
Time-Efficient Tree-Based Algorithm for Mining
High Utility Patterns

Chiranjeevi Manike and Hari Om

Abstract. High utility patterns mining from transaction databases is an important
research area in the field of data mining. Due to the unavailability of downward
closure property among the utilities of the itemsets it becomes great challenge to
the researchers. Even though, efficient pruning strategy called, transaction weighted
utility downward closure property used to reduce the number of candidate itemsets,
total time to generate and test candidate itemsets is more. In view of this, in this
paper we have proposed a time-efficient tree-based algorithm (TTBM) for mining
high utility patterns from transaction databases. We construct conditional pattern
bases to generate high transaction weighted utility patterns in the second pass of our
algorithm. We used an efficient tree structure called, HP-Tree and tracing method
to keep high transaction weighted utility patterns and for discovering high utility
patterns respectively. We have compared the performance against Two-Phase and
HUI-Miner algorithms. The experimental results show that the execution time of
our approach is better.

1 Introduction

The problem of mining frequent patterns have been playing an important role in
different stages of data mining and knowledge discovery process such as associa-
tion rule mining [1], classification [4], clustering [7] etc. Big challenge faced by
researchers is finding efficient pruning strategy to reduce the large number of candi-
date patterns. Agrawal et al.[1] was introduced an efficient pruning strategy called,
Apriori. This strategy says that the support count of a superset of low support sub-
sets is low. In frequent pattern mining the patterns with support count above the

Chiranjeevi Manike · Hari Om
Indian School of Mines, Dhanbad - 826 004, Jharkhand, India
e-mail: chiru.research@gmail.com, hari.om.cse@ismdhanbad.ac.in

c© Springer International Publishing Switzerland 2015 409
El-Sayed M. El-Alfy et al. (eds.), Advances in Intelligent Informatics,
Advances in Intelligent Systems and Computing 320, DOI: 10.1007/978-3-319-11218-3_37



410 C. Manike and H. Om

specified threshold are generated as frequent patterns. In real time scenario all items
have different profits or importance, and to answers the few queries like the cus-
tomers whose contributing more to the profit of the company, the itemsets contribut-
ing more to the total profit, only the knowledge of frequent patterns is not sufficient.
In view of this utility mining was introduced with the assumption of different utility
values of items in transaction database and objective of usefulness [17]. Utility of an
item in a transaction is different measures of items like profit, cost, and quantity sold
etc. Pruning strategy like Apriori cannot be applied in utility pattern mining because
of the absence of downward closure property among the utilities of itemsets. There-
fore, finding efficient pruning strategy becomes a great challenge to the researchers.
Liu et al. [11] proposed an efficient algorithm called, Two-Phase by incorporating
a pruning strategy namely, transaction weighted utilization (TWU) downward clo-
sure property. This strategy says that the transaction weighted utilization of itemsets
hold downward closure property. Many researchers have been proposed different
algorithm to efficiently mine high utility patterns with limited resources. In this pa-
per we have proposed a time-efficient tree based algorithm for mining high utility
patterns with the objective of reducing execution time.

The remaining part of this paper is organized as follows. In Sect. 2, we describe
the related work. Problem definition is given in Sect. 3. In Sect. 4, we describe our
proposed algorithm with example. In Sect. 5, experimental results are presented and
analyzed. Conclusions and future works are given in Sect. 6.

2 Related Work

Utility mining theoretical model and fundamental definitions are given by Yao et al.
[16]. This model is based on the level-wise candidate generation and test methodol-
ogy, in each level low utility itemsets are pruned by using two properties called Util-
ity bound property, and support bound property. To overcome the drawbacks, Liu et
al. [11] proposed an efficient two-phase algorithm with a pruning strategy called
transaction weighted utilization downward closure property. This property says that
transaction weighted utility of any superset of a low transaction weighted utility
itemset is low. This algorithm suffers from level-wise candidate generation and test
problem. Yao et al. [15] proposed two algorithms namely UMining and Umining H
with two efficient pruning strategies by analyzing the utility upper bound property
which is introduced in [16]. These algorithms are also suffers from level-wise can-
didate generation and test problem and loss some patterns. Another algorithm was
proposed by Li et al. [9] called isolated itemset discarding strategy (IIDS) based on
the level-wise candidate generation and test problem. To overcome the drawbacks
with level-wise candidate generation and test problem of above algorithms Erwin et
al. [6] was proposed an efficient algorithm called CTU-Mine using pattern growth
approach [8]. Even though the runtime efficiency of CTU-Mine is better for low
utility values on dense datasets, overall performance is better than the Two-Phase
algorithm. Another efficient algorithm was proposed by same authors called CTU-
PRO [5] that is performed well on both sparse and dense datasets. Ahmed et al.



