
Memory Based Multiplier Design in Custom and
FPGA Implementation

M. Mohamed Asan Basiri and S.K. Noor Mahammad

Abstract. The modern real time applications like signal processing, filtering, etc.,
demands the high performance multiplier design with fewer look up tables in FPGA
implementation. This paper proposes an efficient look up table based multiplier de-
sign for ASIC as well as FPGA implementation. In the proposed technique, both
the input operands of the multiplier are considered as variables and the proposed
LUT based multiplier design is compared with other schemes like LUT counter,
LUT of squares and LUT of decomposed squares based multiplier designs. The
performance results have shown the proposed design achieves better improvement
in depth and area compared with existing techniques. The proposed LUT based
12× 4-bit multiplier achieves an improvement of 34.61% in depth compared to the
counter LUT based architecture. The 16× 16-bit proposed LUT based multiplier
achieves an improvement factor of 76.84% in the circuit depth over the square LUT
based multiplication technique using 45 nm technology.

1 Introduction

In general, multipliers are the crucial components of cryptography systems like el-
liptic curve cryptography algorithms [1] and digital signal processing algorithms
like fast Fourier transform (FFT) [2]. The multipliers are basic part of multiply ac-
cumulate circuit (MAC) [3], which is the heart of digital signal processor, where
two input operands are multiplied and the present multiplication result is added
to the previous MAC result. Any digital filter application like finite impulse re-
sponse (FIR) requires a multiplier to perform the operation. The multiplier with
lesser depth, lower power requirement and lower area impact the digital system to

M. Mohamed Asan Basiri · S.K. Noor Mahammad
Department of CSE, Indian Institute of Information Technology Design
and Manufacturing Kancheepuram
e-mail: {asanbasiri,noorse}@gmail.com

c© Springer International Publishing Switzerland 2015 253
El-Sayed M. El-Alfy et al. (eds.), Advances in Intelligent Informatics,
Advances in Intelligent Systems and Computing 320, DOI: 10.1007/978-3-319-11218-3_24

254 M. Mohamed Asan Basiri and S.K. Noor Mahammad

achieve high performance arithmetic. A digital multiplier has two parts, they are
partial product generation and addition of partial products. The partial product gen-
eration will take Θ(1) time complexity and depth of the addition of partial products
will be varied according to the multiplier structure. In general, carry save multipliers
are having two parts in their partial product addition, they are carry save addition
tree and final addition. The depth of carry save adder (csa) is O(1). The depth of
the carry save addition tree is O(log2 n) for Wallace tree [4] multiplier and O(n) for
Braun multiplier, where n is the number of bits. The number of carry save stages
will be varied in both the above mentioned multipliers. The sum and carry from the
last carry save stage of the multiplier is further added with final adder, where ripple
carry adder (RCA) is used with O(n) circuit depth or recursive doubling based carry
look ahead adder (CLA) is used with O(log2 n) depth.

The n-bit multiplier produces a n number of partial products. If the number of par-
tial products is getting reduced, then the depth of multiplier will be reduced. For this
purpose, the higher radix modified Booth algorithm [5] is used. In this case, Booth
encoder itself, will cause an increase in multiplier circuit depth. The paper [6] shows
the basic complex number multiplier structure, where four multipliers are involved
to perform one complex number multiplication. The paper [7] shows the Baugh
Wooley based signed multiplication scheme, which is similar to array multiplier
with circuit depth O(n). In modern technology, vector processors [8] are playing a
major role to achieve data level parallelism (DLP). Here multiple operands are fol-
lowing multiple data paths in the same hardware. So only one instruction is used to
perform multiple operations on the vector of data. All the operands are processed in
parallel, thus improves the speed of the operation. The twin precision based array
multiplier is explained in [9], where the full precision multiplier is used to perform
two half precision multiplications with circuit depth of O(n) to achieve DLP. This
means that, 8-bit multiplier is used to perform two 4-bit multiplications or one 8-bit
multiplication at a time.

