
Benoît Combemale David J. Pearce
Olivier Barais Jurgen J. Vinju (Eds.)

 123

LN
CS

 8
70

6

7th International Conference, SLE 2014
Västerås, Sweden, September 15–16, 2014
Proceedings

Software Language
Engineering

Lecture Notes in Computer Science 8706
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Benoît Combemale David J. Pearce
Olivier Barais Jurgen J. Vinju (Eds.)

Software Language
Engineering
7th International Conference, SLE 2014
Västerås, Sweden, September 15-16, 2014
Proceedings

13

Volume Editors

Benoît Combemale
Olivier Barais
IRISA
Campus de Beaulieu
Rennes, France
E-mail:{benoit.combemale, barais}@irisa.fr

David J. Pearce
Victoria University of Wellington
School of Engineering and Computer Science
Wellington, New Zealand
E-mail: david.pearce@ecs.vuw.ac.nz

Jurgen J. Vinju
University of Amsterdam
Science Park 123
Amsterdam, The Netherlands
E-mail: jurgen.vinju@cwi.nl

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-11244-2 e-ISBN 978-3-319-11245-9
DOI 10.1007/978-3-319-11245-9
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014947963

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

We cheerfully welcome you to SLE 2014, the 7th International Conference on
Software Language Engineering, September 15–16, 2014 in Väster̊as, Sweden! We
have worked to put together a program that has broad appeal to researchers,
industrial practitioners, students, and educators in the field of software language
engineering. The conference was also co-located with the 29th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE 2014) and
the 13th International Conference on Generative Programming and Component
Engineering (GPCE 2014), along with two workshops: the Industry Track on
Software Language Engineering (ITSLE) and the Parsing@SLE workshop.

The SLE conference series is devoted to a wide range of topics related pri-
marily to the use of artificial languages in software engineering. SLE brings
together several communities that have traditionally looked at software lan-
guages from different and yet complementary perspectives: programming lan-
guages, model driven engineering, domain specific languages, and semantic web.
Furthermore, SLE crosses a number of different technological spaces, including:
context-free grammars, object-oriented modeling frameworks, rich data, struc-
tured data, object-oriented programming, functional programming, logic pro-
gramming, term-rewriting, attribute grammars, algebraic specification, etc. Sup-
porting these communities in learning from each other, and transferring knowl-
edge is the guiding principle behind the organization of SLE.

The conference program included a keynote presentation, 16 technical paper
presentations, and 3 tool paper demonstrations. The invited speaker was Prof.
Colin Atkinson (University of Mannheim, Germany), with a talk entitled “From
Language Engineering to Viewpoint Engineering”. An extended abstract of the
keynote presentation is also included in the conference proceedings.

We received 64 full submissions from 75 abstract submissions. From these
submissions, the Program Committee (PC) eventually selected 19 papers: 16
out of 53 research papers (for an acceptance rate of 30%), and 3 out of 8 tool
papers (for an acceptance rate of 37%). Each submitted paper was reviewed
by at least three PC members and discussed in detailed during the electronic
discussion period. Awards were also given out as part of the program for the
overall best paper, the overall best student paper and the best reviewer.

SLE 2014 would not have been possible without the significant contributions
of many individuals and organizations. The SLE Steering Committee provided
invaluable assistance and guidance, whilst the Program Committee (and addi-
tional reviewers) undertook with dedication the critical task of reviewing and
discussing the submissions. We are also grateful to members of the Organiz-
ing Committee for making the necessary arrangements and helping to publicize
the conference and prepare the proceedings. We thank the authors for their ef-
forts in writing and revising their papers in accordance with feedback from the

VI Preface

reviewers. We would also like to thank our sponsors: Google (main sponsor), the
GEMOC initiative, and Itemis. Finally, we would also like to thank the hosting
organization, Mälardalen University.

We hope you enjoy the conference!

August 2014 Benoit Combemale
David J. Pearce
Olivier Barais
Jurgen Vinju

Organization

Program Committee

Emilie Balland Inria, France
Tony Clark Middlesex University, UK
Zinovy Diskin McMaster University/University of Waterloo,

Canada
Martin Erwig Oregon State University, USA
Anne Etien University of Lille, France
Joerg Evermann Memorial University of Newfoundland, Canada
Jean-Marie Favre University of Grenoble, France
Robert France Colorado State University, USA
Andy Gill University of Kansas, USA
Martin Gogolla University of Bremen, Germany
Pieter Van Gorp Eindhoven University of Technology,

The Netherlands
Giancarlo Guizzardi Federal University of Espirito Santo, Brazil
Gorel Hedin Lund University, Sweden
Markus Herrmannsdoerfer Technische Universität München, Germany
Jean-Marc Jézéquel University of Rennes, France
Thomas Kuehne Victoria University of Wellington, New Zealand
Ralf Laemmel Universität Koblenz-Landau, Germany
Peter Mosses Swansea University, UK
Sean Mcdirmid Microsoft, China
Kim Mens Université catholique de Louvain, Belgium
Marjan Mernik University of Maribor, Slovenia
Pierre-Alain Muller University of Haute-Alsace, France
Nathaniel Nystrom University of Lugano, Switzerland
Klaus Ostermann University of Marburg, Germany
Oscar Nierstrasz University of Bern, Switzerland
Richard Paige University of York, UK
Fiona Polack University of York, UK
Arnd Poetzsch-Heffter University of Kaiserslautern, Germany
Davide Di Ruscio Università degli Studi dell’Aquila, Italy
João Saraiva Universidade do Minho, Portugal
Bran Selic Malina Software Corp., Canada
Jim Steel University of Queensland, Australia
Tijs Van der Storm Centrum Wiskunde & Informatica,

The Netherlands
Juha-Pekka Tolvanen MetaCase, Finland

VIII Organization

Michael Whalen University of Minnesota, USA
Eric Van Wyk University of Minnesota, USA
Steffen Zschaler King’s College London, UK

Additional Reviewers

Al Lail, Mustafa
Al-Refai, Mohammed
Allen, Wyatt
Barais, Olivier
Bennett, Phillipa
Bieniusa, Annette
Brauner, Paul
Brunnlieb, Malte
Büttner, Fabian
Chen, Sheng
Chis, Andrei
Degueule, Thomas
Feller, Christoph
Fernandes, Joao
Fors, Niklas
Hamann, Lars
Hilken, Frank
Inostroza, Pablo
Kuhlmann, Mirco
Kurnia, Ilham
Kurs, Jan
Lukyanenko, Roman

Martins, Pedro
Mendez, David
Milojković, Nevena
Mukkamala, Raghava Rao
Nan, Shan
Osman, Haidar
Oumarou, Hayatou
Passos, Leo
Pereira, Rui
Pierantonio, Alfonso
Polito, Guillermo
Santos, Gustavo
Smeltzer, Karl
Sun, Wuliang
Teruel, Camille
van der Ploeg, Atze
van Rozen, Riemer
Vinju, Jurgen
Vojtisek, Didier
Walkingshaw, Eric
Weber, Mathias

From Language Engineering

to Viewpoint Engineering
(Invited Talk)

Colin Atkinson

University of Mannheim

B6, Mannheim, Germany

Abstract. As software systems increase in size and complexity, and are
expected to cope with ever more quantities of information from ever more
sources, there is an urgent and growing need for a more view-oriented
approach to software engineering. Views allow stakeholders to see ex-
actly the right information, at exactly the right time, in a way that best
matches their capabilities and goals. However, this is only possible if the
information is represented in the optimal languages (i.e. domain- and
purpose-specific), with the necessary context information and the op-
timal manipulation/editing features - that is, if information is viewed
from the optimal viewpoints. Rather than merely engineering languages,
therefore, software engineers in the future will need to engineer view-
points, which augment language definitions (e.g. meta-models, syntax ...)
with context information (e.g. elision, location, perspective ...) and user-
interaction information (e.g. editing pallets, view manipulation services
...). In this talk Colin Atkinson will outline the issues faced in supporting
the flexible and efficient engineering of viewpoints and will present some
key foundations of a fundamentally view-oriented approach to software
engineering.

Keywords: Viewpoint engineering, separation of concerns

As software systems increase in size and complexity, and are expected to cope
with ever more quantities of information from ever more sources, there is an
urgent and growing need for a more view-oriented approach to software engi-
neering. Views allow stakeholders to see exactly the right information, at exactly
the right time, in a way that best matches their capabilities and goals. Domain-
specific languages are a key foundation for supporting views by allowing them
to display their contents in a customized way, but the current generation of
software language engineering technologies do not go far enough. In particular,
they currently lack the ability to convey the precise relationship between the
information shown in a view and the information it is a view of. They also focus
on describing how model elements should be visualized but provide little or no
support for describing how stakeholders should edit and interact with them.

The premise of this talk is that software language engineering technologies
need to evolve to support an enhanced approach to modeling in which model
content can be set in context relative to the underlying source from which it is de-

X C. Atkinson

rived – an approach we refer to as “contextualized modeling”. These technologies
would then be more accurately characterized as “view engineering” technologies
rather than “language engineering”” technologies since they would support all
aspects of view definition, including the context in which the content is to be
interpreted and the mechanisms by which model elements are to be visualized
and edited. Some of the key additional capabilities that the current generation of
language engineering technologies need to support in order to become viewpoint
engineering languages include -

Enriched Designation. The most important context information in a view is
its model elements’ location in the three key hierarchies of the underlying in-
formation model – the classification hierarchy, the inheritance hierarchy and
the containment (i.e. ownership) hierarchy. These are supported to various
degrees in today’s language engineering technologies through a mix of ex-
plicit symbolism and location-defining designators (a.k.a. headers) in model
elements. However, they are not supported in a uniform and consistent way,
and are often severely limited in what they can express. In particular most
contemporary language engineering technologies only allow one level of clas-
sification to be expressed at a time. Fully contextualized modeling requires
a comprehensive, systematic and deep designation notation which allows a
model element’s exact location in each hierarchy to be expressed in its des-
ignator.

Explicit Elision Symbolism. Since views almost always convey only a subset
of the information contained in the underlying model, an important require-
ment in viewpoint engineering is to support the description of what things
are not included in a view, as well as the description of what things are.
This is a challenging task since it involves subtle interactions between ex-
plicit omission statements (e.g. “. . . ” in UML generalization sets), explicit
completeness statements (e.g. complete and disjoint in UML generalization
sets) and background “world” assumptions (e.g. “open world” versus “closed
world” assumption). Fully contextualized modeling therefore requires com-
prehensive and systematic support for elision, both in the form of explicit
elision symbols and elided model element designators.

Explicit Derivation Symbolism. As well as omitting information from the
underlying subject of a view it is possible to derive new information that the
subject does not explicitly contain. Such derivation operations can be driven
by the application of basic characterization relationships such as inheritance
and classification (e.g. subsumption) or by more complex inference opera-
tions based on the principles of logic. In both cases, contextualized modeling
must incorporate the ability to express what information in a view has been
derived and what information has been explicitly asserted by a human mod-
eller. This is important for resolving conflicts and signalling the weight that
should be given to the information represented within views.

Language Symbiosis. Domain-specific representations of information have
the advantage that they are optimized for particular classes of stakeholders
or communities of experts, whereas general-purpose languages have the ad-

From Language Engineering to Viewpoint Engineering XI

vantage that they are widely known and can represent information in quasi-
standard ways. In order to enjoy both benefits simultaneously, contextualized
models should be represented by highly flexible, symbiotic languages that al-
low different visualizations of model elements to be mixed and interchanged
at will.

Viewpoint Environment Definition. A user’s experience of a view is deter-
mined not only by the way in which its contents are displayed, but also by the
way in which the user can interact with the model and, when it is editable,
input information. This impacts all aspects of the environment in which the
view is displayed, including the menu items, the pallets of predefined types
and models elements and the range of operations that can be applied to the
content (e.g. checking, printing, persisting etc.). The engineering of view-
points therefore involves much more than just the engineering of languages
it also involves the definition of the associated interaction experience.

In this talk Colin Atkinson will introduce the vision of contextualized mod-
eling and explain these key ingredients needed to turn the current generation of
software language engineering technologies into fully fledged viewpoint-engineering
technologies

Biography

Colin Atkinson has been the leader of the Software Engineering Group at the
University of Mannheim since April 2003. Before that he has held positions at the
University of Kaiserslautern, the Fraunhofer Institute for Experimental Software
Engineering and the University of Houston - Clear Lake. His research interests
are focused on the use of model-driven and component based approaches in the
development of dependable and adaptable computing systems. He was a con-
tributor to the original UML development process and is one of the original
developers of the deep (multi-level) approach to conceptual modelling. He re-
ceived his Ph.D. and M.Sc. in computer science from Imperial College, London,
in 1990 and 1985 respectively, and his B.Sc. in Mathematical Physics from the
University of Nottingham 1983.

Table of Contents

ProMoBox: A Framework for Generating Domain-Specific Property
Languages . 1

Bart Meyers, Romuald Deshayes, Levi Lucio, Eugene Syriani,
Hans Vangheluwe, and Manuel Wimmer

A SAT-Based Debugging Tool for State Machines and Sequence
Diagrams . 21

Petra Kaufmann, Martin Kronegger, Andreas Pfandler,
Martina Seidl, and Magdalena Widl

Towards User-Friendly Projectional Editors . 41
Markus Voelter, Janet Siegmund, Thorsten Berger, and Bernd Kolb

Bounded Seas: Island Parsing Without Shipwrecks 62
Jan Kurš, Mircea Lungu, and Oscar Nierstrasz

Eco: A Language Composition Editor . 82
Lukas Diekmann and Laurence Tratt

The Moldable Debugger: A Framework for Developing Domain-Specific
Debuggers . 102

Andrei Chiş, Tudor Gı̂rba, and Oscar Nierstrasz

Evaluating the Usability of a Visual Feature Modeling Notation 122
Aleksandar Jakšić, Robert B. France, Philippe Collet, and
Sudipto Ghosh

A Metamodel Family for Role-Based Modeling and Programming
Languages . 141

Thomas Kühn, Max Leuthäuser, Sebastian Götz,
Christoph Seidl, and Uwe Aßmann

AIOCJ: A Choreographic Framework for Safe Adaptive Distributed
Applications . 161

Mila Dalla Preda, Saverio Giallorenzo, Ivan Lanese,
Jacopo Mauro, and Maurizio Gabbrielli

fUML as an Assembly Language for Model Transformation 171
Massimo Tisi, Frédéric Jouault, Jérôme Delatour, Zied Saidi, and
Hassene Choura

XIV Table of Contents

Respect Your Parents: How Attribution and Rewriting Can
Get Along . 191

Anthony M. Sloane, Matthew Roberts, and Leonard G.C. Hamey

Monto: A Disintegrated Development Environment 211
Anthony M. Sloane, Matthew Roberts, Scott Buckley, and
Shaun Muscat

Model Checking of CTL-Extended OCL Specifications 221
Robert Bill, Sebastian Gabmeyer, Petra Kaufmann, and
Martina Seidl

Unifying and Generalizing Relations in Role-Based Data Modeling and
Navigation . 241

Daco Harkes and Eelco Visser

Simple, Efficient, Sound and Complete Combinator Parsing for All
Context-Free Grammars, Using an Oracle . 261

Tom Ridge

Origin Tracking in Attribute Grammars . 282
Kevin Williams and Eric Van Wyk

Dynamic Scope Discovery for Model Transformations 302
Māris Jukšs, Clark Verbrugge, Dániel Varró, and Hans Vangheluwe

Streamlining Control Flow Graph Construction with DCFlow 322
Mark Hills

Test-Data Generation for Xtext (Tool Paper) . 342
Johannes Härtel, Lukas Härtel, and Ralf Lämmel

Author Index . 353

ProMoBox: A Framework for Generating
Domain-Specific Property Languages

Bart Meyers1, Romuald Deshayes2, Levi Lucio3, Eugene Syriani4,
Hans Vangheluwe1,3, and Manuel Wimmer5

1 Modeling, Simulation and Design Lab (MSDL), University of Antwerp, Belgium
{bart.meyers,hans.vangheluwe}@uantwerp.be
2 Institut d’Informatique, Universit de Mons, Mons, Belgium

romuald.deshayes@umons.ac.be
3 Modeling, Simulation and Design Lab (MSDL), McGill University, Canada

{levi,hv}@cs.mcgill.ca
4 Software Engineering Research Group (SERG), University of Alabama, United States

esyriani@cs.ua.edu
5 Business Informatics Group (BIG), Vienna University of Technology, Austria

wimmer@big.tuwien.ac.at

Abstract. Specifying and verifying properties of the modelled system has been
mostly neglected by domain-specific modelling (DSM) approaches. At best, this
is only partially supported by translating models to formal representations on
which properties are specified and evaluated based on logic-based formalisms,
such as linear temporal logic. This contradicts the DSM philosophy as domain
experts are usually not familiar with the logics space. To overcome this short-
coming, we propose to shift property specification and verification tasks up to
the domain-specific level. The ProMoBox framework consists of (i) generic lan-
guages for modelling properties and representing verification results, (ii) a fully
automated method to specialize and integrate these generic languages to a given
DSM language, and (iii) a verification backbone based model checking directly
plug-able to DSM environments. In its current state, ProMoBox offers the de-
signer modelling support for defining temporal properties, and for visualizing
verification results, all based on a given DSM language. We report results of ap-
plying ProMoBox to a case study of an elevator controller.

1 Introduction

Domain-specific modelling (DSM) advocates that, providing languages that are specific
to the problem space rather than to the solution space, systems are designable by domain
experts while model transformations are taking care of achieving the transition to the
solution space [1]. An essential activity in DSM is the specification and verification of
properties to ensure the high quality of the designed systems [2]. Thus, supporting these
tasks by DSM is necessary to provide a holistic DSM experience to domain engineers.
However, specifying and verifying properties of systems has been mostly neglected
by DSM approaches. At best, this is only partially supported by translating models
to formal representations on which properties are specified and evaluated with logic-
based formalisms [3], such as Linear Temporal Logic (LTL). This contradicts the DSM
philosophy as domain experts are usually not familiar with temporal logic. The need

B. Combemale et al. (Eds.): SLE 2014, LNCS 8706, pp. 1–20, 2014.
c© Springer International Publishing Switzerland 2014

2 B. Meyers et al.

to raise the level of abstraction for specification and verification tasks is also recently
raised in [4]. The authors emphasize that domain engineers should be shielded from the
underlying verification technologies. In this sense, DSM includes not only the design
of the system-under-study, but also the properties themselves, the representation of the
run-time state of a system, the behaviour of the environment, and a visualisation of a
counter-example, all at the domain-specific level. In the spirit of DSM, they should each
be defined in their own domain-specific modelling language (DSML).

To overcome this shortcoming, we propose to shift property specification and ver-
ification tasks up to the DSM level, resulting in the generation and execution of Pro-
MoBox. The contribution of the ProMoBox framework consists of (i) generic languages
for modelling all artefacts that are needed for specifying and verifying temporal proper-
ties with the expressive power of LTL, (ii) a fully automated method to specialise and
integrate these generic languages to a given DSML, and (iii) a verification backbone
based on model checking with LTL that is directly plug-able to DSM environments.

In the following section, we introduce the running example of an elevator controller.
Section 3 introduces our approach ProMoBox from a language engineering point of
view and explains how properties are defined and verified based on a model check-
ing backbone. Section 4 is dedicated to implementation and evaluation of ProMoBox.
Section 5 elaborates on assumptions that are made in the current state of the approach
while discussing the limitations of the approach. In Section 6 we discuss related work
and conclude in Section 7.

2 Running Example

Our running example is an elevator controller modeled by a graphical DSL. This DSL
enables modelling a building with floors, elevators and buttons, and defines the step-
wise behaviour of this model.

Elevator

doors_open : boolean
going_up : boolean

Button

pressed : boolean

ElevatorButton FloorButton

DownButtonUpButton

Floor

nr : int

requests* 1

elevator_button
1

*

currentfloor
*

1

next
0..1

0..1

Fig. 1. The meta-model E of the Elevator DSL (top left), an instance e of the Elevator DSL
representing an elevator that serves three floors (top right), and the transformation model E[[.]]

that schedules all the operational rules (bottom)

ProMoBox: A Framework for Generating Domain-Specific Property Languages 3

The left of Fig. 1 shows the meta-model which we will denote by E. Buttons can
request an Elevator to go to a particular Floor. Floors are ordered by the next association
and a derived attribute nr representing the Floor number. An Elevator is at exactly one
Floor, modelled by the currentfloor association. An ElevatorButton is a button inside
an Elevator, requesting a certain Floor. At every floor, there can be an UpButton to
request to go up and a DownButton to request to go down. An Elevator can have its
doors open (it cannot move) and has a direction (up or down).

The top right of Fig. 1 shows an instance e with three floors, one elevator and seven
buttons, depicting the concrete syntax. Pressed buttons are annotated with red dots, and
are connected to the floor they request. At the top floor a button is pressed by someone
who requested to go down, and inside the elevator the button to go to floor 2 has been
pressed. The elevator is currently at the bottom level.

The bottom of Fig. 1 shows the transformation model E[[.]] of the operational seman-
tics. The model shows how different rules are scheduled. Rounded rectangles refer to
a set of rules where at most one is randomly chosen to be applied. Execution starts at
the left rectangle. Grey arrows annotated with “no match” are followed when none of
the rules in the source rectangle can be applied, green arrows annotated with “success”
are followed when a rule was applied. Inspired from a realistic elevator controller, the
rules implement how the elevator changes floors (one at a time), and opens and closes
its door to serve the requests of users (modelled as pressed buttons). The elevator passes
all floors that are requested on its path (which is either up or down), and opens its door
when the elevator’s direction corresponds to the requested direction. Pressed buttons are
turned off (released) when the door opens at a requested floor and the elevator goes in
that direction. When a request for a floor is made for a different floor than the elevator’s
current floor, the doors close and the elevator starts moving. The elevator only changes
its direction when there are no more requests on its path. Note that, if the elevator is at
a lower floor, it can pass by a floor where one has requested to go down without stop-
ping, as the elevator is going in the opposite direction. The rules are not shown in Fig. 1
because of space constraint, but later in the paper, one of the rules is shown in Fig. 7.

When designing the elevator software system, we would like to verify the Reaches-
Floor property: whenever a request for any floor is made, the elevator will eventually
open its doors at the latest the second time it passes by that floor.

3 The ProMoBox

Based on preliminary ideas outlined in our previous work [5, 6], the ProMoBox frame-
work consists of the following three parts.

Generic languages for modelling all artefacts that are needed for specifying and ver-
ifying properties. For a given DSML, ProMoBox defines a family of five sub-languag-
es [5] that are required to modularly support property verification, covering (i) design
modelling as supported by traditional DSMLs, (ii) run-time state representation, (iii)
event-based input modelling (to model the behaviour of an environment), (iv) state-
based output representation (to model an execution trace of the system or verification
results), and (v) property specification. Property languages generated by ProMoBox are
specifically tailored to ease the development of temporal patterns as well as structural

4 B. Meyers et al.

patterns needed to describe the desired properties of the system’s design by domain
engineers in the DSML’s concrete syntax. To allow to formulate temporal properties at
a high-level of abstraction, we formalise Dwyer’s specification patterns [7] for defin-
ing temporal patterns as a DSML. With the help of this DSML, domain engineers are
able to express temporal properties for finite state verification such as absence, exis-
tence, or universality. To ease the development of structural patterns to be checked on
snapshots of the system’s execution states, we propose an automated technique based
on [8, 9] that is able to produce a specialised language from a given DSML tailored to
express structural patterns. The language for defining structural patterns is inspired by
PaMoMo [10, 11], a language supporting several pattern kinds such as enabling, posi-
tive, and negative patterns. Finally, we introduce the possibility to define quantifiers for
temporal properties to express complex properties in a more concise manner, e.g., every
element of a certain type has to fulfil a certain property.

A fully automated method to specialise and integrate these generic languages to
a given DSML. We extend meta-modelling and model transformation languages with
annotations, to add necessary information for every language construct and semantic
step. This additional information enables the fully automatic generation of the five sub-
languages and necessary transformations between the sub-languages, thus minimising
the effort of the language engineer. Because of their generative definition, consistency
between the languages and their models is guaranteed by construction. We use tem-
plates that describe the generic part of each language, and that are subsequently woven
with the DSML. By using templates, we allow the ProMoBox framework to be config-
urable for different types of DSMLs.

A verification backbone based model checking directly plug-able to DSM environ-
ments. Properties in ProMoBox are translated to LTL and a Promela system is generated
that includes a translation of the system, the environment, and the rule-based operational
semantics of the system. The properties are checked by SPIN [12]. The verification re-
sults (in case of a counter-example) are translated back to the DSM level.

The ProMoBox approach is illustrated in Fig. 2 using the elevator example presented
in Section 2. When using the ProMoBox approach, only the grey models in Fig. 2 need
to be modelled by hand, the white models are generated. This is done in two parts:
first, we define how meta-models can be annotated (E′ in Fig. 2) and how the five
sub-languages (i.e., the design, run-time, input, output and properties languages) are
generated (upper part of Fig. 2). Second, we define how mappings are generated that
allow a given property to be verified on a given system, and how the results can be
visualised in a domain specific way (steps 1 to 5 of Fig. 2).

3.1 The Annotated Meta-model

The abstract syntax of the sub-languages is generated from the annotated meta-model
that provides additional information on which parts are static (never change at run-
time), dynamic (change at run-time) and which parts can be input into the system.

First, we present a formal definition of a meta-model. The complete formalisation
can be found in [5]. We defineΣ as the alphabet of all possible names. For simplicity, all
class, association, and attribute names are globally unique and are from here on referred
to as the classes, associations or attributes themselves. A meta-model is defined by:

ProMoBox: A Framework for Generating Domain-Specific Property Languages 5

Fig. 2. Property verification with ProMoBox and SPIN

M = (C,D,A, α, ι, P, π), (1)

with

C ⊆ Σ the set of all classes,

D ⊆ C the set of all abstract classes,

A ⊆ Σ the set of all associations,

α : A → C × C the association mapping, a total function,

ι : C × C the set of inheritance relations,

P ⊆ Σ the set of all attributes,

π : P → C the attribute mapping, a total function.

ι+ is the set of relations of ι under transitive closure. This means that x, y, z ∈
C | (x, y) ∈ ι+ ∧ (y, z) ∈ ι+ =⇒ (x, z) ∈ ι+, and specifically, x ∈ C =⇒ (x, x) ∈
ι+. Note that attributes are considered to be nothing more than names. Their types are
abstracted away from because of space constraints and they are not essential to explain
the approach. Similarly, cardinalities of associations are not modelled in this definition.

All incoming associations defined by inheritance in∗ : C → P(A) are the set of
incoming associations of the class or its parents:

in∗(c) =
{
a ∈ A | ∃x, y ∈ C,α(a) = (x, y) ∧ (c, y) ∈ ι+

}

All outgoing associations defined by inheritance out∗ : C → P(A) are the set of
outgoing associations of the class or its parents:

out∗(c) =
{
a ∈ A | ∃x, y ∈ C,α(a) = (x, y) ∧ (c, x) ∈ ι+

}

6 B. Meyers et al.

Button

<<rt>> <<ev>>pressed : boolean

Elevator

<<rt>>doors_open : boolean
<<rt>>going_up : boolean

ElevatorButton FloorButton

DownButtonUpButton

Floor

nr : int

requests* 1

elevator_button

1

*

currentfloor<<rt>>

*

1

next
0..1

0..1

Fig. 3. The annotated metamodel E′

All classes defined by inheritance that have an attribute π∗ : P → P(C) are the
property-containing class and its subclasses:

π∗(p) =
{
c ∈ C | ∃x ∈ C, π(p) = x ∧ (c, x) ∈ ι+

}

For example, the meta-model E in Fig. 1 can be described as:

Me = (Ce, De, Ae, αe, ιe, Pe, πe),

where

Ce = {Elevator, F loor,Button,ElevatorButton, F loorButton,

UpButton,DownButton}
De = {Button, F loorButton}
Ae = {currentfloor, requests, elevator button}

αe(a) =

⎧
⎪⎨

⎪⎩

(Elevator, F loor) if a = currentfloor

(Button, F loor) if a = requests

(Elevator, ElevatorButton) if a = elevator button

ιe = {(ElevatorButton,Button), (FloorButton,Button),

(UpButton, F loorButton), (DownButton, F loorButton)}
Pe = {nr, doors open, going up, pressed}

πe(p) =

⎧
⎪⎨

⎪⎩

Floor if p = nr

Elevator if p ∈ {doors open, going up}
Button if p = pressed

An annotated meta-model is an extension of a meta-model as defined in Formula 1:

M′ = (C,D,A, α, ι, P, π, S, σ), (2)

where

S ⊆ {rt, ev} the set of all supported annotations

σ : C ∪ A ∪ P → P(S) {rt, ev, tr} the annotation mapping.

All concepts (classes, associations and attributes) can be annotated with:

• rt: run-time, annotates a dynamic concept that serves as output (e.g., a state vari-
able);

• ev: an event, annotates a dynamic concept that serves as input only (e.g., a marking).

ProMoBox: A Framework for Generating Domain-Specific Property Languages 7

More annotations are possible, but the generation of the sub-languages currently only
supports those two. For example, the annotated meta-model of an elevator control
DSML, shown in Fig. 3 can be described as:

E′ = (Ce, De, Ae, αe, ιe, Pe, πe, Se, σe), (3)

where

Se = {rt, ev}

σe(x) =

{
{rt} if x ∈ {doors open, going up, current floor}
{ev, rt} if x = pressed

In this meta-model, the language engineer specifies that Floor, Elevator and Button,
the associations requests and elevator button and the attribute nr are static as they are
not annotated. A button press is an input event, and going up, doors open, currentfloor
and pressed are dynamic.

3.2 Generation of Sub-languages

The annotated meta-model E′ includes enough detail to generate the five sub-languages
as shown in Fig. 2. The generated sub-languages are each expressive enough to serve
their intent. At the same time they maximally constrain the modeller so that they are
maximally domain-specific. The result of this generation process with E′ as input (see
Fig. 3) is shown in Fig. 4. Templates are used in the generation process, shown with grey
classes. These templates consist of generic language constructs, that can be instantiated
to create a sub-language. The meta-models of sub-languages are generated by a function
that operates on E′ so that only relevant elements are used and no more annotations are
present so that the result is a regular meta-model.

We formalise the approach so that the definition of the sub-languages is
precise and unambiguous. For every language, there is a language mapping
function f : M′ × Mt → M that returns the sub-language meta-
model Mx = (Cx, Dx, Ax, αx, ιx, Px, πx) of an annotated meta-model M′ =
(C,D,A, α, ι, P, π, S, σ) and a template Mt = (Ct, Dt, At, αt, ιt, Pt, πt). This tem-
plate Mt is different for every sub-language. By default, a sub-language will simply
consist of M′ without annotations, but preserving all elements. We define this default
mapping function as the function weave : M′ ×M× Σ → M. The result of weave
is defined as follows:

Mx = (Cx, Dx, Ax, αx, ιx, Px, πx),

where the components of Mx are defined by weave(M′,Mt, Element) under the
condition that Element ∈ Ct: Xx = X ∪ Xt for X ∈ {C,D,A, α, P, π} and ιx =
ι ∪ ιt ∪ {(c, Element) | c ∈ C ∧ �s ∈ C, (c, s) ∈ ι}.

In case of the elevator DSML, meta-model Mx is the union of E′ and a given tem-
plate Mt, and a all elements of E′ that do not have a superclass (in this case Floor,
Button and Elevator), become a subclass of a given Element class in the template Mt.

The meta-models of all five sub-languages are defined below, and their intent is ex-
plained. We explain the approach using the elevator control DSML of which the abstract
syntax is defined by E′.

8 B. Meyers et al.

Properties

Design

DesignElement

id : int

Runtime

RunTimeElement

id : int

Output

OutputElement

id : int

Input

Button

pressed : boolean

Event

current : boolean

ElevatorButton

InputElement

id : int

Environment

DownButton

FloorButton

UpButton

Elevator

doors_open : Condition = return True
going_up : Condition = return True

Transition

rule_execution : RuleExecution [0..1]
input_event : Event [0..1]

StructuralPattern

name : String
condition : Condition = return True
dynamic : boolean

PropertyElement

id : int
label : String
condition : Condition = return True

Button

pressed : Condition = return True

OrderedTemporalPattern

Floor

nr : Condition = return True

Elevator

doors_open : boolean
going_up : boolean

Elevator

doors_open : boolean
going_up : boolean

BoundedExistence

n : Integer

QuantifiedPattern

quantifier : Quantifier
TemporalPattern

LowerBounded

Button

pressed : boolean

UpperBounded

Button

pressed : boolean

<<enumeration>>
Quantifier

exists
forAll

BinaryPattern

ImpliesPattern

ElevatorButton

ElevatorButton

ElevatorButton

ElevatorButton

AtomicPatternUnaryPattern

FloorButton

FloorButton FloorButton

Specification

name : String

DownButton

DownButton

DownButton

DownButton

Precedence

Universality

FloorButton

AndPatternNotPattern

Response

Existence

OrPattern

AfterUntil

UpButton

UpButton

UpButton

UpButton

Absence

Between

Pattern

Elevator

Globally

Button

Before

Scope

Floor

nr : int

Floor

nr : int

Floor

nr : int

Trace

After

State

event

{ordered}
*

1

currentEvent

1

0..1

element *1nextEvent
0..1

0..1

1
11

nextTransition

0..1

1

requests* 1

requests* 1

requests* 1

1

elevator_button
1

*

elevator_button
1

*

requests* 0..1

elevator_button
1

*

currentState

10..1
nextState1

0..1

state
{ordered}

*1

elevator_button 0..1

*

11

1

1

currentfloor
*

1

currentfloor
*

1

currentfloor
0..1

*

1..*

1

element
*

1

next
0..1

0..1

next
0..1

0..1next
0..1

0..1

next
0..1

0..1

2

Fig. 4. The meta-models of the five sub-languages of E′

The Design Language Ed. The design language allows modellers to design systems
in a general way. The static system (i.e., its structure) is defined, and state or configura-
tion information is not taken into account in this language. Its generated meta-model is
shown in the top left of Fig. 4. In the generation process, all constructs (classes, associ-
ations and attributes) of E′ annotated with rt and ev are removed. The template consists
of a single DesignElement class with an id that has to be unique. This id will be used to
refer to link class instances of the DSML. No dynamic constructs are available in Ed,
so the modeller can only model the structure of a system (e.g., how Floors and Buttons
are linked), not its state.

Md = (Cd, Dd, Ad, αd, ιd, Pd, πd),

where the components of Md are defined by design(M′,Mt):

Cd = {c | c ∈ C ∪ Ct ∧ rt, ev /∈ σ(c)}
Dd = D ∪Dt ∩ Cd

Ad = {a | a ∈ A ∪At ∧ rt, ev /∈ σ(a)}

ProMoBox: A Framework for Generating Domain-Specific Property Languages 9

αd = α ∪ αt

ιd = (Cd, p2(ι) ∪ p2(ιt) ∪ {(c,DesignElement) | c ∈ C ∧ �s ∈ C, (c, s) ∈ ι})
Pd = {p | p ∈ P ∪ Pt ∧ rt, ev /∈ σ(p)}
πd = π ∪ πt

where p is the projection operation and pi(x) denotes the element of x with index i.

The Run-Time Language Er. The run-time language enables modellers to define a
state of the system, e.g., an initial state as input of a simulation. It can also be used to
visualise a “snapshot” or state of a system, during run-time. Its generated meta-model
is shown in the top right of Fig. 4. In the generation process, all constructs of E′ are
preserved. The template consists of a single RunTimeElement class with an id. In Er,
all information, but structure and state (e.g., currentfloor), is available. As all constructs
of the annotated meta-model are preserved, the meta-model of a run-time language
can be defined as Mr = weave(M′,Mt, RunT imeElement) with Mt the template
described above.

The Input Language Ei. The input language lets the modeller model the environment
of a system, by e.g., modelling an input scenario. Its generated meta-model is shown
in the middle left of Fig. 4. In the generation process, all constructs of E′ that are not
annotated with ev are removed. This means that classes that are not annotated with ev
are removed if they do not inherit an association or attribute that is annotated with ev.
The template models an Environment as an Event list containing InputElements. In Ei,
a series of inputs can consist of button presses. For now, we assume that at most one
button can be pressed in the same event, meaning that an event should not contain two
unattached elements. If the language engineer decides that more than one or exactly one
button can be pressed at the same time, he can create a variant of this template.

Mi = (Ci, Di, Ai, αi, ιi, Pi, πi),

where the components of Mi are defined by input(M′,Mt):

Ci = {c | c ∈ C ∧ ((ev ∈ σ(c))

∨ (∃p ∈ P, ev ∈ σ(p) ∧ c ∈ π∗(p))
∨ (∃a ∈ in∗(c) ∪ out∗(c), ev ∈ σ(a)))} ∪ Ct

Di = D ∪Dt ∩ Ci

Ai = {a | a ∈ A ∧ ev ∈ σ(a)} ∪ At

αi = α ∪ αt

ιi = ι ∪ ιt ∪ {(c, InputElement) | c ∈ C ∧ �s ∈ C, (c, s) ∈ ι}
Pi = {p | p ∈ P ∧ ev ∈ σ(p)} ∪ Pt

πi = π ∪ πt

The Output Language Eo. The output language can be used to represent execu-
tion traces of a simulation. An output model is usually generated by a simulator or
as a counter-example by a verification tool, but can be generated manually as well for
e.g., modelling an oracle for a test case. Its generated meta-model is shown in the bot-
tom left of Fig. 4. In the generation process, all constructs of E′ are preserved. The

10 B. Meyers et al.

template consists of a Trace of States and Transitions. This language is able to express
a sequence of system states and the intermediate operations that caused the state change
(a rule application in the operational semantics E[[.]], and/or an input event). The output
of E[[.]], or the counter-example in verification are instances of Eo. Due to the possi-
bly large number of elements in such an execution trace, an instance of Eo is stored
more implicitly as text, and can be interpreted or “played out” by showing step-by-step
an instance of the run-time language Er. The meta-model of a output language can be
defined as Mo = weave(M′,Mt, OutputElement) with Mt the template described
above.

The Properties Language Ep. The properties language allows the user to define tem-
poral properties, which are properties on the behaviour of systems. Its generated meta-
model is shown in the bottom right of Fig. 4, is constructed from four components.

[A] The quantification of the formula by (i) forAll or exists clause(s), and (ii) cor-
responding structural pattern(s). The modeller can choose to model a property for all
elements that match the associated structural pattern. This structural pattern is evalu-
ated on the design model, and can thus not refer to run-time concepts. Consequently,
the property must be satisfied for all, or for one (depending on the quantifier) match(es)
of the structural pattern. The resulting matches can be re-used as bound variables in
the property, if they have the same label. Quantification patterns can be nested, or can
contain a temporal or structural pattern.

[B] The temporal pattern, based on Dwyer’s specification patterns [7]. The temporal
pattern allows the user to specify a pattern over a given scope, e.g., “the absence of P,
after the occurrence of Q”, or “P is responded by S, between occurrences of Q and R”
(with proposition variables P, S, Q and R). Over 90% of the properties that were inves-
tigated by Dwyer et al. can be expressed in this simple framework [7]. Six patterns are
supported, to express the absence, existence, bounded existence, universality response
or precedence for given proposition(s). Additionally a scope can be defined: must the
pattern be valid globally, or after, before, in between or after until the occurrence of
given proposition(s). In total up to four proposition variables can be used in a temporal
pattern, and we implement them as structural patterns, that represent patterns on the
state of the system at run-time.

[C] The structural pattern, based on PaMoMo [11], for both static (when used in a
quantification pattern) as well as dynamic (when used in a temporal pattern) models.
Using a structural pattern, a query can be defined on a model. If the pattern is static,
it returns all bound variables in found matches, and if it is dynamic it returns true if
at least one match is found or false when no match is found. In our current approach,
we use simple patterns (e.g., the elevator is at a given floor) and an ad-hoc matching

Fig. 5. The reachesFloor property as an instance of Ep

ProMoBox: A Framework for Generating Domain-Specific Property Languages 11

algorithm, but we intend to re-use the matching algorithm presented in [9]. Only a
small part of PaMoMo’s expressiveness is included in the property language, but this
suffices for defining most properties. A StructuralPattern, and a PropertiesElement can
hold a condition, which returns true by default and is in our current approach modelled
as a string.

[D] The pattern elements, based on the RAM process [8,9]. The elements of a struc-
tural pattern are based on E′ but need to be changed in several ways in order to allow the
modeller to specify patterns that are match in model fragments. A similar problem ex-
ists when constructing a pattern language for creating a meta-model for transformation
rules, and is formalized by the RAM process. In this process, all classes are subclasses
of ModelElement and have a label (for binding variables) and a condition, attribute types
are now conditions, no more classes are abstract classes, and all lower bounds of asso-
ciation multiplicities are set to 0. Pattern elements are compiled to their corresponding
Promela variable names, which can be used in the Promela boolean expression of the
structural pattern.

The properties pattern is composed of parts A, B and C, which are generic. Only
component D, depends on E′ that is subjected to the RAM process for left-hand side
patterns [9]. Let us define the function RAM : M′ −M′ → that performs the RAM
process for left-hand side patterns on an annotated meta-modelM′, resulting in a RAM-
ified meta-model MRAM :

RAM(M′) = (CRAM ,∅, ARAM , αRAM , ιRAM , PRAM , πRAM , S, σ),

then the meta-model of a properties language can be defined as:

Mp = weave(RAM(M′),Mt, P ropertiesElement),

with Mt the template described above.

Fig. 6. The system from Fig. 1 mod-
elled in the design language, without
run-time information

Generation of Concrete Syntax of the Sub-
languages. The concrete syntax of each of the
sub-languages is defined by the union of the con-
crete syntax of E′ of which an example is shown
in the top right of Fig. 1 (possibly leaving out re-
moved concepts in case of the design and input
language) and the predefined concrete syntax for
the template Mt.

An instance of the design language looks like
the traditional instance of the DSML but without
run-time concepts. In the case of Ed, it is impos-
sible to model whether buttons are pressed, on which floor the elevator is, whether its
doors are open and in what direction it is going. The system-under-study of Fig. 1, now
modelled in Ed, is shown in Fig. 6. An example instance of the run-time language Er

looks the same as the traditional instance of the DSML, shown at the top right in Fig. 1.
An instance of the input language is not used in the context of verification by model

checking. Its concrete syntax is a sequence of connected events represented as green
circles containing the events visualised using the concrete syntax as shown in the top
right of Fig. 1. Each step of an instance of the output language can be visualised as a
run-time instance. Alternatively, it can be visualised completely at once as red circles

12 B. Meyers et al.

containing the states, connected by arrows with the transition event(s) as label. An in-
stance of the property language Ep is shown in Fig. 5. It uses a combination of text and
domain-specific patterns.

3.3 Generation of Mappings for Model Checking With the SPIN Environment

Verification is automated in five steps, as depicted in Fig. 2.

Step 1: Transformation to LTL and Promela. As shown in Fig. 2, a generic transfor-
mation generates the LTL formula and the Promela model by means of a model-to-text
transformation. The operation results in a .pml file, in the example called Elevator.pml,
that serves as input for the SPIN verification tool. The .pml file is generated from a num-
ber of models, and its overall structure is shown in Listing 1.1, where code snippets are
referenced between < and >. The role of each model in the compilation process is
discussed below.

The design meta-model (line 3 in Listing 1.1): The design meta-model, in our case
Ed is translated to a number of Promela typedefs. Only the three classes on top of
the inheritance hierarchy become Promela types. Their instances are stored as static ar-
rays, and instances are accessed by indexing that array. Since Promela is not an object-
oriented language, inheritance and associations has to be encoded in a particular way
as shown in Listing 1.2). For the types on line 1-21, inheritance is implemented by the
subtype attribute, that refer to any class in the design meta-model. Associations

are implemented with bidirectional accessibility by shorts, that refer to the index
of the target, rather than an object. For instance, if the currentfloor out of an
Elevator is 1, its target is the Floor with index 1. If a target is the null object,
its index is set to -1. The Promela typedefs are also influenced by the model of the
initial configuration of system-under-study (modelled as a run-time instance), which is
modelled as a System type on line 22-26, with static arrays of 7 Buttons, 1 Elevator
and 3 Floors. These numbers are extracted from the run-time instance and are prede-
termined, as the number of buttons, elevators and floors are static. Suppose they are
not static, then a maximum number must be set because SPIN requires the state to be
bounded. On line 27 the system is created, and values should be filled in (see below).

The output meta-model (line 4 in Listing 1.1): A function called print state (not
shown) is defined that prints the current state of the system in a predefined encoding.
Only run-time concepts are printed. This, in combination with printing the input events
and the applied rule (done in the rule schedule code, which is not shown), provides all
the necessary information to construct an output trace.

A run-time instance (line 5-6 in Listing 1.1): After all type, variable and function
declarations, the process declaration starts on line 5. Only one process is used. It starts
with the initial configuration of the system (line 6, not shown in detail), by setting all
values of s (declared in Listing 1.2 on line 27). This results in the initial state of s.

The operational semantics (line 7-14 in Listing 1.1): At line 7, the initial rule, in our
case opendoor up, is scheduled using a go to statement that jumps to one of the rules
at line 10-13 (one of which is shown in Listing 1.5). This rule schedule is generated
from the operational semantics model of Fig. 1. Upon evaluation of the rule, a boolean
variable will be set that denotes whether the rule was successfully applied or failed to

ProMoBox: A Framework for Generating Domain-Specific Property Languages 13

match. If the rule was applied, execution is continued at the environment section (line
15) and the next rule is scheduled by setting a variable according to the operational
semantics model. If the rule fails, the rule schedule decides to try the next rule accord-
ing to the operational semantics model. If all rules fail, code continues execution at the
SKIP RULE label on line 14, printing the state and subsequently continuing to the en-
vironment section. Fig. 7 shows the movedown last rule of the schedule at the bottom of
Fig. 1. Its Promela code resides in the overall structure of Listing 1.1 at one of the rules
that are referenced at line 10-13, and is fully shown in Listing 1.5. For performance,
the generated code uses a d step to calculate the rule matching as an atomic step.
The code generator traverses the left-hand side pattern of Fig. 7 element by element by
following associations in the pattern. In Promela, the match candidates are represented
by indices of s (line 4). The code consists of nested for loops, where match candidates
are traversed checked that (1) they are not null (i.e., the match candidate is not -1), (2)
if applicable, they are not the same as a previously matched item, (3) if applicable, their
dynamic type, represented by the subtype attribute, is correct, and (4) if applica-
ble, node conditions that are specified are satisfied (in case of the movedown last rule
the elevator should have its doors open and should go down - line 12-13, not visual in
Fig. 7). When a match for the pattern is found, the right-hand side (RHS) of the rule is
applied (line 26-29), which is generated from the difference between the RHS and the
left-hand side of the rule. The rule is flagged successful, the state of the LTL proposi-
tions is updated (see below), and the rule is exited on line 30-32. Finally at line 43, the
execution jumps back to the rule schedule, which will decide the next step.

The input meta-model (line 15-17 in Listing 1.1): At line 15, a model of the envi-
ronment like Listing 1.3. It consists of an atomic block containing an if-statement. The
if-statement in Promela non-deterministically chooses an option for which the guard (in
this case “1”) is true. This environment model thus selects a possible event that will be
input for the system (lines 3-9), or none (line 10). For each event, a print statement is
generated. The numbers on the left side of the dot are the node id attributes of the node
as presented in Fig. 4, and can be used to denote a specific node. In this case, the Ele-
vator instance has an id value of 0, the Floors have id values of 1 to 3 and the Buttons
have id values between 4 and 10. Finally a jump to the LOOP label is generated (line 16
in Listing 1.1), so that the rule schedule can decide the next step.

A property instance (line 1-2 in Listing 1.1): The property instance, in our case reach-
esFloor, is translated to the LTL formula at line 1-3 of Listing 1.4. The LTL formula is
composed by concatenating three times an Eventually pattern �(!Q∨♦(Q∧♦P)) [7],
as the property must hold for all (in this case three) floors. In Promela, it is only allowed
to specify LTL formulas without boolean expressions. Therefore, proposition variables
are used in the LTL formula, and they are updated boolean expressions using when the
update state function is called (line 4-13). Q0, Q1 and Q2 represent the possible
button presses at floors 0, 1 and 2, as defined by the middle pattern in Fig. 5. Note how
the bound floor f is used in the boolean expressions to select the correct s.button
indices that match f . On line 9-11 P0, P1 and P2 represent the right pattern in Fig. 5,
where it is checked whether the elevator is at floor f and its doors are open. The function
update state will need to be called every time the state of the system changes.

14 B. Meyers et al.

1 <LTL FORMULA>
2 <UPDATESTATEFUNCTION DEFINITION>
3 <METAMODEL>
4 <PRINT STATEFUNCTION DEFINITION>
5 activeproctype instance() {
6 <INSTANCE>
7 <SET INITIALRULE>
8 LOOP:
9 <RULE SCHEDULE>

10 <RULE 1>
11 <RULE 2>
12 ...
13 <RULE N>
14 SKIP_RULE: print_state();
15 <ENVIRONMENT>
16 goto LOOP;
17 }

Listing 1.1. The
overall structure of the
generated Promela model

1 typedefButton {
2 short__subtype;
3 bit pressed;
4 shortrequests_out;
5 shortelevator_button_in;
6 }
7 typedefElevator {
8 short__subtype;
9 bit doors_open;

10 bit going_up;
11 shortcurrentfloor_out;
12 shortelevator_button_out[3];
13 }
14 typedefFloor {
15 short__subtype;
16 short nr;
17 shortnext_out;
18 shortnext_in;
19 shortcurrentfloor_in;
20 shortrequests_in[3];
21 }
22 typedef__System {
23 Buttonbutton_[7];
24 Elevator elevator_[1];
25 Floorfloor_[3];
26 }
27 __System s;

Listing 1.2. The compiled
bounded meta-model

1 atomic{
2 if
3 :: 1 -> s.button_[0].pressed=1; printf("4.

pressed=1\n");
4 :: 1 -> s.button_[1].pressed=1; printf("5.

pressed=1\n");
5 :: 1 -> s.button_[2].pressed=1; printf("6.

pressed=1\n");
6 :: 1 -> s.button_[3].pressed=1; printf("7.

pressed=1\n");
7 :: 1 -> s.button_[4].pressed=1; printf("8.

pressed=1\n");
8 :: 1 -> s.button_[5].pressed=1; printf("9.

pressed=1\n");
9 :: 1 -> s.button_[6].pressed=1; printf("10.

pressed=1\n");
10 :: 1 -> skip;
11 fi;
12 }

Listing 1.3. The compiled
environment model

1 ltl reachesFloor {
2 [](!Q0 || <>(Q0 && <>P0)) && [](!Q1 || <>(Q1 && <>P1)) && [](!Q2 || <>(Q2

&& <>P2))
3 }
4 inlineupdatestate() { // calledafterthe evaluation of a RHS
5 d_step {
6 Q0 = (s.button_[0].pressed== 1 || s.button_[3].pressed== 1);
7 Q1 = (s.button_[1].pressed== 1 || s.button_[4].pressed== 1 || s.button_

[5].pressed== 1);
8 Q2 = (s.button_[2].pressed== 1 || s.button_[6].pressed== 1);
9 P0 = (s.elevator_[0].currentfloor_out == 0 && s.elevator_[0].doors_open ==

1);
10 P1 = (s.elevator_[0].currentfloor_out == 1 && s.elevator_[0].doors_open ==

1);
11 P2 = (s.elevator_[0].currentfloor_out == 2 && s.elevator_[0].doors_open ==

1);
12 }
13 }

Listing 1.4. The compiled LTL formula

Fig. 7. The movedown last rule

1 MOVEDOWN_LAST:
2 MOVEDOWN_LAST_success = 0;
3 d_step{
4 shortelevator5, floor1, floor0, button3, button3_candidate;
5 floor1= 0;
6 do // look for floor1match
7 :: (MOVEDOWN_LAST_success== 0 && floor1< 3) ->
8 if // checkfloor1conditions
9 :: (floor1>= 0) ->

10 elevator5 = s.floor_[floor1].currentfloor_in;
11 if // checkelevator5 conditions
12 :: (elevator5 >= 0 && s.elevator_[elevator5].doors_open == 0
13 && s.elevator_[elevator5].going_up == 0) ->
14 floor0 = s.floor_[floor1].next_in;
15 if // checkfloor0conditions
16 :: (floor0>= 0 && floor0!= floor1) ->
17 button3_candidate = 0;
18 do // look for button3match
19 :: (MOVEDOWN_LAST_success == 0 && button3_candidate < 3) ->
20 button3= s.floor_[floor0].requests_in[button3_candidate];
21 if // checkbutton3conditions
22 :: (button3>= 0 && s.button_[button3].pressed== 1) ->
23 if // globalcondition
24 :: (s.floor_[floor0].nr < s.floor_[floor1].nr) ->
25 // apply right-hand side
26 s.elevator_[elevator5].currentfloor_out = -1;
27 s.floor_[floor1].currentfloor_in = -1;
28 s.elevator_[elevator5].currentfloor_out = floor0;
29 s.floor_[floor0].currentfloor_in = elevator5;
30 MOVEDOWN_LAST_success = 1; // for multi-loop break
31 update_state();
32 break;
33 :: else -> skip; fi;
34 :: else -> skip; fi;
35 button3_candidate++;
36 :: else -> break; od;
37 :: else -> skip; fi;
38 :: else -> skip; fi;
39 :: else -> skip; fi;
40 floor1++;
41 :: else -> break; od;
42 }
43 gotoMOVEDOWN_LAST_schedule;

Listing 1.5. The compiled movedown last rule

ProMoBox: A Framework for Generating Domain-Specific Property Languages 15

Step 2: Verification with SPIN. Step 2 of the verification process shown in Fig. 2
is the automatic verification by SPIN on the Promela model (using the -a option). The
LTL formula is checked on all possible execution traces. In this process, printing is sup-
pressed. If the Promela model satisfies the LTL property, the verification is completed,
and steps 3-5 are not followed. If the SPIN encounters a counter-example during veri-
fication, the verification process is terminated and a .trail file is generated, as shown in
Fig. 2.

Step 3: Trace generation by SPIN. In case of a counter-example, SPIN is used to per-
form a guided simulation using the trail on the Promela model (-t option). In this step,
the print statements in the Promela model are executed, so that all relevant information
about the counter-example is written to Trace.txt. In our example, one line in Trace.txt
may look like: “0.going up=1; 0.doors open=1; 0.currentfloor out=
2; 4.pressed=0; 5.pressed=0; 6.pressed=1; 7.pressed=1; 8.p
ressed=0; 9.pressed=0; 10.pressed=0;”. Other lines can show the trans-
formation rule that is applied (e.g., “movedown last”), or the input that was gener-
ated by the environment model, as discussed before (e.g., “6.pressed=1”). On the
left side of each dot, the ids for model elements as presented in Fig. 4 are used to refer
to the node in question. Depending on the type of the attribute/association, the value
behind the equal sign is interpreted as boolean, integer or id. In case of class that can
be created or deleted at run-time, all instances are printed out using newly assigned ids.
For conciseness, associations are printed in one direction only.

Step 4: Transformation of the counter-example to the domain-specific level. As
shown in Fig. 2, the Trace.txt is transformed to an output model, making use of the de-
sign model to map corresponding ids. This results in an output model, that sequentially
shows all the system states of the counter-example.

Step 5: Animation of the counter-example. The output model can be “played” out
step-by-step by visualising each state. As described in [6], one state is visualised as a
run-time model, which may look like the instance model on the top right of Fig. 1.

To conclude, as shown in Fig. 2 ProMoBox enables the modelling and verification of
properties while the user only has to provide the bare minimum of models: an anno-
tated meta-model, the concrete syntax (implicit in Fig. 2), the operational semantics,
the system he wants to verify, a configuration of the system, and the property.

4 Example and Evaluation

We implemented the ProMoBox framework in AToMPM [13], and the compiler that
compiles models to and from Promela or text were written in Python.

We verified three properties on the modelled system with the configuration at the top
right of Fig. 1:

• reachesFloor: when a button that requests the elevator to go to a certain floor is
pressed, the elevator will eventually open its doors at that floor;

• skipFloorOnce: when a button that requests the elevator to go to a certain floor is
pressed, the elevator will open its doors at that floor at the latest the second time it
passes that floor;

16 B. Meyers et al.

Fig. 8. The counter-example of the staysAtSecondFloor property

• staysAtSecondFloor: when the elevator is at a certain floor, it stays at that floor. The
system will not satisfy this property, and this it should yield a counter-example.

The properties are checked with SPIN [12] version 6.2.6 on a 64-bit Windows 7 SP1
PC with an Intel(R) Core(TM) i7 Q 720 CPU at 1.60 GHz 8 GB of DDR3 memory.
The results are shown in Table 1. The properties reachesFloor and skipFloorOnce take
more than a minute to evaluate, and use up to almost 2GB of memory as the depth
of the search tree is more than 5×104. We can conclude that the performance of the
approach in terms of time and memory consumption is acceptable but poor, as this can
be considered to be a small example. Alternatively it is possible to evaluate up to a
given search tree depth (using the -m option in SPIN) to obtain a fair confidence in the
correctness of the modelled system.

As expected, the staysAtSecondFloor property yields a counter example. In that case,
the verification only takes a very limited amount of time and memory. This turns out to
by exemplary due to the relative simplicity of the LTL formula in comparison with the
Promela system: if there is a counter-example, it is relatively quickly found. This raises
the confidence of using a maximum depth for the SPIN verification.

Table 1. Verification results of the system with initial state as shown at the top right of Fig. 1

property counter-
example

depth # states memory time taken

reachesFloor no 54422 8× 106 1934 MB 104s
skipFloorOnce no 54518 8× 106 1934 MB 172s
staysAtSecondFloor yes 255 127 0.226 MB 0.037s

5 Assumptions and Limitations

We now discuss the assumptions and current limitations of the ProMoBox approach.

Format of the DSL. It is assumed that we can express the abstract syntax of the DSML
as a meta-model, its concrete syntax is defined graphically by icons for every abstract
syntax concept and its semantics are given by a transformation model with a rule sched-
ule supporting control flow.

Boundedness. The rule-based nature of the operational semantics ensure a step-wise,
state-based semantics. In its current state, ProMoBox supports DSMLs that have a no-
tion of state. Since we apply model checking, the possible number of states must be

ProMoBox: A Framework for Generating Domain-Specific Property Languages 17

bounded. In the example, this is assured by the limited cardinality of the run-time ele-
ments (especially the currentfloor association). If such boundedness is not achieved in
the meta-model because of an infinite cardinality value, this value must be bounded in
order to allow model checking. Such abstraction operations (including decreasing state
spaces that are bounded but too large) are nonetheless key to modelling in SPIN, and
are beyond the scope of this paper.

Format of the Properties. The only type of properties that is currently supported is
based on LTL. However, properties language also supports quantification and structural
patterns, so the approach can be considered representative for a wide range of proper-
ties. Although we cannot provide any proof, we feel that the ProMoBox approach de-
scribed in this paper can be reused for different kinds of properties by defining generic
mappers to tools supporting model checking with OCL and CTL, real time properties,
or properties using distributions. The target tool has to be expressive enough so that
a correct structure and operational semantics can be defined, i.e., all elements can be
queried, variables can be stored and throughout the evaluation of the temporal formula
(context-dependency), etc. The key of the approach is that it is defined on the meta-level
formalisms (class diagrams, concrete syntax definitions, and rule-based transformation
with scheduling), in combination with pre-defined, generic templates.

Scalability. Scalability remains the main concern however. On the one hand, model
checking as a technique is a cause of scalability limitations, on the other hand gener-
ates the Promela code generator generic code, which could be optimised. A radically
different solution to the problem of scalability would be not to map to a model check-
ing approach, but instead use test case generation techniques to generate relevant test
cases in the form of input models and output models (oracles). Tests are executed by
using the input models as initial state, applying the operational semantics transforma-
tion, and comparing (by using model comparison, e.g., the DSMDiff algorithm [14]) the
resulting trace with the oracle. This illustrates how ProMoBox benefits from its mod-
elling approach, because mappings to different semantic domains can be implemented.
However, this research direction is not investigated for the ProMoBox approach.

6 Related Work

With respect to the contribution of this paper, we distinguish two threads of related
work. First, we consider approaches that translate models to formal representations to
specify and verify properties that are created specifically for one modelling language.
Second, we discuss approaches that have a more general view on providing specification
and verification support for different modelling languages.

Specific Solutions. In the last decade, a plethora of language-specific approaches have
been presented to define properties and verification results for different kinds of design-
oriented languages. For instance, Cimatti et al. [15] have proposed to verify component-
based systems by using scenarios specified as Message Sequence Charts (MSCs). Li et
al. [16] also apply MSCs for specifying scenarios for verifying concurrent systems.
The CHARMY approach [17] offers amongst other features, verification support for ar-
chitectural models described in UML. Collaboration and sequence diagrams have been
applied to check the behaviour of systems described in terms of state machines [18–20].

18 B. Meyers et al.

Rivera et al. [21] map the operational semantics of DSMLs to Maude, and thus, ben-
efit from analysing methods provided out-of-the-box of Maude environments such as
checking of temporal properties specified in LTL. These mentioned approaches are just
a few examples that aim at specifying temporal properties for models and verifying
them by model checkers (see [22] for a survey). They have in common that they offer
language-specific property languages or LTL properties have to be defined directly on
the formal representation. Thus, these approaches are not aiming to support DSMLs
engineers in the task of building domain-specific property languages.

Generic Solutions. There are some approaches that aim to shift the specification and
verification tasks to the model level in a more generalized manner. First of all, there
are approaches that propose OCL extensions, often referred to Temporal OCL (TOCL),
for defining temporal properties on models [23–25]. As OCL may be combined with
any modelling language, TOCL can be seen as a generic model-based property lan-
guage as well. In [26, 27] the authors discuss and apply a pattern to extend modelling
languages with events, traces, and further runtime concepts to represent the state of a
model’s execution and to use TOCL for defining properties that are verified by map-
ping the design models as well as the properties expressed in TOCL to formal domains
that provide verification support. In addition, not only the input for model checkers is
automatically produced, but also the output, i.e., the verification results, is translated
back to the model level. The authors explain the choice of using TOCL to be able to
express properties at the domain level, because TOCL is close to OCL and should be
therefore familiar to domain engineers. However, they also state that early feedback of
applying their approach has shown that TOCL is still not well suited to many domain
engineers and they state in future work that more tailored languages may be of help for
the domain engineers. The work presented in this paper goes directly in this direction
by enabling domain engineers to use their familiar notation for defining properties and
exploring the verification results.

Another approach that aims to define properties on the model level in a generic way
is presented in [28]. The authors extend a language for defining structural patterns based
on Story Diagrams [29] to allow for modelling temporal patterns as well. The result-
ing language allows to define conditionally timed scenarios stating the partial order of
structural patterns. The authors argue that their language is more accessible for domain
engineers, because their language allow decomposition of complex temporal properties
into smaller ones by if-then-else decomposition and quantification over free variables.
Their approach is tailored to engineers that are familiar to work with UML class dia-
grams and UML object diagrams as their notation is heavily based on the concepts of
these two languages. Furthermore, they explain how the specification patterns of Dwyer
et al. [7] are encoded in their language, but there is no language-inherent support to ex-
plicitly apply them. In our work, we tackle these two issues in the context of DSM
by reusing the notation of domain engineers for specifying properties and providing
explicit language support for specification patterns.

Finally, [30] present specification patterns for describing properties over reachable
states of graph grammars. These specification patterns are purely defined on graph
structures (i.e., nodes and edges) and thus are reusable for any modelling language.
However, the authors do not discuss integration with current modelling languages to

ProMoBox: A Framework for Generating Domain-Specific Property Languages 19

use such specification patterns for specific properties. A possible line of future work
may aim to integrate such specification patterns to our generic meta-model.

7 Conclusion and Future Work

We presented the ProMoBox approach, in which a minimum number of models is
required as input to specify and check properties with SPIN and visualise possible
counter-examples, while the user is shielded from the underlying formal methods. This
is made possible by using annotations on the DSML meta-model to generate five sub-
languages, and by compiling models to Promela and back. The key of the approach is
that all information of the DSML is explicitly modelled. We presented the approach
on a state-based DSML for elevator control. The process of evaluating properties using
ProMoBox is described in detail, including a formal description of the generation of the
sub-languages, and a compiler to Promela. Our results show that ProMoBox is applica-
ble for current DSMLs and the resulting specification languages are usable by domain
engineers.

For future work, we intend to use ProMoBox in a case study for gestural interac-
tion [31]. In this case study, we plan to do more research on the performance of model
checking using ProMoBox. Moreover, we plan to investigate how different property
languages can be supported using different templates, and how these templates can
be re-used, e.g., an existing template for structural properties could be re-used in the
properties template that is presented in this paper. We are also interested in broadening
the types of languages that are supported by ProMoBox, e.g., languages that explic-
itly include time. We expect that this would typically result in investigating associated
templates for real-time properties.

References

1. Gray, J., Tolvanen, J.P., Kelly, S., Gokhale, A., Neema, S., Sprinkle, J.: Domain-specific
modeling. In: Handbook of Dynamic System Modeling (2007)

2. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: ICSE (2007)

3. Risoldi, M.: A Methodology For The Development Of Complex Domain Specific Languages.
PhD thesis, University of Geneva (2010)

4. Visser, W., Dwyer, M., Whalen, M.: The hidden models of model checking. SoSym 11, 541–
555 (2012)

5. Meyers, B., Deshayes, R., Lucio, L., Syriani, E., Wimmer, M., Vangheluwe, H.: The Pro-
MoBox approach to language modelling. Technical Report SOCS-TR-2014.3, School of
Computer Science, McGill University (2014)

6. Meyers, B., Wimmer, M., Vangheluwe, H.: Towards domain-specific property languages:
The ProMoBox approach. In: DSM (2013)

7. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specifications for Finite-
State Verification. In: ICSE (1999)

8. Kühne, T., Mezei, G., Syriani, E., Vangheluwe, H., Wimmer, M.: Explicit transformation
modeling. In: Ghosh, S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 240–255. Springer,
Heidelberg (2010)

9. Syriani, E.: A Multi-Paradigm Foundation for Model Transformation Language Engineering.
PhD thesis, McGill University Montreal, Canada (2011)

20 B. Meyers et al.

10. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F.: A Visual Specification Language for
Model-to-Model Transformations. In: VL/HCC (2010)

11. Guerra, E., de Lara, J., Wimmer, M., et al.: Automated verification of model transformations
based on visual contracts. ASE 20, 5–46 (2013)

12. Holzmann, G.J.: The Model Checker SPIN. TSE 23, 279–295 (1997)
13. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Mierlo, S.V., Ergin, H.: AToMPM:

A Web-based Modeling Environment. In: MoDELS Demonstrations (2013)
14. Lin, Y., Gray, J., Jouault, F.: DSMDiff: A Differentiation Tool for Domain-Specific Models.

European Journal of Information Systems 16 (2007)
15. Cimatti, A., Mover, S., Tonetta, S.: Proving and Explaining the Unfeasibility of Message

Sequence Charts for Hybrid Systems. In: FMCAD (2011)
16. Li, X., Hu, J., Bu, L., Zhao, J., Zheng, G.: Consistency Checking of Concurrent Models for

Scenario-Based Specifications. In: Prinz, A., Reed, R., Reed, J. (eds.) SDL 2005. LNCS,
vol. 3530, pp. 298–312. Springer, Heidelberg (2005)

17. Pelliccione, P., Inverardi, P., Muccini, H.: CHARMY: A Framework for Designing and Veri-
fying Architectural Specifications. TSE 35, 325–346 (2008)

18. Brosch, P., Egly, U., Gabmeyer, S., Kappel, G., Seidl, M., Tompits, H., Widl, M., Wimmer,
M.: Towards Scenario-Based Testing of UML Diagrams. In: Brucker, A.D., Julliand, J. (eds.)
TAP 2012. LNCS, vol. 7305, pp. 149–155. Springer, Heidelberg (2012)

19. Knapp, A., Wuttke, J.: Model checking of UML 2.0 interactions. In: Kühne, T. (ed.) MoD-
ELS 2006. LNCS, vol. 4364, pp. 42–51. Springer, Heidelberg (2007)

20. Schäfer, T., Knapp, A., Merz, S.: Model Checking UML State Machines and Collaborations.
ENTCS 55, 357–369 (2001)

21. Rivera, J.E., Guerra, E., de Lara, J., Vallecillo, A.: Analyzing Rule-Based Behavioral Seman-
tics of Visual Modeling Languages with Maude. In: Gašević, D., Lämmel, R., Van Wyk, E.
(eds.) SLE 2008. LNCS, vol. 5452, pp. 54–73. Springer, Heidelberg (2009)

22. Gabmeyer, S., Kaufmann, P., Seidl, M.: A classification of model checking-based verification
approaches for software models. In: VOLT (2013)

23. Ziemann, P., Gogolla, M.: OCL Extended with Temporal Logic. In: Broy, M., Zamulin, A.V.
(eds.) PSI 2003. LNCS, vol. 2890, pp. 351–357. Springer, Heidelberg (2004)

24. Kanso, B., Taha, S.: Temporal Constraint Support for OCL. In: Czarnecki, K., Hedin, G.
(eds.) SLE 2012. LNCS, vol. 7745, pp. 83–103. Springer, Heidelberg (2013)

25. Bill, R., Gabmeyer, S., Kaufmann, P., Seidl, M.: OCL meets CTL: Towards CTL-Extended
OCL Model Checking. In: OCL Workshop (2013)

26. Zalila, F., Crégut, X., Pantel, M.: Leveraging Formal Verification Tools for DSML Users:
A Process Modeling Case Study. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II.
LNCS, vol. 7610, pp. 329–343. Springer, Heidelberg (2012)

27. Combemale, B., Crégut, X., Pantel, M.: A Design Pattern to Build Executable DSMLs and
Associated V&V Tools. In: APSEC (2012)

28. Klein, F., Giese, H.: Joint structural and temporal property specification using timed story
scenario diagrams. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp.
185–199. Springer, Heidelberg (2007)

29. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A New Graph Rewrite
Language Based on the Unified Modeling Language and Java. In: Ehrig, H., Engels, G.,
Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 296–309. Springer,
Heidelberg (2000)

30. da Costa Cavalheiro, S.A., Foss, L., Ribeiro, L.: Specification Patterns for Properties over
Reachable States of Graph Grammars. In: Gheyi, R., Naumann, D. (eds.) SBMF 2012.
LNCS, vol. 7498, pp. 83–98. Springer, Heidelberg (2012)

31. Deshayes, R., Palanque, P.A., Mens, T.: A generic framework for executable gestural inter-
action models. In: VL/HCC (2013)

A SAT-Based Debugging Tool for State

Machines and Sequence Diagrams�

Petra Kaufmann1, Martin Kronegger2, Andreas Pfandler2,
Martina Seidl1,3, and Magdalena Widl4

1 Business Informatics Group, TU Wien, Austria
2 Database and Artificial Intelligence Group, TU Wien, Austria

3 Institute for Formal Models and Verification, JKU Linz, Austria
4 Knowledge-Based Systems Group, TU Wien, Austria

{firstname.lastname@tuwien.ac.at}

Abstract. An effective way to model message exchange in complex set-
tings is to use UML sequence diagrams in combination with state ma-
chine diagrams. A natural question that arises in this context is whether
these two views are consistent, i.e., whether a desired or forbidden sce-
nario modeled in the sequence diagram can be or cannot be executed by
the state machines. In case of an inconsistency, a concrete communication
trace of the state machines can give valuable information for debugging
purposes on the model level. This trace either hints to a message in the
sequence diagram where the communication between the state machines
fails, or describes a concrete forbidden communication trace between the
state machines. To detect and explain such inconsistencies, we propose a
novel SAT-based formalization which can be solved automatically by an
off-the-shelf SAT solver. To this end, we present the formal and technical
foundations needed for the SAT-encoding, and an implementation inside
the Eclipse Modeling Framework (EMF). We evaluate the effectiveness
of our approach using grammar-based fuzzing.

1 Introduction

The abstraction power of multi-view modeling languages like UML comes along
with the possibility of inconsistencies in the description of the system under
development [18]. On the one hand, different diagram types lower the complexity
of describing and understanding large software systems by providing focused
views on specific aspects like, for example, interprocess communication [2]. On
the other hand, performing modifications on one diagram may require changes
in other diagrams. If these changes are not implemented carefully in the other
diagrams as well, the model can contain inconsistent information which, in the
worst case, might propagate up to the running application. Hence, if the diagrams
do not complement one another in a consistent manner, then the benefits of

� This work was partially funded by the Vienna Science and Technology Fund
(WWTF) under grant ICT10-018 and by the Austrian Science Fund (FWF) un-
der grants P25518-N23, S11408-N23, and S11409-N23.

B. Combemale et al. (Eds.): SLE 2014, LNCS 8706, pp. 21–40, 2014.
c© Springer International Publishing Switzerland 2014

22 P. Kaufmann et al.

multi-view modeling are rendered void [23]. Especially when the models are not
directly executable or when no simulation environment is available, then testing
and debugging is difficult.

Therefore, mechanisms are required which support the evolution of a model [10]
and ensure consistency. In this paper, we are concerned with the consistency
between state machines and sequence diagrams. State machines describe the in-
ternal behavior of objects and sequence diagrams focus on interaction scenarios
between different instances of the objects. These scenarios model either required
or forbidden message exchange. Our approach verifies whether the communica-
tion described by a sequence diagram can be executed by a given set of state
machines. If a sequence of messages can be executed although it is forbidden
by the sequence diagram, then a concrete communication trace is returned. If a
sequence of messages is not possible although according to the sequence diagram
it should be, then a reason for the failure is given. On this basis, inconsistencies
introduced during the evolution of a model cannot only be discovered easily,
but also be corrected immediately. Hence, sequence diagrams are test cases de-
scribing desired or undesired behavior of the state machines. With our approach
the test cases can be evaluated even if no execution environment for the state
machines is available.

For solving this consistency checking problem, we propose to use an approach
based on the satisfiability problem of propositional logic (SAT) [3]. For SAT
powerful solvers are available which are successfully used out of the box in many
verification applications. For instance, we have made very positive experiences
with using SAT encodings to solve the merging problem in the context of opti-
mistic model versioning [30] as well as for reachability checking of composite state
machines [14]. Based on these experiences, we developed the consistency checking
encoding presented in this paper. This considerably improves our previous work
on consistency checking using the model checker Spin [4,5]. Spin offers the high
level input language Promela which seems to be very appealing for formulat-
ing the consistency checking problem. However, due to the semantic differences
of Promela and UML-like languages the encoding becomes rather complicated.
In SAT, however, we do not have any semantical restrictions. With a concise
problem formulation together with encoding techniques borrowed from planning
applications [21] the SAT encoding turns out intuitive and flexible. Further, the
SAT-based approach integrates smoothly into our model evolution framework
FAME1.

This paper is structured as follows. First, we review related approaches in
Section 2. Then we motivate this work with a concrete example in Section 3
and informally explain the modeling language concepts relevant for this work.
In Section 4 we give a concise formal problem definition. To this end, we formally
describe the sequence diagram and the state machine along with their interplay.
Further, we introduce the notion of lifeline consistency, which is what we want
to check. This problem definition directly allows us to derive a problem encoding
to SAT which can be handed to a SAT solver (Section 5). Section 6 discusses

1 http://www.modelevolution.org/

http://www.modelevolution.org/

A SAT-Based Debugging Tool for State Machines and Sequence Diagrams 23

the implementation based on the Eclipse Modeling Framework and Section 7
presents a detailed evaluation of our approach based on grammar-based white-
box fuzzing. Finally, we conclude this paper with an outlook on future work.

2 Related Work

The problem tackled in this paper is a typical model checking problem. There-
fore, it is not surprising that different works [5,13,15,20,22] propose a formulation
in languages like Promela, the input language of the popular model checker Spin.
Due to semantical differences of state machines and Promela, it turns out that
an equivalence preserving translation capturing all language concepts is chal-
lenging. For example, in our previous work [4,5], we employed Spin to ensure
that given traces do not occur during the execution of a set of state machines,
but with this encoding we could not ensure that a given message sequence is
possible.

In the past, many other formal approaches have been presented, but most of
the implementations do not seem to have gone beyond a proof of concept state
and are either not updated to UML 2 or are not available at all. We summa-
rize the approaches most related to our work in the following. For a detailed
discussion we refer the interested reader to specific surveys like [18]. Lam and
Vitus [16] present an algebraic approach to express the consistency checking
problem in the π-calculus. The practical realizability of the approach is not dis-
cussed. Van der Straeten et al. [27] propose to use description logics to formally
describe the consistency between class diagrams, sequence diagrams, and state
machines. Compared to SAT, description logics are more expressive in general,
but their satisfiability checking problem is located in higher complexity classes
than NP. Bernardi et al. propose to use petri nets for checking the consistency
between different diagrams [1]. Communication, however, is only considered at
the class level and not at the object level. Engels et al. [8] propose to check
consistency by evaluating dedicated consistency constraints represented in form
of collaborations. Therefore, an interpreter is provided. Egyed [7] applies instant
consistency validation by rules formulated in OCL which shows to be very effi-
cient on large models. For capturing the same kind of inconsistency, which we
deal with in this paper, however, a temporal extension of OCL is necessary.

A different approach for consistency checking is presented by Graaf and Van
Deursen [12] who suggest to synthesize a state machine from the given sequence
diagram as in [28] and then compare the automatically generated state ma-
chine to the given state machine. Therefore, they realize normalization, trans-
formation, and comparison steps, respectively. In [12], however, the comparison
requires manual intervention. Feng and Vangheluwe propose to use a simulation-
based approach for consistency checking [9].

Besides checking the consistency between state machine diagrams and se-
quence diagrams, a lot of effort has been spent for consistency checking between
other diagrams like class diagrams, collaboration diagrams, activity diagrams,
etc. We refer to [11,26] for detailed surveys.

24 P. Kaufmann et al.

working waiting

desperate

ε/wantCoffee

coffeeDone/ε

error/εrepaired/ε

error

preparingidle

maintenance

wantCoffee/ε

ε/coffeeDone

ε/error

ε/repair

done/repaired

idle

repairing

ε/donerepair/ε

PhD Student (PhD) Coffee Machine (CM) Maintenance

Fig. 1. Three state machines modeling a PhD student, a coffee machine, and a main-
tenance unit

alice:PhD cm:CM m:Maintenance bob:PhD

wantCoffee

error
repair

done

wantCoffee

coffeeDone

wantCoffee

coffeeDone

alice:PhD cm:CM bob:PhD

wantCoffee

error

wantCoffee

coffeeDone

neg

Fig. 2. (Left) A sequence diagram depicting a desired scenario that is inconsistent
with the state machines of Fig. 1. The state machines have to be changed in order to
allow the scenario. (Right) A sequence diagram depicting a forbidden scenarios that is
inconsistent with the state machines of Fig. 1. No changes are required.

3 A Motivating Example

To motivate our work and to illustrate useful application scenarios we present
the following example. Fig. 1 shows three state machines that describe the be-
haviors of a PhD student, a coffee machine, and a maintenance unit for the coffee
machine. As typical for the UML state machine view, rectangles with rounded
corners present states which are connected by transitions. Each transition car-
ries a label consisting of a trigger on the left side of the “/” and an effect on
the right side. The special symbol ε on the left side of the “/” indicates that no
trigger is necessary for the transition to fire. The initial state is indicated by an
incoming arc from a black dot.

Instances of state machines communicate with each other by message passing.
They change states according to messages that are sent and received. A state
change is initiated by the receipt of a symbol indicated as trigger in one of
the outgoing transitions of the current state. An outgoing transition carrying
the special symbol ε as trigger can be initiated without receiving any symbol.

A SAT-Based Debugging Tool for State Machines and Sequence Diagrams 25

The transition is fully executed only if the effect can be sent successfully, i.e., if
it also can be received by another instance of a state machine.

Fig. 2 shows two sequence diagrams that describe communication scenarios
between instances of the state machines in Fig. 1. A state machine is instantiated
by one or more lifelines. Similar as in UML, they are shown as rectangles with a
dashed vertical line underneath. Each lifeline’s name is shown inside the rectangle
before the “:”, followed by the name of the state machine it instantiates after
the “:”. For space reasons, we have abbreviated these names. Along the lifelines,
a sequence of messages is shown. A message is depicted as an arrow from the
sender lifeline to the receiver lifeline labeled with the symbol being sent. The set
of symbols used in the sequence diagrams is the same as the set of symbols used
in the state machines.

In order to be consistent with the state machines, the message sequence of
a sequence diagram must be executable from some global state of the lifelines
which is reachable from the global initial state, where a global state is a tuple
of states of the state machines instantiated by the lifelines. More precisely, from
such a global state it must be possible for each message after another to be a
trigger in the sending lifeline’s state machine instantiation and to be an effect
in the receiving lifeline’s state machine instantiation.

We present two possible application scenarios for checking a set of state ma-
chine diagrams and a sequence diagram for consistency. (1) A desired scenario
is depicted in the sequence diagram. If the sequence diagram is consistent with
the state machines, then we know that the state machines fulfill the scenario.
Otherwise, we can obtain information about the global state of the state ma-
chines where the sequence first fails, which helps to discover erroneous or missing
transitions in the state machines view. (2) An unwanted scenario is depicted in
the sequence diagram. If a sequence diagram is consistent with the state ma-
chines, then we know that there is a bug in the state machines and we can
obtain a counter-trace, namely a sequence of global states which follows from
the application of the message sequence.

In Fig. 2 an example for each scenario is depicted. The left sequence diagram
shows a desired scenario. However, it is inconsistent with the state machines for
the following reason: The PhD student “alice” changes into state “desperate” af-
ter receiving the symbol “error” from the coffee machine. She must remain there
until the symbol “repaired” is received. According to the sequence diagram,
the coffee machine never sends this symbol. This also means, that the coffee
machine never returns to state “idle” and therefore cannot receive the symbol
“wantCoffee” from PhD student “bob”. Therefore, the message sequence of the
sequence diagram can only be executed up to and including the fourth message,
“done”. In this case, our tool returns the sequence of messages up to the message
that cannot be sent or received, in this case, up to and including “done” from
“m:Maintenance” to “cm:CM”. A possible fix for this broken scenario would be
to remove the state “desperate” from the PhD student and to connect the tran-
sition with trigger “error” from the state “waiting” directly to state “working”.

26 P. Kaufmann et al.

Further, in the coffee machine the effect of the transition with trigger “done”
from state “maintenance” to state “idle” would have to be replaced by ε.

Similarly to the “neg” fragment used in UML sequence diagrams, we mark
the negative scenario in the right diagram of Fig. 2 using this notation. Note
that we refer to a complete application scenario rather than to a subsequence of
a sequence diagram. Hence, the second diagram shows an unwanted scenario. It
allows the coffee machine to prepare coffee while being in the error state. This
scenario is not implemented in the state machines, so no bug can be found. If
it was implemented, the tool would return a sequence of global states of the
instances of the state machines representing this message sequence.

4 Problem Definition

Given a sequence diagram and a set of communicating state machines modeling
the behavior of the sequence diagram’s lifelines, the Multiview Sequence Con-
sistency Problem (MSCP) asks whether the communication sequence modeled
in the sequence diagram is executable by the state machines. If this is the case,
then we call the two views consistent. The desired outcome of a positive sce-
nario (no “neg” label) depicted in a sequence diagram is to be consistent with
the state machine view, i.e., the desired scenario is indeed implemented in the
state machines. The desired outcome of a negative scenario (“neg” label) is to be
inconsistent with the state machine view, which means, that the state machines
do not implement the undesired trace. In the following, we present a precise
definition of the semantics of the state machine view and of the sequence view
in order to present the formal definition of MSCP.

The core elements for defining state machines, sequence diagrams, and their
interaction are the symbols of the alphabets ΣA and ΣL where the special sym-
bol ε is in ΣA. The alphabet ΣA contains symbols which label messages in the
sequence diagrams and which trigger transitions and occur as effects in the state
machines. The special symbol ε is the “empty symbol” used for transitions trig-
gered by on-completion-events and for empty events on transitions. The alphabet
ΣL contains names for the instances of the state machines, also called lifelines.
Based on ΣA we define state machines as follows.

Definition 1 (State Machine). Given an alphabet ΣA, a state machine M is
a quadruple (S, ι, A, T), where

– S is a finite set of states,
– ι ∈ S is a designated initial state,
– A ⊆ ΣA with ε ∈ A is the alphabet of M , and
– T ⊆ S × A × A × S is a transition relation such that for all s, s′ ∈ S there

is no transition (s, ε, ε, s′) ∈ T .

A state machine consists of a set of states, a designated initial state, an
alphabet, and a transition relation which connects the states. The rightmost
state machine shown in Fig. 1 which is called Maintenance, contains the set

A SAT-Based Debugging Tool for State Machines and Sequence Diagrams 27

S = {idle, repairing} of states, the initial state ι = idle, and the alphabet A =
{ε, repair, done}. For a transition t ∈ T with t = (s, tr , eff , s′), s is the source
state of the transition, s′ is the target state, tr is a symbol (trigger) which
upon receipt triggers the execution of transition t, and eff is a symbol (effect)
that is sent and has to be received by another state machine when the transi-
tion is executed. The state machine Maintenance in Fig. 1 has two transitions:
(idle, repair, ε, repairing), (repairing, ε, done, idle) ∈ T .

For a transition to be executed in a state machineM , the trigger symbol of the
transition must be received by M from a state machine different to M and the
effect symbol must be received by a state machine different to M . Either trigger
or effect can be the special symbol ε which stands for an empty trigger or effect.
A transition containing ε as trigger is triggered without receiving any symbol,
e.g., by an on-completion-event, and the execution of a transition containing ε as
effect can be finished without sending any symbol. We assume that no transition
of a state machine contains ε as both trigger and effect. Such transitions can be
eliminated by contracting the connected states. Furthermore notice that the
requirement of having a single effect does not impose a strong restriction as
multiple effects can be simulated by a state machine that sends a predefined
sequence of effects upon receiving a designated trigger symbol.

In order to give a precise semantics to the interaction between state machines,
we introduce the notion of an extended state machine.

Definition 2 (Extended State Machine). Given a state machine M , the
extended state machine M∗ of M = (S, ι, A, T) is a quadruple (S ∪ S∗, ι, A, T ∗)
where

– S∗ = {s∗t | t ∈ T } and
– T ∗ = {(s, tr , ε, s∗t), (s∗t , ε, eff , s′) | t = (s, tr , eff , s′) ∈ T }

An extended state machine introduces an intermediate state s∗t for each tran-
sition t. This intermediate state has exactly one incoming transition, which is
triggered by the trigger of t and contains the effect ε, i.e., has no effect. It also
has exactly one outgoing transition, which leads to the target state of t with ε
as trigger and the effect of t. We call S the original states and S∗ the interme-
diate states.

The extended state machine helps to distinguish between the event of having
received the trigger and the event of being able to send the effect. Note that
any state machine can be translated to exactly one extended state machine
and vice versa. Fig. 3 depicts the extended state machine of the state machine
PhD Student. The intermediate states are represented by black diamonds with
rounded corners.

Next we formally define sequence diagrams, starting with the concept of life-
lines.

Definition 3 (Lifeline). Given a set M of extended state machines and the
alphabet ΣL, a lifeline is a pair L = (l ,M∗) where l ∈ ΣL is the name of the
lifeline and M∗ ∈ M is associated with the lifeline.

28 P. Kaufmann et al.

working waiting

desperate

ε/ε
ε/wantCoffee

coffeeD
one/εε/ε

er
ro
r/
ε

ε/ε
repaired/ε

ε/ε

PhD Student Extended

Fig. 3. Extended state machine corresponding to the state machine “PhD student”

A lifeline is an instance of an extended state machine. The name l of a lifeline
is used to distinguish different instances of the same state machine and M∗ is
the extended state machine the lifelines refers to. In the sequel, we refer to M∗ of
a lifeline L by sm(L). The communication between lifelines takes place through
messages, which are defined as follows.

Definition 4 (Message). Given an alphabet ΣA and a set L of lifelines such
that each lifeline’s extended state machine is defined over ΣA, a message is a
triple (σ, a, ρ) where

– σ ∈ L ∪ {ε} is the sending lifeline,
– a ∈ ΣA is the message symbol, and
– ρ ∈ L \ {σ} is the receiving lifeline

such that σ = ε if and only if a = ε.

For a message (σ, a, ρ), the sender lifeline σ either refers to an extended state
machine or is the empty sender ε when the empty symbol ε is received. Note that
for better readability, we do not show empty messages in the concrete syntax
of the sequence diagrams. The receiver lifeline ρ refers to an extended state
machine.

Based on the definition of a lifeline and of a message, we can now formally
define a sequence diagram.

Definition 5 (Sequence Diagram). Given the alphabets ΣA and ΣL, and a
set M of extended state machines over ΣA, a sequence diagram is a pair (L, μ)
where

– L is a set of lifelines over M and ΣL

– the names of the lifelines are pairwise distinct
– μ = [m1, . . . ,mn] is a sequence of messages such that for each (σ, a, ρ) ∈ μ

it holds that σ, ρ ∈ L and a ∈ ΣA.

The right-hand sequence diagram of Fig. 2 contains the set L = {(alice,PhD),
(cm,CM), (bob,PhD)} of lifelines and the sequence μ = [((alice,PhD),wantCoffee,
(cm,CM)), . . . , ((cm,CM), coffeeDone, (bob,PhD))].

A SAT-Based Debugging Tool for State Machines and Sequence Diagrams 29

To describe the interaction between lifelines via messages we define a global
state which captures a configuration of a set of lifelines.

Definition 6 (Global State). Given a set L = {L1, . . . , Ll} of lifelines, let
sm(Li) = (Si, ιi, Ai, Ti) be the extended state machine of lifeline Li, for 1 ≤ i ≤ l.
Then a global state ŝ is a tuple (s1, . . . , sl) ∈ S1 × · · · × Sl.

For three lifelines instantiating the three state machines of Fig. 1, an example
for a global state is (desperate, <maintenance/done/repaired/idle>, idle) where the
second state refers to the intermediate state on the transition from maintenance
to idle in state machine CM.

In each global state, there exists a (possibly empty) set of messages that can
be sent and a set of messages that can be received. After sending or receiving a
message out of these sets, a different global state is reached. This semantics is
described in the following definition.

Definition 7 (Admissibility and Application of a Message). Given the
alphabet ΣA, a set L = {L1, . . . , Ll} of lifelines with sm(Li) = (Si, ιi, Ai, Ti),
and a global state ŝ = (s1, . . . , sl) ∈ S1 × · · · × Sl, the message m = (Ls, a, Lr)
with Ls ∈ L ∪ {ε}, Lr ∈ L, Ls �= Lr, and a ∈ ΣA is admissible in ŝ if the
following holds: If Ls �= ε, then

1. (ss, ε, a, s
′
s) ∈ Ts, and

2. (sr, a, ε, s
′
r) ∈ Tr.

Otherwise, i. e., if m = (ε, ε, Lr), then (sr, ε, ε, s
′
r) ∈ Tr.

By applying the admissible message m in the global state ŝ, a global successor
state ŝ′ = (s1, . . . , s

′
s, . . . , s

′
r . . . , sl) ∈ S1 × · · · × Sl is reached.

A message is admissible in some global state if (1) (for Ls �= ε) the state
of the sender lifeline is an intermediate state whose outgoing transition has the
message symbol a as effect and (2) unless Ls = ε, the state of the receiver lifeline
is an original state which has as least one outgoing transition with the message
symbol a as trigger. If Ls = ε, the receiver can also be in an intermediate state.

In the global state s = (desperate, <maintenance/done/repaired/idle>, idle) of
the lifelines (alice,PhD), (cm,CM), (m,Maintenance) the set of applicable mes-
sages contains only one message, namely {m = ((cm,CM), repaired, (alice,PhD))}.

Note that lifelines refer to extended state machines, which means that a tran-
sition cannot carry a trigger symbol other than ε together with an effect other
than ε. Therefore, it can never happen that a receiver lifeline sends any effect
while executing a transition triggered by a symbol other than ε.

The global successor state ŝ′ is reached by applying a message. Then, ŝ′ differs
from ŝ in the states of the sender and the receiver lifeline: The sender’s state
changes from an intermediate state to its only successor state, and the receiver’s
state changes accordingly to the received symbol into an intermediate state.
Applying the above message m to the global state ŝ reaches the global successor
state (<desperate/repaired/ε/working>, idle, idle).

30 P. Kaufmann et al.

The set of admissible messages in a global state can contain a subset of mes-
sages that are independent, i.e., that have no sender or receiver in common.
The messages in such a set can be executed simultaneously. We call a set of
independent messages a transaction. It is defined as follows.

Definition 8 (Transaction). Let L = {L1, . . . , Ll} be a set of lifelines. A
transaction is a nonempty set m = {m1, . . . ,mt} of messages such that for
distinct i, j ∈ {1, . . . , t}, mi = (σi, ai, ρi), and mj = (σj , aj , ρj) it holds that all
σi, σj , ρi, and ρj are pairwise distinct.

A transaction is admissible if all its messages are admissible. The global state
reached by applying a transaction is the global state reached by applying each of
the transaction’s messages. Note that a sequence of messages can also be seen as
a sequence of transactions that are singletons, i.e., each transaction contains a
single message. A sequence of messages, such as depicted in a sequence diagram,
can therefore be seen as a sequence of singleton transactions.

We further define a path as a sequence of transactions connecting global states
as follows.

Definition 9 (Path). A path μ from a global state ŝ0 to a global state ŝk is
a sequence μ = [m1, . . . ,mk] of transactions such that there exists a sequence
[ŝ0, . . . , ŝk] of global states where for all 1 ≤ i ≤ k, mi is admissible in state ŝi−1

and ŝi is the global successor state of ŝi−1 after applying mi.

A global state ŝj is reachable from ŝi if there is a path from ŝi to ŝj . The
length of a path is the number of its transactions.

The Multiview Sequence Consistency Problem (MSCP) deals with the ques-
tion whether from some global state that is reachable from the global initial
state, i.e., ŝι = (ι1, . . . , ιl) for the initial states of the state machines of l life-
lines, there is a path representing the sequence of messages described in the
sequence diagram. In order to be able to express this problem as a propositional
formula of polynomial size with respect to the input, we have to bound the length
of the path leading to the beginning of the sequence. This bound is included in
the k-Multiview Sequence Consistency Problem (k-MSCP).

Definition 10 (k-Multiview Sequence Consistency). Given a sequence di-
agram SD = (L, μ) with L = {L1, . . . , Ll} and sm(Li) = (Si, ιi, Ai, Ti) for
1 ≤ i ≤ l over a set M of extended state machines and the alphabets ΣA and
ΣL, SD and M are k-consistent if there exists a path of length at most k starting
at ŝ = (ι1, . . . , ιl) and leading to a global state ŝ′ such that a global state ŝ′′ is
reachable from ŝ′ by applying the sequence of messages μ.

Finally, the k-Multiview Sequence Consistency Problem is defined as follows.

k-Multiview Sequence Consistency Problem (k-MSCP)

Instance: A sequence diagram SD = (L, μ) over a set M of state
machines and the alphabets ΣA and ΣL.

Question: Are SD and M k-consistent?

A SAT-Based Debugging Tool for State Machines and Sequence Diagrams 31

5 Encoding

To solve the k-MSCP problem we propose to encode it to the satisfiability
problem of propositional logic (SAT). We assume the reader to be familiar with
the basics of propositional logic and SAT-solvers (for details we refer to [3,19]).
To this end, we build a propositional formula representing an instance of the k-
MSCP problem and hand it to a SAT solver. The solver returns SAT and a logical
model if the sequence diagram of the k-MSCP problem instance can be executed
after at most k transactions between the lifelines. The logical model can then be
translated back into a concrete sequence of transactions between the lifelines as
well as to the state transitions triggered by the application of the messages. The
solver returns UNSAT if the sequence diagram cannot be executed by the lifelines
after at most k message exchanges. In this case, we remove trailing messages one
after another from the sequence diagram and call the solver again until the first
failing message is found. The encoding presented below is an extension of the
encoding discussed in [14, Section 4] where we check the reachability of a global
state regardless of a particular message sequence.

We encode an instance of the k-MSCP as the propositional formula ϕ over a
set of variables representing original states, intermediate states, transitions, and
alphabet symbols. We assume that all states of all lifelines are pairwise distinct.
This natural assumption can be achieved by indexing the states with the name
of the respective lifeline. Observe that this also ensures that all transitions of
all lifelines are pairwise distinct. Let M be a set of extended state machines
over the alphabet ΣA, let SD = (L, μ) be a sequence diagram over M with
L = {L1, . . . , Ll} and μ = [m1, . . . ,mn], let T :=

⋃
1≤i≤l Ti be the set of all

transitions in all extended state machines, let S :=
⋃

1≤i≤l Si be the set of
all original states of all lifelines (all instances of extended state machines), let
S∗ :=

⋃
1≤i≤l S

∗
i be the set of all intermediate states of all lifelines, and let

A := ΣA \ {ε}. Recall that k is an integer defining the maximum length of
the path leading to a global state from which the message sequence in SD is
executed. Further, let k′ := k+4n be the maximum number of timesteps needed
to apply n messages after a path of a maximum length of k. The factor 4 is
necessary because moving forward on a transition with the empty symbol ε as
trigger or effect requires additional timesteps. Then the set of variables occurring
in the encoding is given by {vi | v ∈ (T ∪A∪S ∪S∗), 0 ≤ i ≤ k′}. That is, each
transition, symbol, original state, and intermediate state together with an index
up to k′ is represented by a variable. We refer to this index as timestep.

We further use the following functions to simplify the presentation of the
formula. Let L = (S, ι, A, T) be a lifeline, (s, tr , ε, s∗t) and (s∗t , ε, eff , s′) be tran-
sitions of the extended state machine sm(L). Recall that the states of sm(L)
are made distinct by indexing as described above. The two transitions corre-
spond to a transition t = (s, tr , eff , s′) of a non-extended state machine. Ad-
ditionally, let m = (σ, a, ρ) be a message. Then trans(L) = T , src(t) := s,
int(t) := s∗t , trg(t) := tr , eff(t) := eff , tgt(t) := s′, snd(m) := σ, rec(m) := ρ, and
symb(m) := a.

The formula ϕ is given by a conjunction of the following subformulas.

32 P. Kaufmann et al.

ϕinit :=

l∧

i=1

(
ι0i ∧

∧

s∈Si∪S∗
i ,s�=ιi

s0
)

∧
∧

a∈A
a0

ϕ1 :=

k′−1∧

i=0

∧

t∈T

[
ti →

(
src(t)i ∧ int(t)i+1 ∧
(
trg(t)i �= ε →

(
trg(t)i ∧ trg(t)

i+1
))

∧
(
eff(t)i �= ε →

(
eff(t)

i ∧ eff(t)i+1
)))]

ϕ2 :=

k′−1∧

i=0

∧

trg∈A

[
trgi ∧ trg

i+1 →
(∨

t∈T ,
trg(t)=trg

ti
∧

t1,t2∈T ,
trg(t1)=trg(t2)=trg

(t1
i ∨ t2

i
)

)]

ϕ3 :=

k′−1∧

i=0

∧

eff∈A

[
eff

i ∧ eff i+1 →
(∨

t∈T ,
eff=eff(t)

ti
∧

t1,t2∈T ,
eff(t1)=eff(t2)=eff

(t1
i ∨ t2

i
)

)]

ϕ4 :=

k′−1∧

i=0

∧

s∈S

[
si ∧ si+1 →

∨

t∈T ,s=src(t)

ti
]

ϕ5 :=

k′−1∧

i=0

∧

t∈T ,eff(t) �=ε

[(
int(t)i ∧ int(t)i+1

) → eff(t)i+1

]

ϕ6 :=

k′−1∧

i=0

∧

t∈T ,eff(t) �=ε

[(
int(t)i ∧ int(t)

i+1
)
→ eff(t)

i+1
]

ϕ7 :=

k′−1∧

i=0

∧

t∈T

[(
int(t)i ∧

(
eff(t)i+1 �= ε → eff(t)

i+1
))

→
(
int(t)

i+1 ∧ tgt(t)i+1

)]

ϕ8 :=

k′−1∧

i=0

l∧

j=1

[∨

s∈(Sj∪S∗
j)

si ∧
∧

s1,s2∈(Sj∪S∗
j),

s1 �=s2

(
s1

i ∨ s2
i
)]

ϕseq :=
∧

i∈[1,...,n],
j∈[k,k+4,...,k+4n]

[
symb(mi)

j ∧ symb(mi)
j+1∧

∨

t∈trans(snd(mi)),
eff(t)=mi

(
int(t)j ∧ int(t)

j+1
)
∧

∧

a∈A
a �=mi

((
aj → aj+1

) ∧ (
aj+1 → aj+2

) ∧ (
aj+2 → aj+3

))]

The formula ϕ is satisfiable if and only if a state ŝ is reachable by a path of
length at most k starting at the global initial state such that starting from ŝ,
the messages in μ are applicable one after another, i. e., there exists a solution
to the k-MSCP instance. The intuition behind the encoding can be explained
as follows: A state s ∈ S is active at timestep i if si is true. A symbol a ∈ A

A SAT-Based Debugging Tool for State Machines and Sequence Diagrams 33

is waiting to be received at timestep i if ai is true. This way, when a transition
with a as an effect is triggered at timestep i, then ai is set to true. A state
machine which is currently in a state with an outgoing transition with a as a
trigger, can consume a in the same or a following timestep j ≥ i. By doing so,
aj is set to false, i.e., it cannot be consumed anymore. Then the subformulas
can be understood as follows.

– ϕinit sets the global state at timestep 0 to the initial states of the lifelines.
All other variables representing states and symbols are set to false.

– ϕ1 ensures that whenever a transition is triggered, the corresponding lifeline
changes to the respective intermediate state. Then the trigger symbol is set
to false and the effect symbol is set to true.

– The subformulas ϕi with i ∈ {2, . . . , 6} are also called framing axioms. They
ensure that each change of a symbol or of a state has a cause.

• ϕ2 and ϕ3 make sure that whenever the polarity of a symbol is changed,
there has also been a transition causing this change.

• ϕ4 ensures that a state is only left if a transition causes the change.
• ϕ5 and ϕ6 encode that whenever a lifeline leaves an intermediate state,
the corresponding symbol is consumed; otherwise the symbol stays avail-
able.

– ϕ7 forces a lifeline to move to the target state if the effect symbol has been
consumed.

– ϕ8 ensures that each lifeline is in exactly one state at each timestep.
– Finally, ϕseq forces the sequence of messages μ to be executed after the

preparation phase.

In formulas ϕ1 and ϕ7, the expressions trg(t)i �= ε and eff(t)i �= ε occurring
in the formula are replaced by the corresponding logical constants (� and ⊥)
during generation of the formula. The formula is converted to conjunctive normal
form, the input format of most SAT solvers. To this end, we apply the Tseitin
transformation [25] where necessary.

Note that the encoding allows that nothing happens, i. e., no transaction takes
place at a timestep. It is ensured by the framing axioms that in this case, the
global state remains the same. This relaxation implicitly encodes the “at most
k” steps formulation. If at x indices nothing happens and the execution of the
message sequence starts at index k, it means that the length of the transaction
sequence executed before the message sequence of the sequence diagram is of
length k − x. The framing axioms also ensure that lifelines not participating in
a transaction do not change.

A solution returned by the SAT solver consists of a set of positive and negative
literals representing variables set to true or false. By extracting the positive
literals whose variables represent states and transitions (sets S, S∗, and T) we
obtain the path of at most k steps leading to the execution of the sequence
diagram, as well as the state changes of the lifelines during the execution of
the sequence diagram. If the length of the path is less than k, then for some
consecutive indices the state variables represent identical states.

34 P. Kaufmann et al.

Fig. 4. Screenshot of the graphical user interface

In order to simplify the encoding, we assume that after applying a transaction
each symbol can be consumable only once at a timestep. Allowing a symbol to
be consumable multiple times requires the integration of counters, which can be
realized, e.g., by building upon ideas presented in [24].

6 Implementation

We implemented a tool to solve k-MSCP instances based on the SAT encoding
presented above as plugin for the Eclipse framework2. It can be downloaded from

http://modelevolution.org/updatesite/

To define the input language of our tool, i.e., the language of state machines
and sequence diagrams, we formulated a metamodel in Ecore, the modeling
language of the Eclipse modeling framework (EMF)3. This metamodel contains
all language concepts discussed in this paper. Strongly inspired by the UML
metamodel, it is designed for the easy integration of future language extensions.

The input models provided by the user of our tool are automatically translated
to propositional logic using the encoding described above. After the encoding
phase, the obtained formula is passed to the solver Sat4j [17], a Java-based SAT
solver integrated in our tool.

2 http://www.eclipse.org/
3 http://www.eclipse.org/emf/

http://www.eclipse.org/
http://www.eclipse.org/emf/

A SAT-Based Debugging Tool for State Machines and Sequence Diagrams 35

If the SAT solver returns SAT, then at least one execution path in the state
machines exists which conforms to the message sequence in the sequence dia-
gram. If the SAT solver returns UNSAT then the state machines and the sequence
diagram are inconsistent. In this case, the last message is removed, and the SAT
solver is called again, until it eventually returns SAT. The remaining sequence
diagram is consistent with the state machines, and the information about the
removed messages can be used for debugging purposes.

Then the solution returned by the SAT solver is mapped back to the model
elements and visualized in the graphical user interface as shown in Fig. 4. Our
user interface allows the user to step through a whole trace by coloring the
current messages, transitions, and states. This visualization is very useful to
understand the interplay and the behavior of the different state machines and
provides valuable debugging assistance.

