Botyacc: Unified P2P Botnet Detection
Using Behavioural Analysis and Graph Analysis

Shishir Nagaraja

School of Computer Science,
University of Birmingham, UK
s.nagaraja@cs.bham.ac.uk

Abstract. The detection and isolation of peer-to-peer botnets is an ongoing prob-
lem. We propose a novel technique for detecting P2P botnets. Detection is based
on unifying behavioural analysis with structured graph analysis. First, our infer-
ence technique exploits a fundamental property of botnet design. Modern
botnets use peer-to-peer communication topologies which are fundamental to
botnet resilience. Second, our technique extends conventional graph-based de-
tection by incorporating behavioural analysis into structured graph analysis, thus
unifying graph-theoretic detection with behavioural detection under a single algo-
rithmic framework. We carried out evaluation over real-world P2P botnet traffic
and show that the resulting algorithm can localise the majority of bots with low
false-positive rate.

Keywords: Traffic analysis, botnet detection, behavioural analysis, graph theory.

1 Introduction

The detection and isolation of peer-to-peer (P2P) botnets is an ongoing problem. P2P
architectures are attractive as they offer low end-to-end routing delays and provide ro-
bustness against botnet response mechanisms by decentralising importance throughout
the network.

In response to the proliferation of P2P botnets, many researchers have proposed the
use of machine learning techniques. Essentially, these are partitioning tools which con-
vert a dataset into clusters of similar data points under some definition of similarity.
However, the context of statistical botnet detection fundamentally differs from non-
security applications: the context is adversarial and the attacker controls the data of
interest.

Partitioning algorithms leveraging traffic similarity require special statistical proper-
ties. First, cluster boundaries must be precise — approximate boundaries are not suffi-
cient. Otherwise, botnets can exploit this weakness to “blend-in” with legitimate traffic
clusters. We also require that the cluster definition is robust — the property that resists
the addition of botnet points to non-botnet clusters. Current botnet detection techniques
do not offer these properties.

To enable precise and robust characterisation of the legitimate data subspace (clus-
ters), one approach is to leverage a fundamental design characteristic of modern bot-
nets: its P2P communication architecture — P2P botnets use structured communica-
tion networks which are highly resistant to churn and adversarial takedown. However,

M. Kutytowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 439-456, 2014.
(© Springer International Publishing Switzerland 2014

440 S. Nagaraja

anonymous proxies and NATs can hide P2P topologies from network monitors and
thereby adversely affect detection based on the structural differences in the communi-
cation graphs of the embedded botnets vis a vis the background Internet graph.

Our approach is to unify two well understood principles of botnet detection (P2P
connectivity and traffic similarity) into a single algorithm underlying out detection tech-
nique. This results in high detection accuracy as well as evasion resistance properties.
At the core of our technique is a novel Markovian diffusion process defined over input
traffic traces, that leverages patterns in connectivity as well as flow statistics. Evading
detection against our approach may be hard. First, detection is based on a fundamental
property of botnet operation; structured P2P topologies are a pre-requisite for botnet
robustness. Second, we exploit the attacker’s lack of knowledge of the precise form and
structure of legitimate traffic. To be clear, we are not proposing heuristics. This paper
realises the following contributions

— A link between network behavioural analysis and graph-theoretic approaches to
botnet detection.

— An algorithm that takes non-linearity of network traffic into account.

— A systematic approach to selection of network traffic features for capturing be-
havioural information.

— A single algorithm that works at different levels of scale, in both enterprise and ISP
settings.

2 Architecture

The need to perform efficient accounting, traffic engineering and load balancing, detec-
tion of malicious and disallowed activity, and other factors has led network operators to
pursue infrastructures to monitor traffic across multiple vantage points. Internally, en-
terprises run intrusion detection systems to collect more fine-grained information about
protocols and bit patterns occurring in packets while ISPs run monitoring infrastruc-
tures to collect information about flow-level traffic volumes.

Our architecture consists of the following parts.

Monitor: First, traffic monitors are responsible for observing and sampling traffic in-
formation from the data-plane, and building a compact representation that is used for
analysis and detection. These monitors may run at end-hosts, or on routers within the
network using monitoring techniques such as Cisco 10S’s NetFlow [9] or sFlow, the
Openflow standard. By default, NetFlow and sFlow sample traffic by processing one
out of every 200 to 500 packets. However, advances in counter architectures [20] en-
able efficient tracking of the entire traffic flows in ISP networks without need for sam-
pling. For enterprises, several products under the name of Security and Information
Event Management (SIEM) systems now seek to store full traffic trace information.
The constant threat of attacks suffered by modern networks has led operators to pursue
infrastructures to monitor for anomalous behaviour across multiple vantage points.

Aggregator: Second, an aggregator component periodically receives observed com-
munication traces from individual monitors, and merges them together to compute a
network-wide communication trace dataset. This dataset contains the overlay topology

Botyacc: Unified P2P Botnet Detection Using Behavioural Analysis 441

corresponding to all pairs of intercommunicating hosts observable across the set of
monitors. It runs an algorithm that analyses the communication traces. It then attempts
to separate the dataset into two (possibly overlapping) subsets: the botnet trace, and
the non-botnet communication traces. Bots (hosts that form the botnet communication
graph) are then output as a set of suspect hosts. This list may then be sent to the set
of clients that are subscribers to the service. The list may be used to install blacklists
into routers, to configure intrusion detection, firewall systems, and traffic shapers; or as
“hints” to human operators regarding which hosts should be investigated as being bots.
The aggregator may optionally append a likelihood that each suspect IP address has
engaged in a certain activity, so that clients can individually determine at what thresh-
old to block traffic. Aggregators may be combined in a hierarchical fashion to further
reduce control overhead. In other words, low-level aggregators can collect information
from a subset of networks and hosts, and then in turn send their results to a higher-level
aggregator.

