paradigm and/or type of reinforcing stimulus.
IRS-2/PI3K/Akt activation by insulin decreases
reward in an intracranial self-stimulation para-
digm (Bruijnzeel et al. 2011), but activation of
this intracellular signaling pathway increases con-
ditioned place preference for drugs of abuse such
as cocaine (Iniguez et al. 2008) and morphine
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(Russo et al. 2007). Despite the finding that direct
VTA injection of insulin reduces intake of palat-
able food (Mebel et al. 2012), the effects of insulin
and the IRS-2/PI3K/Akt pathway in the VTA on
food reward have not been well investigated. This
is particularly surprising given earlier data show-
ing that intracerebroventricular administration of
insulin reduces sucrose self-administration
(Figlewicz et al. 2006) and conditioned place
preference for palatable food (Figlewicz
et al. 2004), lending support to the notion that
central insulin signaling mediates aspects of food
reward. However, the particular role of the VTA
and IRS-2/PI3K signaling in insulin-mediated
food reward remains unknown; this represents
an important, yet currently under-investigated
area of research.

In the context of obesity, insulin is often
referred to as a lipostatic signal (Benoit
et al. 2004; Woods et al. 1985), in that circulating
concentrations of insulin reflect levels of adiposity
which communicate to the CNS to appropriately
regulate energy balance (Ahren 1999). This con-
cept fails to some extent; despite an accumulating
magnitude of insulin signaling as adiposity
increases, insulin resistance develops, and the
obese individual does not subsequently reduce
energy intake and increase energy expenditure to
reduce adiposity levels. Thus, despite their higher
plasma insulin, obese individuals are resistant to
the intake- and body weight-suppressive effects of
the peptide (De Souza et al. 2005; Posey
et al. 2009; Catalano et al. 2005; Istfan
et al. 1992; Tremblay 1995). These effects are
not entirely due to an insufficiency in insulin
penetrance into the CNS (Kaiyala et al. 2000), as
direct central administration of insulin is less
effective at reducing food intake in obese animals
maintained on high-fat diet (Chavez et al. 1996;
Elchebly et al. 1999).

4.2 Amylin (Islet Amyloid
Polypeptide)

The peptide hormone amylin is co-secreted with
insulin from pancreatic beta cells at a 1:100 ratio
after food is consumed (Ogawa et al. 1990; Lutz

2010a). As one might expect given its association
with insulin release, amylin has complementary
beneficial effects to insulin on glycemic control
(Schmitz et al. 2004), mainly mediated through
delayed gastric emptying (Clementi et al. 1996),
inhibition of glucagon release (Fehmann
et al. 1990), and potent anorectic effects (Lutz
et al. 1994, 1995b; Lutz 2010b). Specifically,
amylin is well documented as a satiation signal
for its robust ability to reduce food intake via
suppression of meal size (Lutz et al. 1994,
1995b; Lutz 2010b).

As surgical vagotomy does not block amylin-
induced hypophagia (Lutz et al. 1995a), the
effects of the peptide on feeding are thought to
be mediated by direct activation of amylin recep-
tors in the brain (Lutz 2005). Amylin receptors are
fairly unique in that they contain one of two splice
variants of the calcitonin receptor (CTa/CTb; a G
protein-coupled receptor) that heterodimerizes
with one of the receptor activity modifying pro-
teins (RAMP1, RAMP2 or RAMP3) (Hay
et al. 2004). Despite the widespread expression
of amylin receptors throughout the central
neuraxis (Beaumont et al. 1993; Sexton
et al. 1994; Skofitsch et al. 1995; Becskei
et al. 2004; Hilton et al. 1995), investigations of
CNS nuclei and neuronal mechanisms mediating
the anorectic effects of amylin have, until recently,
focused on classic homeostatic circuitry. Indeed,
while the ability of amylin to regulate food intake
and body weight has been studied for over
20 years, we are only beginning to understand
the distributed network of CNS sites mediating
its energy balance effects.

The majority of reports describing the
hypophagic effect of amylin have focused on its
ability to regulate food intake via actions at the area
postrema (AP) of the hindbrain (Lutz et al. 1998,
2001; Mollet et al. 2004; Riediger et al. 2001).
Lesions of this nucleus attenuate the ability of
peripherally administered amylin to produce
hypophagia (Lutz et al. 1998, 2001) and direct
microinjection of amylin into the AP reduces feed-
ing (Mollet et al. 2004). However, amylin binding
is distributed widely throughout the brain
(Christopoulos et al. 1995; Hilton et al. 1995;
Paxinos et al. 2004; Sexton et al. 1994), and amylin
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can cross the blood-brain barrier (Banks andKastin
1998; Banks et al. 1995), collectively suggesting
that amylin’s access to the CNS is not limited to
circumventricular structures such as the AP. To this
end, recent research has shown that amylin can act
directly in the VTA to control food intake
(Mietlicki-Baase et al. 2013b, 2015). VTA amylin
receptor activation appears to have especially
potent suppressive effects on palatable food intake,
as well as the motivation to obtain a palatable food
(Mietlicki-Baase et al. 2013b, 2015), an interesting
finding given the role of the VTA and the
mesolimbic system in regulating the intake of pal-
atable and rewarding ingesta (Meye and Adan
2014; Narayanan et al. 2010). Additionally, a few
studies have investigated the actions of amylin in
the ventromedial nucleus of the hypothalamus
(VMH), and results indicate that amylin may
enhance the intake-suppressive effects of the
adipose-derived hormone leptin through actions
in the VMH (Turek et al. 2010; Le Foll et al. 2014).

Chronic amylin administration also reduces
body weight, producing selective reductions in
fat mass while sparing lean mass (Roth
et al. 2006). This may be due to an amylin-
induced reduction in Rq (Roth et al. 2006),
although other studies see little to no effect of
acute or chronic amylin treatment on Rq (Wielinga
et al. 2007). The effects of amylin on body tem-
perature are more consistent. Acute or chronic
amylin increases body temperature (Wielinga
et al. 2010); this effect may be caused by
increased activity of brown adipose tissue, as cen-
tral administration of amylin increases activity of
the sympathetic nerve subserving this adipose
depot (Fernandes-Santos et al. 2013). Acute
peripheral administration of amylin prevents com-
pensatory reductions in energy expenditure that
arise as a consequence of amylin-induced
hypophagia (Wielinga et al. 2007), and in an
acute experiment where food was unavailable
during testing, intracerebroventricular administra-
tion of amylin increased energy expenditure
(Wielinga et al. 2007, 2010).

A unique feature of amylin receptor activation
as a potential treatment for obesity is that it
remains effective in its ability to suppress food
intake and body weight in obese rodents and

humans (Singh-Franco et al. 2007; Boyle
et al. 2011). Studies using the amylin agonist
pramlintide, which is FDA-approved for the treat-
ment of diabetes (Singh-Franco et al. 2007), have
shown that pramlintide treatment in obese humans
reduces body weight and enhances control over
feeding behavior (Chapman et al. 2005, 2007;
Ravussin et al. 2009; Roth et al. 2008; Smith
et al. 2007). This ability of amylin to exert its
effects in obese individuals contrasts with other
hormonal signals such as leptin and insulin, where
sensitivity to their effects is reduced in the obese
state (Munzberg et al. 2004; Ye and Kraegen
2008). Thus, the absence of amylin resistance in
obesity has intensified interest in amylin-based
pharmaceuticals as future potential treatments
for obesity (Sadry and Drucker 2013; Roth
et al. 2009; Mietlicki-Baase and Hayes 2014).

5 Conclusions and Future
Directions for Obesity
Treatment

Although this chapter considers the individual
contributions of several gut-derived and pancre-
atic hormonal signals to energy balance control, it
is crucial to reiterate that these signals do not act in
isolation in mammals. Ingestion of food impacts
many neural and hormonal processes, including
those described here as well as numerous other
peripheral and central systems, each of which
contributes to the overall control of food intake
and body weight. The redundancy of some of
these signals is important for preserving and
maintaining energy storage, but also has presented
a major challenge to the development of pharma-
cological strategies for the treatment of obesity.

Historically, attempts to treat obesity by
targeting a single neuroendocrine system have
failed to produce meaningful and long-lasting
suppression of body weight, and some have been
plagued with serious side effects (Christensen
et al. 2007; James et al. 2010; Arbeeny 2004;
Gadde 2014). New monotherapeutic strategies
continue to be developed and tested as potential
antiobesity drugs; for example, the GLP-1R ago-
nist liraglutide (Saxenda®) was recently approved
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by the FDA for use in the treatment of obesity
(Mordes et al. 2015), although its long-term effi-
cacy remains to be determined. However, the
notion that combination approaches will be more
effective for producing sustained reductions in
body weight has become increasingly accepted
by the scientific community (Sarwer et al. 2009;
Phelan and Wadden 2002). Such approaches
include using pharmacotherapy in conjunction
with behavioral intervention (Vetter et al. 2010)
and/or pharmacologically targeting more than one
neurotransmitter/neuropeptide system (Bray
2014; Rodgers et al. 2012; Glandt and Raz
2011). Indeed, the FDA has recently approved a
few combination pharmacotherapies for obesity,
including bupropion/naltrexone (Contrave) and
phentermine/topiramate (Qsymia®) (Mordes
et al. 2015), although again due to the relatively
recent approval of these pharmaceuticals, we lack
longitudinal data regarding their efficacy for
weight loss.

Further development of effective, noninvasive
pharmacological strategies for obesity treatment
is urgently required, as the options currently avail-
able are clearly limited. Accordingly, several hor-
monal systems are under investigation for the
development of novel pharmacological treatments
for obesity. For example, amylin is currently con-
sidered one of the leading candidates for new
antiobesity combination pharmacotherapies
(Sadry and Drucker 2013) due to its ability to
interact with and enhance the weight-reducing
effects of other signals such as leptin (Chan
et al. 2009; Ravussin et al. 2009; Roth
et al. 2008), GLP-1 (Bello et al. 2010), and CCK
(Bhavsar et al. 1998; Mollet et al. 2003), among
others [see (Lutz 2013) for review]. Although
further research is needed before clinical testing,
the use of such combination pharmacotherapies
hopefully will overcome some of the neurohor-
monal redundancies in energy balance control that
have previously limited the success of
monotherapies for obesity treatment, thus provid-
ing the basis for antiobesity pharmacotherapies
that produce lasting weight loss.
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Abstract
Obesity, metabolic syndrome, and type 2 dia-
betes (T2D) reflect a major disease burden
throughout the world. In all these disorders,
low-grade chronic inflammation is commonly
observed. The origin of this type of inflamma-
tion is currently unknown. Recent studies,
however, suggest that the gastrointestinal tract
with its enormous microbial world, i.e., the
intestinal microbiota, could not only play a
role in these disorders but also contribute to
low-grade chronic inflammation. This
microbiota affects many biological functions
throughout the body including many immune
and metabolic features. Data from animal
models and humans support that obesity and
associated disorders are characterized by a pro-
found dysbiosis. Human metagenome-wide
association studies mainly in obesity and T2D
have demonstrated that there exists a “gut
microbiota signature.” Further, evidence for a
major role of intestinal bacteria has been
derived from studies in pregnancy and after
Caesarean section. Antibiotic use in early life
also affects the microbiota in a profound man-
ner and might contribute to the development of
childhood obesity and T2D in later life. There-
fore, as a “gut” signature became evident in the
last years in these diseases, a better understand-
ing of these aspects is mandatory to gain fur-
ther insights and define a basis for new
therapeutic approaches.
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Abbreviations
AMPK AMP-activated protein kinase
FFAR Free fatty acid receptor
Fiaf Fasting-induced adipose factor
FXR Farnesoid X receptor
GLP-1 Glucagon-like peptide 1
GPCR G-protein-coupled receptor
HFD High-fat diet
HGC High gene count
ILC Innate lymphoid cells
LGC Low gene count
LPL Lipoprotein lipase
MLG Metagenomic linkage group
SCFA Short-chain fatty acid
T2D Type 2 diabetes
TLR5 Toll-like receptor 5

1 Introduction

The human intestinal tract harbors an immense
number of microorganisms, i.e., the intestinal
microbiota consisting of at least 1014 bacteria,
archaea, and viruses. These microorganisms
generate a biomass of more than 1.5 kg, and
their genomes (i.e., microbiome) exceed the
human genome more than 100-fold (Lozupone
et al. 2012; Shanahan 2012; Tremaroli and
Backhed 2012; Lepage et al. 2013). Initial stud-
ies suggested that these genes encode mainly
functions directing immune pathways and such
ones needed for digestion of complex carbohy-
drates. Recent investigations, however, convinc-
ingly demonstrated that the microbiota may have
key functions in regulating metabolic pathways
in health and disease (Eckburg et al. 2005; Cos-
tello et al. 2009; Human Microbiome Project
2012; Tremaroli and Backhed 2012; Yatsunenko
et al. 2012). High-throughput sequencing tech-
nologies have allowed in the last years to
increase the understanding of the complexity
and diversity of the microbiota (Qin
et al. 2010). Importantly, most of the more than

1000 assumed bacterial species cannot be cul-
tured currently.

An altered intestinal microbiota in metabolic
diseases might play a role to initiate inflammatory
processes throughout the organism. Such an
altered microbiota might not only act “locally”
but via an impaired mucosal barrier also system-
ically. This is in accordance with the recently
proposed concept of “metabolic infection,”
where parts of the intestinal microbiota might act
systemically and affect systemic including adi-
pose tissue inflammation (Amar et al. 2011;
Burcelin 2012). In many disorders such as inflam-
matory bowel disease, obesity, or type 2 diabetes
(T2D), a “microbiotal signature” has been identi-
fied (Breen et al. 2013; Karlsson et al. 2013a; Tilg
and Moschen 2014). In this chapter, we will dis-
cuss the current evidence for a role of the intesti-
nal microbiota in obesity and T2D and thereby
could contribute to the phenotype of these
disorders.

2 Role of the Intestinal
Microbiota in Obesity

Many studies from the last years, particularly
using animal models, have shown that the
microbiota might reflect one major player in the
development of obesity (Backhed et al. 2004; Ley
et al. 2005, 2006; Turnbaugh et al. 2006, 2009).
Ridaura and colleagues showed that the
microbiota derived from discordant obese twins
affects metabolism in mice (Ridaura et al. 2013).
These investigators transferred the microbiota
collected from human female twin pairs discor-
dant for obesity into germ-free mice showing that
obesity can indeed be transferred to rodents.
Importantly, co-housing of mice containing cul-
tured bacteria from an obese twin with mice
containing bacteria from a lean twin prohibited
the development of the obese phenotype. Diet
appeared as a critical cofounder in these experi-
ments highlighting the dominant role of diet on
the microbial community. When mice were
treated with a low-fat, high-fiber diet even when
harboring the obese microbiota and were
co-housed with mice containing the lean
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microbiota, the lean microbiota dominated in the
obese mice preventing adiposity.

The gene count of the intestinal microbiota
might play a key role in human obesity as dem-
onstrated recently (Le Chatelier et al. 2013). Le
Chatelier and colleagues observed that in case of
low bacterial richness (low gene count, LGC),
obesity and related disorders such as insulin resis-
tance, fatty liver, and low-grade inflammation
were more common compared to subjects charac-
terized by high gene count (HGC). Individuals
with this LGC in their microbiota gained more
weight and had a higher rate of systemic inflam-
mation as demonstrated by higher levels of
C-reactive protein, a higher rate of insulin
resistance and dyslipidemia. Whereas Bacteroides
and some Ruminococcus species were more
dominant in LGC, Faecalibacterium prausnitzii,
Bifidobacterium, Lactobacillus, Alistipes,
Akkermansia, and others were significantly asso-
ciated with HGC. At phylum levels, Bacteroidetes
and proteobacteria were more commonly
observed in LGC, whereas Verrucomicrobia
(e.g., Akkermansia muciniphila) and Actinobacter
were more dominant in HGC. Findings of this
study overall support a concept that in case of
obesity, potential pro-inflammatory bacteria may
dominate, e.g., Ruminococcus gnavus or
Bacteroides and anti-inflammatory such as F.
prausnitzii are less prevalent. Further, studies
from this cohort of patients showed that LGC
subjects contained a more pro-inflammatory
microbiotal profile accompanied by an increase
in oxidative stress. Dietary interventions by
using an energy-restricted diet improved this
microbial richness and clinical phenotype in
LGC subjects, although subjects with an already
high microbial richness responded less well to
dietary treatment (Cotillard et al. 2013). These
studies support the current belief that microbial
composition and potentially the richness of these
bacterial genes in our gut might be able to define
obese people with metabolic and inflammatory
complications.

It has been less well studied until recently how
the gut microbiota changes in obese subjects after
weight loss. Remely and colleagues investigated
obese people receiving a dietary intervention

proposed by the German, Austrian, and Swiss
Society of Nutrition over 3 months (Remely
et al. 2015). Here, fecal microbiota and bioelec-
trical impedance analysis were performed before,
during, and after the dietary intervention. After
weight loss, the ratio of Firmicutes/Bacteroidetes
significantly decreased, whereas Lactobacilli,
Clostridium cluster IV, F. prausnitzii, and
Akkermansia muciniphila increased significantly.
Increase in these bacteria is of relevance, as these
strains have been demonstrated to exert beneficial
and anti-inflammatory properties (Sokol
et al. 2008; Everard et al. 2013). The use of pre-
and probiotics besides weight loss reflects another
important treatment approach as they might be
able to cause beneficial shifts in the intestinal
microbiota. Dewulf and colleagues recently dem-
onstrated that the administration of certain pre-
biotics (i.e., inulin-type fructans) changed the
gut microbiota composition in obese women
with an increase in Lactobacilli, Bifidobacteria,
and Clostridium cluster IV resulting in modest
changes in host metabolism (Dewulf et al. 2013).
Many preclinical studies have also focused on the
use of certain probiotics to affect an obese pheno-
type. Lactobacillus casei, Lactobacillus
rhamnosus, and Bifidobacterium animalis subsp.
lactis are able to shift the microbiotal structure in
mice after receiving a high-fat diet (HFD) toward
a lean phenotype (Wang et al. 2015). Whereas
Lactobacillus casei and Lactobacillus rhamnosus
in this study mainly increased the concentration
of the short-chain fatty acid acetate,
Bifidobacterium animalis subsp. lactis failed
such an effect but still was able to decrease adi-
pose tissue inflammation.

Overall, all these studies have gathered con-
vincing evidence that the gut microbiota plays a
role in human obesity and intervention via weight
loss strategies and/or pre-/probiotics might not
only affect phenotype but also the composition
of this microbiota. It has to be stated though that
some reports in the past have shown different
findings by suggesting that Bacteroides are more
abundant in obese subjects compared to lean
counterparts (Duncan et al. 2008; De Filippo
et al. 2010; Schwiertz et al. 2010; Wu
et al. 2011). Despite these discrepant findings
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between certain studies, the model proposed by
Ridaura and colleagues might become attractive
in the future to study the effects of human
microbiota under certain diets in germ-free ani-
mals and to test anti-inflammatory and potentially
beneficial bacterial mixtures (Ridaura et al. 2013).

3 Gut Microbiota and Diabetes

As most of T2D patients are obese, it has been
expected that also in this condition a microbiotal
signature might exist. The first study using high-
throughput sequencing was performed by analyz-
ing stool samples from Chinese T2D patients, and
metagenomic analysis was combined with clinical
data (Qin et al. 2012). T2D patients showed a
modest intestinal dysbiosis characterized by a
decrease in butyrate-producing Roseburia
intestinalis and F. prausnitzii. In this study, the
concept of metagenomic linkage group (MLG)
analysis has been applied, and thereby they
observed that in the healthy control samples espe-
cially various butyrate-producing bacteria were
enriched (e.g., Clostridiales sp. SS3/4, Eubacte-
rium rectale, F. prausnitzii, Roseburia
intestinalis, and others), whereas in T2D most
MLGs belonged to more opportunistic pathogens
such as Bacteroides caccae, variousClostridiales,
and Escherichia coli. When assessing potential
associated functions of this gut dysbiosis in
T2D, T2D microbiota showed enrichment in
membrane transport of sugars, branched-chain
amino acid transport, and sulfate reduction and
decreased butyrate biosynthesis but even more
importantly also an increase in oxidative stress
response. This could become of special relevance
as one could speculate that the gastrointestinal
tract with its microbiota could reflect a starting
point for the observed low-grade inflammation in
T2D. Overall, more than 3 % of the gut microbial
genes differed between T2D patients and healthy
subjects. Another study was recently reported
from Denmark (Karlsson et al. 2013b). Here, the
authors applied shotgun sequencing studying only
postmenopausal female T2D patients. T2D
patients showed increases in the abundance of
four Lactobacillus species including L. gasseri,

Streptococcus mutans, and certain Clostridiales
such as Clostridium clostridioforme and again
decreases in at least five other Clostridium spe-
cies. Roseburia intestinalis and F. prausnitzii,
both prototypic butyrate producers, were highly
discriminant for T2D. It has to be stated that the
number of analyzed T2D patients in the Scandi-
navian study was rather low and study design was
not able to detect whether a diabetes-specific drug
might have influenced microbiota composition.
These two studies reflect an important initiative
in this field and support the notion that not only a
“gut signature” might exist, but more importantly
functional analysis also revealed that a pro-
inflammatory tone might be initiated in the intes-
tine which could reflect the starting point of
low-grade systemic inflammation as commonly
observed in T2D and related disorders such as
nonalcoholic fatty liver disease (Fig. 1).

In summary, the results from the presented
studies here suggest that T2D patients show evi-
dence of gut dysbiosis. Reasons for some discrep-
ancies in these two studies may be numerous
and include various confounding factors such as
different study populations, different used
sequencing techniques, use of various diets, and
medications. All these studies can only be
considered as a starting point, and many more
well-designed clinical trials are needed to prove
an association between the gut microbiota
and T2D.

4 Involved Immunometabolic
Pathways and Role of Certain
Bacteria

4.1 Short-Chain Fatty Acids

One important activity of the gut’s microbiota is to
digest dietary fibers (Flint et al. 2008). The main
end products of this digestion by enzymes derived
from the gut microbiota reflect short-chain fatty
acids (SCFAs) such as acetate, butyrate, and pro-
pionate. SCFAs constitute 5–10 % of energy
source in healthy people. There is certain evidence
that lean subjects exhibit higher stool levels of
SCFA compared to obese people. Interestingly,
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fiber-enriched diets are also able to improve insu-
lin sensitivity in lean and obese diabetic subjects
(Robertson et al. 2003, 2005). SCFAs diffuse pas-
sively, are recovered via monocarboxylic acid
transporters, or act as signaling molecules by
binding to G-protein-coupled receptors (GPCRs)
such as Gpr41 (free fatty acid receptor 3, FFAR3)
and Gpr43 (FFAR2) (Brown et al. 2003; Le Poul
et al. 2003). These GPCRs are expressed by many
cell types including gut epithelial cells, adipo-
cytes, and immune cells. Gpr43-deficient mice
are obese even when consuming a normal diet,
whereas mice overexpressing this receptor specif-
ically in the adipose tissue remain lean indepen-
dent of calorie consumption (Kimura et al. 2013).
In this study, when mice were raised germ-free or
were treated with certain antibiotics, both types of
mice exhibited a normal phenotype. Gpr43 acti-
vation also enhances insulin sensitivity by pro-
moting GLP-1 secretion in the gut (Tolhurst
et al. 2012). Gpr43 is neither expressed in the
liver nor in the muscle, and therefore, it seems
that adipose tissue-derived Gpr43 is able to mod-
ulate all the metabolic effects after engagement
with microbiota-derived products such as SCFAs.

Therefore, SCFAs are not only an important
energy source for the host, but also act as signal-
ing molecules especially in the adipose tissue
thereby maintaining energy balance. Data also
suggest that the microbiota is the major source
for Gpr43 agonists and biological functions of
Gpr43 are completely dependent on the gut’s
microbiota.

Therefore, SCFAs could reflect a missing link
between the microbiota and systemic inflamma-
tory diseases as they (especially butyrate) regulate
the development of extrathymic anti-
inflammatory regulatory T cells (Arpaia
et al. 2013). SCFAs also control the generation
of colonic regulatory T cells and protect against
colitis in a Gpr43-dependent manner (Smith
et al. 2013). Trompette and colleagues recently
demonstrated that mice fed a high-fiber diet have
an altered microbiota and are protected from aller-
gic airway inflammation (Trompette et al. 2014).
These data are supportive for the current notion
that microbiota-derived products are important
players in the generation of local and systemic
immunity/inflammation. As studies in T2D espe-
cially and consistently revealed that production of

�

Fig. 1 (continued) CD14, TLR5) and intracellular (TLR9, NLRP3⁄6–ASC–Caspase1 inflammasome) pattern recognition
receptors, conversely, the epithelium shapes the microbiota by modifying its antibacterial strategies such as mucus and
antimicrobial-peptide (AMP) production. Disruption of the NLRP3⁄6–ASC–Caspase1 inflammasome resulted in pro-
found changes of the gut microbiota and barrier leakage which contributed to exacerbation of hepatic steatosis and
inflammation (Dominguez-Bello et al. 2010). (c) Cytokines are major players in the pathophysiology of NAFLD/NASH.
The “obese” adipose tissue accumulates large numbers of inflammatory cells, especially macrophages, and produces
enormous amounts of pro-inflammatory cytokines such as TNFa and IL-6. Conversely, anti-inflammatory mediators such
as adiponectin are diminished. Adipose tissue-derived mediators such as TNFa and IL-6 promote hepatic insulin
resistance, an important feature of NASH. Recent evidence suggests that gut microbes and/or microbial products not
only affect the liver via the portal vein but also peripheral organs such as the adipose tissue proposingmetabolic infection
as an important driver of NAFLD/NASH. (d) Nutritional components have been shown to impact intestinal and hepatic
homeostasis in several ways: (1) Certain dietary molecules directly activate host receptors, collectively designated as
dietary pattern recognition receptors (DPRR). (2) Exemplary, a derivate of indole-3-carbinole (I3C), contained in
cruciferous vegetables, stimulates the aryl-hydrogen receptor (AhR), and genes regulated by I3C–AhR interaction play a
crucial role in the development of a balanced gut immune system (Wang et al. 2014;Wu et al. 2011). (3) Bacterial enzymes
facilitate unique processing of dietary molecules. Complex carbohydrates can be fermented into short-chain fatty acids
(SCFA) which in turn activate specific host receptors such as the G-protein-coupled receptor 43 (Gpr43). SCFA–Gpr43
interaction has been implicated in the control of intestinal inflammatory immune responses. (4) Increased endogenous
ethanol produced by bacterial enzymes has been implicated in NAFLD development. (5) Conversion of dietary choline to
methylamines by microbial enzymes has been suggested to cause choline deficiency and to promote NAFLD. (6) Certain
food components promote expansion of otherwise low-abundant pathobionts. Milk-derived saturated fats promote taurine
conjugation of hepatic bile acids, thereby increasing the availability of organic sulfur. This milieu facilitates a bloom of the
sulphite-reducing pathobiont Bilophila wadsworthia which promotes a pro-inflammatory intonation (Yang et al. 2010)
(The figure is reproduced from Moschen AR, Kaser S, Tilg H. Non-alcoholic steatohepatitis: a microbiota-driven
disease. Trends Endocrinol Metab 2013;24:537–45 (Cell Press))
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SCFAs, especially butyrate, is impaired, it sounds
reasonable to assume that such mechanisms might
contribute to low-grade inflammation observed in
those disorders.

Several other mechanisms may allow the
microbiota to interact with the host. The gut
microbiota affects the composition and abun-
dance of certain bile acid species through a vari-
ety of mechanisms resulting commonly in low
levels of various bile acids in case of obesity
(Swann et al. 2011). Obese mice demonstrate
increased expression of farnesoid X receptor
(FXR) and fibroblast growth factor 15, whose
expression is regulated by bile acids, and directly
regulate various metabolic effects. Convention-
ally, raised mice contain much more total body
fat compared to those raised under germ-free
conditions (Backhed et al. 2004). Conventional-
ization of mice suppresses intestinal expression
of fasting-induced adipose factor (Fiaf) specifi-
cally in differentiated villous epithelial cells in
the ileum. Fiaf acts as a circulating lipoprotein
lipase (LPL) inhibitor (Yoon et al. 2000).
Another metabolic pathway apart from Fiaf
involves AMP-activated protein kinase (AMPK)
(Backhed et al. 2007). Germ-free mice remain
lean despite high-calorie intake, and this state is
accompanied by increased activity of phosphor-
ylated AMPK levels both in the liver and skeletal
muscle and enhanced insulin sensitivity in the
liver (Backhed et al. 2007). In summary, several
pathomechanisms have been identified in the last
years which could help to explain how the
microbiota directs metabolic processes in health
and disease (Fig. 1).

4.2 Innate Immunity

Metabolic syndrome might develop through the
interaction of various genetic and environmental
factors and includes a complex and yet poorly
understood interaction between the intestinal
microbiota and the innate immune system (Tilg
and Kaser 2011). Toll-like receptors might play
an important role in the development of a meta-
bolic syndrome as demonstrated for the pattern
recognition receptor TLR5 (Vijay-Kumar

et al. 2010). TLR5�/� mice exhibit hyperphagia;
developed hyperlipidemia, hypertension, insulin
resistance, and obesity; and an altered microbiota.
Transfer of intestinal microbiota of TLR5�/�mice
into germ-free mice led to metabolic syndrome.
These data suggest that innate immune signaling
is critical in the development of the metabolic
syndrome, and alterations in the intestinal
microbiota are able to induce the metabolic syn-
drome. Inflammasomes consist of an upstream
sensor NLR protein, the adaptor protein Asc,
and the effector protein caspase-1. Various groups
have recently shown that the inflammasome may
play an important role in metabolic inflammation,
and some inflammasomes might affect the intesti-
nal microbiota, metabolic syndrome, and fatty
liver disease (Stienstra et al. 2010; Henao-Mejia
et al. 2012). Whether similar phenomena are also
relevant in human disease is currently unclear
(Fig. 1).

4.3 “Metabolic Cytokines”: A Role
for Interleukin-22

It has long been assumed that certain cytokines
might be crucially involved in the cross talk
between metabolic processes and inflammation.
Interleukin-22 (IL-22) is an IL-10 family cyto-
kine and mainly expressed by certain lymphoid
cells (innate lymphoid cells, ILCs) and special-
ized T helper (Th) cells such as Th17 or Th22
(Colonna 2009). IL-10 family cytokines exert
mainly anti-inflammatory actions, and the bio-
logical functions of IL-22 are focused on control
of innate immune defense, tissue protection, and
regenerative functions. Furthermore, IL-22
maintains epithelial integrity and homeostasis
of commensals (Tilg 2012), as mice deficient in
IL-22 show evidence of systemic dissemination
of bacteria and chronic inflammation (Sugimoto
et al. 2008; Zheng et al. 2008). Importantly, con-
ditions of obesity are associated with a leaky gut
and an impaired epithelial integrity suggesting
that certain mediators might be involved in this
process (Bischoff et al. 2014). A recent elegant
study investigated the role of IL-22 in metabolic
disorders and mucosal immunity (Wang
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et al. 2014). Here, the authors observed that
IL-22 production in ILCs and CD4+ T cells is
impaired in obese mice and after challenge with
an HFD. Interestingly, infection with Citrobacter
rodentium resulted in a dramatic reduction of
peak IL-22 synthesis in the colon of ob/ob mice
or in animals after HFD feeding. IL-22 is dis-
pensable for a successful mucosal defense of
C. rodentium (Zheng et al. 2008), and adminis-
tration of exogenous IL-22-Tc reduced mortality,
restored epithelial damage and inflammation,
and inhibited dissemination of C. rodentium in
leptin-receptor-deficient (db/db) mice. Surpris-
ingly, exogenous IL-22-Fc treatment of obese
mice reduced body weight and epididymal fat
mass, decreased blood glucose levels, and
improved insulin resistance under both fed and
fasting conditions clearly proving that IL-22 is a
metabolically beneficial cytokine. In addition,
IL-22-Fc therapy improved metabolic functions
in db/db mice with hyperglycemia. As IL-22
reflects a prototypic barrier cytokine, the authors
investigated in their models effects of IL-22-Fc
administration on the intestinal microbiota and
could indeed observe that this therapy increased
the Firmicutes/Bacteroidetes ratio although ben-
eficial effects of this treatment could not be trans-
ferred to control mice via fecal transplant.
Furthermore, IL-22-Fc also regulates lipid
metabolism in the liver (Yang et al. 2010) and
adipose tissue. These studies clearly highlight
that certain cytokines such as IL-22, which are
mainly active at barriers such as in the gut, link
various aspects observed in obesity and related
disorders such as impaired epithelial integrity,
mucosal inflammation, systemic inflammation,
and metabolic dysfunction. These connections
are exciting as they offer new therapeutical
possibilities.

4.4 Role of Certain Commensals:
Akkermansia Muciniphila

Knowledge in this area is still in its infancy.
Akkermansia muciniphila has been recently
characterized as a mucin-degrading bacterium

residing in the mucus layer (Derrien
et al. 2004). A. muciniphila, a Gram-negative
bacterium, is highly prevalent and constitutes
3–5 % of the gut’s microbiota, and its concen-
trations are inversely correlated with the pres-
ence of overweight and diabetes in murine and
human studies (Santacruz et al. 2010; Everard
et al. 2011; Karlsson et al. 2012). Dietary sup-
plementation with fibers, i.e., oligofructose, to
genetically obese mice dramatically increases
abundance of A. muciniphila (Everard
et al. 2011). Several studies have shown that
A. muciniphila might play a key role in the
integrity of the mucous layer and has the poten-
tial to reduce inflammation and offer protection
against the development of obesity and T2D.
The most convincing report suggesting such a
function for Akkermansia was recently
presented by Everard et al. (2013). The authors
demonstrated that both in genetic and dietary
models of murine obesity, concentrations of
A. muciniphila were highly decreased. A prebi-
otic therapy with oligofructose restored levels of
A. muciniphila and improved metabolic func-
tions including metabolic endotoxemia.
Endotoxemia has been demonstrated to be of
importance in metabolic dysfunction (Cani
et al. 2007), and recent studies have corrobo-
rated this as increased levels of lipopolysaccha-
ride-binding protein, an indirect surrogate of
increased endotoxin activity, correlated with
later development of metabolic syndrome in
middle-aged and older Chinese individuals
(Liu et al. 2014). Metformin, an antidiabetic
drug, results in an increase in Akkermansia con-
centrations, and also in this study, administra-
tion of A. muciniphila resulted in an
improvement of various metabolic functions
including glucose tolerance and adipose tissue
inflammation (Shin et al. 2014). NOD mice
treated with vancomycin exhibit an increase in
the abundance of Akkermansia accompanied by
improved metabolic parameters further
supporting a protective function for this
bacterium (Hansen et al. 2012). A. muciniphila
might exert anti-inflammatory functions also
in other disease models as it has been shown
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that administration of this bacterium improves
DSS-induced colitis (Kang et al. 2013).

5 Early-Life Manipulation of the
Microbiota: Role of Antibiotics

As stated, obese and lean humans differ in their
microbiota, and disease phenotypes can be trans-
ferred to germ-free mice (Ridaura et al. 2013). A
seminal study from 1963 by Dubos and colleagues
described that antibiotic therapy might affect the
body weight of mice (Dubos et al. 1963). This was
paralleled by the observation and practice of
farmers to expose livestocks to low doses of anti-
biotics to promote growth of respective animals
(Cromwell 2002). All these facts have been rather
ignored by medicine, namely, that these effects
can be pronounced and especially are dependent
on the time of use, e.g., in early life as interven-
tions might have a profound impact in later life.
Antibiotic therapy causes dramatic shifts in the
microbiota with certain long-term effects
(Dethlefsen et al. 2008; Antonopoulos
et al. 2009; Morgun et al. 2015). Especially expo-
sure in early life might have a major impact
(Greenwood and Hirsch 1974). Several large pro-
spective clinical studies have now also shown that
“disturbance” of the intestinal microbiota by either
mode of delivery or antibiotic usagemight lead to
childhood obesity (Ajslev et al. 2011; Trasande
et al. 2013). Elegant experimental studies recently
have demonstrated that early-life subtherapeutic
antibiotic therapy not only affected the intestinal
microbiome but also resulted in obesity (Cho
et al. 2012). In this study, this intervention also
resulted in a significant increase of SCFA, impor-
tant energy substrates for the organism. Another
recent study byMartin Balser’s group has brought
further insight into this topic. Low-dose penicillin
(LDP) therapy, initiated at birth, induced major
metabolic alterations in the host accompanied by
changes in the expression of ileal innate immunity
genes finally resulting in a substantially
perturbated microbiota (Cox et al. 2014). Early
penicillin exposure especially already to adult
mice before birth resulted in enhanced metabolic

phenotypes including total abdominal, visceral,
and liver adiposity. LDP treatment had a major
impact on the intestinal microbiota, and it
suppressed multiple taxa that typically peak early
in life. Furthermore, LDP and an HFD had inde-
pendent selective effects, with LDP consistently
affecting specific microbial strains. This important
study overall clearly shows that at least in mice,
early life is the critical window with respect to
host-microbe metabolic interactions, and even
exposure limited to infancy resulted in adiposity
later in early to mid-adulthood. Importantly, they
also observed that the altered microbiota alone,
not continued LDP exposure, showed causality.
Interestingly and this fits with this study, germ-
free chickens do not demonstrate weight gain
when treated with low-dose penicillin (Coates
et al. 1963), and animals were especially respon-
sive to an HFD, and importantly this “disease”
phenotype was transferrable via antibiotics-
selected microbiota to a healthy host. All these
important studies clearly suggest that interference
with the microbiota in early life especially antibi-
otic therapy may have a profound effect finally
resulting in an increased risk for obesity and met-
abolic dysfunction in later life. Further, studies are
needed to define key members of the early-life
microbiota and also to prove whether similar
mechanisms take place in humans.

6 Gut Microbiome and Pregnancy

Pregnancy is accompanied by massive hormonal,
immunological, and metabolic changes. Meta-
bolic alterations during pregnancy are substantial,
and approximately 20 % of patients develop pre-
diabetes or manifest T2D. Earlier studies have
revealed that the composition of the gut
microbiota is changing over the course of gesta-
tion (Collado et al. 2008). A major study provid-
ing robust insights into the relationship between
microbiotal evolution and pregnancy and associ-
ated metabolic consequences has been recently
reported (Koren et al. 2012). During pregnancy,
many metabolic parameters changed significantly
with an increase in serum leptin levels,
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cholesterol, insulin, and HbA1c levels. From the
first trimester (T1) to the third trimester (T3), the
relative abundance from Proteobacteria and
Actinobacteria increased in approximately 2/3 of
women. Levels of Bacteroidetes and Firmicutes
were not significantly different between trimes-
ters. T1 was characterized by a high rate of the
Clostridiales order of the Firmicutes (e.g., buty-
rate producers F. prausnitzii and Eubacterium),
whereas T3 was characterized by members of
the Enterobacteriaceae and Streptococcus genus.
Proteobacteria, enriched in T3 stools, have been
shown to exert pro-inflammatory effects
(Mukhopadhyay et al. 2012). The authors trans-
ferred T1/3 microbiotas to germ-free wild-type
mice, and only after 2 weeks of inoculation,
inflammatory mediators in the stool and cecal
samples including lipocalin were significantly
higher in the T3 versus T1 recipients. This was
paralleled by more adiposity and an impaired
glucose tolerance. Overall, this fascinating trans-
lational work clearly suggests that pregnancy is
associated with major shifts in the gut’s
microbiota characterized by a switch toward a
pro-inflammatory tonus.

Mode of delivery might be crucial as a vaginal
birth has been demonstrated to have a major
impact on the establishment and development of
the intestinal flora (Dominguez-Bello et al. 2010).
In contrast, Caesarean section results in a mark-
edly altered child microbiota, and this may have
consequences with respect to disease patterns
(Huurre et al. 2008; Biasucci et al. 2010;
Dominguez-Bello et al. 2010; Pandey
et al. 2012). Indeed, studies suggest an increased
risk of childhood obesity after Caesarean section
(Huh et al. 2012; Blustein et al. 2013; Li
et al. 2014). Although these associations are prob-
ably more correlative at the moment, these find-
ings indirectly also favor the concept that altered
intestinal microbiota has metabolic consequences.
In summary, pregnancy and mode of delivery
have recently appeared as major confounders of
the gut’s microbiota, and consecutive microbiotal
changes might contribute to various metabolic
diseases including obesity and metabolic
dysfunction.

7 Conclusions

Host phenotypes are dependent on interactions
between diet, intestinal microbiota, and immunity.
Until recently, it appeared that the direct interac-
tion between food and immunity drives health and
disease, and only recently evidence accumulated
that “the big elephant” in us, i.e., the intestinal
microbiota, has been ignored and has now been
recognized as crucial player at this interphase.
Over the last years, the intestinal microbiota has
been defined as a fascinating “new organ” which
affects many biological systems throughout the
body including the immune system, metabolic
functions and development, and programming of
the nervous system. Fascinating recent data have
now demonstrated an important role for this
microbiota in metabolic diseases such as obesity
and T2D. A “microbiotal gut signature” is present
not only in human obesity but also in T2D, and it
will become fascinating to define bacterial species
in the near future which are metabolically benefi-
cial or detrimental. Several interesting candidates
have already been defined, and A. muciniphila
reflects such a promising candidate. Mechanisti-
cally SCFAs, especially butyrate and propionate,
have evolved as attractive pathways on how the
microbiota might digest food and thereby shape
immunological and metabolic functions. An excit-
ing new area has been started in medicine bringing
metabolic inflammation, food, and microbiota
research to the forefront of biomedical research.
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Abstract
Normally, the insulin secretion is increased in
response to insulin resistance in order to main-
tain glucose homeostasis. Pancreatic islet beta-
cells respond to glucose, fatty acids, amino
acids, autonomic innervation, incretins, and
adipokines. Metabolic syndrome is associated
with a failure of pancreatic islets to respond
appropriately to nutrient, neuronal, and hor-
monal signals, resulting in glucose intolerance
or type 2 diabetes. Pancreatic islet dysfunction
in type 2 diabetes is characterized by increased
glucagon secretion; impaired insulin response
to secretagogues, e.g., glucose, arginine, and
isoproterenol; blunted first-phase insulin
secretion; irregular oscillations of plasma
insulin levels; and impaired conversion of
proinsulin to insulin. In addition, type 2 diabe-
tes may be associated with reduced beta-cell
mass, partly mediated by enhanced islet apo-
ptosis due to glucolipotoxicity. Understanding
of normal pancreatic islet physiology and
molecular pathways linking islet adaptation to
diabetes pathophysiology would facilitate the
development of novel treatment modalities.
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1 Nutrient Sensing in Pancreatic
Islets

The prevalence of the metabolic syndrome is dra-
matically increasing and has emerged as a major
threat to public health worldwide. The metabolic
syndrome consists of a cluster of metabolic con-
ditions including hypertriglyceridemia, insulin
resistance, abnormal glucose tolerance or diabe-
tes, and hypertension (Reaven 1988, 1995). These
conditions combined with genetic susceptibility
and abdominal obesity are risk factors for type
2 diabetes, vascular inflammation, atherosclero-
sis, and renal, liver, and heart diseases. Insulin
resistance is at the core of metabolic syndrome,
because the altered metabolism of nutrients by
insulin-sensitive target tissues (muscle, adipose
tissue, and liver) can result in high circulating
levels of glucose and various lipids, which
increase demands on pancreatic islet function to
compensate for insulin resistance. Pancreatic
islets are highly vascularized structures that mon-
itor the nutrient content of the blood stream and
consist of mainly five cell types: alpha cells, beta-
cells, delta cells, ghrelin cells, and pancreatic
polipeptide (PP) cells which produce the hor-
mones glucagon, insulin, somatostatin, ghrelin,
and PP, respectively (Wierup et al. 2014;
Newsholme et al. 2014). Insulin-secreting pancre-
atic beta-cells play a central role in the physiology
and in the pathology of obesity and diabetes by
regulating glucose homeostasis. A critical role of
pancreatic beta-cells is consistent with the obser-
vation that diabetes does not develop in obese
insulin-resistant persons unless pancreatic beta-
cell function or its adaptation is compromised.

Pancreatic beta-cells account for about 50 % of
the islet cell mass in humans and are able to react
to elevated dietary nutrients on a moment-to-
moment basis and secrete insulin into the blood
stream at rates that are appropriate for the mainte-
nance of optimal glucose levels. Carbohydrates
are normally the primary source of fuel in food,
and glucose is the primary insulin secretagogue.
An increase in blood glucose concentration leads
to glucose transport into beta-cells by Na+-inde-
pendent facilitated glucose transporters (GLUTs)

with a capacity markedly higher than the beta-cell
glycolytic rate. GLUT-2 is expressed in rodent
islets (Newgard et al. 2001) and has a Km for
glucose and the capacity for glucose transport
higher than other members of the family. Human
islets express GLUT-2, but at lower levels than
rodent islets (Newgard et al. 2001). In addition,
human islets express significant levels of the low
Km glucose transporters GLUT-1 and GLUT-3.
Upon entry of glucose into beta-cells, the glucose
is phosphorylated to glucose-6-P by glucokinase
which is the rate determinant of glycolysis
(Matschinsky 1996). Glucokinase, also known
as hexokinase IV, contributes more than 90 % of
the glucose-phosphorylating capacity in beta-
cells. Enhanced flux through the glycolytic path-
way and tricarboxylic acid (TCA) cycle results in
elevated mitochondrial ATP generation. ATP can
be produced by three different mechanisms in
beta-cells (Newgard et al. 2001): (i) a large frac-
tion of NADH produced in the glyceraldehyde
phosphate dehydrogenase reaction can be trans-
ferred to mitochondria for entry into electron
transport chain via alpha-glycerophosphate and
aspartate/malate shuttles, (ii) ATP is generated in
the phosphoglycerate kinase and pyruvate kinase
reaction of glycolysis, and (iii) ATP is produced in
mitochondria from oxidation of pyruvate. The
increased ATP/ADP ratio induces plasma mem-
brane depolarization by closure of beta-cell KATP-
sensitive channels and subsequently leads to the
opening of voltage-gated calcium channels. The
resultant influx of Ca2+ leads to insulin export
through the fusion of a readily releasable pool of
insulin-containing vesicles with the plasma mem-
brane (Henquin 2009; Ashcroft et al. 1984;
Wollheim and Pralong 1990; Fig. 1). This trigger-
ing mechanism of KATP-dependent glucose-
stimulated insulin release is responsible for the
first phase of insulin secretion (over 5–10 min).
The second phase insulin release is longer (30–60
min) and dependent on metabolic stimulus-
secretion coupling (Newsholme et al. 2014;
Henquin 2000).

Pancreatic beta-cells respond to other nutrients
such as amino acids, fatty acids (FAs), and
ketones. Amino acids administrated alone at
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physiological concentrations do not affect
glucose-stimulated insulin secretion (GSIS), but
interact with glucose to increase GSIS
(Newsholme et al. 2007a, 2014; Doliba
et al. 2007). Amino acids regulate both triggering
and amplification pathway of insulin secretion by
acting as a substrate for the TCA cycle and/or
redox shuttles with subsequent generation of
ATP (Newsholme et al. 2007a; Li et al. 2003),
direct depolarization of plasma membrane by the
transport of positively charged amino acids into
the cell via specific amino acid transporter
(Newsholme et al. 2007a), and cotransport of
Na+ ions resulting in plasma depolarization

(Newsholme et al. 2007a) and through amino
acid receptors of the plasma membrane, in partic-
ular the glutamate receptor expressed in beta-cells
(Inagaki et al. 1995; Wollheim and Maechler
2015).

Fatty acids (FAs) alter pancreatic beta-cell
function by signaling through the free FA (FFA)
receptor: GPR40/FFAR1 (G-protein-coupled
receptor 40) that has been shown to be a physio-
logically relevant receptor for long-chain FAs
(Itoh et al. 2003; Soga et al. 2005; Kristinsson
et al. 2013). GPR40/FFAR1 belongs to a family
of G-protein-coupled receptors that are highly
expressed in beta-cells andmediate approximately
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Fig. 1 Signaling in pancreatic islet beta-cell. Free
fatty acid (FFA), glucose, amino acids (AAs), acetylcholine
(Ach), and GLP-1 signaling pathways in pancreatic beta-
cells are depicted. GPR40 G-protein-coupled receptor for
FFA, M3R muscarinic receptor type 3, GLP-1R glucagon-
like peptide-1 receptor, VDCC voltage-dependent Ca2+

channels, IP3 inositol triphosphate, G-6-P glucose-

6-phosphate, Gro3P glycerol-3-phosphate, GL/FFA
glycerolipid/FFA cycle, PKC protein kinase C, PKA pro-
tein kinase A, Ca2+, ATP adenosine triphosphate, AC
adenylate cyclase, phosholipase C, IP3 inositol triphos-
phate, MAG monoacylglycerol, DAG diacylglycerol,
cAMP-GEF II cAMP-guanine nucleotide exchange factor
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half of the FFA-induced secretion (Ferdaoussi
et al. 2012; Kebede et al. 2008; Latour
et al. 2007; Nolan et al. 2006) where it increases
insulin secretion by signaling via Gαq and
phospholipase C, IP3-mediated Ca2+ release
from ER, and stimulation of PKC by increased
level of diacylglycerol (DAG) (Kristinsson
et al. 2013; Fujiwara et al. 2005; Fig. 1). The
second pathway involves FAs entering into the
intermediary metabolism of beta-cell (Prentki
et al. 2013). At a low glucose concentration, the
FAs are converted into long-chain acyl-CoA by
the enzyme acyl-CoA synthetase (ACS) and enter
the mitochondria through carnitine palmitoyl-
transferase I (CPT-1), where they are oxidized
via the β-oxidation pathway for energy produc-
tion. When the glucose concentration increases in
pancreatic β-cells, FA oxidation is decreased and
glucose oxidation fulfills a larger part of the cel-
lular energy needs. The shift in fuel utilization
occurs due to a high substrate flux to the TCA
cycle that leads to an increase in anaplerosis and
efflux of citrate from the mitochondria. Cytosolic
citrate is converted into malonyl-CoA by citrate
lyase and acetyl-CoA carboxylase (ACC).
Malonyl-CoA is a potent allosteric inhibitor of
mitochondrial CPT-1 and therefore inhibits the
transport of long-chain acyl-CoA into the mito-
chondria to be oxidized (Prentki et al. 1992; Liang
and Matschinsky 1991). The malonyl-CoA/CPT-
1/FA-CoA interaction is connected to the
glycerolipid/free fatty acid cycle (GL/FFA)
(Prentki et al. 2013; Prentki and Madiraju 2008,
2012). At a high glucose concentration, a substan-
tial portion of glucose utilization by pancreatic
β-cells (about 30 %) is incorporated into glycerol
(GL) via glycerol-3-phosphate (Gro3P) and enters
GL/FFA cycling (Peyot et al. 2010; Fig. 1). The
GL/FFA cycle consists of lipogenesis (esterifica-
tion) and lipolysis components that generate many
lipid intermediates, some of which serve as sig-
naling molecules, e.g., monoacylglycerol (MAG),
diacylglycerol (DAG), phosphatidate,
lysophosphatidate, FA-CoA, and FFA (Prentki
and Madiraju 2008). Specifically, DAG and
LC-CoA enhance the exocytotic function of key
vesicle priming and docking proteins such as
MUNC13, synaptosomal-associated protein

25 (SNAP-25), and synaptotagmin and also mod-
ulate signal transduction by PKC activity (Nolan
and Prentki 2008; Newsholme et al. 2007b;
Rorsman and Braun 2013).

What is the interaction between the GL/FFA
cycle and the malonyl-CoA/CPT-1/FA-CoA net-
work? Elevated blood glucose, occurring in the
fed condition, enhances GL/FFA cycling by
increasing malonyl-CoA that inhibits
β-oxidation, providing Gro3P for the esterifica-
tion arm of the cycle, and activating lipolysis via
covalent modification of lipolytic enzymes.
Amino acids also enhance anaplerosis and
malonyl-CoA production, and exogenous FFAs
provide substrate for the GL/FFA cycle. These
nutrients act together with glucose to promote
GL/FFA cycle activity and production of meta-
bolic coupling factors (Prentki et al. 2013). Thus,
the malonyl-CoA/FA-CoA-GL/FFA cycle meta-
bolic signaling network likely plays an integrating
role in modulating insulin secretion in response to
all classes of fuel stimuli to adjust insulin secre-
tion as a function of the nutritional state (Prentki
and Madiraju 2012). Thus malonyl-CoA acts to
switch pancreatic islet beta-cell metabolism from
FA oxidation to glucose oxidation.

In addition, pancreatic islets express hormone-
sensitive lipase (HSL) which may activate endog-
enous lipolysis and also participate in the regula-
tion of insulin secretion (Prentki et al. 2013).
Therefore, triacylglycerol (TAG) stored in pancre-
atic islet beta-cells plays an important role in
stimulus-secretion coupling mechanism of GSIS.
It has been shown that both glucose and FA
metabolism are needed for normal islet beta-cell
function (Prentki et al. 1992). If malonyl-CoA
accumulation is blocked by the inhibition of
acetyl-CoA carboxylase (ACC), GSIS is
markedly reduced.

The mechanisms described above are related to
acute exposure to FFA. In contrast, chronic expo-
sure of pancreatic islet beta-cells to FFA results in
inhibition of insulin secretion as shown in vitro in
isolated perfused pancreas and islets (Sako and
Grill 1990; Zhou and Grill 1995; McGarry 2002)
and in vivo studies in humans (Kashyap
et al. 2003). This phenomenon has been termed
lipotoxicity (Prentki et al. 2002; Poitout and
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Robertson 2002). Chronic exposure to FFA
enhances the basal insulin secretion but decreases
the response to glucose. Chronic elevation of FFA
also decreases insulin gene expression, proinsulin
processing, and induction of islet apoptosis
(Newsholme et al. 2007b; El-Assaad et al. 2003;
Lupi et al. 2002). Chronic exposure to high
glucose and FFA may also lead to ceramide
formation and/or NO-mediated apoptosis
(Newsholme et al. 2007b; Boslem et al. 2012).
This pathway plays a role in the development and
pathogenesis of pancreatic islet beta-cell dysfunc-
tion in type 2 diabetes (McGarry 2002; McGarry
and Dobbins 1999).

FA receptors may also play a role during
prolonged exposure to FFA (Kristinsson
et al. 2013). Indeed, it was shown that GPR40/
FFAR1 knockout (KO) mice generated by
Steneberg et al. (2005) did not develop metabolic
abnormalities seen in wild-type animals when
given a high-fat diet. When islets isolated from
the GPR40/FFAR1-KO mice were chronically
exposed to elevated levels of FFAs, subsequent
GSIS was not impaired. In another study,
FFAR1-KO mice generated by another labora-
tory showed better glucose tolerance after
1 week of high-fat diet compared to wild-type
mice (Brownlie et al. 2008). In contrast to these
results, FFAR1-KO mice generated by Kebede
et al. (2008) and Lan et al. (2008) developed
obesity and hyperglycemia. Islets isolated from
FFAR1-KO mice were not protected from
impairment of GSIS caused by prolonged expo-
sure to elevated levels of FFAs (Latour
et al. 2007). Overexpression of FFAR1 in rats
was favorable for glycemic control on a high-fat
diet (Nagasumi et al. 2009). A number of FFAR1
agonists have been shown to stimulate insulin
secretion in a glucose-dependent manner and to
lower glucose levels in obese and diabetic rats
and mice (Lin et al. 2011; Houze et al. 2012; Luo
et al. 2012; Tsujihata et al. 2011; Yashiro
et al. 2012). These results demonstrate that pan-
creatic islet beta-cells are adversely affected by
chronic exposure to high glucose and FFA levels
which predisposes to impaired insulin secretion
and the development of glucose intolerance and
type 2 diabetes.

2 Neuroendocrine Regulation
of Pancreatic Islets

In addition to various nutrients, insulin secretion
is stimulated by hormones and neurotransmitters.
Acetylcholine, the neurotransmitter of the para-
sympathetic nervous system, plays a key role in
the regulation of insulin secretion in pancreatic
islet β-cells (Gilon and Henquin 2001; Ahren
2000; Teff and Townsend 1999). Mutant mice
lacking the M3 muscarinic acetylcholine receptor
subtype in beta-cells display impaired glucose
tolerance and reduced insulin release (Gautam
et al. 2006; Zawalich et al. 2004). In contrast,
transgenic mice overexpressing M3 receptors in
β-cells showed an improvement in glucose toler-
ance and insulin secretion (Gautam et al. 2007).
The secretory response of β-cells to fuel stimula-
tion is also markedly enhanced by the gut hor-
mone GLP-1, an incretin released into the portal
circulation when a meal is digested (Holz and
Habener 1992). These neuroendocrine signals
are mediated by specific G-protein-coupled recep-
tors (GPCRs) of the beta-cells (Ahren 2009;
Regard et al. 2007; Fig. 1). The binding of various
ligands activates specific subgroups of
heterotrimeric G proteins, Gs, Gi, and Gq,
involved in distinct pathways of signal transmis-
sion (Regard et al. 2007; Lagerstrom and Schioth
2008; Kimple et al. 2014).

Signaling by Gs (activated by the GLP1 recep-
tor) (West et al. 2014; Doyle and Egan 2007) and
Gq (activated by M3 acetylcholine receptor)
(Gilon and Henquin 2001; Ahren 2000; Nakajima
et al. 2013; Jain et al. 2013) potentiates fuel-
stimulated insulin release during the course of a
meal and also stimulates beta-cell proliferation
and enhances beta-cell mass (Baggio and Drucker
2006, 2007) as compensation for insulin resis-
tance associated with obesity, the major precipi-
tating factor for type 2 diabetes (Baggio and
Drucker 2006). Various lines of evidence suggest
that defects of the neuroendocrine regulation of
beta-cells play an important role in the molecular
pathogenesis of type 2 diabetes (Lee et al. 2012).
There is evidence that both release and action of
incretin hormones are disrupted in type 2 diabetes
(Drucker and Nauck 2006; Drucker 2006;
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Vilsboll et al. 2001). This defect is partly attrib-
uted to reduced expression of GLP1 receptor in
pancreatic beta-cells (Rajan et al. 2015). Activa-
tion of the vagal afferent pathway is also impaired
in a rodent model of type 2 diabetes (Lee
et al. 2012; Rocca and Brubaker 1999). Previ-
ously we demonstrated in vitro with isolated
mouse islets that palmitic acid acutely reduced
the glucose-dependent acetylcholine stimulation
of insulin release, the total oxygen consumption
response to glucose, the Ca2+ response, and
cAMP metabolism in isolated mouse islets,
while the effects of GLP-1 on these parameters
were not altered or potentiated (Doliba
et al. 2010). These effects occurred at concentra-
tions of albumin-bound palmitic acid as low as
50 μM, thus implicating the activation of GPR-40
receptors. We have also shown that chronic expo-
sure of pancreatic islets to high glucose and FA
concentrations decreased the ability of acetylcho-
line to potentiate GSIS (Doliba et al. 2015). This
effect strongly depends on the glucose concentra-
tion in the culture medium with a delayed onset of
potentiation at 10 mM glucose and a delayed
onset plus reduced maximal effectiveness of the
neurotransmitters at 16 and 25mM concentrations
of glucose. Based on the significant contribution
of cholinergic regulation to insulin secretion and
glucose homeostasis in humans (Gilon and
Henquin 2001; Ahren 2000), it was proposed
that impairment of this pathway by FA may con-
tribute to the lack of compensatory insulin release
in response to insulin resistance.

3 Pancreatic Islet Adaptation
in Pregnancy and Obesity

The endocrine pancreas is a unique organ that can
adapt to physiological and pathological condi-
tions by changing its mass and function to ensure
glucose homeostasis (Steiner et al. 2010; Lingohr
et al. 2002; Karaca et al. 2009). Two types of
compensation can occur: a functional one in
which beta-cells secrete more insulin and the sec-
ond one in which there is a change in beta-cell
mass (Bonner-Weir 2000). Functional

adaptations, including changes in the threshold
for glucose-induced insulin secretion (Sorenson
et al. 1987) and glucose-induced increase in glu-
cokinase activity (Chen et al. 1994), are involved
in the maintenance of glucose homeostasis. After
stimulation by high glucose levels, the proinsulin
synthesis in beta cells is increased by more than
tenfold, with hormone synthesis approaching
50 % of the total protein production (Schuit
et al. 1988). The beta-cell mass is a major deter-
minant of the amount of insulin that can be
secreted, and experimental evidence shows that
the beta-cell mass can increase or decrease
(Bonner-Weir 2000). An adaptive increase in
beta-cell mass is well illustrated in pregnancy
and obesity (Rhodes 2005; Bernard-Kargar and
Ktorza 2001; Sorenson et al. 1997). In mammals,
including humans, pregnancy results in profound
changes in maternal metabolism and insulin secre-
tion to allow an optimal nutrient supply to the
fetus. During the last trimester, there is marked
insulin resistance accompanied by a dramatic
increase in the insulin response to glucose and
doubling of the beta-cells mass (Parsons
et al. 1992). Failure to compensate for the high
insulin demand during pregnancy leads to gesta-
tional diabetes.

Pancreatic beta-cell plasticity also occurs in
obesity. Although obesity is associated with insu-
lin resistance, most obese individuals remain
normoglycemic because of a compensatory
increase in beta-cell function and mass to cope
with the increase in metabolic status (Sorenson
et al. 1997) (Ackermann and Gannon 2007).
This may explain why 70–75 % of obese individ-
uals do not develop diabetes (Mokdad et al. 2001).
Pancreatic islet beta-cell adaptation has been
documented in several animal models. Placing
normal rats on a high-fat diet for 6 weeks results
in a modest increase in body weight, mild insulin
resistance, and a 30–40 % increase in islet density
and beta-cell size (Buettner et al. 2000). Pancre-
atic islet beta-cell compensation and expansion of
beta-cell mass is also well demonstrated in Zucker
fatty (ZF) rats, which possess a leptin-receptor
defect that results in obesity and insulin resistance
(Clark et al. 1983). However, these animals
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remain normoglycemic via compensatory
hyperinsulinemia. Adaptation to insulin resis-
tance occurs via a fourfold increase in the beta-
cell mass (Pick et al. 1998) together with
enhanced insulin secretion (Milburn et al. 1995;
Zhou et al. 1999), thereby allowing the mainte-
nance of glucose homeostasis. However, as the
animals get older, more obese, and glucose intol-
erant, there is a deficit in the beta-cell population
that no longer adequately compensates for the
insulin resistance. This worsens with age, so the
animals eventually become diabetic (Pick
et al. 1998; Unger and Orci 2001).

Previously we have studied pancreatic islet
adaptation in diet-induced obese (DIO) C57BL/
6 J mice (Roat et al. 2014; Imai et al. 2008). This
mouse strain mimics human obesity (Surwit
et al. 1988) and develops hyperinsulinemia and
mildly elevated blood glucose levels indicating a
substantial capacity to compensate for insulin resis-
tance (Roat et al. 2014). Hyperinsulinemia in DIO
C57BL/6 J mice is associated with an increase in
islet mass and size and increased BrdU incorpora-
tion in beta-cells, indicating hyperplasia (Roat
et al. 2014). Although studies in humans are lim-
ited, a morphometric study of autopsy pancreases
from diabetic and nondiabetic patients (Kloppel
et al. 1985) has showed that the β-cell mass was
increased by 40 % in the obese subjects as com-
pared with lean subjects. These results suggest that
there is a compensatory growth of beta-cell mass in
response to insulin resistance in obesity.

Glucose, FFA, and some hormones and neuro-
transmitters are the most physiologically relevant
stimuli for beta-cell proliferation and mass
increase in vitro and in vivo (Baggio and Drucker
2006; Hugl et al. 1998; Shimabukuro et al. 1998;
Brubaker and Drucker 2004; Thorens 2014). A
prolonged (48-h) glucose infusion in normal rats
led to a twofold increase in beta-cell mass as a
result of both hypertrophy and hyperplasia
(Bernard et al. 1998), and it was associated
with a marked increase in islet responsiveness
to glucose (Bernard et al. 1998). In the obese
and/or insulin-resistant state, chronic hyperglyce-
mia and hyperlipidemia can evoke beta-cell
apoptosis leading to decreased beta-cell mass

(Pick et al. 1998; Donath et al. 1999). In rodent
models, FFAs can cause a modest increase in beta-
cell proliferation at basal glucose concentrations
(Shimabukuro et al. 1998). However, long-term
exposure of beta-cells to FFAs inhibits beta-cell
mitogenesis and induces beta-cell apoptosis
(Cousin et al. 2001). These adverse effects of
FFAs on beta-cell growth could be mediated via
intracellular accumulation of long-chain CoA or
ceramides (Shimabukuro et al. 1998).

GLP-1 increases beta-cell mass by activating
beta-cell proliferation and differentiation and
inhibiting beta-cell apoptosis (Baggio and Drucker
2006; Brubaker and Drucker 2004). These actions
are associated with GLP-1 receptor agonists and
dipeptidyl peptidase-4 (DPP-4) inhibitors (Drucker
and Nauck 2006; Drucker 2013). However, it
should be noted that the majority of experiments
were carried out in younger animals (Campbell and
Drucker 2013) whereas older rodent beta-cells
exhibit a substantially diminished or absent prolif-
erative response to multiple regenerative stimuli,
including GLP-1 receptor agonists (Rankin and
Kushner 2009). Human beta-cells are less respon-
sive to the proliferative action of GLP-1 compared
to rodent beta-cells (Parnaud et al. 2008). More
work is required to understand whether older dia-
betic human beta-cell retain the capacity to prolif-
erate, resist cell death, or retain a functionally
differentiated state in response to GLP-1 agonists
(Drucker 2013).

It has been also shown that both parasympa-
thetic and sympathetic nervous systems influence
the postnatal development and plasticity of the
endocrine pancreas (Thorens 2014). Defects in
these autonomic pathways impair beta-cell mass
expansion during the weaning period and beta-
cell mass adaptation in adult life (Thorens 2014).
Various growth factors have been implicated in
increasing adult pancreatic beta-cell proliferation
and beta-cell neogenesis (Lingohr et al. 2002).
The best characterized and physiologically rele-
vant growth factors that increase beta-cell prolif-
eration are insulin-like growth factor (IGF-1),
growth hormone (GH), and GLP-1. The IGF and
GH signal transduction pathway is described in
detail in a review article by Lingohr et al. (2002).
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4 Glucolipotoxicity and Diabetes

Hyperglycemia develops when pancreatic islet
beta-cells fail to synthesize and secrete sufficient
insulin for maintaining the physiological glucose
concentration of 5 mM. Glucolipotoxicity, the
operationally defined condition resulting from
caloric overload, is proposed to worsen or cause
beta-cell damage which eventually leads to type
2 diabetes. The term “glucolipotoxicity” implies
that repeated or continued exposure to high blood
glucose and lipid levels is required for beta-cell
damage and functional dysfunction to occur.
However, a compelling mechanistic molecular
explanation of glucolipotoxicity effecting pancre-
atic beta-cells is still lacking. In an attempt to
model glucolipotoxicity in vitro, pancreatic islets
are usually cultured for several days in high glu-
cose and FA concentrations. Studies have
described multiple cellular processes involved in
the pathogenesis of beta-cell dysfunction, includ-
ing changes in gene expression (Biden et al. 2004;
Gremlich et al. 1997), intermediary metabolism
(Iizuka et al. 2002), mitochondrial function
(Koshkin et al. 2003), ion channel activity
(Branstrom et al. 1997, 1998; Reimann
et al. 2003), insulin synthesis, and exocytosis
(Somesh et al. 2013). Different molecular mecha-
nisms of FA-induced beta-cell dysfunction have
been proposed including accumulation of cer-
amide (Boslem et al. 2012), apoptosis of beta-
cells due to oxidative (Gehrmann et al. 2010;
Morgan et al. 2007) and ER stress (Kharroubi
et al. 2004; Cnop et al. 2008), as well as others
mechanisms (Joseph et al. 2004; Cnop
et al. 2005). Many of these mechanisms remain
controversial. For example, the exposure of
human islets for 24 h in elevated FA and glucose
conditions was found in one study to initiate apo-
ptosis (El-Assaad et al. 2003), but other studies
have failed to find evidence of any significant
apoptosis following long-term exposure to FAs
(Kelpe et al. 2003). Olofsson et al. (2007) reported
that inhibition of GSIS by long-term exposure to
the FAs oleate and palmitate was not related to any
signs of increased beta-cell death, reduced insulin
synthesis, and impaired glucose metabolism,

KATP channel regulation, or Ca2+ signaling.
These discrepancies could be due to differences
in acute or chronic islet experimentations. In vitro
albumin/FA ratios are often not optimal, glucose
concentrations are often excessive to be meaning-
ful (i.e., >16 mM), there are significant limita-
tions inherent in animal models, and there is a lack
of a clear definition of the glucolipotoxicity phe-
nomenon (Poitout et al. 1801). While various
molecular and cellular mechanisms of glucolipo-
toxicity and their roles in obesity and diabetes
have been described (Prentki et al. 2013; Prentki
and Madiraju 2012; Poitout et al. 1801; Poitout
and Robertson 2008), it is unclear whether these
models recapitulate the pathogenesis of human
type 2 diabetes.

5 Pancreatic Islet Bioenergetics
and Diabetes

A faulty bioenergetic process is a plausible expla-
nation for defective insulin secretion in type 2 dia-
betes. Normally the ATP, generated by
metabolism of glucose, amino acids, and probably
FAs, serves as the obligatory coupling factor in
fuel-stimulated insulin release involving beta-
cell-specific mechanisms (Ashcroft et al. 1984).
The unique role of ATP as a critical messenger in
the stimulus-secretion coupling was clearly
shown in our previous studies with mouse, rat,
and human islets where oxygen consumption,
glycolysis, and glucose oxidation were related to
insulin secretion (Doliba et al. 2012). Such mea-
surements allowed us to calculate the ATP pro-
duction rate in beta-cells as a function of the
glucose concentration and insulin secretion. Mak-
ing a reasonable assumption that islet glycogen
stores are negligible (Matschinsky et al. 1971) and
that coupling of oxidative phosphorylation is
intact, we were able to develop an islet “ATP
production/insulin secretion” curve (Fig. 2).
Despite major differences in insulin profiles
(Fig. 2a), the ATP production/insulin secretion
curves were similar for mouse, rat, and normal
human islets, and the data for all species fit a
single sigmoidal curve (Fig. 2b), showing a clear
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relationship between the pancreatic islet energy
(ATP) production rate and insulin secretion
(Doliba et al. 2012).

The ATP production/insulin secretion curve is
steeply sigmoidal and has a threshold for glucose-
stimulated insulin secretion at about 15 pmole/
islet/min, a Hill coefficient of about 11 – which
is an indication of highly cooperative coupling
mechanisms – and a half-maximal effective rate
(ER50) of about 25 pmole/islet/min. These values
imply that ATP turns over about twice at the
threshold and about four times at maximal glucose
stimulation, but that ATP turnover is changed
relatively little (perhaps not more than 30 %) in
the physiologically important segment of the
curve. We speculate that the “ATP production/
insulin secretion” curve has clinical significance
comparable to that of the classical “Frank/Star-
ling” curve of the heart. In the heart, it is the
venous return and the ensuing muscle fiber stretch
which determines cardiac output maintaining the
match between the pump rate and body oxygen
requirements. In pancreatic islet beta-cells, it is
the fuel load and the ensuing ATP turnover that
determines the insulin output and maintains glu-
cose homeostasis. We also showed that ATP pro-
duction/insulin secretion curve is modified by
GLP-1 and a glucokinase activator piragliatin
(Doliba et al. 2012). We speculate that the “ATP
production/insulin secretion” curve is modified in
type 2 diabetic islets.

The literature proposes various ways by which
mitochondrial energy metabolism can be altered
due to fuel overload. It has been shown that FAs
may act as uncouplers and inhibitors of mitochon-
drial respiration (Wojtczak and Schonfeld 1993),
operating as protonophors and by inhibiting the
electron transport, respectively (Schonfeld and
Reiser 2006; Schonfeld and Wojtczak 1767,
2008). In addition, FAs induce uncoupling protein
(UCP2) in pancreatic islets (Joseph et al. 2004;
Chan et al. 2004; Zhang et al. 2001). FAs may act
as complex-I-directed inhibitors (Loskovich
et al. 2005) and can also serve as a substrate for
transport by the ANT inhibiting ATP and ADP
exchanges (Klingenberg 1778). FAs may alter
mitochondrial membrane permeability by open-
ing of the permeability transition pore (Scorrano
et al. 2001; Bernardi et al. 2002; Penzo et al. 2002;
2004).

Fatty acids (FAs) increase the expression of
PGC-1 alpha which may alter bioenergetics in
pancreatic beta-cells (Yoon et al. 2003). PGC-1
alpha is elevated in islets from different animal
models of diabetes and in human studies (Yoon
et al. 2003; Ek et al. 2001; Oberkofler et al. 2004,
2009). PGC-1 alpha promotes mitochondrial bio-
genesis in brown tissue (Puigserver et al. 1998);
however, adenovirus-mediated expression of
PGC-1 alpha to levels similar to those present in
diabetic rodents produces a marked inhibition
of GSIS in isolated islets and in mice
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(Yoon et al. 2003), by suppressing glucose oxida-
tion or decreasing the cell’s ability to drive ATP
production. PGC-1 alpha increases the transcrip-
tion of UCP2 (Oberkofler et al. 2006) by PGC-1-
mediated upregulation of beta-cell sterol element
binding protein (SREBP) gene expression. Since
UCP2modulates the efficiency of ATP production
(Klingenberg and Huang 1999) by catalyzing the
translocation of protons across the mitochondrial
membrane, one should expect changes in oxygen
consumption and oxidative ATP synthesis. How-
ever, such data are limited and related to
insulinoma cells (Barlow and Affourtit 2013).
Only measurements of total ATP concentration
in islets exposed to FA have been reported
(Somesh et al. 2013). Since insulin granules con-
tain ATP, which is co-secreted with insulin, it is
difficult to dissociate between the effects of FA on
ATP syntheses and changes of ATP content in
insulin granules. In fact, the insulin content is
decreased in islets chronically exposed to FFA
(Somesh et al. 2013), which may result in con-
comitant decreased total ATP concentration which
says little about the functional ATP.

In order to access beta-cell bioenergetics and
its relationship to insulin secretion, we performed
two sets of experiments: (i) the bioenergetics,
ionic, and secretion profiles of pancreatic islets
isolated from healthy and type 2 diabetic organ
donors were examined and (ii) isolated normal
human islets were exposed to a glucolipotoxicity
condition (high glucose and FFAs) in organ cul-
ture, and the bioenergetics and insulin secretion
were studied in perifusion experiments. When
islets were exposed to a “staircase” glucose stim-
ulus in the perifusion setup, the glucose depen-
dency curves of insulin secretion (Fig. 3a) and
respiration (Fig. 3c) of diabetic islets showed
decreased maximal rates and a right shift for the
oxygen consumption rate (OCR) as compared to
the control islets. It is worthy of note that the
baselines for both parameters are comparable. In
the insulin secretion profiles, the difference is
most pronounced at the 6 and 12 mM glucose
steps (Fig. 3b) showing decreased rates of rise
and a decreased extent and loss of biphasicity.
The glucose dependency of the OCR of the
diabetic islets was flat and reduced by 50 % at

24 mM glucose (Fig. 3c). Addition of a mitochon-
drial uncoupler, FCCP (5 μM), blocked insulin
release instantly and transiently increased OCR
in control and diabetic islets to the same level,
indicating that strong coupling exists between
islet respiration and oxidative phosphorylation in
both types of islets (Fig. 3c).

Oxygen consumption (VO2) of healthy and
type 2 diabetic human islets increased sigmoidally
as a function of a stepwise rise of glucose concen-
trations (Fig. 3d). In islets from type 2 diabetics,
the maximal stimulation of respiration (Vmax)
by glucose was reduced from 0.4 � 0.02 in
control to 0.32 � 0.01 nmol/min/100 islets,
and the S0.5 rose from 4.39 � 0.01 in control to
5.43 � 0.13 mM (Fig. 3d). Panel E of Fig. 3 pre-
sents changes in intracellular [Ca2+]i of human
islets. 3 mM glucose caused a transient and
9 mM glucose a biphasic sustained increase in
[Ca2+]i. of control islets. Diabetic islets responded
only to 9 mM and this response was delayed and
significantly lower than in controls.

Together, these data indicate that impaired
pancreatic islet beta-cell bioenergetics resulting
in reduced ATP production is critical in the
molecular pathogenesis of type 2 diabetes.
Importantly, the glucokinase activator piragliatin
was able to correct the defect of respiration and
GSIS (Doliba et al. 2012). In our second exper-
iment, the glucolipotoxicity, which is a hallmark
of type 2 diabetes, was mimicked in vitro by
culturing the islets for 3 or 5 days with 0.5 mM
palmitic acid or a mixture of palmitic and oleic
acid at 1 % albumin and different concentrations
of glucose: 10, 16, and 25 (Doliba et al. 2015).
We found that chronic exposure of mouse islets
to FAwith a glucose leads to bioenergetic failure,
as evidenced by decreased OCR and reduced
insulin secretion upon stimulation with glucose
or amino acids. These changes were associated
with reduced islet ATP levels, impaired glucose-
induced ATP rise, a trend for reduced mitochon-
drial DNA, and reduced expression of mitochon-
drial transcription factor A (Tfam). We also
discovered accumulation of carnitine esters of
hydroxylated long-chain FA (Doliba
et al. 2015) that have been shown to uncouple
the heart and brain mitochondria (Tonin
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Fig. 3 Impaired insulin release (A and B), oxygen
consumption (C and D ), and intracellular calcium (E) of
isolated islets from control and type 2 diabetic organ
donors. Panel A: shows the insulin release patterns with
glucose stimulation using stepwise increases of glucose
from zero to 3, 6, 12, and 24 mM. Panel B: magnified
view of selected section (85–190 min) of the experiment
presented in A to show the loss of the first phase of insulin
release in type 2 diabetic islets. Panel C: islet respiration
during stepwise of glucose concentration followed by
treatment with 5 μM of the uncoupler of Ox/Phos FCCP

and 1 mMNa-azide. O2 consumption was determined with
a method based on phosphorescence quenching of
metalloporphyrins by oxygen (Doliba et al. 2006). Panel
D: oxygen consumption rate as function of glucose con-
centration. Panel E: represents corresponding changes in
intracellular Ca2+ of human islets due to stepwise increases
of glucose from zero to 1, 3, and 9 mM. The Fura-2 method
was employed. Typical experiments are presented (n of the
series = 3). Hb A1c levels for the pancreas donors with
T2DM were 9.3, 11.0, and 7.4 %. Results are presented as
means � SE (SE when applicable) of three experiments
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et al. 2010, 2013).We propose that mitochondrial
accumulation of unsaturated hydroxylated long-
chain FA uncouples and ultimately inhibits pan-
creatic islet beta-cell respiration and that this
effect of the toxic FA metabolite causes a slow
deterioration of mitochondrial function,
progressing to bioenergetic failure as the main
cause of impaired insulin secretion and reduced
beta-cell mass, both hallmarks of type 2 diabetes.

6 Effects of Fatty Acids in Humans

FAs play an important role in the regulation of
pancreatic beta-cell function in humans
(McGarry 2002). In the fasting state, free FAs
sustain basal insulin secretion and assume effi-
cient nutrient-stimulated insulin secretion when
the fast is terminated. Elevated plasma FFA
levels have been reported to play an important
role in maintaining chronic hyperinsulinemia in
insulin-resistant obese subjects, and removal of
this FFA stimulus by overnight reduction of
plasma FFAs with nicotinic acid impairs
glucose-induced insulin secretion (Dobbins
et al. 1998). Despite the evidence from in vivo
studies, the effects of prolonged elevation of FFA
on insulin secretion in humans remain controver-
sial. Boden and colleagues demonstrated that
48-h elevation of plasma FFA potentiated GSIS
in healthy subjects at glucose levels clamped at
8.6 mM (Boden et al. 1995) but insulin secretion
was defective in type 2 diabetic patients (Boden
and Chen 1999). In contrast, Carpentier
et al. (1999) have shown that acute enhancement
of insulin secretion by FA in healthy humans is
lost with prolonged FA elevation. This loss of
insulin secretion was specific to glucose and the
response to arginine was normal (Carpentier
et al. 2001). Interestingly, obese but not diabetic
subjects are more susceptible to the inhibitory
effect of lipids on GSIS (Carpentier et al. 2000).
Kashyap et al. (2003) have examined insulin
secretion and insulin action during a 4-day lipid
infusion in nondiabetic subjects with and without
a family history of type 2 diabetes. The most
striking finding is that a 4-day intralipid infusion
enhances insulin secretion in control subjects but

inhibits GSIS in individuals with family history
of type 2 diabetes (Kashyap et al. 2003). These
data suggest that in subjects with a high risk of
developing type 2 diabetes, beta-cell lipotoxicity
may play an important role in the progression
from normal glucose tolerance to overt hypergly-
cemia. Of note, a reduction in plasma FFA con-
centration with the antilipolytic agent acipimox
enhanced first-phase insulin secretion in
nondiabetic patients with a family history of
type 2 diabetes (Paolisso et al. 1998).

Recently a new strategy was applied to study
the functional impairment of human pancreatic
islets (Rosengren et al. 2012). The goal of this
approach was to calculate a genetic risk score for
islet dysfunction leading to type 2 diabetes that
involved impaired insulin exocytosis, decreased
docking of insulin-containing secretory granules,
and reduced insulin secretion (Rosengren
et al. 2012). Such calculations were based on
correlation analysis of function and genotype of
human islets obtained from diabetic and
nondiabetic donors. Rosengren et al. (2012) ana-
lyzed a panel of 14 gene variants robustly associ-
ated with type 2 diabetes susceptibility. This work
resulted in the identification of four genetic vari-
ants that confer reduced beta-cell exocytosis and
six variants that interfere with insulin granule
distribution. It is of interest that this study showed
that the negative impact of type 2 diabetes loci on
beta-cell function was evident in islets from
nonobese individuals. This suggests that the func-
tional effects of the type 2 diabetes-associated
SNPs may be more pronounced in lean than in
obese individual. It may seem counterintuitive
that obese individuals with type 2 diabetes exhibit
greater insulin secretion than their lean counter-
parts. This may reflect an adaptation, albeit insuf-
ficient to prevent diabetes, in the obese donors. In
addition, the lean donors who developed diabetes
were likely to be those with the lowest insulin
secretory capacity. These data suggest that there
may be considerable heterogeneity in the cellular
pathways that lead to reduced insulin secretion,
which may explain why the reduction of exocyto-
sis is evident only in genetic subgroups and not in
the entire type 2 diabetes cohort (Rosengren
et al. 2012).
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7 Conclusions

To conclude, based on the existing literature, it is
clear that excessive glucose and FAs levels have
time-dependent deteriorating effects on pancreatic
beta-cell pathophysiology in diabetes. These
effects are different at the various stages of beta-
cell dysfunction during the course of type 2 diabe-
tes. When insulin resistance develops, for
instance, as a result of obesity, the beta-cells
mount a compensatory response that increases
beta-cell mass, insulin biosynthesis, and insulin
secretion. The magnitude of the compensatory
beta-cell response is genetically determined
(Kashyap et al. 2003; Rosengren et al. 2012;
Fadista et al. 2014), and this is a major determi-
nant of the long-term ability of an individual to
maintain glucose homeostasis in the face of insu-
lin resistance. In genetically predisposed individ-
uals, pancreatic beta-cell compensation
eventually becomes insufficient to sustain a secre-
tory response that matches the high demand
imposed by insulin resistance.

The failure of beta-cells to compensate for
insulin resistance is a major component of
impaired glucose homeostasis and overt diabe-
tes. This defect is the consequence of a decline of
insulin response to glucose due to functional
beta-cell deficiency. It is also the consequence
of an inability of the endocrine pancreas to adapt
the beta-cell mass which eventually leads to a
decrease in functional beta-cells. This idea has
resulted in considerable attention being paid to
the development of new therapeutic strategies
aimed toward preserving or regenerating func-
tional beta-cell mass (Karaca et al. 2009). GLP-1
enhances beta-cell survival by activating beta-
cell proliferation and differentiation and
inhibiting beta-cell apoptosis and thus contrib-
uting to the long-term regulation of insulin
secretion by maintaining a functional beta-cell
mass. It should be pointed out that any interven-
tion to improve insulin secretion should start
early in the disease when the endogenous insulin
secretion and presumably the number of func-
tional beta-cells have not decreased excessively
(Grill and Bjorklund 2002; Karvestedt
et al. 2002).
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Abstract
Obesity is pandemic in population worldwide
over the past decades, largely owing to
overnutrition. Excess energy stores in the adi-
pose tissue and other organs as lipids, promot-
ing lipotoxicity and metabolic inflammation,
activating intracellular protein kinases to
impair insulin signaling components, and
resulting in insulin resistance. Insulin resis-
tance is the key etiologic defect that defines
“metabolic syndrome,” a group of interrelated
disorders, including obesity, hyperglycemia,
dyslipidemia, and hypertension. Following
insulin resistance, many of patients with the
metabolic syndrome eventually developed
pancreatic β-cell failure, which triggers the
onset of type 2 diabetes mellitus (T2DM)
and its complications. Cell- and animal-
based studies demonstrate that insulin and its
signaling cascades normally control cell
growth, metabolism, and survival through
activation of mitogen-activated protein
kinases (MAPKs) and phosphatidylinositol-
3-kinase (PI3K), of which activation of PI3K
associated with insulin receptor substrates
1 and 2 (IRS1, IRS2) and subsequent
Akt!Foxo1 phosphorylation cascade have a
central role in control of nutrient homeostasis
and organ survival. Inactivation of Akt and
activation of Foxo1, through suppression
IRS1 and IRS2 in a variety of organs follow-
ing overnutrition, lipotoxicity, and inflamma-
tion, may form a fundamental mechanism for
insulin resistance in humans. This chapter dis-
cusses the basis of insulin signaling and resis-
tance and how excess nutrients and lipid
signaling from obesity promote inflammation
and insulin resistance promoting organ fail-
ure, with emphasis on the IRS and the
forkhead/winged-helix transcription factor
Foxo1.

Keywords
Insulin resistance • Obesity • Lipotoxicity •
Inflammation • Insulin receptor substrates
1 and 2 (IRS1, IRS2) • Forkhead/winged-
helix transcription factor Foxo1
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1 Introduction

The prevalence of obesity has globally increased
over the past decades. Currently, at least 10 % of
the world’s population and two-thirds American
are obese or overweight, significantly contribut-
ing to the prevalence of type 2 diabetes mellitus
(T2DM) (Eckel et al. 2005; Roger et al. 2011). An
estimated 366 million people around the world
had diabetes in 2011, and nearly 80 % of the
patients are obese (Whiting et al. 2011). Thus,
obesity and associated diseases have become crit-
ical healthcare problems worldwide (Finucane
et al. 2011; Haslam and James 2005).

Obesity is a problem because it is a major
driver for insulin resistance, the key underlying
mechanism for a common metabolic disorder –
the “metabolic syndrome,” formerly known as
“insulin resistance syndrome” (Reaven 1988;
Moller and Kaufman 2005). The features of met-
abolic syndrome include obesity, hyperglycemia,

dyslipidemia, hyperinsulinemia, and hyperten-
sion (Eckel et al. 2005). Following the insulin
resistance, many patients eventually develop
pancreatic β-cell failure, which triggers the
onset of T2DM and develops diabetes complica-
tions including cardiovascular disorders, fatty
liver, infertility, renal failure, neuropathy, reti-
nopathy, and certain cancers, resulting in high
morbidity and mortality rates (Eckel et al.
2005). Owing to an imbalance between intake
and expenditure of energy, energy excessively
stores in the adipose tissue as lipids during obe-
sity development. The genetic factors, such as
mutations in leptin and melanocortin receptor 4
(MCR4) genes (Allison and Myers 2014;
Spiegelman and Flier 2001), can result in over-
eating and obesity, but the environmental and
behavior factors, such as food availability and
physical inactivity, are now believed to be
major contributors to the epidemic of obesity
(Eckel et al. 2005) (Fig. 1).

Obesity

(Food availability etc.)

Over nutrition
(Excess glucose, fatty acids, amino acids)

Insulin resistance

Neuropathy  

Nephropathy

Cardiomyopathy

Infertility 

Type 2 Diabetes

Atherosclerosis

Thrombosis

Genetic factorsEnvironmental factors
(Physical activity etc.)

Retinopathy

Fatty liver 

Excess energy stores in fat & 
other organs as lipids

Cancer  

(Leptin, Mcr4 etc.)
Behavioral factors

Hypertension

Dyslipidemia

Hyperphagia

Suppression of IRS1, 2 & 
associated PI3K activity 

Maintained or increased 
MAPK activity

Insulin 
responsive 

organs

Fig. 1 Over nutrition-
driven obesity plays a
central role in induction of
insulin resistance, liking to
a number of diseases,
including systemic
diseases, such as type
2 diabetes, dyslipidemia,
thrombosis, hypertension,
atherosclerosis, infertility,
and cancer, as well as
special organismal diseases,
such as fatty liver,
nephropathy, retinopathy,
nephropathy, and
cardiomyopathy. Insulin
resistance in tissues are
associated with a selective
PI3K inactivation and
MAPK activation, which is
tightly controlled by IRS1,2
suppression. MC4R
melanocortin receptor
4, IRS1, 2 insulin receptor
substrate 1, 2, PI3K
phosphatidylinositol-3-
kinase, MAPK mitogen-
activated protein kinases
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Currently, obesity is accepted as a chronic
inflammatory state, in which lipid accumulation
in adipose tissue initiates inflammation and insu-
lin resistance (Johnson and Olefsky 2013). More-
over, ectopic lipid accumulation in non-adipose
tissues, such as the pancreas, the liver, muscles,
and vessels, also triggers intracellular protein
kinases, synthesis and secretion of cytokines/hor-
mones, and induction of cellular damage and
inflammation, hence impairing insulin signaling
cascades to promote failure of many organs
(Fig. 2). This chapter will focus on how excess
lipid and signaling during obesity trigger

lipotoxicity and inflammation to promote insulin
resistance and associated diseases.

2 Insulin and Insulin Signaling:
The Molecular Basis

Insulin is the most important hormone controlling
nutrient homeostasis and growth in the body. Dur-
ing the postprandial state, insulin is secreted from
the pancreatic β cells lowering blood glucose con-
centration and promoting anabolic processes and
survival in a variety of target tissues. Insulin
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AGT
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Estrogen
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Inflammation
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Fig. 2 Excess nutrient storage in adipose tissue promotes
spillover of excess free fatty acids into the bloodstream and
enhances adipocytes’ metabolic activity for synthesis and
secretion of adipokines and hormones, triggering lipid

toxicity and metabolic inflammation in adipose tissue itself
and other organs. FFA free fatty acids, CCL2 chemokine
C-C motif ligand 2, PAI plasminogen activator inhbitor-1,
AGT angiotensinogen
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stimulates glucose oxidation and influx into the
muscle and fat, glycogen and protein synthesis in
the muscle and liver, and lipid synthesis and stor-
age in the liver and fat, while insulin inhibits fatty
acid oxidation, glycogenolysis, gluconeogenesis,
apoptosis, and autophagy in target tissues. During
the fasting state, insulin secretion decreases so
that tissues coordinate with counter-regulatory
hormones, such as glucagon, favoring fatty acid
oxidation and glycogenolysis and gluconeogene-
sis for supply of cellular ATP and maintenance of
glucose homeostasis. The substrate preferences
for metabolic adaptation, during the transit from
postprandial state to fasting, are tightly controlled
by the pancreatic hormones insulin and glucagon
(Randle et al. 1963). This adaptive transition is
dominantly controlled by insulin, which is
blunted in the target tissues during insulin resis-
tance preceding the development of type 2 diabe-
tes (Johnson and Olefsky 2013).

The actions of insulin are mediated by insulin
signaling cascades. The most important compo-
nents in the insulin signaling cascades have been
identified over the past decades, including the
insulin receptor (IR), insulin receptor substrate
proteins (IRS), PI3-K, Akt, and the forkhead/
winged-helix transcription factor Foxo1 (Kasuga
et al. 1983; White et al. 1985; Guo et al. 1999,
2009; Guo 2014a, b).

2.1 Insulin Receptor and Insulin
Receptor Substrates 1 and 2

Insulin signaling is triggered by insulin binding to
the α-subunit of insulin receptor on the cell mem-
brane, resulting in dimerization to the β-subunit of
the receptor and forming the α2β2 complex and
subsequent autophosphorylation of a number of
tyrosine residues in the β-subunit of the insulin
receptor. The insulin receptor, a protein tyrosine
kinase, is then activated and recruits and phos-
phorylates several downstream substrates, includ-
ing IRS1-4, Shc, Grb2-associated protein (Gab1),
Dock1, Cbl, and APS adaptor proteins, all of
which provide specific docking sites for recruiting
further downstream signaling proteins, leading to

activation of both Ras!MAP kinases and
PI-3K!Akt signaling cascades (White 2003).

Activation of Ras!MAP kinases mediates the
effect of insulin on mitogenesis and cellular
growth; however, activation of PI3K generates
phosphatidylinositol (3,4,5)-triphosphate (PIP3),
a second messenger activating 3-phosphoi-
nositide-dependent protein kinases 1 and
2 (PDK1 and PDK2), which mediate the effect
of insulin on metabolism and pro-survival. PDK1
and PDK2, in turn, activate protein serine/threo-
nine kinase Akt, formerly known as protein kinase
B (PKB), by inducing phosphorylation at T308 and
S473, respectively. Both PDK1 and PDK2 are
crucial for Akt activation for survival and meta-
bolic regulation (Fig. 3).

2.2 PDK1 and TORC2 (PDK2)!
Akt!TORC1 Signaling
Cascades

PDK1 phosphorylates the T308 of Akt, resulting in
Akt activation and a profound effect on cellular
survival and metabolism (Dong and Liu 2005).
PDK2 is recognized as mTORC2 that interacts
with rictor adaptor protein phosphorylating S473

of Akt, which is required for Akt full activation
(Sarbassov et al. 2006). mTOR (mammalian tar-
get of rapamycin), including two distinct com-
plexes called complex 1 (mTORC1) and
complex 2 (mTORC2), is a highly conserved pro-
tein kinase that controls cell growth and metabo-
lism in response to nutrients, growth factors, and
energy status (Sengupta et al. 2010).

mTORC1 is rapamycin-sensitive raptor-
mTOR and activated by RhebGTPase, via sup-
pression of tuberous sclerosis protein 2 (TSC2)
following Akt activation (Sengupta et al. 2010).
mTROC1 is distinct from mTORC2 and is
not required for hepatic gluconeogenesis
(Li et al. 2010); it has substrates ribosomal protein
S6 kinase (S6K) and eukaryotic initiation factor
4E-binding protein (4E-BP), both of which con-
trol protein synthesis; it also promotes lipogenesis
via phosphorylating a phosphatidic acid phospha-
tase lipin 1, and nuclear translocation of lipin
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Fig. 3 IRS1, 2-centered mechanisms for insulin resistance
in obesity. Insulin signaling cascade and interaction with
intracellular signaling components from nutrients and
cytokines in control of cellular metabolism, including syn-
thesis of glucose, glycogen, lipids and proteins, as well as
other biological responses, such as autophagy, apoptosis,
mitochondrial biogenesis, food intake, anti-oxidant, cal-
cium handling, bone growth, vascular dilation, and hyper-
tension. Abbreviation: IR insulin receptor, IRS insulin
receptor substrate, PI3K phosphatidylinositol (PI)-3-
kinase, PDK phosphoinositide-dependent protein kinase,
CREB cAMP response element binding protein, CBP
CREB binding protein, CRTC2 CREB regulated
co-factor 2, SIK2 salt-induced protein kinase 2, Foxo1

forkhead/winged helix transcription factor O-class mem-
ber 1, JNK c-Jun terminal end protein kinase, DAG diacyl-
glycerol, SREBP1 sterol response element binding protein
1, Insig2 insulin induced gene 2, S6K ribosome protein p70
S6 kinase,GSK3 glycogen synthase kinase-3,GS glycogen
synthase, mTORC mammalian target of rapamycin com-
plex, TSC1/2 tuberous sclerosis complex 1/2, aPKC atyp-
ical protein kinase C, AS160 Akt substrate 160kD protein,
PDK4 pyruvate dehydrogenase kinase-4, ACC acetyl-CoA
carboxylase, PEPCK phosphoenolpyruvate
carboxykinase, G-6-Pase glucose-6-phosphatase, FAS
fatty acid synthase, MnSOD manganese superoxide
dismutase, TLR toll-like receptor, FFA free fatty acids,
ChREBP carbohydrate responsive element binding
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1 stimulates sterol regulatory element-binding
protein 1 (SREBP1) gene expression and lipogen-
esis (Li et al. 2010; Peterson et al. 2011; Owen
et al. 2012); additionally, it is also activated by
nutrients, such as amino acids, suppressing cellu-
lar autophagy. Autophagy is a basic catabolic
mechanism that involves cell degradation of
unnecessary or dysfunctional cellular components
through lysosomal machinery and expression of a
number of autophagy genes (Klionsky 2007). The
breakdown of cellular components ensures cellu-
lar survival during starvation by maintaining cel-
lular energy levels (Liu et al. 2009a). Thus,
mTORC1 serves as a sensor and mediator for the
action of both hormones and nutrients in cells.

mTROC2 phosphorylates and activates Akt
and other protein kinases, such as PKC, control-
ling cell survival and energy homeostasis
(Sarbassov et al. 2006; Hagiwara et al. 2012).
mTROC2, through Akt, promotes expression
and activation of the SREBP1 that promote lipid
and cholesterol synthesis (Yecies et al. 2011).
Moreover, mTORC2 (PDK2) and PDK1 suppress
the forkhead transcription factor Foxo1 that pro-
motes gluconeogenesis, mediating the effect of
insulin on suppressing hepatic glucose production
(Hagiwara et al. 2012) (Fig. 3).

2.3 Targets of Akt in Metabolic
Control

Akt phosphorylates a number of downstream tar-
gets, including inhibitors of macromolecular syn-
thesis as follows:

1. It phosphorylates and inhibits glycogen
synthase kinase-3β (Gsk3β), which in turn

dephosphorylates and activates glycogen
synthase (GS) promoting glycogen synthesis.

2. It inhibits TSC2, thereby activating Rheb, a
small GTPase, for mTORC1 and S6K activa-
tion that stimulate protein synthesis (Inoki
et al. 2002).

3. It phosphorylates AS160 for Rab10GTPase
activation and Glut4 translocation for glucose
transport.

4. It phosphorylates Bad for inhibition of
apoptosis.

5. It phosphorylates phosphodiesterase 3B
(PDE3B) for induction of cAMP degradation.

6. It phosphorylates salt-induced kinase 2 (SIK2)
that inhibits gluconeogenesis, by suppressing
cAMP response element-binding protein
(CREB)-regulated transcription coactivator
2 (CRTC2), a CREB coactivator that increases
hepatic gluconeogenesis (Wang et al. 2010).

7. Akt regulates metabolism and survival by con-
trolling expression of a number of genes
through transcription factors, such as
SREBP1c and Foxo1.

Akt phosphorylates and stimulates SREBP1c,
promoting lipogenetic gene expression through
suppression of insig2, a protein of the endoplas-
mic reticulum that blocks processing of SREBP1c
activation, by binding to SCAP (SREBP
cleavage-activating protein) and preventing it
from escorting SREBPs to the Golgi (Yabe
et al. 2002). By contrast, Akt phosphorylates
Foxo1 at S256 and inhibits Foxo1 transcriptional
activity, suppressing hepatic glucose production
in the liver and promoting cell survival in the heart
(Guo et al. 1999; Zhang et al. 2012; Matsumoto
et al. 2007; Hannenhalli et al. 2006; Battiprolu
et al. 2012; Evans-Anderson et al. 2008). Many

���

Fig. 3 (continued) protein, AMPK AMP-dependent pro-
tein kinase, pY phosphorylated tyrosine, TNFa tumor
necrosis factor a, pS/T phosphorylated serine or threonine,
Pomc pro-opiomelanocortin, Agrp Agouti-related peptide,
Serca2A sarco/endoplasmic reticulum Ca2+-ATPase,
PGC1a peroxisome proliferator-activated receptor
gamma coactivator 1-alpha, Homx-1 heme oxygenase
1, ATG8 autophagy regulated gene 8, LC3 microtubule-

associated protein 1A/1B-light chain 3, eNOS endothelial
nitric oxide synthase, Glut glucose transporter, AGT
Angiotensinogen, AngIIAngiotensin II. Adapted andmod-
ified from Guo S: Insulin signaling, resistance, and the
metabolic syndrome: Insights from mouse models into
disease mechanisms. J Endocrinology 2014; 220:T1–T23
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of these phosphorylation events are indicators of
insulin signaling, and Akt!Foxo1 phosphoryla-
tions serve as powerful indicators for insulin sen-
sitivity on metabolic regulation (Guo et al. 2006,
2009; Gonzalez et al. 2011; Qi et al. 2013)
(Fig. 3).

2.4 The Forkhead Transcription
Factor Foxo1

Foxo1, a member of the O-class of forkhead/
winged-helix transcription factors (Foxo), was
first identified as an Akt substrate in insulin sig-
naling (Guo et al. 1999; Rena et al. 1999). Insulin
suppresses gene expression, such as insulin-like
growth factor-binding protein-1 (IGFBP-1),
through a conserved insulin response element
(IRE: CAAAACAA), located on the target gene
promoter region (Guo et al. 1999). A similar
sequence is present in the promoter regions of a
number of genes, including phosphoenolpyruvate
carboxykinase (Pepck) and glucose-6-phospha-
tase (G6pc), two rate-limiting enzymes for gluco-
neogenesis in hepatocytes (Schmoll et al. 2000;
Yeagley et al. 2001). Mice lacking hepatic Foxo1
exhibited lower level of hepatic glucose produc-
tion and blood glucose (Zhang et al. 2012;
Matsumoto et al. 2007). Thus, Foxo1 has been
identified as a trans-acting factor for the cis-acting
element IRE, serving as an endogenous mediator
for insulin suppression on gluconeogenesis and
hepatic glucose production (Guo et al. 1999;
Zhang et al. 2012).

Foxo1 has three Akt phosphorylation sites at
T24, S256, and S319 (Rena et al. 1999), which are
phosphorylated and inhibited by insulin in a
PI3K-dependent manner (Rena et al. 1999). Phos-
phorylation of these residues by PI3K/Akt activa-
tion promotes Foxo1 nuclear export and
cytoplasmic accumulation and interaction with
Skp2, a subunit of the Skip1/Cul1/-F-box protein,
promoting Foxo1 ubiquitination and degradation
and hence impairing Foxo1-mediated gene tran-
scription (Matsuzaki et al. 2003; Rena et al. 2001;
Huang et al. 2005). This provides a molecular link
by which insulin integrates cell surface insulin
receptor signaling into the nuclear gene

transcriptional programming via Foxo1, targeting
a number of genes in control a variety of
physiological functions, such as hepatic glucose
production and cell apoptosis (Guo et al. 1999)
(Fig. 3).

Other members of O-class of forkhead family
include Foxo3, Foxo4, and Foxo6, sharing the
conserved Akt phosphorylation motif RXRXXS/
T (R, arginine; X, any amino acid; and S/T, Akt
phosphorylation site of serine or threonine) (Guo
2014b). Foxo1 null mice exhibited incompletion
of embryonic angiogenesis and embryonic lethal-
ity. Foxo3 or Foxo4 knockout mice survived
beyond parturition (Hosaka et al. 2004). Thus,
each of Foxo members has distinct roles in regu-
lating physiological functions, the mechanisms of
which are incompletely understood. Regardless,
inhibiting Foxo transcription factors may mediate
many effects of insulin on metabolism and
survival control (Fig. 3).

3 Insulin Resistance: Molecular
Mechanisms

3.1 Suppression of IRS
and Associated PI3K
Inactivation in Metabolism
and Survival Control During
Insulin Resistance

Insulin resistance is defined as an impaired
response to the physiological effect of insulin,
including glucose, lipid, and protein metabolism.
A breakthrough discovery achieved recently is
that IRS1 and IRS2 are tightly associated with
PI3K and Akt activation and minimally with
MAP kinase activity. Deficiency of IRS1 and
IRS2 causes selective PI3K inactivation but sus-
tains MAP kinase activation. Liver-specific inac-
tivation of IRS1 and IRS2 genes in mice (L-DKO
mice) promotes hyperglycemia and T2DM, while
heart-specific inactivation of IRS1 and IRS2 in
mice (H-DKO mice) promotes heart failure and
animal death (Guo et al. 2009; Qi et al. 2013;
Dong et al. 2008). These studies underscore the
roles of IRS1 and IRS2 in control of endogenous
PI3K and Akt activities, governing energy
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metabolism and organ survival. The biased or
selective PI3K inactivation and MAPK activation
are also observed in tissues of animals with insulin
resistance and T2DM (Jiang et al. 1999). Thus, the
IRS signaling couples to PI3K/Akt activation,
providing a fundamental mechanism for insulin
signaling in control of metabolism and survival.
However, a resistance to this branch of insulin
signaling has crucial roles in disease development
and eventually organ failure. In support of this
concept, mice lacking either PI3K catalytic
subunit or Akt2 exhibited insulin resistance and
type 2 diabetes (Brachmann et al. 2005), while
mice lacking Gab1, which is an ERK activator,
enhanced insulin sensitivity with elevated hepatic
Akt activity (Bard-Chapeau et al. 2005).

3.2 Central Roles of Foxo1
Activation Following PI3K!Akt
Inactivation in Insulin
Resistance

Upon PI3K inactivation during insulin resistance,
many PI3K downstream targets are not under
control. A failure of Akt activation promotes met-
abolic dysfunction and disease development when
PI3K activity is lost. Several lines of evidence
demonstrated that PI3K or Akt inactivation causes
diabetes, organ failure, or animal death. Inactiva-
tion of PI3K, PDK1, mTORC2, or both Akt1 and
Akt2 in mouse liver is sufficient for induction of
hyperglycemia, hyperinsulinemia, and
hypolipidemia (Hagiwara et al. 2012; Mora
et al. 2005; Miyake et al. 2002; Lu et al. 2012),
and mutation in Akt2 gene has been found in
patients with T2DM (George et al. 2004).

Upon Akt inactivation following PI3K inacti-
vation, a failure to suppress Foxo1 or Foxo1 acti-
vation may have a central role in disease
development and organ failure. Foxo1 is
suppressed by insulin through Akt-activated ser-
ine/threonine phosphorylation, while Akt inacti-
vation promotes Foxo1 stability and functionality
during insulin resistance and T2DM. Liver-
specific Foxo1 deletion in mice with T2DM,
such as db/db mice, prevented diabetes and mito-
chondrial dysfunction, and heart-specific Foxo1

deletion in db/db mice prevented cardiac dysfunc-
tion (Zhang et al. 2012; Battiprolu et al. 2012; Lu
et al. 2012; Qi et al. 2015). By contrast,
overexpression of a constitutively active form of
Foxo1 where the three Akt phosphorylation sites
were mutated to alanine blocking insulin suppres-
sion, in the liver caused insulin resistance and in
the heart resulted in embryonic heart failure in
mice, respectively (Evans-Anderson et al. 2008;
Zhang et al. 2002). Collectively, these data sug-
gest that Foxo1 activation is sufficient and neces-
sary for induction of insulin resistance and organ
failure.

3.3 Foxo1 Promotes Hepatic
Glucose Production, Apoptosis,
Mitochondrial Degeneration,
and Inflammation During
Insulin Resistance

Foxo1 controls expression of a number of genes
that govern cellular metabolism and survival. First,
as mentioned above, Foxo1 promotes hepatic glu-
cose production via enhancing expression of genes
encoding gluconeogenic enzymes (Zhang
et al. 2006, 2012). Second, Foxo1 promotes cell
apoptosis by stimulating Bim gene expression, as
well as mediates the effect of TNFα on promotion
of cell death (Alikhani et al. 2005). Third, Foxo1
promotes mitochondrial degeneration. We recently
demonstrated that Foxo1 stimulates gene expres-
sion of hemeoxygenase-1 (Hmox-1), an enzyme
catalyzing degradation of heme to produce biliver-
din, iron, and carbon monoxide. Heme is a com-
ponent of the mitochondrial electron transport
chain complexes III and IV; hence, Foxo1 activa-
tion promotes heme degradation and then impairs
mitochondrial biosynthesis and function reducing
fatty acid oxidation andATP synthesis, as observed
in the liver db/db mice (Qi et al. 2013; Cheng
et al. 2009). Fourth, Foxo1 promotes gene expres-
sion of angiotensinogen, which is the precursor of
angiotensin II (AngII), a bioactive peptide that pro-
motes renin-angiotensin system elevating the
blood pressure (Qi et al. 2014). Recently, it is
shown that Foxo1 promotes toll-like receptor
4 (TLR4) gene expression accelerating the
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inflammatory response in microphages of the liver
(Fan et al. 2010) and stimulates expression of
chemokine ligand 20 (CCL20) in hepatocytes
inducing fatty liver (Miao et al. 2012).

4 A Unification of Insulin
Resistance at the IRS Level

Insulin resistance occurs at multiple levels in
cells, from the cell surface membrane to the
nucleus, including insulin receptor desensitiza-
tion, suppression of IRS protein and functionality,
inhibition of PI3K cascades, and failure to restrain
Foxo1-activated gene transcriptional profiling.
Given that PI3K!Akt signaling serves as a com-
mon platform for multiple hormone and growth
factor signaling cascades (Sussman et al. 2011),
IRS1 and IRS2 are recently identified as the major
mediators activating endogenous PI3K!Akt sig-
naling cascade (Guo et al. 2009; Qi et al. 2013).
Normal expression and functionality of IRS that
couples to PI3K and Akt signaling pathway are
essential for maintenance of nutrient homeostasis
and organ survival. Thus, understanding the
mechanisms that regulate IRS gene expression
and functionality would be a key to decipher the
mechanism of insulin resistance.

IRS proteins have about 20 tyrosine residues,
and tyrosine phosphorylation of these residues is
required for insulin signaling in activating PI3K
and Akt. On the other hand, IRS proteins also
have about 40 serine/threonine residues, and their
phosphorylation can suppress insulin signaling for
inactivation of PI3K/Akt, since IRS serine/threonine
phosphorylation links to IRS protein ubiquitination
and degradation. A number of intracellular protein
kinases, including p38α, JNK, mTOR, IKKβ, and
protein kinase Cθ (PKCθ), stimulate IRS serine/
threonine phosphorylation coupling with IRS deg-
radation and inhibiting IRS-associated PI3K/Akt
activity following overnutrition, such as high-fat
diet (HFD) feeding (Guo 2014b; Qi et al. 2013;
Copps and White 2012; Sun and Liu 2009). There-
fore, investigating how IRS gene expression is reg-
ulated by environmental factors provides us novel
insights into understanding the molecular mecha-
nism of insulin resistance (Fig. 3).

5 Etiology of Insulin Resistance
in Obesity

Insulin is the most important hormone controlling
glucose and lipid homeostasis in the body. In
adipose tissue, insulin promotes fat cell differen-
tiation, enhances adipocyte glucose uptake, but
inhibits lipolysis, a breakdown of lipid involving
hydrolysis of triglycerides into glycerol and free
fatty acids. Mice lacking insulin receptor or its
downstream protein kinase mTORC2 in adipo-
cytes exhibited hyperglycemia, hyperinsulinemia,
and a failure to suppress lipolysis in response to
insulin, resulting in hyperlipidemia, fatty liver,
and insulin resistance (Kumar et al. 2010; Bou-
cher and Kahn 2013). These data suggest that
when insulin action fails in the adipose tissue,
adipocyte development is retarded and free fatty
acids and carbohydrate unable to synthesize tri-
glycerides for storage, and then fatty acids spill
over into the blood circulation and infiltrate into
the liver and muscle, resulting in hyperlipidemia
and fatty organs. These studies significantly
underscore the contribution of insulin resistance
in the adipose tissue, via mTORC2!Akt
inactivation.

Apart from the energy storage, adipose tissue is
also a prolific endocrine organ that can secrete a
number of cytokines, called adipokines, such as
TNFα, IL6, leptin, angiotensinogen, and
adiponectin, influencing the whole body insulin
sensitivity. Upon the development of fat expan-
sion and obesity, excess adipokines and fatty acid
release into the bloodstream and infiltration of
adipokines and fatty acids into many individual
tissues triggering metabolic inflammation and
insulin resistance (Fig. 2).

5.1 Lipid Toxicity and Insulin
Resistance

Following overnutrition, excess energy intake
will likely exceed energy expenditure in the
body, resulting in excess energy storage in the
fat as lipids. The lipid and its signaling might be
the primary factors triggering cellular malfunction
to initiate insulin resistance in the adipose tissue
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first and extend to other tissues simultaneously.
The following evidence supports excess lipid and
signaling exert toxic functions in cells impairing
intracellular signaling to tackle the insulin action:

1. Excess lipid generates excess supply of ATP
and nicotinamide adenine dinucleotide
(NADH) through the fatty acid oxidation pro-
cess in the mitochondria, resulting in suppres-
sion of AMP-activated protein kinase (AMPK)
and Sirt1 that inhibit lipogenesis and lipid
accumulation in cells (Fig. 3). AMPK, an
energy sensor to energy deprivation, promotes
fatty acid oxidation. Sirt1, a NAD+-activated
protein deacetylase that is suppressed by
NADH, deacetylates a number of proteins
suppressing lipogenesis and increasing insulin
sensitivity (Li et al. 2011).

2. Excess NADH promotes mitochondrial oxida-
tive phosphorylation, enhancing generation of
reactive oxygen species (ROS). ROS promotes
oxidative stress and JNK-mediated NFҡ-B
activation that enhances PTP1B expression
antagonizing PI3K activity and promoting
cell death (Panzhinskiy et al. 2013). Thus,
both lipid and glucose toxicity can merge and
share similar mechanisms by activating oxida-
tive stress and cell damage from excess fuel
substrate and mitochondrial activity (Fig. 3).

3. Saturated fatty acids induce cell apoptosis and
suppress IRS signaling, resulting in Akt inac-
tivation. One mechanism of lipid-induced tox-
icity is through activating TNF-related
apoptosis-inducing ligand (TRAIL) and death
receptor signaling cascade, in which JNK is
required for induction of cell death (Malhi
et al. 2007; Cazanave et al. 2009; Idrissova
et al. 2014). Another mechanism of
lipotoxicity is through suppression of IRS pro-
tein and associated inactivation of PI3K and
Akt. An acute lipid infusion or chronic high-fat
diet induces insulin resistance in mice, via
activation of protein kinase C that attenuates
IRS signaling, limiting glucose oxidation and
utilization in target tissues (Griffin et al. 1999).
In hepatocytes and pancreatic β-cells, saturated
free fatty acid palmitate induces apoptosis by
activating JNK, PKC, and oxidative stress

(Malhi et al. 2006; Wrede et al. 2002; Wong
et al. 2009; Galbo et al. 2013). Lipid interme-
diate diacylglycerol (DAG) and ceramide are
potent activators for PKCθ and JNK, respec-
tively, inducing IRS serine/threonine phos-
phorylation and insulin resistance (Holzer
et al. 2011; Oh et al. 2010). Ceramide can
directly enhance protein phosphatase 2A activ-
ity that suppresses Akt activation resulting in
Foxo1 activation and induction of cell apopto-
sis (Yan et al. 2008). Clinically, lipid accumu-
lation in hepatocytes or fatty liver is a high risk
factor not only for insulin resistance but also
for nonalcoholic steatohepatitis (NASH),
fibrosis, cirrhosis, and liver cancer (Kumashiro
et al. 2011).

5.2 Chronic Inflammation
and Insulin Resistance

A current prevailing concept on lipotoxicity is
that excess saturated fatty acids trigger chronic
inflammation, and obesity is regarded as
low-grade and chronic inflammation state and
promotes insulin resistance (Samuel and
Shulman 2012). Lipid accumulation excessively
in the fat or ectopically in the liver, muscle, heart,
and blood vessels can trigger tissue inflammatory
responses. Recent evidence demonstrated that
saturated fatty acids bind to a liver-secreted gly-
coprotein fetuin A that interacts and activates
toll-like receptor 4 (TLR4), resulting in NFҡB
activation (Pal et al. 2012), JNK activation in
microphages, and insulin resistance by inducing
PTP-1B (Panzhinskiy et al. 2013; Holzer
et al. 2011). Recruitment of macrophages and
other immune cells, including M1 microphages
that promote inflammation and neutrophil, CD8+

killer T cells, and B cells, is increased in the
adipose tissue and liver of HFD and ob/ob
mice, while that of anti-inflammatory M2 micro-
phages reduced (Glass and Olefsky 2012). By
contrast, unsaturated fatty acids do not inhibit
insulin sensitivity by interacting with the
G-protein-coupled receptor GRP120, thereby
inhibiting cellular inflammation and increasing
insulin sensitivity (Ichimura et al. 2012).
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Apart from that saturated fatty acids inhibit
IRS signaling and PI3K/Akt activation, the
recruitment of microphages and immune cells in
tissues promotes the generation of cytokines that
also suppress the IRS-associated PI3K/Akt signal-
ing. Fat expansion in obesity promotes synthesis
and secretion of adipokines in adipocytes,
disrupting a proper balance of adipokine genera-
tion and promoting inflammation (Fig. 2). In
obese conditions, pro-inflammatory factors, such
as TNFα, IL-6, angiotensinogen, and leptin, are
markedly increased (Hotamisligil and Erbay
2008; Yiannikouris et al. 2012), while the anti-
inflammatory factor adiponectin is reduced
(Romeo et al. 2012). Adiponectin, which is
expressed specifically in adipocytes and its
expression suppressed by TNFα, enhances insulin
sensitivity by stimulating IRS1 and IRS2 binding
to the insulin receptor, via intracellular adaptor
protein APPL1 (Ryu et al. 2014). In addition to
reducing gene expression of adiponectin, TNFα
also activates JNK, resulting in IRS degradation
and insulin resistance (Gao et al. 2002; Zhang
et al. 2008a). Moreover, overexpression of
IKKβ, a key mediator of TNFα, in mouse liver,
is sufficient for suppressing IRS and inducing
insulin resistance and type 2 diabetes (Cai
et al. 2005). Accordingly, suppression of inflam-
mation increases insulin sensitivity and improves
metabolic dysfunction in T2DM (Hotamisligil
et al. 1996).

However, the outcome of anti-inflammatory
therapy in treating insulin resistance so far has
been a challenge, and several concerns deserve a
cautionary note:

1. Inflammation is involved in deploying and
mobilizing immune cell leukocytes to defend
against infections or toxins. Many inflamma-
tory actors, such as TNFα, reduce body weight
and increase energy expenditure (Ye and
McGuinness 2013). Overexpression of IL6, in
the liver, increased energy expenditure and
insulin sensitivity in mice (Sadagurski
et al. 2010).

2. During some physiological conditions such as
exercise, inflammatory factors including TNFα
and IL6 are secreted inhibiting anabolic

metabolism (insulin action) and promoting cat-
abolic metabolism (fat lipolysis) to meet fuel
requirements, such as muscular contractility.

3. NFҡB is essential for hepatocyte proliferation
and survival. Mice lacking the p65 subunit of
NFҡB died of liver failure (Malato et al. 2012).
Taken together, a balance between inflamma-
tion and anti-inflammation is required for
proper insulin actions and nutrient homeosta-
sis. Thus, correcting the imbalance of nutrients
and inflammation may provide opportunities
and challenges for prevention and treatment
of insulin resistance, obesity, and T2DM.

5.3 Hyperinsulinemia and Insulin
Resistance

Obesity is associated with abnormal hormone
secretions, one of which is hyperinsulinemia
occurring along with the development of obesity.
It is likely that excess energy storage impairs
insulin signaling gradually in the peripheral tis-
sues, such as the fat, liver, and muscle, promoting
pancreatic β-cells to increase insulin secretion and
capacity to counteract the elevation of blood glu-
cose. Therefore, hyperinsulinemia takes place
preceding the onset of diabetes. Obese mice fed
with HDF developed hyperinsulinemia prior to
development of hyperglycemia with significant
decreases in IRS2 protein expression in many
tissues, including the liver and heart
(Qi et al. 2013). Thus, hyperinsulinemia can
have profound effects on inducing insulin resis-
tance following obesity.

Chronic insulin treatment inhibits IRS2 gene
transcription and promotes IRS2 ubiquitination in
cells, including fibroblasts and hepatocytes (Guo
et al. 2006; Zhang et al. 2001; Rui et al. 2001).
mTORC1 activation following insulin stimulation
is a pathway that can result in IRS2 ubiquitination,
and mTORC1 inhibitor rapamycin completely
prevented insulin or IGF-1-induced IRS2 degra-
dation (Guo et al. 2006; Rui et al. 2001). Further-
more, deletion of mTORC1 downstream protein
kinase S6K increased IRS1 and IRS2 gene expres-
sions, improved insulin sensitivity, and prevented
age- or diet-induced obesity in mice
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(Um et al. 2004). Conversely, deletion of
mTORC2 in mouse liver resulted in a diabetic
phenotype, similar to the L-DKO mice (Guo
et al. 2009; Hagiwara et al. 2012).

Prolonged insulin treatment also activates
intracellular protein kinases suppressing IRS to
prevent acute insulin signaling on Akt!Foxo1
phosphorylation and Glut4 membrane trafficking,
as shown in myocardium and adipocytes
(Gonzalez et al. 2011; Qi et al. 2013). The effect
of hyperinsulinemic induction on insulin resis-
tance was also observed in mice subjected to
type 1 diabetes (Liu et al. 2009b). Given that
p38 MAP kinase is a key mediator of TNFα
promoting insulin resistance (Li et al. 2005) and
that increased p38 MAPK activity and decreased
IRS expression were found in tissues of animals
and patients with hyperinsulinemia and T2DM
(Qi et al. 2013; Kerouz et al. 1997; Rondinone
et al. 1997), we expect that cytokine (TNFα)!
p38α MAPK!IRS suppression has an important
role in developing insulin resistance following
obesity and inflammation (Qi et al. 2013).

There exist about 1100 protein kinases in
mouse or human genome. It will be important to
identify these kinases and activation mechanisms
under different cellular and environmental condi-
tions for induction of IRS serine/threonine phos-
phorylation, degradation, and insulin resistance.
Of note, even under a physiological condition, a
50 % reduction in IRS2 protein was found in the
liver during feeding, compared to the fasting con-
dition (Ide et al. 2004). This observation suggests
that tissues, such as the liver, are less sensitive to
insulin during feeding than a fasting state since
IRS2 expression decreases.

6 Clinic Perspectives of Insulin
Resistance

6.1 Hapothalamic Insulin
Resistance, Hyperphagia,
and Obesity

Appetite is tightly controlled by insulin action
through the central nervous system (CNS). The
hypothalamus at the base of the forebrain is

comprised of numerous small nuclei, each with
distinct connections and neurochemistry, which
regulate food intake, hormone release, circadian
rhythms, and other biological functions (Myers
and Olson 2012). A low dose of insulin injection
to intracerebroventriculum decreased both food
intake and hepatic glucose production, effects
which were blocked by PI3K inhibitors (Woods
et al. 1979; Obici et al. 2002). Combined with
evidence from mice with neuron-specific insulin
receptor deletion are obese and insulin resistant
(Bruning et al. 2000), current data indicate that
neuronal insulin signaling is required for both
body weight control and glucose homeostasis.

The functional significance of brain insulin sig-
naling is further evidenced by that deletion of IRS2
in the hypothalamus resulted in hyperglycemia and
obesity inmice (Taguchi et al. 2007; Lin et al. 2004).
Similar to the action of leptin, an adipocyte-derived
hormone that inhibits food intake through the leptin
receptor neurons in CNS activating the Jak2!Stat3
signaling cascade (Allison and Myers 2014; Myers
and Olson 2012; Bates et al. 2003), brain insulin
signaling reduced food intake by activation of PI3K
via IRS2 and inactivation of Foxo1, which can be
independent of the Jak2!Stat3 pathway (Taguchi
et al. 2007). However, both leptin and insulin pro-
moted IRS2 tyrosine phosphorylation and PI3K
activation in the brain (Warne et al. 2011). IRS2
deletion in leptin receptor-expressing neurons
caused diabetes and obesity, in which Foxo1 inacti-
vation completely reversed the metabolic dysfunc-
tion (Sadagurski et al. 2012).

Hypothalamic neurons expressing agouti-
regulated peptide (Agrp) stimulate food intake
(orexigenic: appetite stimulant) during the fasting
state. Foxo1 stimulates orexigenic Agrp expres-
sion, an effect reversed by leptin delivery, of
which activation of Stat3 abrogates Foxo1 occu-
pancy on the Agrp promoter region (Kitamura
et al. 2006). Foxo1 deletion in Agrp neurons of
mice resulted in reduced food intake, leanness,
and decreased hepatic glucose production, involv-
ing suppression of a G-protein-coupled receptor
Gpr17, a Foxo1 target gene in Agrp neurons (Ren
et al. 2012). By antagonizing the effect of Agrp,
hypothalamic neurons expressing pro-opiomela-
nocortin (Pomc) inhibit food intake during
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feeding (anorexic: lack of appetite). Foxo1 dele-
tion in Pomc neurons also resulted in reduced
food intake and leanness, by increasing the obe-
sity susceptibility gene, carboxypeptidase E
(Cpe), and subsequent β-endorphin production
that mediates anorexigenic effects in mice (Plum
et al. 2009). Thus, Foxo1 activation in neurons
likely promotes food intake and obesity.

High-fat diet induces hypothalamic inflamma-
tion for NFҡB activation and ER stress that is
necessary for diet-induced obesity (Zhang
et al. 2008b). HFD also induces brain injury by
losing POMC neurons in both rodents and
humans (Thaler et al. 2012). However, Foxo1
inactivation in the ventromedial hypothalamus
prevented HFD-induced obesity, improved glu-
cose intolerance, and increased insulin sensitivity
(Kim et al. 2012), suggesting that Foxo1 activa-
tion has key role in the brain resulting in insulin
resistance and obesity.

6.2 Insulin Resistance
and Retinopathy

Loss of IRS2 resulted in retinal degeneration and
photoreceptor cellular dysfunction (Yi et al. 2005).
IRS2 is mainly localized to the outer plexiform
layer and photoreceptor inner segments. IRS2 is
required for maturation and survival of photorecep-
tors inmouse retina immediately after birth because
IRS2 null mice lost 10 % photoreceptors a week
after birth and up to 50 % by 2 weeks of age due to
increased apoptosis. Since apoptosis is the final
common pathway in photoreceptor degeneration,
pharmacological strategies that increase IRS2
expression or function in photoreceptor cells
could be a general treatment for blindness, such as
retinitis pigmentosa (Yi et al. 2005).

6.3 Pancreatic b-Cell failure
and T2DM

β-Cell failure is essential for the development of
hyperglycemia in type 1 diabetes; but β-cell failure
is also present in type 2 diabetic patients (Rhodes
2005; Rhodes et al. 2013). The β-cells secrete

insulin reducing blood glucose, and the α-cells
secrete glucagon increasing the blood glucose
level tomeet bodily energy requirements andmain-
tain glucose homeostasis. Recent studies showed
that insulin enhances glucose-stimulated insulin
secretion in healthy humans (Bouche et al. 2010),
and insulin secretion in the β-cells was impaired in
mice lacking the insulin receptor gene (Kulkarni
et al. 1999). However, whether insulin has a direct
autocrine action on β-cells in promoting insulin
secretion is unclear (Rhodes et al. 2013).

Foxo1 inactivation by IRS signaling is required
for β-cell survival and differentiation. IRS2 null
mice resulted in Foxo1 activation and diabetes
owing to the pancreatic β-cell failure (Withers
et al. 1998). Genetic Foxo1 deletion in the IRS2
null mice prevented β-cell apoptosis and diabetes
(Nakae et al. 2002). Conversely, Foxo1 activation
following IRS2 inactivation in β-cells may promote
β-cell regeneration or differentiation since deletion
of IRS2 in β-cells triggered β-cell repopulation or
regeneration, leading to a restoration of insulin
secretion and resolution of diabetes in aged mice
(Lin et al. 2004). Foxo1 inactivation in β-cells
resulted in reduced β-cell mass, hyperglycemia,
and hyperglucagonemia, probably owing to dedif-
ferentiation of β-cells into progenitor-like cells or
pancreatic α-cells (Talchai et al. 2012).

Glucagon receptor action in both T1DM and
T2DM was markedly increased, and suppression
of glucagon receptor reduced blood glucose and
completely rescued diabetes (Lee et al. 2011;
Sorensen et al. 2006; Liang et al. 2004; Ali and
Drucker 2009). High levels of glucagon in HFD
and db/db mice were found (Edgerton and
Cherrington 2011). Thus, abnormality of the pan-
creatic hormones is critical for development of
diabetes and correcting the imbalance of insulin
in β-cells, and glucagon in α-cells may provide a
potential strategy to prevent diabetes mellitus.