7 Evaluation

We thoroughly tested our tool using a grammar-based white-box fuzzing ap-
proach [29]. This method generates random input models based on a grammar
provided by an EMF metamodel. We employed a random input model generator
based on the tool presented in [29] but using a different definition of consistency
between sequence diagrams and state machines. Other than taking into account
only the receive event of a message exchange as is the case in [29], we consider
both the send and the receive events. The tool consists of two components, a
generator to build syntactically correct diagrams, and a simulator to ensure that
a message sequence can be executed after a certain number of steps.

We applied white-box fuzzing for both debugging and performance evaluation
purposes of our SAT encoding of k-MSCP. In the following we describe the
random generation of instances and the results of the evaluation of our SAT-
based k-MSCP solving tool.

7.1 Random Instance Generation

The instance generation tool first builds a set of state machines and then gen-
erates a sequence diagram consistent with these state machines. Consistency is
ensured by the simulator following the generated sequence and proposing sub-
sequent messages. In order to also generate inconsistent diagrams, messages are
removed at random from an already generated message sequence. Further, if the
considered bound for the generation of the diagrams is higher than the bound
set in the encoding, the SAT solver may return UNSAT even though the message
sequence is executable. The tool takes the following parameters to define the two
views:

– nrStateMachines: Number of state machines to be created.
– minNrStates and maxNrStates: Bounds on the number of states per state ma-

chine. The actual number of states is chosen randomly between and including
these bounds for each state machine.

36 P. Kaufmann et al.

– minNrTrans and maxNrTrans: Bounds on the number of transitions per state
machine. The actual number of transitions is chosen randomly between and
including these bounds for each state machine.

– nrSymbols: The size of the alphabet the state machines are defined over.
– probTrigger: The probability of a transition to contain a trigger symbol other

than ε.
– probEff: The probability of a transition to contain an effect symbol other

than ε.
– nrLifelines: The number of lifelines to be contained in the sequence view.
– nrMessages: The number of messages to be contained in the sequence view.

For each state machine, the algorithm randomly chooses a number of states
and transitions in between the bounds minNrStates, maxNrStates, minNrTrans,
and maxNrTrans, and connects the states by transitions randomly in a way such
that no state is isolated. To at least one outgoing transition of the initial state,
the trigger ε is added, and to all other transitions, a trigger other than ε is
added with probability probTrigger. To each transition containing ε as trigger an
effect other than ε is added, and to all other transitions an effect other than ε is
added with probability probEff. Each time a trigger or an effect is added, a fresh
symbol is created and added to the alphabet until the alphabet has reached size
nrSymbols. After that, the trigger and effect symbols are chosen randomly.

Then a sequence diagram consistent with the state machine view is created
according to the two parameters nrLifelines and nrMessages. In order to ensure
the consistency, a model simulator keeps track of the global state of the lifelines’
state machines. For each lifeline, a state machine is chosen at random from
the state machine view. If nrLifelines > nrStateMachines then it is ensured that
each state machine is instantiated at least once. The main data structure in the
simulator represents possible global states as a hashmap with lifelines as keys
and a set of states of the state machine instanced by the lifeline as value. For each
lifeline, the hashmap is initialized with all original and intermediate states of the
respective state machine. All admissible messages are calculated according to the
current global state stored in the simulator. One message is chosen at random
and the simulator is updated according to all possible successor states with
respect to the application of the chosen message. Note that the state machines
are non-deterministic, and therefore the number of possible states and admissible
messages can become very large.

To obtain unsatisfiable instances, we generate one more message than required
and remove one message at random among all messages except the first one. This
procedure, however, still results in a satisfiable instance in many cases because
a different path than the one followed by the simulator might be possible.

7.2 Testing Environment and Results

We selected a set of parameter values for the parameters described in Section 7.1
in order to generate sets of instances. The parameter values influence each other
to a great extent, and it can easily happen that no or only a small message se-
quence can be generated for the sequence diagram. For example, a high value for

A SAT-Based Debugging Tool for State Machines and Sequence Diagrams 37

Table 1. Parameter settings

small medium large

minNrStates 2 4 7
maxNrStates 3 6 10
minNrTrans 4 8 21
maxNrTrans 6 12 30
nrLifelines 3 5 8
nrMessages 4 10 20

probTrigger along with a high value for nrSymbols results in transitions containing
different triggers and effects, making the generation of a consistent communica-
tion sequence difficult.

We grouped instances created according to different parameter sets into three
different groups according to their size. Table 1 describes the parameter settings
for each group. The following parameters have been set to the same values for
all instances. nrStateMachines has been set to 3 for all instances because the size
of the instance is regulated by the nrLifelines, i.e., the number of instantiations
of the state machines, nrSymbols has been set to minNrStates, probTrigger and
probEff have been set to 0.9, and k has been set to maxNrStates.

The experiments were executed on a computer with an Intel Core i5-540M
CPU with 2.53GHz and 8GB of RAM. Table 2 describes the results of our exper-
iments over 1,000 randomly generated instances in each category. We distinguish
both encoding and solving time by UNSAT and SAT instances. The time required
to determine the failing message in an UNSAT instance is significantly longer than
the time required to determine satisfiability and to return a model. This is the
case because unsatisfiable instances are modified by removing the last message
and are sent back to the SAT solver until the failing message is found. The
numbers of clauses and numbers of variables refer to the initial encoding of each
instance, not taking into account the modified instances after unsatisfiability is
detected, as the re-encoding results in less variables and clauses than the initial
encoding.

Table 2. Average results over 1,000 runs for each category

small medium large

Encoding time SAT (ms) 11 180 2,543
Solving time SAT (ms) 4 201 9,476
Encoding time UNSAT (ms) 34 970 27,848
Solving time UNSAT (ms) 8 727 179,914
Nr variables 1,802 12,746 88,560
Nr clauses 9,652 118,245 1,700,101
Nr instances SAT 837 750 803
Nr instances UNSAT 163 250 197

38 P. Kaufmann et al.

The difference in numbers of SAT instances and UNSAT instances can be ex-
plained by the way instances are created. In order to generate a sequence diagram
at random without too much overhead, the state machines need many transi-
tions with not too many symbols. However, in this case, when a valid sequence
is found and a message removed, chances are high, that this “cropped” sequence
can still be found by a path other than the one followed by the simulator, because
of the previous requirement to have many transitions and few symbols.

It can be seen that the overall runtimes are acceptable even if executed on
an standard hardware. As can be expected, the solving time scales worse than
the encoding time. The overall runtime for UNSAT instances could probably be
improved by implementing a binary search to find the failing message, instead
of removing trailing messages one after another. This way, the SAT solver has
to be called less often.

8 Conclusion and Future Work

We presented a novel SAT-based approach to check the consistency between
state machines and sequence diagrams. To this end, we concisely formulated a
formal semantics of the considered modeling language concepts. On this basis
we were able to obtain an exact formal description of the consistency checking
problem which was then directly mapped to SAT. The encoding reuses ideas and
techniques well established for formulating planning problems. We obtained an
encoding which is extremely flexible, efficiently processable, and still keeps the
information necessary to map the solutions obtained from the SAT solver back
to the modeling environment.

With our current solution we have a powerful tool for checking the consistency
between different views in UML models. In combination with our other SAT-
based encodings [14,30] we have now the means to establish a uniform framework
supporting safe model evolution.

In future work, we plan to consider additional modeling language concepts like
hierarchical states in the state machines or combined fragments in the sequence
diagrams. Especially for the latter case which introduces programming language
constructs like loops into the diagram, techniques applied in software verification
must be considered. Also it is possible to apply ideas from this encoding to other
diagram types like the UML activity diagram. Further, we plan to extend our
approach for automatic repair. In particular, the encoding can be modified such
that missing messages in the sequence diagram can be filled. This scenario can
happen in automated merging environments as, for instance, in model versioning
systems [6].

References

1. Bernardi, S., Donatelli, S., Merseguer, J.: From UML sequence diagrams and state-
charts to analysable Petri net models. In: 3rd International Workshop on Software
and Performance, pp. 35–45. ACM (2002)

A SAT-Based Debugging Tool for State Machines and Sequence Diagrams 39

2. Bézivin, J.: On the unification power of models. Software & Systems Modeling 4(2),
171–188 (2005)

3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
FAIA, vol. 185. IOS Press (2009)

4. Brosch, P., Egly, U., Gabmeyer, S., Kappel, G., Seidl, M., Tompits, H., Widl,
M., Wimmer, M.: Towards semantics-aware merge support in optimistic model
versioning. In: Kienzle, J. (ed.) MODELS 2011 Workshops. LNCS, vol. 7167, pp.
246–256. Springer, Heidelberg (2012)

5. Brosch, P., Egly, U., Gabmeyer, S., Kappel, G., Seidl, M., Tompits, H., Widl, M.,
Wimmer, M.: Towards Scenario-Based Testing of UML Diagrams. In: Brucker,
A.D., Julliand, J. (eds.) TAP 2012. LNCS, vol. 7305, pp. 149–155. Springer, Hei-
delberg (2012)

6. Brosch, P., Kappel, G., Langer, P., Seidl, M., Wieland, K., Wimmer, M.: An in-
troduction to model versioning. In: Bernardo, M., Cortellessa, V., Pierantonio, A.
(eds.) SFM 2012. LNCS, vol. 7320, pp. 336–398. Springer, Heidelberg (2012)

7. Egyed, A.: Instant consistency checking for the UML. In: 28th International Con-
ference on Software Engineering (ICSE), pp. 381–390. ACM (2006)

8. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Testing the consistency of dy-
namic UML diagrams. In: 6th International Conference on Integrated Design and
Process Technology (IDPT) (2002)

9. Feng, T.H., Vangheluwe, H.: Case study: Consistency problems in a UML model
of a chat room. In: Workshop on Consistency Problems in UML-based Software
Development, p. 18 (2003)

10. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: Future of Software Engineering (FOSE), pp. 37–54. IEEE Computer
Society (2007)

11. Gabmeyer, S., Kaufmann, P., Seidl, M.: A classification of model checking-based
verification approaches for software models. In: STAF Workshop on Verification of
Model Transformations (VOLT), pp. 1–7 (2013)

12. Graaf, B., van Deursen, A.: Model-driven consistency checking of behavioural spec-
ifications. In: 4th International Workshop on Model-Based Methodologies for Per-
vasive and Embedded Software (MOMPES), pp. 115–126 (2007)

13. Inverardi, P., Muccini, H., Pelliccione, P.: Automated check of architectural models
consistency using SPIN. In: 16th Annual International Conference on Automated
Software Engineering (ASE), pp. 346–349. IEEE Computer Society (2001)

14. Kaufmann, P., Kronegger, M., Pfandler, A., Seidl, M., Widl, M.: Global state
checker: Towards SAT-based reachability analysis of communicating state ma-
chines. In: 10th Workshop on Model-Driven Engineering, Verification, and Vali-
dation (MoDeVVa). CEUR Workshop Proceedings, vol. 1069, pp. 31–40 (2013)

15. Knapp, A., Wuttke, J.: Model checking of UML 2.0 interactions. In: Kühne, T.
(ed.) MoDELS 2006. LNCS, vol. 4364, pp. 42–51. Springer, Heidelberg (2007)

16. Lam, V.S.W., Padget, J.: Consistency Checking of Sequence Diagrams and State-
chart Diagrams Using the π-Calculus. In: Romijn, J.M.T., Smith, G.P., van de Pol,
J. (eds.) IFM 2005. LNCS, vol. 3771, pp. 347–365. Springer, Heidelberg (2005)

17. Le Berre, D., Parrain, A.: The Sat4j Library, Release 2.2, System Description.
Journal on Satisfiability, Boolean Modeling and Computation 7, 59–64 (2010)

18. Lucas, F.J., Molina, F., Toval, A.: A systematic review of UML model consistency
management. Information and Software Technology 51(12), 1631–1645 (2009)

19. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)

40 P. Kaufmann et al.

20. Pelliccione, P., Inverardi, P., Muccini, H.: CHARMY: A Framework for Designing
and Verifying Architectural Specifications. IEEE Transactions on Software Engi-
neering 35(3), 325–346 (2008)

21. Rintanen, J.: Planning and SAT. In: Handbook of Satisfiability. FAIA, vol. 185,
pp. 483–504. IOS Press (2009)

22. Schäfer, T., Knapp, A., Merz, S.: Model Checking UML State Machines and Collab-
orations. Electronic Notes in Theoretical Computer Science 55(3), 357–369 (2001)

23. Selic, B.: What will it take? A view on adoption of model-based methods in prac-
tice. Software & Systems Modeling 11(4), 513–526 (2012)

24. Sinz, C.: Towards an Optimal CNF Encoding of Boolean Cardinality Constraints.
In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005)

25. Tseitin, G.S.: On the complexity of derivations in the propositional calculus. Stud-
ies in Mathematics and Mathematical Logic, Part II, 115–125 (1968)

26. Usman, M., Nadeem, A., Kim, T., Cho, E.: A survey of consistency checking tech-
niques for UML models. In: Advanced Software Engineering and Its Applications
(ASEA), pp. 57–62. IEEE Computer Society (2008)

27. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description
logic to maintain consistency between UML models. In: Stevens, P., Whittle, J.,
Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 326–340. Springer, Heidelberg
(2003)

28. Whittle, J., Schumann, J.: Generating statechart designs from scenarios. In: 22nd
International Conference on Software Engineering (ICSE), pp. 314–323. ACM
(2000)

29. Widl, M.: Test Case Generation by Grammar-Based Fuzzing for Model-Driven
Engineering. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2013. LNCS, vol. 7857,
pp. 278–279. Springer, Heidelberg (2013)

30. Widl, M., Biere, A., Brosch, P., Egly, U., Heule, M., Kappel, G., Seidl, M., Tompits,
H.: Guided Merging of Sequence Diagrams. In: Czarnecki, K., Hedin, G. (eds.) SLE
2012. LNCS, vol. 7745, pp. 164–183. Springer, Heidelberg (2013)

Towards User-Friendly Projectional Editors

Markus Voelter1, Janet Siegmund2, Thorsten Berger3, and Bernd Kolb4

1 independent/itemis, Stuttgart, Germany
voelter@acm.org

2 Universität Passau, Passau, Germany
Janet.Siegmund@uni-passau.de

3 University of Waterloo, Waterloo, Canada
tberger@gsd.uwaterloo.ca

4 itemis AG, Stuttgart, Germany
kolb@itemis.de

Abstract. Today’s challenges for language development include lan-
guage extension and composition, as well as the use of diverse notations.
A promising approach is projectional editing, a technique to directly
manipulate the abstract syntax tree of a program, without relying on
parsers. Its potential lies in the ability to combine diverse notational
styles – such as text, symbols, tables, and graphics – and the support for
a wide range of composition techniques. However, projectional editing is
often perceived as problematic for developers. Expressed drawbacks in-
clude the unfamiliar editing experience and challenges in the integration
with existing infrastructure. In this paper we investigate the usability
of projectional editors. We systematically identify usability issues result-
ing from the architecture. We use JetBrains Meta Programming System
(MPS) as a case study. The case study discusses the concepts that MPS
incorporates to address the identified issues, evaluates effectiveness of
these concepts by surveying professional developers, and reports indus-
trial experiences from realizing large-scale systems. Our results show that
the benefits of flexible language composition and diverse notations come
at the cost of serious usability issues – which, however, can be effectively
mitigated with facilities that emulate editing experience of parser-based
editors.

1 Introduction

As expressed by closeness of mapping in the cognitive dimensions of notations [1],
the degree to which we can effectively express facts in a given domain is heavily
influenced by the alignment of the used language with that domain. This applies
to programming languages, but also to domain-specific languages (DSLs) used in
a wide range of technical and business domains. However, a language must also
use a suitable notation. Imagine mathematics represented as a linear sequence
of characters, without integral symbols, fraction bars or superscripts: it would
be much harder to read, making mathematics as a language less useful – more
hard mental operations [1] would be due to the syntax and not the underlying se-
mantics. DSLs are often targeted at non-programmers. While the suitability of a

B. Combemale et al. (Eds.): SLE 2014, LNCS 8706, pp. 41–61, 2014.
c© Springer International Publishing Switzerland 2014

42 M. Voelter et al.

language for its target audience is guided by many criteria (as discussed in [1]),
our experience tells us that that the notation is especially important for lan-
guages targeted at non-programmers. Another important concern in languages
is their composability (approximated by juxtaposability in [1]). Software systems
are often expressed with a set of languages (some used by programmers, some
by other stakeholders), and these languages must be integrated in terms of syn-
tax, semantics, and their development environments: today, IDEs are essential
to languages since users increasingly rely on IDEs to efficiently edit programs.

Traditionally, languages use either textual or graphical notations. Each kind
of notation comes with its own editor architecture. Textual notations are typi-
cally edited with text buffers, grammars and parsers. The supported notations
are essentially linear sequences of characters and – depending on the grammar
class – in their ability to compose independently developed languages. Graphical
notations use direct manipulation instead of parsers. But purely graphical nota-
tions are only suitable for a limited set of languages, and many real-world lan-
guages require a mix of graphical, textual, tabular and symbolic/mathematical
notations. Projectional editors (ProjEs) support this approach. They generalize
the approach used in graphical editors to arbitrary notations. Editing gestures
directly change the abstract syntax tree (AST). Users see and interact with a
rendering of the AST called a projection. There is no transformation (that is,
parsing) from the concrete syntax to the AST. This allows non-textual nota-
tions, as demonstrated by intentional programming [2,3], which relies on pro-
jectional editing. ProjEs also avoid the problems with compositionality known
from grammar-based systems: ambiguities cannot arise since no grammars are
used.

However, ProjEs have traditionally had two problems. First, for notations
that look textual, users expect that the editing behavior resembles classical text
editing as much as possible. Historically, ProjEs have not been good at this;
users had to be aware of the AST when editing programs, leading to usability
problems. For example, when entering 2+3, users first had to enter the + and then
enter the two arguments. Second, ProjEs cannot store programs in the concrete
syntax – otherwise, this syntax would have to be parsed when programs are
loaded into the editor. Instead, programs are stored as a serialized AST, often as
XML. This makes the integration with existing infrastructures, such as version
control systems (VCS) or diff/merge tools, a challenge.

Hypothesis. Although ProjEs have been around for a long time (see Sec-
tion 2.2), and despite their demonstrated advantages in terms of notational flex-
ibility and support for language composition and extension, ProjE have not seen
much adoption in practice. We hypothesize that this is mainly because of the
drawbacks regarding editor usability and infrastructure integration discussed
above.

Goals, Methods, and Contributions. Our goal is to evaluate the usability
of projectional editors. To this end, we first systematically identify and cat-
egorize usability issues arising from the architectural peculiarities of projec-
tional editors. We then provide a case study of a state-of-the-art projectional

Towards User-Friendly Projectional Editors 43

editor – the JetBrains Meta Programming System (MPS). In the case study,
we discuss the techniques used by MPS to mitigate the identified issues, and
evaluate their effectiveness by surveying professional developers. We finally re-
port industrial experiences from realizing large-scale systems. We contribute: (i)
a taxonomy of usability issues that projectional editors face, (ii) a mapping of
concrete mitigation techniques for the issues, and (iii) empirical data on how
professional developers perceive effectiveness of projectional editing.

Results. We identify 14 usability issues related to efficiently entering code (e.g.,
non-linear typing), selection and modification of code (e.g., introducing cross-tree
parentheses), and integration with existing infrastructure (e.g., version control
systems). Half of these issues can be addressed sufficiently, for instance, using code
completion or expression-tree-refactoring support. Others require language- or
notation-specific implementations, or cannot bemitigated conceptually.Results of
the survey show that developers perceive projectional editing as an efficient tech-
nique applicable in every-day work, while the effort of getting used to it is high.
However, the survey also reveals weaknesses, such as the support for commenting,
which is currently not addressed sufficiently in MPS.

2 Background

2.1 Parsing vs. Projection

In parser-based editors (ParEs), users type characters into a text buffer. The
buffer is then parsed to check whether a sequence of characters conforms to a
grammar. The parser builds a parse tree, and ultimately, an abstract syntax tree
(AST), which contains the relevant structure of the program, but omits syntactic
details. Subsequent processing (such as linking, type checks, and transformation)
is based on the AST. Modern IDEs (re-)parse the concrete syntax while the user
edits the code, maintaining an up-to-date AST in the background that reflects
the code in the editor’s text buffer. However, even in this case, this AST is
created by a parser-driven transformation from the source text.

A ProjE does not rely on parsers. As a user edits a program, the AST is
modified directly. A projection engine uses projection rules to create a represen-
tation of the AST with which the user interacts, and which reflects the result-
ing changes. No parser-based transformation from concrete to abstract syntax
involved here. Fig. 1 shows the difference. This approach is well-known from
graphical editors: when editing a UML diagram, users do not draw pixels onto a

Fig. 1. In ParEs (left), users see and modify the concrete syntax. A parser constructs
the AST. In ProjEs, users see and interact with the concrete syntax, but changes
directly affect the AST. The concrete syntax is projected from the changing AST.

44 M. Voelter et al.

canvas, and a “pixel parser” then creates the AST. Rather, the editor creates an
instance of uml.Class when a user drops a class onto the canvas. A projection
engine renders the diagram by drawing a rectangle for the class. Programs are
stored using a generic tree persistence format (such as XML). As the user edits
the program, program nodes are created as instances of language concepts. This
approach can be generalized to work with any notation, including textual. A
code-completion menu lets users create instances based on a text string entered
in the editor called the alias. The concepts available for instantiation (and, thus,
the valid text strings/aliases) depend on the language definition. Importantly,
every next text string is recognized as it is entered, so there is never any parsing
of a sequence of text strings. In contrast to ParEs, where disambiguation is per-
formed by the parser after a (potentially) complete program has been entered,
in ProjEs, disambiguation is performed by the user as he selects a concept from
the code-completion menu. Once a node is created, it is never ambiguous what
it represents, irrespective of its syntax : every node points to its defining concept.
Every program node has a unique ID, and references between program elements
are represented as references to the ID. These references are established during
program editing by directly selecting reference targets from the code-completion
menu; the references are persistent. This is in contrast to ParEs, where a refer-
ence is expressed as a string in the source text, and a separate name resolution
phase resolves the target AST element after the text has been parsed.

2.2 Related Work in Projectional Editing

An early example of a ProjE is the Incremental Programming Environment
(IPE) [4]. It supports the definition of several notations for a language as well as
partial projections, where parts of the AST are not shown. However, IPE suffers
from the problem with editing expressions introduced earlier: to enter 2+3, users
first have to enter the + and then fill in the two arguments. This is tedious and
forces users to be aware of the language structure at all times. IPE also does
not address language modularity; it comes with a fixed, C-like language and
does not have a built-in facility for defining new languages. Another early ex-
ample is GANDALF [5], which generates a ProjE from a language specification.
Even though [6] does not report on a systematic study, the authors expect the
same usability problems as IPE: “Program editing will be considerably slower
than normal keyboard entry, although actual time spent programming non-trivial
programs should be reduced due to reduced error rates.” The Synthesizer Gen-
erator [7] is also a ProjE. However, at the fine-grained expression level, textual
input and parsing is used. While this improves usability, it destroys many of
the advantages of projectional editing in the first place, because language com-
position at the expression level is limited. In fact, extension of expressions is
particularly important to tightly integrate an embedded language with its host
language [8].

The Intentional Programming [2,3] project has gained widespread visibility
and has popularized projectional editing; the Intentional Domain Workbench
(IDW) is the contemporary implementation of the approach. IDW supports

Towards User-Friendly Projectional Editors 45

diverse notations [9,10]. However, we are not aware of any studies regarding
its usability, and since it is a commercial system, we cannot evaluate it. Our
understanding is that the IDW has not found widespread adoption so far.

Language boxes [11] rely on explicitly delineating the boundaries between dif-
ferent languages used in a single program (e.g., the user could change the box
with Ctrl-Space). Each language box may use parsing or projection. This way,
textual notations can be edited naturally, solving the usability issues associ-
ated with editing text in a ProjE. However, it is not clear whether fine-grained
mixing between different boxes will work in terms of usability. For example, con-
sider a projectional editor for a mathematical notation embedded (in its own
box) inside an otherwise textual editor for C code. As part of the mathematical
expression, users would like to use (textual) references to C variables. Providing
an integrated user experience, as well as integrated symbol tables, may not be a
trivial problem. In addition, language boxes address only the usability problem:
the approach still requires a specialized IDE (that knows about the boxes) plus
non-concrete syntax storage (because the boxes must be represented somehow).

Hybrid editors are another alternative of solving the usability problems of Pro-
jEs by on-demand parsing. Unlike in a ParE, the editor content consists of atomic
tokens, not characters. These tokens have normal projectional editors. This
makes it possible to embed complex tokens, such as diagrams or math symbols,
and still edit sequences of such tokens linearly. A prototype is currently being
explored by a team at JetBrains (available at http://jb-proj-demo.appspot.com/
index.html). It is not clear at this point what the trade-offs are regarding lan-
guage composability, notational freedom, and usability.

2.3 Case Study: MPS and mbeddr

JetBrains MPS (http://jetbrains.com/mps) is an open-source language work-
bench that uses projectional editing. It is a comprehensive environment for lan-
guage engineering, supporting language aspects such as concrete and abstract
syntax, type systems and transformations, as well as IDE aspects, such as syn-
tax highlighting, code-completion, find-usages, diff and merge, refactoring, and
debugging. It also supports language modularization and composition [8].

We have chosen MPS as our case study for three reasons. (1) MPS is currently
the most widely used ProjE. It is used for various projects, including JetBrains
YouTrack, mbeddr (discussed below), computational biology [12], web applica-
tions (http://codeorchestra.com/ide/), requirements engineering [13], and in-
surance DSLs. (2) Some of the authors of this paper have significant industry
experience with MPS. (3) MPS is open-source, which fosters replicability of our
results.

MPS relies on a meta meta model very similar to EMOF and EMF Ecore [14].
Language concepts (corresponding to meta classes) declare children (single or
lists), references and primitive properties. Concepts can extend other concepts
or implement concept interfaces. Subconcepts can be used where a supercon-
cept is expected (polymorphism). Programs are represented as instances of con-
cepts, called nodes. Each concept also defines one or more editors. These are the

46 M. Voelter et al.

projection rules that determine the notation of instance nodes in the program.
The editor also defines intentions, little in-place program transformations that
can be triggered by the user as he edits the program.

mbeddr (http://mbeddr.com) is an extensible set of integrated languages for
embedded software engineering [15], developed with MPS. mbeddr is also open
source. It is primarily used for implementing embedded systems, ranging from
relatively small examples (such as Lego Mindstorm robots) to non-trivial com-
mercial applications (e.g., a smart meter [16]). mbeddr has been chosen by
Siemens PLM Software (formerly LMS) as the basis of a new controls engi-
neering tool, which is currently being developed as a set of mbeddr extensions.

The core of mbeddr is an extensible version of C99 and a set of extensions for
embedded software, such as interfaces and components, state machines or phys-
ical units. mbeddr provides multi-paradigm programming for C [17], in which
different abstractions can be used and mixed in the same program. mbeddr also
supports languages for cross-cutting concerns, such as documentation, require-
ments management, and traceability, as well as product-line engineering. Several
formal verification techniques are also directly integrated with the languages.

3 Advantages and Drawbacks of Projectional Editing

We now systematically analyze the usability challenges traditionally associated
with ProjEs. We have identified three categories: efficiently entering (textual)
code (EE), selecting and modifying code (SM), as well as infrastructure integra-
tion (II). These categories reflect anecdotal evidence on usability challenges of
ProjEs. They are also obviously relevant for productively using an editor. For
each of the categories, we identify and explain specific challenges in the following
sections.

3.1 Efficiently Entering (Textual) Code

Most grammars used in practice by ParEs are not freely composable, because the
composed grammar may become ambiguous. The details depend on the gram-
mar class used by the parser, and various disambiguation approaches are used
to address the issue. We mention two examples below; an extensive discussion
can be found in [8]. Formalisms that implement full context-free grammars com-
pose much better, depending on the modularity of the grammar language [18].
An example of a grammar formalism that supports only limited composition is
ANTLR [19]. In contrast, SDF2 [20] supports full context-free grammars based
on a scannerless generalized LR parser, and composition support is much better:
As an example, [21] demonstrates embedding SQL into Java. Disambiguation is
necessary if the same syntactic form is used in the same location to represent
different language concepts (i.e., must be parsed differently). SDF2 performs
disambiguation via quotations, and SILVER/COPPER [22] uses disambigua-
tion functions. In ProjEs, since no grammars are used, language composition is
unlimited (discussed systematically in [8]). Situations which would lead to an

Towards User-Friendly Projectional Editors 47

ambiguity in ParEs are resolved by asking the user to manually disam-
biguate (EE.1) at the time of entering the potentially ambiguous code. As an
example of composition and extension, the mbeddr system currently has over 30
modular extensions to C; all of them can be used in the same program. Many of
them are illustrated in [15].

The manual disambiguation also includes references: Targets are picked from
the code-completion menu. This means that users cannot establish references
to non-existing nodes (EE.2), because, if they do not exist yet, the code-
completion menu cannot offer them to the user. In ParEs, a user can just type
i++ even though i has not yet been declared. The user can go back later, and
add a declaration of i before its use. This works because the i in i++ is just a
symbol, and its resolution happens later – it is marked as an error as long as no
declaration for i is in scope. In a ProjE, every reference is an actual pointer to
its target. If the target does not exist, the reference cannot be entered.

Textual projections require the AST to be projected linearly. As discussed in
Section 2.2, ProjEs have traditionally forced the tree structure on the user even
when the notation was linear, i.e., they required structure-aware typing
(EE.3). 2+3 must be entered by first typing the + and then entering its two
children, instead of just linearly typing 2+3.

ParEs extract structure from characters in a text buffer based on a grammar.
Mainstream grammars work on linear sequences of characters. This severely
limits non-linear notations, such as math/symbols (because they are two-
dimensional) or graphics, and limits tabular notations to simple cases where
the vertical bar (|) is used to separate columns and rows (as shown by Jnario
(http://jnario.org), a language for behavior-driven development) or simple,
non-recursive fraction bar-like notations (used for type system rules in [23]).
Coordinate grammars [24] have been proposed to parse two-dimensional math-
ematics structures. Parsers for visual notations have been proposed as well; for
example, [25] discusses parsing of hand-inputted shapes on tablet computers
based on a formalism called set grammars. More general discussions on parsing
visual languages are provided in [26] and [27]. However, these grammars use dif-
ferent formalisms and so do not easily integrate with traditional grammars for
linear text. None of these approaches has found its way into industry-strength
language tooling.

Since ProjEs never parse the concrete syntax, they can use notations that are
not parseable, or use two-dimensional layout. Examples include tables, mathe-
matical symbols (fraction bars, superscript or

∑
) or diagrams. This is discussed

for IDW in[9,10] and for MPS/mbeddr in [15]. ProjEs can also mix different
notational styles. For example, tables can contain textual expressions and math-
ematical symbols (as in mbeddr’s decision tables), and textual programs can
embed graphics. This works because all notational styles are implemented us-
ing the same projectional architecture. In contrast, maintaining an integrated
overall model created with editors that combine parsing and diagram editing is
challenging for a number of technical reasons [28]. These include that parser-
based editors use (qualified) names to represent program node identity, whereas

48 M. Voelter et al.

graphical editors natively use IDs for this purpose or that references in ParEs
are created via name binding, and graphical editors use the unique ID.

This notational flexibility leads to drawbacks. In a ParE, a program can always
be typed exactly the way it looks by typing the sequence of characters one by one.
In a ProjE, it is possible to project program nodes in arbitrary ways, including
tables or mathematical symbols; these cannot just be typed. For example, the

∑

is not available on the keyboard. Thus, it cannot be deduced from just looking
at a program (e.g., in a presentation or a book) how to enter it: What you see
is not what you type (EE.4). More generally, the different notational styles
may require notation-specific editor support (EE.5), each potentially with
their own idiosyncrasies.

Many ProjEs support the definition of multiple editable notations for the
same language structure. A program’s representation can be switched on the
fly by selecting another set of projection rules. This is not practical for ParEs,
since most useful changes in representation also lead to changes in the underlying
structure. As an example, mbeddr supports editing state machines either as text,
or as tables, and a graphical notation is currently being added. Also, in a ProjE,
a program can contain data that is not shown in the projection, and partial pro-
jections or views are possible. This is because the program is stored as the AST,
which contains all data, even when it is not shown. For example, mbeddr stores
requirements traces [29] in programs. In contrast, a ParE must always contain
all data in the concrete syntax, because this is the persistent representation. It
is possible to hide some parts, but this requires specific, language-aware support
in the editor. The Jnario editor can optionally hide the formal aspects of tests.
However, this flexibility means that programs cannot be stored in their concrete
syntax, requiring persisting programs as a generic tree structure. This leads to
challenges with infrastructure integration (discussed below).

3.2 Selecting and Modifying Code (SM)

In ParEs, selection happens in the text buffer: any character, word, line (or
sequences thereof) can be selected and subsequently changed, cut, copied or
pasted. In a ProjE, selection is based on the tree structure (SM.1): nodes,
parent nodes, or siblings in lists can be selected. This also makes it hard to
perform cross-tree modifications (SM.2), i.e., editing structures that are
not aligned with the tree. Consider the expression 1 + 2*3. To change this into
(1+2) * 3, parentheses have to be inserted in places that cross-cut the tree
structure: most ProjEs do not support this, and the expression has to be retyped.
Finally, copy and paste is structure-aware (SM.3), and not just based on
the syntax. If a user wants to paste something in a location where it may fit
syntactically, but the underlying AST uses a different language concept, this
will not work. An example is pasting a C Function into a C++ class, where it
needs to be a Method instead, even though it has essentially the same syntax.

In ParEs, it is sometimes hard to detect semantic associations between pro-
gram elements, since such associations are expressed by“geographical proximity”.
For example, comments are typically located above the program element they

Towards User-Friendly Projectional Editors 49

Table 1. Mapping of identified usability issues to mitigation techniques

Issue Mitigation Technique used by MPS

E
ffi
ci
en

tl
y
E
n
te
ri
n
g

(T
ex
tu
a
l)

C
o
d
e

EE.1 Requires manual, user-based disambiguation code completion, aliases, context
constraints

EE.2 Cannot establish references to non-existing
nodes

intentions to create missing targets

EE.3 Requires structure-aware typing side transforms, delete actions, smart
references, wrappers, smart delimiters

EE.4 What you see is not what you type –
EE.5 Requires notation-specific editor support – (but editors share common aspects)

S
el
ec
ti
n
g
a
n
d

M
o
d
if
yi
n
g
C
o
d
e SM.1 Selection is based on the tree structure –

SM.2 Hard to perform cross-tree modifications expression tree restructuring
SM.3 Requires structure-aware copy/paste paste handlers
SM.4 Does not support free-floating comments – (partly addressed by metamodel

extension in mbeddr)
SM.5 Requires dedicated support for commenting

code
– (partly addressed by metamodel
extension in mbeddr)

SM.6 Does not support custom layout –

In
fr
a
st
ru
ct
u
re

In
te
g
ra
ti
o
n II.1 Requires tool support for diff/merge node-by-node revert, merge driver,

diff/merge tool using projection rules
II.2 Text-based shell-scripting tools cannot be used – (build system support for generating and

testing models)
II.3 Requires tool support to export/import textual

syntax
copy/paste, parser hooks, generic node
(de-)serialization

belong to. In a ProjE, the relationship between program nodes is typically de-
signed to be explicit: for example, comments would be children of the element
they are associated to, even though they may still be projected above it. This
results in more robust merging and refactoring, but also means that a ProjE has
no support for free-floating comments (SM.4).

In a ParE, code that is temporarily not needed can be commented out. It is
then ignored by the compiler, type checker, and other IDE services; it is treated
as plain text. When the code is needed again, it can be uncommented: the parser
parses the text and (re-)creates the AST. In a ProjE, commenting is not so easy,
since the commented code must retain its structure so it can be uncommented
later when it is needed again. Hence, dedicated support for commenting
code is required (SM.5).

Whitespace is typically ignored by ParEs, and not explicitly described in
grammars. To be able to pretty-print a program after an automated modification,
an additional pretty-printing specification is typically required. In a ProjE, this
is not required, since the projection rules already contain layout information.
On the flip side, a ProjE does not support custom layout (SM.6) – the
representation is determined completely by the projection rules.

3.3 Infrastructure Integration (II)

Today’s development infrastructure is geared towards text files, and ParEs inte-
grate seamlessly. The diff/merge facilities of VCS rely on showing the file con-
tents. This works well for concrete syntax storage, but it does not work for
AST-based storage. Special tool support for diff/merge is needed (II.1).

50 M. Voelter et al.

Tools such as grep assume concrete syntax storage. While ProjEs store names
as strings (so they can be grep’ed), more complex structures are represented
as several nodes and grep’ing for their concrete syntax representation will not
work. Text-based shell scripting tools cannot be used (II.2). A ProjE
will typically support searching on the projected syntax, but the ProjE must be
used for the purpose; generic text-search tools are not enough.

Code written in a ParE can trivially be pasted to and copied from another
text-based application. For a ProjE, this is not necessarily so simple; tool sup-
port is required to export/import textual syntax (II.3). Non-textual
notations, such as tables or symbols, cannot be pasted to a text editor at all.

4 Addressing the Drawbacks in Projectional Editors

In this section, we revisit the problems associated with ProjEs introduced in
Section 3 and illustrate the mechanisms (typeset in italic) used by MPS to
address them. Some of these approaches have already been introduced in [15].
Table 1 summarizes the issues and MPS’ mitigation techniques where applicable.

4.1 Efficiently Entering (Textual) Code (EE)

EE.1 Requires Manual, User-Based Disambiguation. Disambiguation
in MPS relies on the user selecting the correct language concept from the code-
completion menu, whose contents are driven by the language structure. Lan-
guage concepts define an alias, the string used to pick the concept from the
code-completion menu. By making the alias the same as the leading keyword
(e.g. if for an IfStatement), users can “just type” the code. MPS also supports
context constraints that restrict the locations where concepts can be used based
on arbitrary conditions. For example, mbeddr has different assert keywords,
each with different translation to C. To avoid confusing the user by requiring
manual disambiguation between them, context constraints ensure that each of
these assert statements is available only in disjoint contexts.

EE.2: Cannot Establish References to Non-existing Nodes. MPS sup-
ports intentions to create the missing targets in a context-dependent way. For
example, if a user enters a global variable in mbeddr C as int32 global =
someName, where someName does not exist, MPS provides two intentions: one
to create a global variable someName, and one to create a global constant. If a
user enters a local variable (in a function) as int32 local = someName, there
are two more intentions that support creation of a local variable and a function
argument.

EE.3: Requires Structure-Aware Typing. Consider an expression 2 that
should be changed to 2 + 3. MPS supports side transforms to allow users to
simply type + on the right side of the 2. The transform replaces the 2 with the +,
puts the 2 in the left slot, and then puts the cursor into the right slot so the user

Towards User-Friendly Projectional Editors 51

can enter the second argument. Side transforms also reshuffle the tree to ensure
it reflects operator precedence: higher precedence means the operator is further
down in the tree. Precedence is typically specified by a number associated with
each operator. Delete actions are used for a similar effect when elements are
deleted. Pressing Backspace on the 3 in 2 + 3 keeps the 2 +, with an empty
right slot. Pressing Backspace on the + replaces it with its left argument, the 2.

References are also established via code-completion. Consider pressing Ctrl-
Space after the + in 2 + 3. If local variables are in scope, these should be avail-
able in the code-completion menu. However, technically, a VarRef has to be
instantiated first, whose variable slot is then made to point to a variable. This
is tedious, and smart references solve the problem: If a VarRef is allowed in a
given context, the editor first finds the possible targets and puts those targets
into the code-completion menu. Only after the user has selected a target, then
the VarRef is created, and the selected element is put into its variable slot.
This makes the reference object invisible in terms of the editing experience.

Consider a local variable declaration int a; represented by the concept
LocalVarDecl, a subconcept of Statement so it can be used in function bod-
ies. Users expect to be able to enter a local variable by typing int. However,
int is a Type, and a Type is not legal in a statements list – a statement list
expects instances of Statement – and hence cannot be entered. Wrappers solve
this problem: if a Type is entered in Statement context, the wrapper creates
a LocalVarDecl, puts the Type into its type slot, and moves the cursor into
the name slot. This way, a local variable declaration int a; can be entered by
starting to type the int type, as expected.

Finally, smart delimiters are used to simplify inputting lists that are separated
with a separator symbol (such as the arguments in a function). Typing the
separator (e.g., comma), automatically adds a new node to the list.

EE.4: What You See is Not What You Type. The problem that some con-

cepts (such as
∑

) cannot be entered just by typing what is projected cannot be
solved; it is a consequence of allowing notations that are not on the keyboard.

EE.5: Requires Notation-Specific Editor Support. The editors used for

the different notations share common aspects: code completion and intentions
work everywhere, selection is always based on the tree structure, and pressing
Backspace on a program element always deletes it. Still, notation-specific ges-
tures have to be learned. For instance, the table editors offer special gestures to
create new rows, and graphical editors require the mouse to move elements.

4.2 Selecting and Modifying Code (SM)

SM.1: Selection is Based on the Tree Structure. MPS provides no solu-
tion to this problem. Ctrl-Up/Down selects along the tree structure.
Shift-Up/Down selects siblings in child lists. This works independent of the
notations. For example, if a tree is projected as a table, Ctrl-Up will select the
current row if that row represents the parent node, and then Shift-Down selects

52 M. Voelter et al.

rows under the current one if the corresponding nodes are siblings. As this exam-
ple illustrates, selection based on the tree structure is not always bad, because
programs are highly structured. This is also illustrated by the fact that some
ParEs (such as Eclipse) support tree-based selection in addition to character-
based selection.

SM.2: Hard to Perform Cross-Tree Modifications. Cross-tree editing,
as in changing 1 + 2*3 to (1+2) * 3 is solved as follows: a separate opening
parenthesis can be entered anywhere in the tree, and its position is remem-
bered temporarily. Upon entering a corresponding closing parenthesis, the ex-
pression tree is restructured to reflect the new structure indicated by the inserted
parentheses.

SM.3: Requires Structure-Aware Copy/Paste. To address the problem
of not being able to paste an instance of concept A in a program location where
an instance of B is expected, MPS supports paste handlers. These are callbacks
that transform an instance of B to an instance of A if the paste context requires
it.

SM.4: No Support for Free-Floating Comments. Free-floating com-
ments remain unsupported in MPS. mbeddr supports attaching comments to
all program elements that implement an interface IDocumentable. All top-level
mbeddr C constructs and all statements implement this interface, so essentially
everything except expressions or types can be commented. In addition, mbeddr
support a CommentStatement, which means that procedural code (such as func-
tion bodies) can contain comments that are not associated with any particular
element.

SM.5: Requires Dedicated Support for Commenting Code. Unfortu-
nately, MPS provides no generic support for (temporarily) commenting out code.
mbeddr uses the following approach: If instances of some concept should be com-
mentable, a subconcept is defined that implements an interface ICommentedCode.
The subconcept stores the commented code and is marked to suppress errors.
It also overrides the editor styles to use a uniformly gray text color. Using this
approach, it is relatively simple to make statements or module contents com-
mentable. However, the approach does not work for commenting out parts of
expressions, as in 1 + 2 * (4 /*+7*/).

SM.6: Does Not Support Custom Layout. MPS does not support user-
defined layout. However, the projection rules can be defined with conditional pro-
jections so that, for example, a statement list that contains only one statement
is rendered on one line (as in if (..) { return x; }) instead of over several
lines. Conditional projections can also be used to implement user-definable pref-
erences, such as whether the opening curly brace should be on a new line or not.
More generally, it is not clear whether predefined layout is actually a problem:
many organizations mandate formatters that enforce a predefined layout.

Towards User-Friendly Projectional Editors 53

4.3 Infrastructure Integration (II)

II.1: Requires Tool Support for Diff/Merge. The fact that MPS stores its
models in XML files (and not in a database) means that MPS can be integrated
with file-based development infrastructures. More specifically, the VCS integra-
tion involves the following ingredients. First, the editor highlights those parts of
programs that have changed since the last update, shows diffs of these parts, and
supports reverting changes on a node-by-node basis. Second, while diff/merge is
performed by the underlying VCS, MPS ships with a merge driver that makes
sure the merging process respects the idiosyncrasies of MPS’ XML format. Fi-
nally, any diff or merge that requires manual user intervention is performed in an
internal diff/merge tool that uses the projection rules. It works for any notation,
and for textual languages, diff/merge works exactly as in text-based merge tools.

II.2: Text-Based Shell-Scripting Tools Cannot Be Used. The problem
that text-oriented console tools cannot directly work with MPS models is not
solved generically. However, the most important one, checking and generating
models, is supported. First, MPS models can be generated with an ant task. It
transforms all models in a specified project, enabling subsequent compilation,
test, and packaging of generated artifacts. Second, MPS supports a headless
mode for executing type-system tests. These verify that error messages appear
at locations in programs where, according to the type system rules, they should
appear.

II.3: Requires Tool Support to Export/Import Textual Syntax. By
default, all textual notations can be copy-pasted to a text editor. The other way,
from text to MPS, requires integrating a parser that creates the MPS tree from
the textual source. MPS provides hooks to integrate such parsers. In mbeddr,
we have developed more utilities for dealing with MPS code in the context of
a text-based collaboration infrastructure. First, a node’s ID can be represented
as a text string, which can then be used by other developers to select the node
in MPS. Second, a node can be copied as XML and then be transported via a
text-based infrastructure. When the XML is pasted into MPS, the original node
is reconstructed. This works independent of the notation.

5 Evaluation

We now evaluate the degree to which MPS’ solutions of the drawbacks of ProjEs
work in practice. The first two dimensions (Efficiently Entering (Textual) Code,
Selecting and Modifying Code) are evaluated in Section 5.1 based on a survey;
the questionnaire and anonymized results are available in [30]. Infrastructure
Integration is discussed based on project experience in Section 5.2.

5.1 Editor Usability

Survey Setup. Our survey addresses the following research question: Does
MPS solve known usability issues of projectional editors? To answer it, we

54 M. Voelter et al.

designed a questionnaire that assesses how developers work with MPS and how
they perceive its usability. For each question, developers should estimate their
opinion on a five-point Likert [31] scale, ranging from strongly agree (1) over
neutral (3) to strongly disagree (5). An example statements for developers to
rate is: I can work productively with MPS. To help us understand the rating, we
also asked users to elaborate on their rating in a text field. The survey questions
are aligned with some of Nielsen’s heuristic [32] to make sure the results are
relevant for usability.

All participants are professional developers who are using or have used MPS
for non-trivial tasks. We targeted professionals to obtain a controlled sample, ex-
cluding developers who have just experimented with MPS. We contacted each de-
veloper personally via e-mail. The contacted developers included users of mbeddr
as well as other professional MPS users. Our contactees were allowed to forward
the survey to other users. This led to one beginner in our sample, and we decided
to not exclude the data so we can get an impression of the obstacles beginners
face (to be explored further in future work). We piloted the questionnaire with
one developer to rule out any misunderstandings in the questions: no adaptations
were necessary, so we included the results from this developer in the analysis.
To put the answers into context, we also assessed their general programming
experience and how experienced they are with MPS and its underlying concepts
(e.g., DSLs, AST, meta model, model transformation).

We used SurveyGizmo (http://www.surveygizmo.com) to present the question-
naire to developers. Completion took about 25 minutes, and developers were not
compensated for their time. There are no deviations to report.

Participants. We received responses from 21 developers, originating primarily
from Europe (mostly Germany, the Netherlands, and Austria) and the US, plus
one response from India. All have at least moderate experience with MPS. Eight
of them have been using it between one and six months; only two just started,
but three have used it for more than two years. The remaining seven developers
report experience between half a year and two years. Most of the participants
use MPS daily (13 developers), or at least multiple times a week (4); three less
than once a week. 43% of developers estimate that they have written between
1,000 and 10,000 lines of code, only few (5%) less than 1,000, and many (29%)
even more than 10,000 lines. Thus, our sample represents sufficient experience
to establish an informed opinion about MPS.

Our participants have significant programming experience. Two thirds report
more than ten years, with only one having less than two years. The experience as
professional developer is also high (more than a third of participants report over
ten years), but slightly lower on average, with five developers being beginners in
professional development. Our most experienced participants were a managing
director and a director of research and development with 24 years of experience.
All but five participants have used a ParE-based IDE before, mostly Eclipse
(62%) and Visual Studio (48%). The participants also have significant experience
with model-driven development (MDD) and language engineering; this is not
necessarily surprising, since MPS is a language engineering tool. For each of the

Towards User-Friendly Projectional Editors 55

nine MDD concepts (meta model, AST, grammar, DSL, textual DSL, graphical
DSL, model transformation, M2T, and M2M), the majority reported being very
familiar. The highest familiarity could be seen for meta model, AST, and textual
DSL, while it was lower (but still on a high level) for graphical DSL and model
transformation. Two thirds of all participants have used or designed a DSL
before.

Usage. Our participants report using MPS in a variety of domains – mostly
automotive and embedded systems (these are the mbeddr users), but also the
web, mobile, insurance, and enterprise resource planning. The majority of par-
ticipants uses MPS as a programmer, while half of these also develop language
extensions for mbeddr, indicating some more in-depth experience and language-
design knowledge. One of them reported using it for his Master’s thesis. Only
three participants exclusively develop language extensions.

We now show the answers to how developers perceive various aspects of MPS,
as assessed by the Likert-scale questions, shown in Fig. 2.

Efficiently Entering (Textual) Code (EE). Regarding Efficiency, most
developers agree that they can write code as fast as with a ParE (median: 2;
min/max: 1/5). Only one developer strongly disagrees, but explains that he is a
proficient Emacs user (“Years of investment in Emacs are hard to beat.”). One
user also disagrees, but indicates that this is because he is a novice MPS user. A
second developer who disagrees states that while code entering may not be that
efficient, it is less error-prone, increasing overall efficiency. The remaining partic-
ipants state that after getting used to the different style of entering code, there is
no difference in efficiency to ParEs. We also asked about the general perception
of Productivity with MPS. Most developers are positive in this respect (median:
2; min/max: 1/5). While 28% express a neutral opinion, 40% agree, and 28%
even strongly agree. Only one participant expressed strong disagreement. This
participant also faced intensive learning effort and stated that becoming famil-
iar with the environment was difficult, mainly since all of MPS’ concepts were
completely new to him. In contrast, he strongly agrees that he can write code
as fast as with a ParE, arguing that the code-completion facilities significantly
contribute to the productivity. We conclude that after a learning phase, MPS
lets developers work efficiently and productively.

Selecting and Modifying Code (SM). We asked developers what they
think about producing correct programs with MPS (Correctness) and that they
can produce only valid ASTs (CorrectAST). Most developers agree that these
are supported well with MPS (median for both: 2). Many developers state that
compared to a ParE, MPS does neither provide an advantage nor a disadvantage,
because “the main type of errors are logical errors, which are not influenced by
the IDE.” Those who agree state that the error prevention in MPS is related
to the fact that they can produce only valid ASTs. However, this enforcement
of valid ASTs is also perceived as a drawback, because it reduces flexibility
during programming: “Sometimes though, it would be nice to introduce classes,

56 M. Voelter et al.

interfaces etc. by just using them, and then let the development environment
generate the appropriate types if ordered so by the user via a quickfix”.1

Fig. 2. Overview of Survey Answers

All participants agree
that they benefit from
the modular language sup-
port of MPS (median: 1,
min/max: 1/2), confirm-
ing one of the key ben-
efits of MPS. One de-
veloper states: “Language
composition is the main
strength of MPS.”Regard-
ing the support for differ-
ent notations, the flexible
notations provide a consid-
erable benefit for develop-
ers (median: 2, min/max:
1/3), especially for inte-
grating stakeholders from
different domains (“My
DSL users are business
people, not IT people. Being able to use mathematical notations for Sum and
Product expressions, fraction bars for division, tabular notations for test cases is
crucial.”). No problems were reported with the usability of these non-text editors.

Developers are often not satisfied with the commenting support of MPS, which
is consistent with the shortcomings of the commenting facilities discussed ear-
lier (Section 4.2). Developers complain about two main issues. The first one is
the problems with (temporarily) commenting code (“You always have to use
some workarounds, like cutting out program fragments ...”). The other one is the
convenience of free text editing2 inside documentation comments (“The editing
of text is not straight forward ...”). We conclude that, except for supporting
comments, MPS addresses the issue of selecting and modifying code quite well.

General Usability. In addition to the three dimensions, we asked about the
general usability of MPS. In general, developers like the advanced navigation sup-
port of MPS (median: 2; min/max: 1/3). Especially the direct navigation on the
AST is a key advantage. This is especially true for the language engineers, as
one user expresses: “Because of the direct navigation of the AST many features
(refactoring, quick fixes, etc.) are easy to build.” Participants expressed mixed
feelings about learnability and familiarization. When asked whether MPS and its
facilities are easy to learn and getting used to, more than half of our participants

1 mbeddr C provides such quick fixes (see Section 4, EE.2), but MPS’ Java does not.
This was a Java user.

2 The plugin that supports unstructured free text editing for documentation and com-
ments is a recent addition to MPS. Since the time of the survey, it has been improved
significantly. It is now used to write the complete mbeddr user guide.

Towards User-Friendly Projectional Editors 57

express a negative or neutral opinion, only few agree or strongly agree. Interest-
ingly, the results become slightly more negative if we only consider participants
who are both language users and language engineers (median: 4; min/max: 1/5).
Thus, we conjecture that their perception was biased by the language develop-
ment facilities in MPS, which require mastery of more advanced concepts than
just using MPS languages to write programs. In fact, in the comment field, the
respective participants reported only about issues related to language develop-
ment. Just considering language users yields a more positive result (median:
3; min/max: 2/4, for both learnability and familiarization). One language engi-
neer explained his positive attitude: “I have much experience and knowledge in
language development, and given this background, MPS is rather logically struc-
tured. From this point of view, learning how to use MPS to build a new language
[...] is not hard.” Thus, with sufficient experience in language development, the
learnability of MPS seems not to be a problem. Looking at more inexperienced
programmers, we found that one problem of learning MPS is insufficient doc-
umentation, as stated by the same developer: “However, for certain specialist
areas within MPS, there is a lack of good or enough documentation.”

Since documentation is not a conceptual issue, we believe that learnability of
MPS can be considerably improved with sufficient documentation. To address
this, the MPS developers can build on the results of this survey.

Summary. In general, the perception of MPS is positive. While the majority
agrees that working with MPS can be productive, developers see some difficulty
in learning (Learnability) and getting used to MPS (Familiarization). The overar-
ching opinion regarding usability can be summarized in one sentence: MPS takes
a while to get used to, but then its usability is comparable to ParEs. The stated
advantages of ProjE, such as the flexible notations and modular languages, are also
confirmed by our participants. However, there is also room for improvement: the
hotspots expressed by the participants are in line with those problems identified
in Section 3, for which MPS does not yet have satisfactory answers.

Threats to Validity. To increase external validity, we ensured that all partic-
ipants have significant prior experience with MDD. Thus, our survey results and
conclusions about usability primarily apply to such developers. However, we had
one beginner in our survey (participants were allowed to forward the survey to
other MPS users). Thus, our results are slightly biased by this beginner, but at
the same time give us valuable insights into the struggles that new MPS users
face. We are currently planning a controlled experiment with students to further
explore how beginners learn MPS. Regarding the results, we can carefully gen-
eralize beyond MPS based on the assumption that other ProjE can adopt MPS’
usability-improving techniques, but further studies would improve the external
validity. A threat to internal validity is that the results may be influenced by
specific technical issues with MPS (or bugs), and are unrelated to the conceptual
usability issues, as identified in Section 3. We mitigate this threat by targeting
experienced developers, and cross-checking the experience with multiple ques-
tions in the survey questionnaire. To minimize biasing our participants, we asked

58 M. Voelter et al.

them explicitly for the advantages and disadvangtes of MPS. By replicating our
study, these threats can be reduced further. construct validity, i.e, to ensure that
our survey measures usability correctly, we consulted the usability heuristics by
Nielsen [32] before creating the questionnaire.

5.2 Infrastructure Integration

We now report on industrial experiences to evaluate the effectiveness of MPS
infrastructure-integration support.

Version Control. Since 06/2011, a team growing from five to eight people has
been developing mbeddr based on MPS. Starting 07/2013, Siemens PLM has
started developing a commercial tool on top of mbeddr, adding an additional
four people to the team. Some of the mbeddr languages are also used in different
domains, and two more developers are now working on the code base. This leads
to a total of fourteen people. The work is spread over four git repositories3. In
addition, two developers from BMW Car IT (plus two from mbeddr) worked on
an SVN repository to develop an AUTOSAR extension for mbeddr.

In 2011 there were a few problems with merging; some changes just disap-
peared. This has since been fixed, and since 2012 no more problems have oc-
curred with the VCS integration (git and SVN). Two aspects have to be kept
on mind for it to work. First, diff and merge has to be done within MPS. Since
all team members work with MPS anyway, this is not a problem. Second, if an
update contains changes to languages as well programs that use these languages,
users have to make sure to first merge and rebuild the languages. Otherwise MPS
cannot correctly show the diff of programs written with these languages.

Continuous Integration. mbeddr, as well as the projects built with it, use Jet-
Brains Teamcity as an integration server4. It generates and compiles languages,
runs tests, and packages the mbeddr system as MPS plugins. Even though Team-
city is also developed by JetBrains, there is no specific integration: it simply calls
ant which in turn use MPS-provided ant tasks for building and testing.

Summary. VCS integration and building on the server are the two most im-
portant concerns in terms of infrastructure integration. As discussed above, they
are supported well. Used together with the mbeddr utilities for interoperability
with textual environments discussed in Section 4.3, we conclude that infrastruc-
ture integration is addressed well enough to make MPS usable in practice. The
mbeddr-specific extensions should be integrated directly into MPS, though.

6 Remaining Issues and Further Improvement

Automatically Deriving Actions The editor usability facilities have to be
implemented manually for each language. While MPS provides DSLs to do this
efficiently (and to a degree, generically), this is still tedious and error-prone. It

3 including the open source repo at https://github.com/mbeddr/mbeddr.core
4 The CI server is at https://build.mbeddr.com; log in as guest.

Towards User-Friendly Projectional Editors 59

is easy to forget some of the facilities for some language concepts, leading to
an inconsistent user experience. One approach of addressing this problem is to
describe textual-looking languages with a more grammar-like formalism from
which many of the necessary editor facilities can be derived automatically. Both
the MPS and mbeddr teams are currently experimenting with this approach.

Automatic Rebinding. Consider a reference to a global variable v. If v is
deleted, references to it break. Consider further that later, a new node named
v is created, possibly a global variable or a function. The old references should
now be bound to the new v. Currently, this is not supported; all reference sites
have to be manually rebound by selecting the target from the code-completion
menu. MPS 3.1 will support automatic rebinding of references based on target
names stored in the (broken) references and existing scoping rules.

Legacy Import. One use case of a ProjE is providing state-of-the-art IDE
support and language extension and composition facilities for existing program-
ming languages. To make this possible, the language must be reimplemented in
MPS. The effort to do this is limited; it took the mbeddr team about five person
months to implement C. However, in this scenario, interoperability with textual
C code is necessary. Currently, a parser that creates MPS trees from text has to
be implemented manually. If the aforementioned grammar-like formalisms were
available, the necessary parser could potentially be automatically derived as well.

Command-Line Support. While MPS supports command-line integration
for building and testing models, it is not possible to simply grepMPS models for
text strings (beyond simple names). This is because programs are not stored in
their concrete syntax notation. To address this problem, a textual representation
of the program could be stored along with the AST-based persistence.

What You See Is Not What You Type. We are currently experimenting
with two ideas for entering notations that are not on the keyboard. The first
one simply shows the alias in a tooltip over the respective symbol. The second
alternative uses a palette that contains buttons to enter those special notations.

Generic Commenting. As confirmed by the survey, generic support for com-
menting (documentation as well as commenting out code) is necessary. Most
likely this requires specific support by MPS’ projectional editor. The MPS and
mbeddr teams are currently discussing various approaches to the problem.

7 Conclusion

We have analyzed the usability of projectional editors, discussed mitigation tech-
niques, and evaluated them by surveying professional developers. Our results
show that the benefits of better language composition and notational flexibility
are impaired by significant usability issues, but that the majority of those can
be sufficiently mitigated with the facilities provided by MPS and discussed in
this paper. In fact, the surveyed professional developers confirm the effectiveness

60 M. Voelter et al.

of these mitigations in their every-day work, while the learning curve is high,
requiring additional training. Further, our industrial experiences indicate MPS’
usefulness for large-scale development projects. Thus, we believe that projec-
tional editing can be efficient in projects that benefit from language composition
and diverse syntax – outweighing the remaining usability issues. We believe this
generalization is justified in the sense that MPS establishes a minimum viable
set of techniques for improving editor usability that can be adopted by other
ProjEs.

Our results can be used in various ways. The categorization of usability issues
allows us to characterize ProjEs in general. The discussed mitigation techniques
establish a minimal baseline for usability of ProjEs. Our empirical survey data
indicates the cost (training and learning investment) to benefit (language com-
position, notational diversity, and potentially fewer errors) ratio, which can be
used to assess the applicability of ProjEs in concrete projects.

Our future work is two-fold. First, we will investigate the remaining usability
issues not currently addressed in MPS. Second, we aim at understanding adop-
tion challenges, problem solving patterns, and efficiency with editing operations
using a controlled experiment. It will comprise both beginning and professional
developers (subset of survey participants), whose behavior when using a ProjE
is compared to developers relying on a ParE. This experiment will complement
our present work by providing an in-depth behavior analysis.

Acknowledgements. We thank Alexander Shatalin, Vaclav Pech and Kon-
stantin Solomatov for clarifying details about MPS and feedback to this paper.

References

1. Green, T.R.: Cognitive dimensions of notations. People and Computers V, 443–460
(1989)

2. Simonyi, C.: The death of computer languages, the birth of intentional program-
ming. In: NATO Science Committee Conference (1995)

3. Czarnecki, K., Ulrich, E.: Generative Programming: Methods, Tools, and Applica-
tions. Addison-Wesley, Reading (2000)

4. Medina-Mora, R., Feiler, P.H.: An Incremental Programming Environment. IEEE
Trans. Software Eng. 7(5) (1981)

5. Notkin, D.: The GANDALF project. Journal of Systems and Software 5(2) (1985)

6. Porter, S.W.: Design of a syntax directed editor for psdl (prototype systems design
language). Master’s thesis, Naval Postgraduate School, Monterey, CA, USA (1988)

7. Reps, T.W., Teitelbaum, T.: The Synthesizer Generator. In: First ACM SIGSOFT-
/SIGPLAN Software Engineering Symposium on Practical Software Development
Environments. ACM (1984)

8. Voelter, M.: Language and IDE Modularization and Composition with MPS. In:
Lämmel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2011. LNCS, vol. 7680, pp. 383–
430. Springer, Heidelberg (2013)

9. Simonyi, C., Christerson, M., Clifford, S.: Intentional Software. In: OOPSLA 2006.
ACM (2006)

Towards User-Friendly Projectional Editors 61

10. Christerson, M., Kolk, H.: Domain expert DSLs (2009) talk at QCon London 2009
(2009), http://www.infoq.com/presentations/
DSL-Magnus-Christerson-Henk-Kolk

11. Diekmann, L., Tratt, L.: Parsing composed grammars with language boxes. In:
Workshop on Scalable Language Specifications (2013)

12. Simi, M., Campagne, F.: Composable Languages for Bioinformatics: The NYoSh
experiment. PeerJ PrePrints 1:e112v2 (2013)

13. Voelter, M., Ratiu, D., Tomassetti, F.: Requirements as first-class citizens. In:
Proceedings of ACES-MB Workshop (2013)

14. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: eclipse modeling
framework. Pearson Education (2008)

15. Voelter, M., Ratiu, D., Kolb, B., Schaetz, B.: mbeddr: instantiating a language
workbench in the embedded software domain. Automated Software Engineer-
ing 20(3), 1–52 (2013)

16. Voelter, M.: Preliminary experience of using mbeddr. In: 10th Dagstuhl Workshop
on Model-based Development of Embedded Systems, p. 10 (2014)

17. Coplien, J.O.: Multi-paradigm Design for C+. Addison-Wesley (1999)
18. Kats, L.C.L., Visser, E., Wachsmuth, G.: Pure and declarative syntax definition:

paradise lost and regained. In: Proceedings of OOPSLA 2010. ACM (2010)
19. Parr, T.J., Quong, R.W.: ANTLR: A Predicated-LL(k) Parser Generator. Software:

Practice and Experience 25(7) (1995)
20. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The syntax definition formalism

SDF - reference manual. SIGPLAN 24(11) (1989)
21. Bravenboer, M., Dolstra, E., Visser, E.: Preventing injection attacks with syntax

embeddings. In: GPCE 2007, Salzburg, Austria. ACM (2007)
22. Wyk, E.V., Bodin, D., Gao, J., Krishnan, L.: Silver: an Extensible Attribute Gram-

mar System. ENTCS 203(2) (2008)
23. Lämmel, R., Wachsmuth, G.: Transformation of sdf syntax definitions in the asf+

sdf meta-environment. Electronic Notes in Theoretical Computer Science 44(2),
9–33 (2001)

24. Anderson, R.: Two-dimensional mathematical notation. In: Fu, K. (ed.) Syntac-
tic Pattern Recognition, Applications. Communication and Cybernetics, vol. 14.
Springer (1977)

25. Helm, R., Marriott, K., Odersky, M.: Building visual language parsers. In: Proc.
ACM SIGCHI Conf. on Human Factors in Computing Systems, pp. 105–112 (1991)

26. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Sa-
lomaa, A. (eds.) Handbook of Formal Languages. Springer (1997)

27. Pruša, D.: Two-dimensional context-free grammars. In: ITAT 2001, pp. 27–40
(2001)

28. van Rest, O., Wachsmuth, G., Steel, J.R.H., Süß, J.G., Visser, E.: Robust real-time
synchronization between textual and graphical editors. In: Duddy, K., Kappel, G.
(eds.) ICMB 2013. LNCS, vol. 7909, pp. 92–107. Springer, Heidelberg (2013)

29. Voelter, M.: Integrating prose as first-class citizens with models and code. In: 7th
International Workshop on Multi-Paradigm Modeling, MPM 2013, p. 17 (2013)

30. Online Appendix, http://gsd.uwaterloo.ca/projectional-workbenches
31. Likert, R.: A technique for the measurement of attitudes. Archives of Psychology

(1932)
32. Nielsen, J.: Usability Engineering. Morgan Kaufmann Publishers (1994)

http://www.infoq.com/presentations/DSL-Magnus-Christerson-Henk-Kolk
http://www.infoq.com/presentations/DSL-Magnus-Christerson-Henk-Kolk
http://gsd.uwaterloo.ca/projectional-workbenches

Bounded Seas

— Island Parsing Without Shipwrecks

Jan Kurš, Mircea Lungu, and Oscar Nierstrasz

Software Composition Group, University of Bern, Switzerland
http://scg.unibe.ch

Abstract. Imprecise manipulation of source code (semi-parsing) is use-
ful for tasks such as robust parsing, error recovery, lexical analysis, and
rapid development of parsers for data extraction. An island grammar
precisely defines only a subset of a language syntax (islands), while the
rest of the syntax (water) is defined imprecisely.

Usually, water is defined as the negation of islands. Albeit simple, such
a definition of water is naive and impedes composition of islands. When
developing an island grammar, sooner or later a programmer has to cre-
ate water tailored to each individual island. Such an approach is fragile,
however, because water can change with any change of a grammar. It
is time-consuming, because water is defined manually by a programmer
and not automatically. Finally, an island surrounded by water cannot be
reused because water has to be defined for every grammar individually.

In this paper we propose a new technique of island parsing — bounded
seas. Bounded seas are composable, robust, reusable and easy to use
because island-specific water is created automatically. We integrated
bounded seas into a parser combinator framework as a demonstration
of their composability and reusability.

1 Introduction

Island grammars [1] offer a way to parse input without complete knowledge of the
target grammar. They are especially useful for extracting selected information
from source files, for reverse engineering and similar applications. The approach
assumes that only a subset of the language syntax is known (the islands), while
the rest of the syntax is undefined (the water). During parsing, any unrecognized
input (water) is skipped until an island is found.

The common misconception is that water should consume everything until an
island is detected. Such a water is easy to define, but it causes composability
problems. To be specific, such a water does not allow islands to be embedded into
the optional or repetitive rules without giving misleading results. To be correct,
water should stop when any of a number of possible islands is encountered. Small
changes in the grammar may radically change the nature of the water.

To define an island grammar that will return the unambiguous and correct
result we have to define specific water manually for each particular island, con-
trary to one global water. Yet island-specific water is fragile, hard to define and

B. Combemale et al. (Eds.): SLE 2014, LNCS 8706, pp. 62–81, 2014.
c© Springer International Publishing Switzerland 2014

http://scg.unibe.ch

Bounded Seas 63

it is not reusable. It is fragile, because it requires reevaluation by a programmer
after any change in a grammar. It is hard to define, because it requires the pro-
grammer’s time for detailed analysis of a grammar. It is not reusable, because
island-specific water depends on rules following the island, thus it is tailored to
the context in which the island is used — it is not general.

In this paper we suggest a new technique for island parsing: bounded seas.
Bounded seas are composable, reusable, robust and easy to use. The key idea
of bounded seas is that specialized water is defined for each particular island
(depending on the context of the island) so that an island can be embedded into
optional or repetitive rules. To achieve such composability, an island is never
searched behind a boundary defined by the rule following the island. To prevent
fragility and to improve reusability, we describe how to compute water automat-
ically, without user interaction. To prove feasibility, we integrated bounded seas
into Petit Parser [2], a PEG–based parser combinator framework [3].

The contributions of the paper are: a) a description of bounded seas — a com-
posable, reusable, robust and easy method of island parsing; b) a formalization
of the process leading to an island grammar for PEGs; c) and an implementation
of bounded seas in a PEG-based parser combinator framework.

Structure. Section 2 motivates this work by presenting the limitations of island
grammars with an example. Section 3 presents our solution to overcoming these
limitations by introducing bounded seas. Section 4 presents a sea operator for
PEGs, which creates bounded sea from an arbitrary PEG expression. Section 5
discusses implementation, applicability of bounded seas in GLL and presents a
Java code analysis case study that compares bounded seas with island grammars.
Section 6 presents other semi-parsing techniques and highlights similarities and
differences between them and bounded seas. Finally, section 7 concludes this
paper.

2 Motivating Example

Let us consider the domain specific source code from Listing 1.1. We don’t have
a grammar specification for the code, because the parser was written using ad
hoc techniques and the parser code is proprietary. Let us suppose that our task
is to extract class and method names.

class Shape

Color color;

method getColor {

return color;

}

int uid = UIDGenerator .newUID;

endclass

Listing 1.1. Source code of the Shape class in a proprietary language

64 J. Kurš, M. Lungu, and O. Nierstrasz

2.1 A Naive Island Grammar

To extract the method names, we need a parser. To write a parser, we need a
grammar. Because the grammar can easily consist of a hundred rules (e.g., ≈ 80
for Python, ≈ 180 for Java) and since we do not want to spend many hours
defining them, we define an island grammar in PEG (see Appendix A) with
fewer than ten rules as in Listing 1.2. We initially assume that each class body
contains just one method.

The method rule is an island. The methodSea rule represents a ‘method ’

island surrounded by water. The methodSea rule is defined imprecisely: water

skips everything until ‘method ’ is found. Similarly we define the methodBody

rule, which consumes an open curly bracket and then skips everything until the
closing curly bracket is found.

start ← class

class ← ’class’ id classBody ’endclass ’

classBody ← methodSea

methodSea ← (!’method’ ·)* method (!’endclass ’ ·)*

method ← ’method’ id methodBody

methodBody ← ’{’ (!’}’ ·)* ’}’

id ← letter (letter / number)*

letter ← ’a’ / ’b’ / ’c’ · · ·
number ← ’1’ / ’2’ / ’3’ · · ·

Listing 1.2. Our first island grammar

Composability Problems. The methodSea rule in the grammar in Listing 1.2
uses the naive definition of water. It will work as long as we do not complicate
the grammar.

Suppose we now allow multiple classes in a single file (start ← class*).

Parsing the input in Listing 1.3 should fail because Shape does not contain

a method. However the result, no matter whether we use PEG or CFG, is
only one class — Shape (instead of Shape and Circle) — with a method

getDiameter , which is wrong.

Things do not get better when we allow multiple repetitions of methodSea s

in a classBody (classBody ← methodSea*). The parser will stay confused

and depending on the technology (PEG, CFG), the result will be either incorrect
(PEG) or ambiguous (CFG). In case of the ambiguous results, it is nice to know
that one of the many results is correct, but how can we know which one?

Bounded Seas 65

class Shape

int uid = UIDGenerator .newUID;

endclass

class Circle

int diameter;

method getDiameter {

return diameter ;

}

endclass

Listing 1.3. Source code of Shape and Circle classes

2.2 An Advanced Island Grammar

To make the methodSea composable we must make it possible for it to be

embedded into optional (?) or repetition (+ , *) rules. Thus, we define the
grammar as in Listing 1.4. This new definition can properly parse multiple classes
in a file with an arbitrary number of methods in a class.

start ← class*

class ← ’class’ id classBody ’endclass ’

classBody ← (methodSea)*

methodSea ← (!’method’ !’endclass ’ ·)*
method

(!’method’ !’endclass ’ ·)*

method ← ’method’ id methodBody

methodBody← ’{’

(

(!’}’ !’{’ ·)*
methodBody

(!’}’ !’{’ ·)*
)*

’}’

id ← letter (letter / number)*

letter ← ’a’ / ’b’ / ’c’ · · ·
number ← ’1’ / ’2’ / ’3’ · · ·

Listing 1.4. Complete and final island grammar

One can see that the syntactic predicates in the methodSea are more com-
plicated. They have been inferred from the rest of the grammar by analyzing
what tokens can appear behind the method island.

66 J. Kurš, M. Lungu, and O. Nierstrasz

Ease of Use, Robustness, and Reusability Problems. The limitations
of defining the methodSea by hand are illustrative of the general problems of
semi-parsing:

1. Such a definition is time-consuming to produce because it requires program-
mer’s time to analyze the grammar.

2. The definition is fragile, because the predicates need to be re-evaluated after
any change in a grammar (e.g., adding inner classes will result in adding
!’class’ into the predicates).

3. Last but not least, the methodSea is tailored just for the grammar in
Listing 1.4 e.g., it cannot be re-used in a grammar that does not use
’endclass’ as a keyword.

3 Bounded Seas

3.1 The Sea Operator in a Nutshell

We have shown that water must be tailored both to the island within the sea and
to the surroundings of the sea (e.g., methodSea in Listing 1.4). In this paper,
we define a bounded sea to be an island surrounded by context-aware water.

To automate the definition of bounded seas we introduce a new operator for
building tolerant grammars: the sea operator. We use the notation ∼island∼
to create sea from island , which can be a terminal or non-terminal. Instead
of having to produce complex definitions of sea, a programmer can use the sea
operator which will do the hard work. Listing 1.5 presents how the grammar in
Listing 1.4 is defined using the sea operator:

class ← ’class’ id classBody ’endclass ’

classBody ← methodSea *

methodSea ← ∼method∼
method ← ’method’ id methodBody

methodBody← ’{’ ∼(methodBody / ε)∼* ’}’

id ← letter (letter / number)*

letter ← ’a’ / ’b’ / ’c’ · · ·
number ← ’1’ / ’2’ / ’3’ · · ·

Listing 1.5. Island Grammar from Listing 1.4 rewritten with the sea operator

A rule defined with the sea operator (e.g., ∼method∼) maintains the com-
posability property of the advanced grammar since by applying the sea operator
we search for the island in a restricted scope. Moreover, such a rule is reusable,
robust, and uncomplicated to define.

Conceptually two ideas are fundamental for bounded seas.

Bounded Seas 67

1. Water is defined for each island so that the search for an island will never
cross the boundary defined by the rule that follows the island. For example,
method islands will be searched only within a class and not in a whole file.
The search boundary ensures composability.

2. Water computation in bounded seas is fully automated. The sea is created
using the sea operator ∼island∼ . Once the sea is placed in the gram-
mar, the grammar is analyzed and appropriate water is created without
user interaction. This way the sea can be placed in any grammar. In case
the grammar is changed, the seas are recomputed automatically. Automatic
water computation ensures ease of definition, robustness, and reusability.

Bounded seas can be integrated into a parser combinator framework, a highly
modular framework for building a parser from other composable parsers [4]. The
fact that a bounded sea can be implemented as a parser combinator demonstrates
its composability and flexibility. In fact, the original motivation for this work was
the desire to have a reusable approach to semi-parsing that can be integrated
with parser combinators.

3.2 The Sea Boundary

A sea boundary limits the scope within which the island can be searched. Water
cannot consume anything beyond the boundary. The boundary of the sea consists
of the input accepted by any parsing expression that can appear immediately

after the island. For example in case of A ← ∼’a’∼ (B / C) the boundary

of ∼’a’∼ is any input accepted either by B or by C .

The sea boundary ensures composability. With help of the boundary we can
search for methods in a class without the risk that other classes will interfere.
This was the issue for the input in Listing 1.3 and the non-bounded grammar
from Listing 1.2, which found the getDiameter method in the Shape class.

The predicates of island-specific water have to be set up so that they stop
water in two cases: first, when an island is reached; second, when the boundary
is reached. If the boundary is reached before the island is found, water stops
and the sea fails. The fact that sea can fail implies that sea can be embedded
into optional or repetition expressions. For example, we can define the superclass
specification as an optional island.

∼classDef∼ ∼superclassSpec∼? classBody ’endclass ’

If superclassSpec is not present for the particular class, it will simply fail

when reaching classBody instead of searching for superclassSpec further

and further. The same holds for repetitions.

classBody ← ∼method∼*

68 J. Kurš, M. Lungu, and O. Nierstrasz

This rule will consume only methods until it reaches ‘endclass’ in the input
string, since endclass forms the boundary of ∼method∼ , so methods in an-
other class cannot be inadvertently consumed.

We first define bounded seas generally, and later provide a PEG-specific def-
inition.

Definition 1 (Bounded Sea). A bounded sea consists of a sequence of three
parsing phases:

1. Before-Water: Consume the input until an island or the boundary appears.
Fail the whole sea if we hit the boundary. Continue if we hit an island.

2. Island: Consume an island.
3. After-Water: Consume the input until the boundary is reached.

3.3 The Context Sensitivity of Bounded Seas

To make bounded seas useful we decided for a context-sensitive behaviour. A
bounded sea recognizes different substrings of an input depending on what sur-
rounds the sea. There are two cases where the context-sensitivity emerges:

1. A bounded sea recognizes different input depending on what immediately
follows the sea.

2. A bounded sea recognizes different input depending on what immediately
precedes the sea.

Let us demonstrate on rules from Listing 1.6 and two inputs ‘..a..b..’ and
‘..a..c..’. On its own, A recognizes any input with ’a’ and B recognizes any

input with ’b’ (see rows 1-4 in Table 1).

A ← ∼’a’∼
B ← ∼’b’∼

R1 ← A R2 ← B

R3 ← A ’b’ R4 ← A ’c’

R5 ← A B

Listing 1.6. Rules for the context-sensitive behaviour demonstration

However, when the two islands are not alone, their boundary can differ, de-
pending on the context. The boundary of A is ’b’ in R3 and the boundary of

A is ’c’ in R4 . Therefore A consumes different substrings of input depending

whether called from R3 or R4 (see rows 5-8 in Table 1).
A more complex case of context-sensitivity, which we call the overlapping sea

problem, arises when one sea is immediately followed by another. Consider, for
example, rule R5 , where the sea A has as its boundary B , which is also a

sea. Note that the before-water of B should consume anything up to its island

’b’ or its own boundary, including the island of its preceding sea A . Now,

Bounded Seas 69

Table 1. The seas A and B recognize different inputs depending on a context

Rule Input Result

1 R1 ← A ‘..a..b..’ A recognizes ’..a..b..’

2 R1 ← A ‘..a..c..’ A recognizes ’..a..c..’

3 R2 ← B ‘..a..b..’ B recognizes ’..a..b..’

4 R2 ← B ‘..a..c..’ B fails

5 R3 ← A ’b’ ‘..a..b..’ A recognizes ’..a..’ ’b’ recognizes ’b’

6 R3 ← A ’b’ ‘..a..c..’ A recognizes ’..a..b..’ ’b’ fails

7 R4 ← A ’c’ ‘..a..b..’ A recognizes ’..a..b..’ ’c’ fails

8 R4 ← A ’c’ ‘..a..c..’ A recognizes ’..a..’ ’c’ recognizes ’c’

9 R5 ← A B ‘..a..b..’ A recognizes ’..a..’ B recognizes ’b..’

10 R5 ← A B ‘..a..c..’ A recognizes ’..a..c..’ B fails

the before-water of A should consume anything up to either its island ’a’ or

its boundary B . But the very search for the boundary will now consume the

island we are looking for, since B ’s before-water will consume ’a’ ! We must
therefore take special care to avoid a “shipwreck” in the case of overlapping seas
by disabling the before-water of the second sea.

4 Bounded Seas in Parsing Expression Grammars

Starting from the standard definition of PEGs (see Appendix A), we now show
how to add the sea operator while avoiding the overlapping sea problem. To
define the sea operator, we need the following two abstractions:

1. The water operator consumes uninteresting input Water (≈) is a new
PEG prefix operator that takes as its argument an expression that specifies
when the water ends. We discuss this in detail in subsection 4.1.

2. The NEXT function determines the boundary of a sea. Intuitively,
NEXT(e) returns the set of expressions1 that can appear directly after
a particular expression e. The details of the NEXT function are given in
subsection 4.2.

Definition 2 (Sea Operator). Given the definitions of ≈ and NEXT, we
define the sea operator as follows: ∼e∼ is a sequence expression

≈(e / next1 / next2 / · · · nextn)
e

≈(next1 / next2 / · · · nextn)

where nexti ∈ NEXT (e).

That is, the before-water consumes everything up to the island or the bound-
ary, and the after-water consumes everything up to the boundary.

1 The NEXT function is modelled after FOLLOW sets from parsing theory, except
that instead of returning a set of tokens, it returns a set of parsers.

70 J. Kurš, M. Lungu, and O. Nierstrasz

4.1 The Water Operator

The purpose of a water expression is to consume uninteresting input. Water
consumes input until it encounters the expression specified in its argument (i.e.,
the boundary). We must, however, take care to avoid the overlapping sea prob-
lem. If two seas overlap (one sea is followed by another), the second sea bounds
the first one. The second sea has to disable its before-water as illustrated in
subsection 3.3. We detect overlapping seas as follows: if sea s1 is invoked from
the water of another sea s2, it means that the water of s1 is testing for its bound-
ary s2 and thus s2 has to disable its before-water. To distinguish between nested

seas (e.g., ∼’x’ ∼island∼ ’x’∼) and overlapping seas, we test the position

where this sea was invoked. In case of nested seas the positions differ, and in
case of overlapping seas they are the same.

Definition 3 (Extended Semantics). In order to detect overlapping seas,
we extend the semantics of a PEG G = {N, T,R, es} with a stack of invoked
expressions and their positions. For standard PEG operators there is no change
except that an explicit stack S is maintained. We define a relation ⇒G from
tuples of the form (x, S) to the output o, where x ∈ T ∗ is an input string to
be recognized, S �∈ N is a stack consisting of tuples (e, p), where p ≥ 0 is a
position and e is a parsing expression, and o ∈ T ∗ ∪ {f} indicates the result
of a recognition attempt. The distinguished symbol f �∈ T indicates failure.
Function len(x) returns a length of an input x. Function (e, p) : S denotes a
stack with tuple (e, p) on the top and stack S below. For ((x, S), o) ∈⇒G we
write (x, S) ⇒ o.

We define ⇒G inductively as follows (without any semantic changes for stan-
dard PEG operators):

Empty:
x ∈ T ∗

(x, (ε, p) : S) ⇒ ε

Terminal (success case):
a ∈ T, x ∈ T ∗

(ax, (a, p) : S) ⇒ a

Terminal (failure case):
a �= b (a, ε, S) ⇒ f

(bx, (a, p) : S) ⇒ f

Nonterminal:
A ← e ∈ R (x, (e, p) : S) ⇒ o

(x, (A, p) : S) ⇒ o

Sequence (success case):

(x1x2y, (e1, p) : S) ⇒ x1

(x2y, (e2, p+ len(x1)) : S) ⇒ x2

(x1x2y, (e1e2, p) : S) ⇒ x1x2

Sequence (failure case):
(x, (e1, p) : S) ⇒ f

(x, (e1e2, p) : S) ⇒ f

Sequence (failure case 2):

(xy, (e1, p) : S) ⇒ x
(y, (e2, p+ len(x)) : S) ⇒ f

(xy, (e1e2, p) : S) ⇒ f

Bounded Seas 71

Alternation (case 1):
(xy, (e1, p) : S) ⇒ x

(x, (e1/e2, p) : S) ⇒ x

Alternation (case 2):

(x, (e1, p) : S) ⇒ f
(x, (e2, p) : S) ⇒ o

(x, (e1/e2, p) : S) ⇒ o

Repetitions (repetition case):

(x1x2y, (e, p) : S) ⇒ x1

(x2, (e∗, p+ len(x1)) : S) ⇒ x2

(x1x2y, (e∗, p) : S) ⇒ x1x2

Repetitions (termination case):
(x, (e, p) : S) ⇒ f

(x, (e∗, p) : S) ⇒ ε

Not predicate (case 1):
(xy, (e, p) : S) ⇒ x

(xy, (!e, p) : S) ⇒ f

Not predicate (case 2):
(xy, (e, p) : S) ⇒ f

(xy, (!e, p) : S) ⇒ ε

Definition 4 (Water Operator). With the extended semantics of PEGs we
can define a prefixwater operator ≈ . It searches for a boundary and consumes
input until it reaches a boundary. If the water starts a boundary of another sea,
it stops immediately. Function seasOverlap(S, p1) returns true if there is a pair
(≈ e, p2) on a stack S where p1 = p2 and e is any parsing expression and returns
false otherwise. x ∈ T ∗, y ∈ T ∗, z ∈ T ∗ and function substring(x) returns set of
all substrings of x.

Overlapping seas case:
seasOverlap(S, p)

(x, (≈ e, p) : S) = ε

Boundary found case:

(yz, (e, p) : S) ⇒ y
(x′′, (e, p+ len(x′)) : S) ⇒ f ∀x = x′x′′x′′′

(xyz, (≈ e, p) : S) = x

End of input case:
(yz, (e, pos(x)) : S) ⇒ f

(xyz, (≈ e, p) : S) = xyz

In case of directly nested seas (e.g., ∼∼island∼∼) we obtain the same

behaviour as with ∼island∼ . The function seasOverlap returns true in case a
sea is directly invoked from another sea without consuming any input. Applying
the rule Overlapping seas from Definition 4, water of the inner sea is eliminated
and the boundary is the same for the both seas. Therefore ∼∼island∼∼ is

equivalent to ∼island∼ .

4.2 The NEXT Function

The purpose of the NEXT function is to determine the boundary of a sea. The
boundary is an expression that consumes whatever follows the sea. Consider the

72 J. Kurš, M. Lungu, and O. Nierstrasz

code ← (∼class∼/∼struct∼)* mainMethod

class ← ’class’ ID classBody

stuct ← ’struct’ ID sbody

mainMethod ← ’public’ ’method’ ’main ’ methodBody

classBody ← · · ·
sbody ← · · ·
methodBody ← · · ·
ID ← · · ·

Listing 1.7. Definition of code that consists of classes and structures followed by main
method

grammar in the example from Listing 1.7. The code is defined in a way that
it accepts an arbitrary number of class and structure islands in the beginning
(classes and structures can be in any order) and there is a main method at the
end. Intuitively, another class island, a structure island or a main method can
appear after a class island.

The boundary has to be something “solid”. An optional expression itself is not
a good boundary, because it succeeds for any input. Consider a simple expression

∼e∼ ’a’? ’b’ ’c’ . The ’a’? can appear behind the ’island’ but ’b’

as well, if ’a’ fails. It is certainly not ’c’ because it always succeeds ’b’ .

In this case we have to define a boundary as ’a?’ ’b’ (not only ’a’?).

Definition 5 (Abstract Simulation). In order to recognize a solid expression
we define a relation representing an abstract simulation [5]. We define a relation
⇀G consisting of pairs (e, o), where e is an expression and o ∈ {0, 1, f}. We
will write e ⇀ o for (e, o) ∈⇀G. If e ⇀ 0, then e can succeed on some input
while consuming no input. If e ⇀ 1, then e can succeed on some input while
consuming at least one terminal. If e ⇀ f , then e may fail on some input. We
will use variable s to represent a ⇀G outcome of either 0 or 1. We will define
the simulation relation ⇀G as follows:

1. ε ⇀ 0.
2. t ⇀ 1, t ∈ T .
3. t ⇀ f , t ∈ T .
4. A ⇀ o if RG(A) ⇀ o.
5. e1e2 ⇀ 0 if e1 ⇀ 0 and e2 ⇀ 0.

e1e2 ⇀ 1 if e1 ⇀ 1 and e2 ⇀ s.
e1e2 ⇀ 1 if e1 ⇀ s and e2 ⇀ 1.

6. e1e2 ⇀ f if e1 ⇀ f
7. e1e2 ⇀ f if e1 ⇀ s and e2 ⇀ f .
8. e1/e2 ⇀ s if e1 ⇀ s
9. e1/e2 ⇀ o if e1 ⇀ f and e2 ⇀ o.
10. e∗ ⇀ 1 if e ⇀ 1

Bounded Seas 73

11. e∗ ⇀ 0 if e ⇀ f

12. !e ⇀ f if e ⇀ s

13. !e ⇀ 0 if e ⇀ f

Because this relation does not depend on the input string, and there are a
finite number of expressions in a grammar, we can compute this relation over
any grammar [5].

Definition 6 (NEXT). If S is a stack of (expression, position) pairs represent-
ing positions and invoked parsing expressions and if �(S) pops an element from
the stack S returning a stack S′ without the top element and if sn, sn−1, ..s2, s1
are expressions on the stack S (top of the stack is to the left, bottom to the
right) and if � is a sequence formed from two sets of parsing expressions such
that S1�S2 = {eiej |ei ∈ S1, ej ∈ S2}, we define NEXT(S) as a set of expressions
such that:

– if sn−1 = e1e2 and sn = e1 and e2 �⇀ 0 then NEXT(S) = {e2}
– if sn−1 = e1e2 and sn = e1 and e2 ⇀ 0 then NEXT(S) = {e2}�NEXT(�(S))

– if sn−1 = e1e2 and sn = e2 then NEXT(S) = NEXT(�(S))
– if sn−1 = e1/e2 and sn = e1 or sn = e2 then NEXT(S) = NEXT(�(S))

– if sn−1 = e∗ and e = sn then NEXT(S) = e ∪NEXT(�(S))

– if sn−1 = !e and e = sn then NEXT(S) = {}

5 Discussion

5.1 Implementation

As a validation of bounded sea composability and reusability we provide an
implementation of bounded sea in a PetitParser framework.2

5.2 Java Parser Case Study

In the following section we compare four kinds of Java parsers.

1. PetitJava is an open source Java parser written using PetitParser [2] by
the community around the Moose analysis platform[6]. We used the latest
version available online3.

2. Naive Island Parser is an island parser with water defined as a negation
of an island. The sea rules in this parser can be reused, because they do
not consider their surroundings and they are grammar-independent. The sea
rules are defined in a simple form: consume input until an island is found,
then consume an island.

2 http://scg.unibe.ch/research/islandparsing/sle2014
3 http://smalltalkhub.com/#!/~Moose/PetitJava/

http://scg.unibe.ch/research/islandparsing/sle2014
http://smalltalkhub.com/#!/~Moose/PetitJava/

74 J. Kurš, M. Lungu, and O. Nierstrasz

3. Advanced Island Parser is a more complex version of the naive island
parser. The water is more complicated to prevent the most frequent failures
of island parser. The sea rules in this parser are hard-wired to the grammar
and cannot be reused. The sea rules are customized for a particular islands.

4. Island Parser with Bounded Seas is an island parser written using
bounded seas. The sea rules were defined using the sea operator.

The PetitJava parser parses Java code4. All the island parsers are very similar
between themselves, with a similar number of rules. The island parsers were
designed to extract only method names in a class. None of the parsers was
optimized to provide a better performance.

In this section we compare the three island parsers (almost identical in a
structure) written by the first author. Very probably, the advanced island parser
can be updated so that it achieves better precision and better performance,
but at the cost of considerable engineering work. We want to demonstrate that
naive water rules do not work and that the advanced version of water is needed.
Moreover, we want to confirm that with bounded seas we can get high precision
and performance without the effort required to define an advanced island parser.

Table 2 displays the precision (P) and recall (R) with which the different
parsers extract methods from six Java classes. The PetitJava parser had a
perfect precision and recall for the cases where it did not fail. The PetitJava
failures are due to incomplete and incorrectly specified rules.

Table 2. Precision (P) and recall (R) of the four tested parsers. We indicate with “-”
the cases where the PetitJava parser fails with an error

Class
Name

PetitJava Island Advanced Bounded Method
CountP R P R P R P R

java.lang.Class - - 0.05 0.05 0.78 0.78 0.91 0.91 108
java.lang.Object - - 0.00 0.00 0.91 0.91 0.91 0.91 12
java.lang.Math 1 1 0.02 0.02 0.91 0.93 0.95 1.00 46
java.io.InputStream 1 1 0.00 0.00 0.88 0.88 1.00 1.00 9
java.io.FileInputStream 1 1 0.13 0.13 0.80 0.75 1.00 1.00 16
java.util.ArrayList - - 0.07 0.07 0.88 0.82 0.96 0.92 28

Table 3 synthesizes the information in Table 2 and adds information about
the effort required to implement the given parser. The best precision and recall
are achieved with the PetitJava parser, sacrificing simplicity and robustness.
Island parsers provide very good robustness, but the naive island parser does
not provide any useful output. The advanced island parser is comparable to the
bounded island parser. This is not surprising, considering that bounded seas use
the same techniques as the advanced island parser. Support for inner classes
means that a parser can be extended to recognize inner classes and methods
inside them. The non-bounded island parsers can only search for a flattened list
of methods in contrast to bounded seas, which can support nested lists.

4 In this paper, we exclusively consider Java 5 code.

Bounded Seas 75

Table 3. Comparison of parsing techniques. The 11 rules of the advanced parser are
marked as a medium effort, because the extra rule is not trivial to infer and it is highly
interconnected with the rest of the grammar.

PetitJava Island Advanced Bounded

P & R very high very low high high
Robustness low high high high
Supports inner classes yes no no yes

Effort
≈ 200 rules 10 rules 11 rules 10 rules
very high low medium low

Table 4 presents a performance comparison of the parsers. The performance
of the bounded seas parser is in all the test cases one order of magnitude better
than that of the advanced island parser. The performance difference is due to the
bounded sea parsers skipping water at the start of boundary of another bounded
sea. The Naive and Advanced island parsers are slower than the PetitJava parser.

Table 4. The performance comparison of the four parsers shows that the performance
of the bounded seas parser is on par with the one of the PetitJava parser

Class Name PetitJava Island Advanced Bounded
[ms] [ms] [ms] [ms]

java.lang.Class - 6921 25229 4733
java.lang.Object - 1058 6000 351
java.lang.Math 941 2077 11000 875
java.io.InputStream 331 638 3135 325
java.io.FileInputStream 338 301 561 301
java.util.ArrayList - 1025 3831 826

5.3 Generalized LL Parsing

In this paper we have discussed bounded seas for PEGs. However, the essence
of bounded seas is not in the grammar formalism used but in the fact that
water is specific for each island and it is computed automatically from a stack of
invoked expressions. We argue that bounded islands are useful for Context Free
Grammars (CFGs) [7] as well.

The key difference between PEGs and CFGs is that CFGs may return ambigu-
ous results whereas PEGs cannot. Implementing an island grammar as a CFG
may lead to ambiguous results even though only one of the results is desired. The
undesired, remaining results are present only because of vaguely-defined water.
This is problematic since it is hard to decide which of the results is the correct
one. Bounded seas eliminate ambiguities by adopting a more precise definition
of water.

76 J. Kurš, M. Lungu, and O. Nierstrasz

Generalized LL Parsing [8,9] can handle any CFG, allows all the choices of
CFGs to be explored in parallel, and, in case of ambiguity returns all the possible
results. Bounded seas can be implemented in a GLL parser because their top-
down nature allows for a stack of parsing expressions and they support syntactic
predicates used in a boundary.

5.4 Terminal Expressions in NEXT

Let us consider the case when NEXT returns a set of terminal expressions.
In that case the NEXT function behaves similarly to the FOLLOW function
from LL parsing theory [10,11,12]. If ei ∈ NEXT(e) is a terminal symbol we
avoid the problems with another sea in a boundary of a sea. It simplifies the
implementation of bounded seas. On the other hand, the first terminal is only
an approximation of the following expression and it does not provide enough
precision.

To illustrate, let us return to the grammar from Listing 1.7. Suppose that
NEXT (class), instead of returning a set of parsing expressions, returns a

set of first terminals { ’class’ , ’struct’ , ’public’ }. If there are other

elements in the input that start with ’public’ (e.g., ‘public int i = 0.’), they

are indistinguishable from the mainMethod from the point of view of the NEXT
function.

5.5 Limitations

To compute NEXT (e1) in a sequence e1e2 we need to know the e2. Yet in some
cases, e.g., in monadic parser combinator [3] libraries, the right-hand-side of a
sequence is a closure such as:

p1 >>= \\ result -> p2

This means that e2 is unknown until the result of e1 is known. In case e1

is a bounded sea, the result of e1 cannot be computed before we know e2 .
Therefore our approach is only applicable if we can compute the e2 in a

sequence e1e2 before parsing the e1. This prevents our solution from being used
in some libraries such as the monadic libraries mentioned earlier.

This also limits (but does not forbid) use in context-sensitive grammars, where
e2 depends on a result of e1. The context sensitive rules such as e1e2e3 where e3
depends on a result of e1 and e2 is a bounded sea are allowed. Because we use
a stack and we compute NEXT during parsing, e3 can be computed when e2
starts the parsing.

Bounded seas do not allow for context-sensitive dependencies between an
island and its border with one exception. When a sea is bounded by another
sea, we disable water if another water is already invoked at the same position.

Bounded Seas 77

6 Related Work

Noise Skipping Parsing. GLR* is a noise-skipping parsing algorithm for context-
free grammars able to parse any input sentence by ignoring unrecognizable parts
of the sentence [13]. The parser nondeterministically skips some words in a sen-
tence and returns the parse with fewest skipped words. The parser is a modifi-
cation of Generalized LR (Tomita) parsing algorithm [14].

The GLR* application domain is parsing of spontaneous speech. Contrary to
the bounded seas presented in this work, GLR* itself decides what is a noise
(water in our case) and where it is. In case of bounded seas the positions of a
noise (water) are explicitly defined.

Fuzzy Parsing. The term fuzzy parser has been coined by Sniff [15], a commercial
C++ IDE, that uses a hand-made top down parser. Sniff can process incomplete
programs or programs with errors by focusing on symbol declarations (classes,
members, functions, variables) and ignoring function bodies. In linguistics or
natural language processing [16], the notion of fuzzy parsing corresponds to an
algorithm that recognizes fuzzy languages.

The semi-formal definition of a fuzzy parser was introduced by Koppler [17].
Fuzzy parsers recognize only parts of the language by means of an unstructured
set of rules. Compared with whole-language parsers, a fuzzy parser remains idle
until its scanner encounters an anchor in the input or reaches the end of the
input. Thereupon the parser behaves as a normal parser. Contrary to bounded
seas, the fuzzy parsers represent a rather lexical approach, since they do not take
a context-free structure into the account.

Island Grammars. Island grammars were suggested by Moonen in 2001 [1] as a
method of semi-parsing to deal with irregularities in the artifacts that are typical
for the reverse engineering domain. The idea of Moonen is based on a special
syntactic rule called water that can accept any input. Water is annotated with
a special keyword avoid that will ensure that water will be accepted only if
there is no other rule that can be applied.

Contrary to Moonen, we propose boundaries (based on the NEXT function)
that limit the scope in which water can be applied. Because each island has a
different boundary, our solution does not use the single water rule; instead our
water is tailored to each particular island.

Skeleton Grammars. Skeleton grammars [18] address the issue of false posi-
tives and false negatives when performing tolerant parsing by infering a tolerant
(skeleton) grammar from a precise baseline grammar.

Our approach tackles the same problem as skeleton grammars: improving the
precision of island grammars. They both maintain the composability property
and both can be automated. The skeleton grammars use the standard first fol-
low sets known from standard parsing theory [10,11,12] for synchronization (in
similar way as we use a boundary). Contrary to skeleton grammars, bounded
seas do not require a baseline grammar. Instead, bounded seas have to use a

78 J. Kurš, M. Lungu, and O. Nierstrasz

NEXT set (returning set of expressions instead of set of tokens). Only this way
can they achieve the required precision.

7 Conclusion

In this paper we presented bounded seas — composable, reusable, robust and
easy to use islands. Contrary to traditional approach of island parsing, bounded
seas do compute the scope where water can consume the input. We extended
the semantics of PEGs to implement useful and practical bounded seas. The
computation of a boundary is done by NEXT function, which inspired by the
follow function from a standard parsing theory. The automation of the process
that creates the bounded sea ensures that the bounded seas are easy to use
and are not error-prone. The bounded seas presented in this work are context-
sensitive.

As a validation of bounded seas composability and reusability we provide an
implementation of bounded sea as a parser combinator in a PetitParser frame-
work.

Acknowledgments. We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Agile Software Assessment”
(SNSF project No. 200020-144126/1, Jan 1, 2013 - Dec. 30, 2015).

We also thank CHOOSE, the special interest group for Object-Oriented Sys-
tems and Environments of the Swiss Informatics Society, for its financial contri-
bution to the presentation of this paper.

References

1. Moonen, L.: Generating robust parsers using island grammars. In: Burd, E.,
Aiken, P., Koschke, R. (eds.) Proceedings Eight Working Conference on Re-
verse Engineering (WCRE 2001), pp. 13–22. IEEE Computer Society (2001),
doi:doi:10.1109/WCRE.2001.957806

2. Renggli, L., Ducasse, S., Ĝırba, T., Nierstrasz, O.: Practical dynamic grammars
for dynamic languages. In: 4th Workshop on Dynamic Languages and Applications
(DYLA 2010), Malaga, Spain (2010)

3. Hutton, G., Meijer, E.: Monadic parser combinators, Tech. Rep. NOTTCS-TR-96-
4, Department of Computer Science, University of Nottingham (1996)

4. Frost, R., Launchbury, J.: Constructing natural language interpreters
in a lazy functional language. Comput. J. 32(2), 108–121 (1989),
doi:doi:10.1093/comjnl/32.2.108

5. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation.
In: POPL 2004: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 111–122. ACM, New York (2004),
doi:10.1145/964001.964011

6. Nierstrasz, O., Ducasse, S., Ĝırba, T.: The story of Moose: an agile reengi-
neering environment. In: Proceedings of the European Software Engineer-
ing Conference (ESEC/FSE 2005), pp. 1–10. ACM Press, New York (2005),
doi:10.1145/1095430.1081707 (invited paper)

Bounded Seas 79

7. Chomsky, N.: Three models for the description of language. IRE Transactions on
Information Theory 2, 113–124 (1956),
http://www.chomsky.info/articles/195609--.pdf

8. Scott, E., Johnstone, A.: Gll parsing. Electron. Notes Theor. Comput. Sci. 253(7),
177–189 (2010), doi:10.1016/j.entcs.2010.08.041

9. Grune, D., Jacobs, C.J.: Generalized LL Parsing. In: Parsing Techniques — A
Practical Guide, vol. 1, ch. 11.2, pp. 391–398. Springer (2008)

10. Grune, D., Jacobs, C.J.: Deterministic Top-Down Parsing. In: Parsing Techniques
— A Practical Guide, vol. 1, ch. 8, pp. 235–361. Springer (2008)

11. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools.
Addison Wesley, Reading (1986)

12. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation and Compiling Vol-
ume I: Parsing. Prentice-Hall (1972)

13. Lavie, A., Tomita, M.: Glr* - an efficient noise-skipping parsing algorithm for
context free grammars. In: Proceedings of the Third International Workshop on
Parsing Technologies, pp. 123–134 (1993)

14. Tomita, M.: Efficient Parsing for Natural Language: A Fast Algorithm for Practical
Systems. Kluwer Academic Publishers, Norwell (1985)

15. Bischofberger, W.R.: Sniff: A pragmatic approach to a C++ programming envi-
ronment. In: C++ Conference, pp. 67–82 (1992)

16. Asveld, P.: A fuzzy approach to erroneous inputs in context-free language recogni-
tion. In: Proceedings of the Fourth International Workshop on Parsing Technolo-
gies IWPT 1995, pp. 14–25. Institute of Formal and Applied Linguistics, Charles
University (1995)

17. Koppler, R.: A systematic approach to fuzzy parsing. Software: Practice and Expe-
rience 27(6), 637–649 (1997), doi:10.1002/(SICI)1097-024X(199706)27:6<637:AID-
SPE99>3.0.CO;2-3

18. Klusener, S., Lämmel, R.: Deriving tolerant grammars from a base-line
grammar. In: Proceedings of the International Conference on Software
Maintenance (ICSM 2003), pp. 179–188. IEEE Computer Society (2003),
doi:10.1109/ICSM.2003.1235420

A Parsing Expression Grammars

PEGs were first introduced by Ford [5] and the formalism is closely related to
top-down parsing. PEGs are syntactically similar to CFGs [7], but they have
different semantics. The main semantic difference is that the choice operator in
PEG is ordered— it selects the first successful match—while the choice operator
in CFG is ambiguous. PEGs are composed using the operators in Table 5.