Adder Subtractor

one position right shift one position right shift

A B

x y

(A+B) (A-B)

A Blsb lsb^

k=0k=B

=1 =0

x
2 y2

SQUARE LUT
n

2 lines each with
 2n-bits wide

SQUARE LUT
n

2 lines each with
 2n-bits wide

2 2

(AxB)

x + y +k

Fig. 1 LUT of squares based multiplier

Memory Based Multiplier Design in Custom and FPGA Implementation 255

In the last two decades, look up table (LUT) based multiplier design is becoming
an emerging technology in high performance arithmetic circuit design. For exam-
ple, [10] shows the implementation of LUT based discrete cosine transform, FIR
filtering. The papers [11], [12] and [13] explain the LUT based digital signal pro-
cessing operations. In general LUT based multiplication of two input operands A
and B can be found by,

x = (A+B)/2 (1)

y = (A−B)/2 (2)

AB = x2 − y2 + k (3)

Here k is equal to 0, if A and B both are even/odd and k is equal to B if any one
of A or B is even. The squared values x2 and y2 are obtained from the LUT . If the
input operands A and B are n-bit wide, then the x and y also will become a n-bit
wide. Hence the number of LUT entries will be 2n and each with 2n-bits wide. So
the size of LUT will be (2n+1n) bits. The major drawback with this approach is
the requirement of larger LUT . The Fig. 3 shows the above mentioned LUT based
multiplication scheme, where the xor value of least significant bit (lsb) of A and B
(Alsb and Blsb) are used to find the k value. The paper [14] shows that the LUT size
reduction techniques for the above mentioned square based multiplication. In the
LUT of squares based multiplication, the least n-bits of the squared value (2n-bits
wide) are periodic with the period (2n−1) where the input of the LUT is considered
as n-bits wide.

The paper [15] shows the LUT counter based multiplication scheme. If the mul-
tiplicand is m-bits wide and multiplier is p-bits wide, then the number of partial
products will be p each with m-bits wide, which tends to produce m+ p−1 columns
of partial products. According to [15], t columns of p partial products are sent to the
LUT . The number of ones in each column is counted. The counted value is added
to the other columns. The outputs from all the LUT s are added to compressor tree.
So the size of the LUT will be 2ptq bits, where q is the number of bits in the output

12
 2 lines each
with 5-bit wide

12
 2 lines each
with 5-bit wide

12
 2 lines each
with 5-bit wide

12
 2 lines each
with 5-bit wide

12
 2 lines each
with 5-bit wide

Carry save reduction tree

CLA

Sum Carry

Counter LUT Counter LUT Counter LUT Counter LUT Counter LUT

12 12 12 12 12

16

5 5 5 5 5

 p0(11) p0(10) p0(9)
 p1(10) p1(9) p1(8)
 p2(9) p2(8) p2(7)
 p3(8) p3(7) p3(6)

 p1(11)
 p2(11) p2(10)
p3(11) p3(10) p3(9)

 p0(8) p0(7) p0(6)
 p1(7) p1(6) p1(5)
 p2(6) p2(5) p2(4)
 p3(5) p3(4) p3(3)

 p0(5) p0(4) p0(3)
 p1(4) p1(3) p1(2)
 p2(3) p2(2) p2(1)
 p3(2) p3(1) p3(0)

 p0(2) p0(1) p0(0)
 p1(1) p1(0)
 p2(0)

out out is 16-bits wide

Fig. 2 LUT counter based 12x4 multiplier design

256 M. Mohamed Asan Basiri and S.K. Noor Mahammad

from an each LUT . The Fig. 2 shows the LUT counter based 12x4 multiplier de-
sign, where 4 partial products each with 12 bits wide are added using five counter
LUT s. Here 3 columns (12 bits) of partial products are sent to the counter LUT . The
maximum number of 1’s in each column is 4. So the LUT is having 212 lines each
with 5-bits wide. All the three columns should be added in such a way, where the
second column (one position left shifted) is added to the third column (two positions
left shifted) and the first column. Here the first column is not shifted. If all the three
columns are having four 1’s, then the shifted addition value three columns will be
11100. So each of the counter LUT is having the 5-bit output line. In the next step,
all the output lines of the counter LUT s are added through carry save reduction tree
to get the final result. The drawback with this approach is that the LUT size will be
increased if the more number of columns are sent to the counter LUT . The number
of LUT s will be increased if the less number of columns are sent. This will increase
the stages of carry save reduction tree. The paper [16] proposed LUT based FIR
filter design, where the filter co-efficients are considered as constant values. If the
input signal sample value x is considered as n-bit value, then the number of possi-
ble multiplication results between x and the filter co-efficient (A) will be 2n, where
A is assumed as m-bit constant. Hence the LUT will contain 2n entries, each with
(m+ n)-bits wide.

