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Abstract. We show how a SLAM algorithm based on belief function
theory can produce evidential occupancy grid maps that provide a mobile
robot with additional information about its environment. While uncer-
tainty in probabilistic grid maps is usually measured by entropy, we show
that for evidential grid maps, uncertainty can be expressed in a three-
dimensional space and we propose appropriate measures for quantifying
uncertainty in these different dimensions. We analyze these measures in
a practical mapping example containing typical sources of uncertainty
for SLAM. As a result of the evidential representation, the robot is able
to distinguish between different sources of uncertainty (e.g., a lack of
measurements vs. conflicting measurements) which are indistinguishable
in the probabilistic framework.

1 Introduction

In order to generate a spatial representation of an environment, a mobile robot
needs to solve the problem of simultaneous localization and mapping (SLAM) [5].
Occupancy grid maps are a popular type of spatial representation for SLAM and
discretize the environment using a grid structure where each grid cell is either
occupied or empty (denoted by o and e) [6]. Usually, the state of a grid cell is
modeled probabilistically with a single probability P (o). The problem of this
approach is that different states of belief are mapped to the same probability
distribution. For example, a uniform probability distribution can represent a
complete lack of measurements just as it can represent conflicting measurements.
In this paper, we show that the uncertainty in occupancy grid maps has multiple
dimensions that cannot be uniquely captured by a probabilistic representation.
Instead, we propose to model grid maps using belief functions in order to make
these different dimensions explicit.

Belief function theory [19,22] (also called Dempster-Shafer theory or evidence
theory) can be viewed as a generalization of Bayesian probability theory. For
belief functions, probability mass is not just assigned to the singletons of a
domain (here o and e) but to all subsets of the domain (including {o, e} and ∅).
While a probability function can only capture the ratio between P (o) and P (e),
a belief function can additionally make a lack of evidence explicit by the mass
assigned to the disjunction {o, e} and it can make conflicting evidence explicit by
the mass assigned to ∅. As a result, belief functions are able to represent different
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types of uncertainty and therefore enable the robot to distinguish belief states
that are indistinguishable using a probabilistic model.

There are a number of works in which belief functions are used to model the
uncertainty in occupancy grid maps [14,17]. The additional parameters provided
by evidential grid maps have been used to solve problems like assessing the qual-
ity of maps [1] and detecting moving objects [13]. However, all of these works
have in common that they do not consider the joint estimation problem underly-
ing SLAM and only consider the mapping part (by assuming perfect localization
information). In this case, the localization error, which is the major source of
uncertainty for SLAM, is entirely ignored. In contrast, in [16] we described how
SLAM can be modeled in the belief function framework. The resulting algorithm
produces evidential grid maps that reflect the full uncertainty associated with
SLAM, including localization uncertainty. The major contribution in this paper
is an analysis of the different types of uncertainty in the evidential grid maps
produced by the algorithm, both on a theoretical as well as on an empirical level.

The remainder of this paper is structured as follows. In Sect. 2, the belief
function formalism is briefly introduced. The evidential SLAM approach based
on this formalism is presented in Sect. 3 along with evidential sensor models for
laser scanners. The different dimensions of uncertainty are analyzed theoretically
in Sect. 4 and corresponding measures are proposed. Practical examples of the
different types of uncertainty in generated grid maps are presented in Sect. 5.
The paper concludes with a discussion in Sect. 6.

2 Belief Function Theory

The term “belief function” is a general term which can refer to several equivalent
representations. The most fundamental belief representation is a mass function.
A mass function m is a mapping m : P(Θ) → [0, 1] with

∑

X⊆Θ

m(X) = 1, (1)

where P(Θ) is the power set of the (usually finite) domain Θ. The value m(X)
is the amount of belief strictly committed to set X . A mass assignment to a set
X represents complete ignorance about the belief distribution over subsets of X .
If a mass function satisfies m(∅) = 0, it is called normalized. If it also satisfies∑

x∈Θ m(x) = 1, it is called Bayesian (it then simply represents a probability
function).