PEG Formalization

Definition 7 (PEG Definition). We use the standard definition as suggested
by Ford [5]. A parsing expression grammar (PEG) is a 4-tuple G = {N, T, R,
es}, where N is a set of nonterminals, T is a set of terminals, R is a set of rules,
es is a start expression. N ∩T = ∅. Each r ∈ R is a pair (A, e), which we write A
← e, where A ∈ N, e is a parsing expression. The parsing expressions are defined
inductively, if e, e1 and e2 are parsing expressions, then so is:

http://www.chomsky.info/articles/195609--.pdf

80 J. Kurš, M. Lungu, and O. Nierstrasz

Table 5. Operators for constructing parsing expressions

Operator Description

′ ′ Literal string
[] Character class
· Any character
(e) Grouping
e? Optional
e∗ Zero-or-more repetitions of e
e+ One-or-more repetitions of e
&e And-predicate, does not consume input
!e Not-predicate, does not consume input
e1 e2 Sequence
e1 / e2 Prioritized choice

– ε, the empty string
– a, any terminal where a ∈ T
– A, any nonterminal where A ∈ N
– e1e2, a sequence
– e1/e2, a prioritized choice
– e∗, zero or more repetitions
– !e a not-predicate

The following operators are syntactic sugar:

– Any Character: · is character class containing all letters
– Character class: [a1, a2, ...an] character class is a1/a2/../an
– Optional expression: e? is ed/ε, where ed is desugaring of e
– One-or-more repetitions: e+ is eded∗, where ed is desugaring of e
– And-predicate: &e is !(!ed), where ed is desugaring of e

We will use text in quotation marks to refer to terminals e.g., ’a’ , ’b’ ,

’class’ . We will use identifiers A , B , C , class or method to refer to
nonterminals. We will use e or indexed e : e1 , e2 , ... to refer to parsing
expressions.

Definition 8 (PEG Semantics). To formalize the syntactic meaning of a
grammar G = {N, T, R, es}, we define a relation ⇒G from pairs of the form
(e, x) to the output o, where e is a parsing expression, x ∈ T ∗ is an input string
to be recognized and o ∈ T ∗ ∪ {f} indicates the result of a recognition attempt.
The distinguished symbol f �∈ T indicates failure. For ((e, x), o) ∈⇒G we will
write (e, x) ⇒ o.

Empty:
x ∈ T ∗

(ε, x) ⇒ ε

Terminal (success case):
a ∈ T, x ∈ T ∗

(a, ax) ⇒ a

Bounded Seas 81

Terminal (failure case):
a �= b, (a, ε) ⇒ f

(a, bx) ⇒ f

Nonterminal:
A ← e ∈ R (e, x) ⇒ o

(A, x) ⇒ o

Sequence (success case):

(e1, x1x2y) ⇒ x1

(e2, x2y) ⇒ x2

(e1e2, x1x2y) ⇒ x1x2

Sequence (failure case 1):
(e1, x) ⇒ f

(e1e2, x) ⇒ f

Sequence (failure case 2):
(e1, x1y) ⇒ x1 (e2, y) ⇒ f

(e1e2, x1y) ⇒ f

Alternation (case 1):
(e1, xy) ⇒ x

(e1/e2, x) ⇒ x

Alternation (case 2):
(e1, x) ⇒ f (e2, x) ⇒ o

(e1/e2, x) ⇒ o

Repetitions (repetition case):

(e, x1x2y) ⇒ x1

(e∗, x2) ⇒ x2

(e∗, x1x2y) ⇒ x1x2

Repetitions (termination case):
(e, x) ⇒ f

(e∗, x) ⇒ ε

Not predicate (case 1):
(e, xy) ⇒ x

(!e, xy) ⇒ f

Not predicate (case 2):
(e, xy) ⇒ f

(!e, xy) ⇒ ε

Eco: A Language Composition Editor

Lukas Diekmann and Laurence Tratt

Software Development Team, Informatics, King’s College London
http://lukasdiekmann.com/, http://tratt.net/laurie/

Abstract. Language composition editors have traditionally fallen into
two extremes: traditional parsing, which is inflexible or ambiguous; or
syntax directed editing, which programmers dislike. In this paper we
extend an incremental parser to create an approach which bridges the
two extremes: our prototype editor ‘feels’ like a normal text editor, but
the user always operates on a valid tree as in a syntax directed editor.
This allows us to compose arbitrary syntaxes while still enabling IDE-like
features such as name binding analysis.

1 Introduction

At its most flexible, language composition gives programmers the ability to use
multiple programming languages within a single file (e.g. in this paper we com-
pose HTML, Python, and SQL). Editing composed programs has previously
required choosing between two extremes: parsing-based approaches are familiar
to programmers, but are either inflexible or prone to ambiguity; whereas SDEs
(Syntax Directed Editors) have neither problem, but are insufferably awkward
to use [13]. Recent work (e.g. [12,18]) has somewhat ameliorated the limitations
of both extremes, but the divide between them, and the inevitable trade-offs,
have long been assumed fundamental.

In this paper, we present a fundamentally new approach to editing composed
programs which aims for the best of both worlds: it has the ‘feel’ of parsing-based
approaches with the generality of syntax directed editors. The core of our ap-
proach is to extend an incremental parser with the new notion of language boxes.1

Incremental parsers parse text as the user types, continuously updating a parse
tree. In our approach, when editing a program in language X , one can insert at
any place a language box for language Y and edit inside the box (in language Y)
or outside the box (in language X). Each box has a separate incremental parser
that maintains its own parse tree. Language boxes thus allow arbitrary syntaxes
to be composed together without the loss of flexibility or ambiguity problems
of traditional text-based approaches. Language boxes may contain any number
of language boxes, and can be nested arbitrarily deep. Unlike syntax directed
editors, our approach provides a user experience that is virtually identical to a
traditional text editor. If only textual languages are used, the only noticeable

1 Our ‘language boxes’ should not be confused with the modular language definition
concept of the same name from [19].

B. Combemale et al. (Eds.): SLE 2014, LNCS 8706, pp. 82–101, 2014.
c© Springer International Publishing Switzerland 2014

http://lukasdiekmann.com/
http://tratt.net/laurie/

Eco: A Language Composition Editor 83

difference while editing – and a small one at that – is when entering or exiting
a language box. The only significant difference from traditional editors is that
Eco has to save files out as a tree structure rather than as a traditional source
file to avoid (re)parsing problems.

Since most programming is currently done in text, our main focus has been on
finding a good solution to the long-standing problem of editing textual programs.
However, language boxes are not restricted to textual languages: each language
box has its own editor which need not be based on parsing – or text – at all.

Our approach is embodied in a prototype language composition editor Eco.
Eco allows users to define composed languages and edit programs against those
composed languages. As well as extending an incremental parser with language
boxes, we have also added the ability to parse indentation based languages,
and to incrementally create ASTs (Abstract Syntax Trees) from parse trees
(allowing to easily implement a simple name binding analysis). The version of
Eco described in this paper can be downloaded from:

http://soft-dev.org/pubs/files/eco/

This paper’s contributions are as follows:

1. We extend an incremental parser with language boxes.
2. We show that the resulting editor is useful for textual language composition.
3. We extend the parser to incrementally parse indentation-based languages.
4. We extend the parser to incrementally create ASTs as well as parse trees.
5. We show that language boxes allow the composition of textual and non-

textual languages.

An earlier version of this work, with a simple version of language boxes only,
was published in workshop form [6]. This paper extends the concept substan-
tially, including new techniques such as incremental parsing of indentation based
languages, and incremental ASTs.

This paper is structured as follows. We first introduce the paper’s running
example (Section 2) before exploring the existing extremes in language composi-
tion editing (Section 3). We then introduce Wagner’s incremental parser and our
implementation of it (Section 5) before introducing language boxes (Section 6).
We then extend the incremental parser to parse indentation-based languages
(Section 7) and to incrementally create ASTs (Section 8). Finally, we briefly
explain how Eco supports name binding and non-textual languages (Section 9).

2 Running Example

We use as our running example a composition of HTML, Python, and SQL, lead-
ing to the construction of a flexible system equivalent to ‘pre-baked languages’
like PHP. In essence, we show how a user can take modular languages, compose
them, and use the result in Eco as shown in Figure 1. We outline how this exam-
ple composition is defined and used from the perspective of a ‘normal’ end-user;
the rest of the paper is devoted to explaining the techniques which make this use
case possible, as well as explaining how important corner cases are dealt with.

http://soft-dev.org/pubs/files/eco/

84 L. Diekmann and L. Tratt

❶

❷

❸

H
T
M
L

P
y
th
o
n

S
Q
L

Fig. 1. Eco editing a composed program. An outer HTML document contains several
Python language boxes. Some of the Python language boxes themselves contain SQL
language boxes. Some specific features are as follows. ❶ A highlighted (SQL) language
box (highlighted because the cursor is in it). ❷ An unhighlighted (SQL) language
box (by default Eco only highlights the language box the cursor is in, though users can
choose to highlight all boxes). ❸ An (inner) HTML language box nested inside Python.

When an end-user creates a new file in Eco, they are asked to specify which
language that file will be written in. Let us assume that they choose the composed
language named (unimaginatively) HTML+Python+SQL which composes the
modular HTML, Python, and SQL languages within Eco. Although users can
write whatever code they want in Eco, this composed language has the follow-
ing syntactic constraints: the outer language box must be HTML; in the outer
HTML language box, Python language boxes can be inserted wherever HTML
elements are valid (i.e. not inside HTML tags); SQL language boxes can be in-
serted anywhere a Python statement is valid; and HTML language boxes can
be inserted anywhere a Python statement is valid (but one can not nest Python
inside such an inner HTML language box). Each language uses our incremental
parser-based editor.

From the user’s perspective, their typical workflow for a blank document is
to start typing HTML exactly as they would in any other editor: they can add,
alter, remove, or copy and paste text without restriction. The HTML is contin-
ually parsed by the outer language box’s incremental parser and a parse tree
constructed and updated appropriately within the language box. Syntax errors
are highlighted as the user types with red squiggles. The HTML grammar is a
standard BNF grammar which specifies where Python+SQL language boxes are
syntactically valid by referencing a separate, modular Python grammar. When
the user wishes to insert Python code, they press Ctrl + L , which opens a menu

Eco: A Language Composition Editor 85

Fig. 2. Inserting a language box opens up a menu of the languages that Eco knows
about. Languages which Eco knows are valid in the current context are highlighted in
bold to help guide the user.

of available languages (see Figure 2); they then select Python+SQL from the
languages listed and in so doing insert a Python language box into the HTML
they had been typing. The Python+SQL language box can appear at any point
in the text; however, until it is put into a place consistent with the HTML
grammar’s reference to the Python+SQL grammar, the language box will be
highlighted as a syntax error. Note that this does not affect the user’s ability to
edit the text inside or outside the box, and the editing experience retains the
feel of a normal text editor. As Figure 3 shows, Eco happily tolerates syntactic
errors – including language boxes in positions which are syntactically invalid –
in multiple places.

Typing inside the Python+SQL language box makes it visibly grow on screen
to encompass its contents. Language boxes can be thought of as being similar to
the quoting mechanism in traditional text-based approaches which use brackets
such as � �; unlike text-based brackets, language boxes can never conflict with the
text contained within them. Users can leave a language box by clicking outside
it, using the cursor keys, or pressing Ctrl + Shift + L . Within the parse tree, the
language box is represented by a token whose type is Python+SQL and whose
value is irrelevant to the incremental parser. As this may suggest, conceptually
the top-level language of the file (HTML in this case) is a language box itself.
Each language box has its own editor, which in this example means each has an
incremental parser.

At the end of the editing process, assuming that the user has a file with no
syntax errors, they will be left with a parse tree with multiple nested language
boxes inside it as in Figure 1. Put another way, the user will have entered a

86 L. Diekmann and L. Tratt

Fig. 3. Editing a file with multiple syntax errors. Lines 6, 8 and 11 contain syntax errors
in the traditional sense, and are indicated with horizontal red squiggles. A different kind
of syntax error has occurred on line 4: the SQL language box is invalid in its current
position (indicated by a vertical squiggle).

composed program with no restrictions on where language boxes can be placed;
with no requirement to pick a bracketing mechanism which may conflict with
nested languages; with no potential for ambiguity; and without sacrificing the
ability to edit arbitrary portions of text (even those which happen to span multi-
ple branches of a parse tree, or even those which span different language boxes).

Eco saves files in a custom tree format so that, no matter what programwas in-
put by the user, it can be reloaded later. In the case of the HTML+Python+SQL
composition, composed programs can be exported to a Python file and then exe-
cuted. Outer HTML fragments are translated to print statements; SQL language
boxes to SQL API calls (with their database connection being to whatever vari-
able a call to sqlite3.connect was assigned to); and inner HTML fragments
to strings. All of the syntactically correct programs in this paper can thus be
run as real programs. For the avoidance of doubt, other syntactic compositions,
and other execution models of composed programs are possible (see e.g. [1]) and
there is no requirement for Eco compositions to be savable as text, nor executed.

3 Parsing and Syntax Directed Editing

In this section we briefly explain the two extremes that bound the overall design
space that we work within.

Eco: A Language Composition Editor 87

3.1 Parsing-Based Approaches

While there are many possible approaches to parsing text, three approaches can
be used as exemplars of the major categories: LR, generalised, and PEG parsing.

Due to Yacc’s predominance, LR-compatible grammars are commonly used to
represent programming languages. Indeed, many programming language gram-
mars are deliberately designed to fit within LR parsing’s restrictions. Unfortu-
nately, composing two LR grammars does not, in general, result in a valid LR
grammar [17]. One partial solution to this is embodied in Copper which, by
making the lexer lazy and context-sensitive, is able to allow many compositions
which would not normally seem possible in an (LA)LR parser [21]. However, this
requires nested languages to be delineated by special markers, which is visually
obtrusive and prevents many reasonable compositions.

Generalised parsing approaches such as [24] can accept any CFG (Context
Free Grammar), including inherently ambiguous grammars. Ambiguity and pro-
gramming language tools are unhappy bedfellows, since the latter can hardly ask
of a user “which parse of many did you intend?” Unfortunately, ambiguity, once
allowed through the door, is impossible to eject. Two unambiguous grammars,
when composed, may become ambiguous. However, we know that the only way
to determine CFG ambiguity is to test every possible input; since most CFGs
describe infinite languages, determining ambiguity is undecidable [4]. Although
heuristics for detecting ambiguity exist, all existing approaches fail to detect at
least some ambiguous grammars [23]. Furthermore, scannerless parsers – those
which intertwine tokenization and parsing, and which are the most obviously
suited for language composition – introduce an additional form of ambiguity
due to the longest match problem [20].

PEGs (Parsing Expression Grammars) are a modern update of a classic pars-
ing approach [8]. PEGs have no relation to CFGs. They are closed under compo-
sition (unlike LR grammars) and are inherently unambiguous (unlike generalised
parsing approaches). Both properties are the result of the ordered choice operator
e1 / e2 which means “try e1 first; if it succeeds, the ordered choice immediately
succeeds and completes. If and only if e1 fails should e2 be tried.” However, this
operator means that simple compositions such as S ::= a / ab fail to work as
expected, because if the LHS matches a, the RHS is never tried, even if it could
have matched the full input sequence. To make matters worse, in general such
problems can not be determined statically, and only manifest when inputs parse
in unexpected ways.

In summary, when it comes to language composition, parsing approaches are
either too limited (LR parsing), allow ambiguity (generalised parsing), or are
hard to reason about (PEG parsing). While approaches such as Copper [21] and
Spoofax [12] have nonetheless been used for some impressive real-world examples,
we believe that such issues might limit uptake.

3.2 Syntax Directed Editing

SDE works very differently to traditional parsing approaches, always operating
on an AST. AST elements are instantiated as templates with holes, which are

88 L. Diekmann and L. Tratt

then filled in by the user. This means that programs being edited are always
syntactically valid and unambiguous (though there may be holes with informa-
tion yet to be filled in). This side-steps the flaws of parsing-based approaches,
but because such tools require constant interaction with the user to instantiate
and move between AST elements, the SDE systems of the 70s and 80s (e.g. [22])
were rejected by programmers as restrictive and clumsy [13].

More recently, the MPS editor has relaxed the SDE idiom, making the entering
of text somewhat more akin to a normal text editor [18]. In essence, small tree
rewritings are continually performed as the user types, so that typing 2 , Space ,
+ , Space , 3 transparently rewrites the 2 node to be the LHS of the + node
before placing the cursor in the empty RHS box of the + node where 3 can then be
entered in. This lowers, though doesn’t remove, one of the barriers which caused
earlier SDEs to disappear from view. Language authors have to manually specify
all such rewritings, a tedious task. Furthermore, the rewritings only affect the
entry of new text. Editing a program still feels very different from a normal
text editor. For example deleting nodes requires great care and special actions.
Similarly, only whole nodes can be selected from the AST. For example, one can
not copy 2 + from the expression 2 + 3 on-screen.

Put another way, MPS is sometimes able to hide that it is a SDE tool, but
never for very long. The initial learning curve is therefore relatively steep and
unpalatable to many programmers.

4 The Outlines of a New Approach

Our starting hypothesis is that language composition needs an editing approach
which can marry SDE’s flexible and reliable approach to constructing ASTs with
the ‘feel’ of text editing. In part due to MPS’s gradual evolution from a pure
SDE to an approach which partially resembles parsing, we decided to start from
a parsing perspective and try and move towards SDE. Doing so implicitly rules
out any approach which can accept ambiguous grammars. Since the largest class
of unambiguous grammars we can precisely define is the LR(k) grammars [14]
they were the obvious starting point.2 In the following sections, we show how
one can take an incremental parser which accepts LR grammars and extend it
with the notion of language boxes.

5 Incremental Parsing in Eco

Traditional parsing is a batch process: an entire file is fed through a parser and
a parse tree created. Incremental parsing, in contrast, is an online process: it
parses text as the user types and continually updates a parse tree. A number
of incremental parsing algorithms were published from the late 70s [9] to the
late 90s, gradually improving efficiency and flexibility [16,7]. The last major
work in this area was by Wagner [25] who defined a number of incremental

2 Though note there are unambiguous grammars that are not contained within LR(k).

Eco: A Language Composition Editor 89

parsing algorithms. We use his LR-based incremental parser which has two major
benefits: it handles the full class of LR(k) grammars; and has formal guarantees
that the algorithm is optimal. In this section, we give a brief overview of our
implementation of Wagner’s algorithm.

As with other parsing approaches, our implementation consists of both an
incremental lexer and incremental parser. We represent both lexer and grammar
with notations that are roughly similar to Yacc. Lexer rules are considered in the
order in which they are defined to avoid longest-match ambiguities. Grammars
are defined in BNF notation.

Both the lexer and the parser operate on a parse tree. Parse tree nodes are
either non-terminals (representing production rules in the grammar) or tokens
(representing terminal symbols). Non-terminals are immutable and have zero
or more ordered child nodes. Tokens have an immutable type (e.g. ‘int’) and a
mutable value (e.g. ‘3’). The minimal parse tree consists of three special nodes: a
Root non-terminal; and BOS (Beginning of Stream) and EOS (End of Stream)
terminals (both children of Root). All nodes created from user input are (directly
or indirectly) children of Root and are contained between BOS and EOS.

When the user types, the incremental lexer first either creates, or updates,
tokens in the parse tree. The lexer considers where the cursor is in the tree
(i.e. where the user is typing) and uses look-ahead knowledge stored in the
surrounding tokens to work out the affected area of the change. Newly created
tokens are then merged back into the tree. In the simple case where a token’s
value, but not its type, was changed, no further action is needed. In all other
cases, the incremental parser is then run to update the parse tree correctly. All
nodes on the path from the changed token to the root of the tree are marked
as changed. The incremental parser then starts at the beginning of the tree and
tries to reorder the parse tree. Assuming the user’s input is syntactically valid,
non-terminals are created or removed, as appropriate. The parser tries to reuse
non-changed sub-trees as is. Since non-terminals are immutable, sub-trees which
can’t be reused must be recreated from scratch or cloned from existing nodes.

Syntactically incomplete programs lead to temporarily incorrect parse trees.
In such cases, the incremental parser typically attaches tokens to a single par-
ent. When the user eventually creates a syntactically valid program, the tree is
rewritten (an example for this can be seen in Figure 4).

5.1 Whitespace

In most programming languages, whitespace (which, from this paper’s perspec-
tive, also includes comments) is only important inasmuch as it separates other
tokens. Traditional lexers therefore consume and discard whitespace. This is un-
acceptable in our approach, as we need to maintain whitespace in the parse tree
to accurately render the user’s input (see Section 6.3). We therefore adopt, with
small variations, one of Wagner’s suggestions for whitespace handling.

When an Eco grammar sets the %implicit whitespace=true flag, the gram-
mar is automatically mutated such that references to a production rule ws are
inserted before the first, and after every, terminal in the grammar. Although the

90 L. Diekmann and L. Tratt

❶ ❷

Fig. 4. Parse trees in the process of editing. Non-terminals are represented by ellipses
with a name. Tokens are represented by ellipses with a horizontal line; the token’s type
is above the line; its value below the line. ❶ A parse tree in the process of editing
and currently syntactically incorrect. The incremental lexer is able to tell that </htm

can not be part of the previous token, but is currently unsure what the type of this
token should be. The parser is thus not able to order the tokens into a correct tree.
❷ After further editing, the input is syntactically correct. The incremental lexer has
been able to determine the type of the </html> token and the incremental parser has
been able to update the parse tree, inserting appropriate non-terminals as specified by
the grammar.

user can define ws to whatever they want, a common example of what is added
to the grammar and lexer is as follows:

ws ::= TABSSPACES
|

TABSSPACES : [\t]+

Note that the user need not handle newlines as Eco handles those separately
(see Sections 6.3 and 7).

Although the resulting parse tree records ws nodes (which are used for ren-
dering and for ensuring cursor behaviour works as expected), they soon clutter
visualizations of parse trees to the point that one can no longer see anything
else. In the rest of this paper, we therefore elide ws nodes from all parse trees.

6 Language Boxes

Language boxes allow users to embed one language inside another (see Section 2).
Language boxes have a type (e.g. HTML), an associated editor (e.g. our extended
incremental parser), and a value (e.g. a parse tree). By design, language boxes
only consider their own contents ignoring parent and sibling language boxes.
We therefore define the notion of the CST (Concrete Syntax Tree), which is a
language box agnostic way of viewing the user’s input. Different language box
editors may have different internal tree formats, but each exposes a consistent
interface to the CST. Put another way, the CST is a global tree which integrates
together the internal concrete syntax trees of individual language boxes.

Eco: A Language Composition Editor 91

In the rest of this section, we examine the characteristics, and consequences,
of language boxes.

6.1 Language Modularity

To make language boxes practical, languages need to be defined modularly. Eco
allows users to define as many languages as they wish. Languages are defined
modularly, and may have several sub-components (e.g. grammar, name binding
rules, syntax highlighting). For example, a languageL which uses the incremental
parser editor will contain a BNF grammar which can reference another language
M by adding a symbol <M> to a production rule.

In most cases, we believe that users will want to avoid hard-coding references
to different languages into ‘pure’ grammars. We therefore allow grammars to be
cloned and (during initialisation only) mutated automatically. The most common
mutation is to add a new alternative to a recently loaded grammar. For example,
if we have a reference to python and sql languages, we can create a reference
from Python to SQL by executing python.add alternative("atom", sql).

6.2 Language Boxes and Incremental Parsing

Language boxes fit naturally with the incremental parser because we use a prop-
erty of CFGs which is rarely of consequence to batch-orientated parsers: parsers
only need to know the type of a token and not its value. In our incremental
parser approach, nested language boxes are therefore treated as tokens. When
the user inserts an SQL language box into Python code, a new node of type SQL
is inserted into the parse tree and treated as any other token. From the perspec-
tive of the incremental parser for the Python code, the language box’s value is
irrelevant as is the fact that the language box’s value is mutable. Language boxes
can appear in any part of the text, though, in our example, an SQL language
box is only syntactically valid in places where the Python grammar makes a ref-
erence to the SQL grammar. Nested language boxes which use the incremental
parser have their own complete parse trees, as can be seen in Figure 5.

6.3 Impact on Rendering

While language boxes do not have any impact on the incremental parser, they
do have a big effect on other aspects of Eco. One obvious change is that they
break the traditional notion that tokens are n characters wide and 1 line high.
Language boxes can be arbitrarily wide, arbitrarily high, and need not contain
text at all. Eco cannot simply store text ‘flat’ in memory and render it using
traditional text editing techniques. Instead, it must render the CST onto screen.
However, efficiency is a concern. Even a small 19KiB Java file, for example, leads
to a parse tree with almost 19,000 nodes. Rendering large numbers of nodes soon
becomes unbearably time-consuming.

To avoid this problem, Eco only renders the nodes which are currently visible
on screen. Eco treats newlines in the user’s input specially and uses them to

92 L. Diekmann and L. Tratt

Fig. 5. An elided example of an SQL language box nested within an outer Python
language box. From the perspective of the incremental parser, the tree stops at the
SQL token. However, we can clearly see in the above figure that the SQL language box
has its own parse tree, which thus forms part of the wider CST.

speed up rendering. Similar to Harrison [10], Eco maintains a list of all lines
in the user’s input; whenever the user creates a newline, a new entry is added.
Each entry stores a reference to the first CST node in that line and the line’s
height. Entries are deleted and updated as necessary. Scanning this list allows
Eco to quickly determine which chunks of the CST need to be rendered, and
which do not. Even in our simple implementation, this approach scales to tens
of thousands LoC without noticeable lag in rendering.

6.4 Cursor Behaviour

In a normal editor powered by an incremental parser, cursor behaviour can be
implemented as in any other editor and stored as a (line#, column#) pair. We
initially took this approach for Eco, but it has an unacceptable corner-case:
nested language boxes create ‘dead zones’ where it is impossible to place the
cursor and to enter further text.

Our solution is simple: Eco’s cursor is relative to nodes in the CST. In textual
languages, the cursor is a pair (node, offset) where node is a reference to a token
and offset is a character offset into that token. In normal usage, the arrow keys
work as expected. For example, when the cursor is part way through a token,

simply increments offset ; when offset reaches the end of a token, sets
node to the next token in the parse tree and offset to 1. / is slightly more
complex: Eco scans from the beginning of the previous / next line, summing up
the width of tokens until a match for the current x coordinate is found.

At the end of a nested language box, pressing sets node to the next token
after the language box while setting offset to 1 as described above. This means
that if two language boxes end at the same point on screen, Eco will seemingly
skip over the outer of the two boxes, making it impossible to insert text at that
point. If instead the user presses Ctrl + Shift + L , the cursor will be set to the

Eco: A Language Composition Editor 93

❹

❸

❷

❶

Fig. 6. Eco’s cursor behaviour in a program nesting SQL inside Python inside HTML.
The cursor is stored as a (node, offset) pair. ❶ In normal program editing, the cursor
behaves exactly like any other editor. Typing with the cursor at this position will enter
text into the SQL language box right after the table token. ❷ After pressing Ctrl + Shift

+ L , the cursor attaches itself to the current node’s language box (<SQL>). Typing
with the cursor at this position will insert text into the Python+SQL language box
between the tokens <SQL> and EOS. ❸ After pressing Ctrl + Shift + L again, typing will
insert text into the HTML outer language box (after the Python+SQL language box,
and before the </body> token). ❹ Assuming the cursor was as in position ❶ and the
user pressed → , the cursor will be moved to this position.

current language box token itself instead of the first token after the language box
(since language boxes are tokens themselves, this adds no complexity to Eco).
When the user starts typing, this naturally creates a token in the outer language
box. In this way, Eco allows the user to edit text at any point in a program, even
in seemingly ‘dead’ zones (see Figure 6 for a diagrammatic representation).

6.5 Copy and Paste

Eco allows users to select any arbitrary fragment of a program, copy it, and
paste it in elsewhere. Unlike an SDE, Eco does not force selections to respect
the underlying parse tree in any way. Users can also select whole or partial
language boxes, and can select across language boxes. Eco currently handles
all selections by converting them into ‘flat’ text and reparsing them when they
are pasted in. This seems to us a reasonable backup solution since it is hard to
imagine what a user might expect to see when a partial language box is pasted in.

94 L. Diekmann and L. Tratt

However, we suspect that some special-cases would be better handled separately:
for example, if a user selects an entire language box, it would be reasonable to
copy its underlying tree and paste it in without modification.

7 Indentation-Based Languages

Indentation-based languages such as Python are increasingly common, but re-
quire more support than a traditional lexer and parser offer. Augmenting batch-
orientated approaches with such support is relatively simple, but, to the best of
our knowledge, no-one has successfully augmented an incremental parser before.
In this section we therefore describe how we have extended an incremental parser
to deal with indentation-based languages.

The basic problem can be seen in this simplified Python grammar fragment:

if ::= IF expr : suite
suite ::= NEWLINE INDENT stmts DEDENT
stmts ::= stmts NEWLINE stmt

| stmt

and an example code fragment using it:

if a > 0:
a = 0

print a

We can not simply parse this text and consume all whitespace, as in most lan-
guages. Instead, line 2 should generate NEWLINE and INDENT tokens before the
a token and a DEDENT token after the 0. The process to create these tokens
must be mindful of nesting: if a while statement is nested at the end of an if,
two DEDENT tokens must be generated at the same point. Note that indentation
related tokens are solely for the parser’s benefit and do not affect rendering.
Whitespace is recorded as per Section 5.1 and rendered as normal.

7.1 Incrementally Handling Indentation

Eco lexers that set %indentation=true use our approach to incrementally han-
dling indentation. We insert an additional phase between incremental lexing and
parsing which looks at changed lines and inserts or removes indentation related
tokens as appropriate. To make this possible, we extend the information stored
about each line in Eco (see Section 6.3) to store the leading whitespace level
(i.e. the number of space characters) and the indentation level. These notions
are separated, because the same indentation level in two disconnected parts of a
file may relate to different leading whitespace levels (e.g. in one if statement, 2
space characters may constitute an indentation level; in another, 4 space char-
acters). For example, the following is valid Python:

if x:
y

if a:
b

Eco: A Language Composition Editor 95

1 def calc_indentl(l):
2 if prev(l) == None:
3 l.indentl = 0
4 elif prev(l).wsl == l.wsl:
5 l.indentl = prev(l).indentl
6 elif prev(l).wsl < l.wsl:
7 l.indentl = prev(l).indentl + 1
8 else:
9 assert prev(l).wsl > l.wsl

10 prevl = prev(prev(l))
11 while prevl != None:
12 if prevl.wsl == l.wsl:
13 l.indentl = prevl.indentl
14 return
15 elif prevl.wsl < l.wsl:
16 break
17 prevl = prev(prevl)
18 mark_unbalanced(l)

Fig. 7. The indentation level calculation algorithm

However, the following fragment is unbalanced (i.e. the file’s indentation is non-
sensical) and should be flagged as a syntax error:

if x:
a

b

For the purposes of this paper, it is sufficient to consider changes to a single
line, though Eco itself generalises this to simultaneous changes on multiple lines.
When a line l is updated, there are two cases. If l’s leading whitespace level
has not changed, no further recalculations are needed. In all other cases, the
indentation level of l, and all lines that depend on it, must be recalculated;
indentation related tokens must then be added or removed to each line as needed.
Dependent lines are all non-empty lines after l up to, and including, the first line
whose leading whitespace level is less than that of l, or to the end of the file, if
no such line exists.

We can define a simple algorithm to calculate the indentation level of an
individual line l. We first define every line to have attributes wsl – its leading
whitespace level – and indentl – its indentation level. prev(l) returns the first
non-empty predecessor line of l in the file, returning None when no such line
exists. The algorithm is shown in Figure 7. There are 4 cases, the first 3 of which
are trivial, though the last is more subtle:

1. Lines 2–3: If prev(l) == None then l is the first line in the file and its
indentation level is set to 0.

2. Lines 4–5: If prev(l).wsl == l.wsl then l is part of the same block as the
previous line and should have the same indentation level.

3. Lines 6–7: If prev(l).wsl < l.wsl then l opens a new block and has an
indentation level 1 more than the preceding line.

4. Lines 9–16: If prev(l).wsl > l.wsl then either l closes a (possibly multi-
level) block or the overall file has become unbalanced. To determine this we
have to search backwards to find a line with the same leading whitespace
level as l. If we find such a line, we set l’s indentation level to that line’s level
(lines 12–14). If no such line is found (line 11), or if we encounter a line with

96 L. Diekmann and L. Tratt

a lower leading whitespace level (lines 15–16), then the file is unbalanced
and we need to mark the line as such (line 18) to force Eco to display an
error at that point in the file.

In practise, this algorithm tends to check only a small number of preceding lines
(often only 1). The worst cases (e.g. an unbalanced file where the last line is
modified and all preceding lines are checked) are O(n) (where n is the number
of lines in the file).

Each time a line has been affected by this process, we need to check whether
the indentation related tokens in the parse tree match the line’s current state.
If they do not, the tokens in the parse tree need to be updated appropriately
(i.e. the old tokens are removed and replaced). If a line is marked as unbalanced,
it requires a single UNBALANCED token; otherwise, we compare a line with its first
non-blank predecessor and calculate the correct number of INDENT / DEDENT

tokens. Once the parse tree has the correct number of tokens, we rely on the
incremental parser to reorder the tree appropriately.

8 Abstracting Syntax Trees

Eco’s CST allows it to fully render a program on-screen. Because of this, it
contains details that make analysis of the CST painful. For example, we would
like to define analyses such as the names in scope in a program (which we
can then use to highlight undefined variables, and to code complete names;
see Section 9.1) on a tree which abstracts away irrelevant detail. Eco therefore
maintains an AST which provides a simplified view of the user’s data. Different
language editors map from the CST to the AST in different ways. Since some
editors’ data may be non-abstractable, formally the AST contains a non-strict
subset of the data in the CST.

In this section, we explain how this relates to the incremental parser. Parse
trees in our approach are an extreme example of the pain of a detailed CST:
their nesting is partly dictated by the LR parser, and is often very deep; they
contain irrelevant tokens, which are necessary only for the parser or to make the
language more visually appealing to users; and child nodes are ordered and only
accessible via numeric indices. Instead, one would prefer to work with an AST,
where the tree has been flattened as much as possible, with irrelevant tokens
removed, and with child nodes unordered and addressable by name.

We first describe the simple (relatively standard) rewriting language Eco uses
to create ASTs from parse trees. We then describe the novel technique we have
developed to make AST updates incremental.

8.1 Rewriting Language

The simple rewriting language we use to create ASTs from parse trees is in the
vein of similar languages such as TXL [5] and Stratego [3]. In essence, it is a
pure functional language which takes parse trees as input and produces ASTs as

Eco: A Language Composition Editor 97

output. Each production rule in a grammar can optionally define a single rewrite
rule. AST nodes have a name, and zero or more unordered, explicitly named,
children. The AST is, in effect, dynamically typed and implicitly defined by the
rewrite rules.3

An elided example from the Python grammar is as follows:

1 print_stmt ::= PRINT {Print(stmts=[])}
2 | PRINT stmt_loop {Print(stmts=#1)}
3

4 stmt_loop ::= stmt_loop stmt {#0 + [#1]}
5 | stmt {[#0]}
6

7 stmt ::= expr {#0}
8 | ...
9

10 expr ::= VAR {Var(name=#0)}
11 | ...

AST constructors are akin to function calls. Expressions of the form #n take the
nth child from the non-terminal that results from a grammar’s production rule.
Referencing a token uses it as-is in the AST (e.g. line 10); referencing a non-
terminal uses the AST sub-tree that the non-terminal points to. For example,
Var(name=#0) means “create an AST element named Var with an edge name

which points to a VAR token” and Print(stmts=#1) means “create an AST
element named Print with an edge stmts which points to the AST constructed
from the stmt loop production rule”. A common idiom is to flatten a recursive
rule (forced on the grammar author by the very nature of LR grammars) into a
list of elements (lines 4 and 5). Note that a rewrite rule can produce more than
one AST node (e.g. line 1 produces both a Print node and an empty list node).

8.2 Incremental ASTs

All previous approaches of which we are aware either batch create ASTs from
parse trees or use attribute grammars to perform calculations as parsing is per-
formed (e.g. [2]). In this subsection, we explain how Wagner’s incremental parser
can be easily extended to incrementally create ASTs.

Our mechanism adds a new attribute ast to non-terminals in the parse tree.
Every ast attribute references a corresponding AST node. The AST in turn
uses direct references to tokens in the parse tree. In other words, the AST is a
separate tree from the parse tree, except that it shares tokens directly with the
parse tree. Sharing tokens between the parse tree and the AST is the key to our
approach since it means that changes to a token’s value automatically update
the AST without further calculation. Altering the incremental parser to detect
changes to tokens would be far more complex.

In all other cases, we rely on a simple modification to the incremental parser.
Non-terminals are created by the parser when it reduces one or more elements
from its stack. Every altered subtree is guaranteed to be reparsed and, since

3 This is not an important design decision; the AST could be statically typed.

98 L. Diekmann and L. Tratt

❶ ❷

❸
❹

Fig. 8. Incremental AST construction, with the parse tree shown in black and the
AST in green. Subtrees that have been reused are in grey / light green. ❶ After typing
the input x, the incremental parser creates this parse tree fragment. ❷ After the expr

non-terminal is created, the rewrite language is run on it creating an ast reference
to an AST node Var. ❸ After changing the input to print x, the incremental parser
starts to update the parse tree and the associated AST as shown in this in-process
fragment. The stmt production’s rewrite rule simply references whatever AST node its
child produces, so stmt’s ast reference is the existing Var node. stmt loop however
wraps its contents in a list (the green circle). ❹ The final parse tree and AST. The
print production rule creates a Print AST element with a child stmts which is a list
containing a Var node.

non-terminals are immutable, changed subtrees will lead to fresh non-terminals
being created. We therefore add to the parser’s reduction step an execution of
the corresponding production rule’s rewrite rule; the result of that execution
then forms the ast reference of the newly created non-terminal. We then rely
on two properties that hold between the parse tree and AST trees. First, the
AST only consists of nodes that were created from the parse tree (i.e. we do not
have to worry about disconnected trees within the AST). Second, the rewrite
language cannot create references from child to parent nodes in the AST. With
these two properties, we can then guarantee that the AST is always correct with
respect to the parse tree, since the incremental parser itself updates the AST at
the same time as the parse tree. Figure 8 shows this process in action.

Eco: A Language Composition Editor 99

Fig. 9. An example of a non-textual language in Eco

This approach is easy to implement and also inherits Wagner’s optimality
guarantees: it is guaranteed that we update only the minimal number of nodes
necessary to ensure the parse tree and AST are in sync.

9 Other Features

9.1 Scoping Rules

Modern IDEs calculate the available variable names in a source file for code
completion, and highlight references to undefined names. We have implemented
(a subset of) the NBL approach [15] which defines a declarative language for
specifying such scoping rules. This runs over the AST created by Section 8.
References to undefined variables are highlighted with standard red squiggles.
Users can request code completion on partially completed names by pressing
Ctrl + Space . Code completion is semi-intelligent: it uses NBL rules to only
show the names visible to a given scope (e.g. variables from different methods
do not ‘bleed’ into each other). We needed to make no changes to the core of Eco
to make this work. We suspect that other analyses which only require a simple
AST will be equally easy to implement.

9.2 Non-textual Languages

Although this paper’s main focus has been on textual languages, language boxes
liberate us from only considering textual languages. As a simple example of this,
the HTML language we defined earlier can use language boxes of type Image.
Image language boxes reference a file on disk. When an HTML file is saved out,
they are serialised as normal text. However, the actual image can be viewed in
Eco as shown in Figure 9. Users can move between text and image rendering of
such language boxes by double-clicking on them. The renderer correctly handles
lines of changing heights using the techniques outlined in Section 6.3.

As this simple example may suggest, Eco is in some senses closer to a
syntactically-aware word processor than it is a normal text editor. Although

100 L. Diekmann and L. Tratt

we have not explored non-textual languages in great detail yet, it is easy to
imagine appropriate editors for such languages being embedded in Eco (e.g. an
image editor; or a mathematical formula editor).

10 Conclusions

In this paper we presented a new approach to editing composed programs, which
preserves the ‘feel’ of normal text editors, while having the power of syntax
directed editors. The core of our approach is a traditional incremental parser
which we extended with the novel notion of language boxes. We showed how an
incremental parser can naturally incrementally create ASTs, allowing us to build
on modern IDE features such as name binding analysis. All this is embodied in
a prototype editor Eco, which readers can download and experiment with.

We divide possible future work into two classes. First are ‘engineering issues’.
For example, the incremental parser stops rewriting the tree after the first syn-
tactic error, which can make editing awkward. Various solutions (e.g. [25,11])
have been proposed, and we intend evaluating and adjusting these as neces-
sary. Second are ‘exploration issues’. For example, we would like to embed very
different types of editors (e.g. spreadsheets) and integrate them into the Eco
philosophy. It is for the most part unclear how this might best be done.

Acknowledgements. This research was funded by Oracle Labs. Edd Barrett,
Carl Friedrich Bolz, Darya Kurilova, and Samuele Pedroni gave insightful com-
ments on early drafts. Michael Van De Vanter gave invaluable advice on editor
technologies.

References

1. Barrett, E., Bolz, C.F., Tratt, L.: Unipycation: A case study in cross-language
tracing. In: VMIL, pp. 31–40 (October 2013)

2. Boshernitsan, M.: Harmonia: A flexible framework for constructing interactive
language-based programming tools. Master’s thesis, University of California, Berke-
ley (June 2001)

3. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A
language and toolset for program transformation. Science of Computer Program-
ming 72(1-2), 52–70 (2008)

4. Cantor, D.G.: On the ambiguity problem of backus systems. J. ACM 9(4), 477–479
(1962)

5. Cordy, J.R.: The TXL source transformation language. Science of Computer Pro-
gramming 61(3), 190–210 (2006)

6. Diekmann, L., Tratt, L.: Parsing composed grammars with language boxes. In:
Workshop on Scalable Language Specifications (June 2013)

7. Ferro, M.V., Dion, B.A.: Efficient incremental parsing for context-free languages.
In: International Conference on Computer Languages, pp. 241–252 (1994)

8. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation.
In: POPL, pp. 111–122 (January 2004)

Eco: A Language Composition Editor 101

9. Ghezzi, C., Mandrioli, D.: Incremental parsing. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 1(1), 58–70 (1979)

10. Harrison, M.A., Maverick, V.: Presentation by tree transformation. In: Compcon,
pp. 68–73 (September 1997)

11. Jalili, F., Gallier, J.H.: Building friendly parsers. In: POPL, pp. 196–206 (January
1982)

12. Kats, L.C.L., Visser, E.: The Spoofax language workbench: Rules for declarative
specification of languages and IDEs. In: OOPSLA, pp. 444–463 (October 2010)

13. Khwaja, A.A., Urban, J.E.: Syntax-directed editing environments: Issues and fea-
tures. In: SAC, pp. 230–237 (February 1993)

14. Knuth, D.: On the translation of languages from left to right. Information and
Control 8(6), 607–639 (1965)

15. Konat, G., Kats, L., Wachsmuth, G., Visser, E.: Declarative name binding and
scope rules. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp.
311–331. Springer, Heidelberg (2013)

16. Li, W.X.: A new approach to incremental LR parsing. J. Prog. Lang. 5(1), 173–188
(1997)

17. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966)
18. Pech, V., Shatalin, A., Voelter, M.: JetBrains MPS as a tool for extending Java.

In: PPPJ, pp. 165–168 (September 2013)
19. Renggli, L., Denker, M., Nierstrasz, O.: Language boxes. In: van den Brand, M.,

Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 274–293. Springer,
Heidelberg (2010)

20. Salomon, D.J., Cormack, G.V.: Scannerless NSLR(1) parsing of programming lan-
guages. SIGPLAN Not. 24(7), 170–178 (1989)

21. Schwerdfeger, A., Van Wyk, E.: Verifiable composition of deterministic grammars.
In: PLDI (June 2009)

22. Teitelbaum, T., Reps, T.: The Cornell program synthesizer: a syntax-directed pro-
gramming environment. Commun. ACM 24(9), 563–573 (1981)

23. Vasudevan, N., Tratt, L.: Detecting ambiguity in programming language grammars.
In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp.
157–176. Springer, Heidelberg (2013)

24. Visser, E.: Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam (September 1997)

25. Wagner, T.A.: Practical Algorithms for Incremental Software Development Envi-
ronments. PhD thesis, University of California, Berkeley (March 1998)

The Moldable Debugger: A Framework for

Developing Domain-Specific Debuggers

Andrei Chiş1, Tudor Gı̂rba2, and Oscar Nierstrasz1

1 Software Composition Group, University of Bern, Bern, Switzerland
http://scg.unibe.ch

2 CompuGroup Medical Schweiz AG, Bern, Switzerland
tudor@tudorgirba.com

Abstract. Debuggers are crucial tools for developing object-oriented
software systems as they give developers direct access to the running
systems. Nevertheless, traditional debuggers rely on generic mechanisms
to explore and exhibit the execution stack and system state, while devel-
opers reason about and formulate domain-specific questions using con-
cepts and abstractions from their application domains. This creates an
abstraction gap between the debugging needs and the debugging support
leading to an inefficient and error-prone debugging effort. To reduce this
gap, we propose a framework for developing domain-specific debuggers
called the Moldable Debugger . The Moldable Debugger is adapted to a
domain by creating and combining domain-specific debugging operations
with domain-specific debugging views, and adapts itself to a domain by
selecting, at run time, appropriate debugging operations and views. We
motivate the need for domain-specific debugging, identify a set of key re-
quirements and show how our approach improves debugging by adapting
the debugger to several domains.

1 Introduction

Debugging is a prerequisite for maintaining and evolving object-oriented software
systems. Despite its importance it is a complex and time-consuming activity.
Together with testing it can take a significant part of the effort required to build
a software system [1]. Using inadequate infrastructures for performing these
activities can further increase this effort [2].

Debugging is typically performed by using a debugger that allows developers
to interact with a running software system and explore its state. This makes the
debugger a crucial tool in any programming environment. Nevertheless, there is
an abstraction gap between the way in which developers reason about object-
oriented applications, and the way in which they debug them.

On the one hand, object-oriented applications use objects to capture and ex-
press a model of the application domain. Developers reason about and formulate
questions using concepts and abstractions from that domain model. This fosters
program comprehension as domain concepts play an important role in software
development [3,4]. Furthermore, non-trivial object-oriented applications contain

B. Combemale et al. (Eds.): SLE 2014, LNCS 8706, pp. 102–121, 2014.
© Springer International Publishing Switzerland 2014

http://scg.unibe.ch

The Moldable Debugger 103

rich object models [5]. A common approach to improve the development and
evolution of these object models is to take advantage of internal DSLs that, by
making use of APIs and of the syntax of the host language, can directly express
domain abstractions [6].

On the other hand, classical debuggers focusing on generic stack-based op-
erations, line breakpoints, and generic user interfaces do not allow developers
to rely on domain concepts. Approaches that address this problem by offering
object-oriented debugging idioms [7] still solve only part of the problem, as they
do not capture domain concepts constructed on top of object-oriented program-
ming idioms.

Generic solutions that do not offer a one-to-one mapping between developer
questions and debugging support force developers to refine their high-level ques-
tions into low-level ones and mentally piece together information from various
sources. For example, when developing a parser, we might need to step through
the execution until we reach a certain position in the input stream. However,
as it has no knowledge of parsing and stream manipulation, a generic debugger
requires us to manipulate low-level concepts like sending a message or looking up
variables. This abstraction gap leads to an ineffective and error-prone effort [8].

While the debugger of a host language can be used to debug internal DSLs,
it still suffers from the aforementioned limitations. When dealing with external
DSLs those limitations can be addressed by automatically generating, from the
grammar of the DSL, domain-specific debuggers that work at the right level
of abstraction [9]. However, this solution does not apply to object-oriented ap-
plications if there is no grammar or formal specification capturing the domain
model.

There exist two main approaches to address, at the application level, the gap
between the debugging needs and debugging support:

– supporting domain-specific debugging operations for stepping through the
execution, setting breakpoints, checking invariants [10,11,12] and querying
stack-related information [13,14,15].

– providing debuggers with domain-specific user interfaces that do not neces-
sarily have a predefined content or a fixed layout [16].

Each of these directions addresses individual debugging problems, however
until now there does not exist one comprehensive approach to tackle the over-
all debugging puzzle. We propose an approach that incorporates both of these
directions in one coherent model. We start from the realization that the most
basic feature of a debugger model is to enable the customization of all aspects,
and we design a debugging model around this principle. We call our approach
the Moldable Debugger .

The Moldable Debugger decomposes a domain-specific debugger into a
domain-specific extension and an activation predicate. The domain-specific ex-
tension customizes the user interface and the operations of the debugger, while
the activation predicate captures the state of the running program in which that
domain-specific extension is applicable. In a nutshell, the Moldable Debugger
model allows developers to mold the functionality of the debugger to their own

104 A. Chiş, T. Ĝırba, and O. Nierstrasz

domains by creating domain-specific extensions. Then, at run time, the Moldable
Debugger adapts to the current domain by using activation predicates to select
appropriate extensions.

A domain-specific extension consists of (i) a set of domain-specific debugging
operations and (ii) a domain-specific debugging view, both built on top of (iii)
a debugging session. The debugging session abstracts the low-level details of a
domain. Domain-specific operations reify debugging operations as objects that
control the execution of a program by creating and combining debugging events.
We model debugging events as objects that encapsulate a predicate over the state
of the running program (e.g., method call, attribute mutation) [17]. A domain-
specific debugging view consists of a set of graphical widgets that offer debugging
information. Each widget locates and loads, at run-time, relevant domain-specific
operations using an annotation-based approach.

To validate our model, we implemented it in Pharo1, a modern Smalltalk
environment. The Moldable Debugger implementation is written in less than
2000 lines of code. We have instantiated it for several distinct domains and each
time the implementation required between 200-600 lines of code. We consider
that its small size makes it easy to understand, and makes the adaptation of the
debugger to specific domains an affordable activity.

The contributions of this paper are as follows:

– Identifying and discussing four requirements that an infrastructure for de-
veloping domain-specific debuggers should support;

– Presenting the Moldable Debugger, a model for creating and working with
domain-specific debuggers that integrates domain-specific debugging opera-
tions with domain-specific user interfaces;

– Examples illustrating the advantages of the Moldable Debugger model over
generic debuggers;

– A prototype implementation of the Moldable Debugger model.

2 Motivation

Debuggers are comprehension tools. They are often used by developers to under-
stand the run-time behavior of software and elicit run-time information [18,19].
In test-driven development the debugger is used as a development tool given
that it provides direct access to the running system [20].

Despite their importance, most debuggers only provide low-level operations
that do not capture user intent and standard user interfaces that only display
generic information. These issues can be addressed if developers are able to create
domain-specific debuggers adapted to their problems and domains. Domain-
specific debuggers can provide features at a higher level of abstraction that
(i) match the domain model of software applications and (ii) group contextual
information from various sources.

1 http://pharo.org

http://pharo.org

The Moldable Debugger 105

In this section we establish and motivate four requirements that an infrastruc-
ture for developing domain-specific debuggers should support, namely: domain-
specific user interfaces, domain-specific debugging operations, automatic discov-
ery and dynamic switching.

2.1 Domain-Specific User Interfaces

User interfaces of software development tools tend to provide large quantities of
information, especially as the size of systems increases. This in turn, increases
the navigation effort of identifying the information relevant for a given task.
While some of this effort is unavoidable, part of it is simply overhead caused by
how information is organized on screen [21].

Consider a unit test with a failing equality assertion. In this case, the only
information required by the developer is the difference between the expected and
the actual value. However, finding the exact difference in non-trivial values can
be daunting and can require multiple interactions such as finding the place in the
stack where both variables are accessible, and opening separate inspectors for
each values. A better approach is to show a diff view on the two values directly
in the debugger when such an assertion exception occurs, without requiring any
further action.

This shows that user interfaces that extract and highlight domain-specific in-
formation have the power to reduce the overall effort of code understanding [22].
However, today’s debuggers tend to provide generic user interfaces that cannot
emphasize what is important in application domains. To address this concern an
infrastructure for developing domain-specific debuggers should:

– allow domain-specific debuggers to have domain-specific user interfaces dis-
playing information relevant for their particular domains;

– support the fast prototyping of domain-specific user interfaces for debugging.

While other approaches, like deet [23] andDebugger Canvas [16], support domain-
specific user interfaces for different domains, they do not offer an easy and rapid
way to develop such domain-specific user interfaces.

2.2 Domain-Specific Debugging Operations

Debugging is viewed as a laborious activity requiring much manual and repet-
itive work. On the one hand, debuggers support language-level operations. As
a consequence, developers need to mentally construct high-level abstractions on
top of them, which can be time-consuming. On the other hand, debuggers rarely
provide support for identifying and navigating through those high-level abstrac-
tions. This leads to repetitive tasks that increase debugging time.

Consider a framework for synchronous message passing. One common use
case in applications using it is the delivery of a message to a list of subscribers.
When debugging this use case, a developer might need to step to when the
current message is delivered to the next subscriber. One solution is to manually

106 A. Chiş, T. Ĝırba, and O. Nierstrasz

step through the execution until the desired code location is reached. Another
consists in identifying the code location beforehand, setting a breakpoint there
and resuming execution. In both cases developers have to manually perform a
series of actions each time they want to execute this high-level operation.

A predefined set of debugging operations cannot anticipate and capture all
relevant situations. Furthermore, depending on the domain different debugging
operations are of interest. Thus, an infrastructure for developing domain-specific
debuggers should:

– support the creation of domain-specific debugging operations that allow de-
velopers to express and automate high-level abstractions from application
domains (e.g., creating domain-specific breakpoints, building and checking
invariants, altering the state of the running system). Since developers view
debugging as an event-oriented process, the underlying mechanism should al-
low developers to treat the running program as a generator of events, where
an event corresponds to the occurrence of a particular action during the
program’s execution, like: method entry, attribute access, attribute write,
memory access, etc.

– group together those debugging operations that are relevant for a domain and
only make them available to developers when they encounter that domain.

This idea of having customizable or programmable debugging operations that
view debugging as an event-oriented activity has been supported in related
works [10,11,12,23]. Mainstream debuggers like GDB have, to some extent, also
incorporated it. We also consider that debugging operations should be grouped
based on the domain and only usable when working with that domain.

2.3 Automatic Discovery

Based on an observational study of 28 professional developersRoehm et al. report
that none of them used a dedicated program comprehension tool; some were not
aware of standard features provided by their IDE [18]. Another study revealed
that despite their usefulness and long lasting presence in IDEs, refactoring tools
are heavily underused [24].

In the same way, developers need help to discover domain-specific debuggers
during debugging. For example, if while stepping through the execution of a
program a developer reaches a parser, the developer should be informed that a
domain-specific debugger exists that can be used in that context; if later the ex-
ecution of the parser completes and the program continues with the propagation
of an event, the developer should be informed that the current domain-specific
debugger is no longer useful and that a better one exists. This way, the burden
of finding appropriate domain-specific debuggers and determining when they are
applicable does not fall on developers.

Recommender systems typically address the problem of locating useful soft-
ware tools/commands by recording and mining usage histories of software tools
[25] (i.e., what tools developers used as well as how they used them). This

The Moldable Debugger 107

requires, at least, some usage history information. To eliminate this need an in-
frastructure for developing domain-specific debugger should allow each domain-
specific debugger to encapsulate the situations/domains in which it is applicable.

2.4 Dynamic Switching

Even with just two different types of debuggers, DeLine et al. noticed that users
needed to switch between them at run time [16]. This happened as users did
not know in advance in what situation they would find themselves in during
debugging. Thus, they often did not start with the appropriate one.

Furthermore, even if one starts with the right domain-specific debugger, dur-
ing debugging situations can arise requiring a different one. For example, the
following scenario can occur: (i) while investigating how an event is propagated
through the application (ii) a developer discovers that it is used to trigger a
script constructing a GUI, and later learns that (iii) the script uses a parser to
read the content of a file and populate the GUI. At each step a different domain-
specific debugger can be used. For this to be feasible, domain-specific debuggers
should be switchable at debug time without having to restart the application.

2.5 Summary

Generic debuggers focusing on low-level programming constructs, while uni-
versally applicable, cannot efficiently answer domain-specific questions, as they
make it difficult for developers to take advantage of domain concepts. Domain-
specific debuggers aware of the application domain can provide direct answers.
We advocate that a debugging infrastructures for developing domain-specific de-
buggers should support the four aforementioned requirements (domain-specific
user interfaces, domain-specific debugging operations, automatic discovery and
dynamic switching).

3 Introducing the “Moldable Debugger” Model

Conventional debuggers force developers to use generic constructs to address
domain-specific problems. The Moldable Debugger, on the other hand, explic-
itly supports domain-specific debuggers that can express and answer questions
at the application level. A domain-specific debugger consists of a domain-specific
extension encapsulating the functionality and an activation predicate encapsu-
lating the situations in which the extension is applicable. This model makes it
possible for multiple domain-specific debuggers to coexist at the same time.

To exemplify the ideas behind the proposed solution we will instantiate a
domain-specific debugger for working with synchronous events2. Event-based
programming poses debugging challenges as it favors a control flow based on
events not supported well by conventional stack-based debuggers.

2 This section briefly describes this debugger. More details are given in Section 4.2.

108 A. Chiş, T. Ĝırba, and O. Nierstrasz

Debugging
Widget

Debugging
View

Debugging
Action

Debugging
Session

Debugging
Predicate

Primitive
Predicate

HighLevel
Predicate

**
*

Fig. 1. The structure of a domain-specific extension

3.1 Modeling Domain-Specific Extensions

A domain-specific extension defines the functionality of a domain-specific debug-
ger using multiple debugging operations and a debugging view. Debugging oper-
ations rely on debugging predicates to implement high-level abstractions (e.g.,
domain-specific breakpoints); the debugging view highlights contextual informa-
tion. To decouple these components from the low-level details of a domain they
are built on top of a debugging session.

A debugging session encapsulates the logic for working with processes and
execution contexts (i.e., stack frames). It further implements common stack-
based operations like: step into, step over, resume/restart process, etc. Domain-
specific debuggers can extend the debugging session to extract and store custom
information from the runtime, or provide fine-grained debugging operations. For
example, our event-based debugger extends the debugging session to extract and
store the current event together with the sender and the receiver of that event.

Debugging predicates detect run-time events. Basic run-time events (e.g.,
method call, attribute access) are detected using a set of primitive predicates,
detailed in Table 1. More complex run-time events are detected using high-level
predicates that combine both primitive predicates and other high-level predicates
(Figure 1). Both these types of debugging predicates are encapsulated as objects
whose state does not change after creation.

Consider our event-based debugger. This debugger can provide high-level
predicates to detect when a sender initiates the delivery of an event, or when
the middleware delivers the event to a receiver.

Table 1. Primitive debugging predicates capturing basic events

Attribute read detects when a field of any object of a certain type is accessed

Attribute write detects when a field of any object of a certain type is mutated

Method call detects when a given method is called on any object of a certain type

Message send detects when a specified method is invoked from a given method

State check checks a generic condition on the state of the running program (e.g.,
the identity of an object).

Debugging operations can execute the program until a debugging predicate is
matched or can perform an action every time a debugging predicate is matched.
They are modeled as objects that can accumulate state. They can implement
breakpoints, log data, watch fields, change the program’s state, detect violations

The Moldable Debugger 109

of invariants, etc. In the previous example a debugging operation can be used to
stop the execution when an event is delivered to a receiver. Another debugging
operation can log all events delivered to a particular receiver without stopping
the execution. At each point during the execution of a program only a single
debugging operation can be active. Thus, debugging operations have to be run
sequentially. This design decision simplifies the implementation of the model,
given that two conflicting operations cannot run at the same time.

The Moldable Debugger models a debugging view as a collection of graphical
widgets (e.g., stack, code editor, object inspector) arranged using a particular
layout. At run time, each widget loads a subset of debugging operations. De-
termining what operations are loaded by which widgets is done at run time via
a lookup mechanism of operation declarations (implemented in practice using
annotations). This way, widgets do not depend upon debugging operations, and
are able to reload debugging operations dynamically during execution.

Our event-based debugger provides dedicated widgets that display an event
together with the sender and the receiver of that event. These widgets load
and display the debugging operations for working with synchronous events, like
logging all events or placing a breakpoint when an event is delivered to a receiver.

Developers can create domain-specific extensions by:

(i) extending the debugging session with additional functionality;
(ii) creating domain-specific debugging predicates and operations;
(iii) specifying a domain-specific debugging view;
(iv) linking debugging operations to graphical widgets;

3.2 Dynamic Integration

The Moldable Debugger model enables each domain-specific debugger to decide
if it can handle or not a debugging situation by defining an activation predi-
cate. Activation predicates capture the state of the running program in which a
domain-specific debugger is applicable. While debugging predicates are applied
on an execution context, activation predicates are applied on the entire execu-
tion stack. For example, the activation predicate of our event-based debugger will
check if the execution stack contains an execution context involving an event.

This way, developers do not have to be aware of applicable debuggers a priori.
At each point during debugging they can see what domain-specific debuggers
are applicable (i.e., their activation predicate matches the current debugging
context) and can switch to any of them.

When a domain-specific debugger is no longer appropriate we do not automat-
ically switch to another one. Instead, all domain-specific widgets and operations
are disabled. This avoids confronting users with unexpected changes in the user
interface if the new debugging view has a radically different layout/content.

To further improve working with multiple domain-specific debuggers we pro-
vide two additional concepts:

(i) A debugger-oriented breakpoint is a breakpoint that when reached opens
the domain-specific debugger best suited for the current situation. If more
than one view is available the developer is asked to choose one.

110 A. Chiş, T. Ĝırba, and O. Nierstrasz

(ii) Debugger-oriented steps are debugging operations that resume execution
until a given domain-specific debugger is applicable. They are useful when
a developer knows a domain-specific debugger will be used at some point
in the future, but is not sure when or where.

4 Addressing Domain-Specific Debugging Problems

To demonstrate that the Moldable Debugger addresses the requirements iden-
tified in Section 2 we have instantiated it for four applications belonging to
different domains: testing, synchronous events, parsing and internal DSLs. In
this section we detail these instantiations.

4.1 Testing with SUnit

SUnit is a framework for creating unit tests [26]. The framework provides an
assertion to check if a computation results in an expected value. If the assertion
fails the developer is presented with a debugger that can be used to compare the
obtained value with the expected one. If these values are complex, identifying the
difference may be time consuming. A solution is needed to facilitate comparison.

To address this, we developed a domain-specific debugger having the following
components:

Session: extracts the expected and the obtained value from the runtime;
View : displays a diff between the textual representation of the two values. The

diff view depends on the domain of the data being compared.
Activation predicate: verifies if the execution stack contains a failing equality

assertion.

4.2 An Announcement-Centric Debugger

The Announcements framework from Pharo provides a synchronous notification
mechanism between objects based on a registration mechanism and first class
announcements (i.e., objects storing all information relevant to particular oc-
currences of events). Since the control flow for announcements is event-based,
it does not match well the stack-based paradigm used by conventional debug-
gers. For example, Section 2.2 describes a high-level action for delivering an
announcement to a list of subscribers. Furthermore, when debugging announce-
ments it is useful to see at the same time both the sender and the receiver of an
announcement ; most debuggers only show the receiver.

To address these problems we have created a domain-specific debugger, shown
in Figure 2. A previous work discusses in more details the need for such a debug-
ger and looks more closely at the runtime support needed to make the debugger
possible [27]. This debugger is instantiated as follows:

Session: extracts from the runtime the announcement, the sender, the receiver
and all the other subscriptions triggered by the current announcement;

The Moldable Debugger 111

4. Stack

2. Subscriptions

1. Receiver

3. Sender

Fig. 2. A domain-specific debugger for announcements: (1)(3) the receiver and the
sender of an announcement; (2) subscriptions triggered by the current announcement

Predicates : (i) detect when the framework initiates the delivery of a subscrip-
tion; (ii) detect when the framework delivers a subscription to an object;

Operations : (i) step to the delivery of the next subscription; (ii) step to the
delivery of a selected subscription;

View : shows both the sender and the receiver of an announcement, together
with all subscriptions served as a result of that announcement;

Activation predicate: verifies if the execution stack contains an execution con-
text involving an announcement.

4.3 A Debugger for PetitParser

PetitParser is a framework for creating parsers, written in Pharo, that makes
it easy to dynamically reuse, compose, transform and extend grammars [28]. A
parser is created by specifying a set of grammar productions in one or more
dedicated classes. When a parser is instantiated the grammar productions are
used to create a tree of primitive parsers (e.g., choice, sequence, negation, etc.);
this tree is then used to parse the input.

Whereas most parser generators instantiate a parser by generating code, Pe-
titParser generates a dynamic graph of objects. Nevertheless, the same issues
arise as with conventional parser generators: generic debuggers do not provide
debugging operations at the level of the input (e.g., set a breakpoint when a
certain part of the input is parsed) and of the grammar (e.g., set a breakpoint

112 A. Chiş, T. Ĝırba, and O. Nierstrasz

when a grammar production is exercised). Generic debuggers also do not display
the source code of grammar productions nor do they provide easy access to the
input being parsed.

We have developed a domain-specific debugger for PetitParser by configuring
the Moldable Debugger as follows:

Session: extracts from the runtime the parser and the input being parsed;
Predicates : (i) detect the usage of a primitive parser; (ii) detect the usage of a

production; (iii) detect when a parser fails to match the input; (iv) detect
when the position of the input stream changes to a given value;

Operations : Navigating through the execution at a higher level of abstraction
is supported through the following debugging operations:
– Next parser : step until a primitive parser of any type is reached
– Next production: step until a production is reached
– Production(aProduction): step until the given production is reached
– Next failure: step until a parser fails to match the input
– Stream position change: step until the stream position changes (it either

increases, if a character was parsed, or decrease if the parser backtracks)
– Stream position(anInteger): step until the stream reaches a given position

View : The debugging view of the resulting debugger is shown in Figure 3. We
can see that now the input being parsed is incorporated into the user inter-
face; to know how much parsing has advanced, the portion that has already
been parsed is highlighted. Tabs are used to group six widgets showing differ-
ent types of data about the current production, like: source code, structure,
position in the whole graph of parsers, an example that can be parsed with
the production, etc. The execution stack further highlights those execution
contexts that represent a grammar production;

Activation predicate: verifies if the execution stack contains an execution con-
text created when using a parser.

4.4 A Debugger for Glamour

Glamour is an engine for scripting browsers based on a components and connec-
tors architecture [29]. New browsers are created by using an internal domain-
specific language (DSL) to specify a set of presentations (graphical widgets)
along with a set of transmissions between those presentations, encoding the in-
formation flow. Users can attach various conditions to transmissions and alter
the information that they propagate. Presentations and transmissions form a
model that is then used to generate the actual browser.

The Moldable Debugger relies on Glamour for creating domain-specific views.
Thus, during the development of the framework we created a domain-specific
debugger to help us understand the creation of a browser:

Session: extracts from the runtime the model of the browser;
Predicates : (i) detect the creation of a presentation; (ii) detect when a trans-

mission alters the value that it propagates; (iii) detect when the condition
of a transmission is checked;

The Moldable Debugger 113

3. Object inspector

1. Stack

4. Input
2. Source code

5. Production
structure

2.1 4.11.1

1.2

Fig. 3. A domain-specific debugger for PetitParser. The debugging view displays rel-
evant information for debugging parsers ((4) Input, (5) Production structure). Each
widget loads relevant debugging operations (1.1, 1.2, 2.1, 4.1).

1

Fig. 4. A domain-specific debugger for Glamour: (1) visualization showing the model
of the browser currently constructed

114 A. Chiş, T. Ĝırba, and O. Nierstrasz

Operations : (i) step to presentation creation; (ii) step to transmission transfor-
mation; (iii) step to transmission condition;

View : displays the structure of the model in an interactive visualization that is
updated as the construction of the model advances (Figure 4);

Activation predicate: verifies if the execution stack contains an execution con-
text that triggers the construction of a browser.

4.5 Summary

PetitParser, Glamour, SUnit and the Announcements framework cover four dis-
tinct domains. For each one we were able to instantiate a domain-specific debug-
ger having a contextual debugging view and/or a set of debugging operations
capturing high-level abstractions from that domain. This shows the Moldable
Debugger framework addresses the first two requirements.

The two remaining requirements, automatic discovery and dynamic switching,
are also addressed. At each point during debugging developers can obtain a
list of all domain-specific debuggers applicable to their current context. This
does not require them either to know in advance all available debuggers, or to
know when those debuggers are applicable. Once the right debugger was found
developers can switch to it and continue debugging without having to restart the
application. For example, one can perform the scenario presented in Section 2.4.
The cost of creating these debuggers is discussed in Section 6.1.

5 Implementation

The current prototype of the Moldable Debugger3 is implemented in Pharo, an
open-source Smalltalk inspired environment. In this section we discuss several
aspects regarding its implementation.

5.1 Controlling the Execution

In the current version the target program is controlled based on debugging pred-
icates that are checked in a step-by-step manner after executing each instruc-
tion [30,31]. To do this we transform each debugging predicate into a boolean
condition that is applied on the execution context. For example, the debugging
predicate for detecting if a parser has failed forms a boolean condition that
checks if an execution context was created as a result of sending the message
initializeMessageAt to an instance of the class PPFailure.

The main advantage of this method is that it is simple to understand and it
does not alter the source of the target program. However, it can slow down the
target program considerably. To address this concern, debugging operations do
not have to be aware that predicates are used to control the target program in

3 More details including demos and installation instructions can be found at:
http://scg.unibe.ch/research/moldabledebugger

http://scg.unibe.ch/research/moldabledebugger

The Moldable Debugger 115

a step-by-step manner. Thus, a backend based on a different approach, like code
instrumentation, could be used. We are currently looking at how to instrument
code based on predicates. For example, the previous predicate could be used to
instrument the method initializeMessageAt of the class PPFailure.

These two views of either using boolean conditions or code instrumentation to
implement debugging operations match the step and break constructs proposed
by Crawford et al. [30]. As they discuss, their combination can lead to semantic
issues. To avoid those issues only a debugging operation can be active at a time,
and debugging operations should not combine instrumentation with step-by-step
execution.

5.2 The Moldable Debugger in Other Languages

The current prototype of the Moldable Debugger is implemented in Pharo. It can
be ported to other languages as long as they provide a good infrastructure for
controlling the execution of a target program and there exists a way to rapidly
construct user interfaces for debuggers.

For example, one could implement the framework in Java. Domain-specific
debugging operations can be implemented on top of the Java Debugging Inter-
face (JDI) or by using aspects. JDI is a good candidate as it provides explicit
control over the execution of a virtual machine and introspective access to its
state. Aspect-Oriented Programming [32] can implement debugging actions by
instrumenting only the code locations of interest. Dynamic aspects (e.g., As-
pectWerkz [33]) can further scope code instrumentation at the debugger level.
Last but not least, domain-specific views can be obtained by leveraging the
functionality of IDEs, like perspectives in the Eclipse IDE.

6 Discussion

6.1 The Cost of Creating New Debuggers

The four presented domain-specific debuggers were created starting from a model
consisting of 1500 lines of code. Table 2 shows, for each debugger, how many
lines of code were needed for the debugging view, the debugging actions, and
the debugging session.

Even if, in general, lines of code (LOC) must be considered with caution when
measuring complexity and development effort, as the metric does not indicate
the time needed to write those lines, it gives a good indication of the small size
of these domain-specific debuggers. This small size makes the construction cost
affordable. Similar conclusions can be derived from the work of Kosar et al.
that shows that with the right setup its possible to construct a domain-specific
debugger for a modelling language with relatively low costs [34].

The availability of such an infrastructure opens new possibilities:

(i) the developers of a library or framework can create and ship a dedicated
debugger together with the code, to help users debug that framework or

116 A. Chiş, T. Ĝırba, and O. Nierstrasz

Table 2. Size of extensions in lines of code (LOC)

Session Operations View Total

Base model 800 700 - 1500

Default Debugger - 100 400 500

Announcements 200 50 200 450

Petit Parser 100 300 200 600

Glamour 150 100 50 300

SUnit 100 - 50 150

library. For example, we can envisage the developers of PetitParser and
Glamour to have built the custom debuggers themselves and ship them
together with the frameworks;

(ii) developers can extend the debugger for their own applications, during the
development process, to help them solve bugs or better understand the
application.

6.2 IDE Integration

Studies of software developers revealed that they use standalone tools alongside
an IDE, even when their IDE has the required features [18]. Furthermore, de-
velopers also complain about loose integration of tools that forces them to look
for relevant information in multiple places [35]. To avoid these problems the
Moldable Debugger framework is integrated into the Pharo IDE and essentially
replaces the existing debugger.

The Moldable Debugger along with the domain-specific debuggers presented
in Section 4 are also integrated into Moose4, a platform for data and software
analysis [36]. Despite the fact that the performance of the current implementa-
tion can be significantly improved, these domain-specific debuggers are usable
and reduce debugging time. For example, we are using the domain-specific de-
bugger for PetitParser on a daily basis.

6.3 Open Questions

As software systems evolve domain-specific debuggers written for those systems
must also evolve. This raises further research questions like: “What changes in
the application will lead to changes in the debugger?” or “How can the debugger
be kept in sync with the application?”. For example, introducing code instru-
mentation or destructive data reading (as in a stream) can lead to significant
changes in an existent debugger.

In this context, a more high-level question is “What makes an application
debuggable?”. By this we mean what characteristics of an application ease, or

4 http://moosetechnology.org

http://moosetechnology.org

The Moldable Debugger 117

exacerbate the creation of debuggers or, more generally, what characteristics af-
fect debugging. To draw an analogy, in the field of software testing high coupling
makes the creation of unit tests difficult (by increasing the number of dependen-
cies that need to be taken into account) and thus decreases the testability of a
software system.

7 Related Work

This work draws its ideas from programmable/scriptable debugging and debug-
ging infrastructures for language workbenches. For clarity we discuss related
work with respect to how other approaches support domain-specific debugging
operations and user-interfaces for debugging.

7.1 Specifying Domain-Specific Operations

There is a wide body of research on allowing developers to automate debugging
tasks by creating high-level abstractions. MzTake [11] is a scriptable debugger
allowing developers to automate debugging tasks. It treats a running program
as a stream of events that can be analyzed using operators, like map and filter ;
streams can also be combined to form new streams. The focus in MzTake is
on automating debugging actions using scripts. It does not provide support for
creating domain-specific views for debugging. Developers just have the possibility
of visually exploring data by using features from the host IDE, DrScheme.

Dalek [10] is a C debugger employing a dataflow approach for debugging se-
quential programs: developers create high-level events by combining different
types of low-level events. Coca [37] is an automated debugger for C using Prolog
predicates to search for events of interest over program state. Acid [38] makes it
possible to write debugging operations, like breakpoints and step instructions,
in a language designed for debugging that reifies program state as variables.
Duel [39] is a high-level language on top of GDB for writing state exploration
queries. Expositor [12] is a scriptable time-travel debugger that can check tem-
poral properties of an execution: it views program traces as immutable lists of
time-annotated program state snapshots and uses an efficient data structure to
manage them. These approaches focus on improving debugging by allowing de-
velopers to create different types of commands, breakpoints or queries at a higher
level of abstraction. However, they have the same drawbacks as MzTake: by fo-
cusing only on operations they neglect the user interface of debuggers. They also
do not provide support for selecting features based on the debugging context.

Object-centric debugging [7] proposes a new way to perform debugging opera-
tions by focusing on objects instead of the execution stack. Reverse watchpoints
use the concept of position to automatically find the last time a target variable
was written and move control flow to that point [40]. Whyline is a debugging
tool that allows developer to ask and answer Why and Why Not questions about
program behavior [41]. Query-based debugging facilitates the creation of queries
over program execution and state using high-level languages [13,14,15]. These

118 A. Chiş, T. Ĝırba, and O. Nierstrasz

approaches are complementary to our approach as they can be used to create
other types of debugging operations.

Language workbenches for domain-specific languages (DSL) address debug-
ging by offering debugging abstractions at the level of the DSL [9,42,43]. This
solves the debugging problem both at the language and application level only
if domain concepts are incorporated directly into the DSL. However, if domain
concepts are build on top of a DSL, then DSL debuggers suffer from the same
limitations as generic debuggers. Our approach supports, in all cases, debuggers
aware of application domains.

7.2 User Interfaces for Debugging

Debugger Canvas [16] proposes a novel type of user interface for debuggers based
on the Code Bubbles [44] paradigm. Rather then starting from a user interface
having a predefined structure, developers start from an empty one on which dif-
ferent bubbles are added, as they step through the execution of the program. Our
approach allows developers to create custom user interfaces (views) beforehand
and select appropriate interfaces at debug time. Debugger Canvas focuses only
on the user interface, and does not provide support for adding custom debugging
operations. Our approach addresses both aspects.

The Data Display Debugger (DDD) [45] is a graphical user interface for GDB
providing a graphical display for representing complex data structures as graphs
that can be explored incrementally and interactively. However, if focuses just on
providing a default front-end for GDB; it does not offer support for customiza-
tion, nor other debugging operations then the ones provided by GDB.

jGRASP supports the visualization of various data structure by means of
dynamic viewers and a structure identifier that automatically select suitable
views for data structures [46]. xDIVA is a 3-D debugging visualization system
where complex visualization metaphors are assembled from individual ones, each
of which is independently replaceable [47]. While these approaches allow users
to create visualizations specific to their domains they are meant to be embedded
within existent debuggers, and thus do not offer debugging operations.

7.3 Unifying Approaches

deet [23] is a debugger for ANSI C that, like our approach, promotes simple de-
buggers having few lines of code. It further allows developers to extend the user
interface and add new commands by writing code in a high-level language. TIDE
is a debugging framework focusing on the instantiation of debuggers for formal
languages (ASF+SDF, in particular) [48]; developers can implement high-level
debugging actions like, breakpoints and watchpoints, extend the user interface
be modifying the Java implementation of TIDE, and use debugging rules to state
which debugging actions are available at which logical breakpoints. Unlike these
approaches, we propose modeling the customization of debugger through explicit
domain-specific extensions and provide support for automatically detecting ap-
propriate extensions at run time.

The Moldable Debugger 119

LISA is a grammar-based compiler generator that can automatically gener-
ate debuggers, inspectors and visualizers for DSLs that have a formal language
specification [49]. Our approach targets object-oriented systems where such a
formal specification is missing.

8 Conclusions

Developers encounter domain-specific questions. Traditional debuggers support-
ing debugging by means of generic mechanisms, while universally applicable,
are less suitable to handle domain-specific questions. The Moldable Debugger
addresses this contradiction by allowing developers to created domain-specific
debuggers having both custom debugging actions and user interfaces, with a
low effort. As a validation, we implemented the Moldable Debugger model and
created four different debuggers in less than 600 lines of code each. The Mold-
able Debugger reduces the abstraction gap between the debugging needs and
debugging support leading to a more efficient and less error-prone debugging
effort.

Given the large costs associated with debugging activities, improving the
workflow and reducing the cognitive load of debugging can have a significant
practical impact. With our approach developers can create their own debuggers
to address recurring custom problems. This can make considerable economical
sense when working on a long lived system. Furthermore, library developers
can ship library-specific debuggers together with their product. This can have a
practical impact due to the reuse of the library in many applications.

Acknowledgments. We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Agile Software Assessment”
(SNSF project Nr. 200020-144126/1, Jan 1, 2013 - Dec. 30, 2015). We thank
Alexandre Bergel, Jorge Ressia, and the anonymous reviewers for their sugges-
tions in improving this paper. We also thank CHOOSE, the special interest
group for Object-Oriented Systems and Environments of the Swiss Informatics
Society, for its financial contribution to the presentation of this paper.

References

1. Vessey, I.: Expertise in Debugging Computer Programs: An Analysis of the Content
of Verbal Protocols. IEEE Trans. on Systems, Man, and Cybernetics 16(5), 621–637
(1986)

2. Tassey, G.: The economic impacts of inadequate infrastructure for software testing.
Technical report, National Institute of Standards and Technology (2002)

3. Littman, D.C., Pinto, J., Letovsky, S., Soloway, E.: Mental models and software
maintenance. Journal of Systems and Software 7(4), 341–355 (1987)

4. Rajlich, V., Wilde, N.: The role of concepts in program comprehension. In: Proc.
IWPC, pp. 271–278 (2002)

120 A. Chiş, T. Ĝırba, and O. Nierstrasz

5. Renggli, L., Ĝırba, T., Nierstrasz, O.: Embedding languages without breaking tools.
In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 380–404. Springer, Hei-
delberg (2010)

6. Fowler, M.: Domain-Specific Languages. Addison-Wesley Professional (2010)
7. Ressia, J., Bergel, A., Nierstrasz, O.: Object-centric debugging. In: Proc. ICSE,

pp. 485–495 (2012)
8. Sillito, J., Murphy, G.C., De Volder, K.: Asking and answering questions during a

programming change task. IEEE Trans. Softw. Eng. 34, 434–451 (2008)
9. Wu, H., Gray, J., Mernik, M.: Grammar-driven generation of domain-specific lan-

guage debuggers. Softw. Pract. Exper. 38(10), 1073–1103 (2008)
10. Olsson, R.A., Crawford, R.H., Ho, W.W.: A dataflow approach to event-based

debugging. Software - Practice and Experience 21(2), 209–229 (1991)
11. Marceau, G., Cooper, G.H., Spiro, J.P., Krishnamurthi, S., Reiss, S.P.: The design

and implementation of a dataflow language for scriptable debugging. Automated
Software Engineering 14(1), 59–86 (2007)

12. Khoo, Y.P., Foster, J.S., Hicks, M.: Expositor: scriptable time-travel debugging
with first-class traces. In: Proc. ICSE, pp. 352–361 (2013)

13. Lencevicius, R., Hölzle, U., Singh, A.K.: Query-based debugging of object-oriented
programs. In: Proc. OOPSLA, pp. 304–317 (1997)

14. Potanin, A., Noble, J., Biddle, R.: Snapshot query-based debugging. In: Proc.
ASWEC, p. 251 (2004)

15. Martin, M., Livshits, B., Lam, M.S.: Finding application errors and security flaws
using PQL: a program query language. In: Proc. OOPSLA, pp. 363–385. ACM
(2005)

16. DeLine, R., Bragdon, A., Rowan, K., Jacobsen, J., Reiss, S.P.: Debugger canvas:
industrial experience with the code bubbles paradigm. In: ICSE, pp. 1064–1073
(2012)

17. Auguston, M., Jeffery, C., Underwood, S.: A framework for automatic debugging.
In: Proc. ASE 2002, pp. 217–222. IEEE Computer Society (2002)

18. Roehm, T., Tiarks, R., Koschke, R., Maalej, W.: How do professional developers
comprehend software? In: Proc. ICSE, pp. 255–265 (2012)

19. Murphy, G.C., Kersten, M., Findlater, L.: How are Java software developers using
the Eclipse IDE? IEEE Software (July 2006)

20. Beck, K.: Test Driven Development: By Example. Addison-Wesley Longman (2002)
21. Ko, A., Myers, B., Coblenz, M., Aung, H.: An exploratory study of how developers

seek, relate, and collect relevant information during software maintenance tasks.
IEEE Trans. Softw. Eng. 32(12), 971–987 (2006)

22. Kersten, M., Murphy, G.C.: Mylar: a degree-of-interest model for IDEs. In: Proc.
AOSD, pp. 159–168 (2005)

23. Hanson, D.R., Korn, J.L.: A simple and extensible graphical debugger. In: WIN-
TER 1997 USENIX CONFERENCE, pp. 173–184 (1997)

24. Murphy-Hill, E., Parnin, C., Black, A.P.: How we refactor, and how we know it.
In: Proc. ICSE, pp. 287–297 (2009)

25. Murphy-Hill, E., Jiresal, R., Murphy, G.C.: Improving software developers’ fluency
by recommending development environment commands. In: FSE, pp. 42:1–42:11
(2012)

26. Beck, K.: Kent Beck’s Guide to Better Smalltalk. Sigs Books (1999)
27. Chis, A., Nierstrasz, O., Ĝırba, T.: Towards a moldable debugger. In: Proc. DYLA,

pp. 2:1–2:6 (2013)
28. Renggli, L., Ducasse, S., Ĝırba, T., Nierstrasz, O.: Practical dynamic grammars

for dynamic languages. In: Proc. DYLA (2010)

The Moldable Debugger 121

29. Bunge, P.: Scripting browsers with Glamour. Master’s thesis, University of Bern
(2009)

30. Crawford, R.H., Olsson, R.A., Ho, W.W., Wee, C.E.: Semantic issues in the design
of languages for debugging. Comput. Lang. 21(1), 17–37 (1995)

31. Lieberman, H., Fry, C.: ZStep 95: A reversible, animated source code stepper. MIT
Press (1998)

32. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

33. Bonér, J.: What are the key issues for commercial AOP use: how does AspectWerkz
address them? In: Proc. AOSD, pp. 5–6 (2004)

34. Kosar, T., Mernik, M., Gray, J., Kos, T.: Debugging measurement systems using a
domain-specific modeling language. Computers in Industry 65(4), 622–635 (2014)

35. Maalej, W.: Task-First or Context-First? Tool Integration Revisited. In: Proc. ASE,
pp. 344–355 (2009)

36. Nierstrasz, O., Ducasse, S., Ĝırba, T.: The story of Moose: an agile reengineering
environment. In: Proc. of ESEC/FSE, pp. 1–10 (2005) (invited paper)

37. Ducassé, M.: Coca: An automated debugger for C. In: International Conference on
Software Engineering, pp. 154–168 (1999)

38. Winterbottom, P.: ACID: A debugger built from a language. In: USENIX Technical
Conference, pp. 211–222 (1994)

39. Golan, M., Hanson, D.R.: Duel — a very high-level debugging language. In:
USENIX Winter, pp. 107–118 (1993)

40. Maruyama, K., Terada, M.: Debugging with reverse watchpoint. In: QSIC (2003)
41. Ko, A.J., Myers, B.A.: Debugging reinvented: Asking and answering why and why

not questions about program behavior. In: Proc. of ICSE, pp. 301–310 (2008)
42. Lindeman, R.T., Kats, L.C., Visser, E.: Declaratively defining domain-specific lan-

guage debuggers. In: Proc. GPCE, pp. 127–136 (2011)
43. Kolomvatsos, K., Valkanas, G., Hadjiefthymiades, S.: Debugging applications cre-

ated by a domain specific language: The IPAC case. J. Syst. Softw. 85(4), 932–943
(2012)

44. Bragdon, A., Zeleznik, R., Reiss, S.P., Karumuri, S., Cheung, W., Kaplan, J.,
Coleman, C., Adeputra, F., LaViola Jr., J.J.: Code bubbles: a working set-based
interface for code understanding and maintenance. In: CHI, pp. 2503–2512 (2010)

45. Zeller, A., Lütkehaus, D.: DDD — a free graphical front-end for Unix debuggers.
SIGPLAN Not. 31(1), 22–27 (1996)

46. Cross II, J.H., Hendrix, T.D., Umphress, D.A., Barowski, L.A., Jain, J., Mont-
gomery, L.N.: Robust generation of dynamic data structure visualizations with
multiple interaction approaches. Trans. Comput. Educ. 9(2), 13:1–13:32 (2009)

47. Cheng, Y.P., Chen, J.F., Chiu, M.C., Lai, N.W., Tseng, C.C.: xDIVA: a debug-
ging visualization system with composable visualization metaphors. In: OOPSLA
Companion, pp. 807–810 (2008)

48. van den Brand, M.G.J., Cornelissen, B., Olivier, P.A., Vinju, J.J.: TIDE: A generic
debugging framework — tool demonstration —. Electron. Notes Theor. Comput.
Sci. 141(4), 161–165 (2005)

49. Henriques, P.R., Pereira, M.J.V., Mernik, M., Lenic, M., Gray, J., Wu, H.: Au-
tomatic generation of language-based tools using the LISA system. IEE Software
Journal 152(2), 54–69 (2005)

Evaluating the Usability of a Visual Feature

Modeling Notation

Aleksandar Jakšić1, Robert B. France1, Philippe Collet2, and Sudipto Ghosh1

1 Colorado State University, Computer Science Department, Fort Collins, USA
ajaksic@colostate.edu, {france,ghosh}@cs.colostate.edu

2 Université Nice Sophia Antipolis / I3S - CNRS UMR 7271, France
philippe.collet@unice.fr

Abstract. Feature modeling is a popular Software Product Line Engi-
neering (SPLE) technique used to describe variability in a product family.
A usable feature modeling tool environment should enable SPLE prac-
titioners to produce good quality models, in particular, models that ef-
fectively communicate modeled information. FAMILIAR is a text-based
environment for manipulating and composing Feature Models (FMs). In
this paper we present extensions we made to FAMILIAR to enhance its
usability. The extensions include a visualization of FMs, or more pre-
cisely, a feature diagram rendering mechanism that supports the use of a
combination of text and graphics to describe FMs, their configurations,
and the results of FM analyses. We also present the results of a prelim-
inary evaluation of the environment’s usability. The evaluation involves
comparing the use of the extended environment with the previous text-
based console-driven version. The preliminary experiment provides some
evidence that use of the new environment results in increased cognitive
effectiveness of novice users and improved quality of new FMs.

Keywords: FAMILIAR Tool1, FAMILIAR, Software Product Lines,
Feature Modeling, Software Visualization, Model-Driven Development.

1 Introduction

Feature models (FM) are often used in Software Product Line Engineering
(SPLE) to describe variability in a product family. A usable feature model-
ing tool environment should enable SPLE practitioners to produce good quality
models, in particular, models that effectively communicate modeled information.

A number of textual domain-specific modeling languages (DSMLs) for feature
modeling [6][7][11][15][21], including FAMILIAR [2–4, 16], have been proposed
during the last decade. There are many benefits to using text-based languages
to describe the variability [12]. For example, a lightweight textual language can

1 In this work, we refer to the newly developed visual tool as the FAMILIAR Tool.
Subsequently, its underlying framework, the DSML language, continues to be re-
ferred to as FAMILIAR, as it was the case with the prior work.

B. Combemale et al. (Eds.): SLE 2014, LNCS 8706, pp. 122–140, 2014.
c© Springer International Publishing Switzerland 2014

Evaluating the Usability of a Visual Feature Modeling Notation 123

leverage already established tools that are available for editing and manipulat-
ing textual language statements. Such support facilitates rapid prototyping of a
DSML. Other desirable characteristics that typically come with expressive tex-
tual notations with good tool support include interoperability with other textual
DSMLs, and scripting support that enables replay of operation sequences, and
modular management of scripts [4]. On the other hand, creating and analyzing
a large text-based feature model (FM) often requires significant cognitive effort.

Cognitive research is a scientific discipline that attempts to gain insights on
how the human mind analyzes information, creates knowledge, and solves prob-
lems. There is growing evidence of the cognitive power of visualization [20]. Tool
support for visualizing models may help modeling practitioners amplify their
cognition [35]. The increase in cognitive effectiveness can lead to improved abil-
ity of humans to process information captured in models [28]. There is evidence
that visual notations convey information more effectively than text, especially
to novices [9]. Our work on extending a textual DSML for FMs and on evalu-
ating the resulting FM development environment is motivated by the following
question: Does the lack of support for visualizing FMs in FM development tools
hinder the usability of these tools when managing multiple and large FMs during
modeling sessions?

Our hypothesis is that modeling practitioners, especially novice modelers,
would benefit when provided with graphical feature models that use familiar no-
tations (e.g., a FODA-like notation) [26][27]. Allowing modelers to express and
visualize feature models in a tree-like top-down hierarchical structure should
enhance their ability to develop good quality models that effectively communi-
cate modeled information. Consequently, the tool support for FM visualization
should lead to improved user efficiency, effectiveness, and learnability.

In this paper we describe the results of a preliminary experiment conducted
to measure and analyze the benefits associated with the use of graphical models
when compared to the use of purely textual models. We also describe how we
extended the FAMILIAR language and its feature modeling tool environment
with support for graphically rendering FMs.

2 Background

Models can help us to break down a complex problem through abstraction. Fur-
thermore, we can also use them to narrow the gap between the problem and
solution domains. Attempts to bridge the problem-solution gap with traditional
software development approaches are not only labor-intensive but also tedious
and error-prone with potential accidental complexities. As a consequence, soft-
ware development costs as well as time-to-deploy tend to keep increasing [18].
One of the central ideas behind Software Product Line Engineering (SPLE) is
to shift away from individually designing software products. Instead, engineers
should focus on creating quality models of product families that would, with
the help of evolving automation technologies and an emergence of widely sup-
ported industry standards, eventually be capable of delivering high quality final
products in less time and with no or minimal accidental complexities [31].

124 A. Jakšić et al.

SPLE supports explicit modeling of what is common and what differs among
software product variants. Under the umbrella of SPLE, several techniques have
been proposed including those for automatically generating implementations of
family members [13], configuring products [5] and transforming models [25].

2.1 Feature Modeling

When decomposing a family of products in terms of its features, one of the
main objectives is to construct a well-structured product line that is typically
represented as a feature model. Feature modeling is a popular model-driven
approach to describing commonalities and variabilities of a family of (software)
products in terms of features. A feature is any distinctive user-visible aspect, or
characteristic of a product [17].

The feature model depicted in Figure 12 represents a simple laptop family. An
FM hierarchically structures features and feature groups, in a tree-like top-down
fashion, using parent-child relations. A feature diagram is simply a graphical
representation of an FM typically represented as an And-Or tree with nodes as
features. An FM can include constraints that further clarify dependencies among
features.

An FM can be represented in at least two ways: as a feature diagram, or a
textual form. In addition, a SPL tool might internally translate a FM represen-
tation to a propositional formula so that it can, for example, verify the validity of
a model, and perform various computations on an FM to support, for example,
reasoning and composing operations [7, 14, 33]. Transforming an FM from one
representation to another should preserve the hierarchy and constraints in their
original form. Each product of a SPL corresponds to a valid configuration of an
FM. A configuration is obtained by selecting and unselecting features in an FM.
A feature model thus defines a set of valid feature configurations. The validity of
a configuration is determined by the semantics of a feature model. For example,
in Figure 1, screens with sizes 13.3” and 17” are mutually exclusive and cannot
be selected at the same time. Similarly, more expensive laptops (i.e., those with
17” screens) must include a warranty meaning that all laptops with 17” screens
will also come with the warranty.

As feature models are rapidly emerging as a viable and important systems
development tools, they are also becoming increasingly complex. Managing FMs
of industrial size is a labor-intensive and error-prone process.

2.2 FAMILIAR

To meet the requirement of handling large and complex FMs in a scalable way,
the domain-specific modeling language FAMILIAR was developed [2–4, 16]. FA-
MILIAR is an executable scripting language that has the built-in capability

2 For brevity, feature names used in a Laptop FM are abbreviated to combination of
letters, underlined in the Feature Diagram example given in Figure 1.

Evaluating the Usability of a Visual Feature Modeling Notation 125

Fig. 1. Example of a Laptop FM with different FM notations

to compose and decompose feature models, and also to manipulate and rea-
son about FMs. FAMILIAR allows stakeholders to describe domain concepts in
terms of commonalities and variabilities within a family of software or product
systems. Feature models are typically passed in to the FAMILIAR interpreter in
a textual notation. In addition, the FAMILIAR language can interpret a script
in order to perform a sequence of operations on feature models. Such scripts are
reusable.

One of the most powerful characteristics of the FAMILIAR language is its
set of composition operators that are designed for supporting the separation of
concerns in feature modeling. To the best of our knowledge, FAMILIAR is the
only SPL modeling environment capable of working with multiple FMs. As a
part of the work presented in this paper, we enhanced FAMILIAR to support
FM visualization.

3 Designing the New FAMILIAR Tool

Our goal was to develop an extension of the previous FAMILIAR framework
which (1) supports visualization of FMs, (2) provides a configuration editor,
(3) enables the persistence of FMs, and (4) embeds the text-based console. The

126 A. Jakšić et al.

new FAMILIAR Tool [23] would provide an integrated modeling environment
within the FAMILIAR framework without requiring the use of any other IDEs
(e.g., Eclipse) or plugins. In addition, the tool would still expose all of the original
de/composition, reasoning, editing, scripting, interoperability and other facilities
of the FAMILIAR language.

3.1 Visualization of Feature Models

Since our development platform was Eclipse with a Java legacy code base, we
considered only the visualization kits available on Java platforms such as Zest,
JUNG, Prefuse, Protovis, SWT, and GEF. We chose to use Prefuse, a graphical,
open source library designed to support the development of interactive visual-
izations. The architecture of Prefuse utilizes the Visualization Pipeline, which
decomposes a design into a piped process of (1) representing abstract data, (2)
mapping data into intermediate, visualizable form, and (3) using these visual
constructs to provide interactive views. The intent is to improve scalability and
representational flexibility. In addition, this separation of concerns supports mul-
tiple views, semantic zooming, data and visual transformations, and fine grained
customizations [19].

Fig. 2. Example of a visualized FM rendered by the FAMILIAR Tool

The main window of the FAMILIAR Tool (Figure 2) has two components:
The visual section (upper frame) and the embedded console section (bottom
frame). FMs that are displayed in the visual section are read from and written

Evaluating the Usability of a Visual Feature Modeling Notation 127

directly to the FAMILIAR environment. Similarly, textual commands that are
issued either interactively through the embedded console or by running a script,
are written to the same FAMILIAR environment. Any model update, no matter
how it is done (i.e., visually, interactively through command console or through
script execution), always keeps the FMs in a fully synchronized and consistent
states.

A user can choose to create a new feature model, import a FM from another
SPL tool, or load an FM saved in a previous session. A user can create a new
FM using (1) interactive pop-up menus, (2) the embedded text console, or (3) a
script. An FM is displayed and accessed under a single tab. Executing a script
that, among other things, creates several feature models, would create several
tabs, each of them containing a pre-loaded feature model. Closing a tab would
not remove its associated feature model from the environment, rather, it would
unload it.

Integration with the FAMILIAR’s interpreter was achieved by forwarding
down the system’s Java input stream (text-based commands) from the embed-
ded console (GUI control) to the FAMILIAR framework, and by redirecting
the system output streams back to the same GUI control. This way, the em-
bedded FAMILIAR console, which is part of tool (bottom part of the main
application dialog shown in Figure 2) behaves the same way, syntactically and
semantically, as the old standalone text-based tool. Any action that is commit-
ted directly through the embedded console control is automatically rendered in
loaded graphical FMs. This required maintaining a one-to-one mapping among
three internal FM model representations: (1) an FM environment variable with
its associated AST model of a feature diagram, (2) a visual FM object with its
associated Prefuse interactive view model, and (3) in-memory representation of
the serialized FM to XML storage.

We also integrated the existing FeatureIDE FAMILIAR plugin command (i.e.
“gdisplay” command) that is used for visualizing feature models within the
Eclipse IDE environment. This was achieved through the observer pattern. For
example, once the FAMILIAR interpreter detects a “gdisplay” statement, it cre-
ates an observer handler as well as an observable event source with the feature
model variable name. Then, it subscribes the observer handler event to the event
source. Finally, this observable event is handled at the GUI level by loading an
appropriate feature model variable that corresponds to the given feature model
variable name.

The Configuration Editor is implemented as an interactive Java tree control
that represents an FM with its set of selected and/or deselected features. A
feature is allowed to be selected or deselected only when the FM’s propositional
formula is satisfiable.

3.2 FAMILIAR’s New Architecture

As depicted in Figure 3, the improved FAMILIAR environment now encompasses
three main layers:

128 A. Jakšić et al.

Framework: This is the cornerstone of the FAMILIAR language. The frame-
work specifies the language grammar and builds an internal abstract syntax
tree (AST) structure. The interpreter uses 3rd party off-the-shelf solvers
(BDD and SAT) to check satisfiability of an FM’s propositional formula. It
also provides rich semantics for FM composition operators (aggregate, merge,
and insert) as well as decomposition operators (slice). Finally, it exposes its
functionality through a non-public Java API interface, which is used by the
UI layer.

UI Layer: This layer exposes the framework to an user. There are three ways
that FAMILIAR can currently be used: (1) As a new FAMILIAR Tool which
integrates the Prefuse visualization framework with FM Editor, Configura-
tion Editor and an embedded console into unique modeling standalone envi-
ronment, (2) as the legacy text-based console and (3) as an Eclipse Plugin.

Converters/Bridges: This layer integrates several converters and bridges that
allow for integration with other SPL languages and notations.

Fig. 3. FAMILIAR environment with the addition of the GUI tool

4 Evaluating the Usability

Usability does not exist in any absolute sense. Rather, it would make sense only
to define it with reference to particular contexts. ISO 9241 [1] defines usability in

Evaluating the Usability of a Visual Feature Modeling Notation 129

terms of the quality of use as the “effectiveness, efficiency and satisfaction with
which specified users achieve specified goals in particular environments”. Bevan
[8] uses this standard to describe a method called MUSiC (Metrics for Usability
Standards in Computing) for specifying the context of use when measuring user
effectiveness, efficiency, and satisfaction. The context needs to define who the
intended users of the system are, the tasks those users will perform with it, and
the characteristics of the organizational or social environment in which it will
be used. This method seems particularly suitable for our evaluation since (1) it
focuses on usability attributes that we are interested in measuring, and (2) it
relies on an industrial standard, ISO 9241.

We chose to do a formal experiment since we needed to impose control over
the variables that can affect the study outcomes. In addition, we need to be able
to achieve replication in an environment where both the difficulty of control and
the cost of replication are fairly low.

4.1 Goal, Research Questions, and Context

We formulate the goal of the FAMILIAR Tool evaluation using the Goal-Question
Metric (GQM) template [36] as follows:

Goal: Evaluate the FAMILIAR Tool to better understand the impact on usabil-
ity aspects of implementing feature model visualizations on the FAMILIAR
language from the viewpoint of modelers.

Based on this goal, we focus on the following research questions:

RQ1: Does visualization of feature models help modelers to create FMs of better
quality?

RQ2: Does visualization of feature models help modelers to manage FMs with
better efficiency?

RQ3: Does visualization of feature models help modelers to manage FMs with
better effectiveness?

The context selection represented situations where SPL practitioners created
new FMs. The controlled experiment was conducted within two groups of gradu-
ate Computer Science students with a total of 16 participants from two countries,
United States and France. The first group involved 3 graduate Ph.D. students
that are under Dr. Robert France’s supervision at the Colorado State University
(CSU). The second group involved 13 Masters and Ph.D. students that took a
graduate SPL course taught by Dr. Philippe Collet, at the University of Nice,
Sophia Antipolis (UNS). The UNS participants, a larger sample, formed the
treatment group by working only with the new FAMILIAR Tool (Visual). On
the other hand, CSU participants formed the control group by working only with
the legacy standalone tool (Text-based).

130 A. Jakšić et al.

4.2 Hypothesis Formulation

Graphical modeling proponents claim that presenting models in a visualized form
helps the user grasp the information landscape more quickly and intuitively. We
seek to test this claim in the context of feature modeling.

Hypothesis: Using the FAMILIAR Tool with visualized feature models yields
higher FM quality, user effectiveness, and efficiency than using the same tool
with text only mode, when creating new FMs.

4.3 Experiment Design

Participants were asked to go through several stages before they ran the main
experiment scenario. These stages involved the following: (1) Basic training on
SPL, Feature Modeling, and the FAMILIAR language, (2) configuring the FA-
MILIAR environment in preparation for the experiment, and (3) the experiment
session.

First, we provided minimal overview of SPL, Feature Modeling, and a brief
introduction to the FAMILIAR language and its environment. The training pro-
vided was at the very basic level, and students did not spend more than one
hour before starting the experiment sessions. Second, preparation for the exper-
iment involved getting the FAMILIAR environment properly configured. Finally,
the experiment session was no longer than 55 minutes, and it consisted of two
sub-tasks (3.1) analyzing the on-line configurator for Audi cars, and then (3.2)
modeling it by creating a new FM file for the Audi configurator. Students were
asked to work at their own pace, independently of one another. They were also
required to record all of their interactions with the tools during the experiment
session. By doing this, we could accurately measure the number of modeling
tasks that users successfully completed, the accuracy with which users com-
pleted tasks (i.e., some quantification of the errors), the duration of tasks, users’
learning of the interface, and finally, asses quality of FMs created, and calculate
user efficiency and effectiveness.

4.4 Experiment Objects and Variables

There was one independent variable and three target variables as shown in Ta-
ble 1. The treatment object is the group that used the new FAMILIAR Tool
and worked with visualized FMs (V-group). The control object is the group that
used a legacy FAMILIAR console and worked with textual FMs (T-group). Since
V-group is compared to T-group regarding its FM quality as well as user effec-
tiveness and efficiency, choice of the used tool is the independent variable and
FM quality, user effectiveness, and user efficiency are the dependent variables.

Dependent Variable - FM Quality: According to the MUSiC method, qual-
ity is a measure of the degree to which the output achieves the task goals. For the
purpose of this experiment, quality is expressed in terms of a final FM quality.
Table 2 breaks down the criteria that we used to assess the quality of an FM.

Evaluating the Usability of a Visual Feature Modeling Notation 131

Table 1. Experiment variables

Independent
Variable

Dependent
Variables

Scale of
Measurement

Used Tool
FM Quality Ordinal
User Effectiveness Ordinal
User Efficiency Ordinal

Table 2. FM quality

Quality Assigned
Weight

Description

Poor 0.2 FM cannot be properly parsed by the tool (i.e., model con-
tains an inconsistent and/or an invalid element(s), or simply
it is not syntactically well-formed).

