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Abstract. The decentralized currency network Bitcoin is emerging as a
potential new way of performing financial transactions across the globe.
Its use of pseudonyms towards protecting users’ privacy has been an at-
tractive feature to many of its adopters. Nevertheless, due to the inherent
public nature of the Bitcoin transaction ledger, users’ privacy is severely
restricted to linkable anonymity, and a few transaction deanonymization
attacks have been reported thus far.

In this paper we propose CoinShuffle, a completely decentralized Bit-
coin mixing protocol that allows users to utilize Bitcoin in a truly anony-
mous manner. CoinShuffle is inspired by the accountable anonymous
group communication protocol Dissent and enjoys several advantages
over its predecessor Bitcoin mixing protocols. It does not require any
(trusted, accountable or untrusted) third party and it is perfectly com-
patible with the current Bitcoin system. CoinShuffle introduces only a
small communication overhead for its users, while completely avoiding
additional anonymization fees and minimalizing the computation and
communication overhead for the rest of the Bitcoin system.

Keywords: Bitcoin, decentralized crypto-currencies, coin mixing, ano-
nymity, transaction linkability, mix networks.

1 Introduction

Bitcoin [1] is a fully decentralized digital crypto-currency network that does
not require any central bank or monetary authority. Over the last few years we
have observed an unprecedented and rather surprising growth of Bitcoin and
its competitor currency networks [2, 3, 4]. Despite a few major hiccups, their
market capitalizations are increasing tremendously [5]. Many now believe that
the concept of decentralized crypto-currencies is here to stay.

Nevertheless, these decentralized currency systems are far from perfect. Tra-
ditional payment systems rely on a trusted third party (such as a bank) to
ensure that money cannot be spent twice. Decentralized currencies such as Bit-
coin employ a global replicated append-only transaction log and proof-of-work
(POW) instead to rule out double-spending. This requires managing a public
ledger such that every transaction is considered valid only after it appears in the
ledger. However, given that the Bitcoin transactions of a user (in particular, of
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her pseudonyms, called Bitcoin addresses) are linkable, the public transaction
ledger constitutes a significant privacy concern: Bitcoin’s reliance on the use of
pseudonyms to provide anonymity is severely restricted.

Several studies analyzing the privacy implications of Bitcoin indicate that
Bitcoin’s built-in privacy guarantees are not satisfactory. Barber et al. [6] observe
that Bitcoin exposes its users to the possible linking of their Bitcoin addresses,
which subsequently leads to a weak form of anonymity. Meiklejohn et al. [7]
demonstrate how to employ a few basic heuristics to classify Bitcoin addresses
that are likely to belong to the same user; this is further refined by Spagnuolo,
Maggi, and Zanero [8]. Koshy, Koshy, and McDaniel [9] show that it is possible
to identify ownership relationships between Bitcoin addresses and IP addresses.

Recently, some efforts have been made towards overcoming the above attacks
and providing stronger privacy to the Bitcoin users by mixing multiple trans-
actions to make input and output addresses of transactions unlinkable to each
other. In this direction, some third-party mixing services [10, 11, 12] were first to
emerge, but they have been prone to thefts [7]. Mixcoin [13] allows to hold these
mixing services accountable in a reactive manner; however, the mixing services
still remain single points of failure and typically require additional mixing fees.
Zerocoin [14] and its successors [15, 16, 17] provide strong anonymity without
any third party, but lack compatibility with the current Bitcoin system.

Maxwell proposes CoinJoin [18] to performmixing in a manner that is perfectly
compatible with Bitcoin, while ensuring that even a malicious mixing server can-
not steal coins. CoinJoin is actively used in practice [19] but suffers from a sub-
stantial drawback: The mixing server still needs to be trusted to ensure anonymity,
because it learns the relation between input and output addresses. To tackle this
problem, Maxwell mentions the possibility to use secure multi-party computation
(SMPC) with CoinJoin to perform the mixing obliviously without a trusted server.
Yang [20] proposes a concrete scheme based on SMPC sorting. However, against
a fully malicious attacker, generic SMPC as well as state-of-the-art SMPC sort-
ing [21, 22] is not yet practical for any reasonable number of parties required in
mixing to ensure a good level of anonymity. Furthermore, it is not clear how to
ensure robustness against denial-of-service (DoS) attacks in these approaches, be-
cause a single user can easily disrupt the whole protocol while possibly remaining
unidentified. As a result, defining a practical and secure mixing scheme is consid-
ered an open problem by the Bitcoin community [23, 24, 25].

Our Contribution. WepresentCoinShuffle, a completely decentralizedprotocol
that allows users to mix their coins with those of other interested users. CoinShuf-
fle is inspired by CoinJoin [18] to ensure security against theft and by the account-
able anonymous group communication protocol Dissent [26] to ensure anonymity
aswell as robustness againstDoS attacks. The key idea is similar to decryptionmix
networks, and the protocol requires only standard cryptographic primitives such
as signatures and public-key encryption. CoinShuffle is a practical solution for the
Bitcoin mixing problem and its distinguishing features are as follows:

No Third Party. CoinShuffle preserves Bitcoin’s decentralized trust ideology:
it is executed exclusively by the Bitcoin users interested in unlinkability for



CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin 347

their Bitcoin transactions, and it does not require any trusted, accountable,
or untrusted third party. The unlinkability of transactions is protected as
long as at least any two participants in a run of the protocol are honest.

Compatibility. CoinShuffle is fully compatible with the existing Bitcoin net-
work. Unlike other decentralized solutions, it works immediately on top of
the Bitcoin network without requiring any change to the Bitcoin rules or
scripts.