x[n-1:0]

x[n-1:n/2] x[n/2-1:0]

Shifter - Adder

mn bits x[n-1:0]*A[m-1:0]

n/2
2 entries each with
 (nm/2)-bits wide

n/2
2 entries each with
 (nm/2)-bits wide

n-bit value of x which
 is represented as
 0 th to (n-1) th bit

Fig. 3 Look up table based constant multiplication

The Fig. 3 has shown the above mentioned multiplication, where the n-bit input
operand x is divided into two parts. So the number of LUT entries will be 2n/2 and
each with (m +(n/2))-bits wide and finally the outputs from both the LUTs are
added to shifter-adder circuit to get the multiplication result. The drawback with
this approach is that, it’s not suitable for general purpose hardware design where the
filter co-efficients are not considered as constants. If the filter co-efficient is a large
number, then the LUT size will be increased. Here the size of the LUT is based on
the value of m and n. The value of m will be higher for large values of A.

Memory Based Multiplier Design in Custom and FPGA Implementation 257

1.1 Contribution of This Paper

The drawbacks on the existing LUT based multiplication from the above literature
gives the motivation towards the proposed LUT based multiplication scheme. Here
the size of the LUT and delay, both are considered. The proposed technique uses
the smaller LUT s, where both the input operands are considered as lesser num-
ber of bits. These smaller LUT s are used to build n× n-bit multiplication, where n
is considered as larger number bits. This means that, the given input operands are
decomposed into smaller multiplications, where each result of the smaller multipli-
cation can be obtained by using the smaller LUT s. In the final step, carry save re-
duction tree is used to add the results from all the smaller LUTs to obtain the desired
result. Hence the size of the LUT can be maintained as small. Due to the carry save
reduction tree, the depth of the circuit will be in the time bound of Θ(log2 n). This
proposed LUT based multiplier is used for general purpose multiplication, where
both the input operands are considered as n-bit variables. The experimental results
show that the proposed LUT based multiplier gives better performance (in terms of
delay and area) than the existing LUT based techniques like LUT counter, LUT of
squares and LUT of decomposed squares based multipliers. The rest of the paper is
organized as, section 2 states the proposed LUT based multiplication scheme. De-
sign modeling, implementation and results are discussed in section 3, followed by a
section 4 conclusion.

2 The Proposed LUT Based Multiplication

The proposed 3× 3-bit multiplier is shown in Fig. 4, where three LUTs are used
to store all the possible results. The 3-bit input operands are A and B. The address
line for each LUT will be B. The 8 to 1 multiplexer is used to get all the possible
results. The select line for the multiplexer is A. The LUT s (connected to 3, 5 and 7 th
input line of multiplexer) are used to store the multiplication result of A by 3, 5 and 7
respectively. Since it is 3-bit multiplication, the line width of each LUT is 6 bits. The
number of lines in each LUT will be 8. The data at the 2i th input of multiplexer can
be obtained by left shifting (i times) of A, where i = 0,1,2, The data at the even
number (other than 2i) input line of the multiplexer can be obtained by left shifting
the output of the LUT to the corresponding odd position. Here the left shifting can
be implemented by hardwire connection and hence it doesn’t require any shifting
units. In general, number of LUT s used for n× n multiplier is (2n−1 − 1) and each
LUT is consisting of 2n lines each with 2n-bits wide. So the size of each LUT will
be (2n+1n) bits.

A 2n to 1 multiplexer is required to design the n× n-bit LUT based multiplier. If
n is large, then the requirement of larger multiplexer will cause an overhead of the
design. The table 1 shows the comparison between the various LUT based multipli-
ers, which clearly shows about the number of LUT s, number of lines per LUT , line
width of LUT in bits, the size of each LUT in bits and multiplexer involved in the

258 M. Mohamed Asan Basiri and S.K. Noor Mahammad

0
3
6
9

12
15
18
21

0
5

10
15
20
25
30
35

0
7

14
21
28
35
42
49

{000,b}

000000

{00,b,0}

{0,b,00}

k
{k[4:0],0}

6 AxB

A[2:0]

B[2:0]

6 7543210

8 TO 1 MULTIPLEXER

Fig. 4 Proposed LUT based 3×3-bit multiplier

Table 1 Comparison of LUT based multipliers

LUT
based
multiplier

No. of
LUT s used

No. of lines
per LUT

Line width
of LUT
(bits)