Satisfactory 0.4 FM is properly loaded by the tool but lacks majority of fea-
tures and/or groups.

Good 0.6 FM is mostly complete (i.e., includes various Audi model
lines) and has neither inconsistencies nor invalid elements.

Very good 0.8 FM includes a comprehensive features set but might fail to
accurately represent certain group dependencies (e.g., used
AND-group when XOR-group would be more appropriate).

Excellent 1.0 FM includes a comprehensive features set, and provides a
solid foundation for further breaking down the model as an
SPL artifact. Different feature groups, dependencies and con-
straints were used in terms of both quantity and quality. (i.e.,
this FM, if offered with an online configurator, has enough
details to allow a customer to produce a model of a custom
Audi car tailored for her needs).

Dependent Variable - User Effectiveness: To assess user effectiveness, we
defined a quantity that is a measure of the amount of a task completed by a user.
It is defined as the proportion of the task goals accomplished, as represented in
the output of the task. For the purpose of this experiment, the quantity reflects
a measure of FM completeness in terms of the number of features, number of
constraints, valid configurations and FM depth. Each of those four categories
contributes 25% of a total quantity value. Table 3 shows how we calculated
quantity as a measure of FM completeness.

The quantity is expressed as a number between 1 and 100 where 1 represents
the least complete FM, and 100 represents the most complete FM. Note that
the quantity measure does not (and should not) reflect the quality of an FM.
Finally, the user effectiveness is given as a percentage, and is calculated using
the following formula:

UserEffectiveness = (FMQuantity ∗ FMQuality)%

Dependent Variable - User Efficiency: Note that the user effectiveness
does not take into account the time required to complete a given task. The user

132 A. Jakšić et al.

Table 3. FM completeness

Category Assigned Weight Description

of features

0.25 Up to 29 features
0.50 30-39 features
0.75 40-49 features
1 50 or more

of constraints

0.25 1 constraint
0.50 2-3 constraints
0.75 3-4 constraints
1 5 or more

Valid configs

0.25 Up to 100 or above 25k
0.50 Up to 4999 configs
0.75 Up to 9999 configs
1 Between 10k and 25k

FM Depth

0.25 Depth of 1
0.50 Depth of 2
0.75 Depth of 3
1 Depth of 4 or more

efficiency calculation does include the time component. The user efficiency is
calculated using the following formula:

UserEfficiency =
UserEffectiveness

ScenarioT ime

Therefore, the user efficiency measures the user effectiveness in terms of time
it takes to complete a task. The higher this number is the more efficient this
user is relative to other users.

5 Experimental Results

We used the Small Stata 12.1 package to perform a statistical analysis and chart
all of the graphs shown in this section. Table 4 shows the main experiment data.

The last three columns (dependent variables) are determined by the study
methodology as described in Section 4.4.

5.1 Observations

Figure 4 shows the box plots for all three dependent variables FM Quality,
Effectiveness and Efficiency, grouped by the tool used (T-group and V-group).
The box plots show that T-group has no outliers, and the V-group has 2. The
medians are indicated by the diamonds. The median values for all dependent
variables are higher for V-group than T-group. Each of the box plots illustrates a
different skewness pattern. It appears that the Effectiveness in particular exhibits
a non-symmetric distribution which might imply non-normal data.

Evaluating the Usability of a Visual Feature Modeling Notation 133

Table 4. Summarized experimental results

Group Time (min) # of user errors # of
features
created

FM quality User
Effec-
tiveness

User
Effi-
ciency

V 24.8 10 38 0.8 55% 0.53

V 11.4 1 23 0.4 23% 0.48

V 18.6 3 44 0.4 18% 0.23

V 16.2 3 37 0.4 13% 0.19

V 45.2 42 48 1.0 75% 0.40

V 25.3 12 39 0.4 18% 0.17

V 20.2 8 26 0.4 15% 0.18

V 29.0 12 71 0.6 38% 0.31

V 12.4 4 37 0.4 23% 0.44

V 19.8 4 54 0.6 34% 0.41

V 13.6 0 46 0.6 30% 0.53

V 6.8 7 27 0.4 10% 0.36

V 5.8 3 27 0.4 18% 0.72

T 30.8 1 51 0.2 15% 0.12

T 9.9 5 17 0.4 15% 0.36

T 16.4 25 10 0.2 13% 0.18

Fig. 4. Box plots of dependent variables, by group

134 A. Jakšić et al.

Table 5. Median values of dependent variables, by group

Group FM Quality User Effectiveness User Efficiency

V 0.4 23% 0.40

T 0.2 15% 0.18

In addition to Figure 4, Table 5 shows the calculated median values for all
dependent variables by group.

We are not concerned with averages since they do not make sense for ordinal
data. Based on our small sample data, there is evidence that participants who
used the visualized SPL tool did better than participants who used the text-
based tool in terms of all three categories: FM quality, user effectiveness and user
efficiency. For example, 2 out of 3 participants from T-group failed to produce a
valid FM, whereas all of 13 participants from V-group produced valid FMs that
could be independently verified after the experiment was completed. However,
we need to determine whether this difference in medians between two groups is
statistically significant before we can make stronger experiment conclusions.

Figure 5 shows correlation between a number of features in an FM and its
impact on an FM quality. It appears that, for the text-based tool, more features
in a model tend to reduce overall quality of an FM. This might make sense since
the larger textual models require increased cognitive efforts on the user side.
However, the visual tool demonstrates the opposite tendency: More features
in an FM in general lead to a slight linear increase of FM quality. Unlike the
T-group users, the participants who worked with visualized FMs did not have
to deal with the increased cognitive load necessary due to cumbersome, non-
human friendly, text models. Rather, they could dedicate more of their cognitive
processing power on tasks that would yield higher model quality.

The next question that we need to answer is whether the data come from
normal distributions. Unfortunately, our samples are very small. We use the
Shapiro-Wilk W test for normal data with a P-value of 0.05 as a cutoff.

The lower the P-value is, the smaller the chance that the sample data comes
from a normal distribution. Figure 6 shows that only the P-value of Effectiveness
is lower than 0.05, which means that its sample deviates from normality.

Our experimental design uses one independent variable with two levels (in-
dependent groups V and T). In addition, the scale of measurement for all three
dependent variables is ordinal, and the picture is mixed when it comes to distri-
bution of the data. Because of all of this, we decided to use the Mann-Whitney
Rank Sum Test (also known as Wilcoxon Rank Sum Test) for the statistical anal-
ysis of the experimental results. It is a non-parametric test for comparing two
groups which does not assume anything about data normality. Essentially, the
run-sum test attempts to provide a statistical answer to the question of whether
the two population distributions are different. Another advantage of this test is
that it is not sensitive to outliers. This is an important consideration for the
experiment analysis, since it relies on a very small population sample (13 from
V-group and 3 from T-group, 16 valid samples in total) with 2 outliers.

Evaluating the Usability of a Visual Feature Modeling Notation 135

Fig. 5. Scatter plot that correlates a number of features in an FM and its impact on
a FM quality

Fig. 6. Shapiro-Wilk W test for normal data

The two-sample rank-sum tests the null hypothesis that two independent sam-
ples are from populations with the same distribution. With only 16 observations,
the departure would have to be substantial to reject the uniform null hypothesis.
We used the “porder” option of the rank sum command to calculate this depar-
ture, that is, the probability that a random draw from the first sample (T-group)
is larger than a random draw from the second sample (V-group). The probabil-
ities for FM Quality, Effectiveness and Efficiency were 10.3%, 16.7% and 17.9%
respectively. The finding was that the two-sample rank-sum tests for all three
variables rejected the null hypothesis meaning that there is significant statistical
difference between the group that used text-based tool and the group that used
visual tool.

136 A. Jakšić et al.

5.2 Summary

In this experiment, we evaluated the impact of the new tool on novice SPL practi-
tioners when working with relatively small FMs. The experiment results provide
some evidence that FM visualizations can be beneficial. The users not only au-
thored FMs of a higher quality but also consistently demonstrated improved
productivity expressed in terms of user effectiveness and efficiency. However,
further research is required to identify whether this outcome still holds for SPL
experts working with FMs on a larger scale.

6 Threats to Validity

6.1 External Validity

Our evaluation is based on the assumption that we were measuring effects of
working with representative FMs that model a real-world artifact. However, the
models created as a part of this experiment came from the academic environ-
ment, and there is no guarantee that they share characteristics with industrial
FMs. The majority of published FMs have a couple of hundred features at most.
The number of features we saw in the experimental FMs ranged from the 20s to
the 70s. One of the largest documented FM is the feature model of a Linux kernel
[32] with over 5500 features, and thousands of constraints. An FM of this scale
would clearly pose a responsiveness challenge to the FAMILIAR language in its
current state; we will continue to work on improving performance of FAMILIAR
when applied to very big FMs.

Since this experiment was conducted in two geographic locations, and we had
limited resources with time constraints, we could not afford to ask both groups to
evaluate both tools. Originally, we wanted to use the blocking technique as a part
of our experimental design and rotate the groups, asking each group to replicate
the experiment with another tool. However, this turned out to be time consuming
and we had to adopt a smaller-scale option. As a consequence, the V-group,
which happens to have somewhat better exposure to SPL and Feature Modeling,
served as our treatment group working with visualized FMs. This created the
specific situation of the experiment that might limit its generalizability. In order
to mitigate this risk, we made sure to provide the same introductory training on
SPL, Feature Modeling and FAMILIAR to all the participants in each group.

The experiment is conducted exclusively with novice modelers thus limiting
its generalizability.

6.2 Internal Validity

A selection bias risk might be introduced when differences between variable
groups interact with the independent variables and thus interferes with the ob-
served outcome.

Since we used two tools from the same FAMILIAR environment, we miti-
gated the tool selection bias risk when evaluating the effect of presenting FMs

Evaluating the Usability of a Visual Feature Modeling Notation 137

(e.g., visual vs. textual form). Similarly, all participants were alike (e.g., grad
CS students, novice SPL practitioners) with regard to the independent variable.

Repeatedly attempting to perform FM creation during the experiment session,
would eventually teach participants to create better FMs in less time. We im-
posed the restriction of allowing only one session with the tool (with no allowed
repetitions), regardless of its outcome.

6.3 Construct Validity

The most significant threat to the construct validity of the experiment is that
all of our dependent variables use an ordinal scale. Does the experimental data
provide accurate measurements of what it is intended to measure? According to
[22], there are several notable threats caused by the ordinal scale measurement.
For example, the ordinal labels could be inconsistently interpreted among dif-
ferent users. In addition, the distance between the different labels of an ordinal
scale might not present a clear comparison between the significance of various
ordinal labels. Taken together, these problems could have impacted the construct
validity of the FAMILIAR Tool evaluation.

In order to mitigate this threat we used the statistical techniques that respect
the specifics of ordinal data. Our analysis therefore focused on summarizing the
central tendencies and statistical significances rather than trying to come up
with exact metrics.

7 Related Work

Several previous works consider the importance of software visualization in the
context of SPLE, especially for the configuration management phase. Pleuss et
al. [29] identify and analyze benefits of the existing software visualization tech-
niques such as feature trees, decision trees, tree maps, and cone trees. Similarly,
Cawley et al. [10] combine principles from cognitive theory and visualization
techniques. Schneeweiss et al. [30] introduce an interactive technique, the “Fea-
ture Flow Maps”, which combines tree-oriented feature models and flow map
visualizations. Thiel et al. [34] provide summary on techniques, tools and means
to support variability through visualization. Janota et al. [24] describe the con-
cept of providing better tool support in an interactive configuration scenarios
where users work from one complete configuration to another by adapting only
those features that are important to them. The work presented in this paper
is complementary with their work since they both aim to reduce the cognitive
complexity of large FMs. The difference is that in their work authors investi-
gated interactive forms of visualization whereas we explored the combination
of text-based and graphical FM representations to improve usability and model
quality.

8 Conclusions and Future Work

In this paper we presented an extension of a textual DSML for feature modeling
and an evaluation of the resulting development environment. The evaluation

138 A. Jakšić et al.

aimed at answering the question: Does the lack of support for visualizing FMs in
FM development tools hinder the usability of these tools when managing multiple
and large FMs during modeling sessions?

We found evidence that using the new FAMILIAR Tool with visualized FMs
resulted in an increased cognitive efficiency and effectiveness of novice practi-
tioners which also led to the improved quality of FMs they created. To the
best of our knowledge, this is the first work which describes and evaluates com-
bined graphical-textual tooling for feature modeling. Having essentially the same
underlying environment for both FAMILIAR tools allowed us to observe the po-
tential benefits of FM visualization, without interfering differences that would
likely arise from using different tools. However, an experiment on a larger scale
would be required to identify whether this outcome would hold for SPL experts
that work with larger and scripted FMs.

A larger scale experiment is thus in our immediate future work plan. The
FAMILIAR language has capabilities to manipulate several FMs, to write scripts
that inputs and outputs FMs and other relevant types such as configurations.
We also want to investigate appropriate visual support when dealing with these
operations. To do so, we plan to provide feature diagram visualizations with a
more compact form using aggregated values and indicators. In the longer term,
we want to tackle issues related to the evolution of feature models, as well as
relationships between several FMs, as in multiple software product lines. We
expect these advances to provide support and insights for a better and wider
usage of feature modeling in software product line engineering.

References

1. ISO 9241-11: Ergonomic requirements for office work with visual display terminals
(VDTs) - part 11: Guidance on usability. Tech. rep., International Organization
for Standardization, Geneva (1998)

2. Acher, M.: Managing Multiple Feature Models: Foundations, Language and Ap-
plications. Ph.D. thesis (2011)

3. Acher, M., Collet, P., Lahire, P., France, R.: FAMILIAR: A Domain-Specific Lan-
guage for Large Scale Management of Feature Models. Science of Computer Pro-
gramming (SCP) Special Issue on Programming Languages, 55 (December 2012)

4. Acher, M., Collet, P., Lahire, P., France, R.: Familiar: A domain-specific language
for large scale management of feature models. Science of Computer Programming
(SCP) Special Issue on Programming Languages 78(6), 657–681 (2013)

5. Asikainen, T., Männistö, T., Soininen, T.: Using a configurator for modelling and
configuring software product lines based on feature models. In: Workshop on Soft-
ware Variability Management for Product Derivation, Software Product Line Con-
ference, SPLC3, pp. 24–35 (2004)

6. B ↪ak, K., Czarnecki, K., W ↪asowski, A.: Feature and meta-models in clafer: Mixed,
specialized, and coupled. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE
2010. LNCS, vol. 6563, pp. 102–122. Springer, Heidelberg (2011)

7. Batory, D.S.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005)

Evaluating the Usability of a Visual Feature Modeling Notation 139

8. Bevan, N.: Measuring usability as quality of use. Software Quality Journal 4(2),
115–130 (1995)

9. Britton, C., Jones, S.: The untrained eye: how languages for software specification
support understanding in untrained users. Human–Computer Interaction 14(1-2),
191–244 (1999)

10. Cawley, C., Healy, P., Botterweck, G.: A discussion of three visualisation ap-
proaches to providing cognitive support in variability management (2010)

11. Classen, A., Boucher, Q., Heymans, P.: A text-based approach to feature modelling:
Syntax and semantics of TVL. Science of Computer Programming, Special Issue
on Software Evolution, Adaptability and Variability 76(12), 1130–1143 (2011)

12. Classen, A., Boucher, Q., Heymans, P.: A text-based approach to feature mod-
elling: Syntax and semantics of {TVL}. Science of Computer Programming 76(12),
1130–1143 (2011),
http://www.sciencedirect.com/science/article/pii/S0167642310001899 ,
Special Issue on Software Evolution, Adaptability and Variability

13. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Ap-
plications. Addison-Wesley (2000)

14. Czarnecki, K., Wasowski, A.: Feature diagrams and logics: There and back again.
In: SPLC 2007, pp. 23–34. IEEE (2007)

15. Deursen, A.V., Klint, P.: Domain-specific language design requires feature descrip-
tions. Journal of Computing and Information Technology 10(1), 1–17 (2002)

16. FAMILIAR: FeAture Model scrIpt Language for manIpulation and Automatic Rea-
sonning, http://familiar-project.github.io/

17. Ferber, S., Haag, J., Savolainen, J.: Feature Interaction and Dependencies: Mod-
eling Features for Reengineering a Legacy Product Line, pp. 37–60 (2002),
http://dx.doi.org/10.1007/3-540-45652-X_15

18. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: 2007 Future of Software Engineering, FOSE 2007, pp. 37–54. IEEE
Computer Society, Washington, DC (2007),
http://dx.doi.org/10.1109/FOSE.2007.14

19. Heer, J., Card, S.K., Landay, J.A.: Prefuse: a toolkit for interactive information
visualization. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 421–430. ACM (2005)

20. Heinz, M., Levin, J.R.: Knowledge acquisition from text and pictures. Elsevier
(1989)

21. Hubaux, A., Boucher, Q., Hartmann, H., Michel, R., Heymans, P.: Evaluating a
textual feature modelling language: Four industrial case studies. In: Malloy, B.,
Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 337–356.
Springer, Heidelberg (2011)

22. Hubbard, D., Evans, D.: Problems with scoring methods and ordinal scales in risk
assessment. IBM Journal of Research and Development 54(3), 2–10 (2010)

23. Jakšić, A.: Familiar tool v1.0.5 (beta) - demo (2014),
http://www.screencast.com/t/BdPgI8yF17Y/

24. Janota, M., Botterweck, G., Marques-Silva, J.: On lazy and eager interactive re-
configuration. In: Proceedings of the Eighth International Workshop on Variability
Modelling of Software-Intensive Systems, VaMoS 2014, pp. 8:1–8:8. ACM, New
York (2013), http://doi.acm.org/10.1145/2556624.2556644

25. Javier, F., Garcia, P., Laguna, M.A., Gonzalez-carvajal, Y.C., Gonzalez-baixauli,
B.: Requirements variability support through mdd and graph transformation

http://www.sciencedirect.com/science/article/pii/S0167642310001899
http://familiar-project.github.io/
http://dx.doi.org/10.1007/3-540-45652-X_15
http://dx.doi.org/10.1109/FOSE.2007.14
http://www.screencast.com/t/BdPgI8yF17Y/
http://doi.acm.org/10.1145/2556624.2556644

140 A. Jakšić et al.

26. Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: Form: A feature-oriented
reuse method with domain-specific reference architectures. Annals of Software En-
gineering 5(1), 143–168 (1998)

27. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (foda) feasibility study. Tech. rep., DTIC Document (1990)

28. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand
words. Cognitive Science 11(1), 65–100 (1987)

29. Pleuss, A., Rabiser, R., Botterweck, G.: Visualization techniques for application in
interactive product configuration. In: Proceedings of the 15th International Soft-
ware Product Line Conferencepp, SPLC 2011, vol. 2, pp. 22:1–22:8. ACM, New
York (2011), http://doi.acm.org/10.1145/2019136.2019161

30. Schneeweiss, D., Botterweck, G.: Using flow maps to visualize product attributes
during feature configuration. In: SPLC Workshops, pp. 219–228 (2010)

31. Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5), 19–
25 (2003), http://dx.doi.org/10.1109/ms.2003.1231146

32. Sincero, J., Schröder-preikschat, W.: The linux kernel configurator as a feature
modeling tool (2008)

33. van der Storm, T.: Variability and Component Composition. In: Dannenberg, R.B.,
Krueger, C. (eds.) ICOIN 2004 and ICSR 2004. LNCS, vol. 3107, pp. 157–166.
Springer, Heidelberg (2004),
http://www.springerlink.com.gate6.inist.fr/content/k3nlvkm5uqj425x3

34. Thiel, S., Cawley, C., Botterweck, G.: Visualizing software variability. In: Capilla,
R., Bosch, J., Kang, K.C. (eds.) Systems and Software Variability Management,
pp. 101–118. Springer (2013)

35. Winn, W.: Learning from maps and diagrams. Educational Psychology Re-
view 3(3), 211–247 (1991)

36. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Ex-
perimentation in software engineering. Springer (2012)

http://doi.acm.org/10.1145/2019136.2019161
http://dx.doi.org/10.1109/ms.2003.1231146
http://www.springerlink.com.gate6.inist.fr/content/k3nlvkm5uqj425x3

A Metamodel Family for Role-Based Modeling

and Programming Languages

Thomas Kühn, Max Leuthäuser, Sebastian Götz,
Christoph Seidl, and Uwe Aßmann

Technische Universität Dresden
Software Technology Group, Dresden, Germany

{thomas.kuehn3,max.leuthaeuser,christoph.seidl,
uwe.assmann}@tu-dresden.de, sebastian.goetz@acm.org

Abstract. Role-based modeling has been proposed almost 40 years ago
as a means to model complex and dynamic domains, because roles are
able to capture both context-dependent and collaborative behavior of
objects. Unfortunately, while several researchers have introduced the no-
tion of roles to modeling and programming languages, only few have
captured both the relational and the context-dependent nature of roles.
In this work, we classify various proposals since 2000 and show the dis-
continuity and fragmentation of the whole research field. To overcome
discontinuity, we propose a family of metamodels for role-based mod-
eling languages. Each family member corresponds to a design decision
captured in a feature model. In this way, it becomes feasible to generate a
metamodel for each role-based approach. This allows for the combination
and improvement of the different role-based modeling and programming
languages and paves the way to reconcile the research field.

1 Introduction

Role-based modeling has been proposed in 1973 by Charles W. Bachman [2] as a
means to model complex and dynamic domains, because roles are able to capture
both context-dependent and collaborative behavior of objects. Consequently,
they were introduced in various fields of research ranging from data modeling [2,
31] via conceptual modeling [56, 26] through to programming languages [3, 35, 8].
Unfortunately, each of these approaches focuses on a specific field without taking
results of other fields into account.1 As a result, the years of research on role-
based modeling had almost no influence on software development practice. This
is troubling, because current software systems are characterized by increasing
complexity and context-dependence. Moreover, they are designed by means of
objects and references, introduced in 1967 [45].

Despite the fact that relationships and roles are represented in various do-
main modeling languages, e.g., the Entity-Relationship Model [13] and the Uni-
fied Modeling Language (UML) [52], their implementation is buried in classes

1 Please note that this work considers Role-Based Access Control (RBAC) [17] as a
special application for roles with a rather narrow scope.

B. Combemale et al. (Eds.): SLE 2014, LNCS 8706, pp. 141–160, 2014.
© Springer International Publishing Switzerland 2014

142 T. Kühn et al.

containing collections of references making their implementation overly complex
and error prone [53, 6]. The situation becomes even worse, if the domain model
requires that two unrelated objects take the same place in a relation, because the
developer must introduce a counter-intuitive super type for both objects [56].
Unfortunately, while several researchers have introduced the notion of roles to
programming languages [10, 8, 11, 37, 51], only few provide an underlying meta-
model for their context-dependent or relational roles. To make things worse,
only few approaches incorporate both the context-dependent and the relational
nature of roles, e.g., [46, 34]. In summary, the various approaches cannot be
combined easily because they lack a common metamodel.

This work classifies the various notions proposed since 2000 along 26 features
of roles and shows the apparent discontinuity and fragmentation of the whole
research field. We attribute this situation to the missing compatibility of the
various approaches. To cure this, we propose not only a single metamodel but a
family of metamodels for role-based modeling languages (RML). Each member
of the family corresponds to the 26 design decisions captured in a feature model.
In this way, it becomes feasible to generate a metamodel for two approaches
and then combine them by mapping their sibling metamodels to a merged meta-
model. This allows for the combination and improvement of the different RMLs
and paves the way to reconcile the research field.

This paper is structured as follows. Sect. 2 gives a general introduction to
modeling languages, roles, and feature modeling. Afterwards, Sect. 3 introduces
the classification scheme used in the next section (Sect. 4) to evaluate the various
approaches published since the year 2000. As a result of this evaluation, Sect. 5
introduces a metamodel family for RMLs to overcome the discontinuity and
fragmentation in the research field by providing a common source to model and
compose existing approaches. The discussion is concluded by highlighting the
related work (Sect. 6) and a summary and outlook to further research (Sect. 7).

2 Preliminaries

2.1 Elements of Modeling Languages

A modeling language has syntax (defining the notational aspects) and semantics
(defining the meaning) [32]. A metamodel can be seen as an explicit model
containing constructs and rules necessary to build more specific models within
a domain of interest. Hence, they are models of modeling languages describing
their abstract syntax. The Meta Object Facility (MOF) [49], for instance, assigns
data to the following four meta levels (see Fig. 1a). The instance level (M0)
encompasses concrete data. Models are located in the model level (M1). This
level covers, e.g., concrete instantiations of UML-models, logical data models
or process models that are defining data at M0. Metamodels like mentioned
above are contained in the metamodel level (M2). The most abstract level, the
meta-metamodel level (M3), is responsible for defining models at M2 and can
be bootstrapped by itself to prevent an infinite number of meta-levels.

A Metamodel Family for Role-Based Modeling and Programming Languages 143

(a) (b)

Fig. 1. Visualization of the Meta-Object Facility (a) and feature models (b)

2.2 Ontological Foundations of the Role Concept

To classify the role concept, two meta-predicates are sufficient: rigidity and de-
pendence [24]. Rigidity, as explained in [23], distinguishes properties that must
hold for all instances of a concept in every possible world. As an example for
the former, the concept Human is rigid, because each instance is necessarily
a human until it ceases to exist. The latter case is further described as anti-
rigidity by Guizzardi et al. [29], denoting properties that can cease to hold for
all instances of such a concept. Thus, a Customer is anti-rigid because every
instance may stop being a customer without ceasing to exist. Dependence, as
explained in [24], characterizes properties as being meaningful only in combi-
nation with a counter-property. Thus, a dependent property always demands
for another property against which it is semantically founded. For example, the
concept Customer is founded against the counter-concept Seller in the context
of a Shop.

Roles are defined as anti-rigid and dependent concept [24]. The anti-rigidity
characterizes the ability of roles to be played. The dependence characterizes the
need of roles to be defined as part of a context, which includes besides the role
itself at least one corresponding counter-role. In contrast to roles, naturals are
defined as rigid and independent concepts. Thus, naturals are not played, but
can serve as players for roles. In addition, naturals do not have to be part of
contexts as they do not require a counter-concept.

2.3 Feature Modeling

Modeling the variability of a certain domain has, among others, been studied in
the context of software product line engineering [14]. Here, an often used tech-
nique to capture variability is feature modeling [44]. Therein, a feature model
decomposes a domain’s concerns into interconnected features, which form a de-
cision tree. For this purpose, constraints can be defined between the features,
e.g., whether the existence of a feature is mandatory or if a set of features

144 T. Kühn et al.

mutually excludes each other. Fig. 1b depicts an exemplary feature model. It
comprises a single top feature (Example), which is decomposed into a single
optional feature (AbstractFeature) being subject to further decomposition. The
types of constraints and features used in this paper are shown in the legend of
this figure.

3 Classification of Role-Based Modeling Languages

After introducing the basic elements of modeling languages and the role concept,
this section presents a thorough analysis of the various Role-based Modeling Lan-
guages (RML) as well as Role-based Programming Languages (RPL) proposed
since the year 2000. We choose that year, because Friedrich Steimann published
a thorough analysis of RML in that year [56]. Additionally, he identified 15 fea-
tures of roles useful to classify and compare all subsequent approaches. Since
then, many modeling languages utilizing roles have been published. However,
only two applied Steimann’s classification scheme, namely [11] and [37]. Hence,
it is time for another thorough analysis and classification of the various contem-
porary approaches.

3.1 Steimann’s Features

Before we evaluate the literature body, we need to describe our classification
scheme. Therefore, we briefly recapitulate Steimann’s classification and intro-
duce additional features of roles retrieved from the contemporary literature.
The latter is crucial, because current approaches have shifted their focus to the
context-dependent nature of roles not included in Steimann’s classification.

In particular, it contains a list of 15 features attributed to roles by various
researchers [56, pp. 86-87]. This list, enumerated in Fig. 2, captures different
views on roles. Nevertheless, it has three major drawbacks, if it is used as a
classification scheme. First, as Steimann already admitted in [56, pp. 86], some of
the listed features are conflicting, e.g., Feature 14 and 15 querying whether a role
has a shared or its own identity. Second, there are implicit dependencies among
some of the features. Consider, for instance, an approach where roles have no
properties and behavior (Feature 1). Such an approach can never satisfy Feature
10, 11 and 13 depending on the structure of roles. Last, several features concern
different levels of the model hierarchy. Features 4, 5, 9, 10, 12, 14, and 15 only
apply to roles at runtime. Thus, these features cannot be applied to approaches
focusing solely on the model level (M1). Henceforth, we explicitly associate the
features to the levels they affect and, later on, will organize the features in a
feature model rather than a plain list. Nevertheless, this initial list of features
still proves useful as a classification scheme. However, it does not encompass
the view that roles can be used to model context-dependent properties [41] and
behavior [37, 50, 43].

A Metamodel Family for Role-Based Modeling and Programming Languages 145

1. Roles have properties and behaviors (M1, M0)
2. Roles depend on relationships (M1)
3. Objects may play different roles simultaneously (M1, M0)
4. Objects may play the same role (type) several times (M0)
5. Objects may acquire and abandon roles dynamically (M0)
6. The sequence of role acquisition and removal may be restricted (M1, M0)
7. Unrelated objects can play the same role (M1)
8. Roles can play roles (M1, M0)
9. Roles can be transferred between objects (M0)

10. The state of an object can be role-specific (M0)
11. Features of an object can be role-specific (M1)
12. Roles restrict access (M0)
13. Different roles may share structure and behavior (M1)
14. An object and its roles share identity (M0)
15. An object and its roles have different identities (M0)

Fig. 2. Fiedrich Steimann’s 15 classifying features, extracted from [56]

16. Relationships between roles can be constrained (M1)
17. There may be constraints between relationships (M1)
18. Roles can be grouped and constrained together (M1)
19. Roles depend on compartments (M1, M0)
20. Compartments have properties and behaviors (M1, M0)
21. A role can be part of several compartments (M1, M0)
22. Compartments may play roles like objects (M1, M0)
23. Compartments may play roles which are part of themselves (M1, M0)
24. Compartments can contain other compartments (M1, M0)
25. Different compartments may share structure and behavior (M1)
26. Compartments have their own identity (M0)

Fig. 3. Additional classifying features, derived from the literature

3.2 Additional Features

To include the new perspective on roles, this section gives a list of the features
attributed to roles that we have identified in the literature.

16. Relationships between roles can be constrained. If roles depend on relation-
ships, then it might be possible to further constrain them by intra-relationship
constraints [30, 8, 48], i.e., irreflectivity, total order or exclusive parthood.

17. There may be constraints between relationships. In contrast to feature 16,
this property suggests the existence of inter-relationship constraints, like the
subset constraint [31, 30, 10, 48].

18. Roles can be grouped and constrained together.Most approaches suggesting
to constrain roles [15, 11, 9] do not permit to group them and apply constraints
to a whole group of related roles as suggested in [60, 37].

Together, these three properties specify ways to constrain roles, but do not
account for their context-dependence. However, in this case, the use of the term
context leads to a dichotomy of its meaning. On the one hand, according to Anind

146 T. Kühn et al.

Dey [16], “context [represents] any information that can be used to characterize
the situation of an entity”. Thus, everything that can be attributed to an object
in a situation contributes to its context. On the other hand, within modeling
languages, context represents a collaboration or container of a fixed, limited
scope [19, 41, 50, 43]. To overcome this dichotomy, researchers avoided the term
context by using other terms, i.e., Environments [60], Institutions [4], Teams [36]
and Ensembles [34]. In turn, we use the term Compartment as a generalization
of these terms to denote an objectified collaboration with a limited number of
participating roles and a fixed scope2.

19. Roles depend on compartments. Most of the recent approaches agree that
roles are dependent on some sort of context. We call them compartments [36, 60,
4, 19, 41, 50, 43, 34]. A typical example of a compartment is a university, which
contains the roles Student and Teacher collaborating in Courses [37, 7, 47].

20. Compartments have properties and behaviors like objects [19, 41, 50, 43].
21. A Role can be part of several compartments [4, 60, 19, 46]. This property

suggests that a role (type) can be part of more than one compartment. Consider
again the role type Teacher. It can be used in different compartments, i.e., School
or University, where it might be implemented and constrained differently [4].

22. Compartments may play roles like objects. While most approaches use
compartments as a grouping mechanism, compartments can be seen as entities
similar to naturals being able to play roles, as well. This view is captured within
the metamodel for roles [19] and implemented in ObjectTeams/Java [37].

23. Compartments may play roles which are part of themselves. Continuing the
argument of feature 22, compartments might be allowed to play roles belonging
to the same compartments, as possible in [19, 37].3

24. Compartments can contain other compartments. In addition to the previ-
ous properties, three approaches allow compartments to contain other compart-
ments [37, 41, 42]. This nesting is proposed to further structure compartments
into smaller sub-compartments [37, 42] and, thus, enable the representation of a
university containing academic departments which in turn contain faculties.

25. Different compartments may share structure and behavior [40, 41]. This
means that definitions of compartments may inherit properties, features, roles,
and constraints from each other. However, to fully support inheritance and poly-
morphism of compartments, the rules of family polymorphism have to be ap-
plied [40].

26. Compartments have their own identity. This feature is acknowledged by
all approaches who treat compartments as first-class entities of the instance
level [60, 37, 46, 50, 42, 34]. Thus, this feature is a prerequisite for the existence of
compartments at runtime. However, it is an open question whether this identity
is unique or composed from the identities of the participating objects.

From this list, condensed in Fig. 3, it becomes apparent that researchers have
successfully applied the concept of roles to the domain of context-dependent (or

2 Note that compartments are defined top-down in the conceptual model whereas
contexts are built bottom-up from individual sensor readings.

3 This feature is described in §2.1.2 (b) of ObjectTeams/Java’s language definition [39].

A Metamodel Family for Role-Based Modeling and Programming Languages 147

context-aware) systems. This has led to a number of new features attributed
to roles affecting both model and instance level. Surprisingly, the definitional
dependence of roles [25] is still applicable to compartments representing the
definitional boundary and execution scope for their enclosing roles. Hence, the
first 18 features highlight the relational nature of roles whereas the last eight
emphasize the context-dependent nature of roles. As a result, this list is suitable
to further study and classify the various RMLs and RPLs.

4 Survey of Recent Approaches

After devising a proper classification scheme, this section applies it to survey
the various contemporary RMLs and RPLs. For that reason, we checked all role-
based modeling or programming language (excluding RBAC) published between
the year 2000 and 2014 by either IEEE, ACM, Springer or ScienceDirect. Addi-
tionally, only those approaches were selected that provided enough information
about their role model to actually apply our classification. In summary, we have
selected nine modeling languages ranging from data modeling via conceptual
modeling to architecture modeling and seven programming languages with ei-
ther relational or context-dependent roles. However, due to the fact that some
of the identified features of roles only affect the instance level (M0), such fea-
tures are not applicable to modeling languages defining conceptual models. For
programming languages, on the other hand, each feature is applicable because
they incorporate both the model and the instance level.

4.1 Modeling Languages

In the following, we investigate the various RMLs proposed for conceptual mod-
eling, data modeling, and generalization of the role concept.

For conceptual modeling Lodwick [56] is the first formal modeling language
for relational roles. Its formal definition includes natural types filling role types,
whereas the latter are placeholders in a binary relationship. However, roles are
only represented on the conceptual model and do not carry on to instances of
that model [56]. Onto-UML [28], on the other hand, is an ontologically founded
conceptual modeling language developed by Guizzardi et al. [29, 28] to overcome
the syntactical and semantical shortcomings of UML. The underlying Univer-
sal Foundational Ontology (UFO) [27] contains RoleTypes, RoleMixins, and Re-
lators ; and is used to annotate UML classes and relations with stereotypes.
Role mixins, however, are only used to model role types playable by unrelated
types [29]. In sum, both Lodwick and Onto-UML only deal with the creation
of formal conceptual models, but are neither concerned with the representa-
tion of roles at runtime nor context-dependent entities. In contrast to them, the
Helena Approach [34] incorporates both concerns. It was proposed by Hen-
nicker et al. [34] to specify the collaborative behavior of Ensembles of distributed
Components and designed to cope with the high dynamics of collaborative execu-
tions. Here, Ensemble Structures are reification of collaborations containing Role

148 T. Kühn et al.

Types defining the behavior of Components playing that role [34]. Additionally,
the communication between two roles is restricted by Role Connectors [34], i.e.
directed channels between two role types, similar to a relationship. Consequently,
their model not only captures both natures of roles in a simple model but also
the semantics by means of Labeled Transition Systems. Nevertheless, they missed
to specify the actual interaction between the player and its assuming roles.

In the field of data modeling, however, interactions are of no concern. Herein,
Object-Role Modeling (ORM) 2 [30] is the most mature fact-oriented data
modeling methodology. Roles, however, are only included as unnamed places
in binary relationships. Despite that, ORM provides a large number of avail-
able constraints for these relationships including role constraints, inter- and
intra-relationship constraints [30]. Nevertheless, it did not embrace the possible
flexibility provided by the role concept. This is different for the Information
Networking Model (INM) [46] designed to overcome the lack of classical RML
models to capture context-dependent information. Hence, INM introduces the
concept of Contexts to group Roles. While this approach allows to nest contexts
with attributes containing roles, INM cannot constrain the various kinds of re-
lations [46]. In sum, INM would be a good extension to ORM 2, if they were
compatible.

In contrast to the previous approaches, the following ones generalize the role
concept. The Generic Role Model [15], for instance, introduces a new inher-
itance relation, denoted role relationship, to permit dynamic changing classes,
multiple instantiation of the same class, and context-dependent access [15]. While
roles are mingled within the inheritance hierarchy on the model level (M1), they
are represented as adjunct objects on the instance level (M0) leading to object
schizophrenia [38]. On the down side, it does not account for the relational and
context-dependent nature of roles. The E-CARGO Model [60], on the other
hand, is a role-based model for computer-supported cooperative work (CSCW)
encompassing Agents playing Roles collaborating in Groups working on Ob-
jects in defined Environments [60]. Groups are used to arrange and manage
collaborating agents and their assumed roles [60], whereas environments, such
as contexts, specify the workspace of several groups and limit the number of
roles played simultaneously [60, Appendix]. Thus, the combination of groups as
collaborations and environments as their instantiation resemble compartments.
In sum, while the target domain is cooperative work, the underlying model is
applicable to role-based software systems as well. Similar to E-CARGO, Data
Context Interaction (DCI) [50] emphasizes context-dependent roles. Trygve
Reenskaug et al. [50] proposed this paradigm to point out that Data plays a
Role in Interactions encapsulated in Contexts [50]. In particular, objects serve
as data containers whose behavior is defined in roles part of a certain context.
The context manages the binding of role instances to data objects as well as
their interaction [50]. Additionally, several implementations of this paradigm
exist, e.g., in Scala [22]. One of the first Metamodel for Roles was proposed
by Genovese [19] in an attempt to define the most general definition of roles.
It incorporates both natures of roles and, thus, introduces Players, Roles and

A Metamodel Family for Role-Based Modeling and Programming Languages 149

Contexts on both the model and instance level together with relations denoting
which roles belong to which context and be filled by which player [19]. Further-
more, he introduced Sessions to specify the binding of attributes when roles
collaborate with one another in a context. Besides that, the only possibility to
adjust this general metamodel to a target language is to specify additional con-
straints to both model and instance level, which is only briefly discussed in [19].

4.2 Programming Languages

After focusing on RMLs, this section investigates contemporary RPLs. Notably,
most approaches are extensions to Java, which are either compiled to Java source
code [20, 33, 3, 9] or directly to bytecode [36]. Hence, we divide the discussion
into RPLs that support plain roles, relational roles, as well as contextual roles.

The first class of RPLs focuses solely on implementing objects playing roles.
Hence, Chameleon [20] features roles with so called constituent methods allow-
ing to overwrite methods of their players, which work like advices in Aspect-
oriented Programming (AOP). However, the major drawback of Chameleon is
the fact that roles extend their player to gain access to the player, which is
both conceptually wrong [56] and limits the flexibility of roles. Rava [33] over-
comes these issues by employing the Role-Object-Pattern [12] extended with the
Mediator-Pattern [18]. They use special keywords to steer the generation of the
necessary management code. Due to the use of the Role-Object Pattern and
generation to plain Java, this solution suffers from object schizophrenia [38].
JavaStage [9] eludes this problem, by only supporting static roles, i.e., the
roles are directly compiled into the possible players as inner classes. To avoid
name clashes, it employs a customizable method renaming strategy. Its main
advantages is the capability to specify a list of required methods instead of a
specific player class. Surprisingly, this approach limits itself to static roles unable
to represent their relational and context-dependent nature.

Consequently, we proceed with Rumer [8], which contributes relationships
as first class citizens and modular verification over shared state. Furthermore,
Balzer et al. [8] provide several intra relationship constraints usable to further
restrict these relationships. Roles, on the other hand, are the named places of
a relationship with attributes and methods but without inheritance. Despite
that, roles are only accessible within a relationship and not from their player.
Consequently, it is promising to combine this approach with another one with
context-dependent roles, described next.

The most sophisticated approach to context-dependent roles so far is Ob-
jectTeams/Java (OT/J) [36]. Similar to Chameleon above, OT/J allows to
override methods of their player by aspect weaving. Besides that, it introduces
Teams to represent compartments whose inner classes automatically become
roles. Notably, OT/J supports both the inheritance of roles and teams whereas
the latter leads to family polymorphism [40]. On the downside, it does neither
support multiple unrelated player types for a role type nor first class relationships
and only a limited form of constraints. This is similar to powerJava [3],
which also introduces compartments, denoted Institutions [3], whose inner

150 T. Kühn et al.

classes represent roles. However, PowerJava features the distinction between role
interface and role implementation where the former is callable from outside a
specific institution and the latter is the institution-specific implementation of the
same interface [1]. Both Rava and powerJava are the only research prototypes
providing a working compiler. Nonetheless, the project has been abandoned [59].
A more recent approach towards context oriented programming is NextEJ [42]
as the successor of EpsilonJ [54]. It provides Contexts as first class citizens which
do not only group roles but also represent an activation scope at runtime. These
context activation scopes can be nested and act as a barrier where all roles are
instantiated and bound automatically. So far, they only published their type-
system of the core calculus [43] and no compiler for NextEJ. Surprisingly, no
approach published so far included both relational and context-dependent roles.

4.3 Summary

After describing the various approaches, Table 1 shows the classification of the
previous RMLs and RPLs by investigating the number of fulfilled features. The
table lists the modeling and programming language approach in chronological
order. Each feature can be either fulfilled, not fulfilled, possible to fulfill or not
applicable. In detail, we have classified features possible to fulfill if they can
be fulfilled by reusing model elements but are not supported by the underlying
model, and not applicable if they only affect the instance level not treated by
the particular approach. In sum, it depicts the progress in the research field.

At a first glance the surveyed research field seams to advance over the years as
each approach increased the number of supported features. However, at a closer
look, the table indicates that the research field suffers from fragmentation and
discontinuity. The former denotes that each approach focuses solely on a specific
goal in a specific domain and do not take results of other related domains into
account. To make things worse, our evaluation indicates that more than half of
the approaches were unaware of the possible features of roles or other related
approaches. Moreover, the features of roles implemented in the various program-
ming languages were not transferred back to modeling languages and vice versa.
This might be the result of diversity or negligence in the research community.
Discontinuity, on the other hand, highlights the fact that each approach builds its
role concept from scratch. None of the investigated approaches reused either for-
mal models or metamodels as their basis for their approach. Moreover, solutions
to the representation of roles were not applied to other works but just rein-
vented. As a result, the various approaches for relational or context-dependent
roles cannot be combined easily because they neither share a common underlying
model nor a common understanding of roles. Apparently, there is no continuous
improvement or combination of previously proposed role-based languages.

In sum, these results are surprising, considering the foundations Steimann [56]
provided. The next section proposes a solution to the incompatibility of the
various approaches and thus tackles the discontinuity of the research field.

A Metamodel Family for Role-Based Modeling and Programming Languages 151

Table 1. Evaluation of role-based modeling and programming languages
F
ea
tu
re

L
o
d
w
ic
k

2
0
0
0
[5
6
]

G
e
n
e
r
ic

R
o
le

M
o
d
e
l

2
0
0
2
[1
5
]

O
R
M

2
2
0
0
5
[3
0
]

E
-C

A
R
G

O
M

o
d
e
l

2
0
0
6
[6
0
]

M
e
ta

m
o
d
e
l
fo

r
R
o
le
s

2
0
0
7
[1
9
]

IN
M

2
0
0
9
[4
6
]

D
C
I
(i
n

S
c
a
la
)

2
0
0
9
[5
0
]

O
n
to

-U
M

L
2
0
1
2
[2
8
]

H
e
le
n
a

A
p
p
r
o
a
c
h

2
0
1
4
[3
4
]

C
h
a
m

e
le
o
n

2
0
0
3
[2
0
]

O
T
/
J

2
0
0
5
[3
6
]

R
a
v
a

2
0
0
6
[3
3
]

p
o
w
e
r
J
a
v
a

2
0
0
6
[5
]

R
u
m

e
r

2
0
0
7
[8
]

N
e
x
tE

J
2
0
0
9
[4
2
]

J
a
v
a
S
ta

g
e

2
0
1
2
[9
]

1 � � � � � � � � � � � � � � � �
2 � � � � � � � � � � � � � � � �
3 � � � � � � � � � � � � � � � �
4 � � � � � � � ∅ � � � � � � � �
5 � � � � � ∅ � ∅ � � � � � � � �
6 � � � � ∅ � � � � � � � � � � �
7 � � � � � � � � � � � � � � � �
8 � � � � � � � � � � � � � � � �
9 � � ∅ � � ∅ � ∅ � � � � � � � �
10 � � ∅ � � � � � � � � � � � � �
11 � � � � � � � � � � � � � � � �
12 ∅ � ∅ � ∅ ∅ � ∅ � � � � � � � �
13 � � � � � � � � � � � � � � � �
14 � � � � � � � � � � � � � � � �
15 � � � � � � � � � � � � � � � �
16 � � � � � � � � � � � � � � � �
17 � � � � � � � � � � � � � � � �
18 � � � � � � � � � � � � � � � �
19 � � � � � � � � � � � � � � � �
20 � � � � � � � � � � � � � � � �
21 � � � � � � � � � � � � � � � �
22 � � � � � � � � � � � � � � � �
23 � � � � � � � � � � � � � � � �
24 � � � � � � � � � � � � � � � �
25 � � � � � � � � � � � � � � � �
26 � � � � � � � � � � � � � � � �

Modeling Languages Programming Languages

�: yes, �: possible, �: no, ∅: not applicable

152 T. Kühn et al.

(a)

RoleTypes.Dependent.OnRelationships ⇔ Relationships (1)

RoleTypes.Dependent.OnCompartments⇔ CompartmentTypes (2)

RoleImplication ⇒ RoleEquivalence (3)

RoleTypes.P layable.P layers.Compartments⇒ CompartmentTypes (4)

(b)

Fig. 4. Feature model (a) and cross-tree constraints (b) for role-based modeling lan-
guages

A Metamodel Family for Role-Based Modeling and Programming Languages 153

5 A Metamodel Family for Role-Based Languages

One of the reasons for the discontinuity in the research field is the incompatibil-
ity of the various approaches. However, to be able to freely combine the various
RMLs and RPLs, they must have compatible metamodels. Unfortunately, only
few approaches actually defined and published their underlying metamodel, e.g.,
[37]. Consequently, it is infeasible to create or combine the metamodels of two
approaches. Thus, we propose a method to generate metamodels for RML based
on the features of a particular language. Henceforth, we employ feature modeling
as the suitable development methodology together with the tool FeatureIDE [58]
as development environment and DeltaEcore [55] to generate the language meta-
models in Ecore [57].

5.1 Feature Model for Role-Based Languages

The first step of feature modeling is to generate a feature model as a hierarchical
representation of the 26 identified features of roles. In this way, we elucidate
the various implicit dependencies of the features presented previously. Fig. 4
(a) depicts the resulting feature model for RML. It encompasses three main
feature arcs for role types, relationships, and compartment types to group features
dependent on the existence of these entities. Please note that those features are
marked mandatory, which is essential for the existence of that entity. Consider
for instance that role types must at least be playable by objects. In addition
to the dependencies of features evident in the feature model, we had to define
four cross-tree constraints [58], depicted in Fig. 4 (b). These constraints ensure
that a configuration contains all entities on which the Role Type depends (Eq. 1
and 2), that Role Equivalence is supported, if the Role Implication is (Eq. 3),
and that compartment types are supported, if compartments can be players
(Eq. 4). To further increase the traceability, we annotated each feature with the
corresponding number of the feature list (Fig. 2 and 3). Thus, it becomes evident
that the resulting feature model captures and elucidates the dependencies of the
26 features of roles. In summary, the feature model can now be used to define
a configuration by selecting the various features. For reasons of simplicity, we
focus on two particular configurations (of over 7200 possible ones), namely the
feature minimal configuration and the feature complete configuration.

5.2 Feature Minimal Metamodel

In a feature minimal configuration, only mandatory features are selected. Thus,
only natural types (with structures and inheritance), which can play role types,
exist. Role types, however, are merely annotations, because they only have a
name and lack structure, inheritance, and relationships. Fig. 5 shows this min-
imal configuration of the feature model. This metamodel exhibits, beside the
general definition of types with attributes and operations, a specific Role Model
class. This class represents the default container for all role types (and possibly
relationships and constraints) generated whenever the configuration does not

154 T. Kühn et al.

Fig. 5. Ecore metamodel of a feature minimal metamodel

include compartment types. In sum, this model is similar to a standard object-
oriented metamodel with the additional ability to mark classes as role types.

5.3 Feature Complete Metamodel

In contrast to the minimal configuration, a feature complete configuration selects
as many features as validly possible. However, due to the fact that a metamodel
can only reflect features of the model level (M1), we omit all features solely
affecting instance level (M0). As a result, the feature complete metamodel in-
corporates natural types, role types, relationships, and compartment types as
classes. Roles can be played by naturals, other roles, and compartments.

Fig. 6 shows the corresponding metamodel highlighting all classes correspond-
ing to the selected features. Thus, it encompasses the various relations between
the various types, e.g., the fulfillment relation, the various inheritance relations
as well as the different role and relationship constraints. Additionally, it includes
a typical list of intra- and inter-relationship constraints, parthood constraints as
well as the RoleGroup class for constraints on groups of roles. Thus, this meta-
model represents the unification of the various features of roles proposed in the
literature.

5.4 Mapping Features to Variation Points

After describing both the feature minimal (Fig. 5) and the feature complete
metamodel (Fig. 6), this section describes how variants can be derived by adding,
modifying and removing classes and references of the feature minimal meta-
model.

A Metamodel Family for Role-Based Modeling and Programming Languages 155

Fig. 6. Ecore metamodel of a feature complete metamodel

Henceforth, we distinguish four kinds of variation points of the metamodel
family and specify their mapping to the corresponding features. The first kind
of variation point directly corresponds to classes (highlighted in Fig. 6), i.e.,
their existence in the metamodel is directly linked to the selection of a specific
feature. More precisely, the following classes directly correspond to features: On
Relationships (Feature 2), RoleConstraint (Feature 6), RoleInheritance
(Feature 13), IntraRelationshipConstraint (Feature 16), InterRelation-
shipConstraint (Feature 17), RoleGroup (Feature 18), and CompartmentInher-

itance (Feature 25). Thus, selecting such a feature entails adding the
corresponding class together with the respective incoming and outgoing refer-
ences. The only exception is the CompartmentType class corresponding to Fea-
ture 19, which is replaced by a RoleModel class if the feature is deselected. The
second kind of variation points correspond to the targets of references in the

156 T. Kühn et al.

metamodel. In particular, the filler reference of class Fulfillment either points
to NaturalType, RigidType, Type or to a generic Player interface depending on
the combined selection of Features 8 and 22, declaring whether compartments
and/or roles can play roles as well. In contrast, the third kind of variation point
changes the inheritance relation of specific classes to change their properties or
implemented interfaces. Thus, RoleType and CompartmentType only inherit (in-
directly) from Type, if Features 1 and 20 are selected, respectively, i.e., they have
properties and behavior. Otherwise, they would inherit from RelationTarget

and in the latter case also from ModelElement. A similar example is the inheri-
tance from AbstractRole, which is only present if compartments can be nested
(Feature 24). The last kind of variation points cannot be captured by standard
Ecore models, because they correspond to invariants that must be satisfied by
instances of that particular metamodel. This holds for the Features 3, 7, 11,
and 23 which broaden the number of valid models. However, we must add one
invariant for each of these features if they were not selected. Unfortunately, the
specification of these invariants is beyond the scope of this paper. Altogether,
these variation points are sufficient to generate each member of the metamodel
family for a given configuration by iteratively transforming the feature minimal
metamodel. We have developed a generator as a proof of concept4 by employing
the facilities provided by FeatureIDE and the DeltaEcore framework for delta
modeling.

6 Related Work

Most of the related work on role-based modeling languages has been discussed
previously. Henceforth, we focus on other surveys, metamodels, and feature mod-
els for role-based modeling languages.

To our knowledge, only one other survey on roles in information systems [61]
has been published since the year 2000. This survey has a broader perspective
and takes social-roles, modeling-roles, CSCW-roles, RBAC-roles, system-roles as
well as agent-roles into account. Additionally, they classify all investigated ap-
proaches in their contexts. Nevertheless, our survey is more focused on a rigorous
classification of role-based modeling and programming languages.

While several researchers tried to establish a metamodel for roles before, none
of them was adopted by other approaches. Consider for instance, Lodwick, the
formal definition of roles, proposed by Steimann [56] to consolidate the different
notions of roles in conceptional modeling. This approach, despite of its general-
ity, suffers from various limitations, e.g., the lack of representation of roles on
the instance level (M0) or the consideration of context-dependent roles. Gen-
ovese [19] overcomes this by introducing contexts, roles, and players on both the
model (M1) and instance level (M0). He tried to establish the most general def-
inition of roles. In fact, his metamodel is too general to be readily applicable to
any approach in the literature. This is the case, because one has to specify con-
straints on each level of the meta level hierarchy. Consequently, the metamodel

4 See http://st.inf.tu-dresden.de/RML for the prototypical implementation.

http://st.inf.tu-dresden.de/RML

A Metamodel Family for Role-Based Modeling and Programming Languages 157

might capture most of the features of roles. However, it is not easily adaptable
to the other more limited approaches. The Generic Role Model [15], on the other
hand, only defines the plays relation on both the model (M1) and the instance
level (M0) together with formal semantics. Thus, this metamodel can be viewed
as the least common denominator of the various notions of roles. In sum, the
proposed metamodel family of RML ranges in between Dahchour’s generic role
model and Genovese’s metamodel.

Last but not least, we are only aware of one other work on the nature of
roles [21] providing a feature model for roles. This work, however, investigates
roles as a language construct and collects and investigates the features of such a
construct. Therefore, these features are mostly concerned with the instance level
(M0) and are specific to execution environments. This feature model, however,
did not consider the context-dependent nature of roles.

7 Conclusion

Roles are both relational and context-dependent by nature. However, most ap-
proaches to role-based modeling emphasize only one aspect. Unfortunately, the
various approaches cannot be combined easily, due to the lack of compatible meta-
models. In this paper, we have approached this problem by first conducting a lit-
erature survey and second proposing a family of metamodels for RML. For the
former, we added 11 new features emphasizing the context-dependence to the pre-
existing features of roles [56]. This feature set has been used to classify the various
RML and RPL proposed since 2000. This evaluation has shown that the research
field suffers from fragmentation and discontinuity. To overcome the latter issue,
we have created a feature model for RML from which a family of metamodels can
be generated. In this way, researchers are now able to generate a metamodel for
their specific approach and, more importantly, for other approaches they want to
reuse or combine. In addition, both the listed features and the feature model can
be reused to evaluate or develop subsequent role-based approaches.

Acknowledgements. This work is funded by the German Research
Foundation (DFG) within the Research Training Group “Role-based Software
Infrastructures for continuous-context-sensitive Systems” (GRK 1907), in the
Collaborative Research Center 912 “Highly Adaptive Energy-Efficient Comput-
ing” and the European Social Fund (ESF) and the Federal State of Saxony
within project “VICCI” #100098171. Special thanks go to Sebastian Richly, To-
bias Jäkel, and Stephan Böhme for their suggestions and to Ulrike Schöbel for
improving this paper.

References

[1] Arnaudo, E., Baldoni, M., Boella, G., Genovese, V., Grenna, R.: An implementa-
tion of roles as affordances: powerjava (August 31, 2009)

[2] Bachman, C.W.: The programmer as navigator. Commun. ACM 16(11), 635–658
(1973)

158 T. Kühn et al.

[3] Baldoni, M., Boella, G., van der Torre, L.: Powerjava: ontologically founded roles
in object oriented programming languages. In: Haddad, H. (ed.) SAC, pp. 1414–
1418. ACM (2006)

[4] Baldoni, M., Boella, G., Van Der Torre, L.: Powerjava: ontologically founded roles
in object oriented programming languages. In: Proceedings of the 2006 ACM Sym-
posium on Applied Computing, pp. 1414–1418. ACM (2006)

[5] Baldoni, M., Boella, G., van der Torre, L.: Roles as a coordination construct:
Introducing powerjava. Electr. Notes Theor. Comput. Sci. 150(1), 9–29 (2006)

[6] Balzer, S., Burns, A., Gross, T.: Objects in context: An empirical study of object
relationships. Tech. Rep. 594, ETH Zürich (May 2008)

[7] Balzer, S., Eugster, P., Gross, T.: Relations: Abstracting object collaborations
(February 06, 2008)

[8] Balzer, S., Gross, T., Eugster, P.: A relational model of object collaborations and
its use in reasoning about relationships. In: Ernst, E. (ed.) ECOOP 2007. LNCS,
vol. 4609, pp. 323–346. Springer, Heidelberg (2007)

[9] Barbosa, F.S., Aguiar, A.: Modeling and programming with roles: introducing
javastage. Tech. rep., Instituto Politécnico de Castelo Branco (2012)

[10] Bierman, G., Wren, A.: First-class relationships in an object-oriented language. In:
Gao, X.-X. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 262–286. Springer, Heidelberg
(2005)

[11] Boella, G., Van Der Torre, L.: The ontological properties of social roles in multi-
agent systems: Definitional dependence, powers and roles playing roles. Artificial
Intelligence and Law 15(3), 201–221 (2007)

[12] Bäumer, D., Riehle, D., Siberski, W., Wulf, M.: The role object pattern. In: Wash-
ington University Dept. of Computer Science (1998)

[13] Chen, P.: The entity-relationship model - toward a unified view of data. ACM
Transactions on Database Systems 1(1), 9–36 (1976)

[14] Czarnecki, K., Osterbye, K., Völter, M.: Generative programming. In: Object-
Oriented Technology ECOOP 2002 Workshop Reader, pp. 15–29. Springer (2002)

[15] Dahchour, M., Pirotte, A., Zimányi, E.: A generic role model for dynamic objects.
In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002.
LNCS, vol. 2348, pp. 643–658. Springer, Heidelberg (2002)

[16] Dey, A.K.: Understanding and using context. Personal and Ubiquitous Comput-
ing 5(1), 4–7 (2001)

[17] Ferraiolo, D., Cugini, J., Kuhn, D.R.: Role-based access control (rbac): Features
and motivations. In: Proceedings of 11th Annual Computer Security Application
Conference, pp. 241–248 (1995)

[18] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Pearson Education (1994)

[19] Genovese, V.: A meta-model for roles: Introducing sessions. In: Roles 2007, p. 27
(2007)

[20] Graversen, K.B., Østerbye, K.: Implementation of a role language for object-
specific dynamic separation of concerns. In: AOSD 2003 Workshop on Software-
Engineering Properties of Languages for Aspect Technologies (2003)

[21] Graversen, K.B.: The nature of roles. Ph.D. thesis, PhD thesis:/Kasper Bilsted
Graversen.–Copenhagen, IT University of Copenhagen Copenhagen (2006)

[22] Grue, M.: ScalaDCI (2014), https://github.com/DCI/scaladci (accessed May
24, 2014)

[23] Guarino, N., Carrara, M., Giaretta, P.: An ontology of meta-level categories. In:
KR, pp. 270–280 (1994)

https://github.com/DCI/scaladci

A Metamodel Family for Role-Based Modeling and Programming Languages 159

[24] Guarino, N., Welty, C.: A formal ontology of properties. In: Dieng, R., Corby, O.
(eds.) EKAW 2000. LNCS (LNAI), vol. 1937, pp. 97–112. Springer, Heidelberg
(2000)

[25] Guarino, N., Welty, C.: An overview of ontoclean. In: Handbook on Ontologies,
pp. 201–220. Springer (2009)

[26] Guizzardi, G.: Ontological foundations for structure conceptual models. Ph.D.
thesis, Centre for Telematics and Information Technology, Enschede, Netherlands
(2005)

[27] Guizzardi, G., Wagner, G.: Towards ontological foundations for agent modelling
concepts using the unified fundational ontology (UFO). In: Bresciani, P., Giorgini,
P., Henderson-Sellers, B., Low, G., Winikoff, M. (eds.) AOIS 2004. LNCS (LNAI),
vol. 3508, pp. 110–124. Springer, Heidelberg (2005)

[28] Guizzardi, G., Wagner, G.: Conceptual simulation modeling with onto-uml. In:
Proceedings of the Winter Simulation Conference, p. 5. Winter Simulation Con-
ference (2012)

[29] Guizzardi, G., Wagner, G., Guarino, N., van Sinderen, M.: An ontologically well-
founded profile for UML conceptual models. In: Persson, A., Stirna, J. (eds.)
CAiSE 2004. LNCS, vol. 3084, pp. 112–126. Springer, Heidelberg (2004)

[30] Halpin, T.: ORM 2. In: Meersman, R., Tari, Z. (eds.) OTM-WS 2005. LNCS,
vol. 3762, pp. 676–687. Springer, Heidelberg (2005)

[31] Halpin, T.A.: Object-role modeling (ORM/NIAM). In: Handbook on Architec-
tures of Information Systems, pp. 81–102. Springer (1998)

[32] Harel, D., Rumpe, B.: Modeling languages: Syntax, semantics and all that stuff.
Tech. rep., Technische Universität Braunschweig (2004)

[33] He, C., Nie, Z., Li, B., Cao, L., He, K.: Rava: Designing a java extension with dy-
namic object roles. In: 13th Annual IEEE International Symposium and Workshop
on Engineering of Computer Based Systems, ECBS 2006, p. 7. IEEE (2006)

[34] Hennicker, R., Klarl, A.: Foundations for ensemble modeling – the helena ap-
proach. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and
Software. LNCS, vol. 8373, pp. 359–381. Springer, Heidelberg (2014)

[35] Herrmann, S.: Object teams: Improving modularity for crosscutting collabora-
tions. In: Akşit, M., Mezini, M. (eds.) Net. Object Days (October 2002)

[36] Herrmann, S.: Programming with roles in ObjectTeams/Java. Tech. rep., AAAI
Fall Symposium (2005)

[37] Herrmann, S.: A precise model for contextual roles: The programming language
objectteams/java. Applied Ontology 2(2), 181–207 (2007)

[38] Herrmann, S.: Demystifying object schizophrenia. In: Proceedings of the 4th
Workshop on MechAnisms for SPEcialization, Generalization and inHerItance,
MASPEGHI 2010, pp. 2:1–2:5. ACM, New York (2010)

[39] Herrmann, S., Hundt, C.: Objectteams/java language definition (otjld) version
1.3.1 (May 2013), http://www.objectteams.org/def/1.3.1 (accessed May 28,
2014)

[40] Herrmann, S., Hundt, C., Mehner, K.: Translation polymorphism in object teams.
Tech. rep., TU Berlin (2004)

[41] Hu, J., Liu, M.: Modeling context-dependent information. In: Proceedings of the
18th ACM Conference on Information and Knowledge Management, pp. 1669–
1672. ACM (2009)

[42] Kamina, T., Tamai, T.: Towards safe and flexible object adaptation. In: Interna-
tional Workshop on Context-Oriented Programming, p. 4. ACM (2009)

[43] Kamina, T., Tamai, T.: A smooth combination of role-based language and context
activation. In: FOAL 2010 Proceedings, p. 15 (2010)

http://www.objectteams.org/def/1.3.1

160 T. Kühn et al.

[44] Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain
analysis (FODA). Tech. rep., Software Engineering Institute, Carnegie Mellon
University (1990)

[45] Kay, A.C.: The early history of smalltalk. In: HOPL Preprints, pp. 69–95 (1993)
[46] Liu, M., Hu, J.: Information networking model. In: Laender, A.H.F., Castano, S.,

Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp.
131–144. Springer, Heidelberg (2009)

[47] Liu, M., Hu, J.: Modeling complex relationships. In: Bhowmick, S.S., Küng, J.,
Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp. 719–726. Springer, Heidelberg
(2009)

[48] Masolo, C., Guizzardi, G., Vieu, L., Bottazzi, E., Ferrario, R.: Relational roles
and qua-individuals. In: AAAI Fall Symposium on Roles, an Interdisciplinary
Perspective, pp. 103–112 (2005)

[49] OMG: OMG: Meta Object Facility (MOF) Core Specification. Object Managment
Group, 2.4.1 edn. (June 2013), ptc/11-09-13

[50] Reenskaug, T., Coplien, J.O.: The dci architecture: A new vision of
object-oriented programming. An article starting a new blog(14pp) (2009),
http://www.artima.com/articles/dci_vision.html

[51] Reenskaug, T., Coplien, J.O.: The DCI architecture: A new vision of object-
oriented programming. Artima Developer (2011)

[52] Rumbaugh, J., Jacobson, R., Booch, G.: The Unified Modelling Language Refer-
ence Manual, 1st edn. Addison-Wesley (January 1999)

[53] Rumbaugh, J.E.: Relations as semantic constructs in an object-oriented language.
In: OOPSLA, pp. 466–481 (1987)

[54] Monpratarnchai, S., Tetsuo, T.: The design and implementation of a role model
based language, EpsilonJ. In: Proceedings of the 5th International Conference on
Electrical Engineering/Electronics, Computer, Telecommunications and Informa-
tion Technology (ECTI-CON 2008) (2008)

[55] Seidl, C., Schaefer, I., Aßmann, U.: DeltaEcore–a model-based delta language
generation framework. In: Modellierung, pp. 81–96 (2014)

[56] Steimann, F.: On the representation of roles in object-oriented and conceptual
modelling. Data & Knowledge Engineering 35(1), 83–106 (2000)

[57] Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: eclipse modeling
framework. Pearson Education (2008)

[58] Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: Featureide:
An extensible framework for feature-oriented software development. Science of
Computer Programming 79, 70–85 (2014)

[59] Wielenga, G.: On powerjava: ”roles” instead of ”objects” (January 2013),
https://blogs.oracle.com/geertjan/entry/on_powerjava_roles_instead_of

(accessed May 28, 2014)
[60] Zhu, H., Zhou, M.: Role-based collaboration and its kernel mechanisms. IEEE

Transactions on Systems, Man, and Cybernetics, Part C: Applications and Re-
views 36(4), 578–589 (2006)

[61] Zhu, H., Zhou, M.: Roles in information systems: A survey. IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews 38(3), 377–396
(2008)

http://www.artima.com/articles/dci_vision.html
https://blogs.oracle.com/geertjan/entry/on_powerjava_roles_instead_of

AIOCJ: A Choreographic Framework
for Safe Adaptive Distributed Applications

Mila Dalla Preda1, Saverio Giallorenzo2,
Ivan Lanese2, Jacopo Mauro2, and Maurizio Gabbrielli2

1 Department of Computer Science - Univ. of Verona
2 Department of Computer Science and Engineering - Univ. of Bologna / INRIA

Abstract. We present AIOCJ, a framework for programming distributed adap-
tive applications. Applications are programmed using AIOC, a choreographic
language suited for expressing patterns of interaction from a global point of view.
AIOC allows the programmer to specify which parts of the application can be
adapted. Adaptation takes place at runtime by means of rules, which can change
during the execution to tackle possibly unforeseen adaptation needs. AIOCJ re-
lies on a solid theory that ensures applications to be deadlock-free by construction
also after adaptation. We describe the architecture of AIOCJ, the design of the
AIOC language, and an empirical validation of the framework.

1 Introduction

Adaptation is a main feature of current distributed applications, that should live for a
long time in a continuously changing environment. Anticipating all the possible adap-
tation needs when designing an application is very difficult, thus the approaches able to
cope with unforeseen adaptation needs are the most interesting. Also, for distributed ap-
plications like the ones that we consider, it is important to ensure deadlock-freedom (ac-
cording to [1] about one third of concurrency bugs in real applications are deadlocks).
While many techniques ensuring deadlock freedom exist in the literature, e.g., [2–4],
to the best of our knowledge, none of them deals with adaptive applications. Indeed,
most of the approaches to adaptation offer no guarantee on the behaviour of the appli-
cation after adaptation [5–7], or they assume to know all the possible adaptations in
advance [8], thus failing to cope with unforeseen adaptation needs.

Here we present AIOCJ, a prototype implementation of a framework for program-
ming adaptive distributed applications that guarantees deadlock-freedom by construc-
tion (the theoretical foundations ensuring this property are discussed in [9]). AIOCJ
is composed of two parts: (i) a domain-specific language, called Adaptive Interaction-
Oriented Choreographies (AIOC) and (ii) an adaptation middleware that supports adap-
tation of AIOC programs.

The AIOC language describes applications from a global point of view following
the choreography paradigm. This paradigm has been applied in different contexts, see,
e.g., [2, 10–13], but we are not aware of other tools based on it and targeting adap-
tive applications. A choreography defines the interactions among the processes of a
distributed application. AIOC main innovation consists in two constructs supporting

B. Combemale et al. (Eds.): SLE 2014, LNCS 8706, pp. 161–170, 2014.
© Springer International Publishing Switzerland 2014

162 M. Dalla Preda et al.

adaptation: scopes and adaptation rules. A scope delimits code that may be adapted in
the future. An adaptation rule provides new code to replace the one in a given scope.
Interestingly, in AIOCJ, adaptation rules can be defined and inserted in the framework
while the application is running, to cope with adaptation needs which were not foreseen
when the application was designed or even started.

The code below shows a toy AIOC program (left) and an adaptation rule applicable
to it (right). On the left, Lines 2-4 define a scope in which the local variable msg of
process user is set to "Hello World". The keyword prop defines properties of the scope
(prefixed by N). In this case, the name property is set to "hello_world". At Line 5 user

sends the content of msg to a second process (display), that stores it in its local variable
msg. On the right, Lines 2-3 define the applicability condition of the rule, i.e., the name

property of the scope should be set to "hello_world", and the environmental property
E.lang should be equal to "it". Line 4 shows the code that will replace the one of the
scope, i.e., variable msg of user will be set to "Ciao Mondo" (Italian for “Hello World”).

1 aioc {
2 scope @user{
3 msg@user = "Hello World"
4 } prop { N. name = "hello_world "};
5 send: user(msg) -> display (msg) }

1 rule {
2 on { N. name == "hello_world "
3 and E. lang == "it" }
4 do { msg @user = "Ciao Mondo" }
5 }

An AIOC program describes a full distributed application. AIOCJ generates, for
each distributed process, a service written in Jolie [14, 15], a Service-Oriented orches-
tration language.

The adaptation middleware consists of a set of adaptation rules stored in multiple,
possibly distributed, adaptation servers, and of an adaptation manager that mediates
the interactions between the adaptive application and the various adaptation servers.

Structure of the paper. Section 2 presents an overview of the AIOCJ framework,
while Section 3 describes its implementation. Section 4 shows a preliminary validation
of the framework, with tests on the performances of AIOCJ. In Section 5 we discuss re-
lated work and future directions of research. A short demo of the use of the framework
is available in the companion technical report [16].

2 Overview: The AIOCJ Framework

This section first defines the architectural model that supports adaptation of AIOCJ
applications and then it introduces the syntax of the AIOC language via an example
(for a formal presentation of AIOC syntax and semantics see [9]).

The AIOCJ Middleware. We consider applications composed of processes deployed as
services on different localities, including local state and computational resources. Each
process has a specific duty in the choreography and follows a given protocol. Processes
interact via synchronous message passing over channels, also called operations. Adap-
tation is performed by an adaptation middleware including an adaptation manager and
some, possibly distributed, adaptation servers. The latter are services that act as reposi-
tories of adaptation rules and may be (manually) added or removed at runtime. Running
adaptation servers register themselves on the adaptation manager. The running applica-
tion may interact with the adaptation manager to look for applicable adaptation rules.
The effect of an adaptation rule is to replace a scope with new code that answers a given

AIOCJ: A Choreographic Framework for Safe Adaptive Distributed Applications 163

adaptation need. The adaptation manager checks the rules according to the registration
order of the adaptation servers, returning the first applicable rule, if any.

The AIOC Language. The language relies on a set of roles that identify the processes
in the choreography. Let us introduce the syntax of the language using an example
where Bob invites Alice to see a film.

1 include isFreeDay from "calendar .org :80" with http
2 include getTicket from "cinema.org :8000" with soap
3 preamble {
4 starter : bob
5 location @bob = "socket:// localhost :8000"
6 location @alice = "socket://alice.com:8000"
7 location @cinema = "socket ://cinema .org :8001" }
8 aioc{
9 end @bob = false;

10 while(! end)@bob {
11 scope @bob {
12 free_day @bob = getInput ("Insert your free day");
13 proposal : bob (free_day) -> alice(bob_free_day);
14 is_free @alice = isFreeDay (bob_free_day);
15 } prop { N.scope_name = "matching day " };
16 if(is_free)@alice {
17 scope @bob {
18 proposal : bob("cinema") -> alice(event);
19 agreement @alice = getInput ("Bob proposes " + event +
20 ", do you agree?[y/n]");
21 if(agreement == "y")@alice{
22 end @bob = true;
23 book: bob (bob_free_day) -> cinema(book_day);
24 ticket@cinema = getTicket (book_day);
25 { notify: cinema(ticket) -> bob (ticket)
26 | notify : cinema(ticket) -> alice(ticket) }}
27 } prop { N. scope_name = "event selection " } };
28 if(!end)@bob {
29 _r@bob = getInput ("Alice refused . Try another date?[y/n]");
30 if(_r != "y")@bob { end@bob = true }}}

Listing 1.1. Appointment program

The code starts with some deployment information (Lines 1-7), discussed later on.
The behaviour starts at Line 9. The program is made by a cycle where Bob first checks
when Alice is available and then invites her to the cinema. Before starting the cycle,
Bob initialises the variable end, used in the guard of the cycle, to the boolean value
false (Line 9). Note the annotation @bob meaning that end is local to Bob. The first
instructions of the while are enclosed in a scope (Lines 11-15), meaning that they may
be adapted in the future. The first operation within the scope is the call to the prim-
itive function getInput that asks to Bob a day where he is free and stores this date
into the local variable free_day. At Line 13 the content of free_day is sent to Alice
via operation proposal. Alice stores it in its local variable bob_free_day. Then, at Line
14, Alice calls the external function isFreeDay that checks whether she is available
on bob_free_day. If she is available (Line 16) then Bob sends to her the invitation to
go to the cinema via the operation proposal (Line 18). Alice, reading from the in-
put, accepts or refuses the invitation (Line 19). If Alice accepts then Bob first sets the
variable end to true to end the cycle. Then, he sends to the cinema the booking re-
quest via operation book. The cinema generates the tickets using the external function
getTicket and sends them to Alice and Bob via operation notify. The two notifications
are done in parallel using the parallel operator | (until now we composed statements

164 M. Dalla Preda et al.

using the sequential operator ;). Lines 18-26 are enclosed in a second scope with prop-
erty N.scope_name = "event selection". If the agreement is not reached, Bob decides,
reading from the input, if he wants to stop inviting Alice. If so, the program exits.

We remark the different meanings of the annotations @bob and @alice. When prefixed
by a variable, they identify the owner of the variable. Prefixed by the boolean guard
of conditionals and cycles, they identify the role that evaluates the guard. Prefixed by
the keyword scope, they identify the process coordinating the adaptation of that scope.
A scope, besides the code, may also include some properties describing the current
implementation. These can be specified using the keyword prop and are prefixed by N.
For instance, each scope of the example includes the property scope_name, that can be
used to distinguish its functionality.

AIOCJ can interact with external services, seen as functions. This allows both to
interact with real services and to have easy access to libraries from other languages.
To do that, one must specify the address and protocol used to interact with them. For
instance, the external function isFreeDay used in Line 14 is associated to the service
deployed at the domain “calendar.org”, reachable though port 80, and that uses http
as serialisation protocol (Line 1). External functions are declared with the keyword
include. To preserve deadlock freedom, external services must be non-blocking. After
function declaration, in a preamble section, it is possible to declare the locations where
processes are deployed. The keyword starter is mandatory and defines which process
must be started first. The starter makes sure all other processes are ready before the
execution of the choreography begins.

Now suppose that Bob, during summer, prefers to invite Alice to a picnic more than
to the cinema, provided that the weather forecasts are good. This can be obtained by
adding the following adaptation rule to one of the adaptation servers. This may even be
done while the application is running, e.g., while Bob is sending an invitation. In this
case, if the first try of Bob is unsuccessful, in the second try he will propose a picnic.

1 rule {
2 include getWeather from "socket:// localhost :8002"
3 on { N. scope_name == "event selection " and E. month > 5 and E. month < 10 }
4 do { forecasts @bob = getWeather (free_day);
5 if(forecasts == "Clear")@bob {
6 eventProposal : bob("picnic") -> alice(event)
7 } else { eventProposal : bob("cinema") -> alice(event) };
8 agreement @alice = getInput ("Bob proposes " + event +
9 ", do you agree?[y/n]");

10 if(agreement == "y")@alice {
11 end@bob = true |
12 if(event == "cinema")@alice {
13 / / c inema t i c k e t s p u r c h a s e p r o c e d u r e
14 }}}}

Listing 1.2. Event selection adaptation rule

A rule specifies its applicability condition and the new code to execute. In general,
the applicability condition may depend only on properties of the scope, environment
variables, and variables belonging to the coordinator of the scope. In this case, the
condition, introduced by the keyword on (Line 3), makes the rule applicable to scopes
having the property scope_name equal to the string "event selection" and only dur-
ing summer. This last check relies on an environment variable month that contains the
current month. Environment variables are prefixed by E.

AIOCJ: A Choreographic Framework for Safe Adaptive Distributed Applications 165

When the rule applies, the new code to execute is defined using the keyword do (Line
4). In this case, the forecasts can be retrieved calling an external function getWeather

(Line 4) that queries a weather forecasts service. This function is declared in Line 2. If
the weather is clear, Bob proposes to Alice a picnic, the cinema otherwise. Booking (as
in Listing 1.1, Lines 23-26) is needed only if Alice accepts the cinema proposal.

As detailed in [9], to obtain a deadlock-free application, we require the code of
choreographies and rules to satisfy a well-formedness syntactic condition called con-
nectedness. Intuitively, connectedness ensures that sequences of actions are executed
in the correct order and avoids interference between parallel interactions. Requiring
this condition does not hamper programmability, since it naturally holds in most of the
cases, and it can always be enforced automatically via small patches to the choreogra-
phy which preserve the behaviour of the program, as discussed in [17]. Also, checking
connectedness is efficient, i.e., polynomial w.r.t. the size of the code [9].

3 Implementation

Our prototype implementation of AIOCJ is composed of two elements: the AIOCJ In-
tegrated Development Environment (IDE), named AIOCJ-ecl, and the adaptation mid-
dleware that enables AIOC programs to adapt, called AIOCJ-mid.

AIOCJ-ecl is a plug-in for Eclipse [18] based on Xtext [19]. Xtext provides fea-
tures such as syntax highlighting, syntax checking, and code completion, which help
developers in writing choreographies and adaptation rules. Also, starting from a gram-
mar, Xtext generates the parser for programs written in the AIOC language. Result of
the parsing is an abstract syntax tree (AST) we use to implement (i) the checker for
connectedness for choreographies and rules and (ii) the generation of Jolie code for
each role. The connectedness check has polynomial computational complexity [9] thus
making it efficient enough to be performed on-the-fly while editing the code.

The target language of code generation is Jolie [14]. Jolie supports architectural
primitives such as dynamic embedding, aggregation, and redirection that we exploit
to implement the adaptation mechanisms. Moreover, Jolie supports a wide range of
communication technologies (TCP/IP sockets, local memory, Bluetooth) and of data
formats (e.g., HTTP, SOAP, JSON). AIOCJ inherits this ability. The compilation gen-
erates a Jolie service for each role. The execution of scopes is delegated to sub-services
accessed using Jolie redirection facility. Adaptation is enacted by disabling the cur-
rent sub-service and replacing it with a new one, obtained from the adaptation server.
To grant to all the sub-services access to variables, the state is stored by a dedicated
sub-service local to the role. Auxiliary messages are exchanged to ensure that both the
adaptation and the choices taken by the if and while constructs are done in a coor-
dinated way. In particular, the scope execution not only requires interaction with the
adaptation manager, but also communications among the different roles, ensuring that
they all agree on whether adaptation is needed or not, and, in case, on which rule to
apply. Indeed, the decision is taken by the role coordinating the adaptation and then
communicated to other roles. Note that the different roles cannot autonomously take
the decision, since if they take it at different times, changes in the environment or in the
sets of available rules may lead to inconsistent decisions.

166 M. Dalla Preda et al.

Synchronous message exchange is implemented on top of an asynchronous commu-
nication middleware by a sub-service that works as a message handler. The message
handler of the starter role also ensures that, before the actual communication in the
choreography starts, all the roles are ready.

AIOCJ-mid is implemented in Jolie and it includes:

– many, possibly distributed, adaptation servers where rules are published. Adapta-
tion servers can be deployed and switched on and off at runtime;

– an adaptation manager that acts as a registry for adaptation servers and clients;
– an environment service that stores and makes available environment information.

Environment information can change at any moment.

When an AIOCJ program reaches a scope, it queries the adaptation manager for a
rule matching that scope. The adaptation manager queries each adaptation server se-
quentially, based on their order of registration. Each server checks the applicability
condition of each of its rules. The first rule whose applicability condition holds is ap-
plied. In particular, the code of the rule is sent to the role coordinating the adaptation
(via the adaptation manager) which distributes it to the involved roles. In each role, the
new code replaces the old one. The study of more refined policies for rule selection,
e.g., based on priorities, is a topic for future work.

4 Validation

In this section, we give a preliminary empirical validation of our implementation. The
main aim is to test how our mechanisms for adaptation impact on performances.

In the literature, to the best of our knowledge, there is no approach to adaptation
based on choreography programming. Thus, it is difficult to directly compare our results
with other existing approaches. Moreover, we are not aware of any established bench-
mark to evaluate adaptive applications. For this reason, we tested AIOCJ performances
by applying it to two typical programming patterns: pipes and fork-joins. Since we are
interested in studying the cost of adaptation, our scenarios contain minimal computa-
tion and are particularly affected by the overhead of the adaptation process. Clearly,
the percentage of the overhead due to adaptation will be far lower in real scenarios,
which are usually more computationally intensive. In the first scenario, we program a
pipe executing n tasks (in a pipe, the output of task ti is given as input to task ti+1, for
i ∈ {1, . . . , n − 1}). To keep computation to a minimum, each task simply computes
the increment function. In the fork-join scenario, n tasks are computed in parallel. Each
task processes one character of a message of length n, shifting it by one position. The
message is stored in an external service.1

To enable adaptation, each task is enclosed in a scope. We test both scenarios with
an increasing number of tasks n ∈ {10, 20, . . . , 100} to study how performances scale
as the number of adaptation scopes increases. We evaluate performances in different
contexts, thus allowing us to understand the impact of different adaptation features,
such as scopes, adaptation servers, and adaptation rules.

1 The code of both scenarios is in the companion technical report [16].

AIOCJ: A Choreographic Framework for Safe Adaptive Distributed Applications 167

● ● ● ● ● ● ● ● ● ●

0
20

00
0

40
00

0
60

00
0

80
00

0
Pipe

number of scopes

m
ill

is
ec

on
ds

10 20 30 40 50 60 70 80 90 100

● ● ● ● ● ● ● ● ● ●

0
10

00
30

00
50

00
70

00

Fork−Join

number of scopes

m
ill

is
ec

on
ds

10 20 30 40 50 60 70 80 90 100

● C1: no scopes

C2: scopes, no adaptation server

C3: scopes, 1 adaptation server, no rules

C4: scopes, 1 adaptation server, 50 rules

C5: scopes, 1 adaptation server, 100 rules

Fig. 1. Times of execution of the pipe (left) and the fork-join (right) scenarios

Context 1: no scopes, no adaptation servers, no rules;
Context 2: each task is enclosed in a scope, no adaptation servers, no rules;
Context 3: each task is enclosed in a scope, one adaptation server, no rules;
Context 4: as Context 3, but now the adaptation server contains 50 rules. Each rule is

applicable to a unique scope i, and no rule is applicable to scopes with i > 50. The
rules are stored in random order.

Context 5: as Context 4, but with 100 rules, one for each scope.

Each rule in Contexts 4 and 5 is applicable to one specific scope only (through a unique
property of the scope), hence when testing for 50 rules, only the first 50 scopes adapt.

We repeated every test 5 times. We performed our tests on a machine equipped with
a 2.6GHz quad-core Intel Core i7 processor and 16GB RAM. The machine runs Mav-
ericks 10.9.3, Java 1.7.55, and Jolie r.2728. Figure 1 shows the tests for the pipe (left)
and the fork-join (right). Both charts display on the x-axis the number of tasks/scopes
and on the y-axis the execution time in milliseconds.

As expected, in both scenarios there is a significant gap between Contexts 1 and 2. In
words, the introduction of scopes has a strong effect on performances. The ratio is 1:13
for the pipe scenario and 1:5.5 for the fork-join scenario. This is due to the auxiliary
communications needed to correctly execute a scope. The observed overhead is higher
in the pipe scenario, since different scopes check for adaptation in sequence, while this
is done in parallel for the fork-join scenario.

Adding an adaptation server (from Context 2 to Context 3) has little impact on per-
formances: 19% of decay for pipe, and 17% for fork-join. The figures are reasonable,
considered that Context 3 adds only one communication w.r.t. Context 2.

On the contrary, there is a notable difference when adding rules to the adaptation
server (Context 4 is 1.4 times slower than Context 3 for the pipe scenario, 2.9 for the
fork-join scenario). In Contexts 4 and 5, performances are really close up to 50 scopes
(in the pipe scenario they almost overlap) although Context 5 has twice the rules of
Context 4. This illustrates that the time to test for applicability of rules is negligible.
Hence, the highest toll on performances is related to actual adaptation, since it requires

168 M. Dalla Preda et al.

to transfer and embed the new code. This is particularly evident in the fork-join scenario
where multiple adaptations are executed in parallel and the adaptation server becomes a
bottleneck. This problem can be mitigated using multiple distributed adaptation servers.

The fact that the most expensive operations are scope execution and actual adaptation
is highlighted also by the results below. The table shows the cost of different primitives,
including scopes in different contexts. Times are referred to 5 executions of the sample
code in the companion technical report [16].

Test Time (ms) Test Time (ms)

assignment 2.2
scope, 1 adaptation server,

1 matching rule
280.6

interaction 4.2
scope, 1 adaptation server,

50 rules, none matching
254.2

if statement 16.6
scope, 1 adaptation server,

50 rules, 1 matching
338.6

scope,
no adaptation server

129.4
scope, 1 adaptation server,
100 rules, none matching

310.2

scope, 1 adaptation
server, no rule

203.8
scope, 1 adaptation server,

100 rules, 1 matching
385

As future work we will exploit these results to increase the performances of our
framework, concentrating on the bottlenecks highlighted above. For instance, scope ex-
ecution (as well as conditionals and cycles) currently requires many auxiliary commu-
nications ensuring that all the processes agree on the chosen path. In many cases, some
of these communications are not needed, since a process will eventually discover the
chosen path from the protocol communications. Static analysis can discover redundant
communications and remove them. Another improvement is letting the adaptation server
send the new code directly to the involved roles, skipping the current forward chain.

5 Related Work and Conclusion
This paper presented a framework for programming rule-based adaptation of distributed
applications. Its distinctive trait is that, being based on a choreographic approach, it
guarantees deadlock-freedom by construction for the running distributed application,
even in presence of adaptation rules which were unknown when the application was
started, and for any environment condition.

Adaptation is a hot topic, and indeed there is a plethora of approaches in the liter-
ature, see, e.g., the surveys [20, 21]. However, approaches based on formal methods
are only emerging recently and few of them have been implemented in a working tool.
In particular, the use of choreographies to capture and define adaptive applications is
a novel idea. For a discussion of works on adaptation with formal bases, but which
have not been implemented, we refer to [9]. Here, we just recall [22], which exploits a
choreographic approach for self-adaptive monitoring of distributed applications.

Among the implemented approaches, the most related to ours is JoRBA [5]. JoRBA
features scopes and adaptation rules similar to ours. However, JoRBA applications are
not distributed and JoRBA does not guarantee any property of the adapted application.

In [23] choreographies are used to propagate protocol changes to the other peers,
while [24] presents a test to check whether a set of peers obtained from a choreography

AIOCJ: A Choreographic Framework for Safe Adaptive Distributed Applications 169

can be reconfigured to match a second one. Differently from ours, these works only
provide change recommendations for adding and removing message sequences.

Various tools [25–27] exploit automatic planning techniques in order to elaborate, at
runtime, the best sequence of activities to achieve a given goal. These techniques are
more declarative than ours, but, to the best of our knowledge, they are not guaranteed
to always find a plan to adapt the application.

Among the non-adaptive languages, Chor [2] is the closest to ours. Indeed, like ours,
Chor is a choreographic language that compiles to Jolie. Actually, AIOCJ shares part of
the Chor code base. However, due to the different semantics of the sequential operator
and the lack of the parallel composition in Chor, a faithful encoding of the scenarios in
Section 4 is not possible, especially for the fork-join scenario. On an almost equivalent
implementation of the pipe scenario, Chor proves to be more efficient than AIOCJ.

In the future, we would like to test the expressive power of our language, trying to
encode patterns of adaptation from existing approaches. An obvious benefit of such
an encoding is that it will capture patterns of adaptation used in real-case scenarios,
guaranteeing also deadlock freedom, which is not provided by other approaches. This
task is cumbersome, due to the huge number and heterogeneity of those approaches.
Nevertheless, we already started it. In particular, in the website [28], we show how
to encode examples coming from distributed [29] and dynamic [30] Aspect-Oriented
Programming (AOP) and from Context-Oriented Programming (COP) [31]. In general,
we can deal with cross-cutting concerns like logging and authentication, typical of AOP,
viewing point-cuts as empty scopes and advices as adaptation rules. Layers, typical of
COP, can instead be defined by adaptation rules which can fire according to contextual
conditions captured by the environment. Possible extensions of our framework include
the use of asynchronous communications in the AIOC language and the introduction
of mechanisms to deal with exceptions and failures. Finally, we would like to pursue a
systematic analysis of the workflow change patterns like the ones presented in [32,33],
showing how these patterns are captured by AIOCJ.

References
1. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study on real

world concurrency bug characteristics. In: ASPLOS, pp. 329–339. ACM (2008)
2. Carbone, M., Montesi, F.: Deadlock-Freedom-by-Design: Multiparty Asynchronous Global

Programming. In: POPL, pp. 263–274. ACM (2013)
3. Gößler, G., Sifakis, J.: Component-Based Construction of Deadlock-Free Systems. In:

Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 420–433.
Springer, Heidelberg (2003)

4. Naik, M., Park, C.-S., Sen, K., Gay, D.: Effective static deadlock detection. In: ICSE, pp.
386–396. IEEE (2009)

5. Lanese, I., Bucchiarone, A., Montesi, F.: A Framework for Rule-Based Dynamic Adaptation.
In: Wirsing, M., Hofmann, M., Rauschmayer, A. (eds.) TGC 2010, LNCS, vol. 6084, pp.
284–300. Springer, Heidelberg (2010)

6. Bucchiarone, A., Marconi, A., Pistore, M., Raik, H.: Dynamic Adaptation of Fragment-
Based and Context-Aware Business Processes. In: ICWS, pp. 33–41. IEEE Press (2012)

7. Chen, W.-K., Hiltunen, M.A., Schlichting, R.D.: Constructing Adaptive Software in Dis-
tributed Systems. In: ICDCS. LNCS, vol. 6084, pp. 635–643. Springer (2001)

8. Zhang, J., Goldsby, H., Cheng, B.H.C.: Modular Verification of Dynamically Adaptive Sys-
tems. In: AOSD, pp. 161–172. ACM (2009)

170 M. Dalla Preda et al.

9. Dalla Preda, M., Gabbrielli, M., Giallorenzo, S., Lanese, I., Mauro, J.: Deadlock
Freedom by Construction for Distributed Adaptative Applications. Technical Report,
http://arxiv.org/pdf/1407.0970v1.pdf

10. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered programming for
web services. ACM Trans. Program. Lang. Syst. 34(2), 8 (2012)

11. Scribble website, http://www.jboss.org/scribble
12. Lanese, I., Guidi, C., Montesi, F., Zavattaro, G.: Bridging the Gap between Interaction- and

Process-Oriented Choreographies. In: SEFM, pp. 323–332. IEEE Press (2008)
13. World Wide Web Consortium, Web Services Choreography Description Language Version

1.0 (2005), http://www.w3.org/TR/ws-cdl-10/
14. Jolie website, http://www.jolie-lang.org/
15. Montesi, F., Guidi, C., Zavattaro, G.: Composing services with JOLIE. In: Proc. of ECOWS

2007, pp. 13–22. IEEE Press (2007)
16. Dalla Preda, M., Giallorenzo, S., Lanese, I., Mauro, J., Gabbrielli, M.: AIOCJ: A

Choreographic Framework for Safe Adaptive Distributed Applications. Technical Report,
http://arxiv.org/pdf/1407.0975.pdf

17. Lanese, I., Montesi, F., Zavattaro, G.: Amending choreographies. In: WWV, vol. 123, pp.
34–48. EPTCS (2013)

18. Eclipse website, http://www.eclipse.org/
19. Xtext website, http://www.eclipse.org/Xtext/
20. Ghezzi, C., Pradella, M., Salvaneschi, G.: An evaluation of the adaptation capabilities in

programming languages. In: SEAMS, pp. 50–59. ACM (2011)
21. Leite, L.A.F., et al.: A systematic literature review of service choreography adaptation. Ser-

vice Oriented Computing and Applications 7(3), 199–216 (2013)
22. Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Self-adaptive monitors for multiparty ses-

sions. In: PDP, pp. 688–696. IEEE (2014)
23. Rinderle, S., Wombacher, A., Reichert, M.: Evolution of Process Choreographies in DY-

CHOR. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 273–290.
Springer, Heidelberg (2006)

24. Wombacher, A.: Alignment of choreography changes in BPEL processes. In: IEEE SCC, pp.
1–8. IEEE Press (2009)

25. Cugola, G., Ghezzi, C., Pinto, L.S.: DSOL: a declarative approach to self-adaptive service
orchestrations. Computing 94(7), 579–617 (2012)

26. Baresi, L., Marconi, A., Pistore, M., Sirbu, A.: Corrective Evolution of Adaptable Process
Models. In: Nurcan, S., Proper, H.A., Soffer, P., Krogstie, J., Schmidt, R., Halpin, T., Bider,
I. (eds.) RIMS 1982. LNBIP, vol. 147, pp. 214–229. Springer, Heidelberg (2013)

27. Bucchiarone, A., Marconi, A., Mezzina, C.A., Pistore, M., Raik, H.: On-the-Fly Adaptation
of Dynamic Service-Based Systems: Incrementality, Reduction and Reuse. In: Basu, S., Pau-
tasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 146–161. Springer,
Heidelberg (2013)

28. AIOCJ website, http://www.cs.unibo.it/projects/jolie/aiocj.html
29. Pawlak, R., et al.: JAC: an aspect-based distributed dynamic framework. SPE 34(12), 1119–

1148 (2004)
30. Yang, Z., Cheng, B.H.C., Stirewalt, R.E.K., Sowell, J., Sadjadi, S.M., McKinley, P.K.: An

aspect-oriented approach to dynamic adaptation. In: WOSS, pp. 85–92. ACM (2002)
31. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented Programming. Journal of Ob-

ject Technology 7(3), 125–151 (2008)
32. Weber, B., Rinderle, S., Reichert, M.: Change Patterns and Change Support Features in

Process-Aware Information Systems. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE
2007 and WES 2007. LNCS, vol. 4495, pp. 574–588. Springer, Heidelberg (2007)

33. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow Evolution. Data Knowl. Eng. 24(3),
211–238 (1998)

http://arxiv.org/pdf/1407.0970v1.pdf
http://www.jboss.org/scribble
http://www.w3.org/TR/ws-cdl-10/
http://www.jolie-lang.org/
http://arxiv.org/pdf/1407.0975.pdf
http://www.eclipse.org/
http://www.eclipse.org/Xtext/
http://www.cs.unibo.it/projects/jolie/aiocj.html

fUML as an Assembly Language

for Model Transformation�

Massimo Tisi1, Frédéric Jouault2, Jérôme Delatour2

Zied Saidi1, and Hassene Choura1

1 AtlanMod team (Inria, Mines Nantes, LINA), Nantes, France
firstname.lastname@inria.fr

2 TRAME team (ESEO), Angers, France
firstname.lastname@eseo.fr

Abstract. Within a given modeling platform, modeling tools, such as
model editors and transformation engines, interoperate efficiently. They
are generally written in the same general-purpose language, and use a
single modeling framework (i.e., an API to access models). However,
interoperability between tools from different modeling platforms is much
more problematic.

In this paper, we propose to leverage fUML in order to address this
issue by providing a common execution language. Modeling frameworks
can then be abstracted into generic actions that perform elementary
operations on models. Not only can user models benefit from a unified
execution semantics, but modeling tools can too.

We support this proposal by showing how it can apply to a model
transformation engine. To this end, a prototype compiler from ATL to
fUML has been built, and is described. Finally, we conclude that fUML
has some useful properties as candidate common execution language for
MDE, but lacks some features.

1 Introduction

A modeling platform (e.g., Eclipse Modeling [2]) consists of a set of modeling
tools (e.g., constraint checkers, comparators, transformation engines) that can
be used together. Interoperability between tools of a given platform is typically
achieved by two means: 1) a common programming language (e.g., Java), and 2)
a common modeling framework (e.g., EMF: Eclipse Modeling Framework [1]).

Interoperability across modeling platforms generally relies on a common in-
terchange format (e.g., a given version of XMI [3]) to exchange models. However,
modeling tools cannot be exchanged (i.e., ported) so easily between platforms
that rely on different programming languages or modeling frameworks. There-
fore, some tools are either not available on some platforms, or have multiple
implementations that are possibly inconsistent.

Moreover, some tools are actually execution engines for modeling languages.
Such tools implement the semantics of modeling languages. For instance, an

� This work is partially supported by the MONDO (EU ICT-611125) project.

B. Combemale et al. (Eds.): SLE 2014, LNCS 8706, pp. 171–190, 2014.
c© Springer International Publishing Switzerland 2014

172 M. Tisi et al.

OCL [4] constraint evaluator implements the semantics of OCL. Therefore, ex-
changing semantics implemented in tools is as problematic as exchanging tools.

We argue that a common modeling Virtual Machine (VM) may be used to
implement a variety of modeling tools. We call modeling VM a virtual machine
that abstracts the specifics of modeling platforms: programming language, and
modeling framework. Tools built on top of this VM, or compiled to this VM,
become portable across all modeling platforms providing an implementation of
the VM.

We then consider the requirements for such a VM in the context of Model-
Driven Engineering (MDE) and we show that fUML [5] could be used as a
modeling VM for MDE. This application of fUML is different from its typical
usage scenario. Instead of only using fUML to specify the behavior of models
created by users of a modeling platform, we propose to also use it to provide ex-
ecution for modeling tools. We are thus considering the use of models, expressed
in fUML, at the runtime of modeling tools. When used in this way, fUML shares
some characteristics with assembly languages: it is only rarely used directly,
and complex fUML models are only rarely displayed in a readable way.
The fUML specification recognizes these points, and defines a textual language
to represent fUML activities.

This paper extends our previous paper [6] and improves over our preliminary
analysis by showing how this applies to the specific case of model transformation.
To this end, we provide a proof-of-concept compiler from ATL to fUML, whose
source code is freely available at the paper’s website1. We leverage this prototype
in order to assess the suitability of fUML as an assembly language for model
transformation. We also show that, however, making fUML actually usable in
this way requires modifying it. Some modifications, like adding support for UML
interruptions and exceptions, can also benefit users who model systems in fUML.
Others are specifically intended for its use as a modeling VM assembly language.
Therefore, the purpose of this paper is not to impose fUML in this role, but
simply to position it as a possible assembly language for MDE, and to express
our interest in exploring this idea further.

The analogy between fUML and assembly language is similar (and inspired
by) the well-known analogy “Javascript is assembly language for the Web” [7,8].
Obviously, this is only an analogy that has its limits. For instance, fUML (like
Javascript) is at a higher level of abstraction than assembly languages typically
are. However, we strongly believe that this analogy may be as beneficial to MDE
as the analogy about Javascript is to the Web.

The paper is organized as follows: Section 2 motivates the need for a modeling
VM and introduces our illustrative example. Section 3 presents the requirements
for such a VM in the MDE context, and discusses how fUML may fulfill them.
Section 4 shows the practical applicability of our proposal by putting it into
practice on the ATL model transformation language. Finally, we discuss related
works in Section 5, and conclude in Section 6.

1 http://www.emn.fr/z-info/atlanmod/index.php/ATL2fUML

http://www.emn.fr/z-info/atlanmod/index.php/ATL2fUML

fUML as an Assembly Language for Model Transformation 173

2 Motivation

2.1 The Need for a Modeling VM

In this section, we motivate the need for a modeling VM that may be used as an
execution platform for modeling tools. In the remainder of the paper, we refer
to the language that this VM executes as its VM language. For instance, Java
bytecodes form the VM language of the Java virtual machine.

A classical VM such as the Java VM provides abstractions for: 1) actual
hardware (e.g., processor, memory, peripherals), and 2) operating system (e.g.,
Windows, Linux). This makes tools running on top of a classical VM indepen-
dent of hardware and operating system. A modeling VM additionally provides
abstractions for: 3) modeling framework (e.g., EMF), 4) general-purpose lan-
guage used to implement the modeling platform (e.g., Java, C#, C++), and 5)
version of the implementation language. Therefore, tools running on top of a
modeling VM are also independent of the modeling platform, and of how it is
implemented.

With a modeling VM, it becomes possible to develop modeling tools that
can run on any modeling platform that supports it. Moreover, certain kinds of
optimizations may be performed on modeling VMs independently of tools.

A modeling VM may be used to provide execution to a wide variety of mod-
eling tools such as: simulator, animator, debugger, comparator (diff, merge),
version control, importer, exporter, constraint checker, or formal checker. Some
modeling tools are actually execution engines for modeling languages used to
specify: transformations (model to model, model to text, or text to model), con-
straints, etc. There are two main approaches to implement an execution engine:
translation of programs to the VM language (i.e., compilation), or interpretation
of programs by an interpreter expressed in the VM language.

Another significant application for a modeling VM is the implementation of
standards. For instance, the MDA standards from the OMG2 may be imple-
mented on top of a modeling VM:

– Execution engines for languages: Object Constraint Language (OCL),
fUML , MOF Model to Text Transformation Language (MOFM2T) [9], and
Query / View / Transformation (QVT) [10].

– Importer and exporter for XML Metadata Interchange (XMI), Action
Language for Foundational UML (Alf) [11], and Human-Usable Textual No-
tation (HUTN) [12].

Furthermore, if a modeling VM is standardized, it may make sense to provide
reference implementations for other standards on top of it.

2.2 Motivating Example: ATL

To show the practical applicability of fUML as virtual machine for existing MDE
tools, we focus on model-transformation tools, which we believe to be reasonably

2 As listed at: http://www.omg.org/spec/

http://www.omg.org/spec/

174 M. Tisi et al.

Fig. 1. Metamodels: ClassDiagram and Relational

representative of modeling tools. In particular, we choose to provide a proof-of-
concept implementation of the well-known ATL transformation language on top
of fUML.

We illustrate the ATL language with a simplified version of a classical model
transformation example: ClassDiagram2Relational, from a ClassDiagram model
to a Relational model. The source metamodel is a very simplified version of UML
class diagram, and is shown in the left-hand side of Fig. 1. This ClassDiagram
metamodel includes Class and Attribute that inherit a name property from the
abstract meta-class NamedElt. Furthermore, the meta-class Class can contain
attributes (reference attr) that can be multi-valued (property multiValued). The
Relational metamodel, which is the target of our transformation, is shown in
the right-hand side of Fig. 1. This metamodel defines the Table, and Column
concepts, which inherit a name attribute from the abstract meta-class Named.
Each Table can contain (reference col) any number of Columns.

The goal of this transformation is:

– To create for every Class exactly one Table with the same name.
– To create for every single-valued Attribute exactly one Column with the
same name.

– Each Table must have exactly one Column per single-valued Attribute of the
corresponding Class, with the same names.

The ATL implementation code for ClassDiagram2Relational consists of two
simple rules, which are shown in Listing 1.1.

