
Mirosław Kutyłowski
Jaideep Vaidya (Eds.)

 123

LN
CS

 8
71

3

19th European Symposium
on Research in Computer Security
Wroclaw, Poland, September 7–11, 2014, Proceedings, Part II

Computer Security –
ESORICS 2014

Lecture Notes in Computer Science 8713
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Mirosław Kutyłowski Jaideep Vaidya (Eds.)

Computer Security –
ESORICS 2014

19th European Symposium
on Research in Computer Security
Wrocław, Poland, September 7-11, 2014
Proceedings, Part II

13

Volume Editors

Mirosław Kutyłowski
Wrocław University of Technology
Wrocław, Poland
E-mail: miroslaw.kutylowski@pwr.edu.pl

Jaideep Vaidya
Rutgers, The State University of New Jersey
Newark, NJ, USA
E-mail: jsvaidya@business.rutgers.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-11211-4 e-ISBN 978-3-319-11212-1
DOI 10.1007/978-3-319-11212-1
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014947642

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

These volumes contain the papers selected for presentation at the 19th European
Symposium on Research in Computer Security (ESORICS 2014), held during
September 7–11, 2014, in Wroc�law, Poland. ESORICS has a two-decade-old
tradition of bringing together the international research community in a top-
quality event that covers all the areas of computer security, ranging from theory
to applications.

In response to the symposium’s call for papers, 234 papers were submitted
to the conference from 38 countries. The papers went through a careful review
process and were evaluated on the basis of their significance, novelty, technical
quality, as well as on their practical impact and/or their level of advancement
of the field’s foundations. Each paper received at least three independent re-
views, followed by extensive discussion. We finally selected 58 papers for the fi-
nal program, resulting in an acceptance rate of 24.79%. The authors of accepted
papers were requested to revise their papers, based on the comments received.
The program was completed with invited talks by Moti Yung from Google Inc.
and Columbia University, Stefano Paraboschi from Università di Bergamo, and
Shlomi Dolev from Ben Gurion University of the Negev. A special talk on privacy
protection was given by Wojciech Wiewiórowski, Inspector General for Personal
Data Protection in Poland.

An event like ESORICS 2014 depends on the volunteering efforts of a host of
individuals and the support of numerous institutes. There is a long list of people
who volunteered their time and energy to put together and organize the con-
ference, and who deserve special thanks. We are indebted to Jacek Cichoń, the
general chair of this symposium, for his continuous support. Thanks to all the
members of the Program Committee and the external reviewers for all their hard
work in evaluating the papers. We are also very grateful to all the people whose
work ensured a smooth organization process: the ESORICS Steering Commit-
tee, and its chair Pierangela Samarati in particular, for their support; Giovanni
Livraga, for taking care of publicity; Ma�lgorzata Korzeniowska for management
of the local arrangements, Kamil Kluczniak for the technical work of putting
the proceedings together; and the local Organizing Committee, in particular
Przemys�law Kobylański, Maciej Gebala, and Wojciech Wodo, for helping with
organization and taking care of local arrangements. We would also like to ex-
press our appreciation to everyone who organized the workshops (BADGERS,
DPM, QASA, SETOP SloT, STM, Smart ConDev S&P, UaESMC) co-located
with ESORICS. A number of organizations also deserve special thanks, includ-
ing Wroc�law University of Technology for acting as host, National Cryptology
Centre as a partner institution, and the ESORICS sponsors.

Finally, we would like to thank the submitters, authors, presenters, and par-
ticipants who, all together, made ESORICS 2014 a great success. We hope that

VI Preface

the papers in these volumes help you with your research and professional activi-
ties and serve as a source of inspiration during the difficult but fascinating route
toward an on-line world with adequate security and privacy.

September 2014 Miros�law Kuty�lowski
Jaideep Vaidya

Organization

Program Committee

Masayuki Abe NTT Secure Platform Laboratories, Japan
Gail-Joon Ahn Arizona State University, USA
Mikhail Atallah Purdue University, USA
Vijay Atluri Rutgers University, USA
Michael Backes Saarland University, Germany
Kun Bai IBM T.J. Watson Research Center, USA
Giampaolo Bella Universitá di Catania, Italy
Marina Blanton University of Notre Dame, USA
Kevin Butler University of Oregon, USA
Zhenfu Cao Shanghai-Jiao Tong University, PR China
Srdjan Capkun ETH Zurich, Switzerland
Liqun Chen Hewlett-Packard Laboratories, UK
Xiaofeng Chen Xidian University, PR China
Sherman S.M. Chow Chinese University of Hong Kong, SAR China
Veronique Cortier CNRS, LORIA, France
Marco Cova University of Birmingham, UK
Laszlo Csirmaz Central European University, Budapest,

Hungary
Frederic Cuppens TELECOM Bretagne, France
Nora Cuppens-Boulahia TELECOM Bretagne, France
Reza Curtmola New Jersey Institute of Technology, USA
Ozgur Dagdelen Technische Universität Darmstadt, Germany
Sabrina De Capitani

Di Vimercati Università degli Studi di Milano, Italy
Roberto Di Pietro Università di Roma Tre, Italy
Claudia Diaz KU Leuven, Belgium
Josep Domingo-Ferrer Università Rovira i Virgili, Catalonia
Wenliang Du Syracuse University, USA
Simon Foley University College Cork, Ireland
Philip W.L. Fong University of Calgary, Canada
Sara Foresti Università degli Studi di Milano, Italy
Keith Frikken Miami University, Ohio, USA
Dieter Gollmann Hamburg University of Technology, Germany
Dimitris Gritzalis Athens University of Economics and Business,

Greece
Ehud Gudes Ben-Gurion University, Israel
Thorsten Holz Ruhr University Bochum, Germany

VIII Organization

Yuan Hong University at Albany, SUNY, USA
Xinyi Huang Fujian Normal University, PR China
Sushil Jajodia George Mason University, USA
Sokratis Katsikas University of Piraeus, Greece
Stefan Katzenbeisser Technische Universität Darmstadt, Germany
Florian Kerschbaum SAP, Germany
Kwangjo Kim KAIST, Korea
Marek Klonowski Wroc�law University of Technology, Poland
Wenke Lee Georgia Institute of Technology, USA
Adam J. Lee University of Pittsburgh, USA
Helger Lipmaa University of Tartu, Estonia
Peng Liu The Pennsylvania State University, USA
Javier Lopez University of Malaga, Spain
Haibing Lu Santa Clara University, USA
Emil Lupu Imperial College, UK
Mark Manulis University of Surrey, UK
Krystian Matusiewicz Intel Technology Poland
Christoph Meinel Hasso-Plattner-Institut, Germany
Refik Molva EURECOM, France
David Naccache Ecole Normale Suprieure, France
Stefano Paraboschi Università di Bergamo, Italy
Gunther Pernul Universität Regensburg, Germany
Indrakshi Ray Colorado State University, USA
Christian Rechberger Technical University of Denmark
Kui Ren University of Buffalo, SUNY, USA
Ahmad-Reza Sadeghi Technische Universität Darmstadt, Germany
Rei Safavi-Naini University of Calgary, Canada
Pierangela Samarati Università degli Studi di Milano, Italy
Andreas Schaad SAP, Germany
Basit Shafiq Lahore University of Management Sciences,

Pakistan
Radu Sion Stony Brook University, USA
Shamik Sural IIT, Kharagpur, India
Willy Susilo University of Wollongong, Australia
Krzysztof Szczypiorski Warsaw University of Technology, Poland
Mahesh Tripunitara The University of Waterloo, Canada
Michael Waidner Fraunhofer SIT, Germany
Lingyu Wang Concordia University, Canada
Yang Xiang Deakin University, Australia
Xun Yi Victoria University, Australia
Ting Yu Qatar Computing Research Institute, Qatar
Meng Yu Virginia Commonwealth University, USA
Rui Zhang Chinese Academy of Sciences, PR China
Jianying Zhou Institute for Infocomm Research, Singapore

Table of Contents – Part II

Public-Key Revocation and Tracing Schemes with Subset Difference
Methods Revisited . 1

Kwangsu Lee, Woo Kwon Koo, Dong Hoon Lee, and Jong Hwan Park

NORX: Parallel and Scalable AEAD . 19
Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves

Even More Practical Secure Logging: Tree-Based Seekable Sequential
Key Generators . 37

Giorgia Azzurra Marson and Bertram Poettering

Large Universe Ciphertext-Policy Attribute-Based Encryption with
White-Box Traceability . 55

Jianting Ning, Zhenfu Cao, Xiaolei Dong, Lifei Wei, and
Xiaodong Lin

PPDCP-ABE: Privacy-Preserving Decentralized Ciphertext-Policy
Attribute-Based Encryption . 73

Jinguang Han, Willy Susilo, Yi Mu, Jianying Zhou, and Man Ho Au

Practical Direct Chosen Ciphertext Secure Key-Policy Attribute-Based
Encryption with Public Ciphertext Test . 91

Weiran Liu, Jianwei Liu, Qianhong Wu, Bo Qin, and Yunya Zhou

Privacy-Preserving Auditing for Attribute-Based Credentials 109
Jan Camenisch, Anja Lehmann, Gregory Neven, and Alfredo Rial

What’s the Gist? Privacy-Preserving Aggregation of User Profiles 128
Igor Bilogrevic, Julien Freudiger, Emiliano De Cristofaro, and
Ersin Uzun

Challenging Differential Privacy: The Case of Non-interactive
Mechanisms . 146

Raghavendran Balu, Teddy Furon, and Sébastien Gambs

Optimality and Complexity of Inference-Poof Data Filtering and
CQE . 165

Joachim Biskup, Piero A. Bonatti, Clemente Galdi, and Luigi Sauro

New Insight to Preserve Online Survey Accuracy and Privacy in Big
Data Era . 182

Joseph K. Liu, Man Ho Au, Xinyi Huang, Willy Susilo,
Jianying Zhou, and Yong Yu

X Table of Contents – Part II

Software Countermeasures for Control Flow Integrity of Smart Card C
Codes . 200

Jean-François Lalande, Karine Heydemann, and Pascal Berthomé

LeakWatch: Estimating Information Leakage from Java Programs 219
Tom Chothia, Yusuke Kawamoto, and Chris Novakovic

SigPath: A Memory Graph Based Approach for Program Data
Introspection and Modification . 237

David Urbina, Yufei Gu, Juan Caballero, and Zhiqiang Lin

ID-Based Two-Server Password-Authenticated Key Exchange 257
Xun Yi, Feng Hao, and Elisa Bertino

Modelling Time for Authenticated Key Exchange Protocols 277
Jörg Schwenk

Zero-Knowledge Password Policy Checks and Verifier-Based PAKE 295
Franziskus Kiefer and Mark Manulis

Bitcoin Transaction Malleability and MtGox . 313
Christian Decker and Roger Wattenhofer

Election Verifiability for Helios under Weaker Trust Assumptions 327
Véronique Cortier, David Galindo, Stéphane Glondu, and
Malika Izabachène

CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin 345
Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate

LESS Is More: Host-Agent Based Simulator for Large-Scale Evaluation
of Security Systems . 365

John Sonchack and Adam J. Aviv

Detecting Insider Information Theft Using Features from File Access
Logs . 383

Christopher Gates, Ninghui Li, Zenglin Xu, Suresh N. Chari,
Ian Molloy, and Youngja Park

SRID: State Relation Based Intrusion Detection for False Data
Injection Attacks in SCADA . 401

Yong Wang, Zhaoyan Xu, Jialong Zhang, Lei Xu,
Haopei Wang, and Guofei Gu

Click Fraud Detection on the Advertiser Side . 419
Haitao Xu, Daiping Liu, Aaron Koehl, Haining Wang, and
Angelos Stavrou

Botyacc: Unified P2P Botnet Detection Using Behavioural
Analysis and Graph Analysis . 439

Shishir Nagaraja

Table of Contents – Part II XI

Feature-Distributed Malware Attack: Risk and Defence 457
Byungho Min and Vijay Varadharajan

RootkitDet: Practical End-to-End Defense against Kernel Rootkits in
a Cloud Environment . 475

Lingchen Zhang, Sachin Shetty, Peng Liu, and Jiwu Jing

Modeling Network Diversity for Evaluating the Robustness of Networks
against Zero-Day Attacks . 494

Lingyu Wang, Mengyuan Zhang, Sushil Jajodia, Anoop Singhal, and
Massimiliano Albanese

Author Index . 513

Table of Contents – Part I

Detecting Malicious Domains via Graph Inference . 1
Pratyusa K. Manadhata, Sandeep Yadav, Prasad Rao, and
William Horne

Empirically Measuring WHOIS Misuse . 19
Nektarios Leontiadis and Nicolas Christin

EncDNS: A Lightweight Privacy-Preserving Name Resolution Service . . . 37
Dominik Herrmann, Karl-Peter Fuchs, Jens Lindemann, and
Hannes Federrath

Ubic: Bridging the Gap between Digital Cryptography and the Physical
World . 56

Mark Simkin, Dominique Schröder, Andreas Bulling, and Mario Fritz

Updaticator: Updating Billions of Devices by an Efficient, Scalable and
Secure Software Update Distribution over Untrusted Cache-enabled
Networks . 76

Moreno Ambrosin, Christoph Busold, Mauro Conti,
Ahmad-Reza Sadeghi, and Matthias Schunter

Local Password Validation Using Self-Organizing Maps 94
Diogo Mónica and Carlos Ribeiro

Verifiable Delegation of Computations with Storage-Verification
Trade-off . 112

Liang Feng Zhang and Reihaneh Safavi-Naini

Identity-Based Encryption with Post-Challenge Auxiliary Inputs for
Secure Cloud Applications and Sensor Networks . 130

Tsz Hon Yuen, Ye Zhang, Siu Ming Yiu, and Joseph K. Liu

Verifiable Computation over Large Database with Incremental
Updates . 148

Xiaofeng Chen, Jin Li, Jian Weng, Jianfeng Ma, and Wenjing Lou

DroidMiner: Automated Mining and Characterization of Fine-grained
Malicious Behaviors in Android Applications . 163

Chao Yang, Zhaoyan Xu, Guofei Gu, Vinod Yegneswaran, and
Phillip Porras

XIV Table of Contents – Part I

Detecting Targeted Smartphone Malware with Behavior-Triggering
Stochastic Models . 183

Guillermo Suarez-Tangil, Mauro Conti, Juan E. Tapiador, and
Pedro Peris-Lopez

TrustDump: Reliable Memory Acquisition on Smartphones 202
He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Sushil Jajodia

A Framework to Secure Peripherals at Runtime . 219
Fengwei Zhang, Haining Wang, Kevin Leach, and Angelos Stavrou

StealthGuard: Proofs of Retrievability with Hidden Watchdogs 239
Monir Azraoui, Kaoutar Elkhiyaoui, Refik Molva, and Melek Önen

An Efficient Cloud-Based Revocable Identity-Based Proxy
Re-encryption Scheme for Public Clouds Data Sharing 257

Kaitai Liang, Joseph K. Liu, Duncan S. Wong, and Willy Susilo

Verifiable Computation on Outsourced Encrypted Data 273
Junzuo Lai, Robert H. Deng, Hweehwa Pang, and Jian Weng

Verifiable Computation with Reduced Informational Costs and
Computational Costs . 292

Gang Xu, George T. Amariucai, and Yong Guan

Detangling Resource Management Functions from the TCB in
Privacy-Preserving Virtualization . 310

Min Li, Zili Zha, Wanyu Zang, Meng Yu, Peng Liu, and Kun Bai

Securely Outsourcing Exponentiations with Single Untrusted Program
for Cloud Storage . 326

Yujue Wang, Qianhong Wu, Duncan S. Wong, Bo Qin,
Sherman S.M. Chow, Zhen Liu, and Xiao Tan

Quantitative Workflow Resiliency . 344
John C. Mace, Charles Morisset, and Aad van Moorsel

Who Is Touching My Cloud . 362
Hua Deng, Qianhong Wu, Bo Qin, Jian Mao, Xiao Liu,
Lei Zhang, and Wenchang Shi

A Fast Single Server Private Information Retrieval Protocol with Low
Communication Cost . 380

Changyu Dong and Liqun Chen

Privacy-Preserving Complex Query Evaluation over Semantically
Secure Encrypted Data . 400

Bharath Kumar Samanthula, Wei Jiang, and Elisa Bertino

Table of Contents – Part I XV

Authorized Keyword Search on Encrypted Data . 419
Jie Shi, Junzuo Lai, Yingjiu Li, Robert H. Deng, and Jian Weng

Double-Authentication-Preventing Signatures . 436
Bertram Poettering and Douglas Stebila

Statistical Properties of Pseudo Random Sequences and Experiments
with PHP and Debian OpenSSL . 454

Yongge Wang and Tony Nicol

Efficient Hidden Vector Encryption with Constant-Size Ciphertext 472
Tran Viet Xuan Phuong, Guomin Yang, and Willy Susilo

Enabling Short Fragments for Uncoordinated Spread Spectrum
Communication . 488

Naveed Ahmed, Christina Pöpper, and Srdjan Capkun

Fingerprinting Far Proximity from Radio Emissions 508
Tao Wang, Yao Liu, and Jay Ligatti

A Cross-Layer Key Establishment Scheme in Wireless Mesh
Networks . 526

Yuexin Zhang, Yang Xiang, Xinyi Huang, and Li Xu

Author Index . 543

Public-Key Revocation and Tracing Schemes
with Subset Difference Methods Revisited

Kwangsu Lee1, Woo Kwon Koo1, Dong Hoon Lee1, and Jong Hwan Park2

1 CIST, Korea University, Korea
{guspin,kwk4386,donghlee}@korea.ac.kr

2 Sangmyung University, Korea
jhpark@smu.ac.kr

Abstract. Broadcast encryption is a very powerful primitive since it can send
an encrypted message to a set of users excluding a set of revoked users. Public-
key broadcast encryption (PKBE) is a special type of broadcast encryption such
that anyone can run the encryption algorithm to create an encrypted message
by using a public key. In this paper, we propose a new technique to construct an
efficient PKBE scheme by using the subset cover framework. First, we introduce a
new concept of public-key encryption named single revocation encryption (SRE)
and propose an efficient SRE scheme in the random oracle model. A user in
SRE is represented as a group that he belongs and a member in the group. In
SRE, a sender can create a ciphertext for a specified group where one member
in the group is revoked, and a receiver can decrypt the ciphertext if he belongs
to the group in the ciphertext and he is not revoked in the group. Second, we
show that the subset difference (SD) scheme (or the layered subset difference
(LSD) scheme) and an SRE scheme can be combined to construct a public-key
revocation encryption (PKRE) scheme such that a set of revoked users is specified
in a ciphertext. Our PKRE scheme using the LSD scheme and our SRE scheme
can reduce the size of private keys and public keys by logN factor compared with
the previous scheme of Dodis and Fazio.

Keywords: Public-key encryption, Broadcast encryption, Traitor tracing, Trace
and revoke, Bilinear maps.

1 Introduction

Broadcast encryption, introduced by Fiat and Naor [10], is a mechanism to efficiently
send an encrypted message to a set S of receivers by using a broadcast channel. The ap-
plication of broadcast encryption includes pay-TV systems, DVD content distribution
systems, and file systems and many others. Broadcast encryption itself is a very power-
ful primitive, but the functionality of broadcast encryption can also be increased when
it is combined with traitor tracing functionality. Traitor tracing was introduced by Chor,
Fiat, and Naor [7], and it enables a tracer to find a traitor who participated the creation
of a pirate decoder when a pirate decoder is given to the tracer. Trace and revoke is a
mechanism that combines broadcast encryption and traitor tracing, and it first finds a
traitor by using the tracing algorithm of traitor tracing and then revoke him by using the
encrypt algorithm of broadcast encryption [6, 20, 22].

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 1–18, 2014.
c© Springer International Publishing Switzerland 2014

2 K. Lee et al.

Public-key broadcast encryption (PKBE) is a special type of broadcast encryption
such that anyone can create a ciphertext for a set of receivers by using a publicly known
public key. Public-key trace and revoke (PKTR) is a public variant of trace and revoke.
There are some general methods for the construction of fully collusion resistant PKBE
schemes. The first method is to combine a subset cover scheme in the framework of
Naor, Naor, and Lotspiech [20] and an identity-based encryption (IBE) scheme (or a
hierarchical IBE (HIBE) scheme) [9, 20, 21]. The PKBE schemes of this method are
suitable for the revocation scenario where a small number of users are revoked since
the ciphertext size of the schemes is proportional to the size of revoked users. Addi-
tionally, this approach also provides the tracing functionality based of the subset cover
framework. However, the most efficient scheme of this method suggested by Dodis and
Fazio [9] that combines the layered subset difference (LSD) scheme of Halevy and
Shamir [16] and the HIBE scheme of Boneh et al. [2] has a demerit such that the size of
private keys is O(log2.5 N) and the size of public keys is O(logN) where N is the total
number of users in the system. The second method is to use the power of bilinear groups
to reduce the size of ciphertext, and many PKBE schemes were proposed after the work
of Boneh, Gentry, and Waters [4, 8, 19]. However, these schemes can not provide the
tracing functionality, and the size of public keys is quite large (or the cost of the decryp-
tion algorithm is expensive). The third method is to combine a private linear broadcast
encryption (PLBE) scheme that was introduced by Boneh, Sahai, and Waters [5] and a
PKBE scheme [6, 13, 25]. The main advantage of this approach is that it provides the
tracing functionality, but the storage requirement of these schemes are quite large since
the size of private keys and public keys of these schemes is O(

√
N) where N is the total

number of users in the system.
Reducing the size of private keys is very important since cryptographic key materials

are securely stored in an expensive tamper-resistant memory. In case of small devices,
the size of (private or public) keys and the cost of decryption operations are critical
issues since the manufacturing cost of small devices is limited and the battery is also
limited. As far as we know, there is no acceptable PKBE (or PKTR) scheme that can
meet this requirements.

1.1 Our Contributions

In this paper, we revisit the method of Dodis and Fazio [9] that combines the SD scheme
in the subset cover framework and a variant scheme of IBE to construct an efficient
PKBE scheme, and propose a new method for PKBE that can reduce the size of private
keys and public keys. The subset cover framework of Naor et al. [20] was very success-
ful to construct broadcast encryption or trace and revoke schemes in the symmetric-key
setting [15, 16, 20]. However, these schemes based on the subset cover framework in
the public-key setting does not provide the same efficiency parameters as those in the
symmetric-key setting since the underlying HIBE scheme multiplies the private key
size and the public key size of PKBE by logN factor [2, 9]. For instance, the PKBE
scheme that combines the LSD scheme and the HIBE scheme of Boneh et al. [2] has
the ciphertext size of O(r), the private key size of O(log2.5 N), and the public key size
of O(logN).

Public-Key Revocation and Tracing Schemes 3

Table 1. Comparison of public-key broadcast encryption schemes

Scheme CT Size SK Size PK Size Decrypt Time Tracing Assumption

BGW [4] O(1) O(1) O(N) 2P No q-Type

BGW [4] O(
√

N) O(1) O(
√

N) 2P No q-Type

Delerablée [8] O(1) O(1) O(smax) 2P No q-Type

LSW [19] O(r) O(1) O(1) rE + 2P No q-Type

NNL [21] O(r log N
r) O(logN) O(1) 1P Yes BDH

DF [9] O(r) O(log2.5 N) O(logN) 2P Yes q-Type

BW [6] O(
√

N) O(
√

N) O(
√

N) 4P Yes Static

Ours O(r) O(log1.5 N) O(1) 2E + 2P Yes q-Type

N = the maximum number of users, smax = the maximum size of a receiver set,

r = the size of a revoked set, E = exponentiation, P = pairing

To construct an efficient PKBE scheme by using the subset cover framework, we first
introduce single revocation encryption (SRE) that can be efficiently combined with the
subset difference (SD) scheme, and propose an efficient SRE scheme that is secure in
the random oracle model. A user in SRE is represented as a group label and a member
label in the group, and a sender can send an encrypted message to one specified group
except one member that was revoked in that group. If a user who belongs to the group
is not revoked in the group, then he can decrypt the ciphertext by using this private
key. Our SRE scheme has the ciphertext size of O(1), the private key size of O(1), and
the public key size of O(1), and it is secure in the random oracle model under q-type
assumption.

Next, we show that it is possible to construct an efficient public-key revocation en-
cryption (PKRE) scheme such that a set R of revoked users is specified in a ciphertext
by combining the SD scheme (or the LSD scheme) and the SRE scheme. Compared
to the previous PKBE scheme that combines the LSD scheme and the HIBE scheme
of Boneh et al. [2], our proposed PKRE scheme that combines the LSD scheme and
our SRE scheme has the shorter size of private keys and public keys. The comparison
between previous PKBE schemes and our schemes is given in the Table 1. In the table,
the PKBE scheme of Dodis and Fazio is the combination of the LSD scheme and the
HIBE scheme of Boneh et al. [2], and our PKRE scheme is the combination of the LSD
scheme and our SRE scheme.

1.2 Our Technique

The main idea of our PKRE scheme is to invent a new type of public-key encryption
(PKE) that has short private key size and can be integrated with the SD scheme of the
subset cover framework. In order to understand our technique, we first review the SD
scheme of Naor et al. [20]. In a full binary tree T , a subtree Ti rooted at a node vi is
defined as the set of all nodes in Ti and a subtree Ti, j is defined as the set of nodes in

4 K. Lee et al.

Ti−Tj where a node v j is a descendant of a node vi. In the SD scheme, a user in the
SD scheme is assigned to a leaf node in T , and a subset Si, j is defined as the set of leaf
nodes in Ti, j. A user in a leaf node vu is associated with the set PVu of subsets Si, j where
vi and v j are two nodes in the path from the root node of T to the leaf node vu. The set S
of receivers is associated with the set CV of disjoint subsets Si, j that covers S. If a user u
is not revoked, then he can find two subsets Si, j ∈CV and Si′, j′ ∈ PVu such that vi = vi′ ,
d j = d j′ , and v j �= v j′ where d j is the depth of a node v j. Next, the user can decrypt the
ciphertext component that is related with Si, j by using the private key components that
are related with PVu.

One critical condition for the decryption using the SD scheme is that the inequality
v j �= v j′ should be satisfied. For this inequality, Naor et al. [20] used the key derivation
property of a key assignment algorithm, and Dodis and Fazio [9] used the delegation
property of a key generation algorithm in HIBE. To devise a new technique to solve
this issue, we look at the IBRE scheme of Lewko, Sahai, and Waters [19]. The notable
property of the IBRE scheme is that the decryption is successful only when ID is not
equal to ID′ where ID is associated with a ciphertext and ID′ is associated with a private
key. However, the direct combination of this IBRE scheme and the SD scheme is not
successful since the IBRE scheme does not support an equality condition. Therefore,
we construct an SRE scheme by modifying this IBRE scheme to support two conditions
of equality and inequality.

As described in the previous section, a user in SRE is represented as labels (GL,ML)
where GL is a group label and ML is a member label in the group, and a sender creates a
ciphertext with labels (GL′,ML′) for all member in the group GL′ except the one mem-
ber ML′ in the group. Thus a receiver who has a private key with labels (GL,ML) can
decrypt the ciphertext with labels (GL′,ML′) if (GL = GL′)∧ (ML �= ML′). Therefore,
SRE supports the equality of group labels and the inequality of member labels. To inte-
grate the SRE scheme that uses group and member labels (GL,ML) with the SD scheme
that uses subsets Si, j in a full binary tree, we need a mapping from the subset Si, j to the
labels (GL,ML). A subset Si, j is defined by two nodes vi,v j and a subtree Ti is defined
by one node vi. For the mapping function from the subset Si, j to labels (GL,ML), we
define the set of all nodes in the subtree Ti that has the same depth as v j as a one group,
and we also define the nodes in the group as the members of the group. That is, if the
nodes vi and v j of Si, j in the SD scheme have identifiers Li and Lj respectively, then the
labels in the SRE scheme are represented as GL = Li‖d j and ML = Lj where d j is the
depth of v j.

1.3 Related Work

Broadcast Encryption. As mentioned, the concept of broadcast encryption was intro-
duced by Fiat and Naor [10] and broadcast encryption can efficiently send an encrypted
message to a set of receivers through a broadcast channel. Many broadcast encryption
schemes including the scheme of Fiat and Naor were designed to be secure against a
collusion of t users. Naor, Naor, and Lotspiech [20] proposed a general method called
the subset cover framework, and they proposed symmetric-key revocation schemes such

Public-Key Revocation and Tracing Schemes 5

that a center can broadcast an encrypted message to all users except r number of revoked
users. They proposed two broadcast encryption schemes of the subset cover framework,
named as the complete subtree (CS) and the subset difference (SD) scheme. Halevy
and Shamir [16] proposed the layered subset difference (LSD) scheme and Goodrich et
al. [15] proposed the stratified subset difference (SSD) scheme.

Public-key broadcast encryption (PKBE) is a special type of broadcast encryption
such that anyone can send an encrypted message to a set of receivers through a broadcast
channel by using a public key. Naor et al. [20] observed that their CS scheme can be
combined with the identity-based encryption (IBE) scheme of Boneh and Franklin [3] to
reduce the size of public keys in PKBE. Dodis and Fazio [9] showed that the SD scheme
(or the LSD scheme) can also be combined with a hierarchical IBE (HIBE) scheme to
construct an efficient PKBE scheme. Note that the private key size of this PKBE scheme
is larger than that of the original LSD scheme in the symmetric-key setting. Boneh,
Gentry, and Waters [4] proposed the first fully collusion-resistant PKBE scheme that
has the constant size of ciphertexts based on bilinear groups. Their first PKBE scheme
has the ciphertext size of O(1), the private key size of O(1), and the public key size of
O(N), and their second PKBE scheme has the ciphertext size of O(

√
N), the private key

size of O(1), and the public key size of O(
√

N) where N is the number of users in the
system. After the construction of Boneh et al. [4], many other PKBE schemes based on
bilinear groups were proposed [8, 14, 19, 23].

Traitor Tracing. The concept of traitor tracing was introduced by Chor, Fiat, and Naor
[7] and traitor tracing enables a tracer who is given a pirate decoder to detect at least one
user who participated the creation of the pirate decoder. Many traitor tracing schemes
were designed to be secure against a collusion of t users. Fully collusion resistant traitor
tracing schemes were proposed based on bilinear groups [5, 13, 24]. Abdalla et al. [1]
proposed the concept of identity-based traitor tracing (IBTT) and constructed an IBTT
scheme.

Trace and Revoke. Trace and revoke is broadcast encryption combined with traitor
tracing such that it first finds a user whose private key is compromised by using the
tracing algorithm of traitor tracing and then it revokes the user by using the revocation
algorithm of broadcast encryption [20,22]. Many trace and revoke schemes were secure
against a collusion of t users [22]. Naor et al. [20] proposed the first fully collusion
resistant trace and revoke schemes by using the general method of the subset cover
framework.

Public-key trace and revoke (PKTR) is a special type of trace and revoke such that
anyone can trace traitors and revoke the user by using a public key. The PKBE scheme
of Dodis and Fazio [9] can also be a PKTR scheme since their scheme also follows
the subset cover framework. Boneh and Waters [6] proposed a fully collusion resistant
PKTR scheme based on composite order bilinear groups and proved its adaptive secu-
rity by combining the PKBE scheme of Boneh et al. [4] and the traitor tracing scheme
of Boneh et al. [5]. The efficiency of this scheme was improved by using prime order
bilinear groups [13,25]. Furukawa and Attrapadung [12] proposed a PKTR scheme with
short private keys, but the public key size of this is quite large and the security is only
proven in the generic group model.

6 K. Lee et al.

2 Preliminaries

In this section, we briefly review bilinear groups and introduce the complexity assump-
tion of our scheme.

2.1 Bilinear Groups

Let G and GT be multiplicative cyclic groups of prime order p. Let g be a generator of
G. The bilinear map e : G×G→GT has the following properties:

1. Bilinearity: ∀u,v ∈G and ∀a,b ∈ Zp, e(ua,vb) = e(u,v)ab.
2. Non-degeneracy: ∃g such that e(g,g) has order p, that is, e(g,g) is a generator of

GT .

We say that G,GT are bilinear groups if the group operations in G and GT as well as
the bilinear map e are all efficiently computable.

2.2 Complexity Assumptions

To prove the security of our PKRE scheme, we introduce a new assumption called
q-Simplified Multi-Exponent Bilinear Diffie-Hellman (q-SMEBDH) assumption. This
q-SMEBDH assumption is derived from the q-Multi-Exponent Bilinear Diffie-Hellman
(q-MEBDH) assumption that was introduced by Lewko, Sahai, and Waters [19] with a
slight simplification. Our new assumption is secure in the generic group model by using
the master theorem of Boneh, Boyen, and Goh [2].

Assumption 1 (q-Simplified Multi-Exponent Bilinear Diffie-Hellman, q-
SMEBDH). Let (p,G,GT ,e) be a description of the bilinear group of prime
order p with the security parameter λ . Let g be a generator of G. The q-SMEBDH
assumption is that if the challenge values

D = ((p,G,GT ,e), g, {gai , gb/ai}1≤i≤q, {gbai/a j}1≤i, j,i�= j≤q, gc) and T

are given, no PPT algorithm B can distinguish T = T0 = e(g,g)bc from T = T1 =
e(g,g)d with more than a negligible advantage. The advantage of B is defined as
Advq-SMEBDH

B (λ) =
∣∣Pr[B(D,T0) = 0]−Pr[B(D,T1) = 0]

∣∣ where the probability is taken
over the random choice of a1, . . . ,aq,b,c,d ∈ Zp.

3 Single Revocation Encryption

In this section, we define single revocation encryption (SRE) and the security model of
SRE, and then we propose an SRE scheme and prove its security in the random oracle
model.

Public-Key Revocation and Tracing Schemes 7

3.1 Definitions

Single revocation encryption (SRE) is a special type of public-key broadcast encryption
(PKBE) such that a single user in a group can be revoked. That is, a sender in SRE
can securely transmit a message to the members of a specified group except the single
revoked member of the group. In SRE, the universe U is defined as the set of many
groups that consist of many members. Note that the maximum number of groups and
the maximum number of members in a group is a polynomial number in a security
parameter. A center first generates a master key and a public key for SRE by using
a setup algorithm, and each user specified by a group label and a member label can
receive his private key from the center. To transmit a message, a sender computes a
ciphertext by specifying a group label and a revoked member in the group. If a user
belongs to the group in the ciphertext and he is not revoked, then he can decrypt the
ciphertext by using his private key. The following is the syntax of SRE.

Definition 1 (Single Revocation Encryption). A SRE scheme for the universe U of
groups and members consists of four algorithms Setup, GenKey, Encrypt, and Decrypt,
which are defined as follows:

Setup(1λ ,U). The setup algorithm takes as input a security parameter 1λ and the
universe U of groups and members. It outputs a master key MK and a public key
PK.

GenKey((GL,ML),MK,PK). The key generation algorithm takes as input labels
(GL,ML), the master key MK, and the public key PK. It outputs a private key
SK for the labels (GL,ML).

Encrypt((GL,ML),M,PK). The encryption algorithm takes as input labels (GL,ML),
a message M ∈M, and the public key PK. It outputs a ciphertext CT for (GL,ML)
and M.

Decrypt(CT,SK,PK). The decryption algorithm takes as input a ciphertext CT for
labels (GL,ML), a private key SK for labels (GL′,ML′), and the public key PK. It
outputs an encrypted message M or ⊥.

The correctness property of SRE is defined as follows: For all MK,PK generated by
Setup, any SKu generated by GenKey, and any M, it is required that

– If (GL = GL′)∧(ML �= ML′), then Decrypt(Encrypt((GL,ML),M,PP),SK(GL′ ,ML′),
PK) = M.

– If (GL �= GL′)∨(ML = ML′), then Decrypt(Encrypt((GL,ML),M,PP),SK(GL′ ,ML′),
PK) =⊥ with all but negligible probability.

The security property of SRE is defined as indistinguishability. The indistinguisha-
bility game of SRE can be similarly defined by modifying the indistinguishability game
of PKBE. In this game, an adversary is first given a public key of SRE, and then he
can obtain many private keys for labels. In the challenge step, the adversary submits
challenge labels and two challenge messages, and then he receives a challenge cipher-
text. Finally, the adversary outputs a guess for the random coin that is used to create the
challenge ciphertext. If the guess of the adversary is correct, then the adversary wins
the game. The following is the formal definition of indistinguishability.

8 K. Lee et al.

Definition 2 (Indistinguishability). The indistinguishability property of SRE under a
chosen plaintext attack is defined in terms of the following game between a challenger
C and a PPT adversary A:

1. Setup: C runs Setup(1λ ,U) to generate a master key MK and a public key PK. It
keeps MK to itself and gives PK to A.

2. Query: A adaptively requests private keys for labels (GL1,ML1), . . . ,(GLq,MLq).
In response, C gives the corresponding private keys SK1, . . . ,SKq to A by running
GenKey((GLi,MLi),MK,PK).

3. Challenge: A submits challenge labels (GL∗,ML∗) and two messages M∗
0 ,M

∗
1

with the equal length subject to the restriction: for all (GLi,MLi) of private key
queries, it is required that (GLi �= GL∗) or ((GLi = GL∗)∧ (MLi = ML∗)). C flips
a random coin γ ∈ {0,1} and gives the challenge ciphertext CT ∗ to A by running
Encrypt((GL∗,ML∗),M∗

γ ,PK).
4. Guess: A outputs a guess γ ′ ∈ {0,1} of γ , and wins the game if γ = γ ′.

The advantage of A is defined as AdvSRE
A (λ) =

∣∣Pr[γ = γ ′]− 1
2

∣∣ where the probability
is taken over all the randomness of the game. A SRE scheme is indistinguishable under
a chosen plaintext attack if for all PPT adversary A, the advantage of A in the above
game is negligible in the security parameter λ .

3.2 Construction

Our SRE scheme is inspired by the IBRE scheme of Lewko, Sahai, and Waters [19]
that employs the “two equation” technique. In the two equation technique, a cipher-
text is associated with a revoked set R = {ID1, . . . , IDr} of users and a user is associ-
ated with an identity ID. If a user is not revoked (ID �= IDi), then he will obtain two
independent equations and can decrypt the ciphertext. However, if a user is revoked
(ID = IDi), then he will obtain two dependent equations and thus cannot decrypt the
ciphertext. Lewko et al. [19] constructed a IBRE scheme that has private keys of con-
stant size, public keys of constant size, and ciphertexts of O(r) size. We construct an
SRE scheme that enables a sender to broadcast a ciphertext to a given group except a
one specified member in the group by slightly modifying the IBRE scheme of Lewko
et al. First, the IBRE scheme can be modified to revoke a single user instead of mul-
tiple users, and then the modified scheme has a private key SK = (gα wr,(hwID)r,g−r)
and a ciphertext CT = (e(g,g)αtM,gt ,(hwID)t) where ID is a user identifier. How-
ever this modified scheme does not support groups. To support groups, we first rep-
resent a user identifier ID as labels (GL,ML) of a group and a member, and use
hash functions H1,H2 to select unique h,w values for each group. Then the modified
scheme has a private key SK = (gαH2(GL)r,(H1(GL)H2(GL)ML)r,g−r) and a cipher-
text CT = (e(g,g)αt ,gt ,(H1(GL)H2(GL)ML)t) where GL is a group label and ML is a
member label.

Let U = {(GLi,{MLj})} be the universe of groups and members where the max-
imum number Ug of groups is a polynomial number in a security parameter and the
maximum number Um of members in a group is also a polynomial numbers in a secu-
rity parameter. Our SRE scheme for the universe U is described as follows:

Public-Key Revocation and Tracing Schemes 9

SRE.Setup(1λ ,U): This algorithm first generates the bilinear groups G of prime order
p of bit size Θ(λ). It chooses a random element g∈G. It selects a random exponent
α ∈ Zp. It outputs a master key MK = gα and a public key as

PK =
(

(p,G,GT ,e), g, H1,H2, Ω = e(g,g)α
)
.

SRE.GenKey((GL,ML),MK,PK): This algorithm takes as input labels (GL,ML), the
master key MK, and the public key PK. It selects a random exponent r ∈ Zp and
outputs a private key by implicitly including (GL,ML) as

SK(GL,ML) =
(

K0 = gα H2(GL)r , K1 = (H1(GL)H2(GL)ML)r, K2 = g−r
)
.

SRE.Encrypt((GL,ML),M,PK): This algorithm takes as input labels (GL,ML), a
message M ∈ GT , and the public key PK. It chooses a random exponent t ∈ Zp

and outputs a ciphertext by implicitly including (GL,ML) as

CT(GL,ML) =
(

C0 = Ω tM, C1 = gt , C2 = (H1(GL)H2(GL)ML)t
)
.

SRE.Decrypt(CT(GL,ML),SK(GL′,ML′),PK): This algorithm takes as input a ciphertext
CT(GL,ML), a private key SK(GL′,ML′), and the public key PK. If (GL = GL′)∧(ML �=
ML′), then it outputs a message as

M = C0 · e(C1,K0)−1 · (e(C1,K1) · e(C2,K2))1/(ML′−ML).

Otherwise, it outputs⊥.

The correctness of the above SRE scheme is easily verified by the following
equation.

e(C1,K0)/(e(C1,K1) · e(C2,K2))1/(ML′−ML)

= e(gt ,gα H2(GL)r)/
(

e(gt ,(H1(GL)H2(GL)ML′)r) · e((H1(GL)H2(GL)ML)t ,g−r)
)1/(ML′−ML)

= e(gt ,gα H2(GL)r)/
(

e(g,H2(GL))tr·(ML′−ML)
)1/(ML′−ML)

= e(g,g)αt .

3.3 Security

Theorem 2. The above SRE scheme is indistinguishable under a chosen plaintext at-
tack in the random oracle model if the q-SMEBDH assumption holds where Um ≤ q.

Proof. Suppose there exists an adversary A that breaks the indistinguishability game
of the SRE scheme with a non-negligible advantage. A simulator B that solves the q-
SMEBDH assumption using A is given: a challenge tuple D = ((p,G,GT ,e),g,{gai ,
gb/ai}1≤i≤q,{gbai/a j}1≤i, j,i�= j≤q,gc) and T where T = T0 = e(g,g)bc or T = T1 =
e(g,g)d . Then B that interacts with A is described as follows:

10 K. Lee et al.

Setup: B first guesses challenge labels (GL′,ML′) such that ML′ is a member of GL′.
Next, it initializes two lists H1-List and H2-List for random oracles as empty sets. It
implicitly sets α = b and creates the public key as PK =

(
(p,G,GT ,e),g, H1,H2,Ω =

e(ga1 ,gb/a1)
)
.

Query:Amay adaptively request hash queries or private key queries. Let MemSet(GL)
be a function that takes a group label GL as an input and outputs the set {MLi}
of members in the group, ρ(GL,ML) be a function that takes a group label GL
and a member label ML as inputs and outputs an index k of the member in the
group, and RevSetGL′,ML′(GL) be a function that outputs MemSet(GL) if GL �= GL′

or {ML′} if GL = GL′. For notational convenience, we use RevSet(GL) instead of
RevSetGL′,ML′(GL).

If this is an i-th H1 hash query on a label GL, then B handles this query as follows:

1. If there exists a tuple (GL,−,−) in the H1-List, then it returns H1(GL) from the
H1-List.

2. It sets H1(GL) = ∏∀MLk∈RevSet(GL)(gaρ(GL,MLk))−MLk · gh1,i by choosing a ran-
dom exponent h1,i ∈ Zp. Note that if GL = GL′, then it sets H1(GL′) =

(g
aρ(GL,ML j′))−ML′gh1,i since RevSet(GL′) = {ML′} where j′ is the index of MLj′

such that ML′ = MLj′ .
3. It saves a tuple (GL,h1,i,H1(GL)) to the H1-List and returns H1(GL).

If this is a H2 hash query on a label GL, then B handles this query as follows:

1. If there exists a tuple (GL,−,−) in the H2-List, then it returns H2(GL) from the
H2-List.

2. It sets H2(GL) = ∏∀MLk∈RevSet(GL) gaρ(GL,MLk) · gh2,i by choosing a random expo-

nent h2,i ∈ Zp. Note that if GL = GL′, then it sets H2(GL′) = g
aρ(GL,ML j′) gh2,i since

RevSet(GL′) = {ML′} where j′ is the index of MLj′ such that ML′ = MLj′ .
3. It saves a tuple (GL,h2,i,H2(GL)) to the H2-List and returns H2(GL).

If this is a private key query for labels (GL,ML) where ML = MLj and ρ(GL,ML) = j,
then B handles this query as follows:

1. If (GL = GL′)∧ (ML �= ML′), then it aborts since it cannot create a private key.
2. It first retrieves a tuple (GL,h1,i,H1(GL)) for GL from H1-List and a tuple (GL,h2,i,

H2(GL)) for GL from H2-List.
3. Next, it selects a random exponent r′ ∈ Zp and creates a private key SK(GL,ML) by

implicitly setting r =−b/aρ(GL,MLj) + r′ as

K0 = ∏
∀MLk∈RevSet(GL)\{MLj}

(g
aρ(GL,MLk)/aρ(GL,ML j)

·b
)−1(g

1/aρ(GL,ML j)
·b

)−h1,i ·H2(GL)r′ ,

K1 = ∏
∀MLk∈RevSet(GL)\{MLj}

(g
aρ(GL,MLk)/aρ(GL,ML j)

·b
)MLk−MLj (g

1/aρ(GL,ML j)
·b

)−h1,i−h2,iMLj ·

(
H1(GL)H2(GL)MLj

)r′
,

K2 = g
1/aρ(GL,ML j)

·b
g−r′ .

Public-Key Revocation and Tracing Schemes 11

Challenge: A submits challenge labels (GL∗,ML∗) and two messages M∗
0 ,M

∗
1 . If

(GL′ �= GL∗) ∨ (ML′ �= ML∗), then B aborts the simulation since it failed to guess
the challenge labels. Otherwise, B flips a random coin γ ∈ {0,1} internally. Next, it
retrieves tuples (GL∗,h∗1,H1(GL∗)) and (GL∗,h∗2,H2(GL∗)) from H1-List and H2-List
respectively. It implicitly sets t = c and creates a challenge ciphertext as

C0 = T ·M∗
γ , C1 = gc, C2 = (gc)h∗1+h∗2ML∗ .