6.4 Hepatic Insulin Resistance,
Hyperglycemia, and
Dyslipidemia

Hepatic insulin signaling has key roles in control
of whole body glucose and lipid homeostasis.
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Deletion of either IRS1 or IRS2 in the liver barely
impaired glucose homeostasis; but liver-specific
deletion of both IRS1 and IRS2 in L-DKO mice
resulted in unrestrained gluconeogenesis and
hyperglycemia, with a reduction in hepatic lipo-
genesis and blood lipids (Guo et al. 2009). HFD
suppressed IRS2 expression and functionality in
the liver, as evidenced by that mice lacking
hepatic IRS1 with HFD-treatment severely
impaired hepatic IRS2 expression and tyrosine
phosphorylation, and then mice developed severe
diabetes (Guo et al. 2009).

Hepatic insulin defects further result in insulin
resistance in other tissues. The L-DKO mice not
only displayed an inhibition of hepatic
insulin!Akt signaling but also blunted brain
intracerebroventricular (ICV) insulin action on
reducing hepatic glucose production (Guo
et al. 2009). Moreover, L-DKO mice exhibited
cardiac IRS1 and IRS2 suppression and cardiac
dysfunction, probably secondary to
hyperinsulinemia (Qi et al. 2013). Likewise,
mice lacking hepatic insulin receptor displayed
pro-atherogenic lipoprotein profiles with a reduc-
tion in high-density lipoprotein (HDL), choles-
terol, or very low-density lipoprotein (VLDL)
particles and developed severe hypercholesterol-
emia, within 12 weeks of being placed on an
atherogenic diet (Biddinger et al. 2008). These
data suggest that hepatic insulin resistance is suf-
ficient to produce hyperinsulinemia,
dyslipidemia, and increased risk of cardiovascular
dysfunction.

6.5 Cardiac Insulin Resistance
and Heart Failure

The heart is an insulin-responsive and energy-
consuming organ that requires a constant fuel
supply to maintain intracellular ATP for myocar-
dial contraction. Deletion of IRS1 and IRS2 genes
in the heart diminished cardiac Akt and Foxo1
phosphorylation and resulted in heart failure and
death of male mice, in which Foxo1 activation
promoted cardiac dysfunction and heart failure
(Qi et al. 2013, 2015). Foxo1 overexpression in
the heart of mice caused heart failure and

embryonic death (Evans-Anderson et al. 2008),
and an increase of Foxo1 expression was found in
the failing human hearts (Hannenhalli et al. 2006).
In the hearts of obese animals, p38α MAPK acti-
vation following hyperinsulinemia contributes to
IRS1 and IRS2 degradation (Qi et al. 2013). Thus,
sensitizing myocardial IRS!Akt!Foxo1 signal-
ing may provide new treatment modality for heart
failure, during insulin resistance, obesity, and
T2DM (Guo 2014b; Qi et al. 2013).

6.6 Insulin Resistance in Skeletal
Muscle and Longevity

Skeletal muscle is an important fuel storage tissue in
response to insulin, increasing glucose uptake and
converting carbohydrates to glycogen, protein, and
triglycerides. Skeletal muscle has remarkable meta-
bolic flexibility to consume and store macromole-
cules. Muscle-specific insulin receptor deletion
resulted in hyperlipidemia, with normal blood glu-
cose, serum insulin, and glucose tolerance. Thus,
insulin resistance in muscle may largely associate
with an alteration in lipid metabolism (Bruning
et al. 1998). Moreover, it was recently demonstrated
that mice lacking mTORC2 in muscle exhibited
decreased insulin-stimulated phosphorylation of
Akt-S473 and glucose uptake andmild glucose intol-
erance (Kumar et al. 2008). Mice lacking both IRS1
and IRS2 in skeletal and cardiac muscle died at
3 weeks of age, with a much shorter life span than
mice lacking both IRS1 and IRS2 in cardiac muscle
in H-DKO mice, the latter which died of heart
failure at 7 weeks of age, in company with hyper-
lipidemia (Qi et al. 2013), suggesting deletion of
IRS1 and IRS2 in skeletal muscle shortened life
span and muscular inactivation of mTORC1 may
play a role in the longevity control since mice
lacking mTRORC1 in skeletal muscle not only
developed dystrophic muscle with mild glucose
intolerance but also shortened life span (Bentzinger
et al. 2008). Collectively, insulin action in skeletal
muscle has an unrecognized role of longevity con-
trol by which muscular IRS!mTORC1 signaling
cascade involves. Currently, muscles are regarded
as active organs that secrete hormones (myokines),
such as irisin, a hormone in skeletal muscle

26 Insulin Resistance in Obesity 493



systemically regulating glucose homeostasis and
obesity (Bostrom et al. 2012). Cardiac muscle also
can regulate systemic energy homeostasis through
miR-208a, a heart-specific microRNA, controlling
MED13, a subunit of the mediator complex which
modulates gene transcription of nuclear hormone
receptors. Genetic deletion of MED13 in the heart
of mice enhanced HFD-induced obesity and sys-
temic insulin resistance (Grueter et al. 2012). Thus,
it would be of interest to identifying muscle-derived
mediators and related mechanisms in control of
longevity, systemic insulin resistance, and obesity
in animals and humans.

6.7 Vascular Insulin Resistance
and Endothelial Dysfunction

Insulin signaling in the vascular system of obese
Zucker rats also documented a selective suppres-
sion of PI3K, rather than MAP kinase compared
to lean rats (Jiang et al. 1999). In the aorta of obese
rats, insulin-stimulated tyrosine phosphorylation
of IRS1 and IRS2 and IRS-associated PI3K/Akt
activities were significantly decreased, even
though MAPK activity was equal or higher.

Insulin resistance in vascular endothelium stim-
ulates vasoconstriction and promotes hypertension
and atherosclerosis. Vasodilator actions of insulin
are mediated by PI3K-dependent signaling path-
ways stimulating expression of nitric oxide (NO)
gene in endothelium (Xu and Zou 2009). Inactiva-
tion of insulin receptor in endothelium diminished
insulin-induced eNOS phosphorylation and blunted
aortic vasorelaxant responses to acetylcholine and
calcium ionophore in normal mice (Duncan
et al. 2008) and accelerated atherosclerosis in
apolipoprotein-E null mice (Rask-Madsen
et al. 2010). Endothelium-specific deletion of IRS2
resulted in reduction in endothelial Akt activity and
eNOS phosphorylation (Kubota et al. 2011).

Foxo activation following loss of IRS2 may
play a key role in stimulating endothelial dysfunc-
tion. In HFD mice or low-density lipoprotein
receptor (LDLR) null mice, deletion of Foxo1,
Foxo3, and Foxo4 in endothelium enhanced
eNOS phosphorylation and NO production,

reduced inflammation and oxidative stress in
endothelial cells, and hence prevented atheroscle-
rosis (Tsuchiya et al. 2012). Clinical and epidemi-
ological studies also support that decreased PI3K
and Akt activities following insulin resistance are
linked to a reduction in NO, exacerbating endo-
thelial dysfunction and atherothrombosis (Samad
and Ruf 2013).

6.8 Insulin Resistance and Renal
Failure

The prevalence of nephropathy or chronic kidney
disease (CKD) is increasing, and the epidemic of
obesity is one of the causes. Obesity induces
hypertension, causing vasoconstriction and salt
and water retention and accelerating CKD. More-
over, obesity damages the kidney by recruiting
immunologic cells to trigger intra-renal inflamma-
tion (Prasad 2014).

Possible mechanisms for renal injury include
insulin resistance, oxidative stress, increased
pro-inflammatory cytokine production,
profibrotic factor production, and microvascular
injury and renal ischemia (Prasad 2014). Insulin
resistance is associated with CKD, including
reduced glomerular filtration rate, proteinuria,
and histopathological markers, such as tubular
atrophy and interstitial fibrosis. Although the rela-
tionship between insulin resistance and CKD is
complex and bidirectional, CKD is viewed as a
common progressive illness along the develop-
ment of obesity and insulin resistance signifi-
cantly intervenes. A decrease in PI3K activity
appeared critical in the pathophysiology of
CKD, and lipotoxicity from intra-renal accumula-
tion of lipid moieties has recently emerged to
CKD-associated insulin resistance through
impairing insulin signaling (Prasad 2014).

6.9 Imbalanced Sex Hormones
and Infertility in Obesity

Sex hormones are synthesized by fatty acid-
derived cholesterol. Caloric restriction, a
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catabolic state, and even short-term caloric depri-
vation can impair fertility in mammals. However,
obesity is also associated with infertility. The db/
db mice exhibit infertility, which may involve in
suppression of IRS2 in the brain (Mauvais-Jarvis
et al. 2013). IRS2 null mice increased food intake
and obesity and elevated levels of leptin. Female
mice lacking IRS2 exhibited small and anovula-
tory ovaries with reduced numbers of follicles;
low levels of plasma concentrations of luteinizing
hormone, prolactin, and sex steroids; and small
size of pituitaries with reduced numbers of
gonadotrophs. Thus, insulin, together with other
neuropeptides, such as leptin, may modulate
hypothalamic control not only on the appetite
but also on the reproductive endocrinology
(Burks et al. 2000).

Obesity is also associated with polycystic
ovary syndrome (PCOS), linking to infertility
(Diamanti-Kandarakis and Dunaif 2012). In
humans, PCOS is an important metabolic and
reproductive disorder conferring severe insulin
resistance and high levels of androgen
(Diamanti-Kandarakis and Dunaif 2012). The
poorly understood PCOS serine kinase may
involve in IRS suppression inhibiting metabolism
but increasing mitogenesis (Diamanti-Kandarakis
and Dunaif 2012). Distinct from androgen, estro-
gen is known to prevent insulin resistance, obe-
sity, and T2DM in female, probably owing to
activating PI3K and Akt in an IRS-independent
pathway in some tissues (Mauvais-Jarvis
et al. 2013). Obviously, dysregulation of sex hor-
mones has important role in control of both
metabolism and fertility.

6.10 Insulin Resistance and Cancer

Growing epidemiological and clinical evidence
implicates insulin resistance to the cancer risk.
Obesity has accounted for 14–20 % of cancer
deaths, including breast, colorectal, and endome-
trial cancers in the USA (Calle et al. 2003). The
mechanism by which insulin resistance increases
cancer risk is yet to be fully understood (O’Neill
and O’Driscoll 2015). In insulin resistant patients,

hyperinsulinemia activates Ras!MAP kinase
pathways promoting cell mitosis that may involve
tumor development in the obese individuals.
Moreover, free fatty acids and excess mitochon-
drial activities promote ROS production in obe-
sity. Overproduction of ROS caused DNA
mutagenesis and carcinogenesis (Goodwin and
Stambolic 2014). Thus, hyperinsulinemia, selec-
tive intracellular RAS!MAPK activation, and
ROS overproduction in obese individuals appar-
ently have important roles in promoting cellular
proliferation, tumor initiation, and progression
(Goodwin and Stambolic 2014).

6.11 Hyperlipidemia

Insulin inhibits hepatic glucose production while
stimulates lipid synthesis. Liver-specific deletion
of insulin receptor or both IRS1 and IRS2 in mice
resulted in hyperglycemia, hyperinsulinemia, and
hypolipidemia (Guo et al. 2009; Michael
et al. 2000). Many patients with the metabolic
syndrome and T2DM exhibit hyperglycemia,
hyperinsulinemia, and hyperlipidemia (Brown
and Goldstein 2008), indicating a paradox in
lipid profiles versus mice with hepatic insulin
resistance.

A challenging question is whether disease
mouse models created by genetic engineering
approaches reasonably reflect clinical lipid fea-
tures of metabolic syndrome. Given that
IRS!PI3K!PDK1/2!Akt!Foxo1 branch of
insulin signaling pathway has a central role in
control of glucose homeostasis and organ sur-
vival, suppression of this branch signaling cas-
cade not only results in unchecked hepatic
glucose production and hyperglycemia but also
limits the hepatic TORC2!Akt signaling for pro-
motion of lipogenesis, resulting in hypolipidemia.

Alternatively, other insulin-independent or
selectively insulin-stimulated pathways that pro-
mote lipogenesis may remain active in the liver
and other organs following obesity. For example,
carbohydrate-activated lipogenic gene expression
profiles, via carbohydrate-responsive element-
binding protein (ChREBP) and AMPK, facilitate
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progression of lipogenesis in hepatocytes upon
excess glucose upload (Fig. 3). Moreover, HFD
also promoted hepatic oxidative stress, which oxi-
dized and inactivated protein tyrosine phospha-
tase N2 to promote lipogenesis and hepatic
steatosis, and selectively enhanced insulin-
stimulated STAT5 signaling that promotes hepatic
IGF-1 production, which couples suppression of
pituitary growth hormone release, thereby pro-
moting fatty liver, insulin resistance, and obesity
(Gurzov et al. 2014). Identifying these and other
novel mediators in control of lipid homeostasis is
important to understand disease mechanisms and
develop interventions treating insulin resistance,
obesity, and dyslipidemia.

7 Is Insulin Resistance Always
Bad?

Theoretically, insulin resistance is regarded as a
mechanism promoting the disease development.
However, under physiological conditions, insulin
triggers phosphorylation of Akt and Foxo1 within
a short period of time, and then the phosphorylation
diminished rapidly or slowly, suggesting that insu-
lin signalingwill have to be attenuated or terminated
in target cells, which allow other catabolic mecha-
nisms suppressed by insulin begin to work. This is
essential for cells to adapt from insulin to other
counter hormone signals promoting energy utiliza-
tion. Thus, cells would have an adaptive insulin
inhibition mechanism in order to release energy
meeting demands for metabolism and growth.

Similarly, Foxo1 activation has beneficial
effects under certain conditions. During the
fasting state with less amount of insulin, Foxo1
stimulates gluconeogenesis gene for hepatic glu-
cose production to maintain glucose homeostasis.
Moreover, Foxo1 stimulates expression of
MnSOD and catalase and enhances antioxidant
responses to protect cells from apoptosis. In
rodents, Foxo1 activation following IRS2 defi-
ciency, in the brain, enhanced longevity in spite
of obesity and diabetes (Taguchi et al. 2007). In
hearts, Foxo1 activation enhances myocardial

survival upon induction of moderate oxidative
stress (Sengupta et al. 2009, 2011, 2012) and pro-
motes autophagy in control of cell size following
serum starvation (Sengupta et al. 2009). Foxo1 is
required for endothelial cell lineage during car-
diovascular development since Foxo1 null mice
are embryonic lethal (Hosaka et al. 2004;
Sengupta et al. 2012).

Together, these data suggest that moderate
Foxo1 activation is required for maintenance of
a life cycle under some stress conditions, such as
prolonged fasting in the liver for hepatic glucose
production and activation of anti-oxidative mech-
anisms promoting survival. However, Foxo1 is
over-activated at multiple layers upon environ-
mental challenges, such as obesity. In this regard,
Foxo1 signaling serves as a key mechanism for
insulin resistance contributing to obesity, T2DM,
and associated organ failure.

8 Other Considerations

8.1 Insulin Resistance in Bone
Impairs Glucose Homeostasis

Insulin also exerts its function in non-classic
organs in control of glucose homeostasis, which
is far beyond of our expectation, such as insulin in
the bone, controlling glucose homeostasis by
suppressing Foxo1.

Insulin promotes bone formation and differen-
tiation of osteoblasts that synthesize osteocalcin, a
bone-derived insulin secretagogue which regu-
lates pancreatic insulin secretion and systemically
controls glucose homeostasis. Mice lacking insu-
lin receptor in osteoblasts exhibited reduced bone
formation, increased peripheral adiposity, and
insulin resistance through decreasing osteocalcin
gene expression (Ferron et al. 2010; Fulzele
et al. 2010). Foxo1 activation decreased
osteocalcin expression and activity by increasing
expression of Esp, a protein tyrosine phosphatase,
that inhibits osteocalcin bioactivity by favoring its
carboxylation. Osteoblast-specific Foxo1 null
mice have increased osteocalcin expression and
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insulin production and reduced blood glucose
(Rached et al. 2010). Collectively, these data sug-
gest that the bone serves as an endocrine organ in
control of glucose homeostasis, through bone-
pancreas cross talk, in which Foxo1 plays a key
role in insulin action regulating osteocalcin
expression and activity in osteoblasts.

8.2 Microbiota, Inflammation,
and Insulin Resistance

Recent studies indicate that gastrointestinal
(GI) microbiota may trigger inflammation and insu-
lin resistance (Johnson and Olefsky 2013; Nichol-
son et al. 2012). Increased levels of circulating
bacteria or bacterial products derived from
microbiota, such as lipopolysaccharides, initiate
infection and metabolic inflammation that induce
insulin resistance and promote metabolic syndrome
(Cani et al. 2008). Comparisons of distal gut
microbiota of genetically obese mice and their lean
littermates, as well as those of obese and lean human
volunteers, have revealed that obesity is associated
with relative changes in two dominant bacterial
divisions, bacteroidetes and firmicutes, and that the
obese microbiome has an increased capacity to har-
vest energy from the diet. Thus, the gutmicrobiota is
an additional factor to the pathophysiology of obe-
sity and insulin resistance (Turnbaugh et al. 2006).

8.3 Bariatric Surgery

More than 80 % of patients with T2DM are obese;
thus, body weight loss is an attractive but challeng-
ing therapeutic option (Dixon et al. 2012). Bariatric
surgery, designed to achieve and sustain substantial
weight loss and reduce food intake, effectively pre-
vents and remediates T2DM (Sjostrom et al. 2012).
Moreover, bariatric surgery reduces adverse cardio-
vascular events, not only in obese adults (Sjostrom
et al. 2012) but also in patients with T2DMwithout
severe obesity (Cohen et al. 2012). Although the
mechanisms of bariatric surgery on metabolic con-
trol are unclear (Rubino et al. 2010), it is likely that

the surgery resets metabolic parameters and hor-
mones in a balanced way, such that energy intake
and expenditure are controlled.

9 Conclusions

Mouse studies demonstrated that Foxo1 activation
and Akt inactivation following suppression of IRS1
and IRS2 provide a fundamental mechanism for
insulin resistance, impairing glucose and lipid
homeostasis, and also serve as important mecha-
nisms for the development of obesity. Themetabolic
syndrome is driven by insulin resistance in different
organs, including the brain, liver, pancreas, fat,
muscle, bone, and cardiovascular system. The
IRS!Akt!Foxo1 signaling cascade and its regu-
latory network require further exploration
under different cellular and environmental contexts.
Notably, lipotoxicity, pro-inflammation, and
hyperinsulinemia from overnutrition andmicrobiota
all may affect this system, contributing to obesity
and T2DM and failure of many organs (Fig. 4).

Genome-wide association analyses have identi-
fied some genes in control of development of obe-
sity and diabetes (Doria et al. 2008; Wagner
et al. 2013), but insulin resistance in obesity is a
result of complex interactions among different tis-
sues with genetic, environmental, and behavioral
factors, all of whichmodify the IRS!Akt!Foxo1
branch at multiple levels in each organ. Other
mediators for this pathway, such as SH2B, Grb10,
and reactive nitrogen species, and CDK8 have not
discussed here (Song et al. 2010; Liu et al. 2014;
Zhao et al. 2012; Cao 2014; Zhou et al. 2015). We
expect that current antidiabetic therapy (Tahrani
et al. 2011), including glucagon-like peptide,
pioglitazone and metformin, and bariatric surgery,
may affect the IRS signaling directly or indirectly,
facilitating a balance of hormones, nutrients, and
inflammation. Thus, targeting the
IRS!Akt!Foxo1 signaling cascade, associated
protein kinases, and gene expression profiles may
provide important therapeutic modalities for pre-
vention or treatment of insulin resistance, obesity,
T2DM, and associated organ failure.
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Abstract
Overnutrition disrupts normal adipose tissue
function. Dysfunctional lipid metabolism
leads to an increase in circulating free fatty
acids, initiating inflammatory signaling cas-
cades and increased immune cell activity in
metabolic tissue. A feedback loop of
pro-inflammatory cytokines exacerbates this
chronic inflammatory state, driving further
immune cell infiltration, cytokine secretion,
and activation of inflammasome complexes.
This disrupts the insulin signaling cascade
and is causative of defects in hepatic and skel-
etal muscle glucose homeostasis, resulting in
systemic insulin resistance and ultimately the
development of type 2 diabetes. This chapter
will focus on the initiation of the inflammatory
response in obesity and describe the impact of
this on metabolic tissue, with a particular
emphasis on the development of insulin resis-
tance and type 2 diabetes. We will also review
current and prospective treatment and inter-
vention strategies and the biological mecha-
nisms through which these function.
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ASC Apoptosis-associated speck-like
protein containing a CARD

ATM Adipose tissue macrophages
ATP Adenosine triphosphate
BAT Brown adipose tissue
BMI Body mass index
BMM Bone marrow macrophages
CCR C–C chemokine receptor
CLS Crown-like structures
DAG Diacylglycerols
DAMPs Danger-associated molecular

patterns
DC Dendritic cell
DGAT Diacylglycerol acyltransferase
DHA Docosahexaenoic acid
DIO Diet-induced obesity
ECM Extracellular matrix
EPA Eicosapentaenoic acid
FA Fatty acids
FFA Free fatty acids
Fiaf Fasting-induced adipocyte factor
GLUT Glucose transporter type
GPR G protein-coupled receptor
HFD High-fat diet
ICAM Intercellular adhesion molecule
IKK IκB kinase
IL Interleukin
IR Insulin resistance
IRS Insulin receptor substrate
IS Insulin sensitivity
IκB Inhibitor of κB
JNK c-Jun N-terminal kinase
LPS Lipopolysaccharide
MAPK Mitogen-activated protein kinase
MCP Monocyte chemoattractant protein
MetS Metabolic syndrome
MHC Major histocompatibility complex
MUFA Monounsaturated fatty acids
NF-κB Nuclear factor kappa B
NLR NOD-like receptor
PI3K Phosphatidylinositol 3-kinase
PKB Protein kinase B
PKC Protein kinase C
PPAR Peroxisome proliferator-activated

receptor
PUFA Polyunsaturated fatty acids
R Receptor

RA Receptor antagonist
SCFA Short-chain fatty acid
SFA Saturated fatty acids
SOCS Suppressor of cytokine signaling
SVF Stromal vascular fraction
T2D Type 2 diabetes
TAG Triacylglycerol
TH T helper
TLR Toll-like receptor
TNF Tumor necrosis factor
TNFR Tumor necrosis factor receptor
Treg Regulatory T cell
TZDs Thiazolidinediones
UCP-1 Uncoupling protein 1
WAT White adipose tissue

1 Introduction

Metabolic syndrome (MetS) is a health condition
that encompasses a number of factors including
obesity and high blood glucose concentrations,
which both are risk factors for the development
of type 2 diabetes (T2D). It is projected that>420
million people will have prediabetes worldwide
by 2030 (WHO/IDF 2006), with 5–10 % of pre-
diabetic individuals progressing to develop T2D
annually (Tabak et al. 2012). As prevalence fig-
ures continue on this upward trajectory, examina-
tion of the pathophysiological determinants
underlying this condition is required.

The obese state is linked to the development of
insulin resistance (IR), through the induction of an
inflammatory response in insulin-sensing organs.
Obesity-associated inflammation is described as
being chronic, in that it fails to be resolved. A
number of events can initiate this state of chronic
inflammation, and these act synergistically to
maintain an inflammatory environment. Such an
inflammatory response can result from increased
cell exposure to free fatty acids (FFA) which
initiate inflammatory signaling, a shift in the cell
population types present in metabolic tissues and
changes in the gut microbiome (Fig. 1).

The immune system is necessary in promoting
and resolving inflammation. This paradigm is
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also true for obesity-associated inflammation.
Immune cells, including macrophages and
T cells, infiltrate metabolic tissue during the
development of obesity. These immune cells
secrete chemokines and cytokines. Chemokines
function to attract additional immune cells into
metabolic tissues.With obesity, there is increased
production of the pro-inflammatory cytokines,
tumor necrosis factor (TNF)-α (alpha), interleu-
kin (IL)-6 and IL-1β (beta). These cytokines
induce inflammatory signaling pathways in
neighboring inflammatory and metabolic cells
and impede insulin signaling. Insulin is a critical
hormone that regulates glucose, lipid, and energy
metabolism, in the liver, adipose tissue, and

skeletal muscle. With IR, glucose is not taken
up by metabolic tissues, circulating glucose
levels increase, and this is an early indicator of
T2D.

This chapter will focus on the link between
obesity and inflammation. We will explore early
events that initiate this process, from expanding
adipocytes and increased levels of FFA to the
deleterious impact of an altered gut microbiome.
We examine how these factors alter metabolic
tissue composition, cytokine secretion, insulin
signaling, and glucose uptake. Finally, this chap-
ter will highlight both nutritional and pharmaco-
logical strategies to counteract obesity-induced
inflammation, IR, and T2D.

SFA

Liver
Lipid
accumulation
Hepatic
inflammation
Macrophage
infiltration

Gut
SFA, LPS

SFA

MCP-1

Obese WAT
Lean WAT

TNF-a, IL-1b, IL-6

Change in ratio of microbial species
present Increased gut permeability
Increased levels of LPS in circulation

Activate inflammatory
signaling pathways

Hypertrophic
adipocyte

Secretion of
pro-inflammatory

cytokines

Crown-like
structure

Immune cell infiltration
and phenotypic change

in resident cells

Resident immune cell
population

Skeletal muscle
Lipid accumulation
Reduced IL-6 secretion
Decreased glycogen synthesis

pre-adipocyte adipocyte M1
macrophage

M2
macrophage

dendritic
cell

T cell

Fig. 1 Obesity – the impact on metabolic tissues and the
gut. Excessive caloric intake has a negative impact on
metabolic tissue. Increased exposure of metabolic cell
types to circulating fatty acids results in lipid accumula-
tion, the influx of immune cells, and a phenotypic switch in
resident immune cell populations (M2 to M1 macro-
phages). Saturated fatty acids and LPS derived from the
gut activate inflammatory pathways in metabolic tissue.

This results in the production of pro-inflammatory cyto-
kines (TNF-α (alpha), IL-1β (beta), IL-6); these signal
within the tissue to sustain an inflammatory environment
and promote the infiltration of immune cells. The release of
FFA from adipocytes that have reached their expansion
capacity further stimulates inflammatory signaling and
thus chronic inflammation propagates
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2 Metabolic Tissues

Multiple pathogenic factors have been implicated
in the development of “metaflammation,” a term
coined to describe the synergy between metabolic
and inflammatory pathways (Finucane
et al. 2015). These pathways interact within the
context of obesity, IR, and T2D, resulting in the
deleterious effect of obesity at a systemic level
(McGettrick and O’Neill 2013).

2.1 Adipose Tissue

There are different subtypes of adipose tissue:
white adipose tissue (WAT), brown adipose tissue
(BAT), and the recently identified beige adipose
tissue. White adipose tissue is responsible for the
storage of excess energy as triacylglycerol (TAG).
These fatty acids (FA) can be oxidized by BATand
released as heat; however, the decreased BAT
levels associated with obesity cause dysregulation
in this response (Saito et al. 2009). Overproduction
of WAT-derived TNF-α (alpha) has become a hall-
mark of obesity-induced IR and is associated with
impaired insulin signaling (Hotamisligil et al.
1995). Chronic low-grade inflammation in WAT
is characterized by increased inflammatory macro-
phage and T cell number (Talukdar et al. 2012).
Conversely, lower levels of WAT-derived
adiponectin are associated with IR (Yamauchi
et al. 2001) and are inversely related to ectopic
lipid accumulation (Samuel et al. 2010). Interest-
ingly, despite WAT inflammation having unfavor-
able effects on IR,Asterholm et al. demonstrate that
pro-inflammatory signaling is necessary for WAT
functionality (Wernstedt Asterholm et al. 2014). If
adipocytes fail to expand, then excess FA may end
up being deposited in other cell types. Inflamma-
tion is also important for proper extracellularmatrix
(ECM) remodeling which facilitates adipogenesis
(Cristancho and Lazar 2011). Both processes are
likely mechanisms through which inflammation
promotesWAT functionality (Wernstedt Asterholm
et al. 2014).

Brown adipose tissue represents a small fat
depot located in the neck and upper chest of adults
(Tchkonia et al. 2005), and it has been associated

with a protective effect against metabolic diseases
such as T2D (Chondronikola et al. 2014). The
protective effect of BAT has been attributed to the
presence of uncoupling protein 1 (UPC-1) which is
involved in the conversion of energy from food into
heat (Cannon and Nedergaard 2004). Beige adipo-
cytes express a distinct gene expression profile that
distinguishes them fromWATandBAT. In the basal
state, beige cells resembleWAT, demonstrating low
levels of UCP-1; however, upon stimulation with
cyclic adenosine monophosphate (AMP), UCP-1
levels increase, and these adipocytes demonstrate a
BAT-like phenotype (Wu et al. 2012). It is
suggested that BAT depots in adults may be com-
posed of beige adipocytes. Beige and brown adi-
pocytes exert a similar beneficial effect in terms of
metabolic regulation (Harms and Seale 2013), and
manipulation of these may open new opportunities
for promoting metabolic health.

2.2 Liver

Hepatic steatosis refers to the accumulation of lipid
in the liver; it is associated with obesity-induced
inflammation and is a hallmark of nonalcoholic
fatty liver disease (Angulo 2002). Accumulation
of FA metabolites such as diacylglycerols (DAG),
FFA, ceramides, and acylcarnitines, within insulin-
sensitive tissues is one mechanism through which
obesity causes IR (Samuel et al. 2010). Hepatic FA
accumulation activates protein kinase C (PKC)-δ
(delta); this interferes with insulin signaling by
blocking insulin receptor substrate (IRS)-
associated phosphatidylinositol (PI) 3-kinase activ-
ity (Lam et al. 2002). Similar to WAT, hepatic
macrophage number increases with obesity
(Obstfeld et al. 2010). Excess lipid derivatives in
the liver induce endoplasmic reticulum stress and
hepatic inflammation, evident by increased secre-
tion of pro-inflammatory cytokines, acute-phase
reactants, and activation of nuclear factor kappa B
(NF-κ (kappa) B) and c-Jun N-terminal kinase
(JNK)-mediated pathways (Cai et al. 2005;
Tuncman et al. 2006). Specific deletion of Ikbkb
from hepatocytes, the gene that encodes IKKβ
(beta), showed an important role for this gene in
the development of HFD-induced IR. Obese
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HFD-fed hepatic Ikbkb�/�micemaintained hepatic
insulin sensitivity (IS) but developed IR in muscle
and WAT, with no overall improvement peripheral
IS (Arkan et al. 2005). In contrast, myeloid-specific
deletion of Ikbkb improved systemic IS.

2.3 Skeletal Muscle

Skeletal muscle is the main site for glucose uptake
in the body, andmuscle IR represents a core defect
in T2D (DeFronzo and Tripathy 2009). Numerous
defective mechanisms contribute to IR in skeletal
muscle. These include impaired glycogen synthe-
sis (Shulman 2000) and glucose transport (Abel
et al. 2001), elevated IL-6 (Spranger et al. 2003)
and FFA levels (Roden et al. 1996), with reduced
AMP-activated protein kinase (AMPK) activity
(Yamauchi et al. 2001). Skeletal muscle
dysregulation plays a critical role in the develop-
ment of IR, and glycogen synthesis is reduced by
up to 50 % in T2D (Shulman 2000). Defects in
glucose transport are also critical in the develop-
ment of skeletal muscle IR (Rothman et al. 1992).
Lower glucose-6-phosphate levels in diabetic
individuals link defective glucose transport and
decreased glycogen synthesis in skeletal muscle
(Rothman et al. 1992).

Lipotoxicity with obesity is associated with the
development of skeletal muscle IR. Myocyte lipid
accumulation as FFA, fatty acyl-coenzyme A
(CoA), DAG, and ceramides is a mechanism
which potentiates skeletal muscle IR (Abdul-
Ghani and Defronzo 2010). The pleiotropic cyto-
kine IL-6 is considered a myokine; levels of IL-6
secretion from skeletal muscle increase following
exercise, which promotes IS (Pedersen and
Febbraio 2008). However, increased IL-6 expres-
sion is unfavorable inWATand liver, and elevated
plasma levels of IL-6 are predictive of T2D
(Pradhan et al. 2001; Spranger et al. 2003).

3 Instigators of Inflammation

Traditionally, inflammation is considered to stem
from infection and tissue injury. More recently,
the impact of metabolic stress is considered to

promote inflammation also. Weight gain places
additional metabolic stress on the body initiating
an inflammatory response. While the metabolic
stressors are only beginning to be identified and
understood, saturated fatty acids (SFA),
lipotoxicity, and the altered gut microbiome are
implicated in obesity-induced inflammation.

3.1 Lipotoxicity and AdiposeHealth

With increasing weight gain, adipocytes are faced
with two fates, hypertrophy or hyperplasia, an
increase in cell size or cell number, respectively.
Hypertrophy naturally occurs prior to hyperplasia,
in response to increasing adiposity (Jo et al. 2009).
When excessive dietary intake persists over time,
the expansion capacity of adipocytes is exceeded,
and FFA are released (Sethi and Vidal-Puig 2007).

Circulating SFA can induce an inflammatory
response similar to infectious agents. Both SFA and
microbial lipopolysaccharide (LPS) signal via toll-
like receptor (TLR) 4 and TLR2 present on the sur-
face of adipocytes and immune cells (Glass and
Olefsky 2012; Lee et al. 2001; Shi et al. 2006). Cir-
culating FFA increase with obesity and promote IR
through induction of inflammatory signaling path-
ways and downstream serine/threonine kinase phos-
phorylation of IRS-1 (Shulman2000). The profound
effect of SFA on IS has been confirmed through
studies that induce transient IRwithin hours of TAG
emulsions plus heparin infusion which elicits FFA
release (Boden et al. 1991;Glass andOlefsky 2012).

Intracellular accumulation of TAG and other FA
metabolites such as fatty acyl-Co-A, DAG, and
ceramides interferes with insulin signaling and
leads to IR (Shulman 2000). Intracellular accumu-
lation of DAG activates PKC and initiates serine/
threonine phosphorylation of IRS (Samuel
et al. 2010). With obesity, inflammatory signaling
induces the expression of genes involved in lipid
metabolism, including enzymes that synthesize cer-
amide (Holland et al. 2011; McNelis and Olefsky
2014). Ceramide is a sphingolipid that has been
shown to accumulate in response to HFD or infu-
sion of SFA. Ceramides suppress insulin action by
inhibiting phosphorylated protein kinase B (PKB)
(Chavez and Summers 2012). Pharmacological
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inhibition of ceramide by myriocin improves glu-
cose tolerance (McNelis and Olefsky 2014). Data
from studies investigating lipodystrophy in human
and mouse models show that ectopic lipid accumu-
lation may be a factor which potentiates IR,
irrespective of peripheral and visceral adiposity
(Samuel et al. 2010). This places intracellular
lipid accumulation as an early instigator of chronic
low-grade inflammation and IR.

3.2 Altered Gut Microbiome

The gut microbiome can modulate immune
responses and therefore impact an inflammatory
response (Kanneganti and Dixit 2012). The gut
flora of obese individuals differs markedly from
their lean counterparts, with circulating levels of
LPS being significantly higher in the obese state
(Baker et al. 2011). In murine and human studies,
a change in the ratio of bacteroidetes/firmicutes
has been shown with weight gain, and this may
impact the levels of microbiome-derived LPS
(Everard et al. 2014; Harley and Karp 2012;
Moreno-Indias et al. 2014). Transport of LPS
from the gut lumen to circulation is upregulated
in response to HFD feeding (Erridge et al. 2007).
High-fat diet feeding also increases gut perme-
ability and reduces tight-junction integrity
allowing for movement of LPS across the gut
epithelium (Cani et al. 2008). The composition
of the gut microbiome has been directly linked to
the development of metabolic disorders associ-
ated with obesity (Baker et al. 2011; Dali-Youcef
et al. 2013; Kanneganti and Dixit 2012). It has
been established that the NLRP3 and NLRP6
inflammasomes and caspase-1 play a role in reg-
ulating gut microbiota. Deficiencies in these
inflammasome components lead to gut
microbiota dysregulation (Henao-Mejia et al.
2012). This interaction also provides a mecha-
nism through which changes in gut microbiota
exert a regulatory effect on obesity-associated
inflammation (Dali-Youcef et al. 2013).

Gut microbiota also affects energy absorption
via short-chain fatty acid (SCFA) metabolism and
storage by inhibition of fasting-induced adipocyte
factor (Fiaf) (Backhed et al. 2007). Elevated levels

of the lipoprotein lipase inhibitor Fiaf is one
mechanism responsible for the resistance to diet-
induced obesity (DIO) in germ-free mice. The
obese microbiome has increased energy absorp-
tion potential (Turnbaugh et al. 2006), and the
suppression of Fiaf plays a critical role in this
(Dali-Youcef et al. 2013). Additionally, suppres-
sion of Fiaf is vital for gut microbiota-associated
deposition of TAG in adipocytes (Backhed
et al. 2004).

The influence of TLRs on the gut microbiota
also represents another important factor linking
inflammation and obesity. Ablation of TLR5 alters
gut microbiota and leads to metabolic complica-
tions such as IR (Vijay-Kumar et al. 2010).
Whereas the absence of TLR4 exerts positive
effects on metabolic health, reducing inflammatory
signaling required for the development of obesity-
associated IR (Baker et al. 2011). The influential
function of the gut microbiota makes it an interest-
ing target for future therapies aimed at reducing the
inflammation associated with obesity.

4 “Metaflammation”: Cells
and Signaling

With obesity, the changes evident at a metabolic
tissue level result from alterations in tissue com-
position and secretory profile. Increased circulat-
ing concentrations of TNF-α (alpha), IL-1β (beta),
and monocyte chemoattractant protein-1 (MCP-1/
CCL2) have been observed in T2D and are indic-
ative of future disease risk (McNelis and Olefsky
2014).

4.1 Adipocytes and the Stromal
Vascular Fraction

Adipose tissue is composed of adipocytes and a
stromal vascular fraction (SVF). At a fundamental
level, adipocytes function in the uptake and
release of FA; however, they are more complex
than simply lipid storage cells. They secrete pro-
teins and hormones which influence satiety and
immune cell infiltration. Proteins secreted from
adipocytes are often referred to as adipokines
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and include MCP-1 and IL-6 in addition to the
hormones leptin and adiponectin. Additionally,
adipocytes are involved in insulin signaling and
glycemic control.

The SVF in turn is composed of adipose-
derived stem cells, precursor preadipocytes, and
immune cells that are crucial for normal tissue
function. With obesity, the secretory profile of
these cell types is altered toward an inflammatory
response. The presence of inflammatory cytokines
TNF-α (alpha), IL-1β (beta), and IL-6 halts the
maturation of preadipocytes in vitro, characterized
by reduced lipid accumulation (Gustafson and
Smith 2006). Additionally, TNF-α (alpha) treat-
ment of preadipocytes results in increased secretion
of IL-6 and MCP-1 (Chung et al. 2006). Collage-
nase digestion of WAT separates the floating adi-
pocyte layer from a SVF pellet. Analysis of the
adipocyte layer from obese mice has shown that
lipid-laden macrophages closely surround adipo-
cytes (Ebke et al. 2014).

Adipogenesis is the process through which
precursor preadipocyte cells become adipocytes,
and it is crucial for the expansion of WAT. Once
committed to differentiation, preadipocytes
undergo growth arrest, and there is a concurrent
increase in the expression of mature adipocyte
genes such as fatty acid-binding protein and
lipid-metabolizing enzymes (Gregoire
et al. 1998). The transcription factor peroxisome
proliferator-activated receptor (PPAR)-γ (gamma)
is an important driver of this process, and for this
reason (PPAR)-γ (gamma) is the target of the
thiazolidinediones (TZDs) family of medication,
used in the treatment of T2D.

Crucial to WAT function, adipocytes undergo
hypertrophy and hyperplasia, which together con-
tribute to an overall increase in WAT mass. When
adipocytes become dysfunctional, cell death fol-
lows. The occurrence of adipocyte death is corre-
lated with cell size, and adipocyte death is a
pathologic marker of obesity (Cinti et al. 2005).
These dying cells leak FFA, which are taken up by
local adipose tissue macrophages (ATM) (Cinti
et al. 2005). It has been demonstrated that lipoly-
sis, the hydrolysis of TAG, acts in the recruitment
of macrophages into obese WAT (Kosteli
et al. 2010).

4.2 Macrophages

It has been estimated that up to 50 % of obese
WAT is comprised of macrophages, a fivefold
increase from the lean state (Kraakman
et al. 2014; Weisberg et al. 2003). Three research
papers are crucial to our current understanding of
the role of macrophages in metaflammation. First,
in 1993, Hotamisgil et al. published research that
showcased the role of WAT-derived TNF-α
(alpha) in obesity (Hotamisligil et al. 1993). A
decade later, two research papers published in
the Journal of Clinical Investigation highlighted
that macrophages were crucial to obesity-
associated inflammation and identified these
cells as the main source of TNF-α (alpha) in
obese WAT (Weisberg et al. 2003; Xu
et al. 2003). Xu et al. demonstrate that inflamma-
tory and macrophage-specific genes including
MCP-1 and macrophage markers F4/80 and
CD11b were significantly upregulated in ob/ob,
db/db, and high-fat diet (HFD)-fed murine SVF
(Xu et al. 2003).

Additionally, TNF-α (alpha) acts to stimulate
adipocyte lipolysis, thus contributing to elevated
FFA concentrations in the serum (Cawthorn and
Sethi 2008). In vitro treatment of 3T3-L1 adipo-
cyte cells with TNF-α (alpha) leads to reduced
expression of Pparg gene (Ye 2009). Circulating
levels of TNF-α (alpha) have been shown to be
increased in obese and T2D subjects, and expres-
sion is also increased in WAT and skeletal muscle
(Hotamisligil et al. 1995; Kern et al. 1995;
Zahorska-Markiewicz et al. 2000).

Lumeng et al. investigated the inflammatory
profile of ATM from lean and obese mice
(Lumeng et al. 2007). This research demonstrated
a distinct difference in cell surface marker expres-
sion. Macrophages from obese mice have signif-
icantly increased expression of the cell surface
marker CD11c. This CD11c population has
greater Il6 and Nos2 gene expression than lean
ATM, and these genes are associated with inflam-
mation. In contrast, CD11c negative cell
populations were shown to express anti-
inflammatory genes such as Il10.

The chemokine MCP-1 is a key instigator of
macrophage recruitment. In murine models of
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obesity, WAT and BAT MCP-1 expression is
increased (Kanda et al. 2006), and this is coinci-
dent with IR, macrophage infiltration of WAT and
hepatic TAG accumulation (Kamei et al. 2006;
Kanda et al. 2006). Such features are absent in
HFD-fed MCP-1�/� mice. Overexpression of
MCP-1 increases WAT and plasma, TNF-α
(alpha), and IL-6 levels, concomitant with
reduced hepatic and skeletal muscle pPKB,
suggesting a role for circulating MCP-1 in sys-
temic IR (Kamei et al. 2006). Recently it has been
demonstrated that TNF-α (alpha) treatment
increased MCP-1 expression in 3T3-L1
preadipocytes (Kabir et al. 2014), but this induc-
tion did not occur when mature 3T3-L1 cells were
treated with TNF-α (alpha). Thus in experimental
models, TNF-α (alpha) can halt preadipocyte mat-
uration while increasing preadipocytes MCP-1
production. Genetic manipulation of the MCP-1
receptor has a positive impact on IS. MCP-1 sig-
nals via the C–C chemokine receptor (CCR)2
receptor and Ccr2 expression are increased in
HFD-fedWAT (Weisberg et al. 2006). High levels
of CCR2 have been shown in macrophages that
are located in regions of WAT where there are
crown-like structures (CLS), a description given
to a group of macrophages that surround dying
adipocytes (Lumeng et al. 2008). The presence of
CLS in WAT is associated with obesity.

The origin of ATM however is not certain.
There is evidence to suggest that the obese envi-
ronment draws monocytes from the circulation
into WAT. The monocytes then differentiate into
macrophages which express distinct cell surface
markers, behavior, and secretory patterns from the
resident ATM population (Lumeng et al. 2008).
Lumeng et al. labeled ATM from lean and
HFD-fed mice in order to determine if there
were distinct localization patterns in the obese
environment (Lumeng et al. 2008). This research
showed that in obese WAT, ATM with
pro-inflammatory characteristics preferentially
localized in CLS clusters. This study also
highlighted that resident ATM localization occurs
independently of MCP-1 signaling. Importantly,
despite the presence of these CLS, resident ATM
populations remain in interstitial spaces between
adipocytes, as is the case in lean WAT.

Approximately 90 % of ATM in both obese mice
and humans are localized to CLS (Cinti
et al. 2005). The role of hematopoietic IL-1R has
also been demonstrated to be involved in
monocytosis. Nagareddy et al. performed bone
marrow transplants and fat pad transplants on
ob/ob and HFD-fed murine models to highlight a
positive feedback loop between ATM and bone
marrow myeloid progenitor cells in obesity
(Nagareddy et al. 2014). The results of this study
show that in inflamed WAT, an increase in inflam-
matory mediators is accompanied by increased
cross talk with hematopoietic progenitor cells.
The IL-1R plays an important role in this signal-
ing which the researchers suggest, ultimately
leads to an increase in circulating monocytes and
increased WAT infiltration.

Alternatively, the obese environment may ini-
tiate a phenotypic change in resident ATM caus-
ing these cells to act in a pro-inflammatory
manner. New research demonstrated that tissue
resident macrophages originate during embryonic
development rather than from infiltration of circu-
lating monocytes (Epelman et al. 2014). Fate-
mapping techniques track embryonic macrophage
populations into adulthood and allow comparative
functional relationships of resident macrophages
and circulating monocytes (Epelman et al. 2014).
Further, a separate study demonstrated that mac-
rophage populations’ resident in the WAT
undergo local cell differentiation in response to
MCP-1 treatment ex vivo, independently of
monocyte recruitment (Amano et al. 2014). It is
likely that a combination of events takes place in
the obese environment, including the recruitment
of monocytes into the WAT and a shift in the
phenotype of the resident ATM when weight
gain promotes aberrant cytokine and chemokine
secretion in WAT.

Recently there have been discussions around
the naming conventions of macrophages in
obesity-induced inflammation (Murray
et al. 2014). At present, the inflammatory macro-
phages that increase with obesity are considered
M1 or classically activated ATM, while resident
macrophages, with a regulatory or anti-inflamma-
tory phenotype, are classified as M2 or alterna-
tively activated macrophages. This M1–M2 split
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has since been further subdivided as research
demonstrates subpopulations of M1 and M2
cells, with unique characteristics. It is likely that
in obese WAT, ATM phenotypes lie along a spec-
trum ranging from M1–M2 (Mosser and Edwards
2008).

Resident macrophages from different organs
have been shown to be as distinct from each
other as they are from circulating macrophages
(Gautier et al. 2012). This suggests that tissue-
specific factors drive macrophage differentiation.
In the liver, resident macrophages called Kupffer
cells play a role in tissue homeostasis. However
with obesity, additional macrophages are present
within the liver, recruited by MCP-1 signaling.
Depletion of all macrophages from the liver is
protective against HFD-induced IR. Recently,
hepatic macrophage content was shown to
decrease by 80 % when Ccr2�/� monocytes
were injected into obese WT mice
(Oh et al. 2012). Kupffer cells mediate the recruit-
ment of hepatic macrophages in obesity
(Morinaga et al. 2014). These recruited macro-
phages are six times more prevalent in obese
vs. lean mice and demonstrate greater Il6, Tnfa,
and MCP-1 expression (Morinaga et al. 2014).
The presence of hepatic macrophages impacts
on hepatic IS rather than systemic IS
(Cai et al. 2005).

4.3 Further Inflammatory Cells
Types

Other immune cell types are also drawn into the
chronic inflammatory tissue environment. These
include cells of the innate and adaptive immune
response. Dendritic cells (DC) are hematopoietic-
derived cells, and function in antigen-presenting,
an important process in initiating a T cell response
(Sallusto and Lanzavecchia 1994). Murine
models of DIO have demonstrated an increase in
DC number in bone marrow, WAT, and liver
(Chen et al. 2014; Reynolds et al. 2012;
Stefanovic-Racic et al. 2012). A comparison of
DC isolated from the SVF of lean and obese mice
demonstrated a difference in population subsets
(Bertola et al. 2012). Dendritic cells derived from

obese SVF have a greater propensity to drive the
differentiation of a T-helper (TH)17 cell popula-
tion, which in turn produce high levels of pro-
inflammatory IL-17 (Bertola et al. 2012; Chen
et al. 2014). The DC-derived pro-inflammatory
cytokine IL-12 has been shown to be increased
with obesity, and elevated serum levels of IL-12
have been noted in human T2D studies (Mishra
et al. 2011; Nam et al. 2013; Wegner et al. 2008).
This cytokine can drive T cells to differentiate to
pro-inflammatory TH1 cells.

T cells make up approximately 30 % of the
SVF in HFD-fed mice (McNelis and Olefsky
2014). T cell infiltration of WAT occurs before
ATM expansion (Nishimura et al. 2009; Winer
et al. 2009). In addition to increased numbers of
TH17 cells, obesity results in a change in other T
cell populations such as a reduction in regulatory
T cell (Treg) number (Feuerer et al. 2009; Winer
et al. 2009). These T cells promote alternative
activated macrophage responses to inflammation
(Osborn and Olefsky 2012), and when depleted,
there is reduced tyrosine phosphorylation of
IRS-1 (Feuerer et al. 2009). With HFD feeding,
there is an increase in WAT TH1 cell number
(Winer et al. 2009), and these cells activate
pro-inflammatory macrophages and increase
IL-1β (beta), IL-6, and TNF-α (alpha) secretion.
Thus the secretory profile of T cell populations
becomes skewed with obesity, further promoting
the inflammatory environment. T cells are tradi-
tionally thought to be activated by antigen-
presenting cells such as DC, via interaction with
the major histocompatibility complex (MHC).
Recent research suggests a new role for the
MHC II in obesity. Deng et al. demonstrated that
within 2 weeks of HFD feeding, murine subcuta-
neous and visceral adipocytes upregulate genes
involved in MHC II presentation and processing
(Deng et al. 2013). A similar set of genes was also
upregulated in a cohort of obese female subjects
(Deng et al. 2013). In HFD-fed MHC II�/� mice,
there was reduced TH cell number, reduced
expression of Nlrp3 and Tnf, and improved
IS. However, Morris et al. and follow-up research
by Cho et al. describe the ATM MHC II–T cell
interactions as an important driver ofWAT inflam-
mation, through T cell proliferation and WAT
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inflammation (Cho et al. 2014; Morris et al. 2013)
but did not support the finding of MHC II protein
expression in WAT (Cho et al. 2014). This
research revealed that macrophage cell-specific
deletion ofMHC II improved IS in HFD-fed mice.

4.4 The NLRP3 Inflammasome

The pro-inflammatory cytokine IL-1β (beta) is
secreted by macrophages (Lumeng et al. 2007),
as immature pro-IL1β (beta). It is processed to an
active mature state via an inflammasome com-
plex. Inflammasomes are multicomponent struc-
tures that assemble in response to danger-
associated molecular patterns (DAMPs) and
pathogen-associated molecular patterns, in order
to activate an immune response (Strowig
et al. 2012). Such DAMPs include obesity-related
metabolic stressors (monosodium urate, FA,
ceramides, cholesterol crystals). There has been
a particular focus on the NLRP3 inflammasome in
relation to IL-1β (beta) processing (Mills and
Dunne 2009). This inflammasome is comprised
of an NLRP3 NOD-like receptor (NLR), an
apoptosis-associated speck-like protein,
containing a CARD (ASC) adaptor protein and
caspase-1. The complex functions to activate
caspase-1, which in turn cleaves immature
pro-IL-1 family members to their active form
(Agostini et al. 2004; Dinarello 2009). Activation
of the NLRP3 inflammasome itself is required for
cytokine processing to proceed; in vitro, this can
be achieved through a two-step process of priming
followed by activation. Firstly, TLR4 is activated
by a ligand such as LPS or SFA, and this initiates
pro-IL-1β (beta) production (Reynolds et al. 2012;
Wen et al. 2011) and is considered a first “hit.” A
second activation signal results in the assembly of
the inflammasome complex. Exogenous adeno-
sine triphosphate (ATP) may be used as a second
activation stimulus in experimental models.

NLRP3 activation by FA is variable upon FA
saturation (Finucane et al. 2015). Whereas SFA
prime the NLRP3 inflammasome, monounsatu-
rated fatty acids (MUFA) have a reduced ability
to prime the complex. Consequently, in MUFA-
HFD-fed mice, there is reduced WAT Nlrp3,

caspase-1, and Il1β (beta) expression ex vivo rel-
ative to SFA-HFD. Research has shown a role for
the metabolic sensor AMPK in NLRP3 activation
(McGettrick and O’Neill 2013). This complex is
involved in energy balance and FA metabolism,
and it is activated by threonine phosphorylation
(McGettrick and O’Neill 2013; Zeng et al. 2014).
Treatment with the SFA, palmitate, reduces
AMPK activation in bone marrow macrophages
(BMM) and is coincident with increased IL-1β
(beta) secretion (Wen et al. 2011). Finucane
et al. demonstrated a significant reduction in
SFA-HFD-fed WAT pAMPK levels relative to a
chow and MUFA-HFD group. Oleic acid, a
MUFA, induces BMM AMPK activity in vitro
which in turn reduces the IL-1β (beta) response
to ATP stimulation (Finucane et al. 2015). Ex vivo
analysis of LPS-treated monocyte-derived
macrophages (MDM) from T2D patients demon-
strates increased expression in Nlrp3 and Asc
(Lee et al. 2013) and following stimulation with
DAMPs increased IL-1β (beta) secretion. Metfor-
min treatment of T2D patients prevented matura-
tion of MDM-derived IL-1β (beta), through
enhanced AMPK phosphorylation. Together
these studies highlight a link between AMPK
and NLRP3 inflammasome activity (Fig. 2) and
point to AMPK activation as an attractive target to
attenuate “metaflammation.”

4.5 Linking Inflammatory
and Insulin Signaling Pathways

Toll-like receptor-4 has a central role in inflam-
matory signaling in the context of obesity. This
receptor is present on the cell surface of adipo-
cytes and macrophages and can induce inflam-
mation in response to diverse stimuli including
LPS and SFA. Hematopoietic cell depletion of
TLR4 protects mice from diet-induced IR and
results in a reduction in Tnfa and Il6 expression
in WAT and liver (Orr et al. 2012). Signaling via
the TLR4 receptor can activate either the
MyD88-dependent pathway or the TRIF-
dependent pathway, and these pathways con-
verge at the protein kinase TAK-1. Activation
of TAK-1 results in downstream activation of
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the NF-κ (kappa) B and mitogen-activated pro-
tein kinase (MAPK) signaling pathways (Könner
and Br€uning 2011).

The NF-κ (kappa) B pathway is downstream of
receptors TLR4, TNFR, and IL1R. This pathway
has a major role in a number of inflammatory
conditions (Baltimore 2011; Ben-Neriah and
Karin 2011). Activation of NF-κ (kappa) B sig-
naling drives secretion of TNF-α (alpha), IL-1β
(beta), and IL-6, thus propagating the inflamma-
tory environment (Donath and Shoelson 2011).
Upon receptor engagement, a signaling cascade
is initiated, resulting in the phosphorylation and
thus activation of the Iκ (kappa) B kinase (IKK)
complex and subsequently phosphorylation of
inhibitor of κ (kappa) B (Iκ (kappa) B), marking
this molecule for degradation and releasing
the NF-κ (kappa) B transcription factor. Once

released, NF-κ (kappa) B translocates to the
nucleus and initiates expression of cytokines.

With obesity, there is increased expression of
suppressor of cytokine signaling (SOCS) proteins,
and members of this family act to inhibit insulin
signaling (Emanuelli et al. 2008; Emanuelli 2000;
Ueki et al. 2004). The SOCS-1 and SOCS-3
proteins function to control cytokine action
through feedback loops. These proteins also
partially block tyrosine phosphorylation of the
insulin receptor, and downstream from this, phos-
phorylation of IRS-1 and IRS-2 is almost entirely
inhibited (Ueki et al. 2004). Preferential phos-
phorylation of serine/threonine residues on IRS-
1 over tyrosine residues results in abrogation of
the insulin receptor signaling cascade (Gual
et al. 2005; Paz et al. 1997). Factors that promote
aberrant serine/threonine IRS-1 phosphorylation

Fig. 2 Metaflammation – interaction between inflam-
matory and insulin signaling pathways. With obesity, the
interaction between inflammatory signaling pathways and
the insulin signaling pathway results in diminished insulin
signaling and, if the inflammatory state persists, insulin
resistance and reduced insulin-stimulated glucose
uptake. Inflammatory signaling results in preferential
serine/threonine phosphorylation of IRS-1, and this halts
the signaling cascade and prevents GLUT4 trafficking to
the cell surface. Research into the role of the NLRP3

inflammasome in pro-inflammatory IL-1β (beta)
processing has emphasized the cross talk between inflam-
matory signaling and insulin resistance and highlighted
this inflammasome complex as a therapeutic target. Met-
formin and oleic acid, a monounsaturated fatty acid, reduce
NLRP3 inflammasome activity via activation of the meta-
bolic sensor AMPK. Blocking of NF-κ (kappa) B signaling
by the dietary fatty acids EPA and DHA has shown
antiinflammatory potential in vitro models, but data on
this effect is contentious in human studies
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include SOCS-3 but also FFA and inflammatory
mediators such as TNF-α (alpha), via NF-κ
(kappa) B, JNK, and MAPK pathways (Gual
et al. 2005; Tanti and Jager 2009). Tyrosine phos-
phorylation of IRS-1 allows for continuation of
insulin signaling. Downstream of IRS-1 lie the
molecules phosphoinositide-3-kinase (PI3K) and
AKT, and these function in glucose uptake into
the WAT, liver, and muscle. In normal physiolog-
ical conditions, insulin-dependent signaling
results in AKT-stimulating glucose transporter
type (GLUT) 4 translocation to the cell surface
via PKC phosphorylation of AS160 (Imamura
et al. 2003; Ng et al. 2010); GLUT4 functions in
the transport of glucose into the cell.

5 Therapeutic Approaches

There is sound evidence showing that an obesity-
induced inflammatory state promotes the progres-
sion of IR. Therefore, therapeutic approaches
which attenuate this state and/or promote the res-
olution of inflammation may impact favorably
upon obesity-induced IR. Several pharmacologi-
cal agents and lifestyle interventions have an
impact on both metabolism and inflammation. In
reviewing the concept of resolution of metabolic
inflammation, it is clear that exact processes
involved are not completely understood. Thus
more research is required to identify and assess
effective anti-inflammatory treatment strategies.

5.1 Drug Therapies

As IR can precede the development of T2D by
decades, therapies that target inflammation asso-
ciated with IR are central to halting the progres-
sion toward overt T2D. If IR progresses to T2D,
there are a variety of treatments available. Some
pharmacological approaches which show poten-
tial include metformin, TZDs, and anakinra.
While these therapies have potential in terms of
clinical efficacy, they are limited by their side
effects. Anti-inflammatory therapies also have
potential adverse effects, linked to long-term
usage and immune suppression.

At present, guidelines recommend metformin
as a first-line treatment for T2D (Centre for Clin-
ical Practice at NICE 2009). The biomarker
HbA1c gives a measure of average plasma glu-
cose concentrations over the previous weeks and
therefore indicates loss of glycemic control asso-
ciated with T2D. Metformin leads to an initial
drop in HbA1C, after which patients exhibit a
loss of glycemic control and HbA1C levels
increase (Turner et al. 1999). Metformin regulates
lipid and glucose metabolism through increased
phosphorylation and activation of AMPK (Zhou
et al. 2001). This antidiabetic drug inhibits mito-
chondrial function, leading to elevated AMP and
ADP levels, thus stimulating AMPK activation
(McGettrick and O’Neill 2013). Given the role
of metabolic stress on IL-1 β (beta) activation
and IR, this has important implications with
respect to attenuating the inflammatory response
associated with obesity and T2D. Therapies
which inhibit pro-inflammatory responses offer
an opportunity to correct the metabolic conse-
quences of obesity.

The insulin-sensitizing class of drugs, TZDs,
are selective ligands of PPAR-γ (gamma) and
target IR (Yki-Järvinen 2004). These PPAR-γ
(gamma) ligands function by increasing both
peripheral glucose disposal and adiponectin levels
while also decreasing FFA and pro-inflammatory
cytokine levels (Hotamisligil 2005). Insulin sig-
naling is enhanced through increased IRS-1
expression and inhibition of the MAPK pathway
(Miyazaki et al. 2003). Therapies that regulate
PPAR-γ (gamma) activity by targeting post-
translational modifications of its receptor have
the potential to preserve the treatment effect of
TZDs while minimizing the side effects associ-
ated with their use (Lefterova et al. 2014). Never-
theless the cross talk between PPARγ activation
and inflammation requires further investigation.

In obese WAT, macrophage number correlates
with the extent of tissue IR. Therefore, therapies
which target macrophage accumulation are of
particular interest. With obesity,
pro-inflammatory macrophages are characterized
by the expression of CD11c. Depletion of CD11c
macrophages results in reduced WAT inflamma-
tion and improved IS in obese mice (Patsouris
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et al. 2008). Clodronate liposomes that ablate
macrophages in a tissue-specific manner offer
another potential approach (Feng et al. 2011). In
a murine model, macrophage ablation specific to
WAT improved glucose homeostasis, increased
adiponectin levels, reduced TAG levels, and sig-
nificantly altered cytokine expression levels (Feng
et al. 2011). While this type of therapy is not yet
suitable for clinical use, it presents an interesting
proof of concept.

Increased TNF-α (alpha) levels are well
documented in obesity; however, inhibition of
TNF-α (alpha) provided limited success in
humans with T2D (Dali-Youcef et al. 2013).
Certain TNF-α (alpha) inhibitors such as
etanercept that have beneficial effects in other
inflammatory conditions such as rheumatoid
arthritis and psoriasis, are associated with a
decreased risk of developing T2D but are not
currently used in the treatment of T2D (McNelis
and Olefsky 2014). Targeting another pro-
inflammatory cytokine, IL-1β (beta) has shown
some positive results. Anakinra is an IL-1 receptor
antagonist (RA) that improves glycemic control,
preserves β (beta)-cell function, and reduces
markers of inflammation (Larsen et al. 2007). Use
of the monoclonal antibody XOMA 052 also tar-
gets IL-1β (beta), resulting in improved glycemic
management and β (beta)-cell function in a murine
model of DIO (Owyang et al. 2010). As the IL-1
family is key to the inflammatory response in met-
abolic dysregulation, IL-1 antagonism has thera-
peutic potential (Donath and Shoelson 2011).
However, global anti-inflammatory therapies such
as TNF-α (alpha), IL-1 RA, and MAPK inhibitors
are not without side effects (Kaminska 2005). The
chronic nature of obesity-associated inflammation
requires long-term treatment which raises concern
for potential interference with inflammatory-
mediated immune responses and key cellular pro-
cesses (Dinarello 2010).

Co-stimulatory interactions have been impli-
cated in obesity-associated inflammation. One
such pair is the co-stimulatory protein CD40 and
its ligand CD40L, members of the tumor necrosis
factor receptor (TNFR) family. The positive cor-
relations between increased body mass index
(BMI) and CD40 and the implication of CD40

ligation in activation of pro-inflammatory path-
ways such as JNK, MAPK, and NF-κ (kappa) B
make it an interesting therapeutic target (Seijkens
et al. 2014). In HFD-fed mice, small molecule-
mediated inhibition of the CD40-TRAF6 interac-
tion improved glucose tolerance (van den Berg
et al. 2014). However, immunosuppressive side
effects prevent long-term use of antibody treat-
ment against co-stimulatory molecules and cyto-
kine inhibition. Therapies which inhibit the
NLRP3 inflammasome offer a more targeted
approach rather than global immunosuppressive
agents. Recently, the small molecule inhibitor
MCC950 was shown to inhibit the NLRP3
inflammasome activation and reduce serum
IL-1β (beta) levels in a murine model of inflam-
matory disease (Coll et al. 2015). Existing thera-
pies that decrease NLRP3 activation have shown
clinical efficacy. The success of metformin (Lee
et al. 2013), anakinra (Larsen et al. 2007), and the
sulfonylurea glyburide (Masters et al. 2010) high-
lights the potential for NLRP3 inhibitors as targets
for the treatment of metabolic disorders
(McGettrick and O’Neill 2013).

5.2 Lifestyle Interventions

From the lifestyle perspective, weight loss is one
strategy that reduces inflammation and halts the
development of IR. Dietary and lifestyle modifica-
tions that attain significant weight loss attenuate
inflammation and improve IS by lowering meta-
bolic stress and reducing ATM number
(Kovacikova et al. 2011). However, achieving and
maintaining weight loss is challenging (Finucane
et al. 2015; Gage 2012). Exercise improves insulin
IS, and it increases IL-6 and diacylglycerol
acyltransferase (DGAT) 1 expression in skeletal
muscle (Schenk andHorowitz 2007). Skeletal mus-
cle-derived-IL-6 induces the production of IL-1 RA
and IL-10, inhibits TNF-α (alpha) secretion, and
functions to promote glucose uptake (Petersen and
Pedersen 2005). DGAT induces TAG formation
from DAG, thereby reducing DAG concentrations,
which otherwise impede insulin signaling
(Corcoran et al. 2007). Even a single bout of exer-
cise can reduce the lipotoxic and potentially
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pro-inflammatory effect of elevated DAG levels to
improve IS. Presently, there is lack of firm evidence
as to whether anti-inflammatory strategies are the
most efficacious therapy within the context of obe-
sity. Further work is needed in this area to under-
stand fully their mechanism of action.

5.3 Nutrient-Based Approaches:
Reducing Inflammation

Inflammatory signaling through several kinases,
namely,MAPK, PKC, and NF-κ (kappa) B, drives
obesity-induced inflammation (Hotamisligil
2005). Therapies which target NF-κ (kappa) B,
TLR4, and PPAR-γ (gamma) are of clinical
importance.

Long-chain n-3 polyunsaturated fatty acids
(LC n-3 PUFA), particularly eicosapentaenoic
acid (EPA) and docosahexaenoic acid (DHA),
exert anti-inflammatory effects (Calder 2006).
Animal studies provide convincing mechanistic
evidence that LC n-3 PUFA stimulate G protein-
coupled receptor 120 (GPR120) (Oh et al. 2010;
Yan et al. 2013), resulting in inhibition of TAK
phosphorylation, and this halts further signaling
(Oh et al. 2010). Additionally, a role for EPA and
DHA has been proposed in ameliorating the
pro-inflammatory effects of SFA which activate
TLR4 and increase NF-κ (kappa) B transcrip-
tional activity (Reynolds et al. 2012). LC n-3
PUFA also inhibit the production of
pro-inflammatory eicosanoids (Calder 2006),
due to a combination of reduced arachidonic
acid, the precursor of pro-inflammatory eicosa-
noids (Caughey et al. 1996), and enhanced
DHA-derived resolvin and protectin synthesis
(Calder 2006).

Despite consistent in vitro data demonstrating
the benefits of LC n-3 PUFA on metabolic health,
these effects have translated to only a modest
effect in vivo (Kabir et al. 2007; Tierney
et al. 2011). Long-term LC n-3 supplementation
did not show the positive effects on IS observed in
short-term high-dose studies or in in vitro models
(Tierney et al. 2011). Some cross-sectional and
epidemiological data suggests that high LC n-3

PUFA status is associated with a reduced risk of
obesity-associated inflammation and IR (Lopez-
Garcia et al. 2004). Human LC n-3 PUFA
interventions provide conflicting evidence on the
efficacy of n-3 PUFA supplementation, and these
show little or no effect on inflammatory markers
or IR (McMorrow et al. 2015) and only modestly
alter lipoprotein risk factor profile; TAG levels are
significantly altered, while there was no signifi-
cant impact on LDL or HDL levels (Dyerberg
et al. 2004; Finnegan et al. 2003). It is possible
that LC n-3 PUFA may be ineffective when the
metabolic stress associated with obesity goes
beyond a certain level, after which the potential
efficacy-associated LC n-3 PUFA are negated by
the adverse metabolic phenotype. Alternatively,
an individual’s responsiveness to LC n-3 PUFA
interventions may be due to age, gender, genetic
variability, variations in treatment duration, dose,
or the populations studied (Calder et al. 2011). For
example, in the case of gender-specific effects,
LIPGENE demonstrated that LC n-3 PUFA were
only effective in men but not in women with MetS
(Tierney et al. 2011). A similar gender effect was
also observed in the FINGEN study (Caslake
et al. 2008).

A number of additional nutrients impact on the
NF-κ (kappa) B pathway, including the polyphe-
nols epigallocatechin gallate, found in green tea,
which also suppresses ERK phosphorylation,
and resveratrol present in red wine (Bakker
et al. 2010; Liu et al. 2006; Yang et al. 2001).
Curcumin is a known anti-inflammatory and
anticarcinogenic agent that has also been shown
to inhibit NF-κ (kappa) B activation (Singh and
Aggarwal 1995).

Combinations of anti-inflammatory nutritional
therapies may offer a more robust effect, capable
of targeting multiple inflammatory signaling path-
ways. A dietary intervention which included res-
veratrol, lycopene, epigallocatechin gallate, α
(alpha)-tocopherol, vitamin C, EPA, and DHA
given over 5 weeks elicited anti-inflammatory
effects on healthy overweight subjects (Bakker
et al. 2010). This anti-inflammatory dietary mix
increased adiponectin levels; however, C-reactive
protein and pro-inflammatory cytokines remained
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largely unchanged (Bakker et al. 2010). A similar
anti-inflammatory dietary mix in mice reduced
plasma cholesterol, TAG, and serum amyloid A
and improved inflammatory risk factors of cardio-
vascular disease such as intercellular adhesion
molecule-1 (ICAM-1) and E-selectin (Verschuren
et al. 2011). Despite the potential of an anti-
inflammatory dietary mix for disease prevention,
their impact to date has resulted in only subtle
improvements in inflammatory biomarkers, and
future work in this area is required to maximize
this potential.

Pharmacological therapies such as
co-stimulatory molecule and cytokine inhibitors,
clodronate liposomes, PPAR-γ (gamma) ligands,
and therapies which stimulate AMPK activation
have been shown to effectively reduce obesity-
associated inflammation thus providing treatment
opportunities for conditions such as IR and T2D.
However, from a nutritional perspective, although
some prospective and cross-sectional data is
potentially promising, results from interventions
are mixed. Perhaps nutritional status can prevent
development but not treat inflammation or IR
once established. Certain individuals may respond
more favorably to interventions based on age,
gender, and genetics.

6 Conclusion

The past two decades have seen a drastic increase
in obesity levels; however, our understanding of
the underlying mechanism of action has also
greatly increased. Greater knowledge of the
underlying pathology of obesity-induced inflam-
mation and IR may reveal new treatment options.
A good lifestyle and metabolic phenotype can
attenuate the risk of developing IR (Phillips
et al. 2013; Rhee et al. 2014). Nevertheless,
there is lack of clarity in relation to dietary/life-
style/pharmaceutical intervention strategy effi-
cacy. Therefore, greater knowledge in relation to
potential therapies which target the chronic
low-grade inflammation associated with obesity
and metabolic disorders such as IR and T2D is
vitally important.
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Abstract
Obesity is associated with an increased risk of
atherosclerosis and coronary artery disease, in
part due to its strong association with athero-
genic dyslipidemia. The latter is characterized
by elevated plasma triglycerides, low plasma
high-density lipoprotein (HDL) cholesterol,
and high plasma concentrations of apolipopro-
tein (apo) B-containing lipoproteins.
Dysregulation of lipoprotein metabolism in
obese subjects may be due to a combination
of overproduction of very-low-density lipopro-
tein, decreased catabolism of apoB-containing
particles, and increased catabolism of HDL
particles. These abnormalities may be conse-
quent on a global metabolic effect of insulin
resistance and an excess of visceral fat. Life-
style modifications (dietary restriction and
increased physical activity) are first-line thera-
pies to improve lipid abnormalities in obesity.
Pharmacological treatments, such as statins,
fibrates, ezetimibe, and fish oils, could also be
employed alone or in combination with other
agents to optimize the benefit of lifestyle mod-
ifications on atherogenic dyslipidemia. Kinetic
studies show that improvements in lipid and
lipoprotein profiles in obesity can be collec-
tively achieved by several mechanisms of
action including decreased secretion and
increased catabolism of apoB, as well as
increased secretion and decreased catabolism
of apoA-I. There are several pipeline therapies
for correcting atherogenic abnormalities in
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lipoprotein metabolism. However, their clini-
cal efficacy, safety, and cost-effectiveness
remain to be demonstrated.

Keywords
Visceral Obesity • Lipoprotein Metabolism •
Insulin Resistance • Metabolic Syndrome •
Cardiovascular Disease • Lipid Management

1 Introduction

Obesity, particularly the visceral type, increases
the risk of atherosclerosis and coronary artery dis-
ease principally owing to the effects of coexistent
insulin resistance, atherogenic dyslipidemia (ele-
vated triglyceride, low HDL cholesterol, and ele-
vated small, dense LDL particles), hypertension,
and pro-inflammatory/thrombotic state (Poirier
et al. 2006; Yusuf et al. 2005; Després et al. 1990;
Tchernof and Després 2013). This constellation of
metabolic disorders is known collectively as the
metabolic syndrome (MetS) (Expert Panel on
Detection, Evaluation, and Treatment of High
Blood Cholesterol in Adults 2001; Alberti and
Zimmet 1998). Dyslipidemia is the most common
and consistent abnormality in obese subjects. This
review focuses on the dysregulation and therapeu-
tic regulation of lipoprotein transport in obese sub-
jects from studies chiefly carried out in vivo with
stable isotope tracers. We also examine the kinetic
effects of lifestyle modification and pharmacother-
apy for correcting the lipid and lipoprotein abnor-
malities in visceral obesity.

1.1 Dyslipidemia: A Cardiovascular
Risk Factor in Obesity

Visceral obesity is strongly associated with
dyslipidemia. High plasma triglycerides, low
HDL cholesterol, and high concentrations of apoli-
poprotein (apo) B-containing lipoproteins are argu-
ably the major mediators of atherogenicity
(Després et al. 1990; Tchernof and Després 2013).
In the INTERHEART study, the ratio of apoB to
apoA-I was found to be the strongest risk factor
followedbydiabetes and hypertension in predicting

myocardial infarction (Yusuf et al. 2004). In the
European Prospective Investigation into Cancer
Study-Norfolk (EPIC-Norfolk), both men and
women with metabolic dyslipidemia had increased
coronary artery disease (CAD) risk (HR 1.61, 95%
CI 1.40–1.86 and HR 1.78, 95 % CI 1.47–2.15)
compared with subjects with normal triglyceride
and HDL cholesterol levels (Rana et al. 2009).

1.1.1 Hypertriglyceridemia
The epidemiological evidence that hypertrigly-
ceridemia is an independent risk factor for CVD
has been demonstrated by two Mendelian random-
ization studies showing the causal association
between genetic variation in the apoA5, apoC-III,
and LPL genes with myocardial infarction (Miller
et al. 2011; Jorgensen et al. 2012; Varbo et al. 2013).
The atherogeneity of hypertriglyceridemia relates to
small triglyceride-rich lipoprotein (TRL) remnant
particles which induce endothelial dysfunction,
inhibit fibrinolysis, and enhance coagulation and
vascular inflammation. Readily traversing the arte-
rial wall, smaller TRL remnants (that are rich in
cholesterol and apoE) are trapped by connective
tissue matrix and after phagocytosis transform arte-
rial wall macrophages to atherogenic “foam cells.”
TRL lipolysis also releases toxic products, such as
oxidized free fatty acids (FFAs) and lysolecithin,
that further induce endothelial cell inflammation
and coagulation (Nordestgaard and Nielsen 1994;
Tabas et al. 2007; Goldstein et al. 1980; Zheng and
Liu 2007).

1.1.2 Low HDL Cholesterol
Population studies have shown that plasma HDL
levels correlate inversely with cardiovascular dis-
ease risk (Singh et al. 2007). Evidence suggests
that the cardiovascular effect of the HDL system
may relate chiefly to apoA-I content of HDL par-
ticles. The IDEAL and EPIC-Norfolk studies indi-
cated that higher apoA-I is an independent,
negative predictor of cardiovascular risk (van der
Steeg et al. 2008). The anti-atherogenic effect of
HDL is attributed to its role in reverse cholesterol
transport (RCT) in which HDLs remove choles-
terol from cells (such as macrophages in the
artery wall) directly back to the liver or indirectly
via intermediate-density lipoprotein (IDL) and
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low-density lipoprotein (LDL) particles (Lewis
and Rader 2005). HDLs also inhibit LDL oxida-
tion, promote endothelial repair, improve
endothelial function, have antithrombotic and
anti-inflammatory properties, and inhibit the
binding of monocytes to the endothelium
(Kontush and Chapman 2006).

1.1.3 Elevated ApoB-100 and Small,
Dense LDL

ApoB-100 is the major constituent protein of very-
low-density lipoprotein (VLDL), IDL, and LDL
particles. Hence, plasma concentration of apoB-
100 reflects the total numbers of atherogenic parti-
cles (Young 1990). Prospective epidemiological
studies and lipid-lowering trials clearly demonstrate
that apoB-100 is at least as good as and often better
than LDL cholesterol in estimatingCVD risk (Chan
and Watts 2006). Emerging evidence also suggests
that subclasses of LDL are also important indicating
that accumulation of small, dense LDL particles in
plasma is associated with increased risk of cardio-
vascular disease (CVD) (Berneis andKrauss 2002).
The atherogenicity of these particles involves sev-
eral mechanisms, including greater susceptibility to
oxidative modification, decreased affinity for LDL
receptor, increased binding to heparan sulfate pro-
teoglycans in thematrix of arterial wall, and impair-
ment of endothelial function due to depression in
expression and activity of nitric oxide synthase
(Krauss 2010).

1.2 Pathogenesis of Atherogenic
Dyslipidemia in Obesity

Integral to atherogenic dyslipidemia in obesity is
dysregulation of VLDL metabolism. This results
from hepatic insulin resistance which is related to
ectopic fat accumulation in visceral adipose tissue
and liver (Ginsberg and Huang 2000; Taskinen
2003; Adiels et al. 2008).

Increased FFA released from adipose
tissue suppresses insulin-mediated glucose uptake
by the skeletal muscle. To compensate for
the decreased insulin sensitivity in the muscle, the
pancreas increases insulin secretion to maintain nor-
mal glucose tolerance. Chronic hyperinsulinemia

may further exaggerate insulin resistance by
downregulating insulin receptors and desensitizing
post-receptor pathways. Moreover, the diminished
fatty acid oxidation capacity in the skeletal muscle
cells also increases the intramyocellular lipid (fatty
acyl-CoA and triglycerides) concentration. This
effect in turn further impairs skeletal muscle glucose
uptake and whole-body insulin sensitivity.

The production of apoB-100 is mainly regu-
lated by the availability of triglyceride and cho-
lesterol in the liver (Sniderman and Cianflone
1993; Thompson et al. 1996). Increased visceral
fat accumulation in obesity markedly increases
the flux of FFA in the portal vein to the liver.
The increased flux of FFAs to the liver stimulates
hepatic secretion of apoB-100 by increasing syn-
thesis of cholesterol and triglycerides (Tchernof
and Després 2013). Insulin resistance is also a
major determinant of VLDL apoB-100 metabo-
lism in obesity. Forkhead box protein O1
(FOXO1) is a transcription factor that activates
gluconeogenesis (Matsumoto et al. 2006; Brown
and Goldstein 2008). In the insulin-resistant state,
insulin fails to inactivate FOXO1, thereby
enhancing gluconeogenesis and de novo lipogen-
esis (DNL). Chronic hyperinsulinemia also
induces DNL by enhancing sterol regulatory ele-
ment binding protein 1-c (SREBP-1c) and delays
the intrahepatic degradation of apoB (Uyeda and
Repa 2006; Horton et al. 2002). In the skeletal
muscle and adipose tissue, insulin resistance also
impairs TRL catabolism by decreasing lipoprotein
lipase (LPL) activity (Tchernof and Després
2013). Insulin resistance impairs LDL receptor
expression and activity necessary for normal
LDL apoB-100 clearance. ApoC-III, an inhibitor
of LPL and of TRL remnant uptake by hepatic
lipoprotein receptors, is strongly associated with
insulin resistance. A loss of insulin-mediated sup-
pression of apoC-III via the FOXO1 pathway
(Altomonte et al. 2004), coupled with glucose-
stimulated apoC-III expression, further delays
the apoB-100 catabolism by inhibiting LPL and
receptor-mediated uptake by the liver. Increased
competition between VLDLs, chylomicrons, and
their remnants for lipolytic and receptor-mediated
clearance further exacerbates hypertrigly-
ceridemia in the fasted and postprandial states
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(Taskinen et al. 2011). Moreover, experimental
studies have demonstrated that insulin resistance
stimulates de novo lipogenesis, increases micro-
somal triglyceride transfer protein, and enhances
intracellular apoB-48 stability in the intestine
(Duez et al. 2008). Increased FFA load delivered
to the enterocyte, especially during the postpran-
dial period, may further impair insulin signaling.
Collectively, these effects would increase
enterocytic secretion of apoB-48.

Consistent with the aforementioned mecha-
nisms, we have demonstrated that insulin-
resistant, obese individuals have elevated hepatic
secretion of apoB-100, apoC-III, and triglycerides
in VLDL compared with nonobese individuals
(Chan et al. 2006a). This abnormality is associ-
ated with the delayed clearance of IDL and LDL
apoB-100 (Chan et al. 2002a). We have found that
high liver and visceral fat contents are strong pre-
dictors of VLDL apoB-100 oversecretion in sub-
jects with visceral obesity (Chan et al. 2010a;
Watts et al. 2003a). Recently, we also demonstrate
that postprandial hypertriglyceridemia in visceral
obesity relates to an overproduction and impaired
catabolism of apoB-48-containing lipoproteins
(Wong et al. 2014a).

The increased hepatic secretion of large
triglyceride-rich VLDL has a major qualitative
and quantitative impact on the metabolism of
LDL and HDL (Adiels et al. 2008; Rashid
et al. 2003). Briefly, a high hepatic triglyceride
content expands the plasma pool of triglyceride-
rich VLDL and results in increased cholesteryl
ester transfer protein (CETP)-mediated hetero-
exchange of neutral lipid with LDL. Under the
action of hepatic lipase (HL), which is overactive
in insulin resistance, the triglyceride-rich LDL
particles are hydrolyzed into small, dense LDL,
which are less efficiently cleared from the circu-
lation. The same metabolic process is also
involved in the remodeling of HDL particles.
Hydrolysis of triglyceride-rich HDL particles by
HL decreases the size of HDL particles, which are
then cleared rapidly from plasma.

In summary, a critical, selective effect of insu-
lin resistance and visceral fat accumulation
increases the secretion of VLDL apoB-100 and
chylomicron apoB-48; delays the hepatic

clearance of chylomicron remnants, VLDL and
LDL apoB-100; and enhances the catabolism of
HDL apoA-I (Fig. 1). These can be therapeuti-
cally modulated with lifestyle and drug therapy.

1.3 Management of Dyslipidemia

Prevention and treatment of dyslipidemias is an
integral part of CVD prevention. LDL cholesterol
remains the primary target of therapy in most
strategies of dyslipidemia management (Reiner
et al. 2011; Stone et al. 2014). The consensus
statement from the European Society of Cardiol-
ogy (ESC) and the European Atherosclerosis
Society (EAS) on the prevention of CVD in clin-
ical practice recommends the assessment of total
CAD or CV risk. Patients with known clinical
CVD and those who do not have clinical CVD
but who have chronic kidney disease (as defined
by a GFR<60 mL/mim/1.73 m2), type 2 diabetes,
or type 1 diabetes with microalbuminuria or those
with a 10-year risk of a first fatal atherosclerotic
CV event (Systematic Coronary Risk Evaluation,
SCORE) of >10 % are considered at very high
risk; they should be treated to an LDL cholesterol
goal of <70 mg/dL (1.8 mmol/L) or a �50 %
reduction from baseline LDL cholesterol, a
non-HDL cholesterol goal of <100 mg/dL (2.6
mmol/L), and an apoB-100 goal of <80
mg/dL. For subjects at high (with a SCORE risk
5–10 % or familial dyslipidemia) and moderate
(with a SCORE risk 1–5 %) risks, an LDL cho-
lesterol target of <2.5 mmol/L and <3 mmol/L
should be considered, respectively (Reiner
et al. 2011). The ESC/EAS guidelines also recog-
nize other factors, such as elevated triglycerides,
social deprivation, central obesity, elevated lipo-
protein, subclinical atherosclerosis, or family his-
tory of premature CVD, may further modify
absolute risk.

The recent guidelines from the American Col-
lege of Cardiology (ACC)/American Heart Asso-
ciation (AHA) on the control of blood cholesterol
to reduce atherosclerotic cardiovascular disease
(ASCVD) in adults do not specify LDL choles-
terol targets (Stone et al. 2014). Patients with
known clinical ASCVD and those who do not
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have clinical ASCVD but who have primary ele-
vation of LDL cholesterol (>4.9 mmol/L) or dia-
betes (type I or type II) with LDL cholesterol
between 1.8 and 4.9 mmol/L and a 10-year
ASCVD risk of >7.5 % are considered at high
risk; they should be treated with high-intensity
statin achieving >50 % reduction of LDL choles-
terol. The guidelines recommend that those with a
predicted ASCVD risk of >7.5 % should be con-
sidered for moderate- to high-intensity statin.
Those who have a predicted ASCVD risk of
5–7.5 % or diabetes with low risk should consider
moderate-intensity statin therapy to achieve
30–50 % reduction of LDL cholesterol. However,
both the ESC/EAS and ACC/AHA guidelines do
not specify targets for triglyceride and HDL cho-
lesterol levels.

Treatment should initially focus on lifestyle
modifications including weight loss, dietary mod-
ification, and exercise. Lipid-regulating agents
may be used as second-line strategy to optimize
the regulation of dyslipoproteinemia (Third report
of the National Cholesterol Education Program
(NCEP) 2002). The commonly used lipid-regulat-
ing agents include statins, fibrates, cholesterol

absorption inhibitors, and n-3 polyunsaturated
fatty acid (n-3 PUFA) supplementation. Details
of the use of each treatment are discussed below
with specific reference to mechanisms of action
(Table 1).

1.3.1 Dietary and Lifestyle Modification
Weight loss Studies of weight loss have shown
that weight reduction is associated with a reduc-
tion in CVD and diabetes mortality, probably
owing to improvements in a number of cardiovas-
cular risk factors including insulin resistance,
dyslipidemia, glycemic control, hypertension,
and hemostatic factors (Van Gaal et al. 1997).
Dietary intervention is the most commonly used
weight loss strategy. Weight reduction can result
in a 10 % decrease in total cholesterol, a 15 %
decrease in LDL cholesterol, a 30 % decrease in
triglycerides, and an 8 % increase in HDL choles-
terol for every 10 kg loss (Dattilo and Kris-
Etherton 1992). A low-calorie diet of about
1,000–1,500 kcal per day is the preferred method
of dietary intervention. Reduced intakes of satu-
rated fats (<7 % of total calories) and cholesterol
(<200 mg/day) produce the most desirable
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lipoprotein responses. Mediterranean-style diets
can achieve sustained reductions in plasma tri-
glycerides (10–15 %), insulin resistance, systolic
blood pressure, and risk of type 2 diabetes (Shai
et al. 2008; Esposito et al. 2010). Such diets have
recently been shown to decrease the incidence of
major CVD events in a primary prevention setting
in people with dyslipidemia, metabolic syndrome,
and type 2 diabetes (Estruch et al. 2013). Our
tracer kinetic data suggest that weight loss using
a standard low-fat, low-caloric diet decreases the
hepatic secretion of VLDL apoB-100 and recip-
rocally upregulates apoB-100 catabolism (Riches
et al. 1999). These mechanisms could also explain
improvements in plasma markers for TRL metab-
olism (apoC-III, apoB-48, remnant-like particle
cholesterol) (Chan et al. 2008a). These events
were chiefly related to the reduction in visceral
adipose tissue and intrahepatic fat content, as well
as improvements in insulin sensitivity (Estruch
et al. 2013). The increase in LDL apoB-100 clear-
ance following weight loss could be due to
increased LDL receptor activity related to

reduction in both de novo cholesterol synthesis
and hepatic insulin resistance (James et al. 2003).
The improvement in LDL metabolism with
weight loss is also associated with an increase in
LDL particle size. We also found that weight loss
decreased both the catabolism and production of
HDL apoA-I, thereby not altering plasma HDL
apoA-I nor HDL cholesterol concentrations
(Ng et al. 2007). As indicated earlier, the catabolic
changes in HDL with weight loss could be a
consequence of reduction in the plasma VLDL-
triglyceride pool available for exchange with
HDL (Adiels et al. 2008; Rashid et al. 2003).

Physical activity A sedentary lifestyle in obese
individuals may partly increase risk of CVD by
exacerbating insulin resistance and dyslipidemia
(Knowler et al. 2002). Several studies have
reported that increased physical activity corrects
dyslipidemia in patients with obesity and type
2 diabetes (Wing et al. 2011; Bassuk and Manson
2003). However, the type of exercise differen-
tially affects lipoprotein metabolism (Kraus and
Houmard 2002). Endurance exercise training

Table 1 Effect of therapeutic interventions on plasma lipid and lipoprotein concentrations in obesity

Plasma lipid and lipoprotein concentrations

Interventions
LDL cholesterol
(%)

Non-HDL cholesterol
(%)

ApoB
(%)

Triglyceride
(%)

HDL cholesterol
(%)

Weight loss #10–20 #10–20 #10–20 #10–30 "5–10
Exercise #5–15 #5–15 #10–20 #10–25 "5–10
Statins #20–55 #15–55 #15–50 #5–30 "5–10
Ezetimibe #10–20 #5–15 #10–20 #5–10 "0–5
Fibrates #5–20 #5–25 #5–20 #20–50 "10–20
n-3 PUFAs "5–10 #0–20 #5–20 #25–30 "0–5
PCSK9 inhibitor "40–60 #35–55 #35–50 #15–25 "4–10
PPAR-α/δ agonists #0–15 #0–15 #5–15 #15–25 "8–10
CETP inhibitors #10–40 #30–35 #5–20 #0–10 "80–150
MTP inhibitors #30–50 #30–50 #25–50 #10–50 "5–10
ApoB ASO #35–50 #35–50 #35–45 #35–45 "5–15
ApoC-III ASO #0–5 NA NA #20–50 "0–20
GLP-1 agonist #10–20 #5–20 #5–15 #10–30 "0–10
5-HT2C receptor
agonist

#0–2 NA #2–5 #5–8 "1–3

Phentermine +
topiramate

#5–10 #5–10 NA #5–15 "5–10

ApoA-I apolipoprotein A-I, apoB apolipoprotein, ASO antisense oligonucleotides,CETP cholesteryl ester transfer protein,
GLP-1 glucagon-like peptide-1 receptor, HDL high-density lipoprotein, MTP microsomal triglyceride transfer protein,
NA data not available, PCSK9 proprotein convertase subtilisin/kexin type 9, PPAR peroxisome proliferator-activated
receptors, PUFAs polyunsaturated fatty acids, LDL low-density lipoprotein, 5-HT2C Serotonin 2C, TG triglyceride, "
increase, # decrease
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reduces plasma triglyceride and raises HDL cho-
lesterol, particularly in patients with coexisting
hypertriglyceridemia and low HDL cholesterol.
Resistance training has a minimal impact on
plasma triglyceride and TRLs. Previous kinetic
studies suggested that endurance exercise training
decreases plasma triglyceride by decreasing
VLDL-triglyceride secretion and augmenting
VLDL-triglyceride clearance (Tsekouras
et al. 2009; Magkos et al. 2006). In people with
type 2 diabetes who were overweight/obese, a
6-month supervised exercise program decreases
plasma triglyceride levels chiefly by decreasing
VLDL apoB-100 secretion and pool size, with no
effect on LDL apoB metabolism (Alam
et al. 2004; Stolinski et al. 2008). These favorable
effects of exercise on lipoprotein metabolism may
be mediated by favorable changes in body weight
and composition, as well as by enhancements in
hepatic insulin sensitivity and blood flow, and
increase in peripheral LPL activity (Westheim
and Os 1992). Few studies have examined the
effect of exercise on HDL metabolism. Using
radiolabeled autologous HDL, exercise was
shown to increase plasma HDL cholesterol by a
mechanism involving both decreased HDL apoA-
I catabolism and increased HDL apoA-I secretion
in overweight men whose weight remained stable
(Thompson et al. 1997).

1.3.2 Pharmacotherapy
Although treatment of dyslipidemia with diet and
other lifestyle measures can improve dyslipidemia
in obesity, their efficacy is generally disappointing
owing to poor adherence (Euroaspire and Group
2001). Effective management of dyslipidemia
therefore requires lipid-regulating pharmacother-
apy. The treatment and target of LDL cholesterol
reduction in obese individuals should follow the
recommendations of the ESC/EAS and
ACC/AHA guidelines as discussed earlier.

HMG-CoA reductase inhibitors Clinical trials
have demonstrated consistently that cholesterol-
lowering effect with statin therapy is associated
with a reduction in the incidence of myocardial
infarction and other coronary events in both pri-
mary and secondary prevention settings (Ray
et al. 2010). Statins are potent LDL cholesterol-

lowering agents (up to 60 %) with lesser but
significant effects on triglyceride (up to 30 %)
and increases in HDL cholesterol (up to 10 %).
The efficacy of statins in decreasing plasma tri-
glyceride concentrations depends on the baseline
plasma triglyceride level and is proportional to
their LDL-lowering effect (Stein et al. 1998).
Statins also reduces small LDL particles but with
variations between the different statins (Asztalos
et al. 2002).

Inhibition of the enzyme HMG-CoA reductase
(a rate-limiting enzyme in hepatic cholesterol
synthesis) by statin results in a reduction in
intracellular cholesterol content that induces an
increase in LDL receptor synthesis and thus
an increase in LDL and chylomicron remnant
clearance (Ginsberg 2006). This mechanism is
consistent with kinetic studies in humans, demon-
strating that statin treatment accelerates the catab-
olism of apoB-100-containing lipoprotein and
chylomicron remnants (Chan et al. 2002b, c).
However, treatment of viscerally obese subjects
with atorvastatin or rosuvastatin failed to lower
VLDL apoB-100 secretion (Chan et al. 2002b;
Ooi et al. 2008a). The lack of effect of these potent
statins on VLDL apoB-100 secretion may be
partly attributable to uncorrected and persistent
insulin resistance. Increased intestinal absorption
of dietary cholesterol with statin potentially
increases lipid substrate availability to the liver
(Watts et al. 2003b); this may stimulate apoB
secretion, thereby diminishing the effect of statins
on apoB secretion. These two mechanisms could
also account for the lack of efficacy of statins in
lowering plasma triglyceride levels in some
studies.

Statins do not generally significantly raise HDL
cholesterol, any increase in obese subjects proba-
bly being consequent to a triglyceride-lowering
effect. Recent in vitro data suggested that inhibi-
tion of cholesterol biosynthesis with statins
increases the production of apoA-I by decreasing
the Rho signaling pathway and activating peroxi-
some proliferator-activator receptor-α (PPAR-α)
(Geneieve et al. 2001). However, divergent results
have also been reported on the effects of statins on
HDL apoA-I metabolism. We found that atorva-
statin (40 mg/day) did not alter HDL apoA-I
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kinetics in subjects with visceral obesity (Chan
et al. 2006b). In another study, we showed that
rosuvastatin concomitantly increased the produc-
tion and catabolism of HDL apoA-I, with no
change in plasma HDL apoA-I concentration in
MetS patients who were overweight/obese (Ooi
et al. 2008b). These findings suggest a specific
effect on HDL apoA-I metabolism. Whether the
effects of these changes in HDL metabolism con-
tribute to the CV benefits of statin requires further
investigation.

Fibric-acid derivatives Several trials show that
fibrates decrease CVD events, particularly in
patients with atherogenic dyslipidemia and type
2 diabetes (Scott et al. 2009; The ACCORD Study
Group 2010). Data from a meta-analysis of five
randomized trials of fibrates also suggest that
these agents reduce CVD events among patients
with a high triglyceride and low HDL cholesterol
phenotype (Sacks et al. 2010). Fibrates can
decrease plasma triglyceride concentrations by
up to 50 % and LDL cholesterol up to 20 %,
increase HDL cholesterol by up to 20 %, and
favor the formation of large, less dense LDL par-
ticles (Katsiki et al. 2013). The benefit of fibrates
in clinical endpoint trials may be partly related to
correction of lipid and lipoprotein metabolism, in
particular TRL and HDL metabolism.

Fibrates are PPAR-α agonists that may reduce
triglyceride substrate availability to the liver by
stimulation of peroxisomal and mitochondrial
β-oxidation thereby decreasing hepatic VLDL
secretion. Fibrates promote VLDL lipolysis by
activating LPL and reducing apoC-III gene
expression (Staels et al. 1998; Forcheron
et al. 2002; Berge and Moller 2002) Fibrates also
increase the expression of apoA-I and ABCA1
transporters by activating the liver X receptor
alpha (LXR-α) pathway, thereby promoting cho-
lesterol transport from the periphery to the liver
via HDL (Liang et al. 2000). Recent evidence
suggests that fibrates also stimulate the hepatic
receptor-mediated uptake of LDL by inhibition
of hepatic cholesterol synthesis via its effect
on SREBPs (Liang et al. 2000). Consistent
with this, we found that in MetS subjects who
were overweight/obese, fenofibrate significantly
increased the catabolism of VLDL, IDL, and

LDL apoB-100, and this may partly relate to
reduction in apoC-III production (Watts
et al. 2003c; Chan et al. 2008b). Fenofibrate
does not appear to decrease hepatic secretion of
VLDL apoB-100, and this could relate to
uncorrected insulin resistance. Fenofibrate
increased plasma concentration of apoA-I by
enhancing the production of HDL apoA-I (Watts
et al. 2003c).

Cholesterol absorption inhibitors Hepatic
availability of cholesterol, a regulator of plasma
apoB transport, is in part determined by intestinal
absorption. Ezetimibe, a cholesterol absorption
inhibitor, has been shown to reduce LDL choles-
terol by about 20% (Pandor et al. 2009). Although
its effect on plasma triglyceride is modest,
ezetimibe may have a more pronounced postpran-
dial effect in lowering TRL remnants against
background statin therapy (Bozzetto et al. 2011).
Ezetimibe also significantly decreases LDL parti-
cle number but has an inconsistent effect on LDL
particle size (Rizzo et al. 2009). The effect of
ezetimibe on CVD outcomes is unclear (Fleg
et al. 2008; Kastelein et al. 2008; Baigent
et al. 2011), with some studies reporting no benefit
effect while others showing atherosclerosis
regression and reduction in CVD events following
in combination with statins. The recent outcome
of IMPROVE-IT study (Improved Reduction of
Outcomes: Vytorin Efficacy International Trial)
supports the use of ezetimibe in high-risk subjects
on optimal statin therapy (Cannon 2014). In a
subgroup analysis, patients with type 2 diabetes
seemed to show a greater benefit with ezetimibe/
simvastatin than nondiabetic individuals.

Inhibition of intestinal cholesterol absorption
by ezetimibe results in a reduction in intracellular
cholesterol content that induces an increase in
LDL receptor synthesis and thus an increase in
LDL and chylomicron remnant clearance (Phan
et al. 2012). Ezetimibe decreases plasma concen-
trations of apoB-100 and LDL cholesterol chiefly
by increasing the fractional catabolism of LDL
apoB-100 in subjects with hypercholesterolemia
(Tremblay et al. 2006). We also found that addi-
tion of ezetimibe to a moderate weight loss diet in
obese subjects can significantly lower plasma
concentrations of apoB-100 and LDL cholesterol
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chiefly by increasing LDL apoB-100 FCR (Chan
et al. 2010b). Another important finding from this
study was that adding ezetimibe to weight loss
diet further decreased intrahepatic triglyceride
content independent of body weight, visceral fat,
and insulin sensitivity (Chan et al. 2010b). The
precise mechanism remains unclear but may relate
to its inhibitory effect on hepatic SREBP-1c
mRNA expression, which in turn inactivates the
hepatic expression of genes involved for lipogen-
esis (Naples et al. 2012). Whether the improve-
ment in hepatic steatosis contributes to the CV
benefits of ezetimibe remains to be investigated.

n-3 PUFAs Fish oils are a rich source of n-3
PUFAs, docosahexaenoic acid (DHA), and
eicosapentaenoic acid (EPA) (Jump 2002). n-3
PUFAs also have a wide range of anti-
atherosclerotic effects including improvement in
blood pressure, cardiac and vascular function,
prostanoids, coagulation, and immunological
and inflammatory events (Angerer and von
Schacky 2000). However, the role of n-3 PUFAs
in reducing CVD events and mortality has not yet
been established. Two clinical outcome trials with
n-3 PUFAs, however, failed to show significant
CVD benefit in high-risk patients treated with a
statin (ORIGIN Trial Investigators 2012; Risk and
Prevention Study Collaborative Group 2013). The
apparent lack of benefits in these trials could be
attributed to the lower doses of n-3 PUFA
employed.

Nevertheless, the modification of lipid and
lipoprotein metabolism by higher doses of n-3
PUFAs could have significant anti-atherogenic
effects. Human studies show that n-3 PUFA sup-
plementation decreases plasma triglyceride con-
centrations by up to 40 % but no consistent effects
on plasma concentrations of HDL cholesterol and
apoA-I (Harris 1997). The mechanism of action of
n-3 PUFAs on plasma triglyceride level could
result in a decrease in hepatic triglyceride synthe-
sis as a consequence of inhibition of
diacylglycerol acyltransferase (DGAT), fatty
acid synthase, and acetyl-CoA carboxylase
enzyme activities (Price et al. 2000). n-3 PUFAs
also enhance fatty acid ß-oxidation by stimulating
PPAR-α activity and decrease the hepatic pool of
triglyceride by suppressing the expression of

SREBP-1c gene via inhibition of de novo synthe-
sis of both fatty acids and triglycerides
(Xu et al. 1999).

Consistent with the above mechanisms, we
found that in obese men n-3 PUFA ethyl esters
(4 g/day) diminished the hepatic secretion of
VLDL apoB-100 with no effect on the catabo-
lisms of VLDL, IDL, and LDL apoB-100 (Chan
et al. 2002d). The 6-week treatment of n-3 PUFAs
also decreased the catabolic and production rates
of HDL apoA-I, accounting for the lack of demon-
strable effect on plasma apoA-I concentrations
(Chan et al. 2006b). Reduction in HDL apoA-I
catabolism may relate to the decrease in plasma
triglyceride and greater stability of HDL particles
(Rashid et al. 2003). Furthermore, our recent data
also suggest that addition of n-3 PUFA supple-
mentation to a moderate weight loss diet in obese
subjects can significantly improve chylomicron
metabolism by independently decreasing the
secretion of apoB-48 (Wong et al. 2014b). The
precise mechanism of action of n-3 PUFAs on
chylomicron TRL metabolism is also not fully
understood but may relate to decreased enterocyte
secretion of apoB-48.

Niacin Pharmacological doses of niacin
decrease plasma triglyceride, LDL cholesterol,
and lipoprotein(a) by up to 35 %, 15 %, and
30 %, respectively, and increase HDL cholesterol
by 25 % (Chapman et al. 2010). The mechanism
of action involves decreased adipose tissue lipol-
ysis and flux of FFAs to the liver, which, together
with direct inhibition of hepatic triglyceride syn-
thesis, decreases VLDL secretion and LDL pro-
duction (Kamanna and Kashyap 2000). Niacin
also raises HDL cholesterol and apoA-I by
decreasing the FCR of apoA-I (Lamon-Fava
et al. 2008). Data from cellular studies show that
niacin selectively decreases the hepatic catabo-
lism of apoA-I via the “HDL holoparticle catabo-
lism receptor” pathway (van der Hoorn
et al. 2008), thereby increasing the recycling of
HDL particles and theoretically augmenting RCT.
While early trials suggested that niacin could
decrease CVD events and mortality in patients
with coronary disease (Carlson and Rosenhamer
1988; The Coronory Drug Project Group 1975;
Canner et al. 1986; Brown et al. 2001), two recent
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clinical trials have failed to show significant ben-
efits of niacin on CVD events (The AIM-HIGH
Investigators 2011; Landray et al. 2014). The
HPS2-THRIVE (Heart Protection Study 2–Treat-
ment of HDL to Reduce the Incidence of Vascular
Events), the largest trial employing niacin, exam-
ined the effect of Tredaptive (ER niacin combined
with laropiprant, a prostaglandin D2 inhibitor) in
CVD patients with well-controlled LDL choles-
terol on simvastatin receiving or not receiving
ezetimibe (Landray et al. 2014). This trial found
no significant benefit on the primary CV but seri-
ous adverse events including excess absolute dia-
betic complications, new onset type 2 diabetics,
hemorrhagic stroke, infections, gastrointestinal
intracranial bleeding, and gastrointestinal compli-
cations. The unfavorable risk-to-benefit ratio has
resulted in withdrawal of niacin-laropiprant from
the market.

1.3.3 Combination Therapy
In many obese patients with atherogenic
dyslipidemia, more aggressive treatment strate-
gies involving the use of more than one lipid-
regulating agent may be required (Jacobson
2001). This approach harnesses the complemen-
tary mechanistic effects of the different agents on
lipid and lipoprotein metabolism. However, the
ACC/AHA guidelines recommend that adherence
to lifestyle and to statin therapy should be empha-
sized before the addition of a nonstatin drug is
considered because there is no convincing data to
support the routine use of nonstatin drugs com-
bined with statin therapy to reduce CVD events
(Stone et al. 2014).

Several possible combinations include statin-
fibrate, statin-ezetimibe, and statin-n-3 PUFA reg-
imens. In patients who are statin intolerant or are
not able to tolerate higher statin doses, other com-
binations such as ezetimibe with bile acid
sequestrants may be considered.We have reported
that in insulin-resistant obese men, combination
treatment with atorvastatin and fish oils resulted in
additive effects on plasma triglyceride (�40 %)
and HDL cholesterol (+15 %) than either of ator-
vastatin or fish oil alone (Chan et al. 2002e).
Kinetic data revealed that atorvastatin plus fish

oils decreased VLDL apoB-100 secretion and
increased the FCRs of VLDL, IDL, and LDL
apoB (Chan et al. 2002d). These improvements
were not achieved by either of atorvastatin or fish
oil monotherapy.

Hence, combination lipid-regulating therapy
may be clinically important to manage
dyslipidemia in obesity. As reviewed earlier, their
mechanisms of action of all these agents on lipo-
protein kinetics are different. Therefore, addition
of any of these agents to a statin should theoreti-
cally correct mixed lipid disorders in obesity. The
beneficial effects of combination therapy (such as
statin-fibrate or statin-ezetimibe regimens) on
CVD reduction have been demonstrated. How-
ever, the use of lipid-regulating drugs in combina-
tion (such as statin-fibrate regimens) may have the
potential for interactions that increases the risks of
adverse effects, such as myositis and hepatotoxic-
ity (Bays andDujovne 1998). Therefore, clinicians
should carefully understand the mechanism of
potential therapeutic drug interactions prior to
combining two or more lipid-regulating drugs.

Agents in pipeline or development There are
several novel approaches for regulating lipopro-
tein metabolism that are relevant to the future
management of atherogenic dyslipidemia, and
these warrant investigation. These include selec-
tive PPAR-α modulators; PPAR-α/δ agonists;
inhibitors of diacylglycerol acyltransferase,
proprotein convertase subtilisin/kexin type 9
(PCSK9), CETP, and microsomal triglyceride
transfer protein (MTP); antisense oligonucleo-
tides (ASO) of apoB-100 and apoC-III; and
reconstituted and recombinant HDL (Watts
et al. 2013; Stein and Raal 2014). Although
these newer agents appear to be promising
approaches for use in the treatment of athero-
genic dyslipidemia, safety issues, in particular
increased risk of hepatic steatosis with apoB-100
ASO and MTP inhibitors, require caution
(Thomas et al. 2013; Cuchel et al. 2007).
Nevertheless, PCSK9 inhibition appears to be a
safe and promising therapeutic approach
for regulating lipoprotein metabolism (Dadu
and Ballantyne 2014). Several clinical trials
with monoclonal antibodies to PCSK9
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(alirocumab and evolocumab) consistently dem-
onstrate significant reductions in plasma concen-
trations of LDL and TRLs (Raal et al. 2015;
McKenney et al. 2012). The clinical benefit of
PCSK9 inhibition to lower LDL cholesterol
levels has been recently demonstrated in two
long-term studies of patients at high risk of
CVD or with FH reporting approximately 50 %
reductions in composite cardiovascular events at
12–18 months with anti-PCSK9 therapy (Rob-
inson et al. 2015; Sabatine et al. 2015). Whether
these drugs will be endorsed by the Food and
Drug Administration (FDA) and European Med-
icines Agency (EMA) for wider use in other
patient groups, including obese and type 2 diabe-
tes with dyslipidemia, remains questionable.
This will depend on the outcome of ongoing,
large-scale clinical trials and demonstrated
cost-effectiveness.

There are several recently approved agents for
obesity in combination with lifestyle modification
that may improve lipoprotein metabolism. These
include liraglutide (a glucagon-like peptide-1
receptor agonist) (Drucker et al. 2010), lorcaserin
(a serotonin 5-HT2C receptor agonist), and
Qsymia (an extended-release combination of
phentermine and topiramate) (Fidler et al. 2011;
Garvey et al. 2012). Moreover, bariatric surgery
has also gained importance for the treatment of
obesity, showing significant improvement in body
weight maintenance and glycemic control (Poirier
et al. 2011). However, the precise mechanism of
action of these agents on lipoprotein metabolism
remains to be demonstrated.

2 Conclusion

Obesity is an escalating problem worldwide and
is frequently associated with insulin resistance
and dyslipidemia, which in turn is causally
related to an increased risk of type 2 diabetes
and CVD. Dyslipidemia in visceral obesity is
characterized by elevated plasma triglycerides,
reduced HDL cholesterol, elevated apoB concen-
trations, and a predominance of small, dense
LDL particles. These abnormalities arise from

kinetic defects in lipoprotein metabolism, includ-
ing overproduction of VLDL apoB-100, VLDL
apoC-III, and chylomicrons; decreased catabo-
lism of chylomicron remnants, VLDL and LDL
apoB-100; and an increased catabolism of HDL
apoA-I particles. The management of obesity,
including weight loss and increased exercise,
should be initially implemented in treating
obesity-related dyslipidemia. The use of anti-
obesity drugs or bariatric surgery may further
improve the lipid-lowering effect in combination
with lifestyle modification. Correction of ele-
vated LDL cholesterol and apoB-100 with statins
should be employed at high absolute risk of CVD
concurrently with lifestyle modification in obese
subjects. However, statins only contribute to
modest improvements in atherogenic
dyslipidemia but are not as effective as other
lipid-regulating agents, such as fibrate and n-3
PUFAs. Intensive treatment could involve addi-
tional therapy with fibrates or n-3 PUFA supple-
mentation. However, there is limited clinical
evidence to support the routine use of combina-
tion therapy to reduce CVD events in obese indi-
viduals or people at high risk of CVD.

At present, the use of statin-fibrate combina-
tion in insulin-resistant patients with atherogenic
dyslipidemia is supported by subgroup analysis
from clinical outcome studies. However, safety
and tolerability must be considered carefully.
The recent results from the IMPROVE-IT trial
demonstrate incremental clinical benefit when
adding ezetimibe to statin therapy reducing car-
diovascular events. There is no convincing clini-
cal trial evidence that the safer combination of
statins with n-3 PUFA improves CVD outcomes
despite decreases in plasma triglyceride and
increases in HDL cholesterol. New therapies,
such as dual PPAR-α/PPAR-δ agonists, DAG,
inhibitors of DGAT-1, MTP and PCSK9, ASOs
for apoB-100 and apoC-III, and reconstituted and
recombinant HDL therapies, could also be
employed alone or in combination with conven-
tional therapies to optimize treatment. However,
the clinical efficacy, mechanism of action, safety,
and tolerability of these newer agents require test-
ing in clinical trials.
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Abstract
Skeletal muscle has been defined as an endo-
crine organ. Cytokines and other peptides that
are produced, expressed, and released by mus-
cle fibers and exert either autocrine, paracrine,
or endocrine actions have been defined as
“myokines.” The finding that the muscle
secretome appears to consist of several hun-
dred secreted factors provides a conceptual
basis and a new paradigm for understanding
how muscles communicate with other organs
such as adipose tissue, liver, and pancreas and
how physical activity mediates its numerous
effects against the metabolic syndrome.

Keywords
Exercise • Physical training • Inflammation •
Myokines

1 Introduction

Regular physical activity is known to have multi-
ple health benefits (Booth et al. 2012), and it is
reasonable to suggest that skeletal muscle might
mediate some of the well-established protective
effects of exercise via secretion of proteins that
could counteract the harmful effects of the
proinflammatory adipokines secreted by adipose
tissue in the obese state (Pedersen 2013).

It is well established that physical inactivity
increases, e.g., the risk of type 2 diabetes
(Tuomilehto et al. 2001), cardiovascular diseases
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(CVD) (Nocon et al. 2008), colon cancer (Wolin
et al. 2009), postmenopausal breast cancer
(Monninkhof et al. 2007), and osteoporosis (Borer
2005). Moreover, even short periods of physical
inactivity are associated with metabolic changes
including decreased insulin sensitivity, attenuation
of postprandial lipid metabolism, loss of muscle
mass, and accumulation of visceral fat (Olsen
et al. 2008; Krogh-Madsen et al. 2010). Such abnor-
malities are likely to represent a link between
reduced exercise and the risks that have been asso-
ciated with the progression of chronic disorders and
premature mortality (Booth et al. 2002).

It has been well recognized that muscles
release large amounts of metabolites, such as lac-
tate, during anaerobic, physical exercise. Lactate
and other secretory low molecular weight mole-
cules are important, e.g., in training adaptation.
However, the recent focus on the secretory capac-
ity of skeletal muscle has been on protein factors.
In 2003, we suggested that cytokines or other
peptides that are produced, expressed, and
released by muscle fibers and exert endocrine
effects should be classified as “myokines” (Peder-
sen et al. 2003). Recently, it was suggested that
exercise factors were defined as a subgroup of
myokines (Catoire and Kersten 2015).

The recent identification of skeletal muscle as a
secretory organ has created a new paradigm: Mus-
cles produce and release myokines, which work in a
hormone-like fashion, exerting specific endocrine
effects on distant organs. Other proteins produced
by skeletal muscle may not be released into the
circulation but may rather work via autocrine or
paracrine mechanisms, exerting their effects on sig-
naling pathways within the muscle itself (Long
et al. 2004; Pedersen 2006, 2009; Walsh 2009;
Pedersen and Febbraio 2008; Pedersen
et al. 2007). Thereby, myokines may be involved
inmediating themultiple health benefits of exercise.

The idea that muscle cells might produce and
release a humoral factor dates back many years
before the identification of adipose tissue as an
endocrine organ (Cook et al. 1987). For nearly
half a century, researchers had hypothesized that
skeletal muscle cells possessed a “humoral” factor
that was released in response to increased glucose
demand during contraction (Goldstein 1961).

Due to lack of more precise knowledge, the
unidentified contraction-induced factor has been
named “the work stimulus” or “the work factor”
(Pedersen et al. 2003).

It was obvious that the plural form “exercise
factors” would be more applicable given the fact
that multiple metabolic and physiologic changes
are induced by exercise. The early view on the
exercise factor concept was predicated on the fact
that contracting skeletal muscle mediates meta-
bolic and physiologic responses in other organs,
which are not mediated via the nervous system.

This idea was supported by the fact that elec-
trical stimulation of paralyzed muscles in spinal
cord injured patients with no afferent or efferent
impulses induces many of the same physiological
changes as in intact human beings (Kjaer
et al. 1996; Mohr et al. 1997). Therefore, it was
clear that contracting skeletal muscles were able
to communicate to other organs via humoral fac-
tors, which are released into the circulation during
physical activity. Such factors might directly or
indirectly influence the function of other organs
such as the adipose tissue, the liver, the cardiovas-
cular system, and the brain.

During the past decade, myocytes have been
identified as cells with a high secretory capacity in
parallel with the concept of adipocytes being
major endocrine cells. It appears that muscle
cells, here defined as myoblasts or myocytes,
have the capacity to produce several hundred
secreted factors (Bortoluzzi et al. 2006; Yoon
et al. 2009; Henningsen et al. 2010; Pal
et al. 2014; Eckardt et al. 2014; Raschke and
Eckel 2013; Catoire and Kersten 2015; Benatti
and Pedersen 2015; Pedersen 2012, 2013;
Munoz-Canoves et al. 2013; Henriksen
et al. 2012; Pedersen and Febbraio 2012; Catoire
et al. 2014).

The term “myokine” refers to a protein that is
secreted from myocytes. Muscles are able to pro-
duce and release proteins that are able to commu-
nicate with cells locally within the muscles
(autocrine/paracrine) or to other distant tissues
(endocrine). This chapter provides an update on
some of the muscle-derived cytokines that may be
involved in mediating the effects of exercise on
components of the metabolic syndrome.
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2 Myokines and Adipokines
in a Yin-Yang Concept

Adipose tissue was initially considered an inert stor-
age compartment for triglycerides, not the least due
to pioneering work from the Spiegelman and Flier
(Cook et al. 1987) laboratories in the mid-1980s,
who demonstrated that adipocytes are capable of
releasing a specific secretory protein called adipsin
or complement factor D. Friedman and colleagues
later identified leptin as a fat cell-specific secretory
factor, deficient in the ob/obmouse, and responsible
for mediating a hormonal signal between fat and the
brain (Zhang et al. 1994). Since then, adiponectin,
resistin, acylation-stimulating protein, visfatin, and
retinol-binding protein 4 have been added to the
growing list of adipokines (for review see Scherer
2006). Notwithstanding the role of adiponectin
(Shetty et al. 2009), most of the factors that
are produced by adipocytes are, however, consid-
ered to be proinflammatory, e.g., tumor necrosis
factor-alpha (TNF-α), monocyte chemoattractant
protein-1, and plasminogen activator inhibitor type
1, and potentially harmful with regard to the devel-
opment of obesity-induced metabolic and cardio-
vascular diseases (Pedersen and Febbraio 2012). In
order to neutralize the effect of the proinflammatory
adipokines, it is obvious that another organ or tissue
might offer protection and contribute to produce
antiinflammatory components that could provide a
counterbalance to the proinflammatory factors that

are produced by adipocytes. Given that exercise
offers multiple health benefits, it was reasonable
to suggest that skeletal muscle might secrete
proteins that could counteract the harmful effects
of the proinflammatory adipokines secreted by adi-
pose tissue in the obese state (Fig. 1).

The word “myokine” is derived from the Greek
words for “muscle” and “motion,” and in 2003, we
suggested this term should be used as a classifica-
tion for cytokines or other peptides that are pro-
duced, expressed, and released by muscle fibers
and exert endocrine effects (Pedersen et al. 2003).

While the word adipokine refers to factors
secreted from adipose tissue, the term “myokine”
refers to a protein that is secreted from myocytes.
Characterization of a number of myokines reveals
that skeletal muscles are capable of producing and
releasing proteins that can both communicate with
cells locally within the muscles (autocrine/para-
crine) or to other distant tissues (endocrine).

3 The Myokines

We have previously suggested that physical inac-
tivity and muscle disuse lead to accumulation of
visceral fat and consequently to the activation of a
network of inflammatory pathways, which pro-
mote development of insulin resistance, atheroscle-
rosis, neurodegeneration, and tumor growth and
thereby the development of a cluster of chronic

Fig. 1 The interplay between adipokines and myokines
represents a yin-yang-balance. Especially under conditions
of obesity, adipose tissue secretes adipokines, which con-
tribute to establish a chronic inflammatory environment,
which promotes pathological processes such as

atherosclerosis and insulin resistance. Skeletal muscles
are capable of producing myokines that confer some of
the health benefits of exercise. Such myokines may coun-
teract the harmful effects of proinflammatory adipokines
(Adapted from Pedersen and Febbraio 2012)
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diseases (Pedersen 2009). The finding that muscles
produce and release myokines provides a concep-
tual basis for understanding some of the molecular
mechanisms, whereby physical activity stimulates
interorgan communication and may protect against
features of the metabolic syndrome and ultimately
premature mortality (Fig. 2).

3.1 Interleukin-6

It is well known that increased plasma concentra-
tion of interleukin-6 (IL-6) is found in obese peo-
ple and in patients with the metabolic syndrome.

In an attempt to clarify the role of IL-6, several
studies implicated IL-6 as a co-inducer of the
development of obesity-associated insulin resis-
tance. However, the identification of IL-6 as a
myokine and the demonstrating of its multiple
metabolic roles provided a contrasting identity of
IL-6 (Pal et al. 2014).

Myostatin appears to be the first muscle-
derived peptide to fulfill the criteria for a myokine
(Pedersen and Febbraio 2012). However, the
gp130 receptor cytokine interleukin-6 (IL-6) was
the first myokine that was found to be secreted
into the bloodstream in response to muscle con-
tractions (Pedersen and Febbraio 2008). IL-6 was
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Fig. 2 Skeletal muscle is a secretory organ. LIF, IL-4, IL-6,
IL-7, and IL-15 promote muscle hypertrophy. Myostatin
inhibits muscle hypertrophy and exercise provokes the
release of a myostatin inhibitor, follistatin, from the liver.
BDNF and IL-6 are involved in AMPK-mediated fat oxida-
tion; IL-6 stimulates lipolysis and IL-15 stimulates lipolysis
of visceral fat. IL-6 enhances insulin-stimulated glucose
uptake and stimulates glucose output from the liver, but
only during exercise. IL-6 increases insulin secretion via
upregulation of GLP-1 in the L cells of the intestine. IL-6

has antiinflammatory effects as it inhibits TNF production,
but stimulates the occurrence of the antiinflammatory cyto-
kines IL-1ra and IL-10. Furthermore, IL-6 stimulates corti-
sol production and hence neutrocytosis and lymphopenia.
IL-8 and CXCL-1 may promote angiogenesis. IGF 1, FGF
2, and TGF-β are involved in bone formation, and
follistatin-related protein 1 improves endothelial function
and revascularization of ischemic vessels. Irisin and
meteorin-like have a role in “browning” of white adipose
tissue (Adapted from Benatti and Pedersen 2015)
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shown to increase in an exponential fashion pro-
portional to the length of exercise and the amount
of muscle mass engaged in the exercise. Thus,
plasma IL-6 may increase up to 100-fold,
although less dramatic increases are more
frequent (for review, see Fischer 2006).

Of note, the increase of IL-6 in the circulation
occurs during exercise without any sign of muscle
damage (Fischer 2006). Until the beginning of this
millennium, it was commonly thought that the
increase in IL-6 during exercise was a consequence
of an immune response due to local damage in the
working muscles (Nieman et al. 1998) and it was
hypothesized that macrophages were responsible
for this increase (Nehlsen Cannarella et al. 1997).
An early study by the our group (Ullum et al. 1994)
demonstrated, however, that IL-6 mRNA in mono-
cytes did not increase as a result of exercise. Fur-
ther work from our group confirmed this finding at
the protein level (Starkie et al. 2000, 2001).

Several pieces of work confirmed that skeletal
muscle was the source of IL-6 during exercise. It
was demonstrated that the nuclear transcription
rate for IL-6 and the IL-6 mRNA levels increases
rapidly and markedly after the onset of exercise
(Keller et al. 2001; Steensberg et al. 2002),
suggesting that a factor associated with contrac-
tion increases IL-6 transcriptional rate within the
nuclei from myocytes. Further evidence that
contracting muscle fibers themselves are a source
of IL-6 mRNA and protein has been achieved by
analysis of biopsies from the human vastus
lateralis using in situ hybridization and immuno-
histochemistry techniques (Hiscock et al. 2004).

It has, however, been the simultaneous mea-
surement of arteriovenous IL-6 concentrations
and blood flow across the leg that has demon-
strated that large amounts of IL-6 are released
into the circulation from the exercising leg
(Steensberg et al. 2000). IL-6 has been shown to
be expressed by human myoblasts (De Rossi
et al. 2000; Bartoccioni et al. 1994) and by
human cultured myotubes (Keller et al. 2006).
Moreover, IL-6 is locally and transiently pro-
duced by growing murine myofibers and associ-
ated muscle stem cells (satellite cells) (Serrano
et al. 2008). In addition, IL-6 is released from
human primary muscle cell cultures from healthy

individuals (Haugen et al. 2010; Green et al. 2011)
and from patients with type 2 diabetes
(Green et al. 2011).

Muscle-derived IL-6 works as an exercise sen-
sor (Pedersen 2012; Ruderman et al. 2006; Peder-
sen et al. 2004; Hoene and Weigert 2008). Thus,
enhanced glucose availability and training adap-
tation attenuate the exercise-sensitive increase in
IL-6 plasma concentration (Pedersen 2012;
Fischer et al. 2004).

It appeared that human skeletal muscle is
unique, in that it can produce IL-6 during contrac-
tion in a strictly TNF-independent fashion (Keller
et al. 2006). This finding led us to suggest that
muscular IL-6 has a role in metabolism rather
than in inflammation. In continuation, we found
that both intramuscular IL-6 mRNA expression
(Keller et al. 2005) and protein release
(Steensberg et al. 2001) are markedly enhanced
when intramuscular glycogen is low, suggesting
that IL-6 works as an energy sensor. This idea has
been supported by numerous studies showing that
glucose ingestion during exercise attenuates
the exercise-induced increase in plasma IL-6
(Pedersen and Febbraio 2008) and inhibits the
IL-6 release from contracting skeletal muscle in
humans (Febbraio et al. 2003; Pedersen and
Febbraio 2008).

Training adaptation increases preexercise skel-
etal muscle glycogen content, enhances activity of
key enzymes involved in the β-oxidation, increases
sensitivity of adipose tissue to epinephrine-
stimulated lipolysis, and increases oxidation of
intramuscular triglycerides, whereby the capacity
to oxidize fat is increased. As a consequence, the
trained skeletal muscle is less dependent on plasma
glucose and muscle glycogen as substrates during
exercise (Pedersen and Febbraio 2008; Phillips
et al. 1996). Several epidemiological studies have
reported a negative association between the
amount of regular physical activity and the resting
plasma IL-6 levels: the more fit, the lower basal
plasma IL-6 (Fischer 2006). High plasma levels of
IL-6 are closely associated with physical inactivity
and the metabolic syndrome (Sattar et al. 2003;
Freeman et al. 2002).

Moreover, basal levels of IL-6 are reduced
after training (Fischer 2006). In addition, it
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appears that the exercise-induced increase in
plasma IL-6 and muscular IL-6 mRNA is dimin-
ished by training (Fischer et al. 2004). It is worth
noting that while plasma IL-6 appears to be
downregulated by training, the muscular expres-
sion of the IL-6 receptor (IL-6R) appears to be
upregulated. In response to exercise training, the
basal IL-6R mRNA content in trained skeletal
muscle is increased by ~100 % (Keller
et al. 2005). It, therefore, appears that with exer-
cise training, the downregulation of IL-6 is par-
tially counteracted by an enhanced expression of
IL-6R, whereby the sensitivity to IL-6 is
increased. Our hypothesis is that muscle disuse
may also lead to IL-6 resistance and elevated
circulating levels of IL-6 in parallel with the
well-known facts that insulin resistance is accom-
panied by hyperinsulinemia and that chronic high
circulating levels of leptin reflect leptin resistance.

Acute treatment of muscle cells with IL-6
increased both basal glucose uptake and the trans-
location of the glucose transporter GLUT4 from
intracellular compartments to the plasma mem-
brane (Carey et al. 2006). Moreover, IL-6
increased insulin-stimulated glucose uptake
in vitro, while infusion of recombinant human
IL-6 into healthy humans during a
hyperinsulinemic, euglycemic clamp increased
glucose infusion rate without affecting the total
suppression of endogenous glucose production
(Carey et al. 2006). The effects of IL-6 on glucose
uptake in vitro appeared to be mediated by acti-
vation of AMP-activated protein kinase (AMPK),
since the results were abolished in cells infected
with an AMPK dominant-negative adenovirus
(Carey et al. 2006). Apart from the effects of
IL-6 on glucose metabolism, several studies
have reported that IL-6 may increase intramyo-
cellular (Bruce and Dyck 2004; Petersen
et al. 2005; Carey et al. 2006) or whole body
(van Hall et al. 2003) fatty acid oxidation. This
effect may also be mediated by AMPK (Kahn
et al. 2005; Carey et al. 2006). A recent study
suggests that IL-6 activates AMPK in skeletal
muscle by increasing the concentration of cAMP
and, secondarily, the AMP-ATP ratio (Kelly
et al. 2009). It appears that IL-6 acutely mediates
signaling through the gp130 receptor and exhibits

many “leptin-like” actions such as activating
AMPK (Minokoshi et al. 2002; Watt
et al. 2006a; Steinberg et al. 2003) and insulin
signaling (Steinberg et al. 2009). It is quite clear
that in healthy skeletal muscle, and not least in
humans, the IL-6-induced activation of AMPK
overrides the IL-6-induced activation of suppres-
sor of cytokine signaling (SOCS)-3. Of note, IL-6
knockout mice develop mature onset obesity and
glucose intolerance (Wallenius et al. 2002),
supporting the notion that IL-6 may exert benefi-
cial effects on metabolism.