Listing 1.1. ATL ClassDiagram2Relational transformation

1 module ClassDiagram2Relational ;
2 create OUT : Relational from IN : ClassDiagram ;
3

4 rule Class2Table {
5 from
6 c : ClassDiagram ! Class
7 to
8 out : Relational ! Table (
9 name <− c . name ,
10 col <− c . attr
11)
12 }
13

14 rule Attribute2Column {
15 from

fUML as an Assembly Language for Model Transformation 175

16 a : ClassDiagram ! Attribute (
17 not a . multiValued
18)
19 to
20 out : Relational ! Column (
21 name <− a . name
22)
23 }

Rules in ATL describe the transformation from a source model to a target
model by relating metamodels. They have a source pattern (from part or input
pattern), and a target pattern (to part or output pattern). The source pattern
consists of an input variable declaration, and optionally a guard (or filter), which
is used to impose conditions on the source elements. In the target pattern, rules
declare which elements of the target model the source pattern has to be trans-
formed to. The target pattern consists of a set of elements, and a sequence
of bindings for each element. Each binding initializes one property of a target
element.

This ATL listing starts with the module name (line 1), followed by its sig-
nature (line 2) that declares the source and target models with their respective
metamodels. The first rule Class2Table (lines 4 to 12) has one source pattern
element (lines 5 to 6) of type Class from the source metamodel ClassDiagram,
and one target pattern element (lines 7 to 11) of type Attribute from the target
metamodel Relational, intended to create a Table target element for each Class
source element. This rule also contains two bindings. The first binding (line 9)
is used to initialize the name of target Table as the same name as source Class.
According to the second binding (line 10) the col reference has to contain all
columns that have been created from the attributes of associated Class. The
second rule Attribute2Column (lines 14 to 23) aims at creating an homonym
(according to the binding at line 21) Column target element (lines 19 to 22) for
each single-valued Attribute source element (lines 15 to 18). This rule contains
a guard (line 17) that selects only the single-valued Attributes.

3 The Modeling VM

3.1 Requirements

Among the plethora of languages that have been defined or simply used by the
MDE community, several may be considered as candidates for the role of assem-
bly language. At the time of writing this paper, the Java+EMF combination is
widely used by MDE tools, and can very well be considered as an MDE VM.

In this section we enumerate a set of requirements for an MDE assembly
language, that despite not being mandatory, would increase the value of the VM
language:

– Computational completeness. Using the VM language it must be pos-
sible to specify any possible model operation, i.e., any computable function
on models.

176 M. Tisi et al.

– Model handling. Models and model elements should be manipulated as
first-class entities by the language, without the need to encode them into
other data structures.

– No over-specification. When translating other languages to it, the VM
language should not require the specification of irrelevant information. For
instance, the VM language should allow programs to specify sequencing be-
tween instructions only if necessary, allowing for implicit parallelism (this
property is especially significant now that virtually every computer is mul-
ticore). Analogously the VM language should not impose an order for side-
effect free evaluations, thus allowing for eager or lazy evaluation of a given
program when needed.

– Exception handling. Language constructs for exception handling at the
VM level are not mandatory, but would simplify the use of the VM language.

– Introspection and Reflection. When a model-driven tool uses introspec-
tion and reflection, its implementation over the VM is made easier if this
support is embedded in the VM language. For instance, reflective access to
model elements is a commonly used feature in MDE tools implementation.
Moreover, some tools also provide reflective model access to the user.

– Modularity/Composability. It should be possible to compile parts of
tools into separate modules to be composed in the VM language.

– VM code as a model. For uniformity with the development platform, VM
code should be represented in the form of a model. Model interchange mech-
anisms (e.g., XMI) can then be leveraged for VM code as well. This would
also allow the manipulation of VM code using VM language. This is similar
to the higher-order transformation concept [13], and may be leveraged to use
model transformation to specify compilers that target the VM language.

– High-performance implementation. It should be possible to build a
high-performance implementation of the language, thus reducing the per-
formance penalty of using a VM.

– Wide availability. The language and its implementation should be publicly
available, and widely used in the community.

– Standard. The VM language should be recognized as a standard (e.g., an
OMG standard), and its formal semantics should be publicly available.

At this stage, it should be noted that conflicts between requirements cannot be
completely resolved. For instance, high-performance implementation may
rely on static computation of a control flow, which may be seen as contradicting
no over-specification. An answer to these requirements will be a trade-off. Fi-
nally, there are properties that are typically valuable for a language in MDE, but
that have no primary importance for a VM language, such as: human-readability,
conciseness, and maintainability3.

We compare fUML to other candidate modeling VMs in order to see which
aspects of fUML are adequate, and which may need to be improved. Table 1

3 For instance, Java bytecode is barely readable (especially in binary format), not
especially concise, and generally not maintained directly.

fUML as an Assembly Language for Model Transformation 177

gives an overview with the set of requirements presented above as rows, and
languages under consideration as columns.

Because fUML is the only OMG standard at the right level of abstraction to
play the role of VM language, we have no other points of comparison from OMG.
The set of languages we take into consideration is: 1) the Java VM language,
a general-purpose VM language currently targeted by several MDE tools, espe-
cially in the Eclipse modeling platform, 2) the ATL VM language4, a high-level
VM for model manipulation, 3) the fUML language version 1.1 [5]. This set is
not meant to be exhaustive, as several other languages could be included in this
comparison, such as: QVT, Kermeta [15], or Epsilon 5. However, these other lan-
guages are at higher abstraction levels than the three considered languages, and
than typical assembly languages. The considered languages are representative of
classical (JVM), and model-oriented (ATL VM and fUML) VMs.

3.2 fUML as Assembly

In this section we argue that fUML is an interesting candidate to be an assem-
bly language for MDE: it satisfies many of the identified requirements, and is
expected to satisfy most of the others.

As shown in Table 1, the computational completeness requirement is satisfied
by all three languages under consideration. However, only one of the three VMs,
namely the ATL VM, natively handles model elements as first-class entities.
This requirement is in general satisfied by VMs that, like the ATL VM, are
designed for MDE. General purpose VMs like the Java VM can still provide a
uniform model access by using common modeling frameworks like EMF. fUML
is designed to exclusively handle instances of UML classifiers. However, it can
be generalized to handle any model element by lifting its semantics to MOF,
similarly to what has been done in xMOF [16]. Another possibility would be to
implement a modeling framework in fUML, but this would not provide direct
access to the modeling framework used by the host platform.

There are three rows of Table 1 that illustrate which control is provided by
the VM language over code execution. In particular we focus on the possibility of
specifying that 1) some operations may be executed sequentially or in parallel, 2)
evaluations may be performed in a lazy or eager way, 3) operations may be exe-
cuted without a specific execution order. The Java VM imposes a sequential order
between its instructions, but allows for explicitly defined coarse-grained parallel
operations (as Threads) or lazy evaluations by relying on programming libraries
written in VM bytecode. We call this approach in-language in Table 1. Similarly,
the ATL VM bytecode is based on fixed sequences of imperative instructions,
and its current implementation does not allow to specify parallelism or laziness.
However, two experimental versions have notably been created to support: a)
coarse-grained parallelism with interesting results in terms of speedup [17], and

4 We refer to the most recent version of the ATL VM, named EMFTVM [14], unless
specified otherwise in a cell of Table 1.

5 http://www.eclipse.org/epsilon/

http://www.eclipse.org/epsilon/

178 M. Tisi et al.

Table 1. Languages and requirements

Java VM bytecode ATL VM bytecode fUML
Computational
completeness

yes yes yes

Model handling only by using modeling
framework

yes only UML Instance-
Specifications
(but has been lifted to
MOF [16])

High-performance
implementation

yes yes no
(but expected)

Wide availability ++ + -
(++ expected)

Parallel operations in-language no
(but linguistic in
ParallelVM [17])

linguistic

Eager/Lazy evalua-
tion

in-language no
(but linguistic in
LazyVM [18])

in-language
(but linguistic may be
added, as in UML ac-
tivities)

No execution order
over-specification

fixed execution order fixed execution order execution order not
imposed

Exception
handling

yes no no
(but it may be added,
as in UML activities)

Introspection and
Reflection

yes only reflective model
access

no

Modularity/
Composability

yes yes yes

VM code as a model no yes yes
MDA Standard no no yes

b) lazy evaluation of transformation rules [18]. Finally, in fUML, parallelism is
a linguistic feature of the language, that allows the definition of fine-grained
regions of parallel execution. fUML does not require to impose an execution or-
der between instructions, as it provides a specific dataflow semantics for edges.
Explicit control flow is nonetheless supported. Lazy evaluation is not explicitly
supported by fUML linguistic features but can be still implemented by specific
modeling patterns. Moreover, UML activity diagrams have a linguistic support
for lazy evaluation (with ValueInputPin and ActionPin) and an extension of
fUML in this sense would be possible.

Among the three VMs, the more mature Java and ATL VMs provide high-
performance implementations, but a similarly efficient machine is expected also
for fUML. Actually, fUML is in theory in a better position to have especially
efficient implementations on future many-cores computing platforms, because it
can be used to express significantly more of (if not all) the fine-grained parallelism
in a problem [19]. Finally, while fUML is today the least popular VM among
the three choices, we expect it to become widely available once the standard is
mature. fUML availability may first be driven by users’need to execute their own
models. This will incidentally enable execution of MDE tools built on top of it.

Advanced features like exception handling and reflection are only supported
by the Java VM. All VM languages implement at least a modularity/compos-
ability mechanism. With respect to the other two VMs, the fUML option has the
important benefits of representing VM code as a model and of being an OMG

fUML as an Assembly Language for Model Transformation 179

standard. Moreover, UML supports interruptible regions and exceptions, which
could therefore be supported by future fUML versions.

4 fUML as Assembly for ATL

As an example of a roadmap that MDE tools may follow to comply to a com-
mon modeling VM, we discuss the case of the ATL transformation language. A
possible roadmap may involve replacing the current version of the ATL compiler
(that compiles towards the ATL VM) with a new compiler towards fUML, en-
coding transformation rules as flows of fUML activities. fUML activities, lifted
to the MOF level, would directly modify the models under transformation. An
immediate benefit of this new compiler w.r.t. the old one would be the possi-
bility of leveraging the innate parallelism of fUML by exploiting fUML parallel
execution regions in the generation. When semantically equivalent implemen-
tations of fUML in different modeling platforms are available, the same ATL
transformation will be executable on any of these platforms.

In this section we present a proof-of-concept compiler that translates a subset
of the ATL language to fUML. To illustrate how this translation is performed
we reuse the example of Section 2 by describing an implementation of Class-
Diagram2Relational as an fUML model. This implementation uses the xMOF
(eXecutable MOF) framework [16], which is a metamodeling language integrat-
ing fUML with MOF. xMOF has been originally built to enable users to specify
the behavioral semantics of their domain-specific modeling languages. We simply
leverage it to provide MDE tool execution as discussed in previous sections.

4.1 ClassDiagram2Relational in fUML

Fig. 2 depicts the metamodel of the ClassDiagram2Relational execution, which
consist of the syntax metamodel in the upper part and the runtime configuration
metamodel in the lower part.

Syntax Metamodel. The elements of the syntax metamodel can be divided
into three groups. The first group consists of the meta-class Transformation,
the abstract meta-class Trace, and its sub-classes. For each matched rule one
sub-class of Trace is created (e.g., TraceC2T for rule Class2Table and TraceA2C
for rule Attribute2Column). Trace classes have references pointing to the meta-
classes of the source and target pattern of the corresponding rules. For example
the meta-class TraceC2T has two references, sourceTraceC2T pointing to Class
and targetTraceC2T pointing to Table. The other two groups of meta-classes are
copies of the transformation source and target metamodels, with the addition,
for each meta-class, of references toward the related transformation traces.

Runtime Configuration Metamodel. The runtime configuration metamodel
(lower part of Fig. 2) defines the operational semantics of the transformation.
It contains configuration meta-classes providing a runtime representation of the

180 M. Tisi et al.

Fig. 2. Excerpt of ClassDiagram2Relational execution metamodel

syntax metamodel. Semantics is defined by defining operations in these meta-
classes, and associating them to fUML activities.

The runtime configuration metamodel in Fig. 2 contains the class Transforma-
tionConfiguration, which includes the operations main, createTraceC2T, create-
TraceA2C, resolveAttribute2Column and addColumnToTable. The metamodel
also contains a configuration class for each meta-class defined in the syntax
metamodel, with no operation (these classes are omitted in Fig. 2 for the sake
of simplicity).

Main Activity. In our ClassDiagram2Relational xMOF example, for each oper-
ation one activity having the same name is created to specify its behavior. Fig. 3
represents the main activity, that initiates and controls the global execution.

The main activity is divided into two parts (left and right hand sides of
Fig. 3) that run sequentially, since they are linked by the only control flow of the
diagram. The left-hand side represents the matching phase of the transformation
rules, while the right-hand side is the apply phase, responsible for computing and
setting all target properties.

The goal of the matching phase is to create, for each match of a transformation
rule, an empty element in the target model as well as a trace link. In our example,
this phase creates one instance each of Table and ofTraceC2T for each Class (like
the Class2Table ATL rule), and one instance each of Column and of TraceA2C

fUML as an Assembly Language for Model Transformation 181

ReadExtentAction

readAttribute

ReadExtentAction

readClass

CreateO
bjectAction

createColum
n

CreateO
bjectAction

createTable

callAddC2T

AddStructuralFeatureValue

setN
am

e

AddStructuralFeatureValue

setN
am

e

CallBehaviorAction

callCreateTraceC2T

CallBehaviorAction

callCreateTraceA2C

ReadStructureFeature

readM
ultivalued

ReadStructureFeature

readTargetTraceA2C

ReadStructureFeature

readSourceTraceA2C

ReadStructureFeature

readTargetTraceC2T

ReadStructureFeature

readSourceTraceC2T

ReadStructureFeature

readSourceTraceC2T

<<parallel>>

<<parallel>>

<<parallel>>

<<parallel>>

CallBehaviorAction

callResolveA2C
ReadStructureFeature

readAttr

ReadStructureFeature

readN
am

e

Result:
Class [*]

Result:
Class

Result:
Class

Result:
Colum

n

Result:
Colum

n
Result:
Attribute[*]

Result:
Attribute

Result:
Table

Result:
Table

[False]

ReadStructureFeature

readN
am

e

Result:
Attribute[*]

Result:
nam

e

Result:
nam

e

Result:
Colum

n[*]

Result:
TraceC2T

Result:
TraceA2C

object

object

object

object

object

object

object

object

Table

object

object

object

Colum
n

Attribute

Table

 Class

value

value

Colum
n[*]

 ‘

 Result:
isM

ultivalued

decisionInputFlow

CallBehaviorAction

applyClass2Table

applyAttribute2Colum
n

m
atchClass2Table

m
atchAttribute2Colum

n

Fig. 3. fUML activity: Transformation::main()

182 M. Tisi et al.

Table

Class

TraceClass2Table

CreateObjectAction

CreateTraceC2T

AddStructuralFeatureValue

setSourceTraceC2T

AddStructuralFeatureValue

setTargetTraceC2T

AddStructuralFeatureValue

setOwner

ReadSelfAction

readSelf

Transformation::createTraceClass2Table()

Column

Attribute TraceAttribute2Column

CreateObjectAction

CreateTraceA2C

AddStructuralFeatureValue

setSourceTraceA2C

AddStructuralFeatureValue

setTargetTraceA2C

AddStructuralFeatureValue

setOwner

ReadSelfAction

readSelf

Transformation::createTraceAttribute2column ()

object

object

object

object

object

object

value

value

value

value

value

value

result:
TraceAttribute2Column

result:

TraceAttribute2Column

result:
TraceClass2Table

 result:

TraceClass2Table

result

result

result

result

Fig. 4. fUML activites: Traces activities

Column[*]

ReadStructureFeature

readTraceAttribute2Column

ReadStructureFeature

readColumn

attribute[*]

Transformation::resolveAttribute2Column()

<<parallel>>

object

object

result:

TraceAttribute2Column

result:

Column

Fig. 5. fUML activity: Transformation::resolve()

Table

Transformation::addColumnToTable()

<<parallel>>

AddStructureFeaturevalue

setColumn

Table

Column[*]

Result: Table

object

value

Fig. 6. fUML activity:Transformation::addColumnToTable()

fUML as an Assembly Language for Model Transformation 183

for each single-valued Attribute (like the Attribute2Column ATL rule). We will
discuss the two matching rules separately.

For Class2Table, the flow starts by reading all instances of Class from the
input model, using the Read Extent Action readClass. The content of the match-
Class2Table expansion region is executed in parallel for all the Classes. Since
Class2Table matches every Class without further constraints, matchClass2Table
simply contains two actions: a Create Object Action to create a Table, and a
Call Behavior Action that launches a trace creation activity. The output of this
expansion region is a list of TraceC2T s.

The lower expansion region represents the matching phase of the Attribute2-
Column rule. The region processes in parallel all the Attributes of the source
model. The Attribute2Column rule has a guard, which checks if the attribute
is single-valued. This guard is represented by a Read Structural Feature Action
which reads the value of attribute isMultivalued and a decision node that passes
the control if the attribute is false. In this case the next actions create a Column
and a TraceA2C, analogously to the previous rule.

The apply part is represented in the right-hand side of Fig.3, by expansion
regions applyClass2Table and applyAttribute2Column, which are executed in par-
allel.

ApplyAttribute2Column aims to set the name of the Columns created in the
matching phase with the name of the corresponding Attributes. It takes as input
the list of TraceA2C elements from the previous phase. For each element of this
list it 1) finds the target Column to initialize (readTargetTraceA2C), 2) reads
the name of the corresponding attribute (readSourceTraceA2C and readName),
and 3) sets the value of the name in the target Column (setName).

The applyClass2Table region aims to set the name of the generated Tables by
a chain of actions that is analogous to the previous rule (readTargetTraceC2T,
readSourceTraceC2T, readName, and setName). ApplyClass2Table also contains
a second (upper) flow, that adds to the Table the Columns generated by the
other rule. This flow uses the resolveAttribe2Column activity to find the Col-
umns generated from Attributes of the corresponding Class. Finally, the ad-
dColumns2Table activity is called to put the collection of Columns into the
Table.

Trace Creation Activities. The fUML implementation of ClassDiagram2Re-
lational contains a trace creation activity for each transformation rule. These
activities are called by the main activity when a new trace link needs to be
created.

Fig.4 shows the trace creation activities for the Class2Table and Column2-
Attribute rules. The createTraceClass2Table activity aims at creating and re-
turning an instance of TraceC2T which has three references: 1) sourceTraceC2T
pointing to the input Class, 2) targetTraceC2T pointing to the input Table,
and 3) owner pointing to the Transformation. These references are set by a se-
quence of AddStructuralFeature actions setSourceTraceC2T, setTargetTraceC2T
and setOwner. Finally, the newly created trace is returned. Trace creation for
Column2Attribute is analogous.

184 M. Tisi et al.

Trace Resolution Activities. Fig. 5 shows the resolveAttribute2Column ac-
tivity. This activity resolves the TraceA2C link, meaning that, given an Attribute
element it returns the correspondent Column element. Resolution is performed
by navigating from the source element to the trace link, and then from the trace
link to the target element. Navigations are performed by ReadStructuralFeature
actions that are inserted into an expansion region, so as to be able to resolve
elements sets as well as single elements.

Auxiliary Activities. Auxiliary activities like addColumnsToTable in Fig. 6
are added to facilitate the assignment of a collection to a reference. In this case
the activity takes as inputs a list of Columns and a Table, and returns this Table
after cycling on the collection and adding its elements to the reference col.

4.2 Mapping ATL to fUML

In the previous section, while describing the fUML representation of the small
ClassDiagram2Relational transformation, we introduced the main concepts of
the compilation of ATL towards fUML. Around these concepts we built a pro-
totype ATL-to-fUML compiler that is able to translate simple declarative trans-
formations. In particular, the compiler is capable to translate Listing 1.1 into
the implementation of Figures 2 to 6.

While the generation of trace-creation, trace-resolution, and auxiliary activi-
ties can be trivially induced from the example, we use Figures 7 and 8 to illustrate
the general schema for generating the main activity.

For the matching phase (Fig. 7), the type of the source elements to match is
translated into an fUML ReadExtentAction for that type. Each element of the
matched type is analyzed in parallel thanks to an expansion region. The OCL
expression used as the rule guard is translated into an fUML flow calculating
a boolean. A decision node triggers the creation of the corresponding target
elements and trace link only when the guard is satisfied. Finally, trace links are
produced by a call to the generated trace creation activity, and the set of trace
links is collected as the output of the expansion region.

The set of trace links is taken in input by the rule application phase (Fig. 8),
which assigns a value to the properties of target elements created in the previous
phase. The expansion region starts a parallel flow for each trace link, i.e. for each
rule application. The value of the target properties are computed thanks to a
value expression, that is the translation in fUML of the OCL expressions in the
ATL code. The computed value is used to assign an attribute or a reference in the
target model. The assignment is done by an AddStructuralFeatureValueAction
in case of single-valued properties or by a call to an auxiliary activity in case of
multi-valued properties.

While Figures 7 and 8 illustrate the compilation of the ATL main structures
in fUML, translating OCL expressions into the “guard expression” or “value
expression” placeholders is not a trivial problem. Our current proof-of-concept
compiler is able to translate OCL boolean operators, property navigation and
equalities, but work has yet to be done for full OCL support.

fUML as an Assembly Language for Model Transformation 185

ReadExtentAction

CreateObjectAction

CallBehaviorAction

CallCreateTrace

<<parallel>>

Trace

target

source

 ‘

decisionInputFlow

guard
expression

target element

source element

Fig. 7. Translation of the rule matching part

callSetFeatures

AddStructuralFeatureValue

ReadStructureFeature

readTargetTrace

<<parallel>>

CallBehaviorAction

setFeature

value
expression

value
expression

multi-valued binding

single-valued binding

Fig. 8. Translation of the rule application part

The compiler is itself written in ATL (i.e., it is a higher-order transformation
[13]). The compiler is completely written in declarative style by solely relying on
ATL matched rules, providing a clear correspondence between ATL and fUML
metamodels. While the full code of the transformation rules is available at the
paper website6, Table 2 summarizes the correspondence between the ATL syntax
and the fUML/xMOF syntax.

6 http://www.emn.fr/z-info/atlanmod/index.php/ATL2fUML

http://www.emn.fr/z-info/atlanmod/index.php/ATL2fUML

186 M. Tisi et al.

It is mostly because of our limited support for OCL that our compiler at the
current stage can not be itself compiled into fUML. Our next step will be to
extend the compiler to fully bootstrap our approach.

4.3 Discussion

Although readability of an assembly language is not necessary, the fUML model
generated from the ClassDiagram2Relational ATL transformation is relatively
readable. One reason is that modularity has been achieved by separating dif-
ferent parts into different behaviors. Of course, readability of generated fUML
models will most probably not scale to larger, more complex transformations.
However, it may be leveraged to teach and explain the semantics of a model-
ing tool (such as the ATL engine) by generating fUML models corresponding
to simple examples. This generation can use the same compiler as the one used
for complex cases. Continuing on readability, we observed that the compiler it-
self is relatively readable as an ATL-to-fUML declarative transformation when
compared to the legacy ATL-to-bytecode compiler.

Before switching to xMOF, we attempted to create a standard fUML version,
using Papyrus as execution engine. However, that version could not directly use
model elements, but only UML classifier instances. xMOF solved that issue,
but then again xMOF is still a non-standard version of fUML lifted to MOF.
Considering that OCL also started as a UML-only constraint and query language
before being lifted to MOF, there is hope that fUML may follow the same path.

In Section 2, we mentioned the possibility of optimizing a common VM for
performance independently of the tools built on top of it. Although we have
not tested this with the fUML common VM approach, this has already been
experimented for ATL. The original “Regular ATL VM” (released in 2004) was
not very efficient. Therefore, in 2007, we decided to implement a new EMFVM
from scratch. This new VM supports the exact same bytecode, but has a better
architecture, and is better optimized. The ATL compiler was not impacted at
all. We believe that a similar path could be followed by fUML-based VMs.

With respect to the use of a modeling VM to implement standards, it should
be noted that the fUML standard already comes with a reference implementation
of fUML specified in fUML. Although this may not seem useful in concrete
cases, we can imagine scenarios in which it actually is. For instance, a modeling
platform may have an efficient fUML VM that is good at providing execution
for tools, but may lack a good fUML simulator or animator, which users need
for their own models. An implementation of fUML tailored for emulation and
simulation may then run on top of the more efficient fUML VM tailored for
tool execution. The way current fUML implementations based on the reference
implementation work is arguably close to this situation. Indeed, the reference
implementation is in part a serialization of the text-based fUML definition of
fUML in fUML from the specification.

Finally, we listed in Section 3.1 a requirement (named no over-specification)
that VM code should not be sequential when this is not imposed by the semantics
of the tool. Regarding this requirement, we can note that in our example we

fUML as an Assembly Language for Model Transformation 187

Table 2. Mapping ATL metamodel - fUML metamodel

Source element Generated elements (symbolic name)

Module BehavioredEClass (’TransformationConfiguration’)
BehavioredEClass (’TraceConfiguration’)
BehavioredEOperation (’main’)
JoinNode
ForkNode
Activity (’main’)
EPackage (’ATL2fUMLConfiguration’)

MatchedRule BehavioredEClass (’Trace Configuration’)
BehavioredEClass (’InPattern Configuration’)
BehavioredEClass (’OutPattern Configuration’)
BehavioredEOperation (’createTrace’)
Activity (’createTrace’)
CreateObjectAction (’create Trace’)
AddStructuralFeatureValueAction (’setSource’)
AddStructuralFeatureValueAction (’setTarget’)
AddStructuralFeatureValueAction (’setOwner’)
ReadSelfAction (’Read Self’)
ExpansionNode (’inputApply’)
ExpansionRegion (’Apply’)
ForkNode

MatchedRule
(s.isMultivalReference())

BehavioredEOperation (’resolve’)
Activity (’resolve’)
ExpansionRegion (’Resolve Expansion Region’)
ExpansionNode (’input Element expansion Region’)
ExpansionNode (’output Element expansion Region’)
ReadStructuralFeatureAction (’read Trace’)
ReadStructuralFeatureAction (’read OutPattern’)
BehavioredEOperation (’add OutPattern’)
Activity (’add OutPattern’)
ExpansionRegion (’Set References Expansion Region’)
ExpansionNode (’input Expansion Node’)
ExpansionNode (’input Expansion Node’)
ExpansionNode (’output Expansion Node’)
AddStructuralFeatureValueAction (’set OutPattern’)

SimpleOutPatternElement ReadStructuralFeatureAction (’read Target’)
ForkNode

Binding ReadStructuralFeatureAction (’read’)
ReadStructuralFeatureAction (’read Source inPattern’)
CallBehaviorAction ’callActivity resolve’

Binding
(s.isAttribute() <> OclUndefined)

AddStructuralFeatureValueAction (’set property Name’)

Binding
(s.isAttribute() = OclUndefined)

CallBehaviorAction (’callActivity resolve’)
CallBehaviorAction (’Call Behavior Action’)

NavigationOrAttributeCallExp
(s.getRootFilter().oclType().name= ’InPattern’)

ReadStructuralFeatureAction (’read’)

OperatorCallExp LiteralBoolean

SimpleInPatternElement ReadExtentAction (’read’)
ExpansionNode (’input Match’)
ExpansionNode (’output Match’)
CreateObjectAction (’createOutPattern’)
CallBehaviorAction (’callCreateTrace’)

SimpleInPatternElement
(s.refImmediateComposite().filter <> OclUndefined)

ForkNode
DecisionNode
ExpansionRegion (’match’)

SimpleInPatternElement
(s.refImmediateComposite().filter = OclUndefined)

ExpansionRegion (’match’)

managed to have only one control-flow synchronization point. It is used to make
sure that trace links are not accessed before they are all created. Therefore, we
find it especially interesting that the fine-grained parallelism of ATL semantics
can be modeled so elegantly.

5 Related Work

Efforts to provide a common modeling platform and repository date from the
beginning of MDE. While EMF is today the de facto standard, other well-known
proposals exist, like NetBeans Metadata Repository [20] and Univers@lis [21].
Modeling tools developed over one of these platform are generally tied to the

188 M. Tisi et al.

chosen framework. Several works investigated interoperability of modeling tools
among different platforms. For instance [22] investigates interoperability issues
among different metamodeling platforms. [23] focuses on the interoperability of
modeling tools through the use of a bus that provides several predefined data
interchange and conversion services.

Some works specifically address interoperability of model-transformation en-
gines. The Integrated Transformation Environment (ITE) [24] allows users to use
many transformation engines in the same environment. [14] proposes a common
virtual machine to have different model-transformation languages interoperate
on EMF. A general schema for the migration of a model transformation engine
to a different platform has been investigated in [25], together with a practical
experimentation migrating ATL from EMF to Microsoft DSL Tools.

We are not aware of any related work that proposes a single “assembly lan-
guage” for all kinds of modeling tools. However, our proposed approach may be
used in complement to other approches such as the ones mentioned in this sec-
tion. For instance, a common VM approach, for instance based on fUML, may
be used to exchange tools (e.g., as fUML models) over a model bus, which may
also be useful to synchronize multiple modeling frameworks. This synchroniza-
tion may for instance be useful because not all tools may be exchangeable as
fUML models.

6 Conclusion

In this work, we explained that interoperability between modeling tools across
modeling platforms may be simplified by the use of a common modeling Vir-
tual Machine (VM). This VM provides execution to modeling tools written in
(or compiled to) its language. We showed the applicability of this approach by
providing a proof-of-concept implementation of ATL over the fUML VM. There
are two notable possible ways to extend this work: 1) improving ATL coverage
in order to show that it scales to more complex tools, and 2) applying it to more
modeling tools (possibly beyond model transformation tools).

Although fUML is not fully ready to be the language for such a modeling VM,
it is one of the best candidates. Once the problems mentioned in Section 3.2 are
addressed, it does not lack many features to be usable for many kinds of tools.
However, we have not considered tools that have a stronger dependency to a
given platform. For instance, graphical model editors generally have a strong
dependency to a windowing toolkit, which is complex to abstract in a VM.

Execution performance of fUML may be limited on full-fledged fUML engines,
which provide complete simulation of the flow of tokens. These tools (e.g., [26])
are extremely useful when fUML is used to specify behavior of user models.
However, when fUML is used as a VM, techniques similar to those used for
asm.js [27] may be used to increase performance: definition of a simpler subset of
fUML, and ahead-of-time compilation to machine code. Therefore, performance
should not, in the long run, be an issue that prevents using fUML as proposed
in this paper.

fUML as an Assembly Language for Model Transformation 189

References

1. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling
Framework. Pearson Education (2008)

2. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Eclipse Series. Pearson Education (2009)

3. Object Management Group (OMG): XML Metadata Interchange (XMI), v2.4.2
(April 2014), http://www.omg.org/spec/XMI/2.4.2/

4. Object Management Group (OMG): Object Constraint Language (OCL), v2.4
(February 2014), http://www.omg.org/spec/OCL/2.4/

5. Object Management Group (OMG): Semantics of a Foundational Subset for Exe-
cutable UML Models (fUML), v1.1 (August 2013),
http://www.omg.org/spec/FUML/1.1/

6. Jouault, F., Tisi, M., Delatour, J.: fUML as an Assembly Language for MDA. In:
Modeling in Software Engineering Workshop at ICSE 2014 (2014)

7. Kappe, D.: Is Javascript the Assembly Language of Web 2.0?,
http://pathfindersoftware.com/2007/03/is_javascript_t/

(accessed July 22, 2013) (archived by WebCiteR© at
http://www.webcitation.org/6IIxYG22S) (March 2007)

8. Hanselman, S., Meijer, E.: JavaScript is Assembly Language for the Web: Semantic
Markup is Dead! Clean vs. Machine-coded HTML,
http://www.hanselminutes.com/274/javascript-is-assembly-language-for-

the-web-semantic-markup-is-dead-clean-vs-machine-coded (accessed July 22,
2013) (archived by WebCiteR© at http://www.webcitation.org/6IIz8ZvNt) (July
2011)

9. Object Management Group (OMG): MOF Model To Text Transformation Lan-
guage (MOFM2T), 1.0 (January 2008), http://www.omg.org/spec/MOFM2T/1.0/

10. Object Management Group (OMG): Meta Object Facility (MOF) 2.0
Query/View/Transformation, V1.2 (Beta), http://www.omg.org/spec/QVT/1.2/
(May 2014)

11. Object Management Group (OMG): Concrete Syntax For A UML Action Lan-
guage: Action Language For Foundational UML (ALF), v1.0.1,
http://www.omg.org/spec/ALF/1.0.1/ (October 2013)

12. Object Management Group (OMG): UML Human-Usable Textual Notation
(HUTN), v1.0 (August 2004), http://www.omg.org/spec/HUTN/1.0/

13. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order
model transformations. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-
FA 2009. LNCS, vol. 5562, pp. 18–33. Springer, Heidelberg (2009)

14. Wagelaar, D., Tisi, M., Cabot, J., Jouault, F.: Towards a general composition
semantics for rule-based model transformation. In:Whittle, J., Clark, T., Kühne, T.
(eds.) MODELS 2011. LNCS, vol. 6981, pp. 623–637. Springer, Heidelberg (2011)

15. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving Executability into Object-
Oriented Meta-languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005.
LNCS, vol. 3713, pp. 264–278. Springer, Heidelberg (2005)

16. Mayerhofer, T., Langer, P., Wimmer, M.: Towards xMOF: executable DSMLs
based on fUML. In: Proceedings of the 2012 Workshop on Domain-Specific Mod-
eling, DSM 2012, pp. 1–6. ACM, New York (2012)

17. Tisi, M., Mart́ınez, S., Choura, H.: Parallel Execution of ATL Transformation
Rules. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MOD-
ELS 2013. LNCS, vol. 8107, pp. 656–672. Springer, Heidelberg (2013)

http://www.omg.org/spec/XMI/2.4.2/
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/FUML/1.1/
http://pathfindersoftware.com/2007/03/is_javascript_t/
http://www.webcitation.org/6IIxYG22S
http://www.hanselminutes.com/274/javascript-is-assembly-language-for-the-web-semantic-markup-is-dead-clean-vs-machine-coded
http://www.hanselminutes.com/274/javascript-is-assembly-language-for-the-web-semantic-markup-is-dead-clean-vs-machine-coded
http://www.webcitation.org/6IIz8ZvNt
http://www.omg.org/spec/MOFM2T/1.0/
http://www.omg.org/spec/QVT/1.2/
http://www.omg.org/spec/ALF/1.0.1/
http://www.omg.org/spec/HUTN/1.0/

190 M. Tisi et al.

18. Tisi, M., Mart́ınez, S., Jouault, F., Cabot, J.: Lazy execution of model-to-model
transformations. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS,
vol. 6981, pp. 32–46. Springer, Heidelberg (2011)

19. Vishkin, U.: Is Multicore Hardware for General-purpose Parallel Processing Bro-
ken? Commun. ACM 57(4), 35–39 (2014)

20. NetBeans Metadata Repository, http://mdr.netbeans.org
21. Belaunde, M.: A pragmatic approach for building a user-friendly and flexible uml

model repository. In: France, R.B. (ed.) UML 1999. LNCS, vol. 1723, pp. 188–203.
Springer, Heidelberg (1999)

22. Kühn, H., Murzek, M.: Interoperability issues in metamodelling platforms. In: Kon-
stantas, D., Bourrières, J.P., Léonard, M., Boudjlida, N. (eds.) Interoperability of
Enterprise Software and Applications, pp. 215–226. Springer London (2006)

23. Blanc, X., Gervais, M.-P., Sriplakich, P.: Model bus: Towards the interoperability
of modelling tools. In: Aßmann, U., Akşit, M., Rensink, A. (eds.) MDAFA 2003.
LNCS, vol. 3599, pp. 17–32. Springer, Heidelberg (2005)

24. Blanc, X., Gervais, M.P., Lamari, M., Sriplakich, P.: Towards an Integrated Trans-
formation Environment (ITE) for Model Driven Development (MDD), Invited Ses-
sion “Model Driven Development”. In: 8th World Multi-Conference on Systemics,
Cybernetics and Informatics (SCI 2004). LNCS (2004), Model Driven Architecture:
Foundations and Applications, International Institute of Informatics and Systemics
(IIIS) (2004) INT LIP6 MoVe

25. Brunelière, H., Cabot, J., Clasen, C., Jouault, F., Bézivin, J.: Towards model driven
tool interoperability: Bridging eclipse and microsoft modeling tools. In: Kühne, T.,
Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp.
32–47. Springer, Heidelberg (2010)

26. Mayerhofer, T., Langer, P., Kappel, G.: A runtime model for fUML. In: Proceedings
of the 7th Workshop on Models@run.time, MRT 2012, pp. 53–58. ACM, New York
(2012)

27. Herman, D., Wagner, L., Zakai, A.: asm.js (December 2013),
http://asmjs.org/spec/latest/

http://mdr.netbeans.org
http://asmjs.org/spec/latest/

Respect Your Parents: How Attribution

and Rewriting Can Get Along

Anthony M. Sloane, Matthew Roberts, and Leonard G.C. Hamey

Department of Computing, Macquarie University, Sydney, Australia

Abstract. Attribute grammars describe how to decorate static trees.
Rewriting systems describe how to transform trees into new trees. Attri-
bution is undermined by rewriting because a node may appear in both
the source and product of a transformation. If an attribute of that node
depends on the node’s context, then a previously computed value may
not be valid. We explore this problem and formalise it as a question of
ancestry: the context of a node is given by the tree’s parent relationships
and we must use the appropriate parents to calculate attributes that de-
pend on the context. We show how respecting parents naturally leads to
a view of context-dependent attributes as tree-indexed attribute families.
Viewed in this way, attribution co-exists easily with rewriting transfor-
mations. We demonstrate the practicality of our approach by describing
our implementation in the Kiama language processing library.

1 Introduction

Tree attribution and tree rewriting are two fundamental paradigms of software
language engineering. On the one hand, attribution focuses on calculating prop-
erties of a given program represented as a syntax tree. Attribute grammars are
a standard way to declaratively specify the way in which trees should be at-
tributed. On the other hand, rewriting concentrates on transforming a program
represented by a syntax tree into a program or other artefact represented by
another tree.

Attribution and rewriting are more usefully deployed together to solve a lan-
guage engineering task. For example, in a compiler we might obtain an initial tree
from a syntax analyser and perform some attribution on it to check some basic
static properties. We might transform the initial tree into another one, perhaps
to desugar complex constructs into simpler ones. Following this transformation,
we might calculate attributes of the desugared tree to determine information
that is needed for a further transformation process that produces the output we
desire such as compiled code.

The ease with which such a process can be described is deceptive, since the
detail of combining attribution and rewriting contains a subtle trap. It is common
for rewriting implementations to use immutable data representations and deploy
structure sharing since duplication of nodes can lead to significant extra memory
use [1]. For example, a desugaring transformation might retain some parts of the
input tree if those parts do not contain any complex constructs.

B. Combemale et al. (Eds.): SLE 2014, LNCS 8706, pp. 191–210, 2014.
c© Springer International Publishing Switzerland 2014

192 A.M. Sloane, M. Roberts, and L.G.C. Hamey

If nodes are shared between trees, how do we think of their attributes? These
nodes are unchanged by the rewriting process and are shared by the before and
after trees for efficiency reasons. A shared node may have different ancestors
in the two trees and attributes that depend on these ancestors may well have
different values depending on which set of ancestors we use. For example, the
type of an expression may be different after rewriting if the type of a variable it
uses has been changed. The type of the variable is given by the context of the
expression in a particular tree, not as a property of the expression node itself.
The core problem is to identify which attributes are valid after rewriting and
which are not so that we do not need to recompute valid ones and we can avoid
using invalid ones.

In this paper we describe how we addressed this problem in the context of
our Kiama Scala-based language processing library [2], its implementation of at-
tribute grammars [3] and its use of strategic term rewriting for transformation.
Since it is based on Scala, Kiama uses object representations for trees and refer-
ence equality to implement node identity. Our aim was to develop a disciplined
way to structure Kiama-based attribution under these conditions so that we
could perform arbitrary rewriting of trees without invalidating previously calcu-
lated attribute values or obscuring the identity of the trees in which attribute
values were valid.

The essence of our approach is that attribution should be performed with
respect to the whole tree, not just with respect to a node in the tree (Section 2).
Context-dependent attributes rely on the parent relationships to explore the
context and its properties. It is the tree that defines the parent relationships
between nodes, not the nodes themselves. If we base context-dependent attribu-
tion solely on the identity of a node then we are asking for trouble since that
node may have more than one context if it is shared.

Our technical solution is to define context-dependent attributes as tree-indexed
attribute families, not as single attributes (Section 3). To use one of these at-
tribute families we must supply a tree to get an attribute that is valid for com-
putations within that tree. At that point, regular attribute evaluation takes over
without change. With attribute families, it becomes impossible to use a context-
dependent attribute without thinking about the tree in which it is computed.
Moreover, this tree-based focus is completely independent of the mechanism by
which the tree was obtained. We can use any rewriting process we like without
affecting the attribution.

We have implemented this approach in Kiama (Section 4). We previously
relied on a mutable parent field in each tree node which was updated after a
rewriting step. Because the parent had potentially changed it was necessary to
erase all attribute values in case they were now invalid in the rewritten tree.
Our changes mean that the mutable parent field has been removed, but no other
changes were necessary to the core of the attribution and rewriting components.
All of the existing Kiama test specifications were easily moved to the new scheme.
We can now interleave attribution and rewriting of trees that share nodes without
any danger.

Respect Your Parents: How Attribution and Rewriting Can Get Along 193

We compare our approach to those of related attribute grammar-based sys-
tems that feature some element of rewriting or tree transformation (Section 5).
We believe our approach is the first time that a general scheme for attribution
has been given that can interoperate safely with arbitrary rewriting without the
implementations of attribution or rewriting being dependent on each other.

2 Background

We begin by discussing examples of attribution and rewriting of simple tree
structures to illustrate where problems can occur. This discussion motivates our
solution which we describe informally here and more formally in the next section.

Our examples are based on simple arithmetic expressions that conform to the
following context-free syntax rules:

Top : Root ::= Node
Num : Node ::= Int
Plus : Node ::= Node Node

Thus, the tree

Top(Plus(Plus(Num(1),Num(2)),Plus(Num(3),Num(4))))

represents the expression (1 + 2) + (3 + 4) and is depicted in Figure 1.

2.1 Attribution

Suppose that we are interested in the height of nodes as measured by their max-
imum distance from a leaf. The following attribute grammar equations suffice to
specify this attribute.1

Plus

Plus

Num 1 Num 2

Plus

Num 3 Num 4

Tree A

Top

Fig. 1. Tree A represents the arithmetic expression (1 + 2) + (3 + 4).

1 Throughout the paper we use a generic attribute grammar notation that can easily
be translated into the notations of particular tools. Context-free grammar rules are
augmented by equations that specify how to calculate attributes of tree nodes using
constants, pre-defined operations and the values of attributes at other nodes.

194 A.M. Sloane, M. Roberts, and L.G.C. Hamey

Num : Node ::= Int
Node.height = 0

Plus : Node1 ::= Node2 Node3
Node1.height = 1 +max(Node2.height,Node3.height)

The height of a Num is always zero since it is a leaf. The height of a Plus node
is one more than the maximum of the heights of its children. Subscripts are
used in the equations to distinguish between multiple occurrences of the Node
symbol in Plus rule. Applying these equations in Tree A tells us that the height
of node 1 is two and the height of node 4 is zero.

In effect, the height attribute equations define a pattern of computation that
proceeds upward in the tree from the leaves to the node of interest. Traditionally,
this kind of attribute is called a synthesized attribute.

In contrast, some attributes naturally depend on the context of the node at
which they are computed and the information flows downward in the tree. For
example, consider calculating the depth of a node in a tree which is its distance
from the root. In traditional terminology, depth is an inherited attribute whose
definition is given by equations that are associated with every rule that specifies
context for the Node symbol.

Top : Root ::= Node
Node.depth = 0

Plus : Node1 ::= Node2 Node3
Node2.depth = Node1.depth+ 1
Node3.depth = Node1.depth+ 1

These equations explain why the Top production is needed. Without it, there
would be no context for the topmost Node. The Top context defines a depth
of zero for its constituent Node, whereas a Plus context increments the depth
by one. Applying these equations in Tree A tells us that the depth of node 1 is
zero and the depth of node 4 is two.

The height and depth attributes are simple but attributes like them are the
basis of any attribute grammar. Information is propagated up or down the tree
from the place where it is available to where it is needed. A typical synthe-
sized attribute is the value of a constant expression in a programming language.
Name analysis can be performed using attributes that propagate information
about declarations up to nodes that define scopes and then down to nodes that
represent uses.

Modern attribute grammar systems build more advanced concepts on top of
synthesized and inherited attributes, such as short-hand notations to make it
easier to transport information up and down the tree, and attributes defined
by fixed point computation. Extensions such as reference attributes and circular
attributes are also supported by Kiama and similar systems. In this paper we
focus on simple attributes in our examples, but the technique extends to more
complex ones, since it does not affect the attribute evaluation mechanisms.

Respect Your Parents: How Attribution and Rewriting Can Get Along 195

2.2 Rewriting

With the height and depth attributes in place, we now consider a rewriting
transformation. The left-hand side of Figure 2 shows Tree A, repeated from
Figure 1 with node numbers added for identification. The right-hand side of
Figure 2 shows Tree B, a possible result of rewriting Tree A. In Tree B a new
Plus node with a zero left child has been added at the top, and the right-most
leaf has been incremented. These changes are typical of the effects of rewriting:
embedding an existing tree in a new context, and changing a deeply-nested sub-
tree.

Plus

Plus

Num 1 Num 2

Plus

Num 3 Num 4

1

2 3

4 5 6 7

Tree A

Num 0 Plus

Plus

Num 1 Num 2

Plus

Num 3 Num 5

Plus

2

4 5 6

9

10 11

12

13

Tree B

Top

Top

0

8

Fig. 2. Trees A and B represent arithmetic expressions (1+2)+(3+4) and 0+((1+2)+
(3 + 5)), respectively. The superscripts number the individual nodes for identification
in the text.

If we assume that sharing is allowed, that Tree B was produced from Tree A,
and that trees are immutable, Tree B can share nodes 2, 4, 5 and 6 with Tree A.
Nodes 9 and 10 in Tree B have no counterpart in Tree A. Node 13 results from
rewriting node 7. Whenever a node is rewritten, all its ancestor nodes must also
be replaced because they have at least one new child, even though they have not
been explicitly transformed. This is the reason for replacing nodes 1, 3 and 7 by
nodes 8, 11 and 12.

2.3 The Problem and Solutions

The central problem that we aim to address is how to compute the attributes
of nodes that are shared between two trees. In some cases, the way that the
attribute is computed means that its value cannot be affected by the sharing.
Specifically, computation at a shared node n of an attribute that is only de-
pendent on information from the sub-tree rooted at n cannot be influenced by
rewriting since that sub-tree has not changed. For example, the height attribute
is such an attribute and it is easy to see that the heights of nodes 2, 4 and 5 are
the same in both Tree A and Tree B. In other cases, the nature of the attribute
is to depend on the context of the node at which it is evaluated. A shared node

196 A.M. Sloane, M. Roberts, and L.G.C. Hamey

might have different contexts in the two trees and hence different values for the
attribute in those trees. For example, the depth of node 2 in Tree A is one, but
in Tree B it is two since an extra node has been added above it.

The simplest approach to combining attribution and rewriting in the presence
of sharing is to just calculate all of the attributes during a traversal of the tree
from the root. It does not matter if a node is shared if we reach it via a path from
the root in the relevant tree since that path gives us the context in that tree.
Modern attribute grammar systems tend to prefer a more dynamic approach
where attribute occurrences are only evaluated when needed [4,5,3]. Conceptu-
ally we ask a node for the value of one of its attributes which might trigger
evaluation of attributes of other nodes. A primary motivation for this form of
evaluation is interactive applications where we want to respond as quickly as
possible with just what is needed. For example, in a development environment if
we want to display a tool-tip for the code under the mouse pointer, we don’t want
to wait for a traversal to calculate every attribute if we can get the appropriate
tool-tip with a much smaller set.

Assuming that we don’t want to re-evaluate all of the attributes, we need
a way to evaluate an attribute in a rewritten tree without having the context
be an implicit piece of information in the evaluator. Our key observation is
that attributes like depth depend on the parent relationships of the tree in
which it is used. We must respect the parents in order to get a sensible result.
Accordingly, our general solution is to regard context-dependent attributes as
being parameterised by the tree in which they are being evaluated. In other
words, instead of being attributes, they are tree-indexed attribute families. We
must first supply the relevant tree and then we get an attribute that can be used
safely for computations in that tree.

This approach has three main advantages. First, attribute families that are
tree-indexed cannot be used without explicitly supplying the appropriate tree.
This requirement removes the possibility of confusion that is present if the con-
text is a property of tree nodes independent of the trees in which they occur.
Second, because the tree has a separate identity to the nodes within it, a node
can participate in more than one tree without problem. Significantly, attribution
and rewriting do not need to be aware of each other, yet can operate together.
Third, not having to erase attributes after rewriting should lead to efficiency
gains since attributes that are still valid do not have to be re-calculated.

2.4 Kiama

Our main practical motivation for this work was to improve the implemen-
tation of attribute grammars in the upcoming 2.0 release of our Kiama lan-
guage processing library [2,3]. Kiama combines attribute grammars with strate-
gic term rewriting in the style of Stratego [6]. We aimed to make context-
dependent attributes safer when used in concert with rewriting based on generic
tree traversals.

Respect Your Parents: How Attribution and Rewriting Can Get Along 197

Kiama departs somewhat from the traditional view of attribute grammars
used above to define the height and depth attributes. Instead of being defined by
associating equations with grammar productions, Kiama attributes are defined
by pattern matching against the tree structure at the node of interest. When a
pattern matches a node, then the corresponding expression is used to calculate
the value of the attribute at the node. In effect, a pattern and corresponding
expression together define an equation for the attribute. Section 3 formalises the
relevant aspects of this way of writing attribute grammars and gives examples.

Kiama’s focus on pattern matching to decide which equation to apply means
there is no clear distinction between synthesized and inherited attributes. In
fact, one equation for an attribute can use the context to define the attribute
value (inherited aspect) while another equation for the same attribute can use
just child nodes (synthesized aspect). In a traditional setting the synthesized and
inherited aspects would need to be split into separate attributes since one would
need to be defined in the context of the relevant node. A consequence of Kiama’s
approach is that it is not necessary to introduce extra context productions in
order to specify inherited attributes of the root of the tree. For example, we can
define the expression example from the previous sections without needing the
extra Top production to add context at the root of the expression tree. Section 3
shows how this can be done.

The attribution libraries in Kiama 1.x assume that the tree nodes contain
a mutable parent field [3]. After a rewriting step, the parent fields must be
updated to reflect the participation of shared nodes in the new tree, since those
fields represent the parent relationships of the old tree. Updates to the parent
fields potentially invalidate previously computed attribute values. To be safe,
we must currently erase all of those values. There is no static check that this
operation is performed and subtle bugs can be created if it is omitted. Even if the
erasure is performed, we waste effort if erased values would have still been valid
in the new tree. Moreover, after rewriting we cannot compute context-dependent
attributes in the old tree at all since its parent information in shared nodes has
been overwritten.

The approach developed in this paper removes these drawbacks. Kiama no
longer assumes the existence of mutable parent fields. It is not possible to access
a context-dependent attribute without specifying which tree is relevant. Com-
puted attribute values remain valid after rewriting since the parent relationships
from the old tree are still valid. We can calculate attributes on the old tree after
rewriting just by using the old tree’s parents. Attribution and rewriting don’t
have to know details of each other’s implementation. In summary, our new ap-
proach means that attribution and rewriting can be freely mixed and that the
possibility of bugs due to subtleties of their interaction is greatly diminished.

3 How to Respect Your Parents

In this section we make these ideas concrete by formalising Kiama-style attribute
grammars that respect their parents. We are only concerned with the dynamic

198 A.M. Sloane, M. Roberts, and L.G.C. Hamey

evaluation behaviour of our attribute grammars. Therefore, we simplify the pre-
sentation by assuming that they do not contain any static errors that in Kiama
would be ruled out by the Scala compiler. For example, we assume that the
patterns in attribute definitions are non-linear and that the right-hand side of
a case does not refer to unbound variables. We assume that constructors are
always applied to the correct number of arguments in tree construction and in
patterns. We do not consider aspects such as which attributes are defined for
which node types since these aspects are orthogonal to our main topic.

3.1 A Core Attribute Grammar Language

Figure 3 summarises the abstract syntax of programs in a core attribute grammar
language that is consistent with Kiama. The core language omits more complex
Kiama attributes such as reference, higher-order and circular attributes. Each
of these kinds of attribute can be incorporated into our scheme with no extra
mechanisms and we have done so in our implementation.

A program consists of one or more definitions of trees and attributes, followed
by one or more expressions that calculate values using those definitions. Defini-
tions can bind variables to tree values. We assume that x ranges over the names
of global variables and over the names of variables bound by pattern match-
ing. Trees are defined over constructors Cn of arity n >= 0 that we assume
are pre-defined and fixed. A tree is created by an application Cn(t1, . . . , tn) of a
constructor Cn to sub-trees t1, . . . , tn.

Program p ::= d+e+

Definitions d ::= x = t tree-valued binding
| a = c attribute definition by cases

Trees t ::= Cn(t1, . . . , tn) construction
Cases c ::= case p → e match and evaluate

| c c sequence
Patterns p ::= x variable pattern

| Cn(p1, . . . , pn) constructor pattern
Expressions e ::= fn(e1, . . . , en) function call

| x.a evaluate attribute

Fig. 3. Abstract syntax of the core attribute grammar language

Definitions can also bind attribute names to equations given by one or more
pattern matching cases. The meta-variable a ranges over the names of attributes.
Each case of an attribute definition specifies a match of a pattern against the
node at which the attribute is being evaluated. If the pattern matches, the
corresponding expression is evaluated to determine the value of the attribute
at that node. Cases are applied in program order. Patterns are either variable
patterns x which match any tree, or constructor patterns Cn(p1, . . . , pn) which
match only trees whose root is formed by the constructor Cn and whose children
match the patterns p1, . . . , pn.

Respect Your Parents: How Attribution and Rewriting Can Get Along 199

We assume fn ranges over the names of globally available functions with arity
n >= 0. An expression fn(e1, . . . , en) applies function fn to the expressions
e1, . . . , en. To simplify the presentation we assume that we can use standard
mathematical functions using infix notation. We also assume the existence of
a function for conditional expression evaluation written e ? e : e which only
evaluates one of its second and third arguments.

An expression x.a evaluates the attribute a at node x. Evaluation of this form
of expression involves applying the definition of attribute a to the node bound
to variable x.

We can write the height attribute from Section 2 using the core language as
follows.

height =
case Num(i) → 0
case Plus(l, r) → 1 +max(l.height, r.height)

3.2 Parents as Node Properties

One way to incorporate access to parents in this Kiama view of attribute gram-
mars is to regard them as being properties of the tree nodes. Formally, we can
assume that there is a global function parent(x) that returns the parent of a
node x. We assume an auxiliary function isRoot(x) that returns true if and
only if parent is not defined at x.

We can write the depth attribute from Section 2 as follows using the parent
and isRoot functions.

depth =
case n → isRoot(n) ? 0 : parent(n).depth+ 1

As discussed in Section 2, the problem with this approach is that a given node
x may participate in more than one tree. Which parent do we get when we
call parent(x)? Which root returns true from isRoot? If the parent property
cannot change, then presumably we get the parent of the first tree in which x
participates. We will not be able to correctly compute attributes for later trees.
If the parent property is mutable, then we have to be careful to compute only
attributes on the old tree before the property changes and only attributes of
the new tree after the change. This dependence on mutability makes attribute
computations fragile.

3.3 Parents as Tree Properties

Our solution is to focus on the parent relationships of a tree, rather than on
the parents of nodes. The parent relationships of a tree can be calculated by
traversing from the root, if they are not otherwise available. Thus, parent is
now a function from the relevant tree to the parent partial function for that
tree. We now write parent(x1)(x2) to get the parent of node x2 in the tree that
is rooted at the node bound to x1. isRoot(x2) becomes isRoot(x1)(x2) where

200 A.M. Sloane, M. Roberts, and L.G.C. Hamey

x1 is the root of the relevant tree; this operation can be implemented by a simple
reference equality test.

In this new scheme, the definition of depth must be modified to have access
to the current tree that is being attributed since it needs to use that tree’s
parent relationships. A simple way to think of this modification is that the depth
attribute becomes an attribute family indexed by the tree. In other words, we
don’t just have one depth attribute, we have one for each possible tree.

We formalise attribute families by extending the core language to include a
new definition form.

Definitions d ::= . . . previous forms
| a(x) = c attribute family

In the attribute family form, the variable x refers to the tree rooted at the node
bound to variable x. We also need a new expression form to pass the tree rooted
at x1 to a family a to get an instance that can be evaluated at the node bound
to x2.

Expressions e ::= . . . previous forms
| x2.a(x1) instantiate attribute family and evaluate

With these extensions, the definition of the depth attribute becomes

depth(x1) =
case x2 → isRoot(x1)(x2) ? 0 : parent(x1)(x2).depth(x1) + 1

Thus, the attribute is now insulated against tree changes since it is statically
impossible to use depth without specifying the relevant tree.

3.4 Discussion

The key benefit of the attribute family approach is that by construction we
rule out accessing the parent of the wrong tree, rather than allowing access to
the parents at any time and relying on discipline to access them only at an
appropriate time.

If we are defining an attribute that does not use the context, it can be defined
by a regular definition since it does not need the tree. If we need the context,
then we must use an attribute family and give a name to the context in the
family definition. The dependence on the tree is now explicit and the user of an
attribute family is required to provide the appropriate tree.

What about an attribute a1 that does not require the context directly but
whose definition uses an attribute a2 that does require the context? We can
choose from a couple of options depending on the situation. The first option
should be used when it is meaningful for a1 to be defined with respect to a
specific context, not for all trees. We would define a1 using a normal definition
and pass that specific context when invoking a2. For example, this case occurs
when code has been transformed in a way that changes types but error messages

Respect Your Parents: How Attribution and Rewriting Can Get Along 201

should refer to user-specified types as defined by the original tree. The second
option should be used when a1 must be defined for all contexts and, if being
applied in tree t, calls to a2 should use t too. In this case we would define both
a1 and a2 as families.

Another issue in the definition of an attribute like depth above is what hap-
pens if the node x2 is not actually in the tree rooted at x1? In this case x2 is not
the root and the parent(x1) relation is not defined at x2. Since our setting is
a pure embedding of attribute grammars in another language, there is no easy
way to statically prevent this situation. Nodes can be created at any time and
the host language provides no connection between a node and the tree(s) that it
is in. We currently ensure that parent and similar functions cause a run-time
error if passed a node that is not in the tree which they are using. We are in-
vestigating ways to use Scala’s type system to check for this situation statically.
A similar approach based on a separately-defined attribute grammar language
could build more safe-guards into the specification language.

4 Kiama Implementation

We now describe how we implemented the approach from the previous section.
Kiama is a library for the Scala programming language [7] so we are able to
use Scala’s general-purpose facilities to implement attribute families. Kiama’s
existing attribute implementation was minimally affected by the changes. We
just removed the implementation of the mutable parent field and information
derived from it. Kiama’s rewriting library was unaffected by the changes.

4.1 Relations

The base of our implementation is a new generic Relation[T,U] type defined
over two types T and U (Figure 4). A relation is created from a sequence of
tuples that define its graph. The operations are derived from the graph and are
standard. For example, compose allows a relation to be composed with another
that has a compatible type.

Because Kiama is based on Scala it is easy to provide relations with pat-
tern matching support. Scala supports user-defined pattern matching via ex-
tractors [8]. We use extractors to allow any relation to be used in a pattern.
For example, if R is a relation, then the pattern R(p) will succeed if and only if
R contains only a single tuple where the first component matches the node to
which the pattern is applied and the second component matches p. The pattern
R.pair allows matching patterns against both the first and second components;
R.pair(p1, p2) will succeed if and only if R contains only a single tuple where the
first component matches pattern p1 and the second component matches p2. We
show concrete examples of using this sort of pattern matching in Section 4.3.

4.2 Trees

The Tree class uses the general relation type to provide access to trees and their
node relationships. Figure 5 shows representative parts of the Tree interface. A

202 A.M. Sloane, M. Roberts, and L.G.C. Hamey

class Relation[T,U] (val graph : Seq[(T,U)]) {

// Composition

def compose[S] (st : Relation[S,T]) : Relation[S,U]

// Domain

def domain : Seq[T]

def containsInDomain (t : T) : Boolean

// Range

def range : Seq[U]

def containsInRange (u : U) : Boolean

// Image and pre-image

def image (t : T) : Seq[U]

def preimage (u : U) : Seq[T]

// Invert

def invert : Relation[U,T]

// Union

def union (r : Relation[T,U]) : Relation[T,U]

}

Fig. 4. Part of Kiama’s Relation interface. A relation is defined over the generic types
T and U.

Tree[T,U] is created by providing the root value of some type U. The base type
of all tree nodes is some other type T and we require that U is a sub-type of T
(i.e., U <: T).

The base node type T is required to be a sub-type of Scala’s Product type
which enables us to determine the tree structure generically. Product values
have generic access to their component fields. The child relation is computed
by traversing throughout the tree from the root collecting pairs of nodes where
one is a direct descendant of the other. We compute this value lazily since there
is no need to perform that traversal if we don’t use the child relation.

The Tree class also provides a suite of other relations which are derived from
child. The parent relation is just the inverse of child. siblings is calculated
by composing the parent relation with child. For example, if a is a child of b
and b is a parent of c then a is a sibling of c. Other similar derived relations
not shown in the figure give access to previous and next node, and so on. All of
these relations are computed lazily since they might not be needed.

Some node properties are not dependent on the tree since they only depend
on components of the node or its children. (Recall that nodes are immutable
so these factors cannot change if a node is shared among trees.) For example,
whether or not a node is a leaf cannot change if that node appears in more than

Respect Your Parents: How Attribution and Rewriting Can Get Along 203

class Tree[T <: Product,U <: T] (val root : U) {

// Base child relation

lazy val child : Relation[T,T]

// Derived relations

lazy val parent : Relation[T,T]

lazy val siblings : Relation[T,T]

// Properties

def index (t : T) : Int

def isFirst (t : T) : Boolean

def isLast (t : T) : Boolean

def isRoot (t : T) : Boolean

}

object Tree {

def isLeaf[T <: Product] (t : T) : Boolean

}

Fig. 5. Part of Kiama’s Tree interface. Generic type T is the base type of tree nodes
and type U is the type of the root node. The Tree object provides operations that do
not depend on a specific tree.

one tree. Tree-independent operations such as isLeaf are static methods that
accompany the Tree class.

4.3 Examples

In the Kiama setting, a tree-indexed attribute is just a class or a method that
takes a Tree-value argument. For example, we can define the height and depth
attributes from earlier sections as shown in Figure 6.

height is a regular attribute defined as it would be with Kiama 1.x. attr is
the Kiama attribute creation method which takes a single argument that is a
collection of cases to specify the attribute equations. attr implements attribute
caching and dynamic circularity testing on top of the equation definitions. We
made no changes to attr for this present work.

In contrast to height, depth requires access to the context. In Figure 6, depth
is defined in a class whose constructor takes the tree as an argument.2 In effect,
the class defines a reusable module of attribution. A client of this module would
have to first instantiate the class with the desired tree. The definition of depth
uses the tree to access the parent relationship. In the first equation the pattern
tree.parent (p) will succeed only if the matched node has a single parent in
that tree and it will bind that parent node to the variable p. The variable is
used in the right-hand side of the equation depth (p) + 1 to recursively get

2 The constructor arguments of a Scala class are given in the class heading and the
body of the class definition is the constructor implementation. Constructor argu-
ments are in scope throughout the class definition.

204 A.M. Sloane, M. Roberts, and L.G.C. Hamey

val height : Node => Int =

attr {

case Num (_) => 0

case Plus (l, r) => 1 + height (l).max (height (r))

}

class DepthModule (tree : Tree[Node,Node]) {

def depth : Node => Int =

attr {

case tree.parent (p) => depth (p) + 1

case _ => 0

}

}

Fig. 6. Kiama version of the height and depth attributes

the depth of the parent. The second equation will only be reached if the node
has no parent, which means it must the root of the tree.

Instead of defining a module of related attributes using a class, we could
define a family for a single attribute by using a method that takes the tree as an
argument. In our experience this approach is less useful than using a class, since
it is common for many related attributes to need access to the tree. It is easier
to group these attributes in a module and then pass the tree once when the
module instance is created than it is to pass the tree explicitly to many separate
attribute definitions.

Cooperation between different attribute families is achieved in different ways
that depend on how the families are defined. If they are defined in the same
module, then the context is implicitly available to both families, so it need not
be passed. If the families are defined in different modules, then a calling attribute
will need to be given a reference to the module instance that defines the called
attribute. Similarly, a family defined by a method can call a family defined in
a module if it has a reference to the relevant module instance. Finally, if two
families are defined by parameterised methods, then the context will need to be
passed explicitly between them. Which of these situations applies will depend
on the overall structure of an application, so it is hard to be definitive about
the implication of use families. To give some expectations, we report in the
next section on our experiences of converting Kiama’s test suite to use the new
approach.

4.4 Experience

We have converted our extensive Kiama test suite across to the new style of
context-dependent attributes. The suite includes implementations of various lan-
guages including lambda calculus, Prolog and various cut-down versions of Java.

Respect Your Parents: How Attribution and Rewriting Can Get Along 205

In all cases we have defined attribution modules that collect many related
attributes, following the module pattern of Figure 6. Most of the code has not
increased in size at all since we just converted singleton implementations of at-
tribution modules into classes and now access the context in attribute equations
via the tree’s parent relation instead of via the tree node fields. A small code
size increase is incurred where modules are instantiated since we must create an
instance of the module instead of just accessing a singleton.

The biggest Kiama test is an Oberon-0 compiler that was previously built for
the 2011 LDTA Tool Challenge. This compiler is built from more than twenty
separate traits comprising around 2000 lines of Scala code. The traits are mixed
together to form the artefacts required by the challenge. In the previous version,
the attribution components relied on the parent field of nodes. In the new version
the components are passed the relevant trees and, if they are transformation
components, return new trees. For example, one component performs desugaring
of FOR and CASE statements into WHILE and IF statements, respectively. The
desugarer is given the input tree so it can use attributes that depend on it such
as those supplied by name and type analysis. After the tree has been rewritten it
is returned as a new tree that is then consumed safely by the next transformation
or code generator. Previously, we needed to be careful to erase attributes of the
old tree before the new tree was returned in case some of them were no longer
valid.

Throughout our examples we now make extensive use of relational pattern
matching where we need to check if a nearby node is there, optionally pattern
match on it, and bind it. These patterns replace direct access to the parent via a
tree node. The tree relations are the basis of properties such as isRoot which is
true if the node is the root of the tree. The tree module also supplies operations
that do not depend on the specific tree, but just on the node, such as isLeaf,
firstChild and lastChild.

Nested patterns are particularly useful. For example, the pattern

u @ IdnUse (i1)

succeeds in the Oberon-0 compiler if matched against an identifier use node. It
binds that node to the variable u and the identifier string to i1. The pattern

ProcDecl (IdnDef (i2), _, _, _)

matches procedure declaration nodes and binds the variable i2 to the procedure
identifier. We can nest these two patterns inside a parent pair pattern to help
implement a check that the identifier used at the end of an Oberon-0 procedure
declaration (i1) is the same as the one used in the procedure’s heading (i2).3

case tree.parent.pair (u @ IdnUse (i1),

ProcDecl (IdnDef (i2), _, _, _)) =>

message (u, s"end procedure name $i1 should be $i2",

i1 != i2)

3 The relatively verbose form tree.parent.pair can be abbreviated by imports and
aliases, but we choose to show the full form to keep the explanation simple.

206 A.M. Sloane, M. Roberts, and L.G.C. Hamey

Kiama’s message facility is used here to generate a message if i1 and i2 are not
the same and place the message at the location of the identifier use (node u).

As another example, the following pattern was used in a dataflow example to
see if the current node has both a next sibling (n) and a Block parent.

tree.parent.pair (tree.next (n), _ : Block)

In both of these examples, the explicit use of tree ensures that these context-
dependent matches are performed with respect to the tree that was provided
when these modules were created. We have thereby reduced the risk that we will
accidentally check in the wrong tree.

A secondary benefit of having the tree available in an attribute definition is
that we can directly refer to the root node. A direct reference can be used to
short-cut the usual pattern of attribution where an attribute computed at the
root node has to be transported one step at a time down to where it is needed.

5 Related Work

We focus our discussion on related work that substantially involves attribute
grammars and that incorporates some aspect of tree transformation or rewriting
in combination with attribution.

Incremental Attribute Evaluation. One approach to dealing with changes
in attributed trees is to recompute attributes where necessary to take changes
into account. A notable early example of incremental attribute evaluation is
Reps’ work to generate language-based editors that were specified using attribute
grammars [9], but there are many later incremental approaches. Recent examples
include work by Saraiva and Swierstra [10] and Bransen et al. [11]. Incremental
evaluation requires some knowledge of attribute dependencies and the detail of
tree changes in order to recalculate only when necessary. Bürger’s RACR library
for Scheme [12] is of particular interest since it incorporates arbitrary tree rewrit-
ing. RACR builds a dynamic attribute dependency graph during evaluation so
it knows which attributes are influenced by rewrites. In contrast, our approach
might cause some unnecessary recalculation of context-dependent attributes in
a rewritten tree, but we do not need to keep track of attribute dependencies
or have any dependence between attribution and rewriting. It is future work to
investigate how our approach can be adapted to share computed values between
different instances of the same attribute family where it is safe to do so.

Object-Based Attribute Grammar Systems. Some attribute grammar sys-
tems generate evaluators for object-oriented languages and hence directly share
some of the concerns of Kiama for mutability and shared tree nodes.

JastAdd has pioneered many recent extensions of the basic paradigm including
reference and circular attributes [4,13]. It generates evaluators in Java, including
tree node classes that implement the attribute as methods. Each of these classes
contains a mutable parent field, so tree nodes cannot participate in more than one

Respect Your Parents: How Attribution and Rewriting Can Get Along 207

tree. In addition to its main attribute grammar specification notations, JastAdd
incorporates a form of rewrite rule [14]. It arranges to invoke these rules as part of
the attribute evaluation process. Unfortunately, attributes of trees that are being
rewritten may be recalculated as rewriting proceeds, only to be finalised when
later rewriting cannot affect their values. We believe that this approach blurs the
distinction between an attribute representing a property of a node and a mutable
variable that may change as execution proceeds. In our scheme attributes will
only ever have one value within a particular tree. Also, in JastAdd the rewriting
approach is intricately embedded in the attribute evaluation process, whereas
attribution and rewriting are independent in our approach.

Silver is another prominent Java-based attribute grammar system [5]. Silver
distinguishes between trees that have no attribute values and ones that do (so-
called “decorated trees”). Attributes are evaluated by passing them a reference
to the tree context. Thus, in theory it is possible to decorate a node with re-
spect to more than one tree by passing in a different context. However, as far as
we can tell, Silver does not explicitly deal with node instances that are shared
by two trees. Since attributes are computed lazily and their values stored, it
would appear to be necessary to clear those values if we wanted to evaluate
those attributes in another tree that shared some nodes, as in older versions of
Kiama. Silver supports language extension via a form of higher-order attribute
grammar called forwarding [15]. New tree fragments can be computed as at-
tribute values that are associated with existing tree nodes and forward some
attribution requests to those nodes. Forwarding, in essence, is a specialised form
of tree transformation by augmentation and is supported directly by the Sil-
ver evaluation approach. In contrast, our approach can support arbitrary tree
transformations that are independent of attribute evaluation.

Functional Attribute Grammar Systems. There is a long tradition of at-
tribute grammar systems based on or in functional programming languages [16].
By and large, these systems do not encounter the same issues with sharing since
in pure value-based functional languages sharing is not observable. Hence, there
is no option to associate attribute information with a node instance since there
is no way to tell that instance apart from another that has the same fields.

We briefly note two functional attribution approaches that have some char-
acteristics in common with our approach. Zippers can be used in functional
languages to keep track of the current location during a generic tree traver-
sal [17]. Martins et al. use generic zippers to embed attribute grammars in a
pure functional language [18]. During evaluation the zipper encodes the path
taken from the root to the node of interest in a similar way to a traditional tree-
walking attribute evaluator. It is non-trivial to start a zipper-based evaluator at
a particular node as we do in our approach, since the context would have to be
manually created. Accordingly zipper-based approaches assume a traversal from
the root.

An alternative to zipper-based approaches for context tracking in functional
languages was developed by Gaillourdet et al. [19]. A cyclic position structure
is created to mirror the structure of the tree upon which attribution is to be

208 A.M. Sloane, M. Roberts, and L.G.C. Hamey

performed. Nodes in the position structure have parent links to give access to
the context of a node. This approach is similar to Kiama’s previous approach in
that it equips each node with a component that gives access to its parent in a
particular tree structure. The functional setting means that quite a bit of work
has to be done to define the form of a position structure based on the tree syntax
and construct one for a particular tree. In contrast, our reference equality-based
setting allows us to use the relationships between the nodes themselves and a
separate mirroring structure is not needed.

Rewriting-Based Attribution Systems. Kats et al. incorporated attribute
grammar features into ASTER which is an extension of the Stratego strategic
programming language [6,20]. This combination of attribution on a rewriting
base contrasts with Kiama’s approach where attribution and rewriting can co-
operate but are implemented separately. ASTER uses the generic traversal op-
erators of Stratego to implement decorators that abstract patterns of attribute
computation away from a specific tree structure. ASTER’s focus on traversal
from a node of interest is similar to Kiama’s focus on the relationships between
nodes. Reflection on the tree structure is used in ASTER to obtain access to a
node’s context via its parent. This reliance on a single parent reference means
that ASTER cannot express attribution of shared nodes.

Relational Representations of Programs. Finally, we note that the use
of relations to represent relationships between program components is a well-
used idea. A non-trivial early example is Linton’s OMEGA system which uses a
relational database to store program information [21]. Since the aim of this kind
of work is different from ours we do not consider it further, except to mention the
Rascal language which incorporates high-level support for relations to support
meta-programming [22]. It is possible that Kiama’s new support for relations
can be generalised beyond trees to support this kind of processing.

6 Conclusion and Future Work

We described how attribution and rewriting of trees can get along in an object-
based implementation with reference equality. The key is to design context-
dependent attribution to be parameterised by the tree in which that attribution
is to be performed, thereby defining attribute families. This approach solves the
problem of deciding what attributes mean when nodes are shared between trees
as a result of rewriting.

We have implemented the approach in the Kiama language processing library
and its test suite. Context-dependent attribute definitions were adjusted to de-
pend on the tree, but no changes were needed in the attribute evaluation imple-
mentation so the approach works for all existing kinds of attributes including
reference and circular attributes. The definition and evaluation of attributes is
completely independent of how rewriting is achieved and requires no knowledge
of which rewrites have occurred.

Respect Your Parents: How Attribution and Rewriting Can Get Along 209

The main area for future work is to further improve reuse of attribute values in
rewritten trees. At the moment we reuse all attributes that do not depend on the
context. However, some context-dependent attribute occurrences will be valid in
a rewritten tree if they do not use the part of the context that has changed. We
are developing techniques to take advantage of this situation without requiring
detailed cooperation between attribution and rewriting. Part of this work will
be a detailed profiling exercise to understand how the evaluation of attributes is
affected by the shift to attribute families.

Acknowledgements. Development of the approach described in this paper
benefited greatly from discussions with our colleague Dominic Verity. We also
thank the anonymous reviewers for their helpful suggestions.

References

1. van den Brand, M.G.J., Klint, P.: ATerms for manipulation and exchange of struc-
tured data: It’s all about sharing. Information and Software Technology 49(1),
55–64 (2007)

2. Sloane, A.M.: Lightweight language processing in kiama. In: Fernandes, J.M.,
Lämmel, R., Visser, J., Saraiva, J. (eds.) Generative and Transformational Tech-
niques in Software Engineering III. LNCS, vol. 6491, pp. 408–425. Springer, Hei-
delberg (2011)

3. Sloane, A.M., Kats, L.C.L., Visser, E.: A pure embedding of attribute grammars.
Science of Computer Programming 78, 1752–1769 (2013)

4. Hedin, G., Magnusson, E.: JastAdd: an aspect-oriented compiler construction sys-
tem. Science of Computer Programming 47(1), 37–58 (2003)

5. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: An extensible attribute
grammar system. Science of Computer Programming 75, 39–54 (2010)

6. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.16: com-
ponents for transformation systems. In: Proceedings of the 2006 ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-Based Program Manipulation,
pp. 95–99. ACM (2006)

7. Odersky, M., Spoon, L., Venners, B.: Programming in Scala, 2nd edn. Artima Press
(2010)

8. Emir, B., Odersky, M., Williams, J.: Matching objects with patterns. In: Ernst, E.
(ed.) ECOOP 2007. LNCS, vol. 4609, pp. 273–298. Springer, Heidelberg (2007)

9. Reps, T.W.: Generating Language-based Environments. Massachusetts Institute of
Technology, Cambridge (1984)

10. Saraiva, J., Swierstra, S.D., Kuiper, M.: Functional incremental attribute eval-
uation. In: Watt, D.A. (ed.) CC 2000. LNCS, vol. 1781, pp. 279–294. Springer,
Heidelberg (2000)

11. Bransen, J., Dijkstra, A., Swierstra, S.D.: Lazy stateless incremental evaluation
machinery for attribute grammars. In: Proceedings of the Workshop on Partial
Evaluation and Program Manipulation, pp. 145–156. ACM (2014)

12. Bürger, C.: RACR: A Scheme Library for Reference Attribute Grammar Controlled
Rewriting. Dresden University of Technology (2014),
http://racr.googlecode.com

http://racr.googlecode.com

210 A.M. Sloane, M. Roberts, and L.G.C. Hamey

13. Magnusson, E., Hedin, G.: Circular reference attributed grammars–their evaluation
and applications. Science of Computer Programming 68(1), 21–37 (2007)

14. Ekman, T., Hedin, G.: Rewritable reference attributed grammars. In: Odersky, M.
(ed.) ECOOP 2004. LNCS, vol. 3086, pp. 147–171. Springer, Heidelberg (2004)

15. Van Wyk, E., de Moor, O., Backhouse, K., Kwiatkowski, P.: Forwarding in at-
tribute grammars for modular language design. In: Nigel Horspool, R. (ed.) CC
2002. LNCS, vol. 2304, pp. 128–142. Springer, Heidelberg (2002)

16. Johnsson, T.: Attribute grammars as a functional programming paradigm. In:
Kahn, G. (ed.) FPCA 1987. LNCS, vol. 274, pp. 154–173. Springer, Heidelberg
(1987)

17. Adams, M.D.: Scrap your zippers: a generic zipper for heterogeneous types. In:
Proceedings of the ACM SIGPLAN Workshop on Generic Programming, pp. 13–
24. ACM (2010)

18. Martins, P., Fernandes, J.P., Saraiva, J.: Zipper-based attribute grammars and
their extensions. In: Du Bois, A.R., Trinder, P. (eds.) SBLP 2013. LNCS, vol. 8129,
pp. 135–149. Springer, Heidelberg (2013)

19. Gaillourdet, J.-M., Michel, P., Poetzsch-Heffter, A., Rauch, N.: A generic func-
tional representation of sorted trees supporting attribution. In: Voronkov, A., Wei-
denbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 72–89. Springer,
Heidelberg (2013), http://dx.doi.org/10.1007/978-3-642-37651-1_4

20. Kats, L., Sloane, A.M., Visser, E.: Decorated attribute grammars: Attribute eval-
uation meets strategic programming. In: de Moor, O., Schwartzbach, M.I. (eds.)
CC 2009. LNCS, vol. 5501, pp. 142–157. Springer, Heidelberg (2009)

21. Linton, M.A.: Implementing relational views of programs. In: Proceedings of the
Symposium on Practical Software Development Environments, pp. 132–140. ACM
(1984)

22. Klint, P., van der Storm, T., Vinju, J.: EASY meta-programming with rascal.
In: Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) Generative and
Transformational Techniques in Software Engineering III. LNCS, vol. 6491, pp.
222–289. Springer, Heidelberg (2011)

http://dx.doi.org/10.1007/978-3-642-37651-1_4

Monto: A Disintegrated Development

Environment

Anthony M. Sloane, Matthew Roberts, Scott Buckley, and Shaun Muscat

Department of Computing, Macquarie University, Sydney, Australia

Abstract. Integrated development environments play a central role in
the life of many software developers. Integrating new functionality into
these environments is non-trivial and forms a significant barrier to entry.
We describe our Monto architecture which aims to address this prob-
lem. Monto components communicate via text messages across an off-
the-shelf messaging layer. The architecture imposes limited constraints
which enables easy combination of components to form an environment.
A prototype implementation shows that this approach is practical and
shows promise for full-featured development environments.

1 Introduction

Integrated development environments (IDEs) are an important part of the tool-
kit of many software developers. They provide facilities for editing, interrogating,
transforming, running and debugging source code. Their integrated nature means
that developers can perform all of these tasks without leaving the IDE.

In recent years, impressive progress has made it easier for software language
engineers to extend IDEs. The IDEs themselves provide extension frameworks
that allow new plugins to be combined with existing facilities. Language en-
gineers have integrated their tools into these frameworks to achieve high-level
specification of IDE components.

Despite this progress in bringing language engineering tooling closer to lan-
guage designers and developers, tying that tooling to a particular IDE framework
is a serious limitation. For example, the considerable effort used to develop an
Eclipse plug-in for a new language probably doesn’t provide any support for
other environments. This tie-in also makes it harder for researchers to make new
research results from language engineering accessible to practitioners. For exam-
ple, having great tooling in Eclipse is of no help to developers who write their
code in IntelliJ IDEA, Netbeans or a text editor. Requiring developers to move
to a particular IDE platform is often not practical. Even if researchers can settle
on an IDE they then have to make their tool infrastructure work with that IDE
which may require language changes or other compromises.

An alternative to a highly coupled framework for IDE extension is one that
aims to limit coupling to a bare minimum while still allowing feature integration.
We call this sort of framework a disintegrated development environment (DDE)
to indicate that it comprises parts that are as separate as possible but maintains
the overall goals of IDEs. This paper describes our prototype Monto DDE, its

B. Combemale et al. (Eds.): SLE 2014, LNCS 8706, pp. 211–220, 2014.
c© Springer International Publishing Switzerland 2014

212 A.M. Sloane et al.

architecture and our preliminary experiences using it to build IDE-like facilities.
Our goal with the Monto project is to explore a minimalist approach, its design
and practicality; this paper reports our first steps.

We motivate Monto by discussing problems met by tool builders and devel-
opers that arise from a highly integrated approach (§2). We also discuss related
work that environment builders have proposed to solve similar problems and
upon which we build. These considerations led us to a view that a broadcast ar-
chitecture should be used to reduce coupling between components. Communica-
tion should be as simple as possible to minimise overhead and enable components
to be written quickly in any language.

The Monto architecture distinguishes between sources that publish notifica-
tions when changes to user-edited text occur, servers that provide functionality,
and sinks that consume products from servers (§3). A broker mediates between
sources, servers and sinks. All communication between Monto components is text
encoded in JSON messages (§4). The ZeroMQ library [1] is used for fast commu-
nication between components. Using off-the-shelf technology for communication
means that Monto components can be written in a wide variety of languages.

We discuss our experience with a prototype implementation of the Monto
architecture (§5). We have implemented sources and sinks as plug-ins for the
Sublime Text editor [2]. Our experiments show that components can be inte-
grated with little effort using the Monto approach. Use of simple messages and
a fast messaging layer means that interactive performance is good enough for
live update even though many messages and processes are involved.

Our contribution is to show that this approach to building environments is
practical and suffices to implement basic features of more integrated approaches.
Future experiments are needed to explore more advanced functionality.

2 Motivation and Related Work

Integrated development environments such as Eclipse, IntelliJ IDEA and Net-
Beans provide powerful facilities for program development. However, it is widely
agreed that developing plug-ins for non-trivial new languages in these environ-
ments is not for the faint-hearted. Success stories such as the Java Development
Tools in Eclipse are the product of many years of development by many develop-
ers. Effort on this scale is beyond all but the most well-resourced organisations.

Many researchers have attempted to address the difficulty of adding support
for new languages to IDEs or similar systems. Most notably, the IDE Meta-
tooling Platform (IMP) for Eclipse [3,4] abstracts the Eclipse framework to make
it easier to build language-specific services. The Spoofax/IMP project integrates
the Stratego term rewriting language and related domain-specific languages into
Eclipse [5,6]. Language designers can easily use Spoofax to develop custom sup-
port for new languages, including syntax highlighting, code folding and name
definition-use navigation. All of these facilities integrate well with the rest of
Eclipse. As the name suggests, Spoofax/IMP is based on an evolution of IMP
rather than on the core Eclipse frameworks. Spoofax is a form of language work-
bench which is a category of environment specifically designed to make it easy

Monto: A Disintegrated Development Environment 213

to build new language support [7]. There are many other workbenches that im-
plement different approaches to language specification. For example, the Meta
Programming System (MPS) provides a general editing framework in which new
languages can be specified by defining abstract syntax, projections from that
syntax to text, analyses, code generation, and so on [8].

Text editors are the other main kind of front-end used for software develop-
ment. Similar to IDEs, editors often provide plug-in architectures, but usually
operate at a lower level. For example, most editor extension mechanisms rely
on text-based processing such as regular expression matching to perform syntax
highlighting, in contrast with IDE plug-ins that usually integrate full parsers.
The tendency in editor plug-in frameworks is to make it easy to add extensions,
usually at the cost of having to operate in a reasonably primitive environment.
Some editors support sophisticated extensions that reuse existing infrastruc-
ture. For example, the ENhanced Scala Interaction Mode for Emacs (ENSIME)
project reuses the Scala compiler to provide support for IDE-like features in a
Scala programming mode for Emacs [9].

Much of this work on providing language-support in IDEs, workbenches and
text editors is impressive, but it is based on a fundamental assumption. Devel-
opers of new language tooling are expected to use a specific platform, such as
Eclipse plus Stratego, MPS or Emacs. This assumption means that it is non-
trivial to use this tooling in other settings. For example, there is no easy way for
a developer who prefers the IntelliJ IDEA environment to use Spoofax.

The difficulty of using tooling in different integrated contexts leads to general
component architectures for software tooling. The idea is to develop a frame-
work in which a variety of tools can cooperate, yet remain somewhat separate.
Communication between tools allows them to exchange information. A primary
motivation for our work is the ToolBus coordination architecture which is
based on message passing [10]. ToolBus has been used to develop coordinated
tooling in the language engineering space [11]. Another related approach is em-
bodied in the Linda coordination language which bases communication between
parallel processes around a shared store of general data tuples [12].

Architectural approaches such as ToolBus and Linda are a step in the right
direction since they allow individual separated components to provide func-
tionality while the framework handles the communication between components.
However, they still impose non-trivial integration requirements. For example,
ToolBus uses a process algebra-based scripting language to describe how tools
interact. While such a description undoubtedly provides benefits, it does impose
a barrier to entry. Linda requires custom support to access the tuple store.

These considerations led us to wonder whether we could reduce coupling be-
tween components even further while still employing a largely decoupled ap-
proach in the style of ToolBus and Linda. The novel aspect of our solution is to
disintegrate as much as possible and remove the need for a coordination language
by simplifying the interaction between components. In the Monto architecture
components play simple defined roles and are unaware of the existence of other
components. No overall coordination specification is required. In architectures

214 A.M. Sloane et al.

like ToolBus many different kinds of messages are sent between components.
We reduce the number of message types to two. Moreover, we follow the lead of
Unix and Web technology by only sending text messages with a simple structure
to keep coupling low.

3 Monto Architecture

Broker

Sources Sinks

Servers

version

version

product

product

version

User
change

display

3

2

4

5

3

1 6
interact

Fig. 1. Monto architecture overview

Monto contains sources, servers and
sinks (Figure 1). The components run
independently either as separate pro-
cesses or as threads in one or more
processes, all of which may be run-
ning on a single machine or on mul-
tiple machines. Most likely a single
process will interact with the user by
operating as both a source and mul-
tiple sinks, while many servers run as
separate local or remote processes. A
source reacts when text is changed by
a user (step 1). The source publishes
a complete version of the changed text (step 2) which is passed to servers by a
broker (step 3).

In this paper we assume that versions are sent in a fine-grained manner so that
each change results in a separate message. A typical source might be a plug-in
for a text editor that is triggered each time the user makes a modification to a
file buffer. To keep things simple in our prototype, the broker passes on every
version to every server. A registration scheme could easily be added to reduce
message traffic but we haven’t found it to be necessary.

Servers react to versions by sending responses that contain products which
are derived from the version text (step 4). A single server may respond to every
version or just to certain ones. For example, a server that knows how to perform
semantic analysis checks for a particular language will only respond versions
written in that language, whereas one that provides information about version
control status will respond to every version that involves a tracked file.

The broker passes the products to the sinks (step 5). Usually a sink will
display some part of the product to the user, possibly inducing some further
user interaction (step 6). As for servers, sinks are often designed to only react to
certain kinds of product. A typical sink might react to a product containing an
outline by showing the outline in a text editor buffer or IDE view. A sink that
knows how to handle text completion might display options from a completion
product so that the user can select one.

The Monto architecture is specifically designed to minimise coupling between
the components. The broker exists so that sources do not need to be aware of the
identity or location of the servers and sinks. Similarly, servers can work without
having to be aware of the sinks that consume their products. Sinks do not need
to know anything about the servers that produce the products they receive.

Monto: A Disintegrated Development Environment 215

4 Communication

The choice of communication technology directly affects which languages can
be used to implement Monto components and hence indirectly influences which
other technologies can participate. For example, choosing a Java-specific commu-
nication mechanism would mean that JVM-based languages could easily be used
but others would be ruled out. Basing things on Java would mean that Eclipse
and other Java-based IDEs would be able to participate as sources or sinks, but
text editors that are implemented in C could not be easily incorporated.

We use the ZeroMQ messaging technology [1] to implement communication
in Monto. ZeroMQ is a convenient layer on top of basic socket-level communi-
cation, but otherwise does not impose any constraints on the information that
can be communicated. ZeroMQ-compatible libraries exist for most mainstream
languages, so it is easy for components to interoperate without sharing an imple-
mentation language. ZeroMQ is also very fast since it imposes minimal overhead
above the basic communication layer. Speed is important since messages from
sources to servers to sinks are being used to provide interactive functionality.

Monto sends messages over ZeroMQ sockets as text and the ZeroMQ layer
takes care of issues such breaking large messages into smaller pieces and re-
assembling them at the other end. ZeroMQ also takes care of queueing messages.
Sending a message using ZeroMQ is typically a couple of lines of code. Servers
and sinks use a blocking operation to wait for an incoming message to arrive.

Message Formats. The choice of message format strongly affects the simplicity
and power of the framework. Using message formats that make few assumptions
about the information that is being communicated means that the framework
will not impose too much on the way that it can be used. For example, if changes
were notified by sending an abstract syntax tree of the version according to some
grammar, we would make it inconvenient to write servers that wish to process
the version as lines of text, perhaps to perform a spell check.

The simplest message format we can use is uninterpreted plain text. How-
ever, it is useful to have slightly more structure so that servers and sinks have
something by which to discriminate between messages. We use the JSON struc-
tured text format. As for ZeroMQ, an advantage of JSON is that encoders and
decoders are available for many languages.

Version Messages. Messages that describe a version contain:

– source: a unique string that identifies the source of the version,
– language: the name of the language in which the source is written,
– contents: the complete text of the version, and
– selections: objects that describe the current selected regions in the source.

The source string is usually the name of a file that is backing the content that
is being edited. The contents of a version message do not necessarily correspond
to the current contents of the file since the user may not have saved it.

The language field is used so that servers can react only to text that is written
in a language that they understand. The language “text” is used if no other

216 A.M. Sloane et al.

language is suitable. Using a string to encode the language is the simplest
method, but introduces some imperfections. For example, who determines which
language names are acceptable in a version message? We could specify the legal
names up-front using some form of enumeration type, but we stick with a string
so that the framework is as flexible as possible. Coordination of language names
must be done by convention outside the framework.

The contents field contains the complete text of the version. One obvious
possibility for modification of this design is to send just the nature of the change
itself. Our view is that this kind of extension would complicate the messaging too
much and would tie the framework too closely to particular kinds of changes.
The price we pay is that servers may be recalculating information that could
have otherwise been determined in a more incremental fashion, or they must
become somewhat stateful. So far we have not found this to be a limitation.

Most sources have some notion of the current selection which describes the
editing position in the text and what, if any, of the text has been highlighted
by the user. The selection field of a version message supports servers that take
the user’s current focus of attention into account. For example, a server that
determines completion possibilities needs to know where the cursor is.

Product Messages. Messages that communicate a product contain:

– source: the unique identifier of the source to which this product relates,
– product: the type of the product,
– language: the language in which the product text is written, and
– contents: the content of the product as text.

The source field is used to associate the product with the source of the version
that triggered it. Sinks can react to products that pertain to a source in which
they are interested. For example, a sink that is waiting for a code completion
product would react to products that apply to the initiating source.

The product field identifies its type and is used by sinks to react only to prod-
ucts that they can handle. For example, a sink that wants to display an outline
view for any source would ignore the source field but check that the product
field indicates an outline. Monto enforces no discipline on product names, so like
language name they must be agreed by convention outside the framework.

The language and contents fields are used similarly to their role in version
messages. Sometimes a server will produce text in a particular language. For
example, if the server is formatting the version text then the product language
will be the same as that of the corresponding source message. If the server is
compiling Java code then the product language might be “JVM byte code”.

Version and product messages can contain extra fields to communicate in-
formation above the basic level mandated by the framework. For example, a
particular source might include information about the change that created a
version, in case that information is of use to a server but would be hard for
the server to calculate itself. Similarly, a server can provide extra information
in a product message for use by sinks. This sort of extra information would be
provided and used by convention between developers of Monto components.

Monto: A Disintegrated Development Environment 217

Running Monto. Monto consists of a loose collection of components that run
autonomously. A script simplifies starting and stopping the broker and any
servers that the user desires to use. The script is driven by a simple configu-
ration file that specifies paths, command-line arguments, etc.

To avoid overwhelming the servers with many small changes to the same
source in a small period of time, the broker collects only the most recent version
message for each source and periodically sends it to the servers. The timing has
been adjusted to balance between sending too many messages to the servers
and not reacting quickly enough for good interactive use. The broker can be
implemented in any language that can communicate using JSON messages over
ZeroMQ. In our prototype it is implemented by about 40 lines of Python but
can easily be implemented in a compiled language if speed becomes a problem.

Other than the broker and servers, the user must also run sources and sinks.
Normally these components will be implemented by plug-ins in an editing envi-
ronment of the user’s choice so they will be automatically started up when that
environment starts or as the result of user commands.

5 Experience

We have been experimenting with the Monto prototype framework to build var-
ious sources, servers and sinks. Our aim so far has been to explore to see if our
simple approach is sufficient to encompass typical IDE-like functionality. We
particularly wanted to see whether an approach that requires sending messages
between components performs well enough to make a usable environment.

Sublime Text. Our current experiments use the Sublime Text 3 editor [2]. We
have built a Monto plug-in for Sublime Text in 250 lines of Python. The plug-in
relies on 100 further lines that are independent of Sublime Text and can be used
by any Python-based Monto component. When the plug-in is loaded, Sublime
Text acts as a source for any buffer that the user is editing. A version is published
each time a buffer is created, modified and when a selection is moved.

The plug-in provides a command by which the user can create new views
that display Monto products, which we call Monto views. A Monto view can
optionally display products that relate to all sources or just those for the source
that held the focus when the command was run. Similarly, new arrivals of a
product can be appended to the existing text in a Monto view or replace it.

Figure 2 shows a Sublime Text window editing a factorial program written in
the Java-subset language MiniJava (top left). The user has three Monto views to
display products: the abstract syntax tree of the program (a form of outline, top
right), the abstract syntax tree pretty-printed as MiniJava code (bottom left),
and a translation of into Java Virtual Machine bytecode (bottom right).

The Monto views in Figure 2 are updated continuously as the developer edits
the program. Adding a new local variable declaration in the ComputeFacmethod
will cause a new node representing that declaration to appear in the tree view, a
pretty-printed version of that declaration to appear in the pretty-print view, and
the bytecode to be updated to reflect that a new local variable slot is needed.

218 A.M. Sloane et al.

Fig. 2. Sublime Text: MiniJava factorial program and three Monto views

All of these updates happen nearly instantaneously so the overhead of in-
terpreting messages and reacting to them appears to be low. This observation
confirms that at least for basic functionality the performance of a Monto-based
environment is sufficient for interactive use. We have not conducted a compre-
hensive benchmark against other alternatives and we make no claim about how
more advanced features will perform since those features are part of future work.

The plug-in provides other ways in which Monto products can be used. For
example, a product containing formatted source code might replace the current
selection. A product can also be used by a code completion command as sugges-
tions in a pop-up menu. In fact, since a product is just text, the only limitation
on the way it can be used is the capability of the editor.

Any other extensible text editor or IDE could play the role that Sublime Text
does in our experiments. All that is required is a way to detect when the user
has made changes to the text that they are editing, a way to send a ZeroMQ
message containing that version, and a way to react to products coming in from
servers. If an editor can be extended in Python it can reuse the Monto library
used by the Sublime Text plug-in. Otherwise, similar functionality would need
to be implemented in that editor’s extension language.

There is no requirement that a single program act as both the source and sink
as Sublime Text does. For example, products that result from changes happening
in one editor can be displayed in another one. A fan-out structure could be
used to send products to more than one viewer, so that multiple developers can
observe editing as it happens during a pair coding session. A server that simply
reflects versions back out as products would enable live observation of editing,
but observing developers could also create other views as needed. For example, a
server that automatically runs tests on changed code could report to developers
who are running a test result display sink.

Monto: A Disintegrated Development Environment 219

MiniJava Compiler Server. One typical use of a DDE is to interface with
existing compiler code. Rather than duplicate the compiler code within the en-
vironment, we wish to reuse it. In fact, the products shown in Figure 2 were
produced using a server that is a small extension of existing Scala code for a
MiniJava compiler. The compiler is written using our Kiama language process-
ing library [13,14]. 90 lines of Scala wraps any Kiama compiler so that it acts
as a Monto server; no modifications must be made to the compiler code. The
wrapping code uses off-the-shelf Java libraries for JSON encoding and ZeroMQ.

If a syntax error is introduced in the MiniJava source then the products shown
in Figure 2 will be empty since those products are not defined when the version
text doesn’t parse. The MiniJava compiler also has an error product that reports
any syntax or semantic errors from the compilation process. Thus, if desired, a
developer can augment the shown views with one that continuously updates with
the current compiler error messages.

Wrapping Text-Based Tools. Many command-line tools exist that would be
of use in a development environment but were developed independently with
their own user interface. For example, there are many lint tools that produce a
textual report of code quality problems beyond those diagnosed by compilers. We
have built a wrapper script to enable these sorts of tools to be used with other
Monto components. The script runs as a server that executes a shell command
each time a version is received, captures the output of the command, and sends
it back as a product. It is easy to use this wrapper to incorporate the output of
those tools in a Monto view so that, for example, lint reports can be viewed in
the editor and are updated automatically as code changes.

6 Conclusion and Future Work

Our initial experiments have shown that a minimalist disintegrated develop-
ment environment approach has some promise. With a relatively small amount
of effort we were able to build a simple framework that provides an editing expe-
rience with quick feedback to source code changes. By factoring the framework
into independent components that communicate via simple messages, we do not
require component developers to buy into a complex framework. Having said
that, we do not claim on this evidence that a Monto-based environment can
rival well-established IDEs with complex plug-ins.

Current work is investigating more advanced facilities, how they fit into a
disintegrated world and whether our simple framework is sufficient to support
them with acceptable performance. Of particular interest is the ability of Monto
to incorporate servers that reside across the network, perhaps to provide ac-
cess to functionality that is impossible or hard to install on a local machine.
Some other areas of current investigation are: source mapping to relate prod-
uct text to version text; incorporation of a project view so that servers can
work at the project level not just at the file level; products that are HTML or
SVG and sinks that are web browsers; sinks that display graphical output; build

220 A.M. Sloane et al.

feedback; execution-based products for live coding, debugging and testing; wrap-
ping version control tools; and read-eval-print-loop-based servers.

Acknowledgements. Štěpán Šindelář provided useful feedback on the paper.
We also thank the anonymous reviewers for their helpful suggestions.

References

1. Hintjens, P.: ZeroMQ: Messaging for Many Applications. O’Reilly (2013)
2. Skinner, J.: Sublime Text 3, http://www.sublimetext.com/3
3. Charles, P., Fuhrer, R.M., M., S.,J. S.: IMP: A meta-tooling platform for creating

language-specific IDEs in Eclipse. In: Proceedings of Conference on Automated
Software Engineering, pp. 485–488. ACM (2007)

4. Charles, P., Fuhrer, R.M., M., S.,J. S., Evelyn, D., Jurgen, V.: Accelerating the
creation of customized, language-specific IDEs in Eclipse. In: Proceedings of Con-
ference on Object Oriented Programming Systems Languages and Applications,
pp. 191–206. ACM (2009)

5. Kats, L.C.L., Kalleberg, K.T., Visser, E.: Domain-specific languages for com-
posable editor plugins. In: Proceedings of the Workshop on Language Descrip-
tions, Tools, and Applications. Electronic Notes in Theoretical Computer Science,
vol. 253, pp. 149–163. Elsevier (2009)

6. Kats, L.C.L., Visser, E.: The Spoofax language workbench: rules for declarative
specification of languages and IDEs. In: Proceedings of Conference on Object
Oriented Programming Systems Languages and Applications, pp. 444–463. ACM
(2010)

7. Erdweg, S., et al.: The state of the art in language workbenches. In: Erwig, M.,
Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp. 197–217. Springer,
Heidelberg (2013)

8. Voelter, M.: Embedded software development with projectional language work-
benches. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part
II. LNCS, vol. 6395, pp. 32–46. Springer, Heidelberg (2010)

9. Cannon, A.: Enhanced Scala Interaction Mode for Emacs (ENSIME),
https://github.com/ensime/ensime-src

10. Bergstra, J.A., Klint, P.: The discrete time ToolBus—a software coordination ar-
chitecture. Science of Computer Programming 31, 205–229 (1998)

11. den van Brand, M.G.J., et al.: The ASF+SDF meta-environment: A component-
based language development environment. In: Wilhelm, R. (ed.) CC 2001. LNCS,
vol. 2027, pp. 365–370. Springer, Heidelberg (2001)

12. Ahuja, S., Carrier, N., Gelernter, D.: Linda and friends. Computer 19(8), 26–34
(1986)

13. Sloane, A.M.: Lightweight language processing in kiama. In: Fernandes, J.M.,
Lämmel, R., Visser, J., Saraiva, J. (eds.) Generative and Transformational Tech-
niques in Software Engineering III. LNCS, vol. 6491, pp. 408–425. Springer, Hei-
delberg (2011)

14. Programming Languages Research Group. Macquarie University, The Kiama lan-
guage processing library, http://kiama.googlecode.com

http://www.sublimetext.com/3
https://github.com/ensime/ensime-src
http://kiama.googlecode.com

Model Checking of CTL-Extended OCL
Specifications�

Robert Bill1, Sebastian Gabmeyer1, Petra Kaufmann1, and Martina Seidl2

1 Business Informatics Group, TU Wien, Austria
{bill,gabmeyer,kaufmann}@big.tuwien.ac.at

2 Institute for Formal Models and Verification, JKU Linz, Austria
martina.seidl@jku.at

Abstract. In software modeling, the Object Constraint Language (OCL)
is an important language to specify properties that a model has to sat-
isfy. The design of OCL reflects the structure of MOF-based modeling
languages like UML and its tight integration results in an intuitive usabil-
ity. But OCL allows to express properties only in the context of a single
instance model and not with respect to a sequence of instance models
that capture the execution of the system.

In this paper, we show how OCL can be extended with CTL-based
temporal operators to express properties over the lifetime of an instance
model. We formally introduce syntax and semantics of our OCL exten-
sion cOCL. The properties specified with our OCL extension can be
verified with our explicit state space model checking framework, called
MocOCL. In a case study, we illustrate the expressiveness and usability
of our approach and evaluate the performance of our implementation.

1 Introduction

In software and hardware verification [9,14,18], model checking is currently one
of the most widely used verification techniques to show that a system satisfies its
specification.1 Model checking requires a formal representation of the system and
a specification that often consists of a set of temporal logic formulas formulated
in, e.g., the branching-time logic CTL [6].

In the context of model-based engineering (MBE), software models2 are the
core artifacts to specify and develop a system. In contrast to traditional soft-
ware engineering, where models mainly serve as design artifacts during the early
project phases, an MBE project uses models at every stage of the development
process and finally generates executable code and other deliverables therefrom.
� This work is supported by the Vienna Science and Technology Fund (WWTF) under

grant ICT10-018.
1 Usually, a specification consists of a set of properties that the system should satisfy.

We will, however, often use the terms specification and property interchangeably.
2 The term model is heavily overloaded in computer science. We encounter logical

models in the context of model checking and software models in the context of MBE.
In case of ambiguities we use the term software model when referring to the latter.