Honeynet: Third, the network defender obtains botnet communication traces from a
honeynet. Such traces are available from third-party sources or by building a small
malware testbed. The honeynet is seeded with malware relevant to the defender. For
instance, an oil and gas company, they might be particularly interested in targeted mal-
ware attacks. Once the relevant malware is seeded into the malware, it is allowed to
connect to its control servers. The resulting traffic including C&C traffic is recorded and
forms the seed input to the inference algorithm. IP communication headers and sum-
mary information for each traffic flow is recorded and used by the detection
algorithm.

Inference Mechanism: Fourth, traffic traces from the aggregator and the honeynet is
piped to our inference technique. The algorithms underlying our technique are able to
partition the traffic into multiple botnet and non-botnet flow partitions.

3 The Problem

Our goal is to separate botnet C&C communication from legitimate network traffic.
Consider a communication graph G = (V,E) with V representing the set of hosts ob-
served in traffic traces, and an edge e € E representing a traffic flow. Each edge e is
a k-dimensional vector where k is a system parameter. Consider one or more botnet
graphs G, = (H,M) embedded within the communication graph, where H C V is the
set of bots (infected hosts) and M C H x H C E are the corresponding edges (botnet
flows). The objective of the inference algorithm is to detect subgraphs G, whilst min-
imising false-negative rate and false-positive rate.

Graph techniques such as community detection algorithms, sybil detection algo-
rithms, and other graph partitioning methods leverage the presence of a bottle-neck
cut separating a subgraph of interest from the rest of the graph. This scenario is not ap-
plicable to botnets where there is no bottle-neck cut separating botnet edges and legiti-
mate edges. From a graph-theoretic perspective, botnet detection is an edge-partitioning
problem, an open research problem. Whereas conventional graph partitioning algo-
rithms (community and sybil detection) are designed for vertex partitioning.

442 S. Nagaraja

4 Inference Technique

4.1 The Methodology

Botnets create unique patterns in network traffic. These patterns manifest themselves
in a number of ways which can be traced to the botnet’s design. The use of struc-
tured P2P communication topologies increases resilience to bot-takedown, as well as
the anonymity of messages on the botnet C&C channel when messages are routed via
other bots.

A second source of patterns is statistical similarity of traffic patterns. Bots tend to
have similar lifecycles of reconnaissance and initial compromise, followed by the es-
tablishment of a C&C (command and control) channel, which is in turn followed by
attacks such as data-exfiltration or service denial attacks.

Botnet detection via the use of structured peer-to-peer topologies, similarity of traffic
flow patterns, and collaboration involving a large number of infected hosts, have thus
far been studied individually. In this paper, we propose a detection methodology that
unifies these approaches. The intuition behind unifying graph-theoretic and statistical
behavioural analysis, rather than their independent application, is to leverage feedback
loops across these approaches.

The feedback loop is designed as a stochastic diffusion process over ’similar’ traf-
fic flows. It is based on a new type of random walk on graphs. Random walks allow
us to reason about graph topology and have been heavily used in the development of
graph partitioning techniques. To incorporate the notion of edge ’similarity’, we apply
theoretical tools from euclidean geometry. Each traffic flow is a vector whose scalar
elements specify the Cartesian coordinates of a point with respect to a set of axes —
one axis per element. The ensemble of points resulting from considering traffic flows
constitutes a multi-dimensional geometric surface with a lot of structural information
embedded within it.

Our inference algorithm constructs geometric surfaces whose structure depends on
the communication graph as well as traffic-flow information. Our inference algorithm
is a stochastic diffusion process over ’similar’ edges. We start by representing traffic
traces into a communication graph. We define a special random walk over this graph.
The novelty of the walk is that state transition (choice of outgoing edge) depends on the
incoming edge of a random walk step. This is done to incorporate the notion of edge
’similarity’ — the walk has a bias towards similar flows. Flow similarity is defined using
Euclidean distance in a high dimensional setting where each traffic flow is a vector
whose scalar elements specify the Cartesian coordinates of a point with respect to a
set of axes — one axis per element. The ensemble of points resulting from considering
traffic flows constitutes a multi-dimensional geometric surface with a lot of structural
information embedded within it.

4.2 Stepl: Constructing the Dual Graph

From captured traffic traces, we construct a communication graph G where each edge
e € E(G) is a traffic flow represented by a k-dimensional vector and whose nodes rep-
resent computers. This graph only contains topology information. We then construct a

Botyacc: Unified P2P Botnet Detection Using Behavioural Analysis 443

new graph that which is influenced by communication topology and the geometry of
traffic-flow vectors. We achieve this by creating a dual graph.

To find the dual of the communication graph, we convert edges (traffic flows) into
nodes. We then connect pairs of nodes (traffic flows) whose which are locally similar:
flows must transition adjacent IP addresses (share a common node in G) and demon-
strate flow-similarity (flow vectors must be less than a threshold distance apart). The
intuition behind this step is that random walks on the dual graph will achieve the equiv-
alent of entering and exiting nodes over closely related flows in the original communi-
cation graph. Note that this would not be normally possible because random walks are
memoryless. Whereas we wish to study diffusion effects of walks over similar (traffic)
edges rather than different edges in the original communication graph — this is one of
the primary design features that will reduce the false-positive rate problem we discussed
in the motivation sub-section above.

The dual of G is a weighted graph D(G). Each edge in G is a node in D(G) therefore
[V(D(G))| = |E(G)|. An edge between two nodes in D(G) is constructed as follows:

— edge-adjacency: For a edge es between nodes s, in G, the set of adjacent edges is
the set of all edges connecting s and x, or, and y: S, = {ex, xs, €1y}
— geometrical distance: Each edge e in G is represented by a k-dimensional vector

(wi,...,wx). The geometrical distance between a pair of edges ¢; and ¢; is given
by:
el)
W, = e ¢ if||ei —ej||” <€ 1)
0 otherwise

, where the norm is the Euclidean norm in Rk.

- Each edge ¢ in G is a node e in the dual of G, namely D(G). We place an edge with
weight W;; between two nodes ¢; and e in D(G), if they satisfy the edge-adjacency
property above and are geometrically close enough (W;; # 0).

