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Abstract. Broadcast encryption is a very powerful primitive since it can send
an encrypted message to a set of users excluding a set of revoked users. Public-
key broadcast encryption (PKBE) is a special type of broadcast encryption such
that anyone can run the encryption algorithm to create an encrypted message
by using a public key. In this paper, we propose a new technique to construct an
efficient PKBE scheme by using the subset cover framework. First, we introduce a
new concept of public-key encryption named single revocation encryption (SRE)
and propose an efficient SRE scheme in the random oracle model. A user in
SRE is represented as a group that he belongs and a member in the group. In
SRE, a sender can create a ciphertext for a specified group where one member
in the group is revoked, and a receiver can decrypt the ciphertext if he belongs
to the group in the ciphertext and he is not revoked in the group. Second, we
show that the subset difference (SD) scheme (or the layered subset difference
(LSD) scheme) and an SRE scheme can be combined to construct a public-key
revocation encryption (PKRE) scheme such that a set of revoked users is specified
in a ciphertext. Our PKRE scheme using the LSD scheme and our SRE scheme
can reduce the size of private keys and public keys by logN factor compared with
the previous scheme of Dodis and Fazio.

Keywords: Public-key encryption, Broadcast encryption, Traitor tracing, Trace
and revoke, Bilinear maps.

1 Introduction

Broadcast encryption, introduced by Fiat and Naor [10], is a mechanism to efficiently
send an encrypted message to a set S of receivers by using a broadcast channel. The ap-
plication of broadcast encryption includes pay-TV systems, DVD content distribution
systems, and file systems and many others. Broadcast encryption itself is a very power-
ful primitive, but the functionality of broadcast encryption can also be increased when
it is combined with traitor tracing functionality. Traitor tracing was introduced by Chor,
Fiat, and Naor [7], and it enables a tracer to find a traitor who participated the creation
of a pirate decoder when a pirate decoder is given to the tracer. Trace and revoke is a
mechanism that combines broadcast encryption and traitor tracing, and it first finds a
traitor by using the tracing algorithm of traitor tracing and then revoke him by using the
encrypt algorithm of broadcast encryption [6, 20, 22].
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Public-key broadcast encryption (PKBE) is a special type of broadcast encryption
such that anyone can create a ciphertext for a set of receivers by using a publicly known
public key. Public-key trace and revoke (PKTR) is a public variant of trace and revoke.
There are some general methods for the construction of fully collusion resistant PKBE
schemes. The first method is to combine a subset cover scheme in the framework of
Naor, Naor, and Lotspiech [20] and an identity-based encryption (IBE) scheme (or a
hierarchical IBE (HIBE) scheme) [9, 20, 21]. The PKBE schemes of this method are
suitable for the revocation scenario where a small number of users are revoked since
the ciphertext size of the schemes is proportional to the size of revoked users. Addi-
tionally, this approach also provides the tracing functionality based of the subset cover
framework. However, the most efficient scheme of this method suggested by Dodis and
Fazio [9] that combines the layered subset difference (LSD) scheme of Halevy and
Shamir [16] and the HIBE scheme of Boneh et al. [2] has a demerit such that the size of
private keys is O(log2.5 N) and the size of public keys is O(logN) where N is the total
number of users in the system. The second method is to use the power of bilinear groups
to reduce the size of ciphertext, and many PKBE schemes were proposed after the work
of Boneh, Gentry, and Waters [4, 8, 19]. However, these schemes can not provide the
tracing functionality, and the size of public keys is quite large (or the cost of the decryp-
tion algorithm is expensive). The third method is to combine a private linear broadcast
encryption (PLBE) scheme that was introduced by Boneh, Sahai, and Waters [5] and a
PKBE scheme [6, 13, 25]. The main advantage of this approach is that it provides the
tracing functionality, but the storage requirement of these schemes are quite large since
the size of private keys and public keys of these schemes is O(

√
N) where N is the total

number of users in the system.
Reducing the size of private keys is very important since cryptographic key materials

are securely stored in an expensive tamper-resistant memory. In case of small devices,
the size of (private or public) keys and the cost of decryption operations are critical
issues since the manufacturing cost of small devices is limited and the battery is also
limited. As far as we know, there is no acceptable PKBE (or PKTR) scheme that can
meet this requirements.

1.1 Our Contributions

In this paper, we revisit the method of Dodis and Fazio [9] that combines the SD scheme
in the subset cover framework and a variant scheme of IBE to construct an efficient
PKBE scheme, and propose a new method for PKBE that can reduce the size of private
keys and public keys. The subset cover framework of Naor et al. [20] was very success-
ful to construct broadcast encryption or trace and revoke schemes in the symmetric-key
setting [15, 16, 20]. However, these schemes based on the subset cover framework in
the public-key setting does not provide the same efficiency parameters as those in the
symmetric-key setting since the underlying HIBE scheme multiplies the private key
size and the public key size of PKBE by logN factor [2, 9]. For instance, the PKBE
scheme that combines the LSD scheme and the HIBE scheme of Boneh et al. [2] has
the ciphertext size of O(r), the private key size of O(log2.5 N), and the public key size
of O(logN).



Public-Key Revocation and Tracing Schemes 3

Table 1. Comparison of public-key broadcast encryption schemes

Scheme CT Size SK Size PK Size Decrypt Time Tracing Assumption

BGW [4] O(1) O(1) O(N) 2P No q-Type

BGW [4] O(
√

N) O(1) O(
√

N) 2P No q-Type

Delerablée [8] O(1) O(1) O(smax) 2P No q-Type

LSW [19] O(r) O(1) O(1) rE + 2P No q-Type

NNL [21] O(r log N
r ) O(logN) O(1) 1P Yes BDH

DF [9] O(r) O(log2.5 N) O(logN) 2P Yes q-Type

BW [6] O(
√

N) O(
√

N) O(
√

N) 4P Yes Static

Ours O(r) O(log1.5 N) O(1) 2E + 2P Yes q-Type

N = the maximum number of users, smax = the maximum size of a receiver set,

r = the size of a revoked set, E = exponentiation, P = pairing

To construct an efficient PKBE scheme by using the subset cover framework, we first
introduce single revocation encryption (SRE) that can be efficiently combined with the
subset difference (SD) scheme, and propose an efficient SRE scheme that is secure in
the random oracle model. A user in SRE is represented as a group label and a member
label in the group, and a sender can send an encrypted message to one specified group
except one member that was revoked in that group. If a user who belongs to the group
is not revoked in the group, then he can decrypt the ciphertext by using this private
key. Our SRE scheme has the ciphertext size of O(1), the private key size of O(1), and
the public key size of O(1), and it is secure in the random oracle model under q-type
assumption.

