
Even More Practical Secure Logging:

Tree-Based Seekable Sequential Key Generators

Giorgia Azzurra Marson1 and Bertram Poettering2

1 CASED & TU Darmstadt
2 Information Security Group at Royal Holloway, University of London

Abstract. Sequential key generators produce a forward-secure sequence
of symmetric cryptographic keys and are traditionally based on hash
chains. An inherent disadvantage of such constructions is that they do not
offer a fast-forward capability, i.e., lack a way to efficiently skip a large
number of keys—a functionality often required in practice. This limita-
tion was overcome only recently, with the introduction of seekable sequen-
tial key generators (SSKGs). The only currently known construction is
based on the iterated evaluation of a shortcut one-way permutation, a
factoring-based —and hence in practice not too efficient— building block.
In this paper we revisit the challenge of marrying forward-secure key gen-
eration with seekability and show that symmetric primitives like PRGs,
block ciphers, and hash functions suffice for obtaining secure SSKGs. Our
scheme is not only considerably more efficient than the prior number-
theoretic construction, but also extends the seeking functionality in a way
that we believe is important in practice. Our construction is provably
(forward-)secure in the standard model.

Keywords: secured logging, forward security, seekable PRGs.

1 Introduction

Computer log files can be configured to record a large variety of system events
that occur on network hosts and communication systems, including users logging
on or off, memory resources reaching their capacity, malfunctioning of disk drives,
etc. Therefore, log files represent one of the most essential sources of information
that support system administrators in understanding the activity of systems and
keeping them fully functional. Not less important is the role that log files play
in computer forensics: events like login failures and software crashes serve as
standard indicators for (attempted) intrusions. Unfortunately, as log files are
often recorded locally (i.e., on the monitored machine itself), in many practical
cases intruders can a posteriori manipulate the log entries related to their attacks.

Online logging and its disadvantages. In a network environment, one obvious
strategy to prevent adversarial tampering of audit logs is to forward log messages
immediately after their creation to a remote log sink—in the hope that the
attacker cannot also corrupt the latter. Necessary in such a setting is that the

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 37–54, 2014.
c© Springer International Publishing Switzerland 2014



38 G.A. Marson and B. Poettering

log sink is continuously available, as every otherwise required local buffering
of log records would increase the risk that their delivery is suppressed by the
adversary. However, in many cases it has to be assumed that the reachability
of the log sink can be artificially restrained by the intruder, e.g., by confusing
routing protocols with false ARP messages, by sabotaging TCP connections
with injected reset packets, by jamming wireless connections, or by directing
application-level denial-of-service attacks against the log sink. Independently of
these issues, it is inherently difficult to choose an appropriate logging granularity:
while the creation of individual records for each established TCP connection,
file deletion, or subprocess invocation might be desirable from the point of view
of computer forensics, network links and log sinks might quickly reach their
capacities if events are routinely reported with such a high resolution. This holds
in particular if log sinks serve multiple monitored hosts simultaneously.

Forward-secure cryptography & log file protection. A solution for tamper-resistant
log-entry storage that does not require a remote log sink but offers integrity pro-
tection via cryptographic means is secured local logging. Here, each log entry is
stored together with a specific authentication tag that is generated and verified
using a secret key. Note that regular message authentication codes (MACs) by
themselves seem not to constitute a secure solution: corresponding tags will be
forgeable by intruders that succeed in extracting the secret key from the attacked
device. Rather, a forward-secure MAC variant is required, as elaborated next.

In a nutshell, a cryptosystem provides forward security (FS) if it continues
to give meaningful security guarantees after the adversary got a copy of the
used keys. A standard example is key exchange: here, all recent security models
require established session keys to remain safe when the adversary obtains ac-
cess to the involved long-term private keys. Likely less known is that the notion
of forward security also extends to non-interactive primitives. For instance, in
forward-secure public key encryption [1] messages are encrypted in respect to
a combination (pk, t), where pk is a public key and t ∈ N identifies one out of
a set of consecutive time epochs; for each such epoch t, knowledge of a specific
decryption key skt is necessary for decrypting corresponding ciphertexts. In ad-
dition, while by design it is efficiently possible to perform updates skt �→ skt+1,
forward security requires that the reverse mapping be inefficient, i.e., it shall be
infeasible to ‘go backwards in time’. More precisely, forward security guarantees
that plaintexts encrypted for ‘expired’ epochs remain confidential even if the
decryption keys of all later epochs are revealed.

Analogously to the described setting, signatures and authentication tags of
the forward-secure variants of signature schemes and MACs, respectively, re-
main unforgeable for past epochs if only current and future keys are disclosed
to the adversary [2,3]. One possible way to obtain such a MAC is to combine
a (forward-secure) sequential key generator (SKG) with a regular MAC [4,3],
where the former can be seen as a stateful pseudorandom generator (PRG) that,
once initialized with a random seed, deterministically outputs a pseudorandom
sequence of fixed-length keys. These keys are then used together with a MAC to
ensure unforgeability of messages within the epochs.



Even More Practical Secure Logging: Tree-Based Seekable Sequential Key 39

The challenge of seekability. Forward-secure SKGs are typically constructed by
deterministically evolving an initially random state using a hash chain, i.e.,
by regularly replacing a ‘current’ key Kt by Kt+1 = H(Kt), where H is a
cryptographic hash function [4,3]. Although hash chains, in principle, lead to
(forward-)secure local logging, they also come with an efficiency penalty on the
side of the log auditor: the latter, in order to verify a log record of a certain
epoch t, first needs to recover the corresponding key Kt; however, as a high
level of security requires a high key update rate, this might involve millions of
hash function evaluations. This problem was addressed only recently with the
introduction of seekable sequential key generators (SSKGs) [5].