4.3 Step2: Partitioning

Now that we have a graph-geometric representation (D(G)) of the traffic, our next task
is to separate subgraphs corresponding to different traffic characteristics. The geometric
space within which traffic points reside is represented as the graph, and we explore the
local and global properties of surfaces using random walks (as explained earlier).
Constructing the dual allows us to partition a communication into subgraphs with
similar traffic flow behaviour and subgraphs that have a different expansion properties
than the background graph they are embedded within. Consider the toy example of
edge-partitioning a graph consisting of a set of nodes connected using one set of edges
within a ring structure and using a second set of edges as a star structure as shown in
Fig. 1(a). Without taking geometry into account (flow-similarity), computing the dual
graph gives us Fig. 1(b), where star-edges have been converted into a clique subgraph
that is weakly connected to a subgraph containing nodes that were edges constituting
a ring in the original graph. Now, using random walks over the dual-graph, we can

444 S. Nagaraja

@) @
® .
(] ® o®®
o %
®
@ ® ¢ @@@®
- ®
® ®
®
(a) graph G (b) Dual @(g)

Fig. 1. A sample graph and its dual; vertex ids are reset in the dual

partition the ring-edges and the star-edges using the relative expansion properties of
these two subgraphs in the dual.

Traffic data is represented as a graph with individual geometric surfaces represented
as subgraph communities within a single connected component. A surface corresponds
to a subset of V(D¢(G)) that is richly intra-connected but sparsely connected with the
rest of the graph. To partition traffic by similarity, we consider the algebraic connectivity
properties of the graph. of each surface and locate gaps between dense surfaces.

Partitioning Technique. To find gaps that naturally partition the data, we find the
Laplacian over the graph dual. Laplacian operator is efficient at finding gaps between
geometric clusters.

The standard technique for detecting gaps using the Laplacian operator consists of
considering the adjacency matrix A and the graph edges, with weights wy,ws, ..., w, on
the edges, the Laplacian matrix is defined as L = AI,A”. Here I, is a diagonal matrix
with the weights placed along the diagonal i.e. I;; = w; = d;, where d; is the degree
of node i. We then find the eigenvalues of the Laplacian matrix. There are standard
techniques for computing eigenvalues, for instance the well known Lanczos algorithm
which scales as O(n log n).

A partition for graph G = (V,E) is defined as a partition of V into legitimate
and botnet subgraphs L, and M, such that the number of edges across the gap
gap(L,M)/(|L||M|) is minimised. In such a scenario, the second smallest eigenvalue
(Ap) of L, yields a lower bound on the optimal cost of the gap is (1 —A;). The eigenvec-
tor (v,) corresponding to the second eigenvalue, bisects the graph into only two clusters
based on the sign of the corresponding vector entry. Division into a larger number of
clusters is achieved by repeated bisection. To prevent repetitive bisection from using
trivial gaps we use the well known conductance metric.

Quality Metric. The quality of a partition is measured by its conductance, the ratio of
the number of its external connections to the number of its total connections.

Botyacc: Unified P2P Botnet Detection Using Behavioural Analysis 445

We let d(i) denote the degree of vertex i. For S C V(D¢(G)) , we define §(S) =
Yicsd(i) as the volume of S. So,

3(V(Dc(G))) = 2|E(Dc(G))

.Let EE(S,V(Dc(G))\ S) be the set of edges connecting a vertex in S with a vertex in
V(De(G))\S). We define the conductance of a set of vertices S, written ¢(S) as

EE(S,V(Dc(G))\S)
min(3(5),8(V(Dc(G))\S))

The conductance of D, (G) is then given by:

phi(S) =

min S
SEV(@c(G))q)()

. To avoid obtaining trivial partitions, the conductance of a subgraph is normalised by
the size of the partition.

Generalising the Approach. The Laplacian operator is applicable for linear contexts.
However, since the botnet context is adversarial the attacker can architect bot traffic
to behave in a non-linear manner. For instance, the attacker can engineer bot traffic to
follow a non-linear geometric shape such as a sphere or a curved line. In such a case, a
linear operator would make errorneous judgements. Since the adversary controls botnet
traffic data, an assumption of linearity would be incorrect. The geometric interpretation
of this assumption is that traffic feature vectors are points on a planar surface. However,
a non-linear operator, being generic, (discards and) resists attacks based on exploiting
this assumption. For instance, as a way of increasing the false-positive rate of detection,
the botnet operator can alter botnet traffic vectors so they are a short euclidean distance
from legitimate traffic vectors. In this case, a linear operator would be successfully
misguided into accepting the botnet traffic as legitimate given their close proximity.
However, a non-linear operator would be able to leverage the actual geometric structure
of legitimate traffic (instead of assuming it is a planar surface) to resist botnet points
being accepted into the legitimate cluster. Thus, we use the laplace-beltrami operator
which allows valid distance measurements when the geometrical subspace is non-linear.

Let X denotes the set of functions defined on the vertices of D(G). The application of
laplace-beltrami operator on a function results in another functionin X, i.e Lf € XVf €
X since L is a function of functions: from X to X. An eigenfunction of the laplace-
beltrami operator is a function f such that Lf = Af where A is the eigenvalue of L and
represents the scaling of f. By computing the eigenfunctions we obtain a compressed
list of features that is expressed as a linear combination of the (larger number of) input
features. This approach of using eigenfunctions for feature reduction prior to inference
is well known within the machine learning community. We leverage this as a building
block in our algorithm.

— To apply the laplace-beltrami operator, we compute L = D — W, where D is the
diagonal matrix corresponding to W. L is a symmetric and positive matrix.

446 S. Nagaraja

— Compute the eigenvectors and eigenvalues of Lf = Af ordered in the increasing
order of the eigenvalues Ag <A} <Ap... Ak _1.

— Ignore the first eigenvector fy = (1,..., 1) with eigenvalue Ao = 0.

— Each vertex i of D(G) is now expressed in terms of the m new features. The modi-
fied graph is referred to as D€ (G). Vertices of the modified graph are now available
as V(D(G))i = (/i) fn(i)).