Output: Finally,A outputs a guess γ ′. If γ = γ ′, B outputs 0. Otherwise, it outputs 1.

To finish the proof, we first show that hash outputs, private keys, and the challenge
ciphertext are correctly distributed. The hash outputs are correctly distributed since new
random elements h1 and h2 are chosen for H1 and H2 hash queries. The private key is
correctly distributed since it satisfies the following equation

K0 = gα H2(GL)r = gb(∏
∀MLk∈RevSet(GL)

gaρ(GL,MLk) ·gh1,i
)−b/aρ(GL,ML j)

+r′

= ∏
∀MLk∈RevSet(GL)\{MLj}

(g
aρ(GL,MLk)/aρ(GL,ML j)

·b
)−1(g1/aρ(GL,MLk)·b)−h1,i ·H2(GL)r′ ,

K1 =
(
H1(GL)H2(GL)MLj

)r

=
(

∏
∀MLk∈RevSet(GL)

(gaρ(GL,MLk))−MLk ·gh1,i·

(
∏

∀MLk∈RevSet(GL)

gaρ(GL,MLk) ·gh2,i
)MLj

)−b/aρ(GL,ML j)
+r′

= ∏
∀MLk∈RevSet(GL)\{MLj}

(g
aρ(GL,MLk)/aρ(GL,ML j)

·b
)MLk−MLj · (g

1/aρ(GL,ML j)
·b

)−h1,i−h2,iMLj ·

(
H1(GL)H2(GL)MLj

)r′
,

K2 = g−r = g
b/aρ(GL,ML j)

−r′
= g

1/aρ(GL,ML j)
·b

g−r′ .

Note that it cannot create a private key for (GL,ML) such that (GL = GL′)∧ (ML �=
ML′) since the element gb cannot be removed because of RevSet(GL′) \ {MLj} = /0.
The challenge ciphertext is also correctly distributed since it satisfies the following
equation

C0 = e(g,g)αtM∗
γ = e(g,g)bcM∗

γ ,

C1 = gt = gc,

C2 = (H1(GL∗)H2(GL∗)ML∗)t =
(
(gaρ(GL∗,ML∗))−ML∗gh∗1 · (gaρ(GL∗,ML∗)gh∗2)ML∗)c

= (gc)h∗1+h∗2ML∗ .

Finally, we analyze the success probability of the above simulation. Let Good be
the event that the simulator successfully guesses the challenge labels. We have that
Pr[Good]≥ 1

Ug·Um
. If the event Good occurs, then the simulator does not abort. There-

fore, the success probability of the simulation is bounded by 1
Ug·Um

. This completes our
proof. ��

12 K. Lee et al.

3.4 Discussions

Fast Decryption. The simple decryption algorithm of our SRE scheme requires three
pairing operations and a one exponentiation operation. We can improve the performance
of the decryption algorithm by modifying the computation of the algorithm as M =

C0 · e(C1,K
−1
0 K1/(ML′−ML)

1) · e(C2,K
1/(ML′−ML)
2). In this case, the decryption algorithm

just consists of two pairing operations and two exponentiation operations.

Chosen-Ciphertext Security. The indistinguishability under a chosen-ciphertext attack
(IND-CCA) is similar to the indistinguishability under a chosen-plaintext attack (IND-
CPA) except that an adversary is allowed to request decryption queries on ciphertexts.
To provide the security of IND-CCA, we can use the transformation of Fujisaki and
Okamoto [11] since our scheme is proven in the random oracle model.

Removing Random Oracles. The proposed SRE scheme is only secure when two hash
functions H1 and H2 are modeled as random oracles. We can easily remove the random
oracles by simply selecting random group elements hi and wi for H1(GLi) and H2(GLi)
in the public key since the set of group labels is fixed and the total number of group
labels is a polynomial number in a security parameter. However, the public key size of
this method is quite large.

4 Subset Cover Framework

In this section, we define the subset cover framework and describe the subset difference
(SD) scheme. The formal definition of subset cover scheme is given in the full version
of this paper [18].

4.1 Full Binary Tree

A full binary tree T is a tree data structure where each node except the leaf nodes has
two child nodes. Let N be the number of leaf nodes in T . The number of all nodes in
T is 2N− 1 and for any 1 ≤ i ≤ 2N− 1 we denote by vi a node in T . The depth di of
a node vi is the length of the path from the root node to the node. The root node is at
depth zero. The depth of T is the length of the path from the root node to a leaf node.
A level of T is a set of all nodes at given depth. For any node vi ∈ T , Ti is defined as
a subtree that is rooted at vi. For any two nodes vi,v j ∈ T such that v j is a descendant
of vi, Ti, j is defined as a subtree Ti−Tj, that is, all nodes that are descendants of vi but
not v j. For any node vi ∈ T , Si is defined as the set of leaf nodes in Ti. Similarly, Si, j is
defined as the set of leaf nodes in Ti, j, that is, Si, j = Si \ S j.

For any node vi ∈ T , Li is defined as an identifier that is a fixed and unique string.
The identifier of each node in the tree is assigned as follows: Each edge in the tree is
assigned with 0 or 1 depending on whether the edge is connected to its left or right
child node. The identifier Li of a node vi is defined as the bitstring obtained by reading
all the labels of edges in the path from the root node to the node vi. We define ID(vi)
be a mapping from a node vi to an identifier Li. We also define ID(Ti) be a mapping
from a subtree Ti to the identifier Li of the node vi and ID(Ti, j) be a mapping from a

Public-Key Revocation and Tracing Schemes 13

subtree Ti, j to a tuple (Li,Lj) of identifiers. Similarly, we can define ID(Si) = ID(Ti)
and ID(Si, j) = ID(Ti, j).

For a full binary tree T and a subset R of leaf nodes, ST (T ,R) is defined as the
Steiner Tree induced by the set R and the root node, that is, the minimal subtree of T
that connects all the leaf nodes in R and the root node. we simply denote ST (T ,R) by
ST (R).

4.2 SD Scheme

The subset difference (SD) scheme is the subset cover scheme proposed by Naor et
al. [20]. We describe the SD scheme with a slight modification for the integration with
our SRE scheme.

SD.Setup(N): This algorithm takes as input the maximum number N of users. Let
N = 2n for simplicity. It first sets a full binary tree T of depth n. Each user is
assigned to a different leaf node in T . The collection S of SD is the set of all subsets
{Si, j} where vi,v j ∈ T and v j is a descendant of vi. It outputs the full binary tree T .

SD.Assign(T ,u): This algorithm takes as input the tree T and a user u ∈ N . Let vu be
the leaf node of T that is assigned to the user u. Let (vk0 ,vk1 , . . . ,vkn) be the path
from the root node vk0 to the leaf node vkn = vu. It first sets a private set PVu as an
empty one. For all i, j ∈ {k0,k1, . . . ,kn} such that v j is a descendant of vi, it adds
the subset Si, j defined by two nodes vi and v j in the path into PVu. It outputs the
private set PVu = {Si, j}.

SD.Cover(T ,R): This algorithm takes as input the tree T and a revoked set R of users.
It first sets a subtree T as ST (R), and then it builds a covering set CVR iteratively
by removing nodes from T until T consists of just a single node as follows:

1. It finds two leaf nodes vi and v j in T such that the least-common-ancestor v
of vi and v j does not contain any other leaf nodes of T in its subtree. Let vl

and vk be the two child nodes of v such that vi is a descendant of vl and v j is a
descendant of vk. If there is only one leaf node left, it makes vi = v j to the leaf
node, v to be the root of T and vl = vk = v.

2. If vl �= vi, then it adds the subset Sl,i to CVR; likewise, if vk �= v j, it adds the
subset Sk, j to CVR.

3. It removes from T all the descendants of v and makes v a leaf node.

It outputs the covering set CVR = {Si, j}.
SD.Match(CVR,PVu): This algorithm takes input as a covering set CVR = {Si, j} and

a private set PVu = {S′i, j}. It finds two subsets Si, j and S′i′, j′ such that Si, j ∈ CVR,
S′i′, j′ ∈ PVu, i = i′, d j = d j′ , and j �= j′ where d j is the depth of v j. If it found two
subsets, then it outputs (Si, j,S′i′, j′). Otherwise, it outputs⊥.

Lemma 1 ([20]). Let N be the number of leaf nodes in a full binary tree and r be the
size of a revoked set. In the SD scheme, the size of a private set is O(log2 N) and the
size of a covering set is at most 2r− 1.

14 K. Lee et al.

5 Revocation Encryption

In this section, we first propose a public-key revocation encryption (PKRE) scheme by
combining the SRE scheme and the subset cover scheme, and then we prove its security.
The formal definition of PKRE is given in the full version of this paper [18].

5.1 Construction

The basic idea of our PKRE scheme is to combine the SD scheme and the SRE scheme
that is a special type of public-key encryption (PKE). The idea of combining the SD
scheme with a PKE scheme was introduced by Dodis and Fazio [9]. Dodis and Fazio
showed that the key assignment method of Naor et al. [20] for the SD scheme can
be mimicked by using the delegation property of HIBE. In contrast to the method of
Dodis and Fazio, we show that a subset Si, j in the SD scheme can be easily mapped
to the group and member labels (GL,ML) of the SRE scheme by using the revocation
property of the SRE scheme that can revoke a single member in a group. That is, a
subset Si, j in the SD scheme is defined as the set of leaf nodes that belong to Ti but not
belong to Tj where Ti and Tj are subtrees with root nodes vi and v j respectively. This
subset Si, j is represented by two nodes vi and v j that have labels Li and Lj respectively.
To map the subset Si, j to labels (GL,ML), we define a group GL as the set of nodes in
Ti at the same level as the node v j and define a revoked member ML as the node v j.

Before presenting our PKRE scheme, we first define the universe U of SRE that is
derived from a full binary tree T as follows: Let Ti be a subtree of T that is rooted at vi.
A single group in U is defined as a set of nodes that are in the same level of Ti except
the level of vi. Suppose that the tree T has the number N of leaf nodes. In this case, the
maximum number of groups in U is N logN and the maximum number of members in a
groups is N since the number of internal nodes is N−1 and the maximum depth of each
subtree is logN−1. The subset Si, j of the SD scheme that uses T is easily converted to
the labels (GL = Li‖d j,ML = Lj) of the SRE scheme where (Li,Lj) is the identifier of
Si, j and d j is the depth of Lj.

Our PKRE scheme for the set N = {1, . . . ,N} of users is described as follows:

PKRE.Setup(1λ ,N): It first defines a full binary tree T by running SD.Setup(N).
Next, it obtains MKSRE and PKSRE by running SRE.Setup(1λ ,U) where U is
defined from T . It outputs a master key MK = MKSRE and a public key as
PK = (T ,PKSRE).

PKRE.GenKey(u,MK,PK): This algorithm takes as input a user u ∈ N , the mas-
ter key MK, and the public key PK. It first obtains a private set PVu = {Si, j} by
running SD.Assign(T ,u). Let d j be the depth of a node v j associated with Lj.
For all Si, j ∈ PVu, it obtains (Li,Lj) by applying ID(Si, j) and computes SKSRE,Si, j

by running SRE.GenKey((Li‖d j,Lj),MKSRE ,PKSRE). It outputs a private key as
SK = (PVu,{SKSRE,Si, j}Si, j∈PVu).

PKRE.Encrypt(R,M,PK): This algorithm takes as input a revoked set R⊆N , a mes-
sage M ∈ GT , and the public key PK. It first finds a covering set CVR = {Si, j}
by running SD.Cover(T ,R). Let d j be the depth of a node v j associated with Lj.
For all Si, j ∈ CVR, it obtains (Li,Lj) by applying ID(Si, j) and computes CTSRE,Si, j

Public-Key Revocation and Tracing Schemes 15

by running SRE.Encrypt((Li‖d j,Lj),M,PKSRE). It outputs a ciphertext as CT =
(CVR,{CTSRE,Si, j}Si, j∈CVR).

PKRE.Decrypt(CT,SK,PK): This algorithm takes as input a ciphertext CT , a private
key SK, and the public key PK. It first finds a matching tuple (Si, j,S′i, j) by running
SD.Match(CVR,PVu). If it found a tuple, then it outputs a message M by running
SRE.Decrypt(CTSRE,Si, j ,SKSRE,S′i, j

,PKSRE). Otherwise, it outputs⊥.

The correctness of the above PKRE scheme easily follows the correctness of the SD
scheme and that of the SRE scheme. If u /∈ R, then a user u can obtain two subsets
Si, j ∈ CVR and S′i′, j′ ∈ PVu from a ciphertext CT and his private key SK such that i =

i′,d j = d j′ , and j �= j′ from the correctness of the SD scheme. Next, he can derive two
labels (GL = Li‖d j,ML = Lj) and (GL′ = Li′ ‖d j′ ,ML′ = Lj′) for the SRE scheme from
the two subsets Si, j and S′i′, j′ where (Li,Lj) = ID(Si, j) and (Li′ ,Lj′) = ID(S′i′, j′). Note
that Li = Li′ ,d j = d j′ , and Lj �= Lj′ . Therefore, he can obtains a message M from the
correctness of the SRE scheme since GL = GL′ and ML �= ML′. If u ∈ R, then a user
u cannot obtain two subsets Si, j ∈ CVR and S′i′, j ∈ PVu such that i = i′,d j = d j′ , and
j �= j′ from the correctness of the SD scheme. Note that the correctness property is
only satisfied when an honest user simply runs the decryption algorithm of our PKRE
scheme.

5.2 Security

Theorem 3. The above PKRE scheme is indistinguishable under a chosen plaintext
attack if the SRE scheme is indistinguishable under a chosen plaintext attack.

Proof. Suppose that CVR∗ is the covering set of the challenge revoked set R∗

and the size of CVR∗ is w. The challenge ciphertext is described as CT ∗ =
(CVR,CTSRE,1, . . . ,CTSRE,w). The hybrid games G0, . . . ,Gi, . . . ,Gw for the security proof
are defined as follows:

Game G0: In this game, all ciphertext components CTSRE, j of the challenge cipher-
text are encryption on the message M∗

0 . That is, the challenge ciphertext CT ∗ is an
encryption on the message M∗

0 . Note that this game is the original security game
except that the challenge bit γ is fixed to 0.

Game Gh: This game is almost identical to the game Gh−1 except the ciphertext com-
ponent CTSRE,h since CTSRE,h in this game is an encryption on the message M∗

1 .
Specifically, in this game, the ciphertext component CTSRE, j for j ≤ h is an en-
cryption on the message M∗

1 and the ciphertext component CTSRE, j for h < j is an
encryption on the message M∗

0 .
Game Gw: In this game, all ciphertext components CTSRE, j of the challenge cipher-

text are encryption on the message M∗
1 . That is, the challenge ciphertext CT ∗ is an

encryption on the message M∗
1 . Note that this game is the original security game

except that the challenge bit γ is fixed to 1.

16 K. Lee et al.

Let SGh
A be the event that A outputs 0 in Gh. In Lemma 2, we prove that it is hard for

A to distinguish Gh−1 from Gh if the SRE scheme is secure. Thus, we have that

Pr[SG0
A]−Pr[SGw

A] = Pr[SG0
A] +

w−1

∑
h=1

(
Pr[SGh

A]−Pr[SGh
A]

)
−Pr[SGw

A]

≤
w

∑
h=1

∣∣Pr[SGh−1
A]−Pr[SGh

A]
∣∣≤ 2w ·AdvSRE

B (λ).

Finally, we obtain the following inequality relation as

AdvPKRE
A (λ)≤ 1

2
·
∣∣Pr[SG0

A]−Pr[SGw
A]

∣∣≤ w ·AdvSRE
B (λ).

Note that we already have AdvSRE(λ) ≤ N2 logN ·Advq-SMEBDH (λ) from Theorem 2
since Ug ≤ N logN and Um ≤ N. This completes our proof. ��

Lemma 2. If the SRE scheme is indistinguishable under a chosen plaintext attack, then
no polynomial time adversary can distinguish between Gh−1 and Gh with non-negligible
advantage.

The proof of this lemma is given in the full version of this paper [18].

5.3 Discussions

Efficiency. In our PKRE scheme, a public key consists of O(1) group elements, a pri-
vate key consists of O(log2 N) group elements, and a ciphertext consists of O(r) group
elements where r is the size of a revoked set. Additionally, the decryption algorithm
of our PKRE scheme just requires one decryption operation of the SRE scheme that
consists of two pairing operations and two exponentiation operations.

LSD Scheme. We can also combine our SRE scheme with the LSD scheme to construct
a PKRE scheme since the LSD scheme is just a special case of the SD scheme. If the
LSD scheme is used instead of the SD scheme, then the group elements of a private
key can be reduced from O(log2 N) to O(log1.5 N) by doubling the number of group
elements in a ciphertext.

Chosen-Ciphertext Security. By combining an SRE scheme that provides the IND-
CCA security and an one-time signature scheme that provides the strong unforgeability
(i.e., an adversary is unable to forge a new signature on the previously signed message.),
we can construct a PKRE scheme that achieves the IND-CCA security.

Trace and Revoke. Our PKRE scheme also provides the tracing property since it is
derived from the subset cover framework of Naor et al. [20]. We omit the description
of a tracing algorithm, but it is given in the full version of this paper [18]. Note that the
trace and revoke scheme derived from the subset cover framework can only trace to a
subset pattern in some colluding scenarios [17].

Public-Key Revocation and Tracing Schemes 17

6 Conclusion

In this paper, we revisited the methodology of the subset cover framework to construct
PKRE schemes, and introduced a new type of PKE named single revocation encryption
(SRE). We proposed an efficient SRE scheme with the constant size of ciphertexts, pri-
vate keys, and public keys, and proved its security in the random oracle model under
q-type assumption. The SRE scheme may have independent interests. One notable ad-
vantage of our SRE scheme is that the PKRE scheme using our SRE scheme maintains
the same efficiency parameter as the SD scheme (or the LSD scheme).

There are many interesting problems. The first one is to construct an efficient SRE
scheme with short public key without random oracles. We showed that the random
oracles in our SRE scheme can be removed. However, this approach has the problem of
large public key size. The second one is to reduce the size of private keys. One possible
approach is to use the Stratified SD (SSD) scheme of Goodrich et al. [15], but it is not
yet known whether the SSD scheme can be applicable in the public-key setting.

Acknowledgements. Kwangsu Lee was supported by Basic Science Research Program
through NRF funded by the Ministry of Education (2013R1A1A2008394). Dong Hoon
Lee was supported by Mid-career Researcher Program through NRF grant funded by
the MEST (2010-0029121). Jong Hwan Park was supported by Basic Science Research
Program through NRF funded by the Ministry of Education (2013R1A1A2009524)
and the MSIP (Ministry of Science, ICT & Future Planning), Korea in the ICT R&D
Program 2014 (KCA-2013-003).

References

1. Abdalla, M., Dent, A.W., Malone-Lee, J., Neven, G., Phan, D.H., Smart, N.P.: Identity-based
traitor tracing. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 361–376.
Springer, Heidelberg (2007)

2. Boneh, D., Boyen, X., Goh, E.J.: Hierarchical identity based encryption with constant size ci-
phertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer,
Heidelberg (2005)

3. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

4. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short cipher-
texts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275.
Springer, Heidelberg (2005)

5. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short ci-
phertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 573–592. Springer, Heidelberg (2006)

6. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke system. In:
Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.) ACM Conference on Computer and Com-
munications Security, pp. 211–220. ACM (2006)

7. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) Advances in Cryptology
- CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

8. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts and private
keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 200–215. Springer,
Heidelberg (2007)

18 K. Lee et al.

9. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In: Feigenbaum,
J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg (2003)

10. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) Advances in Cryptology -
CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

11. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption
schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer,
Heidelberg (1999)

12. Furukawa, J., Attrapadung, N.: Fully collusion resistant black-box traitor revocable broadcast
encryption with short private keys. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.)
ICALP 2007. LNCS, vol. 4596, pp. 496–508. Springer, Heidelberg (2007)

13. Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building efficient fully collusion-
resilient traitor tracing and revocation schemes. In: Al-Shaer, E., Keromytis, A.D., Shmatikov,
V. (eds.) ACM Conference on Computer and Communications Security, pp. 121–130. ACM
(2010)

14. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with short ci-
phertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 171–188. Springer,
Heidelberg (2009)

15. Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient tree-based revocation in groups of low-
state devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 511–527. Springer,
Heidelberg (2004)

16. Halevy, D., Shamir, A.: The lsd broadcast encryption scheme. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)

17. Kiayias, A., Pehlivanoglu, S.: Pirate evolution: How to make the most of your traitor keys.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 448–465. Springer, Heidelberg
(2007)

18. Lee, K., Koo, W.K., Lee, D.H., Park, J.H.: Public-key revocation and tracing schemes with
subset difference methods revisited. Cryptology ePrint Archive, Report 2013/228 (2013),
http://eprint.iacr.org/2013/228

19. Lewko, A.B., Sahai, A., Waters, B.: Revocation systems with very small private keys. In:
IEEE Symposium on Security and Privacy, pp. 273–285. IEEE Computer Society (2010)

20. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001)

21. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers.
Electronic Colloquium on Computational Complexity (ECCC) (043) (2002)

22. Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC 2000.
LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

23. Park, J.H., Kim, H.J., Sung, H.M., Lee, D.H.: Public key broadcast encryption schemes with
shorter transmissions. IEEE Trans. Broadcast. 54(3), 401–411 (2008)

24. Park, J.H., Lee, D.H.: Fully collusion-resistant traitor tracing scheme with shorter cipher-
texts. Des. Codes Cryptography 60(3), 255–276 (2011)

25. Park, J.H., Rhee, H.S., Lee, D.H.: Fully collusion-resistant trace-and-revoke scheme in
prime-order groups. Journal of Communications and Networks 13(5), 428–441 (2011)

http://eprint.iacr.org/2013/228

NORX: Parallel and Scalable AEAD

Jean-Philippe Aumasson1, Philipp Jovanovic2, and Samuel Neves3

1 Kudelski Security, Switzerland
jeanphilippe.aumasson@gmail.com

2 University of Passau, Germany
jovanovic@fim.uni-passau.de

3 University of Coimbra, Portugal
sneves@dei.uc.pt

Abstract. This paper introduces NORX, a novel authenticated encryp-
tion scheme supporting arbitrary parallelism degree and based on ARX
primitives, yet not using modular additions. NORX has a unique parallel
architecture based on the monkeyDuplex construction, with an original
domain separation scheme for a simple processing of header, payload
and trailer data. Furthermore, NORX specifies a dedicated datagram
to facilitate interoperability and avoid users the trouble of defining cus-
tom encoding and signalling. NORX was optimized for efficiency in both
software and hardware, with a SIMD-friendly core, almost byte-aligned
rotations, no secret-dependent memory lookups, and only bitwise oper-
ations. On a Haswell processor, a serial version of NORX runs at 2.51
cycles per byte. Simulations of a hardware architecture for 180 nm UMC
ASIC give a throughput of approximately 10Gbps at 125MHz.

Keywords: authenticated encryption, stream cipher, cryptographic
sponges.

1 Introduction

We introduce the NORX1 family of authenticated ciphers, a candidate in the
CAESAR competition. NORX uses a parallel and scalable architecture based
on the monkeyDuplex construction [1,2], where the parallelism degree and tag
size can be tuned arbitrarily. The NORX core is inspired by the ARX primitive
ChaCha [3], however it replaces integer addition with the approximation (a⊕b)⊕
((a ∧ b) � 1)2, with the aim to simplify differential cryptanalysis and improve
hardware efficiency. Although, bitwise logic operations are frequently used in
cryptographic primitives, we are not aware of any other algorithm using the
above approximation of integer addition.

On a Haswell processor (Intel’s latest microarchitecture), a serial version of
NORX achieves 2.51 cycles per byte. For long messages (≥ 4 KiB), our 4-wise
parallel version is expected to be four times as fast when run on four cores (that
is, more than 5 GiBps at 3.5 GHz).

1 The name stems from “NO(T A)RX” and is pronounced like “norcks”.
2 Derived from the well-known identity a+ b = (a⊕ b) + (a ∧ b) � 1 [4].

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 19–36, 2014.
c© Springer International Publishing Switzerland 2014

20 J.-P. Aumasson, P. Jovanovic, and S. Neves

In ASIC, NORX’s fastest serial architecture is expected to achieve a through-
put of about 10 Gbps at 125 MHz on a 180 nm technology. As for software imple-
mentations, the tunable parallelism allows NORX to reach even higher speeds.

We have not filed and are not aware of patents, patent applications, or other
intellectual-property constraints relevant to use of the cipher. The source code
of the reference implementation is published under a public domain-like licence
(CC0 1.0), see [5].

Outline. Section 2 specifies the NORX family of AEAD schemes, as well as
a datagram structure aiming to improve interoperability of NORX implementa-
tions. Section 3 describes the expected strength of NORX. Section 4 motivates the
design decisions. Section 5 reports on software performance measurements and
on preliminary results of a hardware performance evaluation. Finally, Section 6
presents preliminary cryptanalysis results.

2 Specification

2.1 Notations

Hexadecimal numbers are denoted in typewriter style, for example ab = 171. A
word is either a 32-bit or 64-bit string, depending on the context. Data streams
(as byte arrays) are parsed to word arrays in little-endian order. We denote by
a ‖ b the concatenation of strings a and b, by |x| the bit length of x, and by
hw(x) its Hamming weight. We use the standard notations ¬, ∧, ∨ and ⊕ for
bitwise negation, AND, OR and XOR; x � n and x � n for left- and right-shift;
x ≪ n, x ≫ n for left- and right-rotation of x by n bits.

2.2 Generalities

NORX is parameterised by a word size of W ∈ {32, 64} bits, a number of rounds
1 ≤ R ≤ 63, a parallelism degree 0 ≤ D ≤ 255, and a tag size |A| ≤ 10W bits.
We denote a NORX instance by NORXW -R-D-|A|.

By default NORXW -R-D uses |A| = 4W . For example, NORX64-6-1 has
(W,R,D, |A|) = (64, 6, 1, 256).

Encryption Interface. NORX encryption takes as input a key K of 4W bits,
a nonce N of 2W bits, and a message M = H ‖ P ‖ T where, H is a header, P a
payload, and T a trailer. |H |, |P |, and |T | are allowed to be 0. NORX encryption
produces a ciphertext C, with |C| = |P |, and an authentication tag A.

Decryption Interface. NORX decryption is similar to encryption: Besides K
and N , it takes as input a message M = H ‖ C ‖ T , where H and T denote
header and trailer, and C the encrypted payload, with |H |, |C|, and |T | are again
allowed to be 0. The last component of the input is an authentication tag A.
Decryption either returns failure, upon failed verification of the tag, or produces
a plaintext P of the same size as C if the tag verification succeeds.

NORX: Parallel and Scalable AEAD 21

2.3 Layout Overview

NORX relies on the monkeyDuplex construction [1,2], enhanced by the capability
of parallel payload processing. The number of parallel encryption lanes Li is
defined by the parameter 0 ≤ D ≤ 255. For the value D = 1, the NORX layout
is similar to a standard sequential duplex construction, see Figure 1. For D > 1,
the number of lanes is bounded by the latter value, e.g. for D = 2 see Figure 2.
If D = 0 (“unbounded” parallelism), the number of lanes Li is bounded by the
size of the payload.

init(K,N,W,R,D, |A|)

0

0

r

c

FR FR FR FR FR FR FR FR FR

01

H... HmH

01 02

P... PmPC... CmP

02 04

T... TmT

04 08

A

Fig. 1. Layout of NORX with parallelism D = 1

init(K,N,W,R,D, |A|)

0

0

r

c
FR FR FR FR

FR FR FR

FR FR FR

FR FR FR FR

H... HmH

id0

id1

Q0,... Q0,mQ0

Q1,... Q1,mQ1

C0,... C0,mQ0

C1,... C1,mQ1

T... TmT

A

01 01 10

02

02

02 20

02 20

04 04 08

Fig. 2. Layout of NORX with parallelism D = 2

The round function F is a permutation of b = r + c bits, where b is called the
width, r the rate (or block length), and c the capacity. We call F a round and FR

denotes its R-fold iteration. The internal state S of NORX64 has b = 640+384 =
1024 bits and that of NORX32 has b = 320 + 192 = 512 bits. The state is viewed
as a concatenation of 16 words, i.e. S = s0 ‖ · · · ‖ s15, which are conceptually
arranged in a 4×4 matrix, where s0, . . . , s9 are called the rate words, used for
data block injection, and s10, . . . , s15 are called the capacity words, which remain
untouched during absorbing and squeezing.

2.4 The Round Function F

F processes a state S by first transforming its columns with

G(s0, s4, s8, s12) G(s1, s5, s9, s13) G(s2, s6, s10, s14) G(s3, s7, s11, s15)

and then transforming its diagonals with

G(s0, s5, s10, s15) G(s1, s6, s11, s12) G(s2, s7, s8, s13) G(s3, s4, s9, s14)

22 J.-P. Aumasson, P. Jovanovic, and S. Neves

Those two operations are called column step and diagonal step, as in BLAKE2 [6],
and will be denoted by col and diag. The permutation G transforms four words
a, b, c, d by computing (top-down, left-to-right):

a←− (a⊕ b)⊕
(
(a ∧ b) � 1

)
a←− (a⊕ b)⊕

(
(a ∧ b)� 1

)
d←− (a⊕ d) ≫ r0 d←− (a⊕ d) ≫ r2

c ←− (c⊕ d)⊕
(
(c ∧ d) � 1

)
c ←− (c⊕ d)⊕

(
(c ∧ d) � 1

)
b ←− (b⊕ c) ≫ r1 b ←− (b⊕ c) ≫ r3

The rotation offsets (r0, r1, r2, r3) are (8, 19, 40, 63) for NORX64, and
(8, 11, 16, 31) for NORX32. They were chosen as described in Section 4.

2.5 Encryption and Tag Generation

NORX encryption can be divided into three main phases: initialisation, message
processing, and tag generation. Processing of a message M = H ‖ P ‖ T is done
in one to five steps: header processing, branching (for D �= 1 only), payload pro-
cessing, merging (for D �= 1 only), and trailer processing. The number of steps
depends on whether H , P , or T are empty or not, and whether D = 1 or not.
NORX skips processing phases of empty message parts. For example, in the sim-
plest case when |H | = |T | = 0, |P | > 0, and D = 1, message processing is done
in one step, since only the payload P needs to be encrypted and authenticated.

Below, we first describe the padding and domain separation rules, then each
of the aforementioned phases.

Padding. NORX uses the multi-rate padding [2], a padding rule defined by
padr : X �−→ X ‖ 10q1 with bitstrings X and 10q1, and q = (−|X | − 2) mod r.
This extends X to a multiple of the rate r and guarantees that the last block
of padr(X) differs from the all-zero block 0r. Note, that there are three special
cases:

q =

⎧⎪⎨
⎪⎩
r − 2, if 0 ≡ |X| mod r

0, if r − 2 ≡ |X| mod r

r − 1, if r − 1 ≡ |X| mod r

Domain Separation. NORX performs domain separation by XORing a domain
separation constant to the least significant byte of s15 each time before the
state is transformed by the permutation FR. Distinct constants are used for
the different phases of message processing, for tag generation, and in case of
D �= 1, for branching and merging steps. Table 1 gives the specification of those
constants and Figures 1 and 2 illustrate their integration into the state of NORX.

The domain separation constant used at a particular step is determined by
the type of the next processing step. The constants are switched together with
the steps. For example, as long as the next block is from the header, the domain
separation constant 01 is applied. During the processing of the last header block,
the constant is switched. If D = 1 and the next data block belongs to the payload,

NORX: Parallel and Scalable AEAD 23

Table 1. Domain separation constants

header payload trailer tag branching merging
01 02 04 08 10 20

the new constant is 02. Then, as long as the next block is from the payload, 02
is used, and so on.

For the extra initial and final permutations no domain separation constants
are used, which is equivalent to XORing 00 to s15. Additionally, this allows
NORX to skip unneeded processing phases, as already discussed above. For the
special case D �= 1 and |P | = 0 not only payload processing is skipped but also
branching and merging phases.

Initialisation. This phase processes a 4W -bit key K = k0 ‖ k1 ‖ k2 ‖ k3, a
2W -bit nonce N = n0 ‖ n1 and the parameters D, R, W and |A|.

1. Basic Setup. The internal state S = s0 ‖ · · · ‖ s15 is initialised as⎛⎜⎜⎝
s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

⎞⎟⎟⎠ ←−

⎛⎜⎜⎝
u0 n0 n1 u1

k0 k1 k2 k3

u2 u3 u4 u5

u6 u7 u8 u9

⎞⎟⎟⎠
where u0 to u3 are as follows for NORX32 (left) and NORX64 (right):

u0 = 243f6a88 u0 = 243f6a8885a308d3

u1 = 85a308d3 u1 = 13198a2e03707344

u2 = 13198a2e u2 = a4093822299f31d0

u3 = 03707344 u3 = 082efa98ec4e6c89

The other constants are computed by

(u4j+4, u4j+5, u4j+6, u4j+7) = G(u4j , u4j+1, u4j+2, u4j+3)

for j ∈ {0, 1}. See Section 4 for a discussion on these constants.
2. Parameter Integration. The parameters D, R, W and |A| are integrated

into the state S by XORing (R� 26)⊕ (D � 18)⊕ (W � 10)⊕ |A|3 to s14

followed by an update of S with FR.
3. Finalisation. A domain separation constant v, whose value is determined

as shown above, is XORed into s15. Subsequently, S is updated once more
by FR.

Note, that step 1 and part of step 2, namely integration of the parameters,
are illustrated as init(K,N,W,R,D, |A|) in Figures 1 and 2.

3 This layout is used to avoid XOR-collisions between the parameters.

24 J.-P. Aumasson, P. Jovanovic, and S. Neves

Message Processing. Message processing is the main phase of NORX encryp-
tion or decryption. Unless noted otherwise, the value of the domain separation
constant v is always determined according to the description above.

1. Header Processing. If |H | = 0, this step is skipped, otherwise let
padr(H) = H0 ‖ · · · ‖ HmH−1 denote the padded header data, with r-
bit sized header blocks Hl = hl,0 ‖ · · · ‖ hl,9 and 0 ≤ l ≤ mH − 1. Then Hl

is processed by:

sj ←− sj ⊕ hl,j , for 0 ≤ j ≤ 9

s15 ←− s15 ⊕ v

S ←− FR(S)

2. Branching. This step is only performed if D �= 1 and |P | > 0. In that
case, NORX encrypts payload data on parallel lanes Li, with 0 ≤ i ≤ D − 1
if D > 1, or 0 ≤ i ≤ �|P | / r� − 1 if D = 0. For each lane Li, a copy
Si = si,0 ‖ · · · ‖ si,15 of the state S is created. The lane number i and the
domain separation constant v = 02 are integrated into the least significant
bytes of si,13 ‖ si,14 and si,15, respectively. Finally each Si is updated by FR.
That is, NORX does

Si ←− S

(si,14, si,13) ←− (si,14, si,13)⊕ (�i / 2W �, i mod 2W)

si,15 ←− si,15 ⊕ v

Si ←− FR(Si)

3. Payload Processing. If |P | = 0, this step is skipped. Otherwise, pay-
load data is padded using the multi-rate padding and then encrypted. Let
padr(P) = P0 ‖ · · · ‖ PmP−1, then we distinguish three cases:
– D = 1: This is the standard case, which requires no further modifications.
– D > 1: In this case, a fixed number of lanes Li is available for payload

encryption, with 0 ≤ i ≤ D − 1. An r-bit sized block Pj , with 0 ≤
j ≤ mP − 1, is processed by lane Li if i ≡ j mod D. In other words, the
padded payload blocks are distributed through the lanes in a round-robin
fashion.

– D = 0: Here, the number of lanes Li is determined by the number mP

of padded payload blocks. Each r-bit sized block is processed on its own
lane, i.e. block Pi is encrypted on Li, with 0 ≤ i ≤ mP − 1.

The data encryption of a single block works equivalently for each value of D,
hence we describe it only in a generic way. Again, let padr(P) = P0 ‖ · · · ‖
PmP−1 be the padded payload data. To encrypt Pl = pl,0 ‖ · · · ‖ pl,9 and get
a new ciphertext block Cl = cl,0 ‖ · · · ‖ cl,9 the following steps are executed

sj ←− sj ⊕ pl,j , for 0 ≤ j ≤ 9

cl,j ←− sj

s15 ←− s15 ⊕ v

S ←− FR(S)

NORX: Parallel and Scalable AEAD 25

for 0 ≤ l < mP − 1. For l = mP − 1, the procedure is almost the same, but
only a truncated ciphertext block is created such that C has the same length
as (unpadded) P . In other words, padding bits are never written to C.

4. Merging. This step is only performed if D �= 1 and |P | > 0. After processing
of P , the states Si are merged back into a single state S. Then, a domain
separation constant v is integrated, and S is updated by FR:

S ←−
D−1⊕
i=0

Si

s15 ←− s15 ⊕ v

S ←− FR(S)

5. Trailer Processing. Digestion of trailer data is done analogously to the
processing of header data as already described above. Hence, if |T | = 0,
trailer processing is skipped. If T is non-empty, let padr(T) = T0 ‖ · · · ‖
TmT−1 denote the padded trailer data with r-bit trailer blocks Tl and 0 ≤
l ≤ mT − 1. A trailer block Tl = tl,0 ‖ · · · ‖ tl,9 is then processed by doing
the following steps:

sj ←− sj ⊕ tl,j , for 0 ≤ j ≤ 9

s15 ←− s15 ⊕ v

S ←− FR(S)

Tag Generation. NORX generates an authentication tag A by transforming S
one last time with FR and then extracting the |A| least significant bits from the
rate words s0 ‖ · · · ‖ s9 and setting them as A:

S ←− FR(S)

A ←−
(9⊕

i=0

(si �W · i)
)

mod 2|A|

2.6 Decryption and Tag Verification

NORX decryption mode is similar to the encryption mode. The only two differ-
ences are described below.

Message Processing. Processing header H and trailer T of M = H ‖ C ‖ T
is done in the same way as for encryption. Decryption of the encrypted payload
C is achieved as follows:

pl,j ←− sj ⊕ cl,j

sj ←− cl,j

s15 ←− s15 ⊕ v

S ←− FR(S)

26 J.-P. Aumasson, P. Jovanovic, and S. Neves

Like in encryption, as many bits are extracted and written to P as unpadded
encrypted payload bits.

Tag Verification. This step is executed after tag generation. Let A and A′

denote the received and the generated tag. If A = A′, tag verification succeeds;
otherwise it fails, the decrypted payload is discarded and an error is returned.

2.7 Datagrams

Many issues with encryption interoperability are due to ad hoc ways to represent
and transport cryptograms and the associated data. For example IVs are some-
times prepended to the ciphertext, sometimes appended, or sent separately. We
thus specify datagrams that can be integrated in a protocol stack, encapsulating
the ciphertext as a payload. More specifically, we introduce two distinct types
of datagrams, depending on whether the parameters of NORX are fixed or need
to be signalled in the datagram header.

Fixed Parameters. With fixed parameters shared by the parties (for example
through the application using NORX), there is no need to include the parameters
in the header of the datagram. The datagram for fixed parameters thus only needs
to contain N , H , C, T , and A, as well as information to parse those elements.
It is depicted in Appendix A.

We encode the byte length of H and T on 16 bits, allowing for headers and
trailers of up to 64 KiB, a large enough value for most applications. The byte
length of C is encoded on 32 bits for NORX32 and on 64 bits for NORX64,
which translates to a maximum payload size of 4 GiB and 16 EiB, respectively4.
Similarly, to frame check sequences in data link protocols, the tag is added as
a trailer of the datagram specified. The data H , C, and T of the underlying
protocol are viewed as the payload of the datagram. The default tag length being
a constant value of the NORX instance, it needs not be signalled. The length of
the datagram header is 28 bytes for NORX64 and 16 bytes for NORX32.

Variable Parameters. In the case of variable parameters, the datagram needs
to signal the values of W , R, and D. The header is thus extended to encode
those values, as specified in Appendix A. To minimize bandwidth, W is encoded
on one bit, supporting the two choices 32-bit (W = 0) and 64-bit (W = 1), R
on 7 bits (with the MSB fixed at 0, i.e. supporting up to 63 rounds), and D on 8
bits (supporting parallelization degree up to 255). The datagram header is thus
only 2 bytes longer than the header for fixed parameters.

4 Note that NORX is capable of (safely) processing much longer messages; those are
just the maximum values when our proposed datagrams are used.

NORX: Parallel and Scalable AEAD 27

3 Expected Strength

We expect NORX with R ≥ 4 to provide the maximum security for any AEAD
scheme with the same interface (input and output types and lengths). The fol-
lowing requirements should be satisfied in order to use NORX securely:

1. Unique Nonces. Each key and nonce pair should not be used to process
more than one message.

2. Abort on Verification Failure. If the tag verification fails, only an error
is returned. In particular, the decrypted plaintext and the wrong tag must
not be given as an output and should be erased from memory in a safe way.

We do not make any claim regarding attackers using “related keys”, “known
keys”, “chosen keys”, etc. We also exclude from the claims below models where
information is “leaked” on the internal state or key.

The security of NORX is limited by the key length (128 or 256 bits) and by the
tag length (128 or 256 bits). Plaintext confidentiality should thus have the order
of 128 or 256 bits of security. The same level of security should hold for integrity
of the plaintext or of associated data (based on the fact that an attacker trying
2n tags will succeed with probability 2n−256, n < 256). In particular, recovery
of a k-bit NORX key should require resources (“computations”, energy, etc.)
comparable to those required to recover the k-bit sized key of an ideal cipher.

Note that NORX restricts the number of messages processed with a given key:
in [7] the usage exponent e is defined as the value such that the implementation
imposes an upper limit of 2e uses to a given key. NORX sets it to e64 = 128 for
64-bit and e32 = 64 for 32-bit, which corresponds in both cases to the size of the
nonce. NORX has capacities of c64 = 384 (64-bit) and c32 = 192 (32-bit). Hence,
security levels of at least c64 − e64 − 1 = 384− 128− 1 = 255 bits for NORX64
and c32 − e32 − 1 = 192− 64− 1 = 127 bits for NORX32 are expected (see [7]).

Moreover, [8] shows that the NORX mode of operation achieves security levels
for authenticity and confidentiality of min{2b/2, 2c, 2|K|} (recall that |K| = |A|),
for all 0 ≤ D ≤ 255, assuming an ideal underlying permutation F and a nonce
respecting adversary.

4 Rationale

The Parallel Duplex Construction. The layout of NORX is based on the
monkeyDuplex construction [1,2] enhanced by the capability of parallel payload
processing. The parallel duplex construction is similar to the tree-hashing mode
for sponge functions [9]. It allows NORX to take advantage of multi-core proces-
sors and enables high-throughput hardware implementations. Associated data
can be authenticated as header and/or trailer data but only on a single lane. We
felt that it is not worth the effort to enable processing of H and T in parallel,
as they are usually short. The number of lanes is controlled by the parallelism
degree 0 ≤ D ≤ 255, which is a fixed instance parameter. Hence, two instances

28 J.-P. Aumasson, P. Jovanovic, and S. Neves

with distinct D values cannot decrypt data from each other. Obviously, the same
holds for differing W and R values.

To ensure that the payload blocks on parallel lanes are encrypted with dis-
tinct key streams, NORX injects a unique id into each of the lanes during the
branching phase. Once the parallel payload processing is finished, the states are
re-combined in the merging phase and NORX advances to the processing of the
trailer (if present) or creation of the authentication tag.

The Permutations G and F. The function G of NORX is inspired by the
quarterround function of the stream cipher ChaCha [3]. NORX adopts this core
function almost one-to-one, with the only difference being the replacement of
the integer addition by z = (x ⊕ y) ⊕

(
(x ∧ y) � 1

)
with n-bit words x, y

and z. This operation uses bitwise AND to introduce non-linearity and mimics
integer addition of two bit strings x and y with a 1-bit carry propagation. Thus
it provides, in addition to non-linearity, also a slight diffusion of bits. Clearly, G
is invertible, and thus F is invertible as well.

Number of Rounds. For a higher protection of the key and authentication
tag, e.g. against differential cryptanalysis, we chose twice the number of rounds
for initialisation and finalisation, compared to the data processing phases. This
strategy was previously proposed in [1] and has only minor effects on the overall
performance, but increases the security of NORX. The minimal value of R = 4
is based on the following observations:

1. The best attacks on Salsa20 and ChaCha [10,11] break 8 and 7 rounds,
respectively, which roughly corresponds to 4 and 3.5 rounds of the NORX
core. However this is within a much stronger attack model than that provided
by the duplex construction of NORX.

2. The preliminary cryptanalysis of NORX as presented in Section 6. The best
differentials we were able to find belong to a class of high-probability trun-
cated differentials over 1.5 rounds and a class of impossible differentials over
3.5 rounds. Despite the fact that those differentials cannot be used to mount
an attack on NORX, it might be possible to find similar differentials, using
more advanced cryptanalytic techniques, which could be used for an attack.

Choice of Constants. The values u0, . . . , u3 correspond to the first digits of π.
The other six constants u4, . . . , u9 are derived iteratively from u0, . . . , u3 as de-
scribed in Section 2.5. Their purpose is to bring asymmetry during initialisation
and to limit an attacker’s freedom where he might inject differences.

The domain separation constants serve to separate the different processing
phases of NORX, which is important for the indifferentiability proofs of the
duplex construction [12,2,8]. In addition they help to break the self-similarity of
the round function and thus increase the complexity of certain kind of attacks
on NORX, like slide attacks (see Section 6.3).