No Mixing Fee. In absence of a third party that acts as a service provider,
CoinShuffle does not charge its users any additional mixing fees. It also
performs well in terms of Bitcoin transaction fees, because the participants
are only charged the fee for a single mixing transaction.

Small Overhead. Our performance analysis demonstrates that CoinShuffle in-
troduces only a small communication overhead for a participant (less than a
minute for an execution with 20 participants), while the computation over-
head remains close to negligible. Finally, CoinShuffle introduces only minimal
additional overhead for the rest of the Bitcoin network.

Outline. In Section 2, we explain the basics of the Bitcoin protocol and Bit-
coin mixing. We define the problem of secure mixing in detail in Section 3. In
Sections 4 and 5, we outline and specify the CoinShuffle protocol. We analyze
its properties in Section 6 and evaluate its performance in Section 7. We discuss
related work in Section 8 and conclude in Section 9.

2 Background

We start by presenting the basics of Bitcoin as well as Bitcoin mixing, the most
prevalent approach to strengthening users’ anonymity in the system. We explain
only the aspects of the Bitcoin protocol that are relevant for mixing and refer
the reader to the original Bitcoin paper [1] and the developer documentation [27]
for further details.

2.1 Bitcoin

Bitcoin (symbol: B) is a digital currency run by a decentralized network. The
Bitcoin network maintains a public ledger (called blockchain) whose purpose is
to reach consensus on the set of transactions that have been validated so far
in the network. As long as the majority of computation power in the system is
honest, transactions accepted by the system cannot be changed or invalidated,
thus preventing double-spending of money.

User accounts in the Bitcoin system are identified using pseudonymous ad-
dresses. Technically, an address is the hash of a public key of a digital signature
scheme. To simplify presentation, we do not differentiate between the public key
and its hash in the remainder of the paper. Every user can create an arbitrary
number of addresses by creating fresh key pairs.

The owner of an address uses the corresponding private key to spend coins
stored at this address by signing transactions. In the simplest form, a transaction
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Fig. 1. A valid Bitcoin transaction
with multiple input addresses and mul-
tiple output addresses. This transac-
tion is signed using both the private key
for input address A and the private key
for input address B; the corresponding
signatures are denoted by σA and σB ,
respectively.

transfers a certain amount of coins from one address (the input address) to
another address (the output address). While multiple sets of coins may be stored
at one address, we assume in the remainder of the paper that only one set of coins
is stored at an address; these coins can only be spent together. This simplification
is purely for the sake of readability.

As depicted in Fig. 1, transactions can include multiple input addresses as well
as multiple output addresses. Three conditions must be fulfilled for a transaction
to be valid: First, the coins spent by the transaction must not have been already
spent by another transaction in the blockchain. Second, the sum of the input
coins must equal the sum of the output coins.1 Third, the transaction must be
signed with the private keys corresponding to all input addresses.

2.2 Bitcoin Mixing

The most prevalent approach to improve anonymity for Bitcoin users is the idea
of hiding in a group by Bitcoin mixing: the users in the group exchange their coins
with each other to hide the relations between users and coins from an external
observer. Assume that in a group of several users, every user owns exactly one
Bitcoin (B 1). In the simplest form, mixing is done with the help of a trusted
third-party mixing server, the mix : every user sends a fresh address in encrypted
form to the mix and transfers her coin to the mix. Then, the mix decrypts and
randomly shuffles the fresh addresses and sends B1 back to each of them. While
such public mixes are deployed in practice [28, 10, 11, 12], they suffer from two
severe drawbacks: First, the mix might just steal the money and never return it
to the users. Second, the mix learns which output address belongs to a certain
input address. Thereby, users’ anonymity relies on the assumption that the mix
does not log or reveal the relation between input and output addresses.

2.3 Bitcoin Mixing with a Single Transaction

Assume a group of users would like to mix their coins with the help of a third-
party mix. To solve the problem that the mix can steal the money, Maxwell
proposes CoinJoin [18]: The mix generates one single mixing transaction con-
taining the users’ current addresses as inputs and the shuffled fresh addresses as

1 In practice, a small transaction fee is typically required. In that case, the sum of the
input coins must exceed the sum of the output coins by the amount of the fee.
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outputs. Recall that a transaction with several input addresses is only valid if it
has been signed with all keys belonging to those input addresses. Thus each user
can verify whether the generated mixing transaction sends the correct amount
of money to her fresh output address; if this is not true the user just refuses to
sign the transaction and the protocol aborts without transferring any coins.

Several implementations of CoinJoin are already actively being used [19, 29,
30], and the Bitcoin developers consider adding CoinJoin to the official Bitcoin
client [31]. Still, the problem that the mix learns the relation between input and
output addresses persists, and no fully anonymous and efficient solution has been
proposed to the best of our knowledge.

3 Problem Definition

In this section, we define the properties that a Bitcoin mixing protocol should
satisfy. Furthermore, we present the threat model under which we would like to
achieve these properties.

3.1 Design Goals

A Bitcoin mixing protocol must achieve the following security and privacy goals.

Unlinkability. After a successful Bitcoin mixing transaction, honest partici-
pants’ input and output addresses must be unlinkable.

Verifiability. An attacker must not be able to steal or destroy honest partici-
pants’ coins.

Robustness. The protocol should eventually succeed even in the presence of
malicious participants as long as the communication links remain reliable.

Besides ensuring security and privacy, a Bitcoin mixing protocol must addition-
ally overcome the following system-level challenges:

Compatibility. The protocol must operate on top of the Bitcoin network, and
should not require any change to the existing system.

No Mixing Fees. The protocol should not introduce additional fees specifi-
cally required for mixing. As every mixing transaction necessarily requires
a Bitcoin transaction fee, the protocol must ensure that this transaction fee
remains as low as possible.