Size of each
LUT (bits)

Multiplexer
used

2×2 1 4 4 16 4 to 1
2×3 1 8 5 40 4 to 1
2×4 1 16 6 96 4 to 1
2×5 1 32 7 224 4 to 1
3×3 3 8 6 48 8 to 1
3×4 3 16 7 112 8 to 1
3×5 3 32 8 256 8 to 1
4×4 7 16 8 128 16 to 1
4×5 7 32 9 288 16 to 1
5×5 15 32 10 320 32 to 1

particular multiplier design. These simpler LUT based multipliers are used in the
larger multiplier design and hence the size of the LUT will be maintained as small.

The Fig. 5 shows the implementation of 16× 16-bit multiplier using 4× 4-LUT
based multipliers. The input operands A and B both are considered as 16-bits wide.
So they can be decomposed into 4 parts, each with 4-bits wide. This is means that,
A is decomposed into a0, a1, a2 and a3. Similarly B is decomposed into b0, b1,
b2 and b3. The multiplication results a0b0, a1b0, a2b0, a3b0, a0b1, a1b1, a2b1,
a3b1, a0b2, a1b2, a2b2, a3b2, a0b3, a1b3, a2b3 and a3b3 are obtained from 4×4-
bit LUTs. The Fig. 5(a) shows the arrangement of output values obtained from the
sixteen 4× 4 LUT s. The Fig. 5(b) shows carry save reduction tree for adding all
the partial results p0, p1, ...p7, where csa represents the carry save adder with
time complexity O(1). So the depth of the carry save reduction tree will be re-
duced compared to the conventional Wallace structure because the conventional
16× 16-bit Wallace structure contains 16 partial products. In the proposed design,
the number of partial results to the carry save reduction tree is depending on the

Memory Based Multiplier Design in Custom and FPGA Implementation 259

a3 a2 a1 a0
b3 b2 b1 b0

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2a2b2

a1b2a3b2

a0b3a2b3

a1b3a3b3

p0

p1

p2

p3

p4

p5

p6

p7

csa 1 csa 2

csa 3 csa 4

csa 5

csa 6

CLA

p0 p1 p2 p3 p4 p5 p6 p7

(a) (b)

32

Fig. 5 Proposed LUT based 16× 16-bit multiplier (a) Arrangement of output from sixteen
4×4 LUT s (b) Carry save reduction tree to add outputs from all the LUT s

number of decompositions of the multiplier/multiplicand and the width of the mul-
tiplier/multiplicand. In case of 16×16-bit multiplier, the number of decompositions
of the multiplier/multiplicand is 4 and which is shown in Fig. 5.

In the Fig. 5, both the operands A and B are decomposed by 4. So all the outputs
from the LUTs are arranged in exactly half of the previous result. In some cases, the
decomposition can be done by 2 or 3 or 4 or 5 or any other combination. In this case,
the alignment of the output from LUT s, tends to give an important role. For example,
Fig. 6 shows the various possible decompositions for 10-bit multiplicand (A) which
is multiplied by 4-bit multiplier (B). The Fig. 6(a) shows the decomposition of the
multiplicand by 3. This means that, multiplicand (A) is decomposed into A[2 : 0],
A[5 : 3] and A[9 : 6]. The arrangement of outputs from the LUT s is having 3 partial
results, they are p0, p1 and p2. Here the 0-th bit of the A[5 : 3]×B[3 : 0] should be
aligned with 3-rd bit of A[2 : 0]×B[3 : 0]. Similarly the 0-th bit of the A[9 : 6]×B[3 :
0] should be aligned with 6-th bit of A[2 : 0]×B[3 : 0].

(a)

(b)

p0

p1

p2

p0

p1

 6 5 4 3 2 1 0
 6 5 4 3 2 1 0
 7 6 5 4 3 2 1 0

 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 7 6 5 4 3 2 1 0

A[9:6] A[5:3] A[2:0]
 B[3:0]

A[9:8] A[7:4] A[3:0]
 B[3:0]

A[2:0] x B[3:0]

A[5:3] x B[3:0]

A[9:6] x B[3:0]

A[9:8] x B[3:0] A[3:0] x B[3:0]

A[7:4] x B[3:0]

Fig. 6 Proposed LUT based 10×4-bit multiplication (a) Decomposition with 3 partial results
(b) Decomposition with 2 partial results