NORX: Parallel and Scalable AEAD 29

Choice of Rotation Offsets. The rotation offsets as used in F, see Section 2.4,
provide a balance between security and efficiency. Their values were selected such
that at least two out of four offsets are multiples of 8 and the remaining offsets
are odd values of the form 8n ± 1 or 8n ± 3, with a preference for the first
shape. The motivation behind those criteria is as follows: an offset which is a
multiple of 8 preserves byte alignment and thus is much faster than an unaligned
rotation on many architectures. Many 8-bit microcontrollers have only 1-bit
shifts, so for example rotations by 5 bits are particularly expensive. Using aligned
rotations, i.e. permutations of bytes, greatly improves the performance of the
entire algorithm. Even 64-bit architectures benefit from such aligned rotations,
for example when an instruction sequence of two shifts followed by XOR can be
replaced by SSSE3’s byte shuffling instruction pshufb. Odd offsets break up the
byte structure and thus increase diffusion.

To find good rotation offsets and assess their diffusion properties, we used an
automated search combined with a simple diffusion metric. The offsets we finally
chose achieve full diffusion after F2 and offer good performance.

Padding Rule. The sponge (or duplex) construction offers protection against
generic attacks if the padding rule is sponge-compliant, i.e. if it is injective
and ensures that the last block is different from the all-zero block. In [9] it has
been proven that the multi-rate padding satisfies those properties. Moreover, it is
simple to describe, easy to implement, very efficient and increases the complexity
of certain kind of attacks, like slide attacks (see Section 6.3).

5 Performance

NORX was designed to perform well across both software and hardware plat-
forms. This chapter details our implementations and performance results.

5.1 Software

NORX is easily implemented for 32-bit and 64-bit processors, as it works on
32- and 64-bit words and uses only word-based operations (XOR, AND, shifts,
and rotations). The specification can directly be translated to code and requires
no specific technique such as look-up tables or bitslicing. The core of NORX
essentially consists of repeated usage of the G function, which allows simple and
compact implementations (e.g., by having only one copy of the G code).

NORX lends itself well to implementations taking advantage of SIMD exten-
sions present in modern processors, such as AVX or NEON. The typical vector-
ized implementation of NORX, when D = 1, works in full rows on the 4×4 state,
and computes column and diagonal steps of F in parallel.

Furthermore, constant-time implementations of NORX are straightforward to
write, due to the absence of secret-dependent instructions or branchings.

30 J.-P. Aumasson, P. Jovanovic, and S. Neves

Avoiding Latency. One drawback of G is that it has limited instruction par-
allelism. In architectures where one is limited by the latency of the G function,
an implementer can trade a few extra instructions for reduced latency:

t0 ←− a⊕ b d←− d⊕ t0
t1 ←− a ∧ b d←− d⊕ t1
t1 ←− t1 � 1 d←− d ≫ r0

a ←− t0 ⊕ t1

This tweak saves up to 1 cycle per instruction sequence, of which there are 4
per G, at the cost of 1 extra instruction. In a sufficiently parallel architecture,
this can save at least 4 × 2 × R cycles, which translates to 6.4R/W cycles per
byte saved overall.

Results. We wrote portable C reference implementations for both NORX64
and NORX32, as well as optimized versions for CPUs supporting AVX and
AVX2 and for NEON-enabled ARMs. Table 2 shows speed measurements on
various platforms for messages with varying lengths. The listed CPU frequencies
are nominal ones, i.e. without dynamic overclocking features like Turbo Boost,
which improves the accuracy of measurements. Furthermore, we listed only those
platform-compiler combinations that achieved the highest speeds. Unless stated
otherwise we used the compiler flags -O3 -march=native.

The top speed of NORX (for D = 1), in terms of bytes per second, was achieved
by an AVX2 implementation of NORX64-4-1 on a Haswell CPU, listed in Table 2.
For long messages (≥ 4 KiB), it achieves a throughput of about 1.39 GiBps (2.51
cycles per byte at 3.5 GHz). The overhead for short messages (≤ 64 bytes) is
mainly due to the initialisation and finalisation rounds (see Figure 1). However,
the cost per byte quickly decreases, and stabilizes for messages longer than about
1 KiB.

Note that the speed between reference and optimized implementations dif-
fers by a factor of less than 2, suggesting that straightforward and portable
implementations will provide sufficient performance in most applications. Such
consistent performance reduces development costs and improves interoperability.

5.2 Hardware

Hardware architectures of NORX are efficient and easy to design from the speci-
fication: vertical and parallel folding are naturally derived from the iterated and
parallel structure of NORX. The cipher benefits from the hardware-friendliness
of the function G, which requires only bitwise logical AND, XOR, and bit shifts,
and the iterated usage of G inside the core permutation of NORX.

A hardware architecture was designed, supporting parameters W ∈ {32, 64},
R ∈ {2, . . . , 16} and D = 1. It was synthesized with the Synopsys Design Com-
piler for an ASIC using 180 nm UMC technology. The implementation was tar-
geted at high data throughput. The requirements in area amounted to about

NORX: Parallel and Scalable AEAD 31

Table 2. Software performance of NORX in cycles per byte

Intel Core i7-2630QM at 2.0 GHz Intel Core i7-4770K at 3.5 GHz

data length [bytes] long 1536 576 64 data length [bytes] long 1536 576 64

NORX64-6-1
Ref 7.69 9.08 11.54 37.75

NORX64-6-1
Ref 6.63 7.77 9.85 32.12

AVX 4.94 5.90 7.52 24.81 AVX2 3.73 4.47 5.71 19.19

NORX64-4-1
Ref 5.28 6.24 7.94 26.00

NORX64-4-1
Ref 4.50 5.27 6.71 22.06

AVX 3.28 3.91 5.03 16.69 AVX2 2.51 3.01 3.83 13.06

Intel Core i7-3667U at 2.0 GHz Samsung Exynos 4412 Prime (Cortex-A9) at 1.7 GHz

data length [bytes] long 1536 576 64 data length [bytes] long 1536 576 64

NORX64-6-1
Ref 7.04 8.32 10.59 34.87

NORX64-6-1
Ref 37.04 44.55 57.99 203.06

AVX 5.04 6.03 7.71 25.44 NEON 13.17 16.76 23.10 94.56

NORX64-4-1
Ref 4.92 5.86 7.43 24.93

NORX64-4-1
Ref 26.56 32.21 42.35 152.25

AVX 3.37 4.01 5.16 17.18 NEON 8.94 11.81 16.81 74.12

62 kGE. Simulations for NORX64-4-1 report a throughput of about 10 Gbps
(1.2 GiBps), at a frequency of 125 MHz.

A more thorough evaluation of all hardware aspects of NORX is planned for
the future. Due to the similarity of NORX to ChaCha and the fact that NORX
has only little overhead compared to a blank stream cipher, we expect similar
results as presented in [13] for ChaCha.

5.3 Comparison to AES-GCM

AES-GCM, the current de-facto standard for authenticated encryption, achieves
very high speeds when the AES New Instructions (AES-NI) extension is avail-
able. Gueron reports 1.31 cpb for AES256-GCM on a Haswell processor [14].
In that case, NORX is only about half as fast as AES-GCM (the difference is
around 1.2 cpb). The situation is different if AES-NI is not available, which is
the case for the majority of platforms. We expect that NORX outperforms AES-
GCM in these cases. For example, in [15] a constant-time implementation of
AES128-GCM is presented, reaching 20.29 cpb on a Nehalem processor, while
a vulnerable implementation reaches 10.12 cpb. These speeds are likely to be
somewhat better on modern architectures, but certainly not below 3 cpb and es-
pecially not for constant-time implementations. On the other hand, NORX was
designed to run in constant time, therefore such a protected implementation
should have comparable performance to the results presented in Section 5.1.

6 Preliminary Cryptanalysis

This section presents preliminary results on the cryptanalysis of NORX. For
a more thorough version, especially with respect to differential and rotational
properties, we refer to [16].

32 J.-P. Aumasson, P. Jovanovic, and S. Neves

6.1 Differential Cryptanalysis

We show how to construct high-probability differentials for the round function
FR when R is small. We focus on NORX64, but similar considerations hold for
NORX32.

We consider a simple attack model where the initial state is chosen uniformly
at random and where one seeks differences in the initial state that give biased
differences in the state obtained after a small number of iterations of F. To find
such simple differentials, we decomposed G into two functions G1 and G2, i.e.
G = G2 ◦ G1, such that G1 corresponds to the first part of G (i.e. up to the
rotation ≫ r1) and G2 to the second. Then, we analysed the behaviour of G1 on
1-bit input differences. Exploiting the fact that many differences are deleted by
the shift � 1 when the active bit is in the MSB, we found three high-probability
differentials of G with a low-weight output, as shown in Table 3. Extending
those differentials to F delays the diffusion by one step. Input differences with
other combinations of active MSBs lead to similar output differences, but we
found none with a lower or equal Hamming weight as the above. Using the first
differential of the above, we derived a truncated differential over 3 steps (i.e.
F1.5) that has probability 1. This truncated differential can be used to construct
an impossible differential over 3.5 rounds for the 64-bit version of F, which is
shown in the next part. We expect that advanced search techniques are able to
find better differentials for a higher number of rounds of F, e.g. where the sparse
difference occurs in a later step than in the first.

Table 3. High-probability, low-weight differentials of G

Input / Output Difference of G Pr(·)
8000000000000000, 8000000000000000, 8000000000000000, 0000000000000000

1
0000000000000000, 0000000000000001, 8000000000000000, 0000000000000000

0000000000000000, 8000000000000000, 8000000000000000, 8000000000000000
2−1

8000000000000000, 0000000001000001, 8000000000800000, 0000000000800000

0000000000000000, 8000000000000000, 8000000000000000, 8000000000000000
2−1

8000000000000000, 0000000003000001, 8000000001800000, 0000000000800000

Impossible Differentials. We show how to construct an impossible differential
using the miss-in-the-middle approach. In forward direction we use a probability-
1 truncated differential over 1.5 rounds with an input difference having active
bits in the first 3 MSBs of the input to G in the first column of the state, see
Table 3. We set (0000000000000000, 0000000000000000, 8000000000000000, 0000000000000000)
as the difference in the third column in backward direction. Applying F1.5 to the
state in forward direction and F−1.5 ◦ col−1 to the state in backward direction,
results in a conflict in the 2nd bit of the 14th word. In forward direction this bit
is always 1 and in backward direction it is always 0. We validated the impossi-
ble differential empirically in 232 runs, starting in both directions from random
states having the above differences. Equivalent impossible differentials can be
constructed by varying the columns where the differences are injected. We were
unable to construct an impossible differential for more than 3.5 rounds.

NORX: Parallel and Scalable AEAD 33

Remark. Neither the simple nor the impossible differentials can be used to at-
tack NORX if the attacker is nonce-respecting: first of all the initialisation process
prevents an attacker to set the required input difference in forward direction, i.e.
active bits in 3 consecutive MSBs of a column. Once the initialisation is finished,
the attacker could theoretically set those differences in the first or second col-
umn, but it would have no effect, as two states initialised with different nonces
have a far too big distance from each other. Additionally the capacity part is
completely unknown to the attacker.

6.2 Algebraic Cryptanalysis

Algebraic attacks on cryptographic algorithms discussed in the literature [17,18]
target ciphers whose internal state is mainly updated in a linear way and thus
exploit a low algebraic degree of the attacked primitive. However, this is not
the case for NORX, where the b inner state bits are updated in a strongly non-
linear fashion. In the following we briefly discuss the non-linearity properties of
NORX, demonstrating why it is unlikely that algebraic attacks can be successfully
mounted against the cipher.

We constructed the algebraic normal form (ANF) of G and measured the
degree of every of the 4W polynomials and the distribution of the monomials.
Table 4 reports the number of polynomials per degree for the 32- and 64-bit
versions, as well as information on the distribution of monomials.

Table 4. Properties of the ANF of G

polynomials by degree #monomials

3 4 5 6 7 8 min max avg median

32-bit 2 6 58 2 8 52 12 489 242 49.5
64-bit 2 6 122 2 8 116 12 489 253 49.5

In both cases most polynomials have degree 5 or 8 and merely 2 have degree
3. Multiplying each of the above values by 4 gives the distribution of degrees
of the whole state after a col or diag step. Due to memory constraints, we were
unable to construct5 the ANF for a single full round F, neither for the 64-bit nor
for the 32-bit version. In summary, this shows that the state of NORX is updated
in a strongly non-linear fashion and due to a rapid degree growth and huge state
sizes it is unlikely that algebraic attacks can be successfully used against the
AEAD scheme.

6.3 Other Properties

Fixed Points. The G permutation and thus any iteration of the round function
F have a trivial distinguisher: the fixed points G(0) = 0 and FR(0) = 0. Never-
theless it, seems hard to exploit this property, as hitting the all-zero state is as

5 Using SAGE [19] on a workstation with 64 GiB RAM.

34 J.-P. Aumasson, P. Jovanovic, and S. Neves

hard as hitting any other arbitrary state. Thus, the ability to hit a predefined
state implies the ability to recover the key, which is equivalent to completely
breaking NORX. Furthermore, we used the constraint solver STP [20] to prove
that there are no further fixed points. For NORX32, the solver was able to show
that this is indeed the case, but for NORX64 the proof is a lot more complex.
Even after over 1000 hours, STP was unable to finish its computation with a
positive or negative result. Therefore, we find it unlikely that there are any other
fixed points in NORX64 besides the zero-to-zero point.

Slide Attacks. Slide attacks try to exploit the symmetries that consist of the
iteration of a number of identical rounds. To protect sponge constructions against
slide attacks, two simple defenses can be found in the literature: [21] proposes to
add a non-zero constant to the state just before applying the permutation and
[22] recommends to use a message padding, which ensures that the last processed
data block is different from the all-zero message. The duplex constructions is
derived from sponge functions, hence, the above defenses should hold for the
former, too, and thus for NORX. With the domain separation and multi-rate
padding both defensive mechanisms are already integrated into NORX.

Rotational Cryptanalysis. NORX includes several defenses against ex-
ploitable rotation-invariant behaviour: during state setup 10 out of 16 words are
initialised with asymmetric constants, which impedes the occurrence of rotation-
invariant behaviour and limits the freedom of an attacker. The non-linear oper-
ation of NORX contains a non rotation-invariant bit-shift � 1, and finally, the
duplex construction prevents an attacker from modifying the complete internal
state at a given time. He is only able to influence the rate bits, i.e. at most
r = 10W bits of the state, and has to “guess” the other 6W bits in order to
mount an attack.

Acknowledgements. The authors thank Frank K. Gürkaynak, Mauro Sa-
lomon, Tibor Keresztfalvi and Christoph Keller for implementing NORX in hard-
ware and for giving insightful feedback from their hardware evaluation. More-
over, the authors would like to thank Alexander Peslyak (Solar Designer), for
giving them access to one of his Haswell machines, so that they could test their
AVX2 implementations of NORX. Finally, the authors also thank the anony-
mous reviewers for their efforts and for their very helpful comments regarding
this paper.

References

1. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Permutation-based Encryption,
Authentication and Authenticated Encryption. Presented at DIAC 2012, Stock-
holm, Sweden, July 05-06 (2012)

NORX: Parallel and Scalable AEAD 35

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the Sponge:
Single-Pass Authenticated Encryption and Other Applications. In: Miri, A., Vau-
denay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg
(2012)

3. Bernstein, D.J.: ChaCha, a Variant of Salsa20. In: Workshop Record of SASC 2008:
The State of the Art of Stream Ciphers (2008), http://cr.yp.to/chacha.html

4. Knuth, D.E.: The Art of Computer Programming. Combinatorial Algorithms, Part
1, vol. 4A. Addison-Wesley, Upper Saddle River (2011),
http://www-cs-faculty.stanford.edu/~uno/taocp.html

5. Official website of NORX (2014), https://www.norx.io
6. Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: Simpler,

Smaller, Fast as MD5. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini,
R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 119–135. Springer, Heidelberg (2013)

7. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the Security of Keyed
Sponge Constructions. Presented at SKEW 2011, Lyngby, Denmark, February 16-
17 (2011), http://sponge.noekeon.org/SpongeKeyed.pdf

8. Jovanovic, P., Luykx, A., Mennink, B.: Beyond 2c/2 Security in Sponge-Based
Authenticated Encryption Modes. Cryptology ePrint Archive, Report 2014/373
(2014), http://eprint.iacr.org/2014/373

9. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic Sponge Func-
tions (2008), http://sponge.noekeon.org/CSF-0.1.pdf

10. Aumasson, J.-P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New Features
of Latin Dances: Analysis of Salsa, ChaCha and Rumba. In: Nyberg, K. (ed.) FSE
2008. LNCS, vol. 5086, pp. 470–488. Springer, Heidelberg (2008)

11. Shi, Z., Zhang, B., Feng, D., Wu, W.: Improved Key Recovery Attacks on Reduced
Round Salsa20 and ChaCha. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC
2012. LNCS, vol. 7839, pp. 337–351. Springer, Heidelberg (2013)

12. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability
of the Sponge Construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008)

13. Henzen, L., Carbognani, F., Felber, N., Fichtner, W.: VLSI Hardware Evaluation of
the Stream Ciphers Salsa20 and ChaCha, and the Compression Function Rumba.
In: 2nd International Conference on Signals, Circuits and Systems 2008, pp. 1–5.
IEEE (2008)

14. Gueron, S.: AES-GCM Software Performance on the Current High End CPUs as a
Performance Baseline for CAESAR Competition Presented at DIAC 2013, Chicago,
USA, August 11-13 (2013), http://2013.diac.cr.yp.to/slides/gueron.pdf.

15. Käsper, E., Schwabe, P.: Faster and Timing-Attack Resistant AES-GCM. Cryptol-
ogy ePrint Archive, Report 2009/129 (2009), http://eprint.iacr.org/2009/129

16. Jovanovic, P., Neves, S., Aumasson, J.P.: Analysis of NORX. Cryptology ePrint
Archive, Report 2014/317 (2014), http://eprint.iacr.org/2014/317

17. Aumasson, J.P., Dinur, I., Henzen, L., Meier, W., Shamir, A.: Efficient FPGA
Implementations of High-Dimensional Cube Testers on the Stream Cipher Grain-
128. Cryptology ePrint Archive, Report 2009/218

18. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009)

19. Stein, W.: Sage Mathematics Software. The Sage Development Team (2005–2013),
http://sagemath.org

20. Ganesh, V., Govostes, R., Phang, K.Y., Soos, M., Schwartz, E.: STP — A Simple
Theorem Prover (2006–2013), http://stp.github.io/stp

http://cr.yp.to/chacha.html
http://www-cs-faculty.stanford.edu/~uno/taocp.html
https://www.norx.io
http://sponge.noekeon.org/SpongeKeyed.pdf
http://eprint.iacr.org/2014/373
http://sponge.noekeon.org/CSF-0.1.pdf
http://2013.diac.cr.yp.to/slides/gueron.pdf
http://eprint.iacr.org/2009/129
http://eprint.iacr.org/2014/317
http://sagemath.org
http://stp.github.io/stp

36 J.-P. Aumasson, P. Jovanovic, and S. Neves

21. Gorski, M., Lucks, S., Peyrin, T.: Slide Attacks on a Class of Hash Functions.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 143–160. Springer,
Heidelberg (2008)

22. Peyrin, T.: Security Analysis of Extended Sponge Functions. In: Presented at the
ECRYPT Workshop Hash Functions in Cryptology: Theory and Practice, Leiden,
The Netherlands (June 4, 2008),
http://www.lorentzcenter.nl/lc/web/2008/309/presentations/Peyrin.pdf

A Datagrams

Representations for the datagrams as introduced in Section 2.7.

– Fixed Parameters:
NORX64 header payload trailer

field N |H| |T | |C| H C T A
offsets [bytes] 0 – 15 16 – 17 18 – 19 20 – 27 28 – ?? ?? – ?? ?? – ?? ?? – ??

NORX32 header payload trailer
field N |H| |T | |C| H C T A

offsets [bytes] 0 – 7 8 – 9 10 – 11 12 – 15 16 – ?? ?? – ?? ?? – ?? ?? – ??

– Variable Parameters:
NORX64 header payload trailer

field N |H| |T | |C| W (1) ‖ R(7) D H C T A
offsets [bytes] 0 – 15 16 – 17 18 – 19 20 – 27 28 29 30 – ?? ?? – ?? ?? – ?? ?? – ??

NORX32 header payload trailer
field N |H| |T | |C| W (1) ‖ R(7) D H C T A

offsets [bytes] 0 – 7 8 – 9 10 – 11 12 – 15 16 17 18 – ?? ?? – ?? ?? – ?? ?? – ??

B Test Vectors

Test vectors for some instances of NORX are given below. More can be found on
the official website [5].

– NORX64:
K : 0011223344556677 8899AABBCCDDEEFF FFEEDDCCBBAA9988 7766554433221100

N : FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF

H : 1000000000000002 3000000000000004
P : 8000000000000007 6000000000000005 4000000000000003 2000000000000001

T : null

NORX64-4-1 C : 1B4DCCFF6779A2C3 865464C856BC4B0C DADBC58565E1690A 2CB12C0BE9D2F045

A : D0CE5276FDEC9F6E 33EE64CE5CCA3ABA 1187C05183464BD0 A0915ECA6FAF8757

NORX64-6-1 C : 7223675B69C7A934 1EBAB65233E8DC25 AB660E1BF0F3FEE8 71BE33115B333D6D

A : A05D644CCD2C5887 31DE2501AE4FE789 5C153D99943D29A4 98353A0E38D58A93

– NORX32:
K : 00112233 44556677 8899AABB CCDDEEFF

N : FFFFFFFF FFFFFFFF

H : 10000002 30000004
P : 80000007 60000005 40000003 20000001

T : null

NORX32-4-1 C : 1F8F35CD CAFA2A38 724C1417 228732CA

A : 7702CA8A E8BA5210 FD9B73AD C0443A0D

NORX32-6-1 C : D98EDABA 25C18DD9 A0CA4C36 F73309C6

A : 69872EE5 3DAC068C E8D6D8B3 0A3D2099

http://www.lorentzcenter.nl/lc/web/2008/309/presentations/Peyrin.pdf

Even More Practical Secure Logging:

Tree-Based Seekable Sequential Key Generators

Giorgia Azzurra Marson1 and Bertram Poettering2

1 CASED & TU Darmstadt
2 Information Security Group at Royal Holloway, University of London

Abstract. Sequential key generators produce a forward-secure sequence
of symmetric cryptographic keys and are traditionally based on hash
chains. An inherent disadvantage of such constructions is that they do not
offer a fast-forward capability, i.e., lack a way to efficiently skip a large
number of keys—a functionality often required in practice. This limita-
tion was overcome only recently, with the introduction of seekable sequen-
tial key generators (SSKGs). The only currently known construction is
based on the iterated evaluation of a shortcut one-way permutation, a
factoring-based —and hence in practice not too efficient— building block.
In this paper we revisit the challenge of marrying forward-secure key gen-
eration with seekability and show that symmetric primitives like PRGs,
block ciphers, and hash functions suffice for obtaining secure SSKGs. Our
scheme is not only considerably more efficient than the prior number-
theoretic construction, but also extends the seeking functionality in a way
that we believe is important in practice. Our construction is provably
(forward-)secure in the standard model.

Keywords: secured logging, forward security, seekable PRGs.

1 Introduction

Computer log files can be configured to record a large variety of system events
that occur on network hosts and communication systems, including users logging
on or off, memory resources reaching their capacity, malfunctioning of disk drives,
etc. Therefore, log files represent one of the most essential sources of information
that support system administrators in understanding the activity of systems and
keeping them fully functional. Not less important is the role that log files play
in computer forensics: events like login failures and software crashes serve as
standard indicators for (attempted) intrusions. Unfortunately, as log files are
often recorded locally (i.e., on the monitored machine itself), in many practical
cases intruders can a posteriori manipulate the log entries related to their attacks.

Online logging and its disadvantages. In a network environment, one obvious
strategy to prevent adversarial tampering of audit logs is to forward log messages
immediately after their creation to a remote log sink—in the hope that the
attacker cannot also corrupt the latter. Necessary in such a setting is that the

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 37–54, 2014.
c© Springer International Publishing Switzerland 2014

38 G.A. Marson and B. Poettering

log sink is continuously available, as every otherwise required local buffering
of log records would increase the risk that their delivery is suppressed by the
adversary. However, in many cases it has to be assumed that the reachability
of the log sink can be artificially restrained by the intruder, e.g., by confusing
routing protocols with false ARP messages, by sabotaging TCP connections
with injected reset packets, by jamming wireless connections, or by directing
application-level denial-of-service attacks against the log sink. Independently of
these issues, it is inherently difficult to choose an appropriate logging granularity:
while the creation of individual records for each established TCP connection,
file deletion, or subprocess invocation might be desirable from the point of view
of computer forensics, network links and log sinks might quickly reach their
capacities if events are routinely reported with such a high resolution. This holds
in particular if log sinks serve multiple monitored hosts simultaneously.

Forward-secure cryptography & log file protection. A solution for tamper-resistant
log-entry storage that does not require a remote log sink but offers integrity pro-
tection via cryptographic means is secured local logging. Here, each log entry is
stored together with a specific authentication tag that is generated and verified
using a secret key. Note that regular message authentication codes (MACs) by
themselves seem not to constitute a secure solution: corresponding tags will be
forgeable by intruders that succeed in extracting the secret key from the attacked
device. Rather, a forward-secure MAC variant is required, as elaborated next.

In a nutshell, a cryptosystem provides forward security (FS) if it continues
to give meaningful security guarantees after the adversary got a copy of the
used keys. A standard example is key exchange: here, all recent security models
require established session keys to remain safe when the adversary obtains ac-
cess to the involved long-term private keys. Likely less known is that the notion
of forward security also extends to non-interactive primitives. For instance, in
forward-secure public key encryption [1] messages are encrypted in respect to
a combination (pk, t), where pk is a public key and t ∈ N identifies one out of
a set of consecutive time epochs; for each such epoch t, knowledge of a specific
decryption key skt is necessary for decrypting corresponding ciphertexts. In ad-
dition, while by design it is efficiently possible to perform updates skt �→ skt+1,
forward security requires that the reverse mapping be inefficient, i.e., it shall be
infeasible to ‘go backwards in time’. More precisely, forward security guarantees
that plaintexts encrypted for ‘expired’ epochs remain confidential even if the
decryption keys of all later epochs are revealed.

Analogously to the described setting, signatures and authentication tags of
the forward-secure variants of signature schemes and MACs, respectively, re-
main unforgeable for past epochs if only current and future keys are disclosed
to the adversary [2,3]. One possible way to obtain such a MAC is to combine
a (forward-secure) sequential key generator (SKG) with a regular MAC [4,3],
where the former can be seen as a stateful pseudorandom generator (PRG) that,
once initialized with a random seed, deterministically outputs a pseudorandom
sequence of fixed-length keys. These keys are then used together with a MAC to
ensure unforgeability of messages within the epochs.

Even More Practical Secure Logging: Tree-Based Seekable Sequential Key 39

The challenge of seekability. Forward-secure SKGs are typically constructed by
deterministically evolving an initially random state using a hash chain, i.e.,
by regularly replacing a ‘current’ key Kt by Kt+1 = H(Kt), where H is a
cryptographic hash function [4,3]. Although hash chains, in principle, lead to
(forward-)secure local logging, they also come with an efficiency penalty on the
side of the log auditor: the latter, in order to verify a log record of a certain
epoch t, first needs to recover the corresponding key Kt; however, as a high
level of security requires a high key update rate, this might involve millions of
hash function evaluations. This problem was addressed only recently with the
introduction of seekable sequential key generators (SSKGs) [5].

We give a rough overview over the ideas in [5]. Essentially, the authors propose
a generic construction of an SSKG from a shortcut one-way permutation (SCP),
a primitive that implements a one-way permutation π : D → D, for a domain D,
with a dedicated shortcut algorithm allowing the computation of the k-fold com-
position πk in sublinear time. The concrete SCP considered in [5] is given by the
squaring operation modulo a Blum integer N , where applying the shortcut cor-
responds to reducing a certain exponent modulo ϕ(N). Given an SCP, an SSKG
can be obtained by letting its state consist of a single element in D, performing
state updates by applying π to this element, and deriving keys by hashing it
(more precisely, by applying a random oracle). While it is instructive to observe
how the forward security of the SSKG corresponds with the one-wayness of the
SCP, and how its seekability is based on the SCP’s shortcut property, a notable
technical artifact of the squaring-based SCP is that seekability requires knowl-
edge of ϕ(N) while forward security requires this value to be unknown. This
dilemma is side-stepped in [5] by giving only the owners of a seeking key the
ability to fast-forward through the SSKG output sequence.

1.1 Contributions and Organization

The central contribution of this paper is the design of a new seekable sequential
key generator. In contrast to the prior SSKG from [5], our scheme relies on just
symmetric building blocks; in particular we propose instantiations that exclu-
sively use either PRGs, block ciphers, or hash functions. By consequence, our
implementation beats the one from [5] by 1–3 orders of magnitude, on current
CPUs. In addition to this efficiency gain, we also identify new and appealing
functionality features of our SSKG. In particular, getting rid of the discussed
seeking limitations of [5], our scheme allows every user to efficiently advance
any state by an arbitrary number of epochs. Our SSKG is supported by a secu-
rity proof in the standard model.

This paper is organized as follows. After starting with preliminaries in Sec-
tion 2, we formally specify the functionality, syntax, and security requirements
of SSKGs in Section 3; this includes a comparison with the (different) formal-
izations in [5]. In Section 4 we describe our new PRG-based SSKG, including
its generalized seekability notion and some possible time-memory trade-offs. Fi-
nally, in Section 5, we discuss implementational aspects and efficiency results
from our implementation.

40 G.A. Marson and B. Poettering

1.2 Related Work

The first published work that highlights the importance of seekability as a desir-
able property of sequential key generators in the context of secured local logging
is [5,6]. An extensive comparison of the corresponding results with the ones of
the current paper can be found in the preceding paragraphs and in Section 3. In
the following we discuss further publications on sequential key generation and
cryptographic audit log protection. We observe that all considered protocols
either are forward-secure or offer seekability, but not both simultaneously.

An early approach towards secured local logging originates from Bellare and
Yee [7]; they study the role of forward security in authentication, develop the
security notion of forward integrity, and realize a corresponding primitive via
a PRF chain. Later, the same authors provide the first systematic analysis of
forward security in the symmetric setting [3], covering forward-secure variants of
pseudorandom generators, symmetric encryption, and MACs, and also providing
constructions and formal proofs of security for these primitives.

Shortly after [7], an independent cryptographic scheme specifically targeted
at protecting log files was described by Kelsey and Schneier [4,8,9]. Their scheme
draws its (forward) security from frequent key updates via iterated hashing, but
is not supported by a formal security analysis. A couple of implementations exist,
notably the one by Chong, Peng, and Hartel in tamper-resistant hardware [10]
and the logcrypt system by Holt [11]. The latter improves on [4] by paving the
way towards provable security, but also adds new functionality and concepts.
Most notable is the suggestion to embed regular metronome entries into log files
to thwart truncation attacks where the adversary cuts off the most recent set of
log entries. Similar work is due to Accorsi [12] who presents BBox, a hash-chain-
based framework for protecting the integrity and confidentiality of log files in
distributed systems.

Ma and Tsudik consider the concept of forward-secure sequential aggregate
authentication for protecting the integrity of system logs [13,14]. Their construc-
tions build on compact constant-size authenticators with all-or-nothing security
(i.e., adversarial deletion of any single log message is detected), naturally defend
against truncation attacks, and enjoy provable security.

The proposals by Yavuz and Ning [15], and Yavuz, Ning, and Reiter [16],
specifically aim at secured logging on constraint devices and support a shift of
computation workload from the monitored host to the log auditor. Notably, their
key update procedure and the computation of authentication tags takes only a
few hash function evaluations and finite field multiplications. In common with
the schemes discussed above, their authentication systems are not seekable.

Kelsey, Callas, and Clemm [17] introduced secured logging into the standard-
ization process at IETF. However, their proposal of signed syslog messages fo-
cuses on remote logging instead of on local logging. Precisely, their extension
to the standard UNIX syslog facility authenticates log entries via signatures be-
fore sending them to a log sink over the network. While this proposal naturally
offers seekability, it is bound to the full-time availability of an online log sink.

Even More Practical Secure Logging: Tree-Based Seekable Sequential Key 41

Indeed, periods where the latter is not reachable are not securely covered, as the
scheme is not forward-secure.

2 Preliminaries

We recall basic notions and facts from cryptography, graph theory, and data
structures that we require in the course of this paper. Notably, in the section on
trees, we define what we understand by the ‘co-path’ of a node. If not explicitly
specified differently, all logarithms are understood to be taken to base 2.

2.1 Pseudorandom Generators

A pseudorandom generator (PRG) is a function that maps a random string
(‘seed ’) to a longer ‘random-looking’ string. The security property of pseudoran-
domness requires that it be infeasible to distinguish the output of a PRG from
random.

Definition 1 (Pseudorandom generator). For security parameter λ and
a polynomial c : N → N≥1, an efficiently computable function G : {0, 1}λ →
{0, 1}λ+c(λ) is a pseudorandom generator if for all efficient distinguishers D
the following advantage function is negligible, where the probabilities are taken
over the random choices of s and y, and over D’s randomness:

AdvPRG
G,D(λ) =

∣∣∣Pr
[
D(G(s)) = 1 : s

$← {0, 1}λ
]
− Pr

[
D(y) = 1 : y

$← {0, 1}λ+c(λ)
]∣∣∣ .

2.2 Binary Trees

A tree is a simple, undirected, connected graph without cycles. We particularly
consider rooted trees, i.e., trees with a distinguished root node. The nodes ad-
jacent to the root node are called its children; each child can be considered,
in turn, the root of a subtree. The level L of a node indicates its distance to
the root, where we assign level L = 1 to the latter. Children of the same node
are siblings of each other. In this paper we exclusively consider binary trees of
constant height H . These are trees in which every node has exactly one sibling,
with exception of the root which has no sibling, and where all leaves have the
same level L = H ; such trees have a total of N = 2H − 1 nodes. We assume
that the children of each node are ordered; we refer to them as ‘left’ and ‘right’.
Nodes that have no children are called leaves, all other nodes are called internal.

We finally define the notion of co-path of a node. Let v denote an arbitrary
node of a binary tree. Intuitively speaking, the (right) co-path of v is the list
of the right siblings of the nodes on the (unique) path connecting the root
node with v. For a formal definition, let L denote the level of v = vL and
let (v1, . . . , vL) denote the path that connects the root (denoted here with v1)
with vL. For each 1 ≤ i ≤ L let V→

i be the list of right siblings of node vi (these
lists contain at most one element, and particularly V→

1 is always empty). We
define the co-path of vL to be the list V →

L ‖ . . . ‖ V →
1 obtained by combining

these lists into a single one using concatenation.

42 G.A. Marson and B. Poettering

2.3 Stacks and Their Operations

A stack is a standard data structure for the storage of objects. Stacks follow the
last-in first-out principle: the last element stored in a stack is the first element
to be read back (and removed). The following procedures can be used to operate
on stacks for storing, reading, and deleting elements. By Init(S) we denote
the initialization of a fresh and empty stack S. To add an element x ‘on top
of’ stack S, operation Push(S, x) is used. We write x ← Pop(S) for reading
and removing the top element of stack S. Finally, with x ← Peekk(S) the
k-th element of stack S can be read without deleting it; here, elements are
counted from the top, i.e., Peek1(S) reads the top-most element. When using
these notations, operations Init, Push, and Pop are understood to modify their
argument S in place, while Peekk leaves it unchanged.

3 Seekable Sequential Key Generators

The main contribution of this paper is a new construction of a seekable sequential
key generator (SSKG). This cryptographic primitive can be seen as a stateful
PRG that outputs a sequence of fixed-length keys—one per invocation. The
specific property of seekability ensures that it is possible to jump directly to
any position in the output sequence. At the same time, the security goal of
forward security ensures that keys remain indistinguishable from random even
upon corruption of the primitive’s state. We next recall the syntactical definition
and security properties, (mainly) following the notation from [5]. We defer the
exposition of our new scheme to Section 4.

3.1 Functionality and Syntax

Generally speaking, a seekable sequential key generator consists of four algo-
rithms: GenSSKG generates an initial state st0, the update procedure Evolve
maps each state sti to its successor state sti+1, GetKey derives from any state sti
a corresponding (symmetric) key Ki, and Seek permits to compute any state sti
directly from initial state st0 and index i. We consider each state associated with
a specific period of time, called epoch, where the switch from epoch to epoch is
carried out precisely with the Evolve algorithm. This setting is illustrated in
Figure 1 and formalized in Definition 2.

Definition 2 (Syntax of SSKG). Let � : N → N be a polynomial. A seekable
sequential key generator with key length � is a tuple SSKG = {GenSSKG,Evolve,
GetKey, Seek} of efficient algorithms as follows:

– GenSSKG. On input of security parameter 1λ and total number N ∈ N of sup-
ported epochs, this probabilistic algorithm outputs an initial state st0.

– Evolve. On input of a state sti, this deterministic algorithm outputs the
‘next’ state sti+1. For convenience, for k ∈ N, by Evolvek we denote the
k-fold composition of Evolve, i.e., Evolvek(sti) = sti+k.

Even More Practical Secure Logging: Tree-Based Seekable Sequential Key 43

GetKey GetKey GetKey GetKey

GenSSKG Evolve Evolve Evolve

Seek

st0 st1 sti−1 sti sti+1

K0 K1 Ki Ki+1

i

Fig. 1. Illustration of the interplay of the different SSKG algorithms

– GetKey. On input of state sti, this deterministic algorithm outputs a key
Ki ∈ {0, 1}�(λ). For k ∈ N, we write GetKeyk(sti) for GetKey(Evolvek(sti)).

– Seek. On input of initial state st0 and k ∈ N, this deterministic algorithm
returns state stk.

Implicit in Definition 2 is the following natural consistency requirement on
the interplay of Evolve and Seek algorithms:

Definition 3 (Correctness of SSKG). A seekable sequential key generator

SSKG is correct if, for all security parameters λ, N ∈ N, st0
$← GenSSKG(1λ, N),

and all k ∈ N we have

0 ≤ k < N =⇒ Evolvek(st0) = Seek(st0, k) .

Remark 1 (Comparison with the definition from [5]). The syntax specified in
Definition 2 does slightly deviate from the one in [5, Definition 3]: firstly, the
SSKG setup routine of [5] has a secret ‘seeking key’ as additional output; it is
required as auxiliary input for the Seek algorithm. The necessity of this extra
key should be considered an artifact of the number-theory-based construction
from [5] (see Section 3.4 for details): the seeking key contains the factorization
of the RSA modulus underlying the scheme. As the proposed Evolve algorithm
is one-way only if this factorization is not known, the Seek algorithm is available
exclusively to those who know the seeking key as a ‘trapdoor’. In contrast to
that, our syntax for Seek is not only more natural, we also allow everybody to use
the Seek algorithm to fast-forward efficiently to future epochs. Secondly, in [5]
the number of supported epochs does not have to be specified at the time of
SSKG initialization; instead, an infinite number of epochs is supported by every
instance. We had to introduce this restriction for technical reasons that become
clear in Section 4; however, we believe that the requirement of specifying the
number of epochs in advance does not constrain the practical usability of our
scheme too much: indeed, regarding our scheme from Section 4, instantiations
with, say, N = 230 supported epochs are perfectly practical.

3.2 Security Requirements

As the security property of SSKGs we demand indistinguishability of generated
keys from random strings of the same length. This is modeled in [5] via an

44 G.A. Marson and B. Poettering

experiment involving an adversary A who first gets adaptive access to a set of
(real) keys Ki of her choosing, and is then challenged with a string Kb

n that is
either the real key Kn or a random string of the same length; the adversary has
to distinguish these two cases. This shall model the intuition that keys Kn ‘look
random’ even if the adversary is given (all) other keys Ki, for i �= n. Below we
formalize a stronger security notion that also incorporates forward security, i.e.,
additionally lets the adversary corrupt any state that comes after the challenged
epoch.

Definition 4 (IND-FS security of SSKG [5]). A seekable sequential key gen-
erator SSKG is indistinguishable with forward security against adaptive adver-
saries (IND-FS) if, for all efficient adversaries A = (A1,A2) that interact in
experiments ExptIND-FS,b from Figure 2 and all N ∈ N bounded by a polynomial
in λ, the following advantage function is negligible, where the probabilities are
taken over the random coins of the experiment (including over A’s randomness):

AdvIND-FS
SSKG,N,A(λ) =

∣∣∣Pr
[
ExptIND-FS,1

SSKG,N,A(1λ) = 1
]
− Pr

[
ExptIND-FS,0

SSKG,N,A(1λ) = 1
]∣∣∣ .

ExptIND-FS,b
SSKG,N,A(1

λ):

1 KList ← ∅
2 st0

$← GenSSKG(1λ, N)

3 (state, n,m)
$← AOKey

1 (1λ, N)
4 Abort if not 0 ≤ n < m < N

5 K0
n

$← {0, 1}�(λ)
6 K1

n ← GetKeyn(st0)
7 stm ← Evolvem(st0)

8 b′ $← AOKey

2 (state, stm,Kb
n)

9 Abort if n ∈ KList
10 Return b′

If A queries OKey(i):

1 Abort if not 0 ≤ i < N
2 KList ← KList ∪ {i}
3 Ki ← GetKeyi(st0)
4 Answer A with Ki

Fig. 2. Security experiments for indistinguishability with forward security. The abort
operation lets the experiment return 0, disregarding any output of the adversary.

3.3 An Application: Protecting Locally Stored Log Files

Given the definitions from Sections 3.1 and 3.2, the role of SSKGs in the context
of secure logging is now immediate: in every epoch i, corresponding key Ki is used
to instantiate a message authentication code (MAC) that equips all occurring
log messages with an authentication tag. In addition, the Evolve algorithm is
regularly invoked to advance from one epoch to the next, burying for all times
the previously used keys. In such a setting, an auxiliary copy of initial state st0
is made available to the log auditor who can use the Seek algorithm to check
the integrity of log entries in any order. Clearly, the goal of forward security can
be achieved only if the secure erasure of old states is an inherent part of the
transition between epochs—for instance using the methods developed in [18].

Even More Practical Secure Logging: Tree-Based Seekable Sequential Key 45

3.4 Prior Constructions

While general sequential key generators have been considered in a variety of pub-
lications [4,9,3,11], the importance of seekability to obtain practical secure log-
ging was only identified very recently [5]. By consequence, we are aware of only
a single SSKG that precedes our current work.

Intuitively speaking, the SSKG construction from [5] follows the ‘permute-
then-hash’ paradigm. In more detail, the authors consider so-called shortcut
one-way permutations π : D → D that allow the evaluation of the k-fold compo-
sition πk in less than O(k) time. Given such a primitive, state st0 consists of a
random element x0 ∈ D, and keys Ki are computed as Ki = H(πi(x0)), where H
is a hash function modeled as a random oracle. The authors propose a number-
theory-based shortcut permutation where π implements precisely the squaring
operation modulo a Blum integer N ; in this case, πi(x) = x2i

= x2i mod ϕ(N) can
be evaluated quite efficiently if the factorization of N is known.

4 SSKGs from Pseudorandom Generators

We propose a novel construction of a seekable sequential key generator that as-
sumes only symmetric building blocks. Unlike the scheme in [5] which draws
security from shortcut one-way permutations in the random oracle model, our
new SSKG assumes just the existence of PRGs, i.e., it relies on a minimal cryp-
tographic assumption. In a nutshell, similarly to the works in [2] and [1] that
achieve forward-secure signing and forward-secure public key encryption, respec-
tively, we identify time epochs with the nodes of specially formed trees and let
the progression of time correspond to a pre-order visit of these nodes.

4.1 Sequential Key Generator from Binary Trees

From Section 2.2 we know that for any fixed H ∈ N≥1 the binary tree of constant
height H has exactly N = 2H − 1 nodes. In our SSKG we identify time epochs
with the nodes of such a tree. More precisely, given the pre-order depth-first
enumeration w0, . . . , wN−1 of the nodes (first visit the root, then recursively the
left subtree, then recursively the right subtree; cf. Figure 3), we let time epoch i
and node wi correspond.

The idea is to assign to each node wi a (secret) seed si ∈ {0, 1}λ from which
the corresponding epoch’s key Ki and the seeds of all subordinate nodes can be
deterministically derived via PRG invocations. Here, exclusively the secret of the
root node is assigned at random. Intuitively, pseudorandomness of the PRG
ensures that all keys and seeds look random to the adversary.

We proceed with specifying which information the states associated with the
epochs shall record. Recall that from each state sti, 0 ≤ i < N , two pieces of
information have to be derivable: the epoch-specific key Ki and the successor
state sti+1 (and, by induction, also all following states and keys). Clearly, in our
construction, the notions of seed and state do not coincide; for instance, in the

46 G.A. Marson and B. Poettering

0

1 8

2 5 9 12

3 4 6 7 10 11 13 14

Fig. 3. A binary tree with height H = 4 and N = 24 − 1 = 15 nodes. The latter
are numbered according to a pre-order depth-first search, as partially indicated by the
arrow from the root node w0 to node w6.

tree of Figure 3 key K9 cannot be computed from just seed s4. However, if state
st4 contained (s4, s5, s8), then for all 4 ≤ i < N the keys Ki could be computed
from this state. Inspired by this observation, our SSKG stores in each state sti
a collection of seeds, namely the seeds of the roots of the ‘remaining subtrees’.
The latter set of nodes is precisely what we called in Section 2.2 the co-path of
node wi. Intuitively speaking, this construction is forward-secure as each state
stores only the minimal information required to compute all succeeding states.
In particular, as each node precedes all vertices on its co-path (in the sense of
a pre-order visit of the tree), the corresponding key remains secure even if any
subsequent epoch’s seed is leaked to the adversary.

We present next the algorithms of our SSKG construction. Particularly in-
teresting, we believe, are the details on how the required pre-order depth-first
search is implicitly performed by help of a stack data structure.

Construction 1 (TreeSSKG). Fix a polynomial � : N → N and a PRG G :
{0, 1}λ → {0, 1}2λ+�(λ). For all s ∈ {0, 1}λ write G(s) as G(s) = GL(s) ‖
GR(s)‖GK(s) where GL(s), GR(s) ∈ {0, 1}λ and GK(s) ∈ {0, 1}�(λ). Assuming
the notation for stacks from Section 2.3, the algorithms TreeSSKG = {GenSSKG,
Evolve,GetKey, Seek} of our SSKG are defined by Algorithms 1–4 in Figures 4
and 5.