IL-6 has been shown to contribute to hepatic
glucose production during exercise (Febbraio
et al. 2004). The mechanisms that mediate the
tightly controlled production and clearance of
glucose during muscular work are unclear. It has
been suggested that an unidentified “work factor”
exists that influences the contraction-induced
increase in endogenous glucose production
(EGP). We have performed studies in which we
have infused recombinant human IL-6 (rhIL-6) at
physiological concentrations into resting human
subjects. Acute administration of rhIL-6 has no
effect on whole-body glucose disposal, glucose
uptake, or EGP (Steensberg et al. 2003b; Lyngso
et al. 2002; Petersen et al. 2005). In contrast, we
found that IL-6 contributes to the contraction-
induced increase in EGP. Human subjects
performed bicycle exercise at high or low inten-
sity with or without an infusion of recombinant
IL-6. Interestingly, the group performing exercise
at a low intensity and concomitant IL-6 infusion
showed a higher glucose turnover than the group
at low exercise intensity without IL-6 infusion. It
was therefore suggested that the primary role of
IL-6 during exercise is to support glucose dis-
posal. In support of this notion, in human lean,
healthy subjects undergoing a hyperinsulinemic,
euglycemic clamp, the gold standard method to
assess insulin sensitivity, IL-6 infusion resulted in
an increase in glucose infusion rate (Carey
et al. 2006). The study demonstrated a direct
muscle-liver “cross talk.” It was clear that IL-6
appeared to play a role in EGP during exercise in
humans; however, its action on the liver was
dependent on a yet unidentified muscle
contraction-induced factor (Febbraio et al. 2004).
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Moreover, infusion of rhIL-6 into healthy
humans caused an increase in lipolysis in the
absence of hypertriglyceridemia or changes in
catecholamines, glucagon, insulin, or any adverse
effects in healthy individuals (van Hall et al. 2003;
Petersen et al. 2005; Lyngso et al. 2002). These
findings combined with cell culture experiments
showed that IL-6 had direct effects on both lipol-
ysis and fat oxidation and identify IL-6 as a lipo-
lytic factor (Petersen et al. 2005).

In a recent human study, we were able to dis-
tinguish between lipolysis in muscle and adipose
tissue. The findings from the latter study
suggested that an acute increase in IL-6 at a
normophysiological level primarily stimulates
lipolysis in skeletal muscle, whereas adipose tis-
sue is unaffected (Wolsk et al. 2010).

Interestingly, patients with insulin resistance
appear to demonstrate an abnormal response to
IL-6. Myocytes from patients with diabetes
appeared resistant to IL-6-induced AMPKα2 acti-
vation (Scheele et al. 2012). A similar deficiency
has been reported for leptin signaling in myocytes
derived from obese subjects in comparison to lean
(Steinberg et al. 2006). The finding of possible
IL-6 resistance was further supported in a recent
study (Harder-Lauridsen et al. 2014).

Ellingsgaard et al. (2011) demonstrated that the
exercise-induced release of IL-6 from skeletal
muscle triggers the secretion of GLP-1 from pan-
creatic α cells and L cells from the intestine. This
increase in GLP-1 led to enhanced insulin secre-
tion and to improved glycemia and glucose toler-
ance, and the effects were completely abolished in
GLP1-R KO mice, although the levels of IL-6
were still increased. It was further shown that
injections of IL-6 improved glucose tolerance,
an effect that was abolished in GLP-1 KO ani-
mals. The latter study therefore describes a major
pathway by which exercise-induced IL-6 leads to
enhanced levels of GLP-1, which in turn results in
increased insulin secretion post exercise.

Finally, IL-6 appears also to mediate some of
the antiinflammatory and immunoregulatory
effects of exercise (Nielsen and Pedersen 2008;
Petersen and Pedersen 2005). IL-6 inhibits
LPS-induced TNF production in cultured human
monocytes (Schindler et al. 1990), and levels of

TNF-α are markedly elevated in anti-IL-6-treated
mice and in IL-6-deficient knockout mice
(Mizuhara et al. 1994), suggesting that circulating
IL-6 is involved in the regulation of TNF levels. In
addition, both rhIL-6 infusion and exercise inhibit
the endotoxin-induced increase in circulating
levels of TNF-α in healthy humans (Starkie
et al. 2003). The antiinflammatory effects of IL-6
are also demonstrated by IL-6 stimulating the
production of the classic antiinflammatory cyto-
kines IL-1ra and IL-10 (Steensberg et al. 2003a).
Taken together, it appears that an acute increase in
IL-6 can mediate antiinflammatory effects.

The myokine field is new and so far most of the
human studies have focused on the biological role
of IL-6. The finding that muscle-derived IL-6
appears to have several beneficial metabolic
effects makes it a possible candidate in chronic
diseases associated with a physically inactive life-
style. White and colleagues have demonstrated
that human IL-6 transgenic mice with sustained
elevated circulating IL-6 display enhanced central
leptin action and improved nutrient homeostasis
leading to protection from diet-induced obesity
(Sadagurski et al. 2010). In addition, Wunderlich
et al. (2010) have shown that IL-6 signaling is
required for normal liver metabolism in mice. Of
note, ciliary neurotrophic factor (CNTF) is a
member of the IL-6 family of cytokines and also
improves metabolic homeostasis in both high fat
diet-induced (Watt et al. 2006a) and lipid
infusion-induced (Watt et al. 2006b) insulin resis-
tance. It should be noted that a CNTF variant,
Axokine, was in clinical trials for type 2 diabetes,
but failed due to antibody development (Ettinger
et al. 2003). Nonetheless, given that exercise
induces transient insulin sensitivity, many clues
can be gained from the study of myokines in
relation to novel drug targets for the treatment of
metabolic diseases.

3.2 IL-15

IL-15 belongs to the IL-2 superfamily and is
expressed in human skeletal muscle. In addition
to its anabolic effects on skeletal muscle, IL-15
may play a role in lipid metabolism (Nielsen and
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Pedersen 2007). IL-15 decreases lipid deposition in
preadipocytes and decreases the mass of white
adipose tissue (Carbo et al. 2001; Quinn
et al. 2005). In support, a negative association has
been found in humans between plasma IL-15 on
the one hand and total fat mass, trunk fat mass, and
percent fat mass on the other (Nielsen et al. 2008).

IL-15 mRNA levels increased in human skel-
etal muscle biopsies following a bout of strength
training, suggesting that IL-15 may accumulate
within the muscle as a consequence of regular
training (Nielsen et al. 2007).

Physical inactivity leads to loss of muscle mass
and accumulation of visceral fat (Olsen
et al. 2008), and there are some pieces of evidence
pointing at IL-15 somehow being involved in the
regulation of abdominal adiposity. In humans, we
found a negative association between plasma
IL-15 concentration and trunk fat mass, but not
limb fat mass. In support, we demonstrated a
decrease in visceral fat mass, but not subcutane-
ous fat mass, when IL-15 was overexpressed in
murine muscle (Nielsen et al. 2008).

3.3 BDNF

Neurotrophins are a family of structurally related
growth factors, including brain-derived
neurotrophic factor (BDNF), which exert many of
their effects on neurons primarily through Trk
receptor tyrosine kinases. Among these, BDNF
and its receptor TrkB are the ones most widely
and abundantly expressed in the brain (Huang and
Reichardt 2001). However, several studies verify
that skeletal muscle is also capable of expressing
BDNF (Pedersen 2009, 2011; Pedersen et al. 2009).

Studies in rodents demonstrate that both exer-
cise and electrical stimulation (and contraction) of
skeletal muscle lead to an induction of BDNF
expression in muscle (Copray et al. 2000;
Gomez-Pinilla et al. 2002; Seidl et al. 1998;
Matthews et al. 2009).

Several studies have also reported that exercise
induces an expression of BDNF in skeletal mus-
cle. For example, Copray et al. (2000) found that
intense contraction of the soleus muscle in both
normal and diabetic rats caused an increase in the

expression of BDNF. In addition, ultrastructural
studies from these same authors found that BDNF
expression was localized within muscle fibers and
activated satellite cells. Importantly, no expres-
sion of BDNF was observed in Schwann cells or
fibroblasts, suggesting that the localization of
BDNF was defined within the muscle fibers.

In other studies, Gomez-Pinilla et al. (2002)
found that BDNF mRNA and protein levels in
rodents increased in the soleus muscle after
3 and 7 days of exercise. Interestingly, following
paralysis of the soleus muscle, BDNF mRNA
levels were reduced, demonstrating that active
muscle contraction is important in modulating
BDNF levels in muscle.

We studied whether human skeletal muscle
would produce BDNF in response to exercise
(Matthews et al. 2009) and found that BDNF
mRNA and protein expression were modestly
increased in human skeletal muscle after exercise.
However, muscle-derived BDNF appeared not to
be released into the blood. Interestingly, however,
Raschke et al. reported BDNF in the supernatant
fraction of human myotubes (Raschke et al. 2013).

While in patients with type 2 diabetes circulat-
ing levels of BDNF are decreased independently
of obesity (Krabbe et al. 2007), it has been shown
in humans that 70–80 % of circulating BDNF
originates from the brain during both rest and
after exercise, suggesting the brain as a major
source of this factor (Rasmussen et al. 2009).

BDNF mRNA and protein expression were
clearly increased in muscle cells that were electri-
cally stimulated. Interestingly, BDNF increased
phosphorylation of AMPK and ACC and
enhanced fat oxidation both in vitro and ex vivo.
Thus, we were able to identify BDNF as a novel
contraction-induced muscle cell-derived protein
that may increase fat oxidation in skeletal muscle
in an AMPK-dependent fashion (Pedersen 2009,
2011; Pedersen et al. 2009). Other studies consis-
tently demonstrate that muscle-derived BDNF
and other neurotrophins serve as important regu-
lators of the maintenance, function, and regenera-
tion of skeletal muscle fibers. Thus, BDNF is an
injury-related factor that is involved in the sur-
vival and function of innervating motor neurons
(reviewed in Sakuma and Yamaguchi 2011). In
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addition, BDNF appears to play a role in the
development and differentiation of myoblasts
and muscle fibers (Mousavi and Jasmin 2006;
Miura et al. 2012).

Taken together, BDNF is a protein produced in
skeletal muscle cells, which is increased by con-
traction to enhance fat oxidation in an AMPK-
dependent fashion, most probably by acting in an
autocrine and/or paracrine manner within skeletal
muscle. In addition, muscle-derived BDNF plays a
role in muscle repair, regeneration, and differenti-
ation. Thus, in addition to its well-known role in
neurobiology, BDNF can be identified as a
myokine that plays a role in peripheral metabolism,
myogenesis, and muscle regeneration.

4 Other Myokines

Several research groups have contributed to the
identification of the muscle cell secretome
(Bortoluzzi et al. 2006; Yoon et al. 2009;
Henningsen et al. 2010; Raschke et al. 2013;
Hartwig et al. 2014; Norheim et al. 2011). Several
of the exercise-regulated factors have the potency
to mediate an interorgan cross talk. In addition, the
autocrine or paracrine functions of the secreted
peptides and proteins may have consequences for
whole-body metabolism. Recent advantages in
metabolomics and lipidomics may add metabolites
and lipids with autocrine, paracrine, or endocrine
function to the contraction-induced secretome of
the skeletal muscle as recently outlined (Weigert
et al. 2014). In addition, we found that the muscle-
specific miRNA signatures of human plasma are
regulated by exercise and training, suggesting that
miRNAs may be involved in interorgan communi-
cation (Nielsen et al. 2014).

As previously reviewed (Pedersen 2013;
Benatti and Pedersen 2015; Eckardt et al. 2014),
the myokines, myostatin, leukemia inhibitory fac-

tor (LIF), IL-4, IL-6, ,IL-7, and IL-15 may be
involved in muscle hypertrophy and myogenesis.
Recently, decorin was identified as a new
myokine involved in muscle hypertrophy
(Kanzleiter et al. 2014). As already mentioned,
BDNF and IL-6 have been implicated in AMPK-
mediated fat oxidation, and both IL-6 and IL-15

have lipolytic effects. IL-6 also appears to have
systemic effects on the liver, adipose tissue, and
the immune system and may mediate the cross
talk between intestinal L cells and pancreatic
islets. Insulin-like growth factor 1 (IGF-1), fibro-
blast growth factor-2 (FGF-2), and transforming
growth factor-β (TGF-β) have been identified as
osteogenic factors; follistatin-related protein
1 (FSTL-1) may improve the endothelial function
of the vascular system and the proliferator-acti-
vated receptor-gamma coactivator-1 (PGC-1)-
α-dependent myokine irisin has been shown to
drive brown-fat-like development. Recently,
meteorin-like has been identified as a myokine
that regulates immune-adipose interactions to
increase beige fat thermogenesis (Rao
et al. 2014). Moreover, other studies suggest the
existence of yet unidentified factors, secreted
from muscle cells, which may influence cancer
cell growth (Pedersen and Hojman 2012) and
pancreas function (Plomgaard et al. 2012). A
study in humans supports the notion that FGF-21
is a myokine, which is upregulated by insulin
(Hojman et al. 2009b). Other muscle cell-derived
proteins include calprotectin (Mortensen
et al. 2008) and erythropoietin (Hojman
et al. 2009a), and IL-4 has been shown to enhance
muscle regeneration by stimulating the fusion of
myoblasts with myotubes (Horsley et al. 2003).

ANGPTL4 is a secreted protein that regulates
the influx of plasma triglyceride-derived fatty
acids into tissues by inhibiting the enzyme lipo-
protein lipase (Catoire and Kersten 2015). It has
been shown that acute exercise increased
ANGPTL4 levels in plasma but only when the
exercise was performed in the fasted condition.
Coingestion of glucose, which blocks the eleva-
tion in plasma-free fatty acids during exercise,
prevented the exercise-induced increase in plasma
ANGPTL4, suggesting that induction of plasma
ANGPTL4 by exercise is mediated by elevated
free fatty acids (Kersten et al. 2009).

SPARC was identified as a myokine in a
screening study in mice using microarrays. The
study revealed that SPARC gene expression levels
are increased after acute exercise and exercise
training. Acute exercise also significantly
increased plasma levels of SPARC, and this result
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was reproduced in humans, suggesting a potential
systemic role of SPARC during exercise. Further-
more, it was suggested that SPARC has an inhib-
itory effect on tumorigenesis in the colon during
exercise (Aoi et al. 2013). Yet another study
suggested that myokines may also be involved in
the fight against breast cancer. In fact, we found
that oncostatin M (OSM), a member of the IL-6
superfamily, may be classified as a myokine and
may be mediating inhibitory effects on mammary
cell growth (Hojman et al. 2011).

Apart from the effects of myokines on periph-
eral insulin sensitivity via the activation of
AMPK, evidence is emerging that myokines
may also play a major role in pancreatic β-cell
metabolism. In a study by Halban and coworkers,
human skeletal muscle cells were cultured with
tumor necrosis factor (TNF)-α to induce insulin
resistance. Conditioned media were collected and
candidate cytokines were measured by antibody
array. Human and rat primary β-cells were used to
explore the impact of exposure to conditioned
media for apoptosis, proliferation, short-term
insulin secretion, and key signaling protein phos-
phorylation and expression. The study showed
that human myotubes express and release a differ-
ent panel of myokines depending on their insulin
sensitivity, with each panel exerting differential
effects on β-cells. Conditioned medium from con-
trol myotubes increased proliferation and glucose-
stimulated insulin secretion (GSIS) from primary
β-cells, whereas conditioned medium from
TNF-α-treated insulin-resistant myotubes exerted
detrimental effects. Taken together, the data
clearly suggest a new route of communication
between skeletal muscle and β-cells that is modu-
lated by insulin resistance and could contribute to
normal β-cell functional mass in healthy subjects,
as well as to the decrease seen in type 2 diabetes
(Bouzakri et al. 2011).

5 Conclusion

Given that muscle is the largest organ in the body,
the identification of the muscle secretome may set
a new agenda for the scientific community. To

view skeletal muscle as a secretory organ provides
a conceptual basis and a whole new paradigm for
understanding how muscles communicate with
other organs such as the adipose tissue, liver, and
pancreas.

Box 1 Characteristics of Myokines
• Myokines are cytokines or other pep-

tides that are produced, expressed, and
released by muscle fibers.

• Myokines may exert autocrine, para-
crine, or endocrine effects.

• Myokines may balance and counteract
the detrimental effects of adipokines pro-
duced in the obese state.

• Myokines may exert antiinflammatory
effects.

• Myokines may have effect on visceral
fat mass.

• The muscle cell secretome consists of
several hundred secreted products.

• Myokines may mediate protective
effects of muscular exercise with regard
to diseases associated with a physically
inactive lifestyle.
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Abstract
The circadian system relies on a master clock
in the suprachiasmatic nucleus of the hypothal-
amus (SCN), synchronizing a multitude of
brain and peripheral oscillators that set physi-
ological and metabolic functions in phase with
the light–dark cycle. The SCN functions as a
relay integrating environmental signals before
sending appropriate neuronal and hormonal
cues to the brain and peripheral tissues to con-
trol, among others, sleep/wake and feeding/
fasting cycles. Many evidences show that
metabolism and circadian system are tightly
interconnected. Peripheral oscillators, such as
the liver and adipose tissue, can be shifted by
mealtime. By contrast, feeding signals do not
affect the master clock under light–dark condi-
tions, although nutritional cues affect its func-
tioning under metabolic challenges, such as
calorie restriction and high-fat diet. Circadian
desynchronization, such as shift work and
chronic jet lag, is now recognized as a deter-
minant of metabolic disturbances. Therefore,
chronotherapeutic approaches of daily dieting
to avoid circadian misalignment are advisable
for the management of obesity and type
2 diabetes.
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1 Introduction

Every day we experience rhythms of our physio-
logical functions and behaviors, which follow the
24-h light–dark cycle due to the rotation of Earth
around its axis. For instance, we are awake and eat
during daytime, while we sleep during the night.
Our body temperature drops every night and most
of our hormones are secreted at particular times of
day, like melatonin released from the pineal gland
only during the night. As detailed in this chapter,
these daily rhythms are not passive responses to the
changing outside world, but are controlled by a
network of endogenous circadian clocks and oscil-
lators. Here, we will particularly focus on the
relationships between circadian system and metab-
olism. After presenting the organization of the cir-
cadian system and its involvement in metabolism,
we will detail the nature of signals synchronizing
peripheral oscillators, thus ensuring the circadian
control of metabolism. The last part presents path-
ological situations in which circadian disruptions
lead to metabolic troubles, and vice versa.

2 A Network of Clocks and
Oscillators Ensuring the
Circadian Control of
Metabolism

2.1 The Master Clock
in the Suprachiasmatic Nucleus

In mammals, the daily variations of physiological
functions and behaviors are controlled by a multi-
oscillatory network that generates internal daily
oscillations and adjusts their timing to external
temporal cues, such as the 24-h variations in ambi-
ent light. At the top of this circadian network, a
master clock located in the suprachiasmatic nucleus
of the hypothalamus (SCN) adjusts the timing of
secondary clocks and oscillators inmost other brain
regions and peripheral tissues, via nervous and
hormonal signals (Dibner et al. 2010).

The clock mechanism in the SCN involves
24-h oscillations of core clock components, called
clock genes and defined as genes whose protein

products are necessary for the generation and reg-
ulation of circadian rhythms within individual
cells (Ko and Takahashi 2006). The heterodimer
CLOCK/BMAL1 stimulates expression of essen-
tial clock components PERs and CRYs which,
after a delay, repress the transcriptional activity
of the CLOCK/BMAL1 heterodimer by inhibiting
its binding to their own promoters. This main loop
is responsible for oscillations of PER and CRY
proteins. CLOCK/BMAL1 also stimulates
expression of other clock-related proteins, such
as REV-ERBα (alpha) and RORα (alpha), which
create auxiliary loops that help stabilizing the
main loop (Fig. 1). The circadian transcription
factors control the temporal transcription of
numerous downstream, clock-controlled genes,
which constitute outputs of the molecular clock
and are involved in a large variety of biological
processes. Many levels of regulation are impor-
tant for the proper functioning of the circadian
clock, including epigenetic, transcriptional, post-
transcriptional, and posttranslational mecha-
nisms. All together, these regulations provide
robust oscillations, resilient to large fluctuations
in temperature (the so-called temperature com-
pensation) and overall transcription rates (Dibner
et al. 2010).

In absence of environmental inputs, the master
clock “free-runs” with a period close to, but not
exactly, 24 h. Therefore, biological rhythms
need to be synchronized to the day–night cycle,
which represents the most important environmen-
tal cue for most organisms. The resetting effects of
light on circadian rhythms depend on the time of
light exposure. For a nocturnal rodent, light in
early and late night produces phase delays
and advances, respectively, while light during
most of day has no effect on the phase of the
SCN clock.

Light is perceived in the retina by classical
photoreceptors and a subset of ganglion cells
that are photosensitive because they express a
photopigment called the melanopsin, highly
responsive to blue light stimulation (Hattar
et al. 2006). These ganglion cells project via
the retinohypothalamic tract to the ventral
SCN, where they release mainly glutamate and
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the neuropeptide pituitary adenylate cyclase-
activating protein (PACAP) (Golombek and
Rosenstein 2010). The downstream signaling
pathway in ventral SCN cells induces
acute expression of clock genes Per1 and
Per2, together with several immediate
early genes such as c-fos (Golombek and
Rosenstein 2010).

The retinohypothalamic tract also projects to
the thalamic intergeniculate leaflets (IGLs). From
the IGL, the geniculohypothalamic tract projects
to the SCN and can thus indirectly convey light
information by releasing neuropeptide Y (NPY),
γ-aminobutyric acid (GABA), and enkephalin
(Harrington 1997). Other structures can also con-
vey indirect light information to the SCN.

BMAL1

CLOCK
(NPAS2)

RORs

REV-ERBs PERs/CRYs

Auxiliary loops Main loop

Metabolic
transcription factors
(PPARs, PGC-1α)

Intracellular metabolism
(redox state, NAD+,

SIRT1,  AMPK)

Fig. 1 Molecular clockwork and its interactions with cel-
lular metabolism. The mammalian molecular clockwork
consists of a set of clock genes and their protein products
that generate 24-h feedback loops of transcription and
translation. Main loop: The heterodimer CLOCK/
BMAL1 stimulates the expression of core clock compo-
nents Pers and Crys, which in turn repress the transcrip-
tional activity of the CLOCK/BMAL1 heterodimer by
inhibiting its binding to the E-box response elements
located in their own promoters, through formation of a
complex with the casein kinase 1ε and δ. Auxiliary loop:
CLOCK/BMAL1 also stimulates expression of other
clock-related proteins, such as REV-ERBs and RORs,
which create an auxiliary loop that helps stabilize the
main regulatory loop. Outputs of the clock: These circa-
dian transcription factors control numerous clock-

controlled genes to influence a variety of biological activ-
ities. The molecular clockwork interacts with intracellular
metabolism via redox changes, PPARs, SIRT1, and
AMPK. AMPK 50 adenosine monophosphate-activated
protein kinase, BMAL1 brain and muscle arnt-like protein
1, CLOCK circadian locomotor output cycles kaput, CRY
cryptochrome, NAD+ nicotinamide adenine dinucleotide,
NPAS2 neuronal PAS domain protein 2, PER period, PGC-
1α (alpha): PPARγ (gamma): coactivator-1α (alpha),
PPAR peroxisome proliferator-activated receptor, ROR
retinoic acid receptor-related orphan nuclear receptor,
REV-ERB reverse viral erythroblastosis oncogene product,
SIRT1 sirtuin 1 (Data from Rutter et al. (2001), Ko and
Takahashi (2006), Asher et al. (2008), Nakahata
et al. (2008), Teboul et al. (2008))
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Arousal-promoting orexigenic neurons of the lat-
eral hypothalamic area (LH), for instance, are a
target of retinal projections (Hattar et al. 2006)
and project in turn to the immediate vicinity of
the SCN (Brown et al. 2008).

Even if the light is the most important time-
giver (also called zeitgeber in chronobiology),
other temporal cycling cues called “non-photic,”
such as food availability, temperature, or stimu-
lated locomotor activity, are putative synchro-
nizers. Two major input pathways convey
non-photic messages to the SCN: the NPYergic
projection from the IGL, also transmitting photic
information, and the serotonergic input from the
midbrain raphe nuclei (Harrington 1997; Morin
1999). Besides a possible direct action of meta-
bolic cues on SCN cells, the pathways conveying
feeding and metabolic cues to the SCN may
involve nuclei of the mediobasal hypothalamus,
such as arcuate nucleus (ARC) and ventromedial
hypothalamic nucleus (VMH), which could inte-
grate metabolic information and energy status
before projecting to the SCN (Challet 2010)
(Fig. 2).

To sum up, the SCN is a robust clock, whose
self-sustained rhythmicity, relying on molecular
transcriptional–translational feedback loops, is

synchronized by photic and non-photic synchro-
nizers and distributed to the whole organism.

2.2 Central Clocks and Oscillators

2.2.1 Presentation
Many brain areas exhibit daily oscillations of
clock genes (Feillet et al. 2008; Dibner
et al. 2010). Retina and olfactory bulb are extra-
SCN oscillators fulfilling all the criteria to be
considered as circadian clocks (Guilding and Pig-
gins 2007): self-sustained oscillations compen-
sated for temperature and reset by environmental
inputs and outputs distributed out of the structure.
Some other brain areas have been classified as
semiautonomous, such as ARC and dorsomedial
hypothalamic nuclei (DMH), both structures of
the medial hypothalamus involved in feeding
and energy metabolism (Guilding and Piggins
2007). Cells of these oscillators exhibit indepen-
dent circadian rhythms, but appear less coupled
in vitro than SCN cells. Moreover, their timing of
clock gene oscillations differs from SCN. For
instance, in rat, the peak of Per1 mRNA in ARC
occurs at dusk, i.e., 6 h later than in SCN, while
Per2mRNA is delayed by 4 h (Shieh et al. 2005).

Retina

SCN

IGL

LH
Raphe

MBH

?

light cues

arousal cues
metabolic cues and
hormonal signals

(e.g. ghrelin, leptin)

Fig. 2 Main afferent pathways to the master clock in
rodents. Structures conveying directly or indirectly light
information to the SCN are in yellow (retina) and orange
(IGL and LH). The raphe nuclei (red) convey non-photic
information to the master clock, while the IGL receives
both photic and non-photic cues. The MBH (green)

integrates metabolic signals and possibly photic cues.
IGL intergeniculate leaflet of the thalamus, LH lateral
hypothalamic area, SCN suprachiasmatic nucleus, MBH
mediobasal hypothalamus (i.e., arcuate and ventromedial
hypothalamic nuclei) (Data from Morin (1999), Hattar
et al. (2006), Yi et al. (2006), Challet (2010))
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The slave oscillators are independently arrhyth-
mic but can provide a circadian output totally
dependent on inputs from clocks or semiautono-
mous oscillators (Guilding and Piggins 2007). For
instance, LH and hypothalamic paraventricular
nucleus (PVN) display a rapid dampening of
rhythmicity of Per1-luc expression in vitro (Abe
et al. 2002). Of note, the core clock mechanism in
brain oscillators is similar to the one in SCN.
However, NPAS2, a paralog of CLOCK that
dimerizes with BMAL1, may replace CLOCK in
the mammalian forebrain (Reick et al. 2001).

2.2.2 Entrainment of Brain Oscillators by
Inputs from SCN

The SCN efferents terminate in relatively few brain
sites, mainly limited to the hypothalamus and thal-
amus. Within the hypothalamus, the SCN projects
most densely to the subparaventricular region. Of
interest for the present topic are the projections of
the SCN on hypothalamic nuclei involved in
energy balance, referred as “metabolic hypothala-
mus,” receiving SCN input directly or via polysyn-
aptic relays (principally via the subparaventricular
region). Pre-autonomic neurons in PVN and

arousal-promoting orexin neurons in the LH are
controlled by a daily balance between
glutamatergic and GABAergic inputs from the
SCN (Kalsbeek et al. 2006). Neurosecretory
corticotrophin-releasing factor neurons in PVN,
involved in hypothalamic–pituitary–adrenal axis,
are inhibited by vasopressinergic SCN inputs.
GABAergic and vasopressinergic SCN neurons
project also on DMH, a key site for integration of
circadian timing into numerous physiological pro-
cesses (Kalsbeek et al. 2006) (Fig. 3). Moreover,
dopaminergic neurons of the semiautonomous
oscillator ARC, which express rhythmic clock
genes, are directly regulated by SCN neurons
containing vasoactive intestinal peptide (Gerhold
et al. 2001; Sellix et al. 2006). Finally, it is also
noteworthy that nervous outputs from the SCN are
not required for the establishment of locomotor
activity rhythms (Silver et al. 1996), suggesting
the presence of paracrine factors diffusing from
SCN cells and controlling rhythmic activity. At
least three diffusible circadian factors have been
identified, namely, transforming growth factor
alpha (α), prokineticin 2, and cardiotrophin-like
cytokine (Li et al. 2012b).

SCN ARC

VMH

LH

DMH

PVN

sPVZ

energy metabolism
sleep/wake
feeding/fasting

various nervous and
neuroendocrine outputs

Fig. 3 Intra-hypothalamic network connecting the master
clock and nuclei involved in the regulation of energy
metabolism and feeding rhythm. Nuclei of metabolic
hypothalamus are interconnected and share reciprocal con-
nections with the SCN. This network of hypothalamic
oscillators is supposed to be involved in circadian control
of feeding and energy metabolism. The SCN clock is in
red; semiautonomous oscillators are in blue and slave
oscillators in green. Solid arrows represent direct neuronal

connections, while dashed arrows represent indirect out-
puts. SCN suprachiasmatic nucleus, ARC arcuate nucleus,
VMH ventromedial hypothalamic nucleus, DMH
dorsomedial hypothalamic nucleus, sPVZ subparaven-
tricular zone, PVN paraventricular hypothalamic nucleus,
LH lateral hypothalamic area (Data from Chou
et al. (2003), Yi et al. (2006), Challet (2010), Bechtold
and Loudon (2013))
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2.2.3 Outputs of Brain Oscillators: The
Case of Feeding/Fasting Cycle

Circadian oscillations in the hypothalamus influ-
ence a multitude of physiological processes and
behaviors such as reproductive cycle, thermoreg-
ulation, sexual and maternal behavior, stress-
related responses, and food intake. Circadian
oscillations in hypothalamic nuclei may ensure
the expression of appropriate behaviors at appro-
priate times of the day, thus avoiding the disad-
vantageous expression of multiple and
incompatible behaviors at the same time, like
sleep and food intake (Guilding and Piggins
2007).

Lesions in SCN abolish rhythmic behaviors,
including feeding rhythm (Nagai et al. 1978).
However, feeding/fasting cycle is likely not a
passive consequence of the sleep/wake cycle and
could involve the circadian timing of nuclei in the
mediobasal hypothalamus. The direct projections
from SCN to these nuclei may provide a first
gating of feeding responses. We will further
focus on ARC and DMH, key structures for reg-
ulation of energy balance and food intake (Wil-
liams and Elmquist 2012). ARC contains neurons
sensitive to circulating nutrients (e.g., glucose-
sensing neurons) (Burdakov et al. 2005) and to
feeding-related hormones, like leptin, secreted
from adipose tissue (Ahima and Lazar 2008).
This integration of peripheral energetic informa-
tion constitutes a homeostatic feedback loop.
Moreover, both ARC and DMH are robust oscil-
lators, likely implicated in feeding rhythm
(Fig. 3).

Two populations of ARC neurons express neu-
ropeptides oppositely involved in food intake reg-
ulation. Neuropeptide Y (NPY) and agouti-related
peptide (AgRP) are orexigenic, while pro-
opiomelanocortin (POMC) and cocaine- and
amphetamine-regulated transcript (CART) are
anorexigenic. These neuropeptides are rhythmi-
cally synthesized in the ARC (Akabayashi
et al. 1994; Steiner et al. 1994; Xu et al. 1999).
Feeding rhythm is profoundly disrupted by
targeted destruction of either leptin-responsive or
NPY-responsive neurons in ARC (Wiater
et al. 2011; Li et al. 2012a).

The DMH is important for the integration of
circadian rhythms into various physiological func-
tions and behaviors, due to its wide afferent and
efferent connections to hypothalamic (e.g., PVN,
ARC, and LH) and extra-hypothalamic sites
(Bechtold and Loudon 2013). Excitotoxic lesions
of the DMH disrupt circadian rhythms of wakeful-
ness, feeding, locomotor activity, and serum corti-
costerone (Chou et al. 2003). By its circadian
oscillations, sensitivity to feeding-related cues,
and involvement in homeostatic regulation of
food intake, the DMH could thus be a key structure
in the hypothalamic network controlling rhythms
in feeding behavior. Hypothalamic oscillators seem
to play a salient role in timing of feeding and
energy metabolism (Fig. 3). Moreover, food intake
can entrain specific circadian rhythms in anticipa-
tion of fixed mealtimes. These feeding-entrainable
rhythms will be detailed below in the section
describing the effects of feeding time on extra-
SCN brain clocks.

Because peripheral tissues involved in metab-
olism harbor circadian oscillators, it is essential
for the circadian regulation of energy balance to
consider their oscillatory characteristics and their
cross talk with the central actors aforementioned.

2.3 Peripheral Oscillators

The vast majority of cells in peripheral tissues
contain the molecular clock machinery
(Balsalobre et al. 1998; Yagita et al. 2001). Bio-
luminescent constructs allowed the real-time visu-
alization of clock genes oscillations, both in vitro
(Yoo et al. 2004) and in vivo (Tahara et al. 2012).
Some peripheral tissues can exhibit self-sustained
oscillations for several days, but the coupling is
weaker than in SCN clock. Moreover, as in SCN
clock, the period of peripheral oscillators is resil-
ient to large fluctuations in temperature and over-
all transcription rates, as shown in cultured
fibroblasts (Dibner et al. 2009). They also exhibit
circadian outputs, as exemplified below. Circa-
dian transcriptome profiling studies reveal that
around 10 % of a tissue’s transcriptome has a
circadian pattern of expression (Panda
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et al. 2002). Finally, peripheral oscillators are
entrained by neuronal and endocrine signals ema-
nating from the SCN or indirectly by
SCN-controlled behavioral rhythms (feeding/
fasting and sleep/wake cycles).

2.3.1 Outputs of Peripheral Oscillators
Rhythmically expressed genes control a multitude
of physiological functions. For instance, they
encode key enzymes involved in hepatic metabo-
lism of fatty acids, cholesterol, bile acids, amino
acids, and xenobiotics (Gachon et al. 2006) and
control adipogenesis and lipid metabolism in adi-
pose tissue (Gimble et al. 2011). The rhythmic
physiological outputs of peripheral tissues result
from signals emanating from the SCN and/or from
local peripheral oscillators. Specific inactivation
of the clock gene Bmal1 in the liver of mice
(L-Bmal1�/�) disrupts rhythmic expression of
genes involved in glucose metabolism, as well as
rhythmic circulating glucose levels. During their
resting phase, L-Bmal1�/� mice display mild
hypoglycemia, suggesting that the daily rhythm
of hepatic glucose export driven by the liver clock
counterbalances the brain-driven feeding/fasting
cycle (Lamia et al. 2008).

The adipose tissue also exhibits robust oscilla-
tions of core clock components, controlling the
circadian expression of many transcription factors
(Ando et al. 2005; Zvonic et al. 2006). Moreover,
the adipose tissue secretes several hormones
termed adipokines, including leptin and
adiponectin, involved in the regulation of energy
balance (Ahima and Lazar 2008). Ando and col-
leagues (2005) showed a rhythmic expression of
several adipokine genes. Circulating levels of lep-
tin display clear diurnal variations in both rodents
and humans (Sinha et al. 1996; Kalsbeek
et al. 2001; Cuesta et al. 2009). Moreover, leptin
secretion is rhythmic in cultured adipocytes
(Otway et al. 2009). These results strongly sug-
gest that rhythmic expression of adipokines is
under control of the adipose clock, although the
underlying mechanisms are still unclear.

Another example is the pancreas in which spe-
cific inactivation of the clock gene Bmal1 leads to
glucose intolerance and hyposecretion of insulin,

highlighting the importance of the pancreatic clock
in glucose homeostasis (Marcheva et al. 2010).

2.3.2 Circadian Control of Metabolism at
Molecular Level

The link between molecular clock and metabo-
lism may be provided either by metabolic func-
tions of clock genes (i.e., pleiotropy of clock
genes) or by the involvement of clock-controlled
genes. Both mechanisms seem to exist, involving
many nuclear receptors, such as REV-ERBs and
RORs (components of the molecular clockwork)
and peroxisome proliferator-activated receptors
(PPARs, clock-controlled proteins) (Teboul
et al. 2008). RORα (alpha) directly regulates
genes involved in the fatty acid metabolism of
skeletal muscles (Lau et al. 2004). Moreover,
REV-ERBα (alpha) is important for the daily var-
iations of fuel utilization (Delezie et al. 2012) and
plays a pivotal role in the interface between liver
clock and lipid metabolism. PPARs are members
of the steroid/nuclear receptor superfamily, acting
as ligand-activated transcription factors. Pparα
(alpha), a clock-controlled gene whose activation
requires CLOCK, is rhythmically expressed in
tissues with a high rate of fatty acid catabolism
(e.g., the muscles, heart, or liver) and is involved
in lipoprotein and lipid metabolism (Oishi
et al. 2005b; Yoon 2009). Pparα (alpha) is there-
fore recognized as a strong link between circadian
clocks and lipid metabolism in peripheral tissues
(Teboul et al. 2008). Furthermore, as demon-
strated by lipidomic profiling in adipose tissue,
PER2 is important for normal lipid metabolism.
This effect is mediated by PPARγ (gamma), a
master regulator of adipogenesis and lipid metab-
olism in adipose tissue, whose transcriptional
activity is directly inhibited by PER2 (Grimaldi
et al. 2010) (Fig. 1). To ensure a proper control of
circadian metabolism, central and peripheral
clocks need to be phase adjusted. The next para-
graph investigates the nature of signals synchro-
nizing peripheral oscillators. First, we consider
nervous and hormonal signals emanating from
the SCN, acting as a relay between environmental
synchronizers and peripheral tissues. Then, we
present the resetting effects of nutritional cues.
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3 Nature of Signals
Synchronizing Peripheral
Oscillators

3.1 Entrainment by Nervous
Outputs from the SCN

3.1.1 SCN Controls Glucose Metabolism
The daily rhythmicity of plasma glucose,
peaking before the onset of activity in rats, is
not a passive response to the feeding/fasting
cycle (La Fleur et al. 1999). The liver plays a
pivotal role in glycemic regulation, as a site of
glucose uptake and a major source of glucose
production (Kalsbeek et al. 2010). Glucose
homeostasis requires both functional hepatic
and SCN clocks (La Fleur et al. 1999; Lamia

et al. 2008). Besides SCN lesion, glucose
rhythm can also be disturbed by inactivation
of either sympathetic or parasympathetic inputs
(Cailotto et al. 2008), underlying the impor-
tance of balanced inputs from the SCN via the
autonomous nervous system (ANS). The actual
model is that rhythmic GABAergic input from
the SCN inhibits the sympathetic and parasym-
pathetic pre-autonomic neurons of the PVN,
predominantly during the day. By contrast,
glutamatergic projections from the SCN stimu-
late sympathetic pre-autonomic neurons of the
PVN (Kalsbeek et al. 2010). Thus, the entrain-
ment of circadian glucose rhythm is controlled
by the SCN, fine-tuning the balance between
both branches of the ANS innervating the liver
clock (Fig. 4).

SCN

Peripheral oscillators

Direct outputs

Humoral signals
(GCs, melatonin)

Body 
Temperature

Light

feedback on central clocks
feedback

Sleep/wake
cycle

Feeding/fasting 
cycle

Sympathetic
nervous system

Metabolic hormones and metabolites

Timed meal

Fig. 4 Functional organization of the circadian timing
system. The master clock in the SCN is mostly reset by
ambient light. Extra-SCN oscillators in the brain (not
shown) and in peripheral tissues are phase controlled by
cues from the SCN and by timed feeding. The SCN clock
transmits temporal cues to peripheral oscillators via
“direct” outputs using nervous and hormonal pathways

and indirectly via behavioral (i.e., feeding/fasting and
sleep/wake cycles) and physiological (i.e., body tempera-
ture cycle) rhythmic signals. In turn, peripheral oscillators
release rhythmically metabolic hormones and metabolites
that feedback to central and peripheral oscillatory struc-
tures. SCN suprachiasmatic nucleus, GCs glucocorticoids
(Based on Challet (2010), Dibner et al. (2010))
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Moreover, hypothalamic orexin is a key regu-
lator of plasma glucose, being particularly the
main effector of the peak occurring before the
activity phase. Sympathetic denervation of the
liver prevented the stimulatory effect of orexin
on glucose levels, suggesting that orexin trans-
lates SCN-derived GABAergic rhythms into glu-
cose rhythm via the sympathetic nervous system
(Yi et al. 2009).

3.1.2 SCN and the Adipose Tissue
The adipose tissue is densely innervated by sym-
pathetic fibers, whose activation stimulates lipol-
ysis. Parasympathetic innervation of adipose
tissue has been shown more recently (Kreier
et al. 2002). As for the liver, the SCN controls
both branches of ANS innervating adipose tis-
sues, modulating the rhythmic outputs of the adi-
pose clock. For instance, the activity of hormone-
sensitive lipase, exhibiting a daily rhythmicity, is
increased by 50 % in adipose tissue selectively
denervated for the parasympathetic input (Kreier
et al. 2002). Moreover, leptin rhythm is under the
control of both local adipose clock (Otway
et al. 2009) and the master SCN clock since
SCN lesions suppress the daily rhythm of plasma
leptin in rats (Kalsbeek et al. 2001).

By modulating the autonomous innervations of
liver and adipose clocks, the SCN thus controls the
circadian rhythmicity of metabolites (carbohy-
drates and lipids) and metabolic hormones (e.g.,
leptin). However, some peripheral clocks do not
respond directly or only to nervous cues. Gluco-
corticoid (GC) and melatonin, whose rhythmic
release is driven by the SCN via nervous pathways,
can in turn entrain many peripheral oscillators.

3.2 Entrainment by Hormonal
Outputs: Glucocorticoids
and Melatonin

Glucocorticoids (GCs) show a strong circadian
rhythm, their secretion from the adrenal glands
peaking around wake-up time (morning in
humans and evening in nocturnal rodents). Dif-
ferent actors are involved in the circadian rhyth-
micity of GCs’ secretion. The SCN drives GCs’

rhythm via the hypothalamic–pituitary–adrenal
axis and modulates the daily sensitivity of adre-
nal gland to ACTH via splanchnic fibers
(Ulrich-Lai et al. 2006). Furthermore, the local
adrenal clock gates the sensitivity of the adrenal
gland to ACTH, therefore modulating the secre-
tion of GCs throughout the day (Oster
et al. 2006). The GC nuclear receptor is
expressed in virtually all cell types in periphery
and the brain, except in adult SCN cells
(Rosenfeld et al. 1988). Activated GC receptors
act as transcription factors, via direct activation
or repression of various target genes (Surjit
et al. 2011). Around 60 % of rhythmic
transcriptome in mouse liver, mostly genes
involved in metabolism, lose their rhythmicity
after adrenalectomy, while expression of clock
genes is hardly affected (Oishi et al. 2005a).
Dexamethasone, a glucocorticoid receptor ago-
nist, activates Per1 expression and synchronizes
rat fibroblasts in vitro (Balsalobre et al. 2000a).
In the same study, dexamethasone was shown to
phase shift peripheral clocks (liver, kidney, and
heart), but not SCN clock, in vivo. Thus, gluco-
corticoids possess clock-resetting properties and
represent a robust phase-entrainment signal
from the SCN (Fig. 4).

Melatonin is derived from the amino acid tryp-
tophan and secreted from the pineal gland always
during the dark phase, either in nocturnal or diur-
nal mammals. The rhythmic release of melatonin
is driven by SCN clock and acts an internal daily
time-giver (Pevet and Challet 2011) (Fig. 4). Of
interest for the circadian control of metabolism,
MT1 and MT2 melatonin receptors are present in
pancreatic islets (Mulder et al. 2009). Simple and
double knockout mice for MT1 and MT1/MT2
exhibit an upregulation of insulin secretion,
highlighting a negative action of melatonin sig-
naling on insulin secretion (M€uhlbauer
et al. 2009). Moreover, melatonin applied on iso-
lated islets, for 2 h at the maximum of the circa-
dian insulin rhythm, induces a 9-h phase advance
of the insulin rhythm (Peschke and Peschke
1998). Genetic studies in humans have correlated
the presence of an allele variant of the melatonin
receptor in the pancreatic islets, hyperglycemia,
and impaired early-phase insulin secretion
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(Bouatia-Naji et al. 2009). Thus, the homeostatic
and circadian effects of melatonin on insulin
secretion pave the road for further investigations
in type 2 diabetes.

3.3 Coupling the SCN to Peripheral
Clocks in Diurnal and Nocturnal
Species

At the cellular level in peripheral clocks involved
in metabolism, anticipation of metabolic path-
ways optimizes food processing. Peripheral
clocks also sequester chemically incompatible
reactions (e.g., gluconeogenesis and glycolysis
in liver) to different time windows and limit met-
abolic processes with adverse side effects to times
when they are needed. At physiological level, the
subtle differences in how peripheral clocks are
phased by the master clock allow different organs
to synchronize their functions. At behavioral
level, circadian rhythms allow organisms to antic-
ipate and thus adapt to daily environmental vari-
ations. Of interest, phases of clock genes
oscillations and their photic entrainment in the
SCN are similar between nocturnal and diurnal
species (Mrosovsky et al. 2001; Caldelas
et al. 2003), while their respective phase of circa-
dian gene expression in peripheral tissues is oppo-
site, in the liver, for instance (Lambert andWeaver
2006). Therefore, the signals emanating from the
SCN are differentially interpreted at downstream
targets. One possible mechanism would be differ-
ences in polysynaptic relays conveying SCN out-
puts to peripheral targets. For instance, SCN
releases vasopressin on interneurons of PVN dur-
ing daytime. The targeted interneurons are excit-
atory in nocturnal rodents, while inhibitory in
diurnal rodents (such as Sudanian grass rat,
Arvicanthis ansorgei), leading to an opposite
phase release of GCs between nocturnal and diur-
nal species (Kalsbeek et al. 2008). Furthermore,
several species can even switch between noctur-
nal and diurnal patterns of behaviors. These
switches might rely on modifications of polysyn-
aptic relays from SCN to periphery, highlighting
the adaptive value of the multistage organization
of circadian timing.

3.4 Adjusting Clocks
with Metabolism

3.4.1 Extra-SCN Clocks Are Entrained by
Feeding Time

Among the different ways used by the SCN to
synchronize peripheral clocks, the daily rhythm in
spontaneous food intake is a strong zeitgeber for
many tissues. In normal conditions, food ingestion
is in phasewith activity period. Restricted feeding in
nocturnal rodents (i.e., when food is available few
hours during the day, corresponding to the usual
resting period) inverts the phase of gene expression
in peripheral organs within about a week, thereby
uncoupling peripheral clocks from the SCN
(Damiola et al. 2000; Stokkan et al. 2001) (Fig. 4).

In the brain, food restriction entrains the activ-
ity of numerous oscillating structures. For exam-
ple, the multineuronal activity in LH and VMH of
rats under restricted feeding shows a peak
entrained to the time of feeding (Kurumiya and
Kawamura 1991). Moreover, daily oscillations of
clock genes and proteins in various brain areas,
such as the cerebral cortex or the striatum, from
mice entrained to daytime-restricted feeding also
show phase shifts with peaks around mealtime,
different from the nocturnal peaks of expression in
animals fed ad libitum (Wakamatsu et al. 2001;
Feillet et al. 2008). All these data suggest that
clocks within and outside of the brain are affected
by restricted feeding schedules.

The effects of food on the circadian system
involve a specific clock mechanism, the food-
entrainable oscillator (FEO). Under restricted
feeding, several components of physiological
and metabolic functions become entrained to the
availability of food (e.g., anticipatory bouts of
locomotor activity and rises in body temperature
and GC release), and some of them, such as the
food-anticipatory activity, are still evident in
SCN-lesioned animals. This implies the existence
of the FEO, located outside of the SCN. The
location and mechanisms of the FEO have been
the subject of much controversy. Most evidences
support the fact that FEO is a network of neural
sites in the hypothalamus and brainstem, which
interact to provide timing and behavioral entrain-
ment of feeding (Mistlberger 2011).
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3.4.2 Mechanisms of Entrainment
of Extra-SCN Clocks by Food

The nature of signals that arise from feeding and
entrain peripheral clocks has been an area of
intense research. It is now established that feeding
cues include food itself, the increase of postpran-
dial temperature, food-derived metabolites, meta-
bolic hormones, and energetic status of cells.

Temperature Fluctuations
While variations in temperature can entrain
behavioral rhythms in ectothermic organisms
such as flies, temperature fluctuations mimicking
body temperature rhythms sustain previously
induced oscillations in cultured rat fibroblasts. In
vivo, inverted environmental temperature cycles
reverse circadian rhythms of clock genes (Per2
and Cry1) in the liver without affecting the SCN
(Brown et al. 2002). Thus, postprandial tempera-
ture elevation could be an entrainment pathway
from feeding/fasting cycle in homeothermic
organisms. Hepatic heat-shock factor 1 (HSF1),
which exhibits a highly rhythmic activity that
drives the expression of heat-shock proteins in
liver, could be a key component linking tempera-
ture fluctuations to the phase of molecular clocks
(Buhr et al. 2010; Saini et al. 2012) (Fig. 4).

Food-Related Hormones
Anorexigenic (e.g., insulin, leptin) and orexigenic
hormones (e.g., ghrelin) may participate to the
entrainment of peripheral clocks by food intake.
For example, insulin causes an acute induction of
Per1 mRNA levels in cultured rat fibroblasts
(Balsalobre et al. 2000b) and phase shifts of
Per2 expression rhythm in liver explants (Tahara
et al. 2011; Sato et al. 2014). Ob/ob mice, genet-
ically obese mice lacking functional leptin, dis-
play alterations in clock gene oscillations of
peripheral clocks but not in SCN. Of interest,
impairments of peripheral clocks appear in
young 3-week-old ob/ob mice, before appearance
of metabolic disorders, and are partially improved
by leptin treatment (Ando et al. 2011). The mech-
anisms by which leptin would modulate periph-
eral clocks need further investigations. It could
involve a direct action of leptin on peripheral
oscillators or a central action of leptin affecting

in turn peripheral tissues. For instance, leptin is
known to modulate various physiological pro-
cesses in peripheral tissues via activation of sym-
pathetic innervations (Haynes et al. 1997; Takeda
et al. 2002).

Other hormones which could participate in
meal entrainment in rodents are GCs. Restricted
feeding in rats triggers an anticipatory rise of
corticosterone in addition to the nocturnal rise
controlled by the SCN (Honma et al. 1984), and
corticosterone is known to entrain peripheral
clocks as aforementioned. However, corticoste-
rone injections fail to mimic the phase-shifting
effects of feeding in rats (Stokkan et al. 2001).
Gene expression rhythm in the liver of adrenalec-
tomized or GC receptor-deficient mice is still
entrained under food restriction, the phase shifts
being even faster in absence of GCs (Le Minh
et al. 2001). Hence, the role played by GCs in
meal entrainment is still unclear.

Metabolites (Lipids and Glucose)
In addition to their role of mediators of metabo-
lism (see first part), nuclear receptors can regulate
clock components, therefore participating in the
pathway by which food intake entrains peripheral
oscillators. The transcription factor PPARα
(alpha) is essential for lipid metabolism. After
activation by fatty acids, PPARα (alpha) directly
binds to a response element in Bmal1 promoter
(Canaple et al. 2006). PPARα (alpha) can also
directly activate Rev-erbα expression, and PER2
is able to recruit PPARα (alpha) and REV-ERBα
(alpha) to modulate Bmal1 expression, highlight-
ing the intimate reciprocal interactions between
clock components and metabolism (Gervois
et al. 1999; Schmutz et al. 2010). Additionally,
PGC-1α (alpha), a coactivator of PPAR (PPARγ
(gamma) coactivator-1α (alpha)), stimulates
Bmal1 expression through coactivation of ROR
proteins. Since PGC-1α (alpha) is sensitive to
various signals including nutritional status, activ-
ity, and temperature and regulates energy metab-
olism in peripheral tissues, it could be a key
component in the coupling of metabolism and
clocks (Liu et al. 2007) (Fig. 1).

Noteworthy, Per1 and Per2 mRNA levels are
downregulated after the addition of glucose in the
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culture medium of rat fibroblasts, while the
expression of many other genes, including tran-
scription factors, is upregulated. The glucose-
induced decrease of Per mRNA levels seems
mediated by glucose metabolism (involving tran-
scriptional regulators) rather than glucose itself
(Hirota et al. 2002). Thus, both lipids and glucose,
major food metabolites, can reset peripheral
clocks, constituting an important pathway of
entrainment of peripheral clocks by feeding time.

Intracellular Redox State
CLOCK (or its paralog NPAS2), BMAL1, and/or
PERs may directly sense energy-related signals
through their PAS domain, by detecting the
reduced or oxidized environment within the cell.
Redox signals, closely tied to the energy status,
are transduced by PAS domains which modulate
the functional state of the protein (Gu et al. 2000).
In vitro, the DNA-binding activity of the dimers
CLOCK/BMAL1 and NPAS2–BMAL1 is altered
by cellular redox status (Rutter et al. 2001). The
reduced forms of the nicotinamide adenine dinu-
cleotide, NADH and NADPH, activate DNA
binding of CLOCK (or NPAS2)–BMAL1,
whereas their oxidized forms inhibit it. NAD(P)
H/NAD(P)+ ratio reflects mitochondrial activity
and the switch between activation and inhibition
of DNA binding is very sensitive, providing a
rapid mechanism which could convey changes in
feeding to the cellular clocks (Rutter et al. 2001).
Sirtuin 1 (SIRT1), another energy sensor, links
metabolism to circadian physiology. SIRT1 cata-
lyzes the deacetylation of various substrates in
NAD+-dependent manner. By deacetylating his-
tones, SIRT1 participates to epigenetic silencing
by chromatin condensation. By deacetylating
metabolic enzymes and transcription factors,
SIRT1 contributes to multiple metabolic path-
ways, including gluconeogenesis, lipid metabo-
lism, insulin secretion, and thermogenesis.
Besides being a critical component of the longev-
ity response to calorie restriction (Yu and Auwerx
2009), SIRT1 is circadianly regulated. A specific
deletion of SIRT1 in liver of mice shows its par-
ticipation to circadian control in vivo (Nakahata
et al. 2008). SIRT1 influences the transcription of
a number of clock genes and promotes

deacetylation of PER2, thus modulating the
phase of the clockwork (Asher et al. 2008). In
addition to NAD and SIRT1, 50 adenosine
monophosphate-activated protein kinase
(AMPK) is another important metabolic fuel
gauge, sensing changes in the AMP/ATP ratio.
AMPK detects nutritional and hormonal signals
in peripheral tissues and the hypothalamus (Kahn
et al. 2005). As SIRT1, AMPK can directly impact
the clockwork, thus phase shifting peripheral
oscillators (Um et al. 2007; Lamia et al. 2009)
(Fig. 1).

Coupling of cellular metabolism to the molec-
ular clockwork in peripheral tissues has been
intensely investigated, while less is known in cen-
tral extra-SCN oscillators. Many mechanisms
could be similar, including aforementioned sen-
sors of energy and redox states. In particular,
AMPK is a potent regulator of energy balance
within the hypothalamus. For example, leptin
inhibits specifically AMPK in ARC and PVN,
and this inhibition is required to mediate anorex-
igenic and weight loss effects of leptin (Kahn
et al. 2005). AMPK signaling is thus a likely
route through which circadian and feeding signals
are integrated in the hypothalamus (Bechtold and
Loudon 2013).

3.5 Nutritional Cues and the Master
Clock

3.5.1 Effects of Metabolic Signals
on the Master Clock

While peripheral clocks are entrained by feeding
time with great efficiency, the SCN clock seems
impervious to the synchronizing effects of meal-
time, provided that animals are exposed to a
light–dark cycle and ingest enough daily energy
(Damiola et al. 2000; Stokkan et al. 2001). How-
ever, SCN can respond to feeding cues under spe-
cific calorie conditions. In particular, rats exposed
to a light–dark cycle and entrained to restricted
feeding coupled with a hypocaloric diet display
phase advances for circadian rhythms of locomotor
activity, body temperature, and melatonin in com-
parison to animals fed ad libitum (Challet
et al. 1997). Entrainment to light–dark cycle is
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also altered in mice submitted to a timed
hypocaloric feeding and their SCN clockwork is
phase advanced (Mendoza et al. 2005). Conditions
of low glucose availability can alter the circadian
responses to light (Challet et al. 1999). In the
absence of photic cues (i.e., constant darkness),
the mouse SCN can also entrain to regular sched-
uled feeding (Castillo et al. 2004). Under constant
light conditions, leading to behavioral
arrhythmicity in albino rats, scheduled feeding res-
cues both locomotor activity rhythm and clock
gene oscillation in the SCN (Lamont et al. 2005).
Free access to high-fat diet also impacts on the
master clock, as evidenced by lengthened free-
running period in mice housed under constant
darkness (Kohsaka et al. 2007; Mendoza
et al. 2008). In mice with free access to chow
diet, a palatable food (chocolate) given every day
at the same time entrains the SCN clock in constant
darkness and reduces its circadian responses to
light (Mendoza et al. 2010). Taken together, these
results highlight that the SCN function can be
changed by various nutritional cues.

The pathways conveying metabolic signals to
the SCN are not well identified. It is possible that
timed calorie changes the redox status of SCN
cells. Of note, redox signals in SCN exhibit circa-
dian rhythm, which modulates the excitability of
SCN neurons (Wang et al. 2012). This result dem-
onstrates the close connection between cellular
metabolism and dynamic regulation of SCN func-
tioning. Another possibility would involve relays
from brain structures sensitive to nutrients. Lesion
experiments suggest an involvement of IGL in the
transmission of metabolic information to the SCN
(Challet et al. 1996; Saderi et al. 2013). Moreover,
orexigenic and anorexigenic neurons in the hypo-
thalamus controlling feeding behavior respond to
fluctuations in circulating nutrient (e.g., glucose,
fatty acids, amino acids) levels that reflect nutri-
tional status (Williams and Elmquist 2012). Since
SCN receives numerous projections from hypo-
thalamic nuclei, the metabolic hypothalamus
could integrate and transmit information from cir-
culating nutrients to the SCN. For example, VMH
has been involved to some extent in mediating the
behavioral phase advance produced by timed
caloric restriction (Challet 2010).

3.5.2 Feedback of Metabolic Hormones
Since receptors of ghrelin, insulin, and leptin are
present on SCN cells, these hormones are good
candidates to provide metabolic information to
the SCN (Unger et al. 1991; Guan et al. 1997;
Zigman et al. 2006). These receptors are also
present on several hypothalamic structures
which project on the SCN, such as ARC
(Yi et al. 2006), raising the possibility of either a
direct or indirect effect on the master clock.

Ghrelin is predominantly synthesized by stom-
ach. Ghrelin receptors are present in the hypothal-
amus, including SCN and mediobasal
hypothalamic nuclei involved in food intake
(Zigman et al. 2006). Ghrelin levels exhibit a
circadian rhythm and closely follow feeding
schedules, making this peptide a putative candi-
date for food-related entraining signals. In vitro,
ghrelin phase advanced the electrical rhythm of
SCN slices and the PER2::LUC expression in
cultured SCN explants (Yannielli et al. 2007),
suggesting a direct action of ghrelin on the SCN.
In vivo experiment shows that besides increasing
food intake, ghrelin treatment only causes phase
shifts in fasted mice, but not in mice fed ad libitum
(Yannielli et al. 2007). The shifting effects of
ghrelin on the SCN and its reducing effects of
photic responses in the SCN could be mediated
by the ARC (Yi et al. 2006, 2008).

Insulin, mostly synthesized by β-cells of pan-
creas, can cross the blood–brain barrier. Insulin
receptors are present on SCN cells (Unger
et al. 1991), and insulin applied during the subjec-
tive day inhibits firing rate of the SCN neurons
(Shibata et al. 1986). Little is known, however,
about the possible phase-shifting effects of insulin
on free-running activity rhythms of rodents in con-
stant darkness. Thus, the possible feedback role of
insulin on the SCN deserves further investigation.

Leptin, encoded by the gene ob, is produced
and secreted by the white adipose tissue, and
consequently, its circulating levels are closely
related to body fat mass. Among all its targets,
leptin signals to the hypothalamus, where it pro-
motes satiety and stimulates energy expenditure
(Ahima and Lazar 2008). The mediobasal hypo-
thalamus lies within close proximity to the median
eminence, a circumventricular structure
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containing specialized hypothalamic glial cells
called tanycytes. It has recently been shown that
circulating leptin enters the brain via the median
eminence, through internalization by tanycytes,
which release leptin in the mediobasal hypothala-
mus (Balland et al. 2014). In addition to its effects
on energy balance, leptin can affect the circadian
system. Indeed, expression of leptin receptors has
been detected in the SCN (Guan et al. 1997). Lep-
tin in vitro can phase advance the SCN oscilla-
tions (Prosser and Bergeron 2003) and modulate
firing rates of SCN neurons (Inyushkin
et al. 2009). In vivo injections of leptin modulate
the photic synchronization of the master clock in
mice (Mendoza et al. 2011), this effect being
likely mediated by the mediobasal hypothalamus
(Grosbellet et al. 2015).

3.5.3 Feedback of Other Hormones:
Glucocorticoids and Melatonin

While the GC agonist dexamethasone can phase
shift circadian gene expression in peripheral
clocks, it does not affect clock gene expression
in the SCN (Balsalobre et al. 2000a). However,
mice with genetic ablation of adrenal clock, as
well as adrenalectomized rats, reentrain faster to
a new light–dark cycle than control animals,
suggesting that the adrenal clock feeds back to
the SCN, probably via indirect effect of GCs
(Sage et al. 2004; Kiessling et al. 2010). At least
midbrain raphe nuclei are identified relays medi-
ating feedback effects of GCs on the SCN via the
serotonergic system. Indeed, daily variations of
circulating GCs trigger the daily rhythm of tryp-
tophan hydroxylasemRNA, a limiting enzyme for
serotonin synthesis (Malek et al. 2007).

Melatonin is known for its sedative (i.e., sleep-
promoting) effect in humans (Sack et al. 1997).
Beyond its effect on sleep, melatonin has been
shown to directly influence the SCN, where mel-
atonin receptors MT1 and MT2 are present. Daily
perfusions of supraphysiological doses of melato-
nin can entrain the free-running activity of rats.
Melatonin also accelerates the reentrainment of
circadian rhythms after a shift in the light–dark
cycle (Pevet and Challet 2011). Thus, together,
melatonin and glucocorticoid rhythms appear to
stabilize the functioning of the circadian system.

The above sections showed the cross talk
between circadian system and metabolism,
leading to a finely tuned regulation of circadian
and energy physiology. The other side of the
coin, developed below, is that disruptions in the
circadian system disturb metabolism, and
vice versa.

4 Circadian Disruptions
and Metabolic Disturbances

4.1 Circadian Disruptions Affect
Metabolism

Since clock genes and clock-controlled genes
determine the circadian organization of metabo-
lism, genetic clock disruptions affect metabolism
in rodents. For example, Bmal1 deletion in mice
impairs glucose metabolism and triglyceride
rhythms in addition to increased body fat (Lamia
et al. 2008). Moreover, Clock mutant mice are
hyperphagic, with increased food intake during
the resting period and decreased energy expendi-
ture at night, leading to fat excess. Clock mutant
mice show severe metabolic alterations, including
disruptions in lipid (e.g., hypercholesterolemia
and hypertriglyceridemia) and glucose (hypergly-
cemia) homeostasis (Turek et al. 2005).

The circadian rhythmicity can also be altered
by environmental factors, such as chronic changes
in timing of light–dark cycles (chronic jet lag) or
work occurring during the usual resting period
(shift work). Numerous epidemiological studies
in different countries link the circadian
desynchronization induced by shift work with
increased risks for the metabolic syndrome.
These observations lead to the concept of
“chronobesity,” defined as obesity induced or
aggravated by circadian desynchronization. The
metabolic disturbances resulting from shift work
include impairments in lipid and glucose metabo-
lism and hypertension (Karlsson et al. 2003;
Dochi et al. 2009). Moreover, recurrent sleep
debt is also a risk factor for obesity and diabetes
(Spiegel et al. 2009), indicating that it is likely an
aggravating factor for metabolic disturbances in
shift workers.
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In rats, repeated weekly light–dark shifts
increase food intake and reduce activity, resulting
in higher body weight gain (Tsai et al. 2005) or
impaired insulin regulation (Bartol-Munier
et al. 2006). Moreover, rats forced to work during
daytime show no alteration in clock protein oscil-
lations in the SCN, which remain in phase with the
light–dark cycle, while temporal patterns of activ-
ity and food intake are altered. These rats also
exhibit a loss of glucose rhythmicity and a
reversed rhythm of triglycerides. These results
reveal an internal desynchronization, in which
activity combined with feeding uncouples meta-
bolic functions from the master clock (Salgado-
Delgado et al. 2008).

4.2 Metabolic Disruptions Induce
Circadian Disturbances

4.2.1 Diet-Induced Obesity
Obesity in rodents can be induced by a high-fat
regimen, in which more than 50 % of energy
derives from fat. In mice, high-fat diet attenuates
the daily pattern of locomotor activity, concomi-
tantly with a hypoactivity, due to a reduction of
activity during the dark phase. The daily pattern of
food intake is also dampened, with increased feed-
ing during the light phase and a relative decrease
at night (Kohsaka et al. 2007). As aforemen-
tioned, high-fat feeding lengthens the free-
running period of mice under dark conditions
(Kohsaka et al. 2007). High-fat feeding also
slows the resynchronization after shifts of the
light–dark cycle and decreases light-induced
phase shifts (Mendoza et al. 2008). All together,
these results indicate that high-fat feeding affects
the SCN clock. Moreover, high-fat feeding is
accompanied by changes in neuropeptide expres-
sion in the mediobasal hypothalamus, despite no
major modification in clock gene oscillations in
that region (Kohsaka et al. 2007). In the
brainstem, more precisely in the nucleus of the
solitary tract, high-fat feeding alters the daily pat-
terns of clock gene expression, including
downregulated Rev-erbα (alpha), and upregulated
Bmal1 and Clock mRNA levels (Kaneko
et al. 2009). These results suggest that central

dysfunctions may contribute to the development
of obesity in high-fat-fed mice.

Short-term high-fat feeding reduces circadian
variations of leptin levels in rats (Cha et al. 2000).
High-fat feeding also alters the daily variation in
glucose tolerance and insulin sensitivity in mice
(Delezie et al. 2012). Since metabolites, food-
related hormones, and feeding rhythms are potent
synchronizers for peripheral clocks, it would not
be surprising that peripheral clocks are altered in
high-fat-fed mice. High-fat feeding can attenuate
the amplitude of clock gene expression and alters
the rhythmic patterns of nuclear receptors, such as
PPARγ (gamma) and RORα (alpha), in the adi-
pose tissue and liver of mice (Kohsaka
et al. 2007), while other studies found that high-
fat diet fails to markedly alter peripheral clock
gene oscillations (Yanagihara et al. 2006; Delezie
et al. 2012; Eckel-Mahan et al. 2013). Several
hepatic transcripts were even shown to gain rhyth-
micity in mice fed with high-fat diet (Eckel-
Mahan et al. 2013). In humans, oscillations of
clock genes in adipose tissue do not differ
between lean, obese, and diabetic patients
(Otway et al. 2011), suggesting that fat overload
does not always impact peripheral clocks.

4.2.2 Genetic Obesity
Genetic obesity and diabetes in rodents provide
experimental models suitable to study the impact
of metabolic disturbances on circadian system.
For instance, obese Zucker rats ( fa/fa rats) that
carry a mutation in the leptin receptor gene dis-
play phase advance in feeding (Fukagawa
et al. 1992) and locomotor activity rhythms
(Mistlberger et al. 1998). The amplitude of the
activity–rest cycle is dampened in genetically
obese rats and mice, due to increased activity
during the resting light phase and decreased activ-
ity during nighttime (Mistlberger et al. 1998;
Kudo et al. 2004; Sans-Fuentes et al. 2010).
Obese ob/ob mice carry a mutation in the leptin
(ob) gene and thus lack functional leptin, while
db/db mice, obese and diabetic, carry a mutation
in the leptin receptor. Ob/ob mice show altered
photic resetting of the master clock (Sans-Fuentes
et al. 2010; Grosbellet et al. 2015), albeit neither
ob/ob nor db/db mice exhibit major alterations of
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molecular clockwork in the SCN (Kudo
et al. 2004; Ando et al. 2011).

In sharp contrast, the daily variations of clock
gene expression are clearly reduced in liver and
adipose tissue of obese ob/ob mice and in liver of
db/db mice (Kudo et al. 2004; Ando et al. 2011).
Of interest, impairments of peripheral clocks in
ob/ob mice precede the appearance of metabolic
disorders, suggesting that the circadian distur-
bances are due to the lack of leptin and not to a
passive consequence of obesity. Accordingly, lep-
tin injection partially restores clock gene oscilla-
tions in peripheral clocks (Ando et al. 2011). The
relationship between obesity and circadian distur-
bances appears often to be a chicken-and-egg
problem, since, in most cases, it is difficult to
determine which problem appears first and dis-
turbs the other system. Notwithstanding, circa-
dian desynchrony could be an aggravating factor
for the development of obesity and/or diabetes
and as such deserves careful examination.

4.3 Preventive Treatments
for Internal Desynchronization
and ItsMetabolic Consequences

One possibility to improve circadian alignment in
individuals submitted to shift work or jet lag is
timed exposure to light since light is able to reset
circadian rhythms, and in addition, it directly
improves alertness in humans (Chellappa
et al. 2011).

Because feeding time is a potent synchro-
nizer of peripheral oscillators, it is also a possi-
ble resynchronizer in case of altered circadian
rhythmicity. Obese Zucker rats ( fa/fa) ingest a
larger proportion of food during the light phase
(i.e., the resting phase) than wild-type rats
(Mistlberger et al. 1998). In this study, Zucker
rats fed ad libitum gained 23 % more weight
than animals with access to food limited to
nighttime (i.e., the normal period of feeding in
nocturnal rats), despite similar amounts of daily
food intake. This suggests that excessive
diurnal feeding may contribute to body weight
gain. Moreover, the negative effects of unbal-
anced high-fat diet are limited if high-fat

feeding is restricted to the dark phase in mice
(Hatori et al. 2012).

In humans, eating during late evening is asso-
ciated with higher daily energy intake, a major
risk factor for weight gain (Reid et al. 2014). Fur-
thermore, nocturnal feeding is correlated with an
increased risk of overweight in some, but not all,
epidemiological studies (Colles et al. 2007;
Striegel-Moore et al. 2010). Although shift
workers often report normal total energy intake,
there is commonly an altered temporal distribu-
tion of feeding characterized by more irregular
eating times, more snacking, and fewer substan-
tial meals (Lowden et al. 2010).

All together, these results show that studies on
obesity should not focus exclusively on food
intake and energy expenditure. The timing of
food intake itself plays a significant role in weight
gain. Feeding at the right time might attenuate
weight gain by normalizing the phase relation
between circadian rhythms of food intake and
metabolic processes involved in utilization and
storage of ingested fuels.

In conclusion, this chapter shows that energy
metabolism and circadian rhythmicity interact at
multiple (i.e., molecular, cellular, and systemic)
levels. The daily temporal regulation of energy
metabolism is controlled by a multi-oscillatory net-
work comprising a master clock in the SCN and
numerous secondary clocks and oscillators in the
brain and peripheral tissues. Furthermore, core clock
components interact closely with molecular regula-
tors of intracellular metabolism. While the ambient
light detected by the retina is the most powerful
synchronizer of the master clock, the SCN is also
sensitive to metabolic signals associated with meta-
bolic challenges. Mealtime can adjust the phase of
many brain and peripheral oscillators outside the
SCN. From a pathophysiological point of view,
metabolic diseases are associated with circadian
alterations. Conversely, induction of circadian dis-
turbances by genetic alterations in the clockwork or
by desynchronizing conditions (e.g., shift work,
chronic jet lag) affects metabolism. Because altered
circadian timing is recognized as a determinant of
metabolic troubles, chronotherapeutic approaches
of daily dieting should be taken into consideration
for the management of metabolic health.
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5 Cross-References

▶Adipokines and Metabolism
▶Brain Regulation of Feeding and Energy
Homeostasis

▶Diet, Exercise, and Behavior Therapy in the
Treatment of Obesity and Metabolic Syndrome

▶Overview of Metabolic Syndrome
▶The Built Environment and Obesity
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Abstract
The recent and dramatic increases in world-
wide obesity rates have resulted in a tremen-
dous number of people at risk for the
development of cardiometabolic diseases
such as type 2 diabetes, hypertension, coro-
nary artery disease, and stroke. Against this
background, there is a pressing need to
improve our understanding of the mecha-
nisms underlying the contribution of obesity
to the development of cardiometabolic dis-
ease. The expectation is that this knowledge
will lead to better screening practices for the
identification of those individuals at greatest
cardiometabolic risk and the development
of targeted prevention strategies and novel
therapeutic agents. The use of body composi-
tion analysis is an essential tool to researchers
and clinicians working in this field. The
objectives of this chapter are to review the
basic principles underlying body composition
analysis, discuss existing models for applying
body composition analysis to the study of
cardiometabolic disease, and highlight new
functional body composition models that
seek to integrate established approaches with
emerging techniques such as advanced medi-
cal imaging to provide a more complete
understanding of the complex relationships
between body compartments and disease
states.
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1 Introduction

It is well recognized that obesity and obesity-
related complications are a tremendous burden
on both the public health system and the private
lives of patients. According to the World Health
Organization (WHO), in 2014 more than 1.9 bil-
lion adults were overweight or obese worldwide
(WHO 2015). A global effort is underway to
better understand the origins of obesity, to
develop screening programs to accurately identify
individuals at the greatest risk for the develop-
ment of obesity-related disease, and to develop
treatments for those already suffering from the
complications of obesity. Body composition anal-
ysis is an important tool in this effort. The goal of
this chapter is to review the basic principles under-
lying the study of human body composition and to
discuss the different techniques available for the
assessment of body composition in the clinical
and research setting. The concept of functional
body composition will be discussed, which aims
to integrate traditional methods of body composi-
tion analysis with modern imaging and
metabolomics techniques. Special focus will be
paid to the relationships between body composi-
tion and cardiometabolic disease, including the
metabolic syndrome.

1.1 Basic Principles of Body
Composition Analysis

The assessment of body composition involves the
measurement, quantification, and comparison of
the amounts of different body tissues and in some
cases their cellular, molecular, and atomic com-
ponents. A fundamental concept underlying the
approach to body composition analysis is that the
human body can be partitioned into different body
compartments for analysis. Conceptual models

that describe the composition of different body
compartments and define the relationships
between compartments have been developed.
These models provide an organizational frame-
work for clinicians and researchers interested in
body composition analysis.

1.2 The Five-Level Model

The human body can be organized according to
compartments as described in the five-level model
(Wang et al. 1992). This model describes the
human body as a series of five interrelated and
increasingly complex levels to describe the com-
position of the human body. It begins at the atomic
level (Level I) and progresses in complexity
through the molecular (Level II), cellular (Level
III), and tissue levels (Level IV) and culminates at
the level of the whole body (Level V). Each level
has clearly defined components that necessarily
sum to equal total body weight. Body composi-
tion can be assessed individually at a given level
or in relation to other levels. Perturbations in body
composition that affect one level necessarily
affect all other levels.

For example, a patient successfully completing
a weight loss program will demonstrate an abso-
lute loss in total body weight (Level V). This will
include losses of both fat and lean body mass
(Level IV) as well as losses in cellular, molecular,
and atomic components (Levels I–III) in propor-
tion to the tissue losses (Pownall et al. 2015). The
ability to assess tissue-specific losses may be clin-
ically relevant in this example, as the respective
losses of lean and fat mass may vary by weight
loss intervention. For example, surgically induced
weight loss as through bariatric surgery may result
in, respectively, greater losses of lean body and
bone mass compared to lifestyle interventions that
include an exercise component (Chaston
et al. 2007). The differences in weight loss
between these two interventions would not be
identified if only assessing body composition at
Level V but rather would require a technique that
assesses at Level IVor below.

The techniques required to assess body com-
position vary by level and generally increase in
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complexity, cost, and risk to the patient/partici-
pant as the granularity of the information sought
increases from Level V to Level I. Below is a brief
summary of the information that can be attained at
each level, as well as the primary techniques used
to assess body composition at a given level. A
more detailed discussion of the techniques com-
monly used in the study and management of
cardiometabolic disease follows later in the
chapter.

1.2.1 Level I: Atomic Level
The most fundamental level, Level I, provides
information regarding the elemental composition
of the body. Oxygen, carbon, hydrogen, nitrogen,
and calcium are the most common elements pre-
sent in the human body and account for>95 % of
total body weight (Snyder et al. 1984). Elemental
composition can be assessed in vivo using spe-
cialized techniques such as neutron activation and
total body potassium counting (Heymsfield
et al. 1997).

1.2.2 Level II: Molecular Level
Chemical elements combine to form molecules.
The human body is composed of a large number
of these chemical compounds. For the purposes
of molecular body composition analysis, these
chemical compounds are typically grouped
into the following categories: water, lipid,
protein, carbohydrates (mostly in the form of
glycogen), mineral, and others. In the typical
human body, water is the most abundant compo-
nent (~60 % of total body weight), followed by
lipid (~19 %), protein (~15 %), mineral (~5 %),
and finally carbohydrates and other molecules
which account for the remaining 1 % (Wang
et al. 1992).

Many of the techniques used in the study and
clinical evaluation of obesity and its associated
complications are based on assessment of body
composition at the molecular level. Techniques
used at this level include isotope dilution and
magnetic spectroscopy (Hwang and Choi 2015).
These techniques can be combined with atomic
level techniques including neutron activation and
total body potassium counting to improve esti-
mates of molecular components.

1.2.3 Level III: Cellular Level
Molecules in the human body are distributed into
cellular and extracellular spaces. The extracellular
compartment is often further divided into its fluid
and solid components. Extracellular fluid is com-
prised mostly of water. It is found in the form of
plasma in the intravascular space, and also as
interstitial fluid between cells in various tissues
or in cavities such as the peritoneum. Extracellular
solids include organic compounds such as colla-
gen and elastin and inorganic compounds such as
hydroxyapatite. Hydroxyapatite is comprised pri-
marily of calcium and phosphate and is an impor-
tant contributor to bone strength. Several stable
relationships between elements or molecules and
cellular components have been identified and
form the basis of techniques used to quantify
body composition at Level III. Specific techniques
include assessment of intracellular and extracellu-
lar body water using deuterium dilution or sodium
bromide dilution and the use of total body potas-
sium counting to estimate intracellular fluid or
body cell mass (Silva et al. 2008).

1.2.4 Level IV: Tissue Level
Much of the clinical and research interest in the
relationships between body composition and
cardiometabolic disease is focused on Level
IV. The cellular components of the body are orga-
nized into functional tissues. Common models at
the tissue level partition the body into adipose
tissue, skeletal muscle, organs, and bone. There
is growing interest in further partitioning adipose
tissue into subcutaneous, visceral, bone marrow,
intermuscular, and intramuscular components as
these different adipose depots appear to function
differently and may be independent contributors
to the development of cardiometabolic disease. A
wide variety of techniques provide tissue-level
information and include DXA, BIA, hydroden-
sitometry (also known as underwater weighing),
air displacement plethysmography, computed
tomography (CT), and magnetic resonance imag-
ing (MRI).

1.2.5 Level V: Whole-Body Level
The most biologically complex level, Level V,
provides information regarding the size and
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shape of the human body. Weight, height, body
segment lengths, circumferences, and skinfold
thickness can all be obtained via anthropometry.
The data obtained from anthropometry can be
applied directly (e.g., waist circumference as an
assessment of abdominal adiposity), combined
into indices [e.g., body mass index (BMI), which
is calculated as weight (kg)/height (m)2], or, in the
case of skinfold thicknesses, used to estimate per-
centage body fat (a Level IV component).

1.3 Compartment Models

A second and related approach to body composi-
tion analysis is to characterize body composition
based upon the number of compartments
described. Similar to the five-level model
described above, the sum of the compartments
always must be equal to total body weight. The
accuracy of body composition improves with the
number of compartments assessed, but so do the
complexity, cost, and potential risk to the patient
or participant.

1.3.1 One-Compartment Models
Similar to Level V, the body is considered as a
whole. These models provide no information
regarding the relative contribution of tissues,
cells, molecules, or elements to total body weight
within an individual. The use of one-compartment
models to identify individuals with excess adipos-
ity or low muscle mass is based on assumptions
that the relative contributions of tissues to body
weight are constant across different ages, matura-
tional stages, racial/ethnic groups, and states of
health and disease. Weight and BMI are examples
of one-compartment models.

1.3.2 Multi-compartment Models
Many of the techniques used to derive multi-com-
partment models of body composition rely on the
relationships between mass, volume, and density.
Density is defined as body mass/body volume.
Total body mass is easily attained via weighing,
and total body volume can be measured via either
water or air displacement. Total body density is
assumed to be the sum of the densities of each of

the body compartments being assessed. For a
two-compartment model, for example, this is
related by the equation

1= total body densityð Þ¼FM= FMdensityð Þ
þ FFM= FFMdensityð Þ

FM density is commonly assumed to be 0.9007
kg/L (Brozek et al. 1963) and is relatively con-
stant among individuals. FFM density, by con-
trast, is variable across the life-span, and
age-specific values are typically used (Lohman
1986; Fomon et al. 1982). A discussion of the
commonly used multi-compartment models is
presented below.

1.3.3 Two-Compartment Models
Two-compartment models partition the body into
fat mass (FM) and fat-free mass (FFM) compo-
nents and are represented by the equation

Total body mass ¼ fat massþ fat free mass

Conceptually, two-compartment models are based
upon the assessments of body composition at the
molecular/cellular level such that FM represents
the extractable lipid component of the body and
FFM represents everything else (Forbes 1987).
Practically they are used to estimate tissue-level
information whereby FM represents the body adi-
pose tissue and FFM represents the remainder of
the body including the muscle, organs, bone, and
other supportive tissues.

These models improve upon one-compartment
models by allowing for the assessment of the
relative contribution of the adipose tissue to total
body weight. Percentage fat mass [(fat mass/total
body mass) * 100; also referred to as percentage
body fat] is a commonly used measure to assess
adiposity and cardiometabolic risk that is based
upon a two-compartment model.
Two-compartment models assume constant den-
sities of the FM and FFM components. This is a
reasonable assumption for FM but is problematic
for FFM. The density of FFM is affected by
hydration, which is known to vary according to
age (Hewitt et al. 1993; Wells et al. 2010), body
weight (Mingrone et al. 2001), and disease status
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(Warner et al. 2004). Furthermore, the contribu-
tion of bone mineral to FFM varies across the life-
span (Lohman et al. 1984). Techniques that can be
used for two-compartment body composition
analysis include skinfold thicknesses, hydroden-
sitometry, air displacement plethysmography,
BIA, DXA, and isotope dilution.

1.3.4 Three-Compartment Models
Three-compartment models improve the estima-
tion body composition by further partitioning the
FFM component of the body. Different three-
compartment models can be derived based upon
the technique and level of information obtained.
DXA is commonly used to obtain a three-
compartment model where the FFM is partitioned
into lean body mass (LBM) and bone mineral
content (BMC), represented by the equation

Total body mass ¼ fat massþ lean body mass

þ bone mineral mass

The use of a DXA-based three-compartment
model allows for the independent assessment of
LBM and BMC in addition to FM. The informa-
tion provided from this model therefore has much
wider clinical and investigational utility compared
to that of two-compartment models. Because
DXA measures BMC directly, it eliminates a
major source of FFM variability present in
two-compartment models. This model still relies
on the assumption that FM and LBM have con-
stant densities, which is associated with the limi-
tations discussed above.

An alternative three-compartment model can
be obtained by combining a technique that pro-
vides density (such as hydrodensitometry) with a
technique that determines total body water (such
as isotope dilution). In this model, the FFM com-
ponent is further portioned into water and
nonaqueous solids, represented by the equation

Total body mass ¼ fat massþ total body water

þ non� aqueous solids

This model addresses the variability associated
with FFM hydration but is limited by a failure to

account for the variable contribution of bone min-
eral to FFM across different populations.

1.3.5 Four- and Five-Compartment
Models

Four-compartment models have been developed
to address the limitations in the two- and three-
compartment models noted above. DXA can be
combined with techniques to estimate density and
total body water to partition the FFM compart-
ment into water, mineral, and protein (Wells
et al. 1999), represented by the equation

Total bodymass¼ fatmassþ total bodywater

þ total bodymineralþprotein

The assumptions inherent in this model (constant
hydration of protein and contribution of BMC to
whole-body mineral content across individuals)
are associated with less potential error than those
present in the two- or three-compartment models
(constant hydration of FFM and contributions of
BMC to FFM across individuals) and therefore
provide more accurate estimates of FM and FFM
(Wells et al. 2012). A number of other four- and
five-compartment models have been developed
that incorporate techniques such as total body
potassium counting, isotope dilution, and/or neu-
tron activation to further improve estimation of
body composition (Zemel and Barden 2004).
These techniques are available only at specialized
centers; as a result these models are not widely
available for the analysis of body composition,
and they are not routinely used in the assessment
of cardiometabolic disease.

Extensive work in the field of body composition
has been done to define the specific mathematical
relationships between body compartments in a
wide variety of human populations using the tech-
niques described above. This has resulted in the
development of numerous equations for the esti-
mation of body mass within each of the five body
levels, as well as equations relating body compart-
ments between levels. Readers seeking a detailed
methodological discussion regarding the in vivo
assessment of body composition, complete with
equations, examples, and references, are referred
to the excellent reviews written by Steven
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Heymsfield and Zi-Mian Wang (Heymsfield
et al. 1997) and Kenneth Ellis (2000).

1.4 Functional Body Composition

Ultimately, the aim of using the five-level model or
multi-compartment models described above is the
integration of body compartments into whole-body
regulatory systems and physical function. This
emerging concept has been coined functional
body composition (Muller et al. 2009) and is rooted
in the idea that body compartments (particularly at
the cellular and tissue level) are linked via hor-
monal, cytokine, metabolic, and neural networks.
In these models, body compartments are under-
stood to not only reflect but also contribute to the
changes in body composition observed in the set-
ting of environmental stressors such as undernutri-
tion, overnutrition, and chronic disease. An ever-
growing number of cytokines derived from fat
“adipokines” (Ahima 2006), muscle “myokines”
(Seldin and Wong 2012), and even bone (Clemens
and Karsenty 2011) have been identified as poten-
tial mediators in this tissue cross talk.

An example of a functional body composition
approach is the use of advanced medical imaging
techniques to investigate determinants of resting
energy expenditure (REE). FFM is known to be
the primary determinant of REE (Korth
et al. 2007). As discussed above, however, FFM
is a heterogeneous compartment, and the contri-
bution to REE is not constant among FFM com-
ponents. FFM can be portioned into two
functional components such that

BodyMass¼metabolically active FFM

þmetabolically inactive FFMþFM

Equations for the estimation of REE can then be
derived where whole-body REE is equal to the
metabolic rate * mass of each of components
above (Muller et al. 2014a). The metabolically
active FFM compartment can be further
partitioned into individual organs using MR- or
CT-based assessment of organ size to improve
estimates of REE (Elia 1992). The respective

contributions of FFM and FM to REE are known
to vary according to age, sex, race, and body
weight and therefore must be accounted for
when using these models (Bosy-Westphal
et al. 2009). The explanation for the finding that
the proportion of REE attributable to FM is
greater at higher levels of FM is not fully under-
stood, but may be related to larger adipocyte size,
fat distribution, or increased adipocyte metabolic
activity (Muller et al. 2009).

A further functional model of body composi-
tion related to cardiometabolic disease is the
partitioning of FM into adipose depots. As noted
above, traditional compartment-based models of
body composition assume a constant density for
FM. While the assumption of homogeneity of fat
at the molecular, cellular, and tissue levels may be
reasonable for estimating mass, there is growing
evidence to suggest that body FM is not homoge-
neous from a functional standpoint. The
partitioning of fat within the body can be
described at several levels (Table 1). Certain fat
depots including visceral adipose tissue (VAT),
intramuscular adipose tissue (IMAT), and
intrahepatic and epicardial fat appear to be more
metabolically active and have greater associations
with cardiometabolic disease in both adult and
pediatric populations (Perseghin et al. 1999;
Goodpaster et al. 2000; Brumbaugh et al. 2012;
Katzmarzyk et al. 2013; Ogorodnikova
et al. 2013). FM can also be partitioned into
white and brown adipose tissue (BAT). BAT is a
specialized form of adipose tissue involved in the
maintenance of body temperature through
non-shivering thermogenesis (Cannon and
Nedergaard 2004). BAT activity has been shown
to be negatively correlated with BMI and percent-
age body fat (van Marken Lichtenbelt et al. 2009);
however, a potential protective role for BAT
against the development of cardiometabolic dis-
ease has yet to be shown.

1.5 Techniques Used to Assess
Body Composition

It is important to note that there is no gold stan-
dard for the assessment of body composition
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in vivo. Instead, it is up to the clinician or
researcher to select the technique or techniques
that will provide the relevant information in a
manner that is feasible, cost-effective, and with
the appropriate risk/benefit ratio for the question
of interest. While there are numerous techniques
for body composition analysis available, they can
be grouped together into a few fundamental cate-
gories based upon technical approach (Table 2). A
brief discussion of the commonly used techniques
to study body composition in relation to
cardiometabolic disease is provided below.

1.5.1 Anthropometry
Anthropometric measures of body composition
are relatively easy to attain, of low cost, and of
low risk to patients. Because of these advantages,
anthropometric assessment of body composition
at the whole-body level is commonly used in
research studies and in the development of prac-
tice guidelines to assess cardiometabolic risk in
the clinical setting. A major benefit of these tech-
niques is that reference data and prediction equa-
tions have been published for many different
measures in diverse populations across the life-

span. Proper training of clinical or research staff
and the development of measurement protocols
are essential for accurate results.

Height and weight provide direct information
about body size and body mass or can be com-
bined into ratios such as weight for height (used
in children <2 years of age) and BMI. Waist
circumference can be used to assess abdominal
adiposity and has been shown to be strongly
correlated with CT or MRI measures of visceral
adiposity (Han et al. 1997). Methods for the mea-
surement of waist circumference vary; therefore,
it is important to understand how the reference
data to be used were determined. The US CDC
recommends placing a measuring type around the
midsection of the body at the level of the iliac
crest while the patient/participant is standing
(NHLBI 2000). This is in contrast to the WHO
which states that the measurement should be
obtained at the midpoint between the lower mar-
gin of the last palpable rib and the top of the iliac
crest (WHO 2008). There is no evidence to sup-
port the use of one technique over the other;
however, as a recent systematic review found
that all commonly used techniques were similarly

Table 1 Fat partitioning within the human body and potential associations with cardiometabolic disease

Fat partition Description Assessment Cardiometabolic consequencesa

Android Truncal fat distribution DXA,
anthropometry

Deleterious

Gynoid Hip/thigh fat distribution Protective

Marrow Adipose tissue within the bone marrow MRI, MRS Deleterious, may be associated with
skeletal fragility

Subcutaneous Subcutaneous adipose tissue CT, MRI,
DXA

Protective

Visceral Intra-abdominal adipose tissue CT, MRI,
DXA

Deleterious

Epicardial Lipid deposits between visceral
pericardium and myocardium

CT, MRI,
MRS

Deleterious, especially for
cardiovascular disease

Intermuscular Lipid deposits between the muscle fibers CT, MRI,
MRS

Deleterious

Intrahepatic Lipid deposits in the liver MRI, MRS Deleterious

Intramuscular Lipid deposits within the muscle fibers CT, MRI,
MRS

Deleterious

Pancreatic Lipid deposits within and around the
pancreas

CT, MRI,
MRS

Deleterious, especially related to
β-cell function

Perivascular Lipid deposits around the blood vessels MRI, MRS Evidence for both deleterious and
protective

Brown fat Thermogenic PET Protective

White fat Energy storage PET Deleterious if excessive
aDeleterious in the setting of excess fat accumulation; protective in the absence of excess fat accumulation
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associated with risk of adverse cardiometabolic
outcomes (Ross et al. 2008).

Anthropometric measures can also be used to
estimate other aspects of body composition
through the use of prediction equations. This
allows for estimates of body composition both
within the same level and also at lower levels.
For example, standing height (a Level V compart-
ment) can be estimated from segment lengths such
as knee height (another Level V compartment)
(Chumlea et al. 1994). This is a useful technique
for patients in whom standing height cannot be
readily assessed due to disability. Other methods
have been developed which allow for the estima-
tion of percentage body fat (a Level IV compart-
ment) from measurements of skinfold

thicknesses. There are equations to do this directly
in the pediatric population (Durnin and Rahaman
1967; Brook 1971; Slaughter et al. 1988;
Dezenberg et al. 1999). In adults, a two-step pro-
cess involving the estimation of body density
from skinfold thickness (Jackson and Pollock
1978; Jackson et al. 1980; Durnin and Womersley
1974) and then the estimation of percentage body
fat from body density (Siri 1961) is required.

1.5.2 Densitometry
Hydrodensitometry (also known as underwater
weighing) and air displacement plethysmography
rely on known relationships between body mass,
volume, and density to estimate body composi-
tion. In hydrodensitometry, volume is calculated
according to Archimedes’ principle through the
comparison of body mass in air and underwater
(Brodie et al. 1998). Body density can then be
calculated from body mass and body volume
(density = mass/volume). Percentage body fat is
subsequently estimated from body density using
established equations (Siri 1961; Brozek
et al. 1963; Lohman 1986); the remainder of
body mass is assumed to be FFM. Hydroden-
sitometry requires specialized equipment and for
the participant to be physically able to exhale
completely while submerged underwater. These
factors limit the use of this technique to relatively
healthy populations.

Air displacement plethysmography is an alter-
native method used to determine body volume
that is less arduous and can be used in a wider
age range of participants. Commercially available
systems such as the PEA POD (for infants) and
BOD POD Gold Standard Body Composition
Tracking System (Cosmed, Rome, Italy) measure
body volume indirectly as a function of the
changes in air pressure and volume when a par-
ticipant enters an enclosed chamber. Body com-
position is estimated from body volume as
described above for hydrodensitometry.

1.5.3 Bioelectrical Impedance
Analysis (BIA)

BIA is a noninvasive method of body composition
that utilizes measured impedance to the flow of
electrical current to estimate total body water.

Table 2 Techniques used to assess body composition and
information provided

Technique Information provided

Anthropometry

Height and weight Weight for height, BMI
(kg/m2)

Skinfold thicknesses Percentage body fat

Waist circumference
and abdominal height

Estimates of abdominal
obesity

Densitometry

Hydrodensitometry Percentage fat mass estimated
from body densityAir displacement

plethysmography

Bioelectrical impedance

Single-frequency BIA FFM estimated from total
body water

Multiple-frequency
BIA

FFM estimated from
intracellular and extracellular
water

Isotope dilution

Deuterium oxide,
oxygen-18 hydride,
others

FFM estimated from total
body water

Imaging

Dual-energy X-ray
absorptiometry (DXA)

BMC, LBM, FM, visceral
adipose

Computed tomography
(CT)

BMC, LBM, FM, fat depots,
organ size

Magnetic resonance
imaging (MRI)

Magnetic resonance
spectroscopy (MRS)

Marrow adipose,
mitochondrial function

PET Brown fat, metabolic rate
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Impedance is a function of both resistance and
length of travel. Because electrical current flows
primarily through the electrolytes dissolved in the
aqueous compartment, impedance is used to esti-
mate total body water. Multiple equations in a
wide variety of populations have been published
which allow for the estimation of total body water
and FFM from the results of BIA (Kyle
et al. 2004). A limitation to the use of BIA is
that estimates of FFM based upon impedance
may be biased by hydration status. This may
limit the accuracy of results obtained in individ-
uals with chronic disease or other conditions
known to affect FFM hydration. The use of mul-
tiple frequencies or more complex bioelectric
spectroscopy allows total body water to be further
partitioned into intracellular and extracellular
water, which may improve estimates of body
composition by accounting for hydration status
(Chumlea and Guo 1994).

1.5.4 Isotope Dilution
Techniques utilizing isotope dilution provide
another means of estimating FFM from total
body water. Protocols have been developed that
allow for the estimation of total body water fol-
lowing administration of stable isotopes such as
deuterium oxide (2H2O) and oxygen-18 hydride.
The concentration of the administered isotope in a
body fluid sample is assessed by spectroscopy
following a period of equilibration. Total body
water volume can then be determined based
upon the dose of the isotope and concentration
of the sample. FFM is then determined using
estimating equations from total body water
(Schoeller et al. 1980). Stable isotopes are natu-
rally occurring; therefore, isotope dilution is a
low-risk means of assessing total body water.
The technique is not widely used, however, in
part because the protocols are costly and time-
consuming.

1.5.5 Dual-Energy X-Ray
Absorptiometry (DXA)

DXA is rapidly becoming the preferred means of
assessing body composition for many applications.
DXA is widely available, and whole-body and
regional DXA scans can be performed quickly,

are associated with minimal radiation exposure,
and require no specific preparation on the part of
the patient/participant. As a result, DXA can be
used to assess body composition in populations of
both healthy and diseased individuals across a wide
age range. DXA-based body composition assess-
ment is based upon the principle that X-ray beams
will be attenuated differently by FM, LBM, and the
bone as they pass through the body. The use of two
beams of different intensity allows for the simulta-
neous calculation of FM and LBM in a given
region using two separate equations (Roubenoff
et al. 1993). Newer software has been developed
that provides an estimate of visceral adipose tissue
(Micklesfield et al. 2012), and it is likely that the
estimation of IMAT will become possible in the
near future. An example of a DXA body composi-
tion scan is shown in Fig. 1.

There are a number of limitations on the use of
DXA. The machines and software are relatively
expensive to purchase and operate compared to
some other methods. Individuals who are exces-
sively tall, obese, have metal surgical implants, or
who cannot lay flat due to the presence of muscle
contractures or other disabilities cannot be
scanned. Additionally, estimation of LBM is
affected by hydration status, which may be an
important consideration when evaluating
patients/participants with chronic disease.

1.5.6 CT, MRI, MR Spectroscopy (MRS),
and Positron Emission
Tomography (PET)

There is growing experience with the use of
advanced medical imaging technologies such as
CT, MRI, MRS, and PET for the determination of
body composition. The information provided by
these techniques is useful for body composition
analysis using both traditional and functional
approaches.

Similar to DXA, the estimation of body com-
position by CT is based upon the attenuation of
X-ray beams as they pass through tissues of dif-
ferent densities. This allows for accurate quantifi-
cation of lipid content present in fat depots (such
as VAT) as well as fatty infiltration of organs (such
as intrahepatic fat) and tissues (such as IMAT).
Single-slice CT measurements of the trunk can be
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used to accurately quantify VAT with minimal
radiation exposure. Typically, a 6–8-mm slice is
obtained at the level of the umbilicus (ventral to
L4–L5 vertebral bodies). Positioning is important
because estimates of visceral adipose tissue vary
by location (Kuk et al. 2006). Alternately, a single
CT slice taken at the mid-thigh can be performed
to quantify IMAT and SAT.

MRI provides another means of assessing fat
partitioning without exposing the patient/partici-
pant to ionizing radiation (Hu and Kan 2013).
MRI can also be used to obtain accurate estimates
of organ size used for the investigation of REE
(Gallagher et al. 2006). 1H-MRS improves upon
basic MRI for the quantification of lipid and can
been used to estimate bone marrow adiposity
(Abdalrahaman et al. 2015). 31P-MRS allows for
a functional assessment of muscle recovery by
estimating mitochondrial function in skeletal
muscle (McCormack et al. 2011).

PET can be used to assess the metabolic rate of
fat and skeletal muscle. A common technique is to
attach a positron-emitting tracer to 2-fluorodeoxy-
D-glucose; the concentration of measured tracer
activity reflects glucose uptake and thus metabolic
activity (Wang et al. 2014). PET is particularly
useful for the quantification and localization of
BAT. PET is commonly combined with MRI or
CT to provide both metabolic and anatomic
information.

1.5.7 Whole-Body Counting
and Neutron Activation

Whole-body counting (e.g., of potassium) and
neutron activation are specialized techniques
used to assess body composition at the molecular
and atomic levels. They are not commonly
employed in the analysis of cardiometabolic risk;
interested readers are referred to detailed reviews
published elsewhere (Ellis 2005).

60

50

40

30

20

10
0 10 12 14

Age

16 18 20

Source: 2008 NHANES White Female

Z
-s

co
re

+2

0

–2

%
Fa

t

Fat Lean Bone

Images not for diagnostic use

Total Body % Fat

Fig. 1 DXA body composition report. DXA utilizes two
beams of different radiation intensities to estimate fat mass,
lean body mass, and bone mineral content. Integrated
software allows for the calculation of measures such as
percentage body fat and for the individual’s data to be

converted into a standard deviation score and compared
to a reference population, as shown above. Scan shown
was obtained on a Hologic Horizon scanner (Hologic, Inc.,
Bedford MA)
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1.6 Relationships Between Body
Compartments and
Cardiometabolic Disease

The relationships between body compartments
and their respective impacts on cardiometabolic
disease are complex. The use of multi-
compartment body composition analysis has
yielded important insights by allowing investiga-
tors to assess independent contributions of body
compartments to disease.

1.6.1 Fat and Lean Body Mass
It is well established that increases in fat mass are
associated with similar increases in lean body
mass (Schautz et al. 2012). This relationship is
true in both pediatric and adult populations as can
be appreciated in Fig. 2. There is growing evi-
dence to suggest that derangements in the rela-
tionships between FM and LBM due to aging or
disease may have a negative impact on functional
status and cardiometabolic health.

The term sarcopenia was originally used to
describe the loss of muscle mass and physical
function that occurs with aging (Rosenberg
1997). Early definitions of sarcopenia were there-
fore based solely on deficits in skeletal mass.
Skeletal muscle mass is most commonly

estimated using DXA-based assessment of appen-
dicular lean body mass (ALM). ALM is simply
the lean body mass of the upper and lower extrem-
ities. Skeletal muscle is the primary component of
ALM, but other tissues such as the skin and con-
nective tissue are also present (Heymsfield
et al. 2014). Single-slice CT of the thigh has also
been used to estimate whole-body skeletal muscle
(Delmonico et al. 2009), as have BIA (Norman
et al. 2009) and MRI (Muller et al. 2014b).
Because of the strong relationship between height
and ALM, ALM is typically expressed as an index
[ALMI; ALM/height (m)2].

Historically, the most commonly used definition
of sarcopenia was an ALMI of two or more stan-
dard deviations below the mean of a young healthy
reference population (Baumgartner et al. 1998).
Recently, there has been growing interest in the
use of two-compartment models that incorporate
estimates of both skeletal musclemass and fat mass
into the definition of sarcopenia (Newman
et al. 2003). It is thought that these definitions
will provide better estimates of muscle quality
and therefore correlate more strongly with func-
tional outcomes compared to definitions based on
skeletal muscle mass alone. Proposed fat-adjusted
definitions of sarcopenia utilize equations based on
DXA-based estimates of fat mass and appendicular
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lean mass (Delmonico et al. 2007; Dufour
et al. 2013). In 2014 the Foundation for the
National Institutes of Health Biomarkers Consor-
tium Sarcopenia Project published a recommenda-
tion that sarcopenia be defined using a ratio of
appendicular lean mass to BMI (McLean
et al. 2014). Specifically, they define sarcopenia
as a ratio of appendicular lean mass to BMI of
<0.789 in males and <0.512 in females. Early
evidence from the above studies suggests that
fat-adjusted definitions of sarcopenia may correlate
more strongly with functional outcomes such as
grip strength, compared to prior definitions based
on skeletal muscle mass alone, but larger studies in
diverse populations are needed.

While much of the sarcopenia literature is
focused on functional outcomes in the elderly pop-
ulation, the condition of sarcopenic obesity is
emerging as a potentially important risk factor for
the development of cardiometabolic disease in a
wide variety of patient populations. Sarcopenic
obesity is characterized by the coexistence of a
simultaneous lean body mass deficit and fat mass
excess (Stenholm et al. 2008). Because these indi-
viduals often have normal body weight, common
one-compartment screening tools such as BMI
may fail to identify the underlying derangements
in body composition. Figure 3 illustrates
sarcopenic obesity in a cohort of childhood cancer
survivors treated with allogenic hematopoietic

stem cell transplant (Mostoufi-Moab et al. 2012).
Box plots of anthropometric and DXA-based mea-
sures of body composition show that stem cell
transplant survivors have high fat mass and low
lean mass, despite a BMI that is no different than
healthy controls. Patients suffering from chronic
disease are especially prone to the development of
sarcopenic obesity. Chronic inflammation and
exposure to glucocorticoids can result in the accu-
mulation of excess fat mass, while immobility and
malnutrition contribute to loss of lean body mass.

The effects of sarcopenic obesity on
cardiometabolic health are just beginning to be
understood. The presence of sarcopenia in addition
to abdominal obesity was associated with an
increased risk of metabolic syndrome compared to
either abdominal obesity or sarcopenia alone in
a large study of Asian adults (Park et al. 2014).
Similarly, data from NHANES in the USA revealed
that participants with sarcopenic obesity had
higher insulin resistance [as measured by the
homeostasis model assessment of insulin resistance
(HOMA-IR)] and higher hemoglobin A1c levels
compared to obese non-sarcopenic participants
(Srikanthan et al. 2010). Skeletal muscle is the pri-
mary tissue responsible for glucose disposal and is
also correlated with physical activity (Baxter-Jones
et al. 2008). These factors may partially explain the
higher cardiometabolic risk that accompanies mus-
cle loss in obese individuals. Interestingly, a few
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Fig. 3 Sarcopenic obesity
in survivors of pediatric
stem cell transplant. Fat
mass Z-scores are higher,
and lean body mass
Z-scores are lower in
survivors of pediatric stem
cell transplant compared to
healthy controls despite
similar BMI Z-scores. The
black line represents a
Z-score of 0, which
represents the average value
for fat and lean mass in the
reference population. Fat
and lean mass determined
by DXA and adjusted by
height Z-score (Adapted
with permission from
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studies in both pediatric (Dai et al. 2011; Weber
et al. 2014) and elderly populations (Barsalani
et al. 2013) found that higher LBM was associated
with cardiometabolic abnormalities independent of
FM. These unexpected findings suggest that muscle
quality, not just muscle quantity, may be an impor-
tant factor in the development of cardiometabolic
disease. The use of emerging techniques such as
MRS and PET will allow investigators to more
completely explore the relationships between fat,
muscle, and cardiometabolic disease by allowing
for the investigation of muscle quality and not just
muscle quantity.

1.6.2 Fat and Bone
In recent years intriguing evidence has emerged
supporting the existence of an endocrine
hormone-mediated feedback loop linking together
the bone, fat, and lean body tissue as regulators of
whole-body glucose metabolism. Preclinical stud-
ies have identified the osteocyte-derived protein
undercarboxylated osteocalcin (ucOCN) as a
potentially novel hormone that acts to increase
insulin secretion from pancreatic β (beta)-cells
and also to increase insulin sensitivity in the
periphery (Ferron et al. 2008). Further preclinical
data suggests that insulin signaling regulates post-
natal bone acquisition in mice (Fulzele et al. 2010)
and that disruption of insulin signaling in osteo-
blasts leads to decreased ucOCN secretion and
increased accrual of FM (Fulzele et al. 2010).
Confirmation of these findings in humans could
lead to an enhanced understanding of the skeletal
fragility associated with diabetes and possibly to
new treatments for obesity, insulin resistance, and
type 2 diabetes (Vestergaard 2007).

1.7 Implementing Body
Composition Analysis
in the Clinical Setting

Given the scope of the obesity epidemic, there is
great interest in translating the knowledge gained
from clinical and translational body composition
research into clinically relevant screening tools.
Many of the techniques described above are not
practical for clinical use due to cost or complexity.

In addition to the specific limitations discussed
above, there are other potential barriers to the
accurate assessment and interpretation of body
composition in the clinical setting. The composi-
tion of the human body changes over the life-span
and is affected by the biological processes of
growth, pubertal maturation, aging, and meno-
pause (in women) (Butte et al. 2000; Davis
et al. 2012). Comparison of an individual patient
to a reference population requires knowledge of
these underlying factors for an accurate determi-
nation of cardiometabolic risk. Additionally, the
role of environmental factors such as the Western
lifestyle (i.e., exposure to overnutrition and sed-
entary behavior) must be considered when
assessing body composition, particularly when
comparing measurements obtained in contempo-
rary patients/research participants to reference
data obtained in prior years.

Conceptually, obesity has been defined as the
point at which accumulation of excess weight or
adipose is sufficient to cause disease (Wells 2012).
For example, in adults, the thresholds for BMI used
to define overweight (BMI 25.0–29.9 kg/m2) and
obesity (BMI �30 kg/m2) are based on the associ-
ated level of disease risk at these levels of excess
relative weight. For other measures, definitions of
obesity are derived mathematically, and the thresh-
olds are defined by deviation from the population
mean rather than frombiologically relevant criteria.
Therefore, knowledge of a few basic mathematical
principles will aid the physician/investigator inter-
ested in using or interpreting the results of body
composition analysis. To compare a result obtained
in an individual to the broader reference popula-
tion, one must calculate a standard deviation score
(SDS). In its simplest form, an individual’s SDS
can be calculated using the mean and standard
deviation of the reference population using the
following equation:

SDS ¼ x� μð Þ=σ

where:

x = individual’s value
μ = population mean
σ = standard deviation of population mean
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The resultant SDS represents how many stan-
dard deviations the individual’s value falls above
or below the population mean. Approximately
68 % of all measurements are expected to fall �
1 SDS from the mean, 95 % within � 2 SDS, and
>99.5 % within� 3 SDS. However, for most soft
tissue measures, such as fat mass, the distribution
is skewed, and more complex computer-based
calculations are required to determine the Z-score.

Two types of SDS are commonly used in the
interpretation of body composition data: Z-scores
and T-scores. A Z-score compares an individual to
a population of the same age, whereas a T-score
compares an individual to a younger population
mean to represent peak health. T-scores are com-
monly used to define deficits in body composition
associated with aging (i.e., osteoporosis is defined
as a bone mineral density T-score of ��2.5;
sarcopenia as an appendicular lean body mass
index T-score of ��2). Z-scores are commonly
used in the pediatric population who are still
growing and in most cases have not yet obtained
peak values. Z-scores may also be useful in some
situations in adults, for example, when trying to
assess disease effects.

The commonly used methods for clinical body
composition analysis and the diagnosis of obesity
are presented below, along with a discussion of
their limitations.

1.7.1 Body Mass Index (BMI)
Body mass index, calculated as body weight (kg)/
[height (meters)]2, is currently the most widely
used method of identifying individuals with
excess adiposity and at risk for development of
cardiometabolic disease. In adults aged 20 years
and older, BMI is typically interpreted according
to the following categories: underweight (BMI
<18.5), normal weight (BMI between 18.5 and
24.99), overweight (BMI between 25 and 29.99),
and obese (BMI �30) (WHO 2000). Obese indi-
viduals can be further classified into Class I, II,
and III obesity based upon BMI level (Table 3).

In children, BMI is highly dependent on age
and maturational status, so individuals less than
20 years of age are classified as overweight or
obese based upon percentiles rather than absolute
values of BMI. Current expert recommendations

for the definition of overweight and obesity in
childhood vary. The US Centers for Disease Con-
trol and Prevention (CDC) defines children with a
BMI between the 85th and 95th percentile for age
and sex as overweight and those with BMI greater
than the 95th percentile as obese (Ogden and
Flegal 2010). The WHO defines overweight as a
BMI >1 standard deviation scores (SDS) above
the median for age and sex in children aged 5–19
years (>2 SDS in children under 5 years of age)
and obesity as a BMI >2 SDS (>3 SDS in chil-
dren under 5 years of age) above the median
(de Onis et al. 2007). Finally, the International
Obesity Task Force provides age-specific cutoffs
for children aged 2–18 years that correspond to
the commonly used adult categories described
above (Cole et al. 2000).

The use of BMI has many advantages. It is easy
to measure in the clinical or research setting, and
online and mobile application-based calculators
are readily available, as are reference curves for
plotting BMI in children (Cole et al. 1995;
Kuczmarski et al. 2000; WHO 2006). Numerous
studies in both adult and pediatric populations
have found that BMI is associated with a host of
adverse health outcomes including type 2 diabetes,
cardiovascular disease, metabolic syndrome, and
mortality (Whitlock et al. 2009; de Mutsert
et al. 2014; Sabin et al. 2015).

Table 3 Current expert guidelines for the use of BMI to
classify nutritional status

BMI (kg/m2) Classification

Adult population

<18.5 Underweight

18.5–24.99 Normal weight

25–29.99 Overweight

�30 Obese

30–34.9 Class I obesity

35–39.9 Class II obesity

�40 Class III obesity

Pediatric populationa

<5th percentile Underweight

5th–84th percentile Normal weight

85th–94th percentile Overweight

�95th percentile Obese
aUS Centers for Disease Control and Prevention (CDC)
definition; percentiles based on comparison to CDC refer-
ence curves
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Despite the advantages, there are a number of
limitations surrounding the use of BMI. BMI was
developed as means of assessing obesity in
populations and may not be an accurate screening
tool for identifying individual patients with excess
adiposity and/or at risk for the development of
cardiometabolic disease. A key assumption
underlying the use of BMI is that weight scales
to height^2, such that BMI and height, are not
correlated. This assumption has generally been
found to be true in adults (Heymsfield
et al. 2014) but not necessarily in pediatric
populations where BMI is positively associated
with height (Metcalf et al. 2011). Furthermore, as
a one-compartment model, BMI is an index of
weight and not fat and therefore does not take
into account the independent contribution of fat
and lean body mass to body weight. A recent
Cochrane review including a multinational sam-
ple of studies found that BMI had a high specific-
ity for the identification of excess fat mass
(defined using two- or three-compartment
models), but a sensitivity of only 50 % (95 % CI
43–57 %) (Okorodudu et al. 2010). Due to the
lack of gold standard for the definition of excess
fat mass using percentage body fat, these results
must be interpreted with caution. Nevertheless,
the data support the notion that BMI misclassifies
a substantial proportion of individuals with excess
adiposity as normal. Likewise, a study in
NHANES found that almost one-fourth of adults
with normal BMI had abnormal cardiometabolic
profile (Wildman et al. 2008). A cross-sectional
analysis of children in the Bogalusa Heart Study
concluded that the optimal cutoff for BMI to iden-
tify the presence of cardiometabolic risk factors
varied from the 50th to the 57th percentile across
sex and racial groups (Katzmarzyk et al. 2004).
The fact that such a low percentile for BMI is
required to maximize sensitivity and specificity
suggests that BMI may fail as a screening tool
for metabolic disease in the pediatric population
as well.

Additionally, there is evidence that the contri-
butions of FM and LBM to BMI differ by racial/
ethnic group (Gallagher et al. 1996). In a study of
children in NHANES, it was found that
non-Hispanic blacks had higher LBMI and lower

FMI compared to non-Hispanic whites and Mex-
ican Americans (Weber et al. 2013). This finding
suggests that BMI is prone to overestimating
excess adiposity in non-Hispanic black children.
The risk of metabolic syndrome for a given BMI
was also found to differ significantly between
white and black obese adolescents, which may
have been attributable in part to lower levels of
visceral adipose tissue in blacks (Bacha
et al. 2003). Finally, BMI fails to account for the
distribution of fat within the body. This may be
especially important given the evidence that dif-
ferent fat depots impart different cardiometabolic
risk. These limitations of BMI have led experts in
the field to call for alternative ways to assess
cardiometabolic risk (Wells 2001; Ahima and
Lazar 2013).

1.7.2 Waist Circumference
Criteria for the definition of abdominal obesity
using waist circumference vary based on age,
sex, race, and expert opinion. In the USA, abdom-
inal obesity is typically defined as a waist circum-
ference �40 in. (102 cm) in males and �35 in.
(88 cm) in females (NCEP 2002). The WHO and
International Diabetes Federation (IDF) recom-
mend the use of population racial-/ancestry-spe-
cific cutoffs which vary in males from �85 cm in
some Asian populations to �94 cm in Europeans
and �80 cm in women (Alberti et al. 2009). Sex-
and age-specific cutoffs are used for the pediatric
population (Fernandez et al. 2004).

Waist circumference can be adjusted for height
using a waist-to-height ratio (waist circumference/
height) or waist-to-hip ratio (waist circumference/
hip circumference). Waist-to-height ratio has been
shown to provide better predictive ability than
BMI or waist circumference to identify type 2 dia-
betes and cardiovascular disease in a meta-
analysis of studies performed in multiethnic
adult populations (Ashwell et al. 2012); however,
other large studies have shown only marginal
differences between the three measures (Gruson
et al. 2010; Lawlor et al. 2010).

1.7.3 Percentage Body Fat
Percentage body fat is the product of a
two-compartment model that can be obtained
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using a variety of different techniques, including
DXA (Fig. 1). There is no currently agreed upon
definition for obesity using percentage body fat in
either adults or children. An expert panel of endo-
crinologists proposed cutoffs of �25 % in adult
men and �35 % women (AACE/ACE 1998);
however, the use of percentage body fat to define
obesity using these criteria has not become stan-
dard. Reference curves for percentage body fat
have been published for children (Ogden
et al. 2011), and a cross-sectional study using
contemporary data from NHANES determined
that the optimal cutoffs for percentage body fat
to identify metabolic syndrome were the 85th
percentile for boys and the 68th percentile for
girls (Laurson et al. 2011).

1.7.4 Fat and Lean Body Mass Index
Fat mass index [FMI; FM/(height)2] and lean
body mass index [LBMI; LBM/(height)2] are
products of two-, three-, or four-compartment
models. LBMI is differentiated from fat-free
mass index in that it does not include the bone
and is therefore a better estimate of lean tissue
mass. Theoretically, the use of FMI and LBMI
improves upon BMI by allowing for the indepen-
dent assessment of FM and LBM. Reference data
for FMI and LBMI derived from DXA have been
published in both adult and pediatric populations
(Kelly et al. 2009; Wells et al. 2012; Weber
et al. 2013). A FMI of >80th percentile was
determined to be the optimal cutoff for the identi-
fication of metabolic syndrome in NHANES
youth and suggested as a possible criteria for the
definition of obesity using FMI (Weber
et al. 2014). Further studies are needed to deter-
mine the role for these indices in clinical practice.

2 Body Composition in the
Definition of Metabolic
Syndrome

The development of excess adiposity and the met-
abolic syndrome are closely intertwined. Multiple
cross-sectional and longitudinal studies have
found that the prevalence of metabolic syndrome
increases with obesity in both adults (Maison

et al. 2001; Katzmarzyk et al. 2005) and children
(Weiss et al. 2004). Central (or abdominal) adi-
posity in particular has been identified as playing a
critical role in the development of metabolic syn-
drome and may precede the appearance of other
components (Cameron et al. 2008). Multiple dif-
ferent criteria have been proposed for the defini-
tion of metabolic syndrome in both adult and
pediatric populations. Obesity is included in all
commonly used criteria, but the requirements to
meet the obesity component vary.

In adults, the presence of central obesity
defined using waist circumference is included as
a component in the commonly used NCEPATP III
(National Cholesterol Education Program Expert
Panel on Detection, Evaluation, and Treatment of
High Blood Cholesterol in Adults) criteria (NCEP
2002) and is required for the diagnosis using the
current International Diabetes Federation criteria
(Alberti et al. 2005). Current consensus guidelines
recommend the use of population- or country-
specific reference data for waist circumference to
determine thresholds for the definition of excess
central adiposity (Alberti et al. 2009). Commonly
used pediatric criteria require the use of age- and
sex-specific percentiles for waist circumference
(Cook et al. 2003; de Ferranti et al. 2004; Zimmet
et al. 2007), although emerging evidence suggests
that the use of racial-/ethnic group-specific thresh-
olds may improve the ability of metabolic syn-
drome to predict cardiometabolic disease in
diverse populations (DeBoer et al. 2011).Multiple
attempts have been made to incorporate other
measurements of body composition into the defi-
nition of metabolic syndrome. At this time, there
is insufficient evidence to suggest that the incor-
poration of DXA or other imaging-based assess-
ment of adiposity into the definition of metabolic
syndrome is appropriate.

3 Summary

The use of body composition analysis has an
important role in both the clinical evaluation of
patients at risk for the development of
cardiometabolic disease and in research aimed at
investigating the relationships between body
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compartments and disease. The field is moving
rapidly toward the development of functional
body composition models which seek not only to
quantify the different body compartments, but to
define the contributions of body tissue to health
and disease. The continuing development of
advanced medical imaging techniques will further
advance this effort and is expected to lead to
improved screening and treatment strategies for
the millions of people with or at risk for
cardiometabolic disease.

4 Cross-References

▶Adipokines and Metabolism
▶Adipose Structure (White, Brown, Beige)
▶Diet, Exercise, and Behavior Therapy in the
Treatment of Obesity and Metabolic Syndrome

▶Epidemiology of Obesity in the United States
▶ Insulin Resistance in Obesity
▶Linking Inflammation, Obesity, and Diabetes
▶Overview of Metabolic Syndrome
▶ Prevention and Treatment of Childhood Obe-
sity and Metabolic Syndrome

▶ Principles of Energy Homeostasis
▶ Sarcopenic Obesity
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Abstract
Diabetes is one of the largest health problems
facing the world today. It is estimated that by
the year 2030 over 7 % of the world’s adult
population will have diabetes. Numerous risk
factors play into an individual’s risk of devel-
oping diabetes. Some are modifiable such as
obesity, diet, and exercise. Other risk factors
including genetic and environmental factors
are topics of ongoing research. The physiology
of diabetes is a complex interplay between
beta-cell function and insulin resistance.
Other hormones such as GLP-1 and leptin
also play a role. The classic presentation of
type 2 diabetes is polyuria, polydipsia, and
unintentional weight loss. However, many
people are diagnosed with diabetes on routine
screening either with a hemoglobin A1c test or
an oral glucose tolerance test. The treatment of
type 2 diabetes is multifaceted and crosses
multiple disciplines. Patient education regard-
ing diet and exercise and adjustment of modi-
fiable risk factors remain the cornerstone of
treatment. Patients should be screened for
microvascular and macrovascular complica-
tions. While studies have shown a benefit of
intensive glycemic control for type 2 diabetes
in reducing microvascular complications, the
effect on macrovascular complications has
been less clear. Long-term studies do suggest
that good glycemic control near the time of
diagnosis can have beneficial impact decades
later.
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1 Etiology

The etiology of type 2 diabetes is multifactorial
and diverse and spans a wide range of factors from
genetic to lifestyle to environmental (see Box 1).
There is clearly an association between obesity
and type 2 diabetes. Analysis of large observa-
tional cohorts of men in the Health Professionals’
Study and women in the Nurses’ Health Study
demonstrated that increased body mass index
(BMI) is associated with an increased risk of
developing diabetes (Chan et al. 1994; Hu
et al. 2001). Population data in the United States
showed that the lifetime risk of diabetes for men
beginning at 18 years of age increased from 7.6 %
for a BMI of <18.5 to 70.3 % for a BMI of 35 or
higher. For women, the increase was similar, 12.2
% versus 74.4 % between lowest and highest
BMI, respectively (Narayan et al. 2007).

Box 1: Risk Factors for Type 2 Diabetes

Modifiable
– Obesity
– Diet
– Physical inactivity
– Smoking
– Environmental

Non-modifiable
– Age
– Ethnicity
– Family history
– Gestational diabetes
– Intrauterine environment/birth weight

There are several lifestyle factors that, when
modified, can lower the risk of type 2 diabetes.
This includes a diet high in fiber and polyunsatu-
rated fats but low in trans fat. Maintaining regular

exercise and abstaining from smoking and con-
suming alcohol moderately also lower risk. Men
who followed a prudent diet (characterized by
higher consumption of vegetables, fruit, fish,
poultry, and whole grains) had a modestly
decreased risk of developing diabetes. Con-
versely, men who followed a “western” diet (char-
acterized by higher consumption of red meat,
processed meat, French fries, high-fat dairy prod-
ucts, refined grains, and sweets and desserts) had a
significantly increased risk of diabetes (RR 1.6,
95 % CI 1.3–1.9) (van Dam et al. 2002). This risk
was independent of BMI, physical activity, or
family history. Similar results were found in
women (Fung et al. 2004).

Sugar-sweetened beverages have been studied
as an independent risk factor for diabetes. Women
who consumed one or more sugar-sweetened soft
drinks per day had almost twice the risk of devel-
oping diabetes compared to those who consumed
less than one of these beverages a month (RR 1.8,
95 % CI 1.42–2.36). The risk remained significant
even after adjustment for changes in body mass
index (BMI) and caloric intake, suggesting that
sweetened beverages may increase the risk of
diabetes due to rapid absorption rate of carbohy-
drates (Schulze et al. 2004). Meat consumption
also appears to be related to the incidence of type
2 diabetes. Individuals that reported an increase in
red meat consumption over four years had a
higher subsequent risk of developing diabetes,
though this association was partly mediated by
body weight (Pan et al. 2013). However, in a
meta-analysis of meat consumption, consumption
of processed meat was associated with a statisti-
cally significant increase in the risk of diabetes,
whereas unprocessed red meat consumption
showed a nonsignificant trend toward increased
risk (Micha et al. 2010).

Moderate-intensity exercise is associated with
a lower risk of developing type 2 diabetes. The
association persists even after adjustment for
BMI, suggesting that exercise can reduce the
risk of developing diabetes independent of weight
loss (Jeon et al. 2007). Additional studies have
looked at associations between development of
diabetes and sedentary behavior. One meta-
analysis looked at television viewing as a risk
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factor for development of diabetes and found TV
viewing time was associated with a higher risk of
type 2 diabetes (pooled RR, 1.20 95 % CI
1.14–1.27) (Grøntved et al. 2011). Retrospective
analysis of prediabetic patients showed a 3.4 %
increased risk of diabetes for every hour spent
watching television ( p< 0.01) (Rockette-Wagner
et al. 2015).

Smoking is postulated to be a risk factor for
type 2 diabetes. In a meta-analysis of 25 prospec-
tive cohort studies, active smoking was associated
with an increased risk for type 2 diabetes,
although only a few of the studies adjusted for
other unhealthy behaviors associated with
smoking, such as poor diet and lack of physical
activity (Willi et al. 2007). There is some evidence
that smoking acutely affects glucose metabolism.
Subjects who smoked prior to an oral glucose
tolerance test showed a significant rise in glucose
compared with not smoking (Frati et al. 1996).

Aberrations in sleep patterns are associated
with an increased risk of diabetes. A large meta-
analysis of sleep and incidence of type 2 diabetes
showed an increased risk for diabetes in both
people who had a short duration of sleep
(�5–6 h a night) and a long duration of sleep
(>8–9 h a night) (Cappuccio et al. 2010). How-
ever, it is difficult to determine if sleep duration is
causal or rather related to obesity and associated
comorbidities such as obstructive sleep apnea.
Melatonin has been postulated to affect a person’s
risk of developing diabetes. Melatonin is regu-
lated by light exposure, and its secretion peaks
3–5 h after sleep onset when it is dark, with almost
no production during the daytime hours. One
study looking at urinary excretion of melatonin
metabolites showed lower melatonin secretion
was independently associated with a higher risk
of developing type 2 diabetes (McMullan
et al. 2013).

Building on observational studies of obesity
and lifestyle as a risk factor for diabetes, large
prevention trials have investigated life style inter-
ventions to reduce the risk of developing diabetes.
The Finnish Diabetes Prevention Study included a
population of 522 middle-aged overweight sub-
jects with impaired glucose tolerance and random-
ized them to an intervention group or control. The

intervention group received intensive individual-
ized counseling aimed at reducing weight and
total intake of fat and increasing fiber and physical
activity. The mean weight lost at 2 years was 3.5
� 5.5 kg in the intervention group and 0.8 �
4.4 kg in the control group. The cumulative inci-
dence of diabetes after four years was 11 % in the
intervention group compared with 23 % in the
control group which translated to a 58% reduction
in the incidence of diabetes between the two
groups (Tuomilehto et al. 2001).