— Each edge between a pair of vertices in DC(G) is refreshed with an edge weight
that corresponds to the new set of features. Each edge between vertices i and j is
refreshed as follows:

[[vi=v;ll
wh=Jde ! if||v; f‘ijz <e 2
0 otherwise

, where the norm is the Euclidean norm in R ™.

5 Noise Tolerance

Our detection method leverages the attackers limited knowledge about the location and
structure of the legitimate surface to bound statistical noise injected by an adaptive
botmaster. Vectors corresponding to three categories — legitimate traffic, noise traffic
introduced by the botmaster, and genuine botnet traffic — are represented in the dual
graph. As described earlier, each traffic vector constitutes a vertex. An undirected edge
exists between two vertices if they are within a € threshold distance of each other.

An edge may exist between a noise vector and a legitimate vector if they are within
close proximity. Such a noise edge allows “leakage” of walks between the legitimate
and botnet surfaces contributing to false positives. Each noise edge connects a noise
pack to vertices within a legitimate traffic surface.

To successfully evade detection, the attacker must succeed in placing a large number
of noise points (noise pack) in close proximity of another surface, all points within the
noise pack must be in close proximity of legitimate points rather than just a few. This
requires knowledge of the location of a majority of the points in that surface. Our design
leverages three important facts to limit the number and size of noise packs: a) legitimate
surface graphs tend to have high algebraic connectivity (the smallest positive eigenvalue
of its Laplacian matrix). b) large amounts of noise (compared to the number of noise
edges) decreases algebraic connectivity.

Capping the number of noise edges: The evasion resistance property of our detection
algorithm relies on limiting the number of noise edges (m). There are primarily two
scenarios in which botnet malware might attempt to increase m:

— No knowledge of legitimate subspace: Botnet sprays noise randomly in the data
space in the hope that some of these points will be near the legitimate surface.
Spraying is achieved by the botnet altering behaviour by modifying traffic feature
values. This is quite difficult to perform because the data space is large (theoreti-
cally infinite) whereas the legitimate surface is located on a relatively smaller geo-
metric subspace.

Botyacc: Unified P2P Botnet Detection Using Behavioural Analysis 447

— Partial knowledge of legitimate subspace: A second possibility is that the botnet
has some awareness of legitimate surface points. For instance, this information may
be gained by analysing legitimate traffic on the infected machine. It can add noise
in the proximity of known legitimate points to create edges between the botnet
surface and the legitimate surface. However, in doing so, the algebraic connectivity
characteristics are disturbed by the small set of noise edges. The noise based on
partial knowledge introduces a gap between the legitimate and botnet surface. This
is true, unless the noise surface is in the proximity of a significant majority of points
within the legitimate surface. This is very hard to accomplish unless the attacker has
full knowledge of the legitimate traffic; high-level trends or summary information
do not give information regarding structure and location of the legitimate surface,
full traffic traces would be required.

6 Results

We evaluated our algorithm in two different experimental settings. We apply our algo-
rithm on real botnet traces within an enterprise setting and measure its effectiveness.

Malware testbed: In order to obtain botnet traffic flows we created a testbed of 25
servers within a test network connected to the Internet. The computers was then seeded
with samples from three peer-to-peer versions from well known botnet families: Zeus,
Miner, and Spyeye. All three botnets have moved from centralised C&C servers to
entirely P2P communication. Zeus and Spyeye are designed for stealing banking infor-
mation while Miner steals Bitcoin credentials.

On each testbed computer, we instantiated 70 copies of a malware sample (at a time)
within a hypervisor, i.e 1750 instances from each family, or a total of 5250 malware in-
stances. The testbed allows the bot to connect with other bots in the wild which enables
us to closely observe the actions of the bot and its interactions with other bots. The
result is a lot of network traffic which will be attack traffic by definition. We exercised
due diligence to prevent our testbed from being used as an attack platform. In particular,
all probing, scanning, spam was blocked while DDOS attacks were rate-limited at the
very least. However, command and control (C&C) incoming and outgoing traffic was
allowed as this was essential for our study.

We set up traffic monitors on the backbone router at a university campus network
using an electrical signal duplicator unit that works at up to 20Gbps. As opposed to port-
mirroring, this approach allows us to capture packets at the line rate without inducing
the effects of packet sampling. The traffic rate is typically 2.5—-8Gbps.

We developed an efficient network flow capture tool that processes packet traces
and generates flows. A flow is record of communication between a pair of hosts and is
represented by a tuple containing a number of fields as given below. We consider UDP
and TCP traffic. In the case of UDP traffic, the TCP fields listed are zeroed out as are
optional TCP fields.

Each flow record is a tuple structure containing two parts; inter-flow values that are
common to all flow records occurring within a ten-minute time period, and flow specific
fields. The entire set of fields comprising a flow record are given below:

448 S. Nagaraja

— Inter-flow statistics (fields) computed across the flows: traffic volume, duration,
distribution of packets per flow, distribution of flows per period, distribution of
packets per flow, throughput distribution, distribution of inter-flow arrival times
averaged distribution of inter-packet arrival times. Distributions are computed over
a time interval of ten minutes.

— Flow fields: tcp/udp.source-port, tcp/udp.destination port, IP version, IP header
length, ip.tos — precedence, ip.tos — delay, ip.tos — throughput, ip.tos — reliabil-
ity, ip.tos — reserved, ip.tos — total length, ip.flags,
ip.fragmentoffset, ip.ttl , ip.protocol, Entropy of ip.id# distribution, Entropy of
tep.seq# distribution, Entropy of tcp.ack# distribution, tcp.offset, tcp.reserved,
tep.flags,
tcp.maximum-segment-size, tcp.echotimedata

In the above list, each sample distribution is represented by the corresponding his-
togram. The first bin corresponds to P(X < x) < 5%, the second bin corresponds to
P(X < x) <15% and so on.