We give a rough overview over the ideas in [5]. Essentially, the authors propose
a generic construction of an SSKG from a shortcut one-way permutation (SCP),
a primitive that implements a one-way permutation π : D → D, for a domain D,
with a dedicated shortcut algorithm allowing the computation of the k-fold com-
position πk in sublinear time. The concrete SCP considered in [5] is given by the
squaring operation modulo a Blum integer N , where applying the shortcut cor-
responds to reducing a certain exponent modulo ϕ(N). Given an SCP, an SSKG
can be obtained by letting its state consist of a single element in D, performing
state updates by applying π to this element, and deriving keys by hashing it
(more precisely, by applying a random oracle). While it is instructive to observe
how the forward security of the SSKG corresponds with the one-wayness of the
SCP, and how its seekability is based on the SCP’s shortcut property, a notable
technical artifact of the squaring-based SCP is that seekability requires knowl-
edge of ϕ(N) while forward security requires this value to be unknown. This
dilemma is side-stepped in [5] by giving only the owners of a seeking key the
ability to fast-forward through the SSKG output sequence.

1.1 Contributions and Organization

The central contribution of this paper is the design of a new seekable sequential
key generator. In contrast to the prior SSKG from [5], our scheme relies on just
symmetric building blocks; in particular we propose instantiations that exclu-
sively use either PRGs, block ciphers, or hash functions. By consequence, our
implementation beats the one from [5] by 1–3 orders of magnitude, on current
CPUs. In addition to this efficiency gain, we also identify new and appealing
functionality features of our SSKG. In particular, getting rid of the discussed
seeking limitations of [5], our scheme allows every user to efficiently advance
any state by an arbitrary number of epochs. Our SSKG is supported by a secu-
rity proof in the standard model.

This paper is organized as follows. After starting with preliminaries in Sec-
tion 2, we formally specify the functionality, syntax, and security requirements
of SSKGs in Section 3; this includes a comparison with the (different) formal-
izations in [5]. In Section 4 we describe our new PRG-based SSKG, including
its generalized seekability notion and some possible time-memory trade-offs. Fi-
nally, in Section 5, we discuss implementational aspects and efficiency results
from our implementation.



40 G.A. Marson and B. Poettering

1.2 Related Work

The first published work that highlights the importance of seekability as a desir-
able property of sequential key generators in the context of secured local logging
is [5,6]. An extensive comparison of the corresponding results with the ones of
the current paper can be found in the preceding paragraphs and in Section 3. In
the following we discuss further publications on sequential key generation and
cryptographic audit log protection. We observe that all considered protocols
either are forward-secure or offer seekability, but not both simultaneously.

An early approach towards secured local logging originates from Bellare and
Yee [7]; they study the role of forward security in authentication, develop the
security notion of forward integrity, and realize a corresponding primitive via
a PRF chain. Later, the same authors provide the first systematic analysis of
forward security in the symmetric setting [3], covering forward-secure variants of
pseudorandom generators, symmetric encryption, and MACs, and also providing
constructions and formal proofs of security for these primitives.

Shortly after [7], an independent cryptographic scheme specifically targeted
at protecting log files was described by Kelsey and Schneier [4,8,9]. Their scheme
draws its (forward) security from frequent key updates via iterated hashing, but
is not supported by a formal security analysis. A couple of implementations exist,
notably the one by Chong, Peng, and Hartel in tamper-resistant hardware [10]
and the logcrypt system by Holt [11]. The latter improves on [4] by paving the
way towards provable security, but also adds new functionality and concepts.
Most notable is the suggestion to embed regular metronome entries into log files
to thwart truncation attacks where the adversary cuts off the most recent set of
log entries. Similar work is due to Accorsi [12] who presents BBox, a hash-chain-
based framework for protecting the integrity and confidentiality of log files in
distributed systems.

Ma and Tsudik consider the concept of forward-secure sequential aggregate
authentication for protecting the integrity of system logs [13,14]. Their construc-
tions build on compact constant-size authenticators with all-or-nothing security
(i.e., adversarial deletion of any single log message is detected), naturally defend
against truncation attacks, and enjoy provable security.

The proposals by Yavuz and Ning [15], and Yavuz, Ning, and Reiter [16],
specifically aim at secured logging on constraint devices and support a shift of
computation workload from the monitored host to the log auditor. Notably, their
key update procedure and the computation of authentication tags takes only a
few hash function evaluations and finite field multiplications. In common with
the schemes discussed above, their authentication systems are not seekable.

Kelsey, Callas, and Clemm [17] introduced secured logging into the standard-
ization process at IETF. However, their proposal of signed syslog messages fo-
cuses on remote logging instead of on local logging. Precisely, their extension
to the standard UNIX syslog facility authenticates log entries via signatures be-
fore sending them to a log sink over the network. While this proposal naturally
offers seekability, it is bound to the full-time availability of an online log sink.



Even More Practical Secure Logging: Tree-Based Seekable Sequential Key 41

Indeed, periods where the latter is not reachable are not securely covered, as the
scheme is not forward-secure.

2 Preliminaries

We recall basic notions and facts from cryptography, graph theory, and data
structures that we require in the course of this paper. Notably, in the section on
trees, we define what we understand by the ‘co-path’ of a node. If not explicitly
specified differently, all logarithms are understood to be taken to base 2.

2.1 Pseudorandom Generators

A pseudorandom generator (PRG) is a function that maps a random string
(‘seed ’) to a longer ‘random-looking’ string. The security property of pseudoran-
domness requires that it be infeasible to distinguish the output of a PRG from
random.

Definition 1 (Pseudorandom generator). For security parameter λ and
a polynomial c : N → N

≥1, an efficiently computable function G : {0, 1}λ →
{0, 1}λ+c(λ) is a pseudorandom generator if for all efficient distinguishers D
the following advantage function is negligible, where the probabilities are taken
over the random choices of s and y, and over D’s randomness:

AdvPRGG,D(λ) =
∣
∣
∣Pr

[

D(G(s)) = 1 : s
$← {0, 1}λ

]

− Pr
[

D(y) = 1 : y
$← {0, 1}λ+c(λ)

]∣
∣
∣ .