Next, we show that it is possible to construct an efficient public-key revocation en-
cryption (PKRE) scheme such that a set R of revoked users is specified in a ciphertext
by combining the SD scheme (or the LSD scheme) and the SRE scheme. Compared
to the previous PKBE scheme that combines the LSD scheme and the HIBE scheme
of Boneh et al. [2], our proposed PKRE scheme that combines the LSD scheme and
our SRE scheme has the shorter size of private keys and public keys. The comparison
between previous PKBE schemes and our schemes is given in the Table 1. In the table,
the PKBE scheme of Dodis and Fazio is the combination of the LSD scheme and the
HIBE scheme of Boneh et al. [2], and our PKRE scheme is the combination of the LSD
scheme and our SRE scheme.

1.2 Our Technique

The main idea of our PKRE scheme is to invent a new type of public-key encryption
(PKE) that has short private key size and can be integrated with the SD scheme of the
subset cover framework. In order to understand our technique, we first review the SD
scheme of Naor et al. [20]. In a full binary tree T , a subtree Ti rooted at a node vi is
defined as the set of all nodes in Ti and a subtree Ti, j is defined as the set of nodes in
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Ti −Tj where a node v j is a descendant of a node vi. In the SD scheme, a user in the
SD scheme is assigned to a leaf node in T , and a subset Si, j is defined as the set of leaf
nodes in Ti, j. A user in a leaf node vu is associated with the set PVu of subsets Si, j where
vi and v j are two nodes in the path from the root node of T to the leaf node vu. The set S
of receivers is associated with the set CV of disjoint subsets Si, j that covers S. If a user u
is not revoked, then he can find two subsets Si, j ∈CV and Si′, j′ ∈ PVu such that vi = vi′ ,
d j = d j′ , and v j �= v j′ where d j is the depth of a node v j. Next, the user can decrypt the
ciphertext component that is related with Si, j by using the private key components that
are related with PVu.

One critical condition for the decryption using the SD scheme is that the inequality
v j �= v j′ should be satisfied. For this inequality, Naor et al. [20] used the key derivation
property of a key assignment algorithm, and Dodis and Fazio [9] used the delegation
property of a key generation algorithm in HIBE. To devise a new technique to solve
this issue, we look at the IBRE scheme of Lewko, Sahai, and Waters [19]. The notable
property of the IBRE scheme is that the decryption is successful only when ID is not
equal to ID′ where ID is associated with a ciphertext and ID′ is associated with a private
key. However, the direct combination of this IBRE scheme and the SD scheme is not
successful since the IBRE scheme does not support an equality condition. Therefore,
we construct an SRE scheme by modifying this IBRE scheme to support two conditions
of equality and inequality.

As described in the previous section, a user in SRE is represented as labels (GL,ML)
where GL is a group label and ML is a member label in the group, and a sender creates a
ciphertext with labels (GL′,ML′) for all member in the group GL′ except the one mem-
ber ML′ in the group. Thus a receiver who has a private key with labels (GL,ML) can
decrypt the ciphertext with labels (GL′,ML′) if (GL = GL′)∧ (ML �= ML′). Therefore,
SRE supports the equality of group labels and the inequality of member labels. To inte-
grate the SRE scheme that uses group and member labels (GL,ML) with the SD scheme
that uses subsets Si, j in a full binary tree, we need a mapping from the subset Si, j to the
labels (GL,ML). A subset Si, j is defined by two nodes vi,v j and a subtree Ti is defined
by one node vi. For the mapping function from the subset Si, j to labels (GL,ML), we
define the set of all nodes in the subtree Ti that has the same depth as v j as a one group,
and we also define the nodes in the group as the members of the group. That is, if the
nodes vi and v j of Si, j in the SD scheme have identifiers Li and Lj respectively, then the
labels in the SRE scheme are represented as GL = Li‖d j and ML = Lj where d j is the
depth of v j.

1.3 Related Work

Broadcast Encryption. As mentioned, the concept of broadcast encryption was intro-
duced by Fiat and Naor [10] and broadcast encryption can efficiently send an encrypted
message to a set of receivers through a broadcast channel. Many broadcast encryption
schemes including the scheme of Fiat and Naor were designed to be secure against a
collusion of t users. Naor, Naor, and Lotspiech [20] proposed a general method called
the subset cover framework, and they proposed symmetric-key revocation schemes such
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that a center can broadcast an encrypted message to all users except r number of revoked
users. They proposed two broadcast encryption schemes of the subset cover framework,
named as the complete subtree (CS) and the subset difference (SD) scheme. Halevy
and Shamir [16] proposed the layered subset difference (LSD) scheme and Goodrich et
al. [15] proposed the stratified subset difference (SSD) scheme.

Public-key broadcast encryption (PKBE) is a special type of broadcast encryption
such that anyone can send an encrypted message to a set of receivers through a broadcast
channel by using a public key. Naor et al. [20] observed that their CS scheme can be
combined with the identity-based encryption (IBE) scheme of Boneh and Franklin [3] to
reduce the size of public keys in PKBE. Dodis and Fazio [9] showed that the SD scheme
(or the LSD scheme) can also be combined with a hierarchical IBE (HIBE) scheme to
construct an efficient PKBE scheme. Note that the private key size of this PKBE scheme
is larger than that of the original LSD scheme in the symmetric-key setting. Boneh,
Gentry, and Waters [4] proposed the first fully collusion-resistant PKBE scheme that
has the constant size of ciphertexts based on bilinear groups. Their first PKBE scheme
has the ciphertext size of O(1), the private key size of O(1), and the public key size of
O(N), and their second PKBE scheme has the ciphertext size of O(

√
N), the private key

size of O(1), and the public key size of O(
√

N) where N is the number of users in the
system. After the construction of Boneh et al. [4], many other PKBE schemes based on
bilinear groups were proposed [8, 14, 19, 23].