Algorithm Application. We now consider the application of our algorithm on a real-
world dataset. To access live traffic, we captured network traffic at a university gateway
for a period of one month between March and April 2012. This dataset has 113,576
unique source IP addresses and 11,643,993 traffic flows. This includes 432,257 embed-
ded botnet flows from seeded malware. This corresponds to a communication graph Gg
containing both malware and non-malware edges.

The first step of our algorithm is to create the dual of Gg, namely D(Gg). At this
stage each edge (flow) becomes a node and nodes become edges, therefore flow-vectors
are now associated with each node. An edge is constructed between two nodes if the
Euclidean distance between the corresponding flow-vectors is less than a certain thresh-
old €. We used € = .0025. This value controls the runtime of the generation of the dual.
Our inference algorithm is not sensitive to high values of € (leading to a denser graph),
since the diffusion effects of the subsequent random walk process is controlled by the

llei=e;ll

non-linear kernel function: e~ ¢~ see Eqn. 1. We chose t = 1, but higher values will
produce a sharper decay. Our choice of € leads to O(logE(D(Gg))) edges per node in
the dual. This step leads to the to embedding of information from the communication
graph topology and the geometry of network traffic, within the dual graph. Figure 4(a)
shows a rendering of the dual with vertices represented by blue points and edges rep-
resented by the distance between vertices; the number of edges is too high to be repre-
sented graphically. Figures 4(b) through 4(f) show the dual graphs corresponding to the
other five weeks of enterprise traffic with embedded botnet traffic.

The second step of our algorithm is dimensionality reduction. This step prevents the
botnet from altering traffic patterns over time in order to “throw-off” the detection sys-
tem. Thus the compressed feature set selected by the algorithm can vary from across
time. Feature selection is carried out in an unsupervised manner. The compressed fea-
ture list is given by the ordered eigenvalues of the laplacian of the dual graph computed
at the end of the previous step. The first eigenvalue is zero by definition and this is
ignored. The eigenvectors corresponding to the eigenvalues represent the new mapping

Botyacc: Unified P2P Botnet Detection Using Behavioural Analysis 449

®) © @

Fig. 2. Visual representation (top three dimensions) of network traffic after dimensionality reduc-
tion, at the end of Step 2 of our algorithm

&

() (b) (© (d)

Fig. 3. Visual representation of the results of our inference algorithm showing isolated botnet
traffic

of traffic data points as a function of the compressed feature list. The embedding of the
various geometrical surfaces within this compressed space is shown in figure 3.

Thus far, our algorithm has only partitioned traffic into different surfaces. The botnet
flows are partitioned into respective surfaces. After three iterations of the partitioning
algorithm, we obtain a subgraph (surface) of size 432,256 nodes, containing 423,906
nodes corresponding to botnet flows, and 8,350 nodes corresponding to non-botflows.
At this stage, our validation metric indicates that the sub-graph has a graph conductance
of about 0.9 (In all other scenarios, the graph conductance is less than 0.5, so we can
safely set our threshold of the graph conductance test to be 0.5).

Table 1. Zeus in enterprise traffic — detection and error rates of inference

#Malicious flows ~ #gateway-flows Detection% % FP

Weekl 3368 1211736 99.98 0.019
Week2 8836 1392755 99.93 0.037
Week3 3231 1109264 97.95 0.082
Week4 8349 1312952 98.09 0.041
Week5 8217 1130120 98.21 0.030

We evaluated the performance of detection on a weekly basis through our dataset.
Each week, we collected gateway traces and combined it with that week’s botnet traces.
The previous week’s data was discarded from the graph and dual generation. The hon-
eynet seed traces were also fresh, thus corresponding traces from each week were input
to our detection algorithm.

To evaluate performance, we are concerned with the false positive rate (the fraction
of non-bot nodes that are detected as bots) and the false negative rate (the fraction of
bot nodes that are not detected). The results of botnet detection for Zeus, Spyeye, and
Miner are shown in Table 1, Table 2, and Table 3 respectively.

450 S. Nagaraja

Table 2. Spyeye in enterprise traffic — detection and error rates of inference

#Malicious flows #gateway-flows Detection% % FP

Weekl 8021 1346235 98.11 0.041
Week2 6295 1327479 98.77 0.064
Week3 4213 1180134 99.86 0.074
Week4 3538 1396174 97.86 0.047
Week5 5388 1186480 98.70 0.023

Table 3. Miner in enterprise traffic — detection and error rates of inference

#Malicious flows #gateway-flows Detection% % FP

Weekl 1050 1590306 97.50 0.018
Week2 2735 1186212 96.64 0.064
Week3 5341 1560028 94.89 0.048
Week4 3099 1186929 95.52 0.062
Week5 4566 1154067 97.76 0.072

Detection rates ranged between 97% and 99% for Zeus and Spyeye. For Miner, the
detection rate was a bit lower at around 95% on the average. Importantly, for all three
peer-to-peer botnets, the false-positive rate was well below 0.1%.

6.1 Effects of Botnet Topology and Size

In the next set of experiments, we seek to understand the effectiveness of deploying our
algorithm in a setting where a majority of the botnet communication graph is embedded
within the network traffic captured from our vantage points. This is the case of multiple
ISPs cooperatively running our inference algorithm.

To study this, we constructed a dataset where traffic flows from the Zeus botnet
were embedded it within ISP traffic using various peer-to-peer structures. To improve
realism, we build the background traffic communication graph by using real packet-
level traces collected by CAIDA on OC192 Internet backbone links [2]. Since packet
level information is not available, we only used flow-level features for our experiments
with ISP data.

Another aspect we need to consider is the different sizes of botnets. An inference al-
gorithm must be able to effectively detect small botnets as well as large botnets. This
is important in order to be able to track the evolution of the botnet throughout its life-
cycle right from the early stages of deployment to large-scale botnets which may pose
significant threat due to the possible scale of geographical spread as well as size. We per-
form this experiment by keeping the size of the background traffic graph constant, and
generating synthetic botnet topologies of varying sizes (between 100 and 100,000 bots).