Efficiency. Even users with very restricted computational capacities should be
able to run the mixing protocol. In addition, the users should not be required
to wait for a transaction to be confirmed by the Bitcoin network during a
run of the protocol, because this inherently takes several minutes.2

Small Impact on Bitcoin. The protocol should not put a large burden on
the efficiency of the Bitcoin network. In particular, the size of the executed
transactions should not be prohibitively large because all transactions have
to be stored in the blockchain and verified by all nodes in the network.

2 Several confirmations are recommended, each taking 10 minutes on average. As
mixing inherently requires at least one transaction, it is adequate to wait for confir-
mations at the end of a run, provided the run fails gracefully if the transaction is
not confirmed.
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3.2 Non-goals

Bitcoin users who wish to participate in a mixing protocol need a bootstrapping
mechanism to find each other, e.g., through a public bulletin board acting as
facilitator or through a peer-to-peer protocol specifically crafted for this pur-
pose. A malicious facilitator may try to undermine unlinkability by forcing an
honest participant to run the protocol only with malicious participants. Thus, in
general, the bootstrapping mechanism should resist attempts to exclude honest
users from the protocol. Since the Bitcoin network does not allow nodes to send
arbitrary messages, the participants must additionally agree on a channel for
further communication during bootstrapping. We consider bootstrapping to be
orthogonal to our work and assume that it is available to all Bitcoin users.

The main goal of a Bitcoin mixing protocol is the unlinkability between input
and output addresses in a mixing transaction. If after the mixing, a user would
like to spend the mixed coins associated with the output address while maintain-
ing her anonymity, she has to ensure that network metadata, e.g., her IP address,
does not reveal her identity or make the spending transaction linkable to a run
of the mixing protocol. This problem is not in the scope of the Bitcoin mixing
protocol and can be addressed, e.g., by connecting to the Bitcoin network via
an anonymous communication protocol such as Tor [32].

3.3 Threat Model

For unlinkability and verifiability, we assume an active network attacker. (Ro-
bustness cannot be ensured in the presence of an active network attacker, be-
cause such an attacker can always stop the communication between the honest
participants.)

We do not require any trust assumption on a particular party: for verifiability
and robustness, we assume that an honest participant can be faced with an
arbitrary number of malicious participants. For unlinkability, we require that
there are at least two honest participants in the protocol. Otherwise the attacker
can trivially determine the mapping between input and output addresses and
meaningful mixing is not possible.

4 Solution Overview

Our main contribution is CoinShuffle, a Bitcoin mixing protocol that achieves
the aforementioned goals. In this section, we give an overview of our solution.

4.1 Main Idea

To ensure verifiability, our protocol follows the CoinJoin paradigm (Section 2.3):
A group of users jointly create a single mixing transaction and each of them can
individually verify that she will not lose money by performing the transaction. In
case of a fraud attempt, the defrauded user can just refuse to sign the transaction.

Unlinkability and robustness, however, are the most challenging problems: To
create a mixing transaction while assuring that input addresses are not linkable
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to fresh output addresses, the participants shuffle their output addresses in an
oblivious manner, similar to a decryption mix network [33]. This shuffling is
inspired from one phase of the accountable anonymous group messaging protocol
Dissent [26, 34], which builds on an anonymous data collection protocol due to
Brickell and Shmatikov [35]. We are able to simplify and optimize ideas from
Dissent. For instance, the number of encryption operations is reduced by a factor
of four. Even though the special nature of the problem that we would like to
solve enables most of these optimizations, we conjecture that one of them is not
particular to our setting and can be applied to Dissent. We refer readers that
are familiar with Dissent to Appendix A for details and a high-level comparison.

The shuffling provides robustness in the sense that attacks that aim to dis-
rupt the protocol can be detected by honest users and at least one misbehaving
participant can be identified and excluded.3 The other participants can then run
the protocol again without the misbehaving participant.

4.2 Protocol Overview

The main part of the CoinShuffle protocol can roughly be split into three phases
as depicted in Fig. 2. (As elaborated later, the complete instantiation contains
more phases.) If the protocol does not run successfully, an additional blame phase
will be reached. In the following we give an overview of every phase. Assume that
every participant holds the same amount of coins at some Bitcoin address. This
address will be one of the input addresses in the mixing transaction, and every
protocol message from this participant is supposed to be signed with the private
signing key that belongs to this address.

Announcement. Every participant generates a fresh ephemeral encryption-
decryption key pair, and broadcasts the resulting public encryption key.

Shuffling. Every participant creates a fresh Bitcoin address, designated to be
her output address in the mixing transaction. Then the participants shuffle the
freshly generated output addresses in an oblivious manner, similar to a decryp-
tion mix network [33].

In more detail, every participant (say participant i in a predefined shuffling
order) uses the encryption keys of all participants j > i to create a layered
encryption of her output address. Then, the participants perform a sequential
shuffling, starting with participant 1: Each participant i expects to receive i− 1
ciphertexts from participant i− 1. Upon reception, every participant strips one
layer of encryption from the ciphertexts, adds her own ciphertext and randomly
shuffles the resulting set. The participant sends the shuffled set of ciphertexts
to the next participant i + 1. If everybody acts according to the protocol, the
decryption performed by the last participant results in a shuffled list of output
addresses. The last participant broadcasts this list.