A plausibility function pl expresses how much belief mass potentially supports
a set X . It is therefore sometimes interpreted as an upper probability bound.
The plausibility pl(X) of X ⊆ Θ can be directly derived from the corresponding
mass function m and is defined as

pl(X) =
∑

Y⊆Θ,Y ∩X �=∅
m(Y ) (2)

with pl(∅) = 0.
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Like probability functions, belief functions can be conditional. This is written
as m[Y ](X), which means “the mass of set X given set Y ” (note that the order
is different from the usual conditional probability notation P (X |Y )).

For inference, each piece of evidence (e.g., a sensor measurement) is repre-
sented by a separate belief function and these belief functions are then suc-
cessively combined in order to fuse the underlying evidence. The combination is
usually performed using the conjunctive rule (also referred to as Dempster’s rule
if mass assignments to ∅ are not desired). Let e1 and e2 denote distinct pieces
of evidence and let m[e1] and m[e2] denote the mass functions defined over the
same domain Θ which are induced by the respective pieces of evidence. The mass
function m[e1, e2] resulting from the combination using the conjunctive rule ∩©
is defined as

m[e1, e2](X) =
∑

Y ∩Z=X

m[e1](Y )m[e2](Z), ∀X ⊆ Θ. (3)

3 Evidential FastSLAM

The evidential SLAM algorithm proposed in [16] uses a Rao-Blackwellized par-
ticle filter [3] to approximate the joint belief distribution of the map and the
robot’s path. It therefore constitutes a generalization of the well-known Fast-
SLAM algorithm [12]. Let x0:t = x0, . . . , xt denote the sequence of robot poses
over time and let Y denote the map. The aim for evidential SLAM is to com-
pute the joint belief distribution m[z0:t, u1:t](x0:t, Y ) where z0:t is the sequence
of measurements recorded over time and u1:t is the sequence of robot controls
describing pose changes. In order to make computing this joint distribution fea-
sible, it is assumed that the marginal distribution over the path is a probability
density function. In this case, the joint belief distribution can be factorized into
a probabilistic path component and a conditional evidential map component:

m[z0:t, u1:t](x0:t, Y ) = p(x0:t|z0:t, u1:t)m[x0:t, z0:t](Y ). (4)

This factorization corresponds to a generalized version of the product rule
for probabilities, a proof of which is provided in [15]. The next two subsections
describe how the path distribution p(x0:t|z0:t, u1:t) and the conditional map dis-
tribution m[x0:t, z0:t](Y ) can be computed. In Sect. 3.3, the resulting particle
filter algorithm is presented and, in Sect. 3.4, evidential sensor models for laser
scanners are presented.

3.1 Localization

Because the path distribution is modeled probabilistically, computing it is sim-
ilar to classical Markov localization [27] where pose changes are modeled in a
prediction step and measurements are incorporated in a correction step. In the
prediction step, the motion model p(xt|xt−1, ut) is applied to the prior distri-
bution p(x0:t−1|z0:t−1, u1:t−1) from time t− 1 in order to compute the proposal
distribution p(x0:t|z0:t−1, u1:t) at time t, which is given by
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p(x0:t|z0:t−1, u1:t) = p(xt|xt−1, ut) p(x0:t−1|z0:t−1, u1:t−1). (5)

In the correction step, the posterior p(x0:t|z0:t, u1:t) is computed from the pro-
posal distribution and the measurement likelihood using the generalized Bayesian
theorem [23]. Though the prior and posterior for the path are assumed to be
probability distributions, the likelihood can be a general belief function [15], in
this case the plausibility pl[x0:t, z0:t−1](zt):

p(x0:t|z0:t, u1:t) ∝ pl[x0:t, z0:t−1](zt) p(x0:t|z0:t−1, u1:t). (6)

The likelihood pl[x0:t, z0:t−1](zt) depends on the entire history of measure-
ments and states. In order to avoid this problem, we condition the likehood on
the estimated map Y with

pl[x0:t, z0:t−1](zt) =
∑

Y ⊆ΘM
Y

pl[xt, Y ](zt)m[x0:t−1, z0:t−1](Y ), (7)

where ΘM
Y denotes the map space (defined below). Here, pl[xt, Y ](zt) represents

the forward sensor model and m[x0:t−1, z0:t−1](Y ) represents the map belief at
time t − 1. The sum over the power set of the map space in (7) may appear
intractable but, as shown in [16], by making appropriate independence assump-
tions, the likelihood can be efficiently computed with time complexity propor-
tional to the number of grid cells.