Finally, we must also consider the effects of partial visibility. Clearly, obtaining ac-
cess to the Internet traffic of all ISPs is a fairly difficult proposition. However, it is
certainly likely that a fraction of ISPs can be incentivised to cooperate via a combina-
tion of legal and economic incentives. We also understand from previous work that a
subset of ISPs typically have access to a significant fraction of botnet traffic. A study [1]
of 4,000 IP addresses belonging to the Storm botnet found that 60% of inter-bot paths
traverse top six ISPs, and 89% of the inter-bot paths traversed top ten ISPs. More re-
cently, reports from anti-virus companies indicates that India has the second highest
number of spam bots. Interestingly, the whole country is served by two major ISPs. To

Botyacc: Unified P2P Botnet Detection Using Behavioural Analysis 451

incorporate the effects of partial visibility, we construct the botnet graph, by selecting
arandom subset of nodes in the background communication graph (CAIDA) to be bot-
net nodes, and synthetically add bot flows between them corresponding to a particular
structured overlay topology. We then simulate the effects of partial visibility by retain-
ing only 55% of the total traffic flows in the combined graph and discarding 45% of the
flows chosen uniformly at random.

We then pass the combined graph as input to our inference algorithm. By keeping
track of which nodes are bots (this information is not passed to our algorithm), we
can acquire “ground truth” to measure performance. To investigate sensitivity of our
techniques to the particular overlay structure, we consider several alternative structured
overlays, including (a) Chord [19], (b) de Bruijn [13], (c) Kademlia [14], and (d) the
“robust ring” topology described in [11]. The remainder of this section contains results
from running our algorithms over the joined botnet and Internet communication graphs,
and measuring the ability to separate out the two from each other.

Table 4. CAIDA - results if only Tier-1 ISPs contribute views

Topology A % Detected % FP
de Bruijn 1000 99.97 0.0011
10000 99.98 0.0020
100000 99.98 0.0170
Kademlia 1000 99.97 0.0040
10000 99.97 0.0104
100000 99.96 0.0350
Chord 1000 99.98 0.0017
10000 99.97 0.0024
100000 99.87 0.0202
LEET-Chord 1000 99.96 0.0040
10000 99.65 0.0139
100000 98.91 0.0613

Overall, we find performance to be fairly stable across multiple kinds of botnet
topologies and sizes with detection rates higher than 98%. In addition, our algorithm is
able to achieve a false positive rate of less than 0.06% on the harder-to-detect LEET-
Chord topology. We find that as the size of the bot graph increases, performance de-
grades, but only by a small amount. For example, in Table 4, with the fully visible
deBruijn topology, for 100 nodes the false positive rate is zero, while for 10,000 nodes
the rate becomes 0.002%.

The high detection and low false-positive rates are better than state-of-the-art algo-
rithms. It shows that the combination of traffic-flow features and graph-structure infor-
mation holds good potential in designing reliable algorithms for botnet detection.

While our approach is not perfectly accurate, we envision it may be of use when
coupled with other detection strategies (e.g., previous work on botnet detection [10,8],
or if used to signal “hints” to network operators regarding which hosts may be infected.

7 Discussion

As we have demonstrated, starting with a certain definition of botnet behaviour — traf-
fic produced from the malware testbed, graph theoretic analysis can help in identi-
fying botnets in enterprise traffic. We now discuss the significance of our results and
related insights.

452 S. Nagaraja

The evaluation results indicates the usefulness of our approach. The main insight of
our work is that both both legitimate and botnet traffic have specific geometry, i.e, traffic
vectors lie on a low-dimensional geometric surface. The inference technique partitions
the dataset into multiple botnet and legitimate surfaces.

The graph underpinning the partitioning process is constructed using both commu-
nication topology information and communication flow information. Since P2P topolo-
gies are a fundamental design requirement in order to maintain the botnet’s resilience,
the botmaster cannot evade detection without giving up resilience properties. Without
P2P topologies underlying botnet communication, the C2 channel would not be robust
enough to withstand take down attempts, thus forcing the attacker to choose between
survivability and stealth.

At the same time, techniques to isolate the structured communication graphs in-
duced by botnets depend on the integrity of communication links within traffic traces
recorded by network monitoring systems. This can be a challenge when we consider the
widespread use of NATs and other traffic aggregators. Aggregators hide the presence
of communicating endpoints and appear as a few large nodes communicating with a
large number of endpoints. This induces error into the inference process. If substantial
parts of a P2P embedded botnet appear as leaf nodes connected to a few hubs, then the
basis for isolating botnets from the background traffic by leveraging communication
topology characteristics is substantially weakened.

Unifying both behavioural and structured graph approaches presents a credible ap-
proach to addressing the errors induced by traffic aggregators. When communication
topology information is hidden using anonymous relays, or is otherwise incomplete, or
mutilated in the dataset, the inference algorithm can recover from the errors. The con-
struction of the dual graph driven by the statistical similarity of traffic flows still pro-
ceeds undisturbed. However the construction of the dual graph now involves a higher
number of vector comparisons to dismantle the virtual high-degree node induced by
the aggregator — instead of O((log n)?) vector comparisons in the normal case, we
are required to carry out a significantly larger number of vector comparisons which is
O(nz) in the worst case; when all the traffic is lumped into a single node. In practice,
the computational effort to manage errors in topology is at least a large constant times

O((log n)?).

Dynamic Feature Selection: Our inference algorithm incorporates dynamic feature
selection instead of using a static heuristic-driven definition of which features are in-
dicative of botnet traffic. The relevant feature set is derived as part of the dimensionality
reduction step. This means that unlike static heuristics where the feature set has to be
constantly updated by the network defender, we derive the feature set directly from the
traffic traces. On the otherhand, this approach requires us to capture a large number of
features beforehand which can increase the load on traffic monitoring. While the eval-
uation results are fairly positive, we have been unable to evaluate how dynamic feature
selection behaves under botnet evolution. Dimensionality reduction simply selects a
combination of features that capture most of the information contained in the dataset.