Time-Efficient Tree-Based Algorithm for Mining High Utility Patterns 411

[2] was proposed an algorithm called HUC-Prune based on the pattern growth ap-
proach. Tseng et al. [14] proposed an efficient two pass algorithm called UP-Growth
by using a data structure called UP-Tree. Shi et al. [12] proposed modified version
of Two-Phase algorithm to improve the performance. Above algorithms [16, 15, 9]
suffers from the problem of level-wise candidate generation and test problem and
algorithms which are implemented based on the pattern growth require more mem-
ory hence, recently Liu et al. [10] proposed an efficient algorithm called HUI-Miner.
Even though it needs no candidate generation process and requires very less amount
of memory, takes more time to construct utility-lists and generate high utility pat-
terns. Yen et al. [18] proposed an efficient algorithm for mining high utility patterns
with out need of generating candidate itemsets. Ahmed et al. [3] proposed three
efficient data structures for interactive and incremental high utility pattern min-
ing. Tseng et al. [13] proposed two algorithms called UP-Growth and UP-Growth+

with more efficient strategies to generate candidate itemsets with two scans of the
database. In view of the runtime performance and memory consumed by above al-
gorithms, we proposed a tree based algorithm to improve the runtime performance
of mining high utility patterns.

Table 1 Transaction Database

Tid Item A Item B Item C Item D Item E

T1 0 1 2 3 1
T2 2 1 1 0 0
T3 1 2 1 1 1
T4 0 1 0 14 1
T5 1 0 0 1 0

Table 2 Utility Table

Item Name A B C D E

Profit($) 3 5 1 1 10

3 Problem Definition

We have followed the identical definitions conferred in the preceding works [16,
11, 15]. Let I = {i1, i2, i3, . . . , im} be a finite set of items and TD be a transaction
database {T1,T2,T3, . . . ,Tn} in which each transaction Ti ∈ T D is a subset of I. each
item in a transaction associated with purchased quantity that is also called as internal
utility of item defined by iu(ip,Tq), for example, iu(A,T2) = 2, in Table 1. External
utility of an item is the unit profit value defined by eu(ip), for example, eu(B) = 5,
in Table 2.



412 C. Manike and H. Om

Definition 1. The utility of an item ip in a transaction Tq is the product of its in-
ternal utility and external utility and it is defined by u(ip) = iu(ip,Tq)× eu(ip), for
example, u(C,T1) = 2× 1 = 2, in Table 1 and Table 2.

Definition 2. The database utility of an item ip is the sum of all utilities in the
database defined by du(ip) = Σip∈Tq∈T Du(ip), for example, du(D) = u(D,T1) +
u(D,T3)+ u(D,T4)+ u(D,T5) = 3+ 1+ 14+ 1= 19, in Table 1 and Table 2.

Definition 3. The utility of an itemset X in transaction Tq is defined as u(X ,Tq) =
Σip∈X u(ip,Tq), for example, u(AB,T2) = 11, in Table 1 and Table 2.

Definition 4. The database utility of an itemset X in a database TD is defined by
u(X ,TD) = Σip∈X∈T Du(ip,Tq), for example u(AB,TD) = u(AB,T2)+ u(AB,T3) =
11+ 13= 24, in Table 1 and Table 2.

Definition 5. Transaction utility can be defined as the sum of the individual utilities
of all items in that transactionTq, defined by tu(Tq) = Σip∈Tq u(ip), tu(T1) = 20, in
Table 1 and Table 2.

Definition 6. The total database utility is the sum of the all transaction utilities in
the database, defined by tdu(TD) = ΣTq∈DBtu(Tq), tdu(TD) = tu(T1) + tu(T2) +
tu(T3)+ tu(T4)+ tu(T5) = 20+ 12+ 25+29+4= 90, in Table 1 and Table 2.

Definition 7. Transaction weighted utility of an item ip in the transaction database
TD is defined as twu(ip,T D) = Σip∈Tp∈T Dtu(Tq), twu(A,TD) = tu(T1)+ tu(T3)+
tu(T5) = 12+ 25+ 4= 41, in Table 1 and Table 2.

Definition 8. Minimum utility threshold is given by the percentage of the total trans-
action database utility, defined by minUtil = tdu(TD)× δ .