3 This property is called accountability in Dissent. We use a different term to avoid
confusion with the concept of accountable Bitcoin mixing services in Mixcoin [13].
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Fig. 2. Overview of CoinShuffle: First, the participants announce their input addresses.
Second, they shuffle their fresh output addresses obliviously. (Colored boxes represent
ciphertexts encrypted with the respective encryption key.) Third, the participants check
if all their output addresses are contained in the final list of output addresses. In this
case (left-hand side), the transaction is signed by the participants and submitted to
the Bitcoin network. If, on the contrary, an output address is missing (e.g., C′ has
been replaced by D′, right-hand side), the transaction does not become valid and the
participants enter the blame phase to find out which participant deviated from the
protocol specification. Even though not explicit in the figure, all messages are signed.

Transaction Verification. Each participant can individually verify if her out-
put address is indeed in the list. If this is true, every participant deterministically
creates a (not yet signed) mixing transaction that spends coins from all input ad-
dresses and sends them to the shuffled list of output addresses. Every participant
signs the transaction with her Bitcoin signing key and broadcasts the signature.

Upon receiving signatures from all other participants, every participant is able
to create a fully-signed version of the mixing transaction. The transaction is thus
valid and can be submitted to the Bitcoin network.

Blame. In every step of the previous phases, every participant checks that all
other participants follow the protocol. If some participant deviates from the pro-
tocol, an honest participant would report the deviation and the protocol enters
the blame phase, which is then performed to identify the misbehaving partici-
pant. The misbehaving participant can then be excluded from a subsequent run
of the protocol. There are three cases in which participants enter the blame phase.
First, the blame phase is entered if some participant does not have enough coins
at her input address to perform the mixing transaction, or if she just spends the
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money at the input address before the mixing protocol is completed. In both sit-
uations, the Bitcoin network provides evidence for the misbehavior. Second, the
blame phase is entered if the shuffling has not been performed correctly. In that
case, the participants can broadcast their ephemeral decryption keys, along with
the messages they have received. This information allows every participant to
replay the computations of the rest of participants and expose the misbehaving
one. Third, participants could equivocate in the broadcasts of the protocol, e.g.,
by sending different public keys to different participants in the announcement
phase. All participants exchange messages before creating the mixing transaction
to ensure that nobody has equivocated. In case of equivocation, the blame phase
is entered. Since all protocol messages are signed, the equivocating participant
can be identified; two signed messages that are different but belong to the same
sender and the same broadcast step provide evidence of the misbehavior.

5 The CoinShuffle Protocol

This section details the CoinShuffle protocol, first by covering its cryptographic
building blocks and later by formally describing the protocol.

5.1 Cryptographic Primitives

To connect CoinShuffle to Bitcoin, the participants use the Elliptic Curve Digital
Signature Algorithm (ECDSA) already deployed in Bitcoin. Formally, we require
the signature scheme in CoinShuffle to be (weakly) unforgeable under chosen-
message attacks (UF-CMA). Given a message m and a signing key sk , we denote
by Sig(sk ,m) the signature ofm using sk . The verification algorithm Verify(vk , σ)
outputs 1 if σ is a valid signature for m under the verification key vk .

CoinShuffle requires an IND-CCA secure public-key encryption scheme. We
denote by Enc(ek ,m) the ciphertext that encrypts the message m with the en-
cryption key ek . For all possible outputs (ek , dk ) of the key generation algo-
rithm, we have that if c is a valid ciphertext encrypted with encryption key
ek , then the decryption algorithm Dec(dk , c) outputs the message m contained
in c, or ⊥ otherwise. The encryption scheme must adhere to several additional
conditions: First, it must be possible to check if a pair of bitstrings (ek , dk) is
a valid key pair, i.e., a possible output of the key generation algorithm. This
can be achieved, e.g., as described in [26, Appendix]. Second, we require the
encryption algorithm Enc to be length-regular, i.e., for all encryption keys ek
and messages m and m′ with |m| = |m′|, we have |Enc(ek ,m)| = |Enc(ek ,m′)|
with probability 1. We denote the layered encryption of m with multiple keys
by Enc((ek1, . . . , ekn),m) ··= Enc(ek1,Enc(ek2, . . .Enc(ekn,m) . . .)). Finally, we
require a collision-resistant hash function H.

5.2 Core Protocol Description

We assume that every participant i ∈ {1, . . . , N} already possesses a Bitcoin
address, i.e., a public verification key vk i and the corresponding signing key sk i.
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The address vk i will be one of the input addresses of the mixing transaction. The
order of the participants is publicly known, e.g., the lexicographical order of the
verification keys. We further assume that every participant already knows the
verification keys of all other participants. All participants have already agreed
upon a fresh session identifier τ and an amount B ν of coins that they would
like to mix. Since the participants use their private Bitcoin keys to sign protocol
messages, we require an encoding that ensures that protocol messages are distinct
from Bitcoin transactions. This guarantees that participants cannot be tricked
into signing transactions unknowingly. During the whole protocol, parties ignore
incorrectly signed messages and unexpected messages.

To simplify presentation, we assume implicitly that signed messages can be
extracted from their signatures. We write σa,b for the signature produced by
participant a in phase b.

Phase 1: Announcement. Every participant i ∈ {2, . . . , N} randomly
chooses a fresh ephemeral encryption-decryption key pair (ek i, dk i) and broad-
casts σi,1 = Sig(sk i, (ek i, 1, τ)). After participant i receives a correctly signed
message σj,1 from each participant j, she checks that the address vk j holds
at least B ν to ensure that enough money is available to carry out the mixing
transaction. Otherwise, participant i enters the blame phase.

Phase 2: Shuffling. Every participant chooses a fresh Bitcoin address, i.e.,
the verification key vk ′

i of a fresh verification-signing key pair (vk ′
i, sk

′
i). The

signing key sk ′
i is kept secret and can be used to spend the mixed coins that will

be associated with the output address vk ′
i after a successful run of the protocol.