3.2 Grid Mapping

The power of the original FastSLAM algorithm lies in the fact that cells in the
map become approximately independent if conditioned on the robot’s path x0:t.
The same principle is exploited in the evidential FastSLAM algorithm. Let Yi

denote the evidential variable representing the i-th grid cell with Yi ⊆ ΘY =
{o, e} and 1 ≤ i ≤ M where M denotes the total number of grid cells. The
entire map Y is then a subset of the product space with Y ⊆ ΘM

Y . The joint
distribution over all cells can be factorized into marginal cell distributions:

m[x0:t, z0:t](Y ) =

M∏

i=1

m[x0:t, z0:t](Yi). (8)

In this case, each cell can be updated independently over time. This is done
by combining the prior cell belief m[x0:t−1, z0:t−1](Yi) at time t− 1 with the cell
belief m[xt, zt](Yi) induced by the current measurement zt using the conjunctive
rule:

m[x0:t, z0:t](Yi = ·) = m[x0:t−1, z0:t−1](Yi = ·) ∩©m[xt, zt](Yi = ·). (9)

Here, m[xt, zt](Yi) represents the inverse sensor model. The initial belief m(Yi)
at time t = 0 is assumed to be vacuous with m(Yi = ΘY ) = 1, 1 ≤ i ≤ M
(unless there is prior knowledge indicating otherwise). This expresses the total
lack of evidence at the beginning and differs from a probabilistic model where
the initial distribution is usually assumed to be uniform.
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3.3 Algorithm

The algorithm for approximating the joint distribution in (4) is very similar
to the original FastSLAM algorithm. It is based on a Rao-Blackwellized par-
ticle filter where each particle represents a complete path and a correspond-
ing map belief function. This means, at time t, the k-th particle is a tuple

(x
[k]
0:t,m[x

[k]
0:t, z0:t](Y )). Like in most probabilistic particle filters, measurements

are incorporated using importance sampling. The set of particles is updated re-
cursively over time by repeatedly applying the following four steps in order to
obtain the particle set at time t from the particle set at time t− 1.

1. Prediction step: Sample a new pose x
[k]
t from the motion model p(xt|x[k]

t−1, ut)
for each particle in order to incorporate control ut and update the robot’s

path x
[k]
0:t as defined by (5).

2. Correction step: Compute importance weight w
[k]
t = pl[x

[k]
0:t, z0:t−1](zt) for

each particle using the forward sensor model pl[x
[k]
t , Y ](zt) and the current

map belief m[x
[k]
0:t−1, z0:t−1](Y ) as defined by (7).

3. Map update: Update the current map belief m[x
[k]
0:t−1, z0:t−1](Y ) of each par-

ticle using the inverse sensor model m[x
[k]
t , zt](Y ) and the conjunctive rule

of combination.
4. Resampling: Resample particles with probability proportional to the impor-

tance weights. This results in a particle set representing the joint path/map
distribution m[z0:t, u1:t](x0:t, Y ) reflecting all measurements and controls up
to time t.1

The time complexity of the algorithm is O(KM) (K denotes the number of
particles) assuming the complexity of the sensor models is O(M). The overall
complexity is thus identical to that of classical FastSLAM aside from a constant
overhead caused by the fact that, for each cell, three parameters need to be
updated instead of one.

3.4 Sensor Models

For the SLAM algorithm described above, an evidential forward sensor model
pl[xt, Y ](zt) and a corresponding inverse sensor model m[xt, zt](Y ) need to be
specified. In this paper, we focus on laser scanners where zt = (zt;1, . . . , zt;N)T

is a vector of range measurements for different angles. The models considered
here are adaptations of the evidential sonar models presented in [16] (the main
difference is that a laser beam is much narrower than the measurement cone
of a sonar sensor). Because the resulting equations are quite complex, they are
omitted here and the interested reader is encouraged to refer to the original
paper.