Let us discuss the algorithms of TreeSSKG in greater detail.

GenSSKG. Besides picking a random seed s = s0 for the root node, Algorithm 1
computes the minimum number h ∈ N such that the binary tree of constant
height h consists of at least N nodes (cf. Section 2.2). Observe that this tree
might have more than N nodes, i.e., more epochs are supported than required.
The algorithm stores in state st0 a stack S that contains only a single element:
the pair (s, h). Here and in the following such pairs should be understood as
‘seed s shall generate a subtree of height h’.

Evolve. The stack S stored in state sti generally contains two types of informa-
tion: the top element is a pair (s, h) associated with the current node wi, and the
remaining elements are associated with the corresponding pairs of the nodes on

Even More Practical Secure Logging: Tree-Based Seekable Sequential Key 47

wi’s co-path. After taking the current entry (s, h) off the stack, in order to imple-
ment the depth-first search idea from Section 4.1, Algorithm 2 distinguishes two
cases: if node wi is an internal node (i.e., h > 1), the update step computes the
seeds of its two child nodes using PRG G, starting with the right seed as it needs
to be prepended to the current co-path. The new seeds GL(s) and GR(s) can
be considered roots of subtrees of one level less than wi; they are hence pushed
onto the stack with decreased h-value. In the second case, if the current node wi

is a leaf (i.e., h = 1), no further action has to be taken: the next required seed
is the ‘left-most’ node on wi’s co-path, which resides on the stack’s top position
already.

GetKey. Algorithm 3 is particularly simple as it requires only a single evaluation
of PRG G. Observe that the Peek1 operation leaves its argument unchanged.

Seek. Deriving state stk from the initial state st0 via iteratively evoking k times
the Evolve procedure is equivalent to visiting all nodes of the tree according
to a pre-order traversal until reaching node wk. However, there is an appealing
way to obtain seed sk more directly, without passing through all the intermediate
vertices. The idea is to just walk down the path connecting the root node with wk.
Taking this shortcut decreases the seeking cost to only O(logN), as opposed
to O(N). This is the intuition behind the design of our Seek algorithm.

Algorithm 1: GenSSKG

Input: 1λ, integer N
Output: initial state st0

1 Init(S)
2 s

$← {0, 1}λ
3 h ← �log2(N + 1)�
4 Push(S , (s, h))
5 return S as st0

Algorithm 2: Evolve

Input: state sti as S
Output: next state sti+1

1 (s, h) ← Pop(S)
2 if h > 1 then
3 Push(S , (GR(s), h−1))
4 Push(S , (GL(s), h−1))

5 return S as sti+1

Algorithm 3: GetKey

Input: state sti as S
Output: key Ki

1 (s, h) ← Peek1(S)
2 K ← GK(s)
3 return K as Ki

Fig. 4. Algorithms GenSSKG, Evolve, and GetKey. Observe that the number of sup-
ported epochs is potentially greater than N due to the rounding operation in line 3
of GenSSKG.

Recall that Seek is required to output the whole state stk, and not just seed sk.
In other words, the execution of the algorithm needs to comprehend the con-
struction of the co-path of node wk. We provide details on how Algorithm 4
fulfills this task. Our strategy, illustrated in Figure 6, is to walk down the path
from the root to node wk, recording the right siblings of the visited nodes on
a stack. During this process, with a variable δ we keep track of the remaining
number of epochs that needs to be skipped. This counter is particularly helpful
for deciding whether, in the path towards wk, the left or the right child node
have to be taken. Indeed, the number of nodes covered by the left and right sub-
trees is 2h − 1 each; if δ ≤ 2h − 1 then the left child is the next to consider, but

48 G.A. Marson and B. Poettering

Algorithm 4: Seek

Input: state st0 as S , integer k
Output: state stk

1 δ ← k
2 (s, h) ← Pop(S)
3 while δ > 0 do
4 h ← h− 1

5 if δ < 2h then
6 Push(S , (GR(s), h))
7 s ← GL(s)
8 δ ← δ − 1

9 else
10 s ← GR(s)

11 δ ← δ − 2h

12 Push(S , (s, h))
13 return S as stk

Algorithm 5: SuperSeek

Input: state sti as S , integer k
Output: state sti+k

1 δ ← k
2 (s, h) ← Pop(S)
3 while δ ≥ 2h − 1 do

4 δ ← δ − (2h − 1)
5 (s, h) ← Pop(S)
6 while δ > 0 do
7 h ← h− 1

8 if δ < 2h then
9 Push(S , (GR(s), h))

10 s ← GL(s)
11 δ ← δ − 1

12 else
13 s ← GR(s)

14 δ ← δ − 2h

15 Push(S , (s, h))
16 return S as sti+k

Fig. 5. Algorithms Seek and SuperSeek

the right child has to be recorded for the co-path. On the other hand, if δ ≥ 2h,
then the left child can be ignored, the co-path doesn’t have to be extended, and
the walk towards wk is continued via the right child. The procedure terminates
when for the number of remaining epochs we have δ = 0, which means that we
arrived at target node wk.

0

1 8

2 5 9 12

3 4 6 7 10 11 13 14

target

Fig. 6. A visualization of the procedure Seek computing state st6. As the arrows indi-
cate, the algorithm walks down the path from the root node w0 to the target node w6

(thick nodes); simultaneously, it records w6’s co-path, i.e., (w7, w8) (dashed nodes).

4.2 Security of Our Tree-Based SSKG

We next formally assess the security of Construction 1. For better legibility, in
the following theorem we restrict attention to the setting N = 2H−1, i.e., where

Even More Practical Secure Logging: Tree-Based Seekable Sequential Key 49

log(N +1) is an integer; the extension to the general case is straightforward. We
will also shorten the notation for some of the concepts from Definitions 2 and 4
(e.g., we denote �(λ) simply by �, etc.).

Theorem 1 (Security of TreeSSKG). Assuming a secure PRG is used, our
tree-based SSKG from Construction 1 provides indistinguishability with forward
security (IND-FS). More precisely, for any efficient adversary A against the
TreeSSKG scheme there exist efficient distinguishers Di against the underlying
PRG such that

AdvIND-FS
N,A ≤ 2(N − 1)

log(N+1)∑
i=1

AdvPRG
Di

.

Proof (sketch). The security of our scheme follows from the intuition that every
SSKG key Ki, for being (part of) the output of a PRG invocation, looks like
a random string to any efficient adversary as long as the corresponding seed
remains hidden. Recall the IND-FS experiment (cf. Figure 2): the adversary gets
state stm and a challenge Kb

n —either key Kn or a random �-bit string according
to the value of b— for integers n < m of her choosing. Although state stm reveals
seed sm and subsequent seeds, from these seeds none of the preceding states
can be computed. In other words, state stm is of no help to the adversary in
distinguishing keys prior to epoch m; in particular, key Kn remains secure.

To formalize this intuition we use game hops to progressively turn the IND-FS
experiment into one for which all adversaries have advantage exactly zero. In
the first hop we let the challenger guess the epoch n < N corresponding to the
challenge key and chosen by the adversary; this reduces the winning probability
by a factor of (N − 1). Next, let (v1, . . . , vL) be the path from the root v1 = w0

to node vL = wn in the binary tree associated to the SSKG. Starting from the
previous game, we consider a hop for all i = 1, . . . , L by replacing the output
of the PRG invocation associated to node vi by a random (2λ + �)-bit string.
Since each of the hops only involves a single PRG invocation, computational
indistinguishability of any two consecutive games directly follows from the pseu-
dorandomness of G. Observe that the last hop leads to a game where both K0

n

and K1
n are uniformly chosen at random: here no adversary can do better than

guessing. The fact that we lost a factor of (N − 1) in the first hop and we
have additional L ≤ log(N + 1) intermediates games lets us derive the theorem
statement.

A detailed proof appers in the full version of this paper [19]. ��

4.3 An Enhanced Seeking Procedure

As required by Definition 2, our Seek algorithm allows computing any state stk
given the initial state st0. Observe, however, that in many applications this ini-
tial state might not be accessible; indeed, forward security can be attained only
if states of expired epochs are securely erased. From a practical perspective it
is hence appealing to generalize the functionality of Seek to allow efficient com-
putation of sti+k from any state sti, and not just from st0. We correspondingly

50 G.A. Marson and B. Poettering

extend the notion of SSKG by introducing a new algorithm, SuperSeek, which
realizes the Evolvek functionality for arbitrary starting points; when invoked on
input st0, the new procedure behaves exactly as Seek.

Definition 5 (SSKG with SuperSeek). A seekable sequential key generator
SSKG supports SuperSeek if it has an auxiliary algorithm as follows:

– SuperSeek. On input of a state sti and k ∈ N, this deterministic algorithm
returns state sti+k.

For correctness we require that for all N ∈ N, all st0
$← GenSSKG(1λ, N), all

i, k ∈ N, and sti = Evolvei(st0) we have

0 ≤ i ≤ i + k < N =⇒ Evolvek(sti) = SuperSeek(sti, k) .

Assume a TreeSSKG instance is in state sti and an application requests it
to seek to position sti+k, for arbitrary 0 ≤ i ≤ i + k < N . Recall from the
discussions in Sections 4.1 that state sti encodes both the seed si and the co-path
of node wi. Recall also that, as a property of the employed pre-order visit of the
tree, for each state stj , j > i, the co-path of node wi contains an ancestor w
of wj . Following these observations, our SuperSeek construction consists of two
consecutive phases. For seeking to state sti+k, in the first phase the algorithm
considers all nodes on the co-path of wi until it finds the ancestor w of wi+k. The
second phase is then a descent from that node to node wi+k, similarly to what we
had in the regular Seek algorithm. In both phases care has to be taken that the
co-path of target node wi+k is correctly assembled as part of sti+k. The working
principle of our new seeking method is also illustrated in Figure 7. We present
explicit instructions for implementing SuperSeek in Figure 5. The first while loop
identifies the ancestor w of target node wi+k on wi’s co-path by comparing δ
(i.e., the remaining number of epochs to be skipped) with the number of nodes
in the subtree where w is the root. The second loop is equivalent to the one from
Algorithm 4.

0

1 8

2 5 9 12

3 4 6 7 10 11 13 14

start target

Fig. 7. A visualization of the procedure SuperSeek jumping from epoch 3 to 11. As
indicated by the arrows, the algorithm first finds the intersection, here w8, between the
co-path of node w3 (dashed nodes) and the path that connects the root with the target
node w11 (thick nodes); from there it proceeds downwards until it reaches node w11.

Even More Practical Secure Logging: Tree-Based Seekable Sequential Key 51

5 Practical Aspects

In the preceding sections we left open how PRGs can be instantiated in practice;
indeed, the well-known recommendations and standards related to symmetric
key cryptography exclusively consider block ciphers, stream ciphers, and hash
functions. Fortunately, secure PRG instantiations can be boot-strapped from
all three named primitives. For instance, a block cipher operated in counter
mode can be seen as a PRG where the block cipher’s key acts as the PRG’s
seed. Similar counter-based constructions derived from hash functions or PRFs
(e.g., HMAC) are possible. A specific property of PRGs that are constructed
by combining a symmetric primitive with a counter is particularly advantageous
for efficiently implementing our TreeSSKG scheme. Recall that the PRG used
in Construction 1 is effectively evaluated in a blockwise fashion. More precisely,
while the PRG is formally defined to output strings of length 2λ + �(λ), in
our TreeSSKG algorithms it is sufficient to compute only a considerably shorter
substring per invocation. This property is perfectly matched by the ‘iterated
PRGs’ proposed above, as the latter allow exactly this kind of evaluation very
efficiently.

Implementation. We implemented our TreeSSKG scheme and claim that the level
of optimization is sufficient for practical deployment. Our code is written in the
C programming language and relies on the OpenSSL library [20] for random
number generation and the required cryptographic primitives. We consider a
total of four PRG instantiations, using the AES128 and AES256 block ciphers
and the MD5 and SHA256 hash functions as described. That is, we have two
instantiations at the λ = 128 security level, and two at the λ = 256 level.

We experimentally evaluated the performance of our implementation, using
the following setup. We generated SSKG instances that support N = 220 − 1 ≈
106 epochs. We iterated through all epochs in linear order, determining both the
average and the worst-case time consumed by the Evolve algorithm. Similarly
we measured the average and worst-case time it takes for the Seek algorithm to
recover states stk, ranging over all values k ∈ [0, N−1]. Concerning SuperSeek, we
picked random pairs i, j ∈ [0, N−1], i < j, and measured the time required by the
algorithm to jump from sti to stj . Finally, we performed analogous measurements
for GenSSKG and GetKey (here, average and worst-case coincide). The results of
our analysis are summarized in Table 1.

For comparison we also include the corresponding timing values of our com-
petitor, the (factoring-based) SSKG from [5]1, for security levels roughly equiva-
lent to ours. We point out that the analogue of GenSSKG from [5] in fact consists
of two separate algorithms: one that produces public parameters and an asso-
ciated ‘seeking key’, and one that generates the actual initial SSKG state. As
any fixed combination of public parameters and corresponding seeking key can
be used for many SSKG instances without security compromises, for fairness

1 The reference implementation from [5] can be found at
http://cgit.freedesktop.org/systemd/systemd/tree/src/journal/fsprg.c.

http://cgit.freedesktop.org/systemd/systemd/tree/src/journal/fsprg.c

52 G.A. Marson and B. Poettering

we decided not to count the generation costs of the former when indicating the
GenSSKG performance in Table 1. Instead, we report the results of our timing
analysis here as follows: for the costs of parameters and seeking key genera-
tion with 2048 bit and 3072 bit RSA moduli we measured 400ms and 2300ms,
respectively.

It might be instructive to also study the required state sizes for both our
TreeSSKG scheme and the scheme from [5]. In our implementation the (maxi-
mum) state size scales roughly linearly in both logN and the seed length of the
used PRG. Concretely, for N = 220 − 1 and 128 bit keys (e.g., for AES128- and
MD5-based PRGs) the state requires 350 bytes, while for 256 bit security a total
of 670 bytes of storage are necessary. In the scheme from [5] the space in the
state variable is taken by an RSA modulus N , a value x ∈ Z×

N , a 64 bit epoch
counter, and a small header. Precisely, for 2048 and 3072 bit RSA moduli this
results in 522 and 778 bytes of state, respectively.

Results and discussion. We discuss the results from Table 1 as follows, begin-
ning with those of our tree-based SSKG (i.e., columns AES128, MD5, AES256,
and SHA256). Our first observation is that the GenSSKG time is independent of
the respectively used PRG. This is not surprising as the former algorithm never
invokes the latter, but spends its time with memory allocation and requesting
the random starting seed from OpenSSL’s core routines. The timings for Evolve
indicate that, as expected, 128-bit cryptographic primitives are faster than 256-
bit primitives, and that for a fixed security level the hash-function-based con-
structions are (slightly) preferable. The hypothesis that the time spent by the
individual algorithms is dominated by the internal PRG executions is supported
by the observation that the running time of Evolve (on average) and GetKey co-
incide, and that the worst-case running time of Evolve is twice that value; to see
this, recall that Evolve executions perform either two internal PRG invocations
or none, and that the average number of invocations is one. We understand that
the SuperSeek timings are generally better than the Seek values as the first while
loop in Algorithm 5 does not comprise a PRG invocation, whereas the second

Table 1. Results of efficiency measurements of our TreeSSKG algorithms when instan-
tiated with different PRGs, and a comparison with the algorithms from [5]. All exper-
iments were performed on an 1.90GHz Intel Core i7-3517U CPU. We used OpenSSL
version 0.9.8 for the implementation of our TreeSSKG routines, while for the compila-
tion of the reference code from [5] we used the gcrypt library in version 1.5.0.

AES128 MD5 [5]/2048 bit AES256 SHA256 [5]/3072 bit
[average] [max] [average] [max] [average] [max] [average] [max]

GenSSKG 22μs 22μs 27μs 22μs 22μs 38μs
Evolve 0.2μs 0.5μs 0.2μs 0.4μs 8μs 0.5μs 1μs 0.4μs 0.8μs 13μs
Seek 7μs 9μs 6μs 7μs 4.9ms 14μs 18μs 11μs 15μs 12.6ms
SuperSeek 6μs 9μs 5μs 7μs – 13μs 18μs 8μs 15μs –
GetKey 0.2μs 0.2μs 12μs 0.4μs 0.4μs 13μs

Even More Practical Secure Logging: Tree-Based Seekable Sequential Key 53

while loop requires less iterations on average than the corresponding loop in
Algorithm 4.

The routines from [5] are clearly outperformed by the ones from our SSKG.
Firstly, for the Evolve algorithm our timing values are about 30 times better than
those for [5] (recall that the latter’s state update involves a modular squaring
operation). Similar results show our tree-based GetKey algorithm to be faster,
by a factor between 30 and 60, depending on the considered security level. This
might be surprising at first sight, as the algorithm from [5] consists of just
hashing the corresponding state variable, but presumably the explication for
this difference is that [5] operates with considerably larger state sizes than we
do. Finally, the superiority of our tree-based construction in terms of efficiency is
made even more evident by studying the performance of the seek Seek algorithms,
where we can report our routines to be 700–1000 times faster than those from [5],
again depending on the security level.

Conclusion

The recently introduced concept of seekable sequential key generator (SSKG)
combines the forward-secure generation of sequences of cryptographic keys with
an explicit fast-forward functionality. While prior constructions of this primitive
require specific number-theoretic building blocks, we show that symmetric tools
like block ciphers or hash functions suffice for obtaining secure SSKGs; this
leads to impressive performance improvements in practice, by factors of 30–1000,
depending on the considered algorithms. In addition to the performance gain,
our scheme enhances the functionality of SSKGs by generalizing the notion of
seekability, making it more natural and concise, an improvement that we believe
is very relevant for applications. Our scheme enjoys provable security in the
standard model.

Acknowledgments. The authors thank all anonymous reviewers for their valu-
able comments. Giorgia Azzurra Marson was supported by CASED and Bertram
Poettering by EPSRC Leadership Fellowship EP/H005455/1.

References

1. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
Journal of Cryptology 20(3), 265–294 (2007)

2. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)

3. Bellare, M., Yee, B.S.: Forward-security in private-key cryptography. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer, Heidelberg (2003)

4. Kelsey, J., Schneier, B.: Cryptographic support for secure logs on untrusted ma-
chines. In: Proceedings of the 7th USENIX Security Symposium (1998)

5. Marson, G.A., Poettering, B.: Practical secure logging: Seekable sequential key
generators. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS,
vol. 8134, pp. 111–128. Springer, Heidelberg (2013)

54 G.A. Marson and B. Poettering

6. Marson, G.A., Poettering, B.: Practical secure logging: Seekable sequential key
generators. Cryptology ePrint Archive, Report 2013/397 (2013),
http://eprint.iacr.org/2013/397

7. Bellare, M., Yee, B.S.: Forward integrity for secure audit logs. Technical report
(1997)

8. Kelsey, J., Schneier, B.: Minimizing bandwidth for remote access to cryptographi-
cally protected audit logs. In: Recent Advances in Intrusion Detection (1999)

9. Schneier, B., Kelsey, J.: Secure audit logs to support computer forensics. ACM
Trans. Inf. Syst. Secur. 2(2), 159–176 (1999)

10. Chong, C.N., Peng, Z., Hartel, P.H.: Secure audit logging with tamper-resistant
hardware. In: Gritzalis, D., di Vimercati, S.D.C., Samarati, P., Katsikas, S.K. (eds.)
SEC. IFIP Conference Proceedings, vol. 250, pp. 73–84. Kluwer (2003)

11. Holt, J.E.: Logcrypt: forward security and public verification for secure audit logs.
In: Buyya, R., Ma, T., Safavi-Naini, R., Steketee, C., Susilo, W. (eds.) ACSW
Frontiers. CRPIT, vol. 54, pp. 203–211. Australian Computer Society (2006)

12. Accorsi, R.: BBox: A distributed secure log architecture. In: Camenisch, J., Lam-
brinoudakis, C. (eds.) EuroPKI 2010. LNCS, vol. 6711, pp. 109–124. Springer,
Heidelberg (2011)

13. Ma, D., Tsudik, G.: Extended abstract: Forward-secure sequential aggregate au-
thentication. In: 2007 IEEE Symposium on Security and Privacy, May 20-23,
pp. 86–91. IEEE Computer Society Press, Oakland (2007)

14. Ma, D., Tsudik, G.: A new approach to secure logging. Trans. Storage 5(1), 2:1–2:2
(2009)

15. Yavuz, A.A., Ning, P.: BAF: An efficient publicly verifiable secure audit logging
scheme for distributed systems. In: ACSAC, pp. 219–228. IEEE Computer Society
(2009)

16. Yavuz, A.A., Ning, P., Reiter, M.K.: BAF and FI-BAF: Efficient and publicly
verifiable cryptographic schemes for secure logging in resource-constrained systems.
ACM Trans. Inf. 15(2), 9 (2012)

17. Kelsey, J., Callas, J., Clemm, A.: Signed Syslog Messages. RFC 5848 (Proposed
Standard) (May 2010)

18. Gutmann, P.: Secure deletion of data from magnetic and solid-state memory. In:
Proceedings of the Sixth USENIX Security Symposium, San Jose, CA, vol. 14
(1996)

19. Marson, G.A., Poettering, B.: Even more practical secure logging: Tree-based seek-
able sequential key generators. Cryptology ePrint Archive, Report 2014/479 (2014),
http://eprint.iacr.org/2014/479

20. Young, E., Hudson, T.: OpenSSL: The Open Source Toolkit for SSL/TLS,
http://www.openssl.org

http://eprint.iacr.org/2013/397
http://eprint.iacr.org/2014/479
http://www.openssl.org

Large Universe Ciphertext-Policy

Attribute-Based Encryption with White-Box
Traceability

Jianting Ning1, Zhenfu Cao1, Xiaolei Dong1, Lifei Wei2, and Xiaodong Lin3

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{jtning@,zfcao@cs.,dong-xl@cs.}sjtu.edu.cn
2 College of Information Technology,

Shanghai Ocean University, Shanghai 201306, China
Lfwei@shou.edu.cn

3 Faculty of Business and Information Technology,
University of Ontario Institute of Technology, Oshawa, Canada

xiaodong.lin@uoit.ca

Abstract. A Ciphertext-Policy Attribute-Based Encryption (CP-ABE)
system extracts the decryption keys over attributes shared by multiple
users. It brings plenty of advantages in ABE applications. CP-ABE en-
ables fine-grained access control to the encrypted data for commercial
applications. There has been significant progress in CP-ABE over the re-
cent years because of two properties called traceability and large universe,
greatly enriching the commercial applications of CP-ABE. Traceability
is the ability of ABE to track the malicious users or traitors who inten-
tionally leak the partial or modified decryption keys to others for profits.
Nevertheless, due to the nature of CP-ABE, it is difficult to identify the
original key owner from an exposed key since the decryption privilege
is shared by multiple users who have the same attributes. On the other
hand, the property of large universe in ABE proposed by Lewko and
Waters enlarges the practical applications by supporting flexible num-
ber of attributes. Several systems have been proposed to obtain either
of the above properties. However, none of them achieve the two proper-
ties simultaneously in practice, which limits the commercial applications
of CP-ABE to a certain extent. In this paper, we propose a practical
large universe CP-ABE system supporting white-box traceability, which
is suitable for commercial applications. Compared to existing systems,
our new system has three advantages: (1) The number of attributes is
not polynomially bounded; (2) Malicious users who leak their decryption
keys could be traced; and, (3) The storage overhead for traitor tracing is
constant. We also prove the selective security of our new system in the
standard model under “q-type” assumption.

Keywords: Attribute-Based Encryption, Ciphertext-Policy, Large Uni-
verse, White-box Traceablity, Commercial Applications.

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 55–72, 2014.
c© Springer International Publishing Switzerland 2014

56 J. Ning et al.

1 Introduction

In traditional public key encryption, a user is privileged to share his/her data
with others in a private manner. The access of a targeted user or device to
the shared data is all or nothing. In other words, one can get the entire ac-
cess capability to the shared data if given the secret key; otherwise, nothing
will be revealed. In many cases, however, this may not be true. For example, a
user may expect to share his/her data through a more general and expressive
way based on the targeted user or device’s credentials. To address this issue,
Sahai and Waters [1] introduced the notion of Fuzzy Identity-Based Encryp-
tion (FIBE). Goyal et al. [2] proposed two complementary forms of Attribute-
Based Encryption (ABE) : Key-Policy Attribute-Based Encryption (KP-ABE)
and Ciphertext-Policy Attribute-Based Encryption (CP-ABE). In the KP-ABE,
users’ decryption keys are issued according to an access policy and the cipher-
texts are annotated by attributes. In the CP-ABE, users’ decryption keys are
issued according to the attributes they possess and the encrypting party specifies
an access policy for the ciphertexts. A series of KP-ABE or CP-ABE schemes
have been proposed [3–13], aiming at better expressiveness, efficiency or security.
In particular, large universe and traceability are the two significant progress in
ABE, we will discuss following.

Recently, Rouselakis and Waters [11] proposed a new construction and its
proof method for Large Universe Attribute-Based Encryption (LU-ABE). In
general, an ABE system can be classified to “small universe” and “large uni-
verse” constructions. In the “small universe” construction, the attributes are
fixed at system setup and the size of the attributes is polynomially bounded,
and furthermore the size of public parameters grows linearly with the number of
attributes. While in the “large universe” construction, the attributes need not
be specified at system setup and the size of the attribute universe is unbounded.
The “large universe” construction for ABE system brings an obvious advantage
that the designer of the ABE system need not bother to choose a particular
bound of the attributes at system setup.

On the other hand, several CP-ABE systems supporting traceability have
been proposed [14, 15, 13]. In CP-ABE, each user possesses a set of attributes
and can decrypt the ciphertext if his/her attributes satisfy the ciphertext’s ac-
cess policy. This results in an obvious consequence that the encrypter or system
does not know who leaks the decryption key to others intentionally. Due to the
fact that the attributes are shared by multiple users and different users may have
the same subset of attributes, the encrypter or system has no feasible method
to trace the suspicious receiver if the the decryption key is leaked. We take Al-
ice (with attributes {Alice, Assistant Professor, Computer Science}) and Bob
(with attributes {Bob, Assistant Professor, Computer Science}) as an example.
They both have the same decryption key corresponding to attributes {Assistant
Professor, Computer Science} and can decrypt such a ciphertext encrypted by
the attributes {Assistant Professor, Computer Science}. Suppose no other re-
ceiver in the system has both attributes ({Assistant Professor} and {Computer
Science}) at the same time. If it happens to exist a user who can decrypt the

Large Universe CP-ABE with White-Box Traceability 57

ciphertext except Alice and Bob, it is significant to find out who leaks such de-
cryption key to him, Alice or Bob? This drawback should be fixed in practice in
case of leaking decryption key. It is necessary to add the property of traceability
to the original ABE scheme, to identify who exactly leaks the decryption key.
The above traceability is called white-box traceability [13], which means that any
user who leaks his/her decryption key to the third user or device intentionally or
unintentionally will be identified. Also note that there exists a relatively stronger
notion named black-box traceability [16]: the leakage of the user is the decryption
equipment instead of its decryption key.

However, there exists no practical traceable CP-ABE system supporting the
property of large universe as the (non-traceable) CP-ABE system in [11]. Large
universe CP-ABE system with white-box traceability is not yet achieved in prac-
tice: (1) The CP-ABE systems supporting traceability proposed in [14, 15, 13]
do not support the property of large universe, the attributes need to be fixed at
system setup and the size of the attributes is polynomially bounded. Also, pub-
lic parameters’ size grows linearly with the number of attributes. (2) The large
universe CP-ABE system proposed in [11] is the first large universe CP-ABE
system secure in the standard model; however, it does not support the property
of traceability.

A Motivating Story. Consider a commercial application such as a pay-TV
system with huge number of users for example. Each user is labeled with lots
of related attributes, which are defined as TV channels that the user have or-
dered. As a versatile one-to-many encryption mechanism, CP-ABE system is
quite suitable in this scenario. The pay-TV system provides several TV channels
for users, and those who have paid for the TV channels could satisfy the access
policy to decrypt the ciphertext and enjoy the ordered TV channels. CP-ABE
enables fine-grained access control to the encrypted data according to attributes
in users’ ordered lists. However, there are two problems with this approach. First,
if someone (who does not have the privilege to access to those TV channels) buys
the decryption key from the Internet at a lower cost, she/he could also get access
to the TV channels. Then who is selling the decryption key? Second, as the TV
channels of the pay-TV system expand, an increasing number of new attributes
need to be added to the system to describe the new channels. If the number of
the attributes exceeds the bound set during the initial deployment of the pay-TV
system, then the entire system has to be re-deployed and possibly all its data
will have to be re-encrypted [11].

The problems, as described above, are the main obstacles when CP-ABE
is implemented in commercial applications such as pay-TV systems and social
networks. Due to the nature of CP-ABE, if a malicious user leaks its decryption
key to others for profits (such as selling the decryption key on the Internet),
it is difficult to find out the original key owner from an exposed key since the
decryption key is shared by multiple users who have the same attributes. As
such, the pay-TV company will suffer severe financial loss. Thus, it is necessary
for the pay-TV system to trace the malicious users who intentionally leak the
partial or modified decryption keys. Also, as the pay-TV system expands, an

58 J. Ning et al.

increasing new attributes (which describe new TV channels) have to be added to
the system. In previous CP-ABE constructions, the attributes are fixed at system
setup and the number of the attributes are bounded. If the bound is not specified
large enough, the attributes may exhaust if the number of the users exceeds the
threshold and the entire system needs to be completely re-built [11]. On the
other hand, if the bound is specified too large, it will increase the storage and
communication burden of the entire system due to the corresponding increase
of the public parameters’ size. Thus, it is necessary for the pay-TV system to
support flexible number of attributes. Lastly, since the number of users in a
pay-TV system could grow fast, the storage for traceability should not increase
linearly with the number of users. Otherwise, the storage for traceability will
become relatively huge and exhaust if the users increase dramatically. Thus, the
storage for traceability needs to be at a constant level in an ideal case.

1.1 Our Contribution

In this paper, we propose a new large universe CP-ABE system which is white-
box1 traceable on prime order bilinear groups. To the best of our knowledge, this
is the first practical CP-ABE system that simultaneously supports the following
three properties: white-box traceability, large universe and constant storage for
tracing. Compared with other constructions using composite order groups, we
build our construction on the efficient prime order bilinear groups. We also prove
our new system selectively secure in the standard model.

We solve the obstacles of CP-ABE implementation in the commercial appli-
cations such as pay-TV systems and social networks as follows:

1. We achieve the property of white-box traceability in CP-ABE. Our new
system can trace the malicious users who may leak the partial or modified
decryption keys to others for profits.

2. We obtain the property of large universe in white-box traceable CP-ABE. In
our new system attributes need not be fixed at system setup, the attributes’
size is not polynomially bounded and the public parameters’ size does not
grow linearly with the number of attributes.

3. We do not need to maintain an identity table for tracing as used in [13].
Instead, we adopt the Shamir’s (t̄, n̄) threshold scheme in tracing the mali-
cious users, the storage cost for traceability does not grow linearly with the
number of the users, it is constant which only depends on the threshold t̄.

4. It yields another result that the stored data for traceability need not be
updated when new users are added into the system or malicious users are
ejected out of the system, which makes the system more practical for appli-
cations.

Table 1 gives the comparison between our work and some other related work.

1 In this paper, we mainly aim to obtain a large universe CP-ABE system with white-
box traceability. The realization of black-box traceability for large universe CP-ABE
system will be our future work.

Large Universe CP-ABE with White-Box Traceability 59

Table 1. Comparison with other related work

[14] [15] [13] [11] Ours

Large Universe 1 × × × √ √

Traceability
√ √ √ × √

Constant Storage for Tracing 2 √ × × − √

Supporting Any Monotone Access Structures 3 × × √ √ √

Constructed on Prime Order Groups 4 √ × × √ √

Standard Model × √ √ √ √

1 In [14],[15] and [13], their systems only support small universe.
2 In [15] and [13], the storage for tracing is not constant. In [11], the proposed

system does not support traceability.
3 In [14] and [15], their systems do not support any monotone access structures.
4 In [15] and [13], their systems are constructed on the composite order groups.

1.2 Our Technique

In this subsection, we briefly introduce the main idea we utilize to realize the
properties of large universe and white-box traceability before giving the full
details in Section 4.

To realize large universe construction, we adopt the “individual randomness”
and “layer” technique from [17, 11]. We use the “layer” technique to encrypt data
securely and to be able to decrypt. We employ two “layers” : the “attribute”
layer and the “secret sharing” layer, and use a “binder term” to connect these
two layers securely. In the “attribute” layer, we utilize u, h terms to provide a
Boneh-Boyen-style [18] hash function (uAh). As for the “secret sharing” layer,
during KeyGen and Encrypt phases we use w term to hold the secret randomness
r and the secret randomness s’s shares respectively. Finally, we use the v term
to “bind” this two layers together.

To realize traceability, we use the Boneh-Boyen-style signature [18]. Compared
with the related work [13], we find that the table T with the tuple identity and
its randomness used in [13] grows linearly with the number of the users.2 With
the number of the users in a system scaling large, the corresponding identity
table T for traceability will expand as a result, which leads to heavy burden of
the storage space for T . Besides, the corresponding cost of searching K ′ in T
during the Trace phase is relatively huge. In this paper, we utilize the Shamir’s
(t̄, n̄) threshold scheme to optimize the property of traceability. We only need
store t̄ − 1 points on a polynomial f(x) at system setup. Consequentially, our
storage for traceability does not grow linearly with the number of the users and
is a constant.

The main idea of our traceability is as follows.

2 Note that in the extension of [13], it gives another signature scheme for the purpose
of removing the identify table T , but unfortunately the new signature scheme is not
as efficient as the original one. Besides, it brings some other parameters, which will
cause additional computation overhead.

60 J. Ning et al.

Firstly, the Setup algorithm initializes an instance of Shamir’s (t̄, n̄) thresh-
old scheme INS(t̄,n̄) and keeps a polynomial f(x) and t̄ − 1 points {(x1, y1),
(x2, y2), ..., (xt̄−1, yt̄−1)} on f(x) secret. Then we insert c into the decryption
key sk during KeyGen phase where c = Enck̄2

(x||y), x = Enck̄1
(id), y = f(x).3

During the Trace phase, the algorithm extracts (x∗ = x′, y∗ = y′) from x′||y′ =
Deck̄2

(K ′) in the decryption key sk, and then it checks whether sk is issued by
system. If (x∗ = x′, y∗ = y′) ∈ {(x1, y1), (x2, y2), ..., (xt̄−1, yt̄−1)}, the algorithm
computes Deck̄1

(x∗) to get id to identify the malicious user directly. Otherwise,
the algorithm computes the secret of INS(t̄,n̄) by interpolating with t̄−1 points
{(x1, y1), (x2, y2), ..., (xt̄−1, yt̄−1)} and (x∗, y∗). If the recovered secret is equal
to f(0), the algorithm computes Deck̄1

(x∗) to get id to identify the malicious
user. If the equation fails, sk is not issued by the system. In this way, we could
trace the owner of the decryption key. Meanwhile, it brings the benefit that the
system only stores t̄− 1 points on f(x), and thus the storage for traceability is
a constant.

1.3 Related Work

Sahai and Waters introduced the notion of Fuzzy Identity-Based Encryption in
[1]. Goyal, Pandey, Sahai and Waters [2] later formalized two notions of ABE:
CP-ABE (where user keys are labeled with sets of attributes and ciphertexts are
associated with policies) and KP-ABE (where ciphertexts are labeled with sets of
attributes and private keys are associated with access structures). Subsequently,
many constructions of selectively secure KP-ABE and CP-ABE systems were
proposed [3, 4, 19, 4–6, 8, 7, 20]. Many advances have been made for ABE as
the following directions: new proof techniques to obtain fully secure [21, 8, 6, 9],
decentralizing trust by setting multiple authorities [22–24] and outsourcing com-
putation [25, 26]. The first large universe KP-ABE construction was proposed
in [17]. It was built on composite order groups and proved selectively secure
in the standard model. Then the first large universe KP-ABE construction on
prime order groups was proposed in [27] inspired by the dual pairing vector space
framework [28–30]. Recently, the first large universe CP-ABE construction [11]
built on prime order bilinear groups was proposed by Rouselakis and Waters.
It was proved selectively secure in the standard model under “q-type” assump-
tion. Another branch of ABE research considers the problem of traceability.
The notion of accountable CP-ABE was first proposed in [14] to prevent ille-
gal key sharing among colluding users. Then a multi-authority ciphertext-policy
(AND gates with wildcard) ABE scheme with accountability was proposed in
[15], which allowed tracing the identity of a misbehaving user who leaked the de-
cryption key to others. Liu, Cao and Wong lately proposed a white-box [13] and
black-box [16] traceability CP-ABE system which supported policies expressed
in any monotone access structures.

3 Note that the tuple (x, y) is a point on f(x)

Large Universe CP-ABE with White-Box Traceability 61

1.4 Organization

Section 2 gives the formal definition of traceable large universe CP-ABE and its
security model. Section 3 introduces the background, including the notation, the
access policy, the linear secret sharing scheme, the prime order bilinear groups
and the assumptions. Section 4 presents the construction of our T-LU-CP-ABE
system as well as the security proof. Some extensions of our work are discussed
in Section 5. Finally, Section 6 presents a briefly conclusion and foresees our
future work.

2 Traceable Large Universe CP-ABE

2.1 Definition

A Traceable Large Universe CP-ABE (T-LU-CP-ABE) system is a CP-ABE
system where attributes need not be fixed at system setup and can trace the
user by his/her decryption key. We enhance the original large universe CP-ABE
system by adding users’ identities and a Trace algorithm to it according to
[13]. In particular, following the notation of the large universe CP-ABE system
introduced in [11], a T-LU-CP-ABE system consists of five algorithms as follows:

– Setup(1λ) → (pp,msk) : The algorithm takes as inputs a security parameter
λ ∈ N encoded in unary. It outputs the public parameters pp and the master
secret key msk. We assume that the description of the attribute universe U
is contained in the public parameters.4 In addition, it initializes an instance
of Shamir’s (t̄, n̄) threshold scheme denoted by INS(t̄,n̄).

– KeyGen(1λ, pp,msk, id, S)→ skid,S : The key generation algorithm takes as
inputs the public parameters pp, the master secret key msk and a set of
attributes S ⊆ U for a user with identity id. The security parameter in
the inputs ensures that it is polynomial time in λ. The algorithm outputs a
secret key skid,S corresponding to S.

– Encrypt(1λ, pp,m,A) → ct : The encryption algorithm takes as inputs the
public parameters pp, a plaintext message m, and an access structure A over
U . It outputs the ciphertext ct.

– Decrypt(1λ, pp, skid,S , ct) → m or ⊥ : The decryption algorithm takes as
inputs the public parameters pp, a secret key skid,S , and a ciphertext ct. It
outputs the plaintext m or ⊥.

– Trace(pp, INS(t̄,n̄),msk, sk) → id or ᵀ : The tracing algorithm takes as
inputs the public parameter pp, an instance of of Shamir’s (t̄, n̄) threshold
scheme INS(t̄,n̄), the master secret key msk, and a secret key sk. The algo-
rithm first verifies whether sk is well-formed to determine whether sk needs
to be traced. If sk is well-formed and could recover the secret of INS(t̄,n̄),

4 In the previous CP-ABE systems, the attribute universe U was one of the argu-
ments in the Setup algorithm. In the large universe case, the attribute universe only
depends on the size of the security parameter and the group generation algorithm
[11].

62 J. Ning et al.

the algorithm outputs an identity id implying that sk is linked to id. Oth-
erwise, it outputs a special symbol ᵀ implying that sk does not need to be
traced. We define a secret key sk is well-formed which means that it passes
the key sanity check algorithm. The key sanity check is a deterministic algo-
rithm [31, 32], which is used to guarantee the secret key in the well-formed
decryption process.

2.2 T-LU-CP-ABE Selective Security

The security model of our T-LU-CP-ABE system is similar to that of the LU-
CP-ABE system [11], excepting every key query is companied with an explicit
identity. In this subsection we present the definition of selective security for our
T-LU-CP-ABE system. It is parameterized by the security parameter λ ∈ N and
is described by a game between an attacker and a challenger. The phases of the
game are as follows:

– Initialization : The attacker claims the challenge access structure A∗ he
will attack, and then sends it to the challenger.

– Setup : The challenger runs the Setup(1λ) algorithm and sends the public
parameters pp to the attacker.

– Query Phase 1 : In this phase the attacker can adaptively ask for secret
keys for the sets of attributes (id1, S1), (id2, S2), ..., (idQ1 , SQ1). For each
(idi, Si) the challenger calls KeyGen(1λ, pp,msk, id, S) → skid,S and sends
skid,S to the attacker. The only restriction is that the attacker can not query
the sets that satisfies the challenge access structure A∗, i.e. ∀i ∈ [Q1] : Si /∈
A∗.

– Challenge : The attacker declares two equal length messages m0 and m1 and
sends them to the challenger. The challenge flips a random coin β ∈ {0, 1}
and calls Encrypt(1λ, pp,mβ,A∗) → ct. It gives ct to the attacker.

– Query Phase 2 : This is the same as query phase 1. The attacker asks
for the secret key for the sets (idQ1+1, SQ1+1), ..., (idQ, SQ) with the same
restriction: ∀i ∈ [Q] : Si /∈ A∗.

– Guess : The attacker outputs a guess β′ ∈ {0, 1} for β.

The advantage of an attacker is defined to be Adv = Pr[β′ = β]− 1/2 in this
game.

Definition 1. A traceable large universe ciphertext-policy attribute-based en-
cryption system is selectively secure if all probabilistic polynomial-time (PPT)
attackers have at most negligible advantage in λ in the above security game.

2.3 Traceability

In this subsection, we give the traceability definition for our T-LU-CP-ABE. It
is described by a game between an attacker and a challenger. The phases of the
game are as follows:

Large Universe CP-ABE with White-Box Traceability 63

– Setup : Here the challenger calls the Setup(1λ) algorithm and sends the
public parameters pp to the attacker.

– KeyQuery : The attacker submits the sets of attributes (id1, S1), ..., (idq, Sq)
to request the corresponding decryption keys.

– Key Forgery : The attacker will output a decryption key sk∗. If Trace(pp,
INS(t̄,n̄),msk, sk∗) �= ᵀ and Trace(pp, INS(t̄,n̄),msk, sk∗) /∈ {id1, ..., idq},
then the attacker wins the game. The advantage of an attacker in this game
is defined to be Pr[Trace(pp, INS(t̄,n̄),msk, sk∗) /∈ {ᵀ, id1, ..., idq}].

Definition 2. A traceable large universe ciphertext-policy attribute-based en-
cryption system is fully traceable if there has no polynomial time attacker have
non-negligible advantage in the above game.

3 Background

3.1 Notation

We define [l] = {1, 2, ..., l} for l ∈ N. By PPT we denote probabilistic polynomial-
time. We denote Zl×n

p be the set of matrices of size l × n with elements in Zp.
The set of row vectors of length n (i.e. Z1×n

p) and the set of column vectors of
length n (i.e. Zn×1

p) are the two special subsets. We denote (s1, s2, ..., sn) be a

row vector and (s1, s2, ..., sn)⊥ be a column vector. By vi we denote the i-th
element in a vector v. And by Mv we denote the inner product of matrix M
with vector v. We define F(U1 → U2) be the set of functions from set U1 to U2.

We denote GD = (p,G,GT , e) be the groups and the bilinear mapping de-
scription where G and GT are two multiplicative cyclic groups of prime order p
and e : G×GT is a bilinear map.

3.2 Access Policy

This subsection presents the definition of access structure referred to [33, 11].

Definition 3. (Access Structure [33]) : Let U denote the attribute universe. A
collection A ∈ 2U of non-empty sets of attributes is an access structure on U .
The sets in A are called the authorized sets, and the sets not in A are called
the unauthorized sets. A collection A ∈ 2U is called monotone if ∀B,C ∈ A : if
B ∈ A and B ⊆ C, then C ∈ A.

The main idea in ABE is that the role of the users is taken by the attributes.
Thus, the access structure A will contain the authorized sets of attributes. For
CP-ABE, if a user of the system posses an authorized set of attributes then
he can decrypt the ciphertext, otherwise, he can’t get any information from
ciphertext if the set he possed is unauthorized. In our construction, we restrict
our attention to monotone access structure.

64 J. Ning et al.

3.3 Linear Secret-Sharing Schemes

It is shown in [33] that a linear secret sharing scheme can realize any monotone
access structure. In this subsection, we will present the definition of linear secret-
sharing scheme (LSSS) referred to [33, 11].

Definition 4. (Linear Secret-Sharing Schemes (LSSS) [33, 11]). Let U denote
the attribute universe and p denote a prime. A secret-sharing scheme

∏
with

domain of secrets Zp realizing access structure on U in called linear (over Zp) if
1. The shares of a secret s ∈ Zp for each attribute form a vector over Zp.
2. For each access structure A on U , there exists a matrix M with l rows

and n columns called the share-generating matrix. For i = 1, ..., l, we define a
function ρ labels row i of M with attribute ρ(i) from the attribute universe U ,
i.e. ρ ∈ F([l] → U). When we consider the column vector v = (s, r2, ..., rn)⊥,
where r2, ..., rn ∈ Zp are randomly chosen. Then Mv ∈ Zl×1

p is the vector of l
shares of the secret s according to

∏
. The share (Mv)j “belongs” to attribute

ρ(j), where j ∈ [l].

As shown in [33], every linear secret-sharing scheme according to the above
definition also enjoys the linear reconstruction property, defined as follows: Let∏

be an LSSS for the access structure A, S ∈ A be any authorized set and
let I ⊂ {1, 2, ..., l} be defined as I = {i ∈ [l] ∧ ρ(i) ∈ S}. Then, there exist
constants {ωi ∈ Zp}i∈I such that for any valid shares {λi = (Mv)i}i∈I of a
secret s according to

∏
, then

∑
i∈I ωiλi = s. Additionally, it is shown in [33]

that these constants {ωi}i∈I can be found in time polynomial in the size of the
share-generating matrix M . On the other hand, for any unauthorized set S′, no
such constants {ωi} exist.