Participant 1 creates a layered encryption c1 = Enc((ek2, . . . , ekN ), vk ′
i) of her

output address vk ′
i and sends σ1,2 = Sig(sk1, (C1, 2, τ)) to participant 2, where

C1 = (c1) is the unary vector with the component c1. Upon receiving a vectorCi−1,
participant i ∈ {2, . . . , N−1}decrypts eachmessage in the vector.Afterwards, she
encrypts herBitcoinoutputaddress vk′iwith thepublic keys of the remaining (N−i)
participants, obtaining ci = Enc((ek i+1, . . . , ekN ), vk ′

i). Then participant i adds
ci to the vector of decrypted messages and shuffles the extended vector randomly,
obtaining a new vectorCi. If a decryption fails or if two decryption operations lead
to the same output, participant i enters the blame phase. Otherwise, participant i
sends σi,2 = Sig(sk i, (Ci, 2, τ)) to participant i+ 1.

Phase 3: Broadcast of the Output. Upon receiving σN−1,2, participant
N strips the last layer of encryption of every ciphertext in the vector CN−1. Then
participant N shuffles the resulting vector of output addresses after extending it
by her own output address vk ′

N , obtaining the final vector Tout . Finally, partici-
pant N broadcasts σN,3 = Sig(skN , (Tout , 3, τ)) to the rest of the participants. If
the protocol has been correctly carried out by all participants, every participant
has received a copy of the shuffled vector Tout of output addresses at this point.
Every participant i checks if her output address vk ′

i is contained in Tout , and
otherwise enters the blame phase.

Phase 4: Equivocation Check. To ensure that nobody has equivocated
during a broadcast, every participant i computes hi = H((ek2, . . . , ekN ), Tout)
and broadcasts σi,4 = Sig(sk i, (hi, 4, τ)). After having received a correctly signed
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message from each participant j, participant i checks if there are two participants
a and b with ha �= hb. In this case, participant i enters the blame phase.

Phase 5: Transaction Verification and Submission. Every participant
deterministically creates a (not yet signed) mixing transaction tx that spends
B ν from each of the input addresses in Tin = (vk1, . . . , vkN) and sends B ν to
each of the output addresses in Tout . Participant i signs the transaction tx ac-
cording to the specification of the Bitcoin protocol and broadcasts the signature
σi,5 = Sig(sk i, tx). Upon receiving a valid signature σj,5 from each participant
j, participant i adds all signatures to tx and submits the resulting valid transac-
tion to the Bitcoin network. Participant i checks if any of the other participants
has spent her money reserved for mixing in the meantime. If this is the case,
participant i enters the blame phase. Otherwise the protocol is finished.

Phase 6: Blame. This phase is only reached when any of the checks de-
scribed above fails. When a participant i enters the blame phase, it broadcasts
a signed message explaining the reason for entering the blame phase. Depending
on the failed check, additional information may be included as follows:
1. If the Bitcoin network reports that the value of the coins at an input address

is below B ν, or that the coins at an input address vk j have already been
spent, participant i broadcasts the transaction that sent the insufficient coins
to the input address or the transaction that spent the coins, respectively.

2. If there are participants i and j with hi �= hj : Participants i and j publish
all signed messages that have been received in phase 1 and phase 3. Note
that these messages contain all encryption keys (ek2, . . . , ekN) and the final
vector Tout . Every participant recomputes hi and hj and checks if they have
been correctly reported. If not, this exposes participant i or j. If both hi

and hj have been reported correctly, there are two cases: First, a participant
has equivocated in phase 1 by sending different encryption keys to i and
j. Second, participant N has equivocated in phase 3 by sending different
vectors of output addresses to i and j. In either case, the published messages
expose the misbehaving participant.

3. If in phase 2, a decryption fails, a duplicate ciphertext is detected, or if after
phase 2 an output address is missing in the final vector, the participants per-
form the skipped equivocation check in phase 4, but only for the encryption
keys: Every participant i computes h′

i = H((ek2, . . . , ekN )) and broadcasts
Sig(sk i, (h

′
i, 4, τ)). After having received a correctly signed message from each

participant j, participant i checks that there are no two participants a and
b with h′

a �= h′
b. Otherwise, the protocol continues as in the case above. If

the equivocation check succeeds, every participant i signs and broadcasts
her decryption key dk i together with all messages that have been received
in phases 2 and 3. The participants verify that all key pairs (ek i, dk i) are
valid and blame the participant with an invalid key pair otherwise. If all key
pairs are valid, the participants have enough information to replay phases 2
and 3 on their own and identify at least one misbehaving participant.

At the end of the blame phase, at least one misbehaving participant is identified
and excluded from the protocol. The remaining participants can start a new run of
the protocol without the misbehaving participant, using a fresh session identifier.
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It is worth noting that, whenever the blame phase is reached, the participants do
not construct a transaction that is accepted by the Bitcoin network.

5.3 Practical Considerations

Transaction Fees. In practice, the Bitcoin network charges a small fee for
mixing transactions4 to prevent DoS attacks that flood the network with a large
number of transactions [36]. Transaction fees can easily be dealt with in Coin-
Shuffle. Before creating the transaction, the N participants calculate the required
fee μ and reduce the size of each output by μ/N , splitting the fee equally among
all participants. This ensures that the transaction will be accepted by the Bitcoin
network. If a participants tries to cheat by deviating from this policy, e.g., to
pay a lower fee, the mixing transaction will not become valid as only the correct
transaction will be signed by the honest participants.

Change Addresses. A user that would like to spend exactly Bx typically does
not hold an input address with exactly this balance, but rather an address with
a higher balance B (x+ y). In order to perform the payment, the user will create
a transaction with one input B (x + y) and two outputs: Bx go to the address
of the payee and B y go to a change address belonging to the original user.