1 The resampling step is only performed if the importance weights diverge too much,
otherwise the importance weights are maintained over time in order to minimize
sampling errors [4].
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Examples of the forward and inverse sensor models for a single laser beam are
shown in Fig. 1. The forward sensor model computes the plausibility of a single
range measurement zt;j given the current state xt and the evidential map Y .
The forward model captures both noisiness and complete randomness of mea-
surements. In order to make computing it tractable, the simplifying assumption
is made that a laser beam always hits the closest occupied cell located along the
beam’s path. For cells representing the disjunctive state ΘY , the measurement
plausibility is maximal but the plausibility of measuring more distant obstacles is
not reduced because ΘY also includes the possibility that the cell is empty. The
plausibility pl[xt, Y ](zt) of the entire vector zt is simply defined as the product
of the individual range measurement plausibilities pl[xt, Y ](zt;j).

The inverse sensor model provides the robot with a belief distribution repre-
senting a “local map” obtained from a single range measurement zt;j . A number
of evidential inverse models have been proposed in the literature over time, e.g.,
[29,7]. All these works ignore the forward model and directly specify the inverse
model, usually in a heuristic manner. In contrast, the inverse sensor model here
is directly derived from the forward sensor model using the generalized Bayesian
theorem. It thus reflects all the parameters of the forward sensor model. The
inverse model for the entire measurement vector zt results from combining the
belief functions corresponding to the individual range measurements zt;j using
Dempster’s rule. The time complexity of evaluating both the forward and the
inverse sensor model is proportional to the number of cells that intersect with
the laser beams, and evaluating the models is quite fast in practice.

4 Dimensions of Uncertainty

In this section, we analyze the different dimensions of uncertainty in evidential
grid maps on a theoretical level. In particular, we show how the different di-
mensions of uncertainty can be measured and we compare them to the Bayesian
notion of uncertainty. To compare evidential and probabilistic grid maps, the
question of how one representation relates to the other first needs to be ad-
dressed. In belief function theory, there is a simple operation called the “pignis-
tic transformation” for projecting a belief function onto a probability function
[24]. Usually, the pignistic transformation is applied in the context of decision
making based on belief functions but, here, it is used to analyze the Bayesian
uncertainty of an evidential grid map. The pignistic transformation for a cell is
defined as

P (o) =
m(o) + 1

2m(ΘY )

1−m(∅) . (10)

The mass assigned to ΘY is split up and evenly distributed over o and e. In
addition, normalization is performed to remove the mass on ∅.

In case of probabilistic grid maps, uncertainty can be measured using Shannon
entropy [20], which is defined as

H(P ) = −
∑

x∈Θ

P (x) log2 P (x). (11)
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(a) Forward sensor model

(b) Inverse sensor model

Fig. 1. Evidential sensor models for a laser scanner. The squares at the bottom in
(a) represent the grid cells of a 1D map: white means e, black means o, and gray
means ΘY . The dotted line in (a) represents the forward sensor model for a given
map Y (without uncertainty) while the solid line represents the forward sensor model
conditioned on an uncertain map (in the latter case, mass 0.5 is assigned to e for each
of the black and gray cells). Fig. (b) shows the inverse sensor model for a measurement
of zt = 15. Note that the noise parameter in these examples is higher compared to the
laser scanner considered in Sect. 5 in order to obtain a better visualization. (Figures
adopted from [16].)

This measure of uncertainty yields 1 for a uniform cell distribution and it yields
0 if a cell is known with certainty to be either occupied or empty. In contrast,
belief functions contain multiple dimensions of uncertainty and thus require mul-
tiple measures of uncertainty [10]. The two main dimensions are referred to as
non-specificity and conflict. Non-specificity results from the fact that mass can
be assigned to arbitrary non-singleton subsets of the domain where set cardi-
nality represents a form of uncertainty (here, |ΘY | = 2). Conflict corresponds
more to the classical notion of entropy and reflects the uncertainty resulting from
mass assigned to mutually exclusive states (o and e in this case). Because we are
considering unnormalized mass functions with m(∅) ≥ 0, we further distinguish
between what we call internal conflict and external conflict. While internal con-
flict represents the aforementioned entropy-like uncertainty associated with the
masses assigned to o and e, external conflict represents how strongly the evi-
dence underlying a belief function contradicts each other, which is represented
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by the mass assigned to ∅. These three dimensions of uncertainty are described
and analyzed in more detail in the following.