Also note that if we encode the access structure as a monotonic Boolean
formula over attributes, there exists a generic algorithm by which we can generate
the corresponding access policy in polynomial time [33, 24].

In our construction, an LSSS matrix (M,ρ) will be used to express an access
policy associated to a ciphertext.

3.4 Prime Order Bilinear Groups

Let G and GT be two multiplicative cyclic groups of prime order p. Let g be a
generator of G and e : G× G→ GT be a bilinear map. The bilinear map e has
the following properties:

1. Bilinearity: ∀u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) �= 1.
We say that G is a bilinear group if the group operations in G and the bilinear

map e : G × G → GT can both be computed efficiently. Notice that the map
e(·, ·) is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

3.5 Assumptions

We adopt the “q-type” assumption of [11] as this construction’s assumption.

Large Universe CP-ABE with White-Box Traceability 65

Assumption 1 (“q-type” assumption [11]). We define the q-type problem
as follows. Initially choose a group generation algorithm with input the security
parameter, pick a random group element g ∈ G, and q + 2 random exponents
d, s, b1, b2, ..., bq ∈ Zp. If the attacker is given the group description (p,G,GT , e)
and y including the following terms:

g, gs

gd
i

, gbj , gsbj , gd
ibj , gd

i/b2j ∀(i, j) ∈ [q, q]

gd
i/bj ∀(i, j) ∈ [2q, q] with i �= q + 1

gd
ibj/b

2
j′ ∀(i, j, j′) ∈ [2q, q, q] with j �= j′

gsd
ibj/bj′ , gsd

ibj/b
2
j′ ∀(i, j, j′) ∈ [q, q, q] with j �= j′,

it is hard for the attacker to distinguish e(g, g)sd
q+1 ∈ GT from an element which

is randomly chosen from GT .
An algorithm A that outputs β ∈ {0, 1} has advantage ε in solving the above

assumption if |Pr[A(y, e(g, g)sd
q+1

) = 0]− Pr[A(y, R) = 0]| ≥ ε.

Definition 5. We say that the q-type assumption holds if no PPT algorithm
has a non-negligible advantage in solving the q-type problem.

We define our l-SDH assumption according to [18, 31].

Assumption 2. (l-SDH assumption [18, 31]) : Let G be a bilinear group of
prime order p and g be a generator of G, the l-Strong Diffie-Hellman (l-SDH)

problem in G is defined as follows: given a (l + 1)-tuple (g, gx, gx
2

, ..., gx
l

) as
inputs, output a pair (c, g1/(c+x)) ∈ Zp × G. An algorithm A has advantage ε

in solving l-SDH in G if Pr[A(g, gx, gx
2

, ..., gx
l

) = (c, g1/(c+x))] ≥ ε, where the
probability is over the random choice of x in Z∗

p and the random bits consumed
by A.
Definition 6. We say that the (l, t, ε)-SDH assumption holds in G if no t-time
algorithm has advantage at least in solving the l-SDH problem in G.

3.6 Shamir’s (t̄, n̄) Threshold Scheme

It is well known for Shamir’s (t̄, n̄) threshold scheme [34] (or Shamir’s secret
sharing scheme) in cryptography. The essential idea of that scheme is that t̄
points on a t̄ − 1 degree curve are sufficient to confirm such a curve, that is, t̄
points are enough to determine a t̄− 1 degree polynomial. For a (t̄, n̄) threshold
scheme, a secret can be divided into n̄ parts (or even more), which are sent
to each participant a unique part. All of them can be used to reconstruct the
secret. Suppose that the secret is assumed to be an element in a finite field
F∗
p. Choose t̄ − 1 random coefficients a1, a2, · · · , at̄−2 ∈ Fp and at̄−1 ∈ F∗

p and
set the secret in the constant term a0. Note that, we have such a polynomial:
f(x) = a0 + a1x + a2x

2 + · · · + at̄−1x
t̄−1. Every participant is given a point

(x, y) on the above curve, that is, the input to the polynomial x and its output
y = f(x). Given a subset with any t̄ points, we can recover the constant term a0

using the Lagrange interpolation.

66 J. Ning et al.

4 Our T-LU-CP-ABE System

In this section we propose the construction of our new large universe CP-ABE
system with white-box traceability.

4.1 Construction

– Setup(1λ) → (pp,msk) : The algorithm runs the group generator algorithm
g(1λ) and gets the groups and the bilinear mapping description GD =
(p,G,GT , e), where (G,GT) are groups of order p and e is the bilinear
mapping. Let U = Zp be the attribute universe. The algorithm randomly
chooses g, u, h, w, v ∈ G and α, a ∈ Zp. Besides, the algorithm chooses a
probabilistic encryption scheme (Enc,Dec) [35] from a binary string to Z∗

p

with different secret key k̄1, k̄2. Furthermore, it initializes an instance of
Shamir’s (t̄, n̄) threshold scheme INS(t̄,n̄)

5 [34] and keeps f(x) 6 and t̄− 1
points {(x1, y1), (x2, y2), ..., (xt̄−1, yt̄−1)} secret. It sets (GD, g, u, h, w, v, ga,
e(g, g)α) as pp and (α, a, k̄1, k̄2) as msk.

– KeyGen(1λ, pp,msk, id, S = {A1, A2, ..., Ak} ⊆ Zp) → skid,S : The algorithm
computes: x = Enck̄1

(id), y = f(x), c = Enck̄2
(x||y). Note that the comput-

ing result c is not distinguished from a random number 7. And it randomly
chooses r, r1, r2, ...rk ∈ Zp. The decryption key skid,S is set as follows:

〈K = gα/(a+c)wr,K ′ = c, L = gr, L′ = gar,

{Kτ,1 = grτ ,Kτ,2 = (uAτh)rτ v−(a+c)r}τ∈[k]〉

– Encrypt(1λ, pp,m ∈ GT , (M,ρ) ∈ (Zl×n
p ,F([l] → Zp))) → ct : The al-

gorithm takes the public parameters pp, a plaintext message m and ran-
domly chooses −→y = (s, y2, ..., yn)⊥ ∈ Zn×1

p , where s is the random secret
to be shared according to Subsection 3.3. It gets the vector of the shares−→
λ = (λ1, λ2, ..., λl) by computing the inner product λi = Mi

−→y , where Mi

is the i-th row of M . Then it randomly picks l exponents t1, t2, ..., tl ∈ Zp.
The ciphertext ct is set as follows:

〈(M,ρ), C = m · e(g, g)αs, C0 = gs, C′
0 = gas,

{Ci,1 = wλivti , Ci,2 = (uρ(i)h)−ti , Ci,3 = gti}i∈[l]〉

It outputs the ciphertext ct.

5 In our system, it requires n̄ is greater than the number of the total users.
6 If all of the users register and get the secret keys at the beginning of system initial-
ization, the system could secretly store f(0) instead of the polynomial f(x) since the
storage for f(x) is much larger than that of f(0).

7 Due to the definition of probabilistic encryption, x is not distinguished from a ran-
dom number. In addition, f is linear function and thus y is also a random number.
Therefore, c, combined with x and y and through a probabilistic encryption, can
also be a random number.

Large Universe CP-ABE with White-Box Traceability 67

– Decrypt(1λ, pp, skid,S , ct) → m or⊥ : The algorithm first computes the set of
rows in M that produces a share to attributes in S, that is, I = {i : ρ(i) ∈ S}.
If the attribute set S is not an authorized set of the access policy, then
it cannot satisfy the access structure of (M,ρ), the algorithm outputs ⊥.
Otherwise, the algorithm lets {ωi ∈ Zp}i∈I be a set of constants such that∑

i∈I ωiMi = (1, 0, ..., 0), where Mi is the matrix M ’s i-th row. Note that∑
i∈I ωiλi = s if the attribute set S is authorized, and there may exists other

different ways to choose the values of ωi to satisfy this. Then it computes:

E = e(K,CK′
0 C′

0) = e(g, g)αse(w, g)(a+c)sr

D =
∏
i∈I

(e(LK′
L′, Ci,1)e(Kτ,1, Ci,2)e(Kτ,2, Ci,3))ωi = e(g, w)(a+c)rs

F = E/D = e(g, g)αs

where τ is the attribute ρ(i)’s index in S (it depends on i). It outputs the
plaintext m = C/F .

Correctness:

F =
E

D
=

e(g, g)αse(w, g)(a+c)sr∏
i∈I D1 ·D2 ·D3 ·D4 ·D5

=
e(g, g)αse(w, g)(a+c)sr

e(g, w)(a+c)r
∑

i∈I
ωiλi

= e(g, g)αs

where

D1 = e(g, w)(a+c)rλiωi , D2 = e(g, v)(a+c)rtiωi , D3 = e(g, uρ(i)h)−rτ tiωi ,

D4 = e(uρ(i)h, g)rτ tiωi , D5 = e(v, g)−(a+c)rtiωi .

– Trace(pp, INS(t̄,n̄),msk, sk) → id or ᵀ : If the sk is not in the form of
sk = (K,K ′, L, L′, {Kτ,1,Kτ,2}τ∈k) and can not pass the key sanity check,
the algorithm will output ᵀ. Otherwise, sk is a well-formed decryption key,
and the algorithm will do as follows:

(1) The algorithm extracts (x∗ = x, y∗ = y) from x||y = Deck̄2
(K ′) in sk.

(2) If (x∗ = x, y∗ = y) ∈ {(x1, y1), (x2, y2), ..., (xt̄−1, yt̄−1)}, the algorithm
computes Deck̄1

(x∗) to get id to identify the malicious user (with id).
Otherwise, go to (3).

(3) The algorithm recovers the secret a∗0 of INS(t̄,n̄) by interpolating with
t̄ − 1 points {(x1, y1), (x2, y2), ..., (xt̄−1, yt̄−1)} and (x∗ = x, y∗ = y). If
a∗0 = f(0), it computes Deck̄1

(x∗) to get id to find out the malicious
user. Otherwise, the algorithm outputs ᵀ.

Key Sanity Check: K ′ ∈ Z∗
p,K, L, L′,Ki,1,Ki,2 ∈ G 8.

8 Here only a brief check is needed.

68 J. Ning et al.

4.2 Selective Security Proof

In the selective security proof, although we can proof that directly based on the
Assumption 1 as [11] does, for simplicity, we will reduce the selective security
of our T-LU-CP-ABE system to that of Rouselakis and Waters’s system in [11]
which is proved selectively secure under Assumption 1.

For simplicity, we denote by Σlucpabe, Σtlucpabe the LU-CP-ABE system in
[11] and our system respectively. Note that the security model of our system
Σtlucpabe is almost same with that of the system Σlucpabe in [11], excepting every
key query is companied with an explicit identity.

Lemma 1. [11] If the assumption 1 holds, then the LU-CP-ABE system Σlucpabe

is selectively secure.

Selective security of our new T-LU-CP-ABE:

Lemma 2. If the LU-CP-ABE system Σlucpabe is selectively secure in the game
of [11], then our new T-LU-CP-ABE system Σtlucpabe is selectively secure in the
game of Subsection 2.2.

Due to space limitations, we refer the interested reader to the full version [36]
of this paper for the proof of this lemma.

Theorem 1. If Assumption 1 holds, then our T-LU-CP-ABE system is selec-
tively secure.

Proof : It follows directly from Lemma 1 and Lemma 2.

4.3 Traceability Proof

In this subsection, we will give the traceability proof of our T-LU-CP-ABE
system based on l-SDH assumption. We use a proof method from [18] and [13].

Theorem 2. If the l-SDH assumption holds, then our T-LU-CP-ABE system
is fully traceable provided that q < l.

Due to space limitations, we refer the interested reader to the full version [36]
of this paper for the proof of this theorem.

5 Extensions

5.1 Transform from One-Use T-LU-CP-ABE to Multi-Use
T-LU-CP-ABE

The construction in our system is a one-use T-LU-CP-ABE construction. Since
the ρ in our system is an injective function for each access policy associated to a
ciphertext. During the row label of the share-generating matrix, the attributes
are only used once. This kind of construction is called one-use CP-ABE.

Large Universe CP-ABE with White-Box Traceability 69

We can extend our new T-LU-CP-ABE system to a multi-use system using
the encoding technique in [6]: we take k copies of each attribute A instead of
a single attribute. Then we have new “attributes”: {A : 1, ..., A : k}. Now we
can label a row of the access matrix A with {A : i}. Thus the attribute can be
used multiple times. Note that the size of the public parameters do not grow
linearly with the number of the involved attributes, so that the size of the public
parameters will remain the same size under this transformation. Besides the
access matrix’s size does not change under this transformation either, thus the
size of the ciphertext also remains the same size. This makes our T-LU-CP-ABE
system more suitable for commercial applications.

5.2 Revocable T-LU-CP-ABE

Through our new T-LU-CP-ABE system proposed in this paper, it is easy to
trace the malicious user who leak his/her decryption key for benefits. This evokes
another significant issue to be considered: how to revoke the malicious users. Sev-
eral work has focused on designing revocable ABE [37, 10]. With the technology
of ciphertext delegation and piecewise key generation introduced in [10], we can
achieve a revocable T-LU-CP-ABE construction. Furthermore, since we make
use of the Shamir’s (t̄, n̄) threshold scheme in the Trace algorithm, the system
only need store t̄− 1 tuples in system for tracing, rather than an identify table
T which contains all users’ identifies. This brings an obvious advantage that the
system need not update the identify table T when some users are revoked.

6 Conclusion and Future Work

In this work, we have presented a practical large universe CP-ABE system sup-
porting white-box traceability. Specifically, we have achieved the property of
white-box traceability in CP-ABE, which could trace the malicious users leak-
ing the partial or modified decryption keys to others for profits. We have also
obtained the property of large universe in white-box traceable CP-ABE where
the attributes’ size is unbounded and the public parameters’ size does not grow
linearly with the number of attributes. In addition, we optimize the system in
tracing the malicious users to cut down the storage cost for traceability and to
make the system efficient in the user revocation. Based on the above advantages,
our new system could be applied to many scenarios such as pay-TV systems and
social networks. As far as we known, this is the first practical CP-ABE system
that simultaneously supports white-box traceability and large universe. We have
also proved our new system selectively secure in the standard model.

In our future work, we will focus on the stronger notion for traceability named
black-box traceability. In that scenario, the malicious users leak their decryption
devices instead of decryption keys. Specifically, the malicious users could hide
the decryption algorithm by tweaking it, as well as the decryption keys. In this
case, due to the fact that the decryption keys and decryption algorithm are both
not well-formed, the new system supporting white-box traceability in this paper

70 J. Ning et al.

will fail. It will be our future work to obtain a large universe CP-ABE system,
which supports black-box traceability.

There is another important issue about public auditing we need to pay atten-
tion to. Suppose a user Bob is identified as a malicious user by the system, but
claims to be innocent and framed by the system. It is a big problem to judge
whether Bob is in fact innocent or not. In this case, the suspected user does
not trust the system and the system needs to provide some evidence persuasive
enough to prove that the suspected user is guilty. To address this issue, a public
auditor which is played by a trusted third party needs to be introduced. How-
ever, the suspected user does not want the public auditor to know the private
information since in the Trace phase the auditor will obtain Bob’s decryption
keys and be able to decrypt all the data that Bob has. Achieving a traceable
large universe CP-ABE system with public auditors is still an open problem,
and we will keep working on it.

Acknowledgements. We are grateful to the anonymous reviewers for their
invaluable suggestions. This work is supported by the National Natural Sci-
ence Foundation of China (Grant No. 61371083, 61373154 and 61033014), the
Prioritized Development Projects of the Specialized Research Fund for the Doc-
toral Program of Higher Education of China (Grant No. 20130073130004) and
the Natural Science Foundation of Shanghai of Yang-Fan Plan (Grant No.
14YF1410400).

References

1. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

2. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98. ACM (2006)

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, SP 2007, pp. 321–334. IEEE
(2007)

4. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Proceedings of the 14th ACM Conference on
Computer and Communications Security, pp. 195–203. ACM (2007)

5. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 579–591. Springer, Heidelberg (2008)

6. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: Attribute-based encryption and (hierarchical) inner product en-
cryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

7. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

Large Universe CP-ABE with White-Box Traceability 71

8. Okamoto, T., Takashima, K.: Fully secure functional encryption with general re-
lations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

9. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: Achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

10. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext del-
egation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012)

11. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large
universe attribute-based encryption. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, pp. 463–474. ACM (2013)

12. Hohenberger, S., Waters, B.: Attribute-based encryption with fast decryption.
In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 162–179.
Springer, Heidelberg (2013)

13. Liu, Z., Cao, Z., Wong, D.S.: White-box traceable ciphertext-policy attribute-based
encryption supporting any monotone access structures. IEEE Transactions on In-
formation Forensics and Security 8(1), 76–88 (2013)

14. Li, J., Ren, K., Kim, K.: A2be: Accountable attribute-based encryption for abuse
free access control. IACR Cryptology ePrint Archive 2009, 118 (2009)

15. Li, J., Huang, Q., Chen, X., Chow, S.S., Wong, D.S., Xie, D.: Multi-authority
ciphertext-policy attribute-based encryption with accountability. In: Proceedings
of the 6th ACM Symposium on Information, Computer and Communications Se-
curity, pp. 386–390. ACM (2011)

16. Liu, Z., Cao, Z., Wong, D.S.: Blackbox traceable cp-abe: how to catch peo-
ple leaking their keys by selling decryption devices on ebay. In: Proceedings of
the 2013 ACM SIGSAC Conference on Computer & Communications Security,
pp. 475–486. ACM (2013)

17. Lewko, A., Waters, B.: Unbounded hibe and attribute-based encryption. In: Pa-
terson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011)

18. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

19. Cheung, L., Newport, C.: Provably secure ciphertext policy abe. In: Proceedings of
the 14th ACMConference on Computer andCommunications Security, pp. 456–465.
ACM (2007)

20. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011)

21. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
hibe with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

22. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)

23. Chase, M., Chow, S.S.: Improving privacy and security in multi-authority attribute-
based encryption. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security, pp. 121–130. ACM (2009)

72 J. Ning et al.

24. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011)

25. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:
Verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)

26. Green, M., Hohenberger, S., Waters, B.: Outsourcing the decryption of abe cipher-
texts. In: USENIX Security Symposium, p. 3 (2011)

27. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

28. Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector
decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 57–74. Springer, Heidelberg (2008)

29. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer,
Heidelberg (2009)

30. Okamoto, T., Takashima, K.: Fully secure functional encryption with general re-
lations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

31. Goyal, V.: Reducing trust in the pkg in identity based cryptosystems. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430–447. Springer, Heidelberg (2007)

32. Goyal, V., Lu, S., Sahai, A., Waters, B.: Black-box accountable authority identity-
based encryption. In: Proceedings of the 15th ACM Conference on Computer and
Communications Security, pp. 427–436. ACM (2008)

33. Beimel, A.: Secure schemes for secret sharing and key distribution. PhD thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

34. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

35. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

36. Ning, J., Cao, Z., Dong, X., Wei, L., Lin, X.: Large universe ciphertext-policy
attribute-based encryption with white-box traceability. Cryptology ePrint Archive,
Report 2014/471 (2014), http://eprint.iacr.org/

37. Qian, J.L., Dong, X.L.: Fully secure revocable attribute-based encryption. Journal
of Shanghai Jiaotong University (Science) 16, 490–496 (2011)

http://eprint.iacr.org/

PPDCP-ABE: Privacy-Preserving Decentralized

Ciphertext-Policy Attribute-Based Encryption

Jinguang Han1, Willy Susilo2, Yi Mu2, Jianying Zhou3, Man Ho Au2

1 Jiangsu Provincial Key Laboratory of E-Business, Nanjing University of Finance
and Economics, Nanjing, Jiangsu 210003, China

2 School of Computer Science and Software Engineering, University of Wollongong,
Wollongong, NSW 2522, Australia

3 Infocomm Security Department, Institute for Infocomm Research, 1 Fusionopolis
Way, Singapore 138632, Singapore

jghan22@gmail.com, {wsusilo,ymu,aau}@uow.edu.au, jyzhou@i2r.a-star.edu.sg

Abstract. Cipher-policy attribute-based encryption (CP-ABE) is a
more efficient and flexible encryption system as the encryptor can control
the access structure when encrypting a message. In this paper, we pro-
pose a privacy-preserving decentralized CP-ABE (PPDCP-ABE) scheme
where the central authority is not required, namely each authority can
work independently without the cooperation to initialize the system.
Meanwhile, a user can obtain secret keys from multiple authorities with-
out releasing his global identifier (GID) and attributes to them. This
is contrasted to the previous privacy-preserving multi-authority ABE
(PPMA-ABE) schemes where a user can obtain secret keys from multi-
ple authorities with them knowing his attributes and a central authority
is required. However, some sensitive attributes can also release the user’s
identity information. Hence, contemporary PPMA-ABE schemes can-
not fully protect users’ privacy as multiple authorities can cooperate to
identifier a user by collecting and analyzing his attributes. Therefore, it
remains a challenging and important work to construct a PPMA-ABE
scheme where the central authority is not required and both the identi-
fiers and the attributes are considered.

Keywords: CP-ABE, decentralization, privacy.

1 Introduction

In network society, users can be identified by their distinct attributes. For exam-
ple, European electronic identity cards often contain the attributes: nationality,
sex, civil status, hair and eye color, and applicable minority status. These at-
tributes are either binary or discrete numbers from a pre-defined finite sets [1].
Especially, they are very privacy-sensitive and require a selective disclosure of
one while hiding others completely; otherwise, a user can be identified and im-
personated by collecting and analyzing his attributes.

In practical applications, we often share data with some expressive attributes
without knowing who will receive it. To resolve this problem, Sahai and Waters

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 73–90, 2014.
c© Springer International Publishing Switzerland 2014

74 J. Han et al.

[2] introduced the seminal concept of attribute-based encryption (ABE). In this
new encryption system, there is a central authority who monitors the universal
attributes and distributes secrete keys to users accordingly. A user can decrypt a
ciphertext if and only if there is a match between the attributes which he holds
and the attributes listed in the ciphertext. Since it can protect the confidentiality
of sensitive data and express flexible access control, ABE schemes have been
focused extensively [3–8].

To reduce the trust on the central authority, Chase [9] proposed a multi-
authority ABE (MA-ABE) scheme where multiple authorities must cooperate
with the central authority to initialize the system. Then, Lewko and Waters [10]
proposed a new MA-ABE scheme called decentralized CP-ABE (DCP-ABE)
where multiple authorities can work independently without a central authority
or any cooperation among them.

1.1 Privacy in Multi-Authority Attribute-Based Encryption

In an MA-ABE scheme, malicious users may combine their secret keys to create
a new secret key if the multiple authorities work independently [9]. For example,
suppose that there is a ciphertext which can be decrypted by the attributes
monitored by the authorities A1 and A2. If Alice obtains secret keys from A1 and
Bob obtains secret keys from A2, they can collaborate to decrypt the ciphertext.
To overcome this hurdle, each user in the system [9] must be designated an unique
global identifier (GID) which is known by each authority. When generating secret
keys for the user, the authorities tie them to his GID.

Privacy issues in MA-ABE are the primary concern of users as the author-
ities can personate the target user if they know his attributes. Some schemes
towards solving this problem have been proposed, but they cannot provide a
complete solution, because, in all these schemes, only the privacy of the GID
has been considered. Currently, there is no any scheme addressing the privacy
issue of the attributes in MA-ABE schemes. However, it is extremely important
as a user can be identified by some sensitive attributes. For example, suppose
that the Head of the Department of Computer Science is Bob. Given two sets
of attributes S1={Position=”Header”, Department=”CS”, Sex=”Male”} and
S2= {Position=”PhD Student”, Department=”CS”, Sex=”Male”}, we can
guess S1 is the attributes of Bob even if we do not know his GID. This clearly
shows that controlled release of sensitive attributes is necessary.

1.2 Our Contributions

In this paper, we propose a privacy-preserving decentralized CP-ABE (PPDCP-
ABE) scheme. In our scheme, any authority can dynamically join or leave the
system, and there is no any requirement for the central authority or interac-
tions among multiple authorities. As a notable feature, each authority can work
independently, while other authorities do not need to change their secret keys
and reinitialize the system when an authority joins or leaves the system. Each

PPDCP-ABE 75

authority monitors a set of attributes and distributes secret keys to users ac-
cordingly. To resist the collusion attacks, user’s secret keys are tied to his GID.
Especially, a user can obtain secret keys for his attributes from multiple au-
thorities without revealing any information about his GID and attributes to the
authorities. Therefore, it provides stronger privacy compared to the previous
PPMA-ABE schemes where only the identifier is protected. To encrypt a mes-
sage, the encryptor selects an access structure for each authority and encrypts
the message under them so that only the users whose attributes satisfy all the
access structures can decrypt the ciphertext and obtain the plaintext. Compared
to the existing decentralized ABE scheme [10] which was constructed in the ran-
dom oracle model, our scheme is designed in the standard model. To the best
of our knowledge, it is the first PPDCP-ABE scheme where both the identifiers
and attributes are considered.

1.3 Organization

The remainder of this paper is organized as follows. In Section 2, the related
work is introduced. We describe the preliminaries which are used throughout
this paper in Section 3. In Section 4, we first construct a DCP-ABE scheme, and
then propose a privacy-preserving key extract algorithm for it. Finally, Section
5 concludes this paper.

2 Related Work

In this section, the related work is introduced.

2.1 Attribute-Based Encryption

Introduced by Sahai and Waters [2], attribute-based encryption (ABE) is a new
encryption system where both the ciphertext and the secret key are labeled with
a set of attributes. A user can decrypt a ciphertext if and only if there is a match
between the attributes listed in the ciphertext and the attributes held by the
user. Currently, ABE schemes can be classified into two types: key-policy ABE
(KP-ABE) and cipher-policy ABE (CP-ABE).

KP-ABE. In these schemes, an access structure is embedded in the secret keys,
while the ciphertext is associated with a set of attributes [2, 9, 11, 5, 6, 12].

CP-ABE. In these schemes, the secret keys are associated with a set of attributes,
while an access structure is embedded in the ciphertext [3, 4, 13].

In CP-ABE schemes, the encryptor can freely determine the access structure,
while, in KP-ABE schemes, it is decided by the authority.

2.2 Multi-Authority Attribute-Based Encryption

In the work [2], Sahai and Waters left an open problem, namely how to con-
struct an ABE scheme where the secret keys can be obtained from multiple

76 J. Han et al.

authorities so that users can reduce the trust on the central authority. Chase
[9] answered this question affirmatively by proposing an MA-ABE scheme. The
technical hurdle in designing an MA-ABE scheme is to resist the collusion at-
tacks. To overcome this hurdle, GID was introduced to tie all the user’s secret
keys together. In [9], there is a central authority, and multiple authorities must
interact to initialize the system.

Based on the distributed key generation (DKG) protocol [14] and the joint
zero secret sharing (JZSS) protocol [15], Lin et al. [16] proposed an MA-ABE
scheme where the cental authority is not required. To initialize the system, the
multiple authorities must cooperatively execute the DKG protocol and the JZSS
protocol twice and k times, respectively, where k is the degree of the polynomial
selected by each authority. Each authority must maintain k+2 secret keys. This
scheme is k-resilient, namely the scheme is secure if and only if the number of
the colluding users is no more than k, and k must be fixed in the setup stage.

Müller et al. [17] proposed a distributed CP-ABE scheme which was proven to
be secure in the generic group [3], instead of reducing to a complexity assump-
tion. Furthermore, a central authority is required to generate the global key and
issue secret keys to users.

Liu et al. [18] proposed a fully secure multi-authority CP-ABE scheme in
the standard model. This scheme was derived from the CP-ABE scheme [7]. In
this scheme, there are multiple central authorities and attribute authorities. The
central authorities issue identity-related keys to users, while the attribute au-
thorities issue attribute-related keys to users. Prior to possessing attribute keys
from the attribute authorities, the user must obtain secret keys from the mul-
tiple central authorities. This MA-ABE scheme was designed in the composite
order (N = p1p2p3) bilinear group.

Lekwo and Waters [10] proposed a new MA-ABE scheme named decentralizing
CP-ABE (DCP-ABE) scheme. This scheme improved the previous MA-ABE
schemes that require collaborations among multiple authorities to conduct the
system setup. In this scheme, no cooperation between the multiple authorities is
required in the setup stage and the key generation stage, and there is no central
authority. Notably, an authority in this scheme can join or leave the system freely
without reinitializing the system. The scheme was constructed in the composite
order (N = p1p2p3) bilinear group, and achieves full (adaptive) security in the
random oracle model. They also pointed out two methods to create a prime
order group variant of their scheme. Nevertheless, the authorities can collect a
user’s attributes by tracing his GID.

Considering the privacy issues in MA-ABE schemes, Chase and Chow pro-
posed [11] a new MA-ABE scheme which improved the previous scheme [9] and
removed the need of a central authority. In previous MA-ABE schemes [9, 16],
to obtain the corresponding secret keys, a user must submit his GID to each au-
thority. So, multiple authorities can cooperate to collect the user’s attributes by
it. In [11], Chase and Chow provided an anonymous key issuing protocol for the
GID where the 2-party secure computing technique is employed. As a result, a
group of authorities cannot cooperate to pool the users attributes by tracing his

PPDCP-ABE 77

GID. However, the multiple authorities must collaborate to setup the system.
Furthermore, each pair of authorities must execute the 2-party key exchange
protocol to share the seeds of the selected pseudo random functions (PRFs) [19].
This scheme is N − 2 tolerant, namely the scheme is secure if and only if the
number of the corrupted authorities is no more than N−2, where N is the num-
ber of the authorities in the system. Although the authorities cannot know any
information about the user’s GID, they can know the user’s attributes. Chase
and Chow [11] also left an open challenging research problem on how to con-
struct a privacy-preserving MA-ABE scheme without the need of cooperations
among authorities.

Li [20] proposed a multi-authority CP-ABE (MACP-ABE) scheme with ac-
countability, where the anonymous key issuing protocol [11] was employed. In
this scheme, a user can be identified when he shared his secret keys with others.
Notably, the multiple authorities must initialize the system interactively.

Recently, Han et al. [12] proposed a privacy-preserving decentralized KP-ABE
(PPDKP-ABE) scheme. In this scheme, multiple authorities can work indepen-
dently without any cooperation. Especially, the central authority is not required
and a user can obtain secret keys from multiple authorities without releasing
anything about his GID to them. Qian et al. [21] proposed a privacy-preserving
decentralized CP-ABE (PPDCP-ABE) scheme which can support simple access
structures. Nevertheless, similar to that in [11], the authorities in these schemes
can know the user’s attributes.

2.3 Anonymous Credential

In an anonymous credential system [22], an identity provider can issue a cre-
dential to a user, which includes the user’s pseudonym and attributes. By using
it, the user can prove in zero knowledge to a third party that he obtains a cre-
dential containing the given pseudonym and attributes without releasing any
other information. In a multiple-show credential system [23], a credential can be
demonstrated an arbitrary number of times, and cannot be linked to each other.

Therefore, in our construction, we assume that each user has obtained an
anonymous credential including his GID and attributes. Then, he can prove in
zero knowledge to the multiple authorities that he has a GID and holds the
corresponding attributes using the anonymous credential technique.

3 Preliminaries

In this section, we introduce the preliminaries used throughout this paper.

In the remainder, by α
$← A, we denote that α is selected from A randomly.

Especially, α
$← A stands for that α is selected from A uniformly at random if

A is a finite set. By |A|, we denote the cardinality of a finite set A. A function
ε : Z→ R is negligible if for any z ∈ Z there exists a k such that ε(x) < 1

xz when
x > k. By A(x) → y, we denote that y is computed by running the algorithm A
with input x. KG(1κ) denotes a secret-public key pair generator which takes as

78 J. Han et al.

input a security parameter 1κ and outputs a secret-public key pair. We denote
Zp as a finite field with prime order p. Finally, by R

r−→ S and R
s←− S, we denote

that the party R sends r to the party S and the party S sends s to the party R,
respectively.

3.1 Complexity Assumption

Let G and Gτ be two cyclic groups with prime order p, and g be a generator of
G. A map e : G×G→ Gτ is a bilinear group if the following properties can be
satisfied:

1. Bilinearity. For all a, b ∈ Zp and u, v ∈ G, e(ua, vb) = e(ub, va) = e(u, v)ab.
2. Nondegeneracy. e(g, g) �= 1τ where 1τ is the identity of the group Gτ .
3. Computability. For all u, v ∈ G, there exists an efficient algorithm to compute

e(u, v).

Let GG(1κ) be a bilinear group generator, which takes as input a security
parameter 1κ and outputs a bilinear group (e, p,G,Gτ) with prime order p and
a bilinear map e : G×G→ Gτ .

Definition 1. (q-Strong Diffie-Hellman (q-SDH) Assumption [24]) Let x
$← Zp,

GG(1κ) → (e, p,G,Gτ) and g be a generator of G. Given a (q + 1)-tuple −→y =

(g, gx, gx
2

, · · · , gxq

), we say that the q-SDH assumption holds on (e, p,G,Gτ)

if no probabilistic polynomial-time adversary A can output (c, g
1

x+c) with the
advantage

AdvA = Pr[A(−→y) → (c, g
1

x+c)] ≥ ε(k)

where c ∈ Zp and the probability is token over the random choices x
$← Zp and

the random bits consumed by A.

Definition 2. (Decisional q-Parallel Bilinear Diffie-Hellman Exponent (q-PBDHE)

Assumption [8]) Let a, s, b1, · · · , bq $← Zp, GG(1κ) → (e, p,G,Gτ) and g be a
generator of G. Given a tuple −→y =

g, gs, ga, · · · , g(aq), g(aq+2), · · · , g(a2q)

∀1≤j≤q gs·bj , g
a
bj , · · · , g(aq

bj
)
, g

(aq+2

bj
)
, · · · , g(a2q

bj
)

∀1≤j,k≤q,k �=j g
a·s·bk

bj , · · · , g(
aq·s·bk

bj
)
,

we say that the decisional q-PBDHE assumption hold on (e, p,G,Gτ) if no

probabilistic polynomial-time adversary A can distinguish (−→y , e(g, g)a
q+1s) from

(−→y ,R) with the advantage

AdvA =
∣∣∣Pr[A(−→y , e(g, g)a

q+1s) = 1]− Pr[A(−→y ,R) = 1]
∣∣∣ ≥ ε(k),

where R
$← Gτ and the probability is token over the random choices of

a, s, b1, · · · , bq $← Zp and the bits consumed by A.

PPDCP-ABE 79

3.2 Building Blocks

In this paper, the following building blocks are adopted.

Definition 3. (Access Structure [25]) Let P = (P1, P2, · · · , Pn) be n parties. A
collection A ⊆ 2{P1,P2,··· ,Pn} is monotonic if B ∈ A and B ⊆ C, then C ∈ A. An
access structure (respectively monotonic access structure) is a collection (respec-
tively monotonic collection) A of the non-empty subset of (P1, P2, · · · , Pn), i.e.,
A ⊆ 2{P1,P2,··· ,Pn} \ {φ}. A set P is called an authorized set if P ∈ A; otherwise
P is an unauthorized set.

Definition 4. (Linear Secret Sharing Schemes [25]) A secret sharing scheme
∏

over a set of parties P is called linear (over Zp) if it satisfies the following
properties:

1. The shares for each party form a vector over Zp.

2. For
∏
, there is a matrix M with � rows and n columns called the share-

generating matrix. For x = 1, 2, · · · , �, the ith row is labeled by a party
ρ(i) where ρ : {1, 2, · · · , �} → Zp. When we consider the vector −→v =
(s, v2, · · · , vn), where s ∈ Zp is the secret to be shared and v2, · · · , vn ∈ Zp

are randomly selected, then M−→v is the vector of the � shares according to∏
. The share Mi

−→v belongs to the party ρ(i), where Mi is the ith row of M .

Linear reconstruction property. Let S be an authorized set and I = {i|ρ(i) ∈ S}.
Then, there exist constants {ωi ∈ Zp}i∈I such that, for any valid shares λi

according to
∏

, we have
∑

i∈I ωiλi = s. The constants {ωi}i∈I can be computed
in polynomial time with the size of share-generating matrix M .

Commitment Schemes. A commitment scheme consists of the following algo-
rithms.

Setup(1κ) → params. This algorithm takes as input a security parameter 1κ,
and outputs the public parameters params.

Commit(params,m) → (com, decom). This algorithm takes as input the public
parameters params and a message m, and outputs a commitment com and a
decommitment decom. decom can be used to decommit com to m.

Decommit(params,m, com, decom) → {0, 1}. This algorithm takes as input the
public parameters params, the message m, the commitment com and the de-
commitment decom, and outputs 1 if decom can decommit com to m; otherwise,
it outputs 0.

A commitment scheme should provide two properties: hiding and binding.
The hiding property requires that the message m keeps unreleased until the user
releases it later. The binding property requires that only the value decom can
be used to decommit the commitment com to m.

In this paper, we use the Pedersen commitment scheme [26] which is a per-
fectly hiding commitment scheme and is based on the discrete logarithm as-
sumption. This scheme works as follows. Let G be a cyclic group with prime

80 J. Han et al.

order p, and g0, g1, · · · , gk be generators of G. To commit a tuple of messages

m1,m2, · · · ,mk, the user selects r
$← Zp, and computes R = gr0g

m1
1 gm2

2 · · · gmk

k .
Then, the user can use r to decommit the commitment R.

Proof of Knowledge. We use the notion introduced by Camenisch and Stadler
[27] to prove statements about discrete logarithm. By

PoK
{

(α, β, γ) : y = gαhβ ∧ ỹ = g̃αh̃γ
}
,

we denote a zero knowledge proof of knowledge of integers α, β and γ such that
y = gαhβ and ỹ = g̃αh̃γ hold on the group G = 〈g〉 = 〈h〉 and G̃ = 〈g〉 = 〈h〉,
respectively. Conventionally, the values in the parenthesis denote the knowledge
that is being proven, while the rest of the values are known by the verifier. There
exists an extractor that can be used to rewind the knowledge from the successful
prover.

Set-Membership Proof. Camenisch et al. [28] proposed a set membership proof
scheme. This scheme works as follows. Let GG(1κ) → (e, p,G,Gτ), and g, h be
generators of G.

1. The verifier picks up x
$← Zp, and computes Y = gx and Ti = g

1
x+i for i ∈ Φ,

where Φ ⊆ Zp is a finite set. Then, it sends {Y, (Ti)i∈Φ} to the prover.

2. To prove σ ∈ Φ, the prover selects v, s, t, r, k
$← Zp, and computes C = gσhr,

D = gshk, V = g
v

x+σ and A = e(V, g)−s · e(g, g)t. Then, it sends (C,D, V,A)
to the verifier.

3. The verifier selects c
$← Zp, and sends it to the prover.

4. The prover computes zσ = s − cσ, zr = k − cr and zv = t − cv, and sends
(zσ, zk, zt) to the verifier.

5. The verifier verifies D
?
= Ccgzσhzr and A

?
= e(Y, v)c · e(V, g)−zσ · e(g, g)zr .

Theorem 1. This protocol is a zero-knowledge argument of set-membership
proof for a set Φ if the |Φ|-SDH assumption holds on the bilinear group
(e, p,G,Gτ) [28].

3.3 DCP-ABE: Decentralized Cipher-Policy Attribute-Based
Encryption

A DCP-ABE scheme consists of the following five algorithms.

Global Setup(1κ) → params. The global setup algorithm takes as input a security
parameter 1κ, and outputs the public parameter params. Suppose that there
are N authorities {Ă1, Ă2, · · · , ĂN}, and each authority Ăi monitors a set of
attributes Ãi. Each user U has a unique global identifier GIDU and holds a set
of attributes Ũ .

Authority Setup(1κ) → (SKi, PKi). Each authority Ăi takes as input the security
parameter 1κ, and runs the authority setup algorithm to generate its secret-
public key pair (SKi, PKi), where KG(1κ) → (SKi, PKi).

PPDCP-ABE 81

Encrypt(params,M, (Mi, ρi, PKi)i∈I) → CT. The encryption algorithm takes
as input the public parameter params, a message M, a set of access structures
(Mi, ρi)i∈I and a set of public keys (PKi)i∈I , and outputs the ciphertext CT .

KeyGen(params, SKi, GIDU , Ũ
⋂
Ãi) → SKi

U . Each authority Ăi runs the key
generation algorithm with inputs of the public parameter params, his secret key
SKi, a user’s global identifier GIDU and a set of attributes Ũ

⋂
Ãi to generate

a secret key SKi
U for U .

Decrypt(params,GID, (SKi
U)i∈I , CT) → M. The decryption algorithm takes

as input the public parameter params, the user’s globe identifier GIDU , the
secret keys (SKi

U)i∈I and the ciphertext CT , and outputs the message M.

Definition 5. A decentralized cipher-policy attribute-based encryption is correct
if

Pr

⎡⎢⎢⎢⎢⎣
Decrypt(params, Global Setup(1κ) → params;
GID, (SKi

U)i∈I , Authority Setup(1κ) → (SKi, Pki);
CT) →M Encrypt(params,M, (Mi, ρi, PKi)i∈I) → CT ;

KeyGen(params, SKi, GIDU , Ũ
⋂
Ãi) → SKi

U

⎤⎥⎥⎥⎥⎦ = 1

where the probability is token over the random bits consumed by all the algorithms
in the scheme.

3.4 Security Model of Decentralized Cipher-Policy Attribute-Based
Encryption

We use the following game to define the security model of DCP-ABE schemes,
which is executed between a challenger and an adversary A. This model is
called selective-access structure model, and is similar to that introduced in
[9, 11, 12, 10, 8].

Initialization. The adversary A submits a list of corrupted authorities A =
{Ăi}i∈I and a set of access structures A = {M∗

i , ρ
∗
i }i∈I∗ , where I ⊆

{1, 2, · · · , N} and I∗ ⊆ {1, 2, · · · , N}. There should be at lease an access struc-
ture (M∗, ρ∗) ∈ A which cannot be satisfied by the attributes monitored by the
authorities in A and the attributes selected by A to query secrete keys.

Global Setup. The challenger runs the Global Setup algorithm to generate the
public parameters params, and sends them to A.

Authority Setup. There are two cases.

1. For the authority Ăi ⊆ A, the challenger runs the Authority Setup algorithm
to generate the secret-public key pair (SKi, PKi), and sends them to A.

2. For the authority Ăi � A, the challenger runs the Authority Setup algorithm
to generate the secret-public key pair (SKi, PKi), and sends the public key
PKi to A.

82 J. Han et al.

Phase 1. A can query secret key for a user U with an identifier GIDU and a set
of attributes Ũ . The challenger runs the KeyGen algorithm to generate a secret
key SKU , and sends it to A. This query can be made adaptively and repeatedly.

Challenge. A submits two messages M0 and M1 with the same length. The
challenger flips an unbiased coin with {0, 1}, and obtains a bit b ∈ {0, 1}. Then,
the challenger runs Encrypt(parmas,Mb, (M

∗
i , ρ∗, PKi)i∈I∗) to generate the

challenged ciphertext CT ∗, and sends CT ∗ to A.

Phase 2. Phase 1 is repeated.

Guess. A outputs his guess b′ on b. A wins the game if b′ = b.

Definition 6. (Selective-Access Structure Secure DCP-ABE (IND-sAS-CPA)) A
decentralized cipher-policy attribute-based encryption (DCP-ABE) scheme is (T,
q, ε(κ)) secure in the selective-access structure model if no probably polynomial-
time adversary A making q secret key queries can win the above game with the
advantage

AdvDCP−ABE
A =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ > ε(κ)

where the probability is token over all the bits consumed by the challenger and
the adversary.

3.5 PPDCP-ABE: Privacy-Preserving Decentralized Cipher-Policy
Attribute-Based Encryption

A PPDCP-ABE has the same algorithms Global Setup, Authority Setup, Encrypt
and Decrypt with the DCP-ABE scheme. The main difference is that we replace
the KeyGen algorithm with a privacy-preserving key generation algorithm PP-
KeyGen. Considering privacy issues, the authorities cannot know both the user’s
identifier and attributes in PPDCP-ABE schemes. This is motivated by the blind
IBE schemes [29, 30]. The PPKeyGen algorithm is formally defined as follows.

PPKeyGen(U(params,GIDU , Ũ , PKi, decomi, (decomi,j)ai,j∈Ũ
⋂

Ãi
) ↔

Ăi(params, SKi, PKi, comi, (comi,j)ai,j∈
⋂

Ãi
)) → (SKi

U , empty). This is an

interactive algorithm executed between a user U and an authority Ăi. U runs
the commitment algorithm Commit(params,GIDU) → (comi, decomi) and
Commit(params, ai,j) → (comi,j , decomi,j) for the attribute ai,j ∈ Ũ

⋂
Ãi,

and sends (comi, (comi,j)ai,j∈
⋂

Ãi
) to the authority Ăi. Then, U and

Ăi take as input (params,GIDU , Ũ , PKi, decomi,(decomi,j)ai,j∈Ũ
⋂

Ãi
)

and (params, SKi, PKi, comi, (comi,j)ai,j∈
⋂

Ãi
), respectively. If

Decommit(params,GIDU , comi, dcomi) = 1 and Decommit(params, ai,j ,
comi,j , decomi,j) = 1, this algorithm outputs a secret key SKi

U for U and an

empty bit empty for Ăi; otherwise, it outputs (⊥,⊥) to indicate that there are
error messages.

PPDCP-ABE 83

3.6 Security Model of Privacy-Preserving Decentralized
Cipher-Policy Attribute-Based Encryption

Now, we define the security of a PPDCP-ABE scheme, which informally is any
IND-sAS-CPA-secure DCP-ABE scheme with a privacy-preserving key extract
algorithm PPKeyGen that satisfies two properties: leak-freeness and selective-
failure blindness. Leak-freeness requires that by executing the algorithm PPKey-
Gen with honest authorities, the malicious user cannot know anything which it
cannot know by executing the algorithm KeyGen with the authorities. Selective-
failure blindness requires that malicious authorities cannot know anything about
the user’s identifier and his attributes, and cause the PPKeyGen algorithm to se-
lectively fail depending on the user’s identifier and his attributes. These two
properties can be formalized by using the following games.