Traitor Tracing. The concept of traitor tracing was introduced by Chor, Fiat, and Naor
[7] and traitor tracing enables a tracer who is given a pirate decoder to detect at least one
user who participated the creation of the pirate decoder. Many traitor tracing schemes
were designed to be secure against a collusion of t users. Fully collusion resistant traitor
tracing schemes were proposed based on bilinear groups [5, 13, 24]. Abdalla et al. [1]
proposed the concept of identity-based traitor tracing (IBTT) and constructed an IBTT
scheme.

Trace and Revoke. Trace and revoke is broadcast encryption combined with traitor
tracing such that it first finds a user whose private key is compromised by using the
tracing algorithm of traitor tracing and then it revokes the user by using the revocation
algorithm of broadcast encryption [20,22]. Many trace and revoke schemes were secure
against a collusion of t users [22]. Naor et al. [20] proposed the first fully collusion
resistant trace and revoke schemes by using the general method of the subset cover
framework.

Public-key trace and revoke (PKTR) is a special type of trace and revoke such that
anyone can trace traitors and revoke the user by using a public key. The PKBE scheme
of Dodis and Fazio [9] can also be a PKTR scheme since their scheme also follows
the subset cover framework. Boneh and Waters [6] proposed a fully collusion resistant
PKTR scheme based on composite order bilinear groups and proved its adaptive secu-
rity by combining the PKBE scheme of Boneh et al. [4] and the traitor tracing scheme
of Boneh et al. [5]. The efficiency of this scheme was improved by using prime order
bilinear groups [13,25]. Furukawa and Attrapadung [12] proposed a PKTR scheme with
short private keys, but the public key size of this is quite large and the security is only
proven in the generic group model.
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2 Preliminaries

In this section, we briefly review bilinear groups and introduce the complexity assump-
tion of our scheme.

2.1 Bilinear Groups

Let G and GT be multiplicative cyclic groups of prime order p. Let g be a generator of
G. The bilinear map e : G×G→GT has the following properties:

1. Bilinearity: ∀u,v ∈G and ∀a,b ∈ Zp, e(ua,vb) = e(u,v)ab.
2. Non-degeneracy: ∃g such that e(g,g) has order p, that is, e(g,g) is a generator of

GT .

We say that G,GT are bilinear groups if the group operations in G and GT as well as
the bilinear map e are all efficiently computable.

2.2 Complexity Assumptions

To prove the security of our PKRE scheme, we introduce a new assumption called
q-Simplified Multi-Exponent Bilinear Diffie-Hellman (q-SMEBDH) assumption. This
q-SMEBDH assumption is derived from the q-Multi-Exponent Bilinear Diffie-Hellman
(q-MEBDH) assumption that was introduced by Lewko, Sahai, and Waters [19] with a
slight simplification. Our new assumption is secure in the generic group model by using
the master theorem of Boneh, Boyen, and Goh [2].

Assumption 1 (q-Simplified Multi-Exponent Bilinear Diffie-Hellman, q-
SMEBDH). Let (p,G,GT ,e) be a description of the bilinear group of prime
order p with the security parameter λ . Let g be a generator of G. The q-SMEBDH
assumption is that if the challenge values

D = ((p,G,GT ,e), g, {gai , gb/ai}1≤i≤q, {gbai/a j}1≤i, j,i�= j≤q, gc) and T

are given, no PPT algorithm B can distinguish T = T0 = e(g,g)bc from T = T1 =
e(g,g)d with more than a negligible advantage. The advantage of B is defined as
Advq-SMEBDH

B (λ ) =
∣
∣Pr[B(D,T0) = 0]−Pr[B(D,T1) = 0]

∣
∣ where the probability is taken

over the random choice of a1, . . . ,aq,b,c,d ∈ Zp.

3 Single Revocation Encryption

In this section, we define single revocation encryption (SRE) and the security model of
SRE, and then we propose an SRE scheme and prove its security in the random oracle
model.
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3.1 Definitions

Single revocation encryption (SRE) is a special type of public-key broadcast encryption
(PKBE) such that a single user in a group can be revoked. That is, a sender in SRE
can securely transmit a message to the members of a specified group except the single
revoked member of the group. In SRE, the universe U is defined as the set of many
groups that consist of many members. Note that the maximum number of groups and
the maximum number of members in a group is a polynomial number in a security
parameter. A center first generates a master key and a public key for SRE by using
a setup algorithm, and each user specified by a group label and a member label can
receive his private key from the center. To transmit a message, a sender computes a
ciphertext by specifying a group label and a revoked member in the group. If a user
belongs to the group in the ciphertext and he is not revoked, then he can decrypt the
ciphertext by using his private key. The following is the syntax of SRE.

Definition 1 (Single Revocation Encryption). A SRE scheme for the universe U of
groups and members consists of four algorithms Setup, GenKey, Encrypt, and Decrypt,
which are defined as follows:

Setup(1λ ,U). The setup algorithm takes as input a security parameter 1λ and the
universe U of groups and members. It outputs a master key MK and a public key
PK.

GenKey((GL,ML),MK,PK). The key generation algorithm takes as input labels
(GL,ML), the master key MK, and the public key PK. It outputs a private key
SK for the labels (GL,ML).

Encrypt((GL,ML),M,PK). The encryption algorithm takes as input labels (GL,ML),
a message M ∈M, and the public key PK. It outputs a ciphertext CT for (GL,ML)
and M.