2.2 Binary Trees

A tree is a simple, undirected, connected graph without cycles. We particularly
consider rooted trees, i.e., trees with a distinguished root node. The nodes ad-
jacent to the root node are called its children; each child can be considered,
in turn, the root of a subtree. The level L of a node indicates its distance to
the root, where we assign level L = 1 to the latter. Children of the same node
are siblings of each other. In this paper we exclusively consider binary trees of
constant height H . These are trees in which every node has exactly one sibling,
with exception of the root which has no sibling, and where all leaves have the
same level L = H ; such trees have a total of N = 2H − 1 nodes. We assume
that the children of each node are ordered; we refer to them as ‘left’ and ‘right’.
Nodes that have no children are called leaves, all other nodes are called internal.

We finally define the notion of co-path of a node. Let v denote an arbitrary
node of a binary tree. Intuitively speaking, the (right) co-path of v is the list
of the right siblings of the nodes on the (unique) path connecting the root
node with v. For a formal definition, let L denote the level of v = vL and
let (v1, . . . , vL) denote the path that connects the root (denoted here with v1)
with vL. For each 1 ≤ i ≤ L let V→

i be the list of right siblings of node vi (these
lists contain at most one element, and particularly V→

1 is always empty). We
define the co-path of vL to be the list V →

L ‖ . . . ‖ V →
1 obtained by combining

these lists into a single one using concatenation.



42 G.A. Marson and B. Poettering

2.3 Stacks and Their Operations

A stack is a standard data structure for the storage of objects. Stacks follow the
last-in first-out principle: the last element stored in a stack is the first element
to be read back (and removed). The following procedures can be used to operate
on stacks for storing, reading, and deleting elements. By Init(S) we denote
the initialization of a fresh and empty stack S. To add an element x ‘on top
of’ stack S, operation Push(S, x) is used. We write x ← Pop(S) for reading
and removing the top element of stack S. Finally, with x ← Peekk(S) the
k-th element of stack S can be read without deleting it; here, elements are
counted from the top, i.e., Peek1(S) reads the top-most element. When using
these notations, operations Init, Push, and Pop are understood to modify their
argument S in place, while Peekk leaves it unchanged.

3 Seekable Sequential Key Generators

The main contribution of this paper is a new construction of a seekable sequential
key generator (SSKG). This cryptographic primitive can be seen as a stateful
PRG that outputs a sequence of fixed-length keys—one per invocation. The
specific property of seekability ensures that it is possible to jump directly to
any position in the output sequence. At the same time, the security goal of
forward security ensures that keys remain indistinguishable from random even
upon corruption of the primitive’s state. We next recall the syntactical definition
and security properties, (mainly) following the notation from [5]. We defer the
exposition of our new scheme to Section 4.

3.1 Functionality and Syntax

Generally speaking, a seekable sequential key generator consists of four algo-
rithms: GenSSKG generates an initial state st0, the update procedure Evolve
maps each state sti to its successor state sti+1, GetKey derives from any state sti
a corresponding (symmetric) key Ki, and Seek permits to compute any state sti
directly from initial state st0 and index i. We consider each state associated with
a specific period of time, called epoch, where the switch from epoch to epoch is
carried out precisely with the Evolve algorithm. This setting is illustrated in
Figure 1 and formalized in Definition 2.

Definition 2 (Syntax of SSKG). Let � : N → N be a polynomial. A seekable
sequential key generator with key length � is a tuple SSKG = {GenSSKG,Evolve,
GetKey, Seek} of efficient algorithms as follows:

– GenSSKG. On input of security parameter 1λ and total number N ∈ N of sup-
ported epochs, this probabilistic algorithm outputs an initial state st0.

– Evolve. On input of a state sti, this deterministic algorithm outputs the
‘next’ state sti+1. For convenience, for k ∈ N, by Evolvek we denote the
k-fold composition of Evolve, i.e., Evolvek(sti) = sti+k.



Even More Practical Secure Logging: Tree-Based Seekable Sequential Key 43

GetKey GetKey GetKey GetKey

GenSSKG Evolve Evolve Evolve

Seek

st0 st1 sti−1 sti sti+1

K0 K1 Ki Ki+1

i

Fig. 1. Illustration of the interplay of the different SSKG algorithms

– GetKey. On input of state sti, this deterministic algorithm outputs a key
Ki ∈ {0, 1}�(λ). For k ∈ N, we write GetKeyk(sti) for GetKey(Evolvek(sti)).

– Seek. On input of initial state st0 and k ∈ N, this deterministic algorithm
returns state stk.

Implicit in Definition 2 is the following natural consistency requirement on
the interplay of Evolve and Seek algorithms:

Definition 3 (Correctness of SSKG). A seekable sequential key generator

SSKG is correct if, for all security parameters λ, N ∈ N, st0
$← GenSSKG(1λ, N),

and all k ∈ N we have

0 ≤ k < N =⇒ Evolvek(st0) = Seek(st0, k) .

Remark 1 (Comparison with the definition from [5]). The syntax specified in
Definition 2 does slightly deviate from the one in [5, Definition 3]: firstly, the
SSKG setup routine of [5] has a secret ‘seeking key’ as additional output; it is
required as auxiliary input for the Seek algorithm. The necessity of this extra
key should be considered an artifact of the number-theory-based construction
from [5] (see Section 3.4 for details): the seeking key contains the factorization
of the RSA modulus underlying the scheme. As the proposed Evolve algorithm
is one-way only if this factorization is not known, the Seek algorithm is available
exclusively to those who know the seeking key as a ‘trapdoor’. In contrast to
that, our syntax for Seek is not only more natural, we also allow everybody to use
the Seek algorithm to fast-forward efficiently to future epochs. Secondly, in [5]
the number of supported epochs does not have to be specified at the time of
SSKG initialization; instead, an infinite number of epochs is supported by every
instance. We had to introduce this restriction for technical reasons that become
clear in Section 4; however, we believe that the requirement of specifying the
number of epochs in advance does not constrain the practical usability of our
scheme too much: indeed, regarding our scheme from Section 4, instantiations
with, say, N = 230 supported epochs are perfectly practical.