Leak-Freeness. This game is defined by a real world experiment and an ideal
world experiment.

Real World Experiment. Runs the Global Setup algorithm and Authority Setup
algorithm. As many as the distinguisher D wants, the malicious user U chooses
a global identifier GIDU and a set of attributes Ũ , and executes PPKeyGen(
U(params,GIDU , Ũ , PKi, decomi, (decomi,j)ai,j∈Ũ ⋂

Ãi
) ↔ Ăi(params, SKi,

PKi, comi, (comi,j)ai,j∈
⋂ Ũ ⋂

Ãi
)) → (SKi

U , empty) with Ăi.

Ideal World Experiment. Runs the Global Setup algorithm and Authority Setup
algorithm. As many as the distinguisher D wants, the malicious user Ū chooses

a global identifier GIDŪ and a set of attributes ˜̄U , and requires a trusted party

to obtain the output of KeyGen(params, SKi, GIDŪ ,
˜̄U
⋂
Ãi) → SKi

Ū
.

Definition 7. An algorithm PPKeyGen(U ↔ Ăi) associated with a DCP-ABE
scheme

∏
= (GlobalSetup, AuthoritySetup,Encrypt,KeyGen,Decrypt) is leak-free

if for all efficient adversary U , there exists a simulator Ū such that, for the
security parameter 1κ, no distinguisher D can distinguish whether U is playing
in the real world experiment or in the ideal world experiment with non-negligible
advantage.

Selective-Failure Blindness. This game is formalized as follows.

1. The malicious authority Ai outputs his public key PKi and two pairs of
globe identifiers and attribute sets (GIDU0 , Ũ0) and (GIDU1 , Ũ1).

2. A random bit b ∈ {0, 1} is selected.
3. Ai is given comments{

comb, (comi,j)ai,j∈Ũb

⋂ Ãi

}
and

{
com1−b, (comi,j)ai,j∈Ũ1−b

⋂ Ãi

}
,

and can black-box access oracles U(params,GIDUb
, Ũb, PKi, decomb,

(decomi,j)ai,j∈Ũb

⋂ Ãi
) and U(params,GIDU1−b

, Ũ1−b, PKi, decom1−b,

(decomi,j)ai,j∈Ũ1−b

⋂ Ãi
).

4. The algorithm U outputs the secret keys SKi
Ub

and SKi
U1−b

, respectively.

84 J. Han et al.

5. If SKi
Ub
�=⊥ and SKi

U1−b
�=⊥, Ai is given (SKi

Ub
, SKi

U1−b
); if SKi

Ub
�=⊥ and

SKi
U1−b

=⊥, Ai is given (ε,⊥); if SKi
Ub

=⊥ and SKi
U1−b

�=⊥, Ai is given

(⊥, ε); if SKi
Ub

=⊥ and SKi
U1−b

=⊥, Ai is given (⊥,⊥).

6. Ai outputs his guess b′ on b. Ai wins the game if b′ = b.

Definition 8. An algorithm PPKeyGen(U ↔ Ăi) associated to a DCP-
ABE scheme

∏
= (Global Setup, Authority Setup, Encrypt,KeyGen,Decrypt) is

selective-failure blind if no probably polynomial-time adversary Ai can win the
above game with the advantage AdvSFB

Ai
=

∣∣Pr[b′ = b]− 1
2

∣∣ > ε(κ), where the
probability is token over the bits consumed by all the algorithms and the adver-
sary.

Definition 9. A privacy-preserving decentralized cipher-policy attribute-based
encryption (PPDCP-ABE) scheme

∏̃
= (Global Setup,Authority Setup,Encrypt,

PPKeyGen,Decrypt) is secure if and only if the following conditions are satisfied:

1.
∏

= (Global Setup,Authority Setup,Encrypt,KeyGen, Decrypt) is a secure
DCP-ABE in the selective-access structures model;

2. the PPKeyGen algorithm is both leak-free and selective-failure blind.

4 Our Constructions

In this session, we first construct a DCP-ABE scheme, and then propose a
privacy-preserving key extract protocol for it.

4.1 DCP-ABE: Decentralized Cipher-Policy Attribute-Based
Encryption

Overview. Suppose that there are N authorities {Ă1, Ă2, · · · , ĂN} in the scheme,
and each authority Ăi monitors a set of attributes Ãi for i = 1, 2, · · · , N . Ăi

generates his secret-public key pair KG(1κ) → (SKi, PKi). For each attribute

ai,j ∈ Ãi, Ăi chooses a random number zi,j
$← Zp. Then, the public key is

computed as Zi,j = gzi,j and the authentication tag is computed as Ti,j =

hzi,jg
1

γi+ai,j where γi is the partial secret key of Ăi. Ti,j can be used to convince

Ăi that the attribute ai,j is monitored by him without revealing it.
To encrypt a message M under the attributes monitored by the authorities

{Ăj}j∈I , the encryptor selects a random number sj
$← Zp and an access structure

(Mj , ρj) for each Ăj . Then, it splits sj into shares λj,i according to the LSSS
technique. Finally the message M is blinded with

∏
j∈I e(g, g)αjsj .

To resist the collusion attack, when generating a secret key for a user
U with GID μ and a set of attributes Ũ , Ăi chooses two random numbers

(tU,i, wU,i)
$← Zp. Specifically, tU,i is used to tie the user’s attribute keys to

his GID by computing gtU,ig
βi+μ

tU,i where βi is the partial secret key of Ăi, and

PPDCP-ABE 85

wU,i is used to randomize the public keys by computing (Fx = Z
wU,i

x)ax∈Ũ
⋂

Ãi
.

Then, Ăi can generate a secret key for U by using his secret key and (tU,i, wU,i).
To decrypt a ciphertext, each e(g, g)αjsj must be recovered. If the attributes

in Ũ satisfy the access structures (Mj , ρj)j∈I , the user can use his secret keys
and the corresponding ciphertexte elements to reconstruct e(g, g)αjsj , and obtain
M.

Our DCP-ABE scheme is described in Fig.1.

Correctness. Our scheme in Fig. 1 is correct as we have

∏
j∈I e(Kj , Xj) =

∏
j∈I e(gαjgxjwU,jgtU,jg

βj+μ

tU,j , gsj) =∏
j∈I e(g, g)αjsj · e(g, g)xjwU,jsj · e(g, g)tU,jsj · e(g, g)

βjsj

tU,j · e(g, g)
μsj

tU,j ,∏
j∈I e(Rj , Ej) · e(Rj , Yj)

μ =
∏

j∈I e(g
1

tU,j , B
sj
j) · e(g

1
tU,j , gsj)μ =∏

j∈I e(g
1

tU,j , gβjsj) · e(g
1

tU,j , gsj)μ =
∏

j∈I e(g, g)
βjsj

tU,j · e(g, g)
μsj

tU,j ,∏
j∈I e(Lj , Xj) = e(g, g)tU,jsj ,∏
j∈I

∏�j
i=1

(
e(Cj,i, Pj) · e(Dj,i, Fρj(i))

)ωj,i
=∏

j∈I
∏�j

i=1

(
e(gg

xjλj,i
Z

−rj,i
ρj(i) , g

wU,j) · e(grj,i , ZwU,j

ρj(i))
)ωj,i

=∏
j∈I e(g, g)xjwU,j

∑�j

i=1 ωj,iλj,i =
∏

j∈I e(g, g)xjwU,jsj .

Therefore,

C0·
∏

j∈I e(Lj ,Xj)·e(Rj ,Ej)·e(Rj ,Yj)μ∏
j∈I e(Kj ,Xj) ·

∏
j∈I

∏�j
i=1

(
e(Cj,i, Pj) · e(Dj,i, Fρj(i))

)ωj,i

= M.

Theorem 2. Our decentralized cipher-policy attribute-based encryption (DCP-
ABE) is (T, q, ε(k)) secure in the selective-access structure model if the
(T ′, ε′(k))-decisional q-PBDHE assumption holds on (e, p.G,Gτ), where T ′ =
T +O(T) and ε′(κ) = 1

2ε(κ).

The proof of this theorem is referred to the full version of this paper [31].

4.2 Privacy-Preserving Key Extract Protocol

In this session, we propose a privacy-preserving key extract protocol for the
DCP-ABE scheme described in Fig. 1.

Overview. In Fig. 1, to generate a secret key for a user U , the authority Ăi selects
two random numbers (tU,i, wU,i), and uses them to tie the user’s secret keys to

his GID. If Ăi records (tU,i, wU,i), he can compute gμ = (Ki

gαigxiwU,ig
tU,i

)tU,ig−βi

and (Zx = F
1

wU,i
x)ax∈Ũ

⋂
Ãi

. Hence, he can know the user’s GID and attributes.
Therefore, in order to protect the privacy of the user’s GID and attributes,
(tU,i, wU,i) should be computed using the 2-party secure computing technique.

86 J. Han et al.

Global Setup. This algorithm takes as input a security parameter 1κ, and outputs a
bilinear group GG(1κ) → (e, p,G,Gτ). Let g, h and g be generators of the group G.
Suppose that there are N authorities {Ă1, Ă2, · · · , ĂN}, and Ăi monitors a set of
attributes Ãi = {ai,1, ai,2, · · · , ai,qi} where ai,j ∈ Zp for i = 1, 2, · · · , N and j =
1, 2, · · · , qi. The public parameters are PP = (g, h, g, e, p,G,Gτ).

Authorities Setup. Each authority Ăi selects αi, xi, βi, γi
$← Zp, and computes

Hi = e(g, g)αi , Ai = gxi , Bi = gβi , Γ 1
i = gγi and Γ 2

i = hγi , where i =

1, 2, · · · , N . For each attribute ai,j ∈ Ãi, Ă chooses zi,j
$← Zp, and computes

Zi,j = gzi,j and Ti,j = hzi,jg
1

γi+ai,j . Then, Ă publishes the public key PKi ={
Hi, Ai, Bi, (Γ

1
i , Γ

2
i), (Ti,j , Zi,j)ai,j∈Ãi

}
, and keeps the master secrete key as SKi =

(αi, ai, βi, γi, (zi,j)ai,j∈Ãi
).

Encryption. To encrypt a message M ∈ Gτ , this algorithm works as follows. Let I be
a set which consists of the indexes of the authorities whose attributes are selected to
encrypt M. For each j ∈ I, this algorithm first selects an access structures (Mj , ρj)

and a vector −→vj = (sj , vj,2, · · · , vj,nj
), where sj , vj,2, · · · , vj,nj

$← Zp and Mj is an

�j × nj matrix. Then, it computes λj,i = M i
j
−→v j , where M i

j is the corresponding ith

row of Mj . Finally, it selects rj,1, rj,2, · · · , rj,�j
$← Zp , and computes

C0 = M ·
∏
j∈I

e(g, g)αjsj , {Xj = gsj , Yj = gsj , Ej = B
sj
j }j∈I

(
(Cj,1 = gxjλj,1Z

−rj,1
ρj(1)

, Dj,1 = grj,1), · · · , (Cj,�j = g
xjλj,�j Z

−rj,�j
ρj(�j)

, Dj,�j = g
rj,�j)

)
j∈I

The ciphertext is CT =
{
C0,

(
Xj , Yj , Ej , (Cj,1, Dj,1), · · · , (Cj,�j , Dj,�j)

)
j∈I

}
.

KeyGen. To generate secret keys for a user U with GID μ and a set of attributes

Ũ
⋂

Ãi, Ăi selects tU,i, wU,i
$← Zp, and computes Ki = gαigxiwU,igtU,ig

βi+μ

tU,i , Pi =

gwU,i , Li = gtU,i , L′
i = htU,i , Ri = g

1
tU,i , R′

i = h
1

tU,i and (Fx = Z
wU,i
x)ax∈Ũ

⋂
Ãi

.

The secret keys for U are SKi
U =

{
Ki, Pi, Li, L

′
i, Ri, R

′
i, (Fx)ax∈Ũ

⋂
Ãi

}
.

Decryption. To decrypt a ciphertext CT , this algorithm computes

C0 ·
∏

j∈I e(Lj , Xj) · e(Rj , Ej) · e(Rj , Yj)
μ ·

∏
j∈I

∏�j
i=1

(
e(Cj,i, Pj) · e(Dj,i, Fρj(i))

)ωj,i∏
j∈I e(Kj , Xj)

= M

where {ωj,i ∈ Zp}�ji=1 are a set of constants such that
∑�j

i=1 ωj,iλj,i = sj if {λj,i}�ji=1

are valid shares of the secret value sj according to the access structure (Mj , ρj).

Fig. 1. Decentralized Cipher-Policy Attribute-based Encryption

PPDCP-ABE 87

U(PP, PKi, μ, ax ∈ Ũ
⋂

Ãi) Ăi(PP, PKi, SKi)

1. Selects k1, k2, d1, d2
$← Zp

and sets du = d1d2.
Computes

Θ1 = Ad1
i , Θ2 = gdu ,

Θ3 = hk1gμ, Θ4 = Θk2
3 ,

Θ5 = Bk2
i , Θ6 = g

1
k2 , 2. Selects cu, eu

$← Zp and

(Ψ1
x = T du

x , Ψ2
x = Zdu

x)ax∈Ũ
⋂

Ãi
computes Υ1 = gcu , Υ2 = g

1
cu ,

and ΣU = PoK{(k1, k2, d1, du, μ, Υ3 = hcu , Υ4 = h
1
cu , Υ5 = geu ,

(ax ∈ Ũ
⋂

Ãi)) : Θ1 = Ad1
i ∧ K′

i = gαiΘeu
1 Θcu

6 (Θ4Θ5)
1
cu ,

Θ2 = gdu ∧Θ3 = hk1gμ, ∧ (Φx = (Ψ2
x)

eu)ax∈Ũ
⋂

Ãi
and

Θ4 = Θk2
3 ∧Θ5 = Bk2

i ∧ Θ1,Θ2,Θ3,Θ4−−−−−−−−−→
Θ5,Ψ1

x,Ψ2
x,ΣU

ΣAi
=PoK{(αi, cu, eu) :

e(Θ5, Θ6) = e(Bi, g)∧ e(Υ1, Υ2) = e(g, g)∧ Υ1 = gcu∧
(∧ e(Γ1

i ,Ψ1
x)

e(Γ2
i
,Ψ2

x)
= e(g, Ψ1

x)
−ax · Υ2 = g

1
cu ∧ Υ3 = hcu∧ Υ4 = h

1
cu

∧e(h, Ψ2
x)

ax · e(g, g)du)ax∈Ũ
⋂

Ãi
} e(Υ3, Υ4) = e(h, h)∧ Υ5 = geu∧

K′
i = gαiΘeu

1 Θcu
6 (Θ4Θ5)

1
cu

∧(∧(Φx = (Ψ2
x)

eu)ax∈Ũ
⋂

Ãi
}.

3. Computes Ki =
K′

i

Υ
k1k2
4

, Pi = Υ d1
5 ,

Υ1,Υ2,Υ3,Υ4←−−−−−−−−−
Υ5,K′

i
,Φx,ΣAi

Li = Υ
1
k2
1 , Ri = Υ k2

2 , R′
i = Υ k2

4 and(
Fx = Φ

1
d2
x

)
ax∈Ũ

⋂
Ãi

Fig. 2. PPKeyGen: Privacy-Preserving Key Generation Protocol

First, U chooses (k1, k2, d1, d2)
$← Zp. It uses (k1, k2) to commit his GID

and (d1, d2) to commit his attributes and the corresponding authentication tags.
Then, U proves in zero knowledge to Ăi that he knows the GID, and the at-
tributes for which he is obtaining secret keys are monitored by Ăi. Ăi checks the

proof. If it fails, Ăi aborts. Otherwise, Ăi chooses (cu, eu)
$← Zp and generates a

secret key for U by using his secret key, the elements from U and (cu, eu). Fur-
thermore, Ăi proves in zero knowledge that he knows the secret key and (cu, eu);
Finally, U can compute his real secret key by (k1, k2, d1, d2) and the elements
from Ăi.

Actually, by executing the 2-party secure computing protocol, U and Ăi co-
operatively compute wU,i = eud1 and tU,i = cu

k2
, where (d1, k2) are from U and

(cu, eu) are from Ăi. Therefore, from the view of Ăi, the secret key computed by
U is indistinguishable from the random elements in G.

The privacy-preserving key extract protocol is described in Fig. 2.

Correctness. Let w = d1eu and t = cu
k2

. The secret keys generated in Fig. 2 are
correct as the following equations hold.

88 J. Han et al.

Ki =
K ′

iΥ
1
k2

Υ k1k2
4

=
gαiΘeu

1 (Θ4Θ5)
1
cu g

cu
k2

Υ k1k2
4

=
gαiAd1eu

i ((hk1gμ)k2Bk2

i)
1
cu g

cu
k2

h
k1k2
cu

=
gαigxid1euh

k1k2
cu g

k2(βi+μ)

cu g
cu
k2

h
k1k2
cu

= gαigxiwgtg
βi+μ

t ,

Pi = Υ d1
6 = gd1eu = gw, Li = Υ

1
k2

1 = g
cu
k2 = gt,

Ri = Υ k2
2 = g

k2
cu = g

1
t , R′

i = Υ k2
4 = h

k2
cu = h

1
t

and

Fx = Φ
1
d2
x = (Ψ2

x)
eu
d2 = Z

dueu
d2

x = Zd1eu
x = Zw

x .

Theorem 3. The privacy-preserving key extract protocol in Fig. 2 is both
leak-free and selective-failure blind under the q-SDH assumption, where q =
max{q1, q2, · · · , qN}.

The proof of this theorem is referred to the full version of this paper [31].

By Theorem 2 and Theorem 3, we have the following theorem.

Theorem 4. Our privacy-preserving decentralized cipher-policy attribute-based
encryption (PPDCP-ABE) scheme

∏̃
= (Global Setup,Authority Setup,Encrypt,

PPKeyGen,Decrypt) is secure in the selective-access structure model under the
decisional q-PBDHE assumption and q-SDH assumption.

5 Conclusion

Decentralized ABE scheme is more efficient and flexible encryption system as it
dose not require a central authority nor the cooperation among multiple author-
ities. Considering to reduce the trust on the authorities, some privacy-preserving
MA-ABE schemes have been proposed. However, in these schemes, only the pri-
vacy of the GID was considered. In this paper, we proposed a PPDCP-ABE
scheme where both the privacy of the GID and the attributes are concerned.
Especially, the user can convince the authorities that the attributes for which he
is obtaining secret keys are monitored by them. Therefore, our scheme provides
a perfect solution for the privacy issues in MA-ABE schemes.

Acknowledgement. We would like to thank the anonymous reviewers for use-
ful comments. The first author was partially supported by National Natural
Science Foundation of China (Grant No. 61300213), National Center for In-
ternational Joint Research on E-Business Information Processing (Grant No.
2013B01035) and A Project Funded by the Priority Academic Program De-
velopment of Jiangsu Higher Education Institutions(PAPD). The second au-
thor was partially supported by Australia Research Council Discovery Project
(DP130101383).

PPDCP-ABE 89

References

1. Bichsel, P., Camenisch, J., Groβ, T., Shoup, V.: Anonymous credentials on a
standard java card. In: Al-Shaer, E., Jha, S., Keromytis, A.D. (eds.) CCS 2009,
pp. 600–610. ACM (2009)

2. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE S& P 2007, pp. 321–334. IEEE (2007)

4. Cheung, L., Newport, C.: Provably secure ciphertext policy ABE. In: Ning, P., di
Vimercati, S.D.C., Syverson, P.F. (eds.) CCS 2007, pp. 456–465. ACM (2007)

5. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., di Vimercati,
S.D.C. (eds.) CCS 2006, pp. 89–98. ACM (2006)

6. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F.
(eds.) CCS 2007, pp. 195–203. ACM (2007)

7. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: Attribute-based encryption and (hierarchical) inner product en-
cryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

8. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

9. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)

10. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011)

11. Chase, M., Chow, S.S.: Improving privacy and security in multi-authority attribute-
based encryption. In: Al-Shaer, E., Jha, S., Keromytis, A.D. (eds.) CCS 2009,
pp. 121–130. ACM (2009)

12. Han, J., Susilo, W., Mu, Y., Yan, J.: Privacy-preserving decentralized key-policy
attribute-based encryption. IEEE Transactions on Parallel and Distributed Sys-
tems 23(11), 2150–2162 (2012)

13. Herranz, J., Laguillaumie, F., Ràfols, C.: Constant size ciphertexts in threshold
attribute-based encryption. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 19–34. Springer, Heidelberg (2010)

14. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999)

15. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold dss signatures.
In: Maurer, U.M. (ed.) Advances in Cryptology - EUROCRYPT 1996. LNCS,
vol. 1070, pp. 354–371. Springer, Heidelberg (1996)

16. Lin, H., Cao, Z., Liang, X., Shao, J.: Secure threshold multi authority attribute
based encryption without a central authority. In: Chowdhury, D.R., Rijmen,
V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 426–436. Springer,
Heidelberg (2008)

17. Müller, S., Katzenbeisser, S., Eckert, C.: Distributed attribute-based encryption.
In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 20–36. Springer,
Heidelberg (2009)

90 J. Han et al.

18. Liu, Z., Cao, Z., Huang, Q., Wong, D.S., Yuen, T.H.: Fully secure multi-authority
ciphertext-policy attribute-based encryption without random oracles. In: Atluri,
V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 278–297. Springer,
Heidelberg (2011)

19. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and
KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346.
Springer, Heidelberg (1999)

20. Li, J., Huang, Q., Chen, X., Chow, S.S.M., Wong, D.S., Xie, D.: Multi-authority
ciphertext-policy attribute-based encryption with accountability. In: Cheung,
B.S.N., Hui, L.C.K., Sandhu, R.S., Wong, D.S. (eds.) ASIACCS 2011, pp. 386–390.
ACM (2011)

21. Qian, H., Li, J., Zhang, Y.: Privacy-preserving decentralized ciphertext-policy
attribute-based encryption with fully hidden access structure. In: Qing, S., Zhou,
J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp. 363–372. Springer, Heidelberg
(2013)

22. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EU-
ROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

23. Persiano, G., Visconti, I.: An efficient and usable multi-show non-transferable
anonymous credential system. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp.
196–211. Springer, Heidelberg (2004)

24. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

25. Beime, A.: Secure Schemes for Secret Sharing and Key Distribution. Phd thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

26. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology - CRYPTO 1991. LNCS,
vol. 576, pp. 129–140. Springer, Heidelberg (1992)

27. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In:
Kaliski Jr., B.S. (ed.) Advances in Cryptology - CRYPTO 1997. LNCS, vol. 1294,
pp. 410–424. Springer, Heidelberg (1997)

28. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership
and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008)

29. Camenisch, J., Kohlweiss, M., Rial, A., Sheedy, C.: Blind and anonymous identity-
based encryption and authorised private searches on public key encrypted data. In:
Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 196–214. Springer,
Heidelberg (2009)

30. Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable obliv-
ious transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
265–282. Springer, Heidelberg (2007)

31. Han, J., Susilo, W., Mu, Y., Zhou, J., Au, M.H.: PPDCP-ABE: Privacy-
Preserving Decentralized Cipher-Policy Attribute-Based Encryption, Cryptology
ePrint Archive: Report 2014/470, http://eprint.iacr.org/2014/470

http://eprint.iacr.org/2014/470

Practical Direct Chosen Ciphertext Secure

Key-Policy Attribute-Based Encryption
with Public Ciphertext Test

Weiran Liu1,2, Jianwei Liu1,3, Qianhong Wu1,3, Bo Qin2, and Yunya Zhou1

1 School of Electronic and Information Engineering, Beihang University, Beijing
liuweiran900217@gmail.com, {liujianwei,qianhong.wu}@buaa.edu.cn

2 School of Information, Renmin University of China, Beijing
bo.qin@ruc.edu.cn

3 The Academy of Satellite Application, Beijing

Abstract. We propose a direct Key-Policy Attribute-Based Encryp-
tion (KP-ABE) scheme with semantic security against adaptively cho-
sen ciphertext attacks (CCA2) in the standard model. Compared with
its counterpart with security against chosen-plaintext attacks (CPA),
the cost of our scheme is only a Chameleon hash. In contrast to the
Boyen-Mei-Waters shrink approach from CPA-secure (l+1)-Hierarchical
Identity Based Encryption ((l + 1)-HIBE) to CCA2-secure l-HIBE, our
approach only adds one on-the-fly dummy attribute. Further, our ap-
proach only requires that the underlying ABE is selectively secure and
allows public ciphertext test. A major obstacle for the security proof in
this scenario is that the simulator cannot prepare the challenge ciphertext
associated with the on-the-fly dummy attribute due to the selective se-
curity constraint. We circumvent this obstacle with a Chameleon hash.
Technically, unlike existing use of Chameleon hash in (online/offline)
signature applications, our work shows Chameleon hash can also have
unique applications in encryption schemes.

Keywords: Attribute-Based Encryption, Chameleon Hash, Chosen Ci-
phertext Security.

1 Introduction

Attribute-Based Encryption (ABE) allows an encryptor to share data with users
according to specified access policies. ABE can be classified into two categories,
Key-Policy ABE (KP-ABE) [21] and Ciphertext-Policy ABE (CP-ABE) [3]. In
KP-ABE, secret keys are associated with access policies and ciphertexts are
associated with sets of attributes. One can decrypt if and only if the set of
attributes specified in the ciphertext satisfies the access policy in his/her secret
key. In contrast, the CP-ABE ciphertexts are associated with access policies and
the secret keys specify sets of attributes. Due to its capability of providing fine-
grained access control over encrypted data, ABE is extensively applied for many
cloud storage applications [17, 29, 32].

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 91–108, 2014.
c© Springer International Publishing Switzerland 2014

92 W. Liu et al.

Semantic security against adaptively chosen ciphertext attacks (CCA2) is
widely recognized as a standard security notion for cryptosystems against active
attacks. ABE is usually suggested to enforce fine-grained access control on out-
sourced data in cloud storage and computing applications. In such applications,
active attackers who can modify ciphertexts in storage or in transit may reveal
useful information from sensitive data even if the employed ABE system is cho-
sen plaintext (CPA) secure. Thus, it is desirable to deploy CCA2-secure ABE to
defend against such strong attackers.

There are some ABE schemes that can be shown CCA2 security in the stan-
dard model. They are reasonably less efficient than their CPA-secure counter-
parts. Some of them involve the one-time signature cryptographic primitives
[16, 21, 33]. However, one-time signatures either have high storage or high com-
putational cost. Specifically, one-time signature schemes based on cryptographic
hash functions involve long public keys and signatures; and the one-time sig-
nature schemes based on number-theoretic assumptions have the advantage of
short public keys and signatures, but yield expensive computational cost. Some
other CCA2-secure ABE schemes are with the restriction of only supporting
single threshold access policies [15, 20], which is inconvenient when the system
is required to support complicated access policies.

It is preferable to construct CCA2-secure ABE from CPA-secure ones by
directly using the underlying ABE structures and requiring no extra inefficient
cryptographic primitives. In 2006, Boyen et al. [6] introduced a shrink approach
that can directly obtain CCA2-secure l-Hierarchical Identity-Based Encryption
(HIBE) from CPA-secure (l + 1)-HIBE. By setting l = 0, their approach can
directly obtain CCA2-secure Public Key Encryption (PKE) from CPA-secure
Identity-Based Encryption (IBE). The key point is to first hash the intermediate
ciphertext components independent of the identity to obtain a dummy identity,
and then generate the final ciphertext using the dummy “identity”. A natural
question is whether we can construct a direct CCA2-secure ABE by applying
their approach.

Issues in Direct CCA2-Secure ABE. There are three main issues in con-
structing CCA2-secure ABE using the Boyen-Mei-Waters approach.

Arbitrary-Attributes Requirement. Similarly, the hash output may be treated
as an attribute in a direct CCA2-secure construction. However, the hash output
cannot be controlled. This implies that the underlying ABE needs to have the
property of “large universe”, i.e., supporting arbitrary strings as attributes.

Delegatability Obstacle. The Boyen-Mei-Waters approach leverages the dele-
gatability of (H)IBE systems. Specifically, one encrypts to the “hash identity”
at a lower level than all users who can delegate a key to this hash identity for
ciphertext validity test. This is the reason why their shrink approach converts
a (l + 1)-HIBE to be a CCA2-secure l-HIBE, and converts a CPA-secure IBE
to be a CCA2-secure PKE. A straightforward application of their approach in
ABE settings requires the underlying CPA-secure ABE allows to delegate a key
to arbitrary attributes. However, the only ABE scheme due to Deng et al. [19]
allowing hierarchical attributes cannot support arbitrary attributes.

Practical Direct Chosen Ciphertext Secure Key-Policy 93

Full Identity/Attribute Security Obstacle. If the (H)IBE system is of only
selective-identity security, instead of full-identity security, then by applying
Boyen-Mei-Waters approach one obtains a CCA2-secure (H)IBE Key Encap-
sulation Mechanism (KEM), instead of a fully functional encryption system.
The main obstacle for fully functional encryption is that in the security proof,
due to the selective security constraint, the simulator cannot prepare the chal-
lenge ciphertext associated with the hashed “identity”. The same problem occurs
in direct construction of CCA2-secure ABE if the underlying CPA-secure ABE
has only selective security. It is challenging to obtain direct CCA2-secure ABE
schemes from ABE schemes with selective CPA-security.

Our Contributions. We propose a direct publicly verifiable CCA2-secure KP-
ABE scheme in the standard model. We achieve this goal by addressing the above
issues in direct CCA2-secure KP-ABE construction. We exploit a recent CPA-
secure KP-ABE one [30] with the property of “large universe”. This property
addresses the Arbitrary-Attributes Requirement.

We add one on-the-fly dummy attribute in our construction, instead of ex-
tending one attribute hierarchy. The on-the-fly dummy attribute is computed
by hashing the intermediate ciphertext components independent of the speci-
fied attribute set. The other ciphertext components are generated by the new
attribute set containing the dummy attribute. In the decryption procedure, the
receiver can validate the ciphertext with the dummy attribute. This approach
circumvent the Delegatability Obstacle with only a marginal cost, i.e., by adding
constant size ciphertext components related to the dummy attribute. Further
more, the ciphertext validity test only involves public information. This public
ciphertext test property is enjoyable and allows a third party, e.g., a gateway or
firewall, to filter encrypted spams in some applications.

Our proposal is a fully functional CCA2-secure ABE scheme, instead of a
CCA2-secure KEM scheme, although the underlying ABE is only selectively se-
cure. We circumvent the obstacle in the security proof by replacing a regular
hash with a Chameleon hash. The cost to achieve CCA2 security from CPA se-
curity is only a Chameleon hash. The Chameleon hash plays a critical role in the
security proof. Specifically, the universal forgeability (w.r.t. the hash trapdoor
holder) of the Chameleon hash allows the simulator to prepare the challenge ci-
phertext associated with the hashed “attribute” even if the underlying ABE has
only selective security. Technically, our constructions illustrate novel and unique
applications of Chameleon hash in encryption systems, in contrast to previous
main use of Chameleon hash in (online/offline) signature applications [1, 11, 14].

Related Work. ABE was introduced by Sahai and Waters [31]. Goyal et al.
extended the idea and distinguished KP-ABE and CP-ABE. The KP-ABE and
CP-ABE systems were then respectively proposed by Goyal et al. [21] and
Bethencourt et al. [3] that support monotonic access policies. Fully secure con-
structions in the standard model were first provided by Okamoto et al. [27] and
Lewko et al. [23]. Many other ABE schemes have been further proposed to gain
more preferable properties, such as hierarchical ABE (allowing users with at-
tributes of higher hierarchy to delegate keys to lower levels) [17], “non-monotonic

94 W. Liu et al.

access policies” (supporting general access structures with negation boolean for-
mulas) [26], “large universe” [24, 25, 28, 30], and “multiple central authorities”
(there exists multiple authenticated PKGs in ABE) [8, 9, 24]. The latest work
[18] on ABE achieves black-box traitor tracing in which a tracing algorithm can
be invoked to find the secret keys leaked for illegal access to encrypted data.

Several ABE systems have been proposed with CCA2 security in the standard
model. The KP-ABE scheme proposed by Goyal et al. [21] can be converted
to have CCA2 security by revising the Canetti-Halevi-Katz approach [7] from
CPA-secure IBE [5] to CCA2-secure PKE schemes at the cost of one-time sig-
natures. Cheung et al. [16] leveraged the Canetti-Halevi-Katz approach [7] in
CP-ABE to construct a CCA2-secure CP-ABE. Yamada et al. [33] introduced a
generic construction to transform CPA-secure ABE to CCA2-secure ones if the
involved ABE schemes satisfy either delegatability or verifiability. The above
CCA2-secure ABE schemes involve one-time signatures. Chen et al. [15] and
Ge et al. [20] recently constructed direct CCA2-secure ABE without one-time
signatures, with a restriction on only supporting threshold access policies.

Paper Organization. The rest of the paper is organized as follows. In Sec. 2,
we review prime-order bilinear groups, the number-theoretic assumption we use,
and the background information about access structures, linear secret-sharing
schemes and Chameleon hash functions. Sec. 3 formalizes KP-ABE and their
CCA2 security definitions. We propose our practical CCA2-secure KP-ABE with
detailed analyses in Sec. 4, followed by concluding remarks in Sec. 5.

2 Preliminaries

2.1 Notations

We use [a, b] to denote the set {a, a + 1, · · · , b} containing consecutive integers.
We write [a] as shorthand for [1, a] if no ambiguities are caused. For a set S, its

cardinality is denoted by |S|. We denote s1, s2, · · · , sn R← S for n ∈ N to show
that s1, · · · , sn is chosen uniformly at random from S. We use Zm×n

p to denote
the matrices of m rows and n columns with entries in Zp. Specifically, the row
vectors and column vectors are denoted by Z1×n

p and Zm×1
p respectively. For the

given two vectors
→
v ,

→
w of any type, we denote by vi the i-th entry in

→
v , and by〈→

v ,
→
w
〉

the inner product of the two vectors.

2.2 Bilinear Groups and Computational Assumption

Our scheme is built on prime-order bilinear groups which can be efficiently gen-
erated by a generator G with a security parameter λ. The bilinear group system
can be represented as tuple (p,G,GT , e), where p is a large prime, G and GT are
two cyclic groups of order p, and a bilinear map e : G×G→ GT satisfying three
properties. (1) Bilinearity: for all g, h ∈ G and a, b ∈ Zp, e(ga, hb) = e(g, h)ab;
(2)Non-degeneracy: there exists at least an element g ∈ G such that e(g, g) has

Practical Direct Chosen Ciphertext Secure Key-Policy 95

order p in GT ; (3) Computability: there exists an efficient algorithm (in poly-
nomial time with respect to λ) to compute the bilinear pairing e(u, v) for all
u, v ∈ G. Although our scheme is built from above symmetric pairing groups,
the constructions do not rely on the symmetric property of the bilinear groups
and can be easily extended to asymmetric pairing groups.

The security of our scheme relies on a weak version of the Decisional Bilinear
Diffie-Hellman Assumption (wDBDH), introduced by Rouselakis and Waters
[30], reviewed as follows.

Let (p,G,GT , e) ← G(1λ) be the description of the bilinear groups that is

outputted by the group generator G. Let g
R← G be a random generator of G.

Then, choose q+3 random exponents x, y, z, b1, b2, · · · , bq R← Zp. The q-wDBDH
problem in G is to determine whether the given element T ∈ GT equals e(g, g)xyz,
or a random element in GT by taken the input as

D ←

⎛⎜⎝ g, gx, gy, gz, g(xz)2

gbi , gxzbi , gxz/bi , gx
2zbi , gy/b

2
i , gy

2/b2i i ∈ [q]

gxzbi/bj , gybi/b
2
j , gxyzbi/bj , g(xz)2bi/bj i ∈ [q], j ∈ [q], i �= j

⎞⎟⎠
The advantage of an algorithm A that outputs b ∈ {0, 1} in solving q-wDBDH

in G is defined as

AdvA(λ) =
∣∣∣Pr [A (D,T = e(g, g)xyz) = 1]− Pr

[
A

(
D,T

R← GT

)
= 1

]∣∣∣− 1

2

Definition 1. We say that the (ε, q)-weak Decisional Bilinear Diffie-Hellman
Assumption in G holds if no polynomial time algorithm has at least a non-
negligible advantage AdvA(λ) ≥ ε in solving the q-wDBDH problem in G.

2.3 Access Structures and Linear Secret Sharing Schemes

Definition 2. (Access Structure [2]) Let U be a set of parties. A collection
A ⊆ 2U is monotone if for all B ∈ A: if B ∈ A and B ⊆ C, then C ∈ A.
An access structure (monotone access structure) on U is a collection (monotone
collection) A of non-empty subsets of U , i.e., A ⊆ 2U\{∅}. The sets in A are
called the authorized sets, and the sets not in A are called the unauthorized sets.

In Attribute-Based Encryption systems, the roles of the parties are taken by
the attributes in the attribute universe U . Therefore, the access structure A
will contain the authorized sets of attributes. We restrict the access structure
to monotone access structure. However, it is possible to realize general access
structure from a monotone one by having the not of an attribute as a separate
attribute altogether [3, 21], at a cost of doubling the total number of attributes
in the system.

Definition 3. (Linear Secret Sharing Schemes (LSSS) [2, 30]) Let U be
the attribute universe. A secret sharing scheme

∏
with domain of secrets Zp for

realizing access structure on U is linear if

96 W. Liu et al.

1. The shares of a secret s ∈ Zp for each attribute form a vector over Zp.
2. For each access structure A on U , there exists a share-generating matrix

M ∈ Zl×n
p for

∏
. For all i ∈ [l], we define the function ρ(i) that labels the

i-th row of M with attributes from U , i.e., ρ(i) : i → U . When we consider

the column vector
→
v = (s, r2, r3, · · · , rn)T, where r2, · · · , rn R← Zp, then

M
→
v ∈ Zl×1

p is the vector of l shares of the secret s according to
∏
. The

share (M
→
v)i belongs to the attribute ρ(i) for i ∈ [l].

From now on, we refer to the tuple (M,ρ) as the access structure A encoded
by the LSSS-policy. As pointed out by Beimel [2], all secret sharing schemes
should satisfy the following requirements:

1. Reconstruction Requirement. The secret can be reconstructed efficiently for
authorized sets.

2. Security Requirement. It is hard to reveal any partial information about the
secret for any unauthorized sets.

These two requirements are used in our setting. Let S denote an authorized set
for the access structure A encoded by the LSSS-policy (M,ρ), where M ∈ Zl×n

p

and ρ : [l] → U . We define IS ⊆ [l] as IS = {i : ρ(i) ∈ S}. On one hand,
the Reconstruction Requirement states that there exists constants {ωi ∈ Zp}i∈I

such that for any valid shares {λi = (M
→
v)i}i∈I of a secret s according to

∏
,

we have
∑
i∈I

ωiλi = s. Additionally, the constants {ωi}i∈I can be generated in

time polynomial in the size of the share-generating matrix M [2]. On the other
hand, the Security Requirement states that for any unauthorized sets S ′ for
the access structure A, such constants {ωi} do not exist. We define IS′ ⊆ [l] as

IS′ = {i : ρ(i) ∈ S ′}. In this case, there exists a vector
→
ω = (ω1, · · · , ωn) ∈ Z1×n

p ,

such that 〈
→
Mi,

→
ω〉 = 0 for all i ∈ IS′ and ω1 can be any non zero element in Zp,

where
→
Mi is the i-th row of the secret-generating matrix M .

2.4 Chameleon Hash

Our scheme exploits the so-called Chameleon hash functions which were first
introduced by Krawczyk and Rabin [22], further refined respectively by Ateniese
et al. [1] and by Chen et al. [10–14]. A Chameleon hash has a key pair (pkch, skch).
Anyone who knows the public key pkch can efficiently compute the hash value
for any given input. Meanwhile, there exists an efficient algorithm for the holder
of the secret key skch to find collisions for every given input, but anyone who
does not have skch cannot compute the collisions for any given input. Formally,
a Chameleon hash function consists of three polynomial time algorithms:

– (skch, pkch) ←KeyGench(1λ). The algorithm KeyGench takes the security
parameter λ ∈ N as input, and outputs a pair containing a Chameleon hash
secret key and a public key (skch, pkch).

Practical Direct Chosen Ciphertext Secure Key-Policy 97

– Hm ← Hashch(pkch, m, rch). The algorithm Hashch takes as inputs the
Chameleon hash public key pkch, a message m, and an auxiliary random
parameter rch. It outputs the hashed value Hm.

– r′ch ←UForgech(skch, m, rch, m′). The algorithm UForgech takes as in-
puts the Chameleon hash secret key skch, a message m with its auxil-
iary random parameter rch for perviously calculating its Chameleon hash
value Hm, and another message m′ �= m. The algorithm outputs another
auxiliary random parameter r′ch such that Hm = Hashch(pkch,m, rch) =
Hashch(pkch,m

′, r′ch) = Hm′ .

A Chameleon hash function should satisfy the following security requirements.

1. Collision Resistance. There is no efficient algorithm that takes as input the
Chameleon hash public key pkch to find two pairs (m, rch), (m′, r′ch) where
m �= m′, such that Hashch(pkch,m, rch) = Hashch(pkch,m

′, r′ch) except
with negligible probability.

2. Uniformity. All messages m induce the same probability distribution on Hm

← Hashch(pkch, m, rch) for rch chosen uniformly at random.

3 Key-Policy Attribute-Based Encryption

A KP-ABE system consists of four polynomial time algorithms defined as follows.

– (pp,msk) ←Setup(1λ). The algorithm Setup only takes the security pa-
rameter λ ∈ N as input. It outputs a master secret key msk and a public
parameter pp. We assume that the description of the attribute universe U is
also included in the public parameter pp.

– skA ←KeyGen(pp, msk, A). The algorithm KeyGen takes as inputs the
public parameter pp, the master secret key msk, and an access structure A.
It outputs a secret key skA associated with the access structure A.

– ctS ←Encrypt(pp, m, S). The algorithm Encrypt takes as inputs the pub-
lic parameter pp, a message m in the plaintext space M, and a set of at-
tributes S on the attribute universe U . The algorithm outputs the ciphertext
ctS for m associated with the attribute set S.

– m ←Decrypt(pp, skA, ctS). The algorithm Decrypt takes as inputs the
public parameter pp, a secret key skA associated with an access structure A,
and a ciphertext ctS for a message m ∈ M associated with an attribute set
S. It returns m.

A KP-ABE system is correct if for all (pp, msk) ← Setup(1λ), all skA ←
KeyGen(pp, msk, A), all m ∈ M, and all ctS ← Encrypt(pp, m, S) with
S ⊆ U , if S satisfies A, then Decrypt(pp, skA, ctS) = m.

We next define the indistinguishability against chosen ciphertext attacks in
KP-ABE systems. In this security model, the adversary is allowed to obtain
the secret keys associated with any access structure A of its choice and to is-
sue decryption queries for its chosen ciphertexts, provided that the adversary
does not query for the secret keys with access structures that can be satisfied

98 W. Liu et al.

by the challenge attribute set S∗, or for the challenge ciphertext of one of its
chosen message. We require that even such an adversary cannot distinguish the
encrypted messages.

Formally, the selective chosen attribute set and chosen ciphertext security
model is defined through a game played by an adversary and a challenger. Both
of them are given the security parameter λ as input.

– Init. The adversary A commits to a challenge attribute set S∗ and sends it
to the challenger.

– Setup. The challenger gives the public parameter pp to the adversary A.
– Phase 1. The adversary A adaptively issues two kinds of queries:

• Secret key query for an access structure A that is not satisfied by the
challenge attribute set S∗. The challenger generates a secret key for A
and gives it to the adversary.

• Decryption query for the ciphertext ctS with an attribute set S. The
challenger responds by constructing an access structure A satisfied by the
attribute set S, and running KeyGen(pp, msk, A) to generate a secret
key skA. It then runs Decrypt(pp, skA, ctS) to decrypt the ciphertext
ctS and returns the resulting message to the adversary.

– Challenge. When adversary A decides that Phase 1 is over, it outputs
two equal-length messages m0 and m1 on which it wishes to challenge. The
challenger flips a random coin b ∈ {0, 1} and encrypts mb under the challenge
attribute set S∗. It returns the challenge ciphertext ct∗ to A.

– Phase 2. The adversary A further adaptively issues two kinds of queries:

• Secret key query for access structures A that is not satisfied by the
challenge attribute set S∗.

• Decryption query for the ciphertext ctS with a constraint that ctS �= ct∗.

The challenger responds the same as in Phase 1.
– Guess. Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins in the

game if b = b′.

The advantage of such an adversary A in attacking the KP-ABE system with
security parameter λ is defined as AdvKP-ABE

A (λ) =
∣∣Pr[b′ = b]− 1

2

∣∣.
Definition 4. A KP-ABE system is selective chosen attribute set and chosen
ciphertext secure if for any probabilistic polynomial time adversary A, the advan-
tage of breaking the security game defined above is at most a negligible function.

4 Direct CCA2-Secure KP-ABE with Public Verifiability

4.1 Basic Ideas

We first provide an overview of the construction. We exploit specific ciphertext
structure in the ABE scheme in [30] and address the three issues shown in Sec.
1 to obtain a practical CCA2-secure KP-ABE scheme in the standard model.

Practical Direct Chosen Ciphertext Secure Key-Policy 99

1. Our construction is based on a recent KP-ABE system [30]. The CCA2-
secure IBE schemes [6] exploits a specific structure of the underlying IBE
ciphertext [4] including Decision Diffie-Hellman (DDH) tuple, i.e., (g, gr,
h · uID,

(
h · uID

)r
), where ID is the target identity. The KP-ABE system

[30] contains a DDH ciphertext tuple and allows arbitrary attributes, which
addresses the arbitrary attribute requirement.

2. Instead of extending an attribute hierarchy in ABE, our construction adds
one on-the-fly dummy attribute used for ciphertext validation in the decryp-
tion procedure. We split the original attribute universe into two parts, one
for regular attribute universe U , the other for verification universe V for the
on-the-fly attributes. This trick ensures that the dummy attributes will only
be used for ciphertext validation, and allows us to circumvent the arbitrary
attribute delegation obstacle.