The use of change addresses is supported in CoinShuffle: Participants can
announce additional change addresses in phase 1, if they do not have an address
holding exactly the mixing amount B ν. In phase 5, every participant adds all
the change addresses as outputs of the mixing transaction tx before it is signed.
CoinShuffle still preserves the unlinkability between the input addresses and the
(regular) output addresses of the honest participants.

Communication and Liveness. In practice, broadcasts can be implemented
by sending all messages to a randomly chosen leader that relays the messages
to all participants. Furthermore, instead of misbehaving actively, participants
might passively disrupt a protocol run by simply going offline at any time, either
maliciously or due to a network failure or asymmetric connectivity. This problem
is not particular to CoinShuffle and can be handled using the same techniques
as in Dissent [26], which in turn borrows ideas from PeerReview [37]. We only
present the idea and refer the reader to the original papers for details. When
the protocol states that a participant i must receive a properly signed message
from participant j, but participant j does not send such a message within a
predefined timeout period, i suspects j. In this case, i asks another participant k
(or several participants) to request the desired message from j and relay it to i. If
k does not receive the message either, also k suspects j and can in turn ask other
members. In case nobody receives the message from j, i.e., everybody suspects
j eventually, the participants can start a new run of the protocol without j.

4 At the time of writing, a fee of B 0.0001 (≈ $ 0.06) per 1000 bytes of transaction size
is mandatory for transactions of at least 1000 bytes. Due to their nature, mixing
transactions contain several addresses and are typically larger than 1000 bytes. A
mixing transaction with 25 participants has an approximate size of 5000 bytes.
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6 Analysis

We discuss why CoinShuffle achieves the design goals described in Section 3.1.

6.1 Security Analysis

Recall that we aim for three security and privacy properties, namely unlinkability,
verifiability and robustness. We explain why CoinShuffle achieves all of these.

Unlinkability. A Bitcoin mixing protocol provides unlinkability if given a single
output address vk ′ from a successful mixing transaction, the scenario that vk ′

belongs to some honest user a is indistinguishable from the scenario that vk ′

belongs to a different honest user b �= a.
First, observe that we do not have to consider failed runs of the protocol.

Indeed, if the blame phase is reached, the attacker might be able to link an
output address to an input address, e.g., if the participants publish decryption
keys. However, if the blame phase is reached, the mixing transaction and in
particular the generated output addresses are discarded and the protocol will be
restarted with fresh output addresses.

Now consider a successful run of the protocol, i.e., assume that the blame
phase has not been reached. Observe that phase 4 of the protocol ensures that
no participant has equivocated while announcing her ephemeral encryption key
in phase 1. Let i be the highest index of an honest participant in the shuffling
order and let U<i be the set of honest participants with index smaller than i.
Participant i has received a vector Ci−1 of i − 1 ciphertexts. All messages that
have been sent so far in the shuffling phase have been encrypted with ek i (and
other keys). These messages do not reveal the link between input and output
addresses, because the attacker does not know dk i and thus cannot observe which
output address is contained in which layered ciphertext.

We continue by arguing that the output of participant i does not reveal the
link between input and output addresses either. Since the shuffling has been
performed successfully and the blame phase has not been reached, the ciphertexts
in vector Ci−1 that belong to the users in U<i have not been tampered with.
Furthermore, because we have excluded equivocation, these ciphertexts share the
same structure, i.e., they are all of the form Enc((ek i, . . . , ekN ), vk ′

j) for j ∈ U<i

and uniquely defined encryption keys ek i, . . . , ekN . Participant i strips one layer
of encryption from the ciphertexts in Ci−1, adds her own ciphertext and shuffles
the resulting vector Ci. Consequently, participant i outputs a randomly shuffled
vector Ci that contains at least |U<i|+ 1 honestly generated ciphertexts of the
form Enc((ek i+1, . . . , ekN ), vk ′

j) for j ∈ U<i∪{i}, where all output addresses vk ′
j

have the same fixed length, because they are Bitcoin addresses. Let Di be the
a vector that is obtained by keeping only those honestly generated ciphertexts
and removing the others from Ci. Di is implicitly associated with a permutation
π of the output addresses of the honest participants in U<i ∪ {i}.

Since i is honest and does not collude with malicious participants, the IND-CCA
property of the encryption scheme ensures that all pairs of possible output vec-
tors D0

i and D1
i (resulting from potentially different permutations π0 and π1 of
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the output addresses) are indistinguishable.5 Note that at least two different per-
mutations π0 �= π1 exist, because by assumption, there are at least two honest
participants whose ciphertexts can be shuffled, which implies |U<i| ≥ 1.

Verifiability. A Bitcoin mixing protocol ensures verifiability if no attacker can
steal or destroy honest participants’ coins. This is immediate from the description
of CoinShuffle: a honest participant i signs the final mixing transaction only if
she has verified that (i) her own output address vk ′

i is included in the list of
output addresses, and (ii) the amount sent to the output address is the amount
of coins taken from her input address (possibly reduced by a transaction fee).

Robustness. A Bitcoin mixing protocol ensures robustness if it finishes even in
the presence of malicious participants. Since CoinShuffle enters the blame phase
if a run does not successfully create a transaction, we have to argue why at least
one misbehaving participant can be identified in the blame phase. We distinguish
the same cases as in the blame phase of the protocol description:

1. In this case, the signed announcement message together with the evidence
from the Bitcoin network proves that the participant in question misbehaved.

2. Recall that participants i and j publish all signed messages that have been
received in phases 1 and 3. If hi or hj have been computed incorrectly, this is
evidence that i or j, respectively, has misbehaved. If both hi and hj have been
reported correctly, the published messages expose the equivocating participant.