3.2 Security Requirements

As the security property of SSKGs we demand indistinguishability of generated
keys from random strings of the same length. This is modeled in [5] via an



44 G.A. Marson and B. Poettering

experiment involving an adversary A who first gets adaptive access to a set of
(real) keys Ki of her choosing, and is then challenged with a string Kb

n that is
either the real key Kn or a random string of the same length; the adversary has
to distinguish these two cases. This shall model the intuition that keys Kn ‘look
random’ even if the adversary is given (all) other keys Ki, for i 	= n. Below we
formalize a stronger security notion that also incorporates forward security, i.e.,
additionally lets the adversary corrupt any state that comes after the challenged
epoch.

Definition 4 (IND-FS security of SSKG [5]). A seekable sequential key gen-
erator SSKG is indistinguishable with forward security against adaptive adver-
saries (IND-FS) if, for all efficient adversaries A = (A1,A2) that interact in
experiments ExptIND-FS,b from Figure 2 and all N ∈ N bounded by a polynomial
in λ, the following advantage function is negligible, where the probabilities are
taken over the random coins of the experiment (including over A’s randomness):

AdvIND-FS
SSKG,N,A(λ) =

∣
∣
∣Pr

[

ExptIND-FS,1
SSKG,N,A(1

λ) = 1
]

− Pr
[

ExptIND-FS,0
SSKG,N,A(1

λ) = 1
]∣
∣
∣ .

ExptIND-FS,b
SSKG,N,A(1λ):

1 KList← ∅
2 st0

$← GenSSKG(1λ, N)

3 (state, n,m)
$← AOKey

1 (1λ, N)
4 Abort if not 0 ≤ n < m < N

5 K0
n

$← {0, 1}�(λ)
6 K1

n ← GetKeyn(st0)
7 stm ← Evolvem(st0)

8 b′ $← AOKey

2 (state, stm,Kb
n)

9 Abort if n ∈ KList
10 Return b′

If A queries OKey(i):

1 Abort if not 0 ≤ i < N
2 KList← KList ∪ {i}
3 Ki ← GetKeyi(st0)
4 Answer A with Ki

Fig. 2. Security experiments for indistinguishability with forward security. The abort
operation lets the experiment return 0, disregarding any output of the adversary.

3.3 An Application: Protecting Locally Stored Log Files

Given the definitions from Sections 3.1 and 3.2, the role of SSKGs in the context
of secure logging is now immediate: in every epoch i, corresponding keyKi is used
to instantiate a message authentication code (MAC) that equips all occurring
log messages with an authentication tag. In addition, the Evolve algorithm is
regularly invoked to advance from one epoch to the next, burying for all times
the previously used keys. In such a setting, an auxiliary copy of initial state st0
is made available to the log auditor who can use the Seek algorithm to check
the integrity of log entries in any order. Clearly, the goal of forward security can
be achieved only if the secure erasure of old states is an inherent part of the
transition between epochs—for instance using the methods developed in [18].



Even More Practical Secure Logging: Tree-Based Seekable Sequential Key 45

3.4 Prior Constructions

While general sequential key generators have been considered in a variety of pub-
lications [4,9,3,11], the importance of seekability to obtain practical secure log-
ging was only identified very recently [5]. By consequence, we are aware of only
a single SSKG that precedes our current work.

Intuitively speaking, the SSKG construction from [5] follows the ‘permute-
then-hash’ paradigm. In more detail, the authors consider so-called shortcut
one-way permutations π : D → D that allow the evaluation of the k-fold compo-
sition πk in less than O(k) time. Given such a primitive, state st0 consists of a
random element x0 ∈ D, and keysKi are computed asKi = H(πi(x0)), where H
is a hash function modeled as a random oracle. The authors propose a number-
theory-based shortcut permutation where π implements precisely the squaring
operation modulo a Blum integer N ; in this case, πi(x) = x2i

= x2i mod ϕ(N) can
be evaluated quite efficiently if the factorization of N is known.

4 SSKGs from Pseudorandom Generators

We propose a novel construction of a seekable sequential key generator that as-
sumes only symmetric building blocks. Unlike the scheme in [5] which draws
security from shortcut one-way permutations in the random oracle model, our
new SSKG assumes just the existence of PRGs, i.e., it relies on a minimal cryp-
tographic assumption. In a nutshell, similarly to the works in [2] and [1] that
achieve forward-secure signing and forward-secure public key encryption, respec-
tively, we identify time epochs with the nodes of specially formed trees and let
the progression of time correspond to a pre-order visit of these nodes.

4.1 Sequential Key Generator from Binary Trees

From Section 2.2 we know that for any fixedH ∈ N
≥1 the binary tree of constant

height H has exactly N = 2H − 1 nodes. In our SSKG we identify time epochs
with the nodes of such a tree. More precisely, given the pre-order depth-first
enumeration w0, . . . , wN−1 of the nodes (first visit the root, then recursively the
left subtree, then recursively the right subtree; cf. Figure 3), we let time epoch i
and node wi correspond.

The idea is to assign to each node wi a (secret) seed si ∈ {0, 1}λ from which
the corresponding epoch’s key Ki and the seeds of all subordinate nodes can be
deterministically derived via PRG invocations. Here, exclusively the secret of the
root node is assigned at random. Intuitively, pseudorandomness of the PRG
ensures that all keys and seeds look random to the adversary.

We proceed with specifying which information the states associated with the
epochs shall record. Recall that from each state sti, 0 ≤ i < N , two pieces of
information have to be derivable: the epoch-specific key Ki and the successor
state sti+1 (and, by induction, also all following states and keys). Clearly, in our
construction, the notions of seed and state do not coincide; for instance, in the



46 G.A. Marson and B. Poettering

0

1 8

2 5 9 12

3 4 6 7 10 11 13 14

Fig. 3. A binary tree with height H = 4 and N = 24 − 1 = 15 nodes. The latter
are numbered according to a pre-order depth-first search, as partially indicated by the
arrow from the root node w0 to node w6.

tree of Figure 3 key K9 cannot be computed from just seed s4. However, if state
st4 contained (s4, s5, s8), then for all 4 ≤ i < N the keys Ki could be computed
from this state. Inspired by this observation, our SSKG stores in each state sti
a collection of seeds, namely the seeds of the roots of the ‘remaining subtrees’.
The latter set of nodes is precisely what we called in Section 2.2 the co-path of
node wi. Intuitively speaking, this construction is forward-secure as each state
stores only the minimal information required to compute all succeeding states.
In particular, as each node precedes all vertices on its co-path (in the sense of
a pre-order visit of the tree), the corresponding key remains secure even if any
subsequent epoch’s seed is leaked to the adversary.