Definition 9. High utility itemset is an itemset with utility ≥ minUtil.

Definition 10. High utility pattern mining is the process of finding patterns with
utility more than the specified minimum utility threshold.

4 Proposed Algorithm

In this section, we describe our proposed algorithm called TTBM, this algorithm
requires three database scans. During the first scan it finds the high transaction
weighted utility of each item, in second scan constructs the tree based on the high
transaction weighted utility patterns. Next it updates the actual utilities of pattern in
tree by scanning database again. Brief description of the three scans of the algorithm
for the above transaction database(Table 1) is given below.

4.1 First Scan

During the first scan, algorithm loads each transaction one by one and accumulates
the transaction weighted utility of the items. For example, consider the transaction



Time-Efficient Tree-Based Algorithm for Mining High Utility Patterns 413

Algorithm 1. TTBM Algorithm
Input: Transaction Database TD; Minimum Utility Threshold δ
Output: High utility Patterns

1 while input �= null do
2 for each item do
3 claculate TWU value
4 if TWU > δ then
5 add item to the itemsList

6 sort itemsList TWU desc order

7 while input �= null do
8 for each transaction do
9 if item TWU > δ then

10 add item to the oList
11 TU = TU + itemUtility

12 sort oList items as in itemsList
13 tree.addTrans(oList, TU)

14 HuiList = mfpgrowth(tree)
15 tree.addHui(HuiList) while input �= null do
16 for each transaction do
17 load items and generate subitemsets
18 calculate Utility of each subset
19 tree.addUtilities(subitemsets, listutility)

20 hui list = tree.tracing(δ )
21 return hui list

database and utility table in Table 1 and Table 2, after first scan algorithm finds
the following transaction weighted utilities of items, A:41, B:86, C:57, D:78, E:74.
If any item transaction weighted utility is lower than the minimum utility that will
be discarded, and that will not be consider for further computation so number of
candidate patterns effectively reduced.

4.2 Second Scan

During second scan, algorithm loads all items of a transaction except the items
which are discarded in the first scan. No item will be discarded if minimum util-
ity is set to 30, item A will be discarded for minimum utility 50 (i.e. twu(A) =
41). Transaction utility of each transaction will also be calculated in parallel, if any
item is discarded that utility is subtracted from transaction utility. The below table
(Table 3) represents the transaction database during second scan, items are ordered
in transaction weighted utility ascending. Next by reading each transaction TWU-
Tree is constructed that is shown in Fig. 1(a). HP-Tree in Fig. 1(a) is constructed
for high transaction weighted utility patterns {CEDB}, {DE}, {BE}, {BD}, and



414 C. Manike and H. Om

{BDE}. While loading first transaction root node is null so a new node with item
C will be constructed and transaction utility is assigned to the utility of that node.
Next we check child list of current node for the next item E, as the item C do not
have any child so E will be attached as child to the node C, in this fashion all items
will be processed. While processing next transaction first we will check first item
exists in the children list of root node, if not it will be created else transaction util-
ity is accumulated to existing. Next modified pattern growth is applied to find high
transaction weighted utility patterns. HP-Tree is constructed for all high transac-
tion weighted utility patterns, Fig. 1(b) represent the HP-Tree after adding all high
transaction weighted utility patterns.

Table 3 Updated Transaction Database

Tid Item C Item E Item D Item B TU

T1 2 1 3 1 20
T2 1 0 0 1 6
T3 1 1 1 2 22
T4 0 1 14 1 29
T5 0 0 1 0 1

null

E:29C:48

E:42 D:29

D:42 B:29

B:42

B:6

D:1
null

C: D:B:

E: E:E:D:

D:

B:

E:

(a). Transaction weighted utilities (b). High Transaction weighted utility itemsets

Fig. 1 HP-Tree

4.3 Third Scan

In third scan, candidate patterns are generated and utility also calculated in par-
allel. These candidate utilities are updated in HP-tree only if candidate is exist in
the tree, Fig. 2 represents the HP-Tree after adding all high transaction weighted
utility patterns. After adding all candidate utilities by traversing HP-Tree all high
utility patterns with utility more than the specified utility are generated. Algorithm
generates the high utility patterns {BDE:68} and {BE:50} for minimum utility 50.



Time-Efficient Tree-Based Algorithm for Mining High Utility Patterns 415

Fig. 2 HP-Tree with utilities

null

C:4 D:19B:25

E:23 E:48E:50D:38

D:0

B:0

E:68

5 Experimental Evaluation

All algorithms are implemented in java and experiments are preformed on a PC with
processor Intel CoreTM i7 2600 CPU @ 3.40 GHZ , 2GB Memory and the operating
system is Microsoft Windows 7 32-bit.