TheDiabetes Prevention Program (DPP) trial
was a US multicenter trial that addressed
preventing diabetes in a high-risk and ethnically
diverse population. The DPP was a comparative
effectiveness trial that recruited 3,224 partici-
pants with prediabetes and assigned them to one
of three interventions: intensive lifestyle inter-
vention, metformin, and a control group who
received standard lifestyle recommendations
and placebo. The intensive lifestyle intervention
included an individual curriculum covering diet,
exercise, and behavior modification intended to
achieve a 7 % weight loss through a healthy
low-calorie, low-fat diet and 150 min of exercise
a week.

Over two years, those assigned to the lifestyle
intervention had greater weight loss and a greater
increase in physical activity than participants in
the other groups (weight loss of 0.1, 2.1, and
5.6 kg in the placebo, metformin, and lifestyle
intervention groups, respectively). The lifestyle
intervention also reduced the incidence of diabe-
tes by 58 % and metformin by 31 % compared
with placebo. Subgroup analyses showed that
lifestyle intervention was effective regardless of
gender, ethnicity, or genetic predisposition to dia-
betes (Knowler et al. 2002).

Subsequently participants in the DPP were
unmasked to their group and placebo was stopped.
All participants were offered a group-
administered version of the curriculum. The Dia-
betes Prevention Program Outcomes Study
followed participants for 10 years and showed
that the cumulative incidence of diabetes
remained lowest in the lifestyle group with a
reduction in diabetes incidence of 34 % (95 %
CI 24–42) versus 18 % (7–28) in the metformin
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group compared with placebo (Diabetes Preven-
tion Program Research Group 2009).

Although previous guideliens stressed a low-fat
diet for lowering risk of diabetes, a low-fat diet has
not been shown to reduce the risk of diabetes
(Tinker et al. 2008), and subsequent studies suggest
the type of fat may be more important than the
amount of fat. In one study by Salmerón et al.,
total fat and saturated fat were not associated with
an increased risk of type 2 diabetes. However,
increased trans fats were associated with increased
risk of diabetes while polyunsaturated fatty acids
were associated with reduced risk (Salmerón
et al. 2001). The Mediterranean diet is character-
ized by high consumption of vegetables and
legumes with moderate consumption of fish and
wine and low consumption of red and processed
meat. It contains high levels of monounsaturated
and polyunsaturated fatty acids from sources like
virgin olive oil and nuts. Adherence to a Mediter-
ranean diet among nondiabetic subjects with at
least one cardiovascular risk factor showed that a
Mediterranean diet was associated with an over
50 % lower incidence of diabetes when compared
with a low-fat diet (Salas-Salvado et al. 2011).

Nut consumption is inversely associated with
risk of type 2 diabetes. Women eating five or more
one ounce servings of nuts per week had a lower
incidence of diabetes compared with women who
did not consume any nuts (Jiang et al. 2002). High
rates of coffee consumption have been associated
with a decreased risk of diabetes. However, there
is currently not enough evidence to recommend
increased coffee intake as a prevention strategy
for diabetes (van Dam and Hu 2005).

Certain medical conditions are associated with
an increased risk of type 2 diabetes. Gestational
diabetes is associated with a subsequent increased
risk of developing type 2 diabetes. Studies of a
large population-based cohort showed that nine
years after gestational diabetes, 19 % of women
had developed type 2 diabetes compared with
only 2 % in women who did not have gestational
diabetes (Feig et al. 2008). Polycystic ovarian
syndrome (PCOS) (Lo et al. 2006), metabolic
syndrome (Ford et al. 2008), and cardiovascular
disease (Mozaffarian et al. 2007) have also been
associated with increased risk of diabetes.

While obesity, lifestyle choices, and medical
history are clearly strong risk factors for the devel-
opment of diabetes, a person’s risk of developing
diabetes is affected by factors starting before
conception.

Family history is clearly a risk factor of diabe-
tes. Identical twins have a high concordance rate
of type 2 diabetes (Barnett et al. 1981). Individ-
uals with one parent with type 2 diabetes are two
to three times more likely to have type 2 diabetes
themselves. Individuals with both parents with
diabetes have five times the risk of developing
diabetes (Meigs et al. 2000). Even when control-
ling for potential confounding factors such as
weight, diet, education, and genetic risk, family
history remained a significant risk factor for
developing diabetes (InterAct Consortium
et al. 2013). Ethnicity is also a risk factor for
diabetes as evidenced by the substantially higher
rates of diabetes in certain ethnic groups, such as
native Indians in North America.

Genetic factors contribute to an individual’s
risk of developing diabetes. Monogenic diabetes
is a result of a genetic defect that leads to diabetes.
The defect has a high penetrance, which leads to
inherited diabetes in a classical Mendelian fashion
(e.g., dominant or recessive). However, mono-
genic diabetes makes up a small proportion of
all diabetes cases. Genomewide association stud-
ies or GWAS look for associations between
specific genetic variations (most commonly,
single-nucleotide polymorphisms) and a particu-
lar disease. While certain variants have been iden-
tified that are associated with an increased risk of
type 2 diabetes, such as TCF7L2 in Europeans
and KCNQ1 in Asians, genetic screening is not
commonly used except for certain cases where
monogenic diabetes is suspected (McCarthy
2010). Current research is ongoing on how best
to integrate genetic and clinical risk factors to
better predict a person’s risk for developing type
2 diabetes.

Intrauterine factors affect an individual’s risk
of diabetes. Poor fetal nutrition has been associ-
ated with greater susceptibility to obesity and
diabetes later in life. This was demonstrated
through studies of the Dutch Hunger Famine
birth cohort which showed that adults who had
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been exposed to famine during fetal life had more
glucose intolerance than unexposed people
(Ravelli et al. 1998). This finding led to the thrifty
genotype hypothesis that insulin resistance
develops as a protective mechanism in response
to intrauterine growth restriction. However, in
adulthood when exposed to caloric excess, this
thrifty genotype becomes maladaptive and leads
to diabetes.

Low birth weight has been associated with
increased risk of developing type 2 diabetes later
in life. A large meta-analysis showed that in most
populations a 1 kg increase in birth weight corre-
sponds to a 20 % reduction in type 2 diabetes risk
(Whincup et al. 2008). It is unclear if the relevant
causal exposure is weight itself versus an under-
lying disturbance in fetal health or nutrition. Two
native North American populations, however,
showed the opposite result – higher birth weight
was associated with a greater risk of type 2 diabe-
tes. These groups have very high prevalence of
type 2 diabetes and gestational diabetes, which
seems to explain the increased incidence of dia-
betes in offspring. It is possible that as rates of
diabetes in other ethnic groups continue to
increase, the relationship between birth weight
and diabetes risk may start to mimic that seen in
native North American populations (Whincup
et al. 2008).

There is growing evidence that environmental
factors also affect an individual’s risk of develop-
ing diabetes. The Endocrine Society defines an
endocrine disruptor as an exogenous chemical,
or mixture of chemicals, that interferes with any
aspect of hormone action (Zoeller et al. 2012).
Exposure to endocrine disruptors has been asso-
ciated with an increased risk of metabolic disor-
ders. One of the most studied endocrine disruptors
is bisphenol A (BPA) which is used extensively in
the lining of food and beverage containers and is
detectable in urine of 90 % of the US population.
Research into endocrine disruptors has mostly
revolved around in vivo mouse studies and large
population studies. In one study by Alonso-
Magdalena et al. mice were exposed to BPA injec-
tions of 10 μg/kg per day during early pregnancy.
At 6 months of age, males prenatally exposed to
BPA displayed glucose intolerance, insulin

resistance, hyperinsulinemia, and altered release
from pancreatic β-cells as compared with control
mice. Exposure of pregnant mice to higher dose of
BPA (100 μg/kg per day) during the same period
showed male offspring with glucose intolerance
but normal insulin sensitivity and only a mild
alteration in β-cell function. Also the pregnant
mice that were exposed to BPA displayed glucose
intolerance and were heavier than controls four
months after delivery (Alonso-Magdalena
et al. 2010).

In 2008 the US National Health and Nutrition
Examination Survey (NHANES) 2003–2004
released the first large-scale data on BPA, and in
a study by Lang et al. higher BPA urine concen-
trations were associated with a diagnosis of dia-
betes and cardiovascular disease (Lang
et al. 2008). When the following NHANES data
from 2005 to 2006 was evaluated, higher BPA
concentrations were not associated with a diagno-
sis of diabetes. However, when the data from
2003–2004 to 2005–2006 was pooled together,
there was a statically significant association with
BPA and diabetes. This may have been because
BPA concentrations in 2005–2006 were about
30 % lower than the earlier population (Melzer
et al. 2010).

2 Epidemiology

The prevalence of diabetes is rapidly increasing in
both the United States and throughout the world.
This increase comes at a great cost to not only the
individual but also on the community and the
health system as a whole. The estimated national
cost in the United States of diabetes in 2012 was
$245 billion, of which $176 billion (72 %) repre-
sents direct health expenditures attributed to dia-
betes and $69 billion (28 %) represents lost
productivity from absence in the workplace and
premature mortality (American Diabetes Associ-
ation 2013). It is estimated that in 2012, 29.1
million people or 9.3 % of the US population
had diabetes and over 27 % of this group was
undiagnosed, proving that type 2 diabetes is a
public health crisis. Certain ethnic groups have a
higher incidence of diabetes. In the United States,
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the highest incidence rate is in American Indians/
Alaska natives (15.9 % 2010–2012).
Non-Hispanic blacks, Hispanics, and Asian
Americans also have a higher incidence rate than
non-Hispanic whites (Centers for Disease Control
and Prevention 2014). Worldwide, the number of
people with diabetes has doubled over the past
three decades increasing from an estimated
153 million in 1980 to 347 million in 2008
(Danaei et al. 2011). The number of people world-
wide with diabetes is projected to increase even
further to an estimated 439 million people by
2030, which represents 7.7 % of the world popu-
lation aged 20–79 (Shaw et al. 2010).

The increase in diabetes largely parallels the
increased rates of obesity seen in the United States
and throughout the world (Fig. 1). The concomi-
tant rise in diabetes and obesity worldwide is a
result of a complex interplay between genetic,
environmental and behavioral factors that have
led to more sedentary behavior and an excess of
calorie-rich food (Zimmet et al. 2001). While
there is clearly an association between obesity
and diabetes, there are individuals who are normal
weight but have metabolic characteristics similar

to obese people, such as hyperinsulinemia, insulin
resistance, predisposition to type 2 diabetes, and
high triglycerides (Ruderman et al. 1998). This
“metabolically obese” phenotype might help
explain why Asians tend to develop type 2 diabe-
tes at lower BMI than people of European origin
(Yoon et al. 2006).

While diabetes was once rare in the developing
world, it is now growing rapidly, and Asia has
emerged as the “diabetes epicenter” of the world
(Chen et al. 2011). India and China have the
largest number of diabetics which is expected to
continue to increase, while the Middle East and
areas of Africa also have growing diabetic
populations. It is estimated that between 2010
and 2030 there will be a 69 % increase in the
numbers of adults with diabetes in developing
countries compared with a 20% increase in devel-
oped world. Furthermore, patients in developing
countries tend to present at a younger age leading
to a greater effect on their productivity (Shaw
et al. 2010).

Along with global shifts in diabetes epidemi-
ology, there has also been a rise in diabetes in
younger populations. While type 1 diabetes is

Age-adjusted Prevalence of  Obesity and Diagnosed Diabetes
Among US Adults

Diabetes

1994

1994

2000

2000

No Data  <14.0% 14.0%–17.9% 18.0%–21.9% 22.0%–25.9% ≥26.0%

No Data <4.5% 4.5%–5.9% 6.0%–7.4% 7.5%–8.9% ≥9.0%

2013

2013

Obesity (BMI ≥30 kg/m )2

Fig. 1 Parallelism of diabetes and increased rates of obesity in the United States between 1994 and 2013
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still the most common form of diabetes overall in
youth in the United States, there has been a 30.5 %
increase in the overall prevalence of type 2 diabe-
tes between 2001 and 2009. Similarly to type
2 diabetes in adults, the highest prevalence is in
American Indians, followed by black, Hispanic,
and Asian Pacific Islander youth, with the lowest
prevalence in white youth. This is almost the exact
inverse of the pattern seen in type 1 diabetes
which is more common in white youth and rare
in American Indians (Dabelea et al. 2014). Predi-
abetes is also highly prevalent among adolescents.
Analysis of National Health and Nutrition Exam-
ination Survey (NHANES) 2005–2006 showed
an unadjusted prevalence of prediabetes of
16.1 % among a diverse cross section of US
adolescents (Li et al. 2009). This increased popu-
lation of young people diagnosed with diabetes
will be at increased risk of complications given
the long duration of disease.

3 Pathophysiology

The pathophysiology of diabetes is a complex
interplay between insulin resistance, beta-cell
dysfunction, and other hormones that regulate
metabolism. Normal glucose metabolism can be
separated into fasting and fed states (Fig. 2). In the
fasting state, the body relies on endogenous glu-
cose production, mainly through hepatic glyco-
genolysis and gluconeogenesis. Hypoglycemia is
prevented by maintaining a low insulin-to-glu-
cose ratio in plasma. The brain is dependent on
glucose so other tissues are provided with alterna-
tive sources of fuel such as fatty acids from adi-
pose tissue lipolysis. This preserves glucose for
use by the brain. In the fed state, blood glucose
levels increase as a result of absorption of carbo-
hydrates from the gut. This stimulates insulin
production from islet β-cells and simultaneously
suppresses glucagon secretion from α-cells. Insu-
lin helps to lower blood sugar in multiple ways – it
suppresses endogenous glucose production by the
liver. Insulin also mediates glucose uptake by
peripheral tissues through both oxidation to car-
bon dioxide and water and non-oxidative disposal
through glycogen synthesis (Nolan et al. 2011).

Insulin induces the glucose transporter 4
(GLUT4) which catalyzes the uptake of glucose
into adipose and muscle cells (Watson et al. 2004).
This effect is mediated through the nuclear
receptor peroxisome proliferator-activated
receptor-Υ (PPARγ). PPARγ is critical for adipo-
cyte differentiation and glucose homeostasis, and
humans with mutations in PPARγ have partial
lipodystrophy and insulin resistance (Ahmadian
et al. 2013).

Extensive research has tried to elucidate the
changes that lead from impaired fasting glucose to
diabetes. Most of the initial research was based on
cross-sectional studies of high-risk populations.
The Pima Indians of Arizona have one of the
highest documented rates of type 2 diabetes in the
world (Knowler et al. 1990). Longitudinal studies
followed Pima Indians who progress from normal
glucose tolerance (NGT) to impaired glucose toler-
ance (IGT) to determine the course of events. Sub-
jects who progressed from NGT to IGT showed
both a lower rate of insulin-stimulated glucose dis-
posal and decreased insulin secretion in response to
a glucose load. This suggests that both insulin resis-
tance and decreased insulin secretion occur well
before the development of overt diabetes. The
decrease in glucose uptake in response to insulin
was almost entirely due to decreased non-oxidative
glucose disposal, suggesting that insulin resistance
is primarily mediated by insulin’s action on skeletal
muscle glycogenesis (Weyer et al. 1999). Inappro-
priate endogenous glucose production by the liver
appears to occur later in the development of
diabetes.

When subjects in the longitudinal Pima Indian
trial who progressed to diabetes were compared to
subjects who retained normal glucose tolerance,
both groups had impaired glucose disposal
suggesting insulin resistance. However, the sub-
jects who did not progress were able to compen-
sate for this by increasing insulin secretion,
maintaining normal glucose tolerance. The sub-
jects who progressed to diabetes were not able to
increase insulin secretion to compensate for
decreased insulin action, suggesting that beta-
cell dysfunction is key in the development of
diabetes (Weyer et al. 1999). This hyperbolic rela-
tionship has been confirmed in healthy individuals
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as well – for any change in insulin sensitivity,
there is a reciprocal change in beta-cell function
to maintain euglycemia (Kahn et al. 1993; Kahn
2003). Similar results were shown in the UKPDS,
which showed that beta-cell function had already
decreased by 50 % at time of diagnosis of diabetes
(Festa et al. 2006).

The causes of beta-cell loss are multifactorial.
Glucolipotoxicity is a term that refers to the toxic
effect of hyperglycemia and elevated plasma fatty
acid level which occur early on in diabetes and
may exert a destructive effect on beta-cells
through increased oxidative stress (Poitout and
Robertson 2008). Amyloid deposition in islet

Fasted

Fed

Gut

Gut

GLP-1

EGP

EGP

Liver

Liver

Insulin

Muscle

Muscle

Fat

Fat

Islets

Islets

Blood glucose
~4 mmol/L

Blood glucose
increased

Insulin secretion
Glucagon secretion

Insulin secretion
Glucagon secretion

Brain

Brain

Insulin-independent tissues

Insulin-independent tissues

Insulin-dependent tissues

Insulin-dependent tissues

Glucagon

InsulinInsulin

Fig. 2 Overview of normal glucose homeostasis. In the
fasting state blood glucose concentration is determined by
the balance between EGP production, mainly through
hepatic glycogenolysis and gluconeogenesis, and use by
insulin-independent tissues, such as the brain. EGP
prevents hypoglycemia and is supported by a low insulin-
to-glucagon ratio in plasma. The brain is dependent on
glucose and, therefore, other tissues, such as heart and
skeletal muscle, are mainly provided with nonglucose
nutrients (e.g., nonesterified fatty acids from adipose tissue
lipolysis). In the fed state (meal with carbohydrate), glu-
cose concentrations in the blood rise because of absorption
in the gut, which stimulates insulin secretion by islet β cells

and suppresses glucagon secretion from α cells. EGP is
suppressed (which helps to curtail total glucose input into
blood) and uptake into insulin-sensitive peripheral tissues,
such as the heart, skeletal muscle, and adipose tissue is
activated (which increases the rate of glucose disposal).
Neurohormonal processes include the release of the
incretin hormones, such as GLP-1, which increases
glucose-stimulated insulin secretion and glucose-
suppression of glucagon secretion. Adipose tissue lipolysis
is suppressed and anabolic metabolism is promoted. Glu-
cose concentrations become close to the fasting level
within 2 h. GLP-1 glucagon-like peptide 1, EGP endoge-
nous glucose production
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bodies is associated with decreased beta-cell area
and increased beta-cell apoptosis, suggesting that
islet amyloid deposition may play a role in beta-
cell destruction (Jurgens et al. 2011).
Compounding the problem of beta-cell loss is
the fact that most studies suggest beta-cell mass
is established early in life with limited ability to
regenerate (Cobo-Vuilleumier and Gauthier
2010). The reduction in beta-cell mass is not sig-
nificant enough to explain the degree of impaired
insulin release in type 2 diabetes, and further
research is ongoing into the interplay between
beta-cell mass and function (Kahn et al. 2014).

While insulin resistance and beta-cell dysfunc-
tion are the foundation of our understanding of
diabetes pathophysiology, there are numerous
other hormones involved.Glucagon levels are inap-
propriately elevated in patients with type 2 diabetes.
This elevation is thought to contribute to greater
rates of glucose production by the liver and attenu-
ated reduction after meals (D’Alessio 2011).

Incretin hormones play an important role in
promoting glucose-stimulated insulin secretion.
The incretin effect is the phenomenon in which
oral glucose load elicits a greater endogenous
insulin secretion as compared with intravenous
glucose. This suggested that factors from the gut
are involved in signaling insulin production. The
two hormones responsible for the incretin effect
are glucose-dependent insulinotropic hormone
(GIP) and glucagon-like peptide-1 (GLP-1).
They are secreted after oral glucose loads and
help increase insulin secretion. While GIP loses
its effect on insulin secretion in diabetes, GLP-1
retains its stimulatory effect on insulin; however
its level is reduced in type 2 diabetes. This gave
rise to GLP-1 as a target for type 2 diabetes
(Nauck et al. 2004).

While obesity is clearly associated with type
2 diabetes, the mechanism by which obesity leads
to diabetes is still an area of active research. Adi-
pose tissue secretes several proteins and cytokines
which are collectively termed adipocytokines, and
it is thought that these may represent the link
between obesity and diabetes. Leptin is produced
by adipocytes and signals the hypothalamus
regarding satiety and quantity of stored fat. Con-
genital leptin deficiency due to a mutation in the

leptin gene leads to early-onset obesity, profound
hyperphagia, and hyperinsulinemia with a dra-
matic response to treatment with leptin (Farooqi
et al. 2002). This condition is rare and typically
seen in consanguineous marriages. In addition,
leptin appears to act on the pancreas as well. In
studies of pancreas-specific leptin receptor knock-
out mice (KO), when fed a standard diet, the KO
mice had improved glucose tolerance as com-
pared with controls. However, when the KO
mice were challenged with a high-fat diet, they
demonstrated poor compensatory islet growth and
glucose intolerance when compared with controls
(Morioka et al. 2007).

Adiponectin is a hormone secreted by adipo-
cytes that has anti-inflammatory and insulin-
sensitizing properties. Adiponectin secretion is
decreased in obesity, and higher adiponectin
levels are associated with better glycemic control,
more favorable lipid profile, and reduced inflam-
mation in diabetic women (Mantzoros
et al. 2005).

Numerous other signaling molecules have
been studied, mainly in mouse models with
some association studies in humans. Tumor necro-
sis factor-alpha (TNFα) released from adipose
tissue may lead to impaired insulin action. Injec-
tion of TNFα into obese mice led to a two- to
threefold increase in insulin-stimulated glucose
utilization (Hotamisligil et al. 1993). Plasminogen
activator inhibitor 1 (PAI-1) is a prothrombotic
factor released by adipocytes which negatively
regulates fibrinolysis by inhibiting tissue plasmin-
ogen activator. In a prospective study looking at
incidence of type 2 diabetes, PAI-1 was an inde-
pendent predictor of diabetes after controlling for
other metabolic factors such as BMI and visceral
fat (Kanaya et al. 2006). Further research is
needed to elucidate the relationship between obe-
sity and diabetes with the goal of developing new
therapeutic targets.

4 Diagnosis

The word diabetes was first coined by the ancient
Greeks and literally means siphon, relating to the
finding of frequent urination in those inflicted.
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The term mellitus which is derived from the Latin
word for sweet was added by Englishman Thomas
Willis in 1675 after noting the sweet taste of urine
from patients with diabetes. In fact, sweet urine
has been noted by physicians in ancient Egyptian,
Persian, Indian, and Chinese societies. Today the
most classic presenting symptoms of type 2 diabe-
tes are polydipsia (frequent thirst), polyuria (fre-
quent urination), blurry vision, and unintentional
weight loss. Typical physical exam findings
include visceral adiposity and acanthosis
nigricans – a velvety, hyperpigmented skin
plaque often found on the neck and axilla. In
more advanced cases of diabetes, one may see
evidence of diabetic retinopathy on fundoscopic
exam and decreased sensation in the feet.

The diagnosis of diabetes is mainly established
through demonstrating hyperglycemia. If a patient
has the above symptoms and a random blood
glucose of 200 mg/dL (11.1 mmol/L), this estab-
lishes the diagnosis of diabetes. Asymptomatic
individuals can be identified by any of the follow-
ing criteria: fasting plasma glucose (FPG) value
�126 mg/dL (7.0 mmol/L), 2-h post oral glucose
75 g tolerance test (OGTT) value of �200 mg/dL
(11.1 mmol/L), and glycated hemoglobin (A1C)
values �6.5 % (48 mmol/mol) (Table 1). These
criteria have been adopted by both the American
Diabetes Association (ADA 2015) and the World
Health Organization (WHO 2011). While the
ADA places less importance on the OGTT to

diagnose diabetes citing its inconvenience, greater
cost, and less reproducibility, the WHO encour-
ages the use of the OGTT in diagnosing diabetes
because of its greater sensitivity in diagnosing
diabetes compared with FPG and evidence of
worse health outcomes for patients diagnosed
with diabetes by OGTT (WHO 2006).

Glycated hemoglobin (A1c) is a product of
hemoglobin’s exposure to plasma glucose through
nonenzymatic glycation and correlates to the aver-
age blood sugar for the prior three months. The
ADA emphasizes using A1c because in some
studies it is a stronger predictor of subsequent
diabetes and cardiovascular events than fasting
glucose (Selvin et al. 2010). Recent improve-
ments in A1c assays have allowed its use for
screening for diabetes. The National
Glycohemoglobin Standardization Program
(NGSP) has standardized the majority of the
assays used in the United States to the Diabetes
Control and Complications Trial (DCCT) stan-
dard. The A1c has many advantages including
its convenience (fasting not required) and the sta-
bility of averaging blood sugars over a longer
period of time. The disadvantages include greater
cost, limited availability in certain regions, and
factors that can alter A1c. Racial variations have
been noted in A1c measurements. African Amer-
icans with and without diabetes have higher A1c
levels than non-Hispanic whites when matched
for fasting plasma glucose. Furthermore,

Table 1 Diagnostic Criteria for Diabetes and Prediabetes

Diabetes ADA and WHO

mg/dL mmol/L

Fasting plasma glucose
OR

�126 7.0

OGTT after 75 g oral glucose load
OR

>200 11.1

Hemoglobin A1c >6.5 % 48 mmol/mol

Prediabetes ADA Prediabetes WHO

mg/dL mmol/L mg/dL Mmol/L

IFG
Fasting plasma glucose

100–125 5.6–6.9 110–125 6.1–6.9

IPG
OGTT after 75 g oral glucose
load

140–199 7.8–11.0 140–199 + FPG <
126

7.8–11.0 + FPG <
7.0

Prediabetes
Hemoglobin A1c

5.7–6.4 % 39–46 mmol/mol

610 C. Burns and I. Sirisena



conditions that alter hemoglobin such as hemo-
globinopathies and anemia can cause variations in
A1c measurements. The A1c test is also the least
sensitive test, and it identifies one-third fewer
cases of undiagnosed diabetes than a fasting glu-
cose of �126 mg/dL (7.0 mmol/L) (ADA 2015).
This lower sensitivity may be offset by the ease of
testing which facilitates screening larger numbers
of people (Picon et al. 2012).

Patients can also be categorized as prediabetic,
which confers an increased risk for diabetes. The
ADA characterizes prediabetes as one of the fol-
lowing: impaired fasting glucose (IFG) defined as
a FPG 100 mg/dL (5.6 mmol/L) to 125 mg/dL
(6.9 mmol/L), impaired insulin glucose tolerance
(IGT) defined as a 2-h plasma glucose in the 75-g
OGTT of 140 mg/dL (7.8 mmol/L) to 199 mg/dL
(11.0 mmol/L), or an A1c of 5.7–6.4 %. This
differs from the WHO which defines IFG as a
fasting glucose between 110 and 125 mg/dL
(6.1–6.9 mmol/L) and defines IGT as both a
fasting glucose <126 (7.0 mmol/L) and a 2-h
glucose �140 mg/dL (7.8 mmol/L) but <200
mg/dL (11.06 mmol/L). The WHO criteria use a
higher threshold for defining IFG citing concerns
that lowering the cut point would cause an over-
diagnosis of IFG.

In general, screening for diabetes should be
considered in overweight adults (defined as a
BMI �25 kg/m2 or 23 kg/m2 in Asians) with
additional risk factors including family history,
hypertension, or a history of gestational diabetes.
It is important to distinguish type 2 diabetes,
which is the most common form, from other
types of diabetes. The American Diabetes Asso-
ciation classifies diabetes into four categories:
(1) type 1 diabetes, (2) type 2 diabetes, (3) gesta-
tional, and (4) other. Type 1 diabetes is due to
autoimmune destruction of beta-cells arising in
absolute insulin deficiency. Patients often present
with markedly elevated blood sugar and are prone
to diabetic ketoacidosis, which is less common in
type 2 diabetes. Autoimmune markers are some-
times tested to confirm the diagnosis; these
include islet cell autoantibodies, glutamic acid
decarboxylase (GAD) antibodies, autoantibodies
to insulin, autoantibodies to tyrosine phospha-
tases IA-2 and IA-2β, and autoantibodies to zinc

transporter 8 (ZnT8). Gestational diabetes (GDM)
is defined as diabetes diagnosed for the first time
during pregnancy and as mentioned earlier is a
risk factor for developing type 2 diabetes later
in life.

Other less common forms of diabetes include
monogenic diabetes syndrome, where a mono-
genic defect causes β-cell dysfunction. These
include mature-onset diabetes of the young
(MODY) which is characterized by impaired insu-
lin secretion and is inherited in an autosomal
dominant pattern. Numerous mutations have
been identified. The most common mutation is
on chromosome 12 in hepatocyte nuclear factor
(HNF)-1α. This mutation leads to reduced insulin
secretion and often responds well to treatment
with a sulfonylurea. Another common mutation
is in the glucokinase gene on chromosome 7p.
Glucokinase converts glucose to glucose-6-
phosphate which stimulates insulin secretion and
acts as a glucose sensor. Mutations in this gene
lead to a higher glucose threshold for insulin
secretion with consequently higher baseline
fasting blood sugars, which in most cases do not
require treatment. Other forms of diabetes include
cystic fibrosis-related diabetes (CFRD) which is
due to insulin deficiency secondary to partial
fibrotic destruction of islet mass. Diabetes can
also be drug induced and is commonly seen after
treatment of HIV/AIDS and with immunosup-
pression for organ transplantation.

5 Treatment

The main goal of treating diabetes is lowering
blood glucose to minimize the risk of both micro-
vascular and macrovascular complications.
Microvascular complications from diabetes
include retinopathy, nephropathy, and neuropathy.
Macrovascular complications in diabetes include
stroke, coronary artery disease, and peripheral
vascular disease.

The cornerstone of diabetes treatment has been
education on diet, exercise, and weight loss. The
Look AHEAD trial was designed to evaluate if
intensive lifestyle intervention for weight loss
would decrease cardiovascular morbidity and
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mortality in type 2 diabetics. The trial was ended
after a median follow-up of 9.6 years when it was
determined that despite a greater weight loss in the
intervention group, there was no difference in the
primary endpoints (death from cardiovascular
causes, nonfatal myocardial infarction, nonfatal
stroke, and later added hospitalization for angina)
between the two groups (1.83 and 1.92 events per
100 person-years, in intervention and control
groups, respectively; hazard ratio in the interven-
tion group, 0.95; 95 % confidence interval,
0.83–1.09; p = 0.51). However, the intensive
lifestyle intervention group did have greater
reductions in A1c, greater initial improvements
in fitness, and greater reductions in all cardiovas-
cular risk factors except for low-density-lipopro-
tein cholesterol levels (Look AHEAD Research
Group et al. 2013). Other trials have shown life-
style interventions in diabetics can provide other
benefits such as decreasing need for medications,
improved well-being (Williamson et al. 2009),
and in some cases remission of diabetes
completely (Gregg et al. 2012). Given that most
lifestyle modifications have few risks and some
benefit, they remain the cornerstone of diabetes
treatment.

In regard to medical therapy for glycemic con-
trol, the Diabetes Control and Complications
Trial (DCCT) demonstrated that intensive therapy
in type 1 diabetics delayed the onset and progres-
sion of microvascular complications such as dia-
betic retinopathy, nephropathy, and neuropathy
(Diabetes Control and Complications Trial
Research Group 1993). Long-term follow-up of
these patients showed a beneficial effect on the
risk of cardiovascular disease as well (Nathan
et al. 2005). For type 2 diabetics, most, but not
all, trials showed a benefit of intensive treatment
on preventing microvascular complications. The
effect of intensive glucose control on
macrovascular outcomes has proved more diffi-
cult to delineate.

The United Kingdom Prospective Diabetes
Study (UKPDS) followed over 5,000 newly diag-
nosed persons with type 2 diabetes and evaluated
the effect of conventional versus intensive man-
agement on diabetes complications. The intensive
therapy arm was treated with medication, while

the conventional therapy arm was treated with
diet alone with the addition of medications if
their fasting blood glucose concentration was
greater than 270 mg/dL (15 mmol/L). The average
A1c was 7.0 % in the intensive therapy group
compared with 7.9 % in the conventional therapy
group. Over a 10-year period, the intensive treat-
ment group had a 25 % reduction in the risk of
microvascular endpoints (7–40, p = 0.0099),
most of which was due to reduced need for pho-
tocoagulation for diabetic retinopathy. However,
the intensive therapy arm had more weight gain
(4.0 kg for those receiving insulin and 1.7–2.7 kg
for those receiving sulfonylurea) and increased
incidence of hypoglycemia (UK Prospective Dia-
betes Study (UKPDS) Group 1998). Other later
studies showed reduction in microvascular end-
points such as nephropathy, while other studies
did not show a reduction in microvascular end-
points (ADVANCE Collaborative Group
et al. 2008; Duckworth et al. 2009).

The major trials looking at diabetes control and
macrovascular complications are summarized in
Table 2.

These trials were designed to evaluate the
effect of intensive versus conventional therapy
on cardiovascular outcomes in patients with
long-standing diabetes (duration 8–12 years),
and many who had already had one cardiovascu-
lar event. VADT and ADVANCE showed no

Table 2 Trial data for intensive glycemic control and
macrovascular complications

ACCORD ADVANCE VADT

N 10,251 11,140 1,791

Mean
duration
T2DM

10 years 8 years 11.5 years

Known
CVD

32 % 35 % 40 %

A1c
decrease

1.1 % (6.4
vs. 7.5 %)

0.7 % (6.5
vs. 7.3 %)

1.5 % (6.9
vs. 8.4 %)

Renal
outcomes

�21 % �32 % �33 %

CV
outcomes

No effect* No effect No effect

NEJM
publication

2008; 358:
2545

2008; 358:
2520

2009; 360:
129

ACCORD showed 22 % in all cause mortality
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difference in rates of macrovascular complica-
tions between intensive and conventional treat-
ment arms (ADVANCE Collaborative Group
et al. 2008; Duckworth et al. 2009). The
ACCORD trial was ended early secondary due
to an increased mortality rate in the intensive
glucose control group compared with conven-
tional therapy (Action to Control Cardiovascular
Risk in Diabetes Study Group et al. 2008). The
higher incidence of total and cardiovascular death
in the intensive group versus standard persisted
even after the intensive arm was transitioned to
the standard therapy (HR for death from any cause
1.19, 95 % CI 1.03–1.38) (ACCORD Study
Group et al. 2011). While it was initially thought
that the increased rate of mortality may be due to
hypoglycemia or the medications used, follow-up
analysis has failed to demonstrate this conclu-
sively (Bonds et al. 2010).

Returning to the UKPDS trial discussed above,
it continued with a post-trial monitoring phase in
which all patients returned to community-based
diabetes care with no attempt to maintain their
previously randomized therapy. While initially
the intensive group had a lower A1c, after
5 years, there was no significant difference in
A1c between the two groups (A1c of around
7.8 %). After a median follow-up of 17 years,
there was still a significant reduction in microvas-
cular complications with the intensive control
group compared with the conventional treatment
group (RR 0.76, 95 % CI 0.64–0.89). Further-
more, while there was no significant difference
in macrovascular outcome in the initial phase, a
significant risk reduction for myocardial infarc-
tion (15 %, p = 0.01) and death from any cause
(13 %, p = 0.007) emerged over time as more
events occurred (Holman et al. 2008). This gave
rise to the term the “legacy effect,” suggesting that
good glycemic control in the initial stages of dia-
betes can lower ones risk of both microvascular
andmacrovascular outcomes over a long period of
time. This is in comparison to the initial phase of
UKPDS and ADVANCE, which showed no ben-
efit of good or near normal blood glucose control
on macrovascular outcomes in the short term.

Based on these studies above, the ADA recom-
mends an A1c target of 7 % or less for most

patients with diabetes, especially if implemented
soon after diagnosis. A more stringent goal of
6.5 % or less can be considered if this can be
achieved without significant hypoglycemia, espe-
cially in patients with a long life expectancy and
little or no significant cardiovascular disease. Less
stringent A1c goals such as 8 % or less may be
appropriate for patients with history of severe
hypoglycemia and those patients who already
have long-standing diabetes with complications
or a decreased life expectancy.

6 Diabetes Management

Comprehensive care of the diabetic patient
requires a multifaceted approach across multiple
disciplines. Educating the patient about their dis-
ease and stressing modifiable risk factors for com-
plications is the cornerstone of diabetes
management. Patients should be informed of the
benefit of weight loss, exercise, and dietary
changes. While no one diet has proved itself supe-
rior in diabetics, it is reasonable to counsel
patients to avoid trans fat and highly refined car-
bohydrates that are often found in processed food
in favor of increased fruits and vegetables,
unprocessed meats, and omega-3 fatty acids.
Emphasis should also be placed on smoking ces-
sation, screening and treatment for depression,
and routine immunizations.

Screening for diabetes complications should
be done routinely and the American Diabetes
Association provides recommendations for stan-
dards of care for diabetic patients. This includes
an annual dilated eye exam to look for retinopathy
and an annual foot exam to identify risk factors for
ulcers and amputations. Urinary albumin and esti-
mated glomerular filtration should be evaluated
once a year in all patients with type 2 diabetes
annually to screen for nephropathy. Treatment
with an ACE inhibitor or angiotensin receptor
blocker (ARB) is suggested for patients with ele-
vated urinary albumin.

For cardiovascular disease and risk manage-
ment, blood pressure should be measured at
every visit with goal systolic blood pressure
(SBP) of <140 mmHg and diastolic blood
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pressure (DBP) < 90. A fasting lipid profile
should be obtained at time of diagnosis and
every 1–2 years afterwards. Statin therapy is indi-
cated in most patients aged 40 or older and can
vary between moderate- and high-intensity statin
therapy depending on age and risk factors.
Antiplatelet agents such as aspirin have been
shown to be effective in reducing cardiovascular
morbidity in high-risk patients with previous
myocardial infarction or stroke (secondary pre-
vention). Evidence for its use for primary preven-
tion in diabetics is less clear, but it is reasonable to
consider aspirin therapy for primary prevention in
diabetics with increased cardiovascular risk
(10-year risk > 10 %).

Medications commonly used for the treatment
of type 2 diabetes are summarized in Table 3.
Recent interest has focused on surgical treatments
of type 2 diabetes through gastric bypass. Recent
studies of gastric bypass in diabetic patients show
that surgery often leads to improvements in dia-
betes control but at a cost of increased adverse
events such as fracture and nutritional deficiency
(Ikramuddin et al. 2015).

7 Cross-References
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▶Genetics of Type 2 Diabetes
▶ Insulin Resistance in Obesity
▶Linking Inflammation, Obesity, and Diabetes
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▶Overview of Metabolic Syndrome
▶ Pancreatic Islet Adaptation and Failure in Obe-
sity and Diabetes
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Abstract
Obesity contributes to the development of car-
diac disease in several ways. It is both an inde-
pendent risk factor for cardiovascular disease
and a facilitative risk factor for coronary artery
disease and its complications through its associ-
ation with a variety of other traditional and
nontraditional risk factors. Central obesity is a
key component of the metabolic syndrome.
There is substantial epidemiologic evidence of
an association between overweight and obesity
and coronary heart disease. Evidence of an asso-
ciation based on autopsy and coronary angiog-
raphy is less convincing. An increasing body of
evidence supports the existence of an obesity
paradox with respect to mortality in patients
with coronary heart disease once it is
established. Whether purposeful weight loss
improves cardiovascular outcomes in over-
weight or obese patients is uncertain. Obesity is
also a risk factor for the development of heart
failure and may serve as the sole or predominant
cause in individuals who are severely obese.
Obesity produces alterations in cardiac hemody-
namics and cardiac morphology that may pre-
dispose to left ventricular diastolic and less
commonly systolic dysfunction. Prolonged
exposure to these conditions and the presence
of comorbidities such as hypertension, sleep
apnea, and obesity hyperventilation predispose
to heart failure. Purposeful weight loss is capable
of reversing most of the abnormalities of cardiac
structure and function associated with obesity.
To an even greater extent than with coronary
artery disease, an obesity paradox exists with
respect to heart failure such that the risk of
mortality is lower in overweight and mildly
obese persons than in underweight or normal
weight individuals.

Keywords
Obesity • Overweight • Metabolic syndrome •
Coronary heart disease • Cardiovascular dis-
ease • Coronary artery disease • Heart failure •
Left ventricular hypertrophy and weight loss

The relation of overweight and obesity to cardiac
disease has been the subject of ongoing investiga-
tive interest for many decades. Coronary heart
disease (CHD), defined as coronary artery disease
(CAD) and its complications, has been the prime
focus. Obesity is strongly associated with a vari-
ety of cardiovascular (CV) disease (CVD) risk
factors including diabetes mellitus, hypertension,
and dyslipidemia but is also considered an inde-
pendent risk factor for CVD (Poirier et al. 2006;
Alexander 1998, 2001; Poirier and Eckel 2002;
Barrett-Connor 1985; Jahangir et al. 2014;
Sjostrum 1992; Krauss and Winston 1998; Miller
et al. 2008; 27th Bethesda Conference). Cluster-
ing of risk factors in the form of the metabolic
syndrome identifies a population that is at partic-
ularly high risk for CVD, especially CHD
(Poirier et al. 2006; Jahangir et al. 2014; Miller
et al. 2008). From a pathophysiologic point of
view, obesity serves as a central component of
the metabolic syndrome (Lakka et al. 2002;
Isomaa et al. 2001). In addition, obesity is capable
of producing alterations in cardiac structure and
function separate from CHD that may predispose
to the development of heart failure (HF) (Abel
et al. 2008; Wong and Marwick 2007; Alpert
et al. 2014a, b; Alpert 2001; Massie 2002). This
chapter discusses the relation of obesity to CVD
risk factors; reviews the literature linking obesity
with CVD and CHD based on epidemiologic,
autopsy, and angiographic studies; and describes
evidence that suggests the presence of an obesity
paradox with respect to CHD. Also discussed in
this chapter are the effects of obesity on cardiac
structure and function and the mechanisms by
which it predisposes to HF.

1 Definitions

The World Health Organization classifies body
weight on the basis of body mass index (BMI) as
follows: underweight (<18.5 kg/m2), normal
weight (18.5–24.9 kg/m2), overweight
(25.0–29.9 kg/m2), class I obesity (30–34.9
kg/m2), class II obesity (35.0–39.9 kg/m2), and
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class III obesity also known as severe, extreme, or
morbid obesity (�40 kg/m2) (WHO 2000). Some
experts have recommended two additional clas-
ses: class IV (�50 kg/m2) and class V (�60
kg/m2) (Poirier et al. 2006; Bastien et al. 2014).
The term super-obesity is sometimes applied to
persons whose BMI is �50 kg/m2 (Bastien
et al. 2014). Central obesity (also referred to as
abdominal or visceral obesity) is defined in terms
of waist circumference (>102 cm in men and
>88 cm in women) or waist-hip ratio (WHR,
>1.0 in men and >0.8 in women) (Poirier
et al. 2006; Nicklas et al. 2014). The metabolic
syndrome is commonly defined as three or more
of the following: (1) waist circumference
>102 cm in men and >88 cm in women,
(2) serum triglyceride levels �150 mg/dl,
(3) serum levels of high-density lipoprotein <40
mg/dl in men and<50 mg/dl in women, (4) blood
pressure �135/85 mmHg, and (5) serum glucose
levels >100 mg/dl (Miller et al. 2008; Bastien
et al. 2014; Lakka et al. 2002; Isomaa et al. 2001).

2 Risk Factors for CVD

Atherosclerosis, and by extension CHD, is multi-
factorial in origin. A variety of genetic, environ-
mental, physiologic, and biochemical
mechanisms contribute to its presence, progres-
sion, and complications. Risk factors for CVD are
commonly classified as traditional and
nontraditional. Traditional CVD risk factors asso-
ciated with obesity include type 2 diabetes
mellitus (there is a 9 % increase in risk of type
2 diabetes mellitus for every 1 kg increase in body
weight), hypertension (related in part to activation
of the renin-angiotensin aldosterone and sympa-
thetic nervous systems; there is an 8 % increase in
risk of hypertension for every 1 kg/m2 increase in
BMI), and various dyslipidemias (hypertrigly-
ceridemia, decreased serum levels of high-density
lipoprotein, increased serum levels body of small
dense low-density lipoprotein associated with
increased apoprotein B levels) (Poirier
et al. 2006; Jahangir et al. 2014; Miller

et al. 2008; Bastien et al. 2014; Freedman
et al. 1999; Berenson et al. 1992; Despres 2012;
Wormser et al. 2011; Lakka et al. 2002; Isomaa
et al. 2001; Schulte et al. 1999). Nontraditional
risk factors for CVD associated with obesity
include insulin resistance with hyperinsulinemia,
endothelial dysfunction, inflammation (character-
ized by increased circulating levels of interleukin-
6, C-reactive protein, and tumor necrosis factor
alpha), and various prothrombotic alterations
(increased serum levels of fibrinogen, von
Willebrand factor, plasminogen activating factor-
1, factor VII, and factor VIII) (Poirier et al. 2006;
Jahangir et al. 2014; Miller et al. 2008; Bastien
et al. 2014; Wormser et al. 2011). In recent years,
it has become increasingly clear that the metabolic
syndrome is a potent risk factor for CAD and its
complications. Central obesity is a key compo-
nent of the metabolic syndrome, contributing by
biochemical and physiologic mechanisms to each
of the other components (Despres 2012; Emerging
Risk Factors Collaboration et al. 2011). Obesity is
primarily a facilitative risk factor. Controversy
exists as to extent to which CVD in overweight
and obese persons is attributable solely to CVD risk
factors (Poirier et al. 2006; Schulte et al. 1999).
Nevertheless, the 27th Bethesda has classified obe-
sity as an independent risk factor for CVD, primar-
ily because of epidemiologic evidence that will be
presented in the following section (27th Bethesda
Conference 1995).

3 Relation of Obesity to CVD:
Epidemiologic Studies

Numerous epidemiologic studies have explored the
relation between CVD and obesity. Some have
included patients with CVD which is not necessar-
ily restricted to CHD.Most studies have focused on
risk of CVD or risk of CHD and its complications.
Others have focused on CVD or CHD mortality.

Multiple reports derived from the Framingham
Heart Study database have provided insights into
the relation of overweightness and obesity to CHD
risk and outcomes. Hubert et al. reported the results
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of a 26-year follow-up of 2,252 men and 2,818
women whose age ranged from 28 to 62 years
(Hubert et al. 1983). Minimum relative weight
was a risk factor for CHD and stroke independent
of age, cholesterol, systolic blood pressure,
smoking, left ventricular (LV) hypertrophy, and
glucose intolerance. A study by Harris and
colleagues reported a U-shaped mortality curve
for BMI in 597 men and 1.126 women whose age
ranged from 55 to 65 years and who were followed
for up to 23 years (Harris et al. 1998). Kannel and
coworkers showed that CVD risk was linearly
related to abdominal and general adiposity in
2,039 men and 2,871 women whose age ranged
from 35 to 70 years and who were followed for
24 years (Kannel et al. 1991; an update: follow-up
of 26 years). Kannel et al. also noted that each
standard deviation in relative weight gain conferred
a 15 % (men) and 22 % (women) increase in CHD
and stroke risk (Kannel et al. 1996). The optimal
BMI for avoidance of CVD was 22.6 kg/m2 for
men and 21.1 kg/m2 for women. Wilson and
colleagues reported that overweight and obesity
(based on BMI) were associated with increased
CVD incidence in men and women whose age
ranged from 35 to 75 years and who were followed
up to 44 years (Wilson et al. 2002).

Several reports from the Nurses Health Study
have addressed the relation of various indices of
body weight to CHD risk in women. Manson
et al. reported the results of a study of 115,886
women whose age ranged from 30 to 56 years and
who were followed for 8 years (Manson
et al. 1990). There was a strong association
between obesity and CHD risk in these women.
An update of this study byManson and colleagues
reported that CHD mortality in the women in this
study was 15 % less than the US average for
women (Manson et al. 1995). Willett
et al. reported a 14-year follow-up of the Nurses
Health Study (Willett et al. 1995). They noted that
the highest level of body weight (BMI) within the
range of modest weight gains after 18 years of age
increased CHD risk in middle-aged women. In a
substudy of the Nurses Health Study consisting of
44,702 women who were followed for 12 years,
Rexrode and coworkers demonstrated that WHR
and waist circumference were independently

associated with CHD risk in women (Rexrode
et al. 1997). In another substudy of the Nurses
Health Study women with a BMI�32 kg/m2 who
had never smoked had a relative risk of CVD
mortality of 4.1 compared to women whose BMI
was less than 19 kg/m2 (Rexrode et al. 1998). In
still another subgroup analysis involving 44,636
women, Zhang et al. reported that the relative risk
of CVDmortality increased from the lowest to the
highest quintile of waist circumference (1.00,
1.04, 1.04, 1.28, 1.99) after adjustment for BMI
and various CVD risk factors (Zhang et al. 2008).
Cho and colleagues, studying 5,897 women,
reported that weight gain prior to the onset of
diabetes mellitus predicted increased risk of
CHD (Cho et al. 2002).

In the Health Professionals Follow-up Study,
Baik et al. monitored 39,756 males whose age
ranged from 40 to 75 years (Baik et al. 2000).
The follow-up period was 10 years. In men <65
years of age, the risk of CVD mortality rose with
increasing BMI. In a previous substudy, BMI was
more effective than WHR in predicting CVD risk.
In men �65 years of age, there was no relation
between BMI and CVD mortality; however,
WHR predicted CVD mortality in this group. In
a study of 29,112 whose age ranged from 40 to
75 years of entry, Rimm and colleagues reported
that BMI, WHR, and weight gain after the age of
21 years predicted increased risk for CAD (Rimm
et al. 1995). In those >65 years of age, WHR was
superior to BMI in predicting risk of CAD.

Field and coworkers, in a study combining
subgroups from the Nurses Health Study (77,690
women) and the Health Professionals Follow-up
Study (40,060 men) who were followed for
10 years, showed that the risk of CHD or stroke
increased with severity of overweightedness or
obesity (Field et al. 2001).

Two reports from the Epidemiologic Follow-
up Study of NHANES I addressed the relation
between body weight and CHD risk. Harris and
colleagues demonstrated that in 1,259 females,
aged 65–74 years and followed for 14 years, over-
weight/obesity (BMI � 29 kg/m2) was an inde-
pendent risk factor for CHD in older women, a
finding strengthened after accounting for previous
weight loss (Harris et al. 1993). In a report of
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621 men and 960 women whose mean age was
77 years and who were followed for up to
13 years, Harris and coworkers noted that heavier
weight in late middle age was a risk factor for
CHD in later life (Harris et al. 1997). Heavier
weight in older age was a risk factor for CHD
after adjusting for those who lost substantial
amounts of weight.

In a study of more than one million adults
followed for 14 years, increased BMI (>26.5
kg/m2 in men and >25.0 in women) predicted
CVD in men (relative risk of 2.9) and women
(Calle et al. 1999). The relative risks of CVD
were 2.7 in men and 1.9 in women whose BMI
was >40 kg/m2.

Adams-Campbell et al. retrospectively studied
866 African-American men and women to assess
the relation between BMI and CAD (Adams-
Campbell et al. 1995). Patients were followed
for 7 years. They reported an inverted “U”-shaped
relation between BMI and CAD. A study of 14 tar-
get populations consisting of 1,974 men and
women whose age ranged from 30 to 59 years
on who were followed for 9 years reported by
Zhou and colleagues showed that overweightness
was an independent predictor of CHD (Zhou
et al. 2002). In the Manitoba Study of 3,983 men
whose mean age was 30.8 years at entry and who
were followed for 26 years, Rabkin et al. reported
390 cases of CHD (Rabkin et al. 1977). A high
BMI was significantly associated with myocardial
infarction, sudden death, and coronary insuffi-
ciency. These observations were not evident until
16 years of follow-up. Overweight/obesity was the
best predictor of myocardial infarction occurring
after 20 years of observation. In contrast, the
Pooling Project reported no specific age-adjusted
or age-associated association of obesity and CHD
in male cohorts (Barrett-Connor 1985).

Kramer and coworkers reported the results of a
meta-analysis of eight studies involving 61,386
adults followed for more than 10 years (Kramer
et al. 2013). There were approximately 4,000
adverse cardiac events. They noted that obese
subjects without the metabolic syndrome had a
24 % higher risk of cardiac events than normal
weight participants without the metabolic syn-
drome. In the Copenhagen General Population

Study involving 71,527 adults followed for a
mean duration of 3.6 years, Thomsen
et al. reported that overweight and obese adults
with the metabolic syndrome had an increased
risk for myocardial infarction (Thomsen and
Nordestgaard 2014). Hazard ratios were 1.26
(95 % CI: 1.0–1.6) in overweight subjects and
1.88 (95 % CI: 1.3–2.6) in obese persons.

Multiple smaller studies have focused on CVD
and CHD mortality. Jousilahti et al. reported the
results of a study of 16,113 men and women from
eastern Finland whose age ranged from 30 to
59 years and who were followed for 15 years
(Jousilahti et al. 1996). In this study obesity was
an independent risk factor for CHD mortality
among men and contributed to CHD mortality
risk in women. In the Adventist Mortality Study
of 12,576 women whose age range was 30–74
years and who were followed for 26 years, Singh
and Landsted reported a U-shaped curved for risk
of CHD, hypertensive disease, and stroke mortal-
ity, particularly in the fifth to seventh decades of
life (Singh and Lanstead 1998).

Spadaro et al., in the Western Electric Study of
1,707 males whose age range was 40–55 years
followed for 22 years, showed that after 15 years
of follow-up, all adiposity measures except triceps
skinfold were significantly associated with
CHD mortality (Spadaro et al. 1996). In contrast,
in the Charleston Heart Study, Stevens
et al. reported that neither BMI nor fat patterning
predicted CHD mortality in African-American
females followed for 25–28 years (Stevens
et al. 1992).

A prospective study of 7,735 males, age range
of 40–59 years followed for a mean of 14.8 years
reported by Shaper et al., identified a BMI of
22 kg/m2 as being associated with the lowest
risk of CV mortality (Shaper et al. 1997).

As suggested in some of the larger epidemio-
logic studies, central (visceral, abdominal) obesity
may be a better predictor of CVD and CHD mor-
bidity and mortality than general indices of body
weight. Yusuf et al. studied 27,098 adults from
52 countries to determine the relation of BMI and
WHR to risk of myocardial infarction. BMI
was minimally associated with myocardial
infarction after adjustment for other risk factors

33 Obesity and Cardiac Disease 623



(adds ratio of 1.12, 95 % CI: 1.03–1.22) (Yusuf
et al. 2005). In contrast, odds ratios forWHRwere
more robust (1.90 in the 4th and 2.52 in the 5th
quintile). In the INTERHEART Study, Yusuf and
colleagues noted that WHR was the strongest
predictor of myocardial infarction. In this study,
other measures of abdominal obesity were also
stronger predictors of myocardial infarction than
BMI (Yusuf et al. 2004). A review of multiple
studies reported by Rao and colleagues in 1991
showed that both high BMI and high WHR were
independent risk factors for CHD mortality (Rao
et al. 2001). Multiple epidemiologic studies of
regional fat distribution have shown an associa-
tion of various indices of central adiposity and
CHD morbidity and mortality.

In a study combining the results of the Health
Study of England and the Scottish Health Survey
involving 22,308 whose mean age was 54 years,
Hamer et al. reported that obese subjects with lower
metabolic risk (waist circumference <102 cm for
men and <88 cm for women, normotensive, no
diabetes mellitus, normal C-reactive protein, normal
high-density lipoprotein cholesterol) had no
increase in CVD risk compared to healthy nonobese
individuals (Hamer and Stamatakis 2012). In a case
control study (217 cases, 261 controls) consisting
of men and women <70 years of age, Kahn
et al. showed that increased mid-thigh girth and
subcutaneous fat mass were associated with a
protective effect against CHD (Kahn et al. 1996).

Brown et al., in the Women’s Health Australia
Project, studied 13,431 female whose age ranged
from 45 to 49 years to determine the relation
between BMI and CVD risk (Brown et al. 1998).
They identified a BMI of 19–24 kg/m2 as the
optimal BMI for reducing CVD risk.

4 Relation of Obesity to CVD:
Autopsy Studies

Studies based on autopsy findings have produced
conflicting results concerning to the relation
between overweight/obesity and CHD. In a report
of the International Atherosclerosis Project
conducted from 1960 to 1964 and involving

autopsy data on 350 persons from six geographic
regions, Montenegro and Salberg noted that in
those who died accidently, the extent of athero-
mata related to none of the weight indices used
Montenegro and Salsberg (1968). AWorld Health
Organization Study in Europe, which excluded
those with wasting diseases, reported that neither
the prevalence of coronary stenosis nor the extent
of atherosclerosis differed between normotensive,
nondiabetic obese, and lean subjects (Sternby
1976). Giertsen et al. showed no significant dif-
ference in the extent of coronary atheromata
between 408 underweight and overweight
patients whose age ranged from 15 to 89 years
(Giertsen 1966). A retrospective autopsy study by
Ackerman and colleagues demonstrated that the
degree of coronary atherosclerosis in persons of
average weight was comparable to those who
were overweight (Ackerman et al. 1950). Yater
and coworkers reported no significant difference
in body weight between 237 men who died of
CHD and 297 men who suffered accidental
death (Yater et al. 1948). Lee and Thomas
showed no significant difference in body weight
between 450 persons whose age ranged from
30 to 60 years and who died of acute myocardial
infarction and average body weight for the general
population matched for age and sex (Lee and
Thomas 1956).

A study of 1,260 autopsy cases reported by
Wilens et al. in 1947 showed that advanced coro-
nary atherosclerosis occurred twice as often
within those with an abdominal panniculus
greater than 3 cm as in persons with poor nutri-
tional status (Wilens et al. 1947). In 2002, McGill
and colleagues reported the results of the PDAY
(Pathobiological Determinants of Atherosclerosis
in Youth) Study which involved 3,000 males and
females whose age ranged from 15 to 34 years
(McGill et al. 2002). Increased BMI in adoles-
cents and young men was associated with fatty
streaks in the right coronary artery and stenosis of
the left anterior descending coronary artery. Right
coronary artery lesions were greater in young men
with a thick abdominal panniculus. BMI was not
associated with coronary atherosclerosis in young
women, although there was a trend toward an
association in young women with a thick abdominal
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panniculus. A prior study by McGill and coworkers
of 1,532 young persons who died of non-CHD
causes showed that in males the percentages of
fatty streaks and raised right coronary lesions were
two to four times higher in those with an abdominal
panniculus greater than 17 mm than in men with a
panniculus �17 mm (McGill et al. 1995).

In a study of 1,108males whose age ranged from
13 to 34 years who died of diseases other than CHD,
there was a positive correlation between body
weight-height indices and raised coronary lesions
in Caucasians, but not in African-Americans
(Strong et al. 1984). However, there were relatively
small differences in panniculus thickness in this
group and those who died of CHD. A study of
672 autopsy cases of men aged 25–64 years, 70 %
of which followed accidental death reported by
Patel et al. showed a weak correlation between
abdominal panniculus thickness and raised coronary
artery lesions in Caucasian men, but not in
African-American men (Patel et al. 1983).

Bjurulf et al., in an autopsy study of 110 sub-
jects in which biopsies of subcutaneous but were
obtained, demonstrated that the severity of coro-
nary atherosclerosis correlated with the size, but
not the number of fat cells (Bjurulf 1959).

In an autopsy study of 37 Japanese-American
men, Rhoads and colleagues reported a correla-
tion between CHD severity and relative weight
>116 % (Rhoads and Kagan 1983). Wilkens and
coworkers reported greater severity of CHD on
autopsy and incidence of catastrophic coronary
events in normotensive obese men, but not in
women (Wilkens et al. 1959).

5 Relation of Obesity to CVD:
Coronary Angiographic
and Computed Tomographic
Studies

A relatively small number of studies have
assessed the relation between overweight/obesity
and CAD using invasive coronary angiography or
computed tomography.

In the Honolulu Heart Program, 357 men from
a cohort of 7,591 free from CHD at entry had

repeat invasive coronary angiography during a
20-year follow-up period (Reed and Yano 1991).
Thirty-five men with less than 50 % stenosis
represented controls. BMI did not separate con-
trols from those with greater degrees of stenosis.
Cramer et al. studied 262 patients with established
CHD repeat invasive coronary angiography
2–182 months after the first angiogram (Cramer
et al. 1966). There was no difference in progres-
sion of coronary lesions between those with a
relative weight greater than 120 % compared
with those with lower relative weights. Using an
invasive coronary angiographic database of
33,119 patients, Stalls and colleagues reported
that although African-Americans had higher
rates of CVD risk factors and morbid obesity,
they were significantly less likely to have signif-
icant coronary stenosis on angiography (Stalls
et al. 2014). In total, cross-sectional invasive cor-
onary angiographic studies have shown little or no
correlation between BMI and severity of CAD
(Reed and Yano 1991; Cramer et al. 1966; Stalls
et al. 2014; Hujamuta et al. 1990; Flynn et al.
1993; Rossi et al. 2011; Morricone et al. 1996;
Anderson et al. 1978; Hauner et al. 1990; Clark
et al. 1994; Kramer et al. 1991; Zamboni et al.
1992; Mahoney et al. 1996).

Several studies employing computed tomogra-
phy have shown a positive correlation between
BMI or indices of abdominal obesity and CAD
and its complications. In the Muscatine Heart
Study, Mahoney et al. reported that among
384 males and females who were 15 years old at
entry and were followed for 15 years, obesity
(assessed by BMI and triceps skinfold thickness)
was strongly associated with coronary artery cal-
cium detected by computed tomography
(Mahoney et al. 1992). In the Dallas Heart
Study, WHR was the only anthropometric mea-
sure of obesity that was associated with coronary
artery calcium on computed tomography (odds
ratio: 1.91) (See et al. 2007). Labounty
et al. studied 13,874 patients suspected of having
CAD using coronary computed tomographic
angiography (Labounty et al. 2013). Those with
and increased BMI had a greater prevalence,
extent, and severity of CAD that was not fully
explained by CVD risk factors. There was an
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independent association between BMI and risk of
myocardial infarction.

6 The Obesity Paradox and CHD

Epidemiologic studies strongly suggest that
overweightness and obesity are associated with
increased risk for CVD and CHD mortality, par-
ticularly when excess bodyweight is present for
long periods of time. There is increasing evidence
that an obesity paradox exists with respect to CVD
and CHD mortality once CHD is established.
Multiple studies have demonstrated lower total
and CVD mortality in overweight and class I
obese persons than in normal weight or under-
weight persons (Jahangir et al. 2014; Miller
et al. 2008; Lavie et al. 2009a, b; Romero-Corral
et al. 2006). Romero-Corral et al. reported the
results of a systematic review and meta-analysis
of 40 studies comprising more than 250,000
patients with established CAD (Romero-Corral
et al. 2006). In this analysis, normal weight
(BMI of 19.0–24.9 kg/m2) was used as a referent.
Total mortality was lower in both overweight and
class I obese patients. Compared to the referent,
underweight subjects possessed the highest risk
for total mortality, and those with a BMI �35
kg/m2 had a relative risk for total mortality similar
to the referent. Similar observations were noted
for subgroups with myocardial infarction and
those receiving percutaneous coronary interven-
tions. Relative risks for total mortality in over-
weight and class I obese patients undergoing
CABG were similar to the referent, but were
higher in underweight patients and in those
whose BMI was �35 kg/m2. Unadjusted and
adjusted relative risk for CV mortality was
slightly lower in overweight and class I obese
patients, but was higher than the referent in under-
weight subjects and in those whose BMI was�35
kg/m2. In contrast to these findings, a meta-
analysis by Flegal et al. failed to show clear-cut
evidence of an obesity paradox with respect to
CAD (Flegal et al. 2013).

Multiple studies have demonstrated an obesity
paradox in subsets of patients with CHD, includ-
ing those receiving surgical or percutaneous

revascularization (Das et al. 2011; Lavie
et al. 2009a, b; Kragelund et al. 2005; Pingitore
et al. 2007; Mehta et al. 2007). In a study of
50,000 patients with ST segment elevation myo-
cardial infarction, Das et al. noted that those with a
BMI of 30–35 kg/m2 had the lowest mortality of
the weight groups studied (Das et al. 2011). Lavie
and colleagues and others reported that adjusted
in-hospital mortality was lower in patients suffer-
ing ST segment or non-ST segment elevation
myocardial infarction whose BMI was �40
kg/m2 than in those whose BMI was <40 kg/m2

(Lavie et al. 2009a). In the TARGET trial of 4,800
patients who received a bare metal stent and either
abciximab or tirofiban, there was no difference in
death or myocardial infarction at 30 days or
6 months between obese and nonobese patients
(Miller et al. 2008; Jahangir et al. 2014). How-
ever, target vessel revascularization at 6 months
occurred more commonly in obese subjects <65
years old in this trial. Other studies have also
demonstrated a greater propensity for use of per-
cutaneous revascularization in obese subjects
(Gruberg et al. 2002; Li et al. 2013; Lancefield
et al. 2010; Park et al. 2013; Sarno et al. 2010,
2011; Nikolsky et al. 2005; Wang et al. 2012). In
contrast, Akin et al. failed to identify better out-
comes in obese patients following persons’ inter-
vention in a German Registry (Akin et al. 2012).
A study of 6,068 patients undergoing coronary
artery bypass showed that 12-year mortality was
similar between normal weight subjects and those
whose BMI ranged from 32 to 36 kg/m2, but was
greater in those whose BMI was �36 kg/m2

(Jahangir et al. 2014; Miller et al. 2008).
Oreopoulos et al., in a study of 31,021 patients
with CHD followed for 46 months, showed that
medically treated overweight and class I obese
patients had significantly lower mortality than
underweight and normal weight subjects
(Oreopoulos et al. 2008a). In patients undergoing
coronary artery bypass grafting, subjects with a
BMI of 35–39.9 kg/m2 had the lowest mortality
rate among weight groups studied. Similar results
were reported by other investigators (Stamou
et al. 2011; Wagner et al. 2007; Moulton
et al. 1996; Benedetto et al. 2014). As with other
studies, those with class I and class II obesity were
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more likely to be revascularized than other BMI
subgroups.

The preponderance of evidence suggests that
mortality in overweight and class I obese sub-
jects is similar to or lower than that of normal
weight individuals. Underweight subjects con-
sistently have the highest risk for mortality.
There is some variability in mortality among
patients with more severe degrees of obesity. A
variety of reasons for the obesity paradox in
CHD have been suggested (Miller et al. 2008).
It is postulated that overweight and obese patients
may have greater metabolic reserves, less cachexia,
greater muscle mass, better cardiorespiratory
fitness, and attenuated responses to activation of
the renin-angiotensin-aldosterone system. They
also suggest that obese subjects may present at a
younger age and may receive more aggressive
medical therapy, diagnostic evaluation, and
revascularization therapy than underweight or
normal weight individuals (Miller et al. 2008).

7 Effects of Weight Loss

It is well established that purposeful weight loss
is capable of favorable modifying traditional
CVD risk factors associated with obesity includ-
ing hypertension, atherogenic dyslipidemia, and
type 2 diabetes mellitus. Weight loss is also
known to reduce insulin resistance and inflamma-
tion, improves endothelial function, and reduces
the incidence of the metabolic syndrome. Lavie
et al. reported a trend toward decreased mortality
in patients who had suffered a cardiac event and
then lost weight while entered in a cardiac reha-
bilitation program (Lavie et al. 2009a, b). Others
have reported increased mortality following
weight loss, but many of these studies failed to
exclude patients with non-purposeful weight
loss (Allison et al. 1999; Jahangir et al. 2014;
Miller et al. 2008). While it is likely that risk
factors’modification and improvement in cardio-
pulmonary fitness contribute to well-being and
perhaps a decrease in cardiovascular events,
the effect of purposeful on total and CV mortality
in patients with established CHD remains
uncertain.

8 Conclusions

Obesity is closely associated with a variety of
traditional and nontraditional CVD risk factors,
both individually and in the setting of the meta-
bolic syndrome. There is strong epidemiologic
evidence of a link between obesity and CVD in
general as well as CHD morbidity and mortality.
This relation is less well established in studies
based on autopsy and coronary angiographic
data. Nevertheless, obesity has been classified as
an independent risk factor for CVD and CHD. An
increasing body of evidence suggests the presence
of an obesity paradox with respect to total and
CVD mortality. Although purposeful weight loss
is capable of favorably modifying many CV risk
factors, direct evidence of a relation between
weight reduction and regression of CAD or
improvement in CVD outcomes is sparse.

8.1 Obesity and Heart Failure

Obesity serves as both a risk factor for and a
primary cause of heart failure (HF). This section
discusses epidemiologic and prognostic consider-
ations as they relate to obesity, describes changes
in cardiac performance and morphology associ-
ated with obesity, reviews clinical manifestations
in patients with HF due entirely or predominantly
to obesity (obesity cardiomyopathy), and dis-
cusses the effects of purposeful weight loss on
cardiac structure and function and on HF itself.

9 Epidemiologic Considerations

Obesity is a common comorbidity in patients with
HF. Owan et al., in a study of 6,016 in-patients
discharged with a diagnosis of HF reported an
incidence of obesity of 41.4 % in subjects with a
preserved left ventricular (LV) ejection fraction
(LVEF) and 35.5 % in those with a reduced
LVEF (Owan et al. 2006). Kenchaiah and col-
leagues, in a study of 5,881 patients from the
Framingham Heart Study, demonstrated that 8.4
% of class I and class II subjects developed HF
over a mean follow-up period of 14 years
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(Kenchaiah et al. 2002). Each kg/m2 increase in
BMI was associated with an increased risk of HF
of 5 % in men and 7 % in women. The risk of HF
was significantly greater in overweight than in
normal weight persons and significantly greater
in obese than in overweight subjects. Baena-Diaz
and coworkers identified obesity as an indepen-
dent risk factor for HF in a low-riskMediterranean
population (Baena-Diez et al. 2010). Alpert
et al. found that nearly one-third of 74 class III
obese subjects had clinical evidence of HF (Alpert
et al. 1997a). Retrospective analysis of data from
the NHANES 1 study supports the designation of
obesity as a risk factor for HF (He et al. 2001).

10 Hemodynamic Alterations
Associated with Obesity

Total and central blood volume and cardiac output
are elevated in obese persons, roughly in proportion
to the excess in bodyweight (Alexander and Alpert
1998a; Alexander et al. 1962; Alexander 1964;
DeDivitiis et al. 1981). In most studies, heart rate
changed little, if at all with weight gain (Alexander
and Alpert 1998a). Thus, the increase in cardiac
output occurs due to increased LV stroke volume.
This is facilitated by a decrease in systemic vascu-
lar resistance in normotensive patients. LV dP/dt is
higher and Vmax is lower than that predicted for
normal in class II–III obese patients (DeDivitiis
et al. 1981). Myocardial oxygen consumption and
arteriovenous oxygen difference values also exceed
those predicted for normal weight in such patients
(Poirier et al. 2006; Alexander and Alpert 1998a;
DeDivitiis et al. 1981). LV end-diastolic pressure
and pulmonary artery capillary wedge pressure are
commonly elevated in obese subjects, particularly
in those who are severely obese (Alexander and
Alpert 1998a; DeDivitiis et al. 1981). Right ven-
tricular end-diastolic pressure and right atrial pres-
sure are commonly elevated in severely obese
persons (Alexander and Alpert 1998a; DeDivitiis
et al. 1981; Kasper et al. 1992). Pulmonary vascular
resistance ismore variable. Sleep apnea and obesity
hypoventilation may produce increases in pulmo-
nary artery and right heart pressures over and above
that caused by elevatedLVfilling pressure resulting

in increases of pulmonary vascular resistance
(Alexander and Alpert 1998a; Alaud-din
et al. 1982).

Exercise has been shown to substantially
increase central blood volume and LV dP/dt in
obese subjects (Kaltman and Goldring 1976;
Backman et al. 1973). In one study, exercise
caused LV end-diastolic pressure to increase
from a mean of 21 to 31 mmHg. At workloads
greater than three times the resting level, the rise
in cardiac output is blunted (Alexander and Alpert
1998a). In severely obese patients, LV
end-diastolic pressure increases disproportionally
to LV stroke work suggesting reduced LV com-
pliance (Backman et al. 1973; Alexander and
Alpert 1998a).

In class II and class III obese subjects, cerebral
blood flow and renal blood flow are low normal or
reduced, whereas splanchnic blood flow is
increased (Alexander and Alpert 1998a). Blood
flow in adipose tissue is 2–3 ml/min less than in
other organs and does not fully account for the
increase in cardiac output noted in obese subjects
(Poirier et al. 2006; Alexander and Alpert 1998a).
The difference is attributable to increased fat-free
mass (Poirier et al. 2006).

11 Cardiac Morphology in Obesity

Postmortem studies, consisting primarily of
severely obese persons during life, have shown
that nearly all have LV hypertrophy on both gross
and microscopic examination LV dilation was
commonly, but not invariably present (Alpert
and Alexander 1998a; Smith and Willius 1933;
Amad et al. 1965; Alexander and Pettigrove 1967;
Warnes and Roberts 1989). Right ventricular
hypertrophy was present in approximately
one-third of patients. Excess epicardial adipose
tissue was reported in approximately two-thirds
of subjects.

Kasper et al. studied 43 obese patients and
409 lean patients with HF (Kasper et al. 1992).
Of those who underwent myocardial biopsy, a
specific etiology was identified in 64.5 % of lean
patients and in only 23.3 % of obese patients. LV
hypertrophy was the most common pathologic

628 M.A. Alpert



finding in obese subjects. These findings support
the concept of a cardiomyopathy of obesity.

Noninvasive cardiac imaging techniques
(echocardiography, magnetic resonance imaging)
have allowed us to study more patients than is
possible with postmortem studies. Studies using
these techniques have identified similar morpho-
logic abnormalities as autopsy studies, but their
reported incidence is more variable due to inclu-
sion of patients with lesser degrees and variable
duration of obesity (Alpert and Alexander 1998a;
Zema and Cacavano 1982; Garcia et al. 1982;
Alpert et al. 1985).

Numerous studies have compared LV mor-
phology in lean and obese subjects (Alpert and
Alexander 1998a). In virtually all studies, indices
of LV mass or wall thickness were significantly
greater in obese than in lean patients. LV diastolic
chamber size was significantly greater in patients
with uncomplicated obesity than in lean subjects.
Multiple studies have reported strong positive
correlations between indices of LV mass and
body weight indices (Alpert and Alexander
1998a; Alpert et al. 1998; Lauer et al. 1991). Cor-
relation between LV diastolic chamber size and
body weight indices has been less consistent. Fac-
tors contributing to increased LV mass in obesity
include blood pressure (predominantly systolic
blood pressure), LVend-systolic wall stress, dura-
tion of obesity, and possibly, abdominal adiposity
(Alpert and Alexander 1998a; Alpert et al. 1994).
As with cardiac output, fat-free mass appears to be
as important or more important than fat mass in
predicting increased LV mass (Bella et al. 1998).

Controversy exists concerning LV geometry in
obesity. Based on known hemodynamic alteration
in obesity, eccentric LV hypertrophy would be
expected to predominate. However, multiple
recent studies have reported that concentric LV
hypertrophy or remodeling occurs as frequently or
more frequently in obese subjects (Aurigemma
et al. 2013; Turkbey et al. 2010; Danias
et al. 2003; Woodwiss et al. 2008; Smalcelj
et al. 2000; Peterson et al. 2004). In most studies
of uncomplicated (normotensive) obesity, when
LV hypertrophy was present, it was predomi-
nantly eccentric (Alpert and Alexander 1998a;
Okpura et al. 2010; Iacobellis et al. 2002, 2004).

All but one of the studies reporting a predomi-
nance of concentric LV hypertrophy or
remodeling have failed to exclude hypertensive
patients or to account for the relative duration
and severity of hypertension and obesity. For
example, a patient with a long-standing severe
obesity and treated hypertension might be
expected to have eccentric LV hypertrophy,
whereas a patient with long-standing poorly con-
trolled hypertension and class I obesity might be
expected to have concentric LV hypertrophy or
remodeling. It is possible that various neurohor-
monal and metabolic factors may contribute to the
development of concentric LV hypertrophy or
remodeling in the absence of hypertension in
obese persons. This issue remains unresolved.

12 Ventricular Function in Obesity

As previously noted, LV end-diastolic pressure is
commonly elevated is severely obese persons and
rises substantially with exercise. LV diastolic
function in obesity has also been evaluated using
noninvasive cardiac techniques including trans-
thoracic echocardiography, Doppler echocardiog-
raphy, tissue Doppler imaging, radionuclide
angiography, and magnetic resonance imaging.
Studies comparing LV diastolic function, regard-
less of the technique used, have shown impair-
ment of LV diastolic function in obese subjects
relative to lean controls (Chakko and Alpert 1998;
Stoddard et al. 1992; Chakko et al. 1991;
Herszkowicz et al. 2001; Ku et al. 1994; Ferraro
et al. 1996). In some studies, indices of diastolic
filling became progressively more impaired with
increasing LV mass (Chakko and Alpert 1998;
Alpert et al. 1997; Tian et al. 2007; Kossaify and
Nicolais 2013). In one study, impaired diastolic
filling occurred only in those with LV hypertrophy
(Alpert et al. 1997). Other factors that may con-
tribute to LV diastolic dysfunction included sys-
tolic blood pressure, LV end-systolic wall stress,
duration of obesity, and type 2 diabetes mellitus
with insulin resistance (Chakko and Alpert 1998;
Alpert et al. 1996; Nakajima et al. 1985). Pascual
et al. reported abnormal LV diastolic filling in
12 % of class I, 35 % of class II, and 45 % of
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class III obese subjects using Doppler echocardio-
graphic techniques (Pascual et al. 2003). More
recently, studies using tissue Doppler echocardi-
ography (a presumably load-independent tech-
nique) have shown decreased mitral annular
velocities in diastole in obese subjects (Kossaify
and Nicolais 2013).

Most studies assessing LV systolic function
have shown normal or supernormal LV ejection
phase indices (LVEF, LV fractional shortening)
(Alpert and Alexander 1998b; Alpert et al. 1993).
In several studies, LV ejection phase indices in
obese subjects were lower than in lean subjects.
Most however, remained with the normal range are
those that did not were typically only mildly
reduced. Severely depressed LV systolic dysfunc-
tion should elicit a search for comorbid CV dis-
eases in all classes of obesity (Alpert et al. 1993).
Recent studies have identified decreased mitral
annular velocities in systole and abnormal LV
strain and strain rates in obese patients with normal
LV ejection phase indices (Alpert et al. 2014a;
Tumuklu et al. 2007; Barbosa et al. 2011; Talano
et al. 2008). This suggests that subclinical LV
systolic dysfunction occurs in obesity more com-
monly than was previously appreciated.

Little information exists concerning right ven-
tricular function in obesity. Tissue Doppler studies
have shown decrease systolic velocities in the
lateral tricuspid annulus suggesting right ventric-
ular systolic dysfunction in such patients (Otto
et al. 2004; Orhan et al. 2010; Chahai et al. 2012).

13 Obesity, Hypertension,
and the Heart

Hypertension occurs in up to 50% of class I and II
obese persons and in approximately 60 % of
severely obese individuals (Alexander and Alpert
1998a). Intravascular volume is normal to
increased in such individuals. Cardiac output and
LV stroke volume remain increased in obese
hypertensives, but to a lesser extent than in nor-
motensive obese persons (Thakur et al. 2001;
Fazio et al. 1989). LV stroke work is increased
to a greater extent in hypertensive obese subjects
than in those who are normotensive and obese.

Systemic vascular resistance is higher in
hypertensive obese patients than in normotensive
obese subjects (Thakur et al. 2001; Alexander and
Alpert 1998a). It is sometimes described as inap-
propriately normal and is frankly elevated in some
individuals. LV end-diastolic pressure is com-
monly elevated in hypertensive obese subjects,
particularly when obesity and hypertension are
long-standing. In patients with chronic poorly
controlled hypertension and severe obesity, a
hybrid form of LV hypertrophy may occur
known as eccentric-concentric hypertrophy (now
classified as a form of concentric LV hypertrophy)
(Thakur et al. 2001; Lavie et al. 2009a, c; Messerli
et al. 1983; Iacobellis et al. 2003). In such indi-
viduals, LV chamber size is dilated, but to a lesser
extent than in normotensive obese subjects, and
LV wall thickness is normal to increased in hyper-
tensive obese individuals. Left atrial enlargement
is common in both states. LV diastolic dysfunc-
tion is present in both states. LV systolic function
typically remains normal in hypertensive obese
persons (Thakur et al. 2001; Lavie et al. 2009c).

14 Metabolic Abnormalities
Affecting Cardiac Performance
and Morphology

Increased sympathetic nervous system activity,
activation of the renin-angiotensin-aldosterone
system, hyperleptinemia due to leptin resistance
and insulin resistance with hyperinsulinemia have
been linked to LV hypertrophy and to impaired
LV function in animal and in some human studies
(Amador et al. 2004; Abel et al. 2008; Wong and
Marwick 2007; Alpert et al. 2014a; McGavock
et al. 2006). Myocardial lipotoxicity is a process
by which triglycerides and excess fatty acids
accumulate in myocardial cells causing cellular
dysfunction and death and eventually myocardial
dysfunction (McGavock et al.). Myocardial
lipotoxicity has been linked to LV hypertrophy
and to LV systolic and diastolic dysfunction in
genetically obese rats and transgenic murine
models of lipotoxicity (McGavock et al. 2006;
Abel et al. 2008; Wong and Marwick 2007).
Whether myocardial lipotoxicity produces
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alterations in cardiac performance and morphol-
ogy in humans is unknown.

15 Obesity Cardiomyopathy:
Clinical Manifestations

Severe obesity is capable of causing HF in the
absence of other underlying causes or precipitat-
ing factors. HF due predominantly or entirely to
severe obesity is termed obesity cardiomyopathy.
Clinical manifestations of obesity cardiomyopa-
thy are similar to those of HF from other causes in
some respects and unique in other respects (Alex-
ander and Alpert 1998b; Lillington et al. 1957).
Nearly all patients with obesity cardiomyopathy
have a relative weight �175 % or a BMI �40
kg/m2 and have been severely obese for at least
10 years. HF tends to be episodic and typically
occurs following a recent weight gain. Sleep
apnea occurs in up to 50 % of severely obese
patients. Obesity hypoventilation occurs in
10–20 % of such individuals. The pathophysiol-
ogy of obesity cardiomyopathy is summarized in
Fig. 1. Symptoms include dyspnea on exertion,
paroxysmal nocturnal dyspnea, edema of the
lower extremities, increased abdominal girth,
mental confusion and disorientation, somnolence,
and death. Physical signs include jugular venous
distension with hepatojugular reflux, pulmonary
crackles, gallop rhythm, ascites, brawny edema,
cyanosis, periodic breathing, conjunctival suffu-
sion, retinal venous congestion, and papilledema
(Alexander and Alpert 1998b). Cardiac murmurs
are usually absent (Alexander and Alpert 1998b;
Lillington et al. 1957).

16 Prognostic Considerations: The
Obesity Paradox

An increasing body of evidence suggests that
mortality risk is lower in obese patients with HF
than in lean patients with comparable degrees of
severity of HF (Lavie et al. 2013a, b; Oreopoulos
et al. 2008; Horwich et al. 2001; Davos
et al. 2003). To an even greater extent than with
CAD, there exists an obesity paradox with respect

to HF. Oreopoulos et al. published the results of a
meta-analysis of 28,209 patients with HF
(Oreopoulos et al. 2008b). All cause mortality
was 16 % lower in overweight patients with HF
and 33 % lower in obese subjects with HF than in
normal weight patients with HF. Similarly, CV
mortality was 19 % lower in overweight patients
with HF and 40% lower in obese subjects with HF
than in normal weight patients with HF. In virtu-
ally all studies, underweight patients had the
highest mortality risk. Overweight and class I
obese patients consistently had the lowest mortal-
ity rates. Class II obesity was associated in low
mortality rates in some studies and increased mor-
tality risk in others. Limited information suggests
that class III obesity is generally associated with
higher mortality rates than normal weight, over-
weight, and class I obese patients (Lavie
et al. 2013a). The obesity paradox in the context
of HF has been described in men and women,
patients with preserved and a reduced LV systolic
function, patients with acute and chronic HF, and
in those with peripheral and central obesity with
HF (Clark et al. 2011, 2012; Lavie et al. 2009c;
Padwal et al. 2014; Nicklas et al. 2006; Fonarow
et al. 2007). Possible mechanisms of the obesity
paradox in HF patients are similar to those
discussed previously in the section on obesity
and CVD. A higher degree of cardiopulmonary
fitness in lean patients with HF may attenuate the
obesity paradox (Lavie et al. 2013b).

17 Effect ofWeight Loss on Cardiac
Hemodynamics, LV
Morphology, LV Function, and
Clinical Manifestations of HF

The abnormalities of cardiac structure and func-
tion are most pronounced in severely obese
patients. Substantial purposeful weight loss is
capable of reversing many of the adverse hemo-
dynamic alterations and changes in LV morphol-
ogy and function in such individuals (Ashrafian
et al. 2008; Rider et al. 2009; Alexander and
Peterson 1992; Alaud-din et al. 1982; Backman
et al. 1979; Grapsa et al. 2013; Jhaveri et al. 2009;
Reisin et al. 1983). Because bariatric surgery
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produces greater weight loss than diet and exer-
cise, the most pronounced changes in cardiac
structure and function occur with surgical weight
reduction.

Substantial purposeful weight loss in severely
obese persons is associated with decreases in total
and central blood volume, cardiac output, oxygen

consumption, arteriovenous oxygen difference, LV
stroke volume, cardiac work, and LV stroke work
(Alaud-din et al. 1982; Alexander et al. 1972;
Backman et al. 1973). Systemic vascular resistance
generally rises following weight loss in normoten-
sive individuals. The reported response of LVend-
diastolic pressure and pulmonary capillary wedge
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Hypertension
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Vascular
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Fig. 1 Pathophysiology of obesity cardiomyopathy. This
diagram shows central hemodynamic alterations that result
from excessive adipose accumulation in severely obese
patients and their subsequent effects on cardiac morphol-
ogy and ventricular function. Left ventricular
(LV) hypertrophy in severe obesity may be eccentric or
concentric. Factors influencing LV remodeling and geom-
etry include severity and duration of obesity, duration and
severity of adverse LV loading conditions (particularly
hypertension), and possibly, neurohormonal and metabolic

abnormalities such as increased sympathetic nervous sys-
tem tone, activation of the renin-angiotensin-aldosterone
system, insulin resistance with hyperinsulinemia, leptin
resistance with hyperleptinemia, adiponectin deficiency,
lipotoxicity, and lipoapoptosis. These alterations may con-
tribute to the development of LV failure. LV failure, facil-
itated by pulmonary arterial hypertension from sleep
apnea/obesity hypoventilation, may subsequently lead to
right ventricular (RV) failure (Adapted from reference
Lavie et al. 2013a)

632 M.A. Alpert



pressure to weight loss is more variable, declining
in some and remaining unchanged in others. Right
heart pressures often decrease with substantial
weight loss, in part due to improvement in sleep
apnea and obesity hypoventilation.

Most studies assessing the effect of purposeful
weight loss in cardiac morphology have reported
substantial reduction in LVmass and chamber size
(Ashrafian et al. 2008; Rider et al. 2009; Grapsa
et al. 2013; Jhaveri et al. 2009). Weight loss has
also been associated in reverse remodeling in
severely obese patients with abnormal LV geom-
etry (Luaces et al. 2012). These favorable alter-
ations in LVmorphology are attributable in part to
improvement in LV loading conditions. However,
weight loss-related improvements in insulin resis-
tance and hyperleptinemia may also contribute to
regression of LV hypertrophy.

In moderately to severely obese patients, sub-
stantial purposeful weight loss has produced
improvement in LV diastolic filling in most stud-
ies employing noninvasive diagnostic techniques
(Ashrafian et al. 2008; de las Fuentes et al. 2009;
Haufe et al. 2012; McCloskey et al. 2007). Such
changes have been attributed in part to favorable
alterations in LV loading conditions. One study
reported improvement in LV diastolic filling with
weight loss only in those with LV hypertrophy
(Alpert et al. 1997).

Most obese patients including those who are
severely obese have normal or supernormal LV
systolic function. Weight loss in such patients
produces either no change or normalization of
LV ejection phase indices (Alpert and Alexander
1998b; Alpert et al. 2014a). In those with
depressed LV systolic function, weight reduction
produces improvement in LV ejection phase indi-
ces (Alpert et al. 1993). Improvements in mitral
annular systolic velocities detected using tissue
Doppler imaging and reduction in myocardial
deformation using speckle track imaging have
been reported following weight loss in obese sub-
jects (Alpert et al. 2014a).

Limited information exists concerning the
effects of weight loss on symptom and signs of
HF in obese subjects. One early study by Estes
et al. reported reversal of somnolence periodic
breathing, polycythemia, and dyspnea in five of

six severely obese patients who lost 38–143 lb
(Estes et al. 1957). In a study of 14 severely
obese patients with substantial purposeful weight
loss following bariatric surgery, Alpert and col-
leagues reported improvement in the New York
Heart Association functional class in 12 of
14 patients (Alpert et al. 1997). Miranda and
colleagues noted improvement in the quality of
life, dyspnea, and lower extremity edema in seven
severely obese patients undergoing bariatric sur-
gery, but no change in six patients with dietary
weight loss. Substantial weight loss in capable of
reversing many of the abnormalities of cardiac
performance and morphology in severely obese
patients with HF just as it is in severely obese
persons without HF (Miranda et al. 2013). Ramani
et al. reported similar findings in 12 severely
obese patients treated with bariatric surgery
(Ramani et al. 2008).

18 Conclusions

Hemodynamic alterations in obesity include
increased total and central blood volume, LV
stroke volume, and cardiac output. Systemic vas-
cular resistance is reduced. LVend-diastolic pres-
sure is often increased in long-standing severe
obesity. Right heart pressures are frequently ele-
vated in severe obesity. LVmass is increased in all
classes of obesity relative to LV mass in lean
patients. LV dilatation is frequently, but not
invariably, present in severe obesity. Impairment
of LV diastolic filling occurs commonly in obese
persons, particular when LV hypertrophy is pre-
sent. LV systolic function is usually normal in
obese persons. Hypertension promotes the devel-
opment of eccentric-concentric hypertrophy in the
presence of long-standing severe obesity. The
clinical presentation of HF in patients with obesity
cardiomyopathy is characterized by several
unique clinical manifestations due to sleep apnea
and obesity hypoventilation. An obesity paradox
exists with respect to mortality in obese persons
with HF. Many of the abnormalities of cardiac
structure and function as well as clinical manifes-
tations of HF are reversible with substantial pur-
poseful weight loss.
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19 Cross-References

▶Dyslipidemia in Obesity
▶Genetics of Cardiovascular Risk in Obesity
▶ Insulin Resistance in Obesity
▶Obstructive Sleep Apnea and Other Respiratory
Disorders in Obesity
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Abstract
The metabolic syndrome (MetS), also known
as syndrome X or insulin resistance syndrome,
is defined by the combination of insulin resis-
tance, abdominal fat distribution, high blood
pressure, and dyslipidemia. The coexistence of
these risk factors leads to an excess cardiovas-
cular disease morbidity. MetS is an emerging
public health and clinical challenge world-
wide, caused by the hypercaloric diet and
sedentary lifestyle of today’s population.

MetS means a proinflammatory or
prothrombic condition, comprising, for exam-
ple, elevated C-reactive protein (CRP) levels,
elevated levels of uric acid, and a shift toward
small, dense low-density lipoprotein (LDL)
cholesterol particles. An association between
the occurrence of MetS and the polycystic
ovary syndrome, as well as with nonalcoholic
steatohepatitis (NASH), has been described.

In this article, we review current data about
the MetS and related diseases. We focus espe-
cially on the hepatic damage that is caused by
MetS, and thus we describe animal models of
nonalcoholic fatty liver disease (NAFLD) giv-
ing insights into the mechanisms of NAFLD,
and we also provide information about the
neoplastic final common path, namely, hepato-
cellular carcinoma (HCC).
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Abbreviations
AACE American Association of Clinic

Endocrinologists
ALD Alcoholic liver disease
ATF6 Activating transcription factor-6
BMI Body mass index
CARDIA Coronary Artery Risk Develop-

ment in Young Adults
CBS Cystathionine beta-synthetase
CCC Cholangiocellular carcinoma
CEA Carcinoembryonic antigen
CRP C-reactive protein
CVD Cardiovascular disease
DDC 3,5-diethoxycarbonyl-1,4-

dihydrocollidine
EBV Epstein-Barr virus
EGIR European Group for the Study of

Insulin Resistance
ER Endoplasmic reticulum
FATP Fatty acid transporter protein
FLC Fibrolamellar carcinoma
FLSmice Fatty liver Shionogi mice
HBV Hepatitis B virus
HCC Hepatocellular carcinoma
HCV Hepatitis C virus
HDL High-density lipoprotein
HepPar1 Carbamoyl phosphate synthetase-1
HFDs High-fat diets
IDF International Diabetes Federation
IGF2 Insulin-like growth factor 2
IR Insulin resistance
JNC 7 Seventh Report of the Joint

National Committee on Prevention
Detection, Evaluation, and Treat-
ment of High Blood Pressure

LDL Low-density lipoprotein
LpL Lipoprotein lipase
MAT1A Methionine adenosyltransferase

1 alpha
MCD Methionine- and choline-deficient

diet

MCR4 Melanocortin 4 receptor
MDBs Mallory-Denk bodies
MetS Metabolic syndrome
NAFLD Nonalcoholic fatty liver disease
NASH Nonalcoholic steatohepatitis
NCEO/
ATP

National Cholesterol Education
Program-Adult Treatment Panel

PERK PKR-like ER kinase
PTEN Phosphatase and tensin homolog
SH-HCC Steatohepatitic HCC
SREBP Sterol regulatory element-binding

protein
T2DM Type 2 diabetes mellitus
VLDL Very low-density lipoprotein
WHO World Health Organization

1 Introduction

The metabolic syndrome (MetS), also known as
syndrome X or insulin resistance syndrome, is
defined by the combination of insulin resistance,
abdominal fat distribution, high blood pressure,
and dyslipidemia, as defined by the World Health
Organization (WHO) (Deen 2004; Vega 2001;
Alberti and Zimmet 1998). The coexistence of
these risk factors in an individual leads to an
excess cardiovascular disease (CVD) morbidity
(Vega 2001). As a result of the populations’
increasing energy intake and sedentary lifestyle,
MetS becomes a major escalating public health
and clinical challenge worldwide (Kaur 2014).
According to a report from the National Choles-
terol Education Program-Adult Treatment Panel
(NCEO/ATP III), MetS is an independent risk
factor for CVD, indicating the necessity of a pro-
found lifestyle modification (National Institutes of
Health 2004). The NCEO/ATP has edited a new,
operational definition of MetS, different from the
initial definition by the WHO: The co-occurrence
of any three of the four risk factors (insulin resis-
tance, abdominal fat distribution, high blood pres-
sure, and dyslipidemia) (Alberti and Zimmet
1998; National Institutes of Health 2004). MetS
means a proinflammatory or prothrombic condi-
tion, comprising elevated C-reactive protein
(CRP) levels, endothelial dysfunction, elevated
fibrinogen levels, elevated platelet aggregation,
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high levels of plasminogen activator inhibitor
1, elevated levels of uric acid, microalbuminuria,
and a shift toward small, dense low-density lipo-
protein (LDL) cholesterol particles (Deen 2004).
An association between the occurrence of MetS
and the polycystic ovary syndrome, as well as
with nonalcoholic steatohepatitis (NASH), has
been described (Deen 2004). Several attempts of
exactly defining the diagnostic criteria for MetS
have been made (Eckel et al. 2005). First, the
WHO diabetes group came up with a definition
of MetS in 1998 (Alberti and Zimmet 1998). In
1999 the European Group for the Study of Insulin
Resistance (EGIR) provided a second definition,
which was a modification of the original WHO
definition, and in 2001 the National Cholesterol
Education Program-Adult Treatment Panel
(NCEO/ATP) came up with a third definition
(Balkau and Charles 1999; Expert Panel on Detec-
tion, Evaluation, and Treatment of High Blood
Cholesterol in Adults 2001). In 2003, the Ameri-
can Association of Clinic Endocrinologists
(AACE) offered a revised definition of MetS,
and in the hope of unifying all these definitions,
the International Diabetes Federation (IDF) pro-
posed a novel diagnostic definition in April 2005
(Einhorn et al. 2003; International Diabetes Fed-
eration n.d.).

2 Epidemiology

Dependent on what definition is used and what
population is studied, the prevalence of MetS
varies (Ford and Giles 2003). The Third National
Health and Nutrition Examination Survey
(1988–1994) has provided data, showing that the
prevalence of MetS ranges from only 16 % in
black males to 37 % in Hispanic females (Ford
et al. 2002). The prevalence is directly associated
with age and with body weight. People are con-
stantly becoming older in most industrialized
countries, and the average body weight increases
continuously. Thus, it is estimated that MetS will
soon outrun cigarette smoking as the major risk
factor for CVD (Eckel and Krauss 1998). Notably,
MetS is a very strong predictor of type 2 diabetes
(T2DM), meaning that MetS confers fivefold the

risk of T2DM (Grundy et al. 2004; Alberti
et al. 2009). Moreover, MetS twofold increases
the risk of developing CVD within the next 5–10
years (Alberti et al. 2009). Moreover, MetS leads
to a two- to fourfold increased risk of stroke, a
three- to fourfold increased risk of myocardial
infarction, and a twofold risk of dying from a
cardiovascular event, in comparison to those
who do not suffer from MetS, independent of the
previous history of cardiovascular events (Alberti
et al. 2005; Olijhoek et al. 2004). MetS is consid-
ered a first-order risk factor for atherothrombotic
complications, and thus it must be considered as
an indicator of long-term risk for atherosclerosis
and the related events (Kaur 2014; Grundy 2006).

3 Etiology and Pathogenesis

An exact definition of the etiology ofMetS has not
been established. Insulin resistance has been
hypothesized to be the primary condition in the
development of MetS, since insulin resistance
correlates with abdominal fat storage, also called
android fat distribution, as measured using the
waist-to-hip ratio (Deen 2004). Presumably, oxi-
dative stress is the link between insulin resistance
and CVD, as it causes endothelial cell dysfunc-
tion, vascular damage, and plaque formation
(Lopez-Candales 2001). Another hypothesis indi-
cates hormonal changes as being the cause of
abdominal obesity. Patients with elevated serum
cortisol levels due to chronic stress are also more
likely to develop abdominal obesity, as well as
insulin resistance and dyslipidemia (Bjorntorp
2001). Dysregulation of the hypothalamic-
pituitary-adrenal axis due to chronic stress has
been assumed to be responsible for the link
between psychosocial problems and the increased
incidence of myocardial infarction (Bjorntorp
2001).

4 Diagnosis

For the diagnosis of MetS, it is mandatory to
assess the patient’s medical history and family
history with respect to CVD or T2DM. Recent
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weight changes and a diet and physical activity
history must be evaluated (Hark and Deen 1999).
Further clinical examination shall comprise the
assessment of the patient’s height, weight, body
mass index (BMI; body weight in kilogram
divided by the squared body height in meter),
blood pressure, waist circumference, and hip
circumference (waist-to-hip-ratio; waist circum-
ference divided by hip circumference). Interest-
ingly, waist circumference alone appears to be a
better predictor of a patient’s cardiovascular risk
than waist-to-hip-ratio (Pouliot et al. 1994). Fur-
thermore, fasting glucose levels and a fasting lipid
profile must be obtained for the diagnosis of MetS
(Deen 2004). Novel tests are now available that
measure LDL particle size, in order to evaluate the
amount of small dense LDLs. However, these
tests are expensive and unnecessary because low
levels of high-density lipoprotein (HDL) and high
levels of LDL have been shown to predict an
abundance of small dense LDL particles. As
recommended by the American Heart Associa-
tion, measuring CRP for risk stratification in
patients at high risk of CVD is mandatory (Pear-
son et al. 2003). Uric acid levels and liver function
tests or liver ultrasonography will screen for
NASH. Using ultrasonography, liver steatosis
can be diagnosed even before liver function
turns pathologic (Deen 2004).

5 Treatment

For the prevention or at least delay of the onset of
T2DM, hypertension, and CVD, it is essential to
treat the components of MetS aggressively
(National Institutes of Health 2004; Chobanian
et al. 2003; Knowler et al. 2002). Primary treatment
consists of a diet change and change of physical
activity habits. Weight loss has been proven to
improve all aspects of MetS and to reduce
all-cause as well as cardiovascular mortality
(Gregg et al. 2003). If weight loss is not achieved,
an increase in physical exercise and a change
toward healthy diet habits can lower blood pres-
sure, improve lipid levels, and increase insulin
sensitivity, even in the absence of weight loss
(Duncan et al. 2003). Skeletal muscle is the most

insulin-sensitive tissue of the human body. Thus,
building up muscle tissue through physical exer-
cise is essential to improve insulin sensitivity. Inde-
pendent of BMI, physical exercise reduces skeletal
muscle lipid levels and insulin resistance
(Goodpaster et al. 2001). Notably, exercise
increases insulin sensitivity temporarily, namely,
for 3–5 days, and disappears after that. Thence,
patients must work out regularly to effectively
reverse insulin resistance (Deen 2004). Regular
low-intensity exercise has a significant impact on
patients’ health, but investigations show that
patients tend not to participate in exercise programs
any longer as the frequency of workouts is
increased (Keller and Trevino 2001). Thus, patients
must be supported in finding an exercise regimen
which they can accomplish over a long period of
time (McInnis et al. 2003). The optimal exercise
regimen consists of a combination of cardio/endur-
ance exercise and strength or resistance training.
Sedentary patients need to start with walking and
should gradually raise the intensity and frequency
of their workouts (Slentz et al. 2004). According to
a study by Ross et al. in 2000, walking or light
jogging for 1 h per day leads to significant loss of
abdominal fat in men without caloric restriction
(Ross et al. 2000).

Diet is, alongside physical exercise, the most
important issue with regard to lifestyle modifica-
tion in patients with MetS. So far, no clear dietary
recommendations for patients withMetS have been
made, and thus, physicians need to attune diet
recommendations to a patient’s metabolic alter-
ations specifically (Szapary et al. 2002). Patients
may be referred to registered dietitians for imple-
mentation of a sustainable dietary regimen, ensur-
ing the adequate intake of vitamins and mineral
nutrients in order to reduce total carolic intake.
Regarding macronutrients (protein, fat, and carbo-
hydrates), there is still a debate which proportion of
these may lead to the best outcome in patients with
MetS. Low-fat diet, low-carbohydrate diet, and the
so-called Mediterranean diet are discussed. How-
ever, one must take into account that patients lose
weight only if their caloric intake is lower than their
caloric requirement – and if a patient consumes
fewer calories than he or she expends, the exact
proportion of protein, fat, and carbohydrates is
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probably of little importance. That is to say, that
weight loss as such is of great benefit in MetS
(Deen 2004). Dietary intervention in MetS has
been shown to reduce cardiovascular risk, as per
two Cochrane Database of Systematic Reviews.
Notably, a diet low in sodium helps to maintain a
low blood pressure, even if antihypertensive med-
ication is withdrawn (Hooper et al. 2004). A
low-fat diet has been proven to reduce the inci-
dence of cardiovascular events, as demonstrated
by a clinical trial where participants consumed a
low-fat diet over >2 years (Hooper et al. 2001). A
beneficial effect on overall mortality was also
described (Hooper et al. 2001). According to the
Seventh Report of the Joint National Committee on
Prevention, Detection, Evaluation, and Treatment
of High Blood Pressure (JNC 7), systolic values
between 120 and 139 mmHg and/or diastolic
values between 80 and 89 mmHg are considered
prehypertensive and indicate the need for a lifestyle
modification in order to prevent CVD (Chobanian
et al. 2003b). A diet low in saturated fat and high in
carbohydrates has been shown to effectively
reduce blood pressure, even if the patients did not
lose weight (Vollmer et al. 2001). In this study by
Vollmer et al., patients consumed fruits, vegetables,
low-fat dairy products, whole grain products, poul-
try, fish, and nuts but cut back on saturated fats, red
meat, sweets, and sugary beverages (Vollmer
et al. 2001). The Coronary Artery Risk Develop-
ment in Young Adults (CARDIA) study reported
dairy product consumption as being associated
with a significantly reduced risk for developing
MetS (Pereira et al. 2002). Notably, low-fat-high-
carbohydrate diets are controversially discussed,
because they may lead to elevated triglyceride
levels and low HDL cholesterol, thus promoting
dyslipidemia in patients with MetS. If HDL cho-
lesterol levels decline in a patient consuming a
low-fat diet, it is mandatory to slowly decrease
carbohydrate consumption and replace them either
with unsaturated fats or with low-glycemic-index/
complex carbohydrates. Thereby the diet is
adjusted according to a Mediterranean diet, which
also evidently reduces the mortality from CVD
(Trichopoulou et al. 2003, 2004). An association
between CVD and consumption of refined,
non-whole grain, grain products, and potatoes has

been found in a study by Liu et al. (Liu andManson
2001). Thus, it is recommended by the authors of
this study to consume minimally processed prod-
ucts, predominantly fruits, vegetables, and
wholegrain products. Notably, a cohort study also
found an increased consumption of dietary fiber, e.
g., vegetables and fruits, to correlate with a risk
reduction for CVD (Jenkins et al. 2002). Although
low-carbohydrate diets evidently improve blood
lipid levels in short term, lowering triglycerides
and elevating HDL cholesterol, this diet is still
controversially discussed since long-term data is
not available yet (Foster et al. 2003). As an alter-
native to a low-carbohydrate diet, high-glycemic-
index foods, i.e., refined carbohydrates, shall be
replaced by complex/wholegrain carbohydrates,
as these do not produce postprandial insulin and
glucose peaks. Since fiber intake is currently below
the recommended amount in most countries, cut-
ting back on grains will worsen this condition
additionally and lead to constipation and deceler-
ated gut passage which may even be a risk factor
for colorectal cancer in the long term (Durko and
Malecka-Panas 2014). Moderate intake of alcohol,
meaning one drink per day for females and two
drinks per day for males, may be beneficial for
patients with MetS, as this amount reduces insulin
resistance and even the risk for CVD (Bell 2002).
However, this recommendation does not apply to
patients with liver steatosis (Bell 2002).

Family doctors can deliver significant support
when it comes to lifestyle modification in patients
suffering from MetS. Family physicians have rec-
ognized that there is the need for lifestyle counsel-
ing in many patients (Petrella and Wight 2000)
and they can effectively support their patients by
assessing their knowledge about a healthy life-
style and by giving advice for diet and exercise.

5.1 Pharmacotherapy

Pharmacotherapy is needed in patients whose risk
factors are not sufficiently reduced by lifestyle
changes. Thereby the patients’ blood pressure
and blood lipid levels can be controlled (Ginsberg
2003). The use of aspirin and statins was shown to
lower CRP levels and so does weight loss. It is
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recommended to treat patients with T2DM
aggressively regarding their risk factors, in order
to prevent CVD (Gaede et al. 2003). The US
Preventive Services Task Force recommends
behavioral dietary counseling in the first place,
for adults with known cardiovascular risk factors
(US Preventive Services Task Force 2003). The
role of physical activity still needs to be studied in
depth, and due to a lack of evidence, no recom-
mendations exist yet (US Preventive Services
Task Force 2002).

6 Insulin Resistance

The prevalence of NAFLD increases due to the
rising incidence of metabolic disorders, such as
T2DM (Cohen et al. 2011; Takamatsu et al. 2008).
Savage et al. proposed insulin resistance (IR) in
skeletal muscle as the earliest event in the patho-
genesis of T2DM in most patients (Savage
et al. 2007) and can precede to hepatic IR
(Petersen et al. 2004). In skeletal muscle,
decreased insulin signaling is responsible for IR
(Griffin et al. 1999). Furthermore, impaired
GLUT4 translocation contributes to IR (Ciaraldi
et al. 1995). Muscle IR is associated with periph-
eral and portal vein hyperinsulinemia, which pro-
motes hepatic steatosis, at least in part by inducing
sterol regulatory element-binding protein
(SREBP)-1c-mediated de novo lipogenesis and
inhibiting fatty acid oxidation.

Although steatohepatitis is frequently associ-
ated with the MetS involving IR, 40–67 % of
patients with steatosis do not exhibit signs of
decreased glucose tolerance (Kimura et al. 2011;
Manchanayake et al. 2011), while other studies
showed a clear dissociation between hepatic
steatosis and IR (Postic and Girard 2008). Fur-
thermore, hepatic IR can occur without the devel-
opment of peripheral IR (Kim et al. 2001;
Kraegen et al. 1991). In a rodent model, fat trans-
plantation could resolve hepatic IR (Kim
et al. 2000). The same is true for the reversion of
steatosis in humans by leptin therapy (Petersen
et al. 2002). Concordantly, a relationship of
hepatic IR and hepatic lipids but not visceral fat
was described (Fabbrini et al. 2009).

Genetic mouse models give insight to the asso-
ciation of lipid accumulation and hepatic IR on a
molecular level. Lipoprotein lipase (LpL), a key
enzyme of fatty acid uptake into tissues, promotes
both muscle lipid uptake and muscle IR when
being overexpressed (Kim et al. 2001). A liver-
specific overexpression of LpL results in hepatic
steatosis and hepatic IR (Merkel et al. 1998). Also
other proteins involved in fat transport, such as
CD36, fatty acid transporter protein (FATP) 2, and
FATP5, play a role in steatosis and hepatic glucose
sensitivity (Doege et al. 2008; Falcon et al. 2010;
Goudriaan et al. 2003). Fat-induced hepatic IR
may result from activation of PKC-ϵ and its target
JNK1 (Samuel et al. 2004). JNK1 can drive
hepatic IR via tyrosine phosphorylation of IRS-1
(Lee et al. 2003; Hirosumi et al. 2002), which
impairs the ability of insulin to activate glycogen
synthase.

One major common mechanism underlying
NAFLD and hepatic IR seems to be endoplasmic
reticulum (ER) stress. Modulation of key players
in ER stress, i.e., PKR-like ER kinase (PERK) and
activating transcription factor-6 (ATF6), alters
hepatic lipid export (Yamamoto et al. 2010). In
addition, ER stress can lead to increased de novo
lipogenesis due to activation of lipogenic tran-
scription factors, i.e., SREBP1c and ChREBP. In
parallel XBP1 as a component of ER stress is able
to mediate insulin resistance (Ozcan et al. 2004).
To close the circle, insulin signaling can again
induce ER stress by itself.

7 Animal Models of NAFLD

The human disease of NAFLD develops over
years or even decades. The ideal animal model
should reflect all steps of disease progression and
combine histological abnormalities and metabolic
disorders, which are associated with the human
disease spectrum. Currently, however, there is no
ideal model available fully matching the complex
situation in human NAFLD. Therefore, one has to
choose the best fitting model depending on the
underlying research hypothesis. More weight has
to be given to certain aspects of the disease. The
following section will discuss available animal
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models based on their potential of reflecting the
spectrum of human NAFLD pathogenesis.

Two major groups of animal models for
NAFLD exist: dietary and genetic models
(Table 1 and Fig. 1). Dietary models are of high
relevance since in most cases the human disease
bases on overnutrition and the modern sedentary
lifestyle. In contrast to that, the most commonly
used animal model, the methionine- and choline-
deficient diet (MCD), displays a nutrient-deficient
model. The hepatic lipid accumulation results
from an increased hepatic fatty acid uptake and
decreased very low-density lipoprotein (VLDL)
secretion (Rinella et al. 2008). Additionally, liver
inflammation and oxidative stress contribute to
liver injury (Schattenberg et al. 2006; Chowdhry
et al. 2010). After prolonged feeding, fibrogenesis
takes place. There are two major disadvantages of
the MCD model: the lack of IR due to massive
weight loss (Rinella et al. 2008) and the distur-
bances of DNA methylation caused by the methi-
onine deficiency, which exclude studies on
epigenetic changes in NAFLD using this model.

High-fat diets (HFDs), in which 45–75 % of
calories are derived from fat, are used in analogy
to human Western diets (Schattenberg and Galle
2010). HFD combines characteristics of the MetS
and hepatic steatosis, to some extent inflammation
and fibrosis, depending on the mouse strain and the
source of dietary fat. However, hepatic injury is
less severe than in the MCD model (Varela-Rey
et al. 2009). Avariant of the classical HFD, the high
medium-chain trans-fat, high-carbohydrate model,
comprises fibrogenesis (Kohli et al. 2010), in con-
trast to the ALIOS diet, which consists of long-
chain trans-fats (Tetri et al. 2008). Both of these
diets include application of a fructose syrup in
addition to the HFD mimicking “fast-food” nutri-
tion. Diets with increased cholesterol were origi-
nally used in arteriosclerosis research but show also
signs of hepatic disorders, i.e., steatohepatitis and
fibrosis (Matsuzawa et al. 2007).

Intoxication with 3,5-diethoxycarbonyl-1,4-
dihydrocollidine (DDC) serves as a NAFLD
model lacking fibrosis, but leading to hepatic
inflammation with specific histological features
of the human disease, i.e., formation of Mallory-
Denk bodies (MDBs) (Bardag-Gorce et al. 2004).

In general, different genetic backgrounds cause
significant variations in NAFLD development and
progression using dietary models. These differ-
ences are most likely related to different suscepti-
bilities of certain animal strains to different
aspects of the clinical picture of NAFLD. Some
phenotypic variability can be explained by genetic
variations due to single nucleotide polymor-
phisms (Merriman et al. 2006).

Genetic models of NAFLD are high in number,
but most of them fail to cover the full spectrum of
NAFLD as complete as possible (Table 1). Simple
steatosis without any other features, such as obe-
sity, IR, inflammation, and fibrosis, is modeled by
JVS, ADK, PITPa, and ApoE knockout mice. In
addition to steatosis, somemodels comprise rather
metabolic features. Rodents with impaired leptin
signaling (db/db mice, ob/ob mice, LRbS1138/
1138 knockin mice, Zucker rats) develop pro-
nounced obesity and massive hepatic lipid accu-
mulation. However, due to the absence of
inflammatory events, disease progression is
inhibited. Increased appetite is also the cause of
the phenotype of KKAγ mice, which closely
resembles human MetS (Okumura et al. 2006).
Models, in which factors of lipid or glucose
metabolism are affected (ChREBP knockout,
PPARg hypomorphic, A-ZIP/F-1, diphtheria
toxin transgenic, SREBP1c and nSREBPα trans-
genic mice), do not develop obesity but
IR. Interestingly, disease in SREBP1α mice pro-
gresses to steatohepatitis (Takahashi et al. 2005),
and SREBP1c transgenic mice show almost the
full spectrum of the disease lacking an obese
phenotype (Shimomura et al. 1998).

Transgenic overexpression of insulin-like
growth factor 2 (IGF2) is associated with obesity
and IR (Rossetti et al. 1996). Mice liver, specifi-
cally overexpressing the IGF2 mRNA-binding
protein p62, display neither obesity nor IR
(Laggai et al. 2014), but mild inflammation
(Kessler et al. 2014). A further progression to
fibrotic changes is inducible (Simon et al. 2014).
Inflammation can also be observed in OLEFT rats,
CD36 knockout mice, RARα dominant-negative
transgenic mice, PEMT, and IKKγ/NEMO knock-
out mice. Still, up to now, not much emphasis has
been given on the quality of the respective
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Table 1 Animal models of NAFLD

Model Obesity
Insulin
resistance Inflammation Fibrosis Reference

Feeding models

MCD No No
(hepatic)

Yes Yes Weltman et al. 1996

HFD Yes Yes Yes/no Yes
(mild)

Buettner et al. 2007

High-fat (medium chain
trans fat) high-
carbohydrate

Yes Yes Yes Yes Kohli et al. 2010

ALIOS diet (long chain
saturated trans fats)

Yes Yes Yes No Tetri et al. 2008

Fructose-rich diet Yes Yes Yes No Kawasaki et al. 2009; Botezelli
et al. 2010

Cholesterol and cholate No No
(hepatic)

Yes Yes Matsuzawa et al. 2007

DDC No Yes Yes No Haybaeck et al. 2012; Zatloukal
et al. 2014

Genetic models

JVS mice No No No No Kuwajima et al. 1991

ADK mice No No No No Boison et al. 2002

PITPα ko mice No No No No Alb et al. 2003

ApoE ko mice No nd No No Ma et al. 2008

Leptin deficiency
(ob/ob)

Yes Yes No No Trak-Smayra et al. 2011

Db/db Yes Yes No No Trak-Smayra et al. 2011

LRbS1138/1138 ki mice Yes Yes No No Jiang et al. 2008

Zucker (fa/fa) rats Yes Yes No No Kava et al. 1990

KK-Aγ mice Yes Yes No No Okumura et al. 2006

ChREBP ko mice No Yes No No Iizuka et al. 2004

PPARγ hypomorphic
mice

No Yes No No Koutnikova et al. 2003

A-ZIP/F-1 tg mice No Yes No No Moitra et al. 1998

Diphteria toxin tg mice No Yes No No Ross et al. 1993

SREBP-1c tg mice No Yes Yes Yes Shimomura et al. 1998

nSREPB1α tg mice No Yes Yes No Takahashi et al. 2005

Nestin-Cre STAT3 ko
mice

Yes Yes No No Piper et al. 2008

11β-HSD1 tg mice Yes Yes No No Morton and Seckl 2008

7B2 ko mice Yes Yes Yes No Laurent et al. 2002

STAT5b ko mice Yes Yes No No Zhou et al. 2002

IDPc tg mice Yes Yes No No Koh et al. 2004

Aromatase ko mice Yes Yes No No Nemoto et al. 2000

Alms1 ko mice Yes Yes No No Arsov et al. 2006

MTP ko mice No Yes No No Raabe et al. 1999

IGF2 tg mice Yes Yes No No Rossetti et al. 1996

IMP2-2/p62 transgenic
mice

No No Yes No (diet-
inducible)

Laggai et al. 2014; Kessler
et al. 2014; Simon et al. 2014; Tybl
et al. 2011

OLEFT rats Yes Yes Yes No Kawano et al. 1992

(continued)
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inflammation. Further progression of inflamma-
tory events toward liver fibrosis can be studied
in mice, in which an enzyme of the β-oxidation of
very-long-chain fatty acids AOX is knocked out.
Fibrogenesis is also a morphological feature
of methionine adenosyltransferase 1 alpha

(MAT1A) knockout mice, in which VLDL secre-
tion is disturbed (Cano et al. 2011).

Only few genetic models combine metabolic
disorders with both inflammation and fibrosis.
Phosphatase and tensin homolog (PTEN)
downregulates phosphatidylinositol 3-kinase

Fig. 1 (a, b, c) Nonneoplastic steatohepatitic liver tissue
with multiple eosinophilic irregular intracytoplasmic
protein aggregates, positively stained for K8/18 (MDBs)
(a, c magnification 20�, b magnification 40�, insert

magnification 60�). (c) Immunohistochemistry with
K8/18 antibody cocktail highlights MDBs. (d)
Steatohepatitis-associated hepatocellular carcinoma with
steatohepatitic features (d magnification 10�)

Table 1 (continued)

Model Obesity
Insulin
resistance Inflammation Fibrosis Reference

CD36 ko mice No No
(hepatic)

Yes No Coburn et al. 2000

RARα dominant
negative tg mice

No No Yes No Yanagitani et al. 2004

PEMT ko mice No No Yes Nd Zhu et al. 2003

IKKγ/NEMO ko mice Nd Nd Yes Yes Luedde et al. 2007

AOX ko mice No No Yes Yes/no Cook et al. 2001; Fan et al. 1998

MAT1A ko mice No No Yes Yes Lu et al. 2001

PTEN ko mice No Yes Yes Yes Horie et al. 2004; Stiles et al. 2004

CBS ko mice Yes Nd Yes Yes Hamelet et al. 2007

MC4R ko mice Yes Yes Yes Yes Itoh et al. 2011

FLS-ob mice Yes Yes Yes Yes Soga et al. 2010
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(PI3K), thereby acting as tumor suppressor. PTEN
knockout mice develop all steps of NAFLD and
can even serve as a model for NASH-associated
hepatocellular carcinoma (HCC), since 80-week-
old animals bear hepatic adenomas and HCCs
(Horie et al. 2004). Cystathionine beta-synthetase
(CBS) is involved within the transsulfuration
pathway, which builds cystathionine. CBS knock-
out mice develop not only steatosis but also obe-
sity, inflammation, and fibrosis (Hamelet
et al. 2007). Mice with deleted melanocortin
4 receptor (MCR4), which was reported to be
mutated in human NAFLD (Vaisse et al. 2000),
exhibit inflammation and liver fibrosis. Since
MCR4 regulates food intake and lipid metabolism
(Balthasar et al. 2005), MCR4 knockout mice
show obesity and IR. Crossing fatty liver
Shionogi (FLS) mice and ob/ob mice results in
FLS-ob mice which become obese and develop
distinct clinical signs of diabetes. Furthermore, a
progression of steatosis toward steatohepatitis
including fibrotic changes is assured (Soga
et al. 2010).

8 Hepatocellular Carcinoma

HCC is the fifth most commonmalignancy world-
wide and the third most common cause of cancer-
related death (Mann et al. 2007; Salomao
et al. 2012). Over the last two decades, the inci-
dence of HCC has increased by 80 %. A related
evaluation has been observed in many developed
countries including Australia, Canada, Japan, and
Western European nations (Bosch et al. 2004;
El-Serag and Mason 1999). The distribution of
HCC is similar for males and females, although
males have a precise higher risk of developing
HCC. A geographical shift in HCC incidence
and mortality can be traced back to different levels
of exposure to HCC-associated risk factors
(Bosman et al. 2010). Established risk factors for
HCC are chronic infection with hepatitis B virus
(HBV) or hepatitis C virus (HCV), hemochroma-
tosis, exposure to aflatoxin, smoking, and alco-
holic liver disease (ALD) in developed countries
(Salomao et al. 2012; Bosman et al. 2010). The

most important causes of HCC are chronic viral
infections (HBV, HCV, or coinfection), account-
ing for approximately 85 % of cases, and the
alcohol-induced liver injury extinguishes the
most important nonviral risk factor. NAFLD also
leads to end-stage liver disease and often belongs
to the metabolic syndrome, with NASH. The char-
acteristics for NASH are inflammation, steatosis,
and hepatocyte injury, morphologically expressed
by ballooning, Mallory-Denk body (MDB) for-
mation, hepatocyte death, and the endpoint cir-
rhosis (Zhou et al. 2005; Harada et al. 2008; Brunt
et al. 2004). In addition, there are signs that NASH
describes an important etiology of HCC, at times
even in the absence of cirrhosis (Salomao
et al. 2012; Guzman et al. 2008). Another variant
of HCC in patients’ experienced liver transplan-
tation for HCV is referred to as steatohepatitic
HCC (SH-HCC). SH-HCC reveals histopatho-
logic features reminiscent of steatohepatitis in
nonneoplastic liver, in fact, hepatocyte balloon-
ing, MDBs, inflammation, and pericellular fibro-
sis (Salomao et al. 2010, 2012). The central
clinical issue for HCC is liver cirrhosis, largely
independently of its etiology, though cirrhosis
itself is now not considered premalignant trans-
formation in the setting of chronic liver disease
(Bosman et al. 2010).

The symptoms of HCC include abdominal
pain, general malaise, anorexia or weight loss,
and nausea or vomiting. In many cases, clinical
signs include ascites, fever, hepatomegaly, jaun-
dice, and splenomegaly. HCC may spread by
lymphatic and hematogenous routes. The lungs
are the most common site of extrahepatic metas-
tasis with 47%, followed by the lymph nodes with
45%, bone with 37%, and the adrenal glands with
12 % (Uka et al. 2007).

8.1 Macroscopy and
Histopathology

Most HCCs are nodular lesions and typically
softer than the background liver. The macroscopic
characteristics diversify to tumor size and the
presence or absence of liver cirrhosis. In livers
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without cirrhosis, HCC leans to be
unencapsulated, while in cirrhosis, HCC often
has a fibrous pseudocapsule. HCCs may be
unifocal or multifocal; unifocal tumors can grow
as single nodules or as clusters of closely approx-
imated and adjacent individual nodules.
Multifocality is specified as tumor nodules clearly
separated by invasive nonneoplastic liver.
Multifocal tumors show either independent
HCCs developing simultaneously or intrahepatic
metastases from a primary tumor. The macro-
scopic features of HCC can be further altered by
varying degrees of necrosis and tumor participa-
tion of portal and hepatic veins (Bosman
et al. 2010; Uka et al. 2007).

The classical HCC consists of tumor cells that
typically resemble hepatocytes. The stroma con-
sists of sinusoid-like blood spaces lined by a
single layer of endothelial cells and shows
changes of capillarization. They resemble normal
capillaries, including immunohistochemically
verifiably factor VIII-related antigen, CD34,
Type IV collagen, and subendothelial lamina.
In HCC, the portal tracts are not existent; though,
at the tumor periphery, entrapped portal tracts
may be seen underneath invasive neoplastic
cells. HCC is characterized by immunohisto-
chemical staining with antibodies against
carbamoyl phosphate synthetase-1 (HepPar1),
and the canalicular patterns may be seen with
polyclonal antibodies to carcinoembryonic anti-
gen (CEA) or antibodies to CD10 or ABCB1/
MDR1. AFP, fibrinogen, and Keratin 8 and
18 are also often positive in HCC but typically
negative for epithelial membrane antigen and
keratins 19 and 20 (Chu et al. 2002; Enzan
et al. 1994; Kimura et al. 1998).

There are different architectural patterns
in HCC, the trabecular (platelike) pattern,
pseudoglandular or acinar pattern, and the com-
pact pattern. The trabecular (platelike) pattern is
the most usual in well- and moderately differenti-
ated HCCs. The pseudoglandular or acinar pattern
is usually admixed with the trabecular pattern; the
gland-like structure is referred to as pseudoglands
or pseudoacini by reason that they are not true
glands but modified, between tumor cells

abnormal bile canaliculi formed. The compact
pattern is common in poorly differentiated
tumors. HCC show different cytological variants,
such as pleomorphic cells, clear cells, spindle
cells, fatty change, bile production, hyaline bod-
ies, pale bodies, and ground glass inclusions
(Bosman et al. 2010).

HCCs include special types of carcinomas, the
fibrolamellar carcinoma (FLC), scirrhous HCC,
undifferentiated carcinoma, lymphoepithelioma-
like carcinoma, and sarcomatoid hepatocellular
carcinoma. FLC are prominent liver cancers of
children and young adults and differ from classi-
cal HCC at clinical, histological, and molecular
levels (Torbenson 2007). FLC arises in
non-cirrhotic livers; etiology and risk factors are
not known, and there is no strong gender predi-
lection. The prognosis for FLC is better than for
typical HCC that occurs in cirrhotic livers, but the
same to typical HCC that occurs in non-cirrhotic
livers (Bosman et al. 2010). The scirrhous type of
HCC should not be mixed up with cholangio-
cellular carcinoma (CCC) or FLC. These HCCs
show a scirrhous growth pattern characterized by
clearly fibrosis along the sinusoid-like blood
spaces with different extent of atrophy of tumor
trabeculae (Kurogi et al. 2006). Most of these
tumors occur directly underneath the liver cap-
sule. Undifferentiated carcinoma is predominant
in male, and localization, signs, and symptoms
represent no differences compared with hepato-
cellular carcinoma. Compared with HCC,
undifferentiated carcinoma has a worse prognosis
(Nemolato et al. 2008; Ishak et al. 1999; Craig
et al. 1989). The lymphoepithelioma-like carci-
noma is a rare type of HCC, in which the tumor
cells tend to be small with focal syncytial growth
(Nemolato et al. 2008). In most of the cases, the
tumor cells are positive for Epstein-Barr virus
(EBV). The histological findings, clinical fea-
tures, and prognosis are limited because of the
rarity of this tumor (Bosman et al. 2010). Fre-
quently, HCC is partly or fully contained of malig-
nant spindle cells and difficult to differentiate
from various sarcomas. If this attributes are prom-
inent, the tumor is called sarcomatoid HCC
(Kojiro et al. 1989).
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8.2 Grading and Prognosis

Four histological grades of HCC are established,
based on the tumor differentiation: well differen-
tiated, moderately differentiated, poorly differen-
tiated, and undifferentiated types. The well-
differentiated HCC is rare in advanced tumors
but common in small, early-stage tumors of
<2 cm. The lesions consist of cells with mild
atypia and increased nucleus-to-cytoplasm ratio
in a thin trabecular pattern, with pseudoglandular
structures and fatty change. Moderately differen-
tiated HCC is usual in tumors of >3 cm and has a
trabecular growth of three or more cells in thick-
ness. The tumor cells have round nuclei with
distinct nucleoli and abundant eosinophilic cyto-
plasm. In moderately differentiated HCC, you can
see a pseudoglandular pattern, and pseudoglands
often include proteinaceous fluid or bile. Poorly
differentiated HCC grows in a solid pattern with-
out clear sinusoid-like blood spaces. This HCC is
extremely rare in small, early-stage tumors. The
undifferentiated tumor cells include small cyto-
plasm, are spindle or round-shaped, and show
solid growth (Bosman et al. 2010).