We present next the algorithms of our SSKG construction. Particularly in-
teresting, we believe, are the details on how the required pre-order depth-first
search is implicitly performed by help of a stack data structure.

Construction 1 (TreeSSKG). Fix a polynomial � : N → N and a PRG G :
{0, 1}λ → {0, 1}2λ+�(λ). For all s ∈ {0, 1}λ write G(s) as G(s) = GL(s) ‖
GR(s)‖GK(s) where GL(s), GR(s) ∈ {0, 1}λ and GK(s) ∈ {0, 1}�(λ). Assuming
the notation for stacks from Section 2.3, the algorithms TreeSSKG = {GenSSKG,
Evolve,GetKey, Seek} of our SSKG are defined by Algorithms 1–4 in Figures 4
and 5.

Let us discuss the algorithms of TreeSSKG in greater detail.

GenSSKG. Besides picking a random seed s = s0 for the root node, Algorithm 1
computes the minimum number h ∈ N such that the binary tree of constant
height h consists of at least N nodes (cf. Section 2.2). Observe that this tree
might have more than N nodes, i.e., more epochs are supported than required.
The algorithm stores in state st0 a stack S that contains only a single element:
the pair (s, h). Here and in the following such pairs should be understood as
‘seed s shall generate a subtree of height h’.

Evolve. The stack S stored in state sti generally contains two types of informa-
tion: the top element is a pair (s, h) associated with the current node wi, and the
remaining elements are associated with the corresponding pairs of the nodes on



Even More Practical Secure Logging: Tree-Based Seekable Sequential Key 47

wi’s co-path. After taking the current entry (s, h) off the stack, in order to imple-
ment the depth-first search idea from Section 4.1, Algorithm 2 distinguishes two
cases: if node wi is an internal node (i.e., h > 1), the update step computes the
seeds of its two child nodes using PRG G, starting with the right seed as it needs
to be prepended to the current co-path. The new seeds GL(s) and GR(s) can
be considered roots of subtrees of one level less than wi; they are hence pushed
onto the stack with decreased h-value. In the second case, if the current node wi

is a leaf (i.e., h = 1), no further action has to be taken: the next required seed
is the ‘left-most’ node on wi’s co-path, which resides on the stack’s top position
already.

GetKey. Algorithm 3 is particularly simple as it requires only a single evaluation
of PRG G. Observe that the Peek1 operation leaves its argument unchanged.

Seek. Deriving state stk from the initial state st0 via iteratively evoking k times
the Evolve procedure is equivalent to visiting all nodes of the tree according
to a pre-order traversal until reaching node wk. However, there is an appealing
way to obtain seed sk more directly, without passing through all the intermediate
vertices. The idea is to just walk down the path connecting the root node with wk.
Taking this shortcut decreases the seeking cost to only O(logN), as opposed
to O(N). This is the intuition behind the design of our Seek algorithm.

Algorithm 1: GenSSKG

Input: 1λ, integer N
Output: initial state st0

1 Init(S)
2 s

$← {0, 1}λ
3 h← �log2(N + 1)�
4 Push(S , (s, h))
5 return S as st0

Algorithm 2: Evolve

Input: state sti as S
Output: next state sti+1

1 (s, h)← Pop(S)
2 if h > 1 then
3 Push(S , (GR(s), h−1))
4 Push(S , (GL(s), h−1))

5 return S as sti+1

Algorithm 3: GetKey

Input: state sti as S
Output: key Ki

1 (s, h)← Peek1(S)
2 K ← GK(s)
3 return K as Ki

Fig. 4. Algorithms GenSSKG, Evolve, and GetKey. Observe that the number of sup-
ported epochs is potentially greater than N due to the rounding operation in line 3
of GenSSKG.

Recall that Seek is required to output the whole state stk, and not just seed sk.
In other words, the execution of the algorithm needs to comprehend the con-
struction of the co-path of node wk. We provide details on how Algorithm 4
fulfills this task. Our strategy, illustrated in Figure 6, is to walk down the path
from the root to node wk, recording the right siblings of the visited nodes on
a stack. During this process, with a variable δ we keep track of the remaining
number of epochs that needs to be skipped. This counter is particularly helpful
for deciding whether, in the path towards wk, the left or the right child node
have to be taken. Indeed, the number of nodes covered by the left and right sub-
trees is 2h − 1 each; if δ ≤ 2h − 1 then the left child is the next to consider, but



48 G.A. Marson and B. Poettering

Algorithm 4: Seek

Input: state st0 as S , integer k
Output: state stk

1 δ ← k
2 (s, h)← Pop(S)
3 while δ > 0 do
4 h← h− 1

5 if δ < 2h then
6 Push(S , (GR(s), h))
7 s← GL(s)
8 δ ← δ − 1

9 else
10 s← GR(s)

11 δ ← δ − 2h

12 Push(S , (s, h))
13 return S as stk

Algorithm 5: SuperSeek

Input: state sti as S , integer k
Output: state sti+k

1 δ ← k
2 (s, h)← Pop(S)
3 while δ ≥ 2h − 1 do

4 δ ← δ − (2h − 1)
5 (s, h)← Pop(S)
6 while δ > 0 do
7 h← h− 1

8 if δ < 2h then
9 Push(S , (GR(s), h))

10 s← GL(s)
11 δ ← δ − 1

12 else
13 s← GR(s)

14 δ ← δ − 2h

15 Push(S , (s, h))
16 return S as sti+k

Fig. 5. Algorithms Seek and SuperSeek

the right child has to be recorded for the co-path. On the other hand, if δ ≥ 2h,
then the left child can be ignored, the co-path doesn’t have to be extended, and
the walk towards wk is continued via the right child. The procedure terminates
when for the number of remaining epochs we have δ = 0, which means that we
arrived at target node wk.