5.1 Synthetic Datasets

IBM synthetic dataset generator was used for generating datasets. The parameter
settings for generating datasets are followed from [1]. IBM generator generates the
binary database, so fit this into the scenario of utility pattern mining purchased quan-
tities of items in every transaction is generated randomly ranging from 1 to 5. Ex-
ternal utility (unit profit) value is also generated randomly ranging from 1 to 20 by
following lognormal distribution as shown in Fig. 3.

5.2 Experimental Results

Experiments are done over synthetic datasets to evaluate the performance of pro-
posed approach in different cases. In first case, we have performed experiments
with varying minimum utility thresholds (low range 0.01 to 0.09 and high range 0.1
to 0.9). In next and subsequent cases, experiments are done to check the scalability
of algorithms with varying number of distinct items, number of transactions, and
transaction lengths respectively. In the Fig. 4(a) we have shown only the perfor-
mance comparison of our approach with HUI-Miner, because Two-Phase algorithm

Fig. 3 External utility dis-
tribution for 300 items

0 5 10 15 20
0

50

100

150

External Utility

N
um

be
r 

of
 I

te
m

s



416 C. Manike and H. Om

Table 4 Number of HUPs on T8I4D50K

MinUtility(%) # of HUP MinUtility(%) # of HUP

0.01 596954 0.1 12350
0.02 199106 0.2 3435
0.03 104845 0.3 1574
0.04 64322 0.4 879
0.05 42997 0.5 555
0.06 31073 0.6 376
0.07 23597 0.7 271
0.08 18729 0.8 199
0.09 14983 0.9 149

0 0.02 0.04 0.06 0.08 0.1
400

500

600

700

800

900

Minimum Utility Threshold (%)

E
xe

cu
tio

n 
T

im
e 

(S
ec

.)

 

 

TTBM
HUI−Miner

0.2 0.4 0.6 0.8
0

500

1000

1500

Minimum Utility Threshold (%)

E
xe

cu
tio

n 
T

im
e 

(S
ec

.)

 

 

TTBM
HUI−Miner
Two−Phase

(a). Low δ range (b). High δ range

Fig. 4 Varying minimum utility thresholds

performance is not good at low minimum utility thresholds that can also be ob-
served from Fig. 4(b) that the execution time is exponentially increasing with the
decreasing utility threshold. Fig. 4(a) & (b) shows that performance of our proposed
algorithm is far better than the performance of HUI-Miner for different utility
ranges. From Fig. 4(b) we can also observe that execution time of Two-Phase al-
gorithm is more efficient than proposed and HUI-Miner.

100 150 200 250 300
0

200

400

600

800

Number of Items

E
xe

cu
tio

n 
T

im
e 

(S
ec

.)

 

 

TTBM
HUI−Miner
Two−Phase

40 60 80 100 120 140
0

2000

4000

6000

Number of Transactions

E
xe

cu
tio

n 
T

im
e 

(S
ec

.)

 

 

TTBM
HUI−Miner
Two−Phase

(a). Varying number of items (b). Varying number of transactions

Fig. 5 Varying number of items and transactions



Time-Efficient Tree-Based Algorithm for Mining High Utility Patterns 417

5 6 7 8
0

200

400

600

800

Avg number of items per transaction

E
xe

cu
tio

n 
T

im
e 

(S
ec

.)

 

 

TTBM
HUI−Miner
Two−Phase

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

100

200

300

400

500

600

700

Minimum Utility Threshold (%)

M
em

or
y 

(M
B

)

 

 

Two−Phase
HUI−Miner
TTBM

(a). Varying average length of transactions (b). Memory consumption

Fig. 6 Varying average length, minimum utility

From Fig. 5(a) we can observe that effect of increasing number of distinct items
on the execution time of the algorithms. From Fig. 5(a) we can also observe that
there is slight variation on the performance of proposed and Two-Phase algorithm,
but meager effect on the HUI-Miner algorithm. Fig. 5(b) and Fig. 6(a) shows that
effect of execution performance on varying number of transactions, and transaction
length is similar on proposed and Two-Phase algorithm and smaller than that of
HUI-Miner. Fig. 6(b) shows memory consumption of three algorithms.