260 M. Mohamed Asan Basiri and S.K. Noor Mahammad

In Fig. 6(b), multiplicand (A) is decomposed into A[3 : 0], A[7 : 4] and A[9 : 8].
The arrangement of outputs from the LUT s is having 2 partial results, they are
p0 and p1. Here the 0-th bit of A[7 : 4]× B[3 : 0] is aligned with the 4-th bit of
A[3 : 0]×B[3 : 0]. Similarly the 0-th bit of A[9 : 8]×B[3 : 0] is aligned with 4-bit of
A[7 : 4]×B[3 : 0]. All the partial results are obtained from the LUT s. Due to an extra
partial result (p2), the depth of the multiplier in Fig. 6(a) is higher than the multi-
plier in Fig. 6(b). In both the cases, the multiplier is treated as zero decomposition.
So in general, the multiplier and multiplicand can be decomposed into n1 and n2
parts respectively. So the whole multiplicand can be multiplied by n2 times of full
multiplication. Each full multiplication is consisting of n1 number of half multipli-
cations. The decompositions should be in such a way that, each full multiplication
should give maximum of two partial results to achieve lesser depth of carry save
reduction tree. This will give the way of selecting smaller LUT based multipliers
for the decomposition of the required n× n multiplier.

2.1 Time Complexity Analysis of Proposed LUT Based Multiplier

If the number of decompositions of the multiplier is d (where d > 1), then the num-
ber of partial results to the carry save reduction tree will be kd. Here the proposed
logic is considered as the n× n-bit multiplier is made up of basic LUT s mentioned
in table 1 only. The value of k = 2 if the number of decompositions in multipli-
cand is more than 1 and k = 1 if the number of decompositions in multiplicand is
equal to 1. So the depth of the carry save reduction tree will become O(log2 kd),
which is lesser than the depth of the conventional n× n-bit Wallace tree multiplier
(O(log2 n)). The important thing is to align the multiplication result from the basic
LUT s before carry save addition. So the time complexity for the proposed n×n-bit
multiplier is T (n) = T (LUT) + T (mux) +O(log2 kd) +O(log2 (2n− 1)), where
T (LUT) represents the time taken by accessing the LUT , T (mux) represents the
depth of the multiplexer used, O(log2 kd) shows the depth of the carry save reduc-
tion tree and O(log2 (2n−1)) shows the time complexity for the recursive doubling
based carry look ahead adder (CLA) used in the last stage of the multiplier. The
basic LUT based multipliers mentioned in that table are varied from 2× 2 to 5× 5.
If the requirement of multiplier goes beyond 5× 5, then the number of LUT s used
to design the particular multiplier will be high and this causes a huge memory re-
quirement and this also causes a requirement of larger multiplexer. So any n× n-bit
multiplier can be designed using the proposed technique with the basic LUT based
multipliers mentioned in Table 1.

3 Design Modeling, Implementation and Results

The proposed and existing designs are modeled in Verilog HDL. These Verilog HDL
models are simulated and verified using the Xilinx ISE simulator. The timing, area
and power analysis of this implementation has been done with Cadence 6.1 ASIC

Memory Based Multiplier Design in Custom and FPGA Implementation 261

design tool. All the designs are implemented for 45 nm technology, where the library
tcbn45gsbwpbc088 ccs.lib is used for estimating the timing/area/power details.

Table 2 Performance analysis of 12×4 multiplier using 45 nm technology

LUT counter based Proposed LUT based
Worst path delay (ps) 439.4 287.3

Total area (μm2) 758.71 537.49
Net power (nw) 9520.08 6890.34

The Table. 2 shows the worst path delay, total area and net power comparison
between the counter and proposed LUT based 12× 4-bit multiplier using 45 nm
technology. Here depth of the LUT counter based 12× 4-bit multiplier seems to
be higher than the proposed LUT based multiplier due to the increase in the depth
of the carry save tree which is mentioned in section 1. The proposed LUT based
12× 4-bit multiplier achieves an improvement of 34.61% in depth compared to the
counter LUT based architecture. The Table 3 shows the details about the LUT of
decomposed squares for the multipliers 4× 4, 8× 8, 12× 12 and 16× 16-bit mul-
tipliers. Here the conventional square LUT is decomposed into two LUT s and both
are having different address lines as the inputs. The number of lines and the line
width (in bits) for both the LUT s of decomposed squares are varied according to
the each multiplier, these details are mentioned in the Table 3. In Table 3, the input
address line is mentioned as in and the output from the LUT is mentioned as out.
The proposed LUT based 4×4, 8×8, 12×12 and 16×16-bit multipliers are com-
pared with the LUT of squares based and decomposed LUT of squares based [14]
techniques.