Decrypt(CT,SK,PK). The decryption algorithm takes as input a ciphertext CT for
labels (GL,ML), a private key SK for labels (GL′,ML′), and the public key PK. It
outputs an encrypted message M or ⊥.

The correctness property of SRE is defined as follows: For all MK,PK generated by
Setup, any SKu generated by GenKey, and any M, it is required that

– If (GL=GL′)∧(ML �=ML′), then Decrypt(Encrypt((GL,ML),M,PP),SK(GL′ ,ML′),
PK) = M.

– If (GL �=GL′)∨(ML =ML′), then Decrypt(Encrypt((GL,ML),M,PP),SK(GL′ ,ML′),
PK) =⊥ with all but negligible probability.

The security property of SRE is defined as indistinguishability. The indistinguisha-
bility game of SRE can be similarly defined by modifying the indistinguishability game
of PKBE. In this game, an adversary is first given a public key of SRE, and then he
can obtain many private keys for labels. In the challenge step, the adversary submits
challenge labels and two challenge messages, and then he receives a challenge cipher-
text. Finally, the adversary outputs a guess for the random coin that is used to create the
challenge ciphertext. If the guess of the adversary is correct, then the adversary wins
the game. The following is the formal definition of indistinguishability.
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Definition 2 (Indistinguishability). The indistinguishability property of SRE under a
chosen plaintext attack is defined in terms of the following game between a challenger
C and a PPT adversary A:

1. Setup: C runs Setup(1λ ,U) to generate a master key MK and a public key PK. It
keeps MK to itself and gives PK to A.

2. Query: A adaptively requests private keys for labels (GL1,ML1), . . . ,(GLq,MLq).
In response, C gives the corresponding private keys SK1, . . . ,SKq to A by running
GenKey((GLi,MLi),MK,PK).

3. Challenge: A submits challenge labels (GL∗,ML∗) and two messages M∗
0 ,M

∗
1

with the equal length subject to the restriction: for all (GLi,MLi) of private key
queries, it is required that (GLi �= GL∗) or ((GLi = GL∗)∧ (MLi = ML∗)). C flips
a random coin γ ∈ {0,1} and gives the challenge ciphertext CT ∗ to A by running
Encrypt((GL∗,ML∗),M∗

γ ,PK).
4. Guess: A outputs a guess γ ′ ∈ {0,1} of γ , and wins the game if γ = γ ′.

The advantage of A is defined as AdvSRE
A (λ ) =

∣
∣Pr[γ = γ ′]− 1

2

∣
∣ where the probability

is taken over all the randomness of the game. A SRE scheme is indistinguishable under
a chosen plaintext attack if for all PPT adversary A, the advantage of A in the above
game is negligible in the security parameter λ .

3.2 Construction

Our SRE scheme is inspired by the IBRE scheme of Lewko, Sahai, and Waters [19]
that employs the “two equation” technique. In the two equation technique, a cipher-
text is associated with a revoked set R = {ID1, . . . , IDr} of users and a user is associ-
ated with an identity ID. If a user is not revoked (ID �= IDi), then he will obtain two
independent equations and can decrypt the ciphertext. However, if a user is revoked
(ID = IDi), then he will obtain two dependent equations and thus cannot decrypt the
ciphertext. Lewko et al. [19] constructed a IBRE scheme that has private keys of con-
stant size, public keys of constant size, and ciphertexts of O(r) size. We construct an
SRE scheme that enables a sender to broadcast a ciphertext to a given group except a
one specified member in the group by slightly modifying the IBRE scheme of Lewko
et al. First, the IBRE scheme can be modified to revoke a single user instead of mul-
tiple users, and then the modified scheme has a private key SK = (gα wr,(hwID)r,g−r)
and a ciphertext CT = (e(g,g)αtM,gt ,(hwID)t) where ID is a user identifier. How-
ever this modified scheme does not support groups. To support groups, we first rep-
resent a user identifier ID as labels (GL,ML) of a group and a member, and use
hash functions H1,H2 to select unique h,w values for each group. Then the modified
scheme has a private key SK = (gαH2(GL)r,(H1(GL)H2(GL)ML)r,g−r) and a cipher-
text CT = (e(g,g)αt ,gt ,(H1(GL)H2(GL)ML)t) where GL is a group label and ML is a
member label.

Let U = {(GLi,{MLj})} be the universe of groups and members where the max-
imum number Ug of groups is a polynomial number in a security parameter and the
maximum number Um of members in a group is also a polynomial numbers in a secu-
rity parameter. Our SRE scheme for the universe U is described as follows:
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SRE.Setup(1λ ,U): This algorithm first generates the bilinear groups G of prime order
p of bit size Θ(λ ). It chooses a random element g∈G. It selects a random exponent
α ∈ Zp. It outputs a master key MK = gα and a public key as

PK =
(

(p,G,GT ,e), g, H1,H2, Ω = e(g,g)α
)

.

SRE.GenKey((GL,ML),MK,PK): This algorithm takes as input labels (GL,ML), the
master key MK, and the public key PK. It selects a random exponent r ∈ Zp and
outputs a private key by implicitly including (GL,ML) as

SK(GL,ML) =
(

K0 = gα H2(GL)r , K1 = (H1(GL)H2(GL)ML)r, K2 = g−r
)

.

SRE.Encrypt((GL,ML),M,PK): This algorithm takes as input labels (GL,ML), a
message M ∈ GT , and the public key PK. It chooses a random exponent t ∈ Zp

and outputs a ciphertext by implicitly including (GL,ML) as

CT(GL,ML) =
(

C0 = Ω tM, C1 = gt , C2 = (H1(GL)H2(GL)ML)t
)

.

SRE.Decrypt(CT(GL,ML),SK(GL′,ML′),PK): This algorithm takes as input a ciphertext
CT(GL,ML), a private key SK(GL′,ML′), and the public key PK. If (GL =GL′)∧(ML �=
ML′), then it outputs a message as

M =C0 · e(C1,K0)
−1 · (e(C1,K1) · e(C2,K2))

1/(ML′−ML).