Scale: Our experiments show that the inference technique can scale to large traffic
volumes, and in the presence of partial observations. This solves an number of practical
problems concerning the use of different types of algorithms for enterprise detection

Botyacc: Unified P2P Botnet Detection Using Behavioural Analysis 453

and ISP-level detection. Thus engineering and training efforts can be concentrated on
developing and operating a single functional piece of equipment, as opposed to having
different solutions each for ISPs and enterprises.

8 Related Work

Bots are unique amongst networked malware in that they collectively maintain commu-
nication structures across nodes to resiliently distribute commands from a command and
controlnode. The ability to coordinate and upload new commands to bots gives the botnet
owner vast power when performing criminal activities, including the ability to orchestrate
surveillance attacks, perform DDoS extortion, sending spam for pay, and phishing. This
problem has worsened to a point where modern botnets control hundreds of thousands
of hosts and generate revenue of millions of dollars per year for their owners [4].

8.1 Non-signature Based Methods

We now describe related work in non-signature based detection methods. None of the
techniques we discuss in this section, have any evasion resistance properties.

BotMiner [5] detects infected hosts without previous knowledge of botnets. In this
system, bots are identified by clustering hosts that exhibit similar communication and
(possible) malicious activities. The clustering allows hosts to be groups according to
the botnet that they belong to as hosts within the same botnet will have similar commu-
nication patterns, and will usually perform the same activities at the same time (such as
a DDoS attack).

There are also schemes that combine network- and host-based approaches. The work
of Stinson et al. [18] attempts to discriminate between locally-initiated versus remotely-
initiated actions by tracking data arriving over the network being used as system call
arguments using taint tracking methods. Following a similar approach, Gummadi et
al. [6] whitelist application traffic by identifying and attesting human-generated traffic
from a host which allows an application server to selectively respond to service re-
quests. Finally, John et al. [12] present a technique to defend against spam botnets by
automating the generation of spam feeds by directing an incoming spam feed into a
Honeynet, then downloading bots spreading through those messages and then using the
outbound spam generated to create a better feed.

Server Detection: DNS. Several works provide a detection mechanism to identify
domains associated with malware at using centralised C&C channels.

Paxson et al [16] attempt to provide a detection mechanism that leverages the amount
of information transmitted over a DNS channel in order to detect suspicious flows. The
system allows for a upper bound to be set, any DNS flow that exceeds this barrier is
flagged for inspection. The upper bound can be circumvented by limiting flows, but this
has an impact the amount of data exfiltration/command issuing that can occur. The sys-
tem looks primarily at data included within domain names, but also looks at inter-query
timings and DNS packet field values, both of which can provide low capacity channels.

Perdisci et al [17] apply clustering to domains so they are grouped according to over-
lap in the returned IP addresses. By then comparing the clusters to previously labelled
data, they can then be classified as flux or non-flux, revealing domains that make use of
the same network.

454 S. Nagaraja

8.2 Graph-Based Approaches

Several works [3,8,7,21,10] have previously applied graph analysis to detect botnets. The
technique of Collins and Reiter [3] detects anomalies induced in a graph of protocol spe-
cific flows by a botnet control traffic. They suggest that a botnet can be detected based
on the observation that an attacker will increase the number of connected graph compo-
nents due to a sudden growth of edges between unlikely neighbouring nodes. While it
depends on being able to accurately model valid network growth, this is a powerful ap-
proach because it avoids depending on protocol semantics or packet statistics. However
this work only makes minimal use of spatial relationship information. Additionally, the
need for historical record keeping makes it challenging in scenarios where the victim
network is already infected when it seeks help and hasn’t stored past traffic data, while
our scheme can be used to detect pre-existing botnets as well. [lliofotou et al. [8,7] also
exploit dynamicity of traffic graphs to classify network flows in order to detect P2P net-
works. It uses static (spatial) and dynamic (temporal) metrics centered on node and edge
level metrics in addition to the largest-connected-component-size as a graph level metric.

More recently, Botgrep [15] presented a scheme that searches for expander graphs to
discover P2P graphs within ISP traffic. The theoretical component of the algorithm pre-
sented is our work is much more stronger. Botgrep does not consider traffic flow categori-
sation and therefore would end up with high false-positive rates when its core assumption
is broken — high-degree nodes should not be infected and have incoming or outgoing
botnet traffic flows. In the operational context of a NAT (Network Address Translator),
the traffic of hundreds of computers would be aggregated into a single IP address. Such
NAT installations are getting rather popular: mobile broadband ISPs use carrier-NAT's
where thousands of mobile consumers are behind a NAT run by the ISP, and each user is
on a separate port. Our inference algorithm, will be able to operate in such deployment
contexts very well since it combines flow clustering with structured graph analysis; even
if graph structure is obscured by the NAT the inference algorithm can still leverage non-
linear subspace analysis over traffic flow data to isolate botnet traffic.

Further, as compared with other graph-based and behaviour-analysis schemes, we
have shown (see Fig. 3) that there is more to application traffic than mere clustering:
there are intricate geometrical surfaces corresponding to application traffic characteris-
tics. Indeed our algorithm is quite generic and we hope that our results will encourage
other researchers to apply our technique to other traffic classification problems.

9 Conclusion

The ability to localise bot-infected hosts at Internet scales represents both a very chal-
lenging problem. In this work, we have approached the problem of botnet detection
with a security-by-design approach: detection evasion is based on the attacker’s de-
tailed knowledge of legitimate traffic traces. Thus detection is based on the fundamental
properties of botnets which enables evasion resistant detection. In future work, we will
provide formal bounds for evasion resistance.

In this work we have tried to build a link between graph-theoretic botnet detec-
tion approaches with network behavioural analysis approaches. Our approach works by
leveraging patterns within the communication graph as well as within network traffic

Botyacc: Unified P2P Botnet Detection Using Behavioural Analysis 455

between Internet hosts from a set of traffic-monitoring vantage points, and then exploit-
ing the intrinsic non-linear geometry of traffic in order to distinguish traffic flows that
are part of the botnet. Behavioural analysis approaches (involving machine learning)
are commonly criticised in the security community for assuming a static traffic profile
of the botnet in the form of a feature list. As a first step towards being able to operate in
an environment where the botnet evolves in response to the detection mechanism, we
adopt the notion of dynamic feature selection.