Table 3 Decomposed square LUT based multipliers

First LUT of decomposed squares Second LUT of decomposed squares
Input No. of Line Output Input No. of Line Output
address lines width address lines width

4×4 in[1:0] 4 2 out[1:0] in[3:0] 16 6 out[7:2]
8×8 in[4:0] 32 5 out[4:0] in[7:0] 256 11 out[15:5]
12×12 in[6:0] 128 7 out[6:0] in[11:0] 4096 17 out[23:7]
16×16 in[8:0] 512 9 out[8:0] in[15:0] 65536 23 out[31:9]

The Fig. 7, 8 and 9 are showing the worst path delay, area and net power com-
parison between the proposed with an other existing LUT based 4× 4, 8× 8 and
12×12-bit multipliers using 45 nm technology respectively. In these cases, the pro-
posed LUT based multiplier seems to be better than the other existing LUT based
multiplication techniques, they are LUT of squares based and LUT of decomposed

262 M. Mohamed Asan Basiri and S.K. Noor Mahammad

squares based multipliers. The Table 4 is showing the worst path delay, total area
and net power comparison between the 16× 16-bit proposed LUT based multiplier
with the other existing LUT based techniques. The 16×16-bit proposed LUT based
multiplier achieves an improvement factor of 76.84% in the circuit depth over the
square LUT based multiplication technique using 45 nm technology and the same
achieves an improvement of 95.2% in area reduction over the square LUT based
multiplication.

4−bit 8−bit 12−bit
0

200

400

600

800

1000

1200

1400

Multipliers

W
or

st
 p

at
h

de
la

y
(p

s)

LUT of squares based
LUT of decomposed squares based
Proposed

Fig. 7 Worst path delay (ps) comparison for 4× 4, 8× 8 and 12× 12-bit multiplier using
45 nm lib

The above mentioned whole designs, are implemented with FPGA, where the
device EXC7A100T from the family of Artix 7 with package CSG324 is used. The
Table 5 shows the comparison between the counter based and proposed LUT based
12× 4-bit multiplier in FPGA implementation. The number of LUT s used in LUT
counter based and proposed LUT based 12× 4-bit multiplier are 294 and 134 re-
spectively. The Table 6 shows the comparison of delay and number of LUTs for
4× 4, 8× 8, 12× 12 and 16× 16-bit multipliers using the existing and proposed
LUT based multiplier designs. In all the cases, the proposed technique requires a
lesser number of LUT s than other techniques.

Table 4 Performance analysis of 16×16 multiplier using 45 nm technology

LUT of squares based LUT of decomposed proposed
squares based

Worst path delay (ps) 2331.8 2228.9 540.9
Total area (μm2) 95876.4 96668.08 4219.31
Net power (nw) 1684823.36 1709193.57 75155.92

Memory Based Multiplier Design in Custom and FPGA Implementation 263

4−bit 8−bit 12−bit
0

2000

4000

6000

8000

10000

Multipliers

T
ot

al
 a

re
a

(μ
m

2)

LUT of squares based
LUT of decomposed squares based
Proposed

Fig. 8 Total area (μm2) comparison for 4×4, 8×8 and 12×12-bit multiplier using 45 nm
lib

4−bit 8−bit 12−bit
0

0.5

1

1.5

2
x 10

5

Multipliers

N
et

 p
ow

er
 (

nw
)

LUT of squares based
LUT of decomposed squares based
Proposed

Fig. 9 Net power (nw) comparison for 4×4, 8×8 and 12×12-bit multiplier using 45 nm lib

Table 5 Comparison of number of LUT s and delay in FPGA implementation for 12× 4
multiplier

Delay (ns) No. of LUT s
12×4-bit LUT counter based 6.975 294

12×4-bit proposed LUT based 5.253 134

Table 6 Comparison of number of LUT s and delay (ns) in FPGA implementation

LUT squares LUT of decomposed squares Proposed LUT
No. of Delay No. of Delay No. of Delay
LUT s LUT s LUT s