Otherwise, it outputs ⊥.

The correctness of the above SRE scheme is easily verified by the following
equation.

e(C1,K0)/(e(C1,K1) · e(C2,K2))
1/(ML′−ML)

= e(gt ,gα H2(GL)r)/
(

e(gt ,(H1(GL)H2(GL)ML′
)r) · e((H1(GL)H2(GL)ML)t ,g−r)

)1/(ML′−ML)

= e(gt ,gα H2(GL)r)/
(

e(g,H2(GL))tr·(ML′−ML)
)1/(ML′−ML)

= e(g,g)αt .

3.3 Security

Theorem 2. The above SRE scheme is indistinguishable under a chosen plaintext at-
tack in the random oracle model if the q-SMEBDH assumption holds where Um ≤ q.

Proof. Suppose there exists an adversary A that breaks the indistinguishability game
of the SRE scheme with a non-negligible advantage. A simulator B that solves the q-
SMEBDH assumption using A is given: a challenge tuple D = ((p,G,GT ,e),g,{gai ,
gb/ai}1≤i≤q,{gbai/a j}1≤i, j,i�= j≤q,gc) and T where T = T0 = e(g,g)bc or T = T1 =
e(g,g)d . Then B that interacts with A is described as follows:
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Setup: B first guesses challenge labels (GL′,ML′) such that ML′ is a member of GL′.
Next, it initializes two lists H1-List and H2-List for random oracles as empty sets. It
implicitly sets α = b and creates the public key as PK =

(

(p,G,GT ,e),g, H1,H2,Ω =

e(ga1 ,gb/a1)
)

.

Query:A may adaptively request hash queries or private key queries. Let MemSet(GL)
be a function that takes a group label GL as an input and outputs the set {MLi}
of members in the group, ρ(GL,ML) be a function that takes a group label GL
and a member label ML as inputs and outputs an index k of the member in the
group, and RevSetGL′,ML′(GL) be a function that outputs MemSet(GL) if GL �= GL′

or {ML′} if GL = GL′. For notational convenience, we use RevSet(GL) instead of
RevSetGL′,ML′(GL).

If this is an i-th H1 hash query on a label GL, then B handles this query as follows:

1. If there exists a tuple (GL,−,−) in the H1-List, then it returns H1(GL) from the
H1-List.

2. It sets H1(GL) = ∏∀MLk∈RevSet(GL)(g
aρ(GL,MLk ))−MLk · gh1,i by choosing a ran-

dom exponent h1,i ∈ Zp. Note that if GL = GL′, then it sets H1(GL′) =

(g
aρ(GL,ML j′ ))−ML′gh1,i since RevSet(GL′) = {ML′} where j′ is the index of MLj′

such that ML′ = MLj′ .
3. It saves a tuple (GL,h1,i,H1(GL)) to the H1-List and returns H1(GL).

If this is a H2 hash query on a label GL, then B handles this query as follows:

1. If there exists a tuple (GL,−,−) in the H2-List, then it returns H2(GL) from the
H2-List.

2. It sets H2(GL) = ∏∀MLk∈RevSet(GL) gaρ(GL,MLk) · gh2,i by choosing a random expo-

nent h2,i ∈ Zp. Note that if GL = GL′, then it sets H2(GL′) = g
aρ(GL,ML j′ )gh2,i since

RevSet(GL′) = {ML′} where j′ is the index of MLj′ such that ML′ = MLj′ .
3. It saves a tuple (GL,h2,i,H2(GL)) to the H2-List and returns H2(GL).

If this is a private key query for labels (GL,ML) where ML = MLj and ρ(GL,ML) = j,
then B handles this query as follows:

1. If (GL = GL′)∧ (ML �= ML′), then it aborts since it cannot create a private key.
2. It first retrieves a tuple (GL,h1,i,H1(GL)) for GL from H1-List and a tuple (GL,h2,i,

H2(GL)) for GL from H2-List.
3. Next, it selects a random exponent r′ ∈ Zp and creates a private key SK(GL,ML) by

implicitly setting r =−b/aρ(GL,MLj) + r′ as

K0 = ∏
∀MLk∈RevSet(GL)\{MLj}

(g
aρ(GL,MLk)

/aρ(GL,ML j )
·b
)−1(g

1/aρ(GL,ML j )
·b
)−h1,i ·H2(GL)r′ ,

K1 = ∏
∀MLk∈RevSet(GL)\{MLj}

(g
aρ(GL,MLk)

/aρ(GL,ML j )
·b
)MLk−MLj (g

1/aρ(GL,ML j)
·b
)−h1,i−h2,iMLj ·

(

H1(GL)H2(GL)MLj
)r′

,

K2 = g
1/aρ(GL,ML j)

·b
g−r′ .
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Challenge: A submits challenge labels (GL∗,ML∗) and two messages M∗
0 ,M

∗
1 . If

(GL′ �= GL∗) ∨ (ML′ �= ML∗), then B aborts the simulation since it failed to guess
the challenge labels. Otherwise, B flips a random coin γ ∈ {0,1} internally. Next, it
retrieves tuples (GL∗,h∗1,H1(GL∗)) and (GL∗,h∗2,H2(GL∗)) from H1-List and H2-List
respectively. It implicitly sets t = c and creates a challenge ciphertext as

C0 = T ·M∗
γ , C1 = gc, C2 = (gc)h∗1+h∗2ML∗ .

Output: Finally, A outputs a guess γ ′. If γ = γ ′, B outputs 0. Otherwise, it outputs 1.