The prognosis for patients with classical HCC
is generally very poor (Allgaier et al. 1998; Sugo
et al. 1999). In cases of morphologically pure
HCC, demonstrating significant immunostaining
for keratin 19 has been found to be associated with
a poorer prognosis and higher recurrence rates and
lymph node metastasis than keratin 19-negative
HCC (Uenishi et al. 2003). Many studies report a
5-year survival rate of >5 % in patients with
symptomatic HCC. A main problem in
established HCCs is that it is widely resistant to
radio- and chemotherapy. Established HCCs are
mostly resistant to radio- and chemotherapy,
though patients have shown in studies response
to new agent that inhibits several tyrosine kinases
(Boucher et al. 2009). A long-term survival is only
present in patients with small asymptomatic
HCCs that can be treated by resection, including
liver transplantation. The nonsurgical methods for
HCC treatment include percutaneous ethanol or
acetic acid injection and percutaneous
radiofrequency thermal ablation (Bosman
et al. 2010).
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Abstract
Gastroesophageal reflux disease (GERD) is on
the rise with more than 20 % of the Western
population reporting symptoms. GERD is the
most common gastrointestinal disorder in the
United States. This increase in GERD is not
exactly clear but has been attributed to the
increasing prevalence of obesity, changing
diet, and perhaps the decreasing prevalence of
Helicobacter pylori infection. Complications
of GERD could be either benign or malignant.
Benign complications include erosive esopha-
gitis, bleeding, and peptic strictures. Premalig-
nant and malignant lesions include Barrett’s
metaplasia (BE), and esophageal cancer (EA).
Metabolic syndrome is considered a state of
chronic inflammation and is strongly associ-
ated with circulating levels of C-reactive pro-
tein (CRP) and fibrinogen. Chronic subclinical
inflammation may be one pathophysiological
mechanism explaining the increased risk of
GERD and complications of GERD associated
with metabolic syndrome. Moreover, among
patients with BE, increased levels of leptin
and insulin resistance are associated with
increased risk for EA. A structured weight
loss program can lead to resolution of GERD
symptoms in the majority of patients.
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1 Introduction

1.1 GERD Is a Common Chronic
Disorder of the Gastrointestinal
Tract

Gastroesophageal reflux disease (GERD) is a
highly prevalent disease in Western populations
(El-Serag et al. 2014) associated with a decreased
health-related quality of life and an increased risk
of esophageal adenocarcinoma (Hoyo et al. 2012).
The Montreal definition and classification of
GERD states that: “GERD is a condition which
develops when the reflux of stomach contents
cause troublesome symptoms and/or complica-
tions,” and the definition recognizes that heart-
burn and acid regurgitation are characteristic
symptoms of GERD. Surveys have found that
approximately 20 % of all adults in the United
States (US) experience GERD symptoms such as
heartburn and acid regurgitation at least once each
week, and it has been estimated that Americans
spend more than $9 billion each year for the
evaluation and treatment of this prevalent disorder
(El-Serag et al. 2014). Over the past two decades,
the incidence of GERD increased in the Western
population with the overall prevalence in the gen-
eral population ranging from 10 % to 20 %
(El-Serag 2007; Dent et al. 2005; Locke
et al. 1997).

The exact etiology for the rising prevalence of
GERD is not clear. While there are no gender or
racial predispositions for GERD development
(El-Serag et al. 2004; Sharma et al. 2008), various
lifestyle factors including increased consumption
of dietary fats, smoking, and alcohol and change
in body mass index (BMI) are potential risk fac-
tors that can lead to GERD (Wang et al. 2004;
Nilsson et al. 2004; Becker et al. 1989; El-Serag
et al. 2005a). Numerous studies also support a
positive association between obesity and GERD
(El-Serag et al. 2005b; El-Serag and Johanson
2002; Gunji et al. 2011; Kang et al. 2007; Lee
et al. 2006, 2009; Singh et al. 2013a; Tai
et al. 2010). In a meta-analysis of 9 reports, an
association between BMI and erosive esophagitis
was reported in 6 of 7 studies (Singh et al. 2013a).
The evidence that supports the link between

obesity and reflux symptoms remains significant
after adjusting for other previously known risk
factors such as the presence of hiatus hernia,
smoking, race, gender, family history of GERD,
or dietary fat intake.

1.2 Increasing Prevalence
of Obesity Has Paralleled
Increasing Rates of GERD
Worldwide

It is estimated that relative to period before 1995,
the rate ratio for GERD prevalence was 1.45 from
1995 to 1999, 1.46 from 2000 to 2004, and 1.51
from 2005 to 2009 (El-Serag et al. 2014). A study
done by Jacobsen and his colleagues, where they
used a supplemental GERD questionnaire to the
Nurses Health Study, showed that a near linear
increase in the adjusted odds ratio (aOR) for reflux
symptoms was associated within each BMI strata
(Jacobson et al. 2006a). Similar results were noted
in a study from the Kaiser Permanente
Multiphasic Health checkup cohort, in which
BMI and GERD were associated with OR of
1.58 amongwhites, and after adjusting for abdom-
inal circumference, the OR was 1.39 (Corley
et al. 2007). Multiple studies from the United
States (US) and Europe examined an increase in
the prevalence rate of GERD in parallel with
overweight and obesity. The German National
Health Interview and Examination Survey esti-
mated the OR for GERD to be 1.8 for overweight
patients and 2.6 for obese individuals (Chang and
Friedenberg 2014). Similarly the results from the
Bristol Helicobacter Project showed that obese
patients have odds ratio (OR) of 2.91 for presence
of heartburn (Murray et al. 2003a). In Spain, a
telephone survey showed obese individuals to be
at 1.74 higher odds for developing GERD symp-
toms (Nilsson et al. 2003a). Kang and colleagues
studied 2457 patients who underwent upper
endoscopy in Korea and noted a positive relation-
ship between higher strata of BMI and the pres-
ence of erosive esophagitis (Kang et al. 2007). In
summary, several population-based studies sup-
port the association between obesity and GERD
reflux. Such an association has been noted in the
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United States where obesity rates are the highest
but also noted in Europe and Asia.

1.3 Dose–Response Relationship
Between Increasing BMI
and Central Obesity with GERD

In a telephone survey based in Spain, it was
shown that patients with GERD symptoms for
more than 10 years were 1.92 times more likely
to be obese (Nilsson et al. 2003a). Moreover this
study showed that a weight gain of more than 5 kg
in the past year was associated with a 2.7 times
higher risk of new onset GERD symptoms. In a
survey performed in Norway, the prevalence of
GERD in morbidly obese men and women was
noted to be 3.3 and 6.3, respectively (Nilsson
et al. 2003a).

1.4 Clinical Correlation Between
Complications of GERD
and Metabolic Syndrome

The well-known complications of GERD include
erosive esophagitis (EE), Barrett’s esophagus
(BE), and esophageal adenocarcinoma. A previ-
ous large endoscopic study by El-Serag
et al. showed that compared to those with no
esophageal erosions, those with EE were more
likely to be overweight or obese (El-Serag
et al. 2005b). Based on an endoscopic study in
Korea studying 3,000 participants, obese individ-
uals compared to normal weight subjects had an
OR of 3.3 for EE (Lee et al. 2009). Ameta-analysis
by Hampel et al. confirmed the association
with increasing levels of obesity and esophageal
mucosal injury (Hampel et al. 2005a).

From 1975 to 2001, the incidence of esopha-
geal adenocarcinoma rose approximately sixfold.
Obesity was associated with an OR of 16.2 for the
development of adenocarcinoma compared with
the leanest individuals (BMI <22 kg/m2) (Hoyo
et al. 2012; Chow et al. 1998). A recently pooled
analysis (Atherfold and Jankowski 2006;
DeMeester 2001) from 12 worldwide epidemio-
logical studies showed that patients with a BMI of

�40 compared to non-overweight patients had an
OR of 4.76 for esophageal adenocarcinoma
(Chow et al. 1998).

2 Metabolic Syndrome
and Barrett’s Esophagus

Barrett’s esophagus (BE) is a precancerous condi-
tion that is considered to arise as a complication of
gastroesophageal reflux disease (GERD). BE is
associated with a 30–40-fold increased risk of
developing esophageal adenocarcinoma (Atherfold
and Jankowski 2006; DeMeester 2001; Festa
et al. 2001). The incidence and mortality from
esophageal adenocarcinoma have increased by
more than fivefold in the Western populations in
the past three decades, and these trends have
paralleled the increasing prevalence of obesity in
many countries. Epidemiological evidence strongly
links obesity with esophageal adenocarcinoma.

2.1 Pathophysiology

There is evidence that the prevalence of GERD is
increasing in the United States, a phenomenon
that may be related to the increasing prevalence
of obesity in this country (El-Serag et al. 2004;
Sharma et al. 2008). Several studies have
suggested that weight gain and/or obesity can
play a major role in the development of GERD
(El-Serag et al. 2005a; Delgado-Aros et al. 2004;
Nilsson et al. 2003b; Jacobson et al. 2006b; Kulig
et al. 2004; Murray et al. 2003b; Hampel
et al. 2005b; Locke et al. 1999) through mechan-
ical changes in the gastroesophageal junction
and/or altered metabolic milieu from visceral fat
(lower adiponectin and increase in interleukin-1β,
tumor necrosis factor-α) (Festi et al. 2009).

The mechanical effect of obesity is a widely
accepted mechanism by which adiposity amplifies
intragastric pressure and disturbs normal sphincter
function and promotes GERD. However, it has to
be noted that in addition to the mechanical effect,
metabolic syndrome also confers a systemic
inflammatory state which could increase the risk
of BE and represent a potential indirect mechanism
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by which increasing adiposity is associated with
BE. Acid reflux in the lower esophagus induces
secretion of various pro-inflammatory cytokines
including IL-8, IL-6, IL-1, NF-Kappa, and
TNF-alpha. This systemic inflammatory state con-
sequent on the altered metabolism in obese patients
and the associated impact of adipokines, cytokines,
and procoagulant factors released by the adipo-
cytes, particularly central fat, manifests in the met-
abolic syndrome. Moreover, the chronic acid and
inflammation induced byGERD damage the native
stratified squamous epithelium, and without repair,
cells become necrotic and are replaced with meta-
plastic BE. Recent data from a case control study
recruited from primary care clinics compared to
colonoscopy and endoscopy controls suggests
that obesity, as part of the metabolic syndrome,
increases the risk of BE, independent of GERD
(Thrift et al. 2015).

3 Weight Loss and GERD
Symptoms

The Nord-Trøndelag Health Study (HUNT 3) sur-
veyed 44,997 people from 2006 to 2009 and
found that weight loss was dose dependently asso-
ciated with a reduction of symptoms (Ness-Jensen
et al. 2013). A prospective cohort study of
332 obese adults enrolled in a structured weight
loss program was performed by Singh and others,
and the mean weight loss was 13 kg and the
prevalence of GERD decreased from 37 % to
15 %, with 81 % of subjects experiencing a reduc-
tion in symptom scores (Singh et al. 2013b).

4 Bariatric Surgery and GERD

Bariatric surgical procedures can be classified as
restrictive, malabsorptive, or both. In the restric-
tive procedures, the gastric anatomy is altered to
reduce gastric volume to induce early satiety
which in turn leads to weight loss. De Groot
et al. performed a systematic review on bariatric
surgery and the effects on GERD. They identified
eight studies that evaluated GERD symptoms
after RYGB and three studies that compared

RYGB to other weight loss techniques with
respect to GERD symptoms (De Groot
et al. 2009; Tutuian 2014). Few studies showed
an improvement in GERD symptoms after
RYGB. Most of the studies included in the sys-
tematic review used questionnaires, and only four
of the eleven studies used objective measurements
(i.e., endoscopy, 24-h pH monitoring) to define
GERD (Merrouche et al. 2007; Pallati et al. 2014;
Saber 2014; Tolonen et al. 2006).

In a recent systematic review by Chiu
et al. which included 15 studies, four studies
found a postoperative increase in GERD preva-
lence, seven showed reduced prevalence, and in
four studies, the prevalence before and after sur-
gery could not be determined. As with most stud-
ies examining the effects of bariatric surgery on
GERD, there was significant heterogeneity
between studies including differences in follow-
up time ranging from 6 months to 5 years, differ-
ences in the case definition of GERD, and lack of
control groups. As is the case with laparoscopic
adjustable gastric banding (LAGB), it is difficult
to conclusively determine the effects of sleeve
gastrectomy on GERD (Chiu et al. 2011). Recent
studies indicate that laparoscopic gastric banding
and laparoscopic sleeve gastrectomy have little
influence on preexisting GERD symptoms and
findings, but some patients may develop GERD
after laparoscopic sleeve gastrectomy (Altieri and
Pryor 2015; El-Hadi et al. 2014; Laffin
et al. 2013). A number of studies have
documented that laparoscopic Roux-en-Y gastric
bypass (RYGB) improves GERD symptoms and
findings, making it the preferred procedure for
morbid obese patients with concomitant GERD
(Altieri and Pryor 2015; El-Hadi et al. 2014;
Laffin et al. 2013).

5 Conclusions

The most important risk factor for the develop-
ment of BE is the reflux of gastric contents into the
esophagus. The precise mechanisms responsible
for the transition of the normal squamous epithe-
lium of the esophagus into columnar epithelium
are unclear, but it is likely that stem cells and
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tumorigenic mechanisms are involved in the pro-
gression from columnar metaplasia to esophageal
adenocarcinoma. Central obesity is common in
both GERD and BE. Studies indicate that
mechanical and metabolic factors associated
with central obesity are involved in the pathogen-
esis and progression of BE to esophageal adeno-
carcinoma. Mechanical effects of abdominal fat
disrupt the gastroesophageal reflux barrier. Insulin
resistance associated with central obesity,
pro-inflammatory cytokines, and adipokines is
likely to potentiate reflux-mediated inflammation
and mediate the pathogenesis of BE and esopha-
geal adenocarcinoma. A better understanding of
the mechanisms linking obesity and metabolic
syndrome to GERD and BE would lead to effec-
tive preventive and treatment strategies.

6 Cross-References

▶Adipokines and Metabolism
▶Bariatric Surgery
▶Body Composition Assessment
▶Carbohydrate, Fat, and Protein Metabolism in
Obesity

▶Diet and Obesity (Macronutrients,
Micronutrients, Nutritional Biochemistry)

▶Diet, Exercise, and Behavior Therapy in the
Treatment of Obesity and Metabolic Syndrome

▶Gut Hormones and Obesity
▶ Insulin Resistance in Obesity
▶Overview of Metabolic Syndrome
▶ Pharmacotherapy of Obesity and Metabolic
Syndrome
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Abstract
An aging population in conjunction with a
worsening obesity epidemic worldwide is lead-
ing to a public health epidemic of older adults
with considerable mobility limitations. Loss of
muscle mass and function with age is termed
sarcopenia and is a natural phenomenon of the
aging process, which is aggravated with coex-
istent obesity. These persons with sarcopenic
obesity are thought to be at higher risk of
adverse outcomes than of people with either
sarcopenia or obesity alone. Emerging consen-
sus in identifying patients will provide a stan-
dardized manner in developing clinical trials
that will lead to modification of body compo-
sition and improvement of physical function.
Recommended multicomponent management
strategies consisting of dietary and exercise
modifications are safely recommended for
weight loss and mitigation of worsening of
sarcopenia. Promising and emerging therapies
have potential to alter body composition and
muscle physiology with a goal of improving
primary and secondary outcomes in this sub-
group of patients.
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Abbreviations
BMI Body mass index
FNIH Foundation for the National Insti-

tutes of Health
NHANES National Health and Nutrition

Examination Survey
SarcO Sarcopenic obesity

1 Introduction: An Aging
Population

While the population in the United States and
other countries is increasing (Census Bureau Sta-
tistics 2012), the proportion of those aged 65 years
and older are the fastest rising group. Two major
reasons have contributed to these trends. First, the
baby boomer population, those born between
1946 and 1964, are now in the “geriatric”
age-group (Census Bureau Statistics 2012). Sec-
ond, there has been an increase in life expectancy
in all countries; in particular, this has been
observed in developed countries (Lubitz
et al. 2003; Katz et al. 1983). Life expectancy at
birth of a person born in the year 1900 was
47 years, while a person born in the year 2010 is
predicted to live to 76 and 81 years in males and
females, respectively. Put differently, a 65-year-
old was predicted to live another 13.9 years in
year 1900, as opposed to a 65-year-old in the
year 2010 believed to live another 17.9 years
(Centers for Disease Control Vital Statistics
2012). Improvements in primary and secondary
cardiovascular disease prevention are the predom-
inant reasons for these changes (Ford et al. 2007).

As one ages, the number of chronic medical
illnesses rises. In one study of Medicare benefi-
ciaries, 82 % had >1 chronic medical conditions
and 65 % had multiple problems (Wolff
et al. 2002). An aging multi-morbid older adult
is at higher risk for incident disability (Dunlop
et al. 1997). Impaired function (Table 1) is a
primary geriatric syndrome which leads to func-
tional decline, frailty (Fried et al. 2001), and death
(American Geriatrics Society 2012), all of which
increase healthcare utilization and result in loss of
independence. Secondary outcomes of interest

that are patient-specific include quality of life,
which drops with higher rates of comorbidity
(Chambers et al. 2002) and disability (Rosemann
et al. 2008). The rise in the number of older adults,
and in particular those oldest old (>age 80 years)
who are the fastest growing subset (Census
Bureau Statistics 2012), results in comorbidity
and disability which will impact health in a sig-
nificant manner.

2 Obesity

Obesity is a known public health concern that has
drawn considerable attention in the adult and
pediatric populations. According to recent epide-
miologic surveys, prevalence of obesity measured
by body mass index is 34.9 % (Ogden et al. 2014),
rising from 14.1 % in 1971–1974 (Flegal
et al. 1998). While the rate of change has dropped
(Lopez-Jimenez et al. 2009), overall prevalence is
still increasing with over 65 % of the US popula-
tion classified as having obesity or overweight
(BMI of 25–29.9 kg/m2). Changes in body com-
position occur with age (Baumgartner 2000). Loss
of skeletal muscle mass and increases in visceral
adiposity with age make BMI a relatively inaccu-
rate index in older subjects as compared to youn-
ger populations (Okorodudu et al. 2010; Romero-
Corral et al. 2008). However, little attention has
been paid to the impact of obesity in older adults
although prevalence rates are thought to parallel
those of the general population. The rise in the
number of older adults aged 65 years and older
will lead to larger numbers of persons with
obesity.

Table 1 Functional status – activities of daily living (Katz
et al. 1963; Lawton and Brody 1969)

Basic Instrumental

Bathing Shopping

Dressing Housekeeping

Transferring from bed to chair Preparing meals

Toileting Taking medications

Eating Finances

Walking Using transportation

Making phone calls
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The relationships between obesity and hyper-
tension, hyperlipidemia, diabetes, sleep apnea
(Gregg et al. 2005), and other disorders including
osteoarthritis (Ambrose et al. 2010) and cancer
have been well established epidemiologically
(Reeves et al. 2007). Obesity is also associated
with cognitive dysfunction (Hassing et al. 2009).
These relationships exist even in older adults. The
risk of cardiovascular disease is heightened in
older adults (Lopez-Jimenez et al. 2009). Yet,
people with obesity often die prematurely. In one
study, having obesity is associated with approxi-
mately 112,000 excess death in the United States
as compared to not having obesity (Flegal
et al. 2005).

It has been hypothesized that there are likely
subtypes of obesity, including those with and
without “metabolic abnormalities” (Kramer
et al. 2013). There likely is a component of
genetic predisposition to surviving, and further
research is needed to better identify patients at
lower risk. Both duration of obesity during the
life span (Houston et al. 2009) and obesity at the
age of 65 years are associated with increased risk
of physical impairments, disability (Houston
et al. 2009), and nursing home placement (Zizza
et al. 2002). Using 7-year follow-up data from the
Health, Aging, and Body Composition Study, in
2,845 community-dwelling US adults, men and
women who were overweight or obese at all three
designated time points had increased risk of
mobility limitations compared to normal weight
(HR 1.61 [1.25–2.06] and 2.85 [2.15–3.78])
(Houston et al. 2009). Whether functional impair-
ment is due to increased load on joints or meta-
bolic changes is currently under study of
investigation. One subject of controversy is the
manner in which obesity is ascertained, whether it
be by anthropometric measures (and which ones)
or by radiological means. Irrespective of its
assessment, it is well accepted that obesity is
detrimental to overall function in older adults
(Schaap et al. 2012). A recent systematic review
by Schaap et al. noted a risk ratio of 1.60 [1.43,
1.80] of impaired function in those with a BMI
� 30 kg/m2. In addition, body fat assessed by
bioelectrical impedance is associated with a risk
of impaired function (Batsis et al. 2014b).

We caution that the majority of studies use
BMI as a surrogate for obesity. While this anthro-
pometric measure is practical and easy to measure
clinically, it does have a number of limitations.
First, patients lose height as they age (Sorkin
et al. 1999). Second, with changes in body com-
position, weight does change (Williamson 1993).
Third, a BMI cutoff of 30 kg/m2 is classified as
obesity and this cutoff was based on older epide-
miological studies (Physical status: the use and
interpretation of anthropometry. Report of aWHO
expert committee 1995). In fact, in older adults, a
BMI of 26–27 kg/m2 is associated with the lowest
mortality (Kuk and Ardern 2009). Lastly, BMI
accounts for both fat mass and muscle mass and
may poorly reflect specific differences in body
composition. For instance, a 30-year-old male
who is a body builder has very little fat mass
with considerable proportion of muscle mass;
however, this patient may inadvertently be classi-
fied as having obesity. As will be discussed below,
BMI fails to account for the changes in muscle
mass and quality with aging. Other measures of
assessing obesity and fat can be considered
including waist circumference and body fat.
While a discussion on these measures is outside
the scope of this chapter, solely using BMI can be
problematic in that there is a subset of persons
with elevated central adiposity that are at higher
risk of disability (Batsis et al. 2014b) and mortal-
ity (Batsis et al. 2013b), both in cross-sectional
and longitudinal studies (Batsis et al. 2015).

3 Sarcopenia

An under-recognized and under-characterized
phenomenon in clinical medicine is that of
sarcopenia. This term was initially coined in
1989 by Rosenberg to characterize the natural
reduction of muscle mass with aging. The word
sarcopenia is derived from the Greek word
“sarcos” meaning flesh and “penia” meaning
lack of. The concept of sarcopenia is located on
the spectrum of frailty and disability (Cruz-Jentoft
et al. 2010). Muscle mass increases with age until
30–40 years of age and then starts decreasing in
the fourth decade of life (Fig. 1). Below a given
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threshold of muscle mass, it is believed that
patients are at risk for disability (Sayer
et al. 2008). The trajectory of muscle loss can be
altered with physical exercise and/or environment
changes. This age-related decline parallels that
observed with bone mass (Warming et al. 2002),
whereby, once bone mass reaches a critical level,
one’s risk of a fracture is increased (Kanis
et al. 2008). While sarcopenia is primarily a dis-
ease of the elderly, it may be associated with other
chronic health conditions seen in younger
patients, including disuse, malnutrition, and
cachexia (Morley et al. 2009).

The definition of sarcopenia has evolved con-
siderably over the years and has led to consider-
able confusion in identifying the natural history
and course of this geriatric syndrome. The
European Working Group for the Study of
Sarcopenia in Older People (Cruz-Jentoft
et al. 2010) developed a clinical algorithm to
identify those with sarcopenia. This group
included muscle quality/strength in their defini-
tion of sarcopenia. Definitions of sarcopenia in the
past were primarily based on muscle mass. How-
ever, such definitions accounted for both total-
body skeletal muscle mass and appendicular skel-
etal muscle mass, often adjusted for height in
meters squared. Many of the threshold definitions
were based on epidemiological studies of a health-
ier population, based on two standard deviations
below the population mean, or based on the bot-
tom two quintiles of a given target population

(Batsis et al. 2013a). Basing threshold definitions
on mathematical definitions and distributions and
not proven clinical outcomes led in part to such
disparate definitions. A recent analysis noted that
the prevalence of sarcopenia (and sarcopenic obe-
sity) ranged markedly depending on the definition
used (Batsis et al. 2013a). Many advocated the
need to create thresholds and cutoffs that
corresponded to validated clinical outcomes such
as disability, mortality, and institutionalization
(Cruz-Jentoft et al. 2010). This consortium
recommended incorporating muscle mass and
function (strength or performance) into the defi-
nition of sarcopenia for its diagnosis.

In 2013–2014, the Foundation for the National
Institutes of Health Sarcopenia (FNIH) project
(Studenski et al. 2014) formed a consensus
group to develop clinically appropriate threshold
measures to predicted incident disability and
adverse outcomes. Based on epidemiological
studies (McLean et al. 2014; Dam et al. 2014;
Cawthon et al. 2014; Alley et al. 2014), muscle
strength is more predictive of impaired function
than muscle mass. Muscle mass, in fact, was
believed to indirectly impact function in
community-dwelling older adults. Low muscle
mass is associated with weakness or dynapenia,
which itself is strongly associated with reduced
function. However, low muscle mass is less likely
to be associated with impaired function, as muscle
strength is (Schaap et al. 2012). Hence, the causal
pathway between muscle mass and strength to

Fig. 1 Muscle mass and
function during the life
cycle. Muscle mass and
function increases in early
in life, peaks in the third and
fourth decades, and then
decreases in later life
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function is now being challenged. In fact, there are
likely two patient phenotypes: those with weak-
ness but with preserved muscle mass and those
with low muscle mass leading to weakness. This
consortium identified a number of large-scale epi-
demiological studies to ascertain these relation-
ships and selected mobility impairment as a
primary outcome (gait speed <0.8 m/s) as such a
measure predicts mortality and disability
(Studenski et al. 2011). Table 2 outlines the cur-
rent thresholds and cutoffs that have been pro-
posed for use in clinical and research practice.

Prevalence estimates range depending on the
definition used. One author has estimated that a
conservative estimate is that it may affect >50
million persons today and >200 million in the
next 40 years (Santilli et al. 2014), and that its
estimated direct health cost in 2000 was $18.5
billion (Janssen et al. 2004).

4 Sarcopenic Obesity

The confluence of sarcopenia and obesity in an
aging population has the potential to lead to syn-
ergistic impairment of function. Individuals with
sarcopenic obesity (SarcO) constitute a combina-
tion of fulfilling criteria for both sarcopenia and
obesity. It is expected that the prevalence of
sarcopenic obesity will rise with the concomitant
risk in older adults. Recent estimates suggest
that the prevalence of SarcO ranges 18-fold

(Batsis et al. 2013a). There are no recent preva-
lence studies that incorporate the new FNIH
guidelines for SarcO at this time.

Importantly, while the definition of sarcopenia
has been debated, the definition of obesity used
also is a matter of debate. BMI is used clinically;
however, it has poor specificity in identifying
older adults with obesity, missing obesity in over
50 % of patients (Okorodudu et al. 2010). Waist
circumference is another proposed anthropomet-
ric measure used in cohort studies examining
prevalence and outcomes of SarcO (Stenholm
et al. 2008). Traditional metabolic syndrome cut-
offs of 88 cm in females and 102 cm in males can
be used (Batsis et al. 2007). Percent body fat can
also classify subjects with obesity. However, as
with muscle mass, measurement with CT scan-
ning, MRI scanning, bioelectrical impedance, or
dual-energy X-ray absorptiometry scanning is
needed to quantify these values. As with differing
thresholds, combining twomeasures with variable
thresholds increases the variability in the esti-
mates obtained (Batsis and Lopez-Jimenez
2010). For SarcO, to avoid the controversies in
using BMI as a measure for obesity, one can
consider using more sophisticated methods to
ascertain body fat and use cutoffs proposed by
professional recommendations as a guideline.

4.1 Common Underlying
Mechanisms + Theoretical
Framework

The underlying pathophysiology and mechanisms
to explain the development of SarcO are unclear.
While common inflammatory pathways have
linked sarcopenia and obesity, the interplay is
still poorly understood. Studies now demonstrate
that the alterations observed in body composition
are likely due to fat infiltration of the muscle
leading to lower muscle quality and work perfor-
mance (Villareal et al. 2004). There may indeed be
some potentiation of each entity on each other. Fat
and muscle are both metabolically active. For
instance, excess energy intake, physical inactivity,
low-grade inflammation, and insulin resistance
due to losses of skeletal muscle result in

Table 2 Cut points for weakness and low lean mass
(Studenski et al. 2014)

Cut point Males Women

Weakness

Grip strength <26 kg <16 kg

Grip strength adjusted for body
mass index

<1.0 <0.56

Appendicular lean body mass (ALM)

ALM adjusted for BMI <0.789 <0.512

ALM <19.75
kg

<15.02
kg

Table adapted from the Foundation for the National Insti-
tutes of Health Sarcopenic Project. Grip strength measured
using a dynamometer
BMI body mass index, ALM appendicular lean mass
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alterations of hormonal homeostasis in the devel-
opment of SarcO (Santilli et al. 2014). Production
of adipokines and pro-inflammatory cytokines
(IL-6, TNF-a) by adipocytes or infiltrating macro-
phages in adipose tissue can induce C-reactive
protein in the liver. Additionally, the association
of C-reactive protein with low handgrip strength
and high body fat suggests underlying inflamma-
tion as a causative factor (Stenholm et al. 2008).
Leptin and low adiponectin concentrations nega-
tively impact muscle mass leading to reductions in
muscle quality (Hamrick et al. 2010). In fact,
leptin resistance has been hypothesized as an
underlying mechanism linking atherosclerosis
and metabolic syndrome (Sweeney 2010) and in
one study has demonstrated that it is negatively
related to appendicular skeletal muscle mass
adjusted for fat mass (Waters et al. 2008). Further

data from the InCHIANTI study has demonstrated
that global and central obesity negatively affect
muscle strength leading to the development and
progression of sarcopenic obesity (Schrager
et al. 2007). All these findings suggest that there
may be a higher risk of cardiovascular disease in
those patients with SarcO. Additionally, high
levels of circulating free fatty acids appear to
play a role in the development of SarcO
(Stenholm et al. 2008). The pathogenesis is
undoubtedly complex which has been nicely sum-
marized by Kob et al. (2015) (Fig. 2). With the
increase in fat occurring with aging and the drop
in muscle mass, excess fatty acids deposit in extra-
adipose tissues, possibly leading to lipotoxicity
and thus to insulin resistance. Deposition of fat
into muscle alters their morphology, size, and
function, and protein turnover occurs.
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Fig. 2 Possible pathways involved in sarcopenic obesity
are presented. Pathways which favor proper functionality
of the skeletal muscle are depicted in blue, blocking of
these pathways by obesity is shown in red. An excess of
fatty acids in the organism leads to apoptosis of pancreatic
β-cells (green) and consequently to reduced secretion of
insulin. This results in deregulation of the muscular
PKB/Akt pathway and a decreased translocation of
GLUT4 transporters leading to insulin insensitivity.

Moreover, protein turnover is altered due to changes in
S6K1 activity. Secretion of IL-15, a paracrine anabolic
myokine, is suppressed by adipose tissue. Hence, TNF-α
induces muscle atrophy by stimulation of apoptosis as well
as by upregulation of the proteasomal decay of filament
proteins. Satellite cells dedifferentiate to an adipocyte-like
phenotype stunting regeneration of muscle fibers. With
multimorbidity: an approach for 2012
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5 Consequences and Implications
on Function in Older Adults

Irrespective of the challenges in defining SarcO,
most past studies used a combination of muscle
mass and BMI to define this entity. The impact of
sarcopenia and obesity on physical performance
has been increasingly studied. Using bioelectrical
impedance, sarcopenic obesity subjects in a Tai-
wanese cohort were worse than their counterparts
in physical performance (Chang et al. 2014). Ini-
tial epidemiologic studies, however, demon-
strated inconsistent results on impairment of
function (Bouchard et al. 2009; Davison
et al. 2002). SarcO is related to subjective impair-
ment in physical performance (Auyeung
et al. 2013), including falls (Baumgartner
et al. 1998). Baumgartner et al., using the New
Mexico Aging Process Health Study, noted that
the risk of incident disability was a HR 2.63 [1.19,
5.85] over the course of an 8-year follow-up
(Baumgartner et al. 2004). The EPIDOS study in
Europe noted that SarcO had a 2.60 higher odds of
having difficulty climbing stairs and 2.35 higher
odds of difficulty going down stairs than those
without any of these entities (Rolland
et al. 2009). A study using the Quebec Longitudi-
nal Study (Nutrition as a Determinant of Success-
ful Aging) compared four groups of high/low
muscle mass and high/low obesity and examined
their physical function characteristics (Bouchard
et al. 2009). Interestingly, their results did not
demonstrate that SarcO had lower physical capac-
ity as compared to nonsarcopenic/obese individ-
uals in this cohort. What was clear from this study
was the impact of obesity on function. Inflamma-
tory markers, including C-reactive protein, and
homeostasis model assessment (IRHOMA) were
higher in subjects with SarcO in NHANES
1999–2004 (Levine and Crimmins 2012) and
also in the InCHIANTI study (Schrager
et al. 2007), suggesting that pro-inflammatory
cytokines may be critical in both the development
and progression of SarcO. Certain studies have
demonstrated important associations between
SarcO and important functional measures. For
instance, using a sample from a community-

based cohort of 1,655 older adults suggested that
fat mass negatively impacts domains of physical
performance and overall functioning and that its
interrelation with lean mass importantly impacts
these estimates (Sternfeld et al. 2002).

The Korean National Health and Nutrition
Examination Survey (NHANES) had consider-
able data on older adults. These authors observed,
in a cross-sectional analysis, that SarcO was asso-
ciated with radiographic knee osteoarthritis
(OR 3.51 [2.15–5.75]) as opposed to those with
sarcopenia and obesity (OR 2.38 [1.80–3.15])
(Lee et al. 2012). A specific SarcO study
performed in South Korea has been instrumental
in better characterizing the associations between
this entity and important geriatric outcomes.
While there are inherent ethnic differences in
body composition, their population focused pre-
dominantly on an Asian population. Applying the
National Cholesterol Education Program-Adult
Treatment Panel III guidelines to the Korean
NHANES cohort, those with SarcO had a higher
risk for dyslipidemia (OR 2.82 [1.76–4.51]) than
the other groups (Baek et al. 2014). The risk of
metabolic syndrome was elevated in those with
SarcO (OR 3.24 [1.21, 8.66] in both females and
5.13 [0.90–29.30] in males) (Kim et al. 2009).
This was confirmed in a longitudinal study noting
that SarcO was at higher risk for metabolic syn-
drome (OR 8.28 [4.45–15.40]) than either obesity
or sarcopenia alone (Lim et al. 2010). This same
cohort demonstrated that over a period of
28 months, visceral fat was associated with future
loss of skeletal muscle mass in Korean adults
(Kim et al. 2014).

5.1 Mortality

The relationship between sarcopenia and obesity
and mortality has been investigated with emerg-
ing new data. The prospective Cardiovascular
Health Study of 3,336 community-dwelling
older adults free of cardiovascular disease at base-
line classified subjects having SarcO based on
measures of muscle mass or strength and waist
circumference (Stephen and Janssen 2009). After
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a mean follow-up of 8 years, there was a 23 %
increased risk of death [95 % CI: 0.99–1.54;
p = 0.06] within the SarcO group. Using the
British Regional Heart Study of men aged 60–79
years (n = 4,252), SarcO patients, classified
using WC and mid-arm muscle circumference,
were found to have markedly higher mortality
rates (HR 1.72 [1.35, 2.18]) than in those with
sarcopenia or obesity alone (Atkins et al. 2014).
Interestingly, this group also used fat-free mass
index and fat mass index to define SarcO but
found no significant relationships using these
measures. Using data from the NHANES III,
SarcO defined using body fat and total skeletal
muscle mass adjusted for height2 cutoffs had a
higher mortality risk in woman (HR 1.35
[1.05–1.74]) than in males (0.98 [0.77–1.25]).
The data thus far suggests that SarcO likely is
associated with an increased risk of mortality.
Further evaluation with recent recommended
thresholds and cutoffs are needed, and
sex-specific analyses would be helpful in identi-
fying whether differences indeed are present.

6 Management of Sarcopenic
Obesity

To date there have been no formal guidelines for
the management of SarcO. Due to disparities in
defining this entity, there have been few clinical
trials examining possible interventions in reduc-
ing fat and preserving muscle. In addition, there
lack a number of primary outcomes for the design
of such trials. Recently, the European Working
Group (Cruz-Jentoft et al. 2010) identified three
primary outcome variables in sarcopenia, includ-
ing muscle mass, muscle strength, and physical
performance. A number of additional secondary
outcomes have been proposed as well (Table 3).

6.1 Nutritional Recommendations

The Society for Sarcopenia, Cachexia, and
Wasting Disease convened an expert panel for
nutritional management of sarcopenia and based
on a literature review drafted recommendations

(Morley et al. 2010). As aging is associated with
physiological anorexia, a high risk of inadequate
protein intake occurs. Their report found that no
older persons ingest protein to account for 35 % of
the total macronutrient distribution. A positive
relationship between protein ingestion and muscle
mass has been observed (Abellan van Kan
et al. 2008; Heath and Stuart 2002). Additionally,
older persons synthesize less protein. This task
force recommended that a balanced protein and
energy supplement may be useful in preventing
and reversing sarcopenia and that total protein
amounts to 1–1.5 g/kg/day. Additionally,
leucine-enriched essential amino acids should be
considered. Some reported studies in their report
suggest the addition of creatine to enhance the
effects of exercise in patients with sarcopenia,
although long-term studies are needed.

Vitamin D levels are known to decline with
age, and deficiencies are associated with reduced
muscle strength, statin myopathy, reduced func-
tion, falls, and fractures (Holick et al. 2011;
Wicherts et al. 2007). Vitamin D replacement is
associated with reduced mortality (Zittermann
et al. 2012) and hence should be considered as
part of the multimodal approach to care. Doses of
50,000 units can be considered in older adults in
the form of vitamin D2 or vitamin D3 (American
Geriatrics Society Workgroup on Vitamin 2014).

Table 3 Proposed outcomes from the European Working
Group for the study of sarcopenia in older adults (Cruz-
Jentoft et al. 2010)

Primary outcome
domains

Physical performance

Muscle strength

Muscle mass

Secondary
outcome domains

Activities of daily living

Quality of life

Metabolic and biochemical
markers

Markers of inflammation

Global impression of change by
subject or physician

Falls

Admission to the hospital or
nursing home

Social support

Mortality
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7 Lifestyle Modifications

Weight loss is the cornerstone of management in
older adults with SarcO yet still remains contro-
versial in clinical practice due to the loss in muscle
mass that can occur leading to worsening
sarcopenia (Villareal et al. 2004). A limited num-
ber of clinical trials focusing exclusively on older
adults have been published (Beavers et al. 2014;
Messier et al. 2013; Shea et al. 2010; Villareal
et al. 2011). As with any lifestyle modification
program, the cornerstones of management include
dietary (caloric) restriction, behavioral counsel-
ing, and physical activity. Weight reduction of
5–10 % can lead to comorbidity resolution. A
recent benefit available to Medicare beneficiaries
has led to reimbursable models for primary care
clinicians to counsel older adults with obesity
(Batsis et al. 2014a).

The mean age of participants in the Look
AHEAD trial, a major randomized trial focusing
on weight, was 59 years (Look 2014). This trial
examined the effectiveness of an intensive life-
style modification program, tailoring meetings to
reduced calorie intake and physical activity. The
intervention group demonstrated improved func-
tional status, more physical activity, improved
cardiovascular risk profile, and higher metabolic
equivalents. The ADAPT (Arthritis, Diet, and
Activity Promotion Trial) (Messier et al. 2013)
observed reduced mortality in the subset of older
adults at 18 months. An important randomized
trial by Villareal (Villareal et al. 2011)
highlighted the differences between individual
diet or physical activity therapy, combination
therapy, and standard care in older frail individ-
uals. Weight loss led to improvements in physi-
cal function and quality of life. Importantly,
though, lean mass was mitigated with the resis-
tance training and frailty prevalence was
reduced. While lean mass was modestly reduced,
there were continued improvements in objective
physical performance, suggesting that weight
loss may be a suitable intervention for the treat-
ment of SarcO.

A multidisciplinary program is important with
any type of lifestyle intervention, not only to
reduce fat mass and increase lean mass but to

improve cardiovascular fitness. The American
College of Sports Medicine has presented recom-
mendations for physical activity(Garber et al.
2011) consisting of both aerobic and resistance,
flexibility, balance, and vestibular exercises. Exer-
cise results in improved muscle protein synthesis
(Atherton and Smith 2012), increased intramus-
cular IGF-1 (Burke et al. 2008), improved skeletal
muscle sensitivity to insulin (Rabol et al. 2011),
and reduced inflammatory gene expression (Lin-
den et al. 2014). The recent multicenter, random-
ized LIFE study (Pahor et al. 2014) demonstrated
that in 1,635 older adults aged 70–89 years with
physical limitations, the risk of persistent mobility
disability was lower in the intervention care group
than the standard care (HR 0.72 [0.57–0.91]),
with no significant differences in serious adverse
events in a 2.6-year follow-up. Their results
suggested the benefit and potential for structured
physical activity programs in older adults at risk
and vulnerable, despite incident functional
decline. While this cohort was not specific to
those with SarcO, it provides a reasonable foun-
dation for future studies in this subgroup. Addi-
tionally, the mean BMI was 30 kg/m2.

7.1 Emerging Pharmacotherapy

While a number of therapies are being currently
tested in the phase I trials and in rodent models,
therapies that have been trialed in the past but
have been unsuccessful or fraught with chal-
lenges. Testosterone concentrations drop with
aging and parallel the changes observed in body
composition with aging. While hypogonadal
males appear to have some benefit with therapy
(Behre et al. 2012), disparate results have been
seen with healthy older males (Emmelot-Vonk
et al. 2008). For instance, testosterone therapy
with exercise altered body composition favorably
by reducing fat mass and increasing skeletal mus-
cle but did not alter physical performance. Other
studies have observed similar findings. However,
the Food and Drug Administration has placed a
warning on supplementation with testosterone
and adverse events (Fernandez-Balsells et al.
2010) including erythrocytosis, prostate cancer,
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blood clots, stroke, myocardial infarction, and
heart failure (Xu et al. 2013).

A potential contributing factor to the develop-
ment of SarcO is a decline in growth hormone and
IGF-1 synthesis. While supplementation appears
physiologically plausible, clinical studies have
again been fraught with disappointment and
adverse events (Nair et al. 2006). Emerging ana-
logs are being studied that potentially can alter
body composition, and future studies should
examine their effects on physical function. A sys-
tematic review of DHEA therapy demonstrated
changes in body composition (Baker et al. 2011),
but future studies are needed to determine whether
it impacts physical function.

8 Future Directions

The phenotype of sarcopenic obesity is gaining
traction in both the research and clinical realms.
The “fat frail” older adult is at high risk for
adverse events and utilization. Standardized def-
initions related to outcomes are needed for both
sarcopenia and obesity. Understanding the basic
biological mechanisms will assist in drug
targeting and development in the future. By iden-
tifying such subjects in clinical practice, practi-
tioners could prescribe lifestyle modifications
consisting of weight loss and exercise programs
to lose weight and preserve/augment muscle
mass and quality. Clinical trials are desperately
needed to test both known and experimental
interventions that potentially prevent or reverse
the inevitable functional decline these patients
endure.

9 Cross-References

▶Body Composition Assessment
▶Diet, Exercise, and Behavior Therapy in the
Treatment of Obesity and Metabolic Syndrome

▶ Insulin Resistance in Obesity
▶Obesity and Cardiac Disease
▶Epidemiology of Obesity in the United States
▶Overview of Metabolic Syndrome
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Abstract
Obesity represents a major risk factor for sleep-
disordered breathing, which can be manifested
by sleep apnea or hypoventilation, both of
which may occur together. Sleep apnea may
be central or obstructive, depending on the
relative contribution of different pathophysio-
logical factors such as upper airway narrowing
and disordered respiratory control. The preva-
lence of sleep apnea has greatly increased over
the past two decades, and the rising prevalence
of obesity is likely the most important factor to
account for this rise. Obese patients with
obstructive sleep apnea (OSA) and/or
hypoventilation can develop profound oxygen
desaturation during sleep and are particularly
likely to develop cardiovascular and metabolic
comorbidities. Systemic inflammation appears
to be an important basic mechanism in the
development of these comorbidities, and both
intermittent hypoxia and visceral adipose tis-
sue represent important factors in this inflam-
matory response. Management of these
patients typically includes noninvasive noctur-
nal pressure support, either continuous positive
airway pressure (CPAP) in those with predom-
inant OSA or bi-level pressure support in those
with predominant hypoventilation. Obesity
represents an aggravating factor for asthma,
particularly in women, and there is evidence
that weight loss benefits asthma control. Fur-
thermore, recent evidence indicates that
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patients with asthma are predisposed to OSA,
although the clinical significance of this asso-
ciation is not yet clear.

Keywords
Obesity •Metabolic Syndrome • Sleep apnea •
Asthma • Hypoventilation • Diabetes • Cardio-
vascular Disease

1 Introduction

Obesity represents an important risk factor for
sleep-disordered breathing (SDB), especially
obstructive sleep apnea (OSA) and obesity-
hypoventilation syndrome (OHS). These disorders
are independently associated with cardiovascular
and metabolic diseases, and in combination with
obesity, this association is further increased. The
present review provides an overview of OSA and
OHS with particular reference to the association
with obesity and discusses the mechanisms lead-
ing to cardiometabolic comorbidities. Further-
more, recent evidence has also linked asthma
with sleep-disordered breathing, which represents
a topical subject of respiratory sleep research.

2 Obstructive Sleep Apnea

Obstructive sleep apnea (OSA) is characterized by
instability of the upper airway during sleep,
resulting in markedly reduced (hypopnea) or
absent (apnea) airflow at the nose/mouth. These
episodes are usually accompanied by loud snoring
and oxyhemoglobin desaturation and are typically
terminated by brief arousals, which result in
marked sleep fragmentation and diminished
amounts of slow-wave and rapid eye movement
(REM) sleep. Patients with OSA are usually
unaware of this sleep disruption, but the changes
in sleep architecture contribute significantly to the
prominent symptom of chronic daytime sleepiness
found in these patients. The prevalence of OSA
among the adult population is high. In 1993, data
collected from the community-based Wisconsin
Sleep Cohort Study estimated that 4 % of men
and 2 % of women were suffering from obstructive

sleep apnea syndrome (OSAS), i.e., the combina-
tion of sleep-disordered breathing and daytime
sleepiness (Young et al. 1993). Remarkably,
follow-up data from the same cohort study,
published 20 years later, indicated a substantial
increase in these figures with prevalence of OSAS
now reaching 14 % of men and 5 % of women.
Numerous factors may account for this increase,
but the rapidly rising incidence of obesity which is
the most important risk factor of OSA plays clearly
an important role (Peppard et al. 2013).

OSA is associated with significant morbidity
and mortality. The excessive daytime sleepiness
leads to impairments in quality of life, cognitive
performance, and social functioning (Engleman
and Douglas 2004). Furthermore, the disorder is
associated with a three- to sevenfold increase in the
rate of road traffic accidents (Stoohs et al. 1994).
Themajor health burden inOSApatients, however,
is the strong risk of cardiovascular diseases, such as
systemic arterial hypertension, coronary artery dis-
ease, heart failure, and stroke (McNicholas and
Bonsignore 2007). Furthermore, there is increasing
evidence of an independent association of OSA
with metabolic dysfunction and in particular with
alterations in glucose metabolism such as type
2 diabetes mellitus (Aurora and Punjabi 2013;
Levy et al. 2009).

Nasal continuous positive airway pressure
(CPAP) is the treatment of choice, particularly in
severe cases. CPAP splints the upper airway
(UA) open during sleep and thus counteracts the
negative suction pressure during inspiration that
promotes UA collapse in these patients (Sullivan
et al. 1981). Nasal CPAP completely controls the
condition and has a dramatic effect on the
patient’s awake performance because of the nor-
malized sleep pattern. It improves quality of life,
neurocognitive function, and driving performance
(Jenkinson et al. 1999; Montserrat et al. 2001;
Engleman et al. 1994; Krieger et al. 1997). More-
over, it has significant benefit in reducing cardio-
vascular mortality and morbidity (Doherty
et al. 2005; Marin et al. 2005).

Obesity is strongly associated with OSA – the
prevalence of OSA in obese subjects exceeds
30 % and at least 60 % of OSA patients are
obese (Peppard et al. 2000). Obesity contributes
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to the pathophysiology of OSA, but there is also
emerging evidence of a role of OSA in obesity
pathogenesis and obesity-mediated inflammation
as the culprit of associated cardiovascular and
metabolic disorders.

2.1 Pathogenesis of OSA
and Effects of Obesity

The pathophysiology underlying OSA is complex
and not fully understood (Deegan and McNicholas
1995).Most subjects withOSA have an anatomical
predisposition to airway collapse. A narrowed
upper airway (UA) is very common among OSA
patients due to either increased soft tissue sur-
rounding the airway or bony abnormalities such
as reduction in the length of the mandible, an
inferiorly positioned hyoid bone, or a retroposition
of the maxilla (Lowe et al. 1995; Schwab
et al. 1995). Furthermore, increasing length of the
UA is predictive of pharyngeal collapse (Malhotra
et al. 2002). The observed variability in airway size
might be determined by genetic influences (Mathur
and Douglas 1995) or acquired factors, particularly
obesity (see below).

The UA patency is mainly dependent on the
activity of the pharyngeal dilator muscles. During
“wakefulness,” this activity is tightly controlled
by various mechanisms. Negative intrapharyngeal
pressure seems to be the most important stimulus
to these muscles and allows the muscles to adapt
to any threat to airway patency with active con-
traction, thereby dilating and protecting the air-
way (White 2006). This mechanism is particularly
active in OSA patients while awake as the ana-
tomically small airway leads to increased negative
pressure augmenting the activity of dilator mus-
cles (Fogel et al. 2001). Due to this augmented
reflex, OSA patients breathe normally during
“wakefulness.” With the onset of sleep, the con-
trol of these muscles changes significantly. The
response to negative pressure is reduced during
sleep leading to increased UA resistance (Shea
et al. 1999; Wheatley et al. 1993). In patients
with OSA, sleep induces a substantially larger
decrement in contraction, thus contributing to
the development of obstructive apneas

(Mezzanotte et al. 1996). However, OSA patients
show at least as forceful pharyngeal dilator muscle
contraction during sleep as normal subjects which
reinforces the fact that an imbalance between pha-
ryngeal collapsing forces and dilator muscle con-
traction is responsible for the obstruction rather
than a primary deficiency in muscle contraction.

The collapse of the UA leads to hypoxia and
hypercapnia which drive increasing respiratory
effort, leading ultimately to an arousal (Fogel
et al. 2004). Arousal is one important mechanism
to terminate an apnea. It usually causes lightening
of sleep rather than complete awakening. How-
ever, this response leads to sleep fragmentation in
OSAwhich is the major cause for daytime sleep-
iness in these patients (Deegan and McNicholas
1995). Relief of the UA obstruction is typically
followed by a short period of hyperventilation
with a fall in partial pressure of carbon dioxide
(pCO2) and respiratory drive, thus predisposing to
further apnea, promoting a vicious cycle (Deegan
and McNicholas 1995; Fogel et al. 2004).

Obesity contributes to the pathogenesis of
OSA in a number of ways. It narrows the cross-
sectional area of the UA by increased fat deposi-
tion in the pharyngeal walls and possibly also by
external compression from superficially located
fat masses (Shelton et al. 1993). This pattern of
fat deposition may alter the shape of the pharyn-
geal airway from an elliptical shape with the long
axis oriented in the coronal plane seen in normal
subjects toward a more circular pharynx in obese
individuals. These alterations also increase
extraluminal tissue pressure which in combination
with the anatomical changes promotes UA col-
lapsibility (Schwartz et al. 2010). Obesity through
increased levels of abdominal fat is also associ-
ated with a reduction in lung volumes, particularly
functional residual capacity (FRC). This leads to a
reduction in the longitudinal traction of the phar-
ynx, and it can also indirectly contribute to UA
instability by disruption of reflex mechanisms of
the respiratory control (Gifford et al. 2010). Fur-
thermore, hormonal changes associated with obe-
sity may affect the pathogenesis of OSA. Leptin is
an adipose-derived hormone which reduces appe-
tite. It is also a powerful ventilatory stimulant, and
in human obesity, which is characterized by
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central leptin resistance, there is a blunted
response to hypercapnia, leading to impairment
of the arousal response (Campo et al. 2007).

Despite these multiple effects of obesity on
OSA pathogenesis, the impact of weight loss is
still poorly investigated. It is clearly beneficial and
patients with greater severity of OSA derive more
benefit from weight loss than those with moderate
disease (Strobel and Rosen 1996). Imaging stud-
ies have confirmed an increase in pharyngeal
cross-sectional area with weight loss (Sutherland
et al. 2011). However, the relationship between
weight loss and OSA is not simply curative. Pre-
and post-bariatric surgery measurements of OSA
have shown that although there is an improvement
in OSA severity postweight loss, the majority of
patients had residual OSA and some patients with
improvements in snoring or daytime somnolence
may be inclined to inappropriately discontinue
CPAP therapy, increasing the risk of worsening
OSA and weight gain (Greenburg et al. 2009).
This aspect underlines the important role of the
genetically influenced narrowing of the oropha-
ryngeal airway in the pathogenesis of OSA, which
would not be reversed by weight reduction (Kent
et al. 2010).

2.2 The Impact of OSA on Obesity
Pathogenesis

Besides the well-defined effects of obesity on the
pathogenesis of OSA, there is also increasing
interest on the potential impact of OSA on obesity.
This subject is mainly driven by the frequent
observation that weight gain follows the onset of
OSA symptoms and is often reported prior to the
diagnosis (Phillips et al. 1999). This area of
research is still in its infancy but several potential
mechanisms support an adverse effect of OSA on
obesity. Firstly, sleep deprivation is increasingly
linked to obesity. Although this is poorly investi-
gated directly in OSA cohorts, sleep deprivation is
a well-recognized feature of OSA, and therefore,
one could extrapolate data on sleep restriction in
other settings. There is a stream of epidemiologi-
cal data mainly in pediatric and adolescent
populations showing an association between

chronic sleep restriction and incidence of obesity
(Gozal and Kheirandish-Gozal 2012). Moreover,
short sleep also seems to lead to adverse metabolic
outcomes including insulin resistance or
dyslipidemia. Partially explaining this relation-
ship, current data support the assumption that
short sleep alters the hormonal regulation of
food intake by increasing levels of the appetite-
stimulant hormone ghrelin and reducing levels of
the suppressor leptin with the anticipated effect of
the subjective feeling of hunger with subsequent
increased food intake (Spiegel et al. 2004).

Secondly, ample evidence points to a direct
effect of OSA on obesity through increased leptin
resistance, a typical feature of human obesity.
Several studies reported increased leptin levels
in OSA cohorts compared to weight-matched con-
trols correlating with OSA severity and improve-
ment with CPAP therapy (Ong et al. 2013).
Beyond the indirect effects of sleep deprivation
as mentioned above, a direct effect of OSA
through intermittent hypoxia and redistribution
of adipose tissue with promotion of visceral fat
have been suggested as playing a role in the
mechanisms, but the definitive pathophysiology
is still far from understood.

Thirdly, there is a reduction in energy expen-
diture in OSA patients, likely mediated by day-
time sleepiness and fatigue with a consequent
reduction in physical activity (O’Driscoll
et al. 2013). Furthermore, evidence of higher cal-
orie intake in OSA subjects than in obese controls
exists. It is suggested that this may at least in part
be explained by the frequent association of OSA
with mood disorders (Harris et al. 2009).

In summary, while there is increasing evidence
pointing to a causal relationship of OSA on the
pathogenesis of obesity, the exact mechanisms are
still unknown, and there is a distinct lack of well-
designed studies investigating this relationship.
Furthermore, treatment of OSA with CPAP ther-
apy does not generally result in weight reduction.
Although there is evidence of a beneficial impact
of CPAP therapy on metabolic parameters, life-
style habits are usually not modified by this treat-
ment which may explain the failure in weight
management within this patient cohort (West
et al. 2009).
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2.3 Interaction of OSA and Obesity
in Systemic Inflammation

OSA is strongly associated with significant cardio-
vascular morbidity and mortality, and long-term
follow-up studies have demonstrated a significant
benefit in cardiovascular outcome measures with
effective CPAP therapy. There is also increasing
evidence for a link between OSA and metabolic
dysfunction, in particular insulin resistance and
metabolic syndrome. OSA comprises various
pathophysiological triggers for cardiovascular
diseases, which include sleep fragmentation,
intrathoracic pressure swings, and recurrent
hypercapnia (Levy et al. 2013). However, there
is now strong evidence that the particular form of
intermittent hypoxia (IH) observed in OSA, with
repetitive short cycles of desaturation followed by
rapid reoxygenation, plays a pivotal role in the
development of cardiovascular comorbidities.
The pathogenesis is likely multifactorial, and our
current concept involves sympathetic nervous
system overactivity, systemic inflammation, and
oxidative stress leading to endothelial dysfunction
and, possibly, metabolic dysfunction as the most
important pathways (McNicholas and Bonsignore
2007). Inflammatory processes are central in this
pathogenesis and there is ample evidence – arising
from both cell culture and in vivo models – that IH
selectively activates the transcription factor
nuclear factor-kappa B (NF-κB) (Ryan
et al. 2005, 2009). NF-κB is a key player in
inflammatory and innate immune responses and
when chronically activated contributes to athero-
sclerosis through driving production of inflamma-
tory mediators such as tumor necrosis factor alpha
(TNF-α), interleukin (IL)-8, and IL-6 (Cummins
and Taylor 2005). Moreover, these mediators have
been found to be upregulated in OSA patients
versus matched controls, and effective CPAP ther-
apy significantly lowers these levels supporting
the key role of NF-κB as driver of inflammation in
OSA (Ryan et al. 2006).

The main source organ of the IH-dependent
release of inflammatory mediators in OSA is still
unknown; however, white adipose tissue (WAT) is
a very attractive candidate given the close link
between OSA and obesity. Moreover, obesity

itself represents a low-grade inflammatory condi-
tion through the secretion of pro-inflammatory
mediators from WAT (termed adipokines)
(Trayhurn and Beattie 2001). This includes a vari-
ety of pro-inflammatory mediators such as TNF-α
and IL-6 that may be a critical link between obe-
sity and obesity-induced cardiovascular diseases.
There is emerging evidence that hypoxia is a key
factor in modulating the production of inflamma-
tory adipokines in obesity (Trayhurn et al. 2008).
As IH represents a stronger inflammatory stimulus
than sustained hypoxia, this process may be
potentiated in diseases associated with IH such
as OSA. Support for this hypothesis comes from
animal studies demonstrating exacerbation of
insulin resistance by IH in obese versus lean
mice associated with increased liver inflammation
(Drager et al. 2011). Furthermore, atherosclerotic-
prone apolipoprotein E-deficient mice treated
with IH demonstrated remodeling of the adipose
tissue associated with higher secretion of IL-6 and
TNF-α and also more severe atherosclerotic
lesions than mice treated with control protocol
(Poulain et al. 2014). We reported, using a cell
culture model, that human primary adipocytes
bear greater sensitivity to the stimulus of IH
toward pro-inflammatory pathway activation
than primary cells of non-adipose linkage (Taylor
et al. 2013).

Despite the growing body of evidence, the
topic of the interaction between OSA and obesity
in driving inflammatory processes and subsequent
cardiovascular and metabolic diseases is still far
from understood. There is a clear need for large,
multicenter well-designed studies investigating
this subject in humans accompanied by detailed
cell culture and in vivo mechanistic studies
exploring the effect of IH on the adipose tissue.

3 Asthma

Asthma is a heterogeneous disease characterized
by chronic diffuse airway inflammation. In sus-
ceptible individuals, this inflammation causes
recurrent episodes of dyspnea, chest tightness,
coughing, and wheezing. These symptoms are
usually associated with widespread but variable
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airflow obstruction. Typical triggering factors for
asthma symptoms include exercise, allergen or
irritant exposure, change in weather, or respira-
tory infections. Symptoms and airflow limitation
are often reversible, either spontaneously or with
treatment (From the Global Strategy for Asthma
Management and Prevention, Global Initiative for
Asthma (GINA) 2015). Asthma is among the
most common chronic diseases worldwide, and
it is estimated that over 300 million people are
currently suffering from the disease. A growing
body of literature suggests that obesity has a sig-
nificant impact on asthma prevalence, phenotype,
and prognosis, but the pathophysiology underly-
ing this association remains incompletely under-
stood, and further elucidation of the mechanism is
essential for the formulation of effective treat-
ments for this difficult category of patients.

3.1 The Epidemiology of Asthma
and Obesity

Concurrent with the rising prevalence of obesity,
many countries have seen a large increase in the
occurrence of asthma which has raised the possi-
bility that these two conditions might be
connected. Cross-sectional studies investigating
the association of asthma with obesity have not
been consistent, but most suggest a modest asso-
ciation between these two conditions, with odd
ratios of 1.5–3.5 (Ford 2005). Most of these stud-
ies used self-reported physician diagnosis of
asthma and determined obesity by the crude
anthropometric measure of the body mass index
(BMI). Various prospective analyses support the
notion that increased body weight precedes the
development of asthma and hence promote a
causal relationship (Camargo et al. 1999;
Kronander et al. 2004; Romieu et al. 2003). How-
ever, while there are consistent data on the rela-
tionship of obesity and asthma incidence in
women, studies have drawn a different conclusion
of this association in men (Beckett et al. 2001;
Chen et al. 2005; Hancox et al. 2005). Differences
in obesity prevalence and levels of anthropomet-
ric measures defining obesity may account for the
apparent sex difference, and in a meta-analysis of

seven prospective studies, no difference between
men and women was observed, and overall, there
was a dose–response effect of increasing BMI and
asthma development (Beuther and Sutherland
2007).

If excess weight contributes to asthma patho-
physiology, weight loss would be expected to
improve the clinical status of asthma in this patient
group. Indeed, observational studies in patients
undergoing bariatric surgery support this hypothe-
sis, showing impressive improvements with up to
50 % of patients seeing their condition resolved
(Dhabuwala et al. 2000; Macgregor and Greenberg
1993). However, asthma was often not assessed by
rigorous criteria, and as cough and dyspnea are
common among morbidly obese patients, diagno-
sis of asthma may have been falsely made. Some
studies have examined the effect of weight loss
achieved by dietary modifications and, although
numbers were small, benefits in asthma status
were shown with these interventions (Hakala
et al. 2000; Stenius-Aarniala et al. 2000).

Support of a relationship between obesity and
asthma comes from animal studies. Obese mice
exhibit innate airway hyperresponsiveness
(AHR), the cardinal feature of asthma, and this is
observed in mice with various forms of genetic
obesity and in mice in which obesity is induced by
a high-fat diet (Johnston et al. 2008; Shore
et al. 2003). The magnitude of the AHR increases
with the degree of obesity. In addition, in compar-
ison to lean mice, obese mice also have greater
AHR to various asthma triggers, including viral
infections and ozone (Johnston et al. 2008, 2007;
Shore et al. 2003). The latter has been reproduced
in humans with AHR being enhanced in response
to this trigger in obese in comparison to lean sub-
jects (Bennett et al. 2007).

3.2 The Phenotype of Obese
Asthma

There is accumulating data suggesting that asthma
in obese patients differs to that in nonobese sub-
jects in relation to asthma control and response to
treatment. These differences led to the introduc-
tion of this separate phenotype.
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In comparison to nonobese asthmatics, obese
patients have more severe symptoms, decreased
asthma-specific quality of life, and increased med-
ication use adjusted for various potential
confounding factors (Taylor et al. 2008; Vortmann
and Eisner 2008). Some studies suggested that
asthma severity is only significantly correlated
with increasing BMI in women, particularly
among women in their early menarche; this gen-
der difference, however, will require further eval-
uation (Varraso et al. 2005). In addition, obese
individuals have a 4.6-fold increased risk of hos-
pitalization for asthma compared with nonobese
subjects (Mosen et al. 2008).

Interestingly, despite worse asthma controls,
airways of obese asthmatics do not usually exhibit
eosinophilic or neutrophilic inflammation and
sputum/blood eosinophil counts, and IgE concen-
trations are commonly unaffected (Sutherland
et al. 2008; Tantisira et al. 2003). Instead, oxida-
tive stress determined by increased levels of
8-isoprostane has been implemented to play a
role in the pathophysiology, but further studies
are required to better understand the pathways
involved (Komakula et al. 2007).

Clinically of important relevance is the fact
that obesity impinges a relative refractoriness to
asthma treatment and hence, asthma control is
more difficult to achieve in this patient group. In
particular, response to inhaled corticosteroid
(ICS) medication is diminished in comparison to
nonobese asthmatics measured by spirometry and
symptoms (Boulet and Franssen 2007). The
decreased airway inflammation in obese subjects
has been proposed to be responsible for this find-
ing. This results in greater usage of rescue medi-
cation, such as short-acting β2-agonists, and
increased need for oral glucocorticosteroids
among these patients. Interestingly, the response
to leukotriene modifiers such as montelukast
seems independent of body mass index; however,
this is based on a retrospective analysis and pro-
spective studies are required to investigate these
altered responses to pharmacotherapy (Peters-
Golden et al. 2006).

The most obvious therapeutic intervention to
improve asthma control is weight loss and many
studies employing bariatric surgery or dietary

intervention have shown to improve asthma symp-
toms and quality of life and to reduce hospital
admissions and asthma medication and even to
induce full remission (Stenius-Aarniala
et al. 2000; Dixon et al. 1999; Spivak et al. 2005).
The impact of weight loss on airway inflammation
and AHR, however, remains unknown, and there is
a clear need for large studies assessing the com-
bined treatment of pharmacotherapy and weight
loss in this difficult-to-treat category of patients.

3.3 Pathogenesis of Asthma
in the Obese

The pathogenesis of asthma in obesity still
remains to be fully elucidated, but mechanical
factors leading to lung restriction, chronic inflam-
mation, hormonal influences, and additional
comorbidities, such as gastroesophageal reflux
disease, obstructive sleep apnea, and hyperten-
sion, may contribute.

Thoracoabdominal adiposity is associated with
a decrease in functional residual capacity (FRC)
and expiratory reserve volume (ERV), reflecting
decreased respiratory system compliance (Bedell
et al. 1958; Watson and Pride 2005). These reduc-
tions are associated with increased airway resis-
tance in peripheral small airways, such as the
noncartilaginous small membranes, terminal
bronchioles, and alveolar ducts (Nicolacakis
et al. 2008; Rubinstein et al. 1990). During tidal
breathing, these small airways may collapse, lead-
ing to a cyclical opening and closing of the airway
which is known to trigger local inflammation and
subsequent structural damage (D’Angelo
et al. 2002; Hakala et al. 1995). As a consequence,
asthma symptoms worsen and may become
refractory to treatment. Furthermore, the low
FRC in obesity has also been postulated to result
in an increase of the airway smooth muscle con-
tractility either by plastic adaptation to a shorter
length or alterations in actin/myosin cross-bridge
cycling with the net consequence of an increase
in airway responsiveness (Gump et al. 2001;
Pankow et al. 1998; Seow 2005).

Besides these mechanical factors, obesity also
represents a low-grade inflammatory state which
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may promote asthma pathogenesis. The adipose
tissue in obesity undergoes significant changes
toward a pro-inflammatory phenotype. Macro-
phages infiltrating the adipose tissue play an
important role in this process and in obesity are
polarized to an M1 or “classically activated” phe-
notype, and these M1 macrophages produce pro-
inflammatory cytokines such as interleukin (IL)-6
and tumor necrosis factor (TNF)-α which is in
contrast to lean adipose tissue where macrophages
predominantly show an alternative, M2 pattern of
expression with upregulation of anti-inflamma-
tory factors such as IL-10 or adiponectin and
downregulation of pro-inflammatory cytokines
(Ouchi et al. 2011). In addition, obese adipose
tissue is also characterized by necrotic adipocytes
surrounded by macrophages called “crown-like
structures” and infiltration of cytotoxic T-cells.
Pro-inflammatory cytokines, chemokines, and
complement factors produced by the adipose tis-
sue in obesity have also been associated with
asthma and therefore could play a role in the
relationship between obesity and asthma (Shore
2007; Sideleva et al. 2012).

Adipose tissue is also the source of the satiety
hormone leptin, and serum concentrations are
markedly increased in obesity. Leptin has
pro-inflammatory effects, and therefore, it has
been proposed to contribute to the obesity–asthma
relationship. In mice, leptin is causally associated
with asthma development (Shore et al. 2005). In
humans, leptin has been linked to more severe
asthma symptoms, AHR, and greater impairment
in lung function (Baek et al. 2011; Leao da Silva
et al. 2012).

Adiponectin is another adipose tissue-derived
protein, but in contrast to leptin, adiponectin
levels are decreased in obesity. Adiponectin has
anti-inflammatory effects and promotes insulin
sensitivity. In mice, adiponectin infusion
decreases airway inflammation and adiponectin-
deficient mice demonstrate enhanced allergic air-
way inflammation and greater accumulation of
eosinophils and macrophages in the airway
(Shore et al. 2006).

Most human studies show a positive relation-
ship between serum levels of leptin and an inverse

association of serum adiponectin with asthma risk
(Guler et al. 2004; Sood et al. 2006). The associ-
ations are modest and differ in different patient
groups. Relationships are strongest in prepubertal
boys, peripubertal girls, and premenopausal
women and suggest that other factors such as
age and sex may modify the adipokine–asthma
affect.

In summary, the pathogenesis of asthma in
obesity is complex and requires further detailed
translational studies. An improved understanding
of these mechanisms will facilitate the design and
conduct of clinical trials to identify the best ther-
apeutic interventions for this important and grow-
ing subset of asthma patients.

3.3.1 Obesity-Hypoventilation
Syndrome

Hypoventilation indicates a level of alveolar ven-
tilation that is inadequate to maintain normal gas
exchange, which results in both hypoxemia and
hypercapnia and is typically most pronounced
during sleep. Different pathophysiological mech-
anisms contribute to hypoventilation, which may
occur alone or in combination (Simonds 2013).
These mechanisms include neuromuscular disor-
ders, thoracic cage disorders, and other mechani-
cal factors, in addition to obesity. Obesity is the
most prevalent cause of hypoventilation, often
referred to as the obesity-hypoventilation syn-
drome (OHS), and the present review will con-
centrate on this form of hypoventilation. Patients
typically experience an increased mechanical load
to breathing and frequently have a decreased ven-
tilatory drive/response. This combination inter-
acts to produce hypoventilation. Sleep-related
hypoventilation is separate but may coexist with
sleep apnea as both share common pathophysio-
logical factors such as obesity and central respira-
tory insufficiency (McNicholas 1997). Sleep
apnea in patients with OHS may be central or
obstructive. The exact prevalence of OHS is
unknown but is estimated to be present in between
10 % and 20 % of subjects referred to sleep
laboratories and rises to about 50 % in hospital-
ized patients with a BMI greater than 50 (Mokhlesi
et al. 2007; Nowbar et al. 2004).
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Pathophysiology of OHS
Obesity-hypoventilation syndrome (OHS) is
defined by daytime hypercapnia (PaCO2 > 6
kPa) in the presence of obesity (BMI � 30
kg/m2) and in the absence of other reasons for
alveolar hypoventilation such as coexisting respi-
ratory or neuromuscular disease. Obese subjects
have an increased demand for ventilation and
elevated work of breathing, in addition to respira-
tory muscle inefficiency and diminished respira-
tory compliance. Thus, obese individuals have an
increased central respiratory drive compared with
normal-weight patients to compensate for the
increased ventilatory requirements.

The pathophysiology of OHS is complex and
not yet fully understood. Although the likelihood
of developing OHS increases with rising BMI,
weight alone does not explain the presence of
hypercapnia. In comparison to eucapnic obese
subjects, OHS patients are characterized by a
greater decrease in lung volumes, particularly
functional residual capacity (FRC), associated
with decreased respiratory system compliance
and expiratory flow limitation (Resta
et al. 2000). As a consequence, respiratory muscle
work is significantly increased even at rest. Possi-
ble mechanisms include direct mechanical effects
on respiratory function by central fat distribution
and low-grade inflammation generated by visceral
adipose tissue promoting the metabolic syndrome
and associated muscle impairment (Piper and
Grunstein 2011). UA obstruction leading to OSA
is common in OHS, and even patients diagnosed
initially with sleep hypoventilation alone may
later exhibit OSA. The pattern of breathing in
OSA has a major influence on the likelihood of
hypercapnia in OHS, and an inadequate post-
apneic ventilatory compensation has been
described as one such factor (Ayappa et al. 2002).

Clinical Manifestations
The two most common presentations of OHS are
an acute-on-chronic exacerbation leading to admis-
sion to an intensive care unit or during a routine
evaluation by a sleep specialist for suspected OSA
(Priou et al. 2010; Chau et al. 2013). The numbers
of hospitalizations prior to diagnosis as well as the

numbers of admissions in intensive care unit are
higher in newly diagnosed OHS patients than in
eucapnic obese patients. Subjects with OHS share
many characteristics with pure OSA patients but
are more likely to suffer from congestive cardiac
failure and pulmonary hypertension, resulting in
significant additional morbidity and mortality
(Nowbar et al. 2004). Accordingly, in contrast to
eucapnic OSA, patients with stable OHS fre-
quently complain of dyspnea and may have signs
of cor pulmonale including lower extremity edema.

Patients with OHS are often morbidly obese and
the great majority have associated OSA, frequently
in the severe range of AHI, and the combination
typically results in profound oxygen desaturation
during sleep. As a consequence the majority of
OHS patients exhibit classic symptoms of OSA,
including loud snoring and excessive daytime
sleepiness. There are more quantitative rather than
qualitative differences to OSA patients such as
higher BMI, higher AHI, and greater impairment
in pulmonary function (Balachandran et al. 2014).
The severity of objectively measured daytime
sleepiness is associated with the proportion of
REM sleep hypoventilation which is another clas-
sical feature of OHS. Daytime hypercapnia is the
distinguishing feature of OHS that separates it from
simple obesity and OSA. SDB, although not cur-
rently included in the basic definition of OHS, is a
typical finding and encompasses frank OSA or
obstructive hypoventilation, with a small percent-
age also presenting with nonobstructive
hypoventilation which is most pronounced in
rapid eye movement (REM) sleep (Simonds 2013).

Morbidity
OHS is typically characterized by chronic sys-
temic low-grade inflammation and associated
inflammatory changes in the adipose tissue. OHS
patients have a higher level of high-sensitivity
C-reactive protein, a higher level of the
pro-atherogenic chemokines, and lower
adiponectin levels compared with age- and
BMI-matched eucapnic control subjects (Borel
et al. 2009). Accordingly, OHS patients exhibited
higher insulin resistance and impaired glucose
tolerance. Endothelial dysfunction, a key early
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feature in the pathogenesis of atherosclerosis and
a strong predictor of incident cardiovascular
events, was also more impaired in OHS patients
compared with eucapnic obese patients (Borel
et al. 2009). Taken together, these results support
a particular cardiovascular and metabolic risk
associated with OHS and strengthen the results
of observational cohort data that demonstrate a
higher prevalence of cardiovascular and meta-
bolic diseases in OHS (Jennum and Kjellberg
2011). These cardiometabolic comorbidities also
represent the main factor predicting mortality in
patients with OHS treated by NIV (Borel
et al. 2013).

There is emerging evidence of an important
role for leptin in the pathogenesis of OHS, and
leptin deficient ob/ob mice exhibit OHS with
replacement of leptin in these mice, restoring ven-
tilatory function (Tankersley et al. 1998). Obesity
in humans is characterized by high leptin levels
but with central leptin resistance. Circulating
levels of leptin are higher in OHS than in
weight-matched controls and have been reported
as a better predictor of hypercapnia than the
degree of adiposity (Phipps et al. 2002).

Mortality
Beyond the additional burden of comorbidities
compared with eucapnic obese individuals, OHS
patients have a higher mortality risk, particularly
when not treated with NIV (Chau et al. 2013).
Nowbar and coauthors reported a mortality rate
of 23 % in OHS patients 18 months after hospital
discharge, compared with 9 % in eucapnic obese
patients (Nowbar et al. 2004). OHS patients had a
hazard ratio for mortality of 4.0 after adjustment
for age, gender, BMI, and other confounders. In
observational cohorts, mortality rate was reduced
when OHS patients were treated with NIV (Pépin
et al. 2012) but may still be higher than long-term
mortality rates observed in large cohorts of obese
patients without OHS.

Treatment
Since the majority of patients with OHS also dem-
onstrate OSA, continuous positive airway pressure
(CPAP) is a suitable first-line therapy for many

such patients. CPAP is effective in reversing noc-
turnal hypoventilation in most patients with mainly
OSA-related hypoventilation, although some
exhibit continuing hypoventilation despite CPAP
and thus require noninvasive positive pressure ven-
tilation (NIV). Furthermore, NIV is the treatment
modality of first choice for patients with
nonobstructive hypoventilation (Carrillo
et al. 2012; Piper and Grunstein 2011). Weight
loss in conjunction with increased physical activity
should be promoted in all patients. However, this
process takes time, even with bariatric surgery, and
there should not be a delay in initiating positive
airway pressure therapy. Failure to recognize OHS
and to initiate effective treatment is associated with
increased hospitalization rates and reduced sur-
vival. Untreated OHS patients have an 18-month
mortality of 23%which falls to 3 % in NIV-treated
patients (Pérez de Llano et al. 2005). OHS has
become the major indication for home ventilator
support in many countries and is most effective
when delivered with a mandatory backup fre-
quency (Priou et al. 2010).

4 Cross-References

▶Body Composition Assessment
▶Endocrine Disorders Associated with Obesity
▶Kidney Disease in Obesity and Metabolic
Syndrome

▶Linking Obesity, Metabolism, and Cancer
▶Metabolic Syndrome, GERD, Barrett’s
Esophagus

▶Nonalcoholic Fatty Liver Disease
▶Obesity and Cardiac Disease
▶Obesity, Metabolic Dysfunction, and Dementia
▶Obstructive Sleep Apnea and Other Respiratory
Disorders in Obesity

▶Overview of Metabolic Syndrome
▶Reproductive Disorders and Obesity in Males
and Females and Focus on the Polycystic Ovary
Syndrome

▶ Sarcopenic Obesity
▶Type 2 Diabetes: Etiology, Epidemiology, Path-
ogenesis, Treatment
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Abstract
Obesity can disrupt the fertility processes in
both men and women by various mechanisms,
chiefly including hormonal derangements on
sex steroids and a dysmetabolic milieu charac-
terized by an insulin-resistant state. In addition,
low-grade inflammation and a consequent
lipotoxic state may impair structural and func-
tional mitochondrial physiology, thereby
oocyte function and sperm quality in women
and men, respectively. In women, obesity may
also impair endometrial receptivity that
became an important factor explaining the fail-
ure of assisted reproductive technologies in
these women. The polycystic ovary syndrome
(PCOS) is the commonest cause of anovula-
tory infertility in women. Obesity tends to
favor the development of PCOS in adolescent
girls and worsens the phenotype of adult
affected women, by increasing the
hyperandrogenic state and ovarian dysfunc-
tion. Moreover, it plays a major role in the
development of a dysmetabolic profile. In
turn, obesity reduces the potential efficacy of
medical treatments of infertility in most of
these women. Weight loss may conversely
favor ovulation rates and pregnancy rates in
these women. This short review summarizes
the most important aspects of obesity-related
infertility in both men and women, including
those affected by PCOS.
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1 Introduction

Obesity is a multifactorial disorder that results
from a combination of physiological, genetic,
and environmental inputs. Obesity is associated
with adverse health consequences, including type
2 diabetes mellitus (T2DM), cardiovascular dis-
eases, musculoskeletal disorders, obstructive
sleep apnea, different types of cancer, and infer-
tility. Body mass index and waist circumference
are two key measures of total body fat and its
distribution. Worldwide, the prevalence of sub-
jects with a body mass index (BMI) � 30 kg/m2

is around 20–30 %, with some difference
according to geographical area, and much more
high rates are expected to develop in the next
decades (Ogden et al. 2012).

Infertility, defined by the WHO as the
inability to achieve a clinical pregnancy despite
12 months of regular unprotected intercourse, is
estimated to affect 48.5 million couples world-
wide (Mascarenhas et al. 2012). The prevalence
of infertility in the USA is estimated between
12 % and 15 % and the male factor contributes
in 20–50 % of couples (Louis et al. 2013). In this
chapter, we analyzed the role of obesity on infer-
tility in both sexes.

2 Obesity and Altered
Testosterone Balance in Males

With increasing age in normal individuals, there is
a progressive decrease of both total and free tes-
tosterone but an increase in SHBG blood levels
(Feldman et al. 2002; Harman et al. 2001).
Starting from the third decade, aging is associated
with a 1–2 % per annum decrease on testosterone.
Notably, the impact of age per se in the decline of
testosterone seems to be more evident when obe-
sity is present. In fact, obesity in males is often
associated with a proportional decrease of

testosterone with increasing BMI (Zumoff
et al. 1990). Therefore, obesity is considered to
be an important predictor of low testosterone in
middle-aged and aging men (Mohr et al. 2006).
The association between obesity and low testos-
terone blood levels has been confirmed by cross-
sectional studies (Allan and McLachlan 2010).
Longitudinal studies have also confirmed these
findings, showing an inverse relationship between
total testosterone, sex hormone-binding globulin
(SHBG) levels, and free testosterone [calculated
by the Vermeulen formula, using the ratio
between testosterone and SHBG (Vermeulen
et al. 1971)] with BMI and waist circumference
(Derby et al. 2006).

The abdominal phenotype of obesity is specifi-
cally prone to develop metabolic alterations asso-
ciated with low testosterone levels, emphasizing
the phenotype of the dysmetabolic hypotestos-
teronemia as a potential target for prevention treat-
ments (Ding et al. 2007). It is worthy ofmentioning
for the purposes of this chapter that low testoster-
one and low SHBG blood levels in obese males
have been found in many studies and meta-
analyses as significantly important predictive risk
factors in the development of T2DM (Ding
et al. 2006, 2007, 2009). Notably, this risk is shared
by the combination of multiple systems including,
other than obesity and particularly the abdominal/
visceral phenotype, all other components of the
metabolic syndrome (Corona et al. 2011). The
strong association between low testosterone and
T2DM is further emphasized by the following:
(i) there is evidence that weight loss and lifestyle
modification in otherwise overweight or obese
individual reverts obesity-associated altered glu-
cose tolerance states and hypotestosteronemia
(Corona et al. 2013); (ii) available data clearly
support the concept that testosterone treatment
may significantly improve glycometabolic control
as well as fat mass in patients with altered glucose
tolerance states including T2DM (Allan 2014).

Different mechanisms can be considered to be
responsible for the association between obesity
and infertility, specifically including low testos-
terone levels, altered spermatogenesis, and erec-
tile dysfunction. Notably, it is worth mentioning
that plasma androgen or estrogen levels are strong
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correlates of adipose tissue steroid content both in
the omental and subcutaneous fat depots; how-
ever, regional differences may be observed.
Androgen concentration differences in omental
versus subcutaneous adipose tissue suggest a
depot-specific impact of these hormones on adi-
pocyte function and metabolism (Bélanger
et al. 2006). Moreover enlarged subcutaneous
and visceral fat increases the peripheral conver-
sion of testosterone to estradiol by an increased
aromatase activity that is promoted by insulin and
leptin excess (Hammoud et al. 2008). The
increase of estrogen levels may in turn inhibit
the hypothalamic-pituitary-gonadal axis causing
hypogonadotropic hypogonadism. Indirect evi-
dence comes from studies showing that clomi-
phene citrate (CC) and aromatase inhibitor
treatment may restore normal testosterone levels
in dysmetabolic hypotestosteronemic obese men
(Chua et al. 2013; Wiehle et al. 2014; Raman and
Schlegel 2002). In addition, there are studies
showing that insulin and leptin excess per se
may contribute to reduce the amplitude and
pulsatility of the gonadotropin-releasing hormone
(GnRH) leading in turn to a decrease of both the
follicle-stimulating hormone (FSH) and
luteinizing hormone (LH) release from the pitui-
tary, with the participation of the inhibiting action
of Kiss neurons (Vermeulen et al. 1993; George
et al. 2010). Another factor responsible for low
testosterone in obese men is represented by low
hepatic synthesis and circulating blood levels of
the carrier protein of major androgens SHBG, that
is, largely due to the inhibiting activity of high
circulating insulin, the product of a whole body
insulin resistance state (Ramlau-Hansen
et al. 2010). In fact, low SHBG in obese men
directly correlates with low testosterone levels
(Cooper et al. 2015). A potential role of increased
generation of cortisol due to an increased activity
of 11β-hydroxysteroid dehydrogenase type
1 (11βHSD-1) activity and/or a reduced activity
of 5α and 5β reductase in the visceral fat has been
found to contribute to the decrease of circulating
testosterone (Bélanger et al. 2006). High leptin
levels, which characterize obesity, may also neg-
atively affect testosterone production in the testis
(Isidori et al. 1999). Finally, recent findings

support a potential role of low insulin-like pep-
tide-3 (INSL3) levels, a peptide representing a
functional biomarker of gonadal androgen pro-
duction (Foresta et al. 2009).

3 Testosterone Supplementation
Improves Obesity and the
Metabolic Syndrome in Men

Since hypotestosteronemia has been implicated in
the pathogenesis of the metabolic syndrome, it is
tempting to speculate that affected men may ben-
efit from testosterone supplementation therapy.
Many studies support the efficacy of testosterone
replacement therapy in dysmetabolic obese men.
It is important to outline that this treatment should
be considered only for men with a clear evaluation
of hypotestosteronemia (possibly measured by
very sensitive assays) associated with chronic dis-
orders (obesity and the metabolic syndrome) and
that benefits as well as risks potentially related to
overtreatment should be taken into consideration
(Lin et al. 2008; Bhasin et al. 2010). Available
randomized controlled trials (RCTs) assessing the
effect of testosterone therapy on insulin resistance
yielded mixed findings (Kelly and Jones 2014),
with some studies reporting consistent metaboli-
cally favorable changes in body composition
(reduced visceral fat and increased muscle mass)
and decreasing measures (surrogate markers) of
insulin resistance, although these findings have
been found to achieve significant evidence only
in trials longer than 6 months (Dandona and
Dhindsa 2011). A recent systematic review
assessed the metabolic effects of testosterone
replacement therapy on hypotestosteronemic
men with T2DM and found that this treatment
improved glycemic control and decreased triglyc-
eride levels in most of these patients (Dandona
and Dhindsa 2011; Allan 2014). Overall,
testosterone-induced metabolic changes appear
less pronounced than would be expected from
successful lifestyle programs and metformin or
glitazone treatment, although large trials that
directly compared testosterone therapy to lifestyle
intervention and/or insulin sensitizers are still
lacking (Cai et al. 2014). This obviously
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emphasizes the need for long-term RCTs in well-
selected patients. In addition, a prerequisite for
appropriate analyses of the data would be the
availability of age-related reference values, mea-
sured by appropriate methodology, such as liquid
chromatography coupled with mass spectrometry
(LC-MS/MS).

The consequences of male hypogonadism are
routinely attributed solely to androgen deficiency,
and the potential role of the concomitant alteration
in the estrogen balance is often ignored. However,
it is known that estrogen deficiency may have
important effects on body composition and metab-
olism as documented by a seminal recent study
(Finkelstein et al. 2013). In fact, it found that the
amount of testosterone required to maintain lean
mass, fat mass, and strength varied widely in men
and that androgen deficiency accounted for
decreases in lean mass, muscle size, and strength,
whereas estrogen deficiency primarily accounted
for increases in body fat. These findings may sup-
port the need for and individualized approach in
evaluating and managing long-term treatment not
only in classical hypogonadic states but specifi-
cally in obese dysmetabolic men with low testos-
terone blood levels.

4 Altered Sperm Count
and Function and Erectile
Dysfunction (ER) in Obese Men

Apart from low testosterone levels, other factors
should be considered to explain the association
between obesity and infertility, such as altered
sperm count and function and erectile dysfunction.
Data from three epidemiologic studies [the Agri-
cultural Health Study (Sallmén et al. 2006), the
Danish National Birth Cohort (Olsen et al. 2001),
and the NorwegianMother and Child Cohort Study
(Nguyen et al. 2007)] indicate that BMI rates of
infertility in males tend to increase too. The nega-
tive effect of obesity on infertility has been also
found in male patients undergoing assisted repro-
ductive technologies (ART). In fact, some study
found a decrease in sperm concentration in over-
weight/obese men that was associated with a
decreased rate of pregnancy with increasing

paternal BMI (Bakos et al. 2011). However, not
all studies confirmed these findings (Colaci
et al. 2012). Notably, it should be considered that
low testosterone blood levels in obese
dysmetabolic men can be associated with altered
sperm count. In the last two decades, different
studies have documented a decline in sperm param-
eters over time (Carlsen et al. 1992). Recent data
have shown an inverse relationship between male
BMI and waist circumference with low sperm con-
centration and count (Eisenberg et al. 2014). These
findings have been also confirmed in a recent meta-
analysis (Sermondade et al. 2013). In addition,
obesity has been found to be negatively associated
with other sperm parameters, specifically sperm
mobility, morphology, and DNA fragmentation
(Chavarro et al. 2010). These alterations have
been suggested to be related to an increased oxida-
tive stress. In fact, enlarged visceral fat has been
found to be characterized by the presence of mac-
rophages and other inflammatory cells, secreting
inflammatory cytokines, such as tumor necrosis
factor-α (TNF-α) and interleukins (IL-1, IL-6,
IL-18). These factors may locally favor low testos-
terone levels by paracrine and autocrine mecha-
nisms. In addition, they may act distantly
(by blood circulation) by increasing oxidative
stress and reactive oxygen species (ROS), leading
to increased DNA damage of spermatozoa and
reducing their ova-penetrating ability (Aitken and
Baker 2006). Insulin resistance has also been neg-
atively associated with sperm quantity and quality,
and metformin treatment has been shown to
improve sperm parameters (Morgante et al. 2011).
A role of altered lipid profile has also been associ-
ated with low semen volume (Schisterman
et al. 2014). A potential explanation comes from
studies showing that excess cholesterol can precip-
itate into the sperm membrane, thereby altering the
head morphology and inhibiting acrosomal reac-
tion (Yamamoto et al. 1999). In addition, it has
been found that excess ROS production may
induce fragmentation of spermatozoa nuclear and
mitochondrial DNA, thereby favoring aberrant
recombination and/or defective packing (Shukla
et al. 2011). The altered spermatogenesis process
could also depend on raised intratesticular temper-
ature, favored by the enlarged fat (in the suprapubic
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region and in the medial thighs) around testicles
and the spermatic cord. This is supported by the
findings of autoptic studies demonstrating the pres-
ence of scrotal lipomatosis in the majority of men
with idiopathic infertility (Shafik and Olfat 1981a).
The potential role of local fat excess has been
confirmed by the efficacy of scrotal lipectomy
and suprapubic lipectomy in improving semen
quality and pregnancy rate of the couple in a
group of 102 infertile men with lipomatosis (Shafik
and Olfat 1981b). Finally, it should be considered
that low inhibin B production rate (Chavarro
et al. 2010), a marker of Sertoli cell function, may
partly explain the impaired spermatogenesis in the
presence of obesity (Pauli et al. 2008).

Erectile dysfunction (ED) should be consid-
ered another potential factor associated with
male infertility, particularly in dysmetabolic
obese men. In fact, the risk of erectile dysfunction
tends to increase with increasing BMI (Corona
et al. 2010). Causative factor responsible for ED
in obese men may be related not only to the
presence of low testosterone but also to the nega-
tive effects of proinflammatory cytokines (partic-
ularly IL-6, TNF-α), which are able to increase
endothelium ROS and reduce nitric oxide and
their vasodilatory effects (Sullivan et al. 1999;
Tamler 2009). Several recent review articles
published in the last years may help the reader in
understanding the pathophysiological aspects and
psychological correlates of ED in obese men
(Esposito and Giugliano 2011; Kolotkin
et al. 2012; Shamloul and Ghanem 2013).

5 Obesity and Infertility
in Women

The association between obesity and infertility
was first described by Hippocrates in the essay
to Scythians: “. . .The girls get amazingly flabby
and podgy. . ..and fatness and flabbiness are to
blame. The womb is unable to receive the semen
and they menstruate infrequently and little. . .”
(Lloyd 1978). The adverse effects of obesity on
reproductive function begin early in life. Child-
hood and adolescent obesity may modulate timing
of puberty and reproductive maturation and is

linked to earlier puberty onset in girls (Burt
Solorzano and McCartney 2010). Obese women
are three times more likely to present with infer-
tility compared to women of normal BMI (Moran
et al. 2011a). Young obese women are less likely
to conceive within 1 year of unprotected inter-
course compared with nonobese women with a
linear relationship between BMI and prolonged
time to conception (Hassan and Killick 2004). In
particular, visceral abdominal fat has a significant
association with infertility with a reduction in the
probability conception by 30 % per cycle for
increased waist/hip ratio (WHR) (Zaadstra
et al. 1993). The obesity contributes to infertility
via several mechanism altering hormone secre-
tion, ovulation, menstrual cycles, oocyte develop-
ment, endometrial receptivity, and embryo
development (Pasquali et al. 2007). Obesity
causes important alteration on sex hormone secre-
tion and metabolism. In fact, it was associated
with reduced SHBG levels that were inversely
related to BMI (Pasquali et al. 1990). In addition,
the amount of visceral adipose tissue is signifi-
cantly and inversely related to SHBG (Pasquali
et al. 1990). The decrease of SHBG levels may in
turn promote an increase in free sex hormone
levels in particular testosterone, dihydrotestoster-
one, and androstenediol that have been found to
be higher than normal in women with visceral
adiposity and high WHR (Pasquali and Vicennati
2001). Moreover, obesity is associated with
increased peripheral androgen aromatization
(Kirschner et al. 1990), and pituitary
hypersecretion of LH that, in turn, may favor
ovarian androgen overproduction. In female obe-
sity, it has also been observed that a relative over-
activity of the hypothalamic-pituitary-adrenal
(HPA) axis (Pasquali and Vicennati 2000) and a
higher number of glucocorticoid receptors are
present in abdominal adipocytes than subcutane-
ous adipocytes, thereby promoting an increased
intracellular cortisol action (Rebuffé-Scrive
et al. 1985). Besides this, in the visceral adipose
tissue, an impaired activity of 11βHSD-1 that
converts cortisol in cortisone and enhanced activ-
ity of 5α-reductase that metabolizes cortisol into
its inactive tetrahydroderivates has been described
(Tomlinson et al. 2004). By these ways insulin
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resistance can be amplified (Masuzaki
et al. 2001). The compensatory hyperinsulinemia
associated with the insulin-resistant state has also
a primary role in decreasing hepatic synthesis of
SHBG and in increasing the availability of free
androgens. High circulating insulin levels may
also synergize with LH in the ovaries to promote
thecal androgen synthesis and to reduce
folliculogenesis (Pasquali and Gambineri 2013).
This insulin-dependent ovarian derangement is
additionally amplified by the increased activity
of the insulin growth factor(s) (IGFs) through a
decrease of the IGF-binding protein 1 (IGFBP1).
In women with simple obesity, these hormonal
alterations may therefore lead to a condition of
relative functional hyperandrogenism (Pasquali
2006).

In the visceral adipose tissue, hyperinsulinemia
promotes the differentiation of preadipocytes into
adipocytes, therefore favoring its hypertrophic
development (Ali et al. 2013). Hypertrophic adipo-
cytes are in turn susceptible to inflammation, apo-
ptosis, fibrosis, and release of FFA and become
more resistant to the antilipolytic effects of insulin
(Wajchenberg 2000). This process is mediated by
infiltrated macrophages that are able to recruit
inflammatory chemokines secreted via paracrine
and autocrine functions from hypertrophic adipo-
cytes (Suganami et al. 2012). In fact, the hypertro-
phic adipocyte-macrophage complex releases a
greater amount of inflammatory markers such as
free fatty acids (FFA), IL-6, and TNF-α, all factors
involved in the local worsening of insulin resis-
tance (Fain et al. 2008). Furthermore, hypertrophic
adipocytes secrete higher amounts of leptin,
resistin, visfatin, retinol binding protein-4
(RBP4), and decrease adiponectin, all factors addi-
tionally contributing to insulin resistance
(Comninos et al. 2014).

The reproductive axis of obese women can be
deeply disrupted in the presence of this
dysmetabolic milieu. For example, even an
increase of ghrelin levels has been found to disrupt
the reproductive processes (Repaci et al. 2011).
The low-grade inflammation state may play a
major role in altering oocyte physiology. In fact,
it is responsible for increased reactive oxygen spe-
cies (ROS) which may impair structural and

functional mitochondrial not only of hepatocytes,
β cells, and muscular fibers but also of oocytes
(Grindler and Moley 2013). In fact, they favor
lipotoxic state, which is characterized by the fact
that non-adipose cells may accumulate triglyceride
droplets and FFA intracellularly, causing in turn
important damages to mitochondria and endoplas-
mic reticulum (ER). Specifically, high levels of
FFA in the mitochondria cause the release of ROS
that in turn may destroy cell membrane and disrupt
the energy production machinery. High ROS
amounts into the oocytes impact the function of
ER by preventing the transport and secretion of
proteins which accumulate within the ER, thereby
worsening the membrane stress. Oocytes that have
matured in high dose palmitic acid environment
have been found to be characterized by signifi-
cantly altered mitochondrial function
(Wu et al. 2011), impaired cumulus expansion,
impaired nuclear maturation and fertilization, and
blastocyst development (Aardema et al. 2011). In
obese women, the follicle fluid bathing the
cumulus-oocyte complex contains high levels of
triglycerides and FFA (Robker et al. 2009) and high
expression of ER stress marker genes (Robker
et al. 2011) that are associated with poor cumulus
cell morphology and with a trend poorer IVF out-
comes (Jungheim et al. 2011). Very recently, it has
been reported that abdominal obesity can induce
local and systemic oxidative stress in both women
with the polycystic ovary syndrome (PCOS) and
non-PCOS women, as documented by increased
levels of lipid peroxide in serum and follicular
fluid (Nasiri et al. 2015). Studies inherent in the
effects of obesity and ART outcomes reported a
significant increase in the dose of gonadotropin
required for ovarian stimulation of obese women,
lower peak estradiol levels, reduced number of
large follicles, and increased cancelation rates.
Moreover, overweight women have significantly
fewer oocytes and these were significantly smaller
than oocytes from nonobese women (Zhang
et al. 2015).

Obesity also affects women’s fertility by
impairing endometrial receptivity, which defines
the ability of the endometrium to undergo changes
that will allow the blastocyst to attach, penetrate,
and induce changes in the stroma (Rashid
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et al. 2011). Glucose metabolism has been shown
to be important for the preparation of the endo-
metrium for embryo implantation. In fact, the
decidualization process is dependent on increas-
ing expression of glucose transporters (GLUTs)
(Frolova et al. 2009), in particular solute carrier
family 2 (facilitated glucose transporter), member
2, an insulin-dependent SLC2A family member
(Frolova and Moley 2011a). Insulin and IGF-1
receptor promote the translocation of SLC2A to
the cell surface in insulin-sensitive tissues
(Frolova and Moley 2011b). In addition to
hyperinsulinemia, the presence of obesity nega-
tively interplays with endometrial receptivity
through androgen excess, as occurs in women
with PCOS. In fact, androgen can interfere with
endometrial receptivity by different mechanisms.
High testosterone levels have been shown to
reduce expression of homeobox A10 (HOXA10)
that belongs to the homeobox genes essential for
endometrial differentiation and receptivity
(Cermik et al. 2003). Moreover, testosterone
excess reduces the expression of Wilms
tumor 1 (WT1), thereby affecting endometrial
decidualization (Gonzalez et al. 2012). Finally, it
has been also shown that high levels of dehydro-
epiandrosterone (DHEA) may reduce endometrial
decidualization by inhibiting the glucose flux
through the pentose phosphate pathway (Frolova
et al. 2011). A clinical study involving more than
9500 ovum donation cycles from female donors
with normal BMI has shown a significantly poorer
outcome in terms of implantation, pregnancy, and
clinical pregnancy rates in obese recipient women
(Bellver et al. 2013). This indirectly supports the
negative role of obesity on endometrial receptivity
and, in general, on ART outcomes.

6 Obesity, Polycystic Ovary
Syndrome, and Infertility

PCOS is a common reproductive and endocrino-
logic disorder characterized by hyperandrogenism,
polycystic ovaries, and oligo-anovulation. The
prevalence varies depending on which criteria are
used to make diagnosis and could involve approx-
imately 6–8 % of women in reproductive age when

Rotterdam criteria were used (Rotterdam ESHRE/
ASRM-Sponsored PCOS Consensus Workshop
Group 2004). Irregular menses commonly
observed in PCOS include oligo-amenorrhea and
prolonged erratic menstrual bleeding. However,
30 % of PCOS women have normal menses.
More than 80 % of women presenting with symp-
toms of androgen excess have PCOS. Anovulatory
infertility affects more than half of the women
with PCOS.

A history of weight gain often precedes the
development of clinical features of PCOS, partic-
ularly during the adolescent years. Obesity not
only identifies the preexisting PCOS phenotypes
but also can worsen the hyperandrogenic state and
insulin resistance, therefore impairing the effec-
tiveness of infertility treatments (Conway
et al. 2014). The prevalence of obesity in PCOS
women is relatively high, often exceeding that
observed in the control non-affected population,
although some recent studies have suggested that
these findings may not reflect true prevalence,
described by the few epidemiological studies
available, rather a selection bias in evaluating
clinical cohorts derived by populations attending
specialized centers for treatment of this disorder.
In women with PCOS, elevated levels of
Antim€ulleran Hormone (AMH) appear to be an
optimal clinical biomarker of ovarian dysfunction
and low fertility (Pierre et al. 2013). Women with
AMH >10 ng/ml show a significant correlation
with the more severe phenotype of PCOS, includ-
ing both hyperandrogenism and severe oligo-
amenorrhea (Tal et al. 2014). Another typical fea-
ture of PCOS is an increased frequency and ampli-
tude of LH pulsatile secretion that refers to an
abnormal GnRH secretion. The increase hypotha-
lamic and pituitary drive may in turn be responsi-
ble for overproduction of androgens by the
ovarian theca cells (Blank et al. 2009). In addition,
hyperandrogenemia induces a decrease in feed-
back sensitivity to both estradiol and progesterone
in gonadotropic hypothalamic cells, reinforcing
GnRH and LH hypersecretion (Burt Solorzano
et al. 2012). This represents the first of many
self-perpetuating pathophysiologic cycle in
which hyperandrogenemia plays a pivotal role in
the development and progression of PCOS, while
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simultaneously warranting the presence of the
clinical manifestations. The constant growth of
follicles, along with nonselection of a dominant
unit, leads to the hyperstimulation of several of
these structures which maintains all the character-
istic hormonal imbalances. Insulin resistance and
compensatory hyperinsulinemia contribute to
impaired ovarian folliculogenesis. The prevalence
of this condition in PCOS ranges from 50 to 70 %
and occurs independently to obesity; however, the
effect of obesity on insulin resistance is additive to
that of PCOS (Diamanti-Kandarakis and Dunaif
2012). A specific abnormal pattern of insulin
receptor phosphorylation, namely, increased ser-
ine phosphorylation and reduced tyrosine phos-
phorylation, appears to be responsible for insulin
resistance in PCOS (Dunaif et al. 1995). Insulin
excess may also play a role in the development of
the typical increased amplitude and frequency of
GnRH and LH pulse secretion seen in PCOS (Kim
et al. 2005). Interestingly, insulin excess may also
indirectly enhance hypothalamic corticotropin-
releasing hormone (CRH) secretion and appears
to augment adrenal cortex sensitivity to adreno-
corticotropic hormone (ACTH) stimulation with
increased adrenal androgen secretion (Alesci
et al. 2001). It has also been demonstrated that in
the ovary insulin cooperates with LH to increase
androgen synthesis through a specific activation
of the steroidogenic pathways, chiefly the
17-hydroxylase/17,20-lyase (CYP17A1) activity
(Jamnongjit and Hammes 2006). Studies on the
role of insulin on ovarian steroidogenesis have
also involved an alteration in inositol
phosphoglycan signaling that seems to be able to
potentiate the steroidogenic activity in thecal cells
(Nestler et al. 1998). All the effects on ovarian
steroidogenesis by insulin are clearly amplified in
the presence of obesity, particularly the abdominal
phenotype, due to the significantly higher insulin-
resistant state that inversely parallels higher circu-
lating insulin blood levels (Morales et al. 1996).

If insulin resistance may be responsible for the
hyperandrogenic state, the opposite is also true.
Hyperandrogenemia per semay in fact impair insu-
lin sensitivity (Gambineri et al. 2002). This may be
mediated by the upregulation of β3 adrenergic
receptors and hormone-sensitive lipase expression

in visceral adipose tissue (VAT) through testoster-
one and dehydroepiandrostenedione (DHEA) sig-
naling (De Pergola 2000), which modify the
lipolytic activity and favor the release of FFA.
This increase in FFA availability causes functional
and structural changes in hepatocytes and skeletal
myocytes, with the accumulation of metabolites
from the long-chain FFA re-esterification pathway,
including acyl-CoA and diacylglycerol. In turn,
these molecules can activate protein kinase C
(PKC), a serine/threonine kinase which is widely
accepted as pivotal for the mechanisms underlying
insulin resistance, particularly through serine phos-
phorylation of IRS-1 (Boden 2011). In PCOS,
androgen excess also appears to modify metabolic
architecture and functionality in skeletalmuscle, by
decreasing the amount of type I muscle fibers,
which are highly oxidative and insulin sensitive,
and increasing the amount of type II fibers, which
are glycolytic and less sensitive, as well as decreas-
ing expression of glycogen synthase (Corbould
2007). Further mechanisms including androgen-
driven proinflammatory cytokine secretion from
VAT and androgen-induced interference of insulin
signaling still remain poorly characterized. In the
adipocytes, testosterone appears to induce serine
phosphorylation of the insulin receptor substrate-1
(IRS-1), which reflects on inhibition of the meta-
bolic effects of insulin accompanied by normal
mitogenic signaling (Corbould 2007). A direct
proof of the role of the adipose tissue is that an
obesogenic diet with high lipid and low fiber intake
can produce a hyperandrogenism by intake-
induced hyperinsulinemia. Recently, advanced
glycation end products (AGEs)which are cytotoxic
metabolites derived from disrupted carbohydrate
metabolism that may be exogenously obtained
from a myriad of food typical of Westernized
diets (Diamanti-Kandarakis et al. 2007). AGE
deposition in the ovarian tissue induces oxidative
stress and aberrant structure modification due to
molecule cross-linking, leading to damage of all
ovarian cell types. Hyperandrogenemia appears to
inhibit glyoxalase I activity, which is an important
enzymatic scavenging system for 2-oxoaldehydes,
including major precursors of AGEs, thereby exac-
erbating the deleterious effects of AGE deposition
in the ovaries, which impair, in turn, the
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reproductive function (Kandaraki et al. 2012).
Finally, as reported above, the low chronic
inflammation state promoted by the visceral adi-
pose tissue hypertrophy has a pivotal role in deter-
mining insulin resistance and associated
hyperandrogenemia in PCOS (Spritzer
et al. 2015). Overall, these aspects are emphasized
by the presence of obesity, supporting its role in
infertility in affected women.

7 Obesity, Ovulation Induction,
and ART’s Outcomes in PCOS

Weight loss is recommended as first-line therapy
for the management of infertility in overweight
and obese women with PCOS. Observational
studies indicate that weight loss of 5–10 % can
increase ovulation and pregnancy rates (Homburg
2003). This has particular relevance because
obese PCOS women are also characterized by an
increased rate of miscarriages (Metwally
et al. 2008) and the development of pregnancy
complications, including, among others, gesta-
tional diabetes and hypertension/preeclampsia
(Wolfe 1998). Changes in dietary behaviors have
been found to be effective in improving fertility
rates in overweight and obese women with PCOS
(Chavarro et al. 2007; Moran et al. 2011). These
advantages have been reported even when life-
style changes are planned prior to ART treatment
(Moran et al. 2011b; Sim et al. 2014; Awartani
et al. 2012). In massively obese PCOS women,
bariatric surgery could be an effective option,
since it has been shown that it may restore ovula-
tion and normal cycles in the short time (Escobar-
Morreale et al. 2005), favor pregnancy rates, and
additionally reduce pregnancy complications
(Skull et al. 2004; Dixon et al. 2005; Patel
et al. 2007; Merhi 2007; Sim et al. 2014).

Obese women with PCOS have also a reduced
response to fertility treatments including clomi-
phene citrate (CC) (Imani et al. 1999), gonadotro-
pins (Balen et al. 2006), and laparoscopic ovarian
diathermy (Gjønnaess 1994). CC is the drug of first
choice for ovulation induction in these women
(Legro et al. 2013). CC is a partially selective
estrogen receptor modulator, and its antiestrogenic

activity at the hypothalamus induces a change in
GnRH pulse frequency leading to increased release
of follicle FSH from the pituitary gland. The ovu-
lation rate with CC ranges from 70–85% per cycle,
while the cumulative live birth rate ranges from
50 to 60 % for treatment up to six cycles (Balen
2013). If ovulation cannot be induced at doses of
150 mg/day, the patient is considered to be CC
resistant, and failure to achieve pregnancy after
six ovulatory cycles is classified as a CC failure.
In 2008, the ESHRE/ASRM consensus statement
concluded that metformin is less effective than CC
in inducing ovulation and that there was no advan-
tage in adding metformin to CC (Thessaloniki
ESHRE/ASRM-Sponsored PCOS Consensus
Workshop Group 2008). This recommendation
has been recently supported by the Endocrine Soci-
ety Guidelines on the diagnosis and treatment of
PCOS (Legro et al. 2013). However, in adult
women with PCOS, there are data supporting that
in many cases pretreatment with metformin may
favor ovulatory response to clomiphene citrate
(Pasquali 2015). In fact, in a recent multicenter,
randomized, double-blind, placebo-controlled
study, metformin increased live birth rates com-
pared to placebo (41.9 % versus 28.8 %,
P = 0.014) with the most beneficial effect seen in
obese women (Morin-Papunen et al. 2012). These
results are consistent with another study that eval-
uated pretreatment with metformin for 3 months
before in vitro fertilization/intracytoplasmic sperm
injection (IVF/ICSI) (Kjøtrød et al. 2011). Again, a
recent meta-analysis showed that metformin
administration in addition to gonadotropin treat-
ment for ovulation induction in PCOS increases
the live birth and pregnancy rate and reduces
serum estrogen levels improving endometrial
receptivity (Palomba et al. 2014).

Aromatase inhibitors have been advocated for
their efficacy in women resistant to CC (Mitwally
and Casper 2001). They act through an inhibition
of aromatase activity, thereby reducing estrogen
production rates from androgenic substrates. This
releases the hypothalamus from negative feed-
back, allowing for an increase in the release of
FSH (Casper and Mitwally 2011). Letrozole, the
most commonly used aromatase inhibitor for ovu-
lation induction, is characterized by putative
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advantages including its lack of antiestrogenic
effects on the endometrium, shorter half-life
when compared to CC, and a higher rate of
monofollicular ovulation (Pritts 2010). A recent
systematic review of RCTs and meta-analysis,
including nine studies and 1783 participants, con-
cluded that letrozole is associated with signifi-
cantly higher birth rates than CC is (OR 1.64,
95 % CI 1.32–2.04) (Franik et al. 2014). A more
recent large study demonstrated the superiority of
letrozole compared to CC as first-line treatment
for anovulatory infertility in women with PCOS
(most were overweight or obese) in achieving live
birth (Legro et al. 2014). There is however still
some concern about several aspects involving
letrozole use in infertile PCOS women, which
mainly relates to the following: (i) whether the
efficacy is similar in obese versus normal-weight
women, (ii) the opportunity to add a lifestyle
intervention plan in obese PCOS women, (iii) its
likely inefficacy on androgens, (iv) the lack of
definition of a called letrozole resistance, and
finally (v) the fetal risk. In fact, some potential
teratogenic and embryotoxic or fetotoxic activity
has been reported in animal models. Therefore,
further research is undoubtedly warranted in this
area (Palomba 2015).

Ovulation induction with gonadotropins and
laparoscopic ovarian drilling (LOD) are consid-
ered to be second-line therapies for ovulation
induction by the ESHRE/ASRM (Thessaloniki
ESHRE/ASRM-Sponsored PCOS Consensus
Workshop Group 2008). The goal of FSH admin-
istration for ovulation induction is the develop-
ment of a single follicle resulting in a singleton
live birth. Risks associated with ovulation induc-
tion include ovarian hyperstimulation syndrome
(OHSS) and multiple pregnancies. Because
women with PCOS are very sensitive to the
effects of FSH, a low-dose step-up protocol is
recommended (Thessaloniki ESHRE/ASRM-
Sponsored PCOS Consensus Workshop Group
2008). A recent study showed the efficacy of
low-dose step-up FSH protocol vs. CC in induc-
ing a higher number of pregnancy rate in the first
cycle, a higher cumulative pregnancy rate, and a
higher cumulative live birth rate (Homburg
et al. 2012). LOD is indicated for the treatment

of infertility in CC-resistant PCOS (Thessaloniki
ESHRE/ASRM-Sponsored PCOS Consensus
Workshop Group 2008). A study has shown that
a single treatment results in the establishment of
ovulatory menstrual cycles in 92 % of women and
pregnancy in 58 % (Gjönnaess 1984). LOD helps
to improve insulin resistance (Seow et al. 2007)
and ovarian androgen production as well as
increase the SHBG levels (Flyckt and Goldberg
2011). These improvements have been seen to last
in long-term follow-ups in 54 % of women 8–12
years after the procedure (Nahuis et al. 2011). Pre-
dictors of a poor response to LOD include a body
mass index of �35 kg/m2, serum testosterone
concentrations of �4.5 nmol/L, free androgen
index �15, and a duration of infertility of
3 years. Serum LH concentrations �10 IU/L at
baseline are associated with a significantly greater
likelihood of pregnancy (Amer et al. 2004).
Lower AMH levels (cutoff at 7.7 ng/ml) were
found to predict a higher chance of ovulation in
PCOS women after LOD (Amer et al. 2009).

The effect of female obesity on ART outcome
has been controversial by a large number of
confounding variables. Although some studies
suggested that women with BMI >25 kg/m2

require higher doses of gonadotropins to achieve
an adequate ovarian response and have lower preg-
nancy rates and higher miscarriage rates after ART,
the evidence regarding the effect of BMI on live
birth was weak (Maheshwari et al. 2007). Two
studies from SART CORS showed a reduction of
embryos, of clinical intrauterine pregnancy, of live
births, and of length of gestation with increasing
BMI (Luke et al. 2011a). The negative effect of
BMI on ART outcome was greater among women
<35 years than in women >35 years using autol-
ogous oocytes (Luke et al. 2011b). Also, the obe-
sity impacts negatively PCOS fertility in ART. A
recent study compared outcomes of IVF between
PCOS with BMI < 40 kg/m2 vs. PCOS with BMI
> 40 kg/m2 that had significantly lower pregnancy
rates (Jungheim et al. 2009). Obese PCOS women
consume higher amounts of gonadotropins and
have higher rates of miscarriage and ovarian
hyperstimulation syndrome (OHSS).

In vitro fertilization (IVF) is recommended as
third-line therapy for the management of infertility
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by the 2008 Thessaloniki ESHRE/ASRM-
Sponsored PCOS Consensus Workshop Group
(2008). Ovarian stimulation in women with PCOS
poses a particular challenge, as many of these
women exhibit exaggerated response, resulting in
an increased risk of ovarian hyperstimulation syn-
drome (OHSS) and multiple gestations. To reduce
these PCOS-related complications, a recent study
recommended the use of a GnRH antagonist proto-
col, which resulted in a decrease in the incidence of
OHSS as compared with GnRH agonists in PCOS
patients (Griesinger et al. 2006). As an alternative to
conventional IVF, one potentially useful interven-
tion involves immature oocyte retrieval with subse-
quent oocyte IVM. A recent meta-analysis showed
that IVM is a feasible option for subfertile women
with PCOS (Siristatidis et al. 2013). The implanta-
tion rate, miscarriage rate, and live birth rate in the
IVM cycles were comparable to those in the GnRH
agonist and GnRH antagonist cycles (Choi
et al. 2012). Finally, metformin treatment before
or during ART cycles has been found to increase
clinical pregnancy rates and to decrease the risk of
OHSS, particularly in obese PCOS women (Tso
et al. 2014).

8 Conclusions

Obesity and infertility are two conditions, often
associated with each other, involving a growing
number of men and women. Search for pregnancy
at least in some industrialized countries is increas-
ingly moving after 35 years because of the desire
for professional development, particularly in
women.We support the concept that, before apply-
ing assisted reproductive technologies, it would be
appropriate to try to eliminate other possible cofac-
tors such as excess body weight and/or hypotestos-
teronemia in men or hyperandrogenism in women.
Changes in lifestyle, insulin-sensitizing, and bar-
iatric surgery may be an initial alternative to ART,
because of their effects onweight loss and restoring
fertility. Additional targeted treatments should also
be performed according to individual needs, taking
into consideration that by reducing body weight,
their efficacy can be ameliorated in the short and
particularly in the long term.
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Abstract
Evidence is accumulating which suggests that
the current obesity epidemic may precede a
second epidemic of accelerated cognitive
decline, dementia, and Alzheimer’s disease
(AD). Obesity and the consumption of
obesogenic “Western”-style diets (high in sat-
urated fats and processed sugars) promote a
variety of metabolic derangements that can
have adverse effects on the brain and, subse-
quently, cognition. Here, we review evidence
which suggests that obesity and the other
components of the metabolic syndrome
(i.e., hypertension, gluco-dysregulation, and
dyslipidemia) promote cognitive decline and
increase one’s risk of developing dementia
and AD.We also review recent insights regard-
ing the role of blood-brain barrier dysfunction
and neuroinflammation as a mediator of these
relationships. Finally, we discuss the broader
implications of living in a society that pro-
motes cognitive impairment, highlighting two
particularly concerning possibilities: (1) that
Western diet-induced cognitive impairments
may, themselves, be as a risk factor for future
obesity and (2) that obesity in childhood may
be a risk factor for dementia in adulthood.
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Dementia and obesity are global health issues in
today’s society. The current prevalence of
Alzheimer’s disease (AD) is estimated at 44 mil-
lion and is predicted to double by 2030
(Prince 2014). This estimate increases by as
much as 9–14%when the predicted rise in obesity
is taken into account (Loef and Walach 2013;
Nepal et al. 2014). In this chapter, we review the
evidence linking cognitive impairment with obe-
sity and discuss the comorbid metabolic derange-
ments which might mediate this relationship. We
also discuss the implications of living in a society
that promotes cognitive impairment, highlighting
evidence which suggests that some cognitive
impairments may serve as independent risk fac-
tors for obesity.

1 Dementia and Cognitive
Impairment

Dementia and its most common cause,
Alzheimer’s disease, is associated with progres-
sive memory loss and deficits in higher-order con-
trol processes important for planning and carrying
out goal-directed behavior (“executive function”)
(Amieva et al. 2004). Patients with AD exhibit
loss of neurons and synapses, in addition to the
extracellular plaques and intracellular neurofibril-
lary tangles which are the hallmarks of AD. The
plaques consist of aggregated amyloid beta-
peptide (αβ) (alpha-beta), whereas the neurofibril-
lary tangles consist of insoluble tau aggregates.
Both αβ (alpha-beta) and tau have been implicated
in the etiology of AD-related cognitive impair-
ment, though the precise nature of this relation-
ship is not completely understood (Foley
et al. 2015).

The cognitive deficits associated with AD can
precede the onset of the disease by several years,
often being diagnosed as mild cognitive impair-
ment (MCI). MCI refers to modest but noticeable
deficits in memory, attention, and problem solv-
ing. These deficits are not so extreme that they
interfere with the activities of daily life. However,
these deficits tend to worsen with age, often
progressing to full-blown dementia and AD

within 5 years of initial diagnosis (Gauthier
et al. 2006). In this regard, MCI can be viewed
as a state of pre-dementia, and risk factors forMCI
can be considered to be risk factors for more
severe cognitive decline in late life.

Cognitive function is assessed using screen-
ing batteries which comprise a variety of tests
from different cognitive domains (i.e., “mem-
ory,” “attention,” “inhibition”). The relevance
of particular tests to certain domains and the
complications associated with interpreting their
results (e.g., should poor performance on 3/7
tests be considered evidence of meaningful
impairment?) are issues which have been
discussed in detail elsewhere (Rabbitt 1997).
For the purposes of this chapter, the terms deficit,
decline, and impairment are used to refer to any
observation of significantly lower performance
on a test of cognitive ability. However, we will
return to the issue of specificity later on in the
chapter when we discuss whether obesity is
related to certain types of cognitive deficits and
the implications of those deficits for future obe-
sity and dementia risk.

2 Diet-Induced Obesity
and Cognitive Impairment

Longitudinal and cross-sectional studies indicate
that obesity in early adulthood or in middle age
can increase one’s risk of later-life cognitive
impairment (for recent reviews, see Smith
et al. 2011; Elias et al. 2012b). Studies in
non-demented adults suggest that these impair-
ments are diverse, affecting performance across
several cognitive domains (Elias et al. 2003, 2005;
Nilsson and Nilsson 2009; Gunstad et al. 2010).
For instance, a large prospective study examined
whether participants’ self-reported BMI in midlife
(~50 years of age) was related to their perfor-
mance on cognitive tests administered when sub-
jects reached the age of 80+ years old. The authors
found that individuals who reported higher BMIs
in midlife exhibited deficits in a variety of cogni-
tive domains, including long- and short-term
memory, psychomotor speed, verbal ability, and
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spatial ability (Hassing et al. 2010). Another study
used a battery of 13 tests to derive a score of
general cognitive performance – they found that
having a higher BMI in midlife was associated
with not only poorer overall cognitive perfor-
mance but also with more rapid rates of cognitive
decline (Dahl et al. 2010).

Others have shown that the magnitude of
age-related cognitive decline can be predicted by
the lifetime duration of that individuals’ obesity.
In a large UK cohort study that examined the
relationship between lifetime obesity and cogni-
tive decline, participants were grouped according
to the number of times they had been classified as
obese at diagnostic interviews conducted in young
adulthood (25 years old), middle age (44 years
old), and late life (61 years old) (Sabia et al. 2009).
Results showed that people who had been obese
on two to three occasions during the study
performed than never-obese individuals and indi-
viduals who had been obese at only one time
point. These data suggest that cognitive function
is affected not only by being obese, but by the
amount of time one remains obese, with more
chronically obese individuals demonstrating
more dramatic impairment.

In addition to predicting poorer cognitive abil-
ity among healthy adults, obesity also increases
one’s risk of dementia and AD (for recent reviews,
see Luchsinger and Gustafson 2009; Elias
et al. 2012b). Studies have shown that individuals
who are obese at midlife are three times more
likely to be diagnosed with AD compared to nor-
mal weight individuals (Whitmer et al. 2007,
2008). Indeed, a recent meta-analysis assessing
the link between midlife obesity and dementia
found that being either overweight or obese was
a risk factor for developing any kind of dementia
later in life (Anstey et al. 2011). After midlife, the
association between obesity and cognition shifts
such that excess weight appears to prevent or
delay the onset of dementia (García-Ptacek
et al. 2014). In late life (65+ years old), malnutri-
tion, weight loss, and sarcopenia (the loss of mus-
cle mass associated with aging) are not
uncommon – these factors may, themselves, pro-
mote cognitive impairment. On this basis, having

a higher body weight very late in life may provide
a buffer against cognitive impairments that would
otherwise be produced by being underweight or
malnourished.

The effects of obesity on cognition appear to be
at least partially due to consuming a “Western”-
style diet (for a recent review, see Monti
et al. 2014). Consuming higher proportions of
saturated fats and refined sugars has been found
to increase one’s risk of MCI in late adulthood
(Eskelinen et al. 2008) and is a factor which
differentiates between elderly individuals who
do/do not carry a diagnosis of AD (Gustaw-
Rothenberg 2009). Preference for high-energy
“junk” foods has also been found to predict
weaker performance on tests of cognitive and
inhibitory control (e.g., executive function)
(Riggs et al. 2010a; Jasinska et al. 2012). In chil-
dren, consuming higher amounts of saturated fats
has been linked to impaired memory processing
(Baym et al. 2014). Studies in rodents which have
systematically examined the effects of diet-
induced obesity on cognition have consistently
shown that consuming a high-fat diet disrupts
neuronal health in areas associated with learning
and memory (e.g., hippocampus) and, thereby,
disrupts cognitive performance (Stranahan and
Mattson 2011; Hsu and Kanoski 2014). These
findings provide converging evidence that the
Western-style diets which promote obesity may
also promote obesity-related cognitive
impairment.

One of the likeliest ways in which Western-
style diets disrupt cognition is by producing the
comorbid metabolic derangements that are asso-
ciated with obesity (e.g., Greenwood andWinocur
2005) (see Fig. 1). Indeed, controlling for these
cardiovascular risk factors tends to reduce or elim-
inate the association between obesity and cogni-
tive decline, whereas comorbidity among these
factors positively predicts one’s risk of dementia
and the magnitude of overall cognitive impair-
ment (Reis et al. 2013; Joosten et al. 2013; Crich-
ton et al. 2014a). In the next section, we discuss
the mechanisms by which these metabolic
derangements can detrimentally affect the brain
and, thus, cognition.
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3 Mechanisms of Diet-Induced
Cognitive Impairment

As has been discussed in detail in previous chapters,
obesity is frequently accompanied by a host of
adverse metabolic symptoms, including hyperlipid-
emia/high LDL (“bad”) cholesterol, low HDL
(“good”) cholesterol, hypertension, and hyperglyce-
mia/insulin resistance. These factors are collectively
referred to as the metabolic syndrome (MetS). Here,
we review the evidence linking these symptoms
with cognitive decline and dementia.

3.1 Hypertension

It has long been known that hypertension
increases one’s risk of stroke and, consequently,
increases one’s risk of vascular dementia (for a
historical review of the advances in this field, see
Elias et al. 2012a). Chronic high blood pressure
can cause hypertrophy of smooth muscle cells,
alter arterial resistance, and impact the hemody-
namic equilibrium of brain tissues which,
together, may promote cardiovascular disease
and AD (see Rios et al. 2014). Disruptions in the
renin-angiotensin system (RAS), the hormonal
system which regulates blood pressure, may also
contribute to cognitive decline by influencing the
aggregation and cytotoxic effects of αβ (alpha-
beta) (Savaskan 2005; Kehoe and Wilcock
2007). Indeed, higher numbers of RAS precursor
molecules and their receptors have been found in
the brains of individuals with AD compared to
age-matched controls, suggestive of a causal link
between blood pressure dysregulation and cogni-
tive impairment (Arregui et al. 1982; Savaskan
et al. 2001). Studies from rodent models of hyper-
tension suggest that high blood pressure disrupts
blood-brain barrier (BBB) integrity and promotes
the accumulation of αβ (alpha-beta)-like bodies in
brain areas involved in decision making andmem-
ory (i.e., frontal cortex, hippocampus), thereby
disrupting cognitive performance (Gentile
et al. 2009; Carnevale and Lembo 2011). Notably,
these effects appear to be preceded by the activa-
tion of microglia and proliferation of inflamma-
tory cytokines (Carnevale et al. 2012), suggesting
that neuroinflammationmaymediate the effects of
hypertension on cognition.

Supporting the idea that hypertension produces
meaningful effects on brain pathology, several
longitudinal studies have shown that individuals
who exhibit higher blood pressure in midlife are at
increased risk of developing dementia and cogni-
tive impairment later in life (for a review of these
relationships, see Tzourio et al. 2014). Compared
to healthy individuals, elevated blood pressure
has been observed in individuals with AD, often
preceding the onset of the disease by several years
(Skoog et al. 1996; Skoog and Gustafson 2006).

Obesity & MetS

Uncontrolled hypertension
Dyslipidemia
    -     High LDL cholestrol
    -     Low HDL cholesterol
Impaired glucose utilization (e.g., T2DM)
    -     Chronic hyperglycemia
    -     Hyperinsulinemia / Insulin resistance
Systemic and central inflammation

Neural dysfunction

Reduced blood brain barrier integrity
Tau phosphorylation
   -      Development of neurofibrillary tangles
Beta-amyloid accumulation
   -      Plaque formation
Reduced neurogenesis
Brain atrophy

Cognitive impairment

Impaired memory
Impaired executive function
Reduced inhibition / increased impulsivity
Increased risk of dementia, including AD

Fig. 1 Mechanisms by which obesity and obesogenic
diets can promote cognitive impairment. The consumption
of Western-style diets (high in saturated fats and processed
sugars) leads to the development of obesity and comorbid
metabolic disturbances (the metabolic syndrome, MetS).
These metabolic symptoms can adversely affect brain
health and, thereby, disrupt cognitive function. AD
Alzheimer’s disease
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High blood pressure in midlife has also been
linked with increased amyloid plaques and neuro-
fibrillary tangles (Sparks et al. 1995; Petrovitch
et al. 2000; Shah et al. 2012). Consistent with a
causal link between hypertension and cognition,
taking antihypertensive medications tends to
reduce one’s risk of developing dementia
(Tzourio et al. 2014).

