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Abstract. We describe a method and a corresponding tool for grammar-
based test-data generation (GBTG). The basic generation principle is to
enumerate test data based on grammatical choices. However, generation
is broken down into two phases to deal with context-sensitive properties
in an efficient and convenient manner. The first phase enumerates test
data (i.e., parse trees) with placeholders. The second phase instantiates
the placeholders through post-processors. A DSL for grammar transfor-
mation is used to customize a given grammar, meant for parsing, to be
more suitable for test-data generation. Post-processors are derived from
a corresponding object-oriented framework. The actual tool, Xtextgen,
extends the Xtext technology for language development.

Keywords: Grammars. Test-data generation. Test-data enumeration.
Grammar transformation. Grammar customization. Context sensitivity.
Xtext. Xtend. Xtextgen.

1 Introduction

Test-data generation is generally an important method in software engineering
and specifically in software language engineering; see, e.g., [3,17,18]. In this pa-
per, we are interested in grammar-based test-data generation (GBTG) [16,14,8]
such that the grammar structure is interpreted for systematic generation of pos-
itive and possibly negative examples. Such data can be used to test compilers,
interpreters, virtual machines, object serializers, and other language processing
components whose input is meant to conform to a given grammar. Scenarios of
regression, stress, and identity testing are often addressed in this manner. Based
on testing hypotheses for regularity and independence [14], the resulting data
sets help revealing issues of language processing components.

In this paper, we advance the field of GBTG.

Contributions of This Paper

– We enhance an existing language modeling technology, Xtext1, seamlessly
with GBTG. Xtext readily supports a number of language implementation

1 http://www.eclipse.org/Xtext/
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aspects related to syntax, e.g., parser generation, model derivation, and error
marking, but GBTG was not supported so far.

– We use grammar transformation [5,15] to describe transparently the cus-
tomization of a grammar meant for parsing to become sufficiently controlled
for test-data generation. This approach improves grammar reuse and sepa-
ration of grammar concerns.

– We treat context-sensitive properties during test-data generation in a sys-
tematic manner. To this end, we designate placeholders to the relevant lan-
guage elements (e.g., identifiers) and instantiate them eventually by post-
processors that take a global view on test data (i.e., parse trees).

The paper’s website2 provides access to GBTG resources including Xtextgen.

Road-Map of This Paper. §2 provides an illustrative example in terms of
a simple sample language and an associated testing objective. We also discuss
relevant challenges in GBTG. §3 describes our GBTG method and the archi-
tecture of Xtextgen which implements GBTG for the Xtext technology. §4
describes a transformation-based form of grammar customization, thereby con-
trolling test-data generation. §5 describes a post-processing approach for test
data with placeholders so that context-sensitive properties can be handled both
efficiently and conveniently. §6 discusses related work. §7 concludes the paper.

2 Illustrative Example

We pick a simple example here: test-data generation for a finite-state machine
(FSM) language (FSML). Fig. 1 illustrates FSML with a sample FSM for a
turnstile for use in a metro system. Fig. 2 shows a grammar for FSML inXtext’s
EBNF-like notation with extra hints at model construction. We want to test
language processing components that depend on FSML for their input. Basic
examples of such components are an interpreter, a code generator, and a textual-
to-visual syntax translation; see [13] for some examples for FSML.

Test-data generation should enumerate fine state machines of increasing com-
plexity while exercising all grammatical choices systematically. One challenge
with the basic idea of GBTG is that the combinatorial complexity of the gram-
mar needs to be controlled, e.g., in terms of restricting depth of parse trees
or length of lists. Otherwise, the generated sets are simply too large or do not
reach syntactical structures of ‘interest’ before running out of scale. We ad-
dress this challenge by a designated test-data generation algorithm and grammar
transformation-based customization.

Another challenge is that generated test data may need to meet context-
sensitive properties because language processing components under test may as-
sume validity with regard to these properties. For instance, FSML readily comes
with well-formedness constraints as follows; see [13] for a precise description:

2 http://softlang.uni-koblenz.de/xtextgen/
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initial state Locked {
Ticket / Collect −> Unlocked;

}
state Unlocked {
Pass −> Locked;
Ticket / Eject −> Unlocked;

}

Fig. 1. A finite state machine sample in both textual and visual syntax

grammar sle.fsml.FSML with org.eclipse.xtext.common.Terminals

generate fSML ”http://www.fsml.sle/FSML”

// A FSM as a collection of multiple states
FSM: states+=FSMState∗;

// A possibly initial state with a name and multiple transitions
FSMState:
(initial?=”initial”)? ’state’ name=ID
’{’ transitions+=FSMTransition∗ ’}’;

// A transition with input, optional action and (new) target state
FSMTransition:
input=ID
(’/’ action=ID)?
’−>’ target=[FSMState|ID] ’;’;

Fig. 2. Xtext grammar of the running example

– There is exactly one initial state.
– The names of all declared states are distinct.
– All states referenced by transitions are also declared.
– The FSM is deterministic.