To finish the proof, we first show that hash outputs, private keys, and the challenge
ciphertext are correctly distributed. The hash outputs are correctly distributed since new
random elements h1 and h2 are chosen for H1 and H2 hash queries. The private key is
correctly distributed since it satisfies the following equation

K0 = gα H2(GL)r = gb( ∏
∀MLk∈RevSet(GL)

gaρ(GL,MLk) ·gh1,i
)−b/aρ(GL,ML j)

+r′

= ∏
∀MLk∈RevSet(GL)\{MLj}

(g
aρ(GL,MLk)

/aρ(GL,ML j )
·b
)−1(g1/aρ(GL,MLk)

·b
)−h1,i ·H2(GL)r′ ,

K1 =
(

H1(GL)H2(GL)MLj
)r

=
(

∏
∀MLk∈RevSet(GL)

(gaρ(GL,MLk) )−MLk ·gh1,i·

(

∏
∀MLk∈RevSet(GL)

gaρ(GL,MLk) ·gh2,i
)MLj

)−b/aρ(GL,ML j)
+r′

= ∏
∀MLk∈RevSet(GL)\{MLj}

(g
aρ(GL,MLk)

/aρ(GL,ML j )
·b
)MLk−MLj · (g1/aρ(GL,ML j)

·b
)−h1,i−h2,iMLj ·

(

H1(GL)H2(GL)MLj
)r′

,

K2 = g−r = g
b/aρ(GL,ML j)

−r′
= g

1/aρ(GL,ML j)
·b

g−r′ .

Note that it cannot create a private key for (GL,ML) such that (GL = GL′)∧ (ML �=
ML′) since the element gb cannot be removed because of RevSet(GL′) \ {MLj} = /0.
The challenge ciphertext is also correctly distributed since it satisfies the following
equation

C0 = e(g,g)αtM∗
γ = e(g,g)bcM∗

γ ,

C1 = gt = gc,

C2 = (H1(GL∗)H2(GL∗)ML∗)t =
(

(gaρ(GL∗,ML∗) )−ML∗gh∗1 · (gaρ(GL∗,ML∗)gh∗2)ML∗)c

= (gc)h∗1+h∗2ML∗ .

Finally, we analyze the success probability of the above simulation. Let Good be
the event that the simulator successfully guesses the challenge labels. We have that
Pr[Good]≥ 1

Ug·Um
. If the event Good occurs, then the simulator does not abort. There-

fore, the success probability of the simulation is bounded by 1
Ug·Um

. This completes our
proof. ��
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3.4 Discussions

Fast Decryption. The simple decryption algorithm of our SRE scheme requires three
pairing operations and a one exponentiation operation. We can improve the performance
of the decryption algorithm by modifying the computation of the algorithm as M =

C0 · e(C1,K
−1
0 K1/(ML′−ML)

1 ) · e(C2,K
1/(ML′−ML)
2 ). In this case, the decryption algorithm

just consists of two pairing operations and two exponentiation operations.

Chosen-Ciphertext Security. The indistinguishability under a chosen-ciphertext attack
(IND-CCA) is similar to the indistinguishability under a chosen-plaintext attack (IND-
CPA) except that an adversary is allowed to request decryption queries on ciphertexts.
To provide the security of IND-CCA, we can use the transformation of Fujisaki and
Okamoto [11] since our scheme is proven in the random oracle model.

Removing Random Oracles. The proposed SRE scheme is only secure when two hash
functions H1 and H2 are modeled as random oracles. We can easily remove the random
oracles by simply selecting random group elements hi and wi for H1(GLi) and H2(GLi)
in the public key since the set of group labels is fixed and the total number of group
labels is a polynomial number in a security parameter. However, the public key size of
this method is quite large.

4 Subset Cover Framework

In this section, we define the subset cover framework and describe the subset difference
(SD) scheme. The formal definition of subset cover scheme is given in the full version
of this paper [18].

4.1 Full Binary Tree

A full binary tree T is a tree data structure where each node except the leaf nodes has
two child nodes. Let N be the number of leaf nodes in T . The number of all nodes in
T is 2N − 1 and for any 1 ≤ i ≤ 2N − 1 we denote by vi a node in T . The depth di of
a node vi is the length of the path from the root node to the node. The root node is at
depth zero. The depth of T is the length of the path from the root node to a leaf node.
A level of T is a set of all nodes at given depth. For any node vi ∈ T , Ti is defined as
a subtree that is rooted at vi. For any two nodes vi,v j ∈ T such that v j is a descendant
of vi, Ti, j is defined as a subtree Ti −Tj, that is, all nodes that are descendants of vi but
not v j. For any node vi ∈ T , Si is defined as the set of leaf nodes in Ti. Similarly, Si, j is
defined as the set of leaf nodes in Ti, j, that is, Si, j = Si \ S j.

For any node vi ∈ T , Li is defined as an identifier that is a fixed and unique string.
The identifier of each node in the tree is assigned as follows: Each edge in the tree is
assigned with 0 or 1 depending on whether the edge is connected to its left or right
child node. The identifier Li of a node vi is defined as the bitstring obtained by reading
all the labels of edges in the path from the root node to the node vi. We define ID(vi)
be a mapping from a node vi to an identifier Li. We also define ID(Ti) be a mapping
from a subtree Ti to the identifier Li of the node vi and ID(Ti, j) be a mapping from a
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subtree Ti, j to a tuple (Li,Lj) of identifiers. Similarly, we can define ID(Si) = ID(Ti)
and ID(Si, j) = ID(Ti, j).

For a full binary tree T and a subset R of leaf nodes, ST (T ,R) is defined as the
Steiner Tree induced by the set R and the root node, that is, the minimal subtree of T
that connects all the leaf nodes in R and the root node. we simply denote ST (T ,R) by
ST (R).

4.2 SD Scheme

The subset difference (SD) scheme is the subset cover scheme proposed by Naor et
al. [20]. We describe the SD scheme with a slight modification for the integration with
our SRE scheme.

SD.Setup(N): This algorithm takes as input the maximum number N of users. Let
N = 2n for simplicity. It first sets a full binary tree T of depth n. Each user is
assigned to a different leaf node in T . The collection S of SD is the set of all subsets
{Si, j} where vi,v j ∈ T and v j is a descendant of vi. It outputs the full binary tree T .