0

1 8

2 5 9 12

3 4 6 7 10 11 13 14

target

Fig. 6. A visualization of the procedure Seek computing state st6. As the arrows indi-
cate, the algorithm walks down the path from the root node w0 to the target node w6

(thick nodes); simultaneously, it records w6’s co-path, i.e., (w7, w8) (dashed nodes).

4.2 Security of Our Tree-Based SSKG

We next formally assess the security of Construction 1. For better legibility, in
the following theorem we restrict attention to the setting N = 2H−1, i.e., where



Even More Practical Secure Logging: Tree-Based Seekable Sequential Key 49

log(N +1) is an integer; the extension to the general case is straightforward. We
will also shorten the notation for some of the concepts from Definitions 2 and 4
(e.g., we denote �(λ) simply by �, etc.).

Theorem 1 (Security of TreeSSKG). Assuming a secure PRG is used, our
tree-based SSKG from Construction 1 provides indistinguishability with forward
security (IND-FS). More precisely, for any efficient adversary A against the
TreeSSKG scheme there exist efficient distinguishers Di against the underlying
PRG such that

AdvIND-FS
N,A ≤ 2(N − 1)

log(N+1)
∑

i=1

AdvPRGDi
.

Proof (sketch). The security of our scheme follows from the intuition that every
SSKG key Ki, for being (part of) the output of a PRG invocation, looks like
a random string to any efficient adversary as long as the corresponding seed
remains hidden. Recall the IND-FS experiment (cf. Figure 2): the adversary gets
state stm and a challenge Kb

n —either key Kn or a random �-bit string according
to the value of b— for integers n < m of her choosing. Although state stm reveals
seed sm and subsequent seeds, from these seeds none of the preceding states
can be computed. In other words, state stm is of no help to the adversary in
distinguishing keys prior to epoch m; in particular, key Kn remains secure.

To formalize this intuition we use game hops to progressively turn the IND-FS
experiment into one for which all adversaries have advantage exactly zero. In
the first hop we let the challenger guess the epoch n < N corresponding to the
challenge key and chosen by the adversary; this reduces the winning probability
by a factor of (N − 1). Next, let (v1, . . . , vL) be the path from the root v1 = w0

to node vL = wn in the binary tree associated to the SSKG. Starting from the
previous game, we consider a hop for all i = 1, . . . , L by replacing the output
of the PRG invocation associated to node vi by a random (2λ + �)-bit string.
Since each of the hops only involves a single PRG invocation, computational
indistinguishability of any two consecutive games directly follows from the pseu-
dorandomness of G. Observe that the last hop leads to a game where both K0

n

and K1
n are uniformly chosen at random: here no adversary can do better than

guessing. The fact that we lost a factor of (N − 1) in the first hop and we
have additional L ≤ log(N + 1) intermediates games lets us derive the theorem
statement.

A detailed proof appers in the full version of this paper [19]. ��

4.3 An Enhanced Seeking Procedure

As required by Definition 2, our Seek algorithm allows computing any state stk
given the initial state st0. Observe, however, that in many applications this ini-
tial state might not be accessible; indeed, forward security can be attained only
if states of expired epochs are securely erased. From a practical perspective it
is hence appealing to generalize the functionality of Seek to allow efficient com-
putation of sti+k from any state sti, and not just from st0. We correspondingly



50 G.A. Marson and B. Poettering

extend the notion of SSKG by introducing a new algorithm, SuperSeek, which
realizes the Evolvek functionality for arbitrary starting points; when invoked on
input st0, the new procedure behaves exactly as Seek.

Definition 5 (SSKG with SuperSeek). A seekable sequential key generator
SSKG supports SuperSeek if it has an auxiliary algorithm as follows:

– SuperSeek. On input of a state sti and k ∈ N, this deterministic algorithm
returns state sti+k.

For correctness we require that for all N ∈ N, all st0
$← GenSSKG(1λ, N), all

i, k ∈ N, and sti = Evolvei(st0) we have

0 ≤ i ≤ i+ k < N =⇒ Evolvek(sti) = SuperSeek(sti, k) .

Assume a TreeSSKG instance is in state sti and an application requests it
to seek to position sti+k, for arbitrary 0 ≤ i ≤ i + k < N . Recall from the
discussions in Sections 4.1 that state sti encodes both the seed si and the co-path
of node wi. Recall also that, as a property of the employed pre-order visit of the
tree, for each state stj , j > i, the co-path of node wi contains an ancestor w
of wj . Following these observations, our SuperSeek construction consists of two
consecutive phases. For seeking to state sti+k, in the first phase the algorithm
considers all nodes on the co-path of wi until it finds the ancestor w of wi+k. The
second phase is then a descent from that node to node wi+k, similarly to what we
had in the regular Seek algorithm. In both phases care has to be taken that the
co-path of target node wi+k is correctly assembled as part of sti+k. The working
principle of our new seeking method is also illustrated in Figure 7. We present
explicit instructions for implementing SuperSeek in Figure 5. The first while loop
identifies the ancestor w of target node wi+k on wi’s co-path by comparing δ
(i.e., the remaining number of epochs to be skipped) with the number of nodes
in the subtree where w is the root. The second loop is equivalent to the one from
Algorithm 4.

0

1 8

2 5 9 12

3 4 6 7 10 11 13 14

start target

Fig. 7. A visualization of the procedure SuperSeek jumping from epoch 3 to 11. As
indicated by the arrows, the algorithm first finds the intersection, here w8, between the
co-path of node w3 (dashed nodes) and the path that connects the root with the target
node w11 (thick nodes); from there it proceeds downwards until it reaches node w11.