Hypertension also promotes cognitive impair-
ment in non-demented individuals. Studies have
shown that high blood pressure increases one’s
risk of being diagnosed with mild cognitive
impairment (MCI) (Reitz et al. 2007) and predicts
the level of impairment observed in these individ-
uals (Goldstein et al. 2013). High blood pressure
in midlife is inversely related to performance on a
variety of cognitive tests, such as those assessing
verbal memory and executive function (Launer
et al. 1995; Elias et al. 2003). Indeed, high blood
pressure was recently found to be the strongest
MetS predictor of future cognitive performance
(Levin et al. 2014). Fluctuations in blood pressure
can also impact cognition and dementia risk
(Alperovitch et al. 2014; Crichton et al. 2014b).
This finding is novel in that is suggests that high
blood pressure need not be chronic to detrimen-
tally impact cognition.

3.2 Impaired Glucose Utilization

Type II diabetes mellitus (T2DM) is characterized
by chronically high glucose levels (hyperglyce-
mia), either as a result of reduced insulin levels
(hypoinsulinemia) or reduced insulin effective-
ness (insulin resistance). Insulin resistance can
further result in hyperinsulinemia as the body
attempts to compensate for reduced insulin effec-
tiveness. These disruptions in gluco-regulation
can have adverse effects on the brain and, conse-
quently, cognitive functioning (for recent reviews,
see Geijselaers et al. 2015).

One of the most direct ways that T2DM and
insulin resistance can impact cognition is by alter-
ing brain insulin levels. Insulin plays a critical role
in promoting neuronal health, neurogenesis, and
plasticity, and evidence suggests these insulin

pathways are disrupted in AD (Craft et al. 2013).
In line with this idea, studies have shown that
central insulin administration can be effective in
improving cognitive performance in individuals
with AD (Haj-ali et al. 2009; Freiherr et al. 2013;
Holscher 2014; Claxton et al. 2015). Other evi-
dence suggests that insulin could modulate the
production of AD-related proteins (e.g., APP,
tau) and thereby contribute to the development
of AD pathology and cognitive impairment
(De Felice et al. 2014; Umegaki 2014; Steculorum
et al. 2014). T2DM appears to have a particularly
deleterious effect on the hippocampus – an area of
the brain important for a variety of memory and
learning processes (den Heijer et al. 2003; Korf
et al. 2006; Gold et al. 2007; Bruehl et al. 2009).
The hippocampus contains a high proportion of
insulin receptors and is highly vulnerable to met-
abolic insults; on this basis, it has been suggested
that hippocampal-dependent memory deficits may
be an early marker of diabetes-related cognitive
impairment (e.g., Gold et al. 2007).

Consistent with a causal link between gluco-
dysregulation and cognition, T2DM has been
implicated as a risk factor for cognitive decline.
A recent meta-analysis of 20 longitudinal studies
concluded that diabetes was not only a risk factor
for MCI and Alzheimer’s disease but also for any
other type of dementia (Cheng et al. 2012).
Indeed, diabetic individuals are twice as likely to
develop AD and other dementias compared to
individuals without diabetes (Ott et al. 1999;
Ahtiluoto et al. 2010; Mayeda et al. 2013). In
non-demented individuals, diabetes (Gregg
et al. 2000; Kanaya et al. 2004) and
hyperinsulinemia/glucose intolerance (Kalmijn
et al. 1995; Yaffe et al. 2004) are also predictive
of cognitive impairment.

Midlife diagnosis of T2DM appears to be a
particular concern, being linked to accelerated
cognitive aging and worse cognitive performance.
A recent prospective longitudinal study
conducted in 13,351 US adults found that midlife
diabetes was associated with a 19 % greater cog-
nitive decline over 20 years, with greater impair-
ments occurring in individuals with longer
durations of diabetes (Rawlings et al. 2014).
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One reason that early-to-midlife diagnosis of
MetS may be so detrimental to later-life cognitive
function is because earlier development of obesity
and MetS confers a greater chance for long-term
exposure to comorbid metabolic disturbances
that, over time, can have cumulative effects on
cognitive performance (i.e., midlife obesity may
be a proxy for obesity duration and, consequently,
duration of exposure to theMetS). In line with this
possibility, studies have found more extensive
cognitive impairments in individuals with longer
durations of T2DM (Grodstein et al. 2001; Elias
et al. 2005). These findings suggest that chronic
exposure to diabetes in midlife proportionally
impacts cognitive function in late life.

3.3 Dyslipidemia

The MetS is characterized by high blood triglyc-
erides (hyperlipidemia) and high levels of LDL
(“bad”) cholesterol and low levels of HDL
(“good”) cholesterol. Aberrant lipid metabolism
is implicated in AD pathogenesis because lipids
regulate the transport and activity of several pro-
teins implicated in AD. For instance, studies have
shown that high LDL cholesterol can affect the
aggregation of tau and αβ (alpha-beta) (for recent
reviews, see Di Paolo and Kim 2011; Reitz 2012).
In the brain, cholesterol is found mostly in the
cellular membranes of glial cells and neurons
(Dietschy and Turley 2001), and studies suggest
that high membrane cholesterol may make hippo-
campal neurons more susceptible to tau neurotox-
icity (Nicholson and Ferreira 2009).

Consistent with the idea that dyslipidemia can
have adverse effects on brain health, studies have
observed that low HDL levels can increase one’s
risk of AD (van Exel et al. 2002) and that high
HDL levels reduces one’s risk (Reitz et al. 2010).
Other studies have shown that AD patients have
been found to exhibit reduced HDL (Kuo
et al. 1998), with the magnitude of the reduction
predicting the severity of cognitive impairment in
these individuals (Merched et al. 2000). AD
brains also display greater numbers of “adipose
inclusions” or “lipoid granules,” suggestive of

dyslipidemia (Foley 2010). High HDL cholesterol
is also associated with cognitive impairment in
non-demented individuals; notably, taking choles-
terol-lowering medications (i.e., statins) appears
to alleviate this impairment (Yaffe et al. 2002).

This relationship between dyslipidemia and
cognition is at least partially mediated by allele
4 of the apolipoprotein E gene (ApoE4). ApoE is
necessary for lipid metabolism and plays a funda-
mental role in regulating cholesterol metabolism
in the brain (Di Paolo and Kim 2011). In addition
to being a risk factor for the MetS, ApoE is a risk
factor for AD (Mahley and Rall 2000; Liu
et al. 2013). In fact, ApoE is the strongest genetic
risk factor for sporadic AD, the most common
form of AD (Corder et al. 1993; Bertram
et al. 2010). In patients with AD, ApoE4 is posi-
tively associated with the presence of amyloid
plaques (Saunders et al. 1993; Schmechel
et al. 1993; Han et al. 1994). Although it has
been debated whether amyloid plaques causally
contribute to the symptomology of AD, these
findings indicate that the same risk factors for
obesity are also risk factors for cognitive decline.

3.4 Inflammation

One of the obvious consequences of obesity is
excess adipose tissue. While adipose tissue was
historically believed to be inert, it is now known
that adipose tissue contributes to the proliferation
of a number of cytokines and adipokines which
can have adverse effects on brain health and func-
tion (Gregor and Hotamisligil 2011). Studies have
shown that obesity and consuming a high-fat,
Western diet lead to systemic low-grade inflam-
mation and excess circulating free fatty acids.
These circulating cytokines and fatty acids com-
promise the integrity of the blood-brain barrier
(BBB), initiating a cascade of central inflamma-
tion that disrupts neural function in brain areas
important for learning and memory (e.g., hippo-
campus) (see Fig. 2).

Supporting the idea that brain inflammation
might contribute to cognitive impairment, studies
in both rats and humans have shown that systemic
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inflammation (with or without concomitant obe-
sity) is associated with reduced neurogenesis,
learning deficits, and dementia (for reviews, see
Miller and Spencer 2014; Hsu and Kanoski 2014).
Inflammation may also lead to brain atrophy and,
thereby, contribute to cognitive dysfunction.
Indeed, a recent systematic review which assessed
the link between obesity and brain volume found
that increased adiposity is associated with atrophy
in the frontal and temporal lobes – brain areas
critical for higher-order executive functions, asso-
ciative learning, and memory (Willette and
Kapogiannis 2015). Together, these findings
implicate inflammation-mediated decreases in
neuronal health and brain volume as one factor
linking obesity to cognitive impairment.

4 Is Cognitive Impairment a Risk
Factor for Future Weight Gain?

It is generally accepted that the obesity epidemic is
due to the increased availability of food and food
cues available in today’s environment. Coined the
Western diet, the foods typically consumed in
Westernized countries are palatable and energy
rich, characterized by high amounts of fats and
simple sugars. These foods increase our motivation
to eat in their own right simply by being highly
palatable and, thus, tempting. However, evidence
is accumulating which suggests that another reason
we overeat these foods is because we are becoming
less able to resist the temptation of eating them.

HYPOTHALAMUS

PVN

DMH

VMH

ARC

BBB

HPA axis dysregulation —
excess glucocorticoids

LH

Free fatty acids
Systemic inflammation

High fat diet
Obesity

Increased BBB permeability/
Brain regions lacking a BBB

Altered hypothalamic outputs

Synaptic remodeling
Neuronal apoptosis

Impaired neurogenesis

HIPPOCAMPUS
and other extra-hypothalamic regions

Fig. 2 Neuroinflammation as a potential mediator of high-
fat diet/obesity and cognitive dysfunction. High-fat diets
and/or obesity lead to increased levels of circulating free
fatty acids and pro-inflammatory cytokines, which in turn
gain access to the hypothalamus by increasing BBB per-
meability and/or via areas that lack an effective BBB (e.g.,
ARC). This initiates central inflammation, leading to

synaptic remodeling, neuronal apoptosis, and impaired
neurogenesis. These processes disrupt internal hypotha-
lamic circuitry and potentially hypothalamic outputs to
brain regions important for cognitive function (e.g., hippo-
campus). ARC arcuate nucleus, PVN paraventricular
nucleus, VMH ventromedial nucleus (Reprinted with per-
mission from Miller and Spencer 2014)
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Studies in rats suggest that obesity and
obesogenic diets preferentially disrupt cognitive-
inhibitory processes that are important for
enabling us to resist responding to incentives
(see Hsu and Kanoski 2014). These cognitive-
inhibitory deficits are thought to compromise
one’s ability to resist thinking about food reward,
thereby increasing the likelihood that an individ-
ual will eat when confronted with food cues (i.e.,
increases food-cue reactivity). This perpetuates
the overeating of high-energy foods and, thus,
contributes to a “vicious cycle” of diet-induced
cognitive impairment and obesity (see Fig. 3).

Cognitive-inhibitory deficits have also been
linked to obesity in humans. Recent systematic
reviews have shown that obesity is consistently
associated with impaired executive function
(Reinert et al. 2013) and brain atrophy in the
regions which underlie executive function (i.e.,
frontal cortex, hippocampus) (Willette and
Kapogiannis 2015). Cognitive inhibition contrib-
utes to executive function by enabling individuals

to suppress or ignore outdated associations from
memory and to resist attending to distracting stim-
uli in the environment. This ability to filter rele-
vant information from irrelevant information is
critical for working memory and cognitive flexi-
bility – the primary processes associated with
executive control (Miyake et al. 2000). Indeed,
numerous studies have reported that obese indi-
viduals perform worse than nonobese individuals
on working memory, cognitive flexibility, and
inhibition – processes traditionally associated
with executive control (Waldstein and Katzel
2006; Nederkoorn et al. 2006; Gunstad
et al. 2007; Cserjesi et al. 2009; Verbeken
et al. 2009; Fergenbaum et al. 2009; Nederkoorn
et al. 2012; Schwartz et al. 2013; Wirt et al. 2014).

Consistent with the idea that these deficits may
causally contribute to obesity, studies in humans
have shown that poor inhibitory performance
predicts increased food intake (Guerrieri et al.
2007a, b, 2008), increased weight gain (Francis
and Susman 2009; Seeyave et al. 2009), and resis-
tance to weight loss (Nederkoorn et al. 2007,
2010). Similarly, studies in rats have shown that
the likelihood of becoming obese on a Western
diet depends upon whether that diet produces
BBB pathology and concomitant deficits in cog-
nitive-inhibitory control (Davidson et al. 2012,
2013). Together, these data provide converging
evidence that deficits in cognitive-inhibitory pro-
cesses may serve as risk factors for overeating and
weight gain (see Martin and Davidson 2014).

5 Childhood Obesity as a Risk
Factor for Accelerated
Cognitive Aging

The effects of living in an obesogenic environment
are not limited to adults. Approximately 4–8 % of
children today exhibit symptoms of the metabolic
syndrome, and this prevalence increases to asmuch
as 30 % in children who are obese (Li et al. 2006;
Cook et al. 2008; Skelton et al. 2009). Like adults,
obese children have been shown to exhibit a variety
of cognitive deficits, in areas such as verbal ability,

Fig. 3 A “vicious cycle” model of obesity and cognitive
impairment. Consuming a high-fat diet disrupts hippocam-
pal function, leading to deficits in cognitive control pro-
cesses (e.g., memory inhibition) that are important for
enabling individuals to ignore thoughts about food. Con-
sequently, they become more reactive to food cues in the
environment. This increased food-cue reactivity results in
overconsumption of the Western diet, perpetuating the
cycle of obesity and cognitive dysfunction
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inhibition, and working memory (for a recent sys-
tematic review, see Liang et al. 2014). Special
attention has been paid to executive function,
which appears to be consistently impaired in chil-
dren and adolescents (Reinert et al. 2013). These
impairments in cognition appear to be at least par-
tially mediated by consumption of a Western-style
diet, as consumption of energy-rich foods has been
found to correlate with impaired executive function
(Riggs et al. 2010a, b) and memory processing
(Baym et al. 2014).

Executive function (e.g., cognitive-inhibitory
control) plays a fundamental role in cognitive
development in childhood (Harnishfeger and
Bjorklund 1993) and has been implicated as a
risk factor for future weight gain (see section Is
Cognitive Impairment a Risk Factor for Future
Weight Gain?). Thus, deficits in executive control
could have widespread effects on behavior,
including eating behavior. A particular concern
is the possibility that childhood obesity may irre-
versibly impact brain function, producing cogni-
tive deficits that may persist throughout the
lifespan. The frontal lobes mediate many of the
processes associated with executive function, and
this brain region does not fully mature until early
adulthood (Fuster 2002). Thus, it is possible that
obesity-related insults that occur in childhood
could set the stage for more serious cognitive
problems in adulthood.

In addition to being exposed to the same die-
tary risk factors for obesity as adults (i.e., high-fat
and high-sugar foods), children are at additional
risk for developing MetS as a function of fetal
programming. Obese mothers’ metabolic
derangements can impact the development of the
fetus during gestation, and this can “program” the
offspring to be more or less susceptible to obesity
and the MetS in adulthood (Taylor and Poston
2007). Indeed, children of obese mothers are
more than twice as likely to be obese themselves
compared to children born of nonobese mothers
(Whitaker 2004). Regarding cognitive impair-
ment, maternal obesity has been associated with
aberrant neuronal development in brain areas
responsible for learning and memory function

(Tozuka et al. 2009, 2010; Niculescu and Lupu
2009; Bilbo and Tsang 2010). Together, these data
suggest that children are a particularly at-risk
group for developing both obesity and obesity-
related cognitive impairments.

6 How Do We Prevent Obesity-
Related Cognitive Impairments
in an Environment
that Is Obesogenic?

In today’s environment where access to palatable,
energy-rich foods is the norm, it is not surprising
that we are facing an obesity epidemic. Unfortu-
nately, this means that in order to prevent obesity-
related cognitive impairment, it is necessary to
prevent or at least offset the rates of obesity and
the MetS. The most obvious avenues for
preventing diet-induced cognitive decline are to
change one’s diet or to offset diet-induced weight
gain via exercise (e.g., Stranahan and Mattson
2011). Unfortunately, for most individuals, losing
weight is not an easy task. Thus, it is likely that
smaller interventions aimed at minimizing the
metabolic disturbances associated with obesity
will ultimately be more successful at preventing
future cognitive decline than strategies focused on
weight reduction. For instance, medications
which improve hypertension and blood glucose
homeostasis have been successful at improving
cognitive performance in individuals and animals
with AD (Valenti et al. 2014). Antidiabetic drugs
like thiazolidinediones (TZDs) might also be
effective at improving cognitive performance.
TZDs act as PPAR-y agonists, and studies have
shown that administration of TZDs and other
PPAR-y agonists can promote hippocampal
health and memory performance in rodent models
of AD (Zolezzi and Inestrosa 2013). The use of
angiotensin-II receptor blockers (ARBs or
sartans) – compounds typically used to treat car-
diovascular disorders – may also be used to pro-
tect against neuroinflammation and BBB
dysfunction and, thereby, reduce one’s risk of
cognitive impairment and dementia (Villapol and
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Saavedra 2015). While weight loss is easier pre-
scribed than accomplished, there is some evidence
which suggests that modest dietary changes could
also have meaningful effects on neurogenesis and,
therefore, be used to moderate one’s risk of cog-
nitive decline (Maruszak et al. 2014).

7 Conclusion

Evidence suggests that, without reductions in the
prevalence of obesity, we can expect the preva-
lence of dementia to increase as the current pop-
ulation ages. On this basis, combating obesity
should be a priority of governments and health
providers. Targeting the metabolic disturbances
associated with obesity will be critical, as evi-
dence suggests that the constellation of factors
associated with the MetS may independently and
collaboratively predispose one to later-life cogni-
tive impairment. These efforts should be directed
primarily at obese children (who are likely to
become obese adults) and at middle-aged adults
who are at increased risk of developing cognitive
decline and dementia in old age. More precise
characterization of the cognitive deficits associ-
ated with obesity will be necessary for enabling us
to determine the full impact of these impairments
on behavior, particularly eating behavior and
future obesity risk.

8 Cross-References

▶Brain Regulation of Feeding and Energy
Homeostasis

▶Childhood Environment and Obesity
▶Diet and Obesity (Macronutrients,
Micronutrients, Nutritional Biochemistry)

▶Dyslipidemia in Obesity
▶ Fetal Metabolic Programming
▶Linking Inflammation, Obesity, and Diabetes
▶Obesity and Cardiac Disease
▶Overview of Metabolic Syndrome
▶ Prevention and Treatment of Childhood Obe-
sity and Metabolic Syndrome

▶Type 2 Diabetes: Etiology, Epidemiology, Path-
ogenesis, Treatment
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Abstract
Obesity is an urgent and growing global health
problem, reaching epidemic proportions. In
addition to diabetes and cardiovascular dis-
ease, epidemiological evidence shows that
people who are obese or overweight are at
increased risk of developing some types of
cancer. Obesity may also affect tumor progres-
sion for many cancers, and obesity presents an
obstacle in cancer treatment. In this chapter, we
discuss potential mechanisms linking obesity
to cancer development, progression, and mor-
tality, including energy imbalance, insulin
resistance, and altered hormone signaling. We
especially focus on chronic inflammation and
its local and systemic effects. Understanding
the mechanisms involved in obesity-cancer
link is important to prevent both cancer and
obesity, but also for developing potential
therapeutics.

Keywords
Obesity • Cancer •Metabolism •Mechanisms •
Inflammation • Prevention • Interventions

1 Key Points

1. Excess body weight is a significant health risk
for cardiovascular disease, type 2 diabetes, and
various types of cancer.

2. Heterogeneity of obesity exists at cellular/local
and the whole body/systemic level.
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3. Obesity is characterized by an increase in fat
mass, increased macrophage infiltration of
white adipose tissue, and abnormal adipokine
and cytokine production, contributing to gen-
eration of a state of low-grade chronic
inflammation.

4. Inflammation provides an important link
between obesity, metabolism, and cancer.

5. There are significant differences in the inflam-
matory profile of distinct abdominal fat depots.

2 Introduction

Obesity rates have been steadily climbing over
recent decades, with significant implications for
public health. Worldwide obesity has more than
doubled since 1980; in 2014, more than 1.9 billion
adults were overweight, and of these over 600 mil-
lion were obese (WHO 2015). Obesity is reaching
epidemic proportions in the USA, affecting more
than one third of the population (Ogden
et al. 2014). The prediction is that by the year
2015, 2.3 billion adults will be overweight and
700 million obese. There are multiple common
health consequences of overweight and obesity. It
is a risk factor for cardiovascular disease, type
2 diabetes mellitus, hypertension, dyslipidemia,
musculoskeletal disorders, especially osteoarthri-
tis, some cancers, and many psychological effects
and psychosocial problems (Rossen and Rossen
2012). Increased mortality has also been associated
with obesity (Berrington de Gonzalez et al. 2010).
In addition to its serious health consequences, obe-
sity costs and health-care expenses for obesity-
related problems of nearly 21% of annual medical
spending in the USA are greater than the invest-
ment in any other medical condition (Cawley and
Meyerhoefer 2012; Kral et al. 2012).

Obesity is defined as abnormal or excessive
accumulation of fat. Definitions for classifying
and reporting healthy weight, overweight, and obe-
sity in populations have historically been based on
measures of weight and height rather than clinical
measures of adiposity. By far the most widely used
weight-for-height measure is the body mass index
(BMI), which is defined as weight (in kilograms)
divided by height (in meters squared); BMI of

18.8–24.0 kg/m2 indicates healthy weight,
25.0–29.9 overweight, and BMI of 30 kg/m2 or
higher obesity (Centers for Disease Control and
Prevention and Overweight and obesity 2015).
Although BMI is the same for both sexes and for
all ages of adults, it should be considered as a rough
guide, because it may not correspond to the same
degree of fatness in different individuals. Addition-
ally, heritability of obesity and variability of BMI
related to the race, ethnicity, and culture indicate
that the obesity standards may need to be
reevaluated. There are other methods to evaluate
body fat and body fat distribution, such as waist
circumstances (WC), a body shape index (ABSI),
and estimating the visceral adipose tissue (VAT)
and abdominal subcutaneous adipose tissue (SAT)
by ultrasound, computed tomography, and mag-
netic resonance imaging. The heterogeneity of obe-
sity is shown by existence of two distinct subsets of
obese individuals, a subgroup who have reduced
cardiometabolic risk despite being obese, as
opposed to a subset of lean individuals with a
high risk for cardiometabolic complications (Bern-
stein 2012; Boonchaya-anant and Apovian 2014;
Navarro et al. 2015; Badoud et al. 2015). These
phenotypically distinct subgroups have been rec-
ognized in the early 1980s and are known as met-
abolically healthy obese (MHO) and metabolically
unhealthy normal weight (MUNW). The preva-
lence of MHO varies from 20 % to 30 % among
obese individuals. Compared to regular obese indi-
viduals, MHO subjects have high levels of insulin
sensitivity and the absence of diabetes,
dyslipidemia, or hypertension. MHO phenotype is
characterized by a more favorable inflammatory
profile, smaller adipocyte cell size, less visceral
fat, and less infiltration of macrophages into adi-
pose tissue (Navarro et al. 2015).

3 The Association of Obesity
and Cancer

The worldwide burden of cancer continues to
grow. Cancer is the leading cause of death in
developed countries and the second leading
cause of death in developing countries (Torre
et al. 2015; Siegel et al. 2015; Howlader
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et al. 1975). About 12.7 million cancer cases and
7.6 million cancer deaths are estimated to have
occurred in 2008 (Torre et al. 2015). A total of
1,658,370 new cancer cases and 589,430 cancer
deaths are projected to occur in the USA in 2015
(Siegel et al. 2015). The number of cancer cases is
expected to rise due to both worldwide population
growth and an increasingly aged population.

Adiposity is associated with the risk of devel-
oping several types of cancer (Table 1). TheWorld
Cancer Research Fund (WCRF) and American
Institute for Cancer Research (AICR) conducted
a comprehensive and systemic evaluation of the
available literature on diet, physical activity,
weight, and cancer prevention, considering epide-
miologic, clinical, and experimental data, and
concluded that body fatness was an established
risk factor for several cancers (World Cancer
Research Fund and American Institute for Cancer
Research 2007). That report, now in its second
edition and routinely updated online (World Can-
cer Research Fund and American Institute for
Cancer Research 2007; http://www.
dietandcancerreport.org), has shown that excess
body fat is a cause of cancer at several sites (post-
menopausal breast, endometrium, colon, esopha-
gus, gallbladder, pancreas, kidney, prostate, liver)
(World Cancer Research Fund and American
Institute for Cancer Research 2007; http://www.
dietandcancerreport.org; De Pergola and
Silvestris 2013; Byers and Sedjo 2015). WCRF/
AICR has estimated that about 21 % of these
obesity-associated cancers in the USA can be
attributed to obesity, 17 % in Great Britain, 13 %
in Brazil, and 11 % in China (http://www.
dietandcancerreport.org). Very recently, Arnold
et al. estimated that 3.6 % of all incident cancer
in the world in 2012 was caused by obesity
(Arnold et al. 2015). Large epidemiological stud-
ies and meta-analyses (Dobbins et al. 2013;
Ungefroren et al. 2015) showed a statistically
significant positive correlation between obesity
and incidence in 5 of 11 types of cancer in men
(colon, gallbladder, malignant melanoma, pancre-
atic, and kidney) and 8 of 13 types of cancer in
women (colon, endometrial, esophagus, gallblad-
der, leukemia, pancreatic, postmenopausal breast,
and kidney). However, no correlation was found

between obesity and adenocarcinoma of the
esophagus and leukemias in men, and in both
sexes there was no positive correlation between
obesity and multiple myeloma, non-Hodgkin’s
lymphoma, thyroid, and rectal cancer. Differences
in adiposity-associated carcinogenic effects at dif-
ferent cancer sites and between men and women
indicate that these obesity-associated metabolic
changes are determined and dictated by the biol-
ogy of that particular tissue and by the sex hor-
mones. In majority of these studies, BMI was
correlated with cancer risk. When examined links
of BMI and the most common site-specific cancers
using the precise statistical association between
BMI and cancer epidemiology, Bhaskaran
et al. (2014) revealed a nonlinear correlation in
most tumor types, further suggesting that different
mechanisms are associated with different cancer
sites and different patient subgroups. Furthermore,
their statistical methods helped to elucidate the
phenomenon of BMI being positively correlated
with postmenopausal breast cancer, but negatively
with premenopausal breast cancer, because a
nonlinear correlation with a peak at 22 kg/m2 was
found in premenopausal breast cancer; with a fur-
ther increase in BMI, there was a decrease in the
incidence of this cancer (Ungefroren et al. 2015;
Bhaskaran et al. 2014).

3.1 Adiposity Patterns and
Heterogeneity

Adiposity pattern and for adipose tissue topogra-
phy, in particular the upper (central, android) and
lower (peripheral, gynoid) types of obesity, might
also be important in relation to cancer. Studies
have demonstrated that expansion of visceral adi-
pose tissue (VAT) rather than subcutaneous adi-
pose tissue (SAT) depots is critical for the
development of obesity-associated insulin resis-
tance (Lee et al. 2013), and even that, in over-
weight/obese subjects, expansion of SAT depots
may even be protective. However, absolute quan-
tification of VAT and SAT fail to reflect the rela-
tive distribution of body fat, and data suggest that
a high VAT/SAT ratio, a measure of relative body
fat distribution between VAT and SAT depots, is a
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Table 1 Linking obesity to risk for selected cancers: proposed mechanisms and a role of inflammation

Cancer

Associated
with
increased
BMI and
preventablea

Proposed
mechanism(s)

Inflammation-driven
cancers and inflammatory
mediators most likely
involved References

Breast
(postmenopausal)

17 % Systemic or
local estrogen
and
inflammatory
factors

COX-2, CXCR4, and
CCR7 in metastasis

(World Cancer Research Fund
and American Institute for
Cancer Research 2007; http://
www.dietandcancerreport.org;
Byers and Sedjo 2015; Sethi
et al. 2012; Muller et al. 2001)

Endometrial 50 % Endogenous
circulating
estrogen from
adipose tissue

Circulating and local
tissue cytokines might be
involved

(World Cancer Research Fund
and American Institute for
Cancer Research 2007; http://
www.dietandcancerreport.org;
Byers and Sedjo 2015)

Ovarian 5 % Systemic and
local tissue
inflammation

CXCR4, SDF-1,
CXCL12, and IL-8 in
invasion and growth

(World Cancer Research Fund
and American Institute for
Cancer Research 2007; http://
www.dietandcancerreport.org;
Byers and Sedjo 2015;
Aggarwal and Gehlot 2009;
Sethi et al. 2012)

Colorectal 16 % Systemic
inflammation,
cytokines,
leptin, IGF-1

IL-6, COX-2, and 5-LOX
in increased risk

(World Cancer Research Fund
and American Institute for
Cancer Research 2007; http://
www.dietandcancerreport.org;
Byers and Sedjo 2015;
Multhoff et al. 2012; Maury
and Brichard 2010; Sethi
et al. 2012)

Esophagus 35 % Acid reflux
causing local
inflammation

COX-2 in increased risk,
invasion, and
angiogenesis

(World Cancer Research Fund
and American Institute for
Cancer Research 2007; http://
www.dietandcancerreport.org;
Byers and Sedjo 2015; Sethi
et al. 2012)

Gallbladder 21 % Gallstones
causing local
inflammation

MMP-9 in aggressiveness
and poor prognosis;
VEGF, TNF-α, and
NF-κB in the
lymphangiogenesis

(World Cancer Research Fund
and American Institute for
Cancer Research 2007; http://
www.dietandcancerreport.org;
Byers and Sedjo 2015; Sethi
et al. 2012; Du et al. 2014)

Pancreatic 19 % Systemic
inflammation
and other
circulating
factors

IL-1, COX-2, MMP-9 in
metastasis, and cell
invasion

(World Cancer Research Fund
and American Institute for
Cancer Research 2007; http://
www.dietandcancerreport.org;
Byers and Sedjo 2015; Maury
and Brichard 2010; Sethi
et al. 2012)

Liver 27 % Fatty infiltration
with chronic
local
inflammation

Oxidative stress and ROS,
IL-6, and other
inflammatory mediators in
liver carcinogenesis

(World Cancer Research Fund
and American Institute for
Cancer Research 2007; http://
www.dietandcancerreport.org;
Byers and Sedjo 2015; Ràfols
2014; Louie et al. 1831;

(continued)
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unique risk marker independent of overall obesity.
Less is known regarding associations between
adipose depots and cancer risk. A recent study
by Murphy et al. (2014) provides insight into
relationships between specific depots and cancer
risk and suggests also differential relationships
among men and women; total adipose tissue and
VAT were positively associated with cancer risk
among women and no association with cancer risk
among men (Murphy et al. 2014). Visceral
abdominal fat was associated with an increased
risk of colorectal adenoma; the findings of the
study implicate abdominal VAT in the develop-
ment and progression of colorectal adenoma, and
it was a better obesity index for colorectal ade-
noma than BMI in both sexes (Nagata et al. 2014).
There is a growing appreciation of a pathogenic
role of ectopic fat, supported by recent findings
that the visceral adiposity is associated with inci-
dent cardiovascular disease and cancer (Britton
et al. 2013), renal cell carcinoma (Zhu
et al. 2013), and gastrointestinal cancers (Harada
et al. 2015). In terms of body shape, a recent study
shows that body shape is not a risk for breast
cancer and that being “apple shaped” is not any

riskier than being “pear shaped” with more fat on
the hips, thighs, and buttocks, for the breast cancer
risk (Kabat et al. 2015).

Evidence shows that molecular and metabolic
characteristics of white adipose tissue, immune
cell infiltration, and adipokine production are
associated with MHO and MUNW phenotype
and that biological pathways and processes such
as oxidative phosphorylation, branched-chain
amino acid catabolism, and fatty acid beta-
oxidation differ between these phenotypes
(Badoud et al. 2015). The potential role of genet-
ics, but also lifestyle factors such as diet, needs to
be clarified in MHO (Navarro et al. 2015). How-
ever, only few studies have addressed the relation-
ship of MHO andMUNW phenotype with cancer.
One of those studies was a 15-year prospective
study conducted in Cremona, Italy, where the
prevalence of MHO was relatively low, only
11 % (Bernstein 2012; Calori et al. 2011). These
subjects had normal sensitivity to insulin, and
their all-cause cardiovascular disease and cancer
mortality, adjusted for age and sex, was lower than
in obese insulin-resistant people (Calori
et al. 2011). Although the prevalence of MUNW

Table 1 (continued)

Cancer

Associated
with
increased
BMI and
preventablea

Proposed
mechanism(s)

Inflammation-driven
cancers and inflammatory
mediators most likely
involved References

Headland and Norling 2015;
Aggarwal and Gehlot 2009;
Sethi et al. 2012; Aleksandrova
et al. 2014)

Kidney 14 % Systemic
inflammation
and growth-
stimulating
factors

5-LOX in tumor
progression

(World Cancer Research Fund
and American Institute for
Cancer Research 2007; http://
www.dietandcancerreport.org;
Byers and Sedjo 2015; Sethi
et al. 2012)

Prostate 11 % Systemic
inflammation,
other
circulating
factors, such as
IGF-1

IL-6, IL-8, and COX-2 in
angiogenesis and
clinically more aggressive
form of prostate cancer

(World Cancer Research Fund
and American Institute for
Cancer Research 2007; http://
www.dietandcancerreport.org;
Byers and Sedjo 2015; Muller
et al. 2001; Sethi et al. 2012)

aThe World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) estimated the preventable
fraction for selected cancers in the USA attributed to excess adiposity (World Cancer Research Fund and American
Institute for Cancer Research 2007; http://www.dietandcancerreport.org)
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is higher and more common in Asian population,
its association with cancer has not been studied,
according to our knowledge.

Adipose tissue is heterogeneous even at the
cellular level, consisting of two types of fat with
morphological and functional diversity. White
adipose tissue (WAT) stores energy reserves as
triglycerides, whereas brown adipose tissue
(BAT) contributes to metabolism through thermo-
genesis derived from oxidation of glucose and
lipids (Ràfols 2014).

4 Potential Mechanisms Linking
Obesity and Cancer

Understanding the link between being overweight
or obese and a wide variety of cancers, as well as
the biological mechanisms involved, remains an
evolving and currently very active area of
research. The complex physiological changes
that occur with obesity include alterations in the
adipose tissue production of bioactive factors,
growth factors, hormones, and reactive oxygen
species (ROS) that can impact the development
of cancer (Ungefroren et al. 2015; Louie
et al. 1831). Underlying the comorbid disease
states that are associated with obesity including
many cancers is a state of chronic low-level
inflammation (Ungefroren et al. 2015; Louie
et al. 1831). Inflammation has been implicated in
every stage of cancer development including
transformation, survival, proliferation, invasion,
angiogenesis, and metastasis (Multhoff
et al. 2012). We will briefly discuss inflammation,
mechanisms linking obesity and cancer, as well as
the directly or indirectly underlying inflammatory
component of these mechanisms.

4.1 The Role of Inflammation

Inflammation is a complex biological response
that can result in both local tissue and systemic
physiological changes. Acute inflammation is a
rapid high-grade response to tissue damage or
pathogen invasion. The cascade of chemokines,
cytokines, and immune cell infiltration into a

damaged, necrotic, or infected tissue is initiated
by cells of the innate immune system consisting of
macrophages, mast cells, and other stromal-
vascular cell types. Chemokines produced by res-
ident cells recruit circulating neutrophils from the
microvasculature into the damaged tissue. Acti-
vated neutrophils then release antimicrobial pep-
tides and ROS to kill invading pathogens. At this
point, either the wound healing response will con-
tinue, or assistance from the adaptive immune
system (B and T cell mediated) will be initiated.
The wound healing process involves tissue
remodeling including cellular hyperplasia and
angiogenesis triggered by cytokines and growth
factors released into the local environment (Head-
land and Norling 2015).

Obesity is the result of a hypertrophic and
hyperplastic response of adipocytes within adi-
pose tissue to caloric intake in excess of the
requirement for metabolic homeostasis. This is
usually the result of chronic positive energy bal-
ance, decreased energy expenditure, or both. Obe-
sity is also characterized by a state of chronic
low-grade inflammation in contrast to the acute
inflammatory response to microbial invasion or
tissue damage described previously. In obesity,
adipocyte hypertrophy can result in endoplasmic
reticulum stress and inadequate microcirculation
leading to tissue hypoxia. These stressors can
induce modified tissue damage or wound healing
response in adipose tissue characterized by the
release of pro-inflammatory cytokines, such as
tumor necrosis factor-α (TNF-α), and
chemokines, such as monocyte chemoattractant
protein-1 (MCP-1). MCP-1 recruits monocytes
into the adipose tissue that differentiate into
pro-inflammatory M1 macrophages that release
additional cytokines, such as interleukin-1 (IL-1)
and interleukin-6 (IL-6), and chemokines, such as
interleukin-8 (IL-8) and macrophage inflamma-
tory protein-1α (MIP-1α). Additionally, chemo-
kine and cytokine gradients attract neutrophils
and more monocytes that further exacerbate the
inflammatory state in a feed-forward regulation
(Maury and Brichard 2010). Secreted
pro-inflammatory cytokines contribute to sys-
temic inflammation but have important localized
paracrine effects promoting adipocyte insulin
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resistance leading to elevated lipolysis and
the increased release of free fatty acids (FFAs)
that can further provoke local and systemic
inflammation and lipotoxicity (Maury and
Brichard 2010).

Comorbidities of obesity include type 2 diabe-
tes, dyslipidemia, hypertension, endothelial dys-
function, and hepatic steatosis leading to
increased incidence of cardiovascular disease,
renal failure, and several types of cancer. These
comorbidities can be attributed directly or indi-
rectly to a prolonged chronic inflammatory state
(Maury and Brichard 2010). Although these path-
ophysiological states are associated with
increased BMI, they are most highly associated
with increases in visceral obesity. It is important to
recognize that chronic inflammation is a common
characteristic of all adipose tissue depots in the
obese state; however, the level and the contribu-
tion of a particular adipose tissue depot to local
and systemic inflammation can vary dramatically
(Lee et al. 2013; Maury and Brichard 2010). Adi-
pose tissue is a highly vascularized complex tissue
containing multiple cell types in addition to adi-
pocytes including endothelial cells,
preadipocytes, multipotent stem cells, fibroblasts,
macrophages, monocytes, neutrophils, mast cells,
natural killer (NK) cells, T cells, dendritic cells
(Ràfols 2014), and mesothelial cells (only visceral
adipose tissue) (Darimont et al. 2008). It is the
secretory profile or secretome of the combined
cell types within an adipose depot that contributes
to its systemic endocrine and local paracrine
effects on metabolism and disease susceptibility.
Visceral adipose tissue has a greater
pro-inflammatory cytokine, plasminogen activa-
tor inhibitor-1 (PAI-1), vascular endothelial
growth factor (VEGF), and free fatty acid (FFA)
secretory profile than subcutaneous adipose tissue
by nature of its location in the visceral cavity,
higher nutrient and endotoxin exposure from the
portal circulation, and its differing cellular com-
position (Lee et al. 2013). Therefore, it is no
surprise that increased visceral adipose tissue
(VAT) is highly associated with inflammation-
dependent disease states such as type 2 diabetes,
cardiovascular disease, and cancer as discussed
previously (Lee et al. 2013).

4.1.1 Hyperinsulinemia and Growth
Factors

Insulin and insulin-like growth factors (IGFs)
have been implicated in a wide range of cancers
due to their anti-apoptotic and growth-promoting
properties (Ungefroren et al. 2015; Louie
et al. 1831; Taubes 2012; Gallagher and LeRoith
2011). Obesity is associated with inflammation-
dependent increases in insulin resistance resulting
in hyperglycemia and compensatory
hyperinsulinemia and eventually type 2 diabetes
(Ungefroren et al. 2015; Louie et al. 1831). High
levels of insulin promote insulin-like growth
factor-1 (IGF-1) production. Therefore, obese
patients with type 2 diabetes have increased can-
cer mortality, perhaps due to hyperinsulinemia,
and/or elevated IGF-1, which leads to increased
cancer cell growth, proliferation, and survival.
Although insulin target tissues affecting glucose
metabolism exhibit insulin resistance in prediabe-
tes or type 2 diabetes, cancer cells maintain sen-
sitivity toward insulin, thus, allowing additional
growth promotion in the hyperinsulinemic state
(Ungefroren et al. 2015; Ràfols 2014). In contrast,
patients with low circulating insulin and IGFs
appear to be protected from cancer development
(Gallagher and LeRoith 2011). Patients with type
2 diabetes, who get insulin therapy or drugs to
stimulate insulin secretion, have a significantly
higher incidence of cancer than those who get
metformin, an insulin-sensitizing antidiabetic
drug that works to lower insulin requirements
(Dowling et al. 2012). Epidemiological studies
have consistently associated metformin use with
decreased cancer incidence and cancer-related
mortality; thus, metformin is rapidly emerging as
a potential anticancer agent (Dowling et al. 2012),
underscoring the importance of insulin sensitivity
and energy metabolism in cancer biology. Addi-
tionally, metformin can activate 50AMP-activated
protein kinase (AMPK), a central regulator of
energy metabolism and promoter of fatty acid
oxidation (Salani et al. 2014). Caloric restriction,
which increases insulin sensitivity and reduces
circulating insulin and IGF-1, is a potent suppres-
sor of carcinogenesis (Hursting et al. 2010; Moore
et al. 2008a; Jiang et al. 2008; Zhu et al. 2005). In
several preclinical models, the effect of caloric
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restriction on carcinogenesis reduces the PI3K/
Akt/mTOR pathway activation via AMPK activa-
tion (Moore et al. 2008a; Jiang et al. 2008) and can
be abrogated by restoration of IGF-1 levels
(Hursting et al. 2010; Zhu et al. 2005; Hursting
et al. 1993). Tumors with mutations activating the
PI3K/Akt/mTOR signaling pathway are resistant
to caloric restriction (Kalaany and Sabatini 2009).
The PI3K/Akt/mTOR and Ras/Raf/MAPK axes
are common effector pathways for many growth
factors including insulin, IGF, and leptin, regulat-
ing tumor survival, growth, and proliferation
(Dunn et al. 1997). Accordingly, PI3K/Akt/
mTOR inhibition has been an active target to
reduce carcinogenesis and tumor incidence
(Fierz et al. 2010; Novosyadlyy et al. 2010;
Moore et al. 2008b; Olivo-Marston et al. 2009).

4.1.2 Dysregulation of the Adipose
Tissue Secretome

Adipose tissue is an endocrine organ that pro-
duces many bioactive proteins generically called
adipokines which include leptin, adiponectin, and
numerous others including cytokines and
chemokines as well as bioactive lipids and steroid
hormones (Maury and Brichard 2010).

Leptin acts centrally as an anorexic neuroen-
docrine hormone and in the periphery as a regu-
lator of energy metabolism, reproduction, and
immune function. The immune modulatory
actions of leptin suggest that it can act as a
pro-inflammatory cytokine by stimulating mono-
cytes and lymphocytes to produce
pro-inflammatory cytokines (Ungefroren
et al. 2015; Louie et al. 1831; Ottero et al. 2006).
In obesity, circulating leptin becomes elevated in
part due to increases in subcutaneous fat
(Considine et al. 1996) and results in leptin resis-
tance, thus preventing neuroendocrine reduction
in appetite. Signaling of leptin through its receptor
activates numerous cascades, including the JAK-
STAT, IRS-1/2, MAPK and Akt/PI3K, and
decreases the activity of 50AMP-activated protein
kinase (AMPK), a master regulator of cellular
energy homeostasis (M€unzberg and Myers 2005;
Yadav et al. 2013). Despite the leptin resistance
that accompanies some of leptin’s actions in obe-
sity, elevated leptin levels can promote tumor

growth and, thus, have been viewed as a major
mediator of obesity-related cancers (Drew 2012;
Vansaun 2013; Chen 2011; Gao et al. 2009; Yu
et al. 2009; Friedman and Mantzoros 2015; Park
and Ahima 2015).

Adiponectin is also secreted from adipose tis-
sue and has insulin-sensitizing, anti-inflammatory
actions and promotes fatty acid oxidation (Yadav
et al. 2013). In contrast to leptin, adiponectin
decreases with increasing adiposity (Vansaun
2013; Dalamaga et al. 2012; Arita et al. 1999;
Perrier and Jardé 2012); inhibits proliferation of
colon, prostate, endometrial, and breast cancer
cells; and is associated with decreased risk of
cancers of the uterus, colon, and breast in epide-
miological studies (Ungefroren et al. 2015; Ràfols
2014; Khan et al. 2013). The anticancer activity of
adiponectin (Perrier and Jardé 2012) may result
from modulation of energy balance by decreasing
insulin/IGF-1 and mTOR signaling via activation
of AMPK and by exerting anti-inflammatory
actions via the inhibition of pro-inflammatory sig-
naling leading to cytokine production (Dalamaga
et al. 2012). The association between the
adiponectin-to-leptin ratio and metabolic syn-
drome as well as some types of cancer has been
suggested as an additional important parameter
(Hursting and Hursting 2012; Cleary et al. 2009).

The role of novel adipokines, such as
omentin-1, visfatin, and vaspin, in obesity and
cancer is under investigation.

Omentin-1, a 34 kDa adipokine that is highly
expressed in visceral adipose tissue, has been
shown to have both insulin-sensitizing and anti-
inflammatory activities (Yang et al. 2006;
Yamawaki et al. 2011; Kazama et al. 2012). Also
similar to adiponectin, omentin-1 is decreased
with increasing adiposity (de Souza Batista
et al. 2007). Although it is not clear if omentin-1
can affect cancer growth, it has been recently
shown that omentin-1 has the ability to promote
apoptosis by p53 deacetylation (Zhang and Zhou
2013). Visfatin or nicotinamide phosphoribosyl-
transferase (Nampth) is found in adipose tissue as
well as other tissues and has pro-inflammatory
properties (Maury and Brichard 2010). Vaspin
(visceral adipose tissue-derived serpin), a member
of the family of serine protease inhibitors, is an
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additional novel adipokine with insulin-
sensitizing effects. However, high circulating
levels of omentin-1, visfatin, and vaspin were
recently shown in patients with colorectal cancer,
indicating that their definitive role in the obesity-
dependent cancer has yet to be determined (Fazeli
et al. 2013).

Vascular endothelial growth factor (VEGF) is
a growth factor that promotes endothelial cell
growth and angiogenesis and is elevated in
inflamed adipose tissue (especially visceral).
Locally increased levels of VEGF contribute to
tumor neovascularization and metastasis (Lee
et al. 2013; Aggarwal and Gehlot 2009).

Pro-inflammatory cytokines such as IL-1, IL-6,
and tumor necrosis factor alpha (TNF-α) are
highly elevated in adipose tissue from obese indi-
viduals and contribute to chronic localized as well
as systemic inflammation. In addition to creating an
insulin-resistant state in adipose tissue, these factors
play a crucial role in tumor growth and invasiveness
(Iyengar et al. 2015). IL-1 and TNF-α activate
nuclear factor κB (NF-κB)-dependent increases in
pro-inflammatory cytokines, angiogenic factors
(VEGF and IL-8), matrix metalloproteinases
(MMPs) for remodeling and invasion, chemokines
and inflammatory enzymes, prostaglandin-
endoperoxide synthase 2 (PGHS-2 or COX-2),
and 5-lipoxygenase (5-LOX). IL-6 promotes
growth and anti-apoptotic pathways through
IL-6R/JAK activation of STAT3-dependent tran-
scription (Multhoff et al. 2012).

Chemokines are soluble chemotactic cytokines
that are grouped into four classes based on the
positions of key cysteine residues: C, CC, CXC,
and CX3C. Several studies have reported the
involvement of chemokines and chemokine
receptors in cell proliferation, migration, invasion,
and metastasis of different types of tumors (Sethi
et al. 2012; Muller et al. 2001). They are produced
in large amounts from inflamed obese adipose
tissue, such as MCP-1 (CCL2), and with IL-8
further exacerbate the inflammatory state by
increasing monocyte and neutrophil infiltration
of the tissue. IL-8, acting as a chemokine and a
pro-angiogenic factor, has been linked with pro-
gression, metastasis, and poor prognosis for can-
cers of the colon, liver, prostate, lung, ovary, and

melanoma (Aggarwal and Gehlot 2009; Sethi
et al. 2012; Aleksandrova et al. 2014). Expression
of CXCR4, the chemokine receptor that binds
stromal cell-derived factor-1 (SDF-1), has been
associated with metastasis and poor prognosis of
a variety of cancers (Aggarwal and Gehlot 2009;
Sethi et al. 2012). Although, the chemokine recep-
tor CXCR4 is expressed on adipocytes and mac-
rophages in adipose tissue, its role in this tissue
still remains unknown (Yao et al. 2014).

A list of various ILs and chemokines associ-
ated with cancer initiation and promotion and a
role of COX-2, 5-LOX, and MMPs in cancer are
briefly summarized in Table 1 (Byers and Sedjo
2015; Louie et al. 1831; Multhoff et al. 2012;
Headland and Norling LV. The resolution of
inflammation: Principles and challenges. Semin
Immunol 2015; Maury and Brichard 2010; Sethi
et al. 2012; Muller et al. 2001; Aleksandrova
et al. 2014; Du et al. 2014).

Steroid hormones and their pathologic impact,
including estrogen, progesterone, androgens, and
glucocorticoids, in obesity-dependent cancers are
great (Hursting et al. 2008; Kaaks et al. 2001).
Adipose tissue can produce significant amounts of
estrogens via aromatase-catalyzed conversion of
gonadal and adrenal androgens to estrogen in men
and postmenopausal women (Kaaks et al. 2001).
In obesity, the elevated pro-inflammatory envi-
ronment induces elevated expression of aromatase
in adipose tissue, thereby contributing to higher
local and systemic levels of estrogen (Iyengar
et al. 2015). Estrogen and estrogen receptor-α
(ER-α) have been implicated in the pathogenesis
of postmenopausal breast and endometrial cancers
by inducing cell proliferation, VEGF expression,
and angiogenesis, and inhibiting apoptosis, and
targeting estrogen as a preventive intervention
has been pointed out by clinical data (Institute of
Medicine 2012). Selectively, reducing aromatase
expression and excessive estrogen production has
been targeted to reduce ER-dependent obesity-
associated cancer (Bulun et al. 2012). Treatment
with exemestane, an aromatase inhibitor, has
exhibited decreases in relative risk of invasive
breast cancer by 65 % (Hursting et al. 2012;
Goss et al. 2011). Although androgen levels are
not consistently associated with prostate cancer
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risk in men, obesity has been associated with poor
prognosis and more aggressive prostate tumors.
Thus, it is possible that androgen-independent
activation of androgen receptor by elevated IL-6
and IGF-1 may be the primary mechanism for
aggressive prostate cancer in obesity (Iyengar
et al. 2015). Glucocorticoid production from adi-
pose tissue is elevated in obesity and contributes
to local and systemic insulin resistance, increased
lipolysis, and elevated FFA levels (Maury and
Brichard 2010; Iyengar et al. 2015; Hursting
et al. 2008).

Bioactive lipids mediate a wide range of bio-
logical functions. In the obese insulin-resistant
state, adipocytes, particularly visceral adipocytes,
are highly lipolytic. Free fatty acids (FFAs)
released in elevated amounts lead to ectopic depo-
sition in non-adipose tissues such as the liver,
muscle, and pancreas causing lipotoxicity, wors-
ening insulin resistance, and pancreatic beta cell
dysfunction (Maury and Brichard 2010; Iyengar
et al. 2015). FFAs released into the tumor micro-
environment can encourage tumor growth by sup-
plying necessary metabolic fuels for energy
metabolism and generation of pro-tumorigenic
signaling lipids (Louie et al. 2013). In addition
to ectopic tissue accumulation, saturated FFAs
can initiate pro-inflammatory signaling to NF-κB
through binding and activation of toll-like recep-
tor 4 (TLR4) (Maury and Brichard 2010).
Pro-inflammatory signaling by FFAs or cytokines
triggers NF-κB-dependent transcription of several
genes promoting tumor formation and develop-
ment including cyclooxygenase-2 (PGHS-2 or
COX-2) and 5-lipoxygenase (5-LOX) that pro-
duce bioactive pro-inflammatory and tumorigenic
lipids, prostaglandin E2 (PGE2) and leukotrienes,
respectively (Sethi et al. 2012; Nakanishi and
Rosenberg 2013).

4.2 Emerging Mechanisms Linking
Obesity and Cancer

4.2.1 Interactions with the Tumor
Microenvironment

The tumor microenvironment is a complex inter-
play of cellular, extracellular matrix (ECM),

secretory factor, and metabolite interactions that
promote all stages of tumorigenesis. In its sim-
plest form, this environment is composed of the
tumor cells, the surrounding normal tissue or stro-
mal cells, tumor-associated inflammatory cells,
the secretome unique to this environment, as
well as systemic factors that may impact tumor
growth such as elevated insulin, IGF-1, or sys-
temic inflammation in type 2 diabetes. In obesity-
associated cancers such as colon, renal, breast,
liver, endometrial, prostate, and pancreatic, the
proximal location of dysfunctional adipose tissue
in the microenvironment greatly enhances the
tumorigenic nature of these complex interactions.
Obese adipose tissue and tumors both resemble
tissues that are wounded and are undergoing
remodeling and repair processes (Iyengar
et al. 2015). At these sites, hypoxic conditions
induce hypoxia-inducible factor 1α (HIF-1α)-
dependent increases in several genes, such as
VEGF, vascular endothelial growth factor receptor
(VEGFR), cytokine-inducible nitric oxide synthase
(iNOS), COX-2, and erythropoietin (EPO), that
promote angiogenesis/neovascularization, cell pro-
liferation, and inflammation. Even under normoxic
conditions elevated IL-1β and TNF-α have been
shown to maintain HIF-1α activity. Elevated
HIF-1α is associated with increased metastasis
and poor prognosis for many cancers (Sethi
et al. 2012). Tissue remodeling in obese adipose
tissue is indicated by the presence of crown-like
structures (CLS), dead adipocytes surrounded by
macrophages (Lee et al. 2013). As discussed ear-
lier, these stresses induce an ever-escalating cas-
cade of prostaglandin E2 (PGE2), chemokines,
cytokines, and immune cell infiltration that create
the state of chronic inflammation. As part of the
chronic inflammatory/wound healing environ-
ment, elevated remodeling enzymes such as
matrix metalloproteinase (MMP)-2, MMP-7,
and MMP-9 and urokinase plasminogen
activator (u-PA) promote cancer cell invasion
and metastasis (Multhoff et al. 2012). Addition-
ally, elevated ROS (reactive oxygen species)
released by infiltrating myeloid cells increase
oxidative stress in the microenvironment contrib-
uting to DNA damage, mutagenesis, and further
activation of pro-inflammatory signaling to
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NF-κB (Sethi et al. 2012; Diakos et al. 2014).
Although the emphasis has been on adipose
tissue contribution of adipokines, cytokines,
chemokines, and bioactive lipids to tumorigene-
sis, activation of central transcriptional pathways
such as HIF-1, signal transducer and activator
of transcription 3 (STAT3), and NF-κB is impor-
tant in the tumor as well as the dysfunctional
adipose tissue. STAT3 and NF-κB-dependent
transcription synergizes to increase tumor inflam-
mation, decrease antitumor responses, and pro-
mote tumor growth and metastasis. These
synergistic interactions within the tumor and
between obese adipose tissue and the tumor
underscore the overwhelming contribution of
inflammation, particularly NF-κB activation in
the tumor microenvironment (Multhoff et al.
2012) (Fig. 1). Thus, critical targets such as
NF-κB and COX-2 have become important for
cancer prevention.

Activity of Natural Killer (NK) Cells
Adiposity is known to be associated with impaired
immune competence, and thus alterations in the
immune system could play a role in cancer risk in
obese patients. Obese patients exhibit lower activ-
ity of NK cells (Moulin et al. 2008) and

consequently lower cytotoxic activity against pre-
cancerous and cancer cells. However, a weight
loss of 26 % after 6 months, as a result of a
stomach bypass surgery, led to an increase in NK
cell cytotoxic activity (Moulin et al. 2008).
Furthermore, it is known that an important cause
of obesity-induced insulin resistance is chronic
systemic inflammation originating in VAT and
that VAT inflammation is associated with the
accumulation of pro-inflammatory macrophages
in adipose tissue, but the immunological signals
that trigger their accumulation are complex. Very
recently it was found that a phenotypically distinct
population of tissue-resident NK cells might rep-
resent a crucial link between obesity-induced adi-
pose stress and VAT inflammation (Wensveen
et al. 2015). Obesity drove the upregulation of
ligands of the NK cell-activating receptor NCR1
on adipocytes; this stimulated NK cell prolifera-
tion and interferon-γ (IFN-γ) production, which
in turn triggered the differentiation of
pro-inflammatory macrophages and promoted
insulin resistance. Deficiency of NK cells,
NCR1, or IFN-γ prevented the accumulation of
pro-inflammatory macrophages in VAT and
greatly ameliorated insulin sensitivity. Thus, NK
cells may also be key regulators of macrophage
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Fig. 1 Obesity alters adipose tissue’s production of cyto-
kines/adipokines, growth factors, and steroid hormones
that can impact tumor development. FFA free fatty acids;
IL-1 interleukin-1; IL-6 interleukin-6; IGF-1 insulin-like

growth factor-1; MCP-1 monocyte chemoattractant
protein-1; MIP-1α macrophage inflammatory protein-1α;
NF-κB nuclear factor kappa-light-chain-enhancer of acti-
vated B cells; VEGF vascular endothelial growth factor
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polarization and insulin resistance in response to
obesity-induced adipocyte stress (Wensveen
et al. 2015).

Role of the Microbiome
The role of gut microbiota in metabolic disorders
is increasingly gaining importance. The gut
microbiome has been implicated as a critical
player in the development of both obesity and
diabetes (van Olden et al. 2015; Tai et al. 2015).
The involvement of gut microbiota in the genera-
tion of obesity-associated low-grade inflamma-
tion and diabetes (Cani et al. 2012) has been
recently discussed. Maintenance of gut
microbiota homeostasis is therefore important in
metabolic diseases. Metabolites from the gut
microbes can contribute to local and systemic
metabolism as well as to gut barrier integrity.
Compromised barrier integrity may lead to leak-
age of inflammatory mediators, such as endo-
toxin, into the systemic circulation leading to
increase in systemic inflammation and insulin
resistance (Upadhyaya and Banerjee 2015).

Role of Epigenetics
Another topic recently emerged is the role of
epigenetics, the interaction of epigenome with
the environment, including nutrition, that can
alter patterns of gene expression. Although DNA
methylation and histone modification have been
investigated, recent focus in on miRNAs. Micro-
RNAS (miRNAs) are small noncoding RNAs that
regulate gene expression at the post-transcription
level and, thus, biological processes in different
tissues. A major function of miRNAs in adipose
tissue is to regulate the differentiation of adipo-
cytes and consequently specific metabolic and
endocrine function. Although numerous miRNAs
are present in human adipose tissue, the expres-
sion of only few is altered in individuals with
obesity and diabetes (Arner and Kulyté 2015).
Furthermore, studies have revealed that miRNAs
play crucial roles in regulating brown adipocyte
differentiation (Yuntao and Xiangyang 2015) and
are important in obesity and related metabolic
disorders, indicating new strategies for the treat-
ment of these diseases.

5 Prevention and Interventions

5.1 Prevention

Obesity is preventable. Throughout history, vari-
ous methods addressing obesity have been
documented, and many of these methods actually
mirror strategies seen today. Ancient Egyptians
practiced binging and purging, Pythagoras
(570–490 BC) recommended eating in modera-
tion, while Iccus and Herodicus (500–400 DC)
combined exercise with diet for optimal health
(Rossen and Rossen 2012). Hippocrates of Kos
(460–370 BC), “father of medicine,” was among
the first to realize the danger of obesity, and
Tobias Venner (1577–1660), an English physician
and medical writer, was recognized as the first to
use a term “obesity.” Interestingly, one of the
earliest images of the body made by humankind,
the Venus of Willendorf, shows that features of
fatness and fertility would have been highly desir-
able for people who lived in a harsh ice-age
environment.

Based on the available evidence, WCRF/AICR
developed guidelines and personal recommenda-
tions for individuals, as well as goals for the
population as a whole, made by world experts,
including those from the International Obesity
Task Force, to prevent both obesity and cancer
(World Cancer Research Fund and American
Institute for Cancer Research 2007; http://www.
dietandcancerreport.org). Although setting these
targets was a vital first step, equally important has
been understanding how to achieve them. This is a
reason why WCRF/AICR published an evidence-
based Policy and Action for Cancer Prevention
report that provides evidence-based recommenda-
tions to key groups in society on how to help
people make healthier choices to reduce their
chances of developing cancer (http://www.
dietandcancerreport.org). Similar recommenda-
tions and guidelines on nutrition and physical
activity for cancer prevention were given by the
American Cancer Society (ACS) (Kushi
et al. 2012).

Obesity is often an indicator of unhealthy life-
style. Strategies, such as healthy diet, change in
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lifestyle, or even pharmacological interventions,
that disrupt the obesity-cancer axis may be useful
for reducing the rise of cancer or its progression.

Some phytochemicals, such as resveratrol,
curcumin, and quercetin, have been shown to be
potent in breaking the obesity-cancer link by
interacting with inflammatory and growth factor
signals that underlie this link (Ford et al. 2013).
Also naturally appearing and widely distributed in
animal and plant tissues, inositol phosphates
(if water soluble) (Vucenik and Stains 2012;
Kim et al. 2014) or inositide (if lipid bound)
(Manna and Jain 2015) has shown treatment
implications in obesity, diabetes, and cancer.
Mediterranean diet, a healthy combination of die-
tary factors and lifestyle changes, has been shown
to be beneficial for cardiovascular disease and
also to have a preventive impact on cancer
(Ostan et al. 2015). The combination of polyphe-
nols contained in fruits, vegetables, grains,
legumes, and olive oil has been recognized for
its antioxidant and anti-inflammatory properties
contributing to antitumor and anti-atherogenic
effects. Polyphenols control and reduce inflam-
mation through a series of pathways preventing
cancer and other age-related diseases with an
inflammatory pathogenesis. Moreover, resvera-
trol, quercetin, and other polyphenols exert their
anticancer and chemopreventive action through
mechanisms that mimic caloric restriction (sirtuin
and mTOR pathways) (Ostan et al. 2015). How-
ever, the mechanism behind these effects of phy-
tochemicals on cancer is very complex and still
unclear, because these compounds certainly do
much more than just “disrupt the obesity-cancer
axis.”

5.2 Interventions

The number of cancer survivors is steadily
increasing. Although obesity has been an
established factor for cancer incidence, accumu-
lating evidence suggests that obesity is predictive
of poor cancer prognosis among cancer survivors
(Institute of Medicine 2012). There are several
challenges and various modalities of cancer

treatment in obese patients, in particular related
to dosage, pharmacokinetics, and resistance to
chemotherapy (Kaidar-Person et al. 2011;
Lashinger et al. 2014). There is still a research
gap in our knowledge of the role of obesity in
cancer survival and recurrence, and therefore, we
need to identify new targets and strategies for
improved cancer outcomes in obese patients
(Institute of Medicine 2012; Lashinger
et al. 2014).

Results from diet and weight loss studies show
that cancer survivors are motivated and able to
make dietary and lifestyle modifications. The
Women’s Intervention Nutrition Study (WINS)
(Chlebowski et al. 2006) and the Women’s
Healthy Eating and Lifestyle (WHEL) (Pierce
et al. 2007) trials conducted among early-stage
breast cancer survivors tested the effects of dietary
interventions on cancer recurrence and survival.
By promoting a low-fat diet through individual-
ized counseling provided by registered dietitian in
WINS trial, there were significantly lower rates of
recurrence observed in intervention arm at 5 years
(Chlebowski et al. 2006; Demark-Wahnefried
et al. 2012). In contrast, the WHEL intervention
used telephone-based dietary counseling to pro-
mote a daily intake of vegetable, fruits, and fiber,
and although intake of fruits and vegetable was
increased and intake of fat was decreased, there
were no differences in weight change between
arms. Additionally, after a median follow-up of
7.3 years, there were no between-arm differences
in recurrence (Pierce et al. 2007; Demark-
Wahnefried et al. 2012). The FRESH START
trial conducted on newly diagnosed breast and
prostate cancer survivors resulted in a modest
but significant weight loss as a consequence of
lower-fat, high-fruit, and high-vegetable diets
(Demark-Wahnefried et al. 2012; Demark-
Wahnefried et al. 2007). However, only few inter-
ventions have pursued weight loss as a specific
arm (Demark-Wahnefried et al. 2012). The
Healthy Weight Management (HWM) (Mefferd
et al. 2007) and the Survivors Health And Physi-
cal Exercise (SHAPE) (Taylor et al. 2010) inter-
ventions in breast cancer survivors tested the
impact of a cognitive behavioral weight loss
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program plus telephone counseling against a wait-
list control, and both interventions resulted in
significant improvements in physical activity and
weight loss. Although few physical activity trials
have focused on survival, they have shown
improvements in many healthy outcomes in can-
cer survivors, including health-related fitness,
fatigue, depression, and quality of life (Demark-
Wahnefried et al. 2012). A multinational trial in
Canada and Australia, the Colon Health and Life-
Long Exercise Change (CHALLENGE) trial, is
currently open to accrual and incorporates inter-
vention approaches shown effective (Courneya
et al. 2008). The Exercise and Nutrition to
Enhance Recovery and Good Health for You
(ENERGY) trial is designed as a vanguard com-
ponent of a fully powered trial of at least 2,500
women with breast cancer recurrence end points
(Rock et al. 2013). With a goal to reduce breast
cancer recurrence, this study has high potential to
have a major impact on clinical management and
outcomes after a breast cancer diagnosis. This trial
initiates the effort to establish weight loss support
for overweight or obese breast cancer survivors as
a new standard of clinical care. However, while
weight loss may be a good cancer prevention
strategy, it could actually be harmful in patients
who have already succumbed to disease. During
the weight loss, white adipose tissue (WAT) is
stressed and undergoes remodeling, and it remains
to be seen how tumor cells respond to this change;
for instance, they could take advantage of
WAT-derived factors easier. While awaiting defin-
itive evidence from ongoing randomized trials,
breast cancer patients can reasonably be
counseled to avoid weight gain and reduce body
weight if overweight or obese and increase or
maintain a moderate level of physical activity
(Chlebowski 2013).

While lifestyle interventions for weight loss
are efficacious, sometimes their long-term sus-
tainability is limited. Therefore, in addition to
these nutrition interventions, several pharmaco-
logical interventions may also prove to be useful
in targeting obesity-cancer risk. These interven-
tions may include FDA-approved weight loss
drugs (orlistat, lorcaserin, phentermine-

topiramate), although these drugs might be asso-
ciated with side effects that may not be acceptable
to patients (Goodwin and Stambolic 2015;
Mordes et al. 2015). Another agent that target
the obesity-associated physiology and signaling
pathways is metformin, previously discussed
(Dowling et al. 2012; Salani et al. 2014; Goodwin
and Stambolic 2015). Additionally, bariatric sur-
gery is very effective for weight loss and reversal
of type 2 diabetes. However, this is an invasive
approach that is not effective in the long term for
some patients. It has been shown that some tradi-
tional Chinese medications may be effective for
appropriate patients in a need of weight loss
(Mordes et al. 2015).

Targeting brown fat is a new method to reduce
obesity. Traditionally, white fat has been the pri-
mary focus of obesity research. However, over the
last few years, there has been a revival of interest
in the brown adipose tissue (BAT) (Ràfols 2014;
Sidossis and Kajimura 2015). In contrast to white
adipose tissue that stores energy, BAT dissipates
energy and produces heat (Ràfols 2014; Sidossis
and Kajimura 2015). This process is mediated by
the unique mitochondrial uncoupling protein
1 (UCP1) localized in the inner membrane. Nota-
bly, the amount of brown fat is inversely corre-
lated with obesity and BMI (Sidossis and
Kajimura 2015). The morphological and imaging
studies that demonstrate that BAT is functional in
adults lead to an explosion of research that seeks
to pharmacologically convert white to brown fat
in order to burn off excess calories and combat
human obesity (Zafir 2013; Gunawardana and
Piston 2012; Stanford et al. 2013; Villarroya
et al. 2013; Cypess and Kahn 2010; Fr€uhbeck
et al. 2009; Tseng et al. 2010). This new type of
brown-like adipocyte was termed beige/brite adi-
pocytes or inducible brown adipocytes. Beige/
brite cells reside within anatomical sites of classi-
cal white fat throughout the body and are highly
activated in response to thermogenic stimuli,
including endogenous hormones, with increased
levels of thermogenic genes and increased respi-
ration rates. This activation of beige/brite adipo-
cytes is referred to as a “browning” phenomenon.
However, the stimulation of brown fat in
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traditional white fat depots must be tightly con-
trolled as brown fat activation is associated with
increases in vascularity and secretion of angio-
genic and growth factors (Wang et al. 2015).
Indeed, it is known that these characteristics are
essential steps for breast cancer progression and
dissemination (Bernstein 2012). In particular,
recent emphasis has been made on the association
of specific brown fat features and the so-called
white fat browning with the functions of normal
and mutated tumor suppressor genes, such as
PTEN (Ortega-Molina et al. 2012) and BRCA1
(Jones et al. 2011). More research is needed to
clarify the potential of brown fat and to better
understand its role in obesity and cancer.

6 Conclusion

Strategies, either dietary, lifestyle, or pharmaco-
logical, that disrupt the obesity-cancer axis may
be useful for reducing the rise of cancer or its
progression. Identification of key molecules that
can serve as a biological markers, targets, and
modulators is critical to break the association of
obesity and cancer. Inflammation is a major link
between obesity and cancer, and inflammation-
associated molecules can be activated by a num-
ber of environmental and lifestyle-related factors.
More than half of the cancers occurring today are
preventable by applying knowledge that we
already have, because tobacco, obesity, and phys-
ical inactivity are all modifiable causes of cancer
that generate the most disease (Colditz
et al. 2012). The obstacles are in part societal,
and to achieve maximal possible cancer preven-
tion, we need better ways to implement what
we know.
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Abstract
Several endocrine disorders, including diabe-
tes, insulinoma, Cushing’s syndrome, hypo-
thyroidism, polycystic ovarian syndrome, and
growth hormone deficiency, are associated
with obesity. The mechanisms for the develop-
ment of obesity vary according to the primary
actions of these hormones on energy balance,
adipose, and other tissues. This chapter
describes the pathogenesis of obesity and met-
abolic dysfunction associated with excess insu-
lin or glucocorticoids and deficiency of thyroid
hormone or growth hormone.

Keywords
Cushing’s syndrome • Growth hormone defi-
ciency • Hyperinsulinism • Hypothyroidism •
11β-(Beta)-hydroxysteroid dehydrogenase •
Insulinoma • Obesity • Type 2 diabetes

1 Introduction

Hyperinsulinism, hypercortisolism, hypothyroid-
ism, and growth hormone deficiency are often
associated with weight gain. Insulin is a potent
anabolic hormone, and treatment with insulin or
some antidiabetic drugs results in weight gain
through direct effects on adipogenesis and lipid
storage. Insulinoma is a rare cause of hyperinsu-
linism associated with hypoglycemia, hunger, and
rapid weight gain. Excessive glucocorticoid expo-
sure in Cushing’s syndrome results in central
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obesity, sarcopenia, osteoporosis, hypertension,
and hyperlipidemia. The local production of
active glucocorticoids in adipose tissue by
11β-(beta)-hydroxysteroid dehydrogenase type
1 has been implicated in obesity, insulin resis-
tance, and hypertension. Hypothyroidism
increases body weight by decreasing thermogen-
esis and increasing fluid retention and interstitial
accumulation of glycosaminoglycans. Hypothy-
roidism also increases cholesterol synthesis and
impairs insulin sensitivity. Growth hormone defi-
ciency in adults decreases lean tissue mass and
increases fat. The focus of this chapter will be on
putative mechanisms linking obesity to excessive
exposure to insulin and glucocorticoids and thy-
roid and growth hormone deficiencies.

2 Insulin

Insulin is secreted by the β (beta) cells of the
pancreas, primarily in response to glucose, and
amino acids and nonesterified fatty acids
(NEFAs) can also augment glucose-induced insu-
lin secretion. During the postprandial period, ele-
vated blood glucose stimulates pancreatic β (beta)
cells to secrete insulin, which promotes glycogen
storage in the liver and skeletal muscle and tri-
glyceride storage in adipose tissue and liver. The
cellular action of insulin is initiated by binding to
its cell surface receptor, which consists of two α
(alpha) subunits and two β (beta) subunits that
form a hetero-tetrameric complex. Insulin binds
to the extracellular (alpha) subunits, transmitting a
signal across the plasma membrane that activates
the intracellular tyrosine kinase domain of the
β (beta) subunit. Insulin binding to the external
component of its receptor results in activation
of receptor tyrosine kinase (Newsholme et al.
2014). The activated insulin receptor (IR) kinase
phosphorylates its substrate proteins on tyrosine
residues. IR substrates include IRS (IR substrate)
proteins, Shc, Cbl, APS, and Gab-1 (Grb2-asso-
ciated binder-1). The insulin signaling network
involves three major pathways, the phosphatidy-
linositol 3-kinase (PI 3-kinase), the mitogen-
activated protein kinase (MAPK), and the
Cbl/CAP pathways (Pessin and Saltiel 2000).

A pathway leading to activation of MAPK medi-
ates the growth-promoting effects of insulin by
phosphorylating transcription factors leading to
activation of gene expression, whereas the PI
3-kinase and Cbl/CAP pathways, triggered by
insulin, generate a diverse array of biologic
responses (Avruch et al. 2001; Khan and Pessin
2002). The major metabolic pathways stimulated
by insulin are glycolysis, glycogen synthesis, lipo-
genesis, and protein synthesis. In contrast, insulin
inhibits gluconeogenesis, glycogenolysis, lipoly-
sis, fatty acid oxidation, and protein degradation.

Insulin has been known to increase glucose
utilization by enhancing glucose uptake to skeletal
muscle and fat. Insulin increases the rate of glycol-
ysis by increasing glucose transport and the activ-
ities of hexokinase and 6-phosphofructokinase in
muscle. Glycogen synthase, the key regulating
enzyme for glycogen synthesis, is activated by
insulin. When glycogen stores in muscle are
replete, the glucose taken up is converted to lactate.
Lactate, produced and released by muscle and adi-
pose tissue, is taken up by the liver and converted
to glucose. Conversion of glucose to lactate occurs
in many tissues, but only muscle and adipose
tissues are sensitive to insulin. Lactate is converted
to pyruvate, which is a precursor for acetyl-CoA
(Rossetti and Giaccari 1990; Dimitriadis
et al. 2011). During fasting, the fall in insulin and
increase in counter-regulatory hormones, such as
glucagon, epinephrine, glucocorticoids, and
growth hormone, stimulate glycogenolysis and
gluconeogenesis in the liver, leading to glucose
release to ensure adequate fuel supply to the brain
and other vital organs.

Insulin also plays an important role in lipid
metabolism. Adipose tissue triglycerides (TGs) rep-
resent the major source of stored fuel available for
mobilization when energy requirements are
increased or when glucose availability is reduced.
Plasma NEFA is derived from lipolysis of adipose
tissue TG via hormone-sensitive lipase (HSL). Ele-
vated insulin levels suppress adipose tissue lipolysis
through inhibition of the HSL activity, thereby
reducing the release of NEFA and glycerol. Insulin
resistance attenuates lipolysis, especially upper-
body or visceral fat, in obesity. Thus, obese individ-
uals with a predominance of intra-abdominal fat
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have higher rates of NEFAmobilization and greater
resistance to the anti-lipolytic effects of insulinwhen
compared with individuals with lower-body obesity
(Guo et al. 1999; Savage and Semple 2010). Insulin
also stimulates de novo lipogenesis from glucose in
the liver and adipose tissue. In adipose tissue, insulin
increases glucose uptake, thereby increasing the
supply of lipogenic substrates. Insulin is a strong
activator of lipogenesis pathway through increased
expression of lipogenic enzymes such as fatty acid
synthase (FAS) and acetyl-CoA carboxylase (ACC).
Insulin stimulates the reesterification of fatty acids in
adipose tissue and the liver in the form of
TG. Insulin also increases lean and muscle mass,
by suppressing proteolysis and enhancing protein
synthesis (Capeau 2008).

2.1 Hyperinsulinism and Obesity

Obesity and diabetes are closely linked and
increasing worldwide. Because most patients
with type 2 diabetes are overweight or obese at
the time of diagnosis, iatrogenic weight gain is not
only unwelcome but represents an important clin-
ical issue that can become a barrier to successful
management. Unfortunately, insulin and several
oral antidiabetic drugs increase weight. For exam-
ple, after 1 year of treatment, a study showed that
patients on thiazolidinedione (TZD) treatment
gained 5.0 kg, in comparison with 3.3 kg in
those using insulin and 1.8 kg in those treated
with sulfonylureas (SUs). In contrast, patients on
metformin lost 2.4 kg (Nichols and Gomez-
Caminero 2007). In the United Kingdom Prospec-
tive Diabetes Study (UKPDS), an increase in
weight was associated with intensified treatment
and improved glycemic control. The patients on
intensive treatment gained 3 kg more than con-
ventionally treated patients during the 10-year
follow-up period, with most of the weight increase
occurring within the first 12 months. Weight gain
was seen with all drugs used for intensive inter-
vention, with the exception of metformin. Weight
gain was highest among the insulin-treated
patients, who gained a mean of 6.5 kg (Intensive
blood-glucose control with sulphonylureas or
insulin compared with conventional treatment

and risk of complications in patients with type
2 diabetes (UKPDS 33). UK Prospective Diabetes
Study (UKPDS) Group 1998; Effect of intensive
blood-glucose control with metformin on compli-
cations in overweight patients with type 2 diabetes
(UKPDS 34). UK Prospective Diabetes Study
(UKPDS) Group 1998).

Weight gain in type 1 diabetes is often perceived
as desirable; however, overweight or obesity in
type 1 diabetes can become a problem with inten-
sive insulin therapy. The Diabetes Control and
Complications Trial (DCCT) showed that insulin-
associated weight gain was greater in patients
receiving intensive treatment compared to conven-
tional treatment (5.1 vs. 3.7 kg, during the first
12 months of therapy), but the mean weight of
both groups increased to values beyond ideal.
After 12 months of therapy, the intensively treated
group had a weight that was 10 % above ideal.
After 8 years, body weight continued to increase
every year in both groups – more so in the inten-
sively treated cohort. After about 6 years of follow-
up, the patients in the intensively treated group
gained nearly 5 kg more than their conventionally
treated counterparts (Weight gain associated with
intensive therapy in the diabetes control and com-
plications trial. The DCCT Research Group 1988;
Influence of intensive diabetes treatment on body
weight and composition of adults with type 1 dia-
betes in the Diabetes Control and Complications
Trial 2001; Russell-Jones and Khan 2007).

How does chronically elevated insulin or
improvement in glycemic control in diabetes result
in weight gain? A possible explanation is a defen-
sive or unconscious increase in food intake caused
by the fear or experience of hypoglycemia. In fact,
some patients increase their intake of carbohy-
drates episodically or chronically to counteract a
threat or experience of hypoglycemia. Increased
insulin level in response to increased caloric intake
promotes adipogenesis and lipid storage. Weight
gain in treated diabetes may also result from the
correction of glycosuria which decreases the
energy lost in the urine. If the food intake is not
reduced to compensate for improved glycemic con-
trol, the reduction in glycosuria will result in a net
gain in weight (Carver 2006). Subcutaneous
administration of insulin may also contribute to
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weight gain in diabetes. When insulin is given
subcutaneously, the absorbed insulin first circulates
systemically, so muscle and adipose tissues are
over-insulinized while the liver is under-
insulinized. It is possible that systemically elevated
insulin levels promote fat accumulation, which in
turn increases in the therapeutic insulin require-
ments (Russell-Jones and Khan 2007).

Weight management via diet and exercise is
essential for all patients with diabetes. Metformin
is the most commonly used first-line therapy for
type 2 diabetes and often induces weight loss or is
generally considered weight neutral (Table 1).
Among other oral antidiabetic drugs, dipeptidyl
peptidase-IV (DPP-IV) inhibitors are weight neu-
tral and the sodium glucose co-transporter
2 (SGLT2) inhibitors can result in significant
weight loss (Tomkin 2014; Hasan et al. 2014;
Meneghini et al. 2011). Thus, adjunctive treat-
ment with metformin, SGLT2 inhibitors, DPP-IV
inhibitors, and glucagon-like peptide-1 (GLP-1)
analogues should be encouraged in type 2 diabetes
to lower insulin doses and limit weight gain.
Moreover, practitioners should consider weight
neutral alternatives of medications for hyperten-
sion, depression, and other diseases when treating
patients with diabetes (Table 1).

Insulinoma, the most common functioning
islet cell tumor of the pancreas, is a rare cause of
rapid weight gain. Patients with insulinoma pre-
sent with symptoms of hypoglycemia secondary
to excessive and uncontrolled secretion of insulin.
The symptoms are episodic and range from
intense hunger, palpitations, and sweating to neu-
ropsychiatric manifestations, such as anxiety, con-
fusion, and coma. Symptoms often occur in the
morning after an overnight fast and may be pre-
cipitated by exercise. Patients with insulinoma
learn to avoid these symptoms by eating frequent
meals, often high sugar snacks, which promotes
weight gain. The diagnosis of insulinoma is
established with the determination of fasting
hyperinsulinemia (plasma insulin >6 μIU/ml)
and symptomatic hypoglycemia (fasting plasma
glucose<45mg/dl). Increased C-peptide and pro-
insulin levels also distinguish insulinoma from
factitious insulin therapy (Vaidakis et al. 2010).
Several options are available for imaging and
localizing insulinoma tumors, including ultraso-
nography, computed tomography, and intra-
arterial calcium stimulation with venous sam-
pling. Surgical resection is the treatment of choice
and offers the only chance of cure of insulinoma
(Tucker et al. 2006; Grant 2005).

Table 1 Hormones and drugs associated with weight gain

Drug class Drugs that may cause weight gain
Alternatives that cause less weight gain, weight
loss, or are weight neutral

Diabetes treatment Insulin, sulfonylureas,
thiazolidinedione

Metformin, DPP-IV inhibitors, SGLT2 inhibitors,
GLP-1 analogues, pramlintide, acarbose

Steroid hormones Corticosteroids, progestational steroids NSAIDs

Oral contraceptives Progestational steroids, hormonal
contraceptives

Barrier methods, IUDs

Endometriosis
treatment

Depot leuprolide acetate Surgical methods

Antihistamines/
anticholinergics

Diphenhydramine, doxepin,
cyproheptadine

Decongestants, steroid inhalers

Antihypertensives α-Blocker, β-blocker ACE inhibitors, calcium channel blockers

Antipsychotic Risperidone, olanzapine, clozapine Ziprasidone, aripiprazole

Antidepressants and
mood stabilizers

TCAs, paroxetine, mirtazapine,
citalopram, venlafaxine, MAOIs

Bupropion, nefazodone

Anticonvulsants Carbamazepine, gabapentin, valproate Lamotrigine, topiramate, zonisamide

ACE angiotensin-converting enzyme, DPP-IV dipeptidyl peptidase-IV, GLP-1 glucagon-like peptide-1, IUD intrauterine
device, MAOI monoamine oxidase inhibitor, NSAID nonsteroidal anti-inflammatory drug, TCA tricyclic antidepressant,
SGLT2 sodium glucose co-transporter 2
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3 Glucocorticoids

Cortisol is the main active glucocorticoid (GC) in
human and an important regulator of many physi-
ological pathways, particularly during stress or ill-
ness. Secretion of GCs by the adrenal cortex is
normally regulated by the hypothalamo-pituitary-
adrenal (HPA) axis (Fig. 1). Activation of the HPA
axis starts with the secretion of hypothalamic
corticotropin-releasing hormone (CRH), stimula-
tion of pituitary pro-opiomelanocortin (POMC)
gene transcription, secretion of the POMC-
encoded adrenocorticotropic hormone (ACTH),
and stimulation of adrenal GC synthesis and secre-
tion (Fig. 2). GCs, in turn, inhibit CRH gene
expression and secretion at the hypothalamic
level and POMC transcription andACTH secretion
in the anterior pituitary, thereby establishing a reg-
ulatory feedback loop (Malkoski and Dorin 1999;
Watts 2005). GCs mediate their physiologic effects
by binding to an intracellular receptor, the GC
receptor, a member of the hormone receptor sub-
class of the nuclear receptor superfamily of tran-
scription factors. Upon GC binding in the cytosol,
the GC receptor translocates into the nucleus where
it serves as a DNA sequence-specific transcrip-
tional regulator of distinct GC-responsive target
genes (Tata 2002). The main biological functions
of GC include the suppression of inflammation and
control of energy homeostasis. Excessive GC from
exogenous treatment, e.g., for asthma and inflam-
matory conditions, or from endogenous
overproduction due to pituitary adenoma, ectopic
ACTH-producing tumors, or adrenal tumors results
in centripetal obesity, sarcopenia, hyperglycemia,
insulin resistance, dyslipidemia, fatty liver, hyper-
tension, and immunodeficiency (Table 1). Some of
these complications of GC excess (Cushing’s syn-
drome) resemble the metabolic syndrome associ-
ated with common forms of obesity (Vegiopoulos
and Herzig 2007).

3.1 Cushing’s Syndrome

Cushing’s syndrome can be classified into
(i) ACTH-dependent Cushing’s syndrome, in
which inappropriately high plasma ACTH

concentrations stimulate the adrenal cortex to pro-
duce excessive amounts of cortisol and
(ii) ACTH-independent Cushing’s syndrome, in
which excessive production of cortisol by abnor-
mal adrenocortical tissue causes the syndrome
and suppresses the secretion of both CRH and
ACTH. Rarely, Cushing’s syndrome may be
caused by ectopic CRH secretion, bilateral pri-
mary pigmented nodular adrenal hyperplasia,
and macronodular adrenal hyperplasia and adre-
nocortical hyperfunction associated with
McCune-Albright syndrome and Carney’s com-
plex (Newell-Price et al. 1998).

ACTH-dependent Cushing’s syndrome
accounts for about 85 % of cases of endogenous
hypercortisolism. Of the latter, autonomous pitu-
itary ACTH secretion, Cushing’s disease, is
responsible for 80 %; the rest are caused by
ectopic ACTH or, rarely, CRH secretion. Benign
cortisol-secreting adenomas or adrenocortical car-
cinomas are responsible for about 15 % of endog-
enous cases (Tsigos and Chrousos 1996). The
incidence of pituitary-dependent Cushing’s dis-
ease and adrenal adenomas in women is three to
four times that of men. The typical symptoms and
signs of Cushing’s syndrome include a rapid
increase in weight, central obesity, mooning and
plethora of the face, dorsocervical fat pad (buffalo
hump) and supraclavicular fat pad, hypertension,
glucose intolerance, oligomenorrhea or amenor-
rhea, decreased libido in men, and spontaneous
ecchymoses, proximal muscle wasting and weak-
ness, and the development of multiple wide pur-
plish striae on the abdomen or proximal
extremities. Depression and insomnia are com-
mon in Cushing’s syndrome. Patients may have
mild hirsutism and acne, but severe
androgenization, especially hirsutism and
virilization, strongly suggests adrenal carcinoma.
Cutaneous hyperpigmentation occurs in patients
with ectopic ACTH syndrome in whom plasma
ACTH concentrations are markedly elevated.
Thinning of the skin and osteoporosis, associated
with low back pain and vertebral collapse, are
more common in older patients with Cushing’s
syndrome (Newell-Price et al. 1998; Orth 1995).

The key biochemical features of Cushing’s
syndrome comprise of excessive endogenous
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secretion of cortisol, loss of the normal feedback
of the HPA axis, and disturbance of the normal
circadian rhythm of cortisol secretion. The deter-
mination of 24-h excretion of cortisol in urine
(UFC, urinary free cortisol) is a reliable measure
of cortisol secretion. UFC integrates the plasma-
free cortisol concentrations during the entire day,
with a raised level being consistent with
Cushing’s syndrome. In a patient thought to
have Cushing’s syndrome, cortisol should be
measured in two or three consecutive 24-h urine
specimens. Occasionally, cortisol production in
Cushing’s syndrome may fluctuate over several
days to months. This periodic, cyclic, or episodic
hypercortisolism requires several UFC determina-
tions over a period of 3–6 months to establish a
firm diagnosis (Tsigos and Chrousos 1996). The
loss of circadian rhythm with absence of a late-
night cortisol nadir in patients with Cushing’s
syndrome provides the basis for measurement of
a late-night salivary or midnight serum cortisol.
Salivary cortisol has been reported to correlate
well with simultaneous serum cortisol value
(Dorn et al. 2007). Healthy individuals usually
have salivary cortisol levels of <145 ng/dL at

bedtime (Trilck et al. 2005). Using different
assays and various diagnostic criteria, investiga-
tors have reported that late-night salivary cortisol
levels on two separate evenings yield a 92–100 %
sensitivity and a 93–100 % specificity for the
diagnosis of Cushing’s syndrome (Nieman
et al. 2008; Raff 2013). Midnight serum cortisol
can be assessed when the individual is in the
sleeping or awake state, using different diagnostic
criteria. Awake midnight serum cortisol greater
than 8.3–12 μg/dL had 90 % sensitivity and
96 % specificity for the diagnosis of Cushing’s
syndrome (Reimondo et al. 2005).

An overnight 1 mg dexamethasone suppres-
sion test (DST) is a simple screening test for
endogenous hypercortisolism. The test involves
the oral administration of 1 mg dexamethasone
between 11 pm and midnight, after which a
plasma cortisol sample is obtained between
8 and 9 am the next morning. A cortisol concen-
tration of 1.8 or 3.6 μg/dL or less achieves high
sensitivity; however, up to 30 % of false-positive
may occur as a result of primary obesity, chronic
illness, and psychiatric disorders and even in nor-
mal individuals (Nieman et al. 2008). The 2-day,

Fig. 2 Steroid hormone biosynthesis in adrenal cortex
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low-dose DST (0.5 mg every 6 h for 2 days)
identifies patients with Cushing’s syndrome.
Morning serum cortisol above 1.8 μg/dL after
low-dose DST is highly suggestive of Cushing’s
syndrome.

The next challenge after establishing high cor-
tisol levels is to identify the source of excess
cortisol. Immunoradiometric assays (IRMA) pro-
vide highly reproducible and sensitive ACTH
measurement. Plasma ACTH concentrations
<5–10 pg/mL suggest an adrenal source of corti-
sol. Normal or elevated ACTH concentrations
suggest a pituitary or an ectopic source of
ACTH. The standard 2-day, high-dose DST
(2 mg every 6 h for 2 days) distinguishes
Cushing’s disease, in which there is only relative
resistance to GC negative feedback, from the
ectopic ACTH syndrome, in which there is usu-
ally complete resistance. The high-dose DST is
performed on 24 h collections of urine for the
measurement of UFC, and the degree of suppres-
sion is calculated from day 1 to day 3 after the
administration of oral dexamethasone. Suppres-
sion of UFC by 90 % has 100 % specificity and
83 % sensitivity for the diagnosis of pituitary
disease (Flack et al. 1992). As an alternative, a
single 8-mg dose of dexamethasone is given
orally at 11 pm and plasma cortisol is measured
at 8 am before and after dexamethasone adminis-
tration. This test has a sensitivity ranging from
57 % to 92 % and a specificity ranging from
57 % to 100 % (Newell-Price et al. 1998). The
most direct way to demonstrate pituitary
hypersecretion of ACTH is to document a cen-
tral-to-peripheral-vein gradient in blood draining
the tumor (Orth 1995).

3.2 Pseudo-Cushing’s Syndrome

Patients with certain non-endocrine disorders may
exhibit some of the clinical or biochemical fea-
tures of Cushing’s syndrome. As many as 80 % of
patients with major depressive disorder have
abnormal cortisol secretion. Their hormonal
abnormalities presumably result from hyperactiv-
ity of the HPA axis that disappears with the remis-
sion of depression (Gold et al. 1986). Chronic

alcoholism can mimic Cushing’s syndrome; how-
ever, liver dysfunction is prominent, and the hor-
monal abnormalities disappear rapidly during
abstinence from alcohol as their liver function
returns to normal. The mechanism of the
hypercortisolism in chronic alcoholism may
involve either increased CRH secretion or
impaired hepatic metabolism of cortisol (Orth
1995).

The dexamethasone-CRH test distinguishes
patients with pseudo-Cushing’s syndrome from
those with Cushing’s syndrome. The test is
performed with low-dose DST followed by CRH
(1 μg/kg body weight) stimulation and cortisol
measurements. In patients with pseudo-
Cushing’s, the pituitary corticotroph is appropri-
ately suppressed by GCs and does not respond to
CRH, while in Cushing’s syndrome the
corticotroph tumor is generally resistant to dexa-
methasone and responds to CRH. Therefore,
plasma cortisol level at 15 min after CRH injec-
tion being greater than 1.4 μg/dL supports the
diagnosis of Cushing’s syndrome, while lower
values are seen in normal individuals and those
with pseudo-Cushing states. Measurements of
late-night salivary or midnight serum cortisol
can also be used to differentiate patients with
Cushing’s syndrome from those with pseudo-
Cushing states. The circadian rhythm of cortisol
is preserved in pseudo-Cushing states but
disrupted in Cushing syndrome (Nieman 2002).
While true hypercortisolism will persist and the
symptoms worsen over time, hypercortisolism
associated with pseudo-Cushing’s states typically
resolves spontaneously or following definitive
treatment, e.g., antidepressant treatment or absti-
nence from alcohol (Tsigos and Chrousos 1996).

3.3 Linking Cortisol Metabolism
and Obesity

Although there is a striking resemblance between
some of the physical and biochemical features of
Cushing’s syndrome and the metabolic syndrome
associated with primary obesity, the plasma corti-
sol levels tend to be normal or reduced in the
latter. This paradox was explained by the
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discovery that intracellular GC reactivation
occurs in the adipose tissue and liver of obese
rodents and humans. 11β-(Beta)-hydroxysteroid
dehydrogenase type 1 (11β-HSD1) is the enzyme
that mediates conversion of inactive cortisone to
active cortisol in human (Fig. 3) and deoxycorti-
costerone to corticosterone in rodents. Tissue-
specific dysregulation of cortisol metabolism due
to increased adipose and decreased hepatic
11β-HSD1 activities has been shown in human
obesity (Stomby et al. 2014).

11β-HSD1 is located within the endoplasmic
reticulum and is highly expressed in the liver and
adipose tissue (Chapman et al. 2013). Transgenic
mice overexpressing 11β-HSD1 in adipose tissue
exhibited elevated intra-adipose and portal, but
not systemic corticosterone levels, abdominal
obesity, insulin resistance, hyperglycemia, hyper-
lipidemia, and hypertension (Masuzaki
et al. 2001, 2003). Hepatic overexpression of
11β-HSD1 in mice produced mild insulin resis-
tance, fatty liver, hyperlipidemia, and hyperten-
sion, but not obesity or glucose intolerance
(Paterson et al. 2004). In contrast, 11β-HSD1-
knockout (11β-HSD1–/–) mice had improved glu-
cose tolerance, improved lipid profile, and
reduced weight and visceral fat when fed a high-
fat diet (Kotelevtsev et al. 1997; Wake andWalker
2006). However, the role of 11β-HSD1 in human
obesity, metabolic syndrome, and type 2 diabetes
has been inconsistent, perhaps as a reflection of
variability of subjects and different ethnic

populations and methods of investigation. The
decrease in hepatic 11β-HSD1 activity that occurs
in primary obesity is not observed in type 2 diabe-
tes (Valsamakis et al. 2004). It is possible that a
reduction in 11β-HSD1 activity is a compensatory
mechanism that preserves insulin sensitivity and
decreases hepatic glucose output. Many studies
have demonstrated increased 11β-HSD1 expres-
sion and activity in subcutaneous and omental
adipose tissue in human obesity. 11β-HSD1 inhib-
itors have been tested in rodents and shown to
reduce adiposity, enhance insulin sensitivity, and
improve lipid profile. GC receptor antagonists
have also resulted in favorable metabolic effects
in rodents. A number of selective 11β-HSD1
inhibitors have been tested in obese humans and
shown to improve metabolic outcomes albeit min-
imally (Stomby et al. 2014). However, any thera-
peutic benefits have to be weighed against
potential detrimental effects on the HPA axis
(Tomlinson and Stewart 2007).

4 Thyroid Hormone

Thyroid hormone is required for the normal func-
tion of tissues, with major effects on oxygen con-
sumption and metabolic rate. Thyroid hormone
also plays critical roles during embryogenesis
and early life and has profound effects in adult
life, including the regulation of protein, carbohy-
drate, and lipid metabolism (Yen 2001). The

Fig. 3 Role of 11β-(beta)-hydroxysteroid dehydrogenase
type 1 (11β-HSD1) in the metabolic syndrome. 11β-HSD1,
highly expressed in liver and adipose tissue, generates
active cortisol from inactive cortisone. In contrast,
11β-HSD2 is mainly expressed in the kidney and colon
and converts cortisol to cortisone. Enhanced activity of

11β-HSD1 in adipose tissue has been implicated in central
obesity, insulin resistance, type 2 diabetes, dyslipidemia,
and atherogenic cardiovascular diseases. Inhibition of
11β-HSD1 might be a promising target for treating meta-
bolic syndrome
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synthesis and secretion of thyroid hormone are
regulated by a feedback system, the hypothalamo-
pituitary-thyroid (HPT) axis. Thyrotropin-releas-
ing hormone (TRH) is synthesized in the
paraventricular nucleus of the hypothalamus and
transported via axons to the median eminence,
where it is released into the portal capillary plexus
and stimulates TSH synthesis and secretion of
thyroxine (T4) and triiodothyronine
(T3) (Shupnik et al. 1989). T4 is more abundant
but less potent than T3. Plasma and cellular T3
levels are mainly derived from T4 conversion via
type 1 (D1) and type 2 (D2) 50-deiodinases. D1 is
located on the cell membrane and generates cir-
culating T3, and D2 is expressed in the cytoplasm
and rapidly produces T3. The adrenergic system
stimulates D2 activity. D2 is highly expressed in
the hypothalamus and pituitary and produces T3
that mediates the negative feedback regulation of
TSH and TRH (Bianco et al. 2002; Oetting and
Yen 2007). Only 0.03 % of the total serum T4 is
free or unbound, and the remainder is bound to
carrier proteins, e.g., thyroxine-binding globulin
(TBG), albumin, and thyroid-binding prealbumin.
Approximately 0.3 % of the total serum T3 is free,
and the remainder is bound to TBG and albumin.

Free thyroid hormone enters target cells and
acts mainly through its nuclear receptors, thyroid

hormone receptor (TR) α (alpha) and β (beta). TR
forms a heterodimeric complex, with retinoid X
receptor (RXR), which binds to a thyroid hor-
mone response element (TRE) to regulate the
expression of genes involved in the metabolism
of lipids, carbohydrates, bile acids, and other
processes. The binding of T3 to TR stimulates
gene expression, while the unliganded TR binds
to a TRE and represses gene expression. Thyroid
hormone increases the basal metabolic rate via
Na/K ATPase and also interacts with the adren-
ergic nervous system to produce heat in response
to cold exposure (Liu and Brent 2010). This
process, termed adaptive thermogenesis, occurs
in rodent brown adipose tissue (BAT), requires
both TRα (alpha) and TRβ (beta), and involves
uncoupling protein (UCP)-1 expression. In addi-
tion, T3 stimulates lipolysis in adipose tissue and
fatty acid oxidation in the liver (Fig. 4) and
reduces cholesterol by increasing the expression
of low-density lipoprotein receptor. Glucose
metabolism is also modulated by thyroid hor-
mone. Excess thyroid hormone stimulates
hepatic gluconeogenesis and glucose production,
increases GLUT4 in skeletal muscle, and reduces
insulin levels, partly by accelerating insulin deg-
radation (Potenza et al. 2009). T3 stimulates
carbohydrate-response element-binding protein

Fig. 4 Effects of thyroid hormone on fatty acid metabo-
lism in the liver. The ACC1 promoter contains a thyroid
hormone receptor response element (TRE) and sterol reg-
ulating element-binding protein response element (SRE).
Thyroid hormone directly stimulates the synthesis of
ACC1 which catalyzes the formation of fatty acids.
Thyroid hormone increases fatty acid oxidation by

upregulating expression of CPT-1α (alpha). Unliganded
thyroid hormone receptor (TR) blocks stimulation of
CPT-1α (alpha) and ACO by PPARα (alpha). ACC
acetyl-CoA carboxylase, ACO acetyl-CoA oxidase, CPT
carnitine palmitoyltransferase, PPAR peroxisome
proliferator-activated receptor
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(ChREBP), a transcription factor that increases
glycolysis and de novo lipogenesis in the liver
(Liu and Brent 2010).

4.1 Clinical Features
of Hypothyroidism

Weight gain is a common complaint in hypothy-
roid patients. The commonest cause of hypothy-
roidism in developed countries is autoimmune
thyroiditis. Radioiodine ablation or surgical
thyroidectomy as treatment for hyperthyroidism
or thyroid cancer can also lead to hypothyroidism
if thyroxine replacement is inadequate. Hypothy-
roidism may be drug induced (e.g., lithium,
amiodarone) or result from disorders of the pitui-
tary (secondary) or hypothalamus (tertiary). In the
United States, hypothyroidism develops in about
5 % of the population, especially in women older
than 60 years. Antithyroid peroxidase (TPO) anti-
bodies are associated with hypothyroidism, and
this is more common in women and with aging
(Hollowell et al. 2002). In addition to modest
weight gain, other features of hypothyroidism
include a general slowing down, mental depres-
sion, cold intolerance, constipation, dryness of the
skin, and brittleness of the hair. As the disorder
becomes more fully established, the classic fea-
tures of nonpitting edema (myxedema) of the
skin, periorbital edema, hoarseness, sinus brady-
cardia, hypothermia, and delayed relaxation of the
deep tendon reflexes appear (Vaidya and Pearce
2008).

The serum TSH is the most sensitive test for
detecting early thyroid failure. An increase in
TSH precedes a decline of serum free T4 by
many months and sometimes years. Serum T3
concentrations are often normal. Adults
presenting with symptomatic hypothyroidism
often have a TSH level>10 mU/L and reductions
in the serum free or total T4 concentrations. Some
adults have less severe hypothyroidism, with a
serum TSH that is increased (typically between
5 and 10 mU/L), but a serum T4 concentration
within the reference range. This is termed “sub-
clinical hypothyroidism” and in many patients
represents a state of compensated or mild thyroid

failure (Vaidya and Pearce 2008). Subclinical
hypothyroidism increases with age and is more
common in women. However, after the sixth
decade, the prevalence in men approaches that of
women, with a combined prevalence of 10 %.
Antithyroid antibodies can be detected in 80 %
of patients with subclinical hypothyroidism, and
80 % of patients with subclinical hypothyroidism
have a serum TSH less than 10 mU/L. Patients
with subclinical hypothyroidism have a high rate
of progression to clinically overt hypothyroidism,
~2.6 % each year if TPO antibodies are absent and
4.3 % if they are present. ATSH level greater than
10 mIU/L predicts a higher rate of progression of
hypothyroidism (Fatourechi 2009). Laboratory
investigation of hypothyroidism may reveal a
mild anemia, increased creatine phosphokinase
concentrations suggesting myopathy, and an
abnormal lipid profile with increased total and
low-density lipoprotein cholesterol and decreased
high-density lipoprotein cholesterol concentra-
tions (Woeber 2000).

Central hypothyroidism is a rare cause of
hypothyroidism characterized by a defect of thy-
roid hormone production due to insufficient stim-
ulation by TSH of a normal thyroid gland.
Hypothyroidism can be congenital or acquired in
the case of lesions affecting either the pituitary
(secondary hypothyroidism) or the hypothalamus
(tertiary hypothyroidism). The diagnosis is based
on biochemical tests showing reduced serum free
or total T4 concentration and inappropriately low
TSH level. TRH testing may help in the differen-
tial diagnosis between tertiary (hypothalamic) and
secondary (pituitary) hypothyroidism. In the lat-
ter, TSH response may be absent or impaired,
whereas tertiary hypothyroidism is characterized
by normal, exaggerated, or delayed TSH
responses to TRH injection (Lania et al. 2008).

4.2 Hypothyroidism and Obesity

Subjects with overt hypothyroidism have variable
degrees of weight gain. An increase in body
weight associated with hypothyroidism may
arise from body fat accumulation, water retention,
and increased deposition of glycosaminoglycans
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(Santini et al. 2014). Thyroid hormone is required
for the normal regulation of resting energy expen-
diture (REE). In hypothyroid patients receiving
long-term T4 treatment who maintained a euthy-
roid state, small changes in the daily dose to
ensure that serum free T4 concentrations stayed
within the normal range were associated with
detectable increases in REE. Serum TSH, the
most sensitive marker of thyroid hormone action,
is inversely correlated with REE (al-Adsani
et al. 1997), and spontaneous fluctuations in free
T4 concentration have been associated with
significant changes in REE (Boivin et al. 2000;
Silva 2003). Several studies have demonstrated a
positive cross-sectional association between
serum TSH levels and the body mass index.
Increased serum TSH levels within the normal
reference range are strongly and linearly associ-
ated with weight gain (Knudsen et al. 2005;
Nyrnes et al. 2006; Fox et al. 2008).

Hypothyroidism is also associated with cardiac
wall stiffness, bradycardia, and depressed myo-
cardial contractility, which account for reduced
cardiac output (Fazio et al. 2004). A low cardiac
output and a decrease in renal blood flow and
glomerular filtration rate lead to impaired renal
water excretion, which contributes to edema and
weight gain (Montenegro et al. 1996). Hypothy-
roidism also causes generalized interstitial depo-
sition of glycosaminoglycans, which in turn leads
to fluid and sodium retention. Hyaluronan, an
abundant non-sulfated glycosaminoglycan, accu-
mulates in many tissues including the skin,
myocardium, kidney, and vasculature in severe,
long-standing hypothyroidism due to a reduced
clearance rate and increased synthetic rate.
Hyaluronan exhibits a remarkable avidity for
water, thus causing the tissues to expand greatly
(Smith et al. 1982; Gianoukakis et al. 2007). Res-
toration of euthyroidism by T4 treatment increases
REE and decreases weight, mainly by decreasing
the lean mass and not fat mass. Thyroxine treat-
ment normalizes the tissue composition and
increases water excretion (Laurberg et al. 2012).

Preliminary studies suggest that thyroid hor-
mone mimetics targeting different isoforms of TR
may be a potential therapy for obesity and

dyslipidemia (Baxter and Webb 2009; Santini
et al. 2014; Senese et al. 2014). The presence of
BAT in adults has also spurred enormous interest in
the potential therapeutic benefit of thyroid hor-
mone. Thyroid hormone signaling through induc-
tion of D2 has a central role in brown adipogenesis
in mice. High intracellular expression of D2 in adult
BAT enhances thermogenic pathways, including
expression of the PPARγ-coactivator-1α and
UCP-1 in mice (Castillo et al. 2011). Severe hypo-
thyroidism in a child (TSH, 989 μIU/mL; free T4,
0.10 ng/dL; low thyroglobulin, 3.0 ng/mL) was
associated with abundant BAT in the
supraclavicular fossa. After 2 months of thyroid
hormone treatment, the patient became euthyroid
(TSH, 4.3 μIU/mL; free T4, 1.49 ng/dL; T3,
102 ng/dL) and the supraclavicular BAT decreased
(Kim et al. 2014). In contrast, patients with Graves’
disease did not show evidence of increased BAT as
measured with 18-F-fluorodeoxyglucose (18-F-
FDG) positron-emission tomography and com-
puted tomography (PET-CT), and hyperthyroid
patients treated with methimazole did not develop
increased BAT activity (Zhang et al. 2014). More-
over, treatment with T3 did not alter the sympa-
thetic and BAT activity, energy expenditure, or
body mass index in patients with hypothalamic
obesity secondary to childhood craniopharyngioma
resection (van Santen et al. 2015).

5 Growth Hormone

Growth hormone (GH) is produced by
somatotroph cells of the anterior pituitary gland.
GH secretion is stimulated by GH-releasing hor-
mone (GHRH) and inhibited by somatostatin. GH
secretion is inhibited by insulin, glucose, and fatty
acids, while arginine stimulates GH secretion
(Meinhardt and Ho 2006). GH secretion is pulsa-
tile, and the amplitude of the pulses is highest at
night. The 24-h GH secretion is maximal during
puberty and declines gradually thereafter in both
women and men. GH binds and activates recep-
tors on hepatocytes and other cells, leading to the
tyrosine phosphorylation and association with
JAK2. Several of the proteins phosphorylated
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and activated by the GH receptor through JAK2
serve as adapters, linking GH signaling to a vari-
ety of signal transduction pathways. IRS-1,
IRS-2, Shc, and the EGF receptor all have been
implicated as GH-regulated docking proteins,
providing connections to the PI3 kinase and
MAP kinase pathways (Vance and Mauras 1999;
Woelfle et al. 2005). GH is the main regulator of
insulin-like growth factor (IGF)-1. The liver is a
major target tissue of GH action and produces
IGF-1 and IGF-binding protein-3 (IGFBP-3) in
response to GH. IGFBP-3 prolongs the half-life
of IGF-I. Unbound IGF-1 mediates a negative
feedback control of GH secretion by acting
directly on the somatotroph and on hypothalamic
GHRH and somatostatin neurons (Meinhardt and
Ho 2006). A number of studies have demonstrated
that both GH and IGF-1 play key roles in the
normal growth of bone and muscle. GH has been
shown to inhibit adipocyte differentiation (Garten
et al. 2012).

5.1 Metabolic Complications of GH
Deficiency

Growth hormone deficiency (GHD) may be iso-
lated or occur as part of multiple hormone defi-
ciencies. GHD often results from damage to the
pituitary gland or hypothalamus, caused by a
tumor or following surgical resection or radiother-
apy. The syndrome associated with GHD includes
metabolic and cardiovascular complications,
osteopenia and osteoporosis, and reduced quality
of life. Patients with GHD typically have
increased abdominal fat, reduced exercise capac-
ity, and elevated levels of total and low-density
lipoprotein cholesterol. Triglycerides may be ele-
vated and high-density lipoprotein cholesterol
reduced in GHD (Shalet et al. 1998). Studies
have shown that the atherogenic lipid profile con-
tributes to the increased coronary risk in GHD
patients, particularly in women. Central adiposity
in GHD is associated with elevated fasting insulin
levels and insulin resistance (Carroll et al. 1998).

GH secretion is pulsatile and has a short half-
life; therefore, serum GH may be undetectable in

normal subjects, and a single random GH mea-
surement cannot identify GHD. Serum IGF-1 con-
centrations below the normal range are suggestive
of GHD, but do not rule out the diagnosis. More-
over, reduced IGF-1 levels are seen in several
conditions, e.g., starvation, chronic liver and kid-
ney diseases, hypothyroidism, and diabetes. GHD
is evaluated using provocative dynamic tests.
Insulin tolerance test (ITT), considered the gold
standard test of GHD, is accurate if the plasma
glucose concentration is less than 2.2 mmol/L
(40 mg/dL). A peak GH response to hypoglyce-
mia of <3 μg/L measured by polyclonal compet-
itive radioimmunoassay, or GH <5.1 μg/L,
measured by immunochemiluminescent two-site
assay, has sufficient specificity and sensitivity for
the diagnosis of GHD in adults. However, it is
important to be aware that insulin resistance in
severe obesity can attenuate the hypoglycemic
effect of ITT and thus diminish the GH response.
The ITT is contraindicated in patients with
ischemic heart disease, cerebrovascular disease,
or seizure disorders. Precautions should be taken
if ITT is done in patients older than 60 years. The
combined administration of arginine and GHRH
is the most promising alternative testing of GH
secretion (Gasco et al. 2008; Casanueva
et al. 2009).

The goal of GH replacement is to correct the
abnormalities associated with GHD syndrome.
GH dosing regimens should be individualized, at
a starting dose of 300 μg/day and an increase in
daily dosing of 100–200 μg/day for every 1 or
2 months. A typical median maintenance GH dose
is 400 μg/day. It is recommended that GH be
administered in the evening to mimic the noctur-
nal rise in GH levels. GH treatment is titrated
according to the clinical response, side effects,
and IGF-I levels. Age, sex, and estrogen status
should also be considered in the determination of
the GH dosage. Patients should be monitored at
1–2-month intervals during the dose titration and
then at 6-month intervals during the maintenance
phase. As with other hormonal replacement ther-
apies, the GH dose may vary over time and should
be monitored and adjusted. Given the potential
pitfalls of GH therapy, patients with GHD should
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be managed by an endocrinologist or internist
with expertise in pituitary disease (Ho and Partic-
ipants 2007; Johannsson 2009).

6 Conclusion

Obesity can be a manifestation of hypothyroidism,
hyperinsulinism, hypercortisolism, or growth hor-
mone deficiency and is often associatedwith glucose
intolerance or diabetes, dyslipidemia, hypertension,
and increased risk of atherogenic cardiovascular dis-
eases. Incontrast toprimaryobesity,obesity resulting
fromabnormal regulationof insulin, glucocorticoids,
thyroid hormone, or growth hormone tends to have a
rapid onset and progression and to be associatedwith
symptoms and signs of the underlying diseases.
Understanding the pathogenesis, clinical features,
and laboratory evaluation of endocrinopathies
enables a specific treatment strategy that often cures
obesity and related metabolic disorders.
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Abstract
Chronic kidney disease (CKD) is a progressive
medical condition that affects over 26 million
adults in the United States. Metabolic syn-
drome (MetS) and the components of the met-
abolic syndrome are likely to contribute to the
development and progression of CKD. While
diabetes and hypertension are the most com-
mon causes of CKD and proteinuria, there is a
complex interplay of all five criteria of the
MetS that exacerbate the disease process.
Basic science research has evaluated the path-
ologic mechanisms underlying the progression
of CKD due to the individual MetS criteria.
Epidemiologic studies have attempted to iden-
tify whether MetS is truly a causative factor,
rather than a marker, of CKD development and
progression. Novel biomarkers have been
implicated in the pathophysiology. Clinical tri-
als of therapeutics targeting the independent
components of the MetS have shown some
promising results. In this chapter, we will
review all of these issues with emphasis to
human studies in the relationship of metabolic
syndrome and its components with chronic
kidney disease incidence and progression.

Keywords
Metabolic syndrome •Chronic kidney disease •
Obesity

1 Introduction

The definition of chronic kidney disease in the
K/DOQI clinical practice guidelines is based on
“function” determined by glomerular filtration
rate (GFR) and “damage” assessed by the pres-
ence of increased urine excretion of protein or
albumin (National Kidney 2002). Based on this
definition, over 26 million adults in the United
States have chronic kidney disease (CKD) with
another 20 million at risk for CKD (Coresh
et al. 2003). Kidney disease is the ninth leading
cause of death in the United States (Albright
et al. 2009). CKD is a silent disease where symp-
toms may not arise until the disease has

progressed to end-stage renal disease (ESRD).
Individuals with CKD are at greater risk for mor-
tality (Physical activity and cardiovascular health.
NIH Consensus Development Panel on Physical
Activity and Cardiovascular Health 1996). Unfor-
tunately, many individuals with CKD are never
diagnosed and/or made aware of their CKD or
their risk for CKD (Tuot et al. 2011).

2 Metabolic Syndrome

The metabolic syndrome (MetS) is defined as the
presence of three or more of the following risk
factors: elevated blood pressure, low high-density
lipoprotein (HDL) cholesterol level, high triglyc-
eride level, elevated glucose level, and abdominal
obesity (Grundy et al. 2005). The prevalence of
MetS is approximately 22 % in US adults, with
higher prevalence noted in ethnic minorities such
as Mexican Americans (32 %) and African Amer-
icans (42%) (Ford et al. 2008; Mendy et al. 2014).

Many of the criteria that comprise MetS are
well-established risk factors for the development
and progression of chronic kidney disease (CKD),
but the relative contribution of these individual
components remains poorly explored (Nashar and
Egan 2014). While there appears to be a close
association between MetS and CKD, drawing
conclusions about causal relationships is difficult
because of the complex interplay between the
individual components of MetS (Locatelli
et al. 2006). Epidemiologic studies have shown
that MetS is itself an independent risk factor for
CKD, even when excluding individuals with dia-
betes and hypertension, the two most common
etiologies of CKD (Peralta et al. 2006). Several
studies using the National Health and Nutrition
Examination Survey (NHANES III) data suggest
that the presence of all five criteria of MetS is
associated with significantly higher odds of
decreased glomerular filtration rate (<60
ml/min/1.73 m2) and moderate to severely
increased urine albumin excretion (previously
referred to as “microalbuminuria”) compared to
individuals with only one or zero MetS criteria
(Chen et al. 2004). Similar findings have been
replicated in studies performed in a variety of
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differing ethnicities (see section on “Population-
Specific Findings and CKD”). Prospective studies
in those with MetS but without initial kidney
disease show a more precipitous decline in esti-
mated glomerular filtration rate (GFR) in those
with more components of the MetS (Ninomiya
and Kiyohara 2007). In longitudinal studies with
longer-term follow-up, MetS has been associated
with progression of chronic kidney disease and
development of proteinuria (Lora et al. 2009).
Conversely, a retrospective study has recently
shown that those with CKD were more likely to
have all five of the MetS criteria as far back as
20–30 years prior to the CKD diagnosis
(McMahon et al. 2014). When addressed individ-
ually in meta-analyses, each criterion of the MetS
contributes independently to the development of
CKD, suggesting that dyslipidemia (elevated tri-
glycerides and low HDL levels) may also be an
important modifiable risk factor for the prevention
of CKD in addition to diabetes, hypertension, and
obesity (Thomas et al. 2011).

2.1 Dyslipidemia

Dyslipidemia is becoming increasingly acknowl-
edged as a risk factor for the progression of CKD
(Hunsicker et al. 1997; Samuelsson et al. 1997).
An elevated ratio of LDL/HDL predicts a more
rapid estimated GFR decline particularly in indi-
viduals with hypertension (Manttari et al. 1995).
In the Atherosclerosis Risk in Communities
(ARIC) study, a prospective epidemiologic
study conducted in four US communities, indi-
viduals without CKD but with higher triglyceride
and lower HDL levels were at increased risk for
GFR decline over time, irrespective of LDL
levels and the presence or absence of diabetes
(Muntner et al. 2000). In Kidney Early Evalua-
tion Program (KEEP) participants with diabetes
mellitus and CKD, increases in HDL levels were
associated with decreased odds of moderately
increased urine albumin excretion. However,
overall glycemic control compared to
dyslipidemia was a more significant predictor of
increased albuminuria, a marker of CKD progres-
sion (Bose et al. 2012).

2.2 Hypertension

Hypertension is an established risk factor for
CKD (Klag et al. 1996). Hypertension is present
in the vast majority of patients with metabolic
syndrome (80 %) and enhances cardiovascular
risk (Mancia et al. 2007) as well as the develop-
ment and progression of CKD. Over two-thirds of
essential hypertension cases may be attributed to
obesity and increased renal sodium reabsorption
through aldosterone release and sympathetic
activity (Hall et al. 2003). Long-term activation
of the sympathetic nervous system in metabolic
syndrome is thought to contribute to hypertension
via numerous pathologic mechanisms to be
detailed later in this chapter (Deedwania 2011).
In hypertensive patients, it is postulated that insu-
lin resistance and obesity are associated with glo-
merular hyperfiltration, a proposed mechanism
for renal injury leading to CKD (Dengel
et al. 1996) which may be most operative in
patients with reduced nephron number such as a
solitary functioning kidney or CKD (Griffin
et al. 2008).

2.3 Waist-Hip Circumference/Body
Mass Index (BMI)

Abdominal obesity is defined as a waist
circumference �102 cm in men and �88 cm in
women because these thresholds discerned obese
from nonobese adults with a high waist-hip ratio
in a Scottish population (Lean et al. 1995). In
population-based studies and clinical practice,
however, obesity is usually defined by an individ-
ual’s BMI. Because BMI reflects an individual’s
muscle, fat, and bone mass, BMI may not neces-
sarily be the best assessment of obesity for deter-
mining cardiovascular or kidney disease risk.
However, several studies have demonstrated asso-
ciations between elevated BMI and CKD (Kramer
et al. 2005) and ESRD (Hsu et al. 2009). Among
individuals with baseline kidney disease, a BMI
�40 kg/m2 was associated with a threefold higher
risk of end-stage renal disease (ESRD) compared
to individuals with an ideal BMI (18.5–24.9
kg/m2).
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Because diabetes and hypertension are strongly
associated with abdominal adiposity (Harris
et al. 2000; Wang et al. 2005), waist circumference
(WC) may show stronger associations with ESRD
risk compared to BMI. Unfortunately, very few
studies have explored the independent role of
abdominal adiposity on CKD risk. In a subcohort
of the Women’s Health Initiative (WHI), which
included 20,117 postmenopausal women with a
mean follow-up period of 11.6 years, abdominal
adiposity as measured by WC was significantly
associated with an increased risk for ESRD
(Franceschini et al. 2014). The mean age of this
cohort was 63.9 years at baseline, and 38.3 % were
African Americans. After adjustment for age, base-
line eGFR, race, education, and smoking status, a
WC >88 cm was associated with a 2.68-fold
higher rate of ESRD compared to WC �88
cm. However, this association was markedly atten-
uated after adjustment for diabetes and hyperten-
sion. Thus, the association between obesity and
CKD risk in older adults appears to be mediated
largely by traditional obesity-associated risk fac-
tors (hypertension and diabetes) and not by specific
effects of obesity itself, such as hyperfiltration.

3 Population-Specific Findings
and CKD

Due to the differing prevalence of MetS across
populations and the complicated relationship
between each individual MetS component and
CKD risk, associations between MetS and CKD
appear to differ by demographic factors.

Among African American participants of the
Jackson Heart Study, elevated blood pressure, tri-
glycerides, fasting blood glucose, and abdominal
obesity were significantly associated with
increased odds of chronic kidney disease
(Mendy et al. 2014). Those with MetS, defined
as having three or more of the five criteria, had a
2.22-fold (adjusted odds ratio [AOR] 2.22; 95 %
CI, 1.78–2.78) increase in the odds of CKD com-
pared to participants without MetS. Interestingly,
the combination of elevated fasting glucose, ele-
vated triglycerides, and abdominal obesity was
associated with the highest odds for CKD (AOR

25.11; 95 % CI, 6.94–90.90). The African Amer-
ican Study of Hypertension and Kidney Disease
(AASK) study, a randomized controlled trial of
blood pressure goal and pharmacologic agents
among African Americans with CKD at baseline,
showed that MetS leads to greater degrees of
proteinuria and mortality but was not indepen-
dently associated with CKD progression in this
population (Lea et al. 2008). Additionally, none of
the individual components of the MetS predicted
CKD progression in multivariable analysis.

The burden of cardiometabolic abnormalities
is high in Hispanic/Latinos but varies by age, sex,
and Hispanic/Latino background (Heiss
et al. 2014). In the HCHS/SOL, a longitudinal
cohort study of 16,415 Hispanics self-identified
as Mexican, Puerto Rican, Cuban, Dominican,
and Central or South American and recruited
from four urban metropolitan areas (Bronx, NY;
Chicago, IL; Miami, FL; and San Diego, CA), the
metabolic syndrome was present in 36 % of
women and 34 % of men. The prevalence of the
metabolic syndrome increased with age among
both men and women. Among women, the meta-
bolic syndrome prevalence ranged from 27 % in
South Americans to 41 % in Puerto Ricans.
Among men, MetS prevalence ranged from
27 % in South Americans to 35 % in Cubans.

Investigations among Asian populations have
confirmed that MetS is a risk factor for the devel-
opment of CKD. In a prospective cohort study of
Japanese adults, a 5-year follow-up revealed an
increased risk of the development of CKD among
those with MetS. A larger prospective study of
healthy Korean men without hypertension or dia-
betes showed that increased triglyceride and low
HDL levels significantly increased the risk of
CKD (Ryu et al. 2009). A cross-sectional study
of more than 15,000 Chinese adults confirmed
that the presence of increasing criteria of meta-
bolic syndrome contributes to greater risk of CKD
development (Chen et al. 2007).

In the Strong Heart study, a prospective epide-
miologic study of American Indians, MetS was
significantly and independently associated with a
30 % increased risk of incident CKD during
9 years of follow-up (Lucove et al. 2008). The
relationship of MetS to incident CKD was driven
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by the development of diabetes, though hyperten-
sion emerged as the most influential MetS crite-
rion in the absence of diabetes in those who
developed CKD.

4 Pathologic Mechanisms
of Renal Injury in the Metabolic
Syndrome

Given the numerous risk factors for CKD
included in the MetS criteria, it is likely that a
complex interplay of multiple pathologic mecha-
nisms ultimately leads to an overall decline in
renal function. Furthermore, the subsequent
renal damage may lead to worsening control of
these risk factors, propelling patients with MetS
into a vicious cycle toward chronic kidney disease
(Guarnieri et al. 2010). Figure 1 summarizes the
pathophysiology of MetS that leads to CKD.

4.1 Inflammation

Within the US adult population, a graded associ-
ation between number of MetS components and
inflammation as measured by C-reactive protein
(CRP) levels greater >3 mg/L has been
documented (Beddhu et al. 2005). Inflammation
was significantly associated with hypertension,
obesity, and low HDL levels at all levels of
GFR. Insulin resistance and abdominal obesity
are significantly and positively correlated with
C-reactive protein (CRP) levels (Festa
et al. 2000). Individuals with MetS and inflamma-
tion, as defined by an elevated CRP level, have an
increased risk for CKD both within the general
population and among elderly adults (Lee
et al. 2007; Fakhrzadeh et al. 2009).

4.2 Diabetes and Insulin Resistance

Insulin resistance, the presumptive operative
mechanism for glucose intolerance in type 2 dia-
betes mellitus, also leads to inflammation and
resulting oxidative stress (Locatelli et al. 2006),
as insulin is an anti-inflammatory hormone. The

molecular mechanism linking insulin resistance
to inflammation has been postulated to be stress
of the endoplasmic reticulum, where misfolded
proteins will impair insulin signaling under
stressful conditions (Ozcan et al. 2004). Endo-
plasmic reticulum stress in the kidney leads to
proteinuria-induced podocyte injury via glycosyl-
ation of nephrin, an important component in the
integrity of the “slit-diaphragm” structure of the
glomerulus (Inagi 2009).

Insulin resistance and dysglycemia among
those with MetS and CKD have also been shown
to contribute independently to arterial stiffness,
even in the absence of diabetic CKD or significant
hypertension (Chan et al. 2013; Kangas
et al. 2013). Elevated insulin levels lead to
increased production of insulin-like growth factor
1 (IGF-1) from vascular smooth muscle cells and
stimulation ofmesangial and proximal tubular cells
to secrete transforming growth factor-beta (TGF-β)
(Khamaisi et al 2002; Perlstein et al. 2007).
Increased IGF-1 levels promote the activity of
connective tissue growth factor, a pro-fibrotic cyto-
kine in renal tubular cells and interstitial fibro-
blasts, while allowing for unabated extracellular
matrix expansion through the decreased activity
of matrix metalloproteinase-2 (Wang et al. 2001).
Insulin resistance also contributes to worsening
renal hemodynamics and subsequent downstream
glomerular damage through angiotensin 1 receptor
overactivity, causing vasoconstriction and volume
retention (Banach and Rysz 2010).

4.3 Triglycerides and Fatty Acids

Excess intracellular free fatty acids (FFA) and
their metabolites can promote insulin resistance
and exert cytotoxic effects on other organs
(Wahba andMak 2007). In the kidney specifically,
triglyceride-rich lipoproteins and FFA (along with
their metabolites) may cause renal mesangial and
epithelial cell injury, thereby promoting CKD
progression (Abrass 2004). Renal lipotoxicity is
supported by animal models, such as the obese
Zucker rat. The obese Zucker rat develops hyper-
lipidemia associated with early podocyte damage
and infiltration of macrophages into glomeruli
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(Coimbra et al. 2000). Administration of lipid-
lowering agents ameliorates the kidney damage
(proteinuria and glomerulosclerosis) associated
with hyperlipidemia in the obese Zucker rat
(Kasiske et al. 1992). Renal lipotoxicity has been
shown elegantly in patients with proteinuric renal
diseases and the nephrotic syndrome, where
albumin-saturated free fatty acids are filtered in
excess, with predominant reabsorption through
the proximal tubule. The reabsorption of these
fatty acids contributes to significant tubuloin-
terstitial inflammation and fibrosis (Thomas
et al. 2002). Dyslipidemia has also been
connected to damage of the podocytes as well as
the glomerular capillary endothelial and
mesangial cells, leading to mesangial sclerosis
(Cases and Coll 2005). Clinical trials examining
the link between lipids and kidney disease risk
have not shown consistent results. In the Study
of Heart and Renal Protection (SHARP), lowering
LDL cholesterol by 1 mmol/L with simvastatin
and ezetimibe did not slow CKD progression
within 5 years (Haynes et al. 2014).