4.1 Non-Specificity (NS)

Non-specificity results from a lack of evidence where neither o nor e is supported.
It is thus represented by the mass assigned to the disjunction ΘY . This intuition
also has a well-justified theoretical basis in the form of the Hartley measure [8].
The Hartley measure states how much uncertainty results from the fact that
the true state is contained in a set of possible states. It is simply defined as
log2 |X | where |X | denotes the set cardinality. For belief functions, the general-
ized Hartley measure computes the amount of non-specificity associated with a
mass function [9], and it is defined by

NS(m) =
∑

X⊆Θ,X �=∅
m(X) log2 |X |. (12)

For the case of occupancy grid maps, it simply reduces to

NS(m) = m(ΘY ). (13)

This definition thus confirms the intuition that the mass assigned to ΘY reflects
the amount of non-specificity associated with the distribution of a grid cell.

4.2 Internal Conflict (IC)

The internal conflict essentially describes the relation between m(o) and m(e).
Like Shannon entropy, it reaches its maximum if m(o) and m(e) are equal and
it becomes 0 in case either m(o) or m(e) is 0. We refer to this dimension as
“internal” because, other than the external conflict which results from combining
multiple belief functions, internal conflict is a property of a single belief function.
In order to quantify it, we use the measure of dissonance proposed in [28].2 It is
defined as

Dis(m) = −
∑

X⊆Θ

m(X) log2 pl(X). (14)

Because the measure of dissonance can only handle normalized belief func-
tions, we first perform normalization before computing the measure. The result
is then scaled with 1−m(∅), which also ensures that the measure does not exhibit
a discontinuity at m(∅) = 1:

IC(m) = − (1−m(∅)) (m′(o) log2 pl
′(o) +m′(e) log2 pl

′(e)) , (15)

m′(X) =

{
m(X)

1−m(∅) if X 	= ∅
0 if X = ∅ . (16)

2 Despite a long history of research, none of the measures proposed over time satisfy
all the properties required of a general measure of internal conflict [9]. However, the
limitation of the dissonance measure (violation of subadditivity for joint spaces) can
be ignored here because we do not consider the internal conflict over joint spaces.
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Here, m′ and pl′ denote the normalized mass and plausibility functions. Note
that the internal conflict measure reduces to classical Shannon entropy in case
of a Bayesian belief function.

4.3 External Conflict (EC)

The external conflict measures the conflict resulting from combining different
measurements over time. The more these measurements contradict each other
regarding the state of a cell, the higher the external conflict. The external conflict
is represented by the mass assigned to ∅. Such an assignment to ∅ can also be
interpreted as an open-world assumption where the true state is not captured
by the set of possible states [21] (e.g., a cell is neither completely occupied nor
completely empty but something in between).

Analogously to non-specificity, one possibility to measure external conflict
would simply be to consider the mass assigned to ∅. However, this value quickly
approaches 1 if sufficiently many measurements are combined where each mea-
surement induces a small amount of external conflict. Instead, it is more useful
to consider a logarithmic measure which makes it possible to differentiate be-
tween small differences of mass values assigned to ∅. Here, we use the weight of
conflict proposed in [19], which is defined as

Con(m1, . . . ,mn) = − log2

⎛

⎝1−
∑

X1∩...∩Xn=∅
m1(X1) · . . . ·mn(Xn)

⎞

⎠ . (17)

This measure states how strongly multiple belief functions m1, . . . ,mn contra-
dict each other if combined conjunctively. Because the conflict associated with
combinations is represented by m(∅), the weight of conflict can be used as a
measure of external conflict:

EC(m) = − log2(1−m(∅)). (18)

4.4 Comparison

In Fig. 2, each of the proposed measures is plotted in relation to the underlying
mass function. While non-specificity and internal conflict are classical dimen-
sions of uncertainty for belief functions, the role of external conflict is a some-
what different one. A mathematical difference is obvious because NS and IC
are bounded by 1 while the EC measure goes to infinity if m(∅) goes to 1. But
the difference is also a conceptual one. Typically, belief functions representing
a single piece of evidence (e.g., a single measurement) do not exhibit external
conflict (i.e., m(∅) = 0) and, only as a result of combination with other belief
functions, external conflict is created. Therefore, external conflict does not de-
scribe a property of a single piece of evidence but rather describes a property of
the combination process. This is also reflected by the fact that external conflict
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(d) Internal conflict where m(e) =
m(o) andm(ΘY ) = 1−m(o)−m(e)