B. Combemale et al. (Eds.): SLE 2014, LNCS 8706, pp. 221–240, 2014.
© Springer International Publishing Switzerland 2014

222 R. Bill et al.

Hence, the correctness of the models is a prerequisite for the correctness of the
system that is presented to the end-user [25]. Consequently, formal verification
techniques find their way into the MBE processes to help detect and avoid errors
in the models. A popular choice for this task is model checking. Recent works
and tools like Hugo/RT [19], Groove [17], and Proco [15], to name but a
few, show that software models can be verified with model checking. In gen-
eral, the verification of software models by model checking abides the following
scheme. Throughout its lifetime a system, which is described by the software
model, passes through many states; each such state is represented by a distinct
instance model. A sequence of states, called a trace, describes the execution
of the system from an initial to some intermediate or final state. The system’s
specification describes the set of allowed, i.e., valid, traces. A model checker then
verifies whether the execution traces of the system starting from a given initial
state are a subset of the valid traces described by the specification. If the model
checker determines a violating trace, it reports the found counterexample trace
to the user.

Currently, many approaches use an off-the-shelf model checker and require
the modeler to express the specification in the language of this model checker.
Therefore, the modeler is required to study and understand the translation of
the system’s software model to the model checker’s input format. Moreover, the
specification is often expressed in a language that is different from the languages
available in the modeling environment. To overcome this drawback, we present
a CTL-based temporal extension for the Object Constraint Language (OCL),
called cOCL. While OCL can only express constraints on a single instance model,
cOCL can formulate constraints over sequences of instance models representing
execution traces of the system. For verifying properties expressed in cOCL, we
realized the model checker MocOCL.

The structure of this paper is as follows. We introduce a motivating example
in Section 2 and explain the core ideas behind our approach. In Section 3, we
present the syntax and semantics of our CTL-based OCL extension and introduce
our model checking framework in Section 4 together with numerous examples in
the concrete syntax of our model checker. We then discuss the model checking
algorithm as well as some realization details of our tool. In Section 5, we present a
first evaluation of our approach regarding its usability and performance. Finally,
we review related approaches in Section 6 and conclude with an outlook to
future work. This paper is a substantial revision of the extended abstract [3]
presented at the OCL 2013 workshop. An unabridged version that includes the
questionnaire of the case study (Sec. 5) is also available [4].

2 Motivating Example

To motivate the work presented in this paper we use a variation of the well-known
Pacman game,3 which we use due to its intuitiveness and its easy adaptability

3 http://en.wikipedia.org/wiki/Pac-Man

http://en.wikipedia.org/wiki/Pac-Man

Model Checking of CTL-Extended OCL Specifications 223

to larger game instances, i.e., increasing board size and number of ghosts, to test
the scalability of our model checking algorithm.

Structure and Game Play. The game is played on a board consisting of square
fields, each of which has at most four neighboring fields. Each field has a unique
ID and some fields contain a treasure, indicated by a Boolean flag.

Fig. 1. Pacman’s World

Pacman plays against one or more ghosts. Each
player, Pacman or the ghosts, is placed on one field
of the board. The static structure of the game’s im-
plementation is shown in Figure 2a. Figure 1 uses
the graphical syntax and shows a Pacman game in-
stance with four fields, a treasure on field 4, Pacman
on field 1, and a ghost on field 3. The game is played
as follows. The players move turn-wise in no fixed or-
der. Pacman has to find one of the treasures, which
are placed somewhere on the board. If he finds one,
he wins the game. If, however, Pacman moves onto a
field with a ghost or if a ghost moves onto Pacman’s
field, Pacman looses the game.

Implementation. We use graph transformation rules to implement the behav-
ior of the game. The first rule, Move Pacman, is depicted in Figure 2(a) and
describes one move of Pacman. The second rule, Move Ghost (Figure 2(b)), de-
scribes one move of a ghost. Pacman and the ghosts are only allowed to move if
the game is not over yet, that is, no one moves if Pacman is on a treasure field
or if Pacman and a ghost meet on the same field. Note, however, that the first
restriction is not enforced by the Move Ghost rule; hence, ghosts may still move
if Pacman already found the treasure. In Section 4.2, we show how to detect this
violation of the rules. Figure 3 exemplarily illustrates two applications of the
Move Pacman graph transformation and the subsequent changes to the current
state. First, Pacman moves from field 1 to field 2 and in the next round Pac-
man moves from field 2 to field 4, which contains the treasure. In this scenario,
Pacman wins.

Field
+id:
+treasure:

Integer
Boolean

neighbors
0..4

Pacman

GhostGame

1

1..*

1

1

pacman
fields

ghosts

on

on

0..4

*

(a) Class Diagram of
Pacman’s World

Fi el i d Pacmn

>
neighborsGhost

>
>

«forbid»

on
«create»

on
«delete»

on«forbid»

Pacmn

>

treasure = false

>

(b) “Move Pacman”-
Rule

F i el d Pacmn

>

neighbors

Ghos ht >
>«forbid»

on
«create»

on
«delete»

on
«forbid»

Pacmn

>

(c) “Move Ghost”-
Rule

Fig. 2. Implementation of the Pacman game with graph transformations

224 R. Bill et al.

Fig. 3. Example for Transformations

Verification Tasks. In the example above, we have seen one specific trace showing
a winning strategy for Pacman. Yet, if we want to verify that the game always
terminates when Pacman found a treasure, it is not enough to consider only
some specific traces but all possible traces have to be explored.

For expressing and solving these verification tasks, temporal aspects of the
system behavior have to be considered. Such verification questions are difficult
to express in OCL because it neither provides operators to express constraints
that must hold, e.g., always or eventually, nor the semantic notions to describe
execution traces. To this end, we propose to use our OCL extension cOCL.

MocOCL at a Glance. Our tool MocOCL realizes an explicit state model checking
approach. We construct the state space of the Pacman game iteratively. In our
implementation, we use the graph transformation tool Henshin [1] that explores
the state space by recursively applying all matching graph transformation rules
to the user-provided initial model. The full state space resulting from recursively
applying the rules Move Pacman and Move Ghost to the initial model (Fig. 1)
is depicted in Figure 4. The initial state in the bottom-left corner of the figure
is highlighted in green with a bold border and the end states are marked red
with a dashed border. The transitions between the states show possible moves
of Pacman and the ghost. Overall there are 4 ∗ 4 = 16 different states (the ghost
has to be placed on each field and Pacman has to be placed on each field). After
each exploration step MocOCL evaluates the cOCL expression and, if enough
states have been explored to conclude that the expressions either holds or fails,
the verification stops. Finally, MocOCL returns a report that explains the result
of the verification.

3 A Temporal Extension of OCL

In this section, we formally introduce syntax and semantics of cOCL, which
extends OCL with CTL operators. We assume familiarity with model checking

Model Checking of CTL-Extended OCL Specifications 225

Fig. 4. State Space of the Pacman Game

and CTL [2,7]. We integrate cOCL into the formal semantics of OCL and kindly
refer to the work of Richters and Gogolla [24] for the details on the syntax and
semantics of OCL. Due to space constraints and for ease of presentation, we
reproduce only those definitions that are essential to the understanding of the
subsequent explanations.

OCL expressions are always defined w.r.t. a model M consisting of classes
which are described by their attributes and operations as well as associations
between classes characterized by multiplicities and roles. Such a model provides
the basis for defining OCL expressions in form of a signature ΣM = (TM , ΩM , V)
where TM is a set of types, ΩM is a set of operations, and V is additionally a
set of variables. By Vt ⊆ V we denote the set of variables of type t ∈ TM . The
instantiation of such a model is given by objects, links, and attribute values
and is also called snapshot. In the following, we denote a specific snapshot of a
model M by σ(M). Due to space restrictions, we abstain from a complete formal
introduction of the notion of model.

Definition 1 (Syntax of OCL). Let ΣM = (TM , ΩM , V) be the signature of
model M as described above. Then Exprt is the set of expressions of type t defined
as follows.

i. If v ∈ Vart then v ∈ Exprt.
ii. If v ∈ Vart1 , e1 ∈ Exprt1 , e ∈ Exprt then (let v = e1 in e) ∈ Exprt.

iii. If ω : t1 × . . . × tn → t ∈ ΩM and ei ∈ Exprti
then ω(e1, . . . , en) ∈ Exprt.

iv. If e1 ∈ ExprBool and e2, e3 ∈ Exprt then if e1 then e2 else e3 endif ∈ Exprt.
v. If e1 ∈ ExprCollection(t1), v1 ∈ Vart1 , v2 ∈ Vart, and e2, e3 ∈ Exprt then e1

→ iterate(v1; v2 = e2 | e3) ∈ Exprt.

226 R. Bill et al.

The set of OCL expressions over Σ denoted by OCLM is given by
⋃

t Exprt.

Due to space restrictions, Definition 1 does not contain the definitions related
to type hierarchies and inheritance. Adding these definitions neither changes nor
impacts our approach presented below.

Definition 2 (Syntax of cOCL). Let M be a model with OCL expressions
OCLM . Then cOCL is defined as follows.

i. If e ∈ OCLM , then e ∈ cOCL.
ii. Let ExprBool ⊆ cOCL be the set of boolean expressions in cOCL. If e1, e2 ∈

ExprBool then AXe1, EXe1, Ae1We2, Ee1We2, Ae1Ue2, Ee1Ue2 ∈ ExprBool.

Our extension introduces three temporal operators, next (X), weak until (W),
and (strong) until (U), which are quantified either existentially (E) or universally
(A). We define two additional operators, eventually (F) and globally (G), by the
following equivalences: EFϕ ≡ E true U ϕ and AFϕ ≡ A true U ϕ, and EGϕ ≡
E ϕ W false and AGϕ ≡ A ϕ W false. Note that next, eventually, and globally have
a single subformula as argument, whereas the weak until and until operators
have two subformulas. Before we define the semantics of the temporal operators,
we formally introduce the term transition system which describes all possible
executions of a system.

Definition 3 (Transition System). The transition system T SM associated
with a model M is a hextuple (S, ι, T , A, B, E) consisting of a set S of states,
an initial state ι ∈ E, a transition relation T ⊆ S × A × S, a set A of actions,
a set B of variable assignments, and the environment relation E ⊆ S × B. An
environment τ ∈ E is a pair (σ, β) with σ ∈ S and β ∈ B.

For each state σ ∈ S the set of possible objects is given by σclass, the set of
possible associations by σassoc, and the set of possible attributes by σattrs. A
variable assignment is a function β : Var t → Valt that, given a variable name,
returns the current value of the associated variable of type t. An action is a
partial function α : σclass → σclass ∪ {⊥} mapping objects from one state to
corresponding objects of another state or to ⊥ if no such object exists.

The concept of an environment τ = (σ, β) has been introduced in [24]. For
specific execution traces, we define the term path as follows.

Definition 4 (Path). Let T SM = (S, ι, T, A, B, E) be the transition system
associated with a model M . A path π is a finite or infinite sequence of environ-
ments (τ0τ1τ2 . . .) with τi ∈ E and (τi, τi+1) ∈ {((σi, βi), (σi+1, βi+1)) | βi+1 =
mapvar(βi, α), (σi, α, σi+1) ∈ T } for all 0 ≤ i. For a path π = (τ0τ1τ2 . . .), we
define the projection function π(i) = τi. The length of a path |π| = n for fi-
nite paths π = (τ0 . . . τn), and |π| = ∞ for infinite paths π = (τ0τ1τ2 . . .). By
pth(T SM) we denote the set of all possible paths of T SM .

The function mapvar : B × A → B takes a variable assignment βs of source
state σs and an action α ∈ A and updates βs with respect to α resulting in a
variable assignment βt for the successor state σt. We are now able to define the
semantics of cOCL as follows.

Model Checking of CTL-Extended OCL Specifications 227

Definition 5 (Semantics). Let T SM = (S, ι, T, A, B, E) be the transition sys-
tem associated with model M as defined above. The semantics of a cOCL ex-
pression w.r.t. a context τ ∈ B with τ = (σ, β) is defined by the rules i.–vi.
originating from Definition 2 of [24] and the additional rules vii.–xi. for the
temporal extension.

i. I�v�(τ) := β(v)
ii. I�let v = e1 in e2�(τ) := I�e2�((σ, β[v/I�e1�(τ)]))

iii. I�ω(e1, . . . , en)�(τ) := I(ω)(τ)(I�e1�(τ), . . . , I�en�(τ))

iv. I� if e1 then e2 else e3 endif�(τ) =

⎧
⎪⎨

⎪⎩

I�e2�(τ) ifI�e1�(τ) := true
I�e3�(τ) ifI�e1�(τ) := false
⊥ otherwise

v. I�e1 → iterate(v1; v2 = e2|e3)�(τ) := I�e1 → iterate′(v1|e3)�(τ ′) where
τ ′ = (σ, β′) and τ ′′ = (σ, β′′) are environments with modified variable as-
signments: β′ := β[v2/I�e2�(τ)], β′′ := β′[v2/I�e3�(σ, β′[v1/x1])]

vi. I�A e1 U e2�(τ) := {π | π ∈ pth(T SM), π(0) = τ, �n ∈ N, n ≤ |π| :
(I�e2�(π(n)) = true ∧ ∀ 0 ≤ i < n : I�e1�(π(i)) = true)} = ∅

vii. I�E e1 U e2�(τ) := {π | π ∈ pth(T SM), π(0) = τ, ∃n ∈ N, n ≤ |π| :
(I�e2�(π(n)) = true ∧ ∀ 0 ≤ i < n : I�e1�(π(i)) = true)} �= ∅

viii. I�A e1 W e2�(τ) := {π | π ∈ pth(T SM), π(0) = τ, � ∀n ∈ N, n ≤ |π| :
(I�e1�(π(n)) = false → ∃i ∈ N, i ≤ n : I�e2�(π(i)) = true)} = ∅

ix. I�E φ W ψ�(τ) := {π | π ∈ pth(T SM), π(0) = τ, ∃n ∈ N, n ≤ |π| :
(I�e1�(π(n)) = false → ∃i ∈ N, i ≤ n : I�e2�(π(i)) = true)} �= ∅

x. I�E X e�(τ) :={π | π ∈ pth(T SM), π(0) = τ∧|π| ≥ 1∧I�e�(π(1)) = true} �= ∅
xi. I�A X e�(τ) :={π | π ∈ pth(T SM), π(0) = τ ∧ |π| ≥ 1 ∧ I�e�(π(1)) �= true} =

∅

The semantics of the eventually and globally operators follow directly from the
above definitions. The only free variable allowed in cOCL expressions is self,
corresponding to the root object of the state, called root(σ) in the following, the
cOCL expression is evaluated in. We define satisfiability of cOCL expressions as
follows.

Definition 6 (Satisfiability). A cOCL expression φ is satisfiable w.r.t. a tran-
sition system T SM with initial state ι iff I�φ�(ι) = true.

In the remainder of this paper, we discuss how the model checker MocOCL
verifies cOCL specifications, discuss its implementation, and evaluate its perfor-
mance and usability. In Table 1 we list examples of cOCL expressions, which
illustrate typical application scenarios of cOCL in the context of the Game class
(Fig. 2a) of the previously introduced Pacman game. The cOCL expressions are
phrased in the concrete syntax of MocOCL that we introduce in the next section.

228 R. Bill et al.

Table 1. Examples of cOCL expressions in the concrete syntax of MocOCL.

natural language cOCL expression

Initially, there is a field
containing a treasure.

self.fields->exists(field | field.treasure)

The game is over/not
over.

Always Next false/Exists Next true

The game will surely be
over sometimes.

Always Eventually (Always Next false)

Pacman will find the trea-
sure in all cases.

Always Eventually self.pacman.on.treasure

If the treasure is next to
Pacman, he can always
find it in the next turn.

Always Globally
self.pacman.on.neighbor->exists(field.treasure)
implies (Exists Next self.pacman.on.treasure)

As long as not all fields
next to Pacman are occu-
pied by ghosts, there is a
possibility that the game
is not over after the next
turn.

Always Globally
self.pacman.on.neighbor->exists(field |
self.ghosts->forAll(g | field <> g.on) implies
(Exists Next (Exists Next true)))

As long as the game is
not over, every ghost may
move to at least two differ-
ent positions.

Always self.ghosts->
forAll(g | g.on.neighbor->select(field |
Exists Next g.on = field)->size() >= 2)

Unless (Always Next false)

4 The Model Checker MocOCL

The implementation of MocOCL consists of two parts, a backend that realizes
an explicit state model checker and a graphical user interface.

4.1 Backend

The backend consists of a parser for the textual concrete syntax of cOCL and
the model checker MocOCL that verifies cOCL specifications.

The concrete syntax enhances the readability of cOCL expressions. It allows
us to write the temporal operators in their familiar long forms, i.e., Xϕ, Fϕ,
Gϕ, ϕ W ψ, and ϕ U ψ become Next ϕ, Eventually ϕ, Globally ϕ, ϕ Unless ψ,
and ϕ Until ψ. The universal and existential path quantifiers preceding the tem-
poral operators become Always and Exists or, alternatively, Sometimes. Ta-
ble 1 shows examples of MocOCL expressions in the concrete syntax. In our

Model Checking of CTL-Extended OCL Specifications 229

implementation, we extended the concrete syntax of OCL given by an Xtext
grammar4 resulting in an editor with syntax highlighting for cOCL expressions
and a Java API.

The prototypical, EMF-based5 implementation of the MocOCL model checker
performs the actual verification task as follows. Given an Ecore-conformant
model, an instance model that represents the system’s initial state, a set of
model transformations, and a cOCL specification, MocOCL generates the state
space iteratively and, at every step, it verifies the cOCL specification on-the-fly.
Finally, it reports to the modeler information on the reason of the verification
result.

In MocOCL, the state space consists of a set of graphs. Each graph corresponds
to an instance of the system and thus represents a system’s state at a discrete
point in time. Given a graph transformation system G = (R, ι) with graph
rewrite rules R and an initial state ι, the function stepR: S → P (S × M)6

handles the step-wise exploration of the state space where S denotes the set of
all states and M the set of all partial mappings between states σ1, σ2 ∈ S. It
expects as input a state σs and returns a set of pairs (σt, m) where σt denotes the
successor state of σs and m ∈ M defines a morphism m : σClass → σClass ∪ {⊥}
that maps objects in σs to corresponding objects in σt or to ⊥ if no such object
exists. The successor state σt is obtained from σs by applying a rewrite rule
r ∈ R to the graph represented by σs. We write σs

r,m⇒ σt to denote that σs

is rewritten to σt by rule r ∈ R at match m [11]. The state space exploration
function is then defined as stepR(σs) =

⋃
r∈R{(σt, m)|σs

r,m⇒ σt}. The helper
function succ: E → P (E) returns all environments reachable by a transition
from the source environment τs = (σs, βs) and is defined by succ((σs, βs)) :=
{(σt, βt)|(σt, m) ∈ stepR(σs), βt = mapvar(βs, m)} with mapvar as defined in
the previous section.

This implementation gives us a transition system T SM = (S, ι, T, A, B, E)
with initial state ι ∈ {(σ, βι[self/root(σ)])|σ ∈ G}, βι = ∅, T ={(σs, m, σt)|σs

r,m⇒
σt, r ∈ R, σs, σt ∈ S}, A being the set M of partial state mappings, E being the
transitive closure of the succ function applied to the initial environment ι, and
S and B being all states and variable assignments occurring in an environment.

The algorithm for evaluating cOCL expressions of the form (A|E) φ (U|W) ψ
is shown in Figure 5. To ease the presentation we drop intermediate checks
allowing the algorithm to abort early in some cases, i.e. if a cycle was found
during the evaluation or an element is added to a set required to be empty if
the property holds. The algorithm proceeds as follows. First, it constructs the
sets Φ and Ψ that contain all states where ϕ or ψ hold, respectively, and a
third set η that contains all states reachable from a ϕ-state but where neither
ϕ nor ψ hold. The worklist ω contains all nodes that need to be processed.
The algorithm sets the worklist to the initial environment τι and uses the succ
function to iteratively expand the set of reachable environments. It evaluates ϕ

4 http://www.eclipse.org/Xtext/
5 http://www.eclipse.org/modeling/emf/
6 P (X) is the set of all finite subsets of X.

http://www.eclipse.org/Xtext/
http://www.eclipse.org/modeling/emf/

230 R. Bill et al.

/*Evaluates the given cOCL expression.
τι: start environment; POp: Path operator, Always or Exists;
TOp: Temporal operator, Until or Unless; returns: true iff the expression holds*/
function evaluate(τι, (POp φ TOp ψ)) : Bool
1 ω := {τι}; /*worklist */
2 Φ := ∅; /*fulfilling φ, but not ψ */
3 Ψ := ∅; /*fulfilling ψ */
4 η := ∅; /*fulfilling neither φ nor ψ */
5 while ω �= ∅
6 pick τ = (σ, β) ∈ ω;
7 ω := ω \ {τ};
8 if I�φ�(τ) or I�ψ�(τ) then
9 if I�ψ�(τ) then

10 Ψ := Ψ ∪ {τ};
11 else
12 Φ := Φ ∪ {τ};
13 ω := ω ∪ succ(τ) \ (Φ ∪ Ψ ∪ η);
14 end if
15 else
16 η := η ∪ {τ}
17 end if
18 end while
19 Δ := ∅;

20 Δl := ∅;
21 repeat
22 Δl := Δ;
23 Δ := {τ ∈ Φ | succ(τ)∩(Φ\Δl) = ∅};
24 until Δ = Δl

25 Z := {τ ∈ Φ | succ(τ) = ∅};
26
27 switch (POp, TOp)
28 case (Always, Until):
29 return Φ = Δ and Z = ∅ and
η = ∅;

30 case (Always, Unless):
31 return η = ∅
32 case (Exists, Until):
33 return Φ �= ∅;
34 case (Exists, Unless):
35 return Φ �= ∅ or Z �= ∅ or Φ �= Δ;
36 end switch

Fig. 5. Until/Unless Algorithm Pseudo Code

and ψ in each environment τ and assigns τ to the corresponding sets Φ and Ψ ,
or to η if neither ϕ or ψ hold. Once every reachable environment is assigned
to either Φ, Ψ , or η, the algorithm constructs the set Δ, which contains all
environments from Φ that do not lie on an infinite path that does not leave Φ.
That is, all environments in Φ that are part of a circular path are not in Δ.
Finally, the algorithm builds the set Z that contains all deadlocked environment
in Φ, i.e., environments that have no successor. Then, I�A φ Uψ�(τ) holds if η
is empty, and Φ contains neither cycle nor deadlock; I�E φ Uψ�(τ) holds if Ψ
is not empty; I�A φ Wψ�(τ) holds if η is empty; and I�E φ Wψ�(τ) holds if Ψ
is not empty or Φ contains a cycle. Expressions (A|E) Xφ are implemented as
I�(A|E) Xφ�((σ, β)) := (∀|∃)n ∈ succ(σ, β) : I�φ�(n) = true, where we check if
all (at least one) successor of the current state satisfies ϕ.

The evaluation of a cOCL expression yields a report that, besides returning
the result of the evaluation, contains a cause or explanation for the result. A
cause is associated with a cOCL expression. It stores the result of the evaluation
of the associated expression and, for each relevant sub-expression, a sub-cause.
A sub-expression is relevant if it influences the result of its super-expression. For
example, if the sub-expression ϕ in ϕ or ψ evaluates to true then no sub-cause
is generated for ψ as the evaluation of ϕ uniquely determines the result of ϕ or ψ.
If, however, both ϕ and ψ evaluate to false, then a sub-cause for each of the

Model Checking of CTL-Extended OCL Specifications 231

Partial statespace Trace

State 7 to state 12 by moveGhost

CTL checker

Display subexpressions in state space: Yes

Expression: Always Globally (self.pacman.on.treasure) implies (Always Next false)

Evaluate Property not fulfilled

+

.

+

+

root: AlwaysGlobally cond
returns false

Show
:part: State7

returns EXIT
Show

cond: source implies it1
returns false

Show
source: source . treasure

returns true
Show

it1: AlwaysNext cond
returns false

Show
:part: State12

returns EXIT
Show

range: boolean : false
returns false

Show
:predecessor: State7 from
moveGhost
returns CONTINUE

Show

:predecessor: State4 from
movePacman
returns CONTINUE

Show

2

m
ov

eP
ac

m
an

m
ov

eP
ac

m
an

4
m

ovePacm
an

m
ovePacm

an

m
ov

eP
ac

m
an

m
ov

eP
ac

m
an

7

m
ov

eG
ho

st

m
ov

eG
ho

st

m
ov

eG
ho

st

m
ov

eG
ho

st

m
ov

eG
ho

st

m
ov

eG
ho

st

m
ov

eG
ho

st

m
ov

eG
ho

st

m
ov

eG
ho

st

12

7

4

m
ovePacm

an

2

m
ovePacm

an

12

7

on

neighbor

neighbor

neighbor

ne
ig

hb
or

neighbor

ne
ig

hb
or

neighbor

neighbor

on

on

:Pacman

id:
treasure:

:Field
4
true

id:
treasure:

:Field
2
false

id:
treasure:

:Field
1
false

id:
treasure:

:Field
3
false

:Ghost

12

7

m
oveGhost

m
oveGhost

m
oveGhost

1

2

3
5 4

6

Fig. 6. Visualization of a cause in the MocOCL tool

two sub-expressions is generated and stored in the cause of ϕ or ψ. Note that
the cause generation is not necessarily deterministic, as is the case, for example,
if both ϕ and ψ evaluate to true in ϕ or ψ.

4.2 Frontend

The MocOCL implementation, which is based on the Eclipse OCL project,7 works
in two phases, (i) step-wise exploration of the state space and evaluation of the
provided cOCL expression on the thus far generated state space and (ii) visu-
alization and report generation that provide useful information for the modeler
on the reason of a specific result. The realization of the first phase is discussed
above; in the following, we present the user interface and the report generation
of our tool.
7 http://www.eclipse.org/projects/project_summary.php?projectid=

modeling.mdt.ocl

http://www.eclipse.org/projects/project_summary.php?projectid=modeling.mdt.ocl
http://www.eclipse.org/projects/project_summary.php?projectid=modeling.mdt.ocl

232 R. Bill et al.

Figure 6 depicts a screenshot of MocOCL that displays the verification re-
sult for the initial 2 × 2 board (Fig. 1), the graph transformation rules Move
Pacman and Move Ghost (Fig. 2), and the cOCL expression Always Globally
(self.pacman.on.treasure) implies (Always Next false). This cOCL ex-
pression states that whenever Pacman finds the treasure, no further states can
be reached, i.e., the game ends. The MocOCL user interface consists of the fol-
lowing parts: (1) an input field for the cOCL specification, (2) the result of the
verification, i.e., whether the cOCL specification is satisfied or not, (3) the cause
that textually describes (4) the trace of the evaluation, which is embedded in
(5) the partial state space. Further, upon clicking on a state or transition from
(3) the cause, (4) the trace, or (5) the partial state space, the selected state or
transition is visualized in (6) the object diagram pane. The changes caused by a
transition are highlighted in red and green indicating the deletion and creation
of an association, respectively.

In the example displayed in Figure 6, the specification is not satisfied, i.e., the
game does not end if Pacman finds a treasure. The cause shows a scenario where
Pacman finds the treasure in two moves starting from the initial state (state 2)
and moving first to state 4 and then to state 7. However, there is a transition
moveGhost leading from state 7 to state 12. This transition is selected in (4) the
trace and is highlighted in blue. The changes associated with the transition are
displayed in (6) the object diagram pane. The deletion and creation of the on
relation between the ghost and two adjacent fields describes the ghost’s move.
Consequently, the ghost may perform moves after Pacman already resides on the
treasure field. Thus, the implementation does not satisfy the specification of the
game and needs to be fixed by introducing an additional Negative Application
Condition for the Move Ghost rule such that a ghost may no longer move once
Pacman found the treasure.

A demo version of MocOCL is available as a browser version at

http://www.modelevolution.org/mococl/

and can be used without any installation efforts. In the demo version the initial
model is fixed to the 2 × 2 board shown in Fig. 1 due to memory limitations
on the server. A browser-based version for custom installations, which is not
restricted to the Pacman model, is available for download at

http://www.modelevolution.org/prototypes/mococl.

5 A First Experimental Case Study

We performed an evaluation of cOCL’s and MocOCL’s usability and performance.
In both cases we used the Pacman game described above because (i) its game
play is simple and (ii) its complexity can be increased easily by raising the
number of fields on the game board or the number of ghosts.

http://www.modelevolution.org/mococl/
http://www.modelevolution.org/prototypes/mococl

Model Checking of CTL-Extended OCL Specifications 233

Table 2. Evaluation results based on self–estimated proficiency

Prior Knowledge Exercises Subjective Evaluation
Low Medium High Low Medium High

Structural Models 12 8 10.5 8 7.5 7
Behavioral Models 8 10.1 11 7 7.7 6
OCL 12 9.6 11.5 8 6.9 8
Graph transform. 10 9.4 11.7 7.3 6.8 7.7
Standard Logics 9.5 10.3 10.4 5 7.4 8
Temporal Logics 10.4 9.9 — 6.8 8.3 —
Model checkers 10 – 10.4 6.5 – 8.0

5.1 Usability

Experimental Setup. Concerning the evaluation of the usability of our verifica-
tion framework, we are interested in(i) the intuitiveness of the cOCL language,
i.e., the combination of OCL expressions and temporal operators, and (ii) the
usability of MocOCL’s user interface, most notably the presentation of the cause.
Thus, we conducted a series of qualitative, semi-structured interviews with 11
researchers with expertise in MBE or in formal verification, and some in both.
Each test person was interviewed separately for one to two hours. The interviews
were structured as follows.

The interview started with an introduction to model checking in the context
of MBE. The Pacman game discussed in Section 2 served as the running example.
Depending on the expertise of the test persons, background on either structural
and behavioral modeling or model checking was given to ensure a common level
of understanding. Next, the cOCL language was presented with several examples
similar to those in Table 1. Then, the test persons had to solve exercises and were
encouraged to use MocOCL’s web interface to find the solutions. These exercises
were grouped into three blocks, each block raising the level of difficulty gently.
First, the test persons were required to match a set of cOCL expressions to their
corresponding natural language explanations. Next, the test persons were asked
to explain the meaning of several cOCL expressions in natural language. Finally,
the test persons had to formulate cOCL expressions on their own. The last
question of the exercises the test person to assert required whether the game
is over after Pacman finds the treasure. The task setup was identical to the
scenario depicted in Figure 6. In the final part of the interview the test persons
were asked to provide feedback on whether it was “Easy”, “Medium”, “Hard”,
or “Infeasible” to (i) read cOCL expressions, (ii) write cOCL expressions, and
(iii) use MocOCL’s interface.

The questionnaire used during the interview, including the exercises and the
subjective evaluation, is shown in the extended technical report.

Results. All participants successfully revealed the defect in the graph transfor-
mation rule Move Ghost (Fig. 2) with the help of MocOCL. Even in this small
example, however, only few of the test persons were able to detect the defect

234 R. Bill et al.

without the tool. Thus, we may conclude that MocOCL is supportive when model
checking is performed in the context of MBE. The interviews also showed that
some background on CTL is indispensable to apply the temporal operators and
path quantifiers correctly. While most participants reported that reading the
cOCL expressions is intuitive, test persons without any prior exposition to for-
mal verification and model checking in particular expressed difficulties phrasing
such expressions on their own. In particular, the existential path quantifier which
wo originally called “sometimes” caused confusion among the test persons and
many suggested to use the more intuitive term “exists”. To avoid the name clash
and ambiguities with OCL’s exists operator we revised cOCL’s concrete syntax
such that (i) all cOCL keywords are capitalized and (ii) the keyword Exists was
introduced as an additional existential path quantifier. Further feedback resulted
in slight visualization improvements; in particular, we now color start and end
nodes of the evaluation trace.

Table 2 summarizes the overall evaluation results. Initially each participant
was asked to provide a self-assessment of his/her expertise in various domains
that we considered relevant for using MocOCL. Each participant was then as-
signed to his/her matching expertise group (“Low”, “Medium” or “High”) in
each domain.

The table contains the average number of points given by persons of a specific
expertise group in a certain domain. In total, a person could score a maximum
number of twelve points in the exercise part and award up to nine points during
the subjective evaluation. Each task was awarded either zero points for a wrong
or missing answer, one point for a partially correct answer, i.e. the use of →
instead of the OCL implies, and two points for a completely correct answer.
The first block, was considered an single task while the three cOCL expressions
which had to be interpreted and the two cOCL expressions which had to be
written were considered as individual tasks each. A test person that solves the
matching task and provide the correct meaning of two cOCL expressions and
only a single, partially correct, solution for writing a cOCL expression scores
seven points.

For the subjective evaluation, each person had to decide how hard “Reading
cOCL”, “Writing cOCL” and “Tool use” were. The answer “Easy” yielded three
points, “Medium” two points, “Hard” one point and “Infeasible” zero points.
The total value is the sum of values for answers for the individual domains. A
test person that experienced reading cOCL was easy, writing cOCL was hard,
and using the tool was medium awards six out of nine points.

Discussion. The evaluation provided valuable insights on the usability of our
tool. However, to obtain statistically relevant results we have to increase the
number and the diversification of our test persons. We plan to contribute such
an extensive user study in the course of our Model Engineering class, a master
course offered during the winter term providing a test-bed of up to 100 students.

Overall, we could observe a trend that the knowledge of behavioral models and
logics increases the odds of successfully applying MocOCL to verification tasks,
while expertise in graph transformations, OCL, and standard modeling does not.

Model Checking of CTL-Extended OCL Specifications 235

(a) Small board. (b) Medium board. (c) Large board.

Fig. 7. Different configurations of the Pacman game used for the evaluation

In contrast, persons knowing model checking and logics, but not knowing graph
transformations gave lower ratings in the subjective evaluation.

We concluded that MocOCL should provide other facilities to specify dynamic
behavior, for example, state machines or a subset of the Java programming
language. In future evaluations, we will also have to consider direct comparisons
to other tools like Groove.

Additional feedback that we received is hard to capture by facts in tables. This
includes the way some people were interested in using the tool by playing around
with various features. This encouraging observation seems to confirm the chosen
approach of how to realize MocOCL. In contrast, the language itself seems to be
too hard for immediate use since no one tried out custom expressions beyond
those required for the tasks. Finally, even though the interviews were scheduled
for a duration of up to two hours, we felt that the time required for an in–depth
evaluation with a single person should be even higher. As this seems to expect
too much from a volunteering test person we plan to restructure the exercise
part such that the tasks can be solved before the actual interview.

5.2 Performance

Experimental Setup. In order to asses the performance of our implementation,
we measured runtimes required for different board sizes and different numbers
of ghosts. Along these parameters we are able to scale the size of the state space
and observe the behavior of our tool with increasing state space sizes. An upper
bound for the state space size is n(g+1) with n being the number of fields and
g being the number of ghosts. The initial configurations of the used boards are
shown in Fig. 7. We ran our performance tests with three different configurations,
(i) a 2 × 2 board with one ghost (Fig. 7(a)), (ii) a 3 × 3 board with two ghosts
(Fig. 7(b)), and (iii) a maze of 34 fields with zero, one, and two ghosts (Fig. 7(c)).

On each game configuration, we evaluated the following three queries:

– Always Globally true
– Exists Eventually pacman.on.treasure

236 R. Bill et al.

Table 3. Runtimes of MocOCL (times are given in ms)

Field Gh. St. gentime evaltime total
avg std avg std avg std

St
at

e
sp

ac
e

ge
ne

ra
ti

on
small 1 16 25 6.1 20 5.9 46 7
medium 2 405 1051 623.3 114 42.6 1165 657.6
large 0 34 128 63.8 20 5.1 148 68.9
large 1 1156 7712 381.4 258 68.6 7970 437.4
large 2 20230 213k 16.3k 5164 432.6 218k 16.4k

Pa
cm

an
on

tr
ea

su
re

small 1 10 19 21.3 29 2.4 48 22.4
medium 2 120 124 18.3 63 19.9 188 36.2
large 0 34 85 9.9 28 0.4 113 10
large 1 631 1932 57.8 114 28.9 2046 38.9
large 2 6920 30685 167.9 1819 34.5 32504 187.3

Pa
cm

an
w

in
s

small 1 10 15 19.7 65 9.7 80 19
medium 2 176 128 115.4 266 94.8 393 128.3
large 0 34 88 18.1 45 7.4 133 18.9
large 1 631 2095 223.5 316 66.3 2411 224.6
large 2 6920 22878 557.8 10772 16.2 33650 566.1

– Exists Eventually pacman.on.treasure and
ghosts->forAll(g | g.on <> pacman.on)

Although the first expression is trivially true, MocOCL traverses the entire state
space to assert its correctness because it does not implement any simplification
rules for the input query yet. Thus, we use this first expression to analyze Mo-
cOCL’s runtime behavior when traversing state spaces of different sizes. The
second expression queries whether Pacman eventually finds a treasure. The last
query contains a more complicated OCL sub-expression in order to validate if
Pacman can always win the game. The experiments were performed on an Intel
i5-2410M Machine with 2.30 GHz and 8 GB RAM.

Results. The runtimes of our experiments are summarized in Table 3. The first
query is called state space generation, the second query is called Pacman on
treasure, and the third query is called Pacman wins. The column Gh. contains
the number of ghosts and the column St. contains the number of generated states.
Further, the table shows the overall runtime of our tool (column total), which
we split into the time necessary to generate the state space (column gentime)
and the time required to evaluate the cOCL expressions (column evaltime) by
caching the state space. We repeated each run five times and report the average
runtime as well as the standard deviation. Overall all queries could be answered
within less than five minutes. But if we add a third ghost to the large field, the
8 GB of memory are insufficient to answer the given queries.

Discussion. In its current state, we observe that our tool is not competitive in
terms of performance, even without a direct comparison to other tools. For the

Model Checking of CTL-Extended OCL Specifications 237

moment, however, we clearly focus on the tight integration of OCL and model
checking-based verification, not so much on the performance. This is directly
reflected in the performance results of the current implementation shown in
Table 3, which we discuss in the following. We observe a high standard deviation
for all expressions when run on the more complicated 3 × 3–field. We suspect
this to be due to the various online JVM optimizations. These optimizations are
also likely the cause for the generation time of the “Pacman wins”–expression
being significantly lower then the generation time of the “Pacman on treasure”–
expression even though the same number of states are generated. The excessive
increase in evaluation time for the “Pacman wins”–expression for more ghosts
originates from the forAll–expression covering a different number of ghosts. In
the case of no ghosts, the expression just needs to ensure that there are no ghosts
in each state which is fast. In the case of one or more ghosts, the expression has
to check that the position of each ghost is different to the position of Pacman.

Our approach scales approximately as well as comparable solutions like
Groove. Our benchmarks show that our implementation spends significant
amounts of time on both the state space generation and the evaluation of the
cOCL expression; thus, it is sensible to look into improvements in both areas.
A more efficient cOCL evaluation might also reduce the state space generation
time if fewer states need to be generated.

6 Related Work

We discuss related works focusing on temporal extensions for OCL first, followed
by reviews of model checkers that verify whether a system, whose structure and
behavior is described by (graphical) models, satisfies its specification. For an
in-depth discussion on verification approaches in the context of MBE we refer
the interested reader to [13].

Temporal Extensions. Distefano et al. [8] propose a CTL-based logic, called
BOTL, to specify static and dynamic properties of object-oriented systems. But
instead of extending OCL, they map OCL onto BOTL; hence, they provide for-
mal semantics for a large part of OCL based on BOTL. Ziemann et al. [29]
suggest an extension based on linear time logic, which is similar in nature to our
CTL-based solution. Soden and Eichler [26] also present a linear time-based ex-
tension for OCL and define the operational semantics of MOF-conforming mod-
els with the Model Execution Framework for Eclipse (MXF) [27]. This allows
them to describe a finite execution trace through a sequence of changes. Flake
and Mueller [12] use state charts to describe the behavior of associated class
diagrams and time-based traces to capture the execution of the system. They
propose a UML Profile to specify state-oriented, real-time invariants, whose se-
mantics are defined by a mapping to clocked CTL formulas. Bradfield et al. [5]
embed OCL into the observational μ-calculus. They suggest the use of predefined
templates with intuitive semantics, from which the underlying μ-calculus formula
is automatically generated. Likwise, Kanso and Taha [16] introduce a temporal

238 R. Bill et al.

extension based on Dwyer et al.’s patterns for the specification of properties
for finite state systems [10]. They define a scenario-based semantics for their
extension, where each scenario is a finite sequence of events.

Verification Engines. Mullins and Oarga [22] present EOCL, an extension in-
spired by BOTL, that augments OCL with CTL operators. The operational
semantics of EOCL are defined over object-oriented transition systems. They
announce and describe SOCLe, a tool that translates class, state chart, and ob-
ject diagrams into an abstract state machine and checks on-the-fly if the system
satisfies a given EOCL specification.The Groove framework [17] verifies object-
oriented systems modeled as attributed, type graphs with inheritance relations.
It is similar to MocOCL in that it represents system states as graphs and the sys-
tem’s behavior by graph transformations. But, in contrast, it uses standard CTL
and LTL to formulate the system’s specification. Recently, abstraction techniques
have been implemented to handle infinite state spaces by over-approximating sys-
tem behaviors [23]. Al-Lail et al. [20] describe systems with class diagrams and
the operations’ contracts, given by OCL pre- and postconditions, capture the
behavior of the system. They use TOCL [29] to specify reachability and safety
properties. Their model checker builds a Snapshot Transition Model that con-
sists of snapshots, which represent a state of the system, and transitions, which
run from source states that satisfy an operation’s precondition to target states
that satisfy the postcondition. With the USE Model Validator [28] they perform
a depth-bounded search for sequences of snapshots that violate the specification
and, if one is found, visualizes the violating sequence as a UML sequence dia-
gram. Dingel et al. [21,30] verify UML–RT state machines symbolically using a
CTL–extension without transforming to another model checker, but represent-
ing their models as Functional Finite State Machines. In contrast to MocOCL,
OCL is not part of their language.

To the best of our knowledge, MocOCL is currently the only framework that
(i) integrates its CTL-extension seamlessly into the formal semantics of OCL,
(ii) implements the evaluation of CTL operators directly within the OCL evalua-
tion engine, and thus (iii) performs the verification and result reporting directly
at the modeling layer.

7 Conclusion and Future Work

In this paper, we present syntax and semantics of cOCL, our OCL extension with
CTL-based temporal operators. Further, we describe the implementation and tech-
nical feasibility of our MocOCL model checker that verifies cOCL specifications of
software systems, whose static structure is described by Ecore-conformant models
and whose behavior is defined by a set of graph transformations. We conducted a
first user study, where we invited colleagues to solve a set of verification tasks with
our tool. The results of this user study are already incorporated into MocOCL and
they improved, among others, the concrete syntax of cOCL.

Model Checking of CTL-Extended OCL Specifications 239

A performance evaluation shows that our approach is able to verify models of
various sizes. With increasing state space sizes, memory consumption becomes a
major issue. This is, however, an inherent problem of model checking in general,
which suffers from the state explosion problem and, for practical application,
several tuning techniques can be applied. In our current prototype, we do not
use such techniques yet. Thus, in future work, we plan to employ symbolic model
checking and abstraction techniques to improve runtimes and memory consump-
tion.

Besides technical issues we are also interested in improving the usability of
our tool. The aim is (i) to further explore the intuitiveness of the combination
of temporal operators and OCL expressions and (ii) the presentation of the
evaluation result, in particular, with respect to the reconstructability of the
cause. A larger user study is planned to improve future versions of the tool.

References

1. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced
Concepts and Tools for In-Place EMF Model Transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp.
121–135. Springer, Heidelberg (2010)

2. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)
3. Bill, R., Gabmeyer, S., Kaufmann, P., Seidl, M.: OCL meets CTL: Towards CTL-

Extended OCL Model Checking. In: Kleine Büning, H. (ed.) CSL 1995. LNCS,
vol. 1092, pp. 13–22. Springer, Heidelberg (1996)

4. Bill, R., Gabmeyer, S., Kaufmann, P., Seidl, M.: Model Checking of CTL-Extended
OCL Specifications. Tech. Rep. BIG-TR-2014-2, E188 - Institut für Softwaretechnik
und Interaktive Systeme; Technische Universität Wien (2014)

5. Bradfield, J.C., Küster Filipe, J., Stevens, P.: Enriching OCL Using Observational
Mu-Calculus. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306,
pp. 203–217. Springer, Heidelberg (2002)

6. Clarke, E.M., Emerson, E.A.: Design and Synthesis of Synchronization Skeletons
Using Branching-Time Temporal Logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

7. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (1999)
8. Distefano, D., Katoen, J.-P., Rensink, A.: On a Temporal Logic for Object-Based

Systems. In: Formal Methods for Open Object-Based Distributed Systems IV. IFIP
AICT, vol. 49, pp. 305–325. Springer, Heidelberg (2000)

9. D’Silva, V., Kroening, D., Weissenbacher, G.: A Survey of Automated Techniques
for Formal Software Verification. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 27(7), 1165–1178 (2008)

10. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specifications for
Finite-State Verification. In: Proceedings of the 21st International Conference on
Software Engineering, pp. 411–420. ACM (1999)

11. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer (2006)

12. Flake, S., Müller, W.: Formal semantics of static and temporal state-oriented OCL
constraints. Software and System Modeling 2(3), 164–186 (2003)

240 R. Bill et al.

13. Gabmeyer, S., Kaufmann, P., Seidl, M.: A feature-based classification of formal
verification techniques for software models. Tech. Rep. BIG-TR-2014-1, Institut
für Softwaretechnik und Interaktive Systeme; Technische Universität Wien (2014)

14. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4)
(2009)

15. Jussila, T., Dubrovin, J., Junttila, T., Latvala, T.L., Porres, I.: Model Checking Dy-
namic and Hierarchical UML State Machines. In: Models in Software Engineering.
LNCS, vol. 4364, p. 15. Springer (2006)

16. Kanso, B., Taha, S.: Temporal Constraint Support for OCL. In: Czarnecki, K.,
Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 83–103. Springer, Heidelberg
(2013)

17. Kastenberg, H., Rensink, A.: Model Checking Dynamic States in GROOVE. In:
Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 299–305. Springer, Heidelberg
(2006)

18. Kern, C., Greenstreet, M.R.: Formal Verification in Hardware Design: A Survey.
ACM Transactions on Design Automation of Electronic Systems (TODAES) 4(2),
123–193 (1999)

19. Knapp, A., Wuttke, J.: Model Checking of UML 2.0 Interactions. In: Kühne, T.
(ed.) MoDELS 2006. LNCS, vol. 4364, pp. 42–51. Springer, Heidelberg (2007)

20. Lail, M.A., Abdunabi, R., France, R., Ray, I.: An Approach to Analyzing Tem-
poral Properties in UML Class Models. In: Proceedings of the 10th International
Workshop on Model Driven Engineering, Verification and Validation (MoDeVVa
2013). CEUR Workshop Proceedings, vol. 1069, pp. 77–86. CEUR-WS.org (2013)

21. Moffett, Y., Dingel, J., Beaulieu, A.: Verifying Protocol Conformance Using Soft-
ware Model Checking for the Model-Driven Development of Embedded Systems.
IEEE Software Engineering 39(9), 1307–13256 (2013)

22. Mullins, J., Oarga, R.: Model Checking of Extended OCL Constraints on UML
Models in SOCLe. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007.
LNCS, vol. 4468, pp. 59–75. Springer, Heidelberg (2007)

23. Rensink, A., Zambon, E.: Neighbourhood Abstraction in GROOVE. ECEASST 32,
44–56

24. Richters, M., Gogolla, M.: OCL: Syntax, Semantics, and Tools. In: Clark, A.,
Warmer, J. (eds.) Object Modeling with the OCL. LNCS, vol. 2263, pp. 42–68.
Springer, Heidelberg (2002)

25. Selic, B.: What will it take? A view on adoption of model-based methods in practice.
Software and Systems Modeling 11, 513–526 (2012)

26. Soden, M., Eichler, H.: Temporal Extensions of OCL Revisited. In: Paige, R.F.,
Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 190–205.
Springer, Heidelberg (2009)

27. Soden, M., Eichler, H.: Towards a model execution framework for Eclipse. In: Pro-
ceedings of the 1st Workshop on Behaviour Modelling in Model-Driven Architec-
ture, Enschede, the Netherlands, pp. 1–4. ACM Press, New York (2009)

28. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying UM-
L/OCL models using Boolean satisfiability. In: Design, Automation and Test in
Europe, pp. 1341–1344. IEEE (2010)

29. Ziemann, P., Gogolla, M.: OCL Extended with Temporal Logic. In: Broy, M., Za-
mulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 351–357. Springer, Heidelberg
(2004)

30. Zurowska, K., Dingel, J.: Model Checking of UML-RT Models Using Lazy Composi-
tion. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS
2013. LNCS, vol. 8107, pp. 304–319. Springer, Heidelberg (2013)

Unifying and Generalizing Relations
in Role-Based Data Modeling and Navigation

Daco Harkes and Eelco Visser

Delft University of Technology, The Netherlands
d.c.harkes@student.tudelft.nl, visser@acm.org

Abstract. Object-oriented programming languages support concise nav-
igation of relations represented by references. However, relations are not
first-class citizens and bidirectional navigation is not supported. The re-
lational paradigm provides first-class relations, but with bidirectional
navigation through verbose queries. We present a systematic analysis of
approaches to modeling and navigating relations. By unifying and gen-
eralizing the features of these approaches, we developed the design of a
data modeling language that features first-class relations, n-ary relations,
native multiplicities, bidirectional relations and concise navigation.

1 Introduction

Object-oriented programming languages model data with object graphs. Nav-
igation through object graphs is simple; following references leads to related
objects. But references in object graphs are one-directional and cannot be navi-
gated backwards. Bidirectional navigation can be obtained by storing references
on both sides of relations between objects. But keeping such redundant refer-
ences consistent requires bookkeeping code. By contrast, relational databases
support bidirectional navigation. Foreign keys can be used in queries to navigate
both ways. There is no need for redundant references. Queries are however not
as concise as navigation through references.

Proposals for object-oriented languages with first-class relations provide bidi-
rectional navigation [3]. These languages remove the need for manually keeping
references consistent but navigation is done through querying, which is still ver-
bose. There are modeling techniques that are yet different from object-oriented
and relational modeling: Object-Role modeling [7], Entity-Relationship modeling
[6], UML [10] and undirected graphs.

In this paper, we present a systematic analysis of the design space of relations
in data modeling and present a new data modeling language that unifies and
generalizes relations. In particular, our contributions are:

– We extrapolate Steimann’s approach [19] to model multiplicities using an-
notations in Java to native multiplicities that are integrated into the type
system (Section 2).

– A systematic analysis of approaches to modeling relations (Section 3).

B. Combemale et al. (Eds.): SLE 2014, LNCS 8706, pp. 241–260, 2014.
c© Springer International Publishing Switzerland 2014

242 D. Harkes and E. Visser

class Student { }

class Course {
@any(ArrayList.class) Student student;

void addStudent(@any(ArrayList.class) Student s){
this.student += s;

}
}

Fig. 1. Multiplicity annotations in Java

– A new relational data modeling language featuring native multiplicities, bidi-
rectional navigation, n-ary relations, first-class relations, and concise navi-
gation expressions based on the analysis (Section 4).

– A formal definition of the type system (Section 5) and operational semantics
(Section 6) of this language.

2 Native Multiplicities

The first thing we need to fix to get relations right is the treatment of their
cardinality or multiplicity. Encoding of to-many relations as associations to col-
lections results in a discontinuity in programming style [19]:

– Navigating one-to-one and many-to-one relations produces singleton values,
while navigating through one-to-many and many-to-many relations produces
collections of values. Thus, the caller has to unwrap the result before using
it, for example by using an iterator.

– The caller has to deal with different sub-type substitution conditions. Sup-
pose Student extends Person. Assigning an Student to a Person is fine
(to-one), but trying to assign Set<Student> to Set<Person> will trigger a
type error (to-many).

– The call semantics is call-by-value for to-one and call-by-reference for to-
many. Collection objects are passed by reference, so that they can be mod-
ified the callee. Call-by-value semantics for collections requires immutable
collections.

Multiplicity Annotations. To address these issues, Steimann proposes an exten-
sion of regular object-oriented programming with multiplicities [19]. He presents
an extension of Java with multiplicity. Expressions of a singleton value type can
return an arbitrary number of objects of this type. Figure 1 illustrates the ap-
proach with a small example in which a Course has an association to Student.
Through the @any annotation the association is declared to be to-many instead
of using a collection type.

Unifying and Generalizing Relations 243

class Student {
String! name;
Course* courses;
int! numCourses(){ return count(this.courses); }

}
class Course {

Student* students;
void addStudent(Student+ s){ this.students += s; }
int? avgNumCourses(){ return avg(this.students.numCourses()); }

}

Fig. 2. Native multiplicities in Java

Native Multiplicities. We have extrapolated Steimann’s annotations based ap-
proach and integrated multiplicities into the type system to arrive at native
multiplicities. Type expressions use one of the following four multiplicity opera-
tors (similar to regular expressions) to denote the possible range of values:

– t? is [0, 1] an optional value of type t
– t! is [1, 1] a required value of type t
– t* is [0, n) zero or more values of type t
– t+ is [1, n) one or more values of type t

The ! can be omitted as [1, 1] is the default multiplicity.
As a sketch, Figure 2 illustrates native multiplicities in an extension of Java.

We have not formalized an extension of Java, but rather integrated native mul-
tiplicities in our relational data modeling language. In Section 5 we formalize
a type system for that language including multiplicities. The type system en-
sures that the actual number of values at run-time is always inside the specified
range. For example, assigning an optional string (a value of type String?) to a
student.name will trigger a type error: multiplicity error: [1, 1] expected, [0, 1]
given. Our language also supports expected multiplicities for function arguments.
The built-in function count handles any multiplicity and any type and it returns
exactly one integer with the number of values passed. The built-in function avg
also handles [0, n) values and the argument type must be numeric. The return
multiplicity of avg depends on its input multiplicity. If a programmer supplies
[0, n) as input the return multiplicity will be [0, 1]. The average of no values does
not exist, so no value will be returned in that case. If the programmer supplies
[1, n) as input the return multiplicity is [1, 1]. With at least one value there is
always an average computable. We use this model of multiplicities, reasoning
over ranges, in the type system of our language.

3 Design Space for Role-Based Relations

There are several proposals in the literature for extending data modeling to
better support data modeling with relations. This section presents a systematic

244 D. Harkes and E. Visser

analysis of the design space of relations in data modeling taking in into account
these proposals. Figures 3 and 4 summarize the complete design space in tabular
form emphasizing its regularities. From this analysis a new data modeling lan-
guage emerges which unifies and generalizes the various approaches to modeling
relations.

In all our examples we assume the language to have native multiplicities in-
stead of using collections that would be needed in a plain OO approach. The
running example data model defines Students who are enrolled in Courses,
sometimes via a first-class Enrollment relation. For the sake of the example,
students can be enrolled in zero or more courses (* multiplicity), and courses
should have at least one student (+ multiplicity). In the example expressions we
use Student ‘bob’ and Course ‘math’. For each point in the design space we
give a type graph diagram describing the data model, a textual specification of
the data model, and expressions for querying the model. For the expressions we
use => to express the result of evaluation.

3.1 Overview

Before discussing each point in the design space (Figures 3 and 4) individually,
we first introduce the categories represented by the columns and rows.

Columns: Four Modeling Paradigms. The four columns in the design space
represent four modeling paradigms.

Object-Oriented. Relations between objects are defined through reference valued
attributes, which can be navigated in one direction only. The name of the relation
is the name of the attribute in the source class. The relation is unknown to
the target class. A relation can also be modeled by, redundantly, maintaining a
reference attribute on the other side of the relation, as well, allowing bidirectional
navigation. However, this requires code for keeping the two sides of the relation
consistent. We do not cover models with redundant information in our design-
space analysis, as this is an undesirable property.

Relational. In a relational database schema references are expressed as foreign
keys; an identifier corresponds to a memory address and a foreign key to a ref-
erence into memory. An important difference is that these references can be
navigated in two directions through queries in a query language (SQL). ER and
UML diagrams are also located in this column, but they only provide schema def-
initions, not queries. Because queries are verbose we introduce our own notation
for forward and backward navigation through references. For forward navigation
we use the the normal field access notation. For backward navigation from an
object o we need to find all the objects of type T that refer to o through ref-
erences r, which is expressed by o<-(T.r). For example, to find the students
enrolled in a course c we use the navigation expression c<-(Student.courses).

Unifying and Generalizing Relations 245

Object-Role Modeling. A distinguishing feature of ORM [7] is that associations
between objects have a different name on both sides. This conceptually solves
the problem of not being able to refer to a reference backwards. Similarly, inverse
properties in WebDSL [20] tie two fields in different classes together as inverses.

Graph databases. In contrast to the directed edges in the previous three
paradigms, graph databases feature undirected edges. In this model the edge
names are defined in both source and target namespaces. As with the ORM
paradigm there is always a name available in the namespace of participating
objects, but in this case this name is identical for both sides. There is one dis-
advantage of this model: modeling asymmetric same type relations is nontrivial.
Consider a TreeNode with a parent and children. If a node p has a parent edge
to another node q, then q also has a parent edge to p. This can be solved through
indirection (J and K), but that is not particularly elegant.

Rows: Three Relation Models. The three rows in the design space corre-
spond to three ways of modeling a relation.

Edge. The simplest way of representing a relation is through an edge between
two nodes (either directed or undirected). This is a concise way of specifying a
relation but it has the disadvantage that the relation is not a first-class citizen
(see below). Also it is not possible to declare ternary, or higher arity, relations
with edges.

Tuple (Ordered Roles). By lifting relations to objects they become first-class
citizens, i.e. relations can have attributes, and relations can be the subject in
other relations. A relation object modeled as a tuple has ordered roles. The
absence of role names requires the order (or position) of the roles to be used for
navigation. For binary relations this entails four predefined navigation operators
(see E). But for higher arity relations 2n operators are required, which does not
scale.

Object (Named Roles). Giving the roles in a relation names makes navigation
understandable and makes modeling n-ary relations feasible.

3.2 Detailed Description of Points in Design Space

We discuss each of the points A to K in the design space (Figures 3 and 4).

Object-Oriented (A, B and C). There are multiple patterns for modeling rela-
tions in objected-oriented languages [16]. As mentioned before, we replace col-
lections by multiplicities and do not consider patterns with redundant references
for bidirectional navigation. Three basic patterns remain: reference (A), relation
tuple (B), and relation class (C), which we assume to be familiar to the reader.
It is noteworthy that a language extension is not required for the representation

246 D. Harkes and E. Visser

Student Coursecourses

Student Course

Student Course

student course

(A) Object-Oriented Reference

class Student { }
class Course { }
class Enrollment extends
 Pair<Student, Course> { }

b_takes_m.first => bob
b_takes_m.second => math

(C) Object-Oriented Class

first (1) second (2)

(B) Object-Oriented Tuple

class Student { }
class Course { }

class Enrollment {
 Student student
 Course course
}

b_takes_m.student => bob
b_takes_m.course => math

class Student {
 Course* courses;
}
class Course { }

bob.courses => math

(D) Backwards Reference Navigation

entity Student {
 Course* courses +
}
entity Course { }

bob.courses => math
math<-(Student.courses) => bob

entity Student { }
entity Course { }
relation Enrollment <*Student, +Course>

bob.Enrollment => math
bob:Enrollment => b_takes_m
math:.Enrollment => bob
math::Enrollment => b_takes_m
b_takes_m.from => bob
b_takes_m.to => math

entity Student { }
entity Course { }

relation Enrollment {
 Student student *
 Course course +
}

bob<-(Enrollment.student).course => math
bob<-(Enrollment.student) => b_takes_m
math<-(Enrollment.course).student => bob
math<-(Enrollment.course) => b_takes_m
b_takes_m.student => bob
b_takes_m.course => math

(E) Relations as Tuples [RelJ]

(F) Relation Objects [Rumer, RelJ e.]

Student Coursecourses

Student Course

from (1) to (2)

lift relation
to object

give roles
names

Student Course

student course

Object-Oriented Relational / SQL, ER, UML

inverse
reference

lookup

Enrollment Enrollment

Enrollment Enrollment

Ed
ge

Tu
pl

e
(R

ol
es

 o
rd

er
ed

)
O

bj
ec

t (
Ro

le
s

na
m

ed
)

Edge name defined in Source Edge name defined in Source + Inverse lookup

Fig. 3. Design space of relations in data modeling and navigation (part 1)

Unifying and Generalizing Relations 247

Student Courseenrollments

Student Course

Enrollment

Student Course

Enrollment

student course

Student Course
courses

Enrollment

student course

(I) Undirected Graph

(J) Intermediary Nodes

from (1) to (2)

(K) Undirected indirect graph

entity Student {
 Course* enrollments +
}
entity Course { }

bob.enrollments => math
math.enrollments => bob

entity Student { }
entity Course { }

relation Enrollment {
 Student student *
 Course course +
}

bob.student.course => math
bob.student => b_takes_m
math.course.student => bob
math.course => b_takes_m
b_takes_m.student => bob
b_takes_m.course => math

entity Student {
 Course* courses <- + students
}
entity Course { }

bob.courses => math
math.students => bob

(G) Inverse Properties [WebDSL]

It doesn’t make sense to define inverse reference
names without role names

students

enrollments enrollments

entity Student { }
entity Course { }

relation Enrollment {
 Student student <- * enrollments
 Course course <- + enrollments

 student.courses <-> course.students
}

bob.courses => math
bob.enrollments => b_takes_m
math.students => bob
math.enrollments => b_takes_m
b_takes_m.student => bob
b_takes_m.course => math

courses

students

(H) Relations with Concise Navigation

First-class

Bidirectional

N
-ary

entity Student { }
entity Course { }
relation Enrollment <*Student, +Course>

bob.Enrollment => math
bob:Enrollment => b_takes_m
math:.Enrollment => bob
math::Enrollment => b_takes_m
b_takes_m.from => bob
b_takes_m.to => math

Object Role Modeling Graph Databases

inverse
reference

name

automatic
inverse
name

Edge defined in Source and Target w. different names Edge defined in Source and Target with same name

Student Course

Fig. 4. Design space of relations in data modeling and navigation (part 2)

248 D. Harkes and E. Visser

class Student { }
class Course { }
relationship Enrollment (Student, Course) { int grade; }

bob.Enrollment // bob’s courses
bob:Enrollment // Enrollment−type relation objects
bob:Enrollment.grade
b_takes_m.from // bob
b_takes_m.to // math

Fig. 5. First-class citizen tuple based relations in RelJ [4]

of first-class relations. The term first-class is sometimes used for having a dedi-
cated language construct, but a dedicated language construct is not required for
adding attributes to relations or letting relations participate in other relations.
First-class relations based on tuples (B) have been implemented as a Java library
[15].

Backwards reference navigation (D). If we extend an object-oriented language
with facilities for backwards reference lookup (o<-(T.r)) we can use a single
reference for bidirectional navigation. Note that in this case the object graph is
identical to the single reference pattern (A).

Relation as Tuples (E). The RelJ Java extension lifts relations to tuple ob-
jects [4]. In RelJ different operators are used to disambiguate between different
navigation operations (Figure 5). RelJ provides no facilities for bidirectional nav-
igation. However, that is not a conceptual limitation. Adding two operators (:.
and ::) would allow backward navigation, as suggested in (E). While this is
theoretically extensible to relations with more than two participants, it requires
adding new operators for each participant.

Relation Objects (F). Naming roles allows usable extension to n-ary relations.
This is the model used by Rumer [2,3] as illustrated in Figure 6. While Rumer’s
implementation does not support n-ary relations, it provides the ingredients
needed for n-ary relations: role names and first-class citizenship. A proposed ex-
tension for RelJ [22] adds names to roles, as illustrated in Figure 7, and is essen-
tially equivalent to Rumer’s syntax. As an alternative query syntax, we propose
math<-(Enrollment.course).student, which is closer to the usual navigation
syntax: from an object (math) find all relations with that object in one of its
roles (Enrollment.course), and produce objects in the other role (student).
All these notations are rather verbose, even if more concise than full blown SQL
queries. We would prefer a more concise notation for navigating n-ary relations.

Inverse Properties (G) WebDSL [20] supports bidirectional navigation without
a verbose syntax for inverse lookups by means of inverse properties [9] as il-
lustrated in Figure 8. Explicit names on both sides of an association simplifies
navigation to just following named references. However, these names have to be

Unifying and Generalizing Relations 249

class Student { }
class Course { }
relationship Enrollment participants (Student student, Course course) {

int grade;
}
Enrollment.select(s_c: s_c.course == math).student; // math students

Fig. 6. First-class relations with named roles in Rumer [2,3]

class Student { }
class Course { }
relationship Enrollment

extends Relation (Student student, Course course, Student tutor) {
int grade;

}
Enrollment[course == math].student; // math students

Fig. 7. Ternary relation extension proposal for RelJ [22]

defined in both the source and target class. In (G) we have normalized this to
a single property definition with two names; the second name is used for the
backwards reference from target to source.

Concise Relations (H). Combining the advantages of (F) and (G), we arrive at
our proposal for a unified and generalized approach to modeling relations (H).
Relations are first-class citizens: (1) relations can have attributes and (2) rela-
tions can be the subject in other relations. In addition, relations can have any
number of roles (n-ary relations). By explicitly providing a name for the naviga-
tion between each pair of participants in the relation we get concise navigation
expressions: (1) from relation to participant and back (b_takes_m.student and
bob.enrollments), and (2) from participant to other participant (bob.courses)
and back (math.students). Instead of defining these names in the source and
target classes, as in (G), all names are introduced in the relation. The declaration
of a role T r <- m i introduces a role r of type T with inverse i with multiplicity
m. This provides navigation from relation to participant through r and navigation
from participant to relation through i. A declaration r1.n1 <-> r2.n2 intro-
duces names for navigation between participants: r1.n1 leads to r2 and r2.n2
leads to r1. In contrast to (G), these declarations do not introduce attributes
in the participant classes, but rather shortcuts. For example, bob.courses is
a shortcut for bob.enrollments.course. This approach naturally extends to
n-ary relations, as illustrated in Figure 9.

entity Student { courses : Set<Course> }
entity Course { students : Set<Student> (inverse=Student.courses) }
math.students // math students
bob.courses // bobs courses

Fig. 8. Inverse properties in WebDSL

250 D. Harkes and E. Visser

entity Student { }
entity Course { }
relation Enrollment {

Student student <− * enrollments
Course course <− + enrollments
Student tutor <− * tutoring

student.courses <−> course.students
student.tutors <−> tutor.students
course.tutors <−> tutor.courses

}

Fig. 9. Ternary relation with concise navigation (H) (this paper)

Undirected Graphs (I, J, K). Graph databases also feature three relation pat-
terns. The simple edge (I), adding an intermediary node without role names (J),
and an intermediary node with role names (K). Since without edge names, edge
directionality does not matter (J) is equivalent to (E). So we will only cover (I)
and (K).

The simple edge (I) cannot be used to model asymmetric same type relations.
Asymmetric relations of the different types can be disambiguated by the type
one starts navigating from, but if both participants have the same type their
role is ambiguous. Disambiguation can be done through indirection (I or K).
With indirection (K) navigation from participant to participant is navigating
two edges. With undirected edges role names cannot be reused with different
relations concerning the same entity. Consider adding another relation where
Course also participates as course. math.course now becomes ambiguous. The
language could then be extended with the type of the node navigating to, but
this is equivalent to the backwards reference navigation: naming the edge and
the type on the other side. So that would bring us back at (F).

It seems there is a fundamental trade-off between undirected and directed
graphs when considering reference names. The directed graph (column two) re-
quires an extra identifier (the target type) to navigate edges backwards. To get
rid of this extra identifier we can automatically define the edge name on both
sides. This is gets us to the undirected graph (column four). In undirected graphs
we have ambiguities. Adding an extra identifier (the target type) to disambiguate
brings us back at the directed graphs.

4 A Relational Data Modeling Language

We have designed a language for data modeling featuring native multiplicities,
bidirectional navigation, n-ary relations, first-class relations, and concise naviga-
tion expressions based on point (H) in the design space. In this section we discuss
two extensions of the basic idea of (H) and the grammar of the language. In the
next sections we give a formal definition of the type system and operational
semantics.

Unifying and Generalizing Relations 251

relation Enrollment { Student* Course+ }

expands to (lower case participant type, lower case relation type, add s for * and +)
relation Enrollment {

Student student <− * enrollments
Course course <− + enrollments

}

expands to (use role name, add s for * and +)
relation Enrollment {

Student student <− * enrollments
Course course <− + enrollments
student.courses <−> course.students

}

Fig. 10. Expansion of concise relation definition

entity Student {
Int? avgGrade = avg(this.enrollments.grade)

}

Fig. 11. Relations language with derivation

Concise Definition of Relations. While navigation according to (H) is very con-
cise, the definition of a relation is somewhat verbose due to the introduction of
names for each of the arrows in the diagram. In many cases we can derive these
names from the types of the roles. Figure 10 illustrates how a definition with
implicit names is expanded to a definition with explicit names. This automatic
expansion can of course lead to name collisions, for example if the participant
classes have an attribute with a name introduced by a relation. In this case the
programmer has to (partially) specify names explicitly.

Derived Attributes. To express business logic in data models, we extend entities
and relations with derived attributes. The value of a derived attribute is described
in terms of the values of other attributes and relations as illustrated in Figure 11.
Thus, if one of the underlying values changes, the derived attribute is updated.

Grammar. The grammar of the relations language is given in Figure 12. a, i, r
and t are respectively attribute, inverse, role and entity-type names. The roles,
r, are the solid arrows in the design space diagram and the inverses/shortcuts,
i, are the dashed and dotted arrows. a′, i′, r′, r′′, and t′ refer to these names.
The lookup expression (t [a == e]) is only intended to look up objects of a
certain type with a certain attribute value in the heap. It is not our intention to
provide a full-fledged query language; our focus is on navigation expressions.

Prototype. We have implemented this language on the language designers work-
bench Spoofax [11]. The prototype is publicly available.1 The type system and
semantics described in the next sections matches those of the prototype.
1 https://github.com/metaborg/relationstagv0.2.0

https://github.com/metaborg/relations tag v0.2.0

252 D. Harkes and E. Visser

Program ::= model Entity* execute e

Entity ::= entity t { Attribute* }
| relation t { Attribute* Role* Shortcut* }

Attribute ::= p m a

| p m a = e

Role ::= t′ r <− m i

Shortcut ::= r
′
. i <−> r

′′
. i

p ∈ PrimitiveType ::= Boolean | Int | String
m ∈ Multiplicity ::= ? | ! | * | +

e ∈ Expr ::= f (e) | e1 ⊕ e2 | ! e | e1 ? e2 : e3

| e . a′ | e . i′ | e . r′

| true | false | literalInt | literalString

| this | t [a == e]

f ∈ AggrOp ::= min | max | avg | sum | concat | count | conj | disj

⊕ ∈ {+,−, ∗, /,%,&&, ||,>,>=, <,<=,==, ! =, <+,++}

Fig. 12. The grammar of the relations language

5 Type System

Our language features static typing. Everything in the language has both a type
and a multiplicity. These are defined orthogonally.

Meta variables. In the the static and dynamic semantic rules we use a meta
variables for looking up definitions on usage sites.

P ∈ Program : EntityMap × Expr

E ∈ EntityMap : EntityName → AttributeMap × InverseMap × RoleMap

A ∈ AttributeMap : AttrName → PrimitiveType × Multiplicity × Expr

I ∈ InverseMap : InverseName → EntityName × RoleName × RoleName

R ∈ RoleMap : RoleName → EntityName × Multiplicity

A program P is a tuple, (E , e), where E is a map from entity (and relation)
names to entity definitions and e is the main expression.

Entity definitions are triples (A, I,R), where A is a map from attribute names
to attribute definitions, I is a map of inverse names to their origin and R is a map
from role names to role definitions. Both entities and relations define entities. We
refer to an entity t’s attribute, inverse and role map as At, It and Rt respectively.

Attribute definitions are triples (p,m, e), where p is the primitive type, m is
the multiplicity and e is the optional derivation expression. If e has no derivation
expression it is equal to nil. Role definitions are tuples (t,m), where t is an
entity name and m is a multiplicity. Inverse (and shortcut) definitions are triples
(t, r1, r2) where r1 and r2 are roles in entity t. The inverse map definition is best
explained by example:

Unifying and Generalizing Relations 253

entity Enrollment {
Student student <− * enrollment
Course course <− + enrollment
student.courses <−> course.students

}

IStudent : ’enrollment’ → ’Enrollment’ × ’student’ × nil

’courses’ → ’Enrollment’ × ’student’ × ’course’
ICourse : ’enrollment’ → ’Enrollment’ × ’course’ × nil

’students’ → ’Enrollment’ × ’course’ × ’students’

The inverses of roles are mapped back to the role in the relation they are the
inverse of. In this case r2 is nil. The shortcut is translated to two records, one
for both participant types. The inverse maps are used as the backwards reference
navigation mechanism.

Lastly, to simplify static and dynamic semantics we transform the shortcut
expressions to an inverse and a role expression by the transformation rule:

e : t1 It1(i1) = (t2, r1, r2) It1(i2) = (t2, r1, nil)
e . i1 → e . i2 . r2

Types. There are two type sorts: p (primitive types) and t (entity types). All
attributes are primitive types. Entities and relations define entity types. Roles,
inverses and shortcuts in a relation are entity types.

Most typing rules are straightforward, so we only cover the rules that are non-
standard. The aggregation rule (Aggr) is interesting. Since multiplicities are
encoded orthogonally the aggregation functions are of type int → int. The mul-
tiplicity operators choice and concatenate work with any type. They only check
whether both operands have the same type and propagate the type (Mult).

With roles and inverses one can conceptually navigate over the type graph
defined by the entities and relations. The type of a navigation expression is
naturally the place where one ends up in the model after navigating. When
navigating from a relation to a participant the type is the participant’s type
(RoleNav). When navigating from a participant to a relation, by an inverse,
we find the type of the relation by looking up the inverse definition (InvNav).

Multiplicities. For multiplicities there are two notational conventions: single
characters from the concrete syntax and ranges. We use the ranges notation
in the multiplicity rules as it gives us access to the upper and lower bounds
directly.

Binary operators mimic maybe-Monad behaviour for zero or one values: a
maybe value as input for the computation returns a maybe value as output.
Taking the Cartesian product between the bags of values and applying the op-
eration to each pair provides this behaviour. The multiplicity range is expressed
as taking the minimum of both lower bounds and the maximum of the upper
bounds (BinOp). The division and modulo operators exhibit slightly different
behaviour (DivOp). Since dividing by zero has no result, at least one value in

254 D. Harkes and E. Visser

c ∈ {true, false}
c : boolean

[Bool]

literalInt : int
[Int]

literalString : string
[Str]

θ 	 this : θ
[This]

⊕ ∈ {+,−, ∗, /,%}
e1 : int e2 : int

e1 ⊕ e2 : int
[Math]

e1 : string e2 : string

e1 + e2 : string
[Conc]

⊕ ∈ {&&, ||}
e1 : boolean e2 : boolean

e1 ⊕ e2 : boolean
[AndOr]

e : boolean

! e : boolean
[Not]

⊕ ∈ {>,>=, <,<=}
e1 : t e2 : t t ∈ {int, string}
e1 ⊕ e2 : boolean

[Cmp]

e1 : t e2 : t ⊕ ∈ {==, !=}
e1 ⊕ e2 : boolean

[Eq]

e1 : boolean e2 : t e3 : t

e1 ? e2 ":" e3 : t
[Cond]

e : int f ∈ {avg,min,max, sum}
f(e) : int

[Aggr]

e : boolean f ∈ {conj, disj}
f(e) : boolean

[Logic]

e : _

count(e) : int
[Count]

e1 : t e2 : t ⊕ ∈ {<+,++}
e1 ⊕ e2 : t

[Mult]

e : t At(a) = (p,_._)

e . a : p
[Attr]

e : ta At(a) = (ta,_)

t [a == e] : t
[Lookup]

e : t Rt(r) = (tr ,_)

e . r : tr
[RoleNav]

e1 : t1 It1(i) = (t2,_, nil)

e . i : t2
[InvNav]

Fig. 13. Type rules

c ∈ {true, false, false, Int, String}
c ∼ [1, 1]

[Const]

⊕ ∈ {+,−, ∗,&&, ||,>,
>=, <,<=,==, !=}

e1 ∼ [l1, u1] e2 ∼ [l2, u2]

e1 ⊕ e2 ∼ [min(l1, l2),max(u1, u2)]
[BinOp]

⊕ ∈ {/,%}
e1 ∼ [_, u1] e2 ∼ [_, u2]

e1 ⊕ e2 ∼ [0,max(u1, u2)]
[DivOp]

e1 ∼ [l1, 1] e2 ∼ [l2, u2]
e3 ∼ [l3, u3]
m = [min(l1, l2, l3),max(u2, u3)]

e1 ? e2 ":" e3 ∼ m
[Cond]

e ∼ m

! e ∼ m
[Not]

f ∈ {avg,min,max, conj, disj}
e ∼ [l, n)

f(e) ∼ [l, 1]
[Aggr]

f ∈ {sum, count}
f(e) ∼ [1, 1]

[Aggr2]

e1 ∼ [0, u1] e2 ∼ [l2, u2]

e1 <+ e2 ∼ [l2,max(u1, u2)]
[Choice]

e1 ∼ [1, u1]

e1 <+ e2 ∼ [1, u1]
[Choice2]

e1 ∼ [l1,_] e2 ∼ [l2,_]

e1 ++ e2 ∼ [max(l1, l2), n)
[Concat]

e ∼ [l1, u1] Ate (a) = (_, [l2, 1],_)

e . a ∼ [min(l1, l2), u1]
[Attr]

t [a == e] ∼ [0, n)
[Lookup]

e : t e ∼ m Rt(r) = (_,_)

e . r ∼ m
[RoleNav]

e1 : t1 It1(i) = (t2, r, nil)
Rt2(r) = (_, [l2, u2])

e . i ∼ [min(l1, l2),max(u1, u2)]
[InvNav]

Fig. 14. Multiplicity rules

Unifying and Generalizing Relations 255

a = (_, [_, 1], nil)

	 a
[AttrDec]

a = (p, [l1, 1], e) e : p e ∼ [l2, 1] l1 ≤ l2

	 a
[AttrDec2]

r = (t,m) E(t) = (_,_)

	 r
[RoleDec]

i = (t, r1, nil) Rt(r1) = (_,_)

	 i
[InvDec]

i = (t, r1, r2) Rt(r1) = (_,_) Rt(r2) = (_,_)

	 i
[ShortcutDec]

θ′ = t ∀a ∈ dom(At) : θ′ 	 a ∀r ∈ dom(Rt) : θ′ 	 r ∀i ∈ dom(It) : θ′ 	 i

	 t
[EntityDec]

θ′ = ⊥ ∀t ∈ dom(E) : θ′ 	 t θ′ 	 e : _ θ′ 	 e ∼ _

	 (E, e)
[ProgramDec]

Fig. 15. Attribute, role, inverse, shortcut, entity and program well-formedness

both operands might still result in no answer. Instead of throwing a division by
zero exception zero answers are given for any denominator equal to zero.

The Choice operator chooses at runtime the left expression if it has a result,
and otherwise the right expression. The multiplicity is defined as the maximum
of both upper and lower bound, except if the left lower bound is one. Then we
know that the left expression will always be chosen. Note that it does not make
sense to use the choice operator in that case, because the right expression will
be dead code. The Concat operator combines the results of both expressions.
This means that we might always have more than one value at runtime; thus the
upper bound is n. The lower bound is the maximum of both.

Attributes are allowed to be either [0,1] or [1,1]. In the first case attribute
access decreases the lower bound to zero, as the attribute might not be set
(Attr). A role always has exactly one value, so role navigation leaves multiplicity
intact (RoleNav). Navigation to relations entities participate in behaves like
a SQL join between the input expression entities and the relation. Like binary
operators this means taking the lowest lower bound and the highest upper bound.

Well-formedness. Programs are well-formed if they satisfy the rules in Figure
15. Attributes are only allowed to have a multiplicity of at most one, their type
has to be primitive (which is enforced by the syntax definition already) and if
a derivation is specified, it should be of the correct type and its multiplicity
should fit inside the target range. Role declarations are well-formed if the entity
playing the role exists in the entity map. Inversions are well-formed if the role
exists in the entity of which they are the inverse and shortcuts are well-formed
if both roles exist in the entity. Entity definitions are well-formed if all their
attributes, inverses and roles are well-formed and a program is well-formed if
all its entities and the main expression are well-formed. We only consider well-
formed programs.

256 D. Harkes and E. Visser

6 Dynamic Semantics

We specify evaluation rules for a big-step semantics. We use the I-MSOS nota-
tional style, which implicitly propagates stores if they are not mentioned [14].

Stores. In order to evaluate a program an entity store Σ and relation store Δ
must be passed; our language is a data modeling and navigation language and
does not provide facilities to add, edit or remove data. Expression in addition
get passed a this-reference θ.

Σ,Δ 	 p ⇓ v (Evaluation of program)

Σ,Δ, θ 	 e ⇓ v (Evaluation of expressions)

The entity store corresponds to the usual heap: a map from object references
to a map from attribute names to their values. The relation store is used for
storing all relations between entities. It is a map from relation name, relation
object reference and role name to the reference of the object playing this role.
The this-reference is a single reference to an object.

Σ ∈ EntityStore : Reference → AttributeStore

AttributeStore : AttrName → V alue

Δ ∈ RelationStore : EntityName × Reference × RoleName → Reference

θ ∈ ThisReference : Reference

Store well-formedness. Figure 16 describes what it means means for these stores
to be well-formed. The entity store is well-formed if all the entities in it are
well-formed. An entity is well-formed if (1) all records in its attribute store are
well-formed, (2) all its required, non-derived attributes have been set (3) all its
roles have a value and (4) the number of relation records, that point to it for a
certain role that he plays, is within the multiplicity range specified for that role.

An attribute record is well-formed if it has a value of the correct type. The
relation store is well-formed if all its records are well-formed. A relation record
is well-formed if its references point to entities. Finally the this-reference is well-
formed if it points to an entity. We assume a well-formed entity and relation
stores for evaluation.

Evaluation rules All the evaluation rules have a specific form: they operate on
bags. Expressions can return any number of values, modeling this with bags is a
natural choice. A nice example of this is the rule for binary operations (BinOp).
The left and right expressions evaluate to a bag of values, the Cartesian product
of these bags is taken and on each pair of values the operator is applied. For
single values a normal computation is performed, for maybe values a maybe com-
putation and for many values a Cartesian product computation. Most evaluation
rules follow this pattern.

Aggregation operations are defined for at least a single value (Aggr) and for
empty lists there is predefined behaviour (Aggr2 and Sum). Choice returns

Unifying and Generalizing Relations 257

∀(ref → astore) ∈ Σ : 	 (ref → astore)

	 Σ
[EntityStore]

ref : t
∀(a → v) ∈ astore : ref 	 (a → v)
∀(a → p, [1, 1],_) ∈ At : astore(a) = _
∀(r → _,_) ∈ Rt : Δ(t, ref, r) = _
∀(i → t2, r2, nil) ∈ Ir :(|{v | Δ(t2,_, r2) = v}| = m Rt2(r2) = (_, [l, u]) l ≤ m ≤ u

)

	 (ref → astore)
[EntityRecord]

e : t At(a) = (ta,_,_) v : ta

e 	 a → v
[AttrRecord]

∀(t v1 r → v2) ∈ Δ : 	 (t v1 r → v2)

	 Δ
[RelationStore]

v1 : t Σ(v1) = _ Rt(r) = (t2,_) v2 : t2 Σ(v2) = _

	 t v1 r → v2
[RelationRecord]

Σ(θ) = _

	 θ
[ThisReference]

Fig. 16. Store well-formedness

c is constant

c ⇓ {| c |}
[Const]

θ 	 this ⇓ {| θ |}
[This]

⊕ ∈ {+,−, ∗,&&, ||,>,
>=, <,<=,==, !=}

e1 ⇓ V1 e2 ⇓ V2

e1 ⊕ e2 ⇓ {| v1 ⊕ v2 |
v1 ∈ V1, v2 ∈ V2 |}

[BinOp]

e1 ⇓ V1 e2 ⇓ V2 ⊕ ∈ {/,%}
e1 ⊕ e2 ⇓ {| v1 ⊕ v2 | v2 != 0,

v1 ∈ V1, v2 ∈ V2 |}
[Div]

e ⇓ V

! e ⇓ {| ¬ v | v ∈ V |}
[Not]

e1 ⇓ V1 e2 ⇓ V2 e3 ⇓ V3

e1 ? e2 : e3 ⇓ {| v1 ? v2 : v3 | v1 ∈ V1,
v2 ∈ V2, v3 ∈ V3 |}

[Cond]

f ∈ {avg,min,max, conj, disj, sum}
e ⇓ V |V | ≥ 1

f(e) ⇓ {| f(V) |}
[Aggr]

f ∈ {avg,min,max, conj, disj}
e ⇓ ∅
f(e) ⇓ ∅

[Aggr2]

e ⇓ ∅
sum(e) ⇓ {| 0 |}

[Sum]

e ⇓ V

count(e) ⇓ {| |V | |}
[Count]

e1 ⇓ V1 e2 ⇓ V2

e1 <+ e2 ⇓ (V1 != ∅) ? V1 : V2

[Choice]

e1 ⇓ V1 e2 ⇓ V2

e1 ++ e2 ⇓ V1 ∪ V2

[Concat]

e ⇓ V e : t At(a) = (_,_, nil)

Σ 	 e . a ⇓ {| Σ(v)(a) | v ∈ V |}
[Attr]

e ⇓ V e : t At(a) = (_,_, e2)
V2 = {| v2 | (θ′ 	 e2 ⇓ {v2}), θ′ ∈ V |}
e . a ⇓ V2

[At2]

e ⇓ V e : t

Δ 	 e . r ⇓ {| Δ(t, v, r) | v ∈ V |}
[RoleNav]

e ⇓ V e : t It(i) = (t, r, nil)
V2 ={| v2 | Δ(t, v2, r) = v, v ∈ V |}
Δ 	 e . i ⇓ V2

[InvNav]

p = (E, x) θ′ = ⊥
Σ,Δ, θ′ 	 x ⇓ v

Σ,Δ 	 p ⇓ v
[Program]

Fig. 17. Evaluation rules (Big Step SOS). "{| |}" is bag notation [5]

258 D. Harkes and E. Visser

the value of the left expression, if it has at least one value, otherwise the value of
the right expression. Concat combines all values, regardless of how many there
are. Attributes can either be normal or have a derivation expression. For normal
attributes a lookup is done in the attribute map of each entity passed into the
expression (Attr). The lookup of unset attributes fails, but these are filtered
out. Derivations behave like a method call without arguments (At2). Navigation
works differently for navigating through a role or through an inverse. Navigating
by role does a simple map lookup for each value (RoleNav). Navigating by
inverse does a reverse map lookup on the role it is the inverse of (InvNav).
Finally the program executes the main expression with the stores.

7 Related Work

Our work builds on research in different fields: language constructs for relations,
navigating and querying relations and multiplicities. Specific differences with our
work are highlighted per article.

Languages with first-class relations. The Rumer language by Balzer has first-
class relations [2,3]. It features first-class relations with named roles and queries.
Rumer provides reactive queries as well as imperative code. It has cardinalities
specified in constraints and implements binary relationships. Our approach dif-
fers in the fact that our modeling language does not support imperative code,
multiplicities are part of the type system and we implement relations of all de-
grees.

Classages is a language that also features relations [12]. Classages is targeted
at modelling the interactions and interaction life span between objects. It fea-
tures static and dynamic relations, bidirectional relations and multiplicities. Our
approach has in common that it has bidirectional relations but we are focused
on modeling data instead of interactions.

Pearce and Noble extended Java with first-class relationships using aspects
[17]. Relations are modeled as external tuples and objects are agnostic to re-
lations they are in. Their approach to behavioural changes of objects based on
their relations should be implemented by aspects, externally. Our approach is the
opposite, entities know what relations they participate in. This allows specifying
relation dependent behaviour in derivations.

RelJ is first-class relationship extension to Java by Biermann and Wren [4,22].
In their approach they support relationships as first-class citizens. The relations
are also modeled as tuples, where the roles have a position in the tuple but no
name. In our approach the roles are named and unordered; allowing navigation
based on roles. Their relations are binary and one-directional. In the techni-
cal report they also sketch an extension with named roles [4]. In this sketched
extension relations can have any arity and support bidirectional navigation.

Nelson implemented first-class relationships in Java [15]. This is a library and
not a language extension. Mutable sets of tuples are used as first-class constructs
to model relations. Without specific language constructs this approach does not

Unifying and Generalizing Relations 259

supply additional semantics for relations and thus cannot provide additional
static type checking.
Languages with non first-class relations. In 1987 Rumbaugh was the first to add
relations to a language [18]. His approach is pre-processor based and dynamic.
It does not have relations as first-class citizens.

In 1991 a relationship mechanism for a Strongly Typed Object-Oriented
Database Programming language introduced statically typed relations as part of
a language [1]. The paper explains the data model definition and transactions.
It does however not explain in detail how querying or navigation is done.

WebDSL introduced inverse properties which inspired the inverses [20]. Refer
to Section 3 for details.
Queries of relations in object-oriented languages. The Java Query Language
(JQL) adds queries to Java [21]. There is no additional support for relations, so
navigation uses value-based joins like in SQL. LINQ also uses value-based joins
[13]. These approaches are in the left column of the design space (Section 3). In
contrast, our navigation is based on the role names of relations.

Multiplicities in programming languages. In Content over Container: Object-
Oriented Programming with multiplcities Steimann adds multiplicity annota-
tions to Java in order to remove the Collection containers [19]. Refer to Section
2 for details.

Finally the ideas for this paper were presented in the ACM Student Research
Competition [8]. The design space analysis and formal semantics of the language
are new to this paper. Also the syntax changed as a result of the design-space
analysis.

8 Conclusion
Unification and generalization of relations led to a new data modeling and nav-
igation language. This goes hand in hand with native multiplicities. Both the
relations aspect and the native multiplicities aspect lead to more a more con-
cise definition and navigation of relationships; removing maintenance of reference
consistency, removing collection classes and providing single identifier navigation
by inverses and shortcuts.
Future work. We would like to add more aspects orthogonally to the type system.
Our first candidates are ordered/unordered and unique/duplicates. It is worth
exploring how well different aspects can be modelled orthogonally in a type
system.

Also we would like to extend our language to provide type-and-multiplicity-
safe operations on data. Adding or removing entities and relations might in-
validate the multiplicity constraints on relations. We would like to catch these
potential errors by static analysis and indicate to the programmer that he should
catch that situation. The goal is to make sure that multiplicity-safe operations
will never trigger runtime errors because a multiplicity constraint for a relation
is violated. We would like to explore if we can ensure correct multiplicities at
runtime statically.

260 D. Harkes and E. Visser

References

1. Albano, A., Ghelli, G., Orsini, R.: A relationship mechanism for a strongly typed
object-oriented database programming language. In: VLDB, pp. 565–575 (1991)

2. Balzer, S.: Rumer: a Programming Language and Modular Verification Technique
Based on Relationships. Ph.D. thesis, ETH, Zürich (2011)

3. Balzer, S., Gross, T.R., Eugster, P.T.: A relational model of object collaborations
and its use in reasoning about relationships. In: Ernst, E. (ed.) ECOOP 2007.
LNCS, vol. 4609, pp. 323–346. Springer, Heidelberg (2007)

4. Bierman, G., Wren, A.: First-class relationships in an object-oriented language. In:
Gao, X.-X. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 262–286. Springer, Heidelberg
(2005)

5. Buneman, P., Libkin, L., Suciu, D., Tannen, V., Wong, L.: Comprehension syntax.
SIGMOD 23(1), 87–96 (1994)

6. Chen, P.P.: The entity-relationship model - toward a unified view of data.
Tods 1(1), 9–36 (1976)

7. Halpin, T.: Object-role modeling (orm/niam). In: Handbook on architectures of
information systems, pp. 81–103. Springer (2006)

8. Harkes, D.: Relations: a first class relationship and first class derivations program-
ming language. In: AOSD, pp. 9–10 (2014)

9. Hemel, Z., Groenewegen, D.M., Kats, L.C.L., Visser, E.: Static consistency check-
ing of web applications with WebDSL. JSC 46(2), 150–182 (2011)

10. Jacobson, I., Booch, G., Rumbaugh, J.E.: The unified software development process
- the complete guide to the unified process from the original designers. Addison-
Wesley object technology series. Addison-Wesley (1999)

11. Kats, L.C.L., Visser, E.: The Spoofax language workbench: rules for declarative
specification of languages and IDEs. In: OOPSLA, pp. 444–463 (2010)

12. Liu, Y.D., Smith, S.F.: Interaction-based programming with classages. In: OOP-
SLA. pp. 191–209 (2005)

13. Meijer, E., Beckman, B., Bierman, G.M.: Linq: reconciling object, relations and
xml in the .net framework. In: Sigmod, p. 706 (2006)

14. Mosses, P.D., New, M.J.: Implicit propagation in structural operational semantics.
ENTCS 229(4), 49–66 (2009)

15. Stephen, Nelson, J.N., Pearce, D.J.: Implementing first-class relationships in java.
Proceedings of RAOOL 8 (2008)

16. Noble, J.: Basic relationship patterns. Pattern Languages of Program Design 4
(1997)

17. Pearce, D.J., Noble, J.: Relationship aspects. In: AOSD, pp. 75–86 (2006)
18. Rumbaugh, J.E.: Relations as semantic constructs in an object-oriented language.

In: OOPSLA, pp. 466–481 (1987)
19. Steimann, F.: Content over container: object-oriented programming with multi-

plicities. In: OOPSLA, pp. 173–186 (2013)
20. Visser, E.: WebDSL: A case study in domain-specific language engineering. In:

GTTSE, pp. 291–373 (2007)
21. Willis, D., Pearce, D.J., Boyland, J.: Efficient object querying for java. In: Thomas,

D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 28–49. Springer, Heidelberg (2006)
22. Wren, A.: Relationships for object-oriented programming languages. University

of Cambridge, Computer Laboratory, Technical Report 702(UCAM-CL-TR-702)
(November 2007)

Simple, Efficient, Sound and Complete

Combinator Parsing for All Context-Free
Grammars, Using an Oracle

Tom Ridge

University of Leicester, Leicester, UK

Abstract. Parsers for context-free grammars can be implemented
directly and naturally in a functional style known as “combinator pars-
ing”, using recursion following the structure of the grammar rules. Tra-
ditionally parser combinators have struggled to handle all features of
context-free grammars, such as left recursion.

Previous work introduced novel parser combinators that could be used
to parse all context-free grammars. A parser generator built using these
combinators was proved both sound and complete in the HOL4 theorem
prover. Unfortunately the performance was not as good as other parsing
methods such as Earley parsing.

In this paper, we build on this previous work, and combine it in novel
ways with existing parsing techniques such as Earley parsing. The result
is a sound-and-complete combinator parsing library that can handle all
context-free grammars, and has good performance.

1 Introduction

In previous work [13] the current author introduced novel parser combinators
that could be used to parse all context-free grammars. For example, a parser for
the grammar E -> E E E | "1" | ε can be written in OCaml as:

let rec parse_E = (fun i -> mkparser "E" (

(parse_E **> parse_E **> parse_E) ||| (a "1") ||| eps) i)

In [4] Barthwal and Norrish discuss this work:

[Ridge] presents a verified parser for all possible context-free grammars,
using an admirably simple algorithm. The drawback is that, as presented,
the algorithm is of complexity O(n5).

Existing techniques such as Earley parsing [5] take time O(n3) in the length of
the input in the worst case. Therefore, as far as performance is concerned, [13]
is not competitive with such techniques. In this work, we seek to address these
performance problems. We have three main goals for our parsing library.

B. Combemale et al. (Eds.): SLE 2014, LNCS 8706, pp. 261–281, 2014.
c© Springer International Publishing Switzerland 2014

262 T. Ridge

– The library should provide an interface based on parser combinators.

– The library should handle all context-free grammars.

– The library should have “good” performance.

The challenge is to improve on our previous work by providing Earley-like
performance: O(n3) in the worst case but typically much better on common
classes of grammar. Our main contribution is to show how to combine a combi-
nator parsing interface with an efficient general parsing algorithm such as Earley
parsing. We list further contributions in Section 11. We now briefly outline our
new approach, and then give an overview of the rest of the paper.

Consider the problem of parsing an input string s, given a grammar Γ (a finite
set of rules) and a nonterminal start symbol S. In general, we will work with
substrings si,j of the input s between a low index i and a high index j, where
i ≤ j. In symbols we might write the parsing problem as Γ � S →∗ si,j . Suppose
the grammar contains the rule S → A B. Then one way to derive Γ � S →∗ si,j
is to derive Γ � A →∗ si,k and Γ � B →∗ sk,j :

Γ � A →∗ si,k Γ � B →∗ sk,j

Γ � S →∗ si,j
(S → A B) ∈ Γ

This rule resembles the well-known Cut rule of logic, in that it introduces an un-
known k in the search for a derivation. The problem is that there is no immediate
way to determine the possible values of k when working from the conclusion of
the rule to the premises. Put another way, a top-down parse of the substring
si,j must divide the substring into two substrings si,k and sk,j , but there is no
information available to determine the possible values of k. Attempting to parse
for all k such that i ≤ k ≤ j results in poor real-world performance.

The traditional combinator parsing solution is to parse prefixes of the sub-
string si,j . Since si,j is trivially a prefix of itself, a solution to this more general
problem furnishes a solution to the original. Moreover, this approach gives possi-
ble candidates for the value k: We first attempt to find all parses for nonterminal
A for prefixes of input si,j ; the results will be derivations for si,k where k ≤ j.
We can then attempt to parse nonterminal B for prefixes of sk,j , since possible
values of k are now known.

We propose a different solution: assume the existence of an oracle that can
provide the unknown values of k. As we show later, this allows one to solve the
problem of parsing context-free grammars using combinator parsing. However,
in the real world we must also provide some means to construct the oracle. Our
answer is simple: use some other parsing technique, preferably one that has good
performance. In this work we use Earley parsing, but any other general parsing
technique would suffice.

There are several technical problems that must be addressed. For exam-
ple, to handle arbitrary grammars, including features such as left-recursion, we
adapt the notion of parsing contexts originally introduced in [13]. A central new
challenge is to reconcile the implementation of Earley parsing with that of

Simple, Efficient, Sound and Complete Combinator Parsing 263

combinator parsers. For example, consider the following parser1 for the grammar
E -> E E E | "1" | ε.

let rec parse E = (fun i → mkntparser "E" (
((parse E ⊗ parse E ⊗ parse E) � (fun (x, (y, z)) → x+ y+ z))
⊕ (a1 � (fun → 1)) ⊕ (eps � (fun → 0))) i)

This parser uses parsing actions to count the length of the parsed input. The
parsing code implicitly embodies the grammar. However, implementations of
Earley parsing require explicit representations of the grammar, such as:

let g = [("E", [NT "E";NT "E";NT "E"]); ("E", [TM "1"]); ("E", [TM "eps"])]

In this representation of the grammar (a finite set of rules, here represented
using a list), rules are pairs, where the left-hand side is a nonterminal (identified
by a string) and the right-hand side is a list of symbols, either nonterminal
symbols such as NT "E" or terminal symbols such as TM "eps".

Our solution to this challenge requires interpreting the parsing combina-
tors in three different ways. The first interpretation embeds a symbol with a
given parser. With this we can define a function sym of parser which takes
a parser as an argument and returns the associated symbol. For example,
sym of parser parse E evaluates to NT "E". The second interpretation builds
on the first to associate a concrete representation of the grammar with each
parser. With this we can define a function grammar of parser which takes a
parser as an argument and returns the associated grammar. For example, eval-
uating grammar of parser parse E returns a record with a field whose value is
the following2:

[("(E*E)", Seq (NT "E", NT "E")); ("(E*(E*E))", Seq (NT "E", NT "(E*E)"));
("((E*(E*E))+1)", Alt (NT "(E*(E*E))", TM "1"));
("(((E*(E*E))+1)+eps)",Alt(NT "((E*(E*E))+1)",TM "eps"));
("E", Atom (NT "(((E*(E*E))+1)+eps)"))]

This is a binarized version of the previous grammar. Note that nonterminals
now have unusual names, such as (E*E). Right-hand sides are either atoms,
binary sequences (of symbols, not nonterminals cf. Chomsky Normal Form), or
binary alternatives. The function grammar of parser allows us to inspect the
structure of the parser, in order to extract a grammar, which can then be fed
to an Earley parser. The Earley parser takes the grammar, and a start symbol,
and parses the input string s. The output from the Earley parsing phase can be
thought of as a list of Earley productions of the form (X → α.β, i, j, l). Here X

1 In the following sections we have lightly typeset the OCaml code. The sequencing
combinator ***> is written ⊗ and associates to the right; the alternative combinator
|||| is written ⊕; and the action function >>>> is written �. The notation s.[i]
denotes the i th character of the string s. Records with named fields are written e.g.
〈f1 = v1; f2 = v2〉. Functional record update is written 〈r with f1 = v1; f2 = v2〉.
Otherwise the OCaml syntax we use should be readily understandable by anyone
familiar with functional programming.

2 A second field records the terminal parsers that are used, such as a1 and eps.

264 T. Ridge

is a nonterminal, α and β are sequences of symbols (β is non-empty), and i, j, l
are integers. The meaning of such a production is that there is a rule X → α β
in the grammar such that the substring si,j could be parsed as the sequence
α, and moreover the substring sj,l could be parsed as the sequence β. These
productions can be used to construct an oracle.

The oracle is designed to answer the following question: given a grammar Γ ,
a rule S → A B in Γ , and a substring si,j , what are the possible values of k such
that Γ � A →∗ si,k and Γ � B →∗ sk,j? To determine the values of k we look
for Earley productions of the form (S → A.B, i, k, j). Such a production says
exactly that the substring si,j could be parsed as the sequence A B and that
si,k could be parsed as A and sk,j could be parsed as B.

The third interpretation of the parsing combinators follows the traditional
interpretation, except that we do not parse prefixes, but instead we use the
oracle to determine where to split the input string during a parse. In fact, all
necessary parsing information has already been deduced from the input s during
the Earley phase, so this phase degenerates into using the oracle to apply parsing
actions appropriately, in the familiar top-down recursive manner. During this
phase we make use of a parsing context to handle features such as left recursion,
and memoization for efficiency.

In outline, our algorithm cleanly decomposes into 3 phases. Given a parser p
and an input string s we perform the following steps.

1. Extract grammar Γ and start symbol S from the parser p and feed Γ, S and
s to the Earley parser, which performs a traditional Earley parse.

2. Take the Earley productions that result and construct the oracle.

3. Use the oracle to guide the action phase.

Earley parsing is theoretically efficient O(n3) and performs well in practice.
The construction of the oracle involves processing the Earley productions, which
have the same bound as the Earley parser itself, O(n3). Parsing actions involve
arbitrary user-supplied code, so it is not possible to give an a priori bound on
the time taken during the action phase, however, in Section 9 we argue that
the performance of this stage is close to optimal. Thus, we argue that our ap-
proach overall results in close-to-optimal (i.e. “good”) asymptotic performance.
In Section 9 we also provide real-world evidence to support these claims.

In this paper we present a version of our code, called mini-P3, that focuses
on clarity for expository purposes, whilst preserving all important features. The
full P3 code follows exactly the structure we outline here with only minor differ-
ences3. Our implementation language is a small subset of OCaml, essentially the
simply-typed lambda calculus with integers, strings, recursive functions, records
and datatypes. Apart from memoization, the code is purely functional. It should
be very easy to re-implement our approach in other functional languages such
as Haskell, Scheme and F�. The full code for mini-P3 and P3 can be found in
the online resources at http://www.tom-ridge.com/p3.html.

3 Footnotes describe how mini-P3 differs from P3.

http://www.tom-ridge.com/p3.html

Simple, Efficient, Sound and Complete Combinator Parsing 265

The structure of the rest of the paper is as follows. In Section 2 we give two
key examples, and discuss some common misunderstandings concerning our ap-
proach. In Section 3 we introduce the basic types such as those for substrings
and grammars, and discuss the types related to the parser combinators. The
subsequent sections modularly introduce different aspects of our approach. We
start by defining the sequencing and alternative combinators in Section 4. In
Section 5 we introduce our running example, which we develop further in Sec-
tion 7. In Section 6 we describe the Earley parsing phase and the construction
of the oracle. In Section 8 we discuss the role of parsing context and the use
of memoization to make the action phase efficient. In Section 9 we report on
various experiments to measure performance. In Section 10 we discuss related
work, and in Section 11 we conclude.

An extended version of this paper appears in the online resources. This in-
cludes further sections discussing motivation, mathematical preliminaries, fur-
ther examples, parsing context, memoization and soundness and completeness.
For space reasons this material cannot be included here.