3. We exploit Chameleon hash Hashch to solve the problem that the simulator
cannot in advance know the challenge on-the-fly dummy attribute in the
security proof. In the Setup phase, the simulator generates a temporary
message and calls Hashch to obtain the on-the-fly dummy attribute. When
learning the actual challenge message in the Challenge phase, the simulator
replaces the temporary message to the actual message, while keeping the
dummy attribute unchanged by using the “universe collision” property of
Chameleon hash. In the adversary’s view, the Chameleon hash function keeps
collision resistant since it does not know the Chameleon hash secret key.

4.2 Our Construction

Let U =
[
0, p−1

2

]
be the regular attribute universe, and V =

[
p+1

2 , p− 1
]

the
verification universe. Note that U∩V = ∅, and U∪V = Zp, where Zp is the original
attribute universe in Rouselakis-Waters KP-ABE. Our CCA2-secure KP-ABE
scheme works as follows.

– Setup(1λ). Run (p,G,GT , e) ← G(1λ) to generate a prime p, two groupsG,GT

of order p, and a bilinear map e : G×G→ GT . A secure Chameleon hash func-
tionHashch: {0, 1}∗ →

[
p+1

2 , p− 1
]

with an auxiliary parameter universeR is

also employed in the scheme. Then, select a random generator g
R← G, random

elements h, u, w
R← G, and a random exponent α

R← Zp. The algorithm calls
(skch, pkch) ← KeyGench(1λ) to obtain a (skch, pkch) pair for the Chameleon
hash. The public parameter is pp ← (Hashch,R, pkch, g, h, u, w, e(g, g)α).
The master secret key is msk ← (α).

– KeyGen(pp, msk, (M,ρ)). For generating a secret key for an access struc-
ture encoded by the LSSS-policy (M,ρ), where M ∈ Zl×n

p and ρ : [l] →[
0, p−1

2

]
, the key generation algorithm first picks n − 1 random expo-

nents y2, · · · , yn R← Zp, and constructs the vector
→
y = (α, y2, · · · , yn)T.

Then, the vector of the shares
→
λ can be computed by the key genera-

tion algorithm as
→
λ = (λ1, λ2, · · · , λl)

T
= M

→
y . The algorithm next picks

100 W. Liu et al.

l random exponents t1, t2, · · · , tl
R← Zp. For every i ∈ [l], it calculates

Ki,0 = gλiwti ,Ki,1 =
(
h · uρ(i)

)−ti
,Ki,2 = gti . The secret key is

sk(M,ρ) ←
(
(M,ρ), {Ki,0,Ki,1,Ki,2}i∈[l]

)
– Encrypt(pp, m, S). Given the attribute set S = {A1, A2, · · · , Aκ}, where

κ = |S|, the algorithm first picks κ+ 2 random exponents s, r0, r1, · · · , rκ R←
Zp. It then computes C = m · e(g, g)αs, C0 = gs, C0,1 = gr0 , and for every

i ∈ [κ], Ci,1 = gri , Ci,2 =
(
h · uAi

)ri
w−s. It picks a parameter rch

R←R and
sets V = Hashch (pkch, pkch‖C‖C0‖C0,1‖C1,1‖C2,1‖ · · · ‖Cκ,1, rch) ∈ V . The
C0,2 component can be computed as C0,2 =

(
h · uV

)r0
w−s. The algorithm

finally outputs the ciphertext associated with the attribute set S as

ctS ←
(
S, rch, C, C0, C0,1, C0,2, {Ci,1, Ci,2}i∈[κ]

)
.

– Decrypt(pp, sk(M,ρ), ctS). Before decrypting ctS , the algorithm first calcu-
lates V = Hashch (pkch, pkch‖C‖C0‖C0,1‖C1,1‖C2,1‖ · · · ‖Cκ,1, rch), where
κ = |S|. Then, it verifies whether the ciphertext is legitimate by testing
whether the following equation holds for each i ∈ [κ]

e (g, Ci,2)
?
= e

(
Ci,1, h · uAi

)
/e (C0, w) (1)

It additionally tests whether the following equation holds

e (g, C0,2)
?
= e

(
C0,1, h · uV

)
/e (C0, w) (2)

Note that the above ciphertext validity test can be done publicly since it
only involves public parameter pp and ciphertext ctS .
If any equality does not hold, the ciphertext is invalid and the decryption
algorithm outputs ⊥. Otherwise, the algorithm calculates the row set of
M that provides the share to attributes in the given attribute set S, i.e.,
I = {i : ρ(i) ∈ S}. Then, it computes the constants {ωi ∈ Zp}i∈I such that∑
i∈I

ωi

→
M i = (1, 0, · · · , 0), where

→
M i is the i-th row of the share-generating

matrix M . We note that the constants {ωi ∈ Zp}i∈I can be found in poly-
nomial time for all S that satisfies the access structure [2].
Finally, the message m can be recovered by computing

B =
∏
i∈I

(e (Ki,0, C0) e (Ki,1, Cj,1) e (Ki,2, Cj,2))
ωi

where j is the index of the attribute ρ(i) in S that is depended on i, and
computing m = C/B.

Consistency. If the ciphertext is associated with the attribute set S, then for
every i ∈ [κ] where κ = |S|, we have that

e (g, Ci,2) = e
(
g,

(
h · uAi

)ri
w−s

)
= e

(
g,

(
h · uAi

)ri) · e (g, w−s
)

= e
(
gri , h · uAi

)
· e

(
g−s, w

)
=

e
(
gri , h · uAi

)
e (gs, w)

=
e
(
Ci,1, h · uAi

)
e (C0, w)

Practical Direct Chosen Ciphertext Secure Key-Policy 101

Accordingly, Equation (1) holds. With the similar procedure shown above, Equa-
tion (2) holds for the valid on-the-fly dummy attribute

V = Hashch (pkch, pkch‖C0‖C1,1‖C2,1‖ · · · ‖Cκ,1, rch)

Also, if the attribute set S of the ciphertext ctS satisfies the access structure
encoded by the LSSS-policy (M,ρ), then

∑
i∈I

ωiλi = α. Since j is the index of

the attribute ρ(i) in S, we have that ρ(i) = Aj . Therefore

B =
∏
i∈I

(e (Ki,0, C0) e (Ki,1, Cj,1) e (Ki,2, Cj,2))
ωi

=
∏
i∈I

(
e
(
gλiwti , gs

)
e

((
h · uρ(i)

)−ti
, grj

)
e
(
gti ,

(
h · uAj

)rj
w−s

))ωi

=
∏
i∈I

(
e
(
gλi , gs

)
e
(
wti , gs

)
e
(
gti , w−s

))ωi

=
∏
i∈I

(
e
(
gλi , gs

))ωi
=e(g, gs)

∑
i∈I

ωiλi

= e(g, g)
αs

Thus, we have that C/B = m · e(g, g)αs/e(g, g)αs = m.

Public Verifiability. Our scheme is a publicly verifiable CCA2-secure KP-ABE,
since the above ciphertext validity test only involves public parameter pp and
ciphertext ctS . This property is useful to build advanced Attribute-Based cryp-
tography protocols, e.g., ciphertext filtering KP-ABE, in which anyone (e.g., a
gateway of a firewall) can verify whether the ciphertext is encrypted by the spec-
ified access structure to filter spams (i.e., invalid ciphertexts) without requiring
the secret keys of the receivers.

4.3 Performance Analysis

Table 1 compares our CCA2-secure KP-ABE with the underlying Rouselakis-
Waters CPA-secure KP-ABE. In the table, the secret key sk(M,ρ) is associated

with the LSSS-policy (M,ρ) with M ∈ Zl×n
p , and the ciphertext ctS is associated

with the attribute set S with κ = |S|. We denote τe as one exponent operation
in G and GT , τm as one multiplication operation in G and GT , τp as one pairing
operation time, and τh as one Chameleon hash operation time.

From Table 1, it can be seen that the additional overheads for CCA2-security
are considerably low. Specifically, the secret key size in our CCA2-secure KP-
ABE scheme remain the same as that of the underlying Rouselakis-Waters
KP-ABE scheme [30]. For a ciphertext associated with arbitrary number of at-
tributes, only two more group elements in G are added. The encryption algorithm
needs only one more hash operation, three more exponent operations in G and
two more multiplication operation in G.

102 W. Liu et al.

Table 1. Comparisons among Rouselakis-Waters KP-ABE and our KP-ABE

Rouselakis-Waters ABE Our KP-ABE

Security CPA-secure CCA2-secure
pp Size 5 5 + |pkch|

sk(M,ρ) Size 3l + |(M,ρ)| 3l + |(M,ρ)|
ctS Size 3κ+ 2 3κ+ 4 + |rch|

KeyGen Time 5l · τe + 2l · τm 5l · τe + 2l · τm
Encrypt Time (3κ+ 2) · τe + (2κ+ 1) · τm (3κ+ 5) · τe + (2κ+ 3) · τm + τh

We note that the work in [16] also exploits dummy attributes to achieve
CCA2-secure ABE. In [16], signatures are added to CPA-secure ABE for vali-
dating ciphertext in decryption. Each bit of the verification keys Kv is treated
as an attribute, which introduces |Kv| dummy attributes. In contrast, we only
introduce one dummy attribute. Our approach is compact and efficient.

4.4 Security Analysis

The Chameleon hash is critical in our proof. In the Init phase, the simula-
tor chooses a random challenge message m∗ and an auxiliary parameter r∗

to construct the challenge on-the-fly dummy attribute V ∗. In the Challenge
phase, given the challenge messages m0,m1, the simulator obtains a collision
pair (m∗

b , r
∗
b) such that Hashch(pkch,m

∗, r∗) = Hashch(pkch,m
∗
b , r

∗
b) = V ∗ to

make the challenge on-the-fly dummy attribute V ∗ unchanged. This approach
allows the simulator in advance obtain the challenge dummy attribute. Since
all challenge attributes can be obtained in the Setup phase, the simulator can
correctly play the selective security game with the adversary.

Formally, the selective chosen attribute set and chosen ciphertext security
result is guaranteed by Theorem 1.

Theorem 1. Let G be a group of prime order p equipped with an efficient bi-
linear map e : G× G→ GT . Our KP-ABE scheme is selective chosen attribute
set and chosen ciphertext secure if the (ε, q+1)-wDBDH assumption holds in G,
the employed Chameleon hash function is secure, and the challenge attribute set
S∗ that the adversary commits to satisfies that |S∗| ≤ q.

Proof. Suppose that there exists an algorithm A that has advantage ε to break
our KP-ABE system in the security game defined in Sec. 3. We construct an
algorithm B that can solve the (q + 1)-wDBDH problem in G. The input of
the algorithm B is the challenge tuple (D,T) of the (q + 1)-wDBDH problem.
Algorithm B interacts with A as follows.

Init. Algorithm A sends the challenge set S∗ = {A∗
1, A

∗
2, · · · , A∗

κ} to B.
Setup. Algorithm B sets the public parameter pp as follows. It randomly

chooses ũ
R← Zp and sets

(g, u, w, e(g, g)α) = (g, gũ ·
∏

i∈[κ+1]

gy/b
2
i , gx, e(gx, gy))

Practical Direct Chosen Ciphertext Secure Key-Policy 103

It then sets C∗
0 = gs = gz, C∗

0,1 = gr0 = gbκ+1 , and C∗
i,1 = gri = gbi for all

i ∈ [κ]. It next chooses a secure Chameleon hash function Hashch : {0, 1}∗ →[
p+1

2 , p− 1
]

with an auxiliary parameter universe R and runs (skch, pkch) ←
KeyGench(1λ). Algorithm B picks a random auxiliary parameter r∗ch

R← R,

a random challenge message m∗ R← GT , sets C∗ = m∗ · T , and calls Hashch

to calculate V ∗ = Hashch(pkch, C
∗, r∗ch). Finally, algorithm B picks a random

exponent h̃
R← Zp and sets

h = gh̃ ·
∏

i∈[κ+1]

gxz/bi ·
∏
i∈[κ]

(
gy/b

2
i

)−A∗
i
(
gy/b

2
κ+1

)−V ∗

The public parameter is pp ← (Hashch,R, pkch, g, h, u, w, e(g, g)α) and B is
implicitly set msk ← (xy) and s ← z, which B cannot know their values from
D. Note also that skch and r∗ch is kept secret by B.

Phase 1. Algorithm A adaptively issues two kinds of queries.

Secret Key Queries: Secret key query for a LSSS-policy (M,ρ) for which the
challenge set S∗ is not authorized. Suppose that M ∈ Zl×n

p and ρ : [l] →
[
0, p−1

2

]
.

According to security requirement of LSSS that has previously shown in Sec. 2.3,
algorithm B can use linear algebra to generate a vector

→
ω = (ω1, ω2, · · · , ωn)

T ∈
Zn
p satisfying that ω1 = 1 and 〈

→
Mi,

→
ω〉 = 0 for all i ∈ [l] such that ρ(i) ∈ S∗.

Then, algorithm B randomly chooses ỹ2, ỹ3, · · · , ỹn R← Zp and implicitly sets
→
y = xy

→
ω + (0, ỹ2, ỹ3, · · · , ỹn)

T
= (xy, ỹ2 + ω2, ỹ3 + ω3, · · · , ỹn + ωn)

T
. For all

i ∈ [l], we have the following two cases:

1. i ∈ [l] such that ρ(i) ∈ S∗. In this case, we have that ω1 = 1 and 〈
→
Mi,

→
ω〉 = 0.

Therefore, the share λi is λi = 〈
→
M i,

→
y 〉 = 〈

→
M i, xy

→
ω + (0, ỹ2, ỹ3, · · · , ỹn)T〉 =

xy · 0 + 〈
→
M i, (0, ỹ2, · · · , ỹn)T〉, where we set λ̃i = 〈

→
M i, (0, ỹ2, · · · , ỹn)T〉 that

can be calculated by B. Algorithm B can finally pick a random exponent

t̃i
R← Zp, and outputs Ki,0 = gλ̃iwt̃i ,Ki,1 =

(
h · uρ(i)

)−t̃i
,Ki,2 = gt̃i .

2. i ∈ [l] such that ρ(i) /∈ S∗. In this case, we have that 〈
→
Mi,

→
ω〉 �= 0. The share

λi is also formed as λi = 〈
→
M i,

→
y 〉 = xy · 〈

→
M i,

→
ω〉+ 〈

→
M i, (0, ỹ2, · · · , ỹn)

T〉 =

xy · 〈
→
M i,

→
ω〉+ λ̃i, where xy · 〈

→
M i,

→
ω〉 �= 0. Algorithm B next picks a random

t̃i
R← Zp to implicitly set ti as

ti = −y〈
→
M i,

→
ω〉+

∑
j∈[κ]

xzbj〈
→
M i,

→
ω〉

ρ(i)−A∗
j

+
xzbκ+1〈

→
M i,

→
ω〉

ρ(i)− V ∗ + t̃i

Since ρ(i) /∈ S∗, we have that ρ(i) − A∗
j �= 0 for all j ∈ [k]. Also, ρ(i) ∈[

0, p−1
2

]
while V ∗ ∈

[
p+1

2 , p− 1
]

so that ρ(i)− V ∗ �= 0. Therefore, ti can be

104 W. Liu et al.

well-defined and it is properly distributed due to the randomness of t̃i. The
first component Ki,0 can be calculated as

Ki,0 = gλiwti = gxy·Wi+λ̃i · w
−y·Wi+

(∑
j∈[κ]

xzbj ·Wi

ρ(i)−A∗
j

)
+

xzbκ+1·Wi

ρ(i)−V ∗ +t̃i

= gλ̃i · wt̃i ·
∏
j∈[κ]

(
gx

2zbj
) Wi

ρ(i)−A∗
j ·

(
gx

2zbκ+1

) Wi
ρ(i)−V ∗

where we denote Wi = 〈
→
M i,

→
ω〉. Accordingly, Ki,1 can be calculated as

Ki,1 =
(
uρ(i)h

)−ti
=

⎛
⎝gρ(i)ũ+h̃

∏
k∈[κ+1]

g

ρ(i)y

b2
k

+xz
bk

∏
k∈[κ]

(
g

y

b2
k

)−A∗
k

(
g

y

b2
κ+1

)−V ∗⎞
⎠

yWi

·
⎛
⎝gρ(i)ũ+h̃

∏
k∈[κ+1]

g

ρ(i)y

b2
k

+xz
bk

∏
k∈[κ]

(
g

y

b2
k

)−A∗
k

(
g

y

b2
κ+1

)−V ∗⎞
⎠

− ∑
j∈[κ]

xzbj·Wi

ρ(i)−A∗
j

·
⎛
⎝gρ(i)ũ+h̃

∏
k∈[κ+1]

g

ρ(i)y

b2
k

+xz
bk

∏
j∈[κ]

(
g

y

b2
k

)−A∗
k

(
g

y

b2
κ+1

)−V ∗⎞
⎠

− xzbκ+1·Wi
ρ(i)−V ∗ −t̃i

= (gy)Wi(ρ(i)ũ+h̃)
∏

k∈[κ]

⎛
⎝g

y2

b2
k

⎞
⎠

Wi(ρ(i)−A∗
k)

⎛
⎝g

y2

b2
κ+1

⎞
⎠

Wi(ρ(i)−V ∗)

·
∏

j∈[κ+1]

(
gxzbj

)−Wi(ρ(i)ũ+h̃)
ρ(i)−A∗

j

(
gxzbκ+1

)−Wi·(ρ(i)ũ+h̃)
ρ(i)−V ∗

·
∏

j∈[κ]
k∈[κ+1]

(
g

(xz)2bj
bk

)− Wi
ρ(i)−A∗

j ∏
k∈[κ+1]

(
g(xz)

2bκ+1/bk
)− Wi

ρ(i)−V ∗ (
uρ(i)h

)−t̃i

·

⎛
⎜⎜⎝ ∏

j,k∈[κ]
j �=k

⎛
⎝g

xyzbj

b2
k

⎞
⎠

ρ(i)−A∗
k

ρ(i)−A∗
j ∏

j∈[κ]

⎛
⎝g

xyzbj

b2
κ+1

⎞
⎠

ρ(i)−V ∗
ρ(i)−A∗

j

⎛
⎝ ∏

k∈[κ]

g

xyzbκ+1

b2
k

⎞
⎠

ρ(i)−A∗
k

ρ(i)−V ∗
⎞
⎟⎟⎠

−Wi

Similarly, the third component Ki,2 is formed as

Ki,2 = gti = g
−y·Wi+

(∑
j∈[κ]

xzbj ·Wi

ρ(i)−A∗
j

)
+

xzbκ+1·Wi

ρ(i)−V ∗ +t̃i

= (gy)
−Wi ·

∏
j∈[κ]

(
gxzbj

) Wi
ρ(i)−A∗

j ·
(
gxzbκ+1

) Wi
ρ(i)−V ∗ · gt̃i

Therefore, all components in sk(M,ρ) can be computed by B. Hence, algorithm B
can generate the secret key for the issued access structure (M,ρ) and correctly
response to A’s request.

Practical Direct Chosen Ciphertext Secure Key-Policy 105

Decryption Queries: Decryption query for the ciphertext ctS associated with
an attribute set S = {A1, · · · , A|S|}. Algorithm B first computes

V = Hashch

(
pkch, pkch‖C‖C0‖C1,1‖ · · · ‖C|S|,1, rch

)
and determines whether the ciphertext is valid by checking Equation (1) for all
i ∈ [|S|] and Equation (2). If one of the equalities does not hold, the ciphertext
is invalid and B returns with ⊥. Otherwise:

1. S � S∗. In this case, algorithm B can construct an access structure (M,ρ)
such that S satisfies (M,ρ) but S∗ does not (For example, an access structure
(A1∧A2∧· · ·∧A|S|)). Since S∗ cannot be authorized by (M,ρ), algorithm B
can run the same algorithm described in secret key query phase to generate
a well-formed secret key sk(M,ρ) for that access structure and decrypt by
running Decrypt(pp, sk(M,ρ), ctS).

2. S ⊆ S∗ and V �= V ∗. Algorithm B is unable to construct any secret keys for
an access structure (M,p) for which S∗ is not authorized. However, note that
the ciphertext is additional encrypted by a on-the-fly dummy attribute V .
When V �= V ∗, algorithm can generate a secret key for the access structure
(M = (1), ρ(1) = V). This secret key is indeed an invalid secret key in the
actual system, since V /∈

[
0, p−1

2

]
so that V is not in the attribute universe U .

However, algorithm B can use such a key to decrypt the issued ciphertext.
Note that A cannot distinguish which key B uses to decrypt. Hence, the
decryption result is a well-formed message.

3. S ⊆ S∗ and V = V ∗. In this case, algorithm B is unable to respond. It
terminates the simulation with A, outputs a random bit b ∈ {0, 1} and
halts. Since the Chameleon hash function B employs satisfies the properties
of collision resistance and uniformity for anyone without skch, this case
happens with negligible probability 1/|V| = 2/ (p− 1).

Challenge. Algorithm A submits two equal-length messages m0,m1 ∈ GT to
B. Algorithm B flips a random coin b ∈ {0, 1}. The first component C∗

0 of the
challenge ciphertext is previously computed as C∗

0 = gs = gz in Setup phase,
so is C∗

i,1 = gri = gbi for each i ∈ [κ]. Algorithm B sets

C∗
i,2 =

(
h · uA∗

i

)ri
w−s = gbi(ũA

∗
i +h̃)

∏
j∈[κ+1]

g
xzbi
bj

∏
j∈[κ]

g

ybi(A∗
i
−A∗

j)
b2
j · g

ybi(A∗
i
−V ∗)

b2
κ+1

=
(
gbi

)ũA∗
i +h̃ ·

∏
j∈[κ+1]

j �=i

g
xzbi
bj

∏
j∈[κ]
j �=i

g

ybi(A∗
i
−A∗

j)
b2
j · g

ybi(A∗
i
−V ∗)

b2
κ+1

for each i ∈ [κ]. For the on-the-fly dummy attribute V ∗, algorithm B sets

C∗
0,1 = gbκ+1 , C∗

0,2 =
(
gbκ+1

)ũV ∗+h̃ ·
∏
j∈[κ]

g
xzbκ+1

bj

∏
j∈[κ]

g

ybκ+1(V ∗−A∗
j)

b2
j

106 W. Liu et al.

To keep the on-the-fly dummy attribute V ∗ unchanged,
algorithm B sets C∗

b = mb · T and runs r∗b ←
UForgech(skch, C

∗, r∗ch, pkch‖C∗
b ‖C∗

0‖C∗
0,1‖C∗

1,1‖ · · · ‖C∗
κ,1). Note that the

functionality of UForgech ensures

V ∗ = Hashch(pkch, pkch‖C∗
b ‖C∗

0‖C∗
0,1‖C∗

1,1‖C∗
2,1‖ · · · ‖C∗

κ,1, r
∗
b)

Algorithm B responses ct∗ =
(
S∗, r∗b , C

∗
b , C

∗
0 , C

∗
0,1, C

∗
0,2,

{
C∗

i,1, C
∗
i,2

}
i∈[κ]

)
to A.

Phase 2. Algorithm B processes as in Phase 1 to response two kinds of queries
issued from A.

Guess. Finally, adversary A outputs a guess b′ ∈ {0, 1}. Algorithm B also
outputs b′ to answer the (q + 1)-wDBDH problem. If T = e(g, g)xyz = e(g, g)αs,
then B plays the proper security game with A since the ct∗ is a valid ciphertext
for the message mb. In this case, the advantage of algorithm A is ε. On the

other hand, if T
R← GT , then ct∗ is a ciphertext for the random message chosen

in GT so that the advantage of A is exactly 0. Therefore, if A has advantage
AdvKP-ABE

A (λ) = ε in breaking our KP-ABE scheme, then B can determine the
distribution of T with advantage AdvB(λ) ≥ ε− 2

p−1 . ��

5 Conclusion

We proposed a direct construction of fully functional CCA2-secure KP-ABE
scheme. Compared with the underlying CPA-secure one, our scheme only in-
troduces the cost of a Chameleon hash. Furthermore, our scheme allows public
ciphertext validity test. Technically, in contrast existing Chameleon hash applica-
tions to signatures, our construction illustrates novel applications of Chameleon
hashes in construction and security proofs of encryption schemes.

Acknowledgments and Disclaimer. We appreciate the anonymous review-
ers for their valuable suggestions. We especially thank Willy Susilo for his many
helps on preparing the final version of the paper. Dr. Bo Qin is the corresponding
author. This paper is partially supported by the National Key Basic Research
Program (973 program) through project 2012CB315905, by the Natural Science
Foundation through projects 61272501, 61173154, 61370190 and 61003214, by
the Fundamental Research Funds for the Central Universities, and the Research
Funds(No. 14XNLF02) of Renmin University of China, by the Open Research
Fund of Beijing Key Laboratory of Trusted Computing and by the Open Re-
search Fund of The Academy of Satellite Application.

References

1. Ateniese, G., de Medeiros, B.: On the key exposure problem in Chameleon hashes.
In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 165–179.
Springer, Heidelberg (2005)

Practical Direct Chosen Ciphertext Secure Key-Policy 107

2. Beimel, A.: Secure schemes for secret sharing and key distribution. PhD thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE S&P 2007, pp. 321–334. IEEE Press, USA (2007)

4. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

5. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

6. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: ACM CCS 2005, pp. 320–329. ACM Press, New York (2005)

7. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

8. Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority
attribute-based encryption. In: ACM CCS 2009, pp. 121–130. ACM Press, New
York (2009)

9. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)

10. Chen, X., Zhang, F., Kim, K.: Chameleon hashing without key exposure. In: Zhang,
K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 87–98. Springer, Heidelberg
(2004)

11. Chen, X., Zhang, F., Susilo, W., Mu, Y.: Efficient generic on-line/off-line signatures
without key exposure. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521,
pp. 18–30. Springer, Heidelberg (2007)

12. Chen, X., Zhang, F., Susilo, W., Tian, H., Li, J., Kim, K.: Identity-based chameleon
hash scheme without key exposure. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010.
LNCS, vol. 6168, pp. 200–215. Springer, Heidelberg (2010)

13. Chen, X., Zhang, F., Tian, H., Wei, B., Kim, K.: Discrete logarithm based
Chameleon hashing and signatures without key exposure. Computers and Elec-
trical Engineering 37(4), 614–623 (2011)

14. Chen, X., Zhang, F., Tian, H., Wei, B., Susilo, W., Mu, Y., Lee, H., Kim, K.:
Efficient generic on-line/off-line (threshold) signatures without key exposure. In-
formation Sciences 178(21), 4192–4203 (2008)

15. Chen, C., Zhang, Z., Feng, D.: Efficient ciphertext policy attribute-based encryp-
tion with constant-size ciphertext and constant computation-cost. In: Boyen, X.,
Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 84–101. Springer, Heidelberg
(2011)

16. Cheung, L., Newport, C.: Provably secure ciphertext policy ABE. In: ACM CCS
2007, pp. 456–465. ACM Press, New York (2007)

17. Deng, H., Wu, Q., Qin, B., Chow, S.S., Domingo-Ferrer, J., Shi, W.: Tracing and
revoking leaked credentials: Accountability in leaking sensitive outsourced data.
In: ACM ASIACCS 2014, pp. 425–443. ACM Press, New York (2014)

18. Deng, H., Wu, Q., Qin, B., Mao, J., Liu, X., Zhang, L., Shi, W.: Who is touching
my cloud? ESORICS 2014, To Appear (2014)

19. Deng, H., Wu, Q., Qin, B., Domingo-Ferrer, J., Zhang, L., Liu, J., Shi, W.:
Ciphertext-policy hierarchical attribute-based encryption with short ciphertexts.
Information Sciences 275, 370–384 (2014)

108 W. Liu et al.

20. Ge, A.J., Zhang, R., Chen, C., Ma, C.G., Zhang, Z.F.: Threshold ciphertext policy
attribute-based encryption with constant size ciphertexts. In: Susilo, W., Mu, Y.,
Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 336–349. Springer, Heidelberg
(2012)

21. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS 2006, pp. 89–98. ACM
Press, New York (2006)

22. Krawczyk, H., Rabin, T.: Chameleon hashing and signatures. In: NDSS 2000,
pp. 143–154. The Internet Society, San Diego (2000)

23. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: Attribute-based encryption and (hierarchical) inner product en-
cryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

24. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011)

25. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In: Pa-
terson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011)

26. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: ACM CCS 2007, pp. 195–203. ACM Press, New
York (2007)

27. Okamoto, T., Takashima, K.: Fully secure functional encryption with general re-
lations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

28. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS,
vol. 7658, pp. 349–366. Springer, Heidelberg (2012)

29. Qin, B., Wang, H., Wu, Q., Liu, J., Domingo-Ferrer, D.: Simultaneous authentica-
tion and secrecy in identity-based data upload to cloud. Cluster Computing 16(4),
845–859 (2013)

30. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: ACM CCS 2013, pp. 463–474. ACM
Press, New York (2013)

31. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

32. Wang, Y., Wu, Q., Wong, D.S., Qin, Q., Chow, S.S.M., Liu, Z., Tan, X.: Offload-
ing provable data Possession by securely outsourcing exponentiations in single un-
trusted program model. ESORICS 2014, To Appear (2014)

33. Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: Generic constructions for
chosen-ciphertext secure attribute based encryption. In: Catalano, D., Fazio, N.,
Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 71–89. Springer,
Heidelberg (2011)

Privacy-Preserving Auditing

for Attribute-Based Credentials

Jan Camenisch, Anja Lehmann, Gregory Neven, and Alfredo Rial

IBM Research – Zurich, Rüschlikon, Switzerland
{jca,anj,nev,lia}@zurich.ibm.com

Abstract. Privacy-enhancing attribute-based credentials (PABCs) al-
low users to authenticate to verifiers in a data-minimizing way, in the
sense that users are unlinkable between authentications and only disclose
those attributes from their credentials that are relevant to the verifier.
We propose a practical scheme to apply the same data minimization
principle when the verifiers’ authentication logs are subjected to exter-
nal audits. Namely, we propose an extended PABC scheme where the
verifier can further remove attributes from presentation tokens before
handing them to an auditor, while preserving the verifiability of the au-
dit tokens. We present a generic construction based on a signature, a
signature of knowledge and a trapdoor commitment scheme, prove it
secure in the universal composability framework, and give an efficient
instantiation based on the strong RSA assumption in the random-oracle
model.

Keywords: Attribute-based credentials, audits, universal composabil-
ity, privacy-enhancing technologies.

1 Introduction

Privacy-enhancing attribute-based credentials (PABC) [1], also known as anony-
mous credentials [2, 3] or minimal-disclosure tokens [4], are cryptographic mech-
anisms to perform data-minimizing authentication. They allow users to obtain
credentials from an issuer, by which the issuer assigns a list of certified at-
tribute values to the user. Users can then use these credentials to authenticate
to verifiers, but have the option to disclose only a subset of the attributes; all
non-disclosed attributes remain hidden from the verifier. Moreover, different au-
thentications are unlinkable, in the sense that a verifier cannot tell whether they
were performed by the same or by different users. PABCs offer important pri-
vacy advantages over other attribute certification schemes, which usually either
employ a central authority that is involved in every authentication and therefore
forms a privacy bottleneck (e.g., SAML, OpenID, or Facebook Connect), or force
users to disclose all of their attributes (e.g., X.509 certificates [5]).

But sometimes, attributes travel beyond the verifier. Verifiers may be sub-
jected to external audits to check that access was only granted to entitled users.
For example, government authorities may require a video streaming service to

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 109–127, 2014.
c© Springer International Publishing Switzerland 2014

110 J. Camenisch et al.

prove that age-restricted movies were streamed exclusively to viewers of the
required age, or film distributors may require it to prove that films were only
streamed to residents of geographic areas for which it bought the rights. It makes
perfect sense to extend the data minimization principle to auditors as well: why
should auditors be handed any user attributes that are not relevant to the au-
dit? Can one design a scheme where verifiers can further “maul” authentication
tokens so that some of the disclosed attributes are blinded, yet keeping the audit
token verifiable under the issuer’s public key?

Trivial Constructions. Current PABC schemes do not allow for such func-
tionality, or at least not efficiently. Presentation tokens usually consist of non-
malleable non-interactive zero-knowledge proofs. In theory, one can always rely
on generic zero-knowledge techniques [6] to prove knowledge of a valid presen-
tation token for a subset of the disclosed attributes, but such proofs will be pro-
hibitively expensive in practice. If the number of disclosed attributes is small,
or the combination of attributes required by the auditor is known upfront, the
user can generate multiple separate presentation tokens, one for the verifier and
one for each of the auditors. This solution does not scale, however: if there are
m disclosed attributes and the audited combination is not known upfront, the
user would have to prepare 2m presentation tokens.

Our Contributions. We present an efficiently auditable PABC scheme, mean-
ing the size of authentication tokens as well as audit tokens stays linear in the
number of attributes. Just like many PABC schemes, credentials in our construc-
tion are signatures on blocks of messages, where each message block encodes an
attribute value. A presentation token is computed with an efficient signature of
knowledge [7] of a valid credential that reveals only part of the message blocks.
The basic idea of our construction is that, rather than simply revealing the
disclosed attribute values, the user commits to them and creates a signature of
knowledge of a valid credential for the same values as those that he committed to.
The opening information of all commitments is handed to the verifier, who can
check that they contain the claimed attribute values, but in the auditing phase,
the verifier only forwards the opening information of the transferred attributes
to the auditor, together with the user’s original signature of knowledge.

We prove our construction secure in the universal composability (UC) frame-
work [8], which guarantees that our protocol can be securely composed with it-
self as well as with other protocols in arbitrary environments. Given the several
iterations that it took to define the security of basic signatures in this frame-
work [9–11], defining security for a complicated primitive like ours is a delicate
balancing act. We elaborately motivate our design choices for our ideal function-
ality in Section 3, in the hope that it can be of independent interest as a source
of inspiration for future signature variants with privacy features.

Related Work. There are several proposals for dedicated signature schemes
that allow the receiver of a signed message to reduce the amount of information
in the message while retaining the ability to verify the corresponding signature.

Privacy-Preserving Auditing for Attribute-Based Credentials 111

Those are known as homomorphic [12], sanitizable [13–15], redactable [16], or
content extracting signatures [17]. Other constructions, described e.g. in [18, 19]
even allow more advanced operations on the signed data.

Those mechanisms do not yield straightforward constructions of our primitive
as they only consider modifications of signed messages, whereas our scheme has
to work with presentation tokens which itself are already derived from signed
credentials. The crucial difference between signed messages and presentation
tokens is that the latter should not be usable by a cheating verifier to impersonate
the user at other verifiers. Therefore, the simple scheme where the credential and
presentation token are redactable signatures on the list of attributes and where
the presentation token can be further redacted by the verifier does not work.

Another related line of work conducts research on delegatable anonymous cre-
dentials [20], structure-preserving signatures [21], and commuting signatures [22].
The former allow credentials to be repetitively delegated while hiding the iden-
tity of the delegators. The latter two are more general signature schemes where
the public key, the signed message, and the signature are all in the same math-
ematical group, and that among other things can be used to build delegatable
credentials. Even though verifiable auditing is a sort of delegation, none of these
primitives achieves the goals that we set out, as they cannot bind attributes to
a delegatable credential.

2 System Overview

A privacy-preserving audit protocol consists of four parties: an auditor R, an
issuer I, verifiers V1, . . . ,VJ , and users U1, . . . ,UN . The interaction between the
parties is as follows. First, in the issuing phase, a user Un gets credentials that
certify her attributes from the issuer I. A credential consists of L attributes
(a1, . . . , aL). In the presentation phase, Un sends a presentation token to a verifier
Vj . In each presentation token, Un chooses which attributes are revealed to Vj
and, moreover, which of those attributes can further be revealed to the auditor
R. The indexes of the attributes that are only revealed to Vj are included in
a set F , and the indexes of the attributes that are revealed to Vj and that
can also be revealed to R are included in a set D . We call the attributes given
by D transferable, while the ones given by F are non-transferable. In the audit
phase, Vj reveals to R (a subset of) the transferable attributes, whose indexes
are included in a subset T such that T ⊆ D .

3 Security Definition of Privacy-Preserving Audits

3.1 Universally Composable Security

The universal composability framework [23] is a general framework for analyz-
ing the security of cryptographic protocols in arbitrary composition with other
protocols. The security of a protocol ϕ is analyzed by comparing the view of an
environment Z in a real execution of ϕ against that of Z when interacting with

112 J. Camenisch et al.

an ideal functionality F that carries out the desired task. The environment Z
chooses the inputs of the parties and collects their outputs. In the real world, Z
can communicate freely with an adversary A who controls the network as well
as any corrupt parties. In the ideal world, Z interacts with dummy parties, who
simply relay inputs and outputs between Z and F , and a simulator S. We say
that a protocol ϕ securely realizes F if Z cannot distinguish the real world from
the ideal world, i.e., Z cannot distinguish whether it is interacting with A and
parties running protocol ϕ or with S and dummy parties relaying to Fϕ.

When describing ideal functionalities, we use the following conventions: The
identity of an ITM instance (ITI) consists of a party identifier pid and a session
identifier sid . An instance of F with session identifier sid only accepts inputs
from and passes outputs to machines with the same session identifier sid . When
describing functionalities, the expressions “output to P” and “on input from P”,
where P is a party identity pid , mean that the output is passed to and the input
is received from party P only. Communication between ITIs with different party
identifiers takes place over the network which is controlled by the adversary,
meaning that he can arbitrarily delay, modify, drop, or insert messages.

When we say that F sends m to S and waits for m′ from S, we mean that
F chooses a unique execution identifier, saves its current state, and sends m
together with the identifier to S. When S invokes a dedicated resume interface
with a message m′ and an execution identifier, F looks up the execution state
associated to the identifier and continues running its program where it left off
using m′.

Our protocol makes use of the standard functionalities FREG [23] for key reg-
istration, FSMT for secure message transmission [23], and FD

CRS [23] for common
reference strings with distribution D. Descriptions and realizations of all these
functionalities can be found in the literature.

We also use the non-standard anonymous secure message transmission func-
tionality FASMT given in Figure 1. The literature provides a fair number of pro-
tocols that provide some form of anonymous communication. These include some
onion routing protocols for which ideal functionalities have been defined [24, 25].
Their functionalities are quite complex, as they model the various imperfections
of the protocols, in particular, what routing information an adversary learns.
This information depends heavily on how messages are routed, how many other
users currently use the channel, how many nodes are controlled by the adver-
sary, etc. Indeed, the modeling and realizations of anonymous communication
is an active field of research. Now, if we had used one of these functionalities
for our protocols, we would have had to model all these imperfections in our
ideal functionality FAUD as well. We consider such modeling orthogonal to our
protocol and our goals and therefore choose to assume ideal anonymous commu-
nication where the adversary only learns that some message is sent (and is al-
lowed to deny its delivery) but does not learn the identities of the sender and the
receiver.

Privacy-Preserving Auditing for Attribute-Based Credentials 113

Functionality FASMT

Parameterized by a leakage function l : {0, 1}∗ → {0, 1}∗, FASMT works as follows:

1. On input (send, sid ,m) from a party T , execute the following program:
• If sid �= (R, sid ′), exit the program.
• Send (send, sid ′, l(m)) to S .
• Wait for a message (send, sid ′) from S .
• Send (sent, sid ,m) to R.

Fig. 1. The ideal functionality of anonymous secure message transmission

3.2 Ideal Functionality of Privacy-Preserving Audits

We describe our ideal functionality FAUD of privacy-preserving audits in Fig-
ure 2. We assume static corruptions, meaning that the adversary decides which
parties to corrupt at the beginning of the game but cannot corrupt additional
parties once the protocol is running. FAUD employs the following tables:

Table 1. Tbl1 stores entries of the form [Un , 〈al〉Ll=1] associating a user Un to
her attributes 〈al 〉Ll=1, or of the form [S, 〈al 〉Ll=1] if the credential was issued
to a corrupt user.

Table 2. Tbl2 stores entries of the form [Vj ,D ,F , 〈al〉l∈D∪F ,msg, tid] associat-
ing verifiers Vj to the information of previous presentation phases.

Table 3. Tbl3 stores entries of the form [audtok ,Vj ,D ,F ,T , 〈al 〉l∈T ,msg , v],
associating audit tokens to the data used to compute or verify the token,
plus v ∈ {valid, invalid} indicating whether the token is valid.

To shorten the description, we assume that the functionality proceeds only
if the incoming messages are well-formed. That is, for presentation, audit, and
verify messages, FAUD continues only if D ∩ F = ∅, D ⊆ [1,L], F ⊆ [1,L],
and sid = (I, sid ′) holds. For the audit and verify messages, FAUD additionally
checks that T ⊆ D .

The functionality assumes certified identities of all users, verifiers, and the
signer (cf. the discussion on public keys below). We now discuss the four inter-
faces of the ideal functionality FAUD given in Figure 2.

The issue interface is called by the issuer with the user identity and the at-
tributes in the to-be-issued credential, meaning that the issuer is aware of which
attributes he issues to which user. The simulator indicates when the issuance
is to be finalized by sending a (issue, sid) message. At this point, the issuance
is recorded in Table 1. If the user is honest, the issuance is recorded under the
correct user’s identity; any instantiating protocol will have to set up an authen-
ticated channel to the user to ensure this in the real world. If the user is corrupt,
the credential is recorded as belonging to the simulator, modeling that corrupt
users may pool their credentials. Note that the simulator is not given the issued
attribute values, so the real-world protocol must hide these from the adversary.

The present interface lets a user Un present a subset of attributes to a veri-
fier Vj . Honest users can only show combinations of attributes that appear in

114 J. Camenisch et al.

Functionality FAUD

1. On input (issue, sid ,Un , 〈al 〉Ll=1) from I:
• If sid �= (I, sid ′) then exit the program.
• Send (issue, sid ,Un) to S and wait for (issue, sid) from S .
• If Un is honest then store [Un , 〈al〉Ll=1] in Tbl1, else store [S , 〈al 〉Ll=1].
• Output (issue, sid , 〈al〉Ll=1) to Un .

2. On input (present, sid ,Vj ,D ,F , 〈al〉l∈D∪F ,msg) from Un :

• Continue only if one of the following conditions is satisfied:

– there exist [U ′
n , 〈a ′

l 〉Ll=1] ∈ Tbl1 s.t. a ′
l = al ∀l ∈ D ∪F where U ′

n = Un

if Un is an honest user, or U ′
n = S if Un is corrupt,

– Un and I are both corrupt.

• Send (present, sid ,Vj) to S and wait for (present, sid) from S .
• Increment the token identifier tid(Vj) = tid(Vj) + 1.
• Store [Vj ,D ,F , 〈al〉l∈D∪F ,msg , tid(Vj)] in Tbl2.
• Output (tokrec, sid ,D ,F , 〈al 〉l∈D∪F ,msg , tid(Vj)) to Vj .

3. On input (auditgen, sid ,D ,F ,T , 〈al〉l∈T ,msg , tid) from Vj :

• Continue only if one of the following conditions is satisfied:

– Vj and I are both corrupt,
– Vj is corrupt and there exists [S , 〈a ′

l 〉Ll=1] ∈ Tbl1 s.t. a ′
l = al ∀l ∈ T ,

– there exist [Vj ,D ,F , 〈a ′′
l 〉l∈D∪F ,msg , tid] ∈ Tbl2 s.t. a ′′

l = al ∀l ∈ T .

• Send the message (auditgen, sid ,Vj ,D ,F ,T , 〈al 〉l∈T ,msg , tid) to S and
wait for (auditgen, sid , audtok) from S .

• Store [audtok ,Vj ,D ,F ,T , 〈al〉l∈T ,msg , valid] in Tbl3.
• Output (audrec, sid , audtok) to Vj .

4. On input (auditvf, sid , audtok ,Vj ,D ,F ,T , 〈al〉l∈T ,msg) from a party P :

• Send (auditvf, sid , audtok ,Vj ,D ,F ,T , 〈al〉l∈T ,msg) to S and wait for
(auditvf, sid , w) from S .

• If there exists [audtok ,Vj ,D ,F ,T , 〈al〉l∈T ,msg , u] ∈ Tbl3 then set v = u.
(Completeness/Consistency)

• Else, set v = w only if one of the following conditions is satisfied (Un-
forgeability):

– Vj and I are both corrupt,
– Vj is corrupt and there exists [S , 〈a ′

l 〉Ll=1] ∈ Tbl1 or [Vj ,D ,F ,
〈a ′

l 〉l∈D∪F ,msg , tid] ∈ Tbl2 such that a ′
l = al ∀l ∈ T ,

– there exists [audtok ′,Vj ,D ,F ,T , 〈al〉l∈T ,msg , valid] ∈ Tbl3.

• Otherwise, set v = invalid.
• Store [audtok ,Vj ,D ,F ,T , 〈al〉l∈T ,msg , v] in Tbl3.
• Output (audvf, sid , v) to P .

Fig. 2. The ideal functionality FAUD and its four interfaces

Privacy-Preserving Auditing for Attribute-Based Credentials 115

a credential issued to that user. If the issuer is honest, but the user is corrupt,
then the presented attributes must be part of a credential issued to some corrupt
user, not necessarily Un itself. Upon receiving a message (present, sid) from S,
the presented attributes and the associated message are recorded in Table 2.
The table also contains the identity of the verifier to whom the attributes were
presented. Finally, the verifier is informed about the revealed attributes and the
message. Note that neither the verifier nor the simulator learns the identity of
the user who initiated the presentation protocol, which guarantees that presenta-
tion protocols are anonymous. Of course, one requires some form of anonymous
communication between the user and the verifier to achieve this.

To generate and verify audit tokens, FAUD offers two interfaces: the auditgen
interface to create audit tokens, and the auditvf to verify audit tokens. Honest
verifiers can only create audit tokens that can be derived from presentations that
they have seen, as recorded in Table 2. If the verifier is corrupt, but the issuer is
honest, the verifier can additionally create tokens that can be derived from any
credentials issued to a corrupt user, as recorded in Table 1. If the verifier and the
issuer are both corrupt, then the adversary can generate any audit tokens that
he wants. Unlike credentials and presentations, audit tokens have an actual bit
string representations in our functionality that can be verified by anyone, not just
by a dedicated auditor. We follow Canetti’s signature functionality [11] by letting
the simulator determine the value of the audit token. Note that the simulator
is only given the values of the transferred attributes T , which guarantees that
audit tokens do not reveal any information about the non-transferred attributes.
The functionality registers the token as valid in Table 3 and returns it to the
verifier.