We handle context-sensitive properties with the help of placeholders for the re-
lated parse-tree parts, e.g., identifiers. These placeholders are rewritten to suit-
able instances in a post-processing phase. A framework of suitable tree-rewriting
functions is provided.

3 Method Overview

Consider Fig. 3 for the work and data flow of GBTG according to our method and
tool. A test engineer supplies two artifacts: an .xtext file, which (semantically, as
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Fig. 3. GBTG with Xtextgen

per Xtext) defines an Xtext grammar model, and an .xtextgen file, which
(semantically, as per Xtextgen) defines a customization of the grammar at
hand. Customization sets up placeholders and limits multiplicities. Xtextgen
processes the grammar and its customization and returns an ‘adjusted grammar’
which, in turn, is the foundation for test-data generation. ‘Initial test data’ may
contain placeholders to be instantiated by post-processing to yield ‘final test
data’. Essentially, Xtextgen operates on the Xtext grammar notation except
that arbitrary multiplicities can be expressed and there is a special form <p>
to denote placeholder symbols.

The basic generation algorithm enumerates test data (parse trees) along the
grammatical choices such that we map each grammatical expression to a possibly
infinite sequence. A case discrimination follows:

– ε (epsilon): We use a singleton sequence [‘’].
– t (terminal): We use a singleton sequence [t]
– n (nonterminal): We assume that n is defined in terms of alternatives; see

the case for alternatives below.
– <p> (placeholder): Treat as a terminal; see above.
– x y (sequence): The juxtapositions of all combinations of elements from x

and y are enumerated in a certain order. We use Cantor pairing3 rather
than a “nested loop” over the sequences of x and y. In this manner, different
elements from the two sequences are more quickly exercised.

3 http://en.wikipedia.org/wiki/Pairing_function

http://en.wikipedia.org/wiki/Pairing_function
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– x | y (alternatives): We assume an order of alternatives such that the min-
imum depth [14] of x is not larger than the one of y. (That it, it is easier
to instantiate x than y.) The sequences for x and y are combined by zipping
them together; x goes first. For instance, [‘1’,‘2’,‘3’,. . .] and [‘a’,‘b’,‘c’,. . .] are
combined as [‘1’,‘a’,‘2’,‘b’,‘3’,‘c’,. . .].

– Finite repetitions are mapped as follows:
• x? = x0,1

• x0,k = ε | x1,k

• x1,k = x | xx | xxx | x · · · x (up to k operands)

There can be infinite sequences indeed, if there is any recursion in the grammar
or if there are any infinite repetitions (‘*’ and ‘+’) left past customization. We
use one of two strategies in such a case: a) We impose a generic limit on infinite
repetitions and recursive depth. b) We only request a finite prefix of some user-
specified length, when executing the test-data generator.

The validity constraints in an Xtext language definition may deal with
context-sensitive aspects of the language. The constraints are not generally in a
form that they can be used to guide the test-data generation process for valid
models. That is, the constraints can be applied to complete parse trees, but
they cannot generally be applied to subtrees which arise during generation. It is
impractical to filter invalid complete trees afterwards, as too many invalid can-
didates would be generated. Thus, we generate parse trees with placeholders in a
first phase and we apply custom post-processors to instantiate the placeholders.
The placeholders deal with identifiers and other syntactic structures that are
directly related to the context-sensitive properties.

4 Grammar Customization

In previous work on GBTG [14,9,8], various controls have been investigated, e.g.,
limits of the depth of parse trees or elimination of combinations according to
pairwise testing. Our method uses grammar customization (i.e., transformation)
for controlling test-data generation. These transformation operators suffice for
the running example:

– “n/i : replace e/k by e′” — In the i-th alternative of nonterminal n, replace
the k-th occurrence of grammar symbol (expression) e by e′. If an index (i
or k) is omitted, then the first (i.e., the 0−th) alternative or occurrence is
assumed.