Compared with results from previous work using graph-theoretic or behavioural
analysis approaches, our techniques accomplish better results. This is not surprising
since they exploit intuitions from both. However, our techniques do not achieve perfect
accuracy, but they achieve a low enough false positive rate to be of substantial use, espe-
cially when combined with other complementary techniques. Finally, we do not attempt
to address the challenging problem of botnet response. Future work may leverage our
inferred botnet topologies by dropping crucial links to partition the botnet, based on the
structure of the botnet graph.

References

1. Botlab: A real-time botnet monitoring platform, botlab.cs.washington.edu.

2. The Cooperative Association for Internet Data Analysis, http://www.caida.org/

3. Collins, M.P.,, Reiter, M.K.: Hit-list worm detection and bot identification in large networks
using protocol graphs. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS,
vol. 4637, pp. 276-295. Springer, Heidelberg (2007)

4. Franklin, J., Paxson, V., Perrig, A., Savage, S.: An inquiry into the nature and causes of
the wealth of internet miscreants. In: ACM Conference on Computer and Communications
Security, pp. 375-388. ACM, New York (2007)

5. Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: Clustering Analysis of Network Traffic
for Protocol- and Structure-Independent Botnet Detection. In: Proc. of the USENIX Security
Symposium (2008)

6. Gummadi, R., Balakrishnan, H., Maniatis, P., Ratnasamy, S.: Not-a-Bot (NAB): Improving
Service Availability in the Face of Botnet Attacks. In: NSDI 2009, Boston, MA (April 2009)

7. lliofotou, M., Faloutsos, M., Mitzenmacher, M.: Exploiting dynamicity in graph-based traffic
analysis: Techniques and applications. In: ACM CoNext (2009)

8. Iliofotou, M., Pappu, P., Faloutsos, M., Mitzenmacher, M., Varghese, G., Kim, H.: Grap-
tion: Automated detection of P2P applications using traffic dispersion graphs (TDGs). UC
Riverside Technical Report, CS-2008-06080 (2008)

9. C.S. Inc. Cisco IOS Netflow, http://www.cisco.com/en/US/products/ps6601/
products ios protocol group home.html

10. Jelasity, M., Bilicki, V.: Towards automated detection of peer-to-peer botnets: On the limits
of local approaches. In: USENIX Workshop on Large-Scale Exploits and Emergent Threats,
LEET (2009)

11. Jelasity, M., Billicki, V.: Towards automated detection of peer-to-peer botnets: On the limits
of local approaches. In: USENIX Workshop on Large-Scale Exploits and Emergent Threats
(LEET) (2009)

12. John, J.P., Moshchuk, A., Gribble, S.D., Krishnamurthy, A.: Studying spamming botnets
using botlab. In: NSDI 2009: Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation, pp. 291-306. USENIX Association, Berkeley (2009)

13. Kaashoek, M., Karger, D.: Koorde: A simple degree-optimal distributed hash table. In:
Kaashoek, M.F., Stoica, 1. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 98-107. Springer, Hei-
delberg (2003)

botlab.cs.washington.edu
http://www.caida.org/
http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html
http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html

456 S. Nagaraja

14. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system based on
the xor metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS,
vol. 2429, pp. 53-65. Springer, Heidelberg (2002)

15. Nagaraja, S., Mittal, P., Hong, C.-Y., Caesar, M., Borisov, N.: BotGrep: Finding P2P bots
with structured graph analysis. In: USENIX Security Symposium, pp. 95-110 (2010)

16. Paxson, V., Christodorescu, M., Javed, M., Rao, J., Sailer, R., Schales, D., Stoecklin, M.P.,
Thomas, K., Venema, W., Weaver, N.: Practical comprehensive bounds on surreptitious com-
munication over dns. In: Proceedings of the 22Nd USENIX Conference on Security (2013)

17. Perdisci, R., Lee, W., Feamster, N.: Behavioral Clustering of HTTP-Based Malware and
Signature Generation Using Malicious Network Traces. In: Proc. of the USENIX Symposium
on Networked Systems Design & Implementation (2010)

18. Stinson, E., Mitchell, J.C.: Characterizing bots’ remote control behavior. In: Lee, W., Wang,
C., Dagon, D. (eds.) Botnet Detection. Advances in Information Security, vol. 36, pp. 45-64.
Springer (2008)

19. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for Internet applications. In: Proceedings of ACM SIGCOMM (Au-
gust 2001)

20. Zhao, Q., Xu, J., Liu, Z.: Design of a novel statistics counter architecture with optimal space
and time efficiency. In: ACM SIGMETRICS (June 2006)

21. Zhao, Y., Xie, Y., Yu, F,, Ke, Q., Yu, Y., Chen, Y., Gillum, E.: Botgraph: Large scale spam-
ming botnet detection. In: NSDI (2009)

A Appendix

In the following figure, we show a two-dimensional visual of botnet traffic. The long lines are an
artifact of DNS fast-flux.

d (e ®

Fig. 4. Two dimensional representation of network traffic with embedded Zeus traffic, before
feature selection. This figure shows the dual-graph D(G) of the traffic dataset.

	Botyacc: Unified P2P Botnet Detection Using Behavioural Analysis and Graph Analysis
	1 Introduction
	2 Architecture
	3 The
Problem
	4 Inference Technique
	4.1 The Methodology
	4.2 Step1: Constructing the Dual Graph
	4.3 Step2: Partitioning

	5 Noise Tolerance
	6 Results
	6.1 Effects of Botnet Topology and Size

	7 Discussion
	8 Related Work
	8.1 Non-signature Based Methods
	8.2 Graph-Based Approaches

	9 Conclusion
	References
	A Appendix