Even More Practical Secure Logging: Tree-Based Seekable Sequential Key 51

5 Practical Aspects

In the preceding sections we left open how PRGs can be instantiated in practice;
indeed, the well-known recommendations and standards related to symmetric
key cryptography exclusively consider block ciphers, stream ciphers, and hash
functions. Fortunately, secure PRG instantiations can be boot-strapped from
all three named primitives. For instance, a block cipher operated in counter
mode can be seen as a PRG where the block cipher’s key acts as the PRG’s
seed. Similar counter-based constructions derived from hash functions or PRFs
(e.g., HMAC) are possible. A specific property of PRGs that are constructed
by combining a symmetric primitive with a counter is particularly advantageous
for efficiently implementing our TreeSSKG scheme. Recall that the PRG used
in Construction 1 is effectively evaluated in a blockwise fashion. More precisely,
while the PRG is formally defined to output strings of length 2λ + �(λ), in
our TreeSSKG algorithms it is sufficient to compute only a considerably shorter
substring per invocation. This property is perfectly matched by the ‘iterated
PRGs’ proposed above, as the latter allow exactly this kind of evaluation very
efficiently.

Implementation. We implemented our TreeSSKG scheme and claim that the level
of optimization is sufficient for practical deployment. Our code is written in the
C programming language and relies on the OpenSSL library [20] for random
number generation and the required cryptographic primitives. We consider a
total of four PRG instantiations, using the AES128 and AES256 block ciphers
and the MD5 and SHA256 hash functions as described. That is, we have two
instantiations at the λ = 128 security level, and two at the λ = 256 level.

We experimentally evaluated the performance of our implementation, using
the following setup. We generated SSKG instances that support N = 220 − 1 ≈
106 epochs. We iterated through all epochs in linear order, determining both the
average and the worst-case time consumed by the Evolve algorithm. Similarly
we measured the average and worst-case time it takes for the Seek algorithm to
recover states stk, ranging over all values k ∈ [0, N−1]. Concerning SuperSeek, we
picked random pairs i, j ∈ [0, N−1], i < j, and measured the time required by the
algorithm to jump from sti to stj . Finally, we performed analogous measurements
for GenSSKG and GetKey (here, average and worst-case coincide). The results of
our analysis are summarized in Table 1.

For comparison we also include the corresponding timing values of our com-
petitor, the (factoring-based) SSKG from [5]1, for security levels roughly equiva-
lent to ours. We point out that the analogue of GenSSKG from [5] in fact consists
of two separate algorithms: one that produces public parameters and an asso-
ciated ‘seeking key’, and one that generates the actual initial SSKG state. As
any fixed combination of public parameters and corresponding seeking key can
be used for many SSKG instances without security compromises, for fairness

1 The reference implementation from [5] can be found at
http://cgit.freedesktop.org/systemd/systemd/tree/src/journal/fsprg.c.

http://cgit.freedesktop.org/systemd/systemd/tree/src/journal/fsprg.c


52 G.A. Marson and B. Poettering

we decided not to count the generation costs of the former when indicating the
GenSSKG performance in Table 1. Instead, we report the results of our timing
analysis here as follows: for the costs of parameters and seeking key genera-
tion with 2048 bit and 3072 bit RSA moduli we measured 400ms and 2300ms,
respectively.

It might be instructive to also study the required state sizes for both our
TreeSSKG scheme and the scheme from [5]. In our implementation the (maxi-
mum) state size scales roughly linearly in both logN and the seed length of the
used PRG. Concretely, for N = 220 − 1 and 128 bit keys (e.g., for AES128- and
MD5-based PRGs) the state requires 350 bytes, while for 256 bit security a total
of 670 bytes of storage are necessary. In the scheme from [5] the space in the
state variable is taken by an RSA modulus N , a value x ∈ Z

×
N , a 64 bit epoch

counter, and a small header. Precisely, for 2048 and 3072 bit RSA moduli this
results in 522 and 778 bytes of state, respectively.

Results and discussion. We discuss the results from Table 1 as follows, begin-
ning with those of our tree-based SSKG (i.e., columns AES128, MD5, AES256,
and SHA256). Our first observation is that the GenSSKG time is independent of
the respectively used PRG. This is not surprising as the former algorithm never
invokes the latter, but spends its time with memory allocation and requesting
the random starting seed from OpenSSL’s core routines. The timings for Evolve
indicate that, as expected, 128-bit cryptographic primitives are faster than 256-
bit primitives, and that for a fixed security level the hash-function-based con-
structions are (slightly) preferable. The hypothesis that the time spent by the
individual algorithms is dominated by the internal PRG executions is supported
by the observation that the running time of Evolve (on average) and GetKey co-
incide, and that the worst-case running time of Evolve is twice that value; to see
this, recall that Evolve executions perform either two internal PRG invocations
or none, and that the average number of invocations is one. We understand that
the SuperSeek timings are generally better than the Seek values as the firstwhile
loop in Algorithm 5 does not comprise a PRG invocation, whereas the second

Table 1. Results of efficiency measurements of our TreeSSKG algorithms when instan-
tiated with different PRGs, and a comparison with the algorithms from [5]. All exper-
iments were performed on an 1.90GHz Intel Core i7-3517U CPU. We used OpenSSL
version 0.9.8 for the implementation of our TreeSSKG routines, while for the compila-
tion of the reference code from [5] we used the gcrypt library in version 1.5.0.

AES128 MD5 [5]/2048 bit AES256 SHA256 [5]/3072 bit
[average] [max] [average] [max] [average] [max] [average] [max]

GenSSKG 22μs 22μs 27μs 22μs 22μs 38μs
Evolve 0.2μs 0.5μs 0.2μs 0.4μs 8μs 0.5μs 1μs 0.4μs 0.8μs 13μs
Seek 7μs 9μs 6μs 7μs 4.9ms 14μs 18μs 11μs 15μs 12.6ms
SuperSeek 6μs 9μs 5μs 7μs – 13μs 18μs 8μs 15μs –
GetKey 0.2μs 0.2μs 12μs 0.4μs 0.4μs 13μs



Even More Practical Secure Logging: Tree-Based Seekable Sequential Key 53

while loop requires less iterations on average than the corresponding loop in
Algorithm 4.