SD.Assign(T ,u): This algorithm takes as input the tree T and a user u ∈ N . Let vu be
the leaf node of T that is assigned to the user u. Let (vk0 ,vk1 , . . . ,vkn) be the path
from the root node vk0 to the leaf node vkn = vu. It first sets a private set PVu as an
empty one. For all i, j ∈ {k0,k1, . . . ,kn} such that v j is a descendant of vi, it adds
the subset Si, j defined by two nodes vi and v j in the path into PVu. It outputs the
private set PVu = {Si, j}.

SD.Cover(T ,R): This algorithm takes as input the tree T and a revoked set R of users.
It first sets a subtree T as ST (R), and then it builds a covering set CVR iteratively
by removing nodes from T until T consists of just a single node as follows:

1. It finds two leaf nodes vi and v j in T such that the least-common-ancestor v
of vi and v j does not contain any other leaf nodes of T in its subtree. Let vl

and vk be the two child nodes of v such that vi is a descendant of vl and v j is a
descendant of vk. If there is only one leaf node left, it makes vi = v j to the leaf
node, v to be the root of T and vl = vk = v.

2. If vl �= vi, then it adds the subset Sl,i to CVR; likewise, if vk �= v j, it adds the
subset Sk, j to CVR.

3. It removes from T all the descendants of v and makes v a leaf node.

It outputs the covering set CVR = {Si, j}.
SD.Match(CVR,PVu): This algorithm takes input as a covering set CVR = {Si, j} and

a private set PVu = {S′i, j}. It finds two subsets Si, j and S′i′, j′ such that Si, j ∈ CVR,
S′i′, j′ ∈ PVu, i = i′, d j = d j′ , and j �= j′ where d j is the depth of v j. If it found two
subsets, then it outputs (Si, j,S′i′, j′). Otherwise, it outputs ⊥.

Lemma 1 ( [20]). Let N be the number of leaf nodes in a full binary tree and r be the
size of a revoked set. In the SD scheme, the size of a private set is O(log2 N) and the
size of a covering set is at most 2r− 1.
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5 Revocation Encryption

In this section, we first propose a public-key revocation encryption (PKRE) scheme by
combining the SRE scheme and the subset cover scheme, and then we prove its security.
The formal definition of PKRE is given in the full version of this paper [18].

5.1 Construction

The basic idea of our PKRE scheme is to combine the SD scheme and the SRE scheme
that is a special type of public-key encryption (PKE). The idea of combining the SD
scheme with a PKE scheme was introduced by Dodis and Fazio [9]. Dodis and Fazio
showed that the key assignment method of Naor et al. [20] for the SD scheme can
be mimicked by using the delegation property of HIBE. In contrast to the method of
Dodis and Fazio, we show that a subset Si, j in the SD scheme can be easily mapped
to the group and member labels (GL,ML) of the SRE scheme by using the revocation
property of the SRE scheme that can revoke a single member in a group. That is, a
subset Si, j in the SD scheme is defined as the set of leaf nodes that belong to Ti but not
belong to Tj where Ti and Tj are subtrees with root nodes vi and v j respectively. This
subset Si, j is represented by two nodes vi and v j that have labels Li and Lj respectively.
To map the subset Si, j to labels (GL,ML), we define a group GL as the set of nodes in
Ti at the same level as the node v j and define a revoked member ML as the node v j.

Before presenting our PKRE scheme, we first define the universe U of SRE that is
derived from a full binary tree T as follows: Let Ti be a subtree of T that is rooted at vi.
A single group in U is defined as a set of nodes that are in the same level of Ti except
the level of vi. Suppose that the tree T has the number N of leaf nodes. In this case, the
maximum number of groups in U is N logN and the maximum number of members in a
groups is N since the number of internal nodes is N−1 and the maximum depth of each
subtree is logN −1. The subset Si, j of the SD scheme that uses T is easily converted to
the labels (GL = Li‖d j,ML = Lj) of the SRE scheme where (Li,Lj) is the identifier of
Si, j and d j is the depth of Lj.

Our PKRE scheme for the set N = {1, . . . ,N} of users is described as follows:

PKRE.Setup(1λ ,N): It first defines a full binary tree T by running SD.Setup(N).
Next, it obtains MKSRE and PKSRE by running SRE.Setup(1λ ,U) where U is
defined from T . It outputs a master key MK = MKSRE and a public key as
PK = (T ,PKSRE).

PKRE.GenKey(u,MK,PK): This algorithm takes as input a user u ∈ N , the mas-
ter key MK, and the public key PK. It first obtains a private set PVu = {Si, j} by
running SD.Assign(T ,u). Let d j be the depth of a node v j associated with Lj.
For all Si, j ∈ PVu, it obtains (Li,Lj) by applying ID(Si, j) and computes SKSRE,Si, j

by running SRE.GenKey((Li‖d j,Lj),MKSRE ,PKSRE). It outputs a private key as
SK = (PVu,{SKSRE,Si, j}Si, j∈PVu).

PKRE.Encrypt(R,M,PK): This algorithm takes as input a revoked set R ⊆N , a mes-
sage M ∈ GT , and the public key PK. It first finds a covering set CVR = {Si, j}
by running SD.Cover(T ,R). Let d j be the depth of a node v j associated with Lj.
For all Si, j ∈ CVR, it obtains (Li,Lj) by applying ID(Si, j) and computes CTSRE,Si, j
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by running SRE.Encrypt((Li‖d j,Lj),M,PKSRE). It outputs a ciphertext as CT =
(CVR,{CTSRE,Si, j}Si, j∈CVR).

PKRE.Decrypt(CT,SK,PK): This algorithm takes as input a ciphertext CT , a private
key SK, and the public key PK. It first finds a matching tuple (Si, j,S′i, j) by running
SD.Match(CVR,PVu). If it found a tuple, then it outputs a message M by running
SRE.Decrypt(CTSRE,Si, j ,SKSRE,S′i, j

,PKSRE). Otherwise, it outputs ⊥.