4.4 Hypertension

There is clinical evidence for increased salt-
sensitive hypertension in patients with MetS,

especially in obese individuals (Fujita 2010).
Figure 2 demonstrates the etiologies and common
causal pathway of obesity-related hypertension.
Salt sensitivity seems to worsen in nondiabetic
patients who satisfy more of the MetS criteria
(Chen et al. 2009). While the pathophysiology is
not fully known, it has been suggested that these
patients have impaired renal sodium excretion due
to increased renin-angiotensin axis activity and
aldosterone excess (Gluba et al. 2013). This excess
of aldosterone, often seen in obesity and
hyperinsulinemia, can exert a variety of different
deleterious effects, including overactivity of min-
eralocorticoid receptors in the vasculature and the
brain as well as decreased expression of nephrin, a
likely mechanism for how the proteinuria and
podocyte injury in MetS could be partially attrib-
utable to aldosterone (Mundel and Shankland
2002; Fujita 2010). Longer-term activation of the
sympathetic nervous system, with increased levels
of plasma norepinephrine, may contribute to hyper-
tension through increased renal tubular sodium
reabsorption, vasoconstriction, or remodeling of
the renal arterioles leading to increased vascular
resistance and glomerular damage (Deedwania
2011). Hypertension is often exacerbated in this
patient population through angiotensin I receptor
overactivity, causing further vasoconstriction and
volume expansion (Banach and Rysz 2010).

Increased renal medullary extracellular matrixMechanical compression of kidney

Increased intrarenal interstitial hydrostatic pressure

Compression of thin loops of Henle and vasa recta

Increased tubular sodium reabsorption

HYPERTENSION

ABDOMINAL OBESITY

Fig. 2 Abdominal obesity can lead to hypertension via two pathways with the common end result of elevated intrarenal
interstitial hydrostatic pressure leading to systemic hypertension
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However, renal dysfunction and fibrosis can
appear well before the formal diagnoses of hyper-
tension, hyperlipidemia, or diabetes. Though the
MetS population has increased microvascular dis-
ease along with tubular atrophy, interstitial fibrosis,
arterial sclerosis, and global and segmental sclero-
sis (Alexander et al. 2009), it is unclear which risk
factors in the constellation of insulin resistance,
hypertension, dyslipidemias, and abdominal obe-
sity are most influential in the production of
pro-inflammatory cytokines (i.e., interleukin-6
and tumor necrosis factor-alpha) and pro-fibrotic
factors (Singh and Kari 2013), though the presence
of obesity seems to contribute to all of these risk
factors. Activation of mineralocorticoid receptors
may upregulate the inflammatory state associated
with obesity since mineralocorticoid antagonists
actually downregulate gene expression of multiple
pro-inflammatory cytokines such as TNF-α (alpha)
and monocyte chemoattractant protein and IL-6
(Guo et al. 2008; Hirata et al. 2009).

4.5 Obesity

The factors which mediate the association
between abdominal obesity and CKD likely
include inflammation, insulin resistance (Bastard
et al. 2006), activation of the renin-angiotensin-
aldosterone axis and sympathetic nervous system
(Thethi et al. 2012), increased oxidative stress
(Furukawa et al. 2004), and high caloric intake
(Afshinnia et al. 2010). These factors may lead to
hypertension, diabetes, and increased urinary
albumin excretion, known risk factors for ESRD
(Astor et al. 2011). Beyond simply storing energy,
adipocytes produce numerous bioactive mole-
cules, including leptin and adiponectin, which
provide cellular protection from the adverse con-
sequences of excess caloric intake. Leptin acts
centrally in the central nervous system to decrease
appetite, and leptin enhances energy expenditure
through stimulation of the sympathetic nervous
system and oxidation of muscle fatty acids
(Havel 2004). In the kidney, it induces prolifera-
tion of glomerular endothelial cells and increases
TGF-β1 (beta) synthesis and collagen type IV
production.

Because leptin is primarily metabolized in the
kidney, it has been difficult to discern its indepen-
dent effects on kidney function. Animal models of
chronic leptin infusion develop albuminuria and
glomerulosclerosis (Wolf and Ziyadeh 2006).
Increased leptin has been associated with more
rapid decline in GFR over time particularly in
women (Pedone et al. 2015).

Adiponectin normally sensitizes tissues to
insulin by inhibiting peroxisome proliferator-
activated receptor-α (alpha) in the liver, a pro-
moter of gluconeogenesis (Berg et al. 2001), and
increasing cellular glucose uptake (Kadowaki
et al. 2006). The effects of adiponectin are medi-
ated through activation of AMP protein kinase
(AMPK), which switches cells from ATP con-
sumption to active ATP production through fatty
acid and glucose oxidation. Activated AMPK also
interacts with leptin and ghrelin to influence sati-
ety and facilitates the transportation of GLUT4
into skeletal muscle and other organs. Thus,
AMP activity is indirectly associated with energy
storage, especially in visceral adipocytes.

It has been postulated that reduced adiponectin
levels in visceral adiposity directly impact urinary
albumin excretion. This hypothesis is supported
by the fact that adiponectin receptors are present
on podocytes. Adiponectin-null mice demonstrate
podocyte foot process effacement and increased
urinary albumin excretion; urinary albumin excre-
tion decreases when adiponectin is repleted in
adiponectin-null mice (Sharma et al. 2008). Addi-
tionally, adiponectin knockout mice with five-
sixths nephrectomy show higher urinary albumin
excretion and stronger expression of vascular cell
adhesion molecule-1, TNF-α (alpha), and
NADPH oxidase compared to adiponectin wild-
type mice with five-sixths nephrectomy. Infusion
of adiponectin into these mice improved glomer-
ular hypertrophy and tubulointerstitial fibrosis
and reduced urinary albumin excretion along
with various measures of inflammation to levels
similar to wild-type mice with five-sixths
nephrectomy.

The link between obesity and kidney disease
risk is frequently attributed to hyperfiltration or
elevated intraglomerular capillary pressure. Glo-
merular capillary pressure cannot be directly
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measured in humans, but it is known that single-
nephron GFR must increase with weight gain due
to a higher metabolic rate. Studies in humans
show higher absolute GFR and effective renal
plasma flow (RPF) among obese individuals com-
pared to nonobese individuals. However,
adjusting for body surface area strongly attenuates
these differences. In human kidneys, both GFR
and RPF may increase via alteration of glomerular
afferent and efferent arteriolar resistance and
expansion of glomerular capillary surface area
without necessarily heightening glomerular capil-
lary pressure (Griffin et al. 2008). Nephron num-
ber does not increase with weight gain, and higher
GFR translates to higher single-nephron GFR.
Therefore, individuals with low nephron number
due to previous nephrectomy, CKD, or low neph-
ron number at birth may have to increase
intracapillary pressure in order to obtain a certain
level of GFR to meet metabolic needs. Conse-
quentially, such individuals with low nephron
number may hold higher risk for increased glo-
merular intracapillary pressures and subsequent
glomerulosclerosis with excessive weight gain
(Hostetter et al. 1982; Luyckx and Brenner
2005). Nephron number among humans actually
varies substantially ranging from 230,000 to 1.8
million in one multiethnic autopsy study of
67 cases from Australia and the United States
(Hoy et al. 2003). Autopsy data demonstrate that
body size is strongly and directly correlated with
glomerular diameter (Kasiske and Napier 1985).
With weight gain, glomerular diameter increases,
and kidney injury could occur via increasing glo-
merular capillary wall tension. As Laplace’s law
states that the glomerular capillary wall tension
will increase as glomerular radius increases (see
Fig. 3):

LaPlace’s law :Tension¼ Pressure�Radiusð Þ
�=2� Wall Thicknessð Þ

In addition, as glomerular diameter increases, the
podocyte density will decrease because podocytes
have limited ability to replicate. Due to glomeru-
lar hypertrophy in the obese state, podocyte den-
sity may be relatively decreased, resulting in
susceptibility to increased glomerular capillary

pressures (Wiggins 2007). Podocytes adapt to
the increased glomerular diameter via podocyte
hypertrophy which may lead to detachment of the
foot processes from the basement membrane and
subsequent increased urinary albumin excretion
(Rennke and Klein 1989).

5 Clinical Trials/Therapeutics:
Slowing CKD Progression

Overall, there are several possible mechanisms for
progression to chronic kidney disease in individ-
uals with MetS. Since many of the criteria are risk
factors for each other’s development, it is unclear
which component(s) we should be targeting most
aggressively. However, there are a number of
therapeutic efforts aimed at ameliorating the
components of MetS in order to break the
vicious cycle of progressive CKD from the
compounding risk factors. In this section, we
will present the broad range of therapeutic inter-
ventions being employed, their comparative
effectiveness, and ongoing clinical trials, summa-
rized in Table 1.

5.1 Lifestyle Modifications

Lifestyle changes in the form of weight reduction,
dietary habits, and increased physical activity for
treatment of modifiable risk factors can be

Fig. 3 LaPlace’s law states that increased glomerular cap-
illary radius will lead to increases in wall tension, creating
elevated glomerular capillary pressures and eventual
hypertrophy. T tension, P pressure
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successful, but behavior change is difficult to
maintain. Patients with preexisting CKD have
shown some improvements in GFR with
low-intensity aerobic exercise (Pechter
et al. 2003) but not in those with coexisting dia-
betes without significant weight loss (Leehey
et al. 2009). Among adults with CKD in the US
population, a healthy lifestyle as measured by the
absence of smoking, obesity and the presence of
regular physical activity were all associated with
decreased mortality, though nonsmoking status

showed the strong association with survival
(Ricardo et al. 2013).

Improved dietary habits were not associated
with mortality improvement among CKD patients
in a previous study (Ricardo et al. 2013), but an
observational analysis of the PREMIER trial, a
randomized trial using behavioral interventions
to improve blood pressure in those with normal
kidney function, did show that reduced dietary
phosphorus intake was associated with decreased
24 h urinary albumin excretion. Reductions in

Table 1 Therapeutic options are divided into their targeted MetS criteria, and the effects on renal function are provided
from various studies

MetS
criterion Therapeutic option Interpretation of the data

Obesity Lifestyle modifications Overall, difficult to maintain

Physical activity Beneficial effects often negated by the presence of other MetS
criteria in regression models

Dietary habits Reductions in dietary phosphorus and waist circumference
improve albuminuria

Weight loss Role in slowing CKD progression unclear, but moderate weight
loss improves GFR and albuminuria

Orlistat Can be effective for weight loss, but side effect of malabsorptive
diarrhea may contribute to acute kidney injury and nephrocalcinosis

Bariatric surgery Helps resolve other MetS criteria; results overall positive for slowing
CKD, but similar risks as orlistat given malabsorption

Dyslipidemia Statins Most larger studies are of the ESRD population, and current data
regarding CKD progression is conflicting (though cardiovascular risk
improved)

Ezetimibe Often studied in combination with statins; well tolerated in CKD

Niacin Added benefit of triglyceride reduction and positive effects on
phosphate metabolism; clinical trials limited by side effect profile

Fibrates Extensive renal clearance, requiring dose adjustment; studies show
both a moderate, reversible rise in creatinine and an increased risk of
rhabdomyolysis when administered with a statin

Omega-3 polyunsaturated
fatty acids

Reductions in albuminuria, but no effect on GFR

Hypertension ACE-i/ARB Consensus 1st-line recommendation for MetS patients

Thiazide diuretics May worsen some components of MetS; need to watch for
hyperuricemia and hypokalemia, which can lead to worsening CKD

Diabetes
mellitus

Thiazolidinediones Reduce albuminuria and improve other MetS criteria; may be more
effective when started early in CKD course

Dipeptidyl peptidase-4
(DPP-4) inhibitors

Less clinical experience; safe, but need dose adjustment

Glucagon-like peptide-1
(GLP-1) receptor agonists

Minimal study data; case reports of acute kidney injury due to GI side
effects/losses

Sodium-glucose transporter-
2 (SGLT-2) inhibitors

Newest diabetes mellitus medications; currently under active
investigation to study its potential renoprotective effects in diabetic
nephropathy

ACE-I angiotensin-converting enzyme inhibitor, ARB angiotensin receptor blocker, CKD chronic kidney disease, ESRD
end-stage renal disease, GFR glomerular filtration rate, GI gastrointestinal, MetS metabolic syndrome

770 J.H. William et al.



waist circumference were also significantly
associated with decreases in albuminuria, espe-
cially in those with known prior MetS (Chang
et al. 2013).

As described previously, obesity is both an
independent risk factor for CKD progression and
contributory to the development and progression
of the other criteria of the MetS. Weight loss
interventions have been shown to improve urinary
protein excretion, blood pressure, and GFR, but
its role in slowing CKD progression is less clear
(Ibrahim and Weber 2010). Moderate weight loss,
especially in combination with increased exercise,
in those with MetS but without preexisting CKD,
does associate with improved GFR and a reduc-
tion in albuminuria (Straznicky et al. 2011). In a
small study of those with severe obesity, careful
measures of GFR with inulin and para-
aminohippurate (PAH) clearances showed sub-
stantial differences in glomerular hyperfiltration
with more significant weight loss (Chagnac
et al. 2003).

Given the difficulty in sustaining effective life-
style modifications and weight loss, several med-
ications and therapeutic interventions have been
investigated in those with MetS. Orlistat
(tetrahydrolipstatin) is an inhibitor of gastric and
pancreatic lipases responsible for the breakdown
of triglycerides in the intestine, preventing the
absorption of free fatty acids. In combination
with a calorie-restricted diet, orlistat has been
shown to be an effective weight loss medication
but may also improve other cardiovascular risk
factors for those with MetS, including insulin
resistance, hypertriglyceridemia, and low HDL
levels (Reaven et al. 2001). However, the side
effects of malabsorptive diarrhea may be too trou-
blesome for many patients, and there has been
subsequent data suggesting increased rates of
acute kidney injury (Weir et al. 2011). Additional
case reports indicate orlistat’s role in progressive
renal impairment through significant renal tubular
atrophy and interstitial fibrosis, where discontin-
uation of the drug stopped the decline in renal
function (Coutinho and Glancey 2013). In a sim-
ilar mechanism also experienced by bariatric sur-
gery patients, unabsorbed dietary fat binds
calcium, leading to excessive absorption of free

oxalate (secondary hyperoxaluria) and deposition
in the renal parenchyma known as
nephrocalcinosis. Increased oxalate excretion is
not associated with restrictive surgeries such as
sleeve procedure and is most operative with the
Roux-en-Y procedures.

Bariatric surgery has become increasingly
popular as an adjunctive therapy in weight loss
for the morbidly obese. However, bariatric sur-
gery has also shown great promise in improving
MetS as a whole, given the downstream effects of
obesity on the remaining MetS criteria. A retro-
spective study comparing Roux-en-Y gastric
bypass surgery to a monitored weight reduction
program among patients with diagnosed MetS
showed markedly decreased prevalence of MetS
in the surgical cohort. The mean number of MetS
components decreased from 3.7 to 1.9. Though a
significant amount of study participants remained
obese after surgery, just a 5 % excess weight loss
was a significant predictor of MetS resolution
(Batsis et al. 2008). Other similar studies using
MetS criteria as endpoints to measure the effec-
tiveness of bariatric surgery show similarly strik-
ing results (Mattar et al. 2005). No renal
outcomes were assessed in these studies, but
overall concerns for kidney dysfunction are sim-
ilar to those for orlistat, given the malabsorptive
nature of the procedure (Chauhan et al. 2010). A
meta-analysis measuring the impact of different
weight loss interventions such as dietary restric-
tions, exercise, antiobesity medications, and bar-
iatric surgery on proteinuria and renal function
showed significant improvements in creatinine
clearance with bariatric surgery (Afshinnia
et al. 2010).

5.2 Lipid-Lowering Medications

Statin therapies initially showed great promise in
slowing the progression of chronic kidney dis-
ease; (Chan et al. 2008; Kasahara et al. 2014);
however, more recent larger trials have not shown
a benefit for CKD progression. The majority of
evidence linking lipid-lowering therapy with
CKD risk reduction is based on observational
studies alone (Sharp Collaborative 2010). The
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randomized clinical trial, Study of Heart and
Renal Protection (SHARP), investigated the
effect of dual therapy with simvastatin and
ezetimibe on LDL levels, showing a comparable
safety profile and improved efficacy versus pla-
cebo and simvastatin alone (Sharp Collaborative
2010). This combination lipid-lowering therapy
was successful in reducing the primary outcome
of major atherosclerotic events, but there was no
effect on progression of CKD. Additionally, a
post hoc analysis of the TNT (Treating to New
Targets) study of patients with coronary heart
disease showed that aggressive lipid-lowering
therapy with high-dose atorvastatin was safe and
effective in the higher-risk population of those
with concurrent CKD for reducing cardiovascular
events but did not report any effects on CKD
progression (Shepherd et al. 2008). A similar
type of analysis within the MEGA (Management
of Elevated Cholesterol in the primary prevention
Group of Adult Japanese) study population orig-
inally evaluating the effectiveness of pravastatin
in preventing cerebro- and cardiovascular events
showed improvement of GFR in patients with
moderate CKD in both the experimental and con-
trol groups (Nakamura et al. 2009). However, the
most recent meta-analysis investigating the effect
of statins on CKD, excluding dialysis patients,
demonstrated consistent decreases in major car-
diovascular events with statin use, but the effects
of statin use on kidney function were not consis-
tent across studies (Palmer et al. 2014). Among a
large Japanese population with CKD and
dyslipidemia, the ongoing ASUCA (ASsessment
of clinical Usefulness in CKD patients with Ator-
vastatin) trial is currently evaluating whether ator-
vastatin may have renoprotective effects
(Ueshima et al. 2013).

Niacin’s presumed role in increasing HDL cho-
lesterol while helping to lower total and LDL
cholesterol and triglycerides makes it an attractive
medication for lipid management in the metabolic
syndrome. However, the AIM-HIGH investiga-
tors conducted a large trial including patients
with preexisting cardiovascular disease and
showed little clinical benefit in the prevention of
cardiovascular events with the introduction of
niacin to those who had already effectively

lowered their LDL-C levels with statins
(AIM-HIGH investigators 2011). In the CKD
population, the phosphate-lowering effects of nia-
cin may offer potential benefits (Ahmed 2010). In
animal models of CKD, niacin improved hyper-
tension, proteinuria, glomerulosclerosis, and
tubulointerstitial injury, presumably through the
attenuation of oxidative stress and enhanced lipid
metabolism (Cho et al. 2009). Interestingly, this
study did not show an appreciable decline in
plasma lipid concentrations. Despite its prospects
as a beneficial lipid-lowering option in patients
with CKD, niacin’s well-known side effect of
flushing has prevented further clinical trials in
these patients.

Since patients with CKD often have a mixed
dyslipidemia and statins may not be effective on
their own, many patients may require adjunctive
therapies. Omega-3 polyunsaturated fatty acids
not only lower lipid levels but also lower blood
pressure and reduce inflammation. However, a
meta-analysis of 17 trials including 626 partici-
pants with CKD showed that omega-3 fatty acid
supplementation significantly reduces urinary
protein excretion but has no effect on GFR
decline (Miller et al. 2009). Ezetimibe is used in
combination with statins and has been shown to
be well tolerated in patients with varying degrees
of renal dysfunction (Sharp Collaborative 2010;
Landray et al. 2006). Fibrates are generally
renally cleared and require extensive dose adjust-
ment and careful monitoring in those with CKD
(Evans et al. 1987). This class of medications has
been shown to cause a moderate, reversible rise in
serum creatinine (Broeders et al. 2000), but it is
not clear whether this creatinine rise reflects any
true decline in GFR (Hottelart et al. 1999). While
the formulations approved in the United States
(fenofibrate and gemfibrozil) are less likely to
cause this creatinine increase, gemfibrozil is
more likely to cause rhabdomyolysis when com-
bined with a statin by raising the serum concen-
tration of the statin through cytochrome P450
interactions (Jacobson and Zimmerman 2006;
Davidson et al. 2007). A long-term randomized
control trial of fenofibrate monotherapy in type
2 diabetes mellitus patients did not show any
long-term renal dysfunction, with the added
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benefit of less albuminuria progression (Keech
et al. 2005). However, a large trial of combination
therapy with fibrates and statins (ACCORD) did
not show any benefit toward cardiovascular out-
comes compared to statins alone (Ginsberg
et al. 2010).

5.3 Anti-hypertensives

While all anti-hypertensive therapies have been
shown to reduce the risk of a major cardiovascular
event in those with metabolic syndrome, clinical
trials in this arena have been limited by their
relative short follow-up periods of a maximum
of 5–6 years (Segura and Ruilope 2006). A meta-
analysis of randomized trials comparing the effec-
tiveness of different anti-hypertensive therapies
ultimately did not indicate a preferred medication
(Turnbull et al. 2008), but an angiotensin-
converting enzyme inhibitor (ACE-i) or angioten-
sin receptor blocker (ARB) is the consensus rec-
ommendation for those with MetS (Bestermann
et al. 2005). Given the increased risk for insulin
resistance in this patient population, ACE-i or
ARB initiation seems to have a protective benefit
against the development of diabetes, with a reduc-
tion in the incidence of diabetes of 25–27 %
(Abuissa et al. 2005). There is a wide range of
literature supporting the use of ACE-i or ARB
therapies to slow the progression of CKD, even
in obese patients (Mallamaci et al. 2011). How-
ever, post hoc analyses of the influential Antihy-
pertensive and Lipid-Lowering Treatment to
Prevent Heart Attack Trial (ALLHAT) with
MetS patients did not prove that anti-hypertensive
medications with a presumed favorable metabolic
profile should be preferred. In fact, black partici-
pants with MetS in this trial had a higher risk of
the development of end-stage renal disease with
ACE inhibition (lisinopril) compared to a thiazide
diuretic (chlorthalidone) (Wright et al. 2008).
However, thiazide diuretics, while effective in
their reduction of cardiovascular events, can
worsen many of the components of MetS includ-
ing insulin resistance, dyslipidemia, and weight
gain (Martinez-Mir et al. 1993; Jacob et al. 1998).
For those with CKD, thiazides may be particular

risky given the numerous clinical trials that have
implicated hyperuricemia and hypokalemia in the
exacerbation of MetS (Reungjui et al. 2008). Per-
sistent hypokalemia has been shown to lead to
insulin resistance and glucose intolerance
(Helderman et al. 1983; Zillich et al. 2006).
Even low-dose thiazide therapy can induce hyper-
uricemia, which large studies indicate can negate
any cardiovascular protection afforded by anti-
hypertensive therapy (Alderman et al. 1999). In
addition to these electrolyte and metabolic
derangements, diuretics have been associated
with acceleration of renal disease (Savage
et al. 1998; Hawkins and Houston 2005). The
mechanisms of this injury remain unclear but
could be related to hypokalemia-induced renal
hypertrophy and tubulointerstitial fibrosis, persis-
tent volume depletion, or chronic hypoglycemia
(Reungjui et al. 2007). Chronic hyperuricemia
has also been implicated in the development
of renal disease, and serum uric acid-lowering
therapies can slow progression in patients with
CKD (Siu et al. 2006). The current NIH-funded
Preventing Early Renal Loss in Diabetes (PERL)
Study will shed light into whether moderately
elevated serum uric acid has a pathogenetic role
in the deterioration of kidney function.

5.4 Diabetes Medications

While insulin remains the most effective and reli-
able treatment for diabetes mellitus, there is now a
wide variety of oral medications that are available
for improving glycemic control. These medica-
tions have differing effects on renal function,
and some are even contraindicated in chronic
kidney disease. Metformin is a first-line medica-
tion for diabetes due to its favorable metabolic
profile (i.e., weight loss) and beneficial effects
on insulin resistance and endothelial function in
those with MetS (Vitale et al. 2005); however, its
use in CKD may predispose patients to the devel-
opment of a severe lactic acidosis. As an alterna-
tive, data from a number of both human and
animal studies demonstrates that thiazolidi-
nediones (TZDs) reduce urinary albumin excre-
tion (Yoshimoto et al. 1997; Bakris et al. 2003)
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and indirectly prevent renal injury through
improvement in many of the components of the
metabolic syndrome and risk factors for progres-
sive diabetic nephropathy including
hyperinsulinemia, hypertension, dyslipidemia,
endothelial dysfunction, and inflammatory cyto-
kines (Sarafidis and Bakris 2006) In a larger,
multicenter study, pioglitazone showed a signifi-
cantly greater reduction in urinary albumin excre-
tion compared to metformin in drug-naïve type
2 diabetics (Schernthaner et al. 2004). Though the
data supporting TZD therapy and decreased albu-
minuria is consistent, there are no current clinical
trials investigating whether TZDs have any utility
in preventing progressive renal dysfunction per-
haps due to their association with congestive heart
failure.

There is strikingly less clinical experience with
the incretin-based therapies in CKD, including
dipeptidyl peptidase-4 (DPP-4) inhibitors (i.e.,
sitagliptin and saxagliptin) and glucagon-like
peptide-1 (GLP-1) receptor agonists (i.e.,
exenatide). Though most DPP-4 inhibitors are
renally excreted, their pharmacokinetics are pre-
dictable, and they have been used with good effect
in CKD because they can be dose-adjusted
according to the degree of GFR impairment. The
effects of GLP-1 agonists in those with CKD are
even more poorly understood, though they are
primarily renally excreted as well. There have
been a few case reports of acute kidney injury
with GLP-1 agonists, usually attributed to
hypovolemia secondary to gastrointestinal
adverse effects (Scheen 2014).

The newest class of oral diabetes medications
to gain FDA approval is the sodium-glucose trans-
porter-2 (SGLT-2) inhibitors (i.e., dapagliflozin,
empagliflozin, and canagliflozin), bringing glyce-
mic control back to the level of the kidneys.
Shortly after hitting the market in Europe and
the United States, a flurry of clinical and molecu-
lar investigations has shown the potential for
direct renoprotective actions including the attenu-
ation of diabetes-associated glomerular
hyperfiltration and tubular hypertrophy. Experi-
mental studies in the early 1980s first revealed
these glucose transporters in the proximal tubules,
known as the sodium-glucose cotransporters

(SGLT) (Barfuss and Schafer 1981). While the
SGLT-2 transporter in the initial segment of the
proximal tubule absorbs the majority of the fil-
tered glucose load (90 %), SGLT-2 inhibition
results in a compensatory increase in glucose
reabsorption through SGLT-1 transporters in ani-
mal models further along in the proximal tubule
(Rieg et al. 2014).

Though there is still debate about the mecha-
nism of glomerular hypertrophy and
hyperfiltration in the setting of diabetes, the
prevailing etiology to date appears to be a volume
and plasma ANP-independent increase in proxi-
mal tubule sodium reabsorption and
tubuloglomerular feedback (Vervoort et al. 2005;
Vallon and Thomson 2012). Tubuloglomerular
feedback is a process by which changes in deliv-
ery of chloride to the macula densa in the distal
tubules results in changes in GFR through modu-
lation of the glomerular afferent arteriole. In
experiments with diabetic rats, hyperglycemia
increases proximal tubular reabsorption via
sodium-glucose transporters, decreasing chloride
delivery to the macula densa. This decrease in the
negative tubuloglomerular feedback activity
results in an increased single-nephron GFR
(Thomson et al. 2004).

While there is some conflicting data
concerning early intervention in diabetic patients
with evidence of glomerular hyperfiltration and its
effect on the progression of CKD and diabetic
nephropathy, the majority of recent evidence sug-
gests considerable benefit (Magee et al. 2009;
Moriya et al. 2012; Ruggenenti et al. 2012).
Given this promising evidence, numerous clinical
trials have been designed to test that SGLT-2
inhibitors can improve hyperglycemia, glomeru-
lar hyperfiltration/hypertrophy, and the down-
stream renal consequences.

Influenced by smaller studies of various
SGLT-2 inhibitors in both type 1 and type 2 dia-
betics showing significant increases in glucosuria,
serum hemoglobin A1c, and the attenuation of
renal hyperfiltration (Defronzo et al. 2013;
Cherney et al. 2014), randomized controlled trials
have been conducted to evaluate larger cohorts of
diabetic patients. While meta-analyses of these
trials consistently show improved glycemic
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control and weight loss with SGLT-2 inhibitors
(both as monotherapy and combined with other
oral hypoglycemic agents), their short-term study
follow-up periods have not afforded us the oppor-
tunity to explore their potential longer-term
renoprotective effects (Musso et al. 2012;
Vasilakou et al. 2013). However, a recently
published study of dapagliflozin in type 2 dia-
betics with moderate renal impairment did not
show any significant improvement in glycemic
control or serum creatinine but did result in
weight loss and reduced blood pressure (Kohan
et al. 2014). An ongoing randomized, double-
blind, placebo-controlled multicentered clinical
trial entitled CREDENCE (Evaluation of the
Effects of Canagliflozin on Renal and Cardiovas-
cular Outcomes in Participants With Diabetic
Nephropathy) is currently studying whether
canagliflozin has a renal and vascular protective
effect in reducing the progression of renal
impairment.

6 Future Directions

With the rising prevalence of the metabolic syn-
drome, we have also seen an increase in the
burden of chronic kidney disease. Early targeting
of the individual components of MetS may help
to prevent the development and slow the progres-
sion of CKD, but the evidence remains sparse
due to the lack of long-term clinical trials dedi-
cated to CKD management. The proposed mech-
anisms of kidney injury described above are both
measurable and amenable to intervention. Since
much of our current understanding of the rela-
tionship of the metabolic syndrome, its indepen-
dent components, and CKD is based on large
cross-sectional studies or post hoc analyses of
clinical trials, there is still debate as to whether
MetS is a marker, rather than a causative factor,
of CKD. Randomized clinical trials in patients
with metabolic syndrome focusing on renal out-
comes should help shed light on which compo-
nents independently drive the relationship
between MetS and CKD, while prioritizing the
treatments that are most effective in treating these
risk factors.
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Abstract
Weight management and improvement in met-
abolic functioning can be achieved through a
variety of dietary approaches and physical
activity regimens. The inclusion of and adher-
ence to behavioral modification strategies can
further enhance weight loss. These three
aspects of behavioral change for weight man-
agement are complementary and are used in
combination in the most robust approaches to
treatment. Specific approaches and techniques
are reviewed in this chapter. Weight loss main-
tenance remains challenging, and with weight
regain, improvements in metabolic functioning
worsen once more. More research is needed to
help match individuals to weight management
approaches that may increase adherence and
long-term maintenance of weight loss and
health benefits.

Keywords
Lifestyle modification • Caloric restriction •
Physical activity • Behavioral modification •
Telemedicine • Weight maintenance • Dietary
interventions

1 Introduction

Individuals who are overweight and obese have
many reasons that they would be motivated to lose
weight and maintain that weight loss. These rea-
sons may include medical motivators, such as
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improvement of cardiovascular health, better
management of type 2 diabetes and sleep apnea,
and prevention of certain cancers. However, even
with severe health concerns, individuals are not
always motivated to action by them. Psychosocial
factors, such as quality of life, self-esteem, and
body image, also serve as motivating factors for
weight management, including improving one’s
ability to walk farther distances, get up and down
off of the floor while playing with one’s children
or grandchildren, and being able to travel or visit
amusement parks and other public spaces more
comfortably. For most, it is likely a combination
of these factors that results in readiness for behav-
ioral change that is necessary for weight loss
treatment.

Typically, behavioral weight management
interventions consist of three complimentary ele-
ments: first, the diet, the combination of macro-
nutrients, how many calories, and other dietary
features such glycemic index, specific types of
fats or carbohydrates, and the timing of meals;
second, physical activity, which is recommended
for weight loss as well as weight maintenance; and
finally, behavioral modification strategies which
are used to assist in following the diet and engag-
ing in physical activity. These strategies typically
include attention to goal setting, self-monitoring,

and stimulus control. These three elements are
discussed in detail below (Fig. 1).

2 Dietary Approaches

2.1 Low Fat, Low Calorie

Over the years, diet fads have come and gone and
in some cases come back again. To help protect
the public against possibly harmful dietary pre-
scriptions, clinical practice guidelines recently
were established by a collaboration of authorities
from several scientific societies which detail die-
tary guidelines for healthy eating and weight loss
(Gonzalez-Campoy et al. 2013). The US Depart-
ments of Agriculture and Health and Human Ser-
vices historically have also provided healthy
eating guidelines for the public (USDA 2010).
The government’s approach has consistently
been based on a low-fat dietary approach. The
current recommendations, found at www.
choosemyplate.gov, promote the daily intake of
5–6 servings of lean protein (1 ounce of meat or
fish per serving), 5 servings of fruit and vegetables
(1/2 cup per serving), 6–8 servings of grains
(focusing on 50 % of those from whole grains,
e.g., ½ cup of brown rice or ½ an English muffin),

Diet

• energy intake

• macronutrient content

• meal timing and
  frequency

Physical Activity

• moderate to vigorous
  physical activity

• intentional vs lifestyle

• continuous vs interval

Behavior Modification

• Self-monitoring

• Stimulus control

• Accountability

• Action planning

Fig. 1 The three components of lifestyle modification for
weight management and improvements in metabolic func-
tioning. Each factor contains different approaches that may

be more appealing or feasible to individuals based on
behavioral and taste preferences, genetics, or disease
profiles
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and 3 cups of dairy for adults. Consumption of
oils and refined sugar is to be limited.

This generally low-fat, low-calorie approach,
with macronutrient goals of 20–35 % of intake
from fats, 45–60 % from carbohydrates, and
15–20 % from proteins, has been used by many
successful weight loss interventions, such as the
Diabetes Prevention Program, LookAHEAD, and
POWERTrials (DPP Research Group 2002; Look
AHEAD Research Group 2010; Wadden
et al. 2011; Appel et al. 2011). Other organizations
such as the American Heart Association and the
American Cancer Society, along with commercial
programs such as Weight Watchers, use this
approach, even though each is presented through
different means (e.g., points instead of calories
with Weight Watchers). The idea behind a
low-fat, low-calorie diet is based on the premise
that a serving of fat is more calorically dense
(9 kcals per gram) than that of protein or carbo-
hydrate (each 4 kcals per gram). Thus, when eat-
ing a low-fat diet, one can consume a higher
volume of food than on a higher-fat diet. This
may translate into feeling like one can eat more
food and for a longer period of time, while also
filling the stomach with a higher volume of food
than one could consume with a higher fat intake.
These approaches typically prescribe an intake
goal of 1,200–1,500 kcals for individuals
weighing less than 250 lbs and 1,500–1,800
kcals for those weighing more than 250 lbs. Per-
sons at higher weights will require more kcals per
day given their higher metabolic needs.

A low-fat approach particularly focusing on
decreasing saturated and trans fats may be useful
for individuals with diabetes mellitus and/or car-
diovascular disease, as these fats are known to
increase risk for cardiovascular events and impair
insulin sensitivity (Vetter et al. 2014). Low-fat
approaches have been widely tested and typically
yield a weight reduction of 5–10 % of initial
weight, which can provide clinically meaningful
improvements in metabolic parameters (Jensen
et al. 2014; Pascale et al. 1995;Wing andMarquez
2008). As an example, the Look AHEAD study
included 5145 overweight and obese older Amer-
icans with type 2 diabetes mellitus randomized to
Intensive Lifestyle Intervention (ILI; including a

low-fat diet and ongoing group and individual
weight management counseling) or to a Diabetes
Support and Education group (DSE; yearly sup-
port meetings)(Ryan et al. 2003). Both groups
continued care with their physician for manage-
ment of their diabetes and other health issues over
the 12 years of the study; the occurrence of cardio-
vascular events was the study’s primary outcome.
The ILI group showed greater weight loss through-
out the study as compared to the DSE group (8.6%
vs 0.7 % at 1 year; 6.0 % vs 3.5 % at final assess-
ment). However, this weight loss did not reduce the
rate of cardiovascular events (Look AHEAD
Research Group 2013). There were other signifi-
cant improvements in the ILI group, including
greater reductions in HbA1c levels, sleep apnea
(Foster et al. 2009), urinary incontinence (Phelan
et al. 2012), and depression (Faulconbridge
et al. 2012), and improvements in quality of life
(Williamson et al. 2009), physical functioning (Foy
et al. 2011), and mobility (Rejeski et al. 2012).

2.2 High Protein

While the low-fat/low-calorie approach espouses
the idea that “a calorie is a calorie” no matter what
its dietary quality, other dietary prescriptions have
focused on factors such as satiety promoting
foods, glycemic control, or reduction of cravings
for refined flour and sugar. Perhaps the most
widely known and tested approach after the
low-fat diet is the high-protein diet, popularized
in the Atkins diet (Atkins 1972) and the South
Beach Diet (Agatstan 2003). High protein con-
sumption is considered between 1.2 and 1.6 g
protein * kg�1 * d�1, which is about 25–30 % of
daily intake. This translates to 25–30 g of protein
(Leidy et al. 2015). To put this in perspective,
Americans typically consume 14–16 % of energy
intake from protein, according to the data from the
National Health and Nutrition Examination Sur-
vey (NHANES) (Phillips et al. 2015). The top
sources of protein in America, as reported in
NHANES, are (1) poultry, (2) other meats,
(3) mixed dishes of meats, poultry, and fish,
(4) bread, rolls, and tortillas, and (5) milk (Phillips
et al. 2015).
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Protein is known to have a higher thermic
effect than that of carbohydrate and fat and has
been shown to promote satiety more than the other
macronutrients (Astrup et al. 2015, Leidy
et al. 2015). Protein may also help maintain lean
muscle mass which could help prevent the body
from becoming more efficient in using its energy
stores and, thus, requiring fewer calories for con-
tinued weight loss. For these reasons, this
approach is intuitively appealing to many individ-
uals and anecdotally is often particularly appeal-
ing to men.

While laboratory studies show positive effects
of high protein meals, such as lowered ghrelin
levels and increased satiety through higher pep-
tide YY (PYY) and glucagon-like peptide
1 (GLP-1) levels, longer-term studies show
mixed effects for weight loss and cardiovascular
improvements. One large meta-analysis examined
24 controlled trials, including 1,063 overweight or
obese adults, comparing higher-protein (27–35 %
of daily intake from protein) with lower-protein
(16–21 % of intake from protein) energy restric-
tion diets for an average duration of 12 weeks
(Wycherley et al. 2013). While energy deficits
were similar between the diets, higher-protein
diets led to greater weight and body fat loss,
lower fasting triglycerides, and preservation
of more lean body mass compared with the
lower-protein diets. However, no differences
were found between the diets for fasting
glucose, fasting insulin, blood pressure, and
total, LDL, and HDL cholesterol. Similar findings
have been shown through a meta-analysis of high-
protein diets for persons with diabetes (Dong
et al. 2013).

In general, those who are able to stay on the
high-protein diet more consistently are the ones
who lose the most weight, maintain that weight
loss, and show the cardiovascular benefits.
Schwingshackl and Hoffmann (2013) showed
that at 12 months, the benefits shown above for
12 weeks were no longer significant between
higher-protein and lower-protein diets.

Others have shown that during weight loss
maintenance, only about 40 % of those aiming to
follow a higher-protein diet were doing so (Bueno
et al. 2013).

2.3 Low Glycemic Index Diet

The glycemic index (GI) refers to the degree to
which foods containing carbohydrates affect the
release of blood glucose after the food is con-
sumed. Foods have been ranked on a 0–100
scale, with glucose and white bread being the
standard for comparison at a GI of 100. Low GI
foods fall between 0 and 55, intermediate fall
between 55 and 69, and high range from 70 to
100. The GI of foods is affected by many factors,
such as processing, cooking, and storage (Makris
and Foster 2011). Thus, it can be a complicated
approach to follow. Examples of some low GI
fruits would be cherries, plums, grapefruit, and
peaches, while low GI vegetables include broc-
coli, cabbage, mushrooms, tomatoes, and green
beans. Not as intuitive may be low GI snack
foods, which include Nutella and Snickers bars,
among others such as nuts and hummus, as com-
pared to high GI snack items of pretzels, rice
cakes, and scones. However, the aim of reducing
spikes in blood glucose and insulin response may
be particularly important to those with metabolic
syndrome, polycystic ovarian syndrome (PCOS),
and type 2 diabetes. Energy intake levels are not
reduced just by eating a low GI diet. Therefore,
calorie restriction must be combined with the low
GI approach for weight loss.

In general, weight loss and glucose control
outcomes from studies of low GI diets have been
mixed. A Cochrane review examined six RCTs
with a total of 202 participants (Thomas and
Elliott 2007). Intervention length ranged from
5 weeks to 6 months. Decreases in body mass,
total fat mass, and BMI were significantly greater
among participants receiving low GI diets com-
pared to other diets. Decreases in total cholesterol
and LDL cholesterol were also significantly
greater with low GI compared to other diets.

In 2009, low GI diets were reviewed again for
their effect on glucose control. Thomas and Elliott
(2007) examined 11 RCTs involving 402 partici-
pants. There was a significant decrease in HbA1c.
One trial (Giacco et al. 2000) demonstrated sig-
nificantly reduced episodes of hypoglycemia with
the low GI compared to high GI diet (difference
of �0.8 episodes per patient per month), while
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another showed a smaller proportion of partici-
pants reporting 15 or more hyperglycemic epi-
sodes per month (35 % vs. 66 %) (Gilbertson
et al. 2001). Even though these reviews found
statistically significant benefits of the low GI diet
on body mass and glycemic control, the clinical
significance of these changes for a given individ-
ual is unclear.

2.4 Combining High Protein
and Low Glycemic Index
Approaches

A recent, well-controlled trial examined the pos-
sible additive effects of the low GI and the high-
protein dietary approaches. The Diet, Obesity and
Genes (DiOGenes) trial included families with at
least one overweight or obese parent and at least
one child in the household across eight European
cities (Astrup et al. 2015). All of the parents
(n = 932 adults) received a very low-calorie diet
(800 kcal per day) for 8 weeks, aiming for a
minimum weight loss of 8 %. The mean weight
loss over this period of time was 11 kg. Families
of those who reached this level (n = 773 adults
from 634 families) were randomized to one of
four six-month dietary interventions to maximize
and maintain weight loss and a control group
(no assigned dietary intervention for 6 months).
The interventions included (1) high-protein, high
GI diet; (2) high-protein, low GI diet; (3) normal
protein, high GI diet; and (4) normal protein, low
GI diet.

There was superior adherence in the high-
protein and low GI group (Astrup et al. 2015).
Only the low-protein, high GI group gained sig-
nificant weight as compared to the control arm.
For the other groups, the authors concluded that
participants in the high-protein arms regained
2.8 kg less weight and 1.6 kg less fat mass than
the normal protein groups over 6 months, but no
consistent effect of GI level on weight was found.
The low GI groups showed more substantial
decreases in high-sensitivity C-reactive protein
blood levels than the high GI diet groups. The
low GI, high-protein group showed lower insulin
response, and both low GI groups produced

significant decreases in fructosamine levels dur-
ing the 6-month intervention. The authors suggest
that there is a sizable genetic component that may
indicate who might benefit most from these
approaches (Astrup et al. 2015). Clearly, the idea
of matching diets based on genetic, environmen-
tal, and psychosocial factors is the next frontier in
weight management research (Field et al. 2013).

2.5 Moderate Fat Diets
(Mediterranean Diet)

Moderate fat diets have been popularized by
the Mediterranean Diet and generally contain
35–45 % fat. These diets promote the use of
healthy fats such as olive oil, nuts, legumes, fish,
and poultry. The aim of the Mediterranean Diet is
to target both weight loss and improvements in
cardiovascular risk factors. A Cochrane review
also has examined the impact of this diet approach
on individuals at high CVD risk (Rees et al. 2013).
Included in the review were studies of 52,044
participants from 11 randomized controlled trials
that used at least two of the following parameters
to define a Mediterranean Diet: (1) high monoun-
saturated/saturated fat ratio, (2) low to moderate
red wine consumption, (3) high consumption of
legumes, (4) high consumption of grains and
cereals, (5) high consumption of fruits and vege-
tables, (6) low consumption of meat and meat
products and increased consumption of fish,
and/or (7) moderate consumption of milk and
dairy products.

There was large variability in the diets, so
general results were modest, with no effect on
mortality, but modest reductions in LDL choles-
terol. Studies with more of the components listed
above had stronger CVD-related outcomes,
including lower total cholesterol.

More recently, the PREDIMED (Prevención
con Dieta Mediterránea) trial included 7447
older (mean age 67 years) Spanish adults at high
risk for CVD events, randomizing them to one of
three groups: (1) Mediterranean diet (MeDiet)
supplemented with extra virgin olive oil
(EVOO), (2) MeDiet supplemented with nuts,
and (3) control diet (advice on a low-fat diet)
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(Martinez-Gonzalez et al. 2015). There was no
specific caloric reduction or advice for physical
activity included. Over a mean follow-up period
of 4.8 years, participants in both of the MeDiet
groups significantly reduced their risk of a CVD
event by about 30 % and peripheral artery disease
by 64 % and 46 %, respectively, as compared to
controls. Additionally, nondiabetic participants in
the MeDiet with EVOO reduced their risk of
developing diabetes as compared to control par-
ticipants by 40 %. These significant differences
were realized despite no significant weight loss at
3 years in any group on average (0.4 kg gain in
controls, 0.1 kg gain in MeDiet + EVOO, and
�0.02 kg loss in MeDiet + nuts) (Razquin
et al. 2009). However, risk reductions were asso-
ciated with degree of weight loss.

2.6 Newer Dietary Approaches

New dietary trends are constantly finding their
way to the public. Some of the approaches gaining
attention have been the Paleo diet and an intermit-
tent fasting diet (described below). The typical
western American diet can be characterized by
high levels of processed meat and other foods,
high-fat dairy products, and refined grains, all of
which are associated with the increased incidence
of type 2 diabetes, hypertension, and dyslipidemia
(Masharani et al. 2015). Diets metabolically
matched to primitive human diets of hunter and
gatherers, the Paleolithic-type diet, consisted of
meats, fish, fruits, vegetables, and nuts (Frassetto
et al. 2009). Paleo diets typically are also lower in
sodium and very much higher in potassium, anti-
oxidants, micronutrients, and fiber and with a
much lower diet acid content, and some believe
that widespread acceptance could reduce the risk
of our modern-day diseases (Cordain 2002).
However, only small, short-term studies of Paleo
diets have been reported (e.g., Masharani
et al. 2015), so evidence is still lacking on the
typical weight loss outcomes and impact on car-
diovascular and metabolic disease risk.

Similarly, large trials for “intermittent fasting”
or “modified fast” diets have yet to be conducted.
This approach commonly consists of fasting for

2 days, followed by 5 days of ad libitum eating. It
is simple in its approach but likely too difficult to
continue longer term, as subjective hunger is
increased during the fasting period (Johnstone
2015). Small studies have shown that the calorie
deficit created during the fast is not completely
compensated for during the days of ad lib eating,
thus producing weight loss. A small meal may be
added to the fasting period to make this approach
more acceptable. Overall, this approach would
likely be used as a short-term weight loss
approach, as few people would likely be able to
maintain such a pattern long term.

3 Exercise

As noted above, exercise often is included in
weight management approaches as one part of a
multifaceted approach to create an energy deficit
large enough to produce weight loss. The Ameri-
can College of Sports Medicine (ACSM;
Donnelly et al. 2009) recommends that adults
engage in greater than or equal to 150 min per
week of moderate to vigorous physical activity
(MVPA) (equivalent to 1,200 kcals burned) to
prevent weight gain and perhaps promote modest
weight loss.

Activity levels are often measured in metabolic
equivalents, METs, which are the amount of oxy-
gen required and the number of calories one burns
at rest. Moderate activity would be a workout
reaching three to six METs (e.g., walking at
4 miles per hour), while vigorous activity would
be working at greater than six METs (e.g., jogging
at 6 miles per hour). These are very high levels of
physical activity for most individuals who are obese
and sedentary; the preponderance of evidence indi-
cates that most individuals cannot reach these
levels. Thus, exercise alone, without caloric restric-
tion and modification in the nature of the diet, is
insufficient to produce meaningful weight loss.

Exercise is perhaps most touted as a reliable
predictor of weight loss maintenance. Several
studies have shown that individuals who have
lost weight and who exercise most days of the
week are more likely than those who do not exer-
cise to maintain their weight loss. Based on these
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studies, the ACSM’s guidelines recommended
greater than or equal to 250 min of exercise per
week (equivalent to about 2,000 kcals burned) for
weight maintenance (Donnelly et al. 2009). The
exercise described in the ACSM guidelines refers
to cardiovascular exercise where one’s heart rate
is elevated for at least 10 min at a time. This may
include a variety of activities, such as brisk walk-
ing, swimming or water aerobics, aerobic fitness
classes, or cardiovascular workout machines,
such as the elliptical or stationary bike. Strength
training alone does not produce weight loss or
reductions in fat mass, although it increases lean
muscle mass (Janssen and Ross 1999).

The National Weight Control Registry
(NWCR) was established in 1993 to study the
correlates of long-term weight maintenance. Par-
ticipants in the registry, who now are over 6,000,
have lost at least 30 lbs and maintained that loss
for at least 1 year. Regular MVPA has consistently
been identified as one of the main predictors of
weight loss maintenance. Specifically, about 90 %
of participants reported engaging in exercise as
part of their weight management efforts, and they
were engaging in large amounts of exercise –
walking the equivalent of 28 miles per week
(Klem et al. 1997). More refined analysis of activ-
ity using accelerometers (as opposed to self-
reported activity levels) has also been reported
among 90 participants: 26 from the NWCR,
30 normal-weight controls, and 34 overweight
controls (Catenacci et al. 2011). NWCR subjects
showed sustained moderate or vigorous physical
activity for a mean of 41.5 min/day (or about
290 min/week), which was significantly more
than that observed in obese controls by 19.2
min/day (roughly 134 min/week). Those in the
NWCR also engaged in 25.8 min/day (roughly
181 min/week) of sustained MVPA above that
observed in normal-weight controls, although
this did not reach significance (Catenacci
et al. 2011). These levels of physical activity
observed through actigraphy in this subsample
of NWCR participants are similar to that reported
through self-report measures and provide more
evidence of the consistently high levels of physi-
cal activity associated with successful weight loss
maintenance.

Similarly, participants of the Look AHEAD
trial assigned to ILI who reached a weight loss
of at least 10 % of initial body weight at 4 years
were exercising significantly more than those who
achieved less than a 10 % weight loss, as well as
those who had gained weight from baseline
(Wadden et al. 2011) is a (Look AHEAD). This
most successful group was expending almost
2,000 kcal/week through activity. Most recently,
the role of moderate to vigorous physical activity
was also identified as a predictor of weight loss at
24 months among the POWER UP trial partici-
pants. Volger and colleagues (2013) showed that
individuals engaging in physical activity who
received a lifestyle intervention through their pri-
mary care physician’s office, either with or with-
out meal replacements or weight loss medications,
were more likely to be engaging in more moderate
to vigorous physical activity at 24 months than
individuals in a comparison group who received
no specific intervention beyond publically avail-
able written materials.

3.1 Exercise Versus Lifestyle
Activity

Structured exercise produces the effects on weight
management described above. However, increas-
ing lifestyle activity has also been shown to have
benefits. The basis for lifestyle activity lies in
NEAT – non-exercise activity thermogenesis.
This includes energy expended during everyday
activities, such as walking, climbing steps, house-
work or yard work, or even fidgeting. Most often,
this type of activity is measured in steps through a
pedometer or newer smart activity trackers, such
as phones and smart wrist or arm bands. For every
increase in 2,100 steps per day, BMI is reduced by
0.4 kg/m2 (holding energy intake equal)
(Donnelly 2009). As a point of reference, 2,000
steps is about a mile. The overall goal for steps per
day would be 10,000 steps. This represents at least
a 3,000-step increase over what most Americans
are walking as a baseline, with sedentary adults
logging even less at 3,000 or fewer steps per day
(Tudor-Locke and Bassett 2004). Examining
average activity levels from a different
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perspective, Americans are engaging in 103 min
per day of sporadic physical activity, with 100 min
of that being of light intensity (Robson and
Janssen 2015).

Andersen et al. (1999) and colleagues elegantly
compared the effects of a dietary intervention plus a
structured aerobic activity regimen provided at a
gym versus an intervention that encouraged
increasing lifestyle activity, both recommended
for the same number of minutes per week. They
found that participants in the increased lifestyle
activity condition showed less weight regain at
1 year and performed similarly to those in the
aerobic group on metabolic parameters, such as
reductions in LDL cholesterol and triglycerides.

3.2 Effects of Exercise on Metabolic
Parameters

Although the effect of physical activity on weight
loss is not as large as many individuals seeking
treatment would prefer, exercise can improve car-
diovascular and metabolic parameters and reduce
mortality risk independent of weight loss (Ross
et al. 2000). As such, the saying “fit versus fat”
has become a hot topic among both researchers in
the field and the general public. However, body fat
still confers risk for CVD outcomes and mortality
independently of exercise, so physical activity does
not cancel that effect (see Jakicic and Davis 2011).

Arem et al. (2015) recently provided a pooled
analysis of over 660,000 participants across studies
of the National Cancer Institute Cohort Consortium
examining the 2008 physical activity guidelines
and their effect on mortality risk. They reported
that engagement in anymoderate or vigorous activ-
ity reduced risk by 20 % as compared to those
engaging in no activity. Those who engaged in
one to two times the recommended amount of
activity per week – 7.5 metabolic equivalent
hours per week – decreased their mortality risk by
31 %. Activity at higher levels was associated with
slightly higher reductions in mortality risk and was
not considered harmful. This protective effect was
found across BMI categories, while others have
found that participation in moderate to vigorous

lifestyle activity was beneficial in reducing mortal-
ity risk in those with a BMI < 30 kg/m2, but not in
those with obesity (Willey et al. 2015). This lack of
effect on mortality rates among persons with obe-
sity may illustrate the independent effect of degree
of fat on mortality risk, despite the influence of
activity.

3.3 Continuous Versus Interval
Training

Traditional lifestyle modification programs stress
the number of minutes spent engaging in MVPA
each week. Interval training has become increas-
ingly popular as a means of increasing cardiovas-
cular fitness and strength. A recent systematic
review compared the effects of high-intensity
interval training (HIIT) and moderate-intensity
continuous training (MICT) on vascular function-
ing and other metabolic outcomes among patients
with impaired vascular function (Ramos
et al. 2015). They examined seven randomized
trials with 182 participants. The most common
prescription of HIIT included four intervals
of four minutes at a maximum heart rate of
85–90 %, with three minutes of active recovery
targeting 60–70 % of maximum heart rate. This
routine was most often studied three times per
week for 12–16 weeks. This was compared to
traditional continuous moderate activity – the
MICT group. Overall, HIIT was more effective
in improving vascular function, cardiorespiratory
fitness, and insulin sensitivity and reducing oxi-
dative stress and inflammation as compared to
MICT (Ramos et al. 2015). Thus, varying one’s
intensity of activity may provide higher benefit to
improvements in cardiovascular and metabolic
risk factors as compared to traditional constant
moderate to vigorous physical activity.

4 Behavioral Modification

Within lifestyle modification programs for weight
loss, behavioral modification plays a central role
in successful treatment. Self-monitoring of caloric
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intake and physical activity is critical to help
patients to engage in and maintain changes in
these behaviors. Cognitive-behavioral strategies
can help patients identify maladaptive eating and
activity behaviors and promote the development
of healthy behaviors.

Behavioral modification interventions may be
delivered through different modalities, including
individual counseling sessions with a nutritionist,
psychologist, physician, or other ancillary medical
staff. This is time intensive and expensive, how-
ever, so group interventions are often employed.
Not only are groups more cost effective than indi-
vidual treatment, they also provide social support
and can help participants be more engaged and feel
more accountable for their efforts. These modali-
ties have historically been delivered in person, but
telemedicine options are also popular now, includ-
ing telephone counseling, with or without supple-
mental computer-based applications, webpage
support, or Wi-Fi scale technology. Interventions
are also delivered directly through Internet-based
sites or applications.

4.1 Self-Monitoring

Self-monitoring of food intake and physical
activity is likely the most important skill to
help patients successfully engage in self-
regulation of these behaviors and promote
weight loss and maintenance (Sarwer
et al. 2004, 2014). Patients are typically asked
to monitor their weight on a regular basis
(at least weekly but in some programs daily)
and also keep records of their daily food intake,
total calories, and physical activity. Self-
monitoring provides patients with feedback on
their targeted behavior as well as opportunity to
modify these behaviors as appropriate. Regular
self-monitoring of food intake and weekly
weighing are perhaps the strongest predictor of
initial weight loss as well as larger weight losses
at the end of treatment, as seen in numerous
studies (e.g., Wadden et al. 2005, 2011).

Self-monitoring can help patients stay within
their recommended treatment plan on a daily

basis and regardless of whether the plan is com-
ing from a commercial weight loss program,
dietitian, or physician. Self-monitoring also can
be used during treatment sessions with providers.
Treatment providers often spend part of the treat-
ment sessions reviewing the patient’s food and
activity records. The provider helps participants
identify strategies to cope with identified prob-
lems and, thus, increase their adherence to the
prescribed eating and activity plans. Although
the provider introduces a new topic each week,
sessions focus more on the participants
reviewing their progress than on the practi-
tioner’s lecturing.

Self-monitoring is increasingly done using
technological advances such as physical activity
monitors that can be worn on the body and smart
phone applications and websites that can promote
self-monitoring and, in some cases, allow for this
information to be shared with treatment providers
in a timely fashion (Thomas et al. 2011). Interven-
tions may also be conducted through websites and
applications exclusively. Web-based weight loss
programs generally produce weight losses of
2–5 kg and in most cases are superior to no treat-
ment comparison groups. However, these weight
losses are less than those reported through most
typical in-person weight management studies,
which are usually closer to 7–10 kg (Thomas
and Bond 2014). As with in-person interventions,
self-monitoring and feedback from a monitor
seem to improve outcomes.

Financial incentives for weight loss, often
combined with other aspects of technology-
based weight loss interventions, have been asso-
ciated with larger weight losses than control
groups who just received information on behav-
iors necessary for weight loss (Kullgren
et al. 2013; Volpp et al. 2008). Financial incen-
tives in the form of payment, as well as in the form
of returning a monetary deposit committed by
participants at the beginning of the study, produce
larger weight losses than groups without a finan-
cial incentive (Volpp et al. 2008), and evidence
shows that group incentives produce greater
weight loss at 24 weeks than individual incentives
(Kullgren et al. 2013).
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4.2 Cognitive-Behavioral Strategies

Lifestyle modification programs also teach
patients cognitive-behavioral skills (Sarwer
et al. 2014). Patients practice setting short-term,
reasonable, specific, and measurable goals for the
development of more adaptive and healthy behav-
iors. Assessing progress toward these goals on a
weekly basis and with the treatment provider is
another cornerstone of most treatment. The dis-
cussion between the patient and provider allows
for a functional analysis of specific eating and
activity behaviors that conditions patients to iden-
tify the events or cues that occur before and after a
targeted behavior. It also allows both individuals
to determine what is causing and maintaining the
maladaptive behavior and make changes in these
events or cues to promote the engagement in
healthier behaviors. Stimulus control principles
also are used to change the internal and external
cues associated with targeted eating and activity
behaviors. Patients are taught to change their
immediate environments (e.g., the home and
workplace) so that they facilitate, rather than hin-
der, positive behavior change. For example, stim-
ulus control can focus on reducing exposure to
particularly tempting high-calorie foods, increas-
ing the availability and visibility of healthy food,
and creating cues for physical activity.

Problem solving is another core behavioral
skill. Patients identify a problem in detail, brain-
storm potential solutions to the problem, consider
the pros and cons of each option, choose a solu-
tion, develop a plan to implement it, and evaluate
the effectiveness of the chosen solution once the
behavior has been implemented (Sarwer
et al. 2014). Making these plans as specific as
possible and checking in with patients regarding
their intentions to try to enact the plan during the
coming week are necessary for adherence. Addi-
tionally, relapse prevention skills help patients to
anticipate and develop strategies for dealing with
high-risk situations, such as a stressful project at
work or a vacation, and plan how they will
respond to lapses in adherence.

Most lifestyle modification programs also
teach cognitive restructuring, in which patients
identify and modify automatic thoughts and

develop rational responses to these thoughts as a
way of changing behavior. For example, an indi-
vidual might think, “That bag of chocolate bars is
on sale. I’ll buy it just in case the kids have friends
over this weekend.” The provider would help the
patient challenge this thought by reviewing the
potential consequences of buying a bag of choco-
late. Would he or she be able to abstain from
eating those bars and save them for visitors? If
the person chose to eat the chocolate, would it
taste good and be rewarding? Likely, yes, it
would provide a short-term reward. However, it
may be difficult to limit the consumption of the
chocolate to a specified serving size when a full
bag is present. Thus, after the initial feeling of
reward, longer-term feelings of guilt, as well as
physical consequences, such as lack of weight
loss or possible weight gain, would likely result.
Such use of Socratic questioning helps the patient
generate their own solutions to weight loss bar-
riers. This exercise also increases the patient’s
ability to identify triggers to overeating and auto-
matic thoughts that lead to undesirable outcomes,
allowing the individual to stop in the moment and
respond in a manner more consistent with his or
her weight loss or weight maintenance goals.

5 Summary

Lifestyle modification plays a key role in weight
management efforts. Its components include pick-
ing a specific dietary plan, promoting moderate to
vigorous physical activity, and using behavioral
modification strategies. Different dietary
approaches produce weight loss successfully, typ-
ically between a 5 % and 10 % loss of initial body
weight, which is related to improvements in car-
diovascular and metabolic parameters. Over time,
weight regain happens with all approaches as
dietary adherence wanes. In general, an individ-
ual’s ability to integrate the changes adapted
through a dietary approach would need to be
perceived as doable for long-term adherence and
weight loss maintenance. Thus, what one person
finds appealing for a dietary prescription, say,
high protein, may be quite difficult for someone
else, say, someone who prefers vegetarian, low-fat
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options. Supplementing the dietary approach with
physical activity generally increases weight loss
and, most consistently, predicts longer-term
weight loss maintenance. The use of behavioral
modification techniques helps improve adherence
to a diet and exercise plan through specific action
plans and accountability.

Future research in this area likely will focus on
matching lifestyle modification strategies to indi-
viduals based on genetics, taste and behavioral
preference, disease burden profiles, and brain
imaging techniques. More research is also needed
to understand the possible role of financial incen-
tives for weight management for larger,
community-based weight management efforts.
Until then, providing ample support to those seek-
ing weight loss, encouraging self-monitoring,
targeting specific calorie or other macronutrient
goals, and providing specific plans for increasing
physical activity should be a part of any pre-
scribed weight management program.
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Abstract
The management of metabolic syndrome
requires a healthy low-calorie diet, increased
physical activity, and other behaviors that pro-
mote the maintenance of weight loss. Medica-
tions for obesity, diabetes, hypertension, and
dyslipidemia may be necessary for the treat-
ment of components of metabolic syndrome
and to reduce the risk of cardiovascular dis-
ease. This chapter describes current medica-
tions available for treatment of obesity and
metabolic syndrome.

Keywords
Obesity • Metabolic syndrome • Diabetes •
Hypertension • Lipid • Cardiovascular

1 Introduction

The prevalence of metabolic syndrome has
increased worldwide mainly due to the obesity
epidemic (Flegal et al. 2010; Schmidt
et al. 2013; Allison et al. 2008; Calle et al. 2003;
Jensen et al. 2014). Weight loss and long-term
maintenance of weight loss have been shown to
improve comorbid diseases associated with meta-
bolic syndrome (Table 1). Diet and increased
physical activity are essential for weight manage-
ment. Medications or bariatric surgery may be
needed to achieve and maintain a healthy weight
(Cohen et al. 2012; Mingrone et al. 2012; Schauer
et al. 2012; Buchwald et al. 2009; Ilanne-Parikka
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et al. 2008; Phelan et al. 2007; Zanella et al. 2006;
Wannamethee et al. 2005; Andersen et al. 1991;
Huang et al. 2005; Palmer and Schaffner 1990;
Ueno et al. 1997; Christensen et al. 2007; Fransen
2004; Huang et al. 2000; Messier et al. 2004; van
Gool et al. 2005; Adams et al. 2009; Sjostrom
et al. 2009; Kuna et al. 2013). For weight man-
agement to be successful, it is crucial for patients
to be actively involved in their care and be mon-
itored frequently for weight loss, comorbid dis-
ease outcomes, and adverse effects of treatment.

2 Weight Loss Medications

Medications approved for the long-term treatment
of obesity include orlistat, lorcaserin, the combi-
nation of phentermine and topiramate, and
liraglutide. A weight loss medication is deemed
effective if it results in weight loss greater than
5 % of body weight. Unfortunately, the recidivism
rate for weight management is very high, and a
large proportion of patients are lost to follow up
even in well-controlled clinical trials. Medications
that are ineffective after 12 weeks of treatment or
have adverse effects or safety concerns should be
discontinued and alternative therapies considered.

Orlistat (tetrahydrolipstatin) inhibits pancreatic
lipase thereby reducing intestinal digestion of fat.
Orlistat is available as a prescribed dose of 120mg
three times daily before meals or over-the-counter
dose of 60 mg three times daily. Orlistat decreases
body weight in a dose-dependent manner. A
4-year double-blind, randomized, placebo-
controlled trial showed that orlistat treatment
resulted in more than 11 % reduction below the
baseline weight compared to 6 % below the base-
line weight in the placebo group (Torgerson
et al. 2004). Orlistat treatment blunts weight
regain and the conversion rate of glucose intoler-
ance to diabetes. Orlistat is effective in adoles-
cents (Chanoine et al. 2005). A meta-analysis of
orlistat clinical trials showed that orlistat reduced
body weight by �5.70 � 7.28 kg compared to
�2.40 � 6.99 kg in the placebo group (Rucker
et al. 2007). The side effects of orlistat are related
to blockade of triglyceride digestion in the intes-
tine, which causes abdominal discomfort, flatu-
lence, and oily stools (Bray and Greenway
2007). Orlistat can decrease absorption of
fat-soluble vitamins; therefore, patients require
multivitamin supplementation. Very rarely orlistat
therapy has been associated with liver toxicity, but
the etiology is unclear (Jensen et al. 2014).

Lorcaserin is a serotonin-2C receptor (5HTR-
2C) agonist which decreases food intake and body
weight (Kelly et al. 2013; Smith et al. 2010; Fidler
et al. 2011; O’Neil et al. 2012). Lorcaserin is
prescribed as a dose of 10 mg twice daily and
has been shown to be effective in many studies
(Halford et al. 2007), e.g., the BLOOM (Behav-
ioral Modification and Lorcaserin for Overweight
and Obesity Management) (Smith et al. 2010), the
BLOSSOM (Behavioral Modification and
Lorcaserin Second Study for Obesity) (Fidler
et al. 2011) which enrolled patients with BMI
�27 kg/m2 with one comorbidity, and the
BLOOM-DM (O’Neil et al. 2012) which studied
diabetic patients with BMI values of 27–45 and
glycated hemoglobin of 7–10 %. These studies all
showed significant reductions of food intake and
body weight (Martin et al. 2011). In the BLOOM-
DM, lorcaserin treatment decreased the fasting
glucose and glycated hemoglobin levels com-
pared to the placebo group (O’Neil et al. 2012).

Table 1 Weight reduction improves clinical outcomes of
obesity-related diseases

Disease References

Type 2 diabetes Cohen et al. 2012; Mingrone
et al. 2012; Schauer et al. 2012;
Buchwald et al. 2009

Hypertension Ilanne-Parikka et al. 2008; Phelan
et al. 2007; Zanella et al. 2006

Dyslipidemia Ilanne-Parikka et al. 2008; Phelan
et al. 2007; Zanella et al. 2006

Cardiovascular
disease

Wannamethee et al. 2005

NAFLD Andersen et al. 1991; Huang
et al. 2005; Palmer and Schaffner
1990; Ueno et al. 1997

Sleep apnea Kuna et al. 2013

Osteoarthritis Christensen et al. 2007; Fransen
2004; Huang et al. 2000; Messier
et al. 2004; van Gool et al. 2005

Cancer Adams et al. 2009; Sjostrom
et al. 2009
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Lorcaserin was well tolerated and had mild side
effects, consisting of headache, fatigue, dry
mouth, nausea, dizziness, and constipation.
Lorcaserin treatment did not increase the risk of
valvulopathy (O’Neil et al. 2012) (Fidler
et al. 2011).

The combination phentermine and topiramate
is marketed as an extended-release formulation,
Qsymia™, as phentermine (3.75, 7.5, or 15 mg)
combined with topiramate (23, 46, or 92 mg)
(Allison et al. 2012; Gadde et al. 2011). A dose
titration period of 2 weeks is recommended for
Qsymia™, starting at the lowest combination
dose. Phentermine stimulates norepinephrine
levels in the hypothalamus which has been linked
to appetite suppression. Topiramate stimulates
γ-aminobutyric acid (GABA) receptor activity,
but it is unclear if this is directly involved in
appetite suppression and weight loss. The safety
and efficacy of Qsymia™ were evaluated in two
randomized, placebo-controlled trials that
included approximately 3,700 obese and over-
weight patients with and without weight-related
conditions treated for 1 year. The participants
received lifestyle modification consisting of a
reduced calorie diet and regular physical activity.
In the EQUIP study, phentermine/topiramate was
administered in adults �70 years of age and with
a BMI �35 kg/m2 (Allison et al. 2012). The
CONQUER study (Gadde et al. 2011) examined
the effects of Qsymia™ in adults �70 years, with
a BMI of 27–45 kg/m2, and 2 or more of the
following conditions: hypertension, hypertrigly-
ceridemia, abnormal glucose metabolism
(impaired fasting glucose, impaired glucose toler-
ance, or type 2 diabetes), or waist circumference
�40 in. in men or�35 in. in women. Results from
these studies showed that after 1 year of treatment,
there was a mean weight loss of 6.7 % and 8.9 %
with the recommended and highest daily doses of
Qsymia™, respectively, over placebo treatment.
About 62 % and 69 % of the participants lost at
least 5 % of their body weight with the
recommended dose and highest doses of
Qsymia™, compared with 20 % of placebo-
treated patients. Extension of the CONQUER
study for a second year, i.e., the SEQUEL study,
resulted in significant weight loss (Garvey

et al. 2012). Qsymia™ treatment resulted in sig-
nificant improvements in blood pressure, glucose
homeostasis, and lipids (Allison et al. 2012;
Gadde et al. 2011; Garvey et al. 2012), and these
changes were related to the degree of weight loss.

The most common side effects of Qsymia™
are paresthesia, dizziness, altered taste sensation,
dry mouth, insomnia, and constipation. Qsymia™
is contraindicated in pregnancy, as are all weight
loss medications. Because topiramate has been
associated with fetal oral clefts, a negative preg-
nancy test is required before treatment is initiated.
A pregnancy test must be done every month, and
effective contraception is required during contin-
ued Qsymia™ treatment. If a patient becomes
pregnant while taking Qsymia™, the drug should
be discontinued immediately. Qsymia™ is
contraindicated in patients with glaucoma, hyper-
thyroidism, recent monoamine oxidase inhibitor
(MAOI) therapy (within 14 days), recent or unsta-
ble heart disease or stroke (within the 6 months),
hypersensitivity to topiramate or phentermine, or
kidney stones. The US FDA approved Qsymia in
2012 with a Risk Evaluation and Mitigation Strat-
egy (REMS), consisting of safety information for
prescribers and patients, prescriber training, and
pharmacy certification. The REMS is aimed
toward educating prescribers and patients about
the increased risk of birth defects associated with
first trimester exposure to Qsymia™, the require-
ment for pregnancy prevention, and the discontin-
uation of therapy if pregnancy occurs. Qsymia™
is only dispensed through specially certified phar-
macies. The manufacturer, Vivus Inc., is required
to conduct post-marketing studies, including a
long-term cardiovascular outcomes trial to assess
the risk for major cardiovascular events.

Bupropion is approved for the treatment of
depression, seasonal affective disorder, and
smoking cessation. Bupropion also acts on adren-
ergic and dopaminergic receptors in the hypothal-
amus to suppress feeding and reduce body weight
(Greenway et al. 2009). Naltrexone is an opioid
receptor antagonist approved for the treatment of
alcohol or opioid dependence. Naltrexone has
minimal effect on body weight if given alone;
however, it potentiates the effect of
α-melanocyte-stimulating hormone (α-MSH) to
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inhibit food intake (Greenway et al. 2009).
Contrave™ is a combination of naltrexone and
bupropion administered as an extended-release
formulation (Greenway et al. 2010; Wadden
et al. 2011). The effectiveness of Contrave™
was evaluated in clinical trials involving about
4,500 obese and overweight participants with
and without significant weight-related conditions
treated for 1 year (Greenway et al. 2010; Wadden
et al. 2011). The participants received lifestyle
modification consisting of a reduced calorie diet
and regular physical activity. The results showed
that patients without diabetes had a mean weight
loss of 4.1 % over placebo treatment at 1 year.
About 42 % of participants treated with
Contrave™ lost at least 5 % of their body weight
compared to 17 % to placebo-treated patients.
Among the participants with type 2 diabetes had
an average weight loss of 2 % better than placebo
treatment at 1 year. About 36 % of patients treated
with Contrave™ lost at least 5 % of their body
weight compared to 18 % in the placebo-treated
group.

Patients on maintenance doses of Contrave™
should be evaluated after 12 week, and the drug
should be discontinued if they have not lost at
least 5 % of baseline body weight. The most
common adverse effects of Contrave™ include
nausea, constipation, headache, vomiting, dizzi-
ness, insomnia, dry mouth, and diarrhea. The
bupropion component of Contrave™ increases
the risk of suicidal thoughts. Contrave™ can
cause seizures and increase blood pressure and
heart rate and must not be used in patients with
poorly controlled hypertension. Contrave™
should not be used in patients with eating disor-
ders (e.g., bulimia or anorexia nervosa), in those
on opioids or treatments for opioid dependence, or
in those experiencing acute opiate withdrawal or
undergoing discontinuation of alcohol, benzodi-
azepines, barbiturates, and antiepileptic drugs.
Contrave™ is contraindicated in pregnancy. The
US FDA requested the following post-marketing
studies for Contrave™: assessment of cardiovas-
cular risk, efficacy, safety, and clinical pharmacol-
ogy studies in children; toxicity studies in young
animals with a focus on growth, development,
behavior, learning, and memory; investigation of

the effect of Contrave™ on cardiac conduction;
clinical trials to evaluate the dosing of Contrave™
in patients with hepatic or renal impairment; and a
clinical trial to evaluate interactions between
Contrave™ and other drugs.

Liraglutide is an acylated GLP-1 analogue that
shares 97 % amino acid sequence homology to
endogenous GLP-1 (7–37) (Scott 2014).
Liraglutide has a prolonged plasma half-life com-
pared with endogenous GLP-1 (13 h vs. 2 min).
Liraglutide activates the GLP-1 receptor and trig-
gers several responses, including glucose-
dependent insulin secretion, inhibition of pancre-
atic glucagon secretion, and reduction of appetite
and body weight (Muscogiuri et al. 2014; Holst
2013; Madsbad 2014; Iepsen et al. 2014).
Saxenda containing liraglutide at a dose of 3 mg
has been approved for weight loss. The safety and
efficacy of Saxenda were evaluated in clinical tri-
als that included about 4,800 obese and over-
weight patients with or without comorbid
conditions (Astrup et al. 2009; Wadden
et al. 2013; Lean et al. 2014). The patients
received lifestyle counseling consisting of a
reduced calorie diet and regular physical activity.
Saxenda treatment resulted in an average weight
loss of 4.5 % from baseline compared to placebo
at 1 year, and 62 % of patients on Saxenda lost at
least 5 % of their body weight compared to 34 %
of placebo-treated patients. Among patients with
type 2 diabetes, Saxenda treatment resulted in an
average weight loss of 3.7 % from baseline com-
pared to placebo at 1 year, and 49 % of patients
treated with Saxenda lost at least 5 % of their body
weight compared to 16 % of patients treated with
placebo.

The most common side effects observed in
patients treated with Saxenda are nausea, diarrhea,
constipation, vomiting, and hypoglycemia.
Although Saxenda causes thyroid C-cell tumors
in rodents, it is unknown whether the drug causes
thyroid C-cell tumors, including medullary thy-
roid carcinoma (MTC), in humans. Saxenda is
contraindicated in patients with a personal or fam-
ily history of MTC or in patients with MEN2.
Serious adverse effects of Saxenda include pan-
creatitis, cholecystitis, renal impairment, and sui-
cidal thoughts. Saxenda can induce tachycardia
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and should be discontinued in patients who expe-
rience a sustained increase in resting heart rate.
The US FDA approved Saxenda with a REMS
consisting of a plan to educate health-care pro-
fessionals and patients about the risks associated
with the drug. The US FDA requested post-
marketing clinical trials to evaluate dosing, safety,
and efficacy of Saxenda in children; a study to
investigate the effects on growth, sexual matura-
tion, and CNS development and function in young
rats; a case registry of at least 15 years duration to
evaluate the risk of MTC; and an evaluation of the
risk of breast cancer with Saxenda in ongoing
clinical trials.

Benzphetamine, diethylpropion, phendimetrazine,
and phentermine are sympathomimetic drugs
approved by the US FDA for short-term weight
loss treatment, i.e., 12 weeks (Ryan et al. 2010;
Addy et al. 2009; Kim et al. 2006). Phentermine
and diethylpropion are classified by the US DEA
as schedule IV drugs, and benzphetamine and
phendimetrazine are classified as schedule III
drugs (Bray and Greenway 2007). Phentermine
was approved in 1959 for short-term treatment,
and studies have demonstrated a modest dose-
related weight loss in phentermine-treated
patients (Ryan et al. 2010; Addy et al. 2009;
Kim et al. 2006). The side effects of the
sympathomimetic drugs include insomnia, ner-
vousness, dry mouth, tachycardia, and elevated
blood pressure. These drugs should not be pre-
scribed to patients with a history of cardiovascular
disease.

3 Treatment of Diabetes

Obesity is closely linked to type 2 diabetes in
regard to etiology, pathogenesis, and management
(Knowler et al. 2002; Diabetes Prevention Pro-
gram Diabetes Prevention Program Research
Group et al. 2009; Tuomilehto et al. 2001;
Buchwald et al. 2004). Several drugs used for
the treatment of diabetes produce weight gain,
e.g., insulin, sulfonylurea drugs (glipizide and
glibenclamide), and thiazolidinediones
(rosiglitazone and pioglitazone) (Leslie
et al. 2007) (Table 2). It is important to use

medications that are weight neutral or cause
weight loss (Bray and Ryan 2012) (Table 2).

Metformin is a biguanide that increases hepatic
insulin sensitivity and reduces glucose produc-
tion. Metformin typically causes weight loss. For
example, in the Diabetes Prevention Program, the
patients receiving metformin lost more weight
than placebo, and the weight loss persisted for
8 years of follow-up (Diabetes Prevention Pro-
gram Research Group 2012). Bushe et al. (2009)
reported that metformin may prevent weight gain
and metabolic syndrome during treatment with
antipsychotic drugs.

Table 2 Effects of medications on body weight

Disease
Drugs associated
with weight gain

Drugs that are
weight neutral
or cause weight
loss

Diabetes Insulin
Sulfonylureas
Glitinides
Thiazolidinediones

Weight neutral
Acarbose
Miglitol
DPP-4 inhibitors
Weight loss
Metformin
Pramlintide
Exenatide
Liraglutide

Hypertension Alpha-blocker
Beta-blocker

ACE inhibitors
ARB
Calcium channel
blockers

Depression Citalopram
Escitalopram
Fluvoxamine
Lithium
Tricyclic
antidepressants
Monoamine
oxidase inhibitors
Mirtazapine
Paroxetine
Venlafaxine

Bupropion
Nefazodone
Fluoxetine
Sertraline

Psychosis Clozapine
Risperidone
Olanzapine
Quetiapine

Ziprasidone
Aripiprazole

Epilepsy Valproate
Carbamazepine
Gabapentin

Zonisamide
Topiramate
Lamotrigine
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Pramlintide is an analog of amylin, a peptide
secreted along with insulin by pancreatic β cells.
Pramlintide lowers blood glucose and produces
weight loss (Aronne et al. 2010). GLP-1 agonists
stimulate insulin secretion (Edwards et al. 2001),
inhibit glucagon secretion, slow gastric emptying,
and reduce food intake (Gutzwiller et al. 1999;
Turton et al. 1996). Because endogenous GLP-1 is
rapidly inactivated by dipeptidyl peptidase-4
enzyme, synthetic GLP-1 receptor agonists with
prolonged action have been developed for treat-
ment of type 2 diabetes (Meier 2012). Liraglutide
is appropriate for the treatment of obese diabetics
because it reduces hyperglycemia, enhances insu-
lin sensitivity, and reduces body weight (Meier
2012).

The kidney regulates glucose homeostasis
through reabsorption of glucose from the glomer-
ular filtrate via SGLT-1 and SGLT-2 (Gerich
2010). SGLT-2 inhibitors block 90 % of glucose
reabsorption in the proximal tubule of the neph-
ron, leading to urinary glucose excretion and
reduction in blood glucose levels (DeFronzo
et al. 2012). The US FDA approved SGLT-2
inhibitors, i.e., canagliflozin, empagliflozin, and
dapagliflozin, for diabetes treatment. In addition
to lowering glucose levels (List et al. 2009;
Strojek et al. 2011), SGLT-2 inhibitor treatment
results in loss of calories in the urine and weight
loss (Ferrannini and Solini 2012). SGLT-2 inhib-
itors may decrease blood pressure (Ferrannini
et al. 2010; Henry et al. 2012), increase HDL
cholesterol, and decrease triglyceride levels
(Bailey et al. 2010; Nauck et al. 2011; Rosenstock
et al. 2012). SGLT-2 inhibitors may also decrease
serum uric acid levels (List et al. 2009; Henry
et al. 2012), suggesting multiple benefits in meta-
bolic syndrome (Jung et al. 2014).

3.1 Treatment of Atherogenic
Dyslipidemia

Statins are effective in reducing total and LDL
cholesterol levels (Charlton-Menys and
Durrington 2008; Baigent et al. 2005). The role
of statins in reducing cardiovascular risk is well
established (Baigent et al. 2005). Prospective

studies such as the COmparative study with
rosuvastatin in subjects with METabolic Syn-
drome (COMETS) and the Measuring Effective
Reductions in Cholesterol Using Rosuvastatin
TherapY I (MERCURY I) showed that statins
improved atherogenic dyslipidemia in patients
with metabolic syndrome (Stalenhoef
et al. 2005; Stender et al. 2005; Deedwania
et al. 2005). A meta-analysis showed that
statin therapy reduced the risk of cardiovascular
disease (Cholesterol Treatment Trialists
et al. 2012). Statin treatment consistently reduces
cardiovascular and all-cause mortality in patients
at high risk of cardiovascular disease (LaRosa
et al. 2005; Pyorala et al. 2004). Statins also
reduce oxidative stress and inflammation,
improve endothelial function, and decrease car-
diovascular morbidity (Liao 2002; Meyer-
Sabellek and Brasch 2006; Goff et al. 2014).
Statin therapy has been associated with insulin
resistance (Preiss et al. 2011; Sattar et al. 2010;
Kanda et al. 2003). However, the risk of statin-
mediated insulin resistance should be balanced
against the benefits in reducing cardiovascular
risks (Lim et al. 2013b).

Fibrates are useful for the treatment of hypertri-
glyceridemia and low HDL cholesterol levels.
Fibrates also modulate fibrinogen, IL-1, IL-6,
and hsCRP levels (Zambon et al. 2006; Keech
et al. 2005). Studies have shown that fibrates
reduce triglycerides (Aguilar-Salinas et al. 2001;
Klosiewicz-Latoszek and Szostak 1991) and
increase HDL cholesterol (Packard et al. 2002).
Fenofibrate decreases fibrinolysis inhibitor levels
and improves endothelial function in patients with
metabolic syndrome (Kilicarslan et al. 2008).
Some metabolic syndrome patients may need a
combination of statin and fibrate for the treatment
of atherogenic dyslipidemia and cardiovascular
risk reduction (Lim et al. 2013a).

3.2 Treatment of Hypertension

The pathogenesis of hypertension in metabolic
syndrome is thought to be mediated by various
factors including activation of the SNS, increased
renal tubular sodium reabsorption, and
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dysregulation of the renin-angiotensin-aldoste-
rone system (RAAS). Thiazide diuretics are the
first-line agent in the treatment of hypertension
within the general population (Chobanian
et al. 2003; ALLHAT 2002). However, thiazides
tend to raise blood glucose levels and may convert
prediabetes to diabetes (Rapoport and Hurd 1964;
Amery et al. 1978; Hoskins and Jackson 1978;
Plavinik et al. 1992; Harper et al. 1995).

The RAAS is functionally linked to insulin
resistance and endothelial dysfunction in patients
with metabolic syndrome and obesity-related
hypertension (Watanabe et al. 2005; Henriksen
and Prasannarong 2013). Angiotensin II inhibits
insulin signaling, induces oxidative stress, and
exacerbates hyperglycemia and atherogenesis
(Shatanawi et al. 2011). In contrast, ACE inhibi-
tors reduce blood pressure as well as glucose
levels, inflammation, oxidative stress, and endo-
thelial dysfunction (Chin et al. 2003; Manabe
et al. 2005; Edwards et al. 2007). A recent analysis
with Cardiovascular Health Study showed that
RAAS blocking agents reduced cardiovascular
events in patients with metabolic syndrome
(Zreikat et al. 2014). In the prospective, multicen-
ter, double-blind TROPHY study, obese hyper-
tensive patients were treated with
hydrochlorothiazide (12.5, 25, or 50 mg) or
lisinopril (10, 20, or 40 mg), with a target diastolic
blood pressure less than 90 mmHg. About 60% of
the obese patients receiving lisinopril achieved the
blood pressure goal compared to 43 % of patients
treated with hydrochlorothiazide (HCTZ), and the
patients receiving HCTZ had significantly higher
plasma glucose and lower plasma potassium
levels compared to lisinopril treatment (Reisin
et al. 1997; Reisin and Jack 2009). Treatment
with irbesartan alone or in combination with
HCTZ was more effective in decreasing blood
pressure and also led to improvements in HDL
cholesterol, triglyceride levels, fasting blood glu-
cose, and waist circumference in both men and
women (Kintscher et al. 2007). To determine
whether RAAS inhibition had beneficial meta-
bolic effects, a clinical study compared HCTZ
monotherapy, valsartan monotherapy, or HCTZ/
valsartan combination therapy in patients with
metabolic syndrome. The results showed patients

on HCTZ therapy had increased hemoglobin A1c
or triglyceride levels, while those on valsartan
alone or valsartan/HCTZ combination had a
favorable metabolic outcome (Zappe
et al. 2008). A sub-analysis of diabetic patients
in the Captopril Prevention Project (CAPPP)
revealed that ACE inhibitor treatment reduced
the total and cardiovascular mortality risk and
the risk of fatal and nonfatal myocardial infarction
compared to diuretic/beta-blocker treatment
(Niskanen et al. 2001).

Calcium channel blockers can be given alone
or in combination with an ACE inhibitor or ARB
for hypertension treatment. In the ACCOMPLISH
clinical trial, the patients on HCTZ/benazepril had
a higher incidence of cardiovascular morbidity
than patients on amlodipine/benazepril (Jamerson
et al. 2008; Bakris et al. 2010, 2013). However, a
sub-analysis of patients classified as normal
weight, overweight, and obese based on BMI
criteria found no difference in the rates of the
primary cardiac endpoint between obese patients
taking HCTZ versus amlodipine (Weber
et al. 2013).

The use of beta-blockers for hypertension
treatment has been associated with the develop-
ment of glucose intolerance, dyslipidemia, and
weight gain (Ripley and Saseen 2014; Messerli
and Grossman 2004). Older beta-blockers, e.g.,
propranolol, metoprolol, and atenolol act via
beta-1 and beta-2 adrenergic receptors to regulate
cardiac and vascular responses and metabolism
(Deedwania 2011). The International Verapamil-
Trandolapril Study (INVEST), the Losartan Inter-
vention for Endpoint Study (LIFE), and the Ath-
erosclerosis Risk in Communities Study (ARIC)
all showed higher rates of diabetes in patients
treated with older beta-blockers, e.g., atenolol,
compared to other medications (Pepine
et al. 2003; Dahlof et al. 2002; Gress
et al. 2000). Newer beta-blockers have an additive
alpha-adrenergic receptor blocking component
(e.g., carvedilol, labetalol) or increased nitric
oxide synthesis (e.g., carvedilol, nebivolol) that
promotes vasodilation. These beta-blockers often
have neutral or favorable effects on body weight
compared to older beta-blockers (Reisin and
Owen 2015).
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4 Conclusions

Weight management using diet, increased physical
activity, and behavior modification is essential for
patients with metabolic syndrome. Patients unable
to successfully lose and maintain weight reduction
may be eligible for medications. Weight loss
enhances insulin sensitivity, cardiopulmonary func-
tion, and overall health status. Medications
approved by the US FDA for weight reduction
include phentermine, extended-release phenter-
mine/topiramate, lorcaserin, orlistat, and sustained
release bupropion/naltrexone and the glucagon like
peptide-1 (GLP-1) agonist liraglutide. In patients
with type 2 diabetes, metformin and other drugs
that cause weight loss or are weight neutral are
preferred. Lipid-lowering medications such as
statins and fibrates are needed for treatment of ath-
erogenic dyslipidemia. RAAS and calcium channel
blockers are effective for treatment of hypertension
and reduction of cardiovascular risk. As much as
possible, physicians managing patients with obesity
or metabolic syndrome should avoid prescribing
medications for hypertension, dyslipidemia, and
other diseases that increase body weight and predis-
pose to adverse metabolic outcomes.
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▶Diet and Obesity (Macronutrients,
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Treatment of Obesity and Metabolic Syndrome

▶Genetics of Obesity
▶Overview of Metabolic Syndrome
▶ Prevention and Treatment of Childhood
Obesity and Metabolic Syndrome

▶ Principles of Energy Homeostasis

References

Adams TD, Stroup AM, Gress RE, et al. Cancer incidence
and mortality after gastric bypass surgery. Obesity.
2009;17(4):796-802. doi:10.1038/oby.2008.610.

Addy C, Rosko JP, Li S, et al. Pharmacokinetics, safety,
and tolerability of phentermine in healthy participants
receiving taranabant, a novel cannabinoid-1 receptor
(CB1R) inverse agonist. J Clin Pharmacol. 2009;
49:1228-1238.

Aguilar-Salinas CA, Fanghanel-Salmon G, Meza E, et al.
Ciprofibrate versus gemfibrozil in the treatment of
mixed hyperlipidemias: an open-label, multicenter
study. Metab Clin Exp. 2001;50(6):729-733.

ALLHATOfficers and Coordinators for the ALLHAT Col-
laborative Research Group. The Antihypertensive and
Lipid-Lowering Treatment to Prevent Heart Attack
Trial. Major outcomes in high-risk hypertensive
patients randomized to angiotensin-converting enzyme
inhibitor or calcium channel blocker vs diuretic: the
Antihypertensive and Lipid-Lowering Treatment to
Prevent Heart Attack Trial (ALLHAT). JAMA.
2002;288(23):2981-2997. Erratum in: JAMA. 2004;
291(18):2196. JAMA 2003 Jan 8;289(2):178.

Allison DB, Downey M, Atkinson RL, et al. Obesity as a
disease: a white paper on evidence and arguments
commissioned by the Council of the Obesity Society.
Obesity. 2008;16(6):1161-1177. doi:10.1038/oby.
2008.231.

Allison DB, Gadde KM, Garvey WT, et al. Controlled-
release phentermine/topiramate in severely obese
adults: a randomized controlled trial (EQUIP). Obesity.
2012;20(2):330-342. doi:10.1038/oby.2011.330.

Amery A, Berthaux P, Bulpitt C, et al. Glucose intolerance
during diuretic therapy: results of trial by the European
working party on hypertension in the elderly. Lancet.
1978;1(8066):681-683.

Andersen T, Gluud C, Franzmann MB, et al. Hepatic
effects of dietary weight loss in morbidly obese sub-
jects. J Hepatol. 1991;12(2):224-229.

Aronne LJ, Halseth AE, Burns CM, et al. Enhanced weight
loss following coadministration of pramlintide
with sibutramine or phentermine in a multicenter trial.
Obesity. 2010;18(9):1739-1746. doi:10.1038/oby.
2009.478.

Astrup A, Rössner S, Van Gaal L, et al. Effects of
liraglutide in the treatment of obesity: a randomised,
double- blind, placebo-controlled study. Lancet.
2009;374(9701):1606-1616.

Baigent C, Keech A, Kearney PM, et al. Efficacy and safety
of cholesterol-lowering treatment: prospective meta-
analysis of data from 90,056 participants in 14
randomised trials of statins. Lancet. 2005;
366(9493):1267-1278. doi:10.1016/S0140-6736(05)
67394-1.

Bailey CJ, Gross JL, Pieters A, et al. Effect of dapagliflozin
in patients with type 2 diabetes who have inadequate
glycaemic control with metformin: a randomised,
double-blind, placebo-controlled trial. Lancet. 2010;
375(9733):2223-2233. doi:10.1016/S0140-6736(10)
60407-2.

Bakris GL, Sarafidis PA, Weir MR, et al. Renal outcomes
with different fixed-dose combination therapies in
patients with hypertension at high risk for

804 R.S. Ahima

http://dx.doi.org/10.1007/978-3-319-11251-0_24
http://dx.doi.org/10.1007/978-3-319-11251-0_45
http://dx.doi.org/10.1007/978-3-319-11251-0_16
http://dx.doi.org/10.1007/978-3-319-11251-0_16
http://dx.doi.org/10.1007/978-3-319-11251-0_43
http://dx.doi.org/10.1007/978-3-319-11251-0_43
http://dx.doi.org/10.1007/978-3-319-11251-0_10
http://dx.doi.org/10.1007/978-3-319-11251-0_1
http://dx.doi.org/10.1007/978-3-319-11251-0_46
http://dx.doi.org/10.1007/978-3-319-11251-0_46
http://dx.doi.org/10.1007/978-3-319-11251-0_48


cardiovascular events (ACCOMPLISH): a prespecified
secondary analysis of a randomised controlled trial.
Lancet. 2010;375(9721):1173-1181. doi:10.1016/
S0140-6736(09)62100-0.

Bakris G, Briasoulis A, Dahlof B, et al. Comparison of
benazepril plus amlodipine or hydrochlorothiazide in
high-risk patients with hypertension and coronary
artery disease. Am J Cardiol. 2013;112(2):255-259.
doi:10.1016/j.amjcard.2013.03.026.

Bray GA, Greenway FL. Pharmacological treatment of the
overweight patient. Pharmacol Rev. 2007;59(2):151-
184. doi:10.1124/pr.59.2.2.

Bray GA, Ryan DH. Medical therapy for the patient with
obesity. Circulation. 2012;125(13):1695-1703.
doi:10.1161/CIRCULATIONAHA.111.026567.

BuchwaldH,AvidorY,BraunwaldE, et al. Bariatric surgery: a
systematic review and meta-analysis. JAMA.
2004;292(14):1724-1737. doi:10.1001/jama.292.14.1724.

Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2
diabetes after bariatric surgery: systematic review and
meta-analysis. Am J Med. 2009;122(3):248-256.
doi:10.1016/j.amjmed.2008.09.041. e245.

Bushe CJ, Bradley AJ, Doshi S, et al. Changes in weight
and metabolic parameters during treatment with anti-
psychotics and metformin: do the data inform as to
potential guideline development? A systematic review
of clinical studies. Int J Clin Pract. 2009;63(12):1743-
1761. doi:10.1111/j.1742-1241.2009.02224.x.

Calle EE, Rodriguez C, Walker-Thurmond K, et al.
Overweight, obesity, and mortality from cancer in a
prospectively studied cohort of U.S. adults. N Engl J
Med. 2003;348(17):1625-1638. doi:10.1056/NEJM
oa021423.

Chanoine JP, Hampl S, Jensen C, et al. Effect of orlistat on
weight and body composition in obese adolescents: a
randomized controlled trial. JAMA. 2005;293
(23):2873-2883. doi:10.1001/jama.293.23.2873.

Charlton-Menys V, Durrington PN. Human cholesterol
metabolism and therapeutic molecules. Exp Physiol.
2008;93(1):27-42. doi:10.1113/expphysiol.2007.
035147.

Chin BS, Langford NJ, Nuttall SL, et al. Anti-oxidative
properties of beta-blockers and angiotensin-converting
enzyme inhibitors in congestive heart failure. Eur J
Heart Fail. 2003;5(2):171-174.

Chobanian AV, Bakris GL, Black HR, et al. National heart,
lung, and blood institute joint national committee on
prevention, detection, evaluation, and treatment of high
blood pressure; national high blood pressure education
program coordinating committee. The seventh report of
the joint national committee on prevention, detection,
evaluation and treatment of high blood pressure: the
JNC 7 report. JAMA. 2003;289(19):2560-2572.

Cholesterol Treatment Trialists Collaborators, Mihaylova
B, Emberson J, et al. The effects of lowering LDL
cholesterol with statin therapy in people at low risk of
vascular disease: meta-analysis of individual data from
27 randomised trials. Lancet. 2012;380(9841):581-
590. doi:10.1016/S0140-6736(12)60367-5.

Christensen R, Bartels EM, Astrup A, et al. Effect of
weight reduction in obese patients diagnosed with
knee osteoarthritis: a systematic review and meta-
analysis. Ann Rheum Dis. 2007;66(4):433-439.
doi:10.1136/ard.2006.065904.

Cohen RV, Pinheiro JC, Schiavon CA, et al. Effects of
gastric bypass surgery in patients with type 2 diabetes
and only mild obesity. Diabetes Care. 2012;35
(7):1420-1428. doi:10.2337/dc11-2289.

Dahlof B, Devereux RB, Kjeldsen SE, et al. Cardiovascu-
lar morbidity and mortality in the Losartan Intervention
For Endpoint reduction in hypertension study (LIFE):
a randomised trial against atenolol. Lancet. 2002;
359(9311):995-1003. doi:10.1016/S0140-6736(02)
08089-3.

Deedwania P. Hypertension, dyslipidemia, and insulin
resistance in patients with diabetes mellitus or the
cardiometabolic syndrome: benefits of vasodilating
beta-blockers. J Clin Hypertens. 2011;13(1):52-59.
doi:10.1111/j.1751-7176.2010.00386.x.

Deedwania PC, Hunninghake DB, Bays HE, et al. Effects
of rosuvastatin, atorvastatin, simvastatin, and prava-
statin on atherogenic dyslipidemia in patients with
characteristics of the metabolic syndrome. Am J
Cardiol. 2005;95(3):360-366. doi:10.1016/j.
amjcard.2004.09.034.

DeFronzo RA, Davidson JA, Del Prato S. The role of the
kidneys in glucose homeostasis: a new path towards
normalizing glycaemia. Diabetes Obes Metab. 2012;14
(1):5-14. doi:10.1111/j.1463-1326.2011.01511.x.

Diabetes Prevention Program Research Group. Long-term
safety, tolerability, and weight loss associated with
metformin in the Diabetes Prevention Program Out-
comes Study. Diabetes Care. 2012;35(4):731-737.
doi:10.2337/dc11-1299.

Diabetes Prevention Program Research Group, Knowler
WC, Fowler SE, et al. 10-year follow-up of diabetes
incidence and weight loss in the Diabetes Prevention
Program Outcomes Study. Lancet. 2009;374
(9702):1677-1686. doi:10.1016/S0140-6736(09)
61457-4.

Edwards CM, Stanley SA, Davis R, et al. Exendin-4
reduces fasting and postprandial glucose and decreases
energy intake in healthy volunteers. Am J Physiol
Endocrinol Metab. 2001;281(1):E155-E161.

Edwards KM, Ziegler MG, Mills PJ. The potential anti-
inflammatory benefits of improving physical fitness in
hypertension. J Hypertens. 2007;25(8):1533-1542.
doi:10.1097/HJH.0b013e328165ca67.

Ferrannini E, Solini A. SGLT2 inhibition in diabetes
mellitus: rationale and clinical prospects. Nat Rev
Endocrinol. 2012;8(8):495-502. doi:10.1038/
nrendo.2011.243.

Ferrannini E, Ramos SJ, Salsali A, et al. Dapagliflozin
monotherapy in type 2 diabetic patients with inade-
quate glycemic control by diet and exercise: a random-
ized, double-blind, placebo-controlled, phase 3 trial.
Diabetes Care. 2010;33(10):2217-2224. doi:10.2337/
dc10-0612.

44 Pharmacotherapy of Obesity and Metabolic Syndrome 805



Fidler MC, Sanchez M, Raether B, et al. A one-year ran-
domized trial of lorcaserin for weight loss in obese and
overweight adults: the BLOSSOM trial. J Clin
Endocrinol Metab. 2011;96(10):3067-3077.
doi:10.1210/jc.2011-1256.

Flegal KM, Carroll MD, Ogden CL, et al. Prevalence and
trends in obesity among US adults, 1999–2008. JAMA.
2010;303(3):235-241. doi:10.1001/jama.2009.2014.

Fransen M. Dietary weight loss and exercise for obese
adults with knee osteoarthritis: modest weight loss
targets, mild exercise, modest effects. Arthritis
Rheum. 2004;50(5):1366-1369. doi:10.1002/
art.20257.

Gadde KM, Allison DB, Ryan DH, et al. Effects of low-
dose, controlled-release, phentermine plus topiramate
combination on weight and associated comorbidities in
overweight and obese adults (CONQUER): a
randomised, placebo-controlled, phase 3 trial. Lancet.
2011;377(9774):1341-1352. doi:10.1016/S0140-6736
(11)60205-5.

Garvey WT, Ryan DH, Look M, et al. Two-year sustained
weight loss and metabolic benefits with controlled-
release phentermine/topiramate in obese and over-
weight adults (SEQUEL): a randomized, placebo-con-
trolled, phase 3 extension study. Am J Clin Nutr.
2012;95(2):297-308. doi:10.3945/ajcn.111.024927.

Gerich JE. Role of the kidney in normal glucose homeo-
stasis and in the hyperglycaemia of diabetes mellitus:
therapeutic implications. Diabet Med. 2010;27(2):136-
142. doi:10.1111/j.1464-5491.2009.02894.x.

Goff DC Jr, Lloyd-Jones DM, Bennett G, et al. 2013
ACC/AHA guideline on the assessment of cardiovas-
cular risk: a report of the American College of Cardi-
ology/American Heart Association Task Force on
Practice Guidelines. Circulation. 2014;129(25 Suppl 2):
S49-S73. doi:10.1161/01.cir.0000437741.48606.98.

Greenway FL, Whitehouse MJ, Guttadauria M, et al.
Rational design of a combination medication for the
treatment of obesity. Obesity. 2009;17(1):30-39.
doi:10.1038/oby.2008.461.

Greenway FL, Fujioka K, Plodkowski RA, et al; for the
COR-I Study Group. Effect of naltrexone plus
bupropion on weight loss in overweight and obese
adults (COR-I): a multicenter, randomised, double-
blind, placebo-controlled, phase 3 trial. Lancet.
2010;376:595-605.

Gress TW, Nieto FJ, Shahar E, et al. Hypertension and
antihypertensive therapy as risk factors for type 2 dia-
betes mellitus. Atherosclerosis Risk in Communities
Study. N Engl J Med. 2000;342(13):905-912.
doi:10.1056/NEJM200003303421301.

Gutzwiller JP, Drewe J, Goke B, et al. Glucagon-like
peptide-1 promotes satiety and reduces food intake in
patients with diabetes mellitus type 2. Am J Physiol.
1999;276(5 Pt 2):R1541-R1544.

Halford JC, Harrold JA, Boyland EJ, et al. Serotonergic
drugs: effects on appetite expression and use for the
treatment of obesity. Drugs. 2007;67(1):27-55.

Harper R, Ennis CN, Heaney AP, et al. A comparison of the
effects of low and conventional dose thiazide diuretic
on insulin action in hypertensive patients with NIDDM.
Diabetologia. 1995;38(7):853-859.

Henriksen EJ, Prasannarong M. The role of the renin-
angiotensin system in the development of insulin resis-
tance in skeletal muscle. Mol Cell Endocrinol.
2013;378(1–2):15-22. doi:10.1016/j.mce.2012.04.011.

Henry RR, Murray AV, Marmolejo MH, et al.
Dapagliflozin, metformin XR, or both: initial pharma-
cotherapy for type 2 diabetes, a randomised controlled
trial. Int J Clin Pract. 2012;66(5):446-456. doi:10.1111/
j.1742-1241.2012.02911.x.

Holst JJ. Incretin hormones and the satiation signal. Int J
Obes (Lond). 2013;37(9):1161-1168. doi:10.1038/
ijo.2012.208.

Hoskins B, Jackson CM 3rd. The mechanism of chlorothi-
azide-induced carbohydrate intolerance. J Pharmacol
Exp Ther. 1978;206(2):423-430.

Huang MH, Chen CH, Chen TW, et al. The effects of
weight reduction on the rehabilitation of patients with
knee osteoarthritis and obesity. Arthritis Care Res.
2000;13(6):398-405.

Huang MA, Greenson JK, Chao C, et al. One-year intense
nutritional counseling results in histological improve-
ment in patients with non-alcoholic steatohepatitis: a
pilot study. Am J Gastroenterol. 2005;100(5):1072-
1081. doi:10.1111/j.1572-0241.2005.41334.x.

Iepsen EW, Torekov SS, Holst JJ. Therapies for inter-
relating diabetes and obesity – GLP-1 and obesity.
Expert Opin Pharmacother. 2014;15(17):2487-2500.
doi:10.1517/14656566.2014.965678.

Ilanne-Parikka P, Eriksson JG, Lindstrom J, et al. Effect of
lifestyle intervention on the occurrence of metabolic
syndrome and its components in the Finnish Diabetes
Prevention Study. Diabetes Care. 2008;31(4):805-807.
doi:10.2337/dc07-1117.

Jamerson K, Weber MA, Bakris GL, et al. Benazepril plus
amlodipine or hydrochlorothiazide for hypertension in
high-risk patients. N Engl J Med. 2008;359(23):2417-
2428. doi:10.1056/NEJMoa0806182.

Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/
ACC/TOS guideline for the management of overweight
and obesity in adults: a report of the American College
of Cardiology/American Heart Association Task Force
on Practice Guidelines and The Obesity Society. Cir-
culation. 2014;129(25 Suppl 2):S102-S138.
doi:10.1161/01.cir.0000437739.71477.ee.

Jung CH, Jang JE, Park JY. A novel therapeutic agent for
type 2 diabetes mellitus: SGLT2 inhibitor. Diab Metab
J. 2014;38(4):261-273. doi:10.4093/dmj.2014.
38.4.261.

Kanda M, Satoh K, Ichihara K. Effects of atorvastatin and
pravastatin on glucose tolerance in diabetic rats mildly
induced by streptozotocin. Biol Pharm Bull. 2003;26
(12):1681-1684.

Keech A, Simes RJ, Barter P, et al. Effects of long-
term fenofibrate therapy on cardiovascular events in

806 R.S. Ahima



9795 people with type 2 diabetes mellitus (the FIELD
study): randomised controlled trial. Lancet. 2005;
366(9500):1849-1861. doi:10.1016/S0140-6736(05)
67667-2.

Kelly EM, Tungol AA, Wesolowicz LA. Formulary man-
agement of 2 new agents: lorcaserin and phentermine/
topiramate for weight loss. J Manage Care Pharm.
2013;19(8):642-654.

Kilicarslan A, Yavuz B, Guven GS, et al. Fenofibrate
improves endothelial function and decreases thrombin-
activatable fibrinolysis inhibitor concentration in meta-
bolic syndrome. Blood Coagul Fibrinolysis. 2008;19
(4):310-314. doi:10.1097/MBC.0b013e3283009c69.

Kim KK, Cho H-J, Kang J-C, et al. Effects on weight
reduction and safety of short-term phentermine admin-
istration in Korean obese people. Yonsei Med J.
2006;47:614-625.

Kintscher U, Bramlage P, Paar WD, et al. Irbesartan for the
treatment of hypertension in patients with the metabolic
syndrome: a sub analysis of the Treat to Target post
authorization survey. Prospective observational, two
armed study in 14,200 patients. Cardiovasc Diabetol.
2007;6:12. doi:10.1186/1475-2840-6-12.

Klosiewicz-Latoszek L, Szostak WB. Comparative studies
on the influence of different fibrates on serum lipopro-
teins in endogenous hyperlipoproteinaemia. Eur J Clin
Pharmacol. 1991;40(1):33-41.

Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduc-
tion in the incidence of type 2 diabetes with lifestyle
intervention or metformin. N Engl J Med. 2002;346
(6):393-403. doi:10.1056/NEJMoa012512.

Kuna ST, Reboussin DM, Borradaile KE, et al. Long-term
effect of weight loss on obstructive sleep apnea severity
in obese patients with type 2 diabetes. Sleep. 2013;36
(5):641-649A. doi:10.5665/sleep.2618.

LaRosa JC, Grundy SM, Waters DD, et al. Intensive lipid
lowering with atorvastatin in patients with stable coro-
nary disease. N Engl J Med. 2005;352(14):1425-1435.
doi:10.1056/NEJMoa050461.

Lean ME, Carraro R, Finer N, et al. Tolerability of nausea
and vomiting and associations with weight loss in a
randomized trial of liraglutide in obese, non-diabetic
adults. Int J Obes (Lond). 2014;38(5):689-697.

Leslie WS, Hankey CR, Lean ME. Weight gain as an
adverse effect of some commonly prescribed drugs: a
systematic review. QJM. 2007;100(7):395-404.
doi:10.1093/qjmed/hcm044.

Liao JK. Beyond lipid lowering: the role of statins in
vascular protection. Int J Cardiol. 2002;86(1):5-18.

Lim S, Park YM, Sakuma I, et al. How to control residual
cardiovascular risk despite statin treatment: focusing on
HDL-cholesterol. Int J Cardiol. 2013a;166(1):8-14.
doi:10.1016/j.ijcard.2012.03.127.

Lim S, Sakuma I, Quon MJ, et al. Potentially important
considerations in choosing specific statin treatments to
reduce overall morbidity and mortality. Int J Cardiol.
2013b;167(5):1696-1702. doi:10.1016/j.ijcard.2012.
10.037.

List JF, Woo V, Morales E, et al. Sodium-glucose
cotransport inhibition with dapagliflozin in type 2 dia-
betes. Diabetes Care. 2009;32(4):650-657.
doi:10.2337/dc08-1863.

Madsbad S. The role of glucagon-like peptide-1 impair-
ment in obesity and potential therapeutic implications.
Diabetes Obes Metab. 2014;16(1):9-21. doi:10.1111/
dom.12119.

Manabe S, Okura T, Watanabe S, et al. Effects of angio-
tensin II receptor blockade with valsartan on pro-
inflammatory cytokines in patients with essential
hypertension. J Cardiovasc Pharmacol. 2005;46(6):
735-739.

Martin CK, Redman LM, Zhang J, et al. Lorcaserin, a 5-HT
(2C) receptor agonist, reduces body weight by decreas-
ing energy intake without influencing energy expendi-
ture. J Clin Endocrinol Metab. 2011;96(3):837-845.
doi:10.1210/jc.2010-1848.

Meier JJ. GLP-1 receptor agonists for individualized treat-
ment of type 2 diabetes mellitus. Nat Rev Endocrinol.
2012;8(12):728-742. doi:10.1038/nrendo.2012.140.

Messerli FH, Grossman E. beta-Blockers in hypertension:
is carvedilol different? Am J Cardiol. 2004;93(9A):7B-
12B. doi:10.1016/j.amjcard.2004.01.020.

Messier SP, Loeser RF, Miller GD, et al. Exercise and
dietary weight loss in overweight and obese older
adults with knee osteoarthritis: the Arthritis, Diet, and
Activity Promotion Trial. Arthritis Rheum. 2004;50
(5):1501-1510. doi:10.1002/art.20256.

Meyer-Sabellek W, Brasch H. Atherosclerosis, inflamma-
tion, leukocyte function and the effect of statins. J
Hypertens. 2006;24(12):2349-2351. doi:10.1097/
HJH.0b013e3280113648.

Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric
surgery versus conventional medical therapy for type 2
diabetes. N Engl J Med. 2012;366(17):1577-1585.
doi:10.1056/NEJMoa1200111.

Muscogiuri G, Cignarelli A, Giorgino F, et al. GLP-1:
benefits beyond pancreas. J Endocrinol Invest. 2014.
doi:10.1007/s40618-014-0137-y.

Nauck MA, Del Prato S, Meier JJ, et al. Dapagliflozin
versus glipizide as add-on therapy in patients with
type 2 diabetes who have inadequate glycemic control
with metformin: a randomized, 52-week, double-blind,
active-controlled noninferiority trial. Diabetes Care.
2011;34(9):2015-2022. doi:10.2337/dc11-0606.

Niskanen L, Hedner T, Hansson L, et al; CAPPP Group.
Reduced cardiovascular morbidity and mortality in
hypertensive diabetic patients on first-line therapy
with an ACE inhibitor compared with a diuretic/beta-
blocker-based treatment regimen: a subanalysis of the
Captopril Prevention Project. Diabetes Care. 2001;24
(12):2091-2096.

O’Neil PM, Smith SR, Weissman NJ, et al. Randomized
placebo-controlled clinical trial of lorcaserin for weight
loss in type 2 diabetes mellitus: the BLOOM-DM
study. Obesity. 2012;20(7):1426-1436. doi:10.1038/
oby.2012.66.

44 Pharmacotherapy of Obesity and Metabolic Syndrome 807



Packard KA, Backes JM, Lenz TL, et al. Comparison of
gemfibrozil and fenofibrate in patients with
dyslipidemic coronary heart disease. Pharmacotherapy.
2002;22(12):1527-1532.

Palmer M, Schaffner F. Effect of weight reduction on
hepatic abnormalities in overweight patients. Gastroen-
terology. 1990;99(5):1408-1413.

Pepine CJ, Handberg EM, Cooper-DeHoff RM, et al. A
calcium antagonist vs a non-calcium antagonist hyper-
tension treatment strategy for patients with coronary
artery disease. The International Verapamil-
Trandolapril Study (INVEST): a randomized con-
trolled trial. JAMA. 2003;290(21):2805-2816.
doi:10.1001/jama.290.21.2805.

Phelan S, Wadden TA, Berkowitz RI, et al. Impact of
weight loss on the metabolic syndrome. Int J Obes
(Lond). 2007;31(9):1442-1448. doi:10.1038/sj.
ijo.0803606.

Plavinik FL, Rodrigues C, Zanella MT, et al. Hypokalemia,
glucose intolerance, and hyperinsulinemia during
diuretic therapy. Hypertension. 1992;19(2 suppl):
26-29.

Preiss D, Seshasai SR, Welsh P, et al. Risk of incident
diabetes with intensive-dose compared with moder-
ate-dose statin therapy: a meta-analysis. JAMA.
2011;305(24):2556-2564. doi:10.1001/jama.2011.860.

Pyorala K, Ballantyne CM, Gumbiner B, et al. Reduction
of cardiovascular events by simvastatin in nondiabetic
coronary heart disease patients with and without the
metabolic syndrome: subgroup analyses of the Scandi-
navian Simvastatin Survival Study (4S). Diabetes Care.
2004;27(7):1735-1740.

Rapoport MI, Hurd HF. Thiazide-induced glucose intoler-
ance treated with potassium. Arch Intern Med.
1964;113:405-408.

Reisin E, Jack AV. Obesity and hypertension: mechanisms,
cardio-renal consequences, and therapeutic
approaches. Med Clin North Am. 2009;93(3):733-
751. doi:10.1016/j.mcna.2009.02.010.

Reisin E, Owen J. Treatment: special conditions. Metabolic
syndrome: obesity and the hypertension connection. J
Am Soc Hypertens. 2015;9(2):156-159. doi:10.1016/j.
jash.2014.12.015. quiz 160.

Reisin E, Weir MR, Falkner B, et al. Lisinopril versus
hydrochlorothiazide in obese hypertensive patients: a
multicenter placebo-controlled trial. Treatment in
Obese Patients With Hypertension (TROPHY) Study
Group. Hypertension. 1997;30(1 Pt 1):140-145.

Ripley TL, Saseen JJ. Beta-blockers: a review of their
pharmacological and physiological diversity in hyper-
tension. Ann Pharmacother. 2014;48(6):723-733.
doi:10.1177/1060028013519591.

Rosenstock J, Aggarwal N, Polidori D, et al. Dose-ranging
effects of canagliflozin, a sodium-glucose cotransporter
2 inhibitor, as add-on to metformin in subjects with
type 2 diabetes. Diabetes Care. 2012;35(6):1232-
1238. doi:10.2337/dc11-1926.

Rucker D, Padwal R, Li SK, et al. Long term pharmaco-
therapy for obesity and overweight: updated meta-

analysis. BMJ. 2007;335(7631):1194-1199.
doi:10.1136/bmj.39385.413113.25.

Ryan D, Peterson C, Troupin B, et al. Weight loss at 6
months with VI-0521 (PHEN/TPM combination) treat-
ment. Obes Facts. 2010;3:139-146.

Sattar N, Preiss D, Murray HM, et al. Statins and risk of
incident diabetes: a collaborative meta-analysis of
randomised statin trials. Lancet. 2010;375(9716):735-
742. doi:10.1016/S0140-6736(09)61965-6.

Schauer PR, Kashyap SR,Wolski K, et al. Bariatric surgery
versus intensive medical therapy in obese patients with
diabetes. N Engl J Med. 2012;366(17):1567-1576.
doi:10.1056/NEJMoa1200225.

SchmidtM, Johannesdottir SA, Lemeshow S, et al. Obesity
in young men, and individual and combined risks of
type 2 diabetes, cardiovascular morbidity and death
before 55 years of age: a Danish 33-year follow-up
study. BMJ Open. 2013;3(4). doi:10.1136/bmjopen-
2013-002698

Scott LJ. Liraglutide: a review of its use in adult patients
with type 2 diabetes mellitus. Drugs. 2014;74
(18):2161-2174. doi:10.1007/s40265-014-0321-6.

Shatanawi A, Romero MJ, Iddings JA, et al. Angiotensin
II-induced vascular endothelial dysfunction through
RhoA/Rho kinase/p38 mitogen-activated protein
kinase/arginase pathway. Am J Physiol Cell Physiol.
2011;300(5):C1181-C1192. doi:10.1152/ajpcell.
00328.2010.

Sjostrom L, Gummesson A, Sjostrom CD, et al. Effects of
bariatric surgery on cancer incidence in obese patients
in Sweden (Swedish Obese Subjects Study): a prospec-
tive, controlled intervention trial. Lancet Oncol.
2009;10(7):653-662. doi:10.1016/S1470-2045(09)
70159-7.

Smith SR, Weissman NJ, Anderson CM, et al. Multicenter,
placebo-controlled trial of lorcaserin for weight man-
agement. N Engl J Med. 2010;363(3):245-256.
doi:10.1056/NEJMoa0909809.

Stalenhoef AF, Ballantyne CM, Sarti C, et al. A compara-
tive study with rosuvastatin in subjects with metabolic
syndrome: results of the COMETS study. Eur Heart J.
2005;26(24):2664-2672. doi:10.1093/eurheartj/
ehi482.

Stender S, Schuster H, Barter P, et al; MERCURY I Study
Group. Comparison of rosuvastatin with atorvastatin,
simvastatin and pravastatin in achieving cholesterol
goals and improving plasma lipids in hypercholes-
terolaemic patients with or without the metabolic syn-
drome in the MERCURY I trial. Diabetes Obes Metab.
2005;7(4):430-438. doi:10.1111/j.1463-1326.2004.
00450.x.

Strojek K, Yoon KH, Hruba V, et al. Effect of dapagliflozin
in patients with type 2 diabetes who have inadequate
glycaemic control with glimepiride: a randomized,
24-week, double-blind, placebo-controlled trial.
Diabetes Obes Metab. 2011;13(10):928-938.
doi:10.1111/j.1463-1326.2011.01434.x.

Torgerson JS, Hauptman J, Boldrin MN, et al. XENical in
the prevention of diabetes in obese subjects (XENDOS)

808 R.S. Ahima



study: a randomized study of orlistat as an adjunct to
lifestyle changes for the prevention of type 2 diabetes in
obese patients. Diabetes Care. 2004;27(1):155-161.

Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention
of type 2 diabetes mellitus by changes in lifestyle
among subjects with impaired glucose tolerance. N
Engl J Med. 2001;344(18):1343-1350. doi:10.1056/
NEJM200105033441801.

Turton MD, O’Shea D, Gunn I, et al. A role for glucagon-
like peptide-1 in the central regulation of feeding.
Nature. 1996;379(6560):69-72. doi:10.1038/
379069a0.

Ueno T, Sugawara H, Sujaku K, et al. Therapeutic effects
of restricted diet and exercise in obese patients with
fatty liver. J Hepatol. 1997;27(1):103-107.

van Gool CH, Penninx BW, Kempen GI, et al. Effects of
exercise adherence on physical function among over-
weight older adults with knee osteoarthritis. Arthritis
Rheum. 2005;53(1):24-32. doi:10.1002/art.20902.

Wadden TA, Foreyt JP, Foster GD, et al. Weight loss with
naltrexoneSR/bupropion SR combination therapy as an
adjunct to behavior modification: the COR-BMOD
trial. Obesity. 2011;19:110-120.

Wadden TA, Hollander P, Klein S, et al. Weight mainte-
nance and additional weight loss with liraglutide after
low-calorie-diet-induced weight loss: the SCALE
Maintenance randomized study. Int J Obes (Lond).
2013;37(11):1443–1451. doi: 10.1038/ijo.2013.120.
Epub 2013 Jul 1. Erratum in: Int J Obes (Lond).
2015;39(1):187; Int J Obes (Lond). 2015;39(1):187;
Int J Obes (Lond). 2013;37(11):1514

Wannamethee SG, Shaper AG, Walker M. Overweight and
obesity and weight change in middle aged men: impact
on cardiovascular disease and diabetes. J Epidemiol

Community Health. 2005;59(2):134-139.
doi:10.1136/jech.2003.015651.

Watanabe S, Tagawa T, Yamakawa K, et al. Inhibition of
the renin-angiotensin system prevents free fatty acid-
induced acute endothelial dysfunction in humans.
Arterioscler Thromb Vasc Biol. 2005;25(11):2376-
2380. doi:10.1161/01.ATV.0000187465.55507.85.

Weber MA, Jamerson K, Bakris GL, et al. Effects of body
size and hypertension treatments on cardiovascular event
rates: subanalysis of the ACCOMPLISH randomised
controlled trial. Lancet. 2013;381(9866):537-545.
doi:10.1016/S0140-6736(12)61343-9.

Zambon A, Gervois P, Pauletto P, et al. Modulation of
hepatic inflammatory risk markers of cardiovascular
diseases by PPAR-alpha activators: clinical and exper-
imental evidence. Arterioscler Thromb Vasc Biol.
2006;26(5):977-986. doi:10.1161/01.
ATV.0000204327.96431.9a.

Zanella MT, Uehara MH, Ribeiro AB, et al. Orlistat and
cardiovascular risk profile in hypertensive patients with
metabolic syndrome: the ARCOS study. Arq Bras
Endocrinol Metabol. 2006;50(2):368–376. doi:/
S0004-27302006000200023

Zappe DH, Sowers JR, Hsueh WA, et al. Metabolic and
antihypertensive effects of combined angiotensin
receptor blocker and diuretic therapy in prediabetic
hypertensive patients with the cardiometabolic syn-
drome. J Clin Hypertens. 2008;10(12):894-903.
doi:10.1111/j.1751-7176.2008.00054.x.

Zreikat HH, Harpe SE, Slattum PW, et al. Effect of Renin-
Angiotensin system inhibition on cardiovascular events
in older hypertensive patients with metabolic syn-
drome. Metab Clin Exp. 2014;63(3):392-399.
doi:10.1016/j.metabol.2013.11.006.

44 Pharmacotherapy of Obesity and Metabolic Syndrome 809



Bariatric Surgery 45
Rexford S. Ahima and Hyeong-Kyu Park

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811

2 Bariatric Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 812

3 Clinical Indications for Bariatric Surgery . . . . 814

4 Complications of Bariatric Surgery . . . . . . . . . . . 817

5 Mechanisms of Bariatric Surgery . . . . . . . . . . . . . 821

6 Cross-References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823

Abstract
Bariatric surgery is the most effective and dura-
ble treatment for obesity. This review will
describe the historic and current bariatric sur-
gical procedures; outcome data focusing on
weight loss, diabetes, and other obesity-related
diseases; complications; and putative mecha-
nisms underlying the effects of bariatric
surgery on body weight and metabolism.

Keywords
Bariatric surgery • Obesity • Diabetes •Metab-
olism • Lipids • Hypertension • Cardiovascular

1 Introduction

Obesity is a major public health problem world-
wide (Shields et al. 2011; Lobstein and Brinsden
2014). Studies have shown that bariatric surgery is
the most effective and durable treatment for indi-
viduals with severe obesity and those at the
highest risk for obesity-related comorbidity and
mortality (Kraschnewski et al. 2010; Bray 2008;
Sandoval 2011). The use of bariatric surgery as a
treatment for obesity has increased due to various
factors: (i) the prevalence of obesity in the adult
population is very high and has doubled over the
past three decades, and the prevalence of severe
obesity (class III; body mass index [BMI] >40)
has quadrupled (Sturm 2007); (ii) obesity-related
comorbidities have led to more severely obese
patients seeking bariatric surgery treatment; and
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(iii) behavioral and pharmacologic treatments of
obesity may be successful in the short-term but do
not translate into longer-term weight loss in most
patients (Vetter et al. 2010). Other factors that
have contributed to the increasing use of bariatric
procedures include laparoscopic techniques that
have improved safety and decreased the length of
hospital stays (Santry et al. 2005; Reoch
et al. 2011; Lo Menzo et al. 2015), increased
information concerning the efficacy and safety of
bariatric procedures among patients and physi-
cians, media coverage of celebrity patients who
have undergone bariatric surgery, and coverage of
costs by insurance companies and other health-
care payers (Linkov et al. 2014).

2 Bariatric Procedures

Jejunoileal bypass surgery (JBS) was described in
the 1960s–1970s as a method for weight loss.
Massive weight loss was accomplished in patients
undergoing this procedure in which a short bowel
was created by bypassing >90 % of the small
intestine and creating a long blind loop (Fig. 1).
Because 90–95 % of the total small intestine is
excluded from nutrients absorption as a result of
end-to-end or end-to-side connections of intesti-
nal segment, the JBS resulted in severe malab-
sorption and other systemic complications. The
procedure was abandoned due to severe perioper-
ative and long-term complications including
hypokalemia, hypocalcemia, hypomagnesemia,
liver failure, and kidney stones.

These problems with intestinal bypass led to
the development of gastric partitioning proce-
dures designed to decrease the reservoir for
ingested food, thereby reducing energy intake
(Pace et al. 1979). Gastric partitioning was done
by applying a double-row stapling across the
upper stomach and leaving a gap in the staple
lines to allow passage of nutrients into the body
of the stomach. Unfortunately, the failure rate of
gastric partitioning was very high due to disrup-
tion of the staple line or dilation of the connection
between the upper and lower gastric compart-
ments, abrogating the retention of food in the
upper compartment.

The vertical banded gastroplasty (VBG) pro-
cedure was developed to address the problems of
gastric partitioning (Fig. 1). The stomach was
partitioned with staples, and the opening (stoma)
between the upper gastric pouch and body of the
stomach was reinforced with a band of prosthetic
mesh or a silicon rubber tubing to prevent dilation
of the stoma (Mason 1982). VBG was the main
bariatric procedure in the 1980s, but its use
declined due to failure to achieve or maintain
weight loss, intractable vomiting and gastro-
esophageal reflux disease (GERD), band erosion
into the stomach, and stricture formation in some
patients.

Fig. 1 (a) Jejunoileal bypass; (b) vertical banded
gastroplasty (Figures are reproduced from Elder and
Wolfe (2007) and Ahima and Sabri (2011), with the
permission of Elsevier Publishers)
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The gastric bypass procedure was developed in
the 1970s and initially involved a horizontal
partitioning of the upper stomach to create a
small gastric pouch and gastrojejunostomy to
establish gastrointestinal outflow. However, the
latter was soon replaced with a Roux-en-Y recon-
struction (RYGB) due to a high incidence of bile
reflux associated with the loop procedure (Griffen
et al. 1977). In the current procedure, the size of
the gastric pouch is 20–30 mL capacity, an ali-
mentary limb, i.e., jejunal Roux-en-Y limb, is
anastomosed to the stomach, and the
biliopancreatic limb drains bile and pancreatic
secretions to the jejunojejunostomy where the
mixing of ingested food and digestive juices
occurs (Fig. 2).

The biliopancreatic diversion (BPD) was
developed as a method for inducing malabsorp-
tion and weight loss but avoiding the intestinal

stasis by maintaining the flow of bile and pancre-
atic juice. Malabsorption is thought to be related
to the length of the common channel, varying
from 50 to 125 cm above the ileocecal valve,
and the original procedure was combined with a
subtotal gastrectomy. BPD has been modified by
adding a duodenal switch procedure (Scopinaro
et al. 1979; Marceau et al. 1993; Hess and Hess
1998).