Fig. 2. Measures for different dimensions of uncertainty. The internal conflict shown in
(c) and (d) is actually a function of three parameters and can therefore not be visualized
in its entirety. Instead, (c) shows the IC for a Bayesian belief function, in which case
it is identical to entropy. In (d), the IC is shown for the case where m(e) = m(o) and
where the remaining mass is assigned to ΘY .

grows monotonically with additional combinations. In this regard, external con-
flict represents a kind of “meta uncertainty” indicating whether the underlying
evidence is in agreement or not.

A comparison of the evidential dimensions of uncertainty with the Bayesian
notion of entropy is shown in Fig. 3. Here, several prototypical belief states
are plotted in the 2D uncertainty space defined by non-specificity and internal
conflict, which are then projected to the 1D uncertainty space corresponding
to entropy. External conflict is ignored in these examples because entropy is
invariant with respect to this dimension. It can be seen that a state of maximum
non-specificity (m(ΘY ) = 1) has the same entropy like a state of maximum
internal conflict (m(o) = m(e) = 0.5) when mapped to a probability function
using (10). Thus, very different evidential belief states are mapped to the same
entropy values, showing the ambiguity of the Bayesian representation.

5 Grid Mapping Example

This section describes a practical mapping example where different types of
uncertainty are represented by an evidential grid map. The example is based on a
run of a simulated mobile robot equipped with a laser scanner exploring a virtual
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Fig. 3. Comparison of 2D evidential uncertainty (without EC) and 1D Bayesian un-
certainty. The 2D points from (a) are projected to 1D points in (b).

2D environment.3 The evidential SLAM algorithm presented in Sect. 3 was used
to generate an evidential grid map by selecting the particle with the highest
cumulative importance weight (usingK = 100). This map, along with the ground
truth and a probabilistic grid map obtained from the pignistic transformation,
is shown in Fig. 4. The corresponding uncertainty measures are shown in Fig. 5.

What is directly noticeable is that the evidential uncertainty measures are
sensitive to different types of uncertainty because they are maximal in different
areas of the map. NS is high for areas where no or only few measurements have
been recorded. IC and EC are high in the vicinity of obstacles due to mea-
surement noise, although EC also indicates effects like localization errors and
changes in the environment. In contrast, Shannon entropy appears to represent
an “aggregate” measure of uncertainty where the different maxima of the evi-
dential measures result in high entropy. In the following, the different causes of
uncertainty in this example are analyzed in more detail.

Partial Exploration: The NS measure (i.e., the mass on ΘY ) clearly shows
which parts of the environment the robot has not fully explored yet. This is
visible both for the room the robot did not enter as well as for the areas on the
outside. For the probabilistic representation, this belief state is represented by
a uniform distribution where entropy is maximal. However, entropy is also high
in other parts of the map, making the uncertainty resulting from not having
explored an area indistinguishable from the uncertainty resulting from other
causes.

Measurement Noise: Measurement noise in the vicinity of obstacles results
from both the noisiness of the sensor and from discretization errors caused by
the grid-based representation. It is reflected by high values for the IC measure
as well as for the EC measure. The difference between the two measures is

3 For the simulation, the “Gridmap Navigation Simulator” was used, which is part of
the Mobile Robot Programming Toolkit available at www.mrpt.org.

www.mrpt.org
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(a) m(o) (b) m(e)

(c) m(ΘY ) (d) m(∅)

(e) P (o)

dynamiclocalization
error

(f) Ground truth

Fig. 4. Grid map generated by the evidential FastSLAM algorithm. Plots (a) to (d)
show the different mass components of the evidential grid map (black represents a mass
value of one and white represents zero). The corresponding probabilistic grid map is
shown in (e) while the ground truth, including the robot’s path, is shown in (f). During
the run, a localization error and dynamics in the environment were simulated at the
indicated locations (the former by displacing the robot and the latter by simulating
the presence of a moving object blocking some of the laser beams).
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(a) Non-specificity (b) Internal conflict