4×4 44 5.047 ns 44 5.0447 ns 27 2.368 ns
8×8 224 10.901 ns 229 10.968 ns 153 5.581 ns

12×12 1670 13.295 ns 1670 13.295 ns 417 8.160 ns
16×16 64483 19.046 ns 61679 18.915 ns 723 9.378 ns

264 M. Mohamed Asan Basiri and S.K. Noor Mahammad

4 Conclusion

In this paper, an efficient LUT based multiplier design is proposed, where both the
input operands are treated as n-bit variables. So this proposed architecture has the
advantage over an existing LUT based multiplier design, where one of the operands
is considered as constant. This proposed LUT based multiplier design is compared
with other schemes like LUT counter, LUT of squares and LUT of decomposed
squares based multiplier designs. The performance results have shown the proposed
design achieves better improvement in depth and area compared with an existing
technique.

References

1. Koblitz, N.: Elliptic curve crptosystems. Mathematics of Computation 48(177), 203–209
(1987)

2. Smith, S.W.: The Scientist and Engineers Guide to Digital Signal Processing, pp. 551–
566. California Technical Publishing (1997)

3. Elguibaly, F.: A fast parallel multiplier accumulator using the modified Booth algorithm.
IEEE Transactions on Circuits Systems 27(9), 902–908 (2000)

4. Wallace, C.S.: A suggestion for a fast multiplier. IEEE Transactions on Electronic Com-
puters EC-13(1), 14–17 (1964)

5. Madrid, P.E., Millar, B., Swartzlander, E.E.: Modified booth algorithm for high radix
multiplication. In: IEEE International Conference on Computer Design: VLSI in Com-
puters and Processors, pp. 118–121 (1992)

6. Ismail, R.C., Hussin, R.: High Performance Complex Number Multiplier Using Booth-
Wallace Algorithm. In: IEEE International Conference on Semiconductor Electronics,
pp. 786–790 (2006)

7. Sjalander, M., Larsson-Edefors, P.: High-Speed and Low-Power Multipliers Using the
Baugh-Wooley Algorithm and HPM Reduction Tree. In: IEEE International Conference
on Electronics, Circuits and Systems, pp. 33–36 (2008)

8. Kozyrakis, C.E., Patterson, D.A.: Scalable, vector processors for embedded systems, Mi-
cro. IEEE Journals and Magazines 23(6), 36–45 (2003)

9. Sjalander, M., Larsson-Edefors, P.: Multiplication acceleration through twin precision.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 17(9), 1233–1246
(2009)

10. Kim, H., Somani, A.K., Tyagi, A.: A Reconfigurable Multifunction Computing Cache
Architecture. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 9(4),
509–523 (2001)

11. Guo, J.I., Liu, C.M., Jen, C.W.: The efficient memory-based VLSI array design for DFT
and DCT. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process 39(10), 723–733
(1992)

12. Chiper, D.F.: A systolic array algorithm for an efficient unified memory-based imple-
mentation of the inverse discrete cosine transform. In: IEEE International Conf. Image
Process, pp. 764–768 (1999)

13. Chiper, D.F., Swamy, M.N.S., Ahmad, M.O., Stouraitis, T.: Systolic algorithms and
a memory-based design approach for a unified architecture for the computation of
DCT/DST/IDCT/IDST. IEEE Trans. Circuits Syst. I, Reg. Papers 52(6), 1125–1137
(2005)

Memory Based Multiplier Design in Custom and FPGA Implementation 265

14. Vinnakota, B.: Implementing Multiplication with Split Read-only Memory. IEEE Trans-
actions on Computers 44(11), 1352–1356 (1995)

15. Mora-Mora, H., Mora-Pascual, J., Sanchez-Romero, J.L., Chamizo, J.M.G.: Partial prod-
uct reduction by using look-up tables for M×N multiplier. Integration, the VLSI Jour-
nal 41, 557–571 (2008)

16. Meher, P.K.: New Approach to Look-Up-Table Design and Memory-Based Realization
of FIR Digital Filter. IEEE Trans. Circuits Syst. II, Regular Papers 57(3), 592–603 (2010)

	Memory Based Multiplier Design in Custom and FPGA Implementation
	1 Introduction
	1.1 Contribution of This Paper

	2 The Proposed
	Based Multiplication
	2.1 Time Complexity Analysis of Proposed
	Based Multiplier

	3 Design Modeling, Implementation and Results
	4 Conclusion
	References