3. If a participant detects an invalid key pair, the signed announcement mes-
sage (containing the purported encryption key) and the signed message in the
blame phase containing the purported decryption key provide evidence of misbe-
havior. Otherwise, the participants have enough information to replay the steps
of each participant in phases 2 and 3 and identify the misbehaving participant.
The signed messages of phases 1 to 3 prove the misbehavior.

Double-Spending. Note that due the nature of the Bitcoin network, a malicious
participant might disrupt the protocol by a double-spending attempt: Shortly be-
fore all participants submit the mixing transaction to the network, the malicious
participant submits a transaction that spends her input coins that have actually
been designated for mixing. The Bitcoin network will eventually reach consensus
which of the two transactions becomes valid and discard the other one to ensure
that coins cannot be double-spent. If the malicious transaction is accepted, honest
parties do not lose their coins, but the mixing will have failed. Then, it might be
the case that a restart of the protocol is not possible because the participants have
already gone offline, in the belief that the protocol has been successful.

We consider protection against double-spending in Bitcoin to be orthogonal
to our work [38]. Typically, the attacker’s goal in double-spending is to make a
recipient of a transaction believe that she has received some coins. As a result

5 Note that the length-regularity of Enc implies that not only the output addresses
but also the inner layers of encryptions (at the same depth) have the same length.
This is necessary, because otherwise the IND-CCA property does not guarantee in-
distinguishability for the encryptions of these inner ciphertexts.
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the recipient will, e.g., hand over a valuable good to the attacker, even though
the transaction will be invalidated and replaced by a different one that sends the
coins back to attacker. However, this attack is not possible in mixing, because
sender and recipient are the same party. Instead, invalidating a mixing transac-
tion is only an attack against robustness. If protection against a double-spending
attack becomes necessary to ensure robustness, the participants will have to wait
for the transaction to be confirmed by the Bitcoin network before they go offline.

6.2 System Analysis

We discuss why CoinShuffle achieves the desired system-level goals.

Compatibility. CoinShuffle does not require any change to the Bitcoin protocol
or to the transaction format, because a successful run of CoinShuffle results in
a transaction that is valid according to the current rules of Bitcoin. Thus the
protocol is immediately deployable.

No Mixing Fees. Systems in which a trusted third party performs the mixing
typically charge users two fees: a transaction fee as defined in Bitcoin and a mix-
ing fee required by the trusted third party [10, 11, 12]. In CoinShuffle, however,
no mixing fee is required. Users who jointly execute CoinShuffle are only charged
the transaction fee as defined in the currently deployed Bitcoin protocol.

Efficiency. As signatures and hash functions are already used in Bitcoin, public-
key encryption is the only cryptographic primitive added by CoinShuffle. This
allows to run the protocol even on computationally restricted hardware. The
performance evaluation (Section 7) shows the practical feasibility of CoinShuffle.

Small Impact on Bitcoin. Upon successful protocol execution, the partici-
pants jointly create only a single Bitcoin transaction that must be stored in the
public blockchain and has to be verified by all nodes in the network. Thus, the
execution of CoinShuffle introduces only a minimal overhead in terms of storage
and computation for nodes in the Bitcoin network.

7 Performance Evaluation

We have developed a proof-of-concept implementation [39] of CoinShuffle lever-
aging an existing implementation of the Dissent protocol. In particular, we have
implemented phases 1 to 5 of the protocol (Section 5.2), which suffice to measure
the performance of a single successful run without disruption.

The implementation is written in Python and uses OpenSSL to sign and en-
crypt messages. As required by the Bitcoin network, signatures have been imple-
mented using ECDSA on the secp256k1 elliptic curve [40] at a security level of
128 bits. We use the Elliptic Curve Integrated Encryption Scheme (ECIES) [40]
on the same curve together with standard AES in CBC mode for encryption.
The communication among the participants has been implemented using TCP.
When a message is broadcast, it is first sent to the first participant in the shuffling
order, who in turn sends a copy to every participant.
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We tested our implementation in Emulab [41], a testbed for distributed sys-
tems, in which network parameters such as topology or bandwidth of links can
be easily configured. In this setting, we have run several experiments under con-
trolled network conditions. We consider two scenarios: a local network and a
global network. In the former, we connected all the participants to a LAN with
100 Mbit/s bandwidth without delays. In the latter, we split the participants in
two LANs of 100 Mbit/s bandwidth each. Both LANs were connected through a
router with a bandwidth of 20 Mbit/s and a delay of 50 ms. In the global network
scenario we considered the worst case for the shuffling phase: participants with
an odd index in the shuffling order were placed in one LAN while participants
with an even index were placed in the other LAN. Thus every message in the
shuffling phase had to traverse the whole network.

We have run the protocol with different numbers of participants, ranging from
5 to 50. Figure 3 shows the overall time needed to create a Bitcoin transaction
in a run without misbehaving participants. In the local network, 50 participants
need approximately 40 seconds to run CoinShuffle, while in the global network,
slightly less than 3 minutes are necessary to complete the protocol.

Figure 4 shows the overhead of the computation carried out by every par-
ticipant on average. As expected, the average processing time increases linearly
with the number of participants, because every participant must shuffle a vec-
tor of ciphertexts containing one ciphertext more than the previous participant.
Furthermore, the computation overhead constitutes only a small fraction of the
overall time. In the case of 50 participants, the average computation time is
slightly larger than 3 seconds, which constitutes approximately 2% of the overall
time in the local network scenario and less than 1% in the global network setting.

In summary, the experimental results demonstrate the feasibility of the Coin-
Shuffle protocol even in scenarios with a large number of participants.