The correctness of the above PKRE scheme easily follows the correctness of the SD
scheme and that of the SRE scheme. If u /∈ R, then a user u can obtain two subsets
Si, j ∈ CVR and S′i′, j′ ∈ PVu from a ciphertext CT and his private key SK such that i =
i′,d j = d j′ , and j �= j′ from the correctness of the SD scheme. Next, he can derive two
labels (GL = Li‖d j,ML = Lj) and (GL′ = Li′ ‖d j′ ,ML′ = Lj′) for the SRE scheme from
the two subsets Si, j and S′i′, j′ where (Li,Lj) = ID(Si, j) and (Li′ ,Lj′) = ID(S′i′, j′). Note
that Li = Li′ ,d j = d j′ , and Lj �= Lj′ . Therefore, he can obtains a message M from the
correctness of the SRE scheme since GL = GL′ and ML �= ML′. If u ∈ R, then a user
u cannot obtain two subsets Si, j ∈ CVR and S′i′, j ∈ PVu such that i = i′,d j = d j′ , and
j �= j′ from the correctness of the SD scheme. Note that the correctness property is
only satisfied when an honest user simply runs the decryption algorithm of our PKRE
scheme.

5.2 Security

Theorem 3. The above PKRE scheme is indistinguishable under a chosen plaintext
attack if the SRE scheme is indistinguishable under a chosen plaintext attack.

Proof. Suppose that CVR∗ is the covering set of the challenge revoked set R∗

and the size of CVR∗ is w. The challenge ciphertext is described as CT ∗ =
(CVR,CTSRE,1, . . . ,CTSRE,w). The hybrid games G0, . . . ,Gi, . . . ,Gw for the security proof
are defined as follows:

Game G0: In this game, all ciphertext components CTSRE, j of the challenge cipher-
text are encryption on the message M∗

0 . That is, the challenge ciphertext CT ∗ is an
encryption on the message M∗

0 . Note that this game is the original security game
except that the challenge bit γ is fixed to 0.

Game Gh: This game is almost identical to the game Gh−1 except the ciphertext com-
ponent CTSRE,h since CTSRE,h in this game is an encryption on the message M∗

1 .
Specifically, in this game, the ciphertext component CTSRE, j for j ≤ h is an en-
cryption on the message M∗

1 and the ciphertext component CTSRE, j for h < j is an
encryption on the message M∗

0 .
Game Gw: In this game, all ciphertext components CTSRE, j of the challenge cipher-

text are encryption on the message M∗
1 . That is, the challenge ciphertext CT ∗ is an

encryption on the message M∗
1 . Note that this game is the original security game

except that the challenge bit γ is fixed to 1.
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Let SGh
A be the event that A outputs 0 in Gh. In Lemma 2, we prove that it is hard for

A to distinguish Gh−1 from Gh if the SRE scheme is secure. Thus, we have that

Pr[SG0
A ]−Pr[SGw

A ] = Pr[SG0
A ]+

w−1

∑
h=1

(

Pr[SGh
A ]−Pr[SGh

A ]
)

−Pr[SGw
A ]

≤
w

∑
h=1

∣
∣Pr[SGh−1

A ]−Pr[SGh
A ]

∣
∣≤ 2w ·AdvSRE

B (λ ).

Finally, we obtain the following inequality relation as

AdvPKRE
A (λ )≤ 1

2
·
∣
∣Pr[SG0

A ]−Pr[SGw
A ]

∣
∣≤ w ·AdvSRE

B (λ ).

Note that we already have AdvSRE(λ ) ≤ N2 logN ·Advq-SMEBDH(λ ) from Theorem 2
since Ug ≤ N logN and Um ≤ N. This completes our proof. ��

Lemma 2. If the SRE scheme is indistinguishable under a chosen plaintext attack, then
no polynomial time adversary can distinguish between Gh−1 and Gh with non-negligible
advantage.

The proof of this lemma is given in the full version of this paper [18].

5.3 Discussions

Efficiency. In our PKRE scheme, a public key consists of O(1) group elements, a pri-
vate key consists of O(log2 N) group elements, and a ciphertext consists of O(r) group
elements where r is the size of a revoked set. Additionally, the decryption algorithm
of our PKRE scheme just requires one decryption operation of the SRE scheme that
consists of two pairing operations and two exponentiation operations.

LSD Scheme. We can also combine our SRE scheme with the LSD scheme to construct
a PKRE scheme since the LSD scheme is just a special case of the SD scheme. If the
LSD scheme is used instead of the SD scheme, then the group elements of a private
key can be reduced from O(log2 N) to O(log1.5 N) by doubling the number of group
elements in a ciphertext.

Chosen-Ciphertext Security. By combining an SRE scheme that provides the IND-
CCA security and an one-time signature scheme that provides the strong unforgeability
(i.e., an adversary is unable to forge a new signature on the previously signed message.),
we can construct a PKRE scheme that achieves the IND-CCA security.

Trace and Revoke. Our PKRE scheme also provides the tracing property since it is
derived from the subset cover framework of Naor et al. [20]. We omit the description
of a tracing algorithm, but it is given in the full version of this paper [18]. Note that the
trace and revoke scheme derived from the subset cover framework can only trace to a
subset pattern in some colluding scenarios [17].
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6 Conclusion

In this paper, we revisited the methodology of the subset cover framework to construct
PKRE schemes, and introduced a new type of PKE named single revocation encryption
(SRE). We proposed an efficient SRE scheme with the constant size of ciphertexts, pri-
vate keys, and public keys, and proved its security in the random oracle model under
q-type assumption. The SRE scheme may have independent interests. One notable ad-
vantage of our SRE scheme is that the PKRE scheme using our SRE scheme maintains
the same efficiency parameter as the SD scheme (or the LSD scheme).

There are many interesting problems. The first one is to construct an efficient SRE
scheme with short public key without random oracles. We showed that the random
oracles in our SRE scheme can be removed. However, this approach has the problem of
large public key size. The second one is to reduce the size of private keys. One possible
approach is to use the Stratified SD (SSD) scheme of Goodrich et al. [15], but it is not
yet known whether the SSD scheme can be applicable in the public-key setting.
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