6 Conclusion

In this paper we have proposed a time-efficient algorithm for effectively mine the
high utility patterns from transaction database. Our algorithm only need maximum
three database scans compare to the existing few algorithm those require multiple
database scans. Experimental performance analysis shows that proposed algorithm
execution time is better in all cases. However, the execution time of our algorithm
is efficient, memory consumption is more. So in our future work we make our al-
gorithm more efficient in both time and memory in finding the complete set of high
utility patterns.

References

1. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proc.
20th Int. Conf. VLDB, vol. 1215, pp. 487–499 (1994)

2. Ahmed, C.F., Tanbeer, S.K., Jeong, B.-S., Lee, Y.-K.: An efficient candidate pruning
technique for high utility pattern mining. In: Theeramunkong, T., Kijsirikul, B., Cercone,
N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 749–756. Springer,
Heidelberg (2009)

3. Ahmed, C.F., Tanbeer, S.K., Jeong, B.S., Lee, Y.K.: Efficient tree structures for high
utility pattern mining in incremental databases. IEEE Transactions on Knowledge and
Data Engineering 21(12), 1708–1721 (2009)

4. Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: generalizing association
rules to correlations. ACM SIGMOD Record 26, 265–276 (1997)



418 C. Manike and H. Om

5. Erwin, A., Gopalan, R.P., Achuthan, N.: A bottom-up projection based algorithm for
mining high utility itemsets. In: Proc. 2nd Int’l Workshop on Integrating Artificial Intel-
ligence and Data Mining, vol. 84, pp. 3–11. Australian Computer Society, Inc. (2007)

6. Erwin, A., Gopalan, R.P., Achuthan, N.: Ctu-mine: An efficient high utility itemset min-
ing algorithm using the pattern growth approach. In: Proc. 7th IEEE Int’l Conf. on CIT,
pp. 71–76 (2007)

7. Fung, B.C., Wang, K., Ester, M.: Hierarchical document clustering using frequent item-
sets. In: Proc. of SIAM Int’l Conf. on Data Mining, pp. 59–70 (2003)

8. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. ACM
SIGMOD Record 29, 1–12 (2000)

9. Li, Y.C., Yeh, J.S., Chang, C.C.: Isolated items discarding strategy for discovering high
utility itemsets. Data & Knowledge Engineering 64(1), 198–217 (2008)

10. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: Proc. 21st
ACM Int’l Conf. on Information and Knowledge Management, pp. 55–64 (2012)

11. Liu, Y., Liao, W.-k., Choudhary, A.K.: A two-phase algorithm for fast discovery of high
utility itemsets. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI),
vol. 3518, pp. 689–695. Springer, Heidelberg (2005)

12. Shi, Y., Liao, W.K., Choudary, A., Li, J., Liu, Y.: High utility itemsets mining. Int’l
Journal of Information Technology & Decision Making 09(06), 905–934 (2010)

13. Tseng, V., Shie, B.E., Wu, C.W., Yu, P.: Efficient algorithms for mining high utility item-
sets from transactional databases. IEEE Transactions on Knowledge and Data Engineer-
ing 25(8), 1772–1786 (2013), doi:10.1109/TKDE.2012.59

14. Tseng, V.S., Wu, C.W., Shie, B.E., Yu, P.S.: Up-growth: an efficient algorithm for high
utility itemset mining. In: Proc. 16th ACM SIGKDD Int’l Conf. on Knowledge Discov-
ery and Data Mining, pp. 253–262 (2010)

15. Yao, H., Hamilton, H.J.: Mining itemset utilities from transaction databases. Data &
Knowledge Engineering 59(3), 603–626 (2006)

16. Yao, H., Hamilton, H.J., Butz, C.J.: A foundational approach to mining itemset utilities
from databases. In: Proc. 4th SIAM Int’l Conf. on Data Mining, pp. 482–486 (2004)

17. Yao, H., Hamilton, H.J., Geng, L.: A unified framework for utility-based measures for
mining itemsets. In: Proc. ACM SIGKDD 2nd Workshop on Utility-Based Data Mining,
pp. 28–37 (2006)

18. Yen, S.J., Chen, C.C., Lee, Y.S.: A fast algorithm for mining high utility itemsets. In:
Behavior Computing, pp. 229–240 (2012)


	Time-Efficient Tree-Based Algorithm for Mining High Utility Patterns
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Proposed Algorithm
	4.1 First Scan
	4.2 Second Scan
	4.3 Third Scan

	5 Experimental Evaluation
	5.1 Synthetic Datasets
	5.2 Experimental Results

	6 Conclusion
	References