Adjustable gastric banding (AGB) procedures
are often done using a laparoscopic approach
(LAGB) (Belachew et al. 1994). A saline-filled
collar is placed around the upper stomach 1–2 cm
below the gastroesophageal junction, creating an
upper gastric pouch whose volume can be
adjusted by modifying the amount of saline
injected into a subcutaneous port linked to a bal-
loon (Fig. 3).

Vertical sleeve gastrectomy (VSG) was intro-
duced as a first-stage procedure in extremely
obese patients, or those at high operative risk,

Fig. 2 (a) Roux-en-Y gastric bypass; (b) biliopancreatic
diversion (Figures are reproduced from Elder and Wolfe
(2007) and Ahima and Sabri (2011), with the permission of
Elsevier Publishers)

Fig. 3 (a) Adjustable gastric banding; (b) vertical sleeve
gastrectomy (Figures are reproduced from Elder andWolfe
(2007) and Ahima and Sabri (2011), with the permission of
Elsevier Publishers)
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undergoing duodenal switch or biliopancreatic
diversion procedures (Frezza 2007). VSG was
found to lead to profound weight loss and has
emerged as a stand-alone procedure (Gluck
et al. 2011). VSG involves the removal of 80 %
or more of the stomach including the fundus and
greater curvature and preserving the pylorus
(Berende et al. 2012; Brethauer 2011) (Fig. 3).

3 Clinical Indications for Bariatric
Surgery

Obesity is associated with increased morbidity
and mortality. Unfortunately, current medical
treatment does not achieve sustained weight loss
or improve obesity-related comorbidities, includ-
ing T2DM, hypertension, NAFLD, and

cardiovascular diseases in the majority of patients.
The results of clinical trials have demonstrated
potent effects of bariatric procedures to induce
sustained weight loss and improve or normalize
obesity-related comorbidities, including T2DM
(Sjostrom et al. 2004, 2012; Chakravarty
et al. 2012). The most commonly performed bar-
iatric procedures are RYGB, AGB, and VSG
(Buchwald and Oien 2013). BPD with or without
duodenal switch is rarely performed (Smith
et al. 2011). Patient selection for bariatric surgery
is based mainly on the BMI, i.e., those with a BMI
of at least 40 kg/m2 or at least 35 kg/m2 and
obesity-associated comorbidity (2006; NIH con-
ference. Gastrointestinal surgery for severe obe-
sity. Consensus Development Conference Panel
1991) (Table 1). Emerging evidence showing that
bariatric surgery improves metabolic outcomes

Table 1 Indications, contraindications, and preoperative assessment of bariatric patients

Indications Contraindications Preoperative assessment

• Adults with BMI �40
kg/m2 without comorbid
illness
• Adults with
BMI = 35.0–39.9 kg/m2

with at least one serious
comorbidity (e.g., type
2 diabetes, obstructive sleep
apnea, obesity
hypoventilation syndrome,
GERD, NAFLD, debilitating
arthritis)

• Bariatric procedures should
not be performed solely for
diabetes or lipid treatment or
for cardiovascular risk
reduction independent of BMI
parameters
• Psychiatric disorders:
bulimia, untreated major
depression or psychosis, or
binge eating disorders
• Inability to understand the
type and risks of bariatric
procedure and the behavioral
changes that are necessary for
effective weight loss
• Inability to comply with
long-term management, e.g.,
vitamin replacement, and
postoperative follow-up
• Current alcohol or drug
abuse
• Severe cardiac disease
• Severe coagulopathy

• Comprehensive assessment by a medical
specialist, dietitian, psychologist or psychiatrist,
nurse specialist, and bariatric surgeon
• Psychological assessment (i) to determine whether
the patient is able and willing to make lifestyle
changes needed for long-term weight; (ii) to identify
bipolar disorder, major depression, or antisocial
personality disorder, which should be treated in
order to improve compliance and weight loss
outcome
• Diet and eating behavior (total calories, food
portions, diet composition, binge eating, grazing,
overeating, nighttime eating, stress-related eating)
• Physical activity (exercise and non-exercise)
• Previous attempts at weight loss (diet, lifestyle
modification, medication, bariatric procedures,
success, or failure)
• Substance abuse (past and present)
• Life stressors (e.g., loss of job, discord at home,
divorce, bereavement); coping skills, family and
social support
•Motivation and expectations (extent of weight loss
and health goals)
• Medical assessment: history and physical
examination to evaluate comorbid diseases, e.g.,
hypertension, diabetes, obstructive sleep apnea,
hyperlipidemia, coronary artery disease, NAFLD
• Laboratory tests: plasma chemistry, HbA1c, blood
count, hemoglobin. TSH, polysomnography,
abdominal ultrasound, and cardiac stress test if
needed
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has led to suggestions that the BMI threshold be
lowered to 30 kg/m2 in patients with coexisting
diseases, e.g., in patients with T2DM who are not
responding to medical treatment (Dixon
et al. 2011).

Table 2 shows examples of retrospective and
prospective studies in large cohorts of patients.
Long-term follow-up in the Swedish Obese
Study (SOS) showed that the incidence of
T2DM was halved at 10 years (Sjostrom
et al. 2004). After 6 years of follow-up, 62 % of
RYGB patients had a glycosylated hemoglobin
(HbA1c) <6.5 %, a fasting glucose <7 mmol/L,
and did not require antidiabetic therapy (Adams
et al. 2012). Retrospective data at 9 years demon-
strated that >65 % of T2DM patients did not
require therapy after RYGB (MacDonald
et al. 1997). However, it is important to note that
the participants in these studies were not enrolled
specifically to examine the question of T2DM
remission with bariatric surgery (Adams
et al. 2012; MacDonald et al. 1997; Pournaras
et al. 2012). The metabolic phenotypes of partic-
ipants and T2DM duration may confound the
clinical outcomes of bariatric surgery. A longer
duration of T2DM, higher HbA1c levels, use of
insulin therapy, and reduced weight loss after
bariatric surgery are all associated with failure of
T2DM remission following RYGB and VSG pro-
cedures (Jimenez et al. 2012).

Few randomized controlled trials (RCT) have
compared the effects of bariatric procedures and
medical therapy (Schauer et al. 2012; Mingrone
et al. 2012; Dixon et al. 2008) (Table 2). Over a
2-year period in patients with BMI 30–40 kg/m2

and a duration of T2DM less than 2 years, AGB
resulted in >70 % of T2DM patients achieving a
HbA1c of<6.2 % compared to<15 % in patients
receiving medical therapy (Dixon et al. 2008).
Weight loss was significantly greater in the AGB
T2DM patients compared to the medical therapy
group. Glycemic responses to RYGB or BPD or
medical therapy have been compared in patients
with BMI �35 kg/m2 and T2DM duration of at
least 5 years. The results showed that 95 % of
BPD T2DM patients achieved HbA1c �6.5 %
compared to 75 % of RYGB and none of the
medically treated T2D patients after 2-year

follow-up (Mingrone et al. 2012). The medical
therapy patients lost 5 % of their baseline weight
compared with 30 % in the RYGB and BPD
patients. Schauer et al. examined the effects of
intensive medical therapy versus RYGB or VSG
in obese patients with a mean BMI>35 kg/m2 and
T2D duration of 8 years (Schauer et al. 2012). The
HbA1c target of 6 % was achieved by 42 % of the
RYGB patients, 37 % of the VSG patients, and
12 % of the medical therapy patients. These data
are exciting, but the samples sizes are relatively
small, and previous studies have shown that gly-
cemic control tends to worsen at 2 years after
bariatric surgery (Sjostrom et al. 2004; Dixon
et al. 2011). Therefore, longer follow-up studies
in larger cohorts are needed to evaluate whether
the benefits of bariatric surgery in T2DM can be
sustained over longer periods.

The effects of bariatric surgery on microvascu-
lar complications of T2DM have been studied.
Bariatric surgery decreased kidney damage in
T2DM over 5 years follow-up as measured by
albumin/creatinine ratio (Heneghan et al. 2013).
RYGB improved kidney function as measured by
the glomerular filtration rate (GFR) (Navaneethan
and Yehnert 2009), creatinine clearance, and
urinary cystatin C/creatinine ratio (Saliba
et al. 2010). Furthermore, RYGB decreased pro-
teinuria for up to 2 years in patients with T2DM
(Amor et al. 2013).

In addition to improving glycemia, bariatric
surgery affects other components of the
metabolic syndrome, i.e., waist circumference,
dyslipidemia, and hypertension (Sjostrom et al.
2004; Picot et al. 2009; Buchwald et al. 2004).
After 10 years, bariatric surgery decreased the
rates of hypertension and hypertriglyceridemia
and increased HDL cholesterol levels, compared
to a matched control group (Sjostrom et al. 2004).
These changes may decrease cardiovascular mor-
tality (Sjostrom et al. 2012). Some reports indicate
that bariatric surgery may decrease cardiovascular
risk in patients with a BMI <35 kg/m2 by reduc-
ing blood pressure and improving glucose and
lipid metabolism (Shah et al. 2010b; Sjoholm
et al. 2013). However, others have reported incon-
sistent effects of bariatric surgery on lipid profiles
(Li et al. 2012).
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Table 2 Long-term outcome studies (retrospective or prospective)

(Sjöström et al. 2004, 2007, 2009,
2012; Carlsson et al. 2012)

Prospective observational study, Swedish Obese Subjects Study (SOS),
duration 10–20 years, compared 2,010 surgical cases (13 % RYGB; 19 %
banding; 68 % VBG) vs. 2,037 matched controls. Bariatric surgery reduced
overall mortality, T2DM myocardial infarction, stroke, and cancer

Adams et al. (2007) Retrospective observational study in Utah, USA, mean duration 7.1 years,
compared 7,925 RYGB cases vs. 7,925 weight-matched controls. Bariatric
surgery reduced mortality rates (all-cause, cardiovascular, and T2DM)

Adams et al. (2012) Prospective observational study in Utah, USA, duration 6 years, compared
418 RYGB cases vs. 417 patients seeking bariatric surgery but who did not
undergo surgery vs. 321 population-based matched controls. RYGB group
lost more weight and had greater T2DM remission rates compared to control
groups. Bariatric surgery was associated with greater improvements in blood
pressure, cholesterol, and quality of life

Maciejewski et al. (2011, 2012) Retrospective observational studies in 6.7 years, in the US Department of
Veterans Affairs patients, compared 847 surgical cases vs. 847 matched
controls. Bariatric surgery was associated with reduced mortality in
unadjusted analysis

Courcoulas et al. (2013) Prospective observational study, Longitudinal Assessment of Bariatric
Surgery, USA, duration 3–5 years, studied 2,458 bariatric surgery cases
(70.7 % RYGB vs. 24.8 % AGB vs. 5 % other procedures). Weight loss and
remission of T2DM, dyslipidemia, and hypertension were significantly
greater in RYGB compared with AGB

Arterburn et al. (2013) Retrospective observational study in a Health Maintenance Organization
Network in the USA, median duration 3.1 years, studied 4,434 RYGB cases
with T2DM. 68 % of patients had T2DM remission within 5 years after
RYGB, but 35.1 % of patients with T2DM remission redeveloped T2DM
within 5 years

Carlin et al. (2013) Prospective observation study, Michigan Bariatric Surgery Collaborative,
USA, 3 years duration, studied 8,847–35,477 bariatric surgery patients.
Complication rates: AGB < VSG < RYGB. Weight loss: RYGB > VSG >
AGB

Randomized control trials

Schauer et al. (2012) Stampede I Trial; Cleveland Clinic, USA; 1 year duration; unblinded RCT in
150 patients; BMI, 27–43 with T2DM, randomized to medical therapy
vs. medical therapy+RYGB vs. medical therapy+VSG. The primary end
point of HbA1c�6.0 % was achieved in 12 % medical group, 42 % RYGB,
and 37 % VSG. Excess weight loss was 13 % in medical group, 88 % in
RYGB, and 81% in VSG. Serious adverse events occurred in 9% ofmedical
group, 22 % RYGB, and 8 % VSG

Mingrone et al. (2012) Teaching hospital in Italy; 2 years duration, unblinded RCT in 80 patients;
BMI>35; T2DM duration �5 years; HbA1c �7.0 %; randomized to
medical therapy vs. RYBG vs. BPD. The primary end points of FPG <100
mg/dL and HbA1c <6.5 % were achieved in 75 % RYGB and 95 % BPD.
Bariatric surgery patients discontinued diabetes medications within 15 days
after surgery

Ikramuddin et al. (2013) Diabetes Surgery Study; four teaching hospitals in the USA and Taiwan;
1-year duration; unblinded RCT in 120 patients with HbA1c �8.0 %; BMI
30.0–39.9; C-peptide >1.0 ng/mL; T2DM duration �6 months; patients
randomized to intensive medical treatment vs. medical treatment + RYGB.
The primary end points of HbA1c <7.0 %, LDL cholesterol <100 mg/dL,
and systolic blood pressure<130 mmHg were achieved by 49 % RYGB and
19 % medical patients. RYGB required less medications and lost 26.1 %
body weight, compared with 7.9 % in the medical group. Serious adverse
events requiring hospitalization (22 cases) occurred in RYGB
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4 Complications of Bariatric
Surgery

Although bariatric procedures are effective for
weight loss, there are adverse consequences
besides typical complications resulting from
abdominal surgery (Table 3). As with any treat-
ment, patients and clinicians must carefully bal-
ance the benefits of bariatric surgery against long-
term potential complications, such as dumping
syndrome, severe hypoglycemia, gastroesopha-
geal reflux (GERD), and nutritional deficiencies.

(i) Dumping syndrome has been reported after
RYGB and other bariatric procedures
involving partial gastrectomy and/or vagot-
omy. The prevalence of dumping syndrome
may be as high as 40 % in RYGB patients
(Banerjee et al. 2013). Studies have also
reported that up to 40 % of VSG patients
develop symptoms of dumping syndrome
6–12 months after the procedure (Tzovaras
et al. 2012; Papamargaritis et al. 2012). Early
dumping is characterized by gastrointestinal
symptoms (abdominal pain, bloating, nau-
sea, diarrhea, and borborygmi) and vasomo-
tor symptoms (flushing, palpitations,
sweating, dizziness), occurring soon after
meal ingestion. Early dumping is thought to
be triggered by a rapid passage of
hyperosmolar nutrients into the small bowel
and a shift of fluids from the circulation into
the gastrointestinal tract. Gut peptides,
including vasoactive intestinal peptide, pep-
tide YY, pancreatic polypeptide, and
neurotensin, may mediate the symptoms of
early dumping. Late dumping occurs 1–3 h
after a meal and is often characterized by
mild hypoglycemia, associated with hunger
sensation, palpitations, and sweating. Late
dumping has been linked to rapid gastric
emptying after bariatric surgery which
increases glucose in the intestinal lumen,
triggers insulin release, and induces mild
hypoglycemia (Tack et al. 2009).

Dumping syndrome is evaluated using
symptom-based questionnaires, e.g.,
Sigstad’s score or Arts’ dumping

questionnaire (Tack et al. 2009; Arts
et al. 2009; Tzovaras et al. 2012). Patients
with dumping syndrome are instructed to
ingest small frequent meals, avoid sugars,
and limit drinking with meals (Tack
et al. 2009). Food additives such as pectin
may increase food viscosity, slow gastric
emptying, and reduce the frequency of
dumping symptoms.

(ii) Severe hypoglycemia may develop after
RYGB and pose major safety risks. Unlike
mild hypoglycemia associated with late
dumping, a more severe hypoglycemia asso-
ciated with loss of consciousness, seizures,

Table 3 Complications of bariatric procedures

Bariatric procedure Complications

Gastric bypass surgery Gastric remnant distension

Stomal stenosis

Marginal ulcer

Cholelithiasis

Internal hernia

Ventral (incisional hernia)

Dumping syndrome

Severe hypoglycemia

Malodorous flatulence

Change in bowel
movement

Nutritional deficiencies

Sleeve gastrectomy Stenosis

Gastric leakage

GERD

Gastric banding Band slippage or erosion

Port blockage or infection

Stomal obstruction

Esophageal dilation

Esophagitis

Hiatal hernia

Vertical banded
gastroplasty

Staple line disruption

Erosion of mesh band

Obstruction

GERD

Vomiting

Biliopancreatic diversion/
jejunoileal bypass

Severe malabsorption

Electrolyte imbalance

Impaired renal function

Impaired liver function
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and accidents is rare and occurs 1–3 years
after RYGB. Hypoglycemic symptoms are
classified as autonomic, e.g., palpitations,
lightheadedness, and sweating, or
neuroglycopenic, e.g., confusion, seizure,
and loss of consciousness. The prevalence
of severe hypoglycemia is uncertain due to
underreporting, but documented cases of
severe hypoglycemia occur in 0.2–1 % of
gastric bypass patients (Marsk et al. 2010).
The diagnosis is established by confirming
that symptoms are directly related to hypo-
glycemia and associated with venous blood
glucose values <70 mg/dL (3.9 mmol/L)
and inappropriately elevated plasma insulin
levels. Unlike insulinoma, post-RYGB
hypoglycemia is not associated with fasting
hyperinsulinemia (Mala 2014).

The etiology of post-RYGB
hyperinsulinemic hypoglycemia is not well
understood. It has been postulated that a
rapid emptying of the gastric pouch triggers
a rapid and excessive rise in glucose, which
triggers insulin secretion, and subsequently
rapidly suppresses glucose levels. A poten-
tial candidate mediator of post-RYGB
hyperinsulinemic hypoglycemia is GLP-1,
an incretin that is markedly increased post-
prandially after RYGB (Goldfine
et al. 2007). To test the role of GLP-1, Salehi
et al. performed studies in controls and two
groups of post-RYGB patients: those with
severe recurrent hypoglycemia, defined as
neuroglycopenia with documented glucose
levels <50 mg/dL (2.8 mmol/L), or asymp-
tomatic post-RYGB patients (Salehi
et al. 2011). The patients with a history of
hypoglycemia had lower postprandial glu-
cose nadir, as well as higher glucose-
stimulated insulin secretion in response to a
meal tolerance test. Using tracer methods,
the investigators found that hypoglycemic
patients had increased rate of glucose
appearance after meals compared with con-
trols, while hepatic glucose production was
not different in the two groups. As expected,
blockade of exendin9–39 decreased insulin
levels and increased the fasting and

postprandial plasma glucose concentrations
in control and RYGB patients. Notably, the
ability of exendin9–39 to increase glycemia
and suppress insulin secretion was much
greater for in RYGB patients prone to hypo-
glycemia than in RYGB patients without
hypoglycemia (Salehi et al. 2014). These
data suggest that GLP-1 is an important con-
tributor to insulin secretion and hypoglyce-
mia in post-RYGB patients with
neuroglycopenia.

Given the marked individual variability in
the incidence of post-RYGB hypoglycemia,
it is possible that genetic differences in
GLP-1 receptor-mediated signaling path-
ways or other modifiers of GLP-1 signaling
effects on insulin and glucose are also impor-
tant. Differences in insulin sensitivity from
other mechanisms could alter the risk of
insulin-induced hypoglycemia. Also, inade-
quate liver glycogen stores and impaired
secretion of glucagon and other counter-
regulatory hormones may predispose to
hypoglycemia (Laferrere et al. 2011). Other
factors, including gut microbiota (Liou
et al. 2013), bile acid composition (Patti
et al. 2009), and intestinal adaptation
(Hansen et al. 2013), could influence brain-
gut-liver interactions, resulting in differ-
ences in susceptibility to post-RYGB hypo-
glycemia (Mussig et al. 2010). Pancreatic
islet hyperplasia has been observed in the
few pathologic specimens available from
patients with post-RYGB hypoglycemia,
but it is unclear whether this is adaptive or
plays a causal role in hypoglycemia (Service
et al. 2005; Patti et al. 2005; Meier
et al. 2006).

Therapeutic approaches to post-RYGB
hypoglycemia include nutrition therapy
aimed at reducing sugars and glycemic
index carbohydrates (Kellogg et al. 2008)
and premeal treatment with acarbose, an
alpha-glucosidase inhibitor (Valderas
et al. 2012), which attenuates rapid postpran-
dial glucose surges and insulin secretion.
Continuous glucose monitoring may be nec-
essary in patients with hypoglycemia
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unawareness (Halperin et al. 2011). In case
the hypoglycemic episodes do not improve
in response to changes in diet and acarbose
treatment, octreotide can be administered to
decrease the secretions of incretins and insu-
lin (Myint et al. 2012). Other treatment
options include diazoxide or calcium chan-
nel blockers to reduce insulin secretion
(Spanakis and Gragnoli 2009; Moreira
et al. 2008). Gastric restriction surgery or
placement of a gastrostomy tube into the
bypassed duodenum may be used to alter
intestinal nutrient loading and decrease the
frequency of hypoglycemic episodes
(Fernandez-Esparrach et al. 2010;
McLaughlin et al. 2010). In rare cases, par-
tial pancreatectomy may be necessary
for patients with life-threatening
neuroglycopenia (Service et al. 2005; Patti
et al. 2005).

(iii) Gastroesophageal reflux has been associ-
ated with bariatric surgery. Most studies
show improvement of GERD after RYGB
surgery (De Groot et al. 2009; Tai
et al. 2009). RYGB decreases lower esopha-
geal sphincter pressure, esophageal contrac-
tile amplitude, and acid exposure
(Madalosso et al. 2010; Herbella
et al. 2011). However, there are variable
effects of VBG and ABG on GERD
(Di Francesco et al. 2004; De Groot
et al. 2009; Angrisani et al. 1999; de Jong
et al. 2004). Sleeve gastrectomy increased
GERD symptoms in some patients, while
others had no symptoms (Chiu et al. 2011;
Mahawar et al. 2013). VSG may increase
intragastric pressure leading to postprandial
regurgitation (Del Genio et al. 2014). A large
study has suggested a less favorable outcome
of VSG patients with preexisting GERD
symptoms (DuPree et al. 2014). These
results require further studies to ascertain
the effects of bariatric surgery on GERD.

(iv) Malnutrition. Bariatric surgery reduces food
intake in the postoperative period, and this
may be associated with poor intake of
micronutrients which predisposes to further
deficiencies. Preexisting micronutrient

deficiencies can exacerbate postoperative
deficiencies; hence, weight loss management
prior to bariatric surgery should include ade-
quate supplementation of micronutrients
(Saltzman and Karl 2013; Hammer 2012;
Levinson et al. 2013). The type of bariatric
procedure is also a factor in determining
nutritional deficiencies. Since AGB is
mainly restrictive, it does not predispose to
malabsorption. VSG is also less frequently
associated with nutritional deficiencies. In
contrast, BPD carries the highest risk for
nutritional deficiencies (Saltzman and Karl
2013; Hammer 2012). RYGB causes fat and
protein malabsorption. Fat malabsorption
after RYGB is related to the length of the
common intestinal channel which deter-
mines the contact of nutrients with digestive
enzymes. A longer biliopancreatic limb in
RYGB promotes bacterial overgrowth and
decreases fat digestion (Hammer 2012).

Malabsorption should be suspected after bar-
iatric surgery if patients develop abdominal symp-
toms, e.g., persistent diarrhea, distension,
flatulence, and discomfort, or general symptoms,
e.g., excessive weight loss, anemia, night blind-
ness, xerophthalmia, peripheral neuropathy,
fatigue, amenorrhea, or impotence (Hammer
2012). Recommended screening tests include
blood cell count, lipids, albumin, alkaline phos-
phatase, calcium, phosphorus, magnesium, zinc,
iron, ferritin, prothrombin time, serum vitamin A,
parathyroid hormone, serum vitamin D, folic acid,
and vitamin B12, preoperatively, and 3-month,
and 6-month intervals for 2 years, and then annu-
ally, after malabsorptive procedures, e.g., BPD
and RYGB (Hammer 2012; Levinson
et al. 2013). Dietary adjustments are needed in
the early postoperative period with protein sup-
plementations (60 g) to avoid loss of body protein
(Saltzman and Karl 2013; Levinson et al. 2013).
For RYBG, more than 1 g/kg of the ideal body
weight/day is the recommended long-term protein
intake. In addition, patients who undergo
malabsorptive bariatric procedures should receive
multivitamin supplements with double the daily
recommended doses or more, containing 18 mg of
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elemental iron and 400 ug of folic acid, as well as
vitamin A, copper, and zinc. A daily intake of 2 g
of calcium, 1,000 ug of vitamin B12, and
1,000–2,000 IU of vitamin D orally is
recommended after malabsorptive bariatric pro-
cedures (Levinson et al. 2013). Specific micronu-
trient deficiencies resulting from bariatric surgery
are discussed next.

Vitamin B1 (thiamine) deficiency has been
reported in 29 % of bariatric patients (Saltzman
and Karl 2013; Hammer 2012; Levinson
et al. 2013) and may lead to serious neurological
manifestations. Vomiting, poor food intake, and
lack of vitamin supplement intake are all
predisposing factors (Galvin et al. 2010). Rarely,
intravenous glucose administration may trigger
acute thiamine deficiency, characterized by
Wernicke’s encephalopathy, peripheral neuropa-
thy, nystagmus, and ocular palsy. This can be
avoided by prophylactically administering thia-
mine 100 mg intravenously when starting intrave-
nous fluids in at-risk patients. Symptomatic
thiamine deficiency with neurological signs is
treated with 100–500 mg thiamine daily adminis-
tered intravenously. Prophylactic daily intake of a
multivitamin preparation with 3 mg of thiamine is
recommended after malabsorptive procedures, i.
e., BPD and RYGB, and this is increased to 50 mg
thiamine daily in patients at risk for Wernicke’s
encephalopathy (Levinson et al. 2013).

Vitamin B12 deficiency may occur in 18 % of
patients or more presenting for bariatric surgery.
Measurement of serum methylmalonic acid con-
centrations is a more sensitive marker for vitamin
B12 deficiency. Factors predisposing to vitamin
B12 deficiency include reduced intake of meat,
diminished contact of food and gastric acid, and
decreased intrinsic factor levels. Vitamin B12
deficiency leads to megaloblastic anemia, mye-
lopathy, and neuropathy. A prophylactic oral vita-
min B12 dose of 500 ug daily or more after
bariatric surgery is recommended (Levinson
et al. 2013). Weekly intramuscular injection of
1,000 ug for 8 weeks may be necessary for severe
vitamin B12 deficiency, and daily intramuscular
administrations and lifelong monthly injections
are recommended for patients with neurological
deficits. Folate deficiency can occur after gastric

bypass surgery and lead to megaloblastic anemia.
Folate deficiency is prevented with oral intake of
1 mg of folate daily. Patients with proven folate
deficiency should be treated with 5 mg daily.

Vitamin D deficiency has been reported in
25–75 % of bariatric patients (Saltzman and Karl
2013; Hammer 2012). Vitamin D deficiency
decreases intestinal calcium absorption, which is
also reduced by reduced gastric acidity as a result
of bypassing the duodenum. Clinical manifesta-
tions of vitamin D deficiency include osteopenia,
osteoporosis, and osteomalacia. Measurements of
calcium, vitamin D, and parathyroid hormone
levels and postoperative bone mineral density
may be indicated after bariatric surgery (Heber
et al. 2010). Vitamin D intake of 800–2,000 IU
of cholecalciferol (vitamin D3) is recommended
postoperatively. In case of deficiencies, adminis-
tration of 50,000 IU of ergocalciferol (vitamin
D2) weekly, either orally or intramuscularly for
8 weeks, is recommended. In patients with
decreased gastric acid secretion, calcium citrate
may be better absorbed at doses of up to 2 g daily
(Levinson et al. 2013).

Vitamin A deficiency may occur in 11 % of
bariatric patients (Levinson et al. 2013). The
symptoms include dry eyes and impaired night
vision. Confirmed cases of vitamin A deficiency
should be treated with doses of 10,000–25,000 IU
of vitamin A daily until clinical improvement is
noted.

Iron deficiency occurs in 5–44 % of bariatric
patients. Factors predisposing to iron deficiency
include reduced meat intake and diminished gas-
tric acid and intestinal absorption (Saltzman and
Karl 2013; Hammer 2012). An oral dose of
35–100 ug of elemental iron is recommended for
prevention, and oral supplementation of 300 ug
elemental iron daily is sufficient for iron defi-
ciency anemia treatment. If the latter fails, an
intravenous iron administration should be given.
Zinc deficiency may occur in about 30 % of
patients prior to bariatric surgery. In cases of
zinc deficiency, the recommended dose is 60 mg
of elemental zinc given orally twice a day. Zinc
treatment may deplete copper stores; hence, the
doses of these trace metals need careful adjust-
ments. Copper deficiency is present in up to 18 %
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of patients after bariatric surgery (Levinson
et al. 2013) and leads to anemia, leucopenia, neu-
ropathy, and myelopathy. Copper deficiency is
treated with 1 week of 6 mg of elemental copper
orally daily, then a week of 4 mg daily, and then
2 mg daily as the maintenance dose (Levinson
et al. 2013).

5 Mechanisms of Bariatric
Surgery

Weight loss from diet, exercise, and drug therapy
is accompanied by a decrease in energy expendi-
ture that makes it difficult to sustain the reduced
body weight over long periods (Schwartz and
Doucet 2010). In contrast to conventional weight
loss therapies, bariatric procedures produce
sustained weight loss (Bray 2008). Bariatric
surgery decreases food intake, alters taste percep-
tion, blunts hedonic responses to food, and pre-
vents the fall in energy expenditure associated
with weight loss (Sandoval 2011). Studies in bar-
iatric patients and animal models have provided
new insights into gut and central nervous systems’
pathways underlying the effects of bariatric
procedures on hunger, eating, satiety, and
metabolism.

A popular theory is that bariatric surgery
causes weight loss by restricting gastric volume
and inducing satiety signals (Stefater et al. 2012).
Consistent with this hypothesis, malfunction of
LAGB leads to weight regain (Suter et al. 2006;
Boza et al. 2011). Contrary to this theory, weight
loss after VSG is comparable to RYGB, and yet
the stomach volume in VSG is significantly larger
than in RYGB (Chapman et al. 2004). Gastric
dilatation following VSG does not affect weight
loss in humans, and VSG-mediated weight loss in
rats is not dependent on the stomach size
(Abu-Jaish and Rosenthal 2010). Gastric empty-
ing has been suggested as a mechanism for bar-
iatric surgery-mediated weight loss by altering
nutrient, endocrine, and neural signaling in the
upper intestine. Enteroendocrine cells are stimu-
lated by increased nutrient delivery and signal via
vagal afferent nerves to the brain stem to regulate
gastric emptying (Cummings et al. 2004).

Structural changes in the gastrointestinal tract
following RYGB, VSG, and AGB may differen-
tially alter gastric emptying and delivery of nutri-
ents to enteroendocrine cells in the intestine,
leading to changes in feeding and glucose and
lipid metabolism (Sandoval 2011). However, this
view is not supported by various studies. LAGB
may increase the rate of gastric emptying above
the restriction but does not affect total gastric
emptying rate, and there is no significant associa-
tion of gastric emptying, satiety, or weight loss
after LAGB (Burton et al. 2011; Usinger
et al. 2011). The rate of emptying of the gastric
pouch may be delayed in RYGB despite the
absence of a pylorus; however, the intestinal tran-
sit time is increased (Suzuki et al. 2005; Dirksen
et al. 2013). VSG increases gastric emptying as
well as intestinal transit time (Shah et al. 2010a;
Melissas et al. 2013), arguing against a causal role
of gastric emptying in weight loss.

Another explanation for the dramatic effects of
gastric bypass surgery is based on gut hormones.
Postprandial GLP-1 levels are markedly increased
after RYGB or VSG surgery, but the evidence for
a causal link between GLP-1 and weight loss and
glucose homeostasis is variable (Salehi and
D’Alessio 2014). Administration of a GLP-1
receptor antagonist is well known to attenuate
the insulin response to a mixed nutrient liquid
meal (Johnson et al. 2011); however, GLP-1
receptor antagonists do not consistently alter glu-
cose tolerance or insulin sensitivity in patients
undergoing RYGB or VSG (Chambers
et al. 2011; Jorgensen et al. 2013). Moreover,
mice lacking GLP-1 receptor exhibit weight loss
and improved glucose tolerance after bariatric
surgery similar to normal mice (Wilson-Perez
et al. 2013; Mokadem et al. 2014). Furthermore,
the weight loss effect of long-acting GLP-1 ago-
nists is much less compared to RYGB and VSG
procedures (Fujishima et al. 2012; Jimenez
et al. 2014).

The level of peptide YY (PYY), a gut hormone
that inhibits feeding and increases insulin sensi-
tivity (Vrang et al. 2006), is increased after gastric
bypass surgery and has been linked to weight loss
(Chambers et al. 2011; Peterli et al. 2009; Shin
et al. 2010). Plasma PYY levels are increased
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during weight regain in RYGB patients (Meguid
et al. 2008), and RYGB-induced weight loss is
blunted in PYY knockout mice (Chandarana
et al. 2011). Ghrelin is produced mainly in the
stomach and has been proposed as a mediator of
gastric bypass surgery. Ghrelin levels decrease
after VSG (Basso et al. 2011; Bohdjalian
et al. 2010; Wang and Liu 2009). In contrast,
some reports indicate a reduction in ghrelin levels
after RYGB (Cummings et al. 2002), while others
show no change in ghrelin (Tymitz et al. 2011).
However, ghrelin-deficient mice responded
appropriately in weight loss and showed similar
improvement in glucose tolerance after VSG, rais-
ing doubts about a causal role of ghrelin in the
response to gastric bypass surgery (Chambers
et al. 2013).

Bile acids have been implicated in the effects
of gastric bypass surgery. Primary bile acids are
produced in the liver through oxidation of choles-
terol and conjugated with a glycine or taurine to
form bile salt which serves as a detergent for lipid
hydrolysis. Primary bile acids are also secreted
into the intestine and undergo dehydroxylation
to form secondary bile acids which are then con-
jugated to form bile salts. Bile acids enhance
digestion and absorption of lipids and signal via
membrane and nuclear receptors in the intestine
and liver to regulate lipid and glucose metabolism
(Parks et al. 1999; Kohli et al. 2010; Cummings
et al. 2010). Studies show that RYGB results in
higher plasma bile acid levels compared to AGB
(Kohli et al. 2013a). An increase in circulating
bile acids and bile salts after RYGB induces
weight loss, improves glucose tolerance, and
increases GLP-1 secretion (Kohli et al. 2013b).
In rodents, ileal interposition surgery increases
bile acid levels, improves glucose tolerance, and
increases GLP-1 secretion (Strader et al. 2005).

Recent studies have suggested that FXR, a
nuclear transcription factor that binds bile acids,
plays an important role in weight loss after bariat-
ric surgery (Kuipers and Groen 2014). Mice
lacking FXR display less weight loss after VSG
and also increase their food intake to compensate
for weight loss (Ryan et al. 2014). Bile acids also
bind to TGR5 (also known as G protein-coupled
bile acid receptor 1, GPBAR1), and activation of

TGR5 by bile acid increases GLP-1 (Thomas
et al. 2009). These mediators provide plausible
functional connections between TGR5 signal
pathways and metabolic effects of bariatric
surgery.

The gut microbiota are responsive to changes
in body weight and dietary composition (Karlsson
et al. 2013). Studies indicate that gastric bypass
surgery results in a significant change in the com-
position of the gut microbiome (Sweeney and
Morton 2013). RYGB changes the gut
microbiome of obese individuals to patterns seen
in normal weight individuals (Zhang et al. 2009;
Li et al. 2011). Germ-free mice fed the microbiota
from RYGB mice are resistant to obesity (Liou
et al. 2013). The gut microbiota are correlated
with bile acid levels in RYGB mice and may
require FXR signaling to produce weight loss
and improvement in glucose metabolism (Lutz
and Bueter 2014).

Neuronal circuits in the hypothalamus control
feeding and energy expenditure (Blouet and
Schwartz 2010). The arcuate nucleus (ARC) con-
tains pro-opiomelanocortin (POMC)-producing
neurons that produce α-MSH, a peptide whose
role is to inhibit food intake and decrease body
weight via melanocortin 4 (MC4) receptor
(MC4R). Neurons expressing neuropeptide Y
(NPY) and agouti-related peptide (AGRP) are
also present in ARC. AGRP is a competitive
antagonist/inverse agonist of MC4R. AGRP
blocks the action of α-MSH, resulting in stimula-
tion of feeding and weight gain. POMC and
NPY/AGRP neurons project to the
paraventricular nucleus (PVN), a key center for
integration of metabolic signals mediating feed-
ing, energy expenditure, and neuroendocrine
function (Kim et al. 2014). Studies show that
expression of POMC, AGRP, and NPY in the
hypothalamus is not different in VSG versus
sham-operated obese rats (Stefater et al. 2010).
RYGB induces weight loss in individuals with
loss-of-function mutations in MC4R (Aslan
et al. 2011). One study reported that individuals
with MC4R mutations were prone to LAGB fail-
ure (Elkhenini et al. 2014); yet another study did
not confirm this finding (Valette et al. 2012). Fur-
ther studies are needed to determine whether other
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hypothalamic or extra-hypothalamic circuits are
involved in the regulation of hunger, satiety, and
hedonic aspects of feeding after RYGB, VSG,
and LABG.

6 Cross-References

▶Body Composition Assessment
▶Brain Regulation of Feeding and Energy
Homeostasis

▶Carbohydrate, Fat, and Protein Metabolism in
Obesity

▶Diet, Exercise, and Behavior Therapy in the
Treatment of Obesity and Metabolic Syndrome

▶Gut Hormones and Obesity
▶Gut Microbiome, Obesity, and Metabolic
Syndrome

▶ Insulin Resistance in Obesity
▶Overview of Metabolic Syndrome
▶ Pharmacotherapy of Obesity and Metabolic
Syndrome
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Abstract
Obesity remains a significant public health
issue in the United States with nearly
one-fifth of children and one-third of adults
being obese. Particularly in the pediatric pop-
ulation, much emphasis is placed on preven-
tion in addition to treatment of obesity.
Lifestyle modifications remain the first line of
intervention both for prevention and treatment
of pediatric obesity. Numerous studies indicate
that risk factors for obesity develop prior to
conception and continue throughout child-
hood. Prenatally, parental weight, maternal
smoking, and mode of delivery all influence
later obesity risk. Feeding style during infancy,
including both breastfeeding and the timing of
complementary feeds, is associated with differ-
ential risk for later obesity. Furthermore, the
presence or lack of appropriate nutrition, exer-
cise, and intervention programs at school
impact risk for obesity. Unlike in the adult
population, there is evidence for sustained pos-
itive effects from lifestyle interventions for
treatment of obesity in the pediatric popula-
tion. Many intervention studies have been
performed to study the effects of dietary
changes, increased physical activity, behav-
ioral, and family centered interventions on
pediatric overweight and obesity. When con-
ventional strategies for weight management
are insufficient, pharmacologic and surgical
options are appropriate for the treatment of
both obesity and the associated metabolic
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syndrome. Orlistat remains the only
FDA-approved treatment option in childhood
obesity, but several other options have been
and continue to be investigated in research tri-
als. Bariatric surgery is recommended cau-
tiously at this time in only a subset of
adolescents, and when pursued, a multidis-
ciplinary team approach is recommended.

Keywords
Obesity • Metabolic syndrome • Pediatrics •
Lifestyle modification • Orlistat • Bariatric
surgery

1 Introduction

Obesity remains a significant public health prob-
lem with over one-third of adults in the Unites
States being obese (Flegal et al. 2012), and 17 %
of US children are obese (Ogden et al. 2014).
Given the great public health burden from obesity,
much emphasis has been placed on both preven-
tion and treatment of obesity. Body mass index
(BMI) is currently accepted as the international
standard for defining overweight and obesity.
In children over the age of 2 years, a BMI
greater than or equal to the 85th percentile but
less than the 95th percentile for age and sex is
considered overweight, and a BMI greater than or
equal to the 95th percentile for age and sex is
diagnosed as obese. In children under the age of
2 years, the utility of BMI as a measure of adipos-
ity is uncertain. The 85th percentile and 95th
percentile for BMI at age 18 years corresponds
to an approximate BMI of 25 and 30 kg/m2,
respectively.

Metabolic syndrome is defined by abdominal
obesity along with two or more of the following:
hypertension, glucose intolerance, and
dyslipidemia (low HDL cholesterol or elevated
triglycerides) (Zimmet et al. 2007). In this chapter,
we describe the role of lifestyle modifications on
prevention of obesity and metabolic syndrome,
followed by the role of pharmacologic agents
and bariatric surgery on prevention and treatment
of these conditions.

2 Prevention of Pediatric Obesity
Through Lifestyle
Modifications

Preventing pediatric obesity before it occurs is of
utmost importance. Many studies have recently
emerged, demonstrating key areas of intervention
throughout all stages of development that can help
prevent obesity. Maternal prepregnancy obesity
has been implicated as a risk factor for later child-
hood obesity (Salsberry and Reagan 2005;
Whitaker 2004; Eriksson et al. 2003). A
population-based prospective cohort study of
over 5,000 subjects in the Generation R Study in
the Netherlands indicated that prepregnancy
maternal BMI compared to paternal BMI had a
stronger impact on childhood BMI; however, the
odds of overweight at age 4 years was 6.5 times
higher in children in whom both parents were
obese compared to those in whom parental BMI
was normal, indicating that paternal BMI may
also impact later childhood obesity risk (Durmus
et al. 2013).

Furthermore, maternal smoking during preg-
nancy has also been associated with later child-
hood obesity risk (Salsberry and Reagan 2005;
von Kries et al. 2002; Al Mamun et al. 2006).
The mechanism whereby maternal smoking
results in later childhood obesity has not been
fully elucidated, although preliminary studies
suggest that nicotine-induced vasoconstriction
compromising the placental vasculature along
with impaired oxygen uptake from carbon mon-
oxide toxicity affects fetal growth. Indeed, data
for over 5,000 subjects from the 1958 British birth
cohort indicated lighter birth weight, yet an
increasing risk for obesity with time and higher
odds of obesity at age 33 years in subjects whose
mother smoked in pregnancy (Power and Jefferis
2002).

The mode of delivery (cesarean section versus
vaginal delivery) has also been shown to affect
later obesity risk in offspring. A meta-analysis of
28 studies identified that children delivered by
cesarean section have a higher risk of childhood
obesity than those born by vaginal delivery
(Kuhle et al. 2015). These data indicate that
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prevention of childhood obesity requires interven-
tions even prior to conception.

2.1 Infancy Factors

Breastfeeding during infancy has been positively
associated with decreased risk of overweight and
obesity. In a large survey study of over 9,500
subjects, Gillman et al. found that infants who
were fed more breast milk than formula and
those with longer duration of breastfeeding had
lower risk for overweight in older childhood and
adolescence (Gillman et al. 2001). A meta-
analysis of 17 studies also supported an associa-
tion between longer breastfeeding duration and
decreased risk of overweight (Harder
et al. 2005). Numerous other studies, including a
study of sibling pairs, also support the protective
role of breastfeeding on risk of overweight and
obesity (Hediger et al. 2001; Nelson et al. 2005).

Timing of introduction of complementary
foods has been identified as another determinant
of later obesity risk. A large prospective, observa-
tional study from the Danish National Birth
Cohort identified that in infants who breastfed
for fewer than 20 weeks, the introduction of com-
plementary foods prior to 4 months of age was
associated with greater infancy weight gain
(Baker et al. 2004). Another large prospective
study of over 800 infants also supported these
findings, demonstrating that introduction of solid
foods prior to age 4 months in formula-fed infants
(but not in breastfed infants) was associated with a
significantly higher odds of obesity at age 3 years
(Huh et al. 2011). A prospective, observational
cohort study of over 97,000 infants in the Jiaxing
Birth Cohort of Southeast Asia specifically iden-
tified that introduction of fish liver oil prior
to 4 months of age was associated with higher
BMI in childhood and higher risk of overweight
at 4–5 years of age (Zheng et al. 2015). However,
the data on exact timing of complementary
feeding and obesity risk remains unclear. A sys-
tematic review of 23 studies found no clear
association, although supporting the notion that
very early timing of complementary food

introduction at less than 4 months of age may be
associated with higher BMI in childhood (Pearce
et al. 2013).

2.2 Childhood Factors

In a systematic review of 39 school-based obesity
prevention studies with a minimum follow-up
period of 12 months, 40 % of the 33,852 children
studied demonstrated benefits from obesity pre-
vention measures; none of the studies demon-
strated negative effects from these prevention
strategies. Some of the prevention measures
included heath education for children, parents,
and teachers; smoking prevention; nutrition edu-
cation and dietary changes; and physical activity
measures (Flodmark et al. 2006). Another meta-
analysis of 19 randomized clinical trials and clin-
ical controlled trials of school-based intervention
programs with a minimum of a 1-year follow-up
period demonstrated that school-based interven-
tions to decrease consumption of high-fat
and high-sugar foods and increase moderate-to-
vigorous physical activity led to a decrease in the
prevalence of overweight (OR 0.81, 95 % CI
0.68–0.92) and obesity (OR 0.59, 95 % CI
0.37–0.94). In contrast, there was no significant
difference in the prevalence of overweight or obe-
sity between those in intervention programs last-
ing less than 6 months versus the control group
(Gonzalez-Suarez et al. 2009). Collectively, these
studies indicate that, at least in the short-term,
school-based intervention programs to modify
lifestyle can help prevent later obesity.

Interventions targeted toward either nutrition
or physical activity appear to have the greatest
effect on preventing obesity. A Cochrane Review
of 22 obesity prevention trials showed that studies
focusing on either a dietary intervention or a
physical activity intervention had a positive
impact on BMI while studies combining these
approaches did not significantly affect BMI
(Summerbell et al. 2005). The authors consider
that the lack of an effect in the combined studies
might be from an insufficient intervention period
or from underpowered studies.
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Importantly, intervention studies to prevent
obesity, thus far, appear more beneficial in
mid-childhood rather than in adolescence. A
follow-up Cochrane Review in 2011 incorporat-
ing 55 studies determined that there is evidence
for a positive effect from short-term school-based
behavioral intervention programs in children aged
6–12 years and that further studies should focus
on children aged 0–5 years and adolescents. Fur-
thermore, this more recent Cochrane Review
emphasized the importance of more long-term
studies to evaluate sustainability and of studies
that compare intervention approaches (Waters
et al. 2011). A systematic review and meta-analy-
sis of 34 studies indicated that prevention mea-
sures in children can have significant positive
impacts on diet and physical activity, with better
effects noted from reduction of unhealthy behav-
iors (decreasing sedentary behaviors and fats in
diet) compared to endorsement of healthier behav-
iors (increasing physical activity and fruit/vegeta-
ble consumption). This review also noted a greater
reduction in sedentary activity in children com-
pared to adolescents from these interventions
(Kamath et al. 2008).

Many specific interventions have been pro-
posed (Barlow and Expert 2007) to help prevent
childhood and adolescent obesity including eating
a daily breakfast (Antonogeorgos et al. 2012);
minimal consumption of food from restaurants,
but particularly fast foods (Mistry and Puthussery
2015); limited consumption of sugar-sweetened
beverages (Kosova et al. 2013); increasing intake
of fruits and vegetables in diet (Natale et al. 2014);
a practice of eating family meals together (Berge
et al. 2015); limited portion sizes and decreased
consumption of high-energy foods (Pourshahidi
et al. 2014); restriction of screen time to no more
than 2 h per day (McCarthy 2013); and vigorous
physical activity for at least 1 h per day (Strong
et al. 2005) of which at least 30 min should be
undertaken while at school for school-going chil-
dren. Other supplemental interventions suggested
to help prevent excessive weight gain with mini-
mal known risks include (Barlow and Expert
2007) a high-calcium diet according to the US
Department of Agriculture (USDA) recommenda-
tions, a high-fiber diet, and an age-specific diet

balanced in macronutrients (carbohydrates, pro-
teins, and fats).

Technology is also being utilized to impact
health outcomes, as studies are trialing web- and
mobile-based applications to promote changes in
the diets and physical activity levels of children
(Delisle et al. 2015). The impact of these
technology-based programs on preventing over-
weight and obesity remains to be determined.

3 Treatment of Pediatric Obesity
Through Lifestyle
Modifications

Lifestyle interventions are the first-line treatment
recommended for all overweight and obese chil-
dren and adolescents (August et al. 2008). Many
intervention studies have been performed to study
the effects of dietary changes, increased physical
activity, and family centered interventions on
overweight and obesity. While long-term efficacy
of obesity intervention studies in adults is ques-
tionable, there is evidence for sustained positive
effects in the pediatric population.

3.1 Dietary and Physical Activity
Interventions for Treatment
of Pediatric Obesity

Studies indicate positive benefits from dietary
restriction and modifications in overweight and
obese children. A 2009 Cochrane Review of pedi-
atric obesity treatment studies found improve-
ments in BMI from dietary intervention studies
both for children under 12 years and children over
age 12 years (Oude Luttikhuis et al. 2009). A
meta-analysis of 37 randomized controlled trials
of dietary interventions (with or without physical
activity or behavioral modifications) in over-
weight or obese children and adolescents (<18
years) found that a relative weight loss does
occur with these interventions. Many different
dietary intervention techniques were studied in
the various trials, including the Stoplight/Traffic
Light diet in 16 studies in which foods are labeled
as “green” (acceptable foods), “yellow” (caution
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needed in consuming these foods), and “red”
(unacceptable foods); food or calorie exchange
programs in five studies; and low fat versus low
carbohydrate comparison in one study (Collins
et al. 2006). This meta-analysis along with the
2009 Cochrane Review primarily demonstrated,
however, the paucity of high-quality studies with
adequate follow-up to assess efficacy of dietary
intervention programs in youth (Collins
et al. 2006; Oude Luttikhuis et al. 2009).

There is no consistent evidence at this time for
low glycemic index or low glycemic load diets in
the treatment of pediatric obesity. The glycemic
index captures the ability of a food to increase
blood glucose 2 h postprandially; glycemic load
describes carbohydrate intake both qualitatively
and quantitatively as it is the glycemic index mul-
tiplied by the amount of carbohydrates in grams.
A systematic review evaluating the effects of gly-
cemic index and glycemic load on pediatric obe-
sity noted controversial effects from intervention
and cohort studies, showing a lack of a significant
difference with the glycemic index diet in some
studies and improvement in BMI in others,
although many limitations were noted in several
of these positive studies, including low sample
size and lack of inclusion of physical activity
level in the analyses (Rouhani et al. 2014). Nota-
bly, the 2009 Cochrane Review of interventions
for treating pediatric obesity indicated two dietary
intervention studies in children 12 years and older
showing improvements in BMI and fat mass at
12 months with reduced glycemic index diets
compared to low-fat diets (Oude Luttikhuis
et al. 2009). More studies are needed to clarify
the role of the low glycemic index diet in treating
pediatric obesity.

Large meta-analyses of randomized clinical
trials demonstrate mixed and inconsistent results
from physical activity interventions as the only
modality. In one meta-analysis, the 17 of 20 trials
with complete data had inconsistent results,
thought due to an outcome-treatment interaction,
with modest treatment effects seen in studies mea-
suring the effect of activity on adiposity but with
no treatment effect seen in studies measuring the
effect of activity on BMI (McGovern et al. 2008).
In contrast, combination intervention studies

involving both dietary and physical activity mod-
ifications show a modest effect on BMI compared
to either dietary or physical activity interventions
alone (McGovern et al. 2008).

3.2 Behavioral and Family Based
Interventions for the Treatment
of Pediatric Obesity

Importantly, many successful obesity intervention
programs have a clear behavioral or family based
component as well. Childhood obesity interven-
tion studies performed by Epstein and colleagues
have identified behavioral predictors of success in
treating childhood obesity, including self-
monitoring, modifying eating behavior, praise,
and change in parental percent overweight
(Epstein et al. 1990). Self-help groups and com-
mercial weight loss programs are two specific
forms of behavioral intervention programs. A
2-year multicenter randomized controlled trial
was conducted to compare the efficacy of self-
help groups versus the largest provider of com-
mercial weight loss services in the United States
(Weight Watchers#) with regard to change in
body weight. The study found that the self-help
group maintained a 1.3–1.4 kg weight loss for the
first year but that weights returned to baseline by
the 2-year follow-up period. In contrast, the com-
mercial weight loss group had a continued weight
loss of 4.3–5 kg at the end of the first year and
remained 2.7–3 kg below baseline weight by the
2-year follow-up period (Heshka et al. 2003).

While most behavioral intervention programs
are conducted outpatient, immersion programs,
such as summer camps and boarding school pro-
grams, are another form of behavioral interven-
tion. By definition, immersion programs involve
at least 10 consecutive days and nights of active
participation (Kirschenbaum and Gierut 2013). A
systematic review of 22 studies of pediatric obe-
sity immersion programs found that compared to
results of a meta-analysis of outpatient treatment
results (Wilfley et al. 2007), immersion programs
led to an average of 191 % greater reduction in
percent overweight posttreatment and 130 %
improved reduction at follow-up, along with
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significantly lower mean attrition rates (Kelly and
Kirschenbaum 2011).

Family based involvement is an important
component of pediatric obesity treatment. A ran-
domized controlled trial of 135 overweight chil-
dren (ages 8–16 years) found that those
randomized to an intensive family based program
(incorporating exercise, nutrition, and behavioral
modification) for 6 months with bimonthly
follow-up until 12 months had significant
improvements in BMI, body fat, and homeostasis
model assessment of insulin resistance (HOMA-
IR) at 6 and 12 months than those randomized to a
traditional weight management counseling ses-
sions (Savoye et al. 2007). Furthermore, a meta-
analysis of 33 obesity intervention studies dem-
onstrated that the effective intervention programs
had a family component, particularly noting that
the family involvement is most important for
intervention studies involving children less
than 12 years of age (Ho et al. 2012). Other large
meta-analyses of randomized clinical trials have
similarly concluded that the largest effects of
lifestyle intervention studies result from involve-
ment of parents in delivering the intervention
(McGovern et al. 2008; Young et al. 2007).
Based on the many studies indicating the positive
impact of family based intervention studies for
pediatric overweight and obesity, a few organiza-
tions, including the American Dietetic Associa-
tion (Position of the American Dietetic
Association: individual-, family-, school-, and
community-based interventions for pediatric
overweight 2006) and a joint committee of the
Centers for Disease Control and Prevention and
the American Medical Association (Spear
et al. 2007), have formally encouraged incorpora-
tion of the family in pediatric overweight and
obesity treatment programs.

3.3 Long-Term Efficacy of Lifestyle
Interventions for the Treatment
of Pediatric Obesity

A landmark analysis published in 1990 by Epstein
and colleagues on 10-year outcomes of behavioral
and family based treatments for childhood obesity

provided the first long-term data on the effects of
various types of childhood obesity intervention
studies, each lasting 8–12 weeks with a monthly
follow-up period for 6–12months. The group found
a significant improvement in percentage overweight
both in a study targeting a joint intervention for both
parent and child (vs. targeting the child alone) and
for subjects in a study who were given lifestyle or
aerobic exercise (vs. calisthenics). Notably, in a
study randomizing families to either a diet and
lifestyle exercise group or a diet-only group versus
a no-treatment control group, both intervention
groups experienced a decrease in long-term percent-
age overweight, but there was no significant differ-
ence between these groups (Epstein et al. 1994).

Since this landmark Epstein study, several
other intervention studies have emerged, many
investigating 1-year outcomes; however, 5–10-
year long-term outcomes of these more recent
intervention studies still remain to be determined.
A meta-analysis was performed of 33 pediatric
studies evaluating effects of lifestyle intervention
on weight and cardiometabolic outcomes
(Ho et al. 2012). All studies were randomized
controlled trials of modifications for treatment of
overweight and obesity in children and adoles-
cents less than or equal to 18 years of age. Specific
dietary interventions studied included the Traffic
Light diet (a color-coded calorie-controlled diet)
(Jiang et al. 2005; Janicke et al. 2008; Reinehr
et al. 2010; Diaz et al. 2010; Hughes et al. 2008;
Kalarchian et al. 2009; Johnston et al. 2007;
Epstein et al. 1984; Saelens et al. 2002), a
calorie-restricted diet (Nemet et al. 2005, 2008),
or dietary interventions via a dietician (Park
et al. 2007; Rooney et al. 2005; Diaz et al. 2010;
Hughes et al. 2008; Kalavainen et al. 2007; Nemet
et al. 2005, 2008; Sabet Sarvestani et al. 2009;
Estabrooks et al. 2009;Weigel et al. 2008; Becque
et al. 1988; Botvin et al. 1979; Rocchini
et al. 1988). The exercise intervention programs
provided 1.5–2 h of training per week on average,
although they varied in intensity and duration of
activities. Compared to control arms with no treat-
ment intervention, lifestyle interventions resulted
in a significant improvement in both BMI and
BMI Z-score. Furthermore, significant
cardiometabolic improvements were noted,
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specifically improved low-density lipoprotein
(LDL) cholesterol, triglycerides, fasting insulin,
and blood pressure up to 1 year following the
baseline measurement (Ho et al. 2012).

It is unclear at this time whether the setting of
the lifestyle intervention impacts the long-term
efficacy of pediatric obesity interventions. A ran-
domized clinical trial conducted in the Nether-
lands determined that an inpatient treatment
program for children and adolescents aged 8–18
years with severe obesity was more effective than
an ambulatory treatment program. Both the inpa-
tient and ambulatory programs delivered family
based lifestyle interventions, including exercise,
dietary education, and behavior modification dur-
ing a 6-month period. There were significant
improvements in BMI Z-score for the inpatient
group, but these favorable outcomes were not
sustained at 12 and 24 months following the inter-
vention (van der Baan-Slootweg et al. 2014).

It is possible that pediatric obesity intervention
programs may result in improvements in meta-
bolic parameters in children and adolescents that
persist beyond the initial weight loss. A random-
ized controlled study in overweight children aged
8–16 years demonstrated that maintenance pro-
grams following the initial weight loss interven-
tion resulted in sustained improvement in body
composition and insulin resistance that persisted
both at 6 and at 12 months (Savoye et al. 2007).
Studies of longer duration and more studies spe-
cifically in the pediatric population are needed to
provide insights into the long-term weight and
metabolic implications of pediatric and adolescent
weight loss programs (Collins et al. 2006).

In contrast, to the preliminary positive long-
term efficacy noted in pediatric intervention
studies, the long-term efficacy of lifestyle modifi-
cations on weight loss in adults has been
questioned, with some studies indicating that
weight regain may happen soon after the interven-
tion program concludes. An adult study using
1999–2002 National Health and Nutrition Exam-
ination Survey (NHANES) data indicated that of
1,310 individuals who had lost 10 % of their
maximum weight in the year prior to the survey,
one-third had regained this weight within a year
(Weiss et al. 2007). Similarly, a meta-analysis of

46 adult randomized controlled trials with dietary
interventions lasting at least 4 months revealed a
regain of BMI (0.02–0.03 kg/m2/month) during
the maintenance phase following the intervention
program, despite an initial decrease of BMI (0.1
kg/m2/month) during the active phase of the inter-
vention. Ultimately, 3 years following the inter-
vention, nearly half of the initial weight loss was
regained (Dansinger et al. 2007). Both of these
studies demonstrated a regain in weight, despite a
prior positive response to an intervention.

A few contributors to weight regain in adults
have been identified. Mexican-American
(vs. non-Hispanic white) ethnicity is associated
with two times the odds of regaining weight
(Weiss et al. 2007). The lack of continued exercise
following an intervention program has been iden-
tified as a risk factor for weight regain, with twice
the odds of weight regain in individuals with
sedentary behaviors and a higher odds of weight
regain in those with four or more daily hours of
screen time (Weiss et al. 2007).

3.4 Summary of Society
Recommendations

Several professional societies and groups have
published expert recommendations regarding the
treatment of obesity in childhood and adolescence
(Kirschenbaum and Gierut 2013), including the
American Academy of Pediatrics (AAP) in 2007,
the Endocrine Society in 2008, the Obesity Man-
agement expert committee in 2009, and the US
Preventive Services Task Force (USPSTF)
in 2010.

The AAP put together an Expert Committee in
2007 to revise prior recommendations regarding
prevention, assessment, and treatment of child
and adolescent overweight and obesity. The rec-
ommendations call for a chronic care model,
which will allow the integration of community
resources, health care, and patient self-
management to optimize care. The recommenda-
tions specifically emphasize the primary care pro-
vider’s role in monitoring the BMI and weight
status of all youth as well as being an advocate
in local communities. An important component of
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the recommendations is the prevention of
unhealthy weight gain, from as early as birth.
The committee recommends assessment of die-
tary patterns, physical activity, sedentary behav-
iors, and family history for obesity and related
comorbidities in all children. When overweight
children are identified, the committee recom-
mends that treatment be approached with a staged
method based on age of the child, BMI,
comorbidities, parents’ weight, and the current
motivation and progress in treatment. This com-
mittee promotes provider-guided motivational
interviewing to help patients and parents identify
their weight concerns and identify areas they
would like to improve. The primary goal of treat-
ment is to improve long-term health with perma-
nent healthy lifestyle routines. The four stages of
treatment are (1) Prevention Plus, (2) Structured
Weight Management, (3) Comprehensive
Multidisciplinary Intervention, and (4) Tertiary
Care (Barlow and Expert 2007). Each stage typi-
cally deserves a 3–6-month trial period and then
advancing based on the specific patient, though
not all will advance to Tertiary Care which is
recommended for those with BMI > 99 % or
>95 % with significant comorbidities. Tertiary
Care may incorporate low-calorie diets, medica-
tions, and/or surgery; this option may be limited
geographically.

The Endocrine Society 2008 guidelines
emphasize the importance of education on healthy
eating and exercise, as modeled and taught by
parents, pediatricians, and schools. The major
dietary treatments recommended include limited
consumption of sugary drinks and fast food, por-
tion control, regular meals, and increased intake
of fruits, vegetables, and fibers. Additionally, the
Endocrine Society recommended 60 min of daily
moderate-to-vigorous physical activity and a
decrease in sedentary activities (August
et al. 2008). Furthermore, the society supported
immersion treatment programs (including camps)
and emphasized the importance of a minimum
of 3 months of intensive weekly counseling
for obese children, ideally targeting the entire
family.

TheObesity Management journal established a
team of experts in 2009 to form the Seven-Step

Model for treatment of pediatric obesity. The steps
recommended by the committee included educa-
tion for the family (through books, handouts, and
education from the medical provider), self-help
groups, outpatient lifestyle and behavioral therapy
interventions, and immersion programs (includ-
ing summer camps and boarding schools)
(Kirschenbaum et al. 2009).

In 2010, the USPSTF advocated for education
in the context of a moderate- to high-intensity
comprehensive outpatient cognitive behavioral
therapy program, including counseling on healthy
dieting, physical activity, and behavioral manage-
ment, such as self-monitoring and stimulus con-
trol. The group defined moderate- to high-
intensity as at least 25 h of contact with the child
and family in order to effect positive change in
BMI in a 12-month period (Barton 2010).

The goal of treatment, in children with signif-
icant height gain potential, is not necessarily
weight reduction but rather can focus on preven-
tion of further weight gain or slowing in the rate of
weight gain to achieve a normal adult BMI <25.
A specific target adult weight should be provided
to each patient/family. This can be calculated
using a target BMI of <25, as well as the
midparental target height of the child. Once the
target adult weight is calculated, the patient/fam-
ily can be given the number of pounds per year
that the child can afford to gain.

4 Pharmacologic Treatment
of Obesity and Metabolic
Syndrome

It is well recognized that many obese youth
become obese adults (Whitaker et al. 1997) and
are at increased risk of having cardiovascular dis-
ease and other metabolic dysfunction. Lifestyle
interventions alone frequently fail for a variety
of reasons, which is why other options are sought
after (Boland et al. 2015). While there is no cur-
rent role for the use of pharmacologic therapy in
the prevention of pediatric obesity, pharmacologic
therapy may be an option in treatment of severe or
morbid obesity, particularly in those facing
comorbidities associated with obesity.
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While there may be some difficulty in deciding
at what point, and in which patients, pharmaco-
logic treatment should be considered, the Endo-
crine Society has facilitated the decision-making
process with their Clinical Practice Guidelines,
which recommend that therapy be considered in
(1) obese children after failure in a formal pro-
gram of intensive lifestyle modification and
(2) overweight children with persistence of severe
comorbidities despite intensive lifestyle modifica-
tions (August et al. 2008). Even with such guid-
ance, many providers may limit the use of
pharmacotherapy in children due to the absence
of US Federal Drug Administration (FDA)
approval in preadolescents and the lack of long-
term efficacy and safety studies in this population.

4.1 Pharmacologic Treatment
of Obesity

At the present time, orlistat is the single pharma-
cologic agent which is FDA-approved for pediat-
ric obesity. Previously approved, sibutramine was
taken off the market in 2010. Other medications
offering potential for weight reduction in adoles-
cents include metformin and topiramate which are
approved for type 2 diabetes mellitus (T2DM) and
forms of epilepsy, respectively. Some medications
used in the treatment of adult obesity have under-
gone studies in pediatrics (exenatide), whereas
others are currently undergoing studies in youth
(topiramate, lorcaserin).

4.1.1 Orlistat
Now approved for over-the-counter (OTC) use for
adults with obesity, orlistat has been the only
pharmacologic agent approved by the FDA for
children aged 12–16 years. It is a reversible inhib-
itor of gastric and pancreatic lipases, leading to
reduced absorption of dietary fat. Several studies
have examined the efficacy and safety of orlistat
in randomized control trials in youth. In these
trials as well as open-label trials, the dose of
orlistat used was 120 mg three times daily and
given in combination with lifestyle modification.
While they have shown BMI reduction ranging
from �0.55 to �2 kg/m2 in youth (McDuffie

et al. 2002a, 2004; Chanoine et al. 2005; Maahs
et al. 2006), the adverse side effects and uncertain
long-term benefit may offset the observed benefit.
The largest study was a randomized clinical trial
of 539 adolescents aged 12–16 years with BMI
�2 points above the 95th percentile, who were
monitored over 54 weeks (Chanoine et al. 2005).
BMI reduction occurred in both placebo and
orlistat groups at 12 weeks, but BMI then rose in
the placebo group while remaining stable in the
orlistat group with a final BMI reduction of
�0.55 kg/m2 in the orlistat group and an increase
of +0.31 kg/m2 in the placebo group. 26.5 % of
participants in the orlistat group compared to
15.7 % in the placebo group had 5 % or more
reduction in BMI at the end of the study (Chanoine
et al. 2005). One meta-analysis of several random-
ized control trials (RCTs), specific to children and
adolescents treated with nonsurgical obesity inter-
ventions, showed a pooled effect of BMI reduction
of �0.7 kg/m2 in those using orlistat (McGovern
et al. 2008). Overall, the results have been modest.
In all the studies examined, side effects reported
were primarily gastrointestinal in nature, including
increased defecation, fatty/soft stools, abdominal
pain, increased flatus, and fecal incontinence
(McDuffie et al. 2004; Chanoine et al. 2005;
Maahs et al. 2006). Decreased vitamin D levels
have been reported (McDuffie et al. 2002a), though
there may be potential for other fat-soluble vitamin
deficiencies.

4.1.2 Metformin
Approved for treatment of children aged 10 years
and above with type 2 diabetes and often used in
adolescents with polycystic ovarian syndrome
(PCOS), metformin has been used as an adjunct
in the treatment of obesity. Metformin reduces
hepatic glucose production and plasma insulin,
inhibits lipogenesis, increases peripheral insulin
sensitivity, and increases satiety by increasing
levels of glucagon-like peptide (Freemark 2007;
August et al. 2008), but the exact mechanism of
action for weight loss is uncertain. More than ten
randomized, blinded studies have been done com-
paring metformin to placebo in children and ado-
lescents with obesity. Dosing varied among
metformin trials, with the typical dose prescribed
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being 1,500 mg/day and ranging between 500 and
1,000 mg twice daily. While individual studies
have been promising with BMI reduction ranging
between �0.16 and �1.8 kg/m2 (Atabek and
Pirgon 2008; Clarson et al. 2009; Wilson
et al. 2010; Wiegand et al. 2010; Rezvanian
et al. 2010; Yanovski et al. 2011; Kendall
et al. 2013; Love-Osborne et al. 2008), there
have been two meta-analyses showing less overall
benefit. McGovern et al. reviewed three metfor-
min studies and showed a small insignificant
change in BMI of �0.17 (CI = �0.62 to 0.28)
kg/m2 among obese youth treated with metformin
monotherapy (McGovern et al. 2008). McDonagh
reviewed 14 RCTs and showed a significant mean
reduction in BMI by�1.16 kg/m2 with metformin
use, with subgroup analysis showing better out-
comes in younger children (�12 years) and those
with a higher baseline BMI (>35 kg/m2)
(McDonagh et al. 2014). A critical review high-
lights the finding that the observed effect was
more robust in short-term studies (i.e., 6 months
or less) compared to studies lasting 1 year or
longer, which is concerning for decreased effec-
tiveness over time (Metformin in obesity 2014).
Extended release (XR) metformin has been exam-
ined in obese children 13–18 years with similar
results. Wilson reports mean (SE) BMI reduction
of �0.9 kg/m2 in the XR group compared to a
mean (SE) gain of +0.2 kg/m2 in the placebo
group after 48 weeks of treatment; however at
48 weeks of follow-up, the mean (SE) BMI
increased by +0.5 kg/m2 in the former
XR-treated group yet decreased in the former
placebo group by mean (SE) �0.8 kg/m2 (Wilson
et al. 2010). At least one study shows that metfor-
min may be more useful in obese adolescents
prescribed atypical antipsychotic medications
(Morrison et al. 2002). However, rebound weight
gain and hyperinsulinemia may still occur when
metformin is discontinued (August et al. 2008),
and this hypothesis remains to be tested in a ran-
domized clinical trial.

Compared to other agents, the safety profile of
metformin is better known given its extensive use
in T2DM and PCOS. Generally, it is well toler-
ated, but the most common complaints are gastro-
intestinal in nature and include diarrhea,

abdominal discomfort, and nausea (Boland
et al. 2015). However, in at least one study, the
gastrointestinal symptoms were similar among
those receiving metformin and those receiving
placebo (Wiegand et al. 2010). While there is
concern for possible liver and kidney toxicity,
this was not found in a meta-analysis (McDonagh
et al. 2014).

4.1.3 Exenatide
Exenatide is a GLP-1 agonist approved for use in
adults with T2DM, and favorable effects on
weight have been reported (Boland et al. 2015;
Standards of medical care in diabetes – 2012
(2012)). The mechanism of action is thought to
result from delayed gastric emptying and appetite
reduction due to the diminished hyperactivation in
appetite-reward regions within the brain
(Ioannides-Demos et al. 2011; van Bloemendaal
et al. 2014). Studies in pediatrics are limited. In
the RCT performed by Kelly et al., 26 obese ado-
lescents (12–19 years, BMI > 1.2 times 95th
percentile or >35 kg/m2) were randomized to
exenatide 10 mcg twice daily (titrated up from
5 mcg twice daily) or placebo in addition to life-
style modification counseling. They found a
reduction in BMI of �1.13 kg/m2, which was
�2.7 % compared to placebo after 3 months
(Kelly et al. 2013). The most common side effects
were nausea, vomiting, headache, abdominal
pain, and diarrhea (Kelly et al. 2013).

4.1.4 Octreotide
Octreotide is a somatostatin agonist, acting upon
somatostatin receptors including beta cells where
it leads to decreased insulin secretion in response
to glucose. Octreotide has been associated with
mild-to-moderate weight loss in adults and a spe-
cial population of children. Lustig et al. completed
a placebo-controlled RCT in 172 adults with base-
line BMI ranging between 30 and 65 kg/m2 and
evidence of insulin hypersecretion. Those treated
with 40 and 60 mg had mean BMI reduction of
�0.73 and �0.79 kg/m2, respectively, whereas
the placebo-treated group had an overall gain in
mean BMI compared to baseline (Lustig
et al. 2006a). Post hoc analysis showed that effi-
cacy correlated with the degree of insulin
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hypersecretion (Lustig et al. 2006a). While these
adult subjects did not have hypothalamic obesity,
children who have been included in the octreotide
studies do have central nervous system (CNS)
insults and suspected hypothalamic obesity. One
theory to explain why hypothalamic obesity
occurs in response to certain CNS insults is that
increased insulin secretion results from neural
dysregulation of beta cells with weight gain
resulting from insulin’s anabolic function
(Bereket et al. 2012). Octreotide has been used
in children with hypothalamic obesity based on
this principle (Lustig et al. 2006b; Bereket
et al. 2012). In a small study of 18 subjects
(mean age 14 years) with hypothalamic obesity
demonstrating annual weight gain over +2SD for
their age, those treated with octreotide for
6 months showed BMI change �0.2 kg/m2 com-
pared to +2.2 kg/m2 in placebo group (Lustig
et al. 2003). The degree of response to octreotide
relies on hypersecretion and insulin sensitivity
(Lustig et al. 2006b). While octreotide may be a
promising therapeutic modality for hypothalamic
obesity, it has only been examined in small stud-
ies; further, it has not been evaluated in obese
hyperinsulinemic children without CNS injury.
Common side effects include diarrhea, headache,
cholelithiasis, nausea, and abdominal pain (Lustig
et al. 2006a), though other side effects from
octreotide have been reported including gall-
stones, edema, sterile abscess at the injection
site, B12 deficiency, thyroid-stimulating hormone
suppression, growth hormone suppression, and
hyperglycemia (Tauber et al. 1994).

4.1.5 Leptin
Only a few dozen cases of leptin deficiency have
been described. They present with hyperphagia
from birth with obesity beginning as early as
6 months of age. Such individuals have hyperpha-
gia with increased energy intake. Leptin therapy
in these individuals leads to significantly
improved health with reduced obesity, improved
immune function, and normalization of puberty
(Farooqi et al. 2002). While leptin may be used in
youth with leptin deficiency, there have been no
studies of leptin in common obesity of children or
adolescents. Leptin has been studied for this

indication in adults. Heymsfield evaluated leptin
in lean and obese adults in a dose-escalating trial
and found mean weight reduction of �7 kg in the
highest leptin dose (0.3 mg/kg/day) compared to
�1.5 kg in placebo, after 24 weeks (Heymsfield
et al. 1999). A long-acting leptin (leptin A-200)
was later evaluated to find more meaningful
reduction in weight in one adult study. The 30 sub-
jects treated with 20 mg daily of leptin A-200 had
a mean reduction in weight of �0.6 kg (Liu
et al. 2013). With lack of clinically significant
improvement in weight profile, leptin replacement
is not indicated in common obesity.

4.1.6 Topiramate
Topiramate is a sulfamate-substituted monosac-
charide, FDA-approved for treatment of epilepsy
and migraine headache. It has been associated
with weight loss in 10–40 % of children treated
for seizures. The mechanism of action in regard to
weight reduction relates to an increase in serum
adiponectin and reduction in leptin to adiponectin
ratio (Fruebis et al. 2001) but may also be related
to dysgeusia (Boland et al. 2015). A placebo-
controlled RCT in adults demonstrated weight
reduction ranging from �4.8 % to �6.3 % in
those treated with topiramate (64–384 mg/day)
compared to �2.6 % in the placebo group (Bray
et al. 2003). Another large RCT in adults favored
topiramate to placebo in weight reduction, but
sponsors ended the study early to develop a new
controlled-release formation to improve tolerabil-
ity (Wilding et al. 2004). No pediatric trials have
been done to date, but are currently underway
according to clinicaltrials.gov. Adverse effects of
topiramate include parasthesias, cognitive dys-
function, somnolence, fatigue, and nervousness.
Cognitive effects are worrisome as there is some
evidence that these effects may be long term even
with dose reduction (Aarsen et al. 2006).

4.1.7 Phentermine/Topiramate
and Lorcaserin

Approved by the US FDA for adult use in 2012 as
an adjunct to lifestyle modification in adults with
BMI greater than 30 or 27 kg/m2 with obesity-
related comorbidities, lorcaserin and phenter-
mine/topiramate are the only other US
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FDA-approved medications for treatment of obe-
sity in adults beyond orlistat (Fleming et al. 2013).
In this combination of phentermine/topiramate,
topiramate is formulated as extended release.
Results of several studies show a majority (i.e.,
up to 75 %) of patients treated achieve 5 % or
greater weight loss. Side effects were infrequent,
but included blurry vision, headache, irritability,
dizziness, insomnia, depression, and anxiety
(Fleming et al. 2013). This combination has not
been studied in children or adolescents.

Lorcaserin is a serotonin 5HT2c receptor ago-
nist studied in obese adults with comorbidities. In
the BLOSSOM trial, adults with BMI between
30 and 45 kg/m2 or BMI between 27 and 29.9
kg/m2 with obesity-related complications were
randomized to lorcaserin 10 mg daily, 10 mg
twice daily, or placebo in addition to lifestyle
modification. Mean BMI changes were �5.8 and
�4.7 kg/m2 in twice daily and daily dosing,
respectively, versus�2.8 kg/m2 in placebo (Fidler
et al. 2011). Headache, nausea, and dizziness were
the most cited side effects in this particular study,
while other side effects reported include
nasopharyngitis, upper respiratory infection,
back pain, and fatigue (Boland et al. 2015).
Lorcaserin is not yet approved in children or ado-
lescents, but a safety and tolerability study is in
progress according to clinicaltrials.gov.

There are few pharmaceutical treatment
options for adults with obesity and even fewer
for children with obesity. Orlistat remains the
only US FDA-approved treatment option in
12–16-year-old obese adolescents, which has
shown modest short-term efficacy with less cer-
tain long-term benefit. Metformin is often used as
an adjunct, though the long-term benefit remains
elusive. Current research is testing the safety and
efficacy of topiramate and lorcaserin in adoles-
cents, which may increase the breadth of treat-
ment options for childhood obesity.

4.2 Pharmacologic Treatment
of Metabolic Syndrome

Metabolic syndrome encompasses a variety of
obesity-related comorbidities including

dyslipidemia, hypertension, and increased plasma
glucose. We will discuss the effect of orlistat and
metformin in the treatment and prevention of
these comorbidities in children and adolescents
and briefly discuss specific treatment of abdomi-
nal obesity and dyslipidemia.

4.2.1 Orlistat
Many of the studies evaluating orlistat in the treat-
ment of obesity included secondary outcomes
including waist circumference, lipid profiles, and
glucose regulation. The small, open-label trials
done by McDuffie et al. showed reduction of
waist circumference, total cholesterol,
low-density lipoprotein (LDL), and insulin levels
but no improvement in high-density lipoprotein
(HDL) or glucose parameters in adolescents
receiving orlistat in addition to participation in a
behavioral weight loss program (McDuffie
et al. 2002b, 2004). In the large Chanoine study
(an RCT of 539 adolescents aged 12–16 years
with BMI �2 units above 95th percentile, who
were monitored over 54 weeks), least squares
mean of waist circumference was reduced by
�1.55 cm in the orlistat group compared to a
gain of +0.12 cm in the placebo group. However,
they found no significant difference in blood pres-
sure, insulin, glucose, or lipid parameters
(Chanoine et al. 2005). A large meta-analysis of
pharmacologic agents used in the treatment of
obesity in children adolescents, including orlistat,
found no significant difference in lipids, glucose,
or insulin in those treated with orlistat compared
to placebo (Viner et al. 2010).

4.2.2 Metformin
In obese adults with impaired fasting glucose
(IFG) or impaired glucose tolerance (IGT) with
risk factors, metformin is recommended by the
American Diabetes Association (ADA) as it has
been shown to be effective in prevention of dia-
betes. As the risk of T2DM is highest in obese
patients with hyperinsulinemia, metformin is
often considered an adjunct to lifestyle modifica-
tion (Pacifico et al. 2011). Many studies report
benefit frommetformin in obese hyperinsulinemic
youth with reduction of weight and improved
insulin resistance in the short term (Srinivasan
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et al. 2006; Love-Osborne et al. 2008; Atabek and
Pirgon 2008; Wilson et al. 2010; Wiegand
et al. 2010). In the MOCA trial, 8–18-year-olds
with hyperinsulinemia or prediabetes with mean
BMI-SDS +3.4 had a slight reduction in mean
BMI when treated with metformin for 6 months;
however, fasting glucose, fasting lipids, blood
pressure (BP), and waist-to-hip ratio showed no
significant difference compared to the placebo
group (Kendall et al. 2013). One study of obese
children 7–18 years addressed the effect of
6 months of metformin treatment on weight loss
and markers of inflammation, thrombosis, and
intrahepatic fat contents. The results showed
weight loss and mean waist circumference change
of �6.7 cm compared to �0.3 cm in placebo
group; however, blood pressure and fasting lipids
did not show significant improvement (Mauras
et al. 2012). The meta-analysis done by
McDonagh of obese children under age 18 years
showed a slightly greater reduction in total cho-
lesterol and triglycerides in those treated with
metformin compared to placebo. Other lipid out-
comes were not different between groups
(McDonagh et al. 2014). Of the few studies to
examine blood pressure, only four reported
changes in blood pressure, with inconsistent
results that did not reach statistical difference in
a meta-analysis (McDonagh et al. 2014). In the
RCT of metformin XR use in obese children
between 13 and 18 years, there was no significant
improvement in lipid, insulin, or glucose parame-
ters (Wilson et al. 2010; Kendall et al. 2013).

4.2.3 Drug Effects on Abdominal Obesity
Reductions in waist circumference, in addition to
overall obesity, may result in fewer obesity-
related comorbidities as recent studies have
shown abdominal obesity to be an independent
risk factor for atherogenic and diabetogenic
abnormalities in youth (Pacifico et al. 2011;
Bacha et al. 2006). Orlistat has been shown to
reduce waist circumference compared to placebo
(Chanoine et al. 2005). Metformin has shown
mixed results in its effect on abdominal obesity
(Mauras et al. 2012; Kendall et al. 2013). Obese
youth treated with exenatide demonstrated mean
waist circumference change of �2 cm compared

to �1 cm in controls, which was not significant
(Kelly et al. 2013). Overall, the results of studies
do not show profound reductions with pharmaco-
logic agents, but orlistat may be the best choice
among the available options.

4.2.4 Drug Effects on Dyslipidemia
Lipid abnormalities associated with metabolic
syndrome include elevated TG and decreased
HDL cholesterol. While there is a paucity of liter-
ature and lack of consensus guidelines regarding
pharmacologic treatment of dyslipidemia in ado-
lescents with metabolic syndrome (Pacifico
et al. 2011), many studies cited above report the
efficacy of pharmacologic agents on lipid profiles.
As described previously, the majority of the
orlistat and metformin studies showed little to no
improvement in lipid profiles. Additionally,
exenatide was not found to improve lipid profiles
in obese adolescents (Kelly et al. 2013). Guide-
lines from the expert panel for cardiovascular
health and risk reduction in children and adoles-
cents are available and provide some treatment
options (Daniels et al. 2011; Bamba 2014).
While HDL-specific pharmacologic treatment is
not discussed, triglyceride-lowering recommen-
dations are addressed in these guidelines. In gen-
eral, diet and lifestyle modification are the
mainstay for the reduction of triglycerides. Phar-
macologic treatment may be indicated for severe
hypertriglyceridemia (TG � 500 mg/dl), as it
could help prevent pancreatitis – though this
degree of hypertriglyceridemia is unlikely to be
due to obesity and metabolic syndrome. Weight
reduction is typically sufficient to improve triglyc-
eride levels; therefore, in obesity, triglyceride
management is primarily aimed at weight control
(Bamba 2014). In moderate hypertriglyceridemia
(TG >200–499 mg/dl), fish oil can be considered
if no improvement occurs after 6–12 months of
lifestyle intervention. Elevated LDL may accom-
pany metabolic syndrome. Dietary supplements,
including plant sterols and psyllium fiber, may be
incorporated to help lower LDL (Bamba 2014).
Psyllium fiber has modest reduction in LDL com-
pared to placebo (Davidson et al. 1996). Pharma-
cologic treatment is recommended in those with
persistent LDL �190 mg/dl or �130 mg/dl with
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very specific risk factors after failure to improve
with lifestyle changes over 6–12 months. Statins
are limited to those over the age 10 years or
postmenarchal (females) or beyond Tanner
2 (males) (Daniels et al. 2011; Bamba 2014).

5 Bariatric Surgery

Consideration of pediatric bariatric surgery is
recommended only in a very specific population,
as outlined by the Endocrine Society, the Ameri-
can Society for Metabolic and Bariatric Surgery
(ASMBS), and the Obesity Society (Michalsky
et al. 2012; August et al. 2008; Pratt et al. 2009).
The Endocrine Society recommends that subjects
should have attained Tanner 4 or 5 pubertal devel-
opment and be near final adult height; BMI should
be greater than 50 kg/m2 or greater than 40 kg/m2

but with significant comorbidities; morbid obesity
and comorbidities persist despite a lifestyle mod-
ification program and regardless of pharmacother-
apy usage; psychological evaluation demonstrates
social stability and competence within the family;
access to an experienced surgeon and care team
exists; and importantly, the patient displays will-
ingness and the ability to adhere to a healthy diet
and active lifestyle. The BMI cutoff recommen-
dations for bariatric surgery by the ASMBS and
the Obesity Society are less stringent at 35 and
40 kg/m2, respectively, in the presence of comor-
bid disease (Pratt et al. 2009; Michalsky
et al. 2012). Even if the above criteria are met,
bariatric surgery is highly discouraged in preado-
lescents, pregnant or breastfeeding adolescents
and those with plans to become pregnant within
2 years, patients with eating disorders or untreated
psychiatric disorders, and individuals with
Prader-Willi syndrome (August et al. 2008).
Given the requisite intensive lifestyle changes
needed with bariatric surgery, a multidisciplinary
team approach is recommended when pursuing
the surgery, including the presence of a psychol-
ogist, nutritionist, physical therapist or exercise
physiologist, a patient coordinator, and perhaps
even a social worker in addition to the surgeon
(Wulkan and Walsh 2014).

5.1 Types of Bariatric Surgery

The most commonly performed bariatric proce-
dures for adults include laparoscopic adjustable
gastric banding (LAGB), laparoscopic sleeve gas-
trectomy (LSG), and Roux-en-Y gastric bypass
(RYGB). However, as of 2011, LAGB and LSG
were not FDA-approved in adolescents, but
RYGB was approved for adolescent weight loss
surgery. Less commonly performed procedures
include the malabsorptive bariatric surgeries,
jejunoileal bypass and biliopancreatic diversion,
and duodenal switch procedure (Levitsky
et al. 2009; Mun et al. 2001). Malabsorptive bar-
iatric surgeries involve anatomic rearrangements
of the intestine for the purpose of decreasing the
working length or effectiveness of the gut mucosa.
Given the high morbidity and mortality associated
with malabsorptive bariatric procedures, these
procedures are not recommended in pediatric
patients (August et al. 2008).

LAGB is a restrictive bariatric technique in
which an adjustable prosthetic band is used to
encircle the proximal stomach and separate it
into a small pouch along with a large remnant
(Mun et al. 2001). LSG is another restrictive bar-
iatric technique in which resection of a part of the
greater gastric curvature results in a reduced gas-
tric volume (Broderick et al. 2014). RYGB simi-
larly reduces the gastric volume to the size of a
small pouch via staples, which is then reconnected
to a segment of the inferior jejunum; thus, the
lower stomach, duodenum, and proximal jejunum
are bypassed. RYGB, thus, results in dumping
physiology in addition to restrictive physiology
(Mun et al. 2001).

5.2 Outcomes of Bariatric Surgery

Bariatric surgery has had favorable results with
regard to the reduction in insulin resistance,
hypertension, and dyslipidemia in numerous
adult studies, and these positive results are starting
to become apparent in adolescent surgeries as
well. Bariatric surgery is thought to result in
improvements in insulin resistance secondary to
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the weight loss, although the specific mechanisms
are unclear (Coppini et al. 2006). In a meta-
analysis of 11 studies (one of which included
adolescents) with nearly 800 obese individuals,
bariatric surgery led to greater improvement in
body mass and increased remission rates of type
2 diabetes along with metabolic syndrome within
a 2-year follow-up period (Gloy et al. 2013).

RYGB is an approved weight loss surgery for
adolescent patients in the United States. In 78 ado-
lescent subjects, RYGB was shown to reduce the
proportion with insulin resistance from 70 % to
3% at 2 years postoperatively (Olbers et al. 2012).
In the same study, LDL decreased from 2.61 to
1.99 mmol/L (100.8–76.8 mg/dL), with similar
reduction in triglycerides. Mean blood pressure
was lowered from 125/77 to 117/70 after 2 years
(Olbers et al. 2012). A multicenter study from the
Pediatric Bariatric Study Group found that mean
BMI decreased from 56.5 kg/m2 preoperatively to
35.8 kg/m2 1-year postoperatively in subjects who
had RYGB compared to a nonsignificant decrease
in BMI from 47.2 to 46 kg/mg2 in nonsurgical
patients. Furthermore, significant improvements
in triglycerides, total cholesterol, fasting blood
glucose, and fasting insulin levels were also
noted in postoperative RYGB patients (Lawson
et al. 2006). A retrospective evaluation of 11 ado-
lescent patients in the United States who had
undergone RYGB found no mortalities and
improvement in self-esteem, productivity, and
social functioning from survey data in 9 of the
11 patients (Collins et al. 2007).

In preliminary pediatric studies, LAGB has
resulted in improvements in both weight and met-
abolic complications (Horgan et al. 2005). In a
study of 73 obese adolescents, percent of excess
weight loss was over 55 % both at the 1- and
2-year follow-up periods. Mean baseline BMI
was 48 � 7 kg/m2, and mean BMI at 1 and
2 years was 34 � 8 and 32 � 6 kg/m2, respec-
tively. Of the 51 presurgical comorbidities,
44 were either completely resolved or improved
following surgery (Nadler et al. 2008). In another
study of 50 Austrian adolescent patients receiving
LAGB,mean BMI decreased from 45 � 8 kg/m2

at the time of surgery to 33 � 7 kg/m2 after 1.5

years, and two-thirds of preoperative
comorbidities resolved (Silberhumer et al. 2006).
A study of 60 Swedish adolescents receiving gas-
tric banding also showed an improvement in BMI
from a mean of 43 kg/m2 preoperatively to
30 kg/m2 at nearly 40 months postoperatively
with no serious safety concerns (Yitzhak
et al. 2006).

Preliminary studies indicate that LSG may
actually be more efficacious and safe than
LAGB although prospective and long-term stud-
ies are needed to fully assess this. A head-to-head
comparison of LSG with LAGB in morbidly
obese adolescents found that those undergoing
LSG had greater improvements in BMI 2 years
postoperatively than those undergoing LAGB
(percent preoperative BMI loss 32.3 � 11.0
versus 16.4 � 12.7, P = 0.004). Furthermore,
more postoperative complications were noted in
patients receiving LAGB than in those who
received LSG (Pedroso et al. 2015). In another
study of 291 obese children and adolescents who
underwent laparoscopic sleeve gastrectomy
(LSG), mean BMI preoperatively was 48.3 �
10 kg/m2, and mean BMI change was �19.6 �
6.4 kg/m2 48 months postoperatively. Minor com-
plications occurred in 12 patients (4.1 %), includ-
ing emesis, wound infections, gastroesophageal
reflux disease (GERD), bleeding, and metabolic
neuropathy that improved with injections of vita-
min B1 and B12 (Alqahtani and Elahmedi 2015).
Compared to the control group who received
weight management alone who had less than a
30 % reduction in comorbidities over a 4-year
period, those who received bariatric surgery expe-
rienced more than a 90 % resolution of
comorbidities, with substantial improvements in
obstructive sleep apnea, dyslipidemia, hyperten-
sion and prehypertension, along with diabetes and
prediabetes (Alqahtani and Elahmedi 2015).

Adult studies indicate that bariatric surgery is
more effective than nonsurgical treatments both
for weight loss and for metabolic improvements in
patients with BMI � 40 kg/m2 with less than a
1 % mortality rate (Maggard et al. 2005); how-
ever, long-term data on pediatric patients is
scarce. Preliminary pediatric data, however,
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indicates the following: both LAGB and RYGB
result in effective and significant pediatric weight
loss (August et al. 2008). Furthermore, moderate
evidence demonstrates that no operative or post-
operative deaths occurred with LAGB (after a
follow-up period of 1–85 months) or in RYGB
(after a follow-up period of 2 weeks to 6 years)
(August et al. 2008). However, nearly 8 % of
patients receiving LAGB required reoperation
for various complications, and complications
following RYGB ranged frommild to severe com-
plications (including severe malnutrition, pulmo-
nary embolism, and gastrointestinal obstruction).

More long-term data on outcomes of pediatric
bariatric surgery is needed. An ongoing multicen-
ter study, the Teen Longitudinal Assessment of
Bariatric Surgery (Teen-LABS) study, is prospec-
tively investigating outcomes of adolescent bar-
iatric surgery and is expected to provide
information on the types of surgeries best suited
for adolescent patients while also giving informa-
tion on safety and efficacy of the procedures
(Michalsky et al. 2014).

6 Cross-References

▶Adipokines and Metabolism
▶Childhood Environment and Obesity
▶Diet, Exercise, and Behavior Therapy in the
Treatment of Obesity and Metabolic Syndrome

▶Genetics of Obesity
▶Global, National, and Community Obesity Pre-
vention Programs

▶Overview of Metabolic Syndrome
▶ Pharmacotherapy of Obesity and Metabolic
Syndrome
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Abstract
Although some high-income countries have
managed to flatten the rate of increase in their
(already high) obesity rates, no country in the
world has been able to reverse the obesity
epidemic. Obesity prevention is not an easy
task because it requires multiple population-
wide policy interventions targeted at global,
national, and community settings. Public
health strategies must be comprehensive and
multisectoral and range from improving indi-
vidual behavior to modifying the obesogenic
environment, from promoting an individual
responsibility to changing health policy, and
from targeting adults to adopting a life-course
approach. The latter approach has recently
been recognized in global strategies as critical
to curb the obesity prevention. It stresses the
importance of early intervention during the life
cycle to preventing obesity in the population.
Interventions targeting the preconception
period aim to assist parents-to-be in the best
shape as possible, preferably resulting in
women with a healthy prepregnancy BMI,
lower gestational weight gain, and postpartum
weight retention. Interventions in the postnatal
phase aim to ensure the provision of sufficient
and nutritious food to infants, children and
adolescents to promote healthy growth. Com-
prehensive food policies are needed to create
an enabling environment for infants and chil-
dren so that they can acquire healthy food
preferences and targeted actions to enable

R. Biesma (*)
Department of Epidemiology and Public Health Medicine,
Royal College of Surgeons in Ireland, Dublin, Ireland
e-mail: Rbiesma@rcsi.ie

M. Hanson
Institute of Developmental Sciences, Faculty of Medicine,
University of Southampton, Southampton, UK
e-mail: m.hanson@soton.ac.uk

# Springer International Publishing Switzerland 2016
R.S. Ahima (ed.), Metabolic Syndrome,
DOI 10.1007/978-3-319-11251-0_47

851

mailto:Rbiesma@rcsi.ie
mailto:m.hanson@soton.ac.uk


disadvantaged populations to overcome bar-
riers to meeting healthy preferences. We
argue that a focus on these so-called early life
risk factors is essential in obesity prevention
and could be the missing link in stopping the
vicious cycle of obesity begetting obesity.

Keywords
Early life • Life course • Prevention strategies •
Obesity

1 Introduction

Obesity is now one of the most important public
health threats worldwide and is a major risk factor
of noncommunicable diseases (NCDs) (Organiza-
tion WH 2014). The worldwide prevalence of
obesity has more than doubled since 1980, with
1.9 billion adults aged 18 years and older over-
weight in 2014 (World Health Organization
2014). A particular concern is childhood obesity.
More and more children are becoming obese,
especially in low- and middle-income countries,
and these children are more likely to stay obese in
adult life (Nader et al. 2006).

The obesity epidemic is a complex multifacto-
rial health problem, affecting society as well as
individuals, and single, isolated interventions are
unlikely to work (World Health Organization
2012). Interventions need to address behavioral,
cultural, social, political, economic, environmen-
tal, and physiological factors and their interrela-
tionships throughout the life course. Governments,
health-care organizations, schools, work settings,
neighborhoods, communities, individuals, and
families need to work together to create an envi-
ronment where the healthy option is the default
choice (Friel et al. 2007). Prevention starting early
in life, even before birth, is likely to be the most
cost-effective and feasible approach for many
countries (Baidal and Taveras 2012; Darnton-Hill
et al. 2004; Gluckman and Hanson 2008; Muller
et al. 2001). This chapter provides an overview of
promising strategies for obesity prevention at
global, national, and community levels. First, we
outline the life-course approach with a focus on
early prevention of obesity. Then, we describe the

guiding principles for the development of a global
NCD prevention strategy, followed by national
approaches for population-based obesity preven-
tion. In the last section we will look at community-
based interventions in early life.

2 Life-Course Approach

Evidence is accumulating that obesity should be
prevented using a life-course approach, beginning
in early life and continuing throughout every stage
of the life course (Garmendia et al. 2014; Uauy
et al. 2010; Hanson et al. 2012; Perez-Escamilla
and Kac 2013). Perez-Escamilla and Kac (2013)
described two evidence-based cycles that help to
understand the need for an early focus of the life-
course approach (Perez-Escamilla and Kac 2013).
The first cycle in the life-course approach is the
“maternal” cycle when prepregnancy overweight
(especially primiparous) women are more likely to
gain and retain excessive weight during pregnancy
and after delivery. The second or “offspring” cycle
indicates that the children of prepregnancy over-
weight women have an increased risk for storing
excessive fat themselves, especially if the mother
gained excessive weight during pregnancy, and
the infant is not (exclusively) breastfed for the
first 6 months and is introduced early to solids
and sugar-sweetened beverages. Such infants are
then more likely to grow rapidly in the first year of
life, which in itself is an important risk factor for
the development of obesity in early childhood. If
during the toddler and preschool period exposure
to an obesogenic environment is continued, the
child is more likely to remain overweight or
obese during the primary school and adolescent
years and indeed as an adult.

Socioeconomic status (SES) is an important
mediator in this intergenerational cycle. Young
low-SES mothers are less likely to breastfeed,
and if they do, for a shorter duration, they are
more likely to start early with formula and cow’s
milk consumption (Puhl et al. 2013). These
mothers are more likely to be overweight and
obese and less likely to adhere to lifestyle guide-
lines. This all implies a vicious cycle of “obesity
begetting obesity”: a girl born to an overweight or
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obese low-SES mother is very likely that she her-
self will enter her first pregnancy being overweight
and obese (see Fig. 1). The pattern of “obesity
begetting obesity” in low-SES mothers has been
mostly apparent in high-income countries but is
now rapidly emerging in low- and middle-income
countries affected by globalization, urbanization,
and economic development. These countries are
now faced with a double burden of over- and
undernutrition which both have major implica-
tions for the obesity epidemic (Perez-Escamilla
and Kac 2013; Barker et al. 1993).

3 Obesity: A Global Problem
Requires a Global Strategy

There are several reasons why a global view of
obesity prevention is helpful. The first is that
obesity is genuinely a global problem, because
the prevalence of overweight and obesity is static
or increasing in every country so far examined.
National, regional, and global trends in body mass
index (BMI) since 1980, from systematic analysis

of health examination surveys and epidemiologi-
cal studies with 960 country-years and 9.1 million
participants from 199 countries and territories,
showed large variations in the rates of overweight
and obesity globally. 19 countries showed a non-
significant decrease since 1980 while at the other
extreme, the mean BMI increased at the rate of 2.0
kg/m2 per decade over this period in adults over
the age of 20 years (Finucane et al. 2011). The
global trend between 1980 and 2008 was 0.4
kg/m2. Recent analyses have indicated the impact
of these trends and emphasized the need for global
action (Ng et al. 2014).

A second reason is that the increase in over-
weight and obesity is associated with increases in
NCDs in every country. However, these global
trends mask substantial regional differences in
risk. Some Asian populations show large increases
in prevalence ofNCDs such asmetabolic syndrome
at much lower levels of BMI or waist-hip ratio than
Caucasian populations (McKeigue et al. 1991).
Asian Americans have greater prevalence of meta-
bolic syndrome despite lower BMI (McKeigue
et al. 1991). In part, this appears to be due to greater

Fig. 1 Life-course approach to obesity
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abdominal fat and less skeletal muscle in the for-
mer, constituting two risk factors for type 2 diabetes
which starts in early development (the “thin-fat”
Indian baby syndrome) (Lakshmi et al. 2012). A
further complication is that, at a similar BMI, ethnic
groups in the same country can show different
patterns of disease (Goff et al. 2013).

A third reason is that both basic and clinical
research indicate that there are fundamental devel-
opmental reasons for the increase in obesity glob-
ally. They include the effects of “mismatch”
which occurs when aspects of the developmental
environment such as nutrition, which induce
adaptive changes in the phenotype of the off-
spring, are not met by similar aspects in the post-
natal environment (Gluckman and Hanson 2006).
The changes in body composition and physiolog-
ical control mechanisms in individuals exposed to
a poor nutritional level prenatally leave them
“mismatched,” i.e., unprepared to meet the chal-
lenges of the contemporary, urban obesogenic
environment. This mismatch is an important fea-
ture of populations going through socioeconomic
and nutritional transitions and of vulnerable
groups such as economic migrants and ethnic
minority groups (Drewnowski and Popkin 1997;
Kalhan et al. 2001). The underlying mechanisms
are beginning to be elucidated (Haugen
et al. 2005), revealing how the human species
appears to have evolved a propensity to deposit
body fat during prenatal development, perhaps to
protect brain growth postnatally (Kuzawa
et al. 2011). The fact that these processes appear
to be common to members of our species to dif-
ferent degrees in different settings and that their
operation may be identified in early life through
the use of biomarkers (especially epigenetic
changes) (Godfrey et al. 2007) provides a mecha-
nistic basis for believing that global interventions
may be feasible.

3.1 Need for Early Life
Interventions Now Recognized
in Global NCD Strategies

These insights have become clearer over the first
decade of the twenty-first century. The greater

health problem posed by NCDs than by commu-
nicable disease, accidents, and other causes of
mortality in both men and women globally was
not identified in the Millennium Development
Goals (MDGs), despite some related to maternal
and child health. Nonetheless, the challenge posed
by obesity and associated NCDs, in particular in
developing countries and other deprived
populations, was clearly evident from the Global
Strategy for the Prevention and Control of NCDs
2000 and the Global Strategy on Diet, Physical
Activity, and Health 2004 (Organization WH
2004). In 2008, the need for population-based
prevention and a multisectoral approach as being
vital to addressing rising levels of
noncommunicable diseases was translated into
concrete action in the World Health Organization
(World Health Organization) Action Plan for the
Global Strategy for the Prevention and Control of
NCDs 2008–2013 (World Health Organization
2008) and endorsed at the Sixty-First World
Health Assembly in May 2008. In September
2011, the High-Level Meeting of the United
Nations General Assembly convened a summit
to address the issue, resulting in the Political Dec-
laration of the Prevention and Control of
Noncommunicable Diseases of September 2011.
There are several new elements in the UNGA
Political Declaration, of which one of the most
striking refers to the need to recognize the part
played by early developmental origins of condi-
tions such as obesity in the problem. Phrased in
this way, it is clear that interventions can share
common elements globally and that a life-course
approach is needed to take them forward. This
theme is very much taken up in subsequent
World Health Organization recommendations,
for example, the Global Action Plan for the Pre-
vention and Control of NCDs 2013–2020 (World
Health Organization 2008). This Action Plan
identified life-course approach as an overarching
principle and recognized that interventions in
early life often offer the best chance for primary
prevention.

In parallel, a range of nongovernmental orga-
nizations (NGOs), civil society organizations
(CSOs), and other organizations have produced
reports on the global obesity crisis, for example,
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the International Obesity Task Force (IOTF)
(Swinburn et al. 2005) and the US Institute of
Medicine (IOM) (Medicine Io 2012). These
draw attention to the multifactorial basis for the
epidemic, from international, national, societal,
community, family, and personal components,
each of which has to be addressed simultaneously,
albeit with differing emphases in different coun-
tries, if the problem is to be effectively addressed.
A picture therefore emerges of a truly integrated
approach to the problem across both temporal (life
course) and spatial (from personal to public)
domains. The economic benefits of intervention
have been calculated (Dobbs et al. 2014) and
make a strong case for interventions. This is
strengthened still further by the clear perception
that obesity and associated NCDs are associated
with social inequalities in health (Marmot 2005)
and thus raise rights and ethical issues.

The life-course aspect of obesity prevention
focuses attention on starting early, for example,
in childhood. In 2014, The Director-General of
World Health Organization established a Com-
mission on Ending Childhood Obesity (ECHO),
which has met several times, consulted widely,
and aims to report in mid-2016. The Commis-
sion’s Interim Report in 2015 identified key issues
including the need to tackle the obesogenic envi-
ronment in which children and adolescents grow
and develop and the importance of a life-course
approach to address the risk factors for childhood
obesity (World Health Organization 2015). One of
the thorny issues with which the ECHO Commis-
sion will have to engage, as will the architects and
actors of the SDGs at all levels, is the role of the
private sector, especially the food companies. The
global multinational food companies have been
pilloried repeatedly, “big food” being likened to
“big pharma” in terms of conflicts of interest
(Swinburn et al. 2011; Beaglehole et al. 2011).
Many proposals to restrict their influence through
legislation, taxation of unhealthy products, have
been made (Cecchini et al. 2010), although ques-
tions have been raised about whether such fiscal
measures may merely widen inequalities in health
(Swinburn 2008) and they may not be compatible
with trade agreements, UN member state financial
policies, etc. Some successes in this respect have

been achieved (e.g., Mexico’s soft drink tax has
been effective in reducing soda consumption and
in turn had an effect on the rate of obesity). It
seems likely that a more inclusive approach to
collaboration to address the problem with “as
appropriate” the private sector as suggested in
the UNGA Political Declaration of 2011 will be
needed. New frameworks for public-private part-
nerships with the food industry, to provide trans-
parency and control of conflicts of interest, are
now being discussed (Alexander et al. 2015).

4 National Obesity Prevention:
Focusing on the Obesogenic
Environment

Traditionally, public health strategies to promote
healthy lifestyles have targeted the individual
(Belay and Dietz 2009). However, recently this
paradigm is shifting toward the environment in
which individuals make choices on food con-
sumption and physical activity. Creating support-
ive environments requires the use of policy
instruments, such as laws and regulations, taxa-
tion and subsidies, and advocacy to the public and
private sector and other jurisdictions (World
Health Organization 2012). They involve shifting
the responsibility of healthy behavior from indi-
vidual to the national level and typically target the
so-called social determinants of health (Bambra
et al. 2009).

Although there are several key players in obe-
sity prevention at the national level, such as the
government, the private sector, and civil society/
nongovernmental organizations (NGOs), govern-
ments generally lead and drive policy changes
(World Health Organization 2012). Ministries of
Health play a leading role in developing and
implementing health policies and bringing
together other ministries, the private sector, health
professional bodies, academics, and NGOs that
are needed to effectively address obesity and
NCD risk in subpopulations (Swinburn
et al. 2013). However, the determinants of obesity
are complex, and a key challenge for governments
is to make the most appropriate and effective mix
of multiple policy-based obesity prevention
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interventions, across different settings, levels, and
sectors. Strategies are usually combined so as to
complement each other.

4.1 National Policies for Obesity
Prevention

There are different public health strategies for risk
reduction available at the national level. These are
usually categorized as (i) “upstream” policies
which are broad social and economic conditions
(socio-ecological approach) that are indirectly
influencing population behavior,
(ii) “midstream” or behavioral policies which are
directly influencing population behaviors, and
(iii) “downstream” policies which support health
service and clinical interventions (typically indi-
vidual based) (Sacks et al. 2008). The upstream
(socio-ecological) approach aims to influence the
underlying determinants of health in society and
represents the greatest potential for obesity pre-
vention by creating environments that support
healthy diets and physical activity (Cecchini
et al. 2010; Sacks et al. 2009; Dobe 2013). This
approach is in line with Geoffrey Rose’s original
idea of “population-based prevention approaches”
which focus on changing the contextual condi-
tions of risk rather than the individual risk per se
(Rose 1994). Upstream policies target the food
environments, physical activity environments,
and the broader socioeconomic environments
(such as taxation, employment, education, hous-
ing, and welfare) and can improve outcomes
across all socioeconomic groups, both adults and
children, and often with greater cost-effectiveness
than individual interventions (World Health Orga-
nization 2012).

The midstream policy approach aims at
influencing directly the behavior of subpopula-
tions to improve eating and physical activity. In
order to influence behavior directly, interventions
need to take place in settings where people eat
and/or can be physically active, such as schools,
workplaces, households, hospitals, prisons, and
military establishments (Swinburn et al. 1999).
Government policy instruments to influence
behavior directly are almost exclusively based

on education- and campaign-based programs.
Downstream policy approaches supporting health
services and medical interventions are predomi-
nantly focused on obesity management rather than
prevention. These are typically individual based
rather than population based. Both downstream
investments (individualized health care) and
upstream investments (high-level policy and leg-
islation) are both needed to alter obesogenic envi-
ronments by providing incentives for healthy
eating and physical activity (Walls et al. 2011).
In addition, integrated healthy living strategies
(healthy eating, active living, and mental health)
are needed to address common risk factors asso-
ciated with obesity and related chronic diseases
(Flynn et al. 2006). In the next section, we will
focus on population-based prevention strategies
with specific emphasis on childhood and discuss
the most important “upstream” and “midstream”
interventions: policies influencing the food envi-
ronment, policies influencing physical activity
environment, and social marketing campaigns.

4.1.1 Population-Wide Policies
Influencing the Food Environment

The aim of these policies is to alter the food
environment so that the healthy choice will
become the easy choice. They are based on
national nutrition guidelines, food selection
guides, and policies relating to breastfeeding and
infant nutrition (World Health Organization 2012;
Institute of Medicine 2012). For example, the
Institute of Medicine (IOM) in the United States
offers detailed recommendations, strategies, and
action steps for implementation by key stake-
holders and sectors for accelerating progress in
obesity prevention (Institute of Medicine 2012).
Evidence suggests that a number of policy inter-
ventions in food environments are cost-effective
and have the potential to prevent obesity in the
population (Lehnert et al. 2012). These are related
to combined efforts to reduce unhealthy food and
beverage options and to increase the availability
and reduce the prices of healthier food and bever-
age options (Williams and Mummery 2013).
Examples are regulations to reduce food market-
ing to children, “nutrition labeling” to encourage
consumers to make healthy food choices, and
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increased taxation on obesogenic food and
price subsidies or production incentives for
foods that are encouraged (Organization WH
2004; World Health Organization 2012; Bodker
et al. 2015).

Hawkes, Smith, et al. (2015) went one step
further and claimed that food policies could be
more effective and sustainable in preventing obe-
sity if focused on the interaction between human
food preferences and the early life environment in
which those preferences are learned, expressed,
and reassessed (Hawkes et al. 2015). Comprehen-
sive food policies are needed that create an
enabling environment for infants and children to
learn healthy food preferences and targeted
actions that enable disadvantaged populations to
overcome barriers to meeting healthy preferences.
This is an important addition to the literature as
antenatal and infant determinants of appetite and
food preference persist through adult life (Belsky
2014; Cripps et al. 1979; Bachmanov et al. 2009).
It is well known that unhealthy behavior is highly
habitual, evolves in early life, and, once
established, is not easy to change. Again, this
suggests that the most effective time to instigate
new interventions to prevent obesity is early in
life, before appetite control, food preference, and
fat cell number are established, to make sure that
the healthy choice is not the easy choice but also
the preferred choice (Hawkes et al. 2015).

4.1.2 Population-Wide Policies
Influencing Physical Activity
Environment

Physical activity is important for healthy growth
and development of young children. It is
recommended that children and adults accumulate
at least 60 min of moderate to vigorous physical
activity every day (World Health Organization
2012). National policies should include the
encouragement of physical activity in early life
as it can help reduce stunting and encourage
healthy linear growth.

Furthermore, there is a need for multifaceted
physical activity policies to increase active and
safe methods of transport, to encourage physical
activity in school settings, and to provide sport
and recreation facilities available for all (World

Health Organization 2012). A Cochrane system-
atic review found that school-based physical
activity interventions can be effective in increas-
ing duration of physical activity, reducing time per
day spent watching television, and increasing
physical fitness levels of children (Dobbins
et al. 2009). The evidence also suggested
that children exposed to school-based physical
activity interventions are approximately
three times more likely to engage in moderate to
vigorous physical activity during the school day
than those not exposed. These are discussed fur-
ther in the section on community-based
interventions.

4.1.3 Mass Media or Social Marketing
Campaigns

Mass media or social marketing campaigns are
tools, based on commercial marketing
approaches, to increase awareness and change
attitudes toward diet and physical activity of the
whole population (Grier and Kumanyika 2010). It
is an important task of the government to use
effective social marketing campaigns to motivate
individuals to adopt healthy lifestyles and create
healthy environments, such as educating children
about selecting healthy food (Gortmaker
et al. 2011). An example is the use of national
health brands or logos to assist consumers in
making healthy food choices. However, evidence
is limited on the (long-term) effect of social mar-
keting campaigns promoting healthy diets
(Kremers et al. 2010; Lemmens et al. 2008), and
some have argued that social marketing cam-
paigns focusing on the undesirability of obesity
can be harmful (Puhl et al. 2013).

It has been suggested that the promotion of a
single simple message with frequent exposure to
increase, for example, the consumption of low-fat
milk or to promote regular physical activity is
most effective (Sacks et al. 2009). Until recently,
social marketing campaigns have primarily aimed
to influence individual behavior (also called the
“downstream approach”), but recently this has
shifted toward targeting the environment as the
means to bringing about desired change (the
“upstream approach”) (Henley and Raffin 2010).
Some have argued that social marketing
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campaigns should first consider the social deter-
minants of health before attempting to persuade
individuals to change their behavior (Sacks
et al. 2008).

5 Community Obesity
Prevention: Focusing
on the Child, Families,
and Communities

Community-based interventions are
multicomponent interventions and programs, typ-
ically tailored to the local environment.
Community-based interventions have been dem-
onstrated to be successful when applied in multi-
ple childhood settings, including home, schools,
and neighborhoods. First, we discuss community-
based obesity prevention interventions targeting
the maternal cycle followed by interventions
aimed at the offspring cycle.

5.1 Obesity Prevention via
Addressing Maternal Factors

Maternal obesity has become a major public
health issue worldwide and affects health of both
the mother and her offspring (Catalano and
Ehrenberg 2006). Maternal obesity may result
from prepregnancy obesity or excessive weight
gain. High prepregnancy BMI increases the risk
of gestational diabetes mellitus (GDM) and type
2 diabetes in women (Boney et al. 2005), while
excessive weight gain increases the risk of fetal
macrosomia, maternal overweight, and postpar-
tum weight retention (Scholl and Chen 2002).
During the postpartum period, postpartum weight
retention and additional weight gain increase the
risk of becoming obese (Siega-Riz et al. 2009).
Moreover, children who are exposed to an intra-
uterine environment of maternal hyperglycemia
are at increased risk of developing obesity later
in life (Catalano and Ehrenberg 2006; Whitaker
2004; Ferrara 2007). This suggests that pregnancy
is a key period in shaping a healthy future of
mothers and their children. However, it has not
been easy to influence health-related behavior in

pregnant women effectively. There is the wide-
spread social belief that pregnant women
should “eat for two” and rest physically
(Catalano and Ehrenberg 2006). On the other
hand, pregnancy is a time when behavior can be
challenged as a woman is more likely to improve
her lifestyle for her baby’s health (Inskip
et al. 2009).

Socioeconomic inequalities play an important
role in this scenario, with the highest prevalence
rates of obesity among low-SES mothers and their
children (Hedley et al. 2004). Nutrition knowl-
edge is poorest in low-SES mothers and affects
intake of fruit and vegetables and overall diet
quality (Beydoun and Wang 2008). This suggests
that tailored interventions may be needed to
improve maternal literacy in lower socioeconomic
groups.

5.1.1 Pregnancy Interventions
Women who gain excessive weight during preg-
nancy are more likely to retain and gain weight
after delivery, creating a vicious circle of increas-
ing body weight and obesity (Linne 2004). To
date, evidence on the effective pregnancy inter-
ventions on dietary habits, physical activity, and
gestational weight gain has been limited and
inconsistent (Oteng-Ntim et al. 2010). Some die-
tary and lifestyle interventions in pregnancy have
been found to reduce total gestational weight gain
and long-term postpartum weight retention
(Guelinckx et al. 2010; Asbee et al. 2009). Spe-
cific components of these successful interventions
were weight monitoring, setting weight goals,
education counseling, and physical activity set-
tings (Streuling et al. 2010; Tanentsapf
et al. 2011).

Furthermore, there has been some success
with antenatal lifestyle interventions in
preventing excessive gestational weight gain in
overweight/obese women and reducing the risk
of GDM (Poston et al. 2010). However, it has
been suggested that interventions in overweight/
obese women need to be more intense than in
normal-weight women and involve frequent con-
tact and emphasis on caloric restriction
(Tanentsapf et al. 2011). This may limit the pos-
sibility of such labor-intensive and costly
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interventions being implemented at wider,
national scale.

5.1.2 Preconception Interventions
Many young adults do not realize that their body
weight and lifestyle during the reproductive years
affect their future health and that of their children
(Krummel 2007). Targeting lifestyles of adoles-
cents and young couples before they become
pregnant to reduce prepregnancy BMI would per-
haps be the ideal intervention (Hanson et al. 2012;
Birdsall et al. 2009). To date, there are few pre-
conception interventions. Pregnancies are often
unplanned, and even women who are planning
to conceive often do not contact a health profes-
sional (Birdsall et al. 2009). As a result, it is
difficult to target women before conception.

Focusing interventions on adolescents and
young couples would require the promotion of
health literacy for reducing risks of obesity and
NCDs for the mother and her child(dren), such as
the importance of appropriate weight gain before
and during pregnancy and breastfeeding (Hanson
et al. 2012). It is well known that parents with low
literacy have less health knowledge and are more
likely to negatively affect their children’s health
compared with parents with higher literacy
(DeWalt and Hink 2009). Renkert and Nutbeam
defined maternal health literacy as “the cognitive
and social skills that determine the motivation and
ability of women to gain access to, understand,
and use information in ways that promote and
maintain their health and that of their children”
(Renkert and Nutbeam 2001). A systematic
review on interventions to improve health literacy
and child health outcomes found that education
classes, clearly written instructions, and counsel-
ing for parents improved health outcomes in their
children (DeWalt and Hink 2009). In improving a
woman’s ability and motivation to adhere to
health recommendations for herself and her
child, it is critical to address barriers to change,
such as time limitations, social pressure, and a
perceived lack of control (Hanson et al. 2012). It
is therefore important in intervention design to
incorporate components to tackle barriers to
adhere and improve attendance (Hartman
et al. 2011).

5.1.3 Postpartum Interventions
An additional approach to interventions targeting
couples before pregnancy would be to target
maternal weight after delivery (Birdsall
et al. 2009). It is known that women in the highest
BMI category are more likely to retain weight and
to be insufficiently active postpartum, especially
if they were less active before pregnancy, had
more gestational weight gain, worked greater
hours, and reported lack of childcare as a barrier
(Pereira et al. 2007). Clearly it is difficult to help
mothers with young children to improve aspects
of their behavior.

Indeed, the number of experimental interven-
tions for promoting physical activity and healthy
eating among newmothers is limited, and attrition
is very high in most of the interventions (Hartman
et al. 2011). Effective intervention components
targeted toward mothers aimed to promote life-
style change including nutrition advice sessions,
use of peer educators and strategies to
promote targeted food choice by reducing costs,
and those to overcome barriers to physical
activity and healthy eating. It seems that, in par-
ticular for intervening in the postpartum period,
it is essential to address the key barriers to post-
partum weight loss, such as locality, childcare
provision, and including the whole family in
goal setting and behavior change (Uauy
et al. 2010).

5.1.4 Interventions to Promote
Breastfeeding and Delay
Introduction of Solid Foods

The health benefits of breastfeeding for both
mother and child are well documented. Babies
who are not breastfed exclusively for at least
4 months are more likely to suffer health prob-
lems, such as gastroenteritis, and develop obesity.
Despite that, many women chose to formula-feed
their babies. The reasons are likely to be sociocul-
tural and may include attitudes of family and close
friends, attitudes towards breastfeeding in public,
and employment practices (Sikorski et al. 2002).
Helping and supporting women to initiate and
prolong breastfeeding is therefore critical. There
are a number of global strategies aimed at
enabling mothers to breastfeed babies, such as
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the World Health Organization/UNICEF Interna-
tional Code of Marketing of Breast-Milk Substi-
tutes (World Health Organization 1981) and the
Baby-Friendly Hospital Initiative (BFHI) (World
Health Organization and UNICEF 1991). How-
ever, breastfeeding initiation rates are still rela-
tively low, especially in low social class, income,
and education levels and among overweight and
obese women (Birdsall et al. 2009). Interventions
that have shown to have an impact on
breastfeeding rates typically included needs-
based and informal peer support in the antenatal
and postnatal period (Dyson et al. 2009; Britton
et al. 2007). Peer support can also help mothers to
breastfeed for longer. Furthermore, there is evi-
dence of a positive association between
antenatal care and breastfeeding among low-SES
women. It seems that interventions to improve
health literacy and attitudes are key to helping
mothers among all population groups to make
informed choices about breastfeeding and infant
feeding practices.

5.2 Obesity Prevention in Children

5.2.1 Home Settings
The home and family environment have the most
important and lasting influence on the develop-
ment of children’s health in general and eating
and lifestyles in particular (Gerards et al. 2011).
Parental weight has been found one of the most
robust predictors of child’s weight (Perez-Pastor
et al. 2009). Parents determine their child’s life-
style and parenting and home life, especially in
early childhood (Lloyd et al. 2014). Parenting
style, parental role modeling, family lifestyle,
responsive feeding, infant feeding, use of food
for non-nutritional purposes, exposure to
television, and sleeping habits are all risk factors
in the home environment that increase the risk of
childhood obesity (Gillman and Ludwig 2013;
Robinson et al. 2015). Young children are
dependent on parents and caregivers for food,
and parents’ choices on when to eat, responses to
children’s indication of hunger or distress, the
context in which eating happens, and foods and
portion sizes influence children’s early

learning about food and eating (Birch and Ven-
tura 2009).

Surprisingly, few interventions have been
developed that address general parenting in the
prevention of childhood obesity (Gerards
et al. 2011). These interventions provide evidence
that suggests that the promotion of authoritative
parenting is an effective strategy for the preven-
tion and management of childhood obesity. There
is some evidence that suggests that interventions
promoting authoritative parenting (high demand-
ingness, high responsiveness) are effective in
improving weight-related outcomes in children
(Uauy et al. 2010).

Other home- and family-based interventions
have been shown to be effective in affecting
child weight status. These have focused on engag-
ing with parents to support activities in the home
setting to encourage healthy eating, more physical
exercise, and less screen time (Waters et al. 2011).
Several studies found evidence for the association
between pressure and child eating and prefer-
ences. Generally, children who are rewarded for
eating certain types of food, such as vegetables,
would eat more of that food but had a decreased
preference for it. On the other hand, pressuring
children to eat certain types of food would lead to
eating less of it and having a lower preference for
it (Ogden et al. 2006).

5.2.2 Preschool Settings
Given that early childhood is a period where
children are developing food preferences and
behavior and activity behavior, interventions
and strategies to promote active living, motor
development, and healthy eating should start as
early as possible (Hanson et al. 2009). Preschool
settings (nurseries, day care, kindergarten, pre-
schools) provide excellent access to the young
child and their families to help attain and main-
tain a healthy lifestyle. Even though physical
activity guidelines for the preschool years in sev-
eral countries are inconsistent, preschoolers (aged
3–5 years) should accumulate at least 60 min of
physical activity at any intensity spread through-
out the day (Skouteris et al. 2012). This would
include any activity which gets them moving,
such as climbing stairs or moving around the
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house, playing outside and exploring the environ-
ment, and crawling, walking, running, or
dancing.

However, evidence of effectiveness of obesity
prevention programs at this early life stage is
limited (Flynn et al. 2006; Waters et al. 2011). A
systematic review and meta-analysis on the pre-
vention of overweight and obesity in young chil-
dren conducted in 2010 (Monasta et al. 2011)
identified prevention programs aimed to promote
healthy eating, physical activity, and reduced tele-
vision viewing among preschool children.
Some focused on health education or training or
had a component on physical activity, while three
of the preschool interventions included an educa-
tional component for parents. However, the
included interventions were not able to prove an
effect on weight gain or BMI, while some small
effects were observed in dietary or physical activ-
ity behavior. It has been suggested that growth
velocity or rapid weight gain (identified by cross-
ing BMI centiles) (Taveras et al. 2011) or the
timing of adiposity rebound (Whitaker
et al. 1998) could be better indicators of over-
weight and obesity in children (Monasta
et al. 2011).

5.2.3 School Settings
Schools are critical settings for obesity preven-
tion programs as they can help to establish life-
long healthy habits in school-aged children
(Flynn et al. 2006). Schools can play a particu-
larly critical role by establishing a safe and sup-
portive environment with policies and practices
that support healthy behaviors such as school
lunch programs. Schools also provide opportu-
nities for students to learn about and practice
healthy eating and physical activity behaviors
(health education). A Cochrane systematic
review of 55 published interventions found
strong evidence for the effect of child obesity
prevention programs on the relative reduction
of BMI, especially in 6- to 12-year-old children
(Waters et al. 2011). These included the follow-
ing promising strategies and policies: include
healthy eating, physical activity, and body
image integrated into regular curriculum;
include more sessions for physical activity/

fundamental movement skills throughout the
school week; create an environment and culture
that support children eating nutritious foods and
being active throughout each day; provide pro-
fessional development and capacity building
activities for teachers to implement health pro-
motion strategies and activities; and educate par-
ents in the importance of continuing these
activities at home (Waters et al. 2011).

5.3 Challenges in Obesity
Prevention

Even though governments are prioritizing actions
to tackle obesity and NCDs, there has been insuf-
ficient progress worldwide. Obesity prevalence
rates have reached a plateau in some high-income
countries but are still alarmingly high. Low- and
middle-income countries are catching up rapidly
and are faced with a double burden of under- and
overnutrition. Obesity is a complex and multifac-
torial problem that requires a comprehensive and
multisectoral approach, but all too often the
debate around obesity prevention is based on
polarizing and seemingly opposing approaches
(Roberto et al. 2015) such as:

• Individual behavior versus an obesogenic
environment

• Lack of physical activity versus unhealthy
diets

• Prevention versus treatment
• Government regulation versus industry self-

regulation
• Treatment versus prevention
• Children versus adults
• Undernutrition versus overnutrition

Simplifying the problem into dichotomizing
approaches will not reduce obesity at the popula-
tion level. Firstly, most implemented obesity pre-
vention strategies have targeted individual
behavior rather than the wider environment in a
more holistic way as part of a response to the
current dominant political climate of free markets
and individualism (Swinburn et al. 2015). Sec-
ondly, preventive interventions aimed at children
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require a large investment in both time and
resources, and the resulting health gains may not
become apparent for decades (Lehnert
et al. 2012). For politicians, the electoral cycle is
short, and there are limited resources for compet-
ing policy priorities (Lobstein and Brinsden
2014). Thirdly, the ultra-processed food industry
has been very successful in blocking government-
led regulatory and fiscal measures to modify the
obesogenic environment (Lehnert et al. 2012).

Obesity prevention has been challenging not
only because of these problems in trying to
understand its causes and solutions to obesity
but also because of the lack of evidence on
what policy actions are effective, sustainable,
and feasible (Roberto et al. 2015). This has
made it difficult for national policymakers in
the obesity field to invest in the best possible
package of interventions to reverse the obesity
epidemic (Mongeau 2008). There has been
insufficient recognition of the early origins of
obesity and the life-course trajectory which is
established during development: both research
and prevention strategies should focus more on
these concepts.

6 Summary

There is a broad range of population-level actions
that governments and other organizations can take
to prevent childhood obesity. A comprehensive
childhood obesity prevention strategy will incor-
porate a variety of approaches across a range of
areas that may include social marketing,
obesogenic environments, government policy,
legislative and fiscal measures, and wider com-
munity approaches. The concept that obesity pre-
ventions should be based on a life-course
approach with an emphasis on early life is rela-
tively new (Haugen et al. 2005). There is now
extensive evidence that the mother’s diet and
body composition before and during pregnancy
and that of her child in the first few years of
postnatal life are related to increased adiposity in
childhood, setting up a trajectory of risk which
can be tracked into adulthood (Uauy et al. 2010).
Interventions aimed very early in the life course

offer most potential for reducing obesity preva-
lence by focusing on the early, plastic phases of
development.

7 Cross-References

▶Childhood Environment and Obesity
▶Diet and Obesity (Macronutrients,
Micronutrients, Nutritional Biochemistry)

▶ Fetal Metabolic Programming
▶ Prevention and Treatment of Childhood Obe-
sity and Metabolic Syndrome

▶ Social and Community Networks and Obesity
▶The Built Environment and Obesity
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