Any party can verify an audit token through the auditvf interface. The func-
tionality enforces consistency through Table 3, guaranteeing that verification of
the same audit token for the same parameters always returns the same result.
Note that this also enforces completeness, i.e., that honestly generated tokens
verify correctly, because honestly generated tokens are recorded in Table 3 as
valid. When the issuer is honest, the functionality enforces unforgeability by re-
jecting all audit tokens that the adversary should not be able to create. If in
the real world the adversary manages to come up with a valid forgery, then the
environment will be able to notice a difference between the real and the ideal
world by verifying the token. Tokens are considered forgeries when they could
not have been derived from any credentials issued to corrupt users in Table 1,
from any presentation to a corrupt verifier Vj in Table 2, or from any honestly
generated audit tokens in Table 3. Note that in the latter condition, the honestly
generated token audtok ′ may be different from the verified token audtok . This
models conventional (i.e., non-strong) unforgeability: if the environment previ-
ously obtained any token that is valid for the same parameters, then the current
token is no longer considered a forgery.

Public Keys. We define our functionality FAUD so that, rather than providing
a binding to the public key of the issuer, audit tokens provide a direct binding to
the issuer’s identity, much like Canetti’s certified signature functionality FCERT

116 J. Camenisch et al.

provides a direct binding to the signer’s identity [11]. Similarly, presentation
protocols are bound directly to verifiers’ identities rather than their public keys.
This greatly simplifies the description of our functionality because we do not
have to model public keys of issuers and verifiers, and we do not have to specify
how the various interfaces behave when called with incorrect public keys. In-
deed, when tokens are bound directly to party identities, public keys become an
implementation detail of the protocol. This of course comes at a price: in order
to satisfy the functionality, our protocol must rely on an underlying public-key
infrastructure to bind public keys to party identities.

Session Identifiers. The restriction that the issuer’s identity I must be in-
cluded in the session identifier sid = (I, sid ′) guarantees that each issuer can
initialize its own instance of the functionality. In applications where the issuer
is to remain anonymous, the issuer identity could be replaced with a unique
pseudonym.

Representations of Credentials, Presentations, and Audit Tokens. The
issuing phase depicted in Figure 2 does not expose any bit string representation
for credentials to the environment, but merely records which attributes are issued
to which user. Just like public keys, credentials are thereby reduced to imple-
mentation details that remain internal to the state of honest parties. Unlike
public keys, however, this is not just an easy way to simplify our functionality,
but is actually crucial to the unforgeability guarantee. Namely, our functionality
imposes unforgeability of audit tokens by letting the verification interface reject
tokens that the environment should not have been able to produce, including
tokens that could have been derived from honest users’ credentials, but not from
corrupt users’ credentials. However, if the functionality were to output actual
credentials to honest users, the environment could itself derive valid audit tokens
from these credentials, which the functionality would have to accept. Similarly,
the presentation phase in Figure 2 merely records which combinations of at-
tributes were shown to which verifier, without exposing a cryptographic token
of that presentation to the environment.

Linkability of Audit Tokens. An audit token can be linked to the presenta-
tion token from which it was computed. For each verifier Vj , each presentation
phase is given a unique identifier tid(Vj), and this identifier is passed to the
functionality when creating an audit token through the auditgen interface. The
functionality also passes tid(Vj) to the simulator when it is asked to create the
actual token, so that the simulator can create an audit token that respects the
linkability to the corresponding presentation token. The simulator still does not
get any information about the non-transferred attributes, however.

4 Preliminaries

This section describes the cryptographic primitives our realization of FAUD

uses.

Privacy-Preserving Auditing for Attribute-Based Credentials 117

4.1 Trapdoor Commitment Schemes

A non-interactive commitment scheme consists of algorithms CSetup, Com and
VfCom. CSetup(1k) generates the parameters of the commitment scheme parc ,
which include a description of the message space M. Com(parc , x) outputs a
commitment com to x and auxiliary information open . A commitment is opened
by revealing (x , open) and checking whether VfCom(parc , com , x , open) outputs
1 or 0. A commitment scheme should fulfill the correctness, hiding and binding
properties. Correctness requires that VfCom accepts all commitments created by
algorithm Com, i.e., for all x ∈ M

Pr

[
parc ← CSetup(1k); (com , open) ← Com(parc , x) :

1 = VfCom(parc , com, x , open)

]
= 1 .

The hiding property ensures that a commitment com to x does not reveal any
information about x , whereas the binding property ensures that com cannot be
opened to another value x ′.

Definition 1 (Hiding Property). For any PPT adversary A, the hiding prop-
erty is defined as follows:

Pr

⎡⎢⎢⎢⎢⎣
parc ← CSetup(1k);
(x0, x1, st) ← A(parc);
b ← {0, 1}; (com , open) ← Com(parc , xb);
b′ ← A(st , com) :
x0 ∈ M ∧ x1 ∈M ∧ b = b′

⎤⎥⎥⎥⎥⎦ ≤ 1

2
+ ε(k) .

Definition 2 (Binding Property). For any PPT adversary A, the binding
property is defined as follows:

Pr

⎡⎣parc ← CSetup(1k); (com , x , open, x ′, open ′) ← A(parc) :
x ∈M ∧ x ′ ∈M ∧ x �= x ′ ∧ 1 = VfCom(parc , com, x , open)
∧ 1 = VfCom(parc , com , x ′, open ′)

⎤⎦ ≤ ε(k) .

A trapdoor commitment scheme [26, 27] is a commitment scheme where there
exists trapdoor information that allows to open commitments to any value.

Definition 3 (Trapdoor Property). There exist polynomial-time algorithms
CSimSetup and ComOpen, where CSimSetup on input 1k outputs parameters parc
with trapdoor tdc such that: (1) parc are indistinguishable from those produced
by CSetup, and (2) for any x , x ′ ∈ M

∣∣∣Pr
[

(parc , tdc) ← CSimSetup(1k); (com, open ′) ← Com(parc , x
′);

open ← ComOpen(parc , tdc, x , x
′, open ′) : 1 = A(parc , tdc, com , open)

]

− Pr

[
(parc , tdc) ← CSimSetup(1k); (com, open) ← Com(parc , x) :

1 = A(parc , tdc, com, open)

] ∣∣∣ ≤ ε(k) .

118 J. Camenisch et al.

4.2 Signature Schemes

A signature scheme consists of the algorithms KeyGen, Sign, and VfSig. Algorithm
KeyGen(1k) outputs a secret key sk and a public key pk , which include a de-
scription of the message space M. Sign(sk ,m) outputs a signature s on message
m ∈ M. VfSig(pk , s ,m) outputs 1 if s is a valid signature on m and 0 other-
wise. This definition can be extended to blocks of messages m̄ = (m1, . . . ,mn).
A signature scheme must fulfill the correctness and existential unforgeability
properties [28].

4.3 Signatures of Knowledge

Let L be an NP language defined by a polynomial-time computable relation R
as L = {x |∃w : (x ,w) ∈ R}. We call x a statement in the language L and w with
(x ,w) ∈ R a witness for x . A signature of knowledge (SK) [29, 7] for L consists
of the following algorithms:

SKSetup(1k). Output parameters pars, which include a description of the mes-
sage space M.

SKSign(par s,R, x ,w ,m). If (x ,w) ∈ R, output a signature of knowledge σ on
the message m with respect to statement x , else output ⊥.

SKVerify(pars,R, x ,m, σ). If σ is a valid signature of knowledge on the message
m with respect to statement x , output 1, else output 0.

Correctness ensures that SKVerify accepts the signatures of knowledge gener-
ated by SKSign. More formally, for any (x ,w) ∈ R and any m ∈M, we require

Pr

[
par s ← SKSetup(1k); σ ← SKSign(par s,R, x ,w ,m) :

1 = SKVerify(par s,R, x ,m, σ)

]
= 1 .

To obtain efficient instantiations in the random-oracle model, we adopt the sig-
nature of knowledge definitions of Benhamouda et al. [36], which are a random-
oracle adaptation of those of Chase and Lysyanskaya [7].

Definition 4 (Simulatability and Extractibility). There exists a stateful
simulation algorithm SKSim that can be called in three modes. When called as
(par s, st) ← SKSim(setup, 1k), it produces simulated parameters pars, possibly
keeping a trapdoor in its internal state st. When run as (h, st ′) ← SKSim(ro,
q, st), it produces a response h for a random oracle query q. When run as (σ,
st ′) ← SKSim(sign,R, x ,m, st), it produces a simulated signature of knowledge
σ without using a witness.

For ease of notation, let SKSimRO(q) be an oracle that returns the first part
of SKSim(ro, q, st) and let SKSimSign(R, x ,w ,m) be an oracle that returns the
first part of SKSim(sign,R, x ,m, st) if (x ,w) ∈ R and returns ⊥ otherwise,
while a synchronized state is kept for SKSim across invocations. H denotes a
hash function, which is modeled as a random oracle. The algorithms satisfy the
following properties:

Privacy-Preserving Auditing for Attribute-Based Credentials 119

• Simulatability: No adversary can distinguish whether it is interacting with
a real random oracle and signing oracle, or with their simulated versions.
Formally, for all PPT A there exists a negligible function ε such that∣∣Pr[(par s, st) ← SKSim(setup, 1k), b← ASKSimRO,SKSimSign(par s) : b = 1]

−Pr[pars ← SKSetup(1k), b← AH,SKSign(par s) : b = 1]
∣∣ ≤ ε(k) .

• Extractability: The only way to produce a valid signature of knowledge is by
knowing a witness. Formally, for all PPT A there exists an extractor SKExtA
and a non-negligible function p such that

Pr

⎡⎢⎢⎣
(par s, st) ← SKSim(setup, 1k),

(R, x ,m, σ) ← ASKSimRO,SKSimSign(pars; ρA),
w ← SKExtA(par s,R, x ,m, σ, ρS, ρA) :

SKVerify(par s,R, x ,m, σ) = 1 ∧ (R, x ,m) �∈ Q ∧ (x ,w) �∈ R

⎤⎥⎥⎦ ≥ ε(k) ,

where Q is the set of queries (R, x ,m) that A submitted to its SKSimSign
oracle, and where ρS and ρA are the random tapes of the simulator and the
adversary, respectively.

5 Construction of Privacy-Preserving Audits

The high-level idea of our protocol is as follows: a user Un can obtain credentials
from an issuer I, where credentials are signed sets of attributes. From a credential
the user can subsequently derive a presentation token which discloses attributes
al for l ∈ D in a transferable way to the verifier, and attributes al for l ∈ F
in a non-transferable way. To this end, the user first creates a commitment and
opening (com l , open l) for each disclosed attribute al with l ∈ D ∪ F . He then
generates a signature of knowledge σ, proving that he has a valid credential for
all the committed values. To further ensure that the signature cannot be used
in a different context, e.g., by a malicious party trying to impersonate an honest
user, the signature signs a message which contains the verifier identifier and
a fresh nonce chosen by the user. The entire presentation token then consists
of the signature of knowledge σ, the commitments 〈com l 〉l∈D∪F and openings
〈open l 〉l∈D∪F for all disclosed attributes, and the random nonce.

The verifier Vj can check the correctness of such a token by verifying the
signature of knowledge and verifying whether the commitments com l open to
the correct values al for all l ∈ D ∪ F . If that is the case, the verifier stores the
token and will not accept any further token that signs the same nonce.

When the verifier wants to derive an audit token from the presentation token
and to transfer attributes T ⊆ D to the auditor, he simply reuses the presen-
tation token with the modification that he only includes the openings for the
subset of transferred attributes into the audit token. The verifier further adds a
signature s , where he signs the redacted presentation token with his own signing
key. This ensures that a malicious user cannot bypass an honest verifier and
directly create an audit token by himself.

120 J. Camenisch et al.

An auditor can verify an audit token by verifying the correctness of the for-
warded signature of knowledge σ, the correct opening of all commitments for
the transferred attributes and the verifier’s signature s .

5.1 Our Realization of FAUD

Our protocol uses a trapdoor commitment scheme (CSetup,Com,VfCom), and
two signature schemes, one for the issuer (KeyGenI , SignI ,VfSigI) and one for
the verifier (KeyGenV , SignV ,VfSigV). Both signature schemes follow the stan-
dard signature definition given in Section 4.2 and can be instantiated with the
same construction. However, as the issuer’s signature also serves as witness in
a signature of knowledge scheme (SKSetup, SKSign, SKVerify) it might be ben-
eficial to choose a signature scheme for (KeyGenI , SignI ,VfSigI) that already
comes with efficient protocols for such proofs. Furthermore, the issuer’s signa-
ture scheme must allow signing blocks of messages, whereas for the verifier’s
scheme only a single message needs to be signed.

For simplicity, it is assumed that all issuers and verifiers in the scheme have
registered public keys. That is, the issuer and verifiers generate their signing keys
as (ipk , isk) ← KeyGenI(1k) and (vpkj , vskj) ← KeyGenV(1k) respectively and
register their public keys with FREG. We further assume that all parties fetch the
necessary parameters and public keys by invoking the corresponding functional-
ities. That is, the system parameters (par s, parc) with pars ← SKSetup(1k) and
parc ← CSetup(1k) are obtained via FD

CRS, and the public keys of the verifiers
and issuer can be retrieved via the FREG functionality. Note that the issuer iden-
tity I is part of the session identifier sid = (I, sid ′) that is contained in every
message. Each verifier maintains a list of nonces Lnonce which is initially set to
Lnonce := ∅ and will be filled with nonces of verified presentation tokens, which
is used to guarantee a one-time showing for each token. The communication be-
tween the different parties is done over ideal functionalities FSMT in the issuing
phase and FASMT in the presentation phase.

As in the ideal functionality FAUD, the parties in our protocol only proceed
if the incoming messages are well-formed, i.e., for the presentation, audit and
verify messages the respective party only continues if D ∩ F = ∅, D ⊆ [1,L],
F ⊆ [1,L] and sid = (I, sid ′). For the audit and verify messages, the verifier and
auditor further check that T ⊆ D .

Issuance. On input (issue, sid ,Un , 〈al 〉Ll=1) where sid = (I, sid ′), the issuer I
executes the following program with the user Un :

Step I1 – Issuer I generates and sends credential:

a) Generate credential as cred ← SignI(isk , 〈al 〉Ll=1).
b) Set sidSMT := (Un , sid , sid ′′) for a fresh sid ′′ and send (send, sidSMT, (〈al 〉Ll=1,

cred)) to FSMT.

Step I2 – User Un verifies and stores credential:

a) Upon receiving (sent, sidSMT, (〈al 〉Ll=1, cred)) from FSMT, verify that 1 ←
VfSigI(ipk , cred , 〈al 〉Ll=1) and abort if the verification fails.

Privacy-Preserving Auditing for Attribute-Based Credentials 121

b) Store (〈al 〉Ll=1, cred) and output (issue, sid , 〈al 〉Ll=1).

Presentation. On input (present, sid ,Vj ,D ,F , 〈al 〉l∈D∪F ,msg), the user Un
executes the following program with verifier Vj .

Step P1 – User Un creates a presentation token:

a) Retrieve the credential (〈a′
l 〉Ll=1, cred) where a′

l = al for all l ∈ D ∪F . Abort
if no such credential exists.

b) Create a signature of knowledge of a valid credential w.r.t. committed at-
tributes and bound to a nonce:

• Compute (com l , open l) ← Com(parc , al) ∀l ∈ D ∪ F .
• Choose a random nonce nonce ∈ {0, 1}k and set m := (msg ,Vj , nonce).
• Prepare a signature of knowledge for the statement that a valid credential

is known which contains the same attribute values as the commitments.
That is, set the relation to R :=

(1 = VfSigI(ipk , cred , 〈al 〉Ll=1) ∧
1 = VfCom(parc , al , com l , open l) ∀l ∈ D ∪ F),

and set the statement and witness to x := (ipk , 〈com l 〉l∈D∪F , parc ,D ,
F), w := (cred , 〈al 〉Ll=1, 〈open l〉∈D∪F).

• Generate the signature of knowledge as σ ← SKSign(par s,R, x ,w ,m).
c) Compose and send the presentation token:

• Set sidASMT := (Vj , sid , sid ′′) for a fresh sid ′′and send (send, sidASMT,
(〈al 〉l∈D∪F ,D ,F ,msg, nonce, 〈com l〉l∈D∪F , 〈open l 〉l∈D∪F , σ)) to FASMT.

Step P2 – Verifier Vj verifies the presentation token:

a) Upon receiving a message given by (sent, sidASMT, (〈al 〉l∈D∪F ,D ,F ,msg,
nonce, 〈com l 〉l∈D∪F , 〈open l 〉l∈D∪F , σ)) from FASMT, verify that nonce /∈
Lnonce and abort otherwise.

b) Verify signature of knowledge and commitments:
• Set the tuple (R, x , m) similarly as in Step P1(b) and check that 1 =
SKVerify(par s,R, x ,m, σ).

• Verify that 1 = VfCom(parc , al , com l , open l) for all l ∈ D ∪ F . Abort if
a verification fails.

c) Store token and nonce and end:
• Set the token-identifier to tid := tid + 1 and Lnonce := Lnonce ∪ nonce.
• Store (〈al 〉l∈D∪F ,D ,F ,msg, nonce, 〈com〉l∈D∪F , 〈open l 〉l∈D∪F , σ, tid).
• Output (tokrec, sid ,D ,F , 〈al 〉l∈D∪F ,msg , tid).

Audit Token Generation. On input (auditgen, sid ,D ,F ,T , 〈al 〉l∈T ,msg, tid),
the verifier Vj executes the following program.
a) Retrieve the tuple (〈a′

l 〉l∈D∪F ,D ,F ,msg, nonce, 〈com〉l∈D∪F , 〈open l〉l∈D∪F ,
σ, tid) such that a′

l = al for all l ∈ T . Abort if no such tuple exists.
b) Sign the redacted token information as

s ← SignV(vskj , (〈com l 〉l∈D∪F , 〈open l 〉l∈T , σ,T)).

c) Set the audit token to audtok := (〈com l 〉l∈D∪F , 〈open l 〉l∈T , σ, nonce, s) and
end with output (audrec, sid , audtok).

122 J. Camenisch et al.

Audit Token Verification. On input the message (auditvf, sid , audtok ,Vj ,D ,
F ,T , 〈al 〉l∈T ,msg), the auditor R executes the following program. Whenever a
verification step fails, the auditor ends with output (audvf, sid , invalid).

a) Parse token as audtok = (〈com l〉l∈D∪F , 〈open l 〉l∈T , σ, nonce, s).
b) Verify that 1 = VfSigV(vpkj , s , (〈com l〉l∈D∪F , 〈open l〉l∈T , σ,T)).
c) Set (R, x , m) as in Step P1(b) and verify that 1 = SKVerify(pars,R, x ,m, σ).
d) Verify that 1 = VfCom(parc , al , com l , open l) for all l ∈ T .
e) If all checks succeeded, output (audvf, sid , valid).

5.2 Security Analysis

Our protocol is secure in the UC model based on the security properties of the
underlying building blocks.

Theorem 1. The above construction securely implements FAUD in the FREG,
FSMT, FD

CRS, and FASMT-hybrid model if the underlying trapdoor commitment
scheme is hiding and binding, the underlying signature schemes are existen-
tially unforgeable, and the signature of knowledge scheme is simulatable and
extractable.

A full proof of the above theorem is given in the full version of this paper [30].
Below, we summarize the sequence of games that leads to an indistinguishable
simulation of our protocol.

Game 0: This is the original game where the simulator lets all honest parties
run the real protocol based on the inputs from the environment and the network
communication controlled by the adversary. The simulator also executes the code
of the ideal functionalities FREG, FSMT, FD

CRS, and FASMT.

Game 1: When an honest verifier receives a presentation token from an honest
user, the verifier skips the check that the nonce is fresh. This game deviates
from the previous one whenever an honestly generated nonce collides with any
previously seen nonce, which for a total of N received presentations happens
with probability at most N(N + 1)/2k .

Game 2: This game maintains tables Tbl1 with the credentials that were issued
to corrupt users, Tbl2a with the presentation tokens sent by honest users to a
corrupt verifier, Tbl2b with the presentation tokens received by honest verifiers
from corrupt users, and Tbl3 with the audit tokens created by honest verifiers.
When an honest user computes a presentation token for an honest verifier Vj , the
simulator adds an entry of the form [⊥, . . . ,⊥, tid(Vj)] to Tbl2b. These changes
do not affect the environment’s view at all.

Game 3: This game replaces the common parameters for the commitment and
the signature of knowledge schemes with simulated parameters, so that the sim-
ulator knows the corresponding trapdoors. The change is indistinguishable by
the simulatability of the signature of knowledge scheme and by the trapdoor
property of the commitment scheme.

Game 4: Whenever an honest issuer sends a credential to an honest user, the
simulated user submits a string of zeroes of the correct length to FSMT instead

Privacy-Preserving Auditing for Attribute-Based Credentials 123

of a real credential. Likewise, an honest user submits a string of zeroes to FASMT

when it performs a presentation to an honest verifier. Since FSMT and FASMT

only leak the length of the transmitted message, these changes do not affect the
environment’s view.

Game 5: When an honest user sends a presentation token to a corrupt verifier,
the simulator uses SKSim to generate the signature of knowledge σ. Similarly,
when an honest verifier is asked to compute an audit token from a presentation
token that originates from an honest user and where Tbl2b stores [⊥, . . . ,⊥, tid],
this game builds the audit token based on a simulated presentation token. That
is, it simulates the signature of knowledge, computes the rest according to the
protocol, and then updates the entry in Tbl2b to contain σ as well as all com-
mitments and openings. The indistinguishability follows from the simulatability
of the signature of knowledge scheme.

Game 6: When an honest verifier computes an audit token from a presenta-
tion token that originates from an honest user but where a complete entry in
Tbl2b exists (i.e., another audit token based on the same presentation token was
already produced), it uses the trapdoor of the commitment scheme to compute
the opening, rather than using the open value stored in Tbl2b. This game hop is
indistinguishable by the trapdoor property of the commitment scheme.

Game 7: If an honest verifier is instructed to compute an audit token for a pre-
sentation token from an honest user and for which Tbl2b stores [⊥, . . . ,⊥, tid],
this game replaces all commitments for values that are not disclosed with com-
mitments to random values. Note that, by the previous game, commitments
which are opened only in a subsequent audit token are opened to the required
value using the trapdoor. This game is indistinguishable from the previous one
by the hiding property of the commitment scheme.

Note that at this point, all presentations and audit tokens are simulated based
only on information that is given to the adversary by FAUD.

Game 8: When a corrupt user sends a valid presentation token to an honest
verifier for attribute values that were never issued to a corrupt user as recorded
in Tbl1, the simulator aborts. This game hop is indistinguishable if the issuer’s
signature scheme is unforgeable, the signature of knowledge is extractable, and
the commitment scheme is binding.

Game 9: When any honest party is instructed to verify a valid audit token
for an honest verifier Vj that the verifier never created, then abort. By the
unforgeability of the verifier’s signature scheme, this only happens with negligible
probability.

Game 10: When any honest party is instructed to verify a valid audit token
for a corrupt verifier Vj that cannot have been derived from credentials issued
to honest users (as recorded in Tbl1), nor from presentations by honest users to
Vj (as recorded in Tbl2a), then abort. This happens with negligible probability
by the extractability of the signature of knowledge, the binding property of the
commitment scheme, and the unforgeability of the issuer’s signature scheme.

124 J. Camenisch et al.

6 Instantiation of Privacy-Preserving Audits

We recall the Damg̊ard-Fujisaki commitment scheme, which securely instan-
tiates the algorithms (CSetup,Com,VfCom,CSimSetup,ComOpen) described in
Section 4.1 under the strong RSA assumption. Let ln be the bit-length of the
RSA modulus n and lr be the bit-length of a further security parameter, both
are functions of k . Typical values are ln = 2048 and lr = 80.

CSetup(1k). Compute a safe RSA modulus ñ of length ln, i.e., such that ñ = pq,
p = 2p′ + 1, q = 2q′ + 1, where p, q, p′, and q′ are primes. Pick a random
generator h ∈ QRñ and random α ← {0, 1}ln+lr and compute g ← hα.
Output the commitment parameters parc = (g, h, ñ).

Com(parc , x). Pick random open ← {0, 1}ln+lr , set com ← gxhopen (mod ñ),
and output the commitment com and the auxiliary information open .

VfCom(parc , com, x , open). On inputs x and open , compute com ′ ← gxhopen

mod ñ and output 1 if com = com ′ and 0 otherwise.
CSimSetup(1k). Run CSetup and output parc and α as trapdoor.
ComOpen(com , x1, open1, x2, tdc). Compute open2 = open1 + α(x1 − x2).

We employ the Camenisch-Lysyanskaya signature scheme [31] to implement
the issuer signature scheme (KeyGenI , SignI ,VfSigI). This signature scheme is
existentially unforgeable against adaptive chosen message attacks [28] under the
strong RSA assumption.

Let �m, �e, �n, and �r be system parameters determined by a function of k ,
where �r is a security parameter and the meaning of the others will become clear
soon. We denote the set of integers {−(2�m − 1),, (2�m − 1)} by ±{0, 1}�m.
Elements of this set can thus be encoded as binary strings of length �m plus an
additional bit carrying the sign, i.e., �m + 1 bits in total.

KeyGenI(1k). On input 1k , choose an �n-bit safe RSA modulus n = pq. Choose,
uniformly at random, R1, . . . , RL, S, Z ∈ QRn. Output the public key (n,
R1, . . . , RL, S, Z) and the secret key sk ← p.

SignI(sk , 〈m1, . . . ,mL〉). The message space is the set {(m1, . . . ,mL) : mi ∈
±{0, 1}�m}. On input m1, . . . ,mL, choose a random prime number e of length
�e > �m + 2, and a random number v of length �v = �n + �m + �r. Compute

A← (Z/(Rm1
1 . . . RmL

L Sv))
1/e

mod n. Output the signature (e, A, v).
VfSigI(pk , s , 〈m1, . . . ,mL〉). To verify that the tuple (e, A, v) is a signature on

message 〈m1, . . . ,mL〉, check that the statements Z ≡ AeRm1
1 . . . RmL

L Sv

(mod n), mi ∈ ±{0, 1}�m, and 2�e > e > 2�e−1 hold.

For the realization of signatures of knowledge we use generalized Schnorr proof
protocols [33, 29, 34]. We describe how to instantiate the signature of knowledge
scheme for the relation we require in our protocol, i.e., for

R := {1 = VfSigI(ipk , cred , 〈al 〉Ll=1) ∧
1 = VfCom(parc , al , com l , open l) ∀l ∈ D ∪ F}.

with x := (ipk , 〈com l 〉l∈D∪F , parc ,D ,F) and w := (cred , 〈al 〉Ll=1, 〈open l〉∈D∪F))

Privacy-Preserving Auditing for Attribute-Based Credentials 125

where cred is a CL-signature (e, A, v) as defined above. It is a secure signature of
knowledge in the random-oracle model under the strong RSA assumption (the
proof is straightforward and is given in the full version of this paper [30]).

SKSetup(1k). There are no separate system parameters for the signature of
knowledge scheme.

SKSign(par s,R, x ,w ,m). Randomize the credential (contained in w): choose
random v′ ∈R {0, 1}�v and compute A′ ← ASv′

and v∗ ← v − v′e. Compute

π ← SPK
{

(e, v∗, 〈al 〉Ll=1, 〉ol 〈l∈D∪F) :
∧

∀l∈D∪F

com l = galhol (mod ñ)

∧ Z = A′eRa1
1 . . . RaL

L Sv∗
(mod n) ∧ ai ∈ ±{0, 1}�m ∧ 2�e > e > 2�e−1

}
(m)

and output σ ← (A′, π). For the realization of the non-interactive proof of
knowledge π we refer to Camenisch et al. [29, 34].

SKVerify(pars,R, x ,m, (A′, π)). This algorithm verifies if π is correct.

The signature of knowledge simulator SKSimSign will make use of the random
oracle and the honest-verifier zero-knowledge property of the generalized Schnorr
proofs. One can get rid of the random oracle with alternative techniques [35].
SKExt works by rewinding the adversary to obtain, with non-negligible probabil-
ity, all attributes, the opening information of all commitments, and the credential
(CL-signature).

Efficiency. We obtain a rough estimate of the efficiency of our protocol by count-
ing only multi-exponentiations modulo n or ñ. Computation of a presentation
for our protocol takes each of the user and the verifier 2(#D + #F) + L + 2
multi-exponentiations modulo ñ. Auditing a token costs only a single standard
signature, while verifying an audit token involves one standard signature verifi-
cation and #D + #F + #T + L + 2 multi-exponentiations modulo ñ. In terms
of bandwidth, a presentation consumes, apart from the length of the revealed
attributes, 2�n + �m + �e + 4k + 3�r +L(�m + k + �r) + (#D + #F)(3�n +k+ 3�r)
bits. An audited token takes 2�n + �m + �e + 4k + 3�r +L(�m + k + �r) + (#D +
#F)(2�n + k + 2�r) + #T (�n + �r) bits plus the length of a standard signature.

7 Conclusion

Data minimization is a basic privacy principle in authentication mechanisms. In
this paper, we show that data minimization does not need to stop at the verifier:
using our auditable PABC scheme, the information revealed in a presentation to-
ken can be further reduced when forwarding it to an auditor, all while preserving
the verifiability of the audit token. In our construction, presentations and audit
tokens are anonymous in the sense that neither of them can be linked to the user
or credential from which they originated. Audited tokens can be linked to the pre-
sentation from which they were derived. This can be used as a feature when the
verifier must be unable to inflate the number of presentations that it performed,
but it may also be a privacy drawback. We leave open the construction of a scheme
satisfying a stronger privacy notion with fully unlinkable audit tokens.

126 J. Camenisch et al.

Acknowledgement. This work was supported by the European Community
through the Seventh Framework Programme (FP7), under grant agreements
n◦257782 for the project ABC4Trust and n◦318424 for the project FutureID.

References

1. Camenisch, J., Krontiris, I., Lehmann, A., Neven, G., Paquin, C., Rannenberg, K.,
Zwingelberg, H.: H2.1 – abc4trust architecture for developers. ABC4Trust Heart-
beat H2.1 (2011), https://abc4trust.eu

2. Chaum, D.: Security without identification: Transaction systems to make big
brother obsolete. Communications of the ACM 28(10), 1030–1044 (1985)

3. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003)

4. Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. MIT Press, Cambridge (2000)

5. Adams, C., Farrell, S.: Rfc 2510, x. 509 internet public key infrastructure certificate
management protocols. Internet Engineering Task Force (1999)

6. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their va-
lidity or all languages in NP have zero-knowledge proof systems. Journal of the
ACM 38(3), 691–729 (1991)

7. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006)

8. Canetti, R.: Universally composable security:A newparadigm for cryptographic pro-
tocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (October 2001)

9. Canetti, R.: Universally composable signature, certification, and authentication.
In: IEEE CSFW-17. IEEE Computer Society (2004)

10. Backes, M., Hofheinz, D.: How to break and repair a universally composable sig-
nature functionality. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225,
pp. 61–72. Springer, Heidelberg (2004)

11. Canetti, R.: Universally composable signatures, certification and authentication.
IACR Cryptology ePrint Archive, Report 2003/239 (2003)

12. Johnson, R., Molnar, D., Song, D.X., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002)

13. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In:
de Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005)

14. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of sanitizable
signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 444–461. Springer, Heidelberg (2010)

15. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,
Schröder, D., Volk, F.: Security of sanitizable signatures revisited. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg
(2009)

16. Brzuska, C., Busch, H., Dagdelen, O., Fischlin, M., Franz, M., Katzenbeisser, S.,
Manulis, M., Onete, C., Peter, A., Poettering, B., Schröder, D.: Redactable signa-
tures for tree-structured data: Definitions and constructions. In: Zhou, J., Yung,
M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87–104. Springer, Heidelberg (2010)

https://abc4trust.eu

Privacy-Preserving Auditing for Attribute-Based Credentials 127

17. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K.-c.
(ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)

18. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Com-
puting on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 1–20. Springer, Heidelberg (2012)

19. Bellare, M., Neven, G.: Transitive signatures based on factoring and RSA. In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 397–414. Springer, Heidelberg
(2002)

20. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009)

21. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

22. Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Paterson, K.G.
(ed.)EUROCRYPT2011.LNCS,vol. 6632,pp. 224–245. Springer,Heidelberg (2011)

23. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001)

24. Backes, M., Goldberg, I., Kate, A., Mohammadi, E.: Provably secure and practical
onion routing. In: IEEE CSF-25, pp. 369–385. IEEE Press

25. Camenisch, J., Lysyanskaya, A.: A formal treatment of onion routing. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 169–187. Springer, Heidelberg (2005)

26. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

27. Fischlin, M.: Trapdoor Commitment Schemes and Their Applications. PhD thesis,
Goethe Universität Frankfurt (2001)

28. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

29. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups
(extended abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 410–424. Springer, Heidelberg (1997)

30. Camenisch, J., Lehmann, A., Neven, G., Rial, A.: Privacy-preserving auditing for
attribute-based credentials. IACR Cryptology ePrint Archive, Report 2014/468

31. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003)

32. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003)

33. Schnorr, C.-P.: Efficient identification and signatures for smart cards (abstract)
(rump session). In: Quisquater, J.-J., Vandewalle, J. (eds.) Advances in Cryptology
- EUROCRYPT 1989. LNCS, vol. 434, pp. 688–689. Springer, Heidelberg (1990)

34. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr
proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442.
Springer, Heidelberg (2009)

35. Damg̊ard, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000)

36. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Im-
proved Zero-Knowledge Proofs for Lattice Encryption Schemes, Linking Classical
and Lattice Primitives, and Applications (2014) (unpublished manuscript)

What’s the Gist?
Privacy-Preserving Aggregation of User Profiles

Igor Bilogrevic1, Julien Freudiger2, Emiliano De Cristofaro3, and Ersin Uzun2

1 Google, Switzerland�

2 PARC, USA
3 University College London, UK∗

Abstract. Over the past few years, online service providers have started gather-
ing increasing amounts of personal information to build user profiles and mon-
etize them with advertisers and data brokers. Users have little control of what
information is processed and are often left with an all-or-nothing decision be-
tween receiving free services or refusing to be profiled. This paper explores an
alternative approach where users only disclose an aggregate model – the “gist”
– of their data. We aim to preserve data utility and simultaneously provide user
privacy. We show that this approach can be efficiently supported by letting users
contribute encrypted and differentially-private data to an aggregator. The aggre-
gator combines encrypted contributions and can only extract an aggregate model
of the underlying data. We evaluate our framework on a dataset of 100,000 U.S.
users obtained from the U.S. Census Bureau and show that (i) it provides accurate
aggregates with as little as 100 users, (ii) it can generate revenue for both users
and data brokers, and (iii) its overhead is appreciably low.

Keywords: Privacy, Secure Computation, Differential Privacy, User Profiling.

1 Introduction

The digital footprint of Internet users is growing at an unprecedented pace, driven by
the pervasiveness of online interactions and large number of posts, likes, check-ins,
and content shared everyday. This creates invaluable sources of information that online
service providers use to profile users and serve targeted advertisement. This economic
model, however, raises major privacy concerns [1,2,3] as advertisers might excessively
track users, data brokers might illegally market consumer profiles [4], and governments
might abuse their surveillance power [5,6] by obtaining datasets collected for other
purposes (i.e., monetization). Consequently, consumer advocacy groups are promoting
policies and legislations providing greater control to users and more transparent collec-
tion practices [7,3].

Along these lines, several efforts – such as OpenPDS, personal.com, Sellbox, and
Handshake – advocate a novel, user-centric paradigm: users store their personal in-
formation in “data vaults”, and directly manage with whom to share their data. This
approach has several advantages, namely, users maintain data ownership (and may

� Work done, in part, while authors were at PARC.

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 128–145, 2014.
c© Springer International Publishing Switzerland 2014

What’s the Gist? Privacy-Preserving Aggregation of User Profiles 129

monetize their data), while data brokers and advertisers benefit from more accurate
and detailed personal information [8,9]. Nevertheless, privacy still remains a challenge
as users need to trust data vaults operators and relinquish their profiles to advertis-
ers [10,11].

To address such concerns, the research community has proposed to maintain data
vaults on user devices and share data in a privacy-preserving way. Prior work can be
grouped into three main categories: (1) serving ads locally, without revealing any in-
formation to advertisers/data brokers [12,13,14]; (2) relying on a trusted third party to
anonymize user data [15,16]; and (3) relying on a trusted third party for private user
data aggregation [17,18,19]. Unfortunately, these approaches suffer from several lim-
itations. First, localized methods prevent data brokers and advertisers from obtaining
user statistics. Second, anonymization techniques provide advertisers with significantly
reduced data utility and are prone to re-identification attacks [20]. Finally, existing pri-
vate aggregation schemes rely on a trusted third party for differential privacy (e.g., a
proxy [19], a website [17], or mixes [18]; also, aggregation occurs after decryption,
thus making it possible to link contributions and users.

Motivated by the above challenges, this paper proposes a novel approach to privacy-
preserving aggregation of user data. Rather than contributing data as-is, users combine
their data into an aggregate model – the “gist.” Intuitively, users contribute encrypted
and differentially-private data to an aggregator that extracts a statistical model of the
underlying data (e.g., probability density function of the age of contributing users). Our
approach addresses issues with existing work in that it does not depend on a third-party
for differential privacy, incurs low computational overhead, and addresses linkability
issues between contributions and users. Moreover, we propose a metric to dynamically
value user statistics according to their inherent amount of “valuable” information (i.e.,
sensitivity): for instance, aggregators can assess whether age statistics in a group of
participants are more sensitive than income statistics. To the best of our knowledge,
our solution provides the first privacy-preserving aggregation scheme for personal data
monetization.

Our contributions can be summarized as follows:

1. We design a privacy-preserving framework for monetizing user data, where users
trade an aggregate of their data instead of actual values.

2. We define a measure of the sensitivity of different data aggregates. In particular,
we adopt the information-theoretic Jensen-Shannon divergence [21] to quantify the
distance between the actual distribution of a data attribute, and a distribution that
does not reveal actionable information [22], such as the uniform distribution.

3. We show how to rank aggregates based on their sensitivity, i.e., we design a dy-
namic valuation scheme based on how much information an aggregate leaks.

We evaluate our privacy-preserving framework on a real, anonymized dataset of
100,000 US users (obtained by the Census Bureau) with different types of attributes.
Our results show that our framework (i) provides accurate aggregates with as little as
100 participants, (ii) generates revenue for users and data aggregators depending on
the number of contributing users and sensitivity of attributes, and (iii) has low compu-
tational overhead on user devices (0.3 ms for each user, independently of the num-
ber of participants). In summary, our approach provides a novel perspective to the

130 I. Bilogrevic et al.

privacy-preserving monetization of personal data, and finds a successful balance be-
tween data accuracy for advertisers, privacy protection for users, and incentives for data
aggregators.

Paper Organization. The rest of the paper is organized as follows. Next section in-
troduces the system architecture and the problem statement. Then, Section 3 presents
our framework and Section 4 reports on our experimental evaluation. After reviewing
related work in Section 5, we conclude the paper in Section 6.

2 System Architecture

This section introduces the problem definition and presents participating entities.

2.1 Problem Statement

We consider a system comprised of three entities: A set of users U = {1, . . . , N}, a
data aggregator A, and a customer C. The system architecture is illustrated in Fig. 1.
Customers query the data aggregator for user information, while users contribute their
personal information to the data aggregator. The aggregator acts as a proxy between
users and customers by aggregating (and monetizing) user data. The main goal of this
paper is to propose practical techniques to aggregate and monetize user personal data
in a privacy-preserving way, i.e., without revealing personal information to other users
or third parties.

2.2 System Model

Users. We assume that users store a set of personal attributes such as age, gender, and
preferences locally. Each user i ∈ U maintains a profile vector pi = [xi,1, . . . , xi,K],
where xi,j ∈ D is the value of attribute j andD is a suitable domain for j. For example,
if j represents the age of user i, then xi,j ∈ {1, . . . ,Mj}, Mj = 120, and D ⊂ N.

In practice, users can generate their personal profiles manually, or leverage profiles
maintained by third parties. Several social networks allow subscribers to download their
online profile. A Facebook profile, for example, contains numerous Personally Identifi-
able Information (PII) items (such as age, gender, relationships, location), preferences
(movies, music, books, tv shows, brands), media (photos and videos) and social inter-
action data (list of friends, wall posts, liked items).

Following the results of recent studies on user privacy attitudes [23,10,8], we assume
that each user i can specify a privacy-sensitivity value 0 ≤ λi,j ≤ 1 for each attribute
j. A large λi,j indicates high privacy sensitivity (i.e., lower willingness to disclose). In
practice, λi,j can assume a limited number of discrete values, which could represent the
different levels of sensitivity according to Westin’s Privacy Indexes [24].

We assume that users want to monetize their profiles while preserving their privacy.
For instance, users may be willing to trade an aggregate of their online behavior, such as
the frequency at which they visit different categories of websites, rather than the exact
time and URLs.

Finally, we assume that user devices can perform cryptographic operations consisting
of multiplications, exponentiations, and discrete logarithms.

What’s the Gist? Privacy-Preserving Aggregation of User Profiles 131

Aggregator Customer
1. Query

2. Select users
3. Queries

Users
5. Noisy
encrypted
answers

6. Aggregate, decrypt,
sample, and monetize

7. Answer

UsersUsersUsers

4. Extract features

Fig. 1. System architecture and basic protocol. Users contribute encrypted profiles to the aggre-
gator. The aggregator combines encrypted profiles and obtains plaintext data models, which it
monetizes with customers.

Data Aggregator. A data aggregator A is an untrusted third-party that performs the
following actions: (1) it collects encrypted attributes from users, (2) it aggregates con-
tributed attributes in a privacy-preserving way, and (3) it monetizes users’ aggregates
according to the amount of “valuable” information that each attribute conveys.

We assume that users and A sign an agreement upon user registration that authorizes
A to access the aggregated results (but not users’ actual attributes), to monetize them
with customers, and to take a share of the revenue from the sale. It also binds A to
redistribute the rest of the revenue among contributing users.

Customer. We consider a customer C willing to obtain aggregate information about
users and to pay for it. C can have commercial contracts with multiple data brokers.
Similarly, a data aggregator can have contracts with multiple customers. C interacts
with a data aggregator A and does not communicate directly with users. C obtains
available attributes, and initiates an aggregation by querying the data aggregator for
specific attributes.

2.3 Applications

The proposed system model is well-suited to many real-world scenarios, including mar-
ket research and online tracking use cases. For instance, consider a car dealer C that
wants to assess user preferences for car brands, their demographics, and income distri-
butions. A data aggregatorA might collect aggregate information about a representative
set of users U and monetize it with the car dealer C. Companies such as Acxiom cur-
rently provide this service, but raise privacy concerns [25]. Our solution enables such
companies to collect aggregates of personal data instead of actual values and reward
users for their participation.

Another example is that of an online publisher (e.g., a news website) C that wishes
to know more about its online readership [17]. In this case, the aggregatorA is an online
advertiser that collects information about online users U and monetizes it with online
publishers.

Finally, our proposed model can also be appealing to data aggregators in health-
care [26]. Healthcare data is often fragmented in silos across different organizations
and/or individuals. An healthcare aggregator A can compile data from various sources
and allow third parties C to buy access to the data. At the same time, data contributors
(U) receive a fraction of the revenue. Our approach thwarts privacy concerns and helps
with the pricing of contributed data.

132 I. Bilogrevic et al.

2.4 Threat Model

In modeling security, we consider both passive and active adversaries.

Passive adversaries. Semi-honest (or honest-but-curious) passive adversaries monitor
user communications and try to infer the individual contributions made by other users.
For instance, users may wish to obtain attribute values of other users; similarly, data
aggregators and customers may try to learn the values of the attributes from aggregated
results. A passive adversary executes the protocol correctly and in the correct order,
without interfering with inputs or manipulating the final result.

Active adversaries. Active (or malicious) adversaries can deviate from the intended
execution of the protocol by inserting, modifying or erasing input or output data. For
instance, a subset of malicious users may collude with each other in order to obtain
information about other (honest) users or to bias the result of the aggregation. To achieve
their goal, malicious users may also collude with either the data aggregator or with the
customer. Moreover, a malicious data aggregator may collude with a customer in order
to obtain private information about the user attributes.

3 Monetizing User Profiles with Privacy

We outline and formalize the data monetization framework, which consists of a protocol
that is executed between users U, a data aggregatorA and a customerC. We first provide
an intuitive description and then detail each individual component.

3.1 High-Level Description

We propose a protocol where users trade personal attributes in a privacy-preserving
way, in exchange for (possibly) monetary retributions. Intuitively, there are two possible
modes of implementations: interactive and batch.

In interactive mode, a customer initiates a query about specific attributes and users.
The aggregator selects users matching the query, collects encrypted replies, computes
aggregates, and monetizes them according to a pricing function.

In batch mode, users send their encrypted profile, containing personal attributes, to
the data broker. The aggregator combines encrypted profiles, decrypts them, obtains
aggregates for each attribute, and ranks attributes based on the amount of “valuable” in-
formation they provide. A customer is then offered access to specific attributes. Without
loss of generality, hereafter we describe the interactive mode.

Initialization: The data aggregator A and users i ∈ U engage in a secure key estab-
lishment protocol to obtain individual random secret keys sj , where s0 is only known
to A and si (∀i ∈ U) is only known to user i, such that s0 + s1 + . . . + sN = 0 (this
condition is required for the data aggregation described hereafter). Any secure key es-
tablishment protocol or trusted dealer can be used in this phase to distribute the secret
keys, as long as the condition on their sum is respected. The initialization phase is the
same as in [27]. Each user i generates its profile vector pi ∈ DK containing personal
attributes j ∈ {1, . . . ,K}