2 Example

We introduce some example parsers to illustrate our approach, and clarify as-
pects of our approach that are commonly misunderstood. An efficient parser for
the grammar E -> E E E | "1" | ε is:

let tbl = Hashtbl.create 0
let rec parse E = (fun i → memo p3 tbl (mkntparser "E" (
((parse E ⊗ parse E ⊗ parse E) � (fun (x, (y, z)) → NODE(x, y, z)))
⊕ (a1 � (fun → LEAF(1))) ⊕ (eps � (fun → LEAF(0))))) i)

Our approach is complete in that it returns all “good”4 parse trees. There are an
exponential number of such parse trees. For example, for input length 19, there
are more than 4 ∗ 1017 parse trees, but as with most exponential behaviours it
is not feasible to actually compute all these parse trees. The following parser
is identical except that, rather than returning parse trees, it computes (in all
possible ways) the length of the input parsed:

let tbl = Hashtbl.create 0
let rec parse E = (fun i → memo p3 tbl (mkntparser "E" (
((parse E ⊗ parse E ⊗ parse E) � (fun (x, (y, z)) → x+ y+ z))
⊕ (a1 � (fun → 1)) ⊕ (eps � (fun → 0)))) i)

Naively we might expect that this also exhibits exponential behaviour, since
presumably the parse trees must all be generated, and the actions applied. This
expectation is wrong. Running this example parser on an input of size 19 returns
in 0.02 seconds with a single result 19. For an input of size 100, this parser
returns a single result 100 in 5 seconds, and over a range of inputs this parser
exhibits polynomial behaviour rather than exponential behaviour. As far as we

4 The notion of “good” parse tree is defined in [13].

266 T. Ridge

type (α, β) fmap = (α × β) list type substring = SS of string × int × int
type term = string type nonterm = string type symbol = NT of nonterm | TM of term

type rhs = Atom of symbol | Seq of symbol × symbol | Alt of symbol × symbol
type parse rule = nonterm × rhs type grammar = parse rule list

type raw parser = substring → substring list
type ty oracle = (symbol × symbol) → substring → int list
type local context = LC of (nonterm × substring) list

let empty fmap = [] let empty context = (LC [])
let empty oracle = (fun (sym1, sym2) → fun ss → [])

Fig. 1. Basic types and trivial values

are aware, no other parser can handle such examples. To make such examples
possible requires: careful engineering of the backend parser (here based on Earley
parsing) so that it is O(n3) in the length of the input; a compact representation
of parse results (using an oracle) that does not require more than O(n3) time to
construct; a semantically-meaningful notion of action when there are an infinite
number of possible parse trees (handled by the parsing context); careful use of
the oracle to guide the action phase; and memoization during the action phase
so that exponentially many possible actions are reduced to a polynomial number
of actual actions. The code above combines all of these aspects whilst presenting
a standard combinator-parsing interface to the programmer. In the rest of the
paper we discuss the techniques and careful engineering that make this possible.

3 Types

Basic Types. In Fig. 1 we give types for finite maps (represented by association
lists), substrings, terminals, nonterminals, symbols, the right-hand sides of parse
rules, parse rules, and grammars. Note that the rhs type permits only unary rules
(e.g. E -> F) and binary rules (e.g. sequences E -> A B or alternatives E -> A

| B). This is a restriction on the internal representation of the rules and not on
the user of the library.

Raw parsers capture the set of substrings associated to a given terminal. They
can be more-or-less arbitrary OCaml code5. Given a substring SS(s, i, j), a raw
parser returns a list of substrings SS(s, i, k) indicating that the prefix SS(s, i, k)
could be parsed as the corresponding terminal. For example, the raw parser
raw a1 consumes a single 1 character from the input:

let raw a1 (SS(s, i, j)) = (if i < j && s.[i] = ′1′ then [SS(s, i, i+ 1)] else [])

5 A raw parser should behave as a pure function, and should return prefixes of its
argument. For a fully formal treatment of the parsers associated with terminals
see [13].

Simple, Efficient, Sound and Complete Combinator Parsing 267

type (α, β, γ) sum3 = Inl of α | Inm of β | Inr of γ
type inl = unit type outl = symbol

type mid = 〈 rules : parse rule list; tmparsers : (term, raw parser) fmap 〉
type inm = mid type outm = mid

type inr = 〈 ss : substring; lc : local context; oracle : ty oracle 〉
type α outr = α list

type input = (inl, inm, inr) sum3 type α output = (outl, outm, α outr) sum3
type α parser3 = (input → α output)

let empty mid = 〈rules = []; tmparsers = empty fmap〉

Fig. 2. Parser types and trivial values

The oracle type captures the idea that an oracle takes two symbols sym1, sym2,
and a substring SS(s, i, j), and returns those integers k such that SS(s, i, k) can
be parsed as sym1, and SS(s, k, j) can be parsed as sym2. Finally, the type
local context represents the parsing context, see Section 8.

Parser Types. The types related to parsers are given in Fig. 2. In our approach,
a parser should be viewed as a collection of three separate functions6. We first
discuss the sum3 type, and the function sum3 which converts three separate
functions to a single function, and the function unsum3 which converts a single
function of the appropriate form to three separate functions. Following this, we
discuss the particular instances of the sum3 type that we use for our parsers.

The sum3 Type. The sum3 type generalizes the familiar binary sum to three
components. Given three functions of type α → δ, β → ε and γ → ζ, we can
form a composite function of type (α, β, γ) sum3 → (δ, ε, ζ) sum3. We can define
this composite function explicitly, and moreover define an inverse:

let dest inl (Inl x) = x . . .

let sum3 (f, g, h) = (fun i → match i with
| Inl l → Inl(f l) | Inm m → Inm(g m) | Inr r → Inr(h r))

let unsum3 u = (
let f = (fun x → dest inl (u (Inl x))) in
let g = (fun x → dest inm (u (Inm x))) in
let h = (fun x → dest inr (u (Inr x))) in
(f, g, h))

We use the functions sum3 and unsum3 extensively when defining the parser
combinators. In particular, as a function from inputs to outputs, a parser satisfies

6 This implementation of the combinators is just one of those we have experimented
with, and alternatives are certainly possible.

268 T. Ridge

the extra conditions (not explicit in the type): given an argument of the form
Inl x, the parser produces a result of the form Inl x’, and similarly for Inm and
Inr. Parsers p of type input → α output should be thought of as the sum of three
functions, i.e. p = sum3 (f, g, h).

Left Component, Extracting a Symbol from a Parser. The left component
of a parser consists of a function of type inl → outl, that is, from unit to symbol.
If parse E is a parser for the nonterminal E, then the expression parse E (Inl ())
should evaluate to Inl (NT "E"). We define the following auxiliary function:

let sym of parser p = (dest inl (p (Inl ())))

Middle Component, Extracting a Grammar from a Parser. The middle
component of a parser consists of a function of type inm → outm, where inm
and outm are both equal to type mid. The middle component of a parser is
therefore of type mid → mid. The mid type represents the grammar associated
with a parser. The middle component of a parser such as parse E is a grammar
transformer, that takes a grammar and extends it with extra rules. The type
mid is a record type with two fields. The first is a list of parse rules. The second
is a finite map from terminals to raw parsers. If parse E is a parser for the
nonterminal E, then the expression parse E (Inm m) will evaluate to a value of
the form Inm m’, where m’ is m augmented with rules for the nonterminal E
(and all nonterminals reachable from E), and the terminal parsers involved in
the definition of parse E (and all terminal parsers involved in the definition of
nonterminals reachable from E). We can then define grammar of parser:

let grammar of parser p = (dest inm (p (Inm empty mid)))

Right Component, Recursive Descent Parser. The right component is
a function of type inr → α outr, where α outr = α list. This resembles the
traditional type of a combinator parser: a function from a string to a list of
possible values. We work with substrings rather than strings, so an input i of
type inr contains a component i.ss of type substring. Two additional fields are
present: i.oracle is an oracle that indicates how to split the input when parsing a
sequence of symbols, and i.lc is a parsing context that allows combinator parsers
to handle all context-free grammars. We discuss these additional fields further
in the following sections. The output type α outr is simply a list of values at an
arbitrary type α.

4 Parsing Combinators

In the previous section we discussed the α parser3 type and related types. In this
section we give the definition of the sequencing combinator p1 ⊗ p2. The defi-
nition of the alternative combinator p1 ⊕ p2 follows the sequencing combinator
mutatis mutandis. The following section illustrates the use of these combinators
on a simple example.

Consider the left component of the sequencing combinator. This takes two
parsers p1 and p2 and produces the left component (a function from unit to
symbol) of the parser p1 ⊗ p2:

Simple, Efficient, Sound and Complete Combinator Parsing 269

let seql p1 p2 = (fun () → let (f1, ,) = unsum3 p1 in
let (f2, ,) = unsum3 p2 in let rhs = Seq(f1 (), f2 ()) in mk symbol rhs)

The left component is a function from unit argument () to a symbol represent-
ing the sequential combination of the two underlying parsers. We use the auxil-
iary function mk symbol to generate new symbols for possible right hand sides.
These new symbols are always nonterminals. The requirement on mk symbol
is simply that it should be injective on its argument: if mk symbol rhs’ =
mk symbol rhs then rhs’ = rhs7. For example, with the current implementation,
evaluating mk symbol (Seq(NT "E",NT "E")) returns (NT "(E*E)")8.

The middle component for the combination p1 ⊗ p2, of type mid → mid,
transforms a list of rules by adding a new rule representing the sequencing of p1
and p2. It should also call the underlying parsers so that they in turn add their
rules.

let seqm p1 p2 = (fun m → let NT nt = seql p1 p2 () in
if List.mem nt (List.map fst m.rules) then m else (
let (f1, g1,) = unsum3 p1 in
let (f2, g2,) = unsum3 p2 in
let new rule = (nt, Seq(f1 (), f2 ())) in
let m1 = 〈 m with rules = (new rule :: m.rules) 〉 in
let m2 = g1 m1 in let m3 = g2 m2 in m3))

Note that the code first checks whether the nonterminal nt corresponding to
p1 ⊗ p2 is already present in the rules. If so, this nonterminal has already been
processed, and there is no need to continue further. This check also prevents non-
termination of seqm when dealing with recursive grammars. If the nonterminal
is not present, then the new rule is constructed, added to the list of rules, and
then the middle components g1 and g2 of the parsers p1 and p2 are invoked in
turn, to add their rules.

The right component of the sequencing combinator takes two parsers p1 of
type α parser3, and p2 of type β parser3, and produces the right component of
the parser p1 ⊗ p2, of type inr → (α × β) outr.

7 Related to this is the requirement that users do not annotate two different parsers
with the same nonterminal; the following must be avoided:

let rec parse E = (fun i → mkntparser "E" . . . i)
and parse F = (fun i → mkntparser "E" . . . i)

There seems no way to enforce this constraint using types. An alternative is to use
a gensym-like technique to construct arguments to mkntparser automatically. This
ensures uniqueness of names, but requires non-purely-functional techniques.

8 Generated names should not clash with user names. The traditional solution is to
incorporate a “forbidden” character, not available to users, into generated names. A
better approach would use a more structured datatype than strings for the names
of nonterminals. For simplicity, we stick with strings and assume the user does not
use symbols such as * in the names of nonterminals.

270 T. Ridge

let seqr p1 p2 = (fun i0 →
let sym1 = sym of parser p1 in let sym2 = sym of parser p2 in
let ks = i0.oracle (sym1, sym2) i0.ss in
let SS(s, i, j) = i0.ss in
let f1 k = (
let rs1 = dest inr (p1 (Inr 〈 i0 with ss = (SS(s, i, k)) 〉)) in
let rs2 = dest inr (p2 (Inr 〈 i0 with ss = (SS(s, k, j)) 〉)) in
list product rs1 rs2) in

List.concat (List.map f1 ks))

The function seqr first determines the symbols sym1 and sym2 corresponding
to the two underlying parsers. It then calls the oracle with the appropriate sym-
bols and substring i0.ss = SS(s, i, j). The resulting values for k are bound to
the variable ks. For each of these values k, parser p1 is called on the substring
SS(s, i, k) and p2 is called on the substring SS(s, k, j). The results are combined
using the library functions list product (which takes two lists and forms a list
of pairs) and List.concat. The corresponding right component altr for the alter-
native combinator is much simpler: as with traditional combinator parsers, the
results of the parsers p1 and p2 are simply appended.

We can now define the sequential combination p1 ⊗ p2. This uses seql, seqm
and seqr to construct a new parser of type (α × β) parser3 from a parser p1 of
type α parser3 and a parser p2 of type β parser3.

let p1 ⊗ p2 = (fun i0 → let f = seql p1 p2 in
let g = seqm p1 p2 in let h = seqr p1 p2 in sum3 (f, g, h) i0)

The alternative combination p1 ⊕ p2 is identical, except that seql becomes
altl and so on. We also define the “semantic action” function, which takes a
parser p of type α parser3 and a function f from α to β and returns a parser
of type β parser3, by mapping the function f over the list of values in the right
component. Apart from the fact that we now have three components to deal
with, this is the approach taken by traditional parser combinators.

let p � f = (fun i → match i with | Inl → (Inl (dest inl (p i)))
| Inm → (Inm (dest inm (p i))) | Inr → (Inr (List.map f (dest inr (p i)))))

Finally, we turn to the auxiliary function mkntparser. This function allows the
user to introduce concrete names for nonterminals, to label the corresponding
code for parsers: let parse E = (fun i → mkntparser "E" . . . i). At this stage,
we introduce a version of mkntparser that does not deal with context. In Section
8 we add the ability to handle context.

let mkntparser’ nt p = (fun i → match i with
| Inl () → Inl (NT nt)
| Inm m → (if List.mem nt (List.map fst m.rules) then Inm m else (

let sym = sym of parser p in
let new rule = (nt,Atom sym) in
p (Inm 〈 m with rules = (new rule :: m.rules) 〉)))

| Inr r → (let Inr rs = p i in Inr (unique rs)))

Simple, Efficient, Sound and Complete Combinator Parsing 271

For the left component, mkntparser’ simply returns a symbol NT nt corre-
sponding to the user supplied label nt. For the middle component, the parser
p has a corresponding symbol sym. In terms of the grammar, we should add a
new rule nt → sym. Thus, when passed an argument Inm m we add this new
rule before recursively invoking the underlying parser p. The right component is
unchanged except that as an optimization we return only unique results.

As well as mkntparser’, we have an auxiliary function mktmparser whose pur-
pose is similar: to introduce concrete names for terminals. This is necessary be-
cause the middle component m, as well as accumulating the grammar rules in the
field m.rules, also accumulates named terminal parsers in the field m.tmparsers.

5 Example

We can now define an example parser. At this stage, we have no way to con-
struct an oracle automatically, so we will hand-code this aspect of the parser. In
addition, we have not dealt with the parsing context, so we will not be able to
handle grammars such as E -> E E E | "1" | ε. We will make use of the raw
parser raw a1 from Section 3. First, we define our terminal parser:

let a1 = mktmparser "1" raw a1

A parser for the grammar E -> E E E | "1", where the actions count the num-
ber of 1s, is:

let rec parse E = (fun i → mkntparser’ "E" (
((parse E ⊗ parse E ⊗ parse E) � (fun (x, (y, z)) → x+ y+ z))
⊕ (a1 � (fun → 1))) i)

In order to run our parser on some input, we need to supply an oracle. At this
point, we simply hand-code the oracle. The role of the oracle is to determine,
given two symbols sym1, sym2, where to cut an input substring SS(s, i, j) into
two pieces SS(s, i, k) and SS(s, k, j), so that the first can be parsed as sym1 and
the second can be parsed as sym2.

let oracle = (fun (sym1, sym2) → fun (SS(s, i, j)) → . . .)

For parse E there are two uses of the sequencing combinator: one correspond-
ing to the expression parse E ⊗ parse E, and one to the first occurence in the
expression parse E ⊗ (parse E ⊗ parse E)9. The two nonterminals that can oc-
cur as arguments to the sequencing combinator are E (corresponding to inputs
which are non-empty sequences of the character 1) and (E*E) (corresponding to
sequences of length at least two). We introduce an auxiliary function upto’ such
that upto’ i j = [i+ 1; . . . ; j− 1] and code the oracle as:

let oracle = (fun (sym1, sym2) → fun (SS(s, i, j)) → match (sym1, sym2) with
| (NT "E",NT("(E*E)")) → (upto’ i (j− 1))
| (NT "E",NT("E")) → (upto’ i j))

We can then run a parser on an input, assuming the existence of the oracle:

9 Recall that the sequencing combinator associates to the right.

272 T. Ridge

let run parser3’ oracle p s = (let i0 = 〈 ss = (SS(s, 0, String.length s));
lc = empty context; oracle = oracle 〉 in

let rs = dest inr (p (Inr i0)) in unique rs)

This simply evaluates the right component of the parser and returns unique
results. We can run the example parser in the OCaml top-level, and OCaml
responds with the expected result:

let = run parser3’ oracle parse E "1111111"

− : int list = [7]

We can also examine the left and middle components of our example parser.
Most interesting is the middle component:

let m = grammar of parser parse E
val m: mid = 〈rules = [("(E*E)", Seq (NT "E", NT "E"));

("(E*(E*E))", Seq (NT "E", NT "(E*E)"));
("((E*(E*E))+1)", Alt (NT "(E*(E*E))", TM "1"));
("E", Atom (NT "((E*(E*E))+1)"))];

tmparsers = [("1", < fun >)]〉
The result is a record m. The m.rules field contains a concrete representation of
the grammar, with nonterminals corresponding to every use of the sequencing
and alternative combinators. In addition, them.tmparsers field represents a finite
map from terminals to the corresponding raw parsers. In this example, there is
only one entry for the terminal "1".

In this section we have worked through the definition of a simple parser, and
seen how the machinery introduced in previous sections allows us to extract
a concrete representation of the grammar from code such as parse E. With a
concrete representation of the grammar, we can use a method such as Earley
parsing to determine the information necessary to construct an oracle, and then
finally use the oracle to guide the action phase of the parse.

6 Earley Parsing and Construction of the Oracle

We feed the concrete representation of the grammar, with the input string
and start symbol, to an Earley parser. The resulting Earley productions can
then be processed to form an oracle. As described in Section 1 an Earley pro-
duction is of the form (X → α.β, i, j, l), where (X → α.β, i, j) is an Ear-
ley item, β is non-empty, and l indicates that β could be parsed between
input positions j and l. We introduce a function earley prods of parser of type
α parser3 → string → production list, which takes a parser and an input and
returns a list of productions. We process these productions using a function
oracle of prods of type production list → ty oracle. For a given parser and input,
these two functions produce a parsing oracle which we use to guide the action
phase. Further details of our approach to Earley parsing are included in the
extended version of this paper, available in the online resources.

Simple, Efficient, Sound and Complete Combinator Parsing 273

7 Example, with Earley Parsing

We continue the example from Section 5. Deriving the productions for a given
input and constructing the oracle is straightforward:

let ps = earley prods of parser parse E "1111111"

let oracle = oracle of prods ps

We can query the oracle, for example, to find out where to split the input if we
wish to parse a sequence of two symbols:

let = oracle (NT "E",NT "(E*E)") (SS("1111111", 0, 7))
− : int list = [1; 3; 5]

The resulting list [1; 3; 5] reveals that the sequence of two nonterminals E (E*E)

can be used to parse an input "1111111" by splitting the input at positions 1,
3 and 5. In Section 5 we hand coded the oracle. We can now improve on this by
automatically constructing the oracle from the parser itself.

let run parser3 p s = (let ps = earley prods of parser p s in
let oracle = oracle of prods ps in run parser3’ oracle p s)

We can then run our parser in the OCaml top-level as before:

let = run parser3 parse E "1111111"

− : int list = [7]

8 Context and Memoization

Parsing context, introduced in [13], forces all top-down parse attempts to termi-
nate, which means that arbitrary context-free grammars, such as those including
direct and indirect left recursion, can be handled by combinator parsers. In ad-
dition, it can be shown that using parsing context preserves the completeness
of parsing. The technical development involves the definition of the concept of
a “good” parse tree, and all good parse trees are guaranteed to be returned
by our parsers. In the current setting, we use parsing context only when apply-
ing actions. The function mkntparser’ of Section 4 associates a concrete symbol
with a parser, but does not otherwise take parsing context into account. We
also define the function mkntparser (used in the example in Section 2), which is
identical except that it takes parsing context into account. With this change, we
can handle all context-free grammars. Fully formal mechanized definitions are
given in [13], and further discussion on the integration of parsing context in the
current setting is given in the extended version of this paper.

Memoization is a standard technique that involves storing the results of a
function. When invoking the function on an input that has already been seen, the
stored result is returned without re-executing the function. We use memoization
in the action phase to avoid recomputing parse results for parts of the input for
which the results have already been computed. Since this material is standard,
we omit further details, which can be found in the extended version of the paper.

274 T. Ridge

9 Experiments and Performance

In this section we discuss performance, mainly by comparing our approach to
the popular Haskell Happy parser generator [1]. We assess the performance of
P3 and Happy across 5 different grammars. P3 outperforms Happy on all of
these grammars, often by a large margin. There are clear opportunities to im-
prove the performance of P3 even further, so these initial results are extremely
encouraging10.

Why Happy? We should compare P3 against a parser that can handle all
context-free grammars: On restricted classes of grammar, we expect that P3
has good asymptotic performance, but absolute performance will not compare
favourably with specialized parsing techniques. We carried out preliminary ex-
periments with general parsers such as ACCENT11, Elkhound12 and SPARK13,
but encountered problems that were seemingly hard to resolve. For example, the
author of SPARK confirmed that SPARK cannot directly handle grammars such
as E -> E E E | "1" | ε. The underlying reason appears to be that SPARK
does not make use of a compact representation of parse trees, but works instead
with abstract syntax trees, which is problematic in this case because a single
input can give rise to a possibly infinite number of parse trees. On the other
hand, it was relatively straightforward to code up example grammars in Happy,
and extract the results using a compact representation. We believe Happy rep-
resents a demanding target for comparison because it is mature, well-tested and
extensively optimized code. For example, the authors of the Parsec library take
Happy performance to be the definition of efficiency14.

What to Measure? We measure the time taken for each of the three phases
separately. First we compare the time to compute a compact representation of
all parses. This involves comparing our core implementation of Earley’s algo-
rithm with the core GLR implementation in Happy. Second, we examine the
overhead of constructing the oracle. Third, we examine the cost of applying
parsing actions. As a very rough guide, we expect the Earley parsing phase to
be O(n3). The construction of the oracle essentially involves iterating over the
list of productions, which is O(n3) in length, so we might expect that this phase
should also take time O(n3). The time taken to apply the actions depends on
the actions themselves, but we can analyse particular actions on a case-by-case
basis to check that the observed times for this phase are reasonable.

Earley Implementation. P3 relies on a back-end parser. P3 terminal parsers
are effectively arbitrary functions, whereas existing Earley implementations ex-
pect non-epsilon terminal parsers to parse a single character. For this reason,

10 Details of the test infrastructure can be found in the online resources.
11 http://accent.compilertools.net/
12 http://scottmcpeak.com/elkhound/
13 http://pages.cpsc.ucalgary.ca/~aycock/spark/
14 “[Our real-world requirements on the combinators]. . . they had to be efficient (ie.

competitive in speed with happy and without space leaks)” [10]

http://accent.compilertools.net/
http://scottmcpeak.com/elkhound/
http://pages.cpsc.ucalgary.ca/~aycock/spark/

Simple, Efficient, Sound and Complete Combinator Parsing 275

Table 1. Grammars and identifiers

Identifier Grammar

aho s S -> "x" S S | ε
aho sml S -> S S "x" | ε
brackets E -> E E | "(" E ")" | ε
E EEE E -> E E E | "1" | ε
S xSx S -> "1" S "1" | "1"

it was necessary to extend Earley’s algorithm to treat corresponding “terminal
items”. We implemented an Earley parser from scratch in OCaml, emphasizing
both functional correctness and performance correctness (i.e. the implementa-
tion should have worst-case O(n3) performance). For our implementation we
plan to mechanize correctness proofs for functional correctness (the traditional
target of verification) and performance correctness (which as far as we are aware
has not been tackled by the verification community for non-trivial examples).
The implementation is purely functional, but is parameterized by implementa-
tions of sets and maps. The sets and maps are used linearly, so it is safe for the
compiler to substitute implementations which use mutable state and in-place
update. The OCaml compiler does not support this optimization currently, so
we introduce mutable set and map implementations manually. The timings we
give here are for the default configuration which uses mutable state in cases
where the input length is less than 10000, and purely functional datastructures
otherwise. Falling back on purely-functional datastructures results in worst-case
O(n3 lg n) performance, but has the advantage that space consumption is typ-
ically much reduced, which allows us to tackle much bigger inputs than would
be possible with a solely imperative implementation. Of course, for the user the
library always behaves as though it is purely functional.

Grammars and Inputs. We selected 5 grammars as representative examples
of general context-free grammars, see Table 1. The grammars aho s and aho sml

are taken from a well-known book on parsing [2]. They were used to assess parser
performance in related work [7]. The grammar brackets is a simple grammar
for well-bracketed expressions. The grammar E EEE is the example grammar we
have used throughout the paper. The final grammar S xSx is an example of a
non-ambiguous grammar that cannot be handled using Packrat parsing, taken
from [6]. These grammars attempt to cover different points in the grammar space:
aho s favours parsers which produce left-most derivations; aho sml favours those
that produce right-most derivations (e.g. GLR parsers such as Happy); E EEE is
the simplest highly-ambiguous grammar with no “left-right” or “right-left” bias.
S xSx parses unambiguously, and also favours parsers that produce right-most

276 T. Ridge

Table 2. aho s: time to compute com-
pact representation

Size Happy Earley

20 0.10 0.10
40 3.18 0.10
60 28.88 0.11
80 144.50 0.13
100 512.09 0.17

Table 3. aho sml: time to compute com-
pact representation

Size Happy Earley

100 0.22 0.19
200 2.22 0.53
300 9.75 1.24
400 28.56 2.61
500 71.08 4.42

Table 4. E EEE: Earley parse time and
oracle construction time

Size Earley Oracle

100 0.21 0.35
200 0.67 2.33
300 1.84 6.68
400 3.68 15.21

Table 5. aho s: Earley parse time, ora-
cle construction time, and time to apply
actions

Size Earley Oracle Action

100 0.19 0.05 0.22
200 0.49 0.50 2.18
300 1.15 2.19 6.25
400 2.49 4.60 15.4
500 4.35 9.10 31.4

derivations. brackets is a standard grammar which tends to expose bugs in
general parsers15.

We used binarized versions of these grammars when measuring the perfor-
mance of our Earley parser, because the P3 library feeds only binarized gram-
mars to the Earley parser. We tried to check whether binarized versions of the
grammars improved the performance of Happy, but at least with a binarized
version of the grammar E EEE, Happy appeared to hang on non-empty input
strings.

For inputs, we simply used strings consisting of the characters x or 1, or
well-bracketed expressions, of varying lengths. For S xSx all inputs were of odd
length.

Results: Computation of Compact Representation. Our Earley parser
clearly outperformed Happy across all grammars. For the grammars aho s and
E EEE the results are dramatic. For example, Table 2 gives the results for aho s16.
For the grammars aho sml and S xSx which favour the GLR approach of Happy,
Earley clearly outperforms Happy, but the results are within an order of magni-
tude or two. For example, the results for aho sml are given in Table 3. Finally

15 One criticism of these grammars is that they are all “small”. We also experimented
with a large real-world grammar, the current ocamlyacc grammar for OCaml. For a
sample 7,580 byte OCaml program, parsing takes about 1s, whereas ocamlyacc can
parse this file in a fraction of a second. ocamlyacc has several features, such as prece-
dence and associativity annotations, which make parsing deterministic. Our Earley
implementation does not have such features, and thus produces all possible parses
ignoring precedence and associativity. Future work should investigate supporting
these sorts of annotation in Earley parsing. Importantly, Earley parsing using the
OCaml grammar over a range on inputs resulted in almost-linear behaviour.

16 All times in this section are measured in seconds. All sizes are measured in characters.

Simple, Efficient, Sound and Complete Combinator Parsing 277

the grammar brackets caused Happy to appear to loop when parsing input,
possibly due to a bug in Happy17. In addition to absolute performance, we can
also check whether our Earley parser has the expected time complexity. Across
all grammars we observe that our Earley implementation has worst-case perfor-
mance O(n3) with mutable set and map implementations, and O(n3 lg n) with
purely functional set and map implementations. In conclusion, Earley clearly
outperforms Happy on all grammars, sometimes dramatically so. On several
grammars, Happy appeared to loop when attempting to parse inputs.

Results: Oracle Construction. How long should we expect the construction
of the oracle to take? One way to construct the oracle is by iterating over the
O(n3) Earley productions. We expect that oracle construction should be O(n3),
and this is what we observe in practice. For example, for the grammar E EEE,
the times for the Earley phase, and the times to construct the oracle, are given
in Table 4. We note that even when oracle construction time is included in the
parse time, our approach outperforms Happy across all grammars.

Results: Applying Parsing Actions. We now examine the overhead of ap-
plying parsing actions. Our approach restricts to good parse trees, which are
finite in number. Parsers such as Happy do not restrict to good parse trees, and
so attempting to construct parse trees, or apply actions to, parsing results for a
grammar such as E -> E E E | "1" | ε will result in non-termination. Thus,
it is not possible to compare the performance of P3 and Happy, but we can look
at the behaviour of P3 itself.

How long should we expect the action phase to take? Consider the aho s

grammar S -> "x" S S | ε, where the actions count the number of characters
parsed. Without memoization we expect the action phase to take an exponential
amount of time. With memoization we can argue as follows. Suppose the time to
apply the actions is dominated by the non-memoized recursive calls, so that we
can ignore the time taken for memoized calls. There are O(n2) non-memoized
calls to parse an S (corresponding to different spans (i, j) of the input string). For
each call, the input must be split in O(n) places, and the single result from each
subparse combined. Thus, each call takes O(n) time, giving an overall O(n3)
execution time for the action phase. In practice, the time taken to look up a
precomputed value in the memoization table cannot be ignored, thus we observe
slightly worse than O(n3) performance. In Table 5 we include times for all phases
to give an idea of the relative costs. Using a naive estimation technique puts the
action phase at O(n3.2). For the grammars aho sml, E EEE and brackets one
can reason similarly. Finally, consider the following code for the grammar S xSx:

let rec parse S xSx = (fun i → memo p3 tbl (mkntparser "S" (
((a1 ⊗ parse S xSx ⊗ a1) � (fun (, (x,)) → 2 + x))
⊕ (a1 � (fun → 1)))) i)

For an input of length n+1 there should be n/2 recursive calls when applying
the actions, each of which takes a constant time to execute, giving expected

17 Reported to the authors of Happy on 2013-06-24.

278 T. Ridge

O(n) cost for applying the actions. In practice, the time to apply the actions is
negligible compared to the other two phases.

Conclusion. The Earley parser outperforms Happy across all grammars, often
dramatically so. Even though these results are very good, we note that the
performance of our Earley parser is not critical: our approach can be adapted to
use any general parsing implementation as a back end, so we can take advantage
of faster, optimized back-end parsers if they become available.

Constructing the oracle currently involves processing all productions from
the Earley stage. A more intelligent approach would be to process only those
productions that contribute to a valid parse. For example, for the grammar
S xSx there are only O(n) such items. This optimization should reduce the oracle
construction time significantly for many grammars.

Finally, the observed cost of applying the actions for our chosen grammars
agrees with a basic complexity analysis, but there is some scope for reducing the
real-world execution time further e.g. by using more sophisticated memoization
techniques.

Overall, our implementation meets the expected worst-case bound of O(n3)
for parsing and oracle construction, and has very good real-world performance
when compared to Happy. For the action phase, the asymptotic performance
also appears optimal. For all phases, there is scope for improving the real-world
performance still further.

10 Related Work

Research on parsing has been carried out over many decades by many re-
searchers. We cannot hope to survey all of this existing work, and so we here
restrict ourselves to consideration of only the most directly related work. The
first parsing techniques that can handle arbitrary context-free grammars are
based on dynamic programming. Examples include CYK parsing [9] and Earley
parsing [5]. The popular GLR parsing approach was introduced in [16]. Combi-
nator parsing and related techniques are probably folklore. An early approach
with some similarities is [12].

The extension of combinator parsing to handle all context-free grammars us-
ing a parsing context, as in this paper, appears in [13]. The performance of
this approach is O(n5), which is not competitive with the approach presented
here (as confirmed by real-world experiments, which we omit for space reasons).
Experiments showed that this previous approach outperformed Happy on the
grammar E EEE, but it seems clear that Happy has poor real-world performance
on many such grammars. As described in that paper, the use of a parsing con-
text is related to a long line of work that uses the length of the input to force
termination [8]. Grammar extraction from combinator parsers, and the use of a
separate back-end parser, was first described in [11]. Our approach improves on
this by providing an efficient back-end, using an oracle (rather than parse trees),
context (to provide meaningful semantics via the notion of “good” parse trees),
and memoization to make the action phase efficient.

Simple, Efficient, Sound and Complete Combinator Parsing 279

Our work is motivated by the desire to provide a combinator parsing interface
with performance competitive with O(n3) general algorithms such as Earley
parsing. In [14] the authors “develop the fully general GLL parsing technique
which is recursive descent-like, and has the property that the parse follows closely
the structure of the grammar rules”. The desire is to improve on the shortcomings
of GLR: “Nobody could accuse a GLR implementation of a parser for, say, C++,
of being easy to read, and by extension easy to debug.” This work is very similar
in its aims to ours. Prototype hand-coded implementations of recognizers for
several grammars, based on the GLL algorithm, are described in [14]. These do
not provide a combinator parsing interface. An implementation of GLL in Scala
that provides the desired combinator parsing interface can be found online18

but the author admits “at the moment, performance is basically non-existent.”
However, we believe that the GLL algorithm represents the main competition
to our approach and we eagerly await future efficient implementations which
provide a combinator parsing interface.

11 Conclusion

We presented an approach to parsing that provides a flexible interface based on
parsing combinators, together with the performance of general approaches such
as Earley parsing. The contributions of our work are:

– We introduced the idea of using an oracle as a compact, functional represen-
tation of parse results. This contrasts with traditional representations such
as shared packed parse forests [3], which are essentially state-based represen-
tations. The idea of using an oracle as the basis of a parsing implementation
is novel.

– We introduced the design of a parsing library split into a front-end combina-
tor parsing library, and a back-end parser (here based on Earley’s algorithm),
connected via the oracle. This combines the well-known benefits of combi-
nator parsing with the efficiency of general-purpose parsing algorithms such
as Earley. This separation has many benefits, for example, the combina-
tor parsers are very simple to implement, and the back-end parser can be
swapped, potentially increasing performance without altering the combina-
tor interface. This split also allows examples, such as those in Section 2, that
are not possible with any other parser currently available.

– To allow arbitrary functions (of the correct type) to be used as terminal
parsers, we extended Earley parsing to deal with “terminal items”.

– We engineered a back-end Earley implementation. This implementation is
functionally correct, and is observed to fit the worst-case time bound of
O(n3) across all our example grammars. As a general parser, it has very good
real-world performance, outperforming the Haskell Happy parser generator19

18 http://www.cs.uwm.edu/ dspiewak/papers/

generalized-parser-combinators.pdf
19 ACCENT, Elkhound and SPARK are not competitive here, see Section 9.

http://www.cs.uwm.edu/~dspiewak/papers/generalized-parser-combinators.pdf
http://www.cs.uwm.edu/~dspiewak/papers/generalized-parser-combinators.pdf

280 T. Ridge

across all our example grammars, often dramatically so. In future work, we
intend to give mechanized proofs of functional and performance correctness
for this back-end parser.

– We provided the results of real-world experiments that support our perfor-
mance claims.

– We showed how to define front-end parsing combinators which allow a con-
crete representation of the grammar (and terminal parsers) to be extracted
in order to be fed to the Earley parser. These combinators then use the
results of Earley parsing to guide the action phase. We argued that the per-
formance of the action phase, when memoized, was asymptotically close to
optimal. No other parsers (apart from [13] which is O(n5)) support applying
actions when working with arbitrary context-free grammars, so a real-world
comparison is unfortunately not possible.

– We showed how to integrate cleanly many different techniques, including
combinator parsing, Earley parsing, the oracle, memoization, and parsing
contexts. In addition the online distribution integrates the technique of box-
ing, allowing the input type to be arbitrary. This permits both scannerless
parsing, and parsing with an external lexer. Even with all these different
techniques, the code is extremely concise and simple.

– We showed how to combine semantic action functions with an Earley parser.
For example, using our approach it is trivial to define parsers that return
parse trees, see Section 2. For other techniques, such as GLL, the construc-
tion of parse trees can itself be a significant research contribution [15].

– We developed extensive examples, available in the online distribution, that
demonstrate the power of our approach.

References

1. Happy, a parser generator for Haskell, http://www.haskell.org/happy/
2. Aho, A.V., Ullman, J.D.: The theory of parsing, translation, and compiling.

Prentice-Hall, Inc. (1972)
3. Atkey, R.: The semantics of parsing with semantic actions. In: LICS 2012, pp.

75–84. IEEE (2012)
4. Barthwal, A., Norrish, M.: A mechanisation of some context-free language theory

in HOL4. Journal of Computer and System Sciences (2013)
5. Earley, J.: An efficient context-free parsing algorithm. Commun. ACM 13(2), 94–

102 (1970)
6. Ford, B.: Packrat parsing: simple, powerful, lazy, linear time, functional pearl. In:

ICFP 2002, pp. 36–47. ACM (2002)
7. Frost, R.A., Hafiz, R., Callaghan, P.: Parser combinators for ambiguous left-

recursive grammars. In: Hudak, P., Warren, D.S. (eds.) PADL 2008. LNCS,
vol. 4902, pp. 167–181. Springer, Heidelberg (2008)

8. Hafiz, R., Frost, R.A.: Lazy combinators for executable specifications of general
attribute grammars. In: Carro, M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937,
pp. 167–182. Springer, Heidelberg (2010)

9. Kasami, T.: An efficient recognition and syntax analysis algorithm for context-free
languages. Tech. Rep. AFCRL-65-758, Air Force Res. Lab., Massachusetts (1965)

http://www.haskell.org/happy/

Simple, Efficient, Sound and Complete Combinator Parsing 281

10. Leijen, D., Meijer, E.: Parsec: A practical parser library. Electronic Notes in The-
oretical Computer Science 41(1), 1–20 (2001)

11. Ljunglöf, P.: Pure functional parsing. Göteborg University and Chalmers University
of Technology, Gothenburg (2002)

12. Pratt, V.R.: Top down operator precedence. In: Proceedings ACM Symposium on
Principles Prog. Languages (1973)

13. Ridge, T.: Simple, functional, sound and complete parsing for all context-free gram-
mars. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 103–
118. Springer, Heidelberg (2011)

14. Scott, E., Johnstone, A.: GLL parsing. Electronic Notes in Theoretical Computer
Science 253(7), 177–189 (2010)

15. Scott, E., Johnstone, A.: GLL parse-tree generation. Science of Computer Pro-
gramming 78(10), 1828–1844 (2013)

16. Tomita, M.: LR parsers for natural languages. In: Proc. of the 10th Int. Conf. on
Computational linguistics, pp. 354–357. ACL (1984)

Origin Tracking in Attribute Grammars

Kevin Williams and Eric Van Wyk

Department of Computer Science and Engineering
University of Minnesota, Minneapolis, MN, USA

kwill,evw@cs.umn.edu

Abstract. Origin tracking is a technique for relating the output of a
transformation back to its input. In term rewriting systems, where this
notion was developed, it relates subtrees in the resulting normal form
term to the original term. The technique is useful in several settings,
including program debugging and error reporting.

We show how origin tracking can be integrated into higher-order at-
tribute grammars, which construct new syntax trees during attribute
evaluation. Furthermore, we extend origins with additional information
to track sub trees that correspond to the redex and contractum of rewrite
rules when implemented using attribute grammars. The computation of
origins and their extensions is formally defined using big-step operational
semantics. Finally we describe a program transformation framework as
an example use of origin tracking in attribute grammars.

1 Introduction and Motivation

Transformations on syntax trees have many applications, ranging from opti-
mizations which aim to reduce execution time to translating human-readable
code down into low-level languages. Such transformations can output trees with
non-obvious relations to the transformation’s input. Without making explicit
relations between the trees, it can be difficult to perceive how the two trees are
related. The transformation’s output may have been copied from a subtree of the
transformation’s input or constructed by a transformation based on a specific
subtree of the input, but these connections are lost in the transformations.

Origin tracking [5] constructs links from each node in the output tree of a
transformation to a node in the transformation’s input. In many cases a series of
transformations is made to achieve some goal, such as optimization, and origins
are traced across multiple steps. Simply put, origins connect a node to the node
which introduced it to the tree. Consider a transformation which replaces every
negation node negate with subtraction from zero. An example of this is shown in
Fig. 1. Intuitively, const(0) and the sub node were introduced to the tree because
the original negate node acted as a transformational catalyst. Other nodes in
the output tree were not modified by the transformation, and thus have origins
pointing back to the nodes they were copied from (the origin of const(3) in the
output tree has an origin pointing to the const(3) node in the input tree).

Van Deursen [4] added origin tracking to primitive recursive schemes (PRS),
in which evaluation by term rewriting is done in two phases, but we focus on the

B. Combemale et al. (Eds.): SLE 2014, LNCS 8706, pp. 282–301, 2014.
c© Springer International Publishing Switzerland 2014

Origin Tracking in Attribute Grammars 283

Fig. 1. Input and output for rewrite rules replacing negation with subtraction and re-
moving the multiplicative identity. Links are shown for origins, redex, and contractum.

second here for the purpose of discussing origin tracking and connecting it to
attribute grammars. In PRS evaluation, an unordered set of left-linear rewrite
rules are applied nondeterministically and exhaustively to a given input tree.
For example, the following rewrite rules replace negation with subtraction from
zero and reduce multiplication by one on the left:

negate(X) → sub(const(0), X), mul(const(1), X) → X

Per the notion of origins in PRS [4], origins for individual nodes are con-
structed based on where the node is located related to the contractum and if
it was explicitly constructed from a (non-variable) term on the right hand side
of the rewrite rule. If the node is either disjoint from or above the contractum,
then it is given an origin based on the context case which points to the node
from which it was duplicated in the input tree. For example, this holds for the
add and mul nodes in Fig. 1. If the node is explicitly constructed by the rewrite
rule (such as the sub and const (of 0) nodes in the figure), then it is given an
origin based on the auxiliary symbols case which points to the root of the redex.
Finally, nodes which are copied based on variable bindings in the rewrite rule
are given an origin based on the common variables case which points to the
node from which it was duplicated in the input tree; see the const(4) node in
the figure. Note the similarity between origins constructed by the context and
common variables cases: these are origins on nodes copied from the input tree.

In this paper, we migrate this notion of origins into attribute grammars (AGs)
[10]. During tree construction, we annotate trees with a path to their origin. We
use annotations to hold origins in AGs. Annotations are similar to attributes
except they are set on undecorated trees when the tree is built and before
its attributes are evaluated or it is used as sub-tree in some other tree con-
struction operation. Annotations are accessed in the same way as attributes

284 K. Williams and E. Van Wyk

(e.g. t.anno where anno is an annotation on tree t). The operational semantics
of this evaluation are presented in Section 2 without origins and in Section 3
with origins.

With origins and without the rewrite rules themselves, it can still be diffi-
cult to determine what caused the changes resulting in the const(4) node in
Fig. 1. By adding a reference for the redex (dotted and dash-dotted lines), it is
clear that it was affected by a reducing transformation catalyzed by the lower
mul node in the input tree, which is not clear with only origin edges. Similarly,
adding the contractum arrow for const(0) shows that it was not the only node
modified by the transformation which constructed it; because its contractum
points to its parent, it can assume that its parent is also new. Beyond redex
and contractum, we found two additional properties which are useful in explor-
ing transformations: a boolean flag which shows whether the node was newly
constructed by the transformation (nodes constructed by the auxiliary symbols
case in a PRS) and a set of labels which describe the applied transformation.
While these four properties have simple implementations within PRS, they are
not straightforward to define these within AGs. This is partly due to the abun-
dance of attributes which construct the unmodified nodes and are unnecessary
in PRS. The combination of these four new properties with origins are called
extended origins and are discussed in Section 4.

In Section 2, we define a simple attribute grammar calculus and the big-step
operational semantics of attribute evaluation. The effort to define this opera-
tional semantics pays off in Section 3 where it is extended to precisely show
how origins can be added to attribute grammars and computed during attribute
evaluation, the first contribution of this paper. The second contribution is the
definition and specification of extended origins in Section 4. This extension adds
to each node whether the node was newly constructed by a transformation, the
node’s redex, the node’s contractum, and a set of descriptive labels. Section
5 contains the third contribution, an application to a program transformation
specification language based on Halide [12], a transformation tool for optimizing
matrix computations. We close with related work in Section 6 and conclude in
Section 7.

2 Attribute Grammars

In this section we provide a specification of attribute grammars that is used
throughout the paper. After a description of the structure of an attribute gram-
mar we provide a big-step operational semantics for evaluation of expressions in
attribute equations without origins. This semantics is then extended in Sections 3
and 4 to compute origins and their extensions during attribute evaluation. Typ-
ing rules for expressions are also provided to aid in understanding the distinction
between undecorated and decorated trees.

Origin Tracking in Attribute Grammars 285

2.1 Definition of the Formalism

In this formulation of attribute grammars we assume a set of primitive types,
PT , used in all attribute grammars, where PT includes types Bool , Int , Str .

An attribute grammar AG has the form 〈G,A,O,D〉 where G = 〈N,P, sig, S〉
is the underlying context free grammar. N is the set of nonterminals. X =
N ∪PT , and denotes the symbols that appear on the right hand side of produc-
tions. P is finite set of production names, each with a signature sig(p ∈ P) =
x0 :: N0 ::= x1 :: X1 ... xnp :: Xnp where np ≥ 0. In this formalism, as in our
attribute grammar system Silver [13], production signatures provide names for
the symbols in a production; these names are then used in attribute equations
to refer to nodes in the syntax tree. A function typeP extracts just the type
from a production signature such that type(x0 ::N0 ::= x1 ::X1 ... xnp ::Xnp) =
N0 ::= X1... Xnp . S ∈ N is the type of the root node of a tree representing, for
example, a complete program or compilation unit.

The set of attributes A = 〈Asyn, Ainh, Aloc, typeA〉, contains the finite disjoint
sets of names of, respectively, the synthesized, inherited, and local attributes and
a mapping of attribute names to types in X . Note that typeA(a ∈ Asyn∪Ainh) ∈
X since we limit synthesized and inherited attributes to hold only undecorated
trees and primitive values. This can easily be generalized to support reference [6]
or remote [2] attributes (decorated trees) but we keep things simple in this
formalism. typeA(a ∈ Aloc) ∈ N so that local attributes only hold syntax trees.
In the original work on HOAGs [14], this was the case and local attributes were
called non-terminal attributes. Note that in Silver and other AG systems, we
generalize this to allow local attributes to hold any type, but restrict them here
to trees to simplify the discussion.

The “occurs-on” relation O = 〈Oattr, Oloc〉 indicates which attributes occur
on which nonterminals and which local attributes occur on which productions:
Oattr ⊆ (Asyn ∪ Ainh) × N and Oloc ⊆ Aloc × P . Note that a local attribute
has the same type on each production. Though not formalized here, there are
no inherited attributes on S.

Attribute equations and functions are specified in D = 〈EQ, σf 〉. EQ is the
set of set of equations indexed by P and have the form lhs = e. Expressions
e are defined below, and the left hand side lhs, for a production p ∈ P with
sig(p) = x0 ::N0 ::= x1 ::X1 ... xnp ::Xnp , has the form

lhs ::= x0.a where (a,N) ∈ Osyn

| xi.a where i > 0, (a,Xi) ∈ Oattr, a ∈ Ainh

| �i.a where (a, typeA(�i)) ∈ Oattr, a ∈ inh
| �i where (�i, p) ∈ Oloc

F is finite set of function names, F = dom(σf), where σf maps function names
to lambda-expressions of the form λy1 : T1, ..., yn : Tn.e, where y ranges over
variables bound in expressions and T ranges over types, defined below.

Fig. 2 shows an attribute grammar, written in Silver, that computes the trans-
formations described in Section 1. Note that here, the process is deterministi-
cally driven by a root production root which defines its doExpd local attribute

286 K. Williams and E. Van Wyk

nonterminal Root, Expr;

synthesized attribute expd::Expr

occurs on Expr;

synthesized attribute simp::Expr

occurs on Expr;

abstract production negate

e::Expr ::= ne::Expr

{ e.expd = sub(const(0), ne.expd);

e.simp = negate(ne.simp); }

abstract production mul

e::Expr ::= l::Expr r::Expr

{ e.expd = mul(l.expd, r.expd);

e.simp

= case l of

| const(1) -> r.simp

| _ -> mul(l.simp, r.simp)

end; }

abstract production root

r::Root ::= e::Expr

{ local doExpd :: Expr = e.expd;

local doSimp :: Expr =

doExpd.simp; }

abstract production add

e::Expr ::= l::Expr r::Expr

{ e.expd = add(l.expd, r.expd);

e.simp = add(l.simp, r.simp); }

abstract production sub

e::Expr ::= l::Expr r::Expr

{ e.expd = sub(l.expd, r.expd);

e.simp = sub(l.simp, r.simp); }

abstract production const

e::Expr ::= i::Integer

{ e.expd = const(i);

e.simp = const(i); }

Fig. 2. Silver syntax specification which replaces negation with subtraction from zero
and removes the multiplicative identity

as the expanded tree which replaces negation with subtraction. Similarly, the
doSimp local attribute removes multiplicative identities from doExpd. Two of
the attribute equations have obvious connections to the original rewrite rules:
negate’s expd equation resembles the negation expansion rule, and mul’s simp
equation resembles the rule conducting the removal of the multiplicative identity.
The remaining attributes serve to reconstruct the tree outside where the rewrite
rule would have been applied; in the PRS, this reconstruction is conducted au-
tomatically behind the scenes.

Many attributes have dependencies on other attributes on the same produc-
tion or on its children. Thus attributes without any dependencies are evalu-
ated first, followed by attributes whose dependencies have been evaluated. Thus,
for well-defined attribute grammars, evaluation never runs into the case where
needed attributes are not defined. Note that references to parent (left hand side),
child, and local attribute trees are seen as decorated in attribute equations; this
is reflected in the typing rules found in the following section.

2.2 Static and Dynamic Semantics of Expression Evaluation

Here we first discuss the form of expressions (e), values (v), and types (T), as
shown in Fig. 3, and present typing and big-step operational semantics evaluation
rules for expressions without origins. These rules are relatively straightforward;
the only potentially unexpected aspect is that we treat decorated and undec-
orated syntax trees as having different types and, thus, value representations.

Origin Tracking in Attribute Grammars 287

e ::= if e then e else e
| case e of

q1(y
1
1 , ..., y

1
nq1

) ⇒ e1
...
qn(y

n
1 , ..., y

n
nqn

) ⇒ en
| f(e, ..., e)
| var
| var .attr
| p(e, ..., e)
| new var
| v

var ::= x0 | xi, i > 0 | �i | y

v ::= true

| false

| n
| str
| p(v, ..., v)
| [n, ..., n]
| λy1 : T1, ..., yn : Tn.e

T ::= PT
| N
| N ::= X...X
| T...T → T
| Ref N

Fig. 3. The form of expressions e, variables var , values v, and types T

The primary reason for the formality here is to be provide a precise means for
specifying the computation of origin, redex, and contractum information in the
later, extended version of these evaluation rules.

Expressions include if-then-else expressions, case-expressions, and function
application that behave as one would expect in a functional language; these are
listed first in the productions over e. Case expressions also introduce variable
bindings which again are denoted by yi. Expressions also include variable refer-
ences, var , of which there are four varieties: references to the tree constructed
by a production and named by the variable on the root/left-hand side (x0) and
child trees (xi, i > 0). Local attributes (�i) and bound variables y round out the
types of variables, all denoted by var .

Attributes may be referenced on decorated syntax trees, denoted var .attr. The
restriction of var .attr, and not allowing e.attr, ensures that attributes are only
accessed of the production root, children, locals or variables bound by functions
or case-expressions. The restriction is removed in Silver and most AG systems
but it keeps things simple here. Tree construction, p(e1, ..., enp), constructs new
undecorated syntax trees. Synthesized attributes cannot be accessed on such
trees; the process of decorating the root node of an undecorated tree with its
inherited attributes converts it to decorated tree.

Expressions also include the values, v, to which which expressions evaluate,
also shown in Fig. 3. These include boolean, numeric (n), and string (str) liter-
als. Tree literals p(v, ..., v) are undecorated trees; they are simply terms in the
language of the grammar G. Paths, [n1, ..., nk], are sequences of integers describ-
ing a path to a subtree. The empty path [] refers to the root node of the original
syntax tree, [1] refers to the first child of that root node, and the path [1, 2] refers
to the second child of that first child. For example, the negate node in Fig. 1 is
referenced by the path [2, 1]. Finally, lambda expressions are also values.

Types include primitive types PT , undecorated trees with nonterminal of type
N at the root, production types N ::= X...X , function types T...T → T and
path types, Ref N , for paths to trees of type N .

288 K. Williams and E. Van Wyk

Fig. 4 contains the big-step operational semantics of the evaluation of expres-
sions, these rules have the form σ, t � e → v indicating that for an environment
σ mapping bound variables y to values, and expression e that is part of an
equation for the production that constructed the tree t, evaluates to value v.

The figure also has typing rules to assisting in understanding evaluation. These
have the form AG, p,Γ � e : T indicating that an expression e in an equation
associated with production p in AG has type T where Γ maps bound variables
to their types.

Before beginning, we note one additional form of type rule for production,
function, and attribute names of the form AG � e : T since these are done inde-
pendently of any production or equation. Specifically, AG � p : T , AG � f : T ,
and AG � a : T indicate that, respectively, a production p, function f or at-
tribute a has the indicated type. These are straightforward and not formalized
here, they simply refer to the appropriate components of AG.

Variable references: Inside of equations for a production we consider the vari-
ables representing the root, child nodes, and local attributes to be decorated
trees, and thus their type is Ref N and their values are paths to the appro-
priate nodes. For example, in Fig. 4 the rule T-Root indicates that the root
node variable x0 is a reference to the nonterminal on the left hand side of the
production p. Rule E-Root indicates that xo evaluates to the path t on the left
hand side of the turnstile — this is the path to the tree on which this expression
is being evaluated. Child node variables xi are typed similarly and evaluate to
the path to the tree t extended to denote their sub-tree. Local attributes are de-
clared to have the type of a nonterminal, just like child trees in productions and
similarly the production has equations defining the inherited attributes on each
local attribute. Thus their type in expressions are decorated trees, represented
by paths. The negation of the index i for the local �i is used in specifying the
path to this local decorate tree. Bound variables are bound to types and values
and are found in Γ and σ, respectively.

Attribute access: The type rule T-SynInh checks that attributes are accessed
on decorated trees only, and that the attribute decorates the tree and thus
determines its type. The rule E-SynInh indicates that because the parent node,
each child node, and local variables are typed as decorated trees, synthesized
and inherited attributes can be accessed from them. (Note that local attributes
are accessed by name directly, without the “dot” notation shown above.)

Tree construction: Productions are used like functions to build undecorated trees
of some nonterminal type N , and are essentially just terms in the language of
G. Child expressions are evaluated to values that match the production’s type.

When an equation copies an undecorated tree value into a higher order syn-
thesized or inherited attribute (of the same type), it is simply that same undec-
orated tree that is stored in the attribute. On the other hand, when an equation
copies such a value into a local attribute, then that undecorated tree becomes
a decorated tree in the sense that it can now be given inherited attributes and
then have synthesized attributes computed on it.

Origin Tracking in Attribute Grammars 289

AG � p : N ::= X1 ...Xn

AG, p, � x0 : Ref N
(T-Root)

σ, t � x0 → t (E-Root)

i > 0
AG � p : N ::= X1 ...Xn

AG, p, � xi : Ref Xi

(T-Child)

i > 0

σ, t � xi → t · [i] (E-Child)

AG � � : N

AG, p, � �i : Ref N
(T-Local)

σ, t � �i → t · [−i] (E-Local)

(y, T) ∈ Γ

AG, p,Γ � y : T
(T-BVar)

(y, v) ∈ σ

σ, t � y → v
(E-BVar)

AG, p,Γ � var : Ref N
(attr,N) ∈ Oattr AG � attr : T

AG = 〈G,A, 〈Oattr , 〉, p,Γ � var .attr : T
(T-SynInh)

σ, t � var → h

σ, t � var .attr → h.attr
(E-SynInh)

AG � p : N ::= X1 , ...,Xn

∀i1n(AG, p,Γ � ei : Xi)

AG, p,Γ � p(e1 , ..., en) : N
(T-Tree)

∀i1n(σ, t � ei ⇒ vi)

σ, t � q(e1, ..., en) ⇒ q(v1, ..., vn)
(E-Tree)

AG, p,Γ � var : Ref X

AG, p,Γ � new var : X
(T-New)

σ, t � var → h

σ, t � new var → *h
(E-New)

AG, p,Γ � e : Ref N ∀i1n(AG � qi : N ::= X i
1 ...X

i
nqi

)

∀i1n(AG, p,Γ [r i1 �→ Ref X1 , ..., r
i
nqi

�→ Ref Xnqi
] � ei : T)

AG, p,Γ � case e of q1 (y
1
1 , ..., y

1
nqi

) ⇒ e1 ... qn (y
n
1 , ..., y

n
nqn

) ⇒ en : T
(T-Case)

σ, t � e → h qi = prod(*h) σ[y i
1 �→ h · [1], ..., y i

nq1
�→ h · [nqi]], t � ei → v

σ, t � case e of q1 (y
1
1 , ..., y

1
nq1

) ⇒ e1 ... qn (y
n
1 , ..., y

n
nqn

) ⇒ en → v
(E-Case)

AG, p,Γ � e1 : Bool AG, p,Γ � e2 : T AG, p,Γ � e3 : T

AG, p,Γ � if e1 then e2 else e3 : T
(T-If)

σ, t � e1 → true σ, t � e2 → v

σ, t � if e1 then e2 else e3 → v
(E-IfTrue)

σ, t � e1 → false σ, t � e3 → v

σ, t � if e1 then e2 else e3 → v
(E-IfFalse)

AG � f : T ::= T1 , ...,Tn ∀i1n(AG, p,Γ � ei : Ti)

AG, p,Γ � f (e1 , ..., en) : T
(T-FuncApp)

σf (f) = λy1 : T1, ..., yn : Tn.e ∀i1n(σ, t � ei → vi)
σ[y1 �→ v1 , ..., yn �→ vn], t � e → v

σ, t � f (e1 , ..., en) → v
(E-FuncApp)

Fig. 4. Typing and evaluation rules for expressions without origins

290 K. Williams and E. Van Wyk

New: As described by rule E-New, the new operator extracts the value (an
undecorated tree or primitive value) that a path refers to. (confirmed by the
type rule T-New). It uses a dereference operator ∗ to do this. A path refers to
a decorated tree or a primitive value, the dereference operator extracts a new
undecorated tree from that path. In the case of a primitive value it just returns
it. Note that in this formulation only variable accesses evaluate to references.

Case: The type rule T-Case requires that the expression to be matched, e,
be a reference to a tree with type N , each production to be matched, pi, must
have npi children, and each expression ei has the same type. Note that the types
added to Γ for evaluation of the case clause expression are converted to Ref
types. This is the same process used in the type rules of parent, child, and local
variables since all of these will be seen as decorated (Ref) trees in the evaluation
of the expression. The rule E-Case matches the result of evaluating e with one
of the given productions pi, binds each yij to the jth child of the value of e, and

evaluates the ith expression ei.

Other constructs: The typing and evaluation rules for if-then-else expressions
and function application are the same as in simple functional languages.

3 Origin Tracking in Attribute Grammars

In Section 2, we defined how attributes are evaluated within AGs without ori-
gins. In this section, we define how attributes are evaluated with origins. The
semantics in that section were defined so that only a few key modifications need
to be made to compute origins during expression evaluation, as described below.

As discussed above, the origin is defined as an annotation which contains a
reference to the node’s origin. In the case of initial trees, the origin is defined
as ⊥. We redefine the language of values v to replace the tree value p(v, ..., v)
with the tree value with an origin with a vertical bar to divide it from the node’s
children: p(v, ..., v|o). None of the typing rules require modification, but two
evaluation rules must be updated. These two rules (E-Tree and E-New) are
replaced by the two rules shown in Fig. 5. The rule E-O-Tree is only different
from E-Tree in that it gives the constructed tree an origin pointing to the tree
on which the attribute is defined.

Where E-New used *h, the rule E-O-New uses duplicate(h), the function
duplicate is defined in Fig. 6. If duplicate is passed a path to a primitive value,
then it returns that value. If duplicate is passed a path to a (decorated) tree it
constructs an undecorated copy of the tree with origins on the new tree pointing
to the corresponding nodes on the original tree. Note that duplicate mimics the
common variables case of PRS origins discussed in Section 1 in that a subtree is
copied into the result of the transformation’s output such that its origins point
back to the transformation’s input.

If we replace the expression for the simp equation on production mul in Fig. 2
with simplify(l , r) where simplify is a function whose body is the case expression

Origin Tracking in Attribute Grammars 291

∀i1n(σ, t � ei → vi)

σ, t � q(e1 , ..., en) → q(v1 , ..., vn |t)
(E-O-Tree)

σ, t � var → h

σ, t � new var → duplicate(h)
(E-O-New)

Fig. 5. New rules required to add origins to AGs. The ”E-O-” prefix in the name of each
of the above rules means that the rule replaced the similarly named rules from Fig. 4
with the ”E-” prefix. Note that adding origins does not affect the typing relations.

duplicate(h) =
if type(∗h) ∈ PT then ∗ h
else case ∗ h of

q(t1 , ..., tk |) → q(duplicate(h · [1]), ..., duplicate(h · [k]) | h)

Fig. 6. Definition of duplicate with origins using pseudo code

currently in the figure, then the origin computed for any tree now constructed or
duplicated in that function is the same as if the function simplify was not called
and the original specification was used. This is because the evaluation rule E-

FuncApp in Fig. 4 uses the same tree t in the context of evaluating f(e1, ..., en)
as in the context of evaluating the body of f . Thus, origins are dependent on
the attribute being evaluated, not the functions used in that evaluation.

To simplify interaction with the generated origins, we define the function
getOrigin such that getOrigin(p(t1, ..., tk|o)) = o. A tree’s origin path is gener-
ated by repeatedly calling getOrigin on its output until it returns ⊥ (signifying
the initial tree has been reached). Note that origin paths and paths are different:
origin paths are ordered sequences of trees, and paths [n, ..., n] as seen in v are
ordered sequences of integers used to locate decorated trees. This function will
be added to the interface defined in the next section.

4 Extending Origin Tracking with Transformation
Information

Origins are useful for constructing paths from the result of a set of transforma-
tions to the initial tree. However, the information provided by origins does not
always provide all of the information that we may want from a transformation.
Specifically, the answers to the following four questions are missing:

– Was the tree newly constructed by the transformation in question?
– What is the root of the transformation’s input (its redex)?
– What is the root of the transformation’s output (its contractum)?
– Why did the transformation happen?

We define a set of functions to provide an interface for answering these questions.
The first question is answered by a function getIsContractum that returns true

292 K. Williams and E. Van Wyk

on subtrees which were not just copied from the previous tree (i.e. true for nodes
with auxiliary symbols origins). The second question is answered by getRedex
which returns a path to the redex of the transformation, and the third is an-
swered by a function getContractum which returns a path to the contractum
of the transformation. The fourth question is answered by a function getLabels
which returns a set of labels for a given subtree where each label contains a
characterization of the transformation which constructed the subtree.

These four functions, along with origins, make our interface for extended
origins. Two of these functions (getIsContractum and getLabels) directly return
annotations pulled off of their argument while the others compute their results
from new annotations.

4.1 The Extended Origins Interface

In this section, we define the interface functions and state some invariants on
their behavior.

The function getIsContractum returns whether a node was newly introduced
by the last applied transformation, and requires a new annotation of type bool
called isContractum such that getIsContractum(t) = t .isContractum. This an-
notation is set so that the nodes with context or common variables origins in
the PRS setting define isContractum to be false and those nodes with auxiliary
symbols origins define isContractum to be true.

To set isContractum we must be able distinguish between attribute equa-
tions that implement a rewrite rule and set isContractum to true (such as the
definition of expd on negate and simp on mul in Fig. 2) and those that direct the
transformation and set isContractum to false (such as the both attributes on
sub). The expression p(e1, ..., en) is evaluated with isContractum = true unless
three conditions hold, indicating that isContractum should be set false. These
are:

– p matches the production of the tree the attribute is evaluated on,
– each ei is either xi or xi.attr for some attribute attr, and
– the constructed tree will be the root (not some subtree) of the tree eventually

computed as the value of the attribute whose equation is being evaluated.

The first two conditions are simple to validate, and the third is determined by a
new boolean flag er which is added to the left of the turnstile in the evaluation
relation defined below. In our running example, in the expd attribute on negate,
the sub node is evaluated where er = true and the const(0) node is evaluated
where er = false.

getLabels requires a new finite set L with type labels×P×A which statically
defines labels for each attribute on each production. Calling getLabels(t) returns
the set of labels associated with the production p and attribute attr which con-
structed t, denoted Lp

attr. These labels may be different for every application,
but possible labels for AGs include “translation”, “rephrasing”, “local”, “inher-
ited”, and “synthesized”. Other customizable labels refer to the task completed

Origin Tracking in Attribute Grammars 293

getRedex(t) =
if t = ⊥ then ⊥
else if t .redex �= ⊥ then t .redex

else getRedex(parent(t))
(a)

getContractum(t) =
if t = ⊥ then ⊥
else if t .redex �= ⊥ then t

else getContractum(parent(t))
(b)

Fig. 7. Definitions of getContractum and getRedex using pseudo code

by a given attribute, such as “replace negation with subtraction”. Though these
labels are strings, we do not exclude the possibility for labels of other types.

getRedex and getContractum require a single new annotation called redex
which contains either a path to the redex of the tree the annotation resides on
or ⊥, indicating that there is no redex. Both getContractum and getRedex are
defined using a helper function parent which returns the parent node of its given
subtree or ⊥ if it does not have a parent. getRedex is defined in Fig. 7(a), and
getContractum is defined in Fig. 7(b).

Consider the following nodes in the output tree in the example from Sec-
tion 1: sub, the inner add, and mul. The sub node, ts, was constructed by the
expd attribute on negate and getIsContractum(ts) = true, getRedex(ts) re-
turns a path to the negate node, and getContractum(ts) returns a path to ts.
The add node, ta, was copied by the inner mul in the input tree using a new
copy which defines ta’s redex as a path to the inner mul in the input tree.
Also, getIsContractum(ta) = false and getContractum(ta) returns a path to ta.
The mul node, tm, was unchanged by the transformation and is not new, so
getIsContractum(tm) = false , and getRedex(tm) = getContractum(tm) = ⊥.

Below are invariants relating the above functions and origins on a tree t with
children t1, ..., tn. Each invariant is followed by a brief description.

getOrigin(t) = ⊥ =⇒ ¬getIsContractum(t) ∧ getRedex(t) = ⊥ ∧
getContractum(t) = ⊥ ∧ getLabels(t) = {}

If the origin is undefined (which only occurs on initial trees) then the above are
default values for each of the properties.

getIsContractum(t) =⇒ getOrigin(t) �= ⊥ ∧ getRedex(t) �= ⊥∧
getContractum(t) �= ⊥

If the tree was constructed by a transformation, then its origin, redex, and
contractum are defined.

getOrigin(t) �= ⊥ =⇒ ∀ti(getOrigin(ti) �= ⊥)

If the origin is defined, then the origin of every child of t is defined.

(getRedex(t) �= ⊥ ∧ getContractum(t) �= ⊥) =⇒
∀ti(getRedex(ti) �= ⊥ ∧ getContractum(ti) �= ⊥)

294 K. Williams and E. Van Wyk

If a tree defines both its redex and contractum, then each of its children define
their redexes and contractums.

getRedex(t) �= ⊥ ⇐⇒ getContractum(t) �= ⊥

The redex is defined if and only if the contractum is defined. This is should be
clear from each of their definitions.

4.2 Evaluating Extended Origins in Attribute Grammars

As seen above, extending origins requires three new annotations: isContractum,
redex, and labels. Thus the tree value form p(v1, ..., vn|v) in v is replaced by
p(v1, ..., vn|v, v, v, v) where the first annotation is the node’s origin, the second
holds isContractum, the third holds redex, and the last holds labels.

Also, two items are added to the left of the turnstile in the evaluation rules: er
(used for setting isContractum) and the name of the attribute being evaluated,
a, to find the correct set of labels. Thus evaluation rules have the form

σ, t , a, er � e → v .

Many of the evaluation rules used for origins are only changed to use this
extended form and thus are not shown. Some only require the addition of the
two variables in the consequent, as shown here:

i > 0

σ, t , a, er � xi → t · [i]
(E-EO-Child)

This applies to E-EO-Root, E-EO-Local, and E-EO-BVar. Others, includ-
ing E-EO-IfTrue, E-EO-IfFalse, E-EO-Case, and E-EO-FuncApp, simply
use the new form in the antecedent, passing along the new values a and er in the
evaluation of their component expressions. Recall that function application with
origins constructs origins based on the tree on which the attribute is being eval-
uated. Similarly, the annotations introduced in extended origins are constructed
independently of the function being evaluated as they are also passed along as
values to the left of the turnstile.

The rule for attribute access requires a notable modification. Consider the
reducing transformation conducted by mul in the example in Fig. 1. If the left
child of mul is const(1), then the node’s simp attribute returns a copy of the
simp attribute on the node’s right child. If tree copying remains unchanged
and copies every annotation on the tree, then the resulting attribute might not
define the correct redex. In our example, it would not define any redex. This
is inconsistent with the description of getRedex which should define a redex
because a transformation has changed the tree. We explicitly define the copy
functionality for attribute access for extended origins. The copy is shown in
Fig. 8(a), and the new rules are shown here:

σ, t , a, true � var → h

σ, t , a, true � var .attr → copy(h.attr , t)
(E-EO-SynInhR)

Origin Tracking in Attribute Grammars 295

copy(t ′, r ′) =
if type(t ′) ∈ PT then t ′

else case t ′ of
q(t ′1 , ..., t

′
k |o, n, r , l) →

q(copy(t ′1 ,⊥), ..., copy(t ′k ,⊥)),
| o,n, if r ′ �= ⊥ then r ′ else r , l))

(a)

duplicate(h, r ′, l ′) =
if (type(∗h) ∈ PT then ∗ h
else case ∗ h of

q(t ′1 , ..., t
′
k |o,n, r , l) →

q(duplicate(h · [1],⊥, l ′), ...,
duplicate(h · [k],⊥, l ′)
| h, false, r ′, l ′)

(b)

Fig. 8. Definitions of copy and duplicate for extended origins using pseudo code. copy
only modifies the redex if r′ is not ⊥, and duplicate specifies every annotation.

σ, t , a, false � var → h

σ, t , a, false � var .attr → copy(h.attr ,⊥)
(E-EO-SynInhNR)

In E-EO-SynInhR, the expression will return a value which is the root of the
value computed for attribute a, so the value of the attribute attr on h is modified
to have a redex pointing to t. In E-EO-SynInhNR, the expression will not be
the root of the value on attribute a, so it is copied with an undefined local redex.

The rules for new, and thus the duplicate function, must be modified to con-
struct correct values for new annontations isContractum, redex , and labels for
duplicated trees. Our original example does not include any such common vari-
ables cases, for example if in the simp equation on mul we replaced r .simp with
just r. In this case the new tree should have isContractum set to false and redex
set to a path to the mul node. We define a new duplicate which modifies the
one in Fig. 6 and inserts the new annotations. The new definition of duplicate is
shown in Fig. 8(b), and the new rules that replace E-New are shown here:

σ, t , a, true � var → h

σ, t , a, true � new var → duplicate(h, t ,L
prod(t)
a)

(E-EO-NewR)

σ, t , a, false � var → h

σ, t , a, false � new var → duplicate(h,⊥,L
prod(t)
a)

(E-EO-NewNR)

In E-EO-NewR, new is evaluated such that the given path is duplicated and
given t as a new redex if er = true and ⊥ if er = false.

This last set of rules demonstrates the greatest difference between the eval-
uation of origins and extended origins. Since we need to determine if a tree
is part of the contractum to set isContractum and set its redex annotation
the single rule E-O-Tree is replaced by three rules shown in Fig. 9. Rule E-

EO-NotCntr defines the case in which the constructed tree has a context or
common variables type of origin and is not a constructed as part of the con-
tractum (abbreviated Cntr in rule names). In this case the constructed tree
does not have a redex and sets isContractum to false . The mul node in the

296 K. Williams and E. Van Wyk

q = prod(*t) ∀i1n(ei = new xi ∨ ei = xi.attr) ∀i1n(σ, t, a, false � ei ⇒ vi)

σ, t, a, true � q(e1, ..., en) ⇒ q(v1, ..., vn|t, false,⊥, L
prod(t)
attr)
(E-EO-NotCntr)

¬(q = prod(*t) ∧ ∀i1n(ei = new xi ∨ ei = xi.attr)) ∀i1n(σ; t , a, false � ei → vi)

σ; t , a, true � q(e1 , ..., en) → q(v1 , ..., vn |t , true, t ,Lprod(t)
a)
(E-EO-CntrRoot)

∀i1n(σ; t , a, false � ei → vi)

σ; t , a, false � q(e1 , ..., en) → q(v1 , ..., vn |t , true,⊥,Lprod(t)
a

(E-EO-CntrChild)

Fig. 9. Tree construction rules for extended origins

original example’s output is an example of this. E-EO-CntrRoot defines the
case where the tree being constructed may be the root of the computed attribute
value and is part of the contractum, resulting in a node which defines its redex
to be t and isContractum = true. This resembles the auxiliary symbols origin
case, and the sub node in the original example’s output is an example of this.
The final rule, E-EO-CntrChild, the constructed tree sets isContractum to
true and has no redex since it is not the root of the value of the computed
attribute. This resembles the auxiliary symbols origin case, and const(0) in the
original example’s output is an example of this. Recall, setting redex to ⊥ does
not mean that the getRedex function will not be able to find the root of the
redex on a parent node.

5 Applying Extended Origins

This section explores an application of extended origins to a language extension
built using Silver. This extension is for parallel matrix programming [15] based
on ideas from Halide [12], a tool intended for writing high-performance image
processing code which separates the “algorithm” (the operations to be evaluated)
from the “schedule” (the transformations which specify the order in which the
operations are evaluated). The schedules in Halide are designed to not affect the
semantics of the algorithm and only modify where and when operations take
place (e.g. by tiling, parallelizing, or vectorizing loops).

As an example of this, the code in Fig. 10(a) constructs a 2-dimensional
gradient matrix grad based on indexes x and y. The result of applying the
two schedules is shown in Fig. 10(b). The two schedules have parallelized the
y dimension (parallelize y) and designated the y loop as the outermost loop
(reorder y, x). These are the only schedules discussed in this paper, but we do
not claim that these two schedules are sufficient for high performance computing;
instead, they were selected based on their transformations and how they interact
with extended origins.

In this small example, many relations are obvious. The OpenMP pragma must
have been generated in some way by the parallelize schedule and the y iteration
occurs outside of the x iteration due to the reorder schedule. Consider if this

Origin Tracking in Attribute Grammars 297

grad(x,y) = x + y {

parallelize y;

reorder y, x;

}

(a)

#pragma omp parallel for ...

for y from 0 to yMax {

for x from 0 to xMax {

grad[x][y] = x + y;

}

}
(b)

Fig. 10. Example’s input and output

example included more schedules which closely interacted with each other and
were more invasive, thereby obfuscating relationships between the output code
and the initial schedules and algorithm. Such a set of schedules would output
code without any simple connection back to the original code.

By adding extended origins to this implementation, we can connect each node
of the output tree to the schedules which affected it. Intuitively, each OpenMP
pragma should be connected to a parallelize schedule, and each reorder schedules
should be connected to the nodes they rearrange.

Here, we briefly describe how an AG transforms the input code shown in
Fig. 10(a) into the code in Fig. 10(b). First, the algorithm is expanded into nested
for loops, each of which is encapsulated within its own forMarker node. The
expression nested in the deepest loop is a transformed version of the assignment
statement in the original code: grad[x][y] = x + y under a bodyMarker . The
marking nodes are used to mark where the tree should be cut when applying the
reorder schedule. This simplifies the reorder schedule because other schedules
which add new nodes must decide whether the added nodes should stay inside
a given loop (inside a loop and above the nested marker) or outside a given
loop (below a marker and above its loop). The first schedule is transformed
into its ScheduleAsRoot variation which has the remaining schedules and the
current state of the algorithm as its children. After applying its transformation, it
replaces itself with the next schedule’s ScheduleAsRoot node. After all schedules
have been applied, the markers are removed and the final tree is returned.

The parallelize schedule inserts an OpenMP pragma immediately before the
loop iterating over the given variable. To do this, a new higher-order synthesized
attribute parallel is defined on all nonterminals which replicates constructs not
affected by the transformations using equations similar to those on the add pro-
duction in the running example. On the loop which iterates over the variable
to be parallelized, the parallel attribute holds the sequence of the new pragma
followed by a copy of the original loop. Initially, the for-loop compared its iter-
ating variable against an inherited attribute parWith which held the variable to
be parallelized and, if the two variables matched, constructed the new pragma.
However, this gave the pragma an origin pointing to the loop, and therefore
cannot connect the pragma to the parallelize schedule.

We define parWith to have type ParWith, a nonterminal which defines the
new pragma as one of its attributes and with only one production which contains
the variable to be parallelized as a child. The ParWith node is constructed by
the parallelizeAsRoot node, which was in turn constructed by the parallelize

298 K. Williams and E. Van Wyk

Fig. 11. Diagram showing the result of applying the parallelization schedule using
parWith where the type of parWith is ParWith. Origins are shown with dashed arrows,
attributes are shown with dot-dash arrows, and new nodes are shown with dashed ovals.
Note that the pragma’s origin path includes both the pc and parallelizeAsRoot nodes,
and therefore also includes the parallelize node.

schedule; thus the parWith tree’s origin path includes the parallelize schedule.
In the loop’s definition of parallel , the loop copies the pragma attribute from its
parWith attribute. Thus the origin path of the pragma leads through the parWith
tree to the parallelizeAsRoot node and the parallelize schedule. This relation is
depicted in Fig. 11. Had we instead defined parWith to be a string instead of a
tree, this origin path would not exist and we would lose the relationship between
the parallel loop and the parallel schedule.

The reorder schedule acts as one would expect: it splits the loops into frag-
ments rooted at forMarker s or bodyMarker nodes, rearranges the fragments,
and re-nests the fragments in the new order. Note that this transformation out-
puts nodes which are duplicates of the input nodes, so none of the output tree’s
nodes have the reorder schedule in their origin path. Instead, the connection to
the schedule is facilitated by the redex property. The reordering of the schedules
is conducted within local attributes on reorderScheduleAsRoot , so the nodes in
the ordered list of fragments have redexes pointing to it. Thus, each of the out-
put nodes are connected to the schedule via origins to the ordered list, a redex
to reorderScheduleAsRoot , and an origin to the reorder schedule. Though this
connection seems hard to find, the local attribute holding the reordered frag-
ments can be given a label which suggests following the redex property to find
the schedule which conducts the reordering.

Origin Tracking in Attribute Grammars 299

6 Related Work

The example in Section 1 is based on van Deursen’s description of origin tracking
in primitive recursive schemes (PRS) [4]. In our addition of redex and contractum
information to origins in attribute grammars we designed the evaluation rules
for tree construction to distinguish the equations which correspond directly to
rewrite rule transformations (whose origins correspond to the auxiliary symbols
case in a PRS) from those that simply reconstruct the tree (whose origins cor-
respond to the context and common variables cases). The reason we focus on
the rewrite rules from the second phase of a PRS is that the first phase in-
cludes rewrite rules that more closely resemble attribute grammar equations.
The expansion of negate would be specified by the following rules:

expd(negate(X)) → sub(const(0), expd(X))

expd(mul(X,Y)) → mul(expd(X), expd(Y))

expd(sub(X,Y)) → sub(expd(X), expd(Y))

expd(const(N)) → const(N)

Here, expd corresponds to a synthesized attribute in attribute grammars; the
rules above can be easily transcribed into attribute grammar equations.

In fact, this is done in previous work [11] in which bidirectional transforma-
tions are specified as rewrite rules and then implemented in attribute grammars.
In that work, the translation of rewrite rules to attribute equations defines a
similar notion of origins, called “links-back”, but these are not implemented on
general attribute equations. “Links-back” are only generated from rewrite rules,
significantly simplifying the process.

PRSs and AGs can be encoded in the other formalism [3], but adding origins to
attribute grammars by encoding a PRS with origins as an AG is not as intuitive
as a direct approach. Additionally, the translation approach does not support
the extension of redex and contractum information to origins.

Various language processing systems have implemented origins tracking. These
include Spoofax [8], based on strategic term rewriting; CENTAUR [1], imple-
mented in Lisp and Prolog with some notion of attributes similar to annotations
as described here; and in the meta-programming language Rascal [9].

The annotations for origins and redexes are implemented in Silver as refer-
ence [6]/remote [2] attributes; these allow graph structures to be defined on top
of syntax trees using attributes that point to other nodes in the syntax tree. They
are useful in many settings such as linking variable uses to their declarations.

7 Discussion and Conclusion

In Silver, many of the above restrictions imposed by the simple attribute gram-
mar calculus in Section 2 are removed since the restrictions can easily be gener-
alized. In addition to the generalizations mentioned earlier, the new construct
is not used in Silver because Silver uses the context of a reference to a tree

300 K. Williams and E. Van Wyk

such as xi to determine if it should be seen as a decorated or undecorated tree.
For example, it is decorated on the right hand side of an attribute equation for
attribute evaluation and case expressions, but undecorated otherwise.

One concern regarding this definition of evaluation is that two transforma-
tions which result in the same output without origins can result in trees with
different annotations. When inserting the OpenMP pragma in the application
given in Section 5, the designer has a choice to either define the parallel attribute
on the loop as seq(pragma(...), for(...)) or seq(pragma(...), x0). The former con-
structs a new tree for the loop which defines isContractum = true, while the
latter duplicates the original tree such that isContractum = false . This is incon-
sistent, and one could argue that isContractum = false is the best result for this
transformation. However, such a decision would disagree with the currently held
correlation between PRS origin cases in Section 1 and the isContractum anno-
tation. Currently, nodes with origins constructed by either context or common
variables cases define isContractum = false, and nodes with origins constructed
by the auxiliary symbols case define isContractum = true. This is a classic case
of two unique transformations which construct the same tree (excluding anno-
tations). We expect to find no issues with allowing some nodes with auxiliary
symbols origins to define isContractum = false, but more research is required
before any further claim can be made.

One area of future work is to determine how best to use the information
tracked by extended origins. How can we effectively present the data collected in
the Halide-inspired language extension to the programmer? This is beyond the
scope of this paper, but we can be assured that we have the raw data required.

Extended origins may also be useful in debugging attribute grammars. Algo-
rithmic debugging [7] is a search technique applied to attributed syntax trees,
following the structure of the tree and (local) higher order attributes. Extended
origins provide additional “edges” that may be traversed during debugging in
searching for the errant attribute equation, but more research into this is needed
to determine how useful that would be in practice.

We have not yet analyzed how tracking origins affects the amount of memory
Silver uses. More trees are kept in memory and not garbage collected due to the
origin and other references. In many applications using origins such as debugging
and transformation visualization we may run Silver in a “debug” mode to track
origins and pay the memory cost, but then turn it off for other applications.

To conclude, in this paper we defined origin tracking in attribute grammars
according to core themes shown in their construction in PRS. After showing that
origins provide little context, four additional properties and their accessors were
defined and added to define extended origins. These properties were shown to
provide meaningful connections between nodes and schedules through complex
transformations. Future work includes applying other complex transformations
and analyzing how they interact with extended origins.

Acknowledgments. We thank the anonymous reviewers for their helpful com-
ments. This work is partially supported by NSFAwards No. 0905581 and 1047961.

Origin Tracking in Attribute Grammars 301

References

1. Borras, P., Clement, D., Despeyroux, T., Incerpi, J., Kahn, G., Lang, B., Pascual,
V.: Centaur: The system. SIGPLAN Not 24(2), 14–24 (1988)

2. Boyland, J.T.: Remote attribute grammars. J. ACM 52(4), 627–687 (2005)
3. Courcelle, B., Franchi-Zannettacci, P.: Attribute grammars and recursive program

schemes I and II. Theoretical Computer Science 17(2), 163–191, 235–257 (1982)
4. van Deursen, A.: Origin tracking in primitive recursive schemes. In: Conf. Proc.

Computing Science in the Netherlands. pp. 132–143, available as technical report
CS-R9401. Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands
(1993)

5. van Deursen, A., Klint, P., Tip, F.: Origin tracking. Journal of Symbolic Compu-
tation 15, 523–545 (1992)

6. Hedin, G.: Reference attribute grammars. Informatica 24(3), 301–317 (2000)
7. Ikezoe, Y., Sasaki, A., Ohshima, Y., Wakita, K., Sassa, M.: Systematic debugging

of attribute grammars. In: Proc. 4th Int. Workshop on Automated Debugging, pp.
235–240 (2000)

8. Kats, L.C.L., Visser, E.: The Spoofax language workbench. Rules for declarative
specification of languages and IDEs. In: Proc. of ACM Conf. on Object Oriented
Programming, Systems, Languages, and Systems (OOPSLA). ACM (2010)

9. Klint, P., van der Storm, T., Vinju, J.: Rascal: a domain specific language for
source code analysis and manipulation. In: Proc. of Source Code Analysis and
Manipulation, SCAM 2009 (2009)

10. Knuth, D.E.: Semantics of context-free languages. Mathematical Systems The-
ory 2(2), 127–145 (1968), corrections in 5 (1971)

11. Martins, P., Saraiva, J., Fernandes, J.P., Van Wyk, E.: Generating attribute
grammar-based bidirectional transformations from rewrite rules. In: Proc. of the
ACM SIGPLAN 2014 Workshop on Partial Evaluation and Program Manipulation
(PEPM), pp. 63–70. ACM (2014)

12. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.:
Halide: A language and compiler for optimizing parallelism, locality, and recom-
putation in image processing pipelines. In: Proc. of ACM Conf. on Programming
Language Design and Implementation (PLDI), pp. 519–530. ACM (2013)

13. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: an extensible attribute
grammar system. Science of Computer Programming 75(1–2), 39–54 (2010)

14. Vogt, H., Swierstra, S.D., Kuiper, M.F.: Higher-order attribute grammars. In: Proc.
of ACM Conf. on Programming Language Design and Implementation (PLDI), pp.
131–145. ACM (1989)

15. Williams, K., Le, M., Kaminski, T., Van Wyk, E.: A compiler extension for parallel
matrix programming. In: Proc. of the International Conf. on Parallel Programming
(ICPP) (September 2014)

Dynamic Scope Discovery

for Model Transformations

Māris Jukšs1, Clark Verbrugge1, Dániel Varró3, and Hans Vangheluwe2,1

1 School of Computer Science, McGill University
Montréal, Québec, Canada

{mjukss,clump,hv}@cs.mcgill.ca
2 Department of Mathematics and Computer Science

University of Antwerp, Belgium
hans.vangheluwe@uantwerp.be

3 Department of Measurement and Information Systems
Budapest University of Technology and Economics, Hungary

varro@mit.bme.hu

Abstract. Optimizations to local-search based model transformations
typically aim at effectively ordering the traversal of pattern edges to re-
duce the search space. In this paper we propose a dynamic approach to
on-line discovery of rule application areas. Our approach incorporates
tracking transformation progress in the input model using temperature-
based coloring of model elements. The resulting heat map is used to
discover possible rule application scopes ahead of rule execution. Fur-
ther refinement of scopes is achieved by applying a Naive Bayes (NB)
classifier to predict a set of possible match candidates. NB is well suited
for the computationally intensive environment of model transformations
due to its incremental training phase and low classification overhead. Our
design is intended to take a runtime, black-box approach to observing
and learning from the transformations as they are executed. Finally, we
demonstrate a prototype evaluation of the approach in our transforma-
tion tool AToMPM [24] and address the benefits, limitations as well as
future applications.

Keywords: model transformations, learning from transformations, model
transformation optimization, supervised learning, scope.

1 Introduction

Local search based techniques [32,6,12,28,27,7] frequently serve as the execu-
tion strategy of model (or graph) transformation systems. These strategies start
pattern matching from some initial node(s) and gradually extend the match can-
didate along edges in the neighborhood of already matched nodes in accordance
with some search plan. Search plans provide an efficient ordering on pattern
edges calculated mostly in a preprocessing phase [32,6,12] or adaptively at run-
time [27,7,9].

B. Combemale et al. (Eds.): SLE 2014, LNCS 8706, pp. 302–321, 2014.
c© Springer International Publishing Switzerland 2014

Dynamic Scope Discovery for Model Transformations 303

In this paper, we present a dynamic, black-box approach to runtime search
space reduction of graph pattern matching in model transformations, which is
complementary to existing search plan based approaches. Our design passively
observes the transformation process to collect nodes which will likely constitute
a match of the next transformation rule. For this purpose, we make use of two
techniques. First, we incorporate a temperature-inspired coloring of the input
model elements into the transformation engine. We observe model elements as
they are “touched” by the transformation, and color the nodes according to a
simple temperature schema. The resulting heat-map can then be used to con-
struct an initial, reduced search space that is passed on to the pattern matcher.

Further refinement of this search scope is then achieved by applying a variant
of a supervised machine learning technique, based on a Naive Bayes classifier [16].
At runtime, successful matches are used incrementally as positive training ex-
amples to help with further prediction. The training examples reference the
heat-map in addition to domain specific properties of the model elements that
contribute to matches, and may include structural graph information as well.
The classifier is then used to decide whether the node should be included in
the refined search scope. Our approach is primarily intended for long-running,
simulation-oriented transformations, where transformation evolves in the neigh-
borhood. The benefit and applicability of our approach to other types of trans-
formations need to be investigated in the future work.

To validate and assess our process for model simulation transformations, we
experimentally examine two non-trivial graph transformations. We show the
effect of different parametrization of scoping on both transformations. Through
this, we demonstrate that the temperature-based approach in itself and also
combined with NB are effective at reducing the search scope. We achieve a high
overall success rate of 90 percent in case of single resource mutual exclusion
benchmark and reduce the size of the search scope at least 10 times in case of
forest-fire simulation. Specific contributions of this paper include:

– We describe a temperature-based system for tracking and predicting the
scope of rule matches in model transformation. This runtime technique pro-
vides heuristic information that helps identify possible matches without ex-
plicit reference to rule content or scheduling information.

– Improvement to the scope discovery is further facilitated by incorporating
machine learning into the search process. A Naive Bayes classifier is trained
at runtime, filtering “warm” nodes to more accurately identify model ele-
ments that have a high probability of being part of a successful match.

– Feasibility and performance of our design is evaluated by experimenting with
both a mutual exclusion benchmark [29] and a forest fire simulation [14] using
the research oriented tool AToMPM [24]. This work demonstrates effective-
ness in both graph-modifying and pure simulation contexts, and illustrates
the impact of different parametrization of our technique.

In Section 2 we give some necessary background of graph pattern matching.
Section 3 then presents our approach, explaining both the temperature and NB

304 M. Jukšs et al.

scope refinement mechanisms. Experiments are discussed in Section 4. Section 5
discusses related work, and finally, section 6 gives conclusions and future work.

2 Background

As relevant background information, we overview the concepts of graph pat-
tern matching, which is a key component of many model transformation engines
based on local search based techniques. To illustrate the basic terminology, a dis-
tributed mutual exclusion algorithm (with full specification in [10] and proposed
as a transformation benchmark in [29]) will be used as a running example.

We assume that the main concepts of a domain are captured by an associated
metamodelMM together with their attributes and relationships thus defining the
abstract syntax of a corresponding domain-specific language. Domain concepts
are specified as classes which may have attributes that define some kind of
properties of the specific class. Associations define connections between classes.
Both ends of an association may have a multiplicity constraint attached to them,
which declares the number of objects that, at run-time, may participate in an
reference. The most typical multiplicity constraints are the at most one (0..1),
and the arbitrary (denoted by *) designations. An instance model M describes a
concrete system defined in a modeling language and we assume that it is a well-
formed instance of the metamodel (thus additional well-formedness constraints
are also respected). Typically instance models are represented as graphs, class
instances correspond to nodes and associations to edges.

Process

Resource

next

blocked

Mutex

held_by releasetoken

request
*

0..1

*

0..1
*

0..10..10..1

**
*

*

Fig. 1. Metamodel for the mutual exclusion problem [29]

A metamodel of the mutual exclusion problem is depicted in Fig. 1, which
contains only two classes called Process and Resource. These classes are connected
by references of type next, request, held by, release, token, and blocked.

2.1 Graph Transformation Rules

Rule-based model transformations are frequently captured by means of graph
transformation rules r = (LHS,NAC,RHS), which consists of a left hand side

Dynamic Scope Discovery for Model Transformations 305

(LHS) pre-condition pattern (with optional negative application condition (NAC)
pattern) and the right hand side (RHS) post-condition pattern.

The application of a rule r to an instance model M replaces a match of the LHS
in M by an image of the RHS. This is performed in a graph pattern matching
and a rewrite phase. (1) In the graph pattern matching phase, a transformation
engine needs to find a match m : LHS �→ M of LHS in M and then consecutively
check the negative application conditions NAC which prohibit the presence of
certain nodes and edges in the instance model. In the rewrite phase, (2) the
engine removes a part of the model M that can be mapped to LHS but not to
RHS yielding the context model and then glues the context model with an image
of the RHS by creating new objects and links (that can be mapped to the RHS
but not to the LHS) to obtain M ′ as result of the transformation step.

r:Resource

p:Process

r:Resource

ReleaseRule

hb:held_by

reqn:request
rel:release

rn:Resourcep:Process

(a) releaseRule

p1:Process

r:Resource

GiveRule

n:next
p2:Process

rel:release

p1:Process

r:Resource

n:next
p2:Process

t:token

(b) giveRule

p:Process

RequestRule

t:token

r:Resource

reqn:request

p:Process

t:token

r:Resource

req:request

(c) requestRule

p:Process p:Process

r:Resource

TakeRule

t:token

r:Resource

req:request hb:held_by

(d) takeRule

Fig. 2. A subset of rules describing the mutual exclusion algorithm [10,29]

In Fig. 2 the four rules of the mutual exclusion algorithm used in Varró et al.’s
benchmark [29] are presented (out of the total 13 rules in [10]). For instance,
releaseRule (Fig. 2(a)) prescribes by its LHS that a resource r needs to be held by
a process p, while its RHS contains the same nodes p and r connected by an

306 M. Jukšs et al.

edge of type release. The releaseRule also has a negative application condition
which expresses that the process p is not allowed to have any requests issued for
any resources. Furthermore, releaseRule captures that if a process p requests a
resource r which is eventually granted by a respective token, then process p can
grab resource r .

2.2 Graph Pattern Matching

In this work, we are interested in improving the pattern matching process for
LHS, which is the most computationally intensive task for local-search based
approaches. Any local search based technique starts graph pattern matching
from an initial set of nodes of the instance model (called initial seed), and then
tries to match each edge of the graph pattern in the instance model one by one.
For this purpose, two main match operators are defined in the VF2 algorithm
framework [5] as follows:

– Check: This operator takes two nodes in the graph pattern which are already
matched, and checks for the existence of a specific type of edge between the
two nodes. As a result, check is a cheap operation assuming the existence
appropriate indexes on the source and target nodes.

– Extend: This operator takes one node in the graph pattern which is already
matched, then selects an unmatched outgoing edge from the node (or incom-
ing edge to this node), and tries to extend the match along a corresponding
edge in the instance model. For this purpose, all potential model edge candi-
dates need to be investigated one by one. If there are many edge candidates
for extending the match then the extend step can be complex, which is nor-
mally the case when navigating along edges with to-many multiplicities.

In the current paper, we assume that edges can be navigated in both directions
(i.e. from its source node to its target node or vice versa). If this is not the case
for a specific modeling framework (e.g. reverse navigation can be inefficient in
EMF), then it can be reflected by assigning navigation costs accordingly.

The cost of graph pattern matching can be defined as the size of the search
tree, i.e. the number of model elements visited during the pattern matching
step, which depends on the size of the graph pattern and the branching factor
at each decision point. For a graph pattern with k elements and ni branching
factor (i.e. the number of potential instance nodes to match) at decision point i,

the size of the search tree is calculated as the sum-product ST =
∑k

j=1

∏j
i=1 ni.

A smaller search tree means more efficient execution, and thus estimating the
cost of graph pattern matching has been central to many existing graph pattern
matching approaches, e.g. [28,7,27,9].

Existing approaches (see also Section 5) focus on defining a good ordering
on the edges of the graph patterns either statically in a preprocessing phases or
dynamically at runtime. The main idea of these approaches is to start matching
cheap edges of the pattern, i.e. those with small branching factor. For instance,
navigating along an edge with an at most one multiplicity guarantees to either

Dynamic Scope Discovery for Model Transformations 307

succeed or fail, thus its branching factor is 1. As a consequence, the search process
for matching rule releaseRule would start with matching edge token (with at most
one multiplicity) before matching edge request (with arbitrary multiplicity).

In many cases, the most critical decision is where to start the pattern matching
as the first pattern node can typically be matched to many possible instance
model nodes. For instance, assuming the search order (1) extend: token(r,p); (2)
check: request(p,r) in case of releaseRule, we need to consider (and enumerate)
all model nodes of type Resource before starting navigation along the first token
edge.

Our paper proposes a complementary optimization technique to existing
approaches in order to reduce the branching factor at each decision point dy-
namically at execution time independently from the search plan (i.e. the edge
ordering) of a graph pattern. We aim at filtering match candidates by giving
priority to (1) recently touched nodes (calculated using a heat map) and (2)
nodes which constitute a match with higher probability (estimated by Naive
Bayes classifier).

3 Dynamic Scope Discovery

Our overall design for dynamic scope discovery builds on two main components.
Below we first give an overview of how the process is integrated into a trans-
formation system, followed by details of the temperature and the Naive Bayes
classifier components.

3.1 Overview

Our approach to scope discovery is embedded within the graph pattern match-
ing process of a typical model transformation system. Fig. 3 presents a general
overview of this integration with rectangles representing the major steps carried
out in the pattern matching phase model of a transformation system.

Fig. 3. Dynamic scope discovery and matching (new components are shaded)

308 M. Jukšs et al.

– Operation phase: During main operation, our basic design carries out
graph pattern matching in two phases using any existing matcher component.
First, a reduced (scope) graph is computed by filtering, and pattern matching
is initiated on this reduced graph (middle pattern matching box in Fig. 3).
A valid match on this reduced graph is guaranteed to be a valid match of
the full graph. But since this approach is optimistic, we retain the pattern
matching of the full graph as a fallback (right box) when pattern matching
on the reduced graph fails.

– Filtering phase: The filtering of nodes for obtaining the reduced scope
graph is carried out by a combination of two techniques. (1) First, a heat
map of model nodes is calculated : if a transformation rule touches (matches,
modifies) a model node then it becomes a warm node. Several subsequent
matches heat up a node, which gradually cools down if it is no longer part
of a match. The number of warm nodes in the system, and subsequently the
size of the scoped model, is directly dependent on parameters of the warming
and cooling process, which will be described in Section 3.2. (2) The exact
population of the warm set is also reduced by a Naive Bayes classifier. This
classifier is trained using the matches produced during the pattern matching
phase, and is then used to further filter the warm set. Note that is a simplified
view, and the filtering step can more generally contain an arbitrary chain of
filters that refine the warm node input.

– Initialization and Training phase: Initial pattern matching is performed
on the full model when all nodes are cold in the system. The scoped model is
thus initially empty, and the scoped pattern matching fails. As we observe the
matches of the transformation rules, warm nodes are discovered, populating
the Scoped Model subset, and scoped pattern matching may succeed. The
training of the Naive Bayes classifier can be carried out either in a prepro-
cessing phase (i.e. prior to a transformation run), or during transformation
execution.

As a result, matching a pattern on a scope graph will probabilistically reduce
the complexity of matching by reducing the branching factor. We expect that
this can be a significant reduction for simulation kind of model transformations,
which may exploit the strong locality of subsequent execution steps.

3.2 Warming the Nodes

Coloring input graph nodes with temperature values is a straightforward way
of representing frequency of access to the graph nodes and thus the temporal
locality of transformations: high temperature nodes are frequently accessed (or
near to ones that are), and so likely to be part of a future, successful match
and/or rewrite, while low temperature nodes are outside the current locus of
activity, and so less likely to be part of a match.

Node temperature is maintained by augmenting the transformation engine
with the ability to color/heat the nodes belonging to a match. At rewrite time,
every node in a match chosen by the engine for a rewrite will be tagged with

Dynamic Scope Discovery for Model Transformations 309

a temperature value. In our system this means updating temperature attribute
of a node. This temperature attribute is created at runtime, transparent to the
language engineer and is not part of the attributes specified in the metamodel
for the language being transformed.

Node temperature is expected to increase on frequent access, and decrease
if not accessed over time. We track the temperature changes of a node using a
global timer that counts the number of rule executions during transformation.
References to warm nodes and the time of the last temperature change are kept
in the temperature list, which defines the temperature scope. Nodes that are not
participating (not matched and/or colored) in the transformation for a number
of rule executions will be cooled down. We call the number of rule executions
that must occur before a node begins cooling as the node’s warm time. The
decision to cool down nodes is made at every transformation step. Reference to
a node is removed from the temperature list once the temperature of the node
cools down to zero.

Temperature values in our system range from 0 to 100 (temperatures ex-
ceeding maximum value are scaled back to 100), with increments occurring in
discrete steps. For simplicity we chose to decrease the node temperature to zero
after its warm time expires. However, temperature decrease step can be equal
to a discrete value similar to temperature increase step. For each node in the
match the temperature is increased by 40 degrees. Nodes in the neighborhood of
a match are also colored with a temperature, although with a smaller increase
to indicate less confidence; we used a step of 20. In our case we consider only
immediate neighborhood, using single hop distance, and exploring the effects
of variable-size neighborhoods on our approach is future work. All temperature
related values were specifically chosen for the purpose of this paper and their
variation needs to be explored in the future work as well.

Once temperature is updated, we compose the warm set as a subgraph of
the instance model where all nodes have temperature higher than 0, without
making any distinction of the temperature values. Diversity in temperature steps
is intended primarily for the NB classifier described in the next section. Without
NB, it would be sufficient to use two values for the temperature: 0 or 100, cold
or hot.

Heat map example: Mutex. Fig. 4 illustrates the basic heating process, showing
the application of releaseRule on a model of a ring of processes with a single
resource. Note that we omit labels on the connections between processes; they
are of type next. Here nodes participating in the current rule application are
shaded, and all nodes in the model initially have temperatures equal to zero (we
only show temperatures of the elements participating in the rule application and
their neighbors). The right side of the figure shows the result after the matching;
as described above, matched nodes are warmed up to 40 degrees, and immediate
neighbors are warmed up to 20.

Heat map example: Forest-fire. A finer-grain example of temperature is shown
in Fig. 5, showing a stage in the forest-fire simulation transformation we will

310 M. Jukšs et al.

Fig. 4. Application of releaseRule on a model (left) results in warmed up nodes (right)

Fig. 5. Forest-fire simulation rendering (left) with burned out, black cells in the middle
and the model heat map over the cells (right)

evaluate with our approach in Section 4. Note that we omit the metamodel and
the transformation rules of this example for brevity; full details are available in
earlier work [14]. In this simulation a fire spreads across a 2D grid of neighboring
cells starting in the center. Each cell in a grid represents a forested area which
may catch fire if any neighboring cells are on fire. Once fully burned, a cell
represents a barrier to further fire spreading. The simulation terminates when no
burning cells remain. Assuming all cells are exactly the same and in the absence
of wind effects, fire will spread in a circular fashion (discretely represented).

In Fig. 5 on the left, there are dead, burned out cells in the middle of a fire
ring of width of 2. On the right is the heat map over the input model of the
cells on the left. We can see that white nodes in the middle of the heat map
are cold (0 degrees). These nodes correspond to dead trees on the left, they are
not touched by transformation anymore and therefore cool down. Black nodes

Dynamic Scope Discovery for Model Transformations 311

are the hottest, they were matched several times recently. Going outwards the
temperatures of the nodes decrease, as some rules are yet to match these nodes in
the process of spreading fire. The least warm, outer nodes have the temperature
of 20 degrees, they are immediate neighbors of match nodes and are likely to be
touched in the next iteration transformation.

A subgraph created from the temperature list is then passed to a matcher
for the initial match attempt. Note that temperature scope approach does not
guarantee a match especially for the transformations with random behavior, and
correlation of the heat-map with match success strongly depends on the degree
of locality in matching. Our design also depends on rule application mainly being
interested in finding any match, rather than all possible matches. Contexts where
all possible matches are necessary are not suitable for the heuristic filtering
enabled by temperature based matching.

3.2.1 Complexity of Dynamic Heatmaps. Maintaining match scope
through temperature allows for a reduced search space, but requires non-trivial
bookkeeping to track the warm set. Depending on the warm time of the nodes
and the transformation process, warm set can grow at most to the size of the
input model. Therefore it is important to handle the warm set efficiently. For
this we use an ordered set data-structure, with node ordering based on the time
the temperature of a node was last changed.

The first heating of a given node implies inserting it into the tree, while reheat-
ing a node requires removing and reinserting. Node cooling requires searching
the tree, with possible removals from the tree if nodes were cooled down to 0. A
simple minimum-temperature value can be used to avoid processing cool-downs
until necessary, but identifying the nodes needed for cooling requires searching
for the n nodes at minimum temperature. By using an augmented red-black tree
that allows interval search, we can perform inserts and deletions in O(log n)
worst case time, and find the now-cold nodes in time O(log n). The efficiency
of this approach thus depends on the trade-off between performing these addi-
tional data-structure operations and the corresponding reductions in search cost.
Investigation of this trade-off is planned in future work.

3.3 Scope Refinement by Naive Bayes Classifiers

The temperature scope described in previous subsection may be larger than
necessary to find a match. This is especially apparent when nodes cool down
slowly and the temperature scope grows correspondingly large. More aggressive
cooling would mitigate this, but requires a cool-down threshold well tuned to the
transformation. Our design thus instead makes use of a Naive Bayes classifier
to learn from features describing the nodes involved in the transformation at
runtime, including temperature, and so further refine the subset of relevant nodes
fed to the matcher.