– “n/i : limit e/k to b..b′” — In the i-th alternative of nonterminal n, in the
k-th occurrence of e, limit the multiplicity of e to the range b..b′. Here, we
assume that e is of multiplicity ‘?’ (i.e., 0..1), ’+’ (i.e., 1..∗), or ’*’ (i.e., 0..∗)
and b..b′ is a proper constraint on the existing lower and upper bound. If
‘..b′’ is omitted, then we assume that b = b′.

In Fig. 4, we exerciseXtextgen’s grammar customization by transformation for
the FSML example. In line 1, the customization links to the underlying Xtext
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1 customize sle.fsml.FSML
2

3 // Use a more specific name for state names
4 FSMState : replace ID by <state name>;
5

6 // Use more specific names for transition parts
7 FSMTransition :
8 replace ID/0 by <input value>;
9 replace ID/1 by <action value>;

10 replace ID/2 by <state reference>;
11

12 // Require bounds for the number of states
13 FSM : limit FSMState∗ to 1..6;
14

15 // Limit the number of transitions
16 FSMState : limit FSMTransition∗ to 1..6;
17

18 // Replace optional ”initial” keyword by placeholder
19 FSMState : replace ”initial”? by <initial>;

Fig. 4. Grammar customization for the running example

grammar. In line 4, we introduce a placeholder state name for the occurrence
of ID in the position of the name of a declared state. In this manner, a post-
processor can control the introduction of state names. Likewise, in lines 7-10, we
designate specific placeholders to the constituents of a transition, which would
otherwise all be generated according to a general notion of ID. In line 13, we
require that only FSMs with 1 to 6 states are generated. In line 16, we require
that the number of transitions per state is between 1 and 6. Here, we assume
that we want to limit the combinatorial complexity per state. Finally, in line 19,
we replace the optional ‘initial’ keyword by a mandatory ‘initial’ placeholder.
Thereby, we turn off the combinatorial choice of whether or not to have an
‘initial’ keyword and we delegate it to post-processing to enforce the constraint
of a single initial state.

5 Test-Data Postprocessing

Conceptually, a post-processor is a parse-tree rewriting function. The typical
rewrite step is the replacement of a placeholder by a suitable instance. Post-
processors may require state, e.g., a custom symbol table, to handle context-
sensitive properties. A post-processor may perform branching (by returning mul-
tiple output trees per input tree). In principle, a post-processor may also act like
a filter (by rejecting input trees). A test-data generator usually combines several
post-processors through function composition.

Fig. 5 shows the composition of several post-processors for the running exam-
ple. Post-processors are programmed in Xtend, which is the Java-like language
used with Xtext. The individual post-processors are also described in Xtend
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// Prepare the individual post−processors
val pickInitial = new PickInitial // Pick an initial state
val removeInitials = new RemoveInitials // Remove remaining placeholders
val nameStates = new NameStates // Assign names to declared states
val useStates = new UseStates // Use valid names in transitions

// Compose the post−processors
val fsmlPP = pickInitial
.andThen(removeInitials)
.andThen(nameStates)
.andThen(useStates)

Fig. 5. Xtend post-processors for FSML

// A new branch for each match
class PickInitial extends ForEachBranch {
override protected match(Leaf leaf) {
return leaf.value == ”<initial>”

}
override protected build(Leaf leaf) {
return new Leaf(leaf.label, ”initial”)

}
}

// Replace by match by epsilon
class RemoveInitials extends RemoveAll {
override protected match(Leaf leaf) {
return leaf.value == ”<initial>”

}
}

Fig. 6. Two iterators for treating initial states

while taking advantage of Xtextgen’s framework of tree-rewriting functions.
For instance, Fig. 6 shows the post-processors dealing with the constraint for a
single initial state. The first post-processor branches on each possible choice of
an initial state and replaces the placeholder by the keyword. The second post-
processor removes the placeholders which were not picked in any given branch.
In this manner, all options for a single initial state are effectively enumerated.

For brevity, we do not show theXtend code for the remaining post-processors.
Conceptually, nameStates generates a new state name for each declared state.
The parse tree rewritten by nameStates is annotated with the set of gener-
ated names so that useStates can pick from it by random selection. Thus, both
nameStates and useStates are non-branching (1:1) post-processors. Generally,
the ability to pass data between post-processors is an important technique for
handling context-sensitive properties.
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Test-Data Statistics for the Running Example. To give an idea of the size
of test-data sets and execution time of test-data generation we report on two
runs of Xtextgen for the FSML example. In the first configuration, we have
fully constrained all cardinalities to 1..1. In the second configuration, we have
allowed up to 6 states with up to 6 transitions per state; all actions are required.