The routines from [5] are clearly outperformed by the ones from our SSKG.
Firstly, for the Evolve algorithm our timing values are about 30 times better than
those for [5] (recall that the latter’s state update involves a modular squaring
operation). Similar results show our tree-based GetKey algorithm to be faster,
by a factor between 30 and 60, depending on the considered security level. This
might be surprising at first sight, as the algorithm from [5] consists of just
hashing the corresponding state variable, but presumably the explication for
this difference is that [5] operates with considerably larger state sizes than we
do. Finally, the superiority of our tree-based construction in terms of efficiency is
made even more evident by studying the performance of the seek Seek algorithms,
where we can report our routines to be 700–1000 times faster than those from [5],
again depending on the security level.

Conclusion

The recently introduced concept of seekable sequential key generator (SSKG)
combines the forward-secure generation of sequences of cryptographic keys with
an explicit fast-forward functionality. While prior constructions of this primitive
require specific number-theoretic building blocks, we show that symmetric tools
like block ciphers or hash functions suffice for obtaining secure SSKGs; this
leads to impressive performance improvements in practice, by factors of 30–1000,
depending on the considered algorithms. In addition to the performance gain,
our scheme enhances the functionality of SSKGs by generalizing the notion of
seekability, making it more natural and concise, an improvement that we believe
is very relevant for applications. Our scheme enjoys provable security in the
standard model.

Acknowledgments. The authors thank all anonymous reviewers for their valu-
able comments. Giorgia Azzurra Marson was supported by CASED and Bertram
Poettering by EPSRC Leadership Fellowship EP/H005455/1.

References

1. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
Journal of Cryptology 20(3), 265–294 (2007)

2. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)

3. Bellare, M., Yee, B.S.: Forward-security in private-key cryptography. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer, Heidelberg (2003)

4. Kelsey, J., Schneier, B.: Cryptographic support for secure logs on untrusted ma-
chines. In: Proceedings of the 7th USENIX Security Symposium (1998)

5. Marson, G.A., Poettering, B.: Practical secure logging: Seekable sequential key
generators. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS,
vol. 8134, pp. 111–128. Springer, Heidelberg (2013)



54 G.A. Marson and B. Poettering

6. Marson, G.A., Poettering, B.: Practical secure logging: Seekable sequential key
generators. Cryptology ePrint Archive, Report 2013/397 (2013),
http://eprint.iacr.org/2013/397

7. Bellare, M., Yee, B.S.: Forward integrity for secure audit logs. Technical report
(1997)

8. Kelsey, J., Schneier, B.: Minimizing bandwidth for remote access to cryptographi-
cally protected audit logs. In: Recent Advances in Intrusion Detection (1999)

9. Schneier, B., Kelsey, J.: Secure audit logs to support computer forensics. ACM
Trans. Inf. Syst. Secur. 2(2), 159–176 (1999)

10. Chong, C.N., Peng, Z., Hartel, P.H.: Secure audit logging with tamper-resistant
hardware. In: Gritzalis, D., di Vimercati, S.D.C., Samarati, P., Katsikas, S.K. (eds.)
SEC. IFIP Conference Proceedings, vol. 250, pp. 73–84. Kluwer (2003)

11. Holt, J.E.: Logcrypt: forward security and public verification for secure audit logs.
In: Buyya, R., Ma, T., Safavi-Naini, R., Steketee, C., Susilo, W. (eds.) ACSW
Frontiers. CRPIT, vol. 54, pp. 203–211. Australian Computer Society (2006)

12. Accorsi, R.: BBox: A distributed secure log architecture. In: Camenisch, J., Lam-
brinoudakis, C. (eds.) EuroPKI 2010. LNCS, vol. 6711, pp. 109–124. Springer,
Heidelberg (2011)

13. Ma, D., Tsudik, G.: Extended abstract: Forward-secure sequential aggregate au-
thentication. In: 2007 IEEE Symposium on Security and Privacy, May 20-23,
pp. 86–91. IEEE Computer Society Press, Oakland (2007)

14. Ma, D., Tsudik, G.: A new approach to secure logging. Trans. Storage 5(1), 2:1–2:2
(2009)

15. Yavuz, A.A., Ning, P.: BAF: An efficient publicly verifiable secure audit logging
scheme for distributed systems. In: ACSAC, pp. 219–228. IEEE Computer Society
(2009)

16. Yavuz, A.A., Ning, P., Reiter, M.K.: BAF and FI-BAF: Efficient and publicly
verifiable cryptographic schemes for secure logging in resource-constrained systems.
ACM Trans. Inf. 15(2), 9 (2012)

17. Kelsey, J., Callas, J., Clemm, A.: Signed Syslog Messages. RFC 5848 (Proposed
Standard) (May 2010)

18. Gutmann, P.: Secure deletion of data from magnetic and solid-state memory. In:
Proceedings of the Sixth USENIX Security Symposium, San Jose, CA, vol. 14
(1996)

19. Marson, G.A., Poettering, B.: Even more practical secure logging: Tree-based seek-
able sequential key generators. Cryptology ePrint Archive, Report 2014/479 (2014),
http://eprint.iacr.org/2014/479

20. Young, E., Hudson, T.: OpenSSL: The Open Source Toolkit for SSL/TLS,
http://www.openssl.org

http://eprint.iacr.org/2013/397
http://eprint.iacr.org/2014/479
http://www.openssl.org

	Even More Practical Secure Logging:
Tree-Based Seekable Sequential Key Generators

	1 Introduction
	1.1 Contributions and Organization
	1.2 Related Work

	2 Preliminaries
	2.1 Pseudorandom Generators
	2.2 Binary Trees
	2.3 Stacks and Their Operations

	3 Seekable Sequential Key Generators
	3.1 Functionality and Syntax
	3.2 Security Requirements
	3.3 An Application: Protecting Locally Stored Log Files
	3.4 Prior Constructions

	4 SSKGs from Pseudorandom Generators
	4.1 Sequential Key Generator from Binary Trees
	4.2 Security of Our Tree-Based SSKG
	4.3 An Enhanced Seeking Procedure

	5 Practical Aspects
	Conclusion
	References