A Naive Bayes classifier is a simple machine learning technique that makes an
independence assumption on the training data [16]. With a training vector of fea-
tures for a given class, we assume that each feature is independent and does not

312 M. Jukšs et al.

affect the conditional probabilities of these features given a class. This approach
is simplistic of course, but NB is known to perform well in many classification
applications, and speed in our design is important—an independence assumption
greatly simplifies the calculations necessary. The incremental training phase for
NB is also an advantage.

Training is performed after each rewrite, with each node that is part of a
successful match participating in training before being changed in the rewrite
step. We consider each node in the pattern as an independent entity disregarding
relationships between nodes. This simplifies training and the classification. The
class or the label of the training example is the identifier of the rule, and the
training features of the nodes are the domain specific attributes, node type and
the temperature. For example in the case of the mutual exclusion transformation
described in Section 2, nodes may have domain attributes such as name of the
process and resource, process priority, etc. Each of the domain specific attributes
including the temperature constitutes an independent training feature. Graph
structure also carries a lot of information that can be harnessed, and we plan
in future work to also consider structural graph attributes such as node degree,
number of incoming or outgoing edges, etc.

Training consists of keeping track of the number of distinct feature values
encountered for each rule identifier. At this stage, features with continuous values
such as temperature require discretization for efficient training [31]. Here we use
a simple binning approach, based on 10 bins of equal size. Other approaches are
possible, such as to assume the numerical value to be part of normal (Gaussian)
distribution [31].

In NB, the probability P (Y |X) of a class Y given set of features X =
〈X1, X2, .., Xn〉 is calculated as:

P (Y |X) = P (Y)

n∏

i=1

P (Xi|Y) (1)

In Fig. 6, we show the application of giveRule on a portion of the model shown
in Fig. 4. The match is shaded on the left, and the effect of the rule is shown
on the right with updated temperatures according to rules described earlier.
Before rewriting, the match is used for training NB. We have three feature vector
corresponding to the three nodes in the match on the left. We only use type of
the node and its temperature to demonstrate the concept. X1 = 〈process, 40◦〉,
X2 = 〈process, 20◦〉, X3 = 〈resource, 40◦〉. The label for training is the giveRule
identifier. Thus statistics accumulated for giveRule is two processes, one resource,
two 40-degree and one 20-degree temperatures. At the filtering step given a node
described by the feature vector X = 〈process, 20◦〉 and the upcoming execution
of requestRule from the mutual exclusion running example, the probability that
the node will be part of a match (or should be included in the scoped model) is
P (requestRule|X) = P (requestRule)P (process|requestRule)P (20◦|requestRule).

Knowing the probability, a decision is then made whether to include the node
in the refined scope or not. Essentially, there are two ways we can approach
the classification of nodes using NB. One is by calculating the probability of

Dynamic Scope Discovery for Model Transformations 313

Fig. 6. Application of giveRule on a portion of model (left) and the result (right)

nodes belonging to all possible rules (classes), using a competition approach in
which the class with highest probability “wins”. Another is through judging the
probability of one class, choosing a threshold for accepting the probability as a
description of the class. The higher computational cost of the former (competi-
tion) approach makes it less appealing in our performance-oriented context, and
so we use the latter approach with a threshold of zero.

4 Experiments

In our experimental evaluation we investigate if our concept is feasible in the
context of long-running, simulation-oriented transformations. Feasibility in our
context implies two research questions:

– RQ1: Does our dynamic scoping technique effectively reduce the search
space?

– RQ2: Does dynamic scoped matching provide satisfactory success rate?

In order to answer RQ1, we compare the size of the scoped graph wrt. the size
of the entire instance graph. In order to address RQ2, the failure of our scoped
matching technique is when the original rule has a match on the entire graph, but
a scoped matching fails to detect it. We consider scoped matching a success when
scoped matching produces a match or when the fallback matching on the full in-
put model fails. We evaluate our approach using two non-trivial transformations:
a mutual exclusion problem from the transformation benchmark suite [29], and
a forest-fire simulation from our previous work on scope [14] and introduced in
3. The latter constitutes a pure simulation benchmark, mainly modifying node
attributes, while the former requires some amount of node creation and de-
struction in representing changing edge relations in the model (model edges are
represented in AToMPM using graph nodes). First we present the benchmarks
in more detail, explain the experimental setup, followed by results presentation.

4.1 Benchmarks and Measurements

Both mutual exclusion and forest-fire transformations were executed with three
different node warm times of 10, 50, and 300. These represent short, medium and

314 M. Jukšs et al.

long node warm times. We used a simple model for cooling, immediately reduc-
ing node temperature to zero and removing it from the temperature list. Each
benchmark was executed using temperature scope matching (Temp), followed by
additional filtering using NB (Temp+NB). For evaluation purposes we maintain
several metrics at each transformation step. Metrics have global and individual
rule resolutions. We track: success rate of scoped matching, size of temperature
scope, size of scope resulted after additionally using NB filtering. We report
these in the following section (individual rule results are omitted). Evaluation
was performed on x64 i7 mobile quad-core processor with 16Gb RAM running
Ubuntu 12.10.

Experimental setup for mutual exclusion simulation. Mutual exclusion exper-
iments were executed on two types of the input models each containing 1000
processes in accordance with the benchmark setup published in [29]. First input
model contained single resource (similar to model in Fig. 4) and second input
model contained multiple resources (one resource for each process). In single
resource case, the size of the graph underlying the input model was 2002 nodes
and the multiple resource model contained 4000 nodes (counting model associa-
tions represented as nodes). Transformation applicable to both input models was
executed in an as long as possible fashion, using the sequence of rules, in the fol-
lowing order: releaseRule, giveRule, requestRule, and takeRule specified in Fig. 2.
Each rule was scheduled to execute exhaustively as long as the matches were
found, followed by the next rule scheduled in the same fashion. Each model was
simulated for several cycles after which transformation terminates. One trans-
formation cycle is defined by sequential execution starting from releaseRule and
terminating at takeRule. The multiple resource model was transformed for 4 cy-
cles, resulting in approximately 20000 rule executions. The single resource model
was simulated for 100 cycles with close to a 1000 rule executions. We observed
that this is quite sufficient to demonstrate the stability of the success rate of
scoped matching in the system i.e. transient effects (such as initialization and
training) are no longer visible.

Experimental setup for forest-fire simulation. Forest-fire simulation was executed
on a grid of 100 by 100 cells with one cell burning to start the simulation.
The number of nodes in the underlying graph is 29800 (including the nodes
representing association edges). Simulation ran until all cells burned out. We
observed that the success rate in the forest-fire simulation stabilizes after 15000
iterations.

4.2 Results

In this section we present results, demonstrating the overall success rate and the
size of scopes with respect to the iterations of transformation, where iteration
is equal to a single rule execution. All figures in this section contain legends
that are following the order of the graphs in the plot: the top line in each graph
corresponds to the top entry in the legend list.

Dynamic Scope Discovery for Model Transformations 315

Mutual exclusion results. Overall success rate of our single resource mutex bench-
mark with node warm time (WT) of 10 is presented in Fig. 7 on the left. On the
right in Fig. 7 sizes of scopes are shown for node warm times of 300 and 10 (log
scale on y axis).

1

10

100

0 200 400 600 800 1000
N

od
es

. l
og

 sc
al

e
Iterations

Scope sizes, mutex single resource

Temp. WT=300
Temp. + NB WT=300
Temp. WT=10

0

20

40

60

80

100

0 200 400 600 800 1000

Pe
rc

en
t

Iterations

Overall success rate, mutex single resource

Temp. WT=10
Temp. + NB WT=10

Fig. 7. Single resource model. Overall success rate and scope sizes

We observed that success rate does not improve after increasing WT, and a
short WT of 10 is sufficient to demonstrate a good success rate. It is evident
that NB filtering reduces success rate by about ten percent. On the right in
Fig. 7, warm scope at WT equal to 10 is presented to contrast the long WT.
With a long WT the reduction of warm scope by NB is more evident. After the
system stabilizes, warm scope is reduced by approximately 30 nodes with NB,
equivalent to 30 percent of the warm scope. NB filtering does reduce the scope
size, however, it reduced the success rate due to exclusion of some of the match
candidates.

In Fig. 8 we present the success rates of Temp (left) and Temp+NB (right)
scope matching in the multiple resource mutex model. Highest success rate in
both filtering situations is achieved at WT equal to 300. Success rate with tem-
perature filtering is at 50 percent in the worst case with WT of 10. We ob-
serve a similar reduction in success rate to the one seen in the single mutex

0
10
20
30
40
50
60
70
80
90

100

0 5000 10000 15000 20000 25000

Pe
rc

en
t

Iterations

Overall success rate, mutex multiple resource,
Temp. scope

Temp. WT=300
Temp. WT=50
Temp. WT=10

0
10
20
30
40
50
60
70
80
90

100

0 5000 10000 15000 20000 25000

Pe
rc

en
t

Iterations

Overall success rate, mutex multiple resource,
Temp. + NB scope

Temp. + NB WT=300
Temp. + NB WT=50
Temp. + NB WT=10

Fig. 8. Overall success rate, multiple resource model

316 M. Jukšs et al.

0
200
400
600
800

1000
1200
1400
1600

0 5000 10000 15000 20000 25000

N
od

es

Iterations

Scope sizes, Temp. + NB, mutex multiple resources
WT=300
WT=50
WT=10

0
200
400
600
800

1000
1200
1400
1600

0 5000 10000 15000 20000 25000

N
od

es

Iterations

Scope sizes, Temp., mutex multiple resources

WT=300
WT=50
WT=10

Fig. 9. Scope sizes, multiple resource model

benchmark, by applying NB filtering. NB filtering reduces the overall success
rate by approximately 10 percent compared to warm scope matching.

Scope sizes for multiple resource model are shown in Fig. 9. Temperature
filtering is on the left and NB filtering on the right. The peaks on the left plot
are due to the increased number of nodes in the graph after repeatedly executing
requestRule, which adds an extra node corresponding to the request association.
Temperature based filtering reduced the scope to sizes ranging from 100 nodes
(WT=10) to 1400 nodes (WT=300) (full model 4000 nodes). Consider the area
under the graph for WT of 300 in the left and right plots. NB filtering does
reduce the temperature scope even though there are peaks to 1200 nodes. When
the number of nodes in the temperature scope peaks on the left and remains
flat, NB scope size does not follow the trend closely.

Forest-fire results. Fig. 10 presents overall success rates for temperature scope
matching (left) and additional NB filtering (right). We observe satisfactory and
equivalent success rates with WT of 300 for both filtering cases. This is likely
because we use more data for NB training compared to the mutex example, such
as the “burning” state of the forest cell. On the right in Fig. 10 we can clearly
see a gradual rise in success rate for WT 300. This is due to the initial NB
training as well as the increase of the warm scope. The success rate in both plots
is high at the beginning because a small portion of the graph is active. As the
active region grows, the rate reduces and stabilizes sometime after 10000 rule
executions.

0
10
20
30
40
50
60
70
80
90

100

0 5000 10000 15000

Pe
rc

en
t

Iterations

Overall success rate, forest-fire, Temp. + NB
scope

WT=300
WT=50
WT=10

0
10
20
30
40
50
60
70
80
90

100

0 5000 10000 15000

Pe
rc

en
t

Iterations

Overall success rate, forest-fire, Temp. scope

WT=300
WT=50
WT=10

Fig. 10. Overall success rate, forest-fire simulation

Dynamic Scope Discovery for Model Transformations 317

Table 1. Forest-fire scope sizes (nodes), full input graph 29800 nodes

Temp Temp+NB
WT Ave. Std. Dev. Ave. Std. Dev.
300 1110 319 357 415
50 357 415 157 155
10 77 17 37 36

Table 1 shows the average scope sizes in nodes and standard deviation for
different warm times. Temp+NB scope is three times smaller on average than
Temp scope. Average Temp scope is close to 20 times smaller than number of
nodes in the forest-fire graph.

Result summary. After running both benchmarks we learned that scoped match-
ing in our approach is promising based on success rates of 30 to 90 percent. This
depends on the warm time of the nodes and the additional filtering, such as NB
in our example. In certain cases such as for the single resource mutex model,
the success rate was over 90 percent with a significant reduction to the search
space, reducing it to just 10 nodes compared to 2000 nodes for the full input
graph. NB filtering does reduce the search scope further at the slight expense of
success rate. NB filtering performed best in the case of the forest-fire simulation
both in terms of success rate and in reducing search scope. It is important to
note that these results were achieved using the initial prototype. Even though
we observe interesting results, deeper investigation of performance, parameter
values and applications is necessary in future work.

5 Related Work

Pattern matching techniques used in different graph and model transformation
tools for supporting query evaluation can be categorized in different ways.

Our technique is classified as a local-search based approach which constructs
a search plan (i.e. an ordering on node and edge traversal in the graph pattern)
which drive the search process. This search plan can be constructed statically as
a preprocessing step (like in [12,32,6,17]), constructed dynamically during execu-
tion time [9,5], or selected adaptively from preprocessed search plan candidates
[28,27].

Heuristics used for constructing efficient search plans rely upon different
sources of information. Metamodel-specific heuristics like [32,6,9,13,2] exploit
the containment and cardinality constraints of a metamodel e.g. by navigat-
ing first along edges with at most one multiplicity. Model-specific search plans
[28,7,27] evaluate statistical information of the underlying instance model (e.g.
the number of edges of a certain type) to start the search from promising can-
didate nodes. In fact, initial bindings can be explicitly provided to the pattern
matching process by pivot (or input) nodes as in [6,12,30,27].

318 M. Jukšs et al.

Our technique is unique and complementary to these approaches in the sense
that it aims to exploit the transformation process as heuristics by reducing
the scope of the candidates to those elements touched by recent transforma-
tion rules. Our approach is also complementary (and thus applicable) to both
compiled [26,6,3] and interpreted [2,13,15,26] model transformation approaches.
An overview of tools supporting local-search based pattern matching is provided
in Table 2.

Table 2. Overview of tools with local-search based pattern matching

Tool Execution Search Plan Heuristics

Comp. Interp. Stat Adapt Dyna Meta Model Pivot Transf.

(C) (I) (S) (A) (D) (MM) (M) (P) (T)

ATL [13] I S MM P

Epsilon [15] I S MM P

eMOFLON [27,26] C I A M P

Fujaba [6] C S MM P

GReAT [30,1] C I S MM P

GrGEN [7] C A M P

GROOVE [20] I S M

Henshin [2] I S MM P

MoTif [23] C I S MM P

MoTE [7] I D M P

PROGRES [22,32] C I S MM P

VIATRA [28,11,3,12] C I S A MM M P

VMTS [17] C I S A MM M P

Our approach (C) I A D P T

Topological activity [18,19] computation in MGS [8] explores the active and
inactive regions in the model. Active regions are exclusively used to find the pat-
tern matches. Nodes that are hot, in our application, can be considered activity
region in MGS language terms. However, our approach takes a temperature node
coloring approach instead of treating trajectory of system states to compute ac-
tive regions. In addition nodes in our concept “cool down” at specified rate, in
MGS case, topological areas become inactive at next iteration.

GXL [21] a graph transformation language with rule-based scoping and graph
parameters. Scoping in GXL means that scope produced by one rule application
can be passed by value and used by other rules, and so on. Stratego/XT [4], a
program transformation, term rewriting language, allows scoping of rewrite rules
by limiting their lifetime to a specific rewriting strategy. Rewriting strategy
places application of a rewrite rule to a part of a abstract syntax tree being
transformed. Stratego explores the natural hierarchy of an underlying model.
Scope in our approach is dynamic and is driven by transformation process.

Dynamic Scope Discovery for Model Transformations 319

Our previous work on scope in model transformations [14,25] concentrated on
constraining model transformation to explicitly specified scope within the input
model. It was up to domain specialist to decide the scope of the transforma-
tions at design time (i.e. as part of the transformation rules themselves). The
presented technique aims to automatically determine scope of rule application
before executing it. Specifically we are interested in dynamically constraining
pattern matching to a reduced portion of the input model.

6 Conclusions and Future Work

In this paper we investigated the approach to reducing search scope of model
transformations by tracking transformation process within the input model. For
this we used temperature inspired underlying graph node coloring. Temperature
regions constitute the likely rule application areas that we explored in pattern
matching during runtime. In addition to temperature filtering we investigated
additional filtering based on Naive Bayes classifier. In the context of simula-
tion oriented transformations we demonstrated that our approach works well
in certain situations: the success rate of matching within the scope defined by
our filtering was over 90 percent in single resource mutex benchmark. We also
observed the reduction of search scope by using our filtering approaches. NB
application further refined the search area, however in some instances at the
expense of the matching success rate.

In future work we would like to explore the cost of the warm scope mainte-
nance and the runtime effects of our concept. We believe that deeper investiga-
tion of temperature scope related parameters, with addition of structural graph
information for NB training will be beneficial to the performance and accuracy
of the approach. Temperature scope in the context of search plans could in the
future provide dynamic information to search plan generation at runtime. Incre-
mental matching technique is another area of model transformation that could
possibly incorporate our approach. Another area to investigate is a NB classi-
fier trained at runtime that could be saved and used as static filter in future
transformation applications offloading the training expense.

References

1. Agrawal, A., Karsai, G., Kalmar, Z., Neema, S., Shi, F., Vizhanyo, A.: The design
of a language for model transformations. SoSym 5(3), 261–288 (2006)

2. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C., Rou-
quette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010)

3. Balogh, A., Varró, G., Varró, D., Pataricza, A.: Compiling model transformations
to ejb3-specific transformer plugins. In: Haddad, H. (ed.) Proceedings of the 2006
ACM Symposium on Applied Computing (SAC), Dijon, France, April 23-27, pp.
1288–1295. ACM (2006)

320 M. Jukšs et al.

4. Bravenboer, M., van Dam, A., Olmos, K., Visser, E.: Program transformation with
scoped dynamic rewrite rules. Fundam. Inf. 69(1-2), 123–178 (2005)

5. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism al-
gorithm for matching large graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence 26(10), 1367–1372 (2004)

6. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: A new graph
transformation language based on UML and Java. In: Ehrig, H., Engels, G., Kre-
owski, H.-J., Rozenberg, G. (eds.) Graph Transformations 1998. LNCS, vol. 1764,
pp. 296–309. Springer, Heidelberg (2000)

7. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: GrGen: A fast SPO-
based graph rewriting tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro,
L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 383–397. Springer,
Heidelberg (2006)

8. Giavitto, J.L., Godin, C., Michel, O., Prusinkiewicz, P.: Computational models for
integrative and developmental biology (2002)

9. Giese, H., Hildebrandt, S., Seibel, A.: Improved flexibility and scalability by inter-
preting story diagrams. ECEASST 18 (2009)

10. Heckel, R.: Compositional verification of reactive systems specified by graph trans-
formation. In: Astesiano, E. (ed.) ETAPS/FASE 1998. LNCS, vol. 1382, pp. 138–
153. Springer, Heidelberg (1998)

11. Horváth, Á., Bergmann, G., Ráth, I., Varró, D.: Experimental assessment of com-
bining pattern matching strategies with viatra2. STTT 12(3-4), 211–230 (2010)

12. Horváth, Á., Varró, D., Varró, G.: Generic search plans for matching advanced
graph patterns. Electronic Communications of the EASST 6 (2007), selected papers
of GT-VMT 2007: Graph Transformation and Visual Modelling Techniques (2007)

13. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation
tool. Sci. Comput. Program. 72(1-2), 31–39 (2008)

14. Jukšs, M., Verbrugge, C., Elaasar, M., Vangheluwe, H.: Scope in model transfor-
mations. Tech. Rep. SOCS-TR-2013.4, McGill University (January 2013)

15. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Transformation Language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.
46–60. Springer, Heidelberg (2008)

16. Maron, M.E., Kuhns, J.L.: On relevance, probabilistic indexing and information
retrieval. J. ACM 7(3), 216–244 (1960)

17. Mészáros, T., Mezei, G., Levendovszky, T., Asztalos, M.: Manual and automated
performance optimization of model transformation systems. STTT 12(3-4), 231–
243 (2010)

18. Muzy, A., Touraille, L., Vangheluwe, H., Michel, O., Hill, D.R., Traoré, M.K.: Ac-
tivity regions in discrete-event systems. In: Symposium on Theory of Modeling
and Simulation - DEVS Integrative M&S Symposium (DEVS 2010), Spring Sim-
ulation Conference, Orlando, FL, pp. 176–182. Society for Computer Simulation
International, SCS (April 2010)

19. Potier, M., Spicher, A., Michel, O.: Topological computation of activity regions.
In: Proc. of the 2013 ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation, SIGSIM-PADS 2013, pp. 337–342. ACM, New York (2013)

20. Rensink, A.: The GROOVE simulator: A tool for state space generation. In: Pfaltz,
J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485.
Springer, Heidelberg (2004)

21. Sarkar, M.S., Blostein, D., Cordy, J.R.: GXL - a graph transformation language
with scoping and graph parameters (1998)

Dynamic Scope Discovery for Model Transformations 321

22. Schürr, A., Winter, A.J., Zndorf, A.: Graph grammar engineering with PRO-
GRES. In: Botella, P., Schäfer, W. (eds.) ESEC 1995. LNCS, vol. 989, pp. 219–234.
Springer, Heidelberg (1995)

23. Syriani, E., Vangheluwe, H.: A modular timed graph transformation language for
simulation-based design. Software and Systems Modeling (SoSyM) 12(2), 387–414
(2013)

24. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Mierlo, S.V., Er-
gin, H.: AToMPM: A web-based modeling environment. In: Demos/Posters/
StudentResearch@MoDELS. pp. 21–25. CEUR (2013)

25. Varró, D., Balogh, A.: The model transformation language of the VIATRA2 frame-
work. Science of Computer Programming 68(3), 214–234 (2007)

26. Varró, G., Anjorin, A., Schürr, A.: Unification of compiled and interpreter-based
pattern matching techniques. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle,
H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 368–383. Springer,
Heidelberg (2012)

27. Varró, G., Deckwerth, F., Wieber, M., Schürr, A.: An algorithm for generating
model-sensitive search plans for emf models. In: Hu, Z., de Lara, J. (eds.) ICMT
2012. LNCS, vol. 7307, pp. 224–239. Springer, Heidelberg (2012)

28. Varró, G., Friedl, K., Varró, D.: Adaptive graph pattern matching for model
transformations using model-sensitive search plans. Electr. Notes Theor. Comput.
Sci. 152, 191–205 (2006)

29. Varró, G., Schürr, A., Varró, D.: Benchmarking for graph transformation. In:
VL/HCC, pp. 79–88 (2005)

30. Vizhanyo, A., Agrawal, A., Shi, F.: Towards generation of efficient transforma-
tions. In: Karsai, G., Visser, E. (eds.) GPCE 2004. LNCS, vol. 3286, pp. 298–316.
Springer, Heidelberg (2004)

31. Yang, Y., Webb, G.I.: Discretization for naive-Bayes learning: Managing discretiza-
tion bias and variance. Mach. Learn. 74(1), 39–74 (2009)

32. Zündorf, A.: Graph pattern-matching in PROGRES. In: Cuny, J., Engels, G.,
Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073, pp. 454–
468. Springer, Heidelberg (1996)

Streamlining Control Flow Graph Construction

with DCFlow

Mark Hills

East Carolina University, Greenville, North Carolina, USA
http://www.cs.ecu.edu/hillsma, http://www.ecu.edu

Abstract. A control flow graph (CFG) is used to model possible paths
through a program, and is an essential part of many program analy-
sis algorithms. While programs to construct CFGs can be written in
meta-programming languages such as Rascal, writing such programs is
currently quite tedious. With the goal of streamlining this process, in
this paper we present DCFlow, a domain-specific language and Rascal
library for defining control flow rules and building control flow graphs.
Control flow rules in DCFlow are defined declaratively, based directly
on the abstract syntax of the language under analysis and a number of
operations representing types of control flow. Standard Rascal code is
then generated based on the DCFlow definition. This code makes use
of the DCFlow libraries to build CFGs for programs, which can then be
visualized or used inside program analysis algorithms. To demonstrate
the design of DCFlow we apply it to Pico—a very simple imperative
language—and to a significant subset of PHP.

1 Introduction

A control flow graph [2] (CFG) is used to model all possible paths (the flow
of control) through a program. Nodes in the graph either represent individual
constructs in the program, such as individual statements or expressions (referred
to collectively as instructions below), or are synthesized based on program infor-
mation. An example of the latter is nodes created to provide a unique exit from
a function in languages with return statements that can occur anywhere in the
function body. Edges in the graph represent the actual flow of control through
the program, taking account of the evaluation order and the impact of various
control constructs, such as conditionals, loops, and gotos.

Programs to build CFGs can be written in meta-programming languages such
as Rascal [15,16]. However, the process of writing such programs, especially for
larger languages, can be quite tedious. For example, the code currently used to
extract control flow graphs from PHP programs, developed as part of the PHP
AiR project [7], is 1,583 lines of Rascal,1 including a large amount of boilerplate

1 This is calculated using the cloc tool, and is based on counting lines of Rascal code
of all modules under lang::php::analysis::cfg, available at
https://github.com/cwi-swat/php-analysis/tree/master/src/lang/php/

analysis/cfg

B. Combemale et al. (Eds.): SLE 2014, LNCS 8706, pp. 322–341, 2014.
c© Springer International Publishing Switzerland 2014

http://www.cs.ecu.edu/hillsma
http://www.ecu.edu
https://github.com/cwi-swat/php-analysis/tree/master/src/lang/php/analysis/cfg
https://github.com/cwi-swat/php-analysis/tree/master/src/lang/php/analysis/cfg

Streamlining Control Flow Graph Construction with DCFlow 323

code to handle similar cases and keep track of information needed to properly
build the graph. For actively evolving languages, such as PHP, this code also
needs to be kept up to date to support new language features.

With the goal of streamlining the process of defining the control flow rules
for a programming language and extracting control flow graphs from individual
programs, in this paper we present a declarative, domain-specific language for
specifying the control flow rules for programming languages—DCFlow, short
forDeclarativeControl Flow. In DCFlow, control flow is defined at the level of
the language’s abstract syntax, allowing DCFlow to be used even in cases were
a Rascal parser for the language under analysis is not available. Control flow rules
are defined declaratively, specified in terms of the AST types and a number of
operations representing different types of control flow and CFG nodes. DCFlow

definitions are then used to generate standard Rascal code—a combination of
custom code based on the DCFlow definition, calls to the DCFlow libraries,
and calls to some user-provided code, all written in Rascal. Since DCFlow

definitions are translated into standard Rascal code, it is possible to examine,
debug, and extend the generated code.

DCFlow makes use of a number of Rascal features, including algebraic data
types, reified types, and string templates, described in Section 2. In Section 3
we then describe DCFlow in detail, showing how specific language features in
both Pico and PHP are supported. Section 4 then provides an evaluation of
DCFlow, comparing it to hand-written Rascal and the DeFacto system [3].
Finally, Sections 5 and 6 present related work and a final discussion with ideas
for future work, respectively. Additional information about Rascal andDCFlow

can be found online.2

2 Enabling Rascal Features

The DCFlow languages makes use of several key Rascal language features:
algebraic data types for creating user-defined types, including the abstract syntax
types; type literals and type reification to allow meta-level access to Rascal types;
string templates for code generation; and Rascal support for custom, Eclipse-
based IDEs. Each of these features is described in more detail below.

2.1 The Rascal Type System

The Rascal type system provides a uniform framework including both built-
in and user-defined types, with the latter including both abstract (algebraic)
datatypes and grammar non-terminals (also referred to as concrete datatypes).
The type system is based on a type lattice with void at the bottom and value
(the supertype of all types) at the top. In between are the types for atomic
values (bool, int, real, rat, str, loc, datetime), types for tree values (node,
representing named nodes with zero or more children, and defined abstract and

2 See http://www.rascal-mpl.org and http://www.cs.ecu.edu/hillsma

http://www.rascal-mpl.org
http://www.cs.ecu.edu/hillsma

324 M. Hills

data TYPE = natural() | string();

alias PicoId = str;

data PROGRAM = program(list[DECL] decls, list[STATEMENT] stats);

data DECL = decl(PicoId name, TYPE tp);

data EXP = id(PicoId name)

| natCon(int iVal)

| strCon(str sVal)

| add(EXP left, EXP right)

| sub(EXP left, EXP right)

| conc(EXP left, EXP right) ;

data STATEMENT

= asgStat(PicoId name, EXP exp)

| ifElseStat(EXP exp,list[STATEMENT] thenpart,list[STATEMENT] elsepart)

| whileStat(EXP exp, list[STATEMENT] body) ;

Fig. 1. The Pico AST in Rascal, Defined with Algebraic Data Types

concrete datatypes), and composite types with typed elements. Examples of the
latter are list[int], set[str], tuple[str,int], rel[int,bool], lrel[loc,int],
and, for a given non-terminal type Stmt, map[Stmt,int]. The node datatype
is a supertype of both abstract and concrete datatypes, while concrete datatypes
are also all subtypes of the Tree datatype. Sub-typing is always covariant with
respect to these typed elements; with functions, as is standard, return types must
be covariant, while the argument types are instead contravariant. For example,
for sets, set[str] is a subtype of set[value], while for functions, str(value) is
a subtype of value(str).

2.2 Algebraic Datatypes

Algebraic datatypes (ADTs) in Rascal are defined using the data keyword, with
one or more constructors defining the alternatives available for building new val-
ues of the user-defined type. An example with several related ADTs is shown in
Figure 1, which gives the definition of the abstract syntax for the Pico language.
Figure 1 defines five new datatypes: TYPE, PROGRAM, DECL, EXP, and STATEMENT.3

These datatypes then each include one or more constructors. TYPE includes two,
natural and string, that are used to indicate the type of data being declared
in a Pico program. These constructors are a form of constant – neither contains
any fields. EXP defines the different types of expressions in Pico, with fields corre-
sponding to values for identifiers or constants (e.g., natCon has field iVal which
contains a Rascal int) or to subexpressions (e.g., add has fields left and right

for the left and right operands of a plus expression). ADTs in Rascal are open
to extension, allowing new constructors to be added by other modules, and are
also inherently recursive. Rascal includes extensive support for pattern matching

3 PicoId is a type alias—PicoId is another name for str, the Rascal string type.

Streamlining Control Flow Graph Construction with DCFlow 325

and term traversal over both built-in and user-defined datatypes, features used
extensively in DCFlow to work with program ASTs defined using types like
those in Figure 1.

2.3 Type Literals and Reified Types

Reified types make it possible to manipulate types as first-class values that
can be passed around, returned, queried and manipulated. Rascal’s reification
operator creates self-describing type values that contain both the reified type
and all datatypes used in this type’s definition. A type can be reified using the
prefix reification operator (#), resulting in a value called a type literal. A reified
type value contains a symbol to represent the type and a map of definitions for
any abstract or concrete datatype dependencies. It is given the type type[&T],
where the type parameter &T is bound to the type that was reified. For example:

– #str produces a literal value type(\str(),()) of type type[str].
– #rel[int,loc,str] produces type(\rel([\int(),\loc(), \str()]),()) of

type type[rel[int,loc,str]].

The type data constructor used to build type literals is built in to Rascal;
the representations for type symbols and their definitions are defined as Rascal
datatypes in a library module, Type. Above, the map of definitions was empty:
(). For abstract or concrete datatypes this map will contain the complete (pos-
sibly recursive) abstract datatype or grammar. Given the EXP type shown in
Figure 1, and focusing just on the add constructor:

data EXP = ... | add(EXP left, EXP right) | ...;

the reified type #EXP will produce the following term of type type[EXP] (again
focusing just on add, and with some details elided):

type(adt("EXP"),

(adt("EXP"):choice(...,cons(label("add"),adt("EXP"),

[label("left",adt("EXP")),label("right",adt("EXP"))]),...)))

Type literals allow the implementation of DCFlow to work generically over
different AST definitions for different programming languages. The implemen-
tation of DCFlow uses the type information for the AST being processed to
generate correct code for CFG construction, while the IDE support uses this
same type information to detect errors in the DCFlow definition.

2.4 String Templates

Rascal provides string templates for code generation, a frequently occurring oper-
ation in meta-programming. String templates are multi-line string literals with
a left-margin (given with a single quote character), interpolation of arbitrary
expressions, auto-indentation, and structured control flow. An example from

326 M. Hills

res = "public tuple[<p.astType>,LabelState] labelAST(LabelState ls, <p.astType> ast) {
’ Lab incLabel() {
’ ls.counter += 1;
’ return lab(ls.counter);
’ }
’ labeledAst = bottom-up visit(ast) {
’ <for (n <- gs.annotatedTypeNames) {> case <n> n => n[@lab = incLabel()]
’ <}>
’ };
’ ls.cfgNodes = (n@lab : cfgNode(n,n@lab) | /node n := labeledAst, (n@lab)?);
’ return < labeledAst, ls >;
’}";

public tuple[PROGRAM,LabelState] labelAST(LabelState ls, PROGRAM ast) {
Lab incLabel() {

ls.counter += 1;
return lab(ls.counter);

}
labeledAst = bottom-up visit(ast) {

case PROGRAM n => n[@lab = incLabel()]
case STATEMENT n => n[@lab = incLabel()]
case EXP n => n[@lab = incLabel()]

};
ls.cfgNodes = (n@lab : cfgNode(n,n@lab) | /node n := labeledAst, (n@lab)?);
return < labeledAst, ls >;

}

Fig. 2. String Templates in Rascal

DCFlow is shown in Figure 2. The top of Figure 2 shows a string template
from the GenerateLabeler module. Rascal code given between angle brackets,
such as <p.astType>, is evaluated, with the results inserted into the string at
that position (string interpolation); an embedded for loop generates a case

(used in the Rascal visit construct, which is used for structure-shy traversal)
for each element n in the set annotatedTypeNames, which holds the names of
the abstract syntax types that should be labeled, and are thus “linkable”, in the
control-flow graph. The code generated by this string template, specifically for
labeling Pico ASTs, is shown at the bottom of Figure 2.

2.5 Custom Eclipse IDE Support

Rascal provides built-in support for creating Eclipse-based IDEs for languages
defined in Rascal. Features supported include configurable syntax highlighting,
foldable code sections, user-defined code outlines displayed using a standard
Eclipse outline view, user-defined annotators that can register messages that
display in the IDE and the Eclipse problem view (e.g., for reporting errors),
automatic checking (invoking user-provided Rascal functions) of code during
editing, and the addition of menu items to trigger user-provided functions. A
number of these features have been used to create an IDE for DCFlow, with
error checking to ensure that common mistakes (such as misspelling a field name)
are visible in the IDE even before code generation occurs.

Streamlining Control Flow Graph Construction with DCFlow 327

DCFlow
Translator
(Rascal)

DCFlow
Definition

Source Program
(Input Language)

DCFlow Libraries
(Rascal)

Language-Specific
Functions (Rascal)

CFG Builder
Modules
(Rascal)

CFG Construction
(Rascal)

Control Flow
Graphs (Rascal)

CFG Visualization
(Rascal)

GraphViz
Visualizations
(GraphViz,dot)

Fig. 3. DCFlow Architecture

3 DCFlow

begin

declare x : natural,

y : natural;

x := 3;

if x then

y := 10

else

y := 15

fi

end

Fig. 4. Sample Pico Program

DCFlow is a declarative, domain-specific
language and supporting libraries for
defining the control flow rules for a pro-
gramming language (referred to below as
the input language). The architecture of
DCFlow is shown in Figure 3. Once
a DCFlow specification is created, the
DCFlow translator converts the specifi-
cation into a collection of Rascal modules.
These modules handle the labeling of the
AST, which assigns unique IDs to each in-
struction, and the creation of a control
flow graph for an input program, based
on the DCFlow rules specifying the con-
trol flow for the input language. The CFG construction process uses the gener-
ated modules, language-specific functions provided by the user (discussed more
below), and DCFlow libraries to actually perform the control flow graph gen-
eration, giving one or more control flow graphs for an input program. These
graphs can be used in analysis algorithms (see Section 4 for an example), and
can also be visualized using DCFlow visualization functionality, which gener-
ates GraphViz diagrams using the dot language. Examples of these diagrams can
be seen in Figures 6 and 7.

The rest of this section describes the DCFlow language in detail. First we
discuss control flow graphs and their representation in the Rascal DCFlow

libraries. We then describe the DCFlow language, illustrating features of the

328 M. Hills

map[loc, CFG]: (|pico+program://CFG/src/programs/pico/condition.pico|:cfg(

|pico+program://CFG/src/programs/pico/condition.pico|,

(

lab(4):cfgNode(natCon(10), lab(4)),

lab(5):cfgNode(asgStat("y", natCon(10)), lab(5)),

...

),

{

flowEdge(lab(5), lab(11), {}), flowEdge(lab(4), lab(5), {}),

flowEdge(lab(7), lab(11), {}), flowEdge(lab(1), lab(2), {}),

flowEdge(lab(2), lab(3), {}), flowEdge(lab(10), lab(1), {}),

flowEdge(lab(3), lab(4), {conditionTrue()}),

flowEdge(lab(3), lab(6), {conditionFalse()}),

flowEdge(lab(6), lab(7), {})

},

(":exit":exitNode(lab(11)), ":entry":entryNode(lab(10)))))

Fig. 5. DCFlow CFG Representation, in Rascal

language with a number of example control flow definitions from Pico and PHP.
We end with a brief discussion of some additional features in DCFlow, as well
as of what is currently not supported.

3.1 DCFlow Control Flow Graphs

10

y := 10

exit

15

y := 15

3

x := 3

x

true false

entry

Fig. 6. CFG for Program in Figure 4

Figure 4 shows an example of a sim-
ple program in Pico. After setting x to
3, a conditional checks the value of x.
The true branch, which sets y to 10, is
taken when x is not 0, while the false
branch, which sets y to 15, is taken
when x is 0. The control flow graph
for this program, extracted using a
DCFlow CFG builder and given as
a Rascal term, is then shown in Fig-
ure 5. A CFG is a directed graph, with
nodes representing instructions or syn-
thesized information (e.g., a synthe-
sized exit node for a function) and
directed edges showing how control flows between the nodes.

Rascal provides built-in support for source location literals (values of type
loc) that are Uniform Resource Identifiers4 (URIs) optionally followed by text
coordinates that allow the identification of specific text ranges in the information
the URI points to. Location literals are quoted with bars, such as
|http://www.rascal-mpl.org|. Since, in many languages, a program can yield

4 See http://www.ietf.org/rfc/rfc3986.txt.

http://www.rascal-mpl.org
http://www.ietf.org/rfc/rfc3986.txt

Streamlining Control Flow Graph Construction with DCFlow 329

multiple control flow graphs (e.g., in PHP each function will have its own graph),
DCFlow returns a map from source locations to control flow graphs. The lo-
cation points to the location in the source code associated with the graph, for
instance, to the function represented by the graph, and is created by a user-
defined function specific to the input language. We intentionally use locations
like those used in M3 [10], a model for source code artifacts. The ADT defining
the control flow graph contains the location, a map from unique node labels
to the actual control flow graph nodes (some of which are elided here), a set
of directed flow edges (given with node labels as the from and to endpoints),
and finally a map from special labels to specific nodes, in this case marking the
designated entry and exit nodes for the program.

Fig. 7. CFG with Basic Blocks

A visualization of this CFG is shown in Fig-
ures 6 and 7. The graphs clearly encode the
order of evaluation: starting at the entry to
the program, first 3 is evaluated, then the as-
signment to x is performed. After this, x is
evaluated, with control then following either
the true branch or the false branch. Along
the true branch 10 is evaluated, followed by
the assignment to y; along the false branch
15 is evaluated, again followed by the assign-
ment to y. Both branches rejoin at the unique
exit node, which represents the end of the
program. Figure 6 shows a CFG with each
node in its own block, while Figure 7 shows
a CFG where blocks have been merged into
basic blocks using the DCFlow BasicBlocks

library module. A basic block is a sequence of
instructions where control has to enter with
the first instruction and must leave only at
the end (e.g., an instruction in the middle of
the block cannot transfer control to anything other than the next instruction).
We still show the order of evaluation in each block, so (for instance) we still see
that 15 is evaluated before the assignment y := 15—this is more verbose, but
makes the evaluation order explicit.

3.2 DCFlow Definitions and Sequential Control Flow

Figure 8 shows the DCFlow definition for the straight-line part of the Pico
language (i.e., the entire language except for if and while statements). Since
DCFlow is designed to be used with Rascal, DCFlow modules have a sim-
ilar structure to Rascal modules. A DCFlow module is named using module

(in this case, Pico); the name used here is then also used to name the gener-
ated files. While a number of DCFlow modules are automatically added as im-
ports in the generated code, additional modules can be added using the ast and
import commands. Additionally, one module must be imported using ast, which

330 M. Hills

module Pico

ast demo::lang::Pico::Abstract;

import lang::pico::CFGBase;

context PROGRAM::program;

astType PROGRAM;

rule PROGRAM::program = entry(exit(stats));

rule EXP::add = entry(left) --> right --> exit(self);

rule EXP::sub = entry(left) --> right --> exit(self);

rule EXP::conc = entry(left) --> right --> exit(self);

rule EXP::id = entry(exit(self));

rule EXP::strCon = entry(exit(self));

rule EXP::natCon = entry(exit(self));

rule STATEMENT::asgStat = entry(exp) --> exit(self);

Fig. 8. The DCFlow Definition for Straight-Line Pico

indicates where the AST types, used extensively inDCFlow, are declared. Since
a program could result in multiple control flow graphs, context indicates the
constructors for which control flow graphs should be created. These may be
nested: in PHP, control flow graphs are created for the script, representing the
entire file, and for each individual function and method contained inside. Finally,
astType actually names the “top” type of the AST, generally the type repre-
senting an individual program or compilation unit; the assumption is that there
is one unique type. DCFlow loads the reified representation of this type, which
also includes all types on which this depends, during code generation.

Following this initial information, rule is used to define the control flow rules
for individual language constructs, based on the abstract syntax for the language.
The general structure of a rule is:

rule typename::consname = flow;

where typename is the name of the type, as given in the data declaration;
consname is the name of the constructor; and flow describes the control flow for
the construct, given using DCFlow operations, names of special CFG nodes,
and the field names of the constructor. Looking at Figure 8, the entry and exit

operations indicate where flow enters the construct and where it exits the con-
struct, while the special name self stands for the construct as a whole.5 Each
rule triggers the generation of three functions: entry, exit, and internalFlow.
entry returns the label of the first instruction that is executed as part of the
construct, while exit returns a set of possible final instructions for the construct.
internalFlow builds edges to represent the flow of control inside the construct.

For instance, looking at the rule for the id constructor of EXP, the flow is
given as entry(exit(self)). entry and exit mark where control flow enters

5 If a field in the constructor is also named self, or any other DCFlow keyword, it
can be used by prefixing it with a backslash, i.e., as \self.

Streamlining Control Flow Graph Construction with DCFlow 331

and exits the construct—nesting one inside the other indicates that both mark
the same construct. Since this is given as self, the generated entry and exit

functions will return the label (for exit, a set containing just the label) for the
id expression. Since the rule does not reference any fields, the construct has no
internal control flow. Thus, the generated internalFlow function adds no edges.

A more complex case is that for the add constructor of EXP. Here, the control
flow is given as entry(left) --> right --> exit(self). The arrows signify
the flow of control between the named items. Here, this means that control enters
at the left operand, flows into the right operand, and then finally to self, modeling
the evaluation of the left operand, followed by evaluation of the right, and then
finishing with evaluation of the addition expression as a whole. Since the left
operand is, itself, an expression (a fact determined by the DCFlow generator
by consulting the reified representation of the EXP type), the generated code
will determine the entry label for an occurrence of add by recursing on the first
operand and finding its entry label, which could lead to additional recursive calls.
For instance, to find the entry label for (a+b)+c one would find the entry label
for a+b, which is the entry label for a, which (as stated above) is the same as
the label for a itself. Since the exit label is determined by checking self, no
recursion takes place—the entry label for self is always that of the item as a
whole. The internal flow function generated for add links the exit labels of left to
the entry label of right, and the exit labels of right to the entry label for self.
This “wires up” the expressions representing left, right, and left + right,
ensuring the flow in the CFG mirrors that in an executing program.

A final example is the first rule in Figure 8. The control flow for a program
is based on field stats, which represents the list of statements making up the
program. Since this is a list, DCFlow will generate code to compute the internal
flow for each statement in the list and to link the exit and entry labels of the
statements together in sequence. DCFlow also contains a foreach operations
that can be used to iterative over lists, allowing this to be done manually, but
this is a common enough occurrence that the typical behavior is the default.

This definition can be condensed using several shorthands, as shown in Fig-
ure 9. First, if the type of the AST is not provided explicitly using astType,
DCFlow assumes it is the type of the first context list item. Second, constructs
with the same control flow can be defined in the same rule, with whitespace

module Pico

ast demo::lang::Pico::Abstract;

import lang::pico::CFGBase;

context PROGRAM::program;

rule PROGRAM::program = ^$stats;

rule EXP::add EXP::sub EXP::conc = ^left --> right --> $self;

rule EXP::id EXP::strCon EXP::natCon = ^$self;

rule STATEMENT::asgStat = ^exp --> $self;

Fig. 9. The DCFlow Definition for Straight-Line Pico, Condensed

332 M. Hills

tuple[FlowEdges,LabelState] internalFlow(EXP item:add(EXP left,EXP right), LabelState ls) {
FlowEdges edges = { };
< edges, ls > = addEdges(edges, ls, left);
< edges, ls > = addEdges(edges, ls, right);
for(exlab <- exit(left,ls)) {
< edges, ls > = linkItemsLabelLabel(edges, ls, exlab, entry(right,ls));

}
for(exlab <- exit(right,ls)) {
< edges, ls > = linkItemsLabelLabel(edges, ls, exlab, item@lab);

}
return < edges, ls >;

}

Fig. 10. Generated Rascal Code, Control Flow for Addition in Pico

separating the names. Third, entry and exit can be replaced with ^ and $,
respectively—the operators are intentionally the same as those used to match
the start and end of a string in regular expression syntax. While we may take ad-
vantage of more defaults in the future, we currently prefer having more explicit
information in DCFlow specifications, since this creates less “magic” that the
user is then required to understand, making definitions less cryptic.

To get an idea of the code generated by DCFlow, Figure 10 shows the code
generated to handle the internal flow of the Pico addition expression. The input
to the function is the addition expression and the label state, which, at runtime,
tracks information needed to properly label the AST and build the control flow
graph. An empty set to hold the generated edges is created, then addEdges is
called twice, first on the left operand, then on the right. After this the two are
linked, with all exits from the left operand (in languages with constructs such
as the ternary conditional expression, there could be multiple exits) linked to
the entry to the right. This same operation is then performed again, in this
case linking the right operand to the add expression itself. Finally, this set of
generated edges, along with the current state, are returned.

3.3 Defining Basic Decisions and Loops

The definition of the if and while statements in Pico is shown in Figure 11.
Both are defined using the same building blocks shown above, with some minor
additions. First, it is possible for a rule to have multiple, distinct operations,
separated by commas. The first rule shown, for if, has three, while the second
has two. Second, one or more labels can be given on an arrow by writing them
inside the arrow body (after at least one dash, and also followed by at least one
dash). So, the rule for if states that the condition (exp) is the entry, and that
there are then two edges, one from exp to the then branch when the condition is
true, and one from exp to the else branch when the condition is false. Third, exit
can appear multiple times, marking multiple possible exits from the construct.
Finally, entry and exit can contain a list of names instead of just a single
name. In this case, the names will be tried, in order, during CFG construction,
stopping when a usable label or set of labels, respectively, is found. This handles
the situation where thenpart or elsepartmay be empty, in which case the final
instruction evaluated on that path would actually be the condition exp.

Streamlining Control Flow Graph Construction with DCFlow 333

rule STATEMENT::ifElseStat = ^exp,

exp -conditionTrue-> exit(thenpart,exp),

exp -conditionFalse-> exit(elsepart,exp);

rule STATEMENT::whileStat = ^$exp -conditionTrue-> body -backedge-> exp,

exp -conditionFalse-> create(footer);

Fig. 11. Pico Decisions and Loops Modeled in DCFlow

The while statement has a similar definition: the condition is tried and, if true,
the body is executed. Here, we explicitly mark the edge from the body back to
the condition as a loop backedge. When the condition is false, we instead need to
exit the construct. We could link to the following instruction using the keyword
following, but instead create a new footer node for the entire loop, linking to
that instead. This will cause all exits from the loop (here, through exp, which is
marked as the exit) to pass through this footer node, and will cause the footer
node to be used as the exit when linking this to any statements following this
in the program. Finally, note that, once a name has been marked as an entry or
exit point, other uses of the name do not need to be so marked again.

3.4 Defining Unstructured and Structured Jumps

DCFlow distinguishes between unstructured and structured jumps. Unstruc-
tured jumps, such as goto statements, essentially ignore other control flow con-
structs, transferring control to an arbitrary instruction. In PHP, a goto will jump
to a label defined on a statement, and cannot transfer control out of the current
context (e.g., from inside a function back to the top-level script) or into a loop or
switch.6 Structured jumps, such as break and continue, work in tandem with
language constructs such as while, for, and switch statements, with the target
of the jump depending on the semantics of the associated statement. In PHP, a
continue7 in a while loop will jump back to the loop condition, while a break8

will instead transfer control to the first instruction after the loop. To work with
nested control constructs, both break and continue accept an optional numeric
argument—if given inside a loop nested inside another loop, break 2 would
jump to the instruction following the outer loop. Other languages, such as Java
and Rascal, provide similar functionality by instead allowing loops to be labeled,
similarly to how statements are labeled for goto in PHP.

The DCFlow definitions of goto, while, break, and continue for PHP are
shown in Figure 12. These rules introduce several new DCFlow constructs, and
also assume that several Rascal functions have been defined. To support unstruc-
tured jumps, calls to user-provided function findUnstructuredJumpTargets are
generated; this function identifies all unstructured jump targets—for PHP, state-
ment labels—in the current context. The jump construct then specifies a jump
in the control flow to a destination identified by the operand—here, the label

6 http://www.php.net/manual/en/control-structures.goto.php
7 http://www.php.net/manual/en/control-structures.continue.php
8 http://www.php.net/manual/en/control-structures.break.php

http://www.php.net/manual/en/control-structures.goto.php
http://www.php.net/manual/en/control-structures.continue.php
http://www.php.net/manual/en/control-structures.break.php

334 M. Hills

rule Stmt::goto = jump(\label),^$self;

rule Stmt::\while = create(footer), jumpTarget(cond,\continue),

jumpTarget(footer,\break),

^$cond -conditionTrue-> body -backedge-> cond,

cond -conditionFalse-> footer;

rule Stmt::\break = entry(breakExpr,self) --> $self,

jump(breakExpr,\break);

rule Stmt::\continue = entry(continueExpr,$self) --> self,

jump(continueExpr,\continue);

Fig. 12. PHP Jumps Modeled in DCFlow

field of the goto statement. This is looked up using user-provided function
getTargetsForJump and, for unstructured jumps, must be one discovered by
findUnstructuredJumpTargets. The code for jump will then create flow edges
from the exit labels of the instruction to these target labels.

The definition for while shows how structured jump targets are defined. An
explicit footer is created for the loop first. Two jump targets are then registered
with the jumpTarget operation—a target for continue, which will jump back
to the condition, and a target for break, which will jump to the loop footer.9

DCFlow generates calls to user-provided function createJumpTarget to ac-
tually perform this registration. The definition of the loop itself is then very
similar to that given for Pico in Figure 11. The structured jumps to these tar-
gets then occur in the break and continue statements, which both have very
similar definitions. In both cases the entry to the construct is the optional argu-
ment, with the construct itself serving as the default if this argument is empty.
Flow then goes to the actual break or continue statement. The jump is again
specified with the jump operation; the first argument gives information on the
target, while the second identifies the type of jump target, which must match
the type given in the jumpTarget command. This will result in flow edges from
the exit labels of the instruction (here, just one) to the entry label of the target
instruction—for while, either to the condition (for continue) or to the added
footer (for break).

3.5 Other Features and Limitations

There are several other features of DCFlow that support less common cases,
including list operations such as first, next, and last; an is operation to check
to see if a field is constructed using a specific constructor; and foreach and if

operations that can be used to describe more complex control flow.
There are also some control constructs DCFlow cannot currently support,

the most common being exceptions. In the PHP definition, we instead define sup-
port for exceptions directly in Rascal, indicating in the DCFlow definition that

9 Targets break and continue are available by default. DCFlow operations also allow
defining new types of targets.

Streamlining Control Flow Graph Construction with DCFlow 335

the code generator should ignore the throw, try/catch, and try/catch/finally
statements. While it would be useful to expand DCFlow to support such fea-
tures, it may be quite challenging to define them generically—error handling
features of languages can differ in fairly significant and sometimes subtle ways.
Given this, it may be the case that using such generic features to define the con-
trol flow in DCFlow would take roughly the same amount of effort as defining
the control flow directly in Rascal, in which case this would provide little benefit
(as discussed in Section 4, the amount of code to handle these features for PHP
is a fraction of the total code, most of which can now be generated directly from
a DCFlow definition) while risking an increase in conceptual complexity.

4 Evaluation

As stated in Section 1, the purpose of DCFlow is to streamline the process
of defining the control flow rules for programming languages, with the goal of
generating Rascal code that can extract control flow graphs from programs in
that language. In this section, we evaluate the effectiveness of DCFlow using
three techniques. First, we compare DCFlow definitions to definitions given
directly in Rascal. Second, we compare DCFlow definitions to definitions given
using DeFacto [3], a fact extraction framework developed for Asf+Sdf [26,25]
and RScript [14], a precursor to Rascal. Finally, we illustrate use of DCFlow-
generated control flow graphs in a standard data flow analysis for Pico programs.

4.1 Comparison with Rascal Definitions

Since the main motivation for creating DCFlow was to simplify the process of
creating control flow graphs and graph extractors in Rascal, we first compare
the results of using DCFlow with custom Rascal solutions. The control flow
for Pico, discussed first, has been completely defined, while the control flow for
PHP, discussed second, is complete except for the definitions for a handful of
features implemented directly in Rascal.

Pico: Module demo::lang::Pico::ControlFlow, part of the standard Rascal
library, contains the definition for the control flow graph for Pico as well as all
code to extract this graph from Pico ASTs. In total, this consists of 45 lines
of code: 11 giving the module header, imports, and definitions of control flow
nodes and graphs, and 34 defining the rules used to extract the control flow. The
DCFlow definition for Pico is 10 lines of code: 4 header lines and 6 rules. The
DCFlow generator converts this into 408 lines of Rascal code—it is much larger
than the custom Rascal solution because the generator is language generic, so it
cannot take advantage of the simplicity of the Pico control flow rules.

PHP: As mentioned in Section 1, the PHP AiR definition of PHP control flow
is 1,583 lines of Rascal. The DCFlow definition is currently 66 rules (some
handling multiple constructs) and 6 header lines, generating 2,714 lines of Rascal.

336 M. Hills

User-provided functions to compute jump targets add another 57 lines of code,
while code used to handle features such as exceptions is another 169 lines.

4.2 Comparison with DeFacto

In DeFacto, fact extraction is performed using fact annotations, annotation
functions, and selection annotations. Fact annotations are added to the produc-
tion rules of a grammar, and state a named fact that can be computed for the
given language construct. For instance, a production that defines a new identi-
fier as having a certain type can be annotated with a typeOf fact stating that
this identifier has the defined type. The fact is represented using a relation, with
a single instance of the fact represented as a tuple in the relation. Annotation
functions and selection annotations are then used to deal with lists and optional
elements of productions, allowing list iteration (e.g., to get the first or last el-
ement of a list, or to get pairs of elements representing the next relation) and
selection based on the presence or absence of list elements or optional subterms.
DeFacto annotations can be given in separate modules which are “woven” in as
needed, allowing different facts to be extracted based on the needs of the analy-
sis. Non-local facts can then be computed using RScript, which allows relational
algebra operations to be performed over these relations.

DeFacto and DCFlow share many similarities: both work by defining rules
over language constructs, and both include support for handling commonly oc-
curring constructs such as lists and optional data. There are also a number of
differences between the two approaches. DCFlow is designed specifically to
specify control flow rules, versus more general program facts, so it supports
more specialized notation (e.g., the name decorations used in Figure 9, arrows
to represent edges) and can make more default assumptions about how common
constructs (e.g., a list representing the body of a block) are handled. DCFlow

also works at the level of the abstract syntax, instead of concrete syntax, allowing
it to be used in cases where a Rascal parser definition is not available (but also
requiring an abstract syntax to be defined even if it is not otherwise needed).
The underlying language is also different: RScript can be seen as a subset of
Rascal, specifically focused on relational operations and fixpoint computation,
but lacking the broader support for string manipulation, code generation, IDE
creation, and visualization that is used in DCFlow.

Specifically focusing on Pico, the DeFacto and RScript control-flow graph
extraction consists of 11 fact annotations over 3 relations and one relational
expression, giving a total of 12 statements and 13 lines of code. In DCFlow, a
rule is defined for each AST constructor used to define the program, expressions,
and statements, 10 in total, although these are collapsed 6 distinct rules since
several have identical control flow. The entire module has a total of 10 lines of
code, the 6 rules, the module name, two imports (one for the AST type, one for
a language-specific function used to create a Rascal location representing Pico
programs), and the definition of the context, specifying the scope of the control
flow graph (here, the entire program). The module containing the language-
specific function is a total of 4 lines of code: the module header, two imports,

Streamlining Control Flow Graph Construction with DCFlow 337

and a one-line function definition. The comparison for Pico thus shows a very
similar level of effort using both DeFacto andDCFlow. DeFacto is no longer
maintained, so it is hard to determine if this would hold with larger languages
and/or languages with more complex control flow, such as PHP.

4.3 Reaching Definitions with DCFlow CFGs

begin

declare x : natural,

y : natural;

x := 1; // 2

y := 2; // 4

if x then

y := y + 1 // 9

else

while y do

x := x + 1; // 14

y := y - x // 18

od

fi;

y := x // 22

end

Fig. 13. Reaching Definitions Ex-
ample, in Pico

As part of our evaluation, we have defined
a standard reaching definitions analysis for
Pico using the CFG created by DCFlow. An
alternate version [15], working directly
over relations of control flow facts, is
in the Rascal standard library in module
demo::ReachingDefs. Figure 13 shows an ex-
ample Pico program, with the instruction la-
bels shown at the end of several lines (e.g.,
the first assignment to x is labeled 2). The
implementation of the reaching definitions al-
gorithm is then shown in Figure 14. Func-
tion computeDefs computes a relation over
the entire program, from Pico identifiers to
the labels where these identifiers are defined
(here, using assignment statements). gen com-
putes the set of all labels corresponding to
definitions introduced by the instruction—
assignments introduce the label of the
assignment statement, while all other instruc-
tions introduce the empty set (indicated with
default, meaning this function handles all other cases). kill also treats assign-
ment as a special case—a new assignment into a name will remove all defs of
that name except for the current one. Function computeReach then uses these
to compute the in and out sets for each instruction, returned as relations from
instruction labels to definition labels. in will contain all definitions that may
reach the start of the labeled instruction, while out contains all definitions that
reach the end. Starting with empty relations, and the definitions for the pro-
gram given by computeDefs, a fixpoint computation (indicated using solve)
iteratively computes the in and out sets for each label. The in set is the result
of the out sets for all predecessors (computed with pred, a DCFlow library
function), while the out set is the result of the in set, minus anything killed
by the current instruction, plus anything generated—basically, any definitions
that come in to the instruction that are not killed by it, plus any definitions
the instruction generates itself. When the fixpoint completes the relations are
returned.

Looking at several points of interest in Figure 13, running the algorithm shows
that no definitions reach instruction 2, since at the start of the instruction no
definitions have occurred yet; the definition at 2 reaches 4; and the definition of

338 M. Hills

rel[PicoId,Lab] computeDefs(CFG c) =
{ < name, l > | cfgNode(asgStat(PicoId name, _),l) <- c.nodes<1> };

set[Lab] gen(cfgNode(asgStat(PicoId name, _),l)) = { l };
default set[Lab] gen(CFGNode n) = { };

set[Lab] kill(cfgNode(asgStat(PicoId name, _),l),rel[PicoId,Lab] defs) = defs[name]-l;
default set[Lab] kill(CFGNode n, rel[PicoId,Lab] defs) = { };

tuple[rel[Lab,Lab] reachIn, rel[Lab,Lab] reachOut] computeReach(CFG c) {
rel[Lab,Lab] reachIn = { };
rel[Lab,Lab] reachOut = { };
defs = computeDefs(c);
solve(reachIn,reachOut) {
reachIn = { < l, r > | l <- c.nodes, r <- reachOut[pred(c,l)] };
reachOut = { < l, r > | l <- c.nodes,

r <- (gen(c.nodes[l]) + (reachIn[l] - kill(c.nodes[l],defs))) };
}
return < reachIn, reachOut >;

}

Fig. 14. Reaching Definitions Algorithm, in Rascal

x at 2 reaches 14, but not 18, since 14 redefines x and is always run before 18.
The definition of y at instruction 18 can also reach itself, since an assignment
to y made in one iteration of the loop will reach the next iteration. Any of the
definitions before 22 can reach 22, since control may have flowed through either
the true or false branch of the conditional.

5 Related Work

In this section we look at two areas of related work. First, we look at general fact
extraction techniques, such as DeFacto. Second, we look specifically at recent
research on specifying control flow declaratively, and on using domain-specific
languages to specify program properties which can be used in analysis.

Fact Extraction: Basic fact extraction can be performed using tools such as
Lex [17] and languages such as AWK [1], Perl, or Python, using regular expres-
sions to match patterns in the code and then record the associated facts. These
approaches are language specific—different patterns would be needed for each
language—and cannot naturally handle the nested constructs common in pro-
gramming languages. Murphy and Notkin [20,21] have extended this approach
to include additional contextual information, allowing regular expressions to be
given in a hierarchy where some expressions only match after others have already
matched (e.g., an expression matching a function call may match only after an
expression matching a function definition has already matched). Extracted facts
can also be organized in relations, allowing additional facts to be computed after
scanning is complete.

Approaches based on grammars can more naturally handle the nested con-
structs common to programming languages, but also generally require the source
code to be syntactically correct. The most basic example of a grammar-based
extractor would be one that used the semantic actions in Yacc [11] or other pars-
ing systems to record and compute facts. More complex tools include the Rigi

Streamlining Control Flow Graph Construction with DCFlow 339

system [19], which provides fixed fact extractors for several languages, represent-
ing extracted facts as tuples in a format named RSF (Rigi Standard Format),
and systems that use attribute grammars [12,22,6,23,29], which use synthesized
attributes to specify facts and inherited attributes to propagate these through
the parse tree.

Other approaches have focused on using queries to build relations, with re-
lational operations then used to combine facts and perform the analysis. Rigi,
mentioned above, uses tuples given in the RSF format and a language, the Rigi
Command Library (RCL), to manipulate these tuples. GROK [9] and Croco-
Pat [4,5] (using a notation called RML) instead use relational algebra, with
GROK supporting binary relations and CrocoPat supporting n-ary relations.
The DeFacto system [3], discussed in Section 4, uses RScript [14], which also
supports n-ary relations and relational algebra, as a query language for extracted
facts, as does Vankov’s work on formulating program slicing using relational
techniques [27]. Rascal [15,16] has n-ary relations as a native datatype, while
relational operations, such as transitive closure, are built in to the language.

DSLs and Declarative Control Flow:Other thanDeFacto, the most closely
related work to DCFlow uses JastAdd [6] to declaratively define control flow
rules and dataflow analysis algorithms based on abstract syntax trees [24]. Refer-
ence attributes are used to represent the control flow edges in the AST; collection
attributes allow the specification of inverse relations (such as the predecessor re-
lation, given an existing successor relation between control flow nodes); and
higher-order attributes allow the synthesis of new AST nodes, such as standard
entry and exit nodes for methods. In contrast, DCFlow focuses just on the
declarative specification of control flow rules, and uses Rascal functionality, in-
stead of attribute grammars, to create the control flow graph. For instance, com-
puting pred can either be performed by inverting the flow relationship, given as
a graph, or by pattern matching over the control flow edges.

DCFlow is also similar, conceptually, to other work on using focused domain-
specific languages to support program analysis tasks. This includes the DHAL
language [18] and its variants, for data flow analysis, and an approach for per-
forming incremental name and type analysis [28], implemented as part of the
Spoofax language workbench [13], which includes a task language with a num-
ber of instructions related to name and type analysis (e.g., to lookup or cast a
type) and a number of combinators to combine the results of subtasks.

6 Discussion and Future Work

In this paper we presented DCFlow, a domain-specific language for declara-
tively specifying the control flow rules for a programming language based on its
abstract syntax. DCFlow can specify the control flow for a large number of typ-
ical language constructs, generating the Rascal source code needed to construct
control flow graphs for programs using these features. As shown in Section 4,
these specifications are much shorter than a custom Rascal solution, especially

340 M. Hills

for larger languages. For features that are not currently supported, such as ex-
ceptions, Rascal code can be written directly, extending the code generated by
DCFlow and taking advantage of DCFlow library modules.

In the future, we plan to continue development of DCFlow, extending it
to handle features that are not currently supported in cases where a general
form, reusable across multiple languages, can be defined without adding too
much additional complexity. We also want to improve the visualization support
provided by the DCFlow library, allowing control flow graphs to be visualized
directly in Rascal as well as using GraphViz. Finally, we would like to explore
enabling DCFlow to be used as part of the Rascal resources framework [8],
allowing code generation and import of the CFG builder to be triggered by
importing DCFlow specifications into Rascal modules.

References

1. Aho, A., Kernighan, B., Weinberger, P.: Awk - A Pattern Scanning and Processing
Language. Software–Practice and Experience 9(4), 267–280 (1979)

2. Allen, F.E.: Control Flow Analysis. In: Proceedings of a Symposium on Compiler
Optimization, pp. 1–19. ACM, New York (1970)

3. Basten, H.J.S., Klint, P.: DeFacto: Language-Parametric Fact Extraction from
Source Code. In: Gašević, D., Lämmel, R., Van Wyk, E. (eds.) SLE 2008. LNCS,
vol. 5452, pp. 265–284. Springer, Heidelberg (2009)

4. Beyer, D., Noack, A., Lewerentz, C.: Simple and efficient relational querying of
software structures. In: Proceedings of the 10th Working Conference on Reverse
Engineering, pp. 216–225 (2003)

5. Beyer, D., Noack, A., Lewerentz, C.: Efficient relational calculation for software
analysis. IEEE Transactions on Software Engineering 31(2), 137 (2005)

6. Ekman, T., Hedin, G.: The JastAdd system - modular extensible compiler con-
struction. Science of Computer Programming 69(1–3), 14–26 (2007)

7. Hills, M., Klint, P.: PHP AiR: Analyzing PHP Systems with Rascal. In: Proceed-
ings of CSMR-WCRE 2014, pp. 454–457. IEEE (2014)

8. Hills, M., Klint, P., Vinju, J.J.: Meta-language Support for Type-Safe Access to
External Resources. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745,
pp. 372–391. Springer, Heidelberg (2013)

9. Holt, R.: Binary Relational Algebra Applied to Software Architecture. CSRI 345.
University of Toronto (March 1996)

10. Izmaylova, A., Klint, P., Shahi, A., Vinju, J.J.: M3: An Open Model For Measuring
Code Artifacts. Technical Report arXiv-1312.1188, CWI (December 2013)

11. Johnson, S.C.: Yacc: Yet Another Compiler-Compiler. Technical Report CS TR 32,
Bell Labs (1975)

12. Jourdan, M., Parigot, D., Julié, C., Durin, O., Bellec, C.L.: Design, Implementation
and Evaluation of the FNC-2 Attribute Grammar System. In: Proceedings of PLDI
1990, pp. 209–222 (1990)

13. Kats, L.C.L., Visser, E.: The Spoofax Language Workbench. In: OOPSLA 2010
Companion, pp. 237–238. ACM (2010)

14. Klint, P.: Using Rscript for Software Analysis. In: Working Session on Query Tech-
nologies and Applications for Program Comprehension, QTAPC 2008 (2008)

Streamlining Control Flow Graph Construction with DCFlow 341

15. Klint, P., van der Storm, T., Vinju, J.: EASY Meta-programming with Rascal.
In: Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) Generative and
Transformational Techniques in Software Engineering III. LNCS, vol. 6491, pp.
222–289. Springer, Heidelberg (2011)

16. Klint, P., van der Storm, T., Vinju, J.J.: RASCAL: A Domain Specific Language
for Source Code Analysis and Manipulation. In: Proceedings of SCAM 2009, pp.
168–177. IEEE (2009)

17. Lesk, M.: Lex - a lexical analyzer generator. Technical Report CS TR 39, Bell Labs
(1975)

18. Moonen, L.: Data Flow Analysis for Reverse Engineering. Master’s thesis, Univer-
sity of Amsterdam (1996)

19. Müller, H., Klashinsky, K.: Rigi – a system for programming-in-the-large. In: Pro-
ceedings of ICSE 1988, pp. 80–86 (April 1988)

20. Murphy, G., Notkin, D.: Lightweight source model extraction. In: Proceedings of
FSE 1995, pp. 116–127. ACM Press, New York (1995)

21. Murphy, G.C., Notkin, D.: Lightweight Lexical Source Model Extraction. ACM
TOSEM 5(3), 262–292 (1996)

22. Paakki, J.: Attribute grammar paradigms - a high-level methodology in language
implementation. ACM Computing Surveys 27(2), 196–255 (1995)

23. Sloane, A.M.: Lightweight Language Processing in Kiama. In: Fernandes, J.M.,
Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491, pp. 408–
425. Springer, Heidelberg (2011)

24. Söderberg, E., Ekman, T., Hedin, G., Magnusson, E.: Extensible intraprocedu-
ral flow analysis at the abstract syntax tree level. Science of Computer Program-
ming 78(10), 1809–1827 (2013)

25. van den Brand, M., Bruntink, M., Economopoulos, G., de Jong, H., Klint, P.,
Kooiker, T., van der Storm, T., Vinju, J.: Using The Meta-environment for Main-
tenance and Renovation. In: Proceedings of CSMR 2007, pp. 331–332. IEEE (2007)

26. den van Brand, M.G.J., van Deursen, A., Heering, J., de Jong, H.A., de Jonge, M.,
Kuipers, T., Klint, P., Moonen, L., Olivier, P.A., Scheerder, J., Vinju, J.J., Visser,
E., Visser, J.: The ASF+SDF Meta-environment: A Component-Based Language
Development Environment. In: Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp.
365–370. Springer, Heidelberg (2001)

27. Vankov, I.: Relational approach to program slicing. Master’s thesis, University of
Amsterdam (2005)

28. Wachsmuth, G.H., Konat, G.D.P., Vergu, V.A., Groenewegen, D.M., Visser, E.:
A Language Independent Task Engine for Incremental Name and Type Analysis.
In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp.
260–280. Springer, Heidelberg (2013)

29. Wyk, E.V., Bodin, D., Gao, J., Krishnan, L.: Silver: An extensible attribute gram-
mar system. Science of Computer Programming 75(1-2), 39–54 (2010)

Test-Data Generation for Xtext

Tool Paper

Johannes Härtel, Lukas Härtel, and Ralf Lämmel

Software Languages Team
University of Koblenz-Landau, Germany

http://softlang.wikidot.com/

Abstract. We describe a method and a corresponding tool for grammar-
based test-data generation (GBTG). The basic generation principle is to
enumerate test data based on grammatical choices. However, generation
is broken down into two phases to deal with context-sensitive properties
in an efficient and convenient manner. The first phase enumerates test
data (i.e., parse trees) with placeholders. The second phase instantiates
the placeholders through post-processors. A DSL for grammar transfor-
mation is used to customize a given grammar, meant for parsing, to be
more suitable for test-data generation. Post-processors are derived from
a corresponding object-oriented framework. The actual tool, Xtextgen,
extends the Xtext technology for language development.

Keywords: Grammars. Test-data generation. Test-data enumeration.
Grammar transformation. Grammar customization. Context sensitivity.
Xtext. Xtend. Xtextgen.

1 Introduction

Test-data generation is generally an important method in software engineering
and specifically in software language engineering; see, e.g., [3,17,18]. In this pa-
per, we are interested in grammar-based test-data generation (GBTG) [16,14,8]
such that the grammar structure is interpreted for systematic generation of pos-
itive and possibly negative examples. Such data can be used to test compilers,
interpreters, virtual machines, object serializers, and other language processing
components whose input is meant to conform to a given grammar. Scenarios of
regression, stress, and identity testing are often addressed in this manner. Based
on testing hypotheses for regularity and independence [14], the resulting data
sets help revealing issues of language processing components.

In this paper, we advance the field of GBTG.

Contributions of This Paper

– We enhance an existing language modeling technology, Xtext
1, seamlessly

with GBTG. Xtext readily supports a number of language implementation

1 http://www.eclipse.org/Xtext/

B. Combemale et al. (Eds.): SLE 2014, LNCS 8706, pp. 342–351, 2014.
c© Springer International Publishing Switzerland 2014

http://softlang.wikidot.com/
http://www.eclipse.org/Xtext/

Test-Data Generation for Xtext 343

aspects related to syntax, e.g., parser generation, model derivation, and error
marking, but GBTG was not supported so far.

– We use grammar transformation [5,15] to describe transparently the cus-
tomization of a grammar meant for parsing to become sufficiently controlled
for test-data generation. This approach improves grammar reuse and sepa-
ration of grammar concerns.

– We treat context-sensitive properties during test-data generation in a sys-
tematic manner. To this end, we designate placeholders to the relevant lan-
guage elements (e.g., identifiers) and instantiate them eventually by post-
processors that take a global view on test data (i.e., parse trees).

The paper’s website2 provides access to GBTG resources including Xtextgen.

Road-Map of This Paper. §2 provides an illustrative example in terms of
a simple sample language and an associated testing objective. We also discuss
relevant challenges in GBTG. §3 describes our GBTG method and the archi-
tecture of Xtextgen which implements GBTG for the Xtext technology. §4
describes a transformation-based form of grammar customization, thereby con-
trolling test-data generation. §5 describes a post-processing approach for test
data with placeholders so that context-sensitive properties can be handled both
efficiently and conveniently. §6 discusses related work. §7 concludes the paper.

2 Illustrative Example

We pick a simple example here: test-data generation for a finite-state machine
(FSM) language (FSML). Fig. 1 illustrates FSML with a sample FSM for a
turnstile for use in a metro system. Fig. 2 shows a grammar for FSML inXtext’s
EBNF-like notation with extra hints at model construction. We want to test
language processing components that depend on FSML for their input. Basic
examples of such components are an interpreter, a code generator, and a textual-
to-visual syntax translation; see [13] for some examples for FSML.

Test-data generation should enumerate fine state machines of increasing com-
plexity while exercising all grammatical choices systematically. One challenge
with the basic idea of GBTG is that the combinatorial complexity of the gram-
mar needs to be controlled, e.g., in terms of restricting depth of parse trees
or length of lists. Otherwise, the generated sets are simply too large or do not
reach syntactical structures of ‘interest’ before running out of scale. We ad-
dress this challenge by a designated test-data generation algorithm and grammar
transformation-based customization.

Another challenge is that generated test data may need to meet context-
sensitive properties because language processing components under test may as-
sume validity with regard to these properties. For instance, FSML readily comes
with well-formedness constraints as follows; see [13] for a precise description:

2 http://softlang.uni-koblenz.de/xtextgen/

http://softlang.uni-koblenz.de/xtextgen/

344 J. Härtel, L. Härtel, and R. Lämmel

initial state Locked {
Ticket / Collect −> Unlocked;

}
state Unlocked {
Pass −> Locked;
Ticket / Eject −> Unlocked;

}

Fig. 1. A finite state machine sample in both textual and visual syntax

grammar sle.fsml.FSML with org.eclipse.xtext.common.Terminals

generate fSML ”http://www.fsml.sle/FSML”

// A FSM as a collection of multiple states
FSM: states+=FSMState∗;

// A possibly initial state with a name and multiple transitions
FSMState:
(initial?=”initial”)? ’state’ name=ID
’{’ transitions+=FSMTransition∗ ’}’;

// A transition with input, optional action and (new) target state
FSMTransition:
input=ID
(’/’ action=ID)?
’−>’ target=[FSMState|ID] ’;’;

Fig. 2. Xtext grammar of the running example

– There is exactly one initial state.
– The names of all declared states are distinct.
– All states referenced by transitions are also declared.
– The FSM is deterministic.

We handle context-sensitive properties with the help of placeholders for the re-
lated parse-tree parts, e.g., identifiers. These placeholders are rewritten to suit-
able instances in a post-processing phase. A framework of suitable tree-rewriting
functions is provided.

3 Method Overview

Consider Fig. 3 for the work and data flow of GBTG according to our method and
tool. A test engineer supplies two artifacts: an .xtext file, which (semantically, as

Test-Data Generation for Xtext 345

Fig. 3. GBTG with Xtextgen

per Xtext) defines an Xtext grammar model, and an .xtextgen file, which
(semantically, as per Xtextgen) defines a customization of the grammar at
hand. Customization sets up placeholders and limits multiplicities. Xtextgen

processes the grammar and its customization and returns an ‘adjusted grammar’
which, in turn, is the foundation for test-data generation. ‘Initial test data’ may
contain placeholders to be instantiated by post-processing to yield ‘final test
data’. Essentially, Xtextgen operates on the Xtext grammar notation except
that arbitrary multiplicities can be expressed and there is a special form <p>
to denote placeholder symbols.

The basic generation algorithm enumerates test data (parse trees) along the
grammatical choices such that we map each grammatical expression to a possibly
infinite sequence. A case discrimination follows:

– ε (epsilon): We use a singleton sequence [‘’].
– t (terminal): We use a singleton sequence [t]
– n (nonterminal): We assume that n is defined in terms of alternatives; see

the case for alternatives below.
– <p> (placeholder): Treat as a terminal; see above.
– x y (sequence): The juxtapositions of all combinations of elements from x

and y are enumerated in a certain order. We use Cantor pairing3 rather
than a “nested loop” over the sequences of x and y. In this manner, different
elements from the two sequences are more quickly exercised.

3 http://en.wikipedia.org/wiki/Pairing_function

http://en.wikipedia.org/wiki/Pairing_function

346 J. Härtel, L. Härtel, and R. Lämmel

– x | y (alternatives): We assume an order of alternatives such that the min-
imum depth [14] of x is not larger than the one of y. (That it, it is easier
to instantiate x than y.) The sequences for x and y are combined by zipping
them together; x goes first. For instance, [‘1’,‘2’,‘3’,. . .] and [‘a’,‘b’,‘c’,. . .] are
combined as [‘1’,‘a’,‘2’,‘b’,‘3’,‘c’,. . .].

– Finite repetitions are mapped as follows:
• x? = x0,1

• x0,k = ε | x1,k

• x1,k = x | xx | xxx | x · · · x (up to k operands)

There can be infinite sequences indeed, if there is any recursion in the grammar
or if there are any infinite repetitions (‘*’ and ‘+’) left past customization. We
use one of two strategies in such a case: a) We impose a generic limit on infinite
repetitions and recursive depth. b) We only request a finite prefix of some user-
specified length, when executing the test-data generator.

The validity constraints in an Xtext language definition may deal with
context-sensitive aspects of the language. The constraints are not generally in a
form that they can be used to guide the test-data generation process for valid
models. That is, the constraints can be applied to complete parse trees, but
they cannot generally be applied to subtrees which arise during generation. It is
impractical to filter invalid complete trees afterwards, as too many invalid can-
didates would be generated. Thus, we generate parse trees with placeholders in a
first phase and we apply custom post-processors to instantiate the placeholders.
The placeholders deal with identifiers and other syntactic structures that are
directly related to the context-sensitive properties.

4 Grammar Customization

In previous work on GBTG [14,9,8], various controls have been investigated, e.g.,
limits of the depth of parse trees or elimination of combinations according to
pairwise testing. Our method uses grammar customization (i.e., transformation)
for controlling test-data generation. These transformation operators suffice for
the running example:

– “n/i : replace e/k by e′” — In the i-th alternative of nonterminal n, replace
the k-th occurrence of grammar symbol (expression) e by e′. If an index (i
or k) is omitted, then the first (i.e., the 0−th) alternative or occurrence is
assumed.

– “n/i : limit e/k to b..b′” — In the i-th alternative of nonterminal n, in the
k-th occurrence of e, limit the multiplicity of e to the range b..b′. Here, we
assume that e is of multiplicity ‘?’ (i.e., 0..1), ’+’ (i.e., 1..∗), or ’*’ (i.e., 0..∗)
and b..b′ is a proper constraint on the existing lower and upper bound. If
‘..b′’ is omitted, then we assume that b = b′.

In Fig. 4, we exerciseXtextgen’s grammar customization by transformation for
the FSML example. In line 1, the customization links to the underlying Xtext

Test-Data Generation for Xtext 347

1 customize sle.fsml.FSML
2

3 // Use a more specific name for state names
4 FSMState : replace ID by <state name>;
5

6 // Use more specific names for transition parts
7 FSMTransition :
8 replace ID/0 by <input value>;
9 replace ID/1 by <action value>;

10 replace ID/2 by <state reference>;
11

12 // Require bounds for the number of states
13 FSM : limit FSMState∗ to 1..6;
14

15 // Limit the number of transitions
16 FSMState : limit FSMTransition∗ to 1..6;
17

18 // Replace optional ”initial” keyword by placeholder
19 FSMState : replace ”initial”? by <initial>;

Fig. 4. Grammar customization for the running example

grammar. In line 4, we introduce a placeholder state name for the occurrence
of ID in the position of the name of a declared state. In this manner, a post-
processor can control the introduction of state names. Likewise, in lines 7-10, we
designate specific placeholders to the constituents of a transition, which would
otherwise all be generated according to a general notion of ID. In line 13, we
require that only FSMs with 1 to 6 states are generated. In line 16, we require
that the number of transitions per state is between 1 and 6. Here, we assume
that we want to limit the combinatorial complexity per state. Finally, in line 19,
we replace the optional ‘initial’ keyword by a mandatory ‘initial’ placeholder.
Thereby, we turn off the combinatorial choice of whether or not to have an
‘initial’ keyword and we delegate it to post-processing to enforce the constraint
of a single initial state.

5 Test-Data Postprocessing

Conceptually, a post-processor is a parse-tree rewriting function. The typical
rewrite step is the replacement of a placeholder by a suitable instance. Post-
processors may require state, e.g., a custom symbol table, to handle context-
sensitive properties. A post-processor may perform branching (by returning mul-
tiple output trees per input tree). In principle, a post-processor may also act like
a filter (by rejecting input trees). A test-data generator usually combines several
post-processors through function composition.

Fig. 5 shows the composition of several post-processors for the running exam-
ple. Post-processors are programmed in Xtend, which is the Java-like language
used with Xtext. The individual post-processors are also described in Xtend

348 J. Härtel, L. Härtel, and R. Lämmel

// Prepare the individual post−processors
val pickInitial = new PickInitial // Pick an initial state
val removeInitials = new RemoveInitials // Remove remaining placeholders
val nameStates = new NameStates // Assign names to declared states
val useStates = new UseStates // Use valid names in transitions

// Compose the post−processors
val fsmlPP = pickInitial
.andThen(removeInitials)
.andThen(nameStates)
.andThen(useStates)

Fig. 5. Xtend post-processors for FSML

// A new branch for each match
class PickInitial extends ForEachBranch {
override protected match(Leaf leaf) {
return leaf.value == ”<initial>”

}
override protected build(Leaf leaf) {
return new Leaf(leaf.label, ”initial”)

}
}

// Replace by match by epsilon
class RemoveInitials extends RemoveAll {
override protected match(Leaf leaf) {
return leaf.value == ”<initial>”

}
}

Fig. 6. Two iterators for treating initial states

while taking advantage of Xtextgen’s framework of tree-rewriting functions.
For instance, Fig. 6 shows the post-processors dealing with the constraint for a
single initial state. The first post-processor branches on each possible choice of
an initial state and replaces the placeholder by the keyword. The second post-
processor removes the placeholders which were not picked in any given branch.
In this manner, all options for a single initial state are effectively enumerated.

For brevity, we do not show theXtend code for the remaining post-processors.
Conceptually, nameStates generates a new state name for each declared state.
The parse tree rewritten by nameStates is annotated with the set of gener-
ated names so that useStates can pick from it by random selection. Thus, both
nameStates and useStates are non-branching (1:1) post-processors. Generally,
the ability to pass data between post-processors is an important technique for
handling context-sensitive properties.

Test-Data Generation for Xtext 349

Test-Data Statistics for the Running Example. To give an idea of the size
of test-data sets and execution time of test-data generation we report on two
runs of Xtextgen for the FSML example. In the first configuration, we have
fully constrained all cardinalities to 1..1. In the second configuration, we have
allowed up to 6 states with up to 6 transitions per state; all actions are required.

The measurements were taken on a Windows 8.1 machine with an Intel Core
i7-3632QM CPU at 2.20 GHz, 12.0 GB of RAM and a 750 GB harddrive with
8GB of SSD cache. The Java 8 Update 5 runtime environment was used. The
generation was executed on Eclipse Luna with DSL developer platform installed,
including Xtext 2.6.1. Persistence of test data set was achieved by serializing
the parse trees and appending them to a text file using UTF-8 encoding.

Configuration 1 2

of generated test-cases 1 324726

Size of test-data set 85B 0.257GB

Time for test-data set generation 606.1ms 2403.9s

Time for post-processing 545.6ms (90.0%) 354.0975s (14.7%)
Time for persistence 7.1ms 2049.8s

6 Related Work

Some forms of grammar-based test-data generation have been used in compiler
testing for many years; see [3,12] for surveys. In more recent work [16,14,9,8],
domain-specific languages for test-data generators have been proposed. These ef-
forts differ in the underlying generation algorithms, the available control mech-
anisms, (e.g., depth control or pairwise testing) and the linguistic style (e.g.,
annotation versus custom grammars).

For instance, the YouGen tool [9,8] generates test data by depth while relying
on annotations of the nonterminal rules. Annotations control pairwise testing,
derivation limits for depth control and Python methods to be applied for global
as well as local pre- and post-processing. Xtextgen favors grammar trans-
formation over annotation. Also, placeholders combined with composable post-
processors support an effective global view on test data with context-sensitive
properties. Xtextgen is fully integrated with Xtext.

The LPTL language [11,10] for test-data specification supports test-driven
development with designated IDE support for the language engineer. To this
end, the language under test is embedded into the language for test-data specifi-
cation. Test-data generation is readily mentioned as an excellent complementary
approach to LPTL for catching corner cases that the language engineer did not
think of.

Our approach is inspired by our previous work [14] in terms of assuming
systematic, controlled enumeration of test data. However, there are several im-
portant differences. Firstly, we use an enumeration algorithm including Cantor
pairing and mandatory multiplicity control as opposed to combinatorial cover-
age by depth. Secondly, grammars can be reused such that they are customized

350 J. Härtel, L. Härtel, and R. Lämmel

by separate transformations. Thirdly, the treatment of context-sensitive proper-
ties is more standardized by dedicating an extra phase to placeholder handling
on the grounds of a framework of tree-rewriting functions. In previous work,
context-sensitive properties were addressed by either complicated formalisms
and algorithms limiting scalability of test-data generation [7] or more ad-hoc
means of post-processing [14]. Our approach is deeply integrated with Xtext

and the corresponding ecosystem; this includes Eclipse.
Xtext bridges between grammarware (text-based concrete syntax) and mod-

elware (EMF-based abstract syntax). This sort of bridging is not completely
straightforward [1]. Formalization problems caused by the tree structure of the
abstract syntax tree lead to a restriction of the metamodel classes that can be
transformed back into the grammar. This relates to the property of (for example)
EMF metamodels to provide a containment structure.

In the areas of metamodeling and model transformation, the issue of test-data
generation arises, too [2,6]; metamodels are instantiated in a way similar to our
approach of using a grammar in generative mode. When testing model trans-
formations, e.g., in model-driven engineering [19,4], test-data generation could
be based on both the metamodels of the source models and the transformation
description itself. The latter aspect goes beyond our approach and tool.

7 Concluding Remarks

We have described a method and a tool (Xtextgen) for grammar-based test-
data generation (GBTG). This effort has been informed by our earlier work on
GBTG, specifically [14]. Our main objective is to create a GBTG method and
tool that is open-source, well-integrated with an existing technology for language
definition (Xtext), suitable for large-scale test-data generation, transparent in
terms of achieved grammar coverage, amenable to customization (controls) and
handling of context-sensitive properties.

In our experience, practical grammar-based test-data generators tend to treat
context-sensitive properties in an ad-hoc manner. In our approach, we aim at
leveraging developer knowledge of well-formedness or validity to identify syntac-
tical positions by means of placeholders, which can be instantiated subsequently
so that valid test data is obtained.

Several topics remain for future work. We would like to incorporate negative
test-data generation into our method. To this end, mutations could be applied
systematically to the grammar or to positive test cases directly; see also [20]. We
would like to fully enable the level of EMF models as opposed to the Xtextgen-
specific parse trees for user interaction with test-data generation, e.g., in the
context of post-processing. Finally, we plan to research more deeply on reusing
existing validity constraints (as in Xtext’s model checkers) for test-data genera-
tion. A symbolic execution approach, such as the one used by the Java Pathfinder
tool, may help in reusing existing constraints for test-data generation.

Test-Data Generation for Xtext 351

References

1. Alanen, M., Porres, I.: A Relation Between Context-Free Grammars and Meta
Object Facility Metamodels. Technical report, Turku Centre for CS (2003)

2. Brottier, E., Fleurey, F., Steel, J., Baudry, B., Traon, Y.L.: Metamodel-based test
generation for model transformations: An algorithm and a tool. In: ISSRE, pp.
85–94. IEEE (2006)

3. Burgess, C.J.: The Automated Generation of Test Cases for Compilers. Software
Testing, Verification and Reliability 4(2), 81–99 (1994)

4. Burgueño, L., Wimmer, M., Troya, J., Vallecillo, A.: TractsTool: Testing
Model Transformations based on Contracts. In: Demos/Posters/StudentRe-
search@MoDELS. CEUR Workshop Proceedings, vol. 1115, pp. 76–80 (2013)

5. Dean, T.R., Cordy, J.R., Malton, A.J., Schneider, K.A.: Grammar Programming
in TXL. In: SCAM, p. 93. IEEE (2002)

6. Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta mod-
els. Software and System Modeling 8(4), 479–500 (2009)

7. Harm, J., Lämmel, R.: Two-dimensional Approximation Coverage. Informatica,
24(3) (2000)

8. Hoffman, D., Ly-Gagnon, D., Strooper, P.A., Wang, H.-Y.: Grammar-based test
generation with YouGen. Softw. Pract. Exper. 41(4), 427–447 (2011)

9. Hoffman, D., Wang, H.-Y., Chang, M., Ly-Gagnon, D., Sobotkiewicz, L., Strooper,
P.A.: Two case studies in grammar-based test generation. Journal of Systems and
Software 83(12), 2369–2378 (2010)

10. Kats, L.C.L., Vermaas, R., Visser, E.: Integrated language definition testing: En-
abling test-driven language development. In: OOPSLA, pp. 139–154. ACM (2011)

11. Kats, L.C.L., Vermaas, R., Visser, E.: Testing domain-specific languages. In: OOP-
SLA Companion, pp. 25–26. ACM (2011)

12. Kossatchev, A.S., Posypkin, M.A.: Survey of Compiler Testing Methods. Program-
ming and Computing Software 31, 10–19 (2005)

13. Lämmel, R.: Another DSL primer, 2013. Technical Documentation. Version 0.00003
as of (December 25, 2013),
https://github.com/slebok/slepro/blob/master/docs/fsml/paper.tex.

14. Lämmel, R., Schulte, W.: Controllable Combinatorial Coverage in Grammar-Based
Testing. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS,
vol. 3964, pp. 19–38. Springer, Heidelberg (2006)

15. Lämmel, R., Zaytsev, V.: Recovering grammar relationships for the Java Language
Specification. Software Quality Journal 19(2), 333–378 (2011)

16. Maurer, P.: Generating Test Data with Enhanced Context-free Grammars. IEEE
Software 7(4), 50–56 (1990)

17. McKeeman, W.M.: Differential Testing for Software. Digital Technical Journal of
Digital Equipment Corporation 10(1), 100–107 (1998)

18. Sirer, E.G., Bershad, B.N.: Using Production Grammars in Software Testing. SIG-
PLAN Notices 35, 1–13 (1999)

19. Vallecillo, A., Gogolla, M., Burgueño, L., Wimmer, M., Hamann, L.: Formal Spec-
ification and Testing of Model Transformations. In: Bernardo, M., Cortellessa, V.,
Pierantonio, A. (eds.) SFM 2012. LNCS, vol. 7320, pp. 399–437. Springer, Heidel-
berg (2012)

20. Zelenov, S.V., Zelenova, S.: Automated Generation of Positive and Negative Tests
for Parsers. In: Grieskamp, W., Weise, C. (eds.) FATES 2005. LNCS, vol. 3997,
pp. 187–202. Springer, Heidelberg (2006)

https://github.com/slebok/slepro/blob/master/docs/fsml/paper.tex

Author Index

Aßmann, Uwe 141

Berger, Thorsten 41
Bill, Robert 221
Buckley, Scott 211

Chiş, Andrei 102
Choura, Hassene 171
Collet, Philippe 122

Dalla Preda, Mila 161
Delatour, Jérôme 171
Deshayes, Romuald 1
Diekmann, Lukas 82

France, Robert B. 122

Gabbrielli, Maurizio 161
Gabmeyer, Sebastian 221
Ghosh, Sudipto 122
Giallorenzo, Saverio 161
Ĝırba, Tudor 102
Götz, Sebastian 141

Hamey, Leonard G.C. 191
Harkes, Daco 241
Härtel, Johannes 342
Härtel, Lukas 342
Hills, Mark 322

Jakšić, Aleksandar 122
Jouault, Frédéric 171
Jukšs, Māris 302

Kaufmann, Petra 21, 221
Kolb, Bernd 41
Kronegger, Martin 21
Kühn, Thomas 141
Kurš, Jan 62

Lämmel, Ralf 342
Lanese, Ivan 161
Leuthäuser, Max 141
Lucio, Levi 1
Lungu, Mircea 62

Mauro, Jacopo 161
Meyers, Bart 1
Muscat, Shaun 211

Nierstrasz, Oscar 62, 102

Pfandler, Andreas 21

Ridge, Tom 261
Roberts, Matthew 191, 211

Saidi, Zied 171
Seidl, Christoph 141
Seidl, Martina 21, 221
Siegmund, Janet 41
Sloane, Anthony M. 191, 211
Syriani, Eugene 1

Tisi, Massimo 171
Tratt, Laurence 82

Vangheluwe, Hans 1, 302
Van Wyk, Eric 282
Varró, Dániel 302
Verbrugge, Clark 302
Visser, Eelco 241
Voelter, Markus 41

Widl, Magdalena 21
Williams, Kevin 282
Wimmer, Manuel 1

	Preface
	Organization
	From Language Engineeringto Viewpoint Engineering(Invited Talk)
	Table of Contents
	ProMoBox: A Framework for Generating Domain-Specific Property Languages
	1 Introduction
	2 Running Example
	3 The ProMoBox
	3.1 The Annotated Meta-model
	3.2 Generation of Sub-languages
	3.3 Generation of Mappings for Model Checking With the SPIN Environment

	4 Example and Evaluation
	5 Assumptions and Limitations
	6 Related Work
	7 Conclusion and Future Work
	References

	A SAT-Based Debugging Tool for StateMachines and Sequence Diagrams
	1 Introduction
	2 Related Work
	3 A Motivating Example
	4 Problem Definition
	5 Encoding
	6 Implementation
	7 Evaluation
	7.1 Random Instance Generation
	7.2 Testing Environment and Results

	8 Conclusion and Future Work
	References

	Towards User-Friendly Projectional Editors
	1 Introduction
	2 Background
	2.1 Parsing vs. Projection
	2.2 Related Work in Projectional Editing
	2.3 Case Study: MPS and mbeddr

	3 Advantages and Drawbacks of Projectional Editing
	3.1 Efficiently Entering (Textual) Code
	3.2 Selecting and Modifying Code (SM)
	3.3 Infrastructure Integration (II)

	4 Addressing the Drawbacks in Projectional Editors
	4.1 Efficiently Entering (Textual) Code (EE)
	4.2 Selecting and Modifying Code (SM)
	4.3 Infrastructure Integration (II)

	5 Evaluation
	5.1 Editor Usability
	5.2 Infrastructure Integration

	6 Remaining Issues and Further Improvement
	7 Conclusion
	References

	Bounded Seas
	1 Introduction
	2 Motivating Example
	2.1 A Naive Island Grammar
	2.2 An Advanced Island Grammar

	3 Bounded Seas
	3.1 The Sea Operator in a Nutshell
	3.2 The Sea Boundary
	3.3 The Context Sensitivity of Bounded Seas

	4 Bounded Seas in Parsing Expression Grammars
	4.1 The Water Operator
	4.2 The NEXT Function

	5 Discussion
	5.1 Implementation
	5.2 Java Parser Case Study
	5.3 Generalized LL Parsing
	5.4 Terminal Expressions in NEXT
	5.5 Limitations

	6 Related Work
	7 Conclusion
	References
	A Parsing Expression Grammars
	PEG Formalization
	Definition 7 (PEG Definition).
	–
	–
	–
	–
	–
	–
	–
	– Any Character:
	– Character class:
	– Optional expression:
	– One-or-more repetitions:
	– And-predicate:
	Definition 8 (PEG Semantics).

	Eco: A Language Composition Editor
	1 Introduction
	2 Running Example
	3 Parsing and Syntax Directed Editing
	3.1 Parsing-Based Approaches
	3.2 Syntax Directed Editing

	4 The Outlines of a New Approach
	5 Incremental Parsing in Eco
	5.1 Whitespace

	6 Language Boxes
	6.1 Language Modularity
	6.2 Language Boxes and Incremental Parsing
	6.3 Impact on Rendering
	6.4 Cursor Behaviour
	6.5 Copy and Paste

	7 Indentation-Based Languages
	7.1 Incrementally Handling Indentation

	8 Abstracting Syntax Trees
	8.1 Rewriting Language
	8.2 Incremental ASTs

	9 Other Features
	9.1 Scoping Rules
	9.2 Non-textual Languages

	10 Conclusions
	References

	The Moldable Debugger: A Framework forDeveloping Domain-Specific Debuggers
	1 Introduction
	2 Motivation
	2.1 Domain-Specific User Interfaces
	2.2 Domain-Specific Debugging Operations
	2.3 Automatic Discovery
	2.4 Dynamic Switching
	2.5 Summary

	3 Introducing the “Moldable Debugger” Model
	3.1 Modeling Domain-Specific Extensions
	3.2 Dynamic Integration

	4 Addressing Domain-Specific Debugging Problems
	4.1 Testing with SUnit
	4.2 An Announcement-Centric Debugger
	4.3 A Debugger for PetitParser
	4.4 A Debugger for Glamour
	4.5 Summary

	5 Implementation
	5.1 Controlling the Execution
	5.2 The Moldable Debugger in Other Languages

	6 Discussion
	6.1 The Cost of Creating New Debuggers
	6.2 IDE Integration
	6.3 Open Questions

	7 Related Work
	7.1 Specifying Domain-Specific Operations
	7.2 User Interfaces for Debugging
	7.3 Unifying Approaches

	8 Conclusions
	References

	Evaluating the Usability of a Visual FeatureModeling Notation
	1 Introduction
	2 Background
	2.1 Feature Modeling
	2.2 FAMILIAR

	3 Designing the New FAMILIAR Tool
	3.1 Visualization of Feature Models
	3.2 FAMILIAR’s New Architecture

	4 Evaluating the Usability
	4.1 Goal, Research Questions, and Context
	4.2 Hypothesis Formulation
	4.3 Experiment Design
	4.4 Experiment Objects and Variables

	5 Experimental Results
	5.1 Observations
	5.2 Summary

	6 Threats to Validity
	6.1 External Validity
	6.2 Internal Validity
	6.3 Construct Validity

	7 Related Work
	8 Conclusions and Future Work
	References

	A Metamodel Family for Role-Based Modelingand Programming Languages
	1 Introduction
	2 Preliminaries
	2.1 Elements of Modeling Languages
	2.2 Ontological Foundations of the Role Concept
	2.3 Feature Modeling

	3 Classification of Role-Based Modeling Languages
	3.1 Steimann’s Features
	3.2 Additional Features

	4 Survey of Recent Approaches
	4.1 Modeling Languages
	4.2 Programming Languages
	4.3 Summary

	5 A Metamodel Family for Role-Based Languages
	5.1 Feature Model for Role-Based Languages
	5.2 Feature Minimal Metamodel
	5.3 Feature Complete Metamodel
	5.4 Mapping Features to Variation Points

	6 Related Work
	7 Conclusion
	References

	AIOCJ: A Choreographic Frameworkfor Safe Adaptive Distributed Applications
	1 Introduction
	2 Overview:The AIOCJ Framework
	3 Implementation
	4 Validation
	5 Related Work and Conclusion
	References

	fUML as an Assembly Languagefor Model Transformation
	1 Introduction
	2 Motivation
	2.1 The Need for a Modeling VM
	2.2 Motivating Example: ATL

	3 The Modeling VM
	3.1 Requirements
	3.2 fUML as Assembly

	4 fUML as Assembly for ATL
	4.1 ClassDiagram2Relational in fUML
	4.2 Mapping ATL to fUML
	4.3 Discussion

	5 Related Work
	6 Conclusion
	References

	Respect Your Parents: How Attributionand Rewriting Can Get Along
	1 Introduction
	2 Background
	2.1 Attribution
	2.2 Rewriting
	2.3 The Problem and Solutions
	2.4 Kiama

	3 How to Respect Your Parents
	3.1 A Core Attribute Grammar Language
	3.2 Parents as Node Properties
	3.3 Parents as Tree Properties
	3.4 Discussion

	4 Kiama Implementation
	4.1 Relations
	4.2 Trees
	4.3 Examples
	4.4 Experience

	5 Related Work
	6 Conclusion and Future Work
	References

	Monto: A Disintegrated DevelopmentEnvironment
	1 Introduction
	2 Motivation and Related Work
	3 Monto Architecture
	4 Communication
	5 Experience
	6 Conclusion and Future Work
	References

	Model Checking of CTL-Extended OCL Specifications
	1 Introduction
	2 Motivating Example
	3 ATemporal Extension of OCL
	4 The Model Checker MocOCL
	4.1 Backend
	4.2 Frontend

	5 A First Experimental Case Study
	5.1 Usability
	5.2 Performance

	6 Related Work
	7 Conclusion and Future Work
	References

	Unifying and Generalizing Relations in Role-Based Data Modeling and Navigation
	1 Introduction
	2 Native Multiplicities
	3 Design Space for Role-Based Relations
	3.1 Overview
	3.2 Detailed Description of Points in Design Space

	4 A Relational Data Modeling Language
	5 Type System
	6 Dynamic Semantics
	7 Related Work
	8 Conclusion
	References

	Simple, Efficient, Sound and CompleteCombinator Parsing for All Context-FreeGrammars, Using an Oracle
	1 Introduction
	2 Example
	3 Types
	4 Parsing Combinators
	5 Example
	6 Earley Parsing and Construction of the Oracle
	7 Example, with Earley Parsing
	8 Context and Memoization
	9 Experiments and Performance
	10 Related Work
	11 Conclusion
	References

	Origin Tracking in Attribute Grammars
	1 Introduction and Motivation
	2 Attribute Grammars
	2.1 Definition of the Formalism
	2.2 Static and Dynamic Semantics of Expression Evaluation

	3 Origin Tracking in Attribute Grammars
	4 Extending Origin Tracking with Transformation Information
	4.1 The Extended Origins Interface
	4.2 Evaluating Extended Origins in Attribute Grammars

	5 Applying Extended Origins
	6 Related Work
	7 Discussion and Conclusion
	References

	Dynamic Scope Discoveryfor Model Transformations
	1 Introduction
	2 Background
	2.1 Graph Transformation Rules
	2.2 Graph Pattern Matching

	3 Dynamic Scope Discovery
	3.1 Overview
	3.2 Warming the Nodes
	3.3 Scope Refinement by Naive Bayes Classifiers

	4 Experiments
	4.1 Benchmarks and Measurements
	4.2 Results

	5 Related Work
	6 Conclusions and Future Work
	References

	Streamlining Control Flow Graph Constructionwith DCFlow
	1 Introduction
	2 Enabling Rascal Features
	2.1 The Rascal Type System
	2.2 Algebraic Datatypes
	2.3 Type Literals and Reified Types
	2.4 String Templates
	2.5 Custom Eclipse IDE Support

	3 DCFlow
	3.1 DCFlow Control Flow Graphs
	3.2 DCFlow Definitions and Sequential Control Flow
	3.3 Defining Basic Decisions and Loops
	3.4 Defining Unstructured and Structured Jumps
	3.5 Other Features and Limitations

	4 Evaluation
	4.1 Comparison with Rascal Definitions
	4.2 Comparison with DeFacto
	4.3 Reaching Definitions with DCFlow CFGs

	5 Related Work
	6 Discussion and Future Work
	References

	Test-Data Generation for Xtext
	1 Introduction
	2 Illustrative Example
	3 Method Overview
	4 Grammar Customization
	5 Test-Data Postprocessing
	6 Related Work
	7 Concluding Remarks
	References

	Author Index