The measurements were taken on a Windows 8.1 machine with an Intel Core
i7-3632QM CPU at 2.20 GHz, 12.0 GB of RAM and a 750 GB harddrive with
8GB of SSD cache. The Java 8 Update 5 runtime environment was used. The
generation was executed on Eclipse Luna with DSL developer platform installed,
including Xtext 2.6.1. Persistence of test data set was achieved by serializing
the parse trees and appending them to a text file using UTF-8 encoding.

Configuration 1 2

# of generated test-cases 1 324726

Size of test-data set 85B 0.257GB

Time for test-data set generation 606.1ms 2403.9s

Time for post-processing 545.6ms (90.0%) 354.0975s (14.7%)
Time for persistence 7.1ms 2049.8s

6 Related Work

Some forms of grammar-based test-data generation have been used in compiler
testing for many years; see [3,12] for surveys. In more recent work [16,14,9,8],
domain-specific languages for test-data generators have been proposed. These ef-
forts differ in the underlying generation algorithms, the available control mech-
anisms, (e.g., depth control or pairwise testing) and the linguistic style (e.g.,
annotation versus custom grammars).

For instance, the YouGen tool [9,8] generates test data by depth while relying
on annotations of the nonterminal rules. Annotations control pairwise testing,
derivation limits for depth control and Python methods to be applied for global
as well as local pre- and post-processing. Xtextgen favors grammar trans-
formation over annotation. Also, placeholders combined with composable post-
processors support an effective global view on test data with context-sensitive
properties. Xtextgen is fully integrated with Xtext.

The LPTL language [11,10] for test-data specification supports test-driven
development with designated IDE support for the language engineer. To this
end, the language under test is embedded into the language for test-data specifi-
cation. Test-data generation is readily mentioned as an excellent complementary
approach to LPTL for catching corner cases that the language engineer did not
think of.

Our approach is inspired by our previous work [14] in terms of assuming
systematic, controlled enumeration of test data. However, there are several im-
portant differences. Firstly, we use an enumeration algorithm including Cantor
pairing and mandatory multiplicity control as opposed to combinatorial cover-
age by depth. Secondly, grammars can be reused such that they are customized
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by separate transformations. Thirdly, the treatment of context-sensitive proper-
ties is more standardized by dedicating an extra phase to placeholder handling
on the grounds of a framework of tree-rewriting functions. In previous work,
context-sensitive properties were addressed by either complicated formalisms
and algorithms limiting scalability of test-data generation [7] or more ad-hoc
means of post-processing [14]. Our approach is deeply integrated with Xtext
and the corresponding ecosystem; this includes Eclipse.

Xtext bridges between grammarware (text-based concrete syntax) and mod-
elware (EMF-based abstract syntax). This sort of bridging is not completely
straightforward [1]. Formalization problems caused by the tree structure of the
abstract syntax tree lead to a restriction of the metamodel classes that can be
transformed back into the grammar. This relates to the property of (for example)
EMF metamodels to provide a containment structure.

In the areas of metamodeling and model transformation, the issue of test-data
generation arises, too [2,6]; metamodels are instantiated in a way similar to our
approach of using a grammar in generative mode. When testing model trans-
formations, e.g., in model-driven engineering [19,4], test-data generation could
be based on both the metamodels of the source models and the transformation
description itself. The latter aspect goes beyond our approach and tool.

7 Concluding Remarks

We have described a method and a tool (Xtextgen) for grammar-based test-
data generation (GBTG). This effort has been informed by our earlier work on
GBTG, specifically [14]. Our main objective is to create a GBTG method and
tool that is open-source, well-integrated with an existing technology for language
definition (Xtext), suitable for large-scale test-data generation, transparent in
terms of achieved grammar coverage, amenable to customization (controls) and
handling of context-sensitive properties.

In our experience, practical grammar-based test-data generators tend to treat
context-sensitive properties in an ad-hoc manner. In our approach, we aim at
leveraging developer knowledge of well-formedness or validity to identify syntac-
tical positions by means of placeholders, which can be instantiated subsequently
so that valid test data is obtained.

Several topics remain for future work. We would like to incorporate negative
test-data generation into our method. To this end, mutations could be applied
systematically to the grammar or to positive test cases directly; see also [20]. We
would like to fully enable the level of EMF models as opposed to the Xtextgen-
specific parse trees for user interaction with test-data generation, e.g., in the
context of post-processing. Finally, we plan to research more deeply on reusing
existing validity constraints (as in Xtext’s model checkers) for test-data genera-
tion. A symbolic execution approach, such as the one used by the Java Pathfinder
tool, may help in reusing existing constraints for test-data generation.
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