(c) External conflict (d) Bayesian entropy

Fig. 5. Uncertainty measures corresponding to the map shown in Fig. 4. Note that
the measures are scaled for improved visibility where a darker color indicates a higher
value (the maximum in (a) and (d) is at 1, the maximum of (b) is at 0.34, and the
maximum of (c) is at 7.58).

that IC responds most strongly if the underlying evidence is “balanced”, e.g., if
an equal number of measurements favors particular states (this also applies to
entropy). In contrast, for a high EC value, it is sufficient that there is at least
some contradictory evidence, even if the majority of evidence favors one state.
In this regard, the EC measure can be interpreted as an “or-like” operation
regarding the contradictory nature of the underlying evidence. In addition, both
measures are sensitive to the number of measurements because EC grows with
additional measurements if these contradict previous measurements at least by
a small degree while the IC measure is scaled by the amount of mass assigned
to ∅ (see (15)) and therefore tends to become smaller with more measurements.
An example of this effect are the high EC values at the walls in the center
hallway and at the lower wall of the top hallway caused by a large number of
measurements where IC is relatively small. In contrast, in the lower right part
of the map where few measurements were recorded, EC values are low and IC
is high.
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Localization Error: Localization errors usually lead to increased EC because
measurements automatically contradict each other in this case. Like measure-
ment noise, localization errors are most visible in the vicinity of obstacles. In
order to better visualize this effect, we created an artificial localization error in
the top hallway by displacing the robot by 2m (see (f) in Fig. 4). This error is
clearly visible in Fig. 5 (c) where the two wall structures on the very left actually
correspond to a single wall. In contrast, the entropy shown in Fig. 5 (d) gives
almost no indication of this localization error (the same applies to (b) and (d)
vs. (e) in Fig. 4).

Dynamic Environment: Another typical problem for SLAM is that the en-
vironment is usually assumed to be static while, in reality, environments often
contain dynamic elements. We simulated the effect of an object moving alongside
the robot by setting the laser measurements to a constant value (with additional
noise) for a small range of angles in the top hallway (see (f) in Fig. 4). For exam-
ple, this could correspond to a person walking next to the robot. While the robot
can still reliably localize itself in this case, the measurements corresponding to
the moving object clearly contradict the other measurements (current and past
ones), which leads to EC (visible in Fig. 5 (c) as the gray line in the middle of
the top hallway). By comparison, entropy fails to capture this effect because the
majority of measurements do not indicate the presence of an obstacle (see also
(b) and (d) vs. (e) in Fig. 4).

6 Discussion

In this paper, we have shown how a SLAM algorithm based on belief functions
can produce evidential grid maps that provide a mobile robot with additional
information about its environment. Compared to probabilistic grid maps, eviden-
tial grid maps contain multiple dimensions of uncertainty and we have proposed
measures for quantifying uncertainty in these different dimensions. In a practical
mapping example, we have illustrated how different causes of uncertainty can
be distinguished in the multiple-dimensional uncertainty space corresponding
to belief functions whereas they are indistinguishable in case of a probabilistic
representation.

One interesting direction for future work would be the problem of fusing map
information from different sources [11]. For probabilistic grid maps, map fusion is
usually based on an absolute independence assumption [26], which can be quite
problematic. In contrast, belief function theory could be of great value here due
to the extensive work on different combination rules [18]. Another direction for
future work that has not been considered in the context of evidential mapping is
that of active information gathering. The idea of minimizing expected entropy
[2,30] has been successfully applied in the past in order to make a robot drive
to locations that reduce uncertainty about the environment [25], resulting in
optimal exploration strategies. Using a multi-dimensional uncertainty represen-
tation, it becomes possible for the robot to discern different types of uncertainty
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during exploration. For example, high NS indicates that an area has not been
explored and that moving to this area is likely to reduce overall uncertainty.
High IC is likely to represent measurement uncertainty where the use of addi-
tional sensors may be necessary to further reduce uncertainty because previous
measurements have been inconclusive. In contrast, the EC measure is able to
capture “meta uncertainty” indicating that something is wrong (e.g., failed lo-
calization or a change in the environment). Overall, we belief that evidential
representations are a valuable tool for modeling spatial uncertainty and that
being able to distinguish between different types of uncertainty can provide a
mobile robot with important information about its environment.
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