8 Related Work

Zerocoin [14], an extension to Bitcoin, was among the first proposals to pro-
vide unlinkability between individual Bitcoin transactions without introducing a
trusted party. It employs a cryptographic accumulator of minted zerocoins and
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a zero-knowledge proof of inclusion of a certain zerocoin within the accumulator.
Zerocoin introduces a significant computation and communication overhead: the
size of the proof that has to be stored in the blockchain for each transaction is
prohibitively large (i.e., approximately 25 KB) and far exceeds the size of the
Bitcoin transaction itself.

Recently, there have been some proposals to reduce the Zerocoin proof size.
Garman et al. [16] propose a set of extensions to Zerocoin that reduces the
proof size by modeling the cost of forging a coin and picking cryptographic
parameters to make such forgery uneconomical. Both Pinocchio Coin [15] and
Zerocash [17] are promising improvements of Zerocoin that significantly reduce
the proof size (to less than 1 KB) and the computational costs. Nevertheless, this
line of research is severely restricted in terms of adaptability. Zerocoin and all
of the above extensions require substantial modifications to the Bitcoin system.
Thus, Zerocoin and its variants cannot be directly deployed in Bitcoin. Instead,
they would need an incremental deployment that requires acceptance by the
majority of the Bitcoin nodes (measured in computational resources). So far,
it looks unlikely for the Bitcoin network to employ the Zerocoin strategy [42].
In contrast, while requiring more communication, CoinShuffle is immediately
adaptable and works on top of the existing Bitcoin network.

TheMixcoin [13] protocol facilitates anonymousBitcoin paymentswithoutmak-
ing any modifications to the Bitcoin protocol. Here, Bitcoin users send their coins
to a central accountable mix which in turn replies with a guarantee of returning
the funds to the user. Afterwards, the mix sends the coins back to the user ensur-
ing unlinkability between the user input and output addresses. Although the mix
can be held accountable for thefts, the system still has several drawbacks. First,
the use of a central mix introduces a single point of failure, where the mix becomes
a suitable target for DoS attacks from competing mixes as well as governmental
agencies. Second, the provided accountability is reactive in nature, and the mix
can still steal users’ coins before going out of business. Third, a payment in Mix-
coin requires two Bitcoin transactions and additionally a fee charged by the mix.
Finally, unlinkability is only guaranteed against external observers, because mix
learns which address belongs to which user. In comparison toMixcoin, CoinShuffle
relies on the interaction between the users in the mixing to achieve unlinkability,
verifiability, robustness, and cost effectiveness without a trusted third party.

Maxwell [43] sketches a modification to the CoinJoin protocol using blind sig-
natures to avoid the problem of a centralized mix learning the relation between
input and output addresses. This protocol employs the anonymous communica-
tion network Tor [32] as a building block to provide unlinkability. In contrast,
CoinShuffle provides full resistance against traffic correlation attacks by using a
decentralized high-latency mix network run only by the participants.

9 Conclusion

The linkable pseudonymity provided by the Bitcoin system leads to significant
privacy concerns for its users. A few solutions that aim at mixing transactions
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of a group of users have been proposed in the last two years to address this
concern; however, none of them has been found to be satisfy all requirements of
a practical and compatible solution. In this paper, we have presented the Bitcoin
mixing protocol CoinShuffle, which is secure, robust, and perfectly compatible
with the existing Bitcoin system. Adhering to the Bitcoin ideology, CoinShuffle is
completely decentralized, and it neither requires any third party nor introduces
any additional anonymization fees for the users.

We implemented CoinShuffle and tested it in a local as well as in a global net-
work scenario in the Emulab environment. Our experiments demonstrate that
CoinShuffle introduces only a small (suitable for Bitcoin) computation and com-
munication overhead to a participant, even when the number of CoinShuffle par-
ticipants is large (≈ 50). Moreover, CoinShuffle leads only to a minimal overhead
for the Bitcoin blockchain and thus for the rest of the Bitcoin network.

Finally, although we have focused on the crypto-currency Bitcoin in the paper,
we stress that our protocol is compatible with all competing currencies derived
from Bitcoin, e.g., Litecoin [2], Mastercoin [4], and others.
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A High-Level Comparison with Dissent

CoinShuffle has been inspired by the shuffling phase of the Dissent protocol [26,
34], which adds robustness to a data collection protocol due to Brickell and
Shmatikov [35]. The fact that CoinShuffle is crafted specially to be used on top
of the Bitcoin protocol allows us to apply several optimizations. In the following
we describe the two most important improvements as compared to Dissent. We
assume the reader to be familiar with the Dissent protocol [26, 34].

First, observe that in Dissent, the shuffling phase must hide participants’ in-
puts even in case of failure, i.e., even if the blame phase is reached. For that,
Dissent needs N additional inner layers of encryption, because each message is
additionally encrypted with the encryption keys of all participants. This makes
it possible to introduce an additional step after the shuffling: Participants check
first if the shuffling was performed correctly, and they reveal their inner decryp-
tion keys only if the check succeeds. In contrast, hiding the plaintexts is not
necessary in a failed run of CoinShuffle, because the plaintexts are only fresh
Bitcoin addresses that are discarded when the protocol fails; it is not a problem
to create new addresses in the subsequent run of the protocol. As a result, the
additional inner layers of encryption are not necessary in CoinShuffle.

Second, the description of the shuffling phase of Dissent specifies that every
participant sends and receives a vector of N ciphertexts. In CoinShuffle, every
participant i receives a vector of only i−1 ciphertexts and sends only i ciphertexts
to the next participant. The communication overhead is thereby further reduced,
and fewer encryption and decryption operations are necessary as compared to
Dissent. We conjecture that this improvement is also applicable to the shuffling
phase of Dissent, but we leave a formal treatment for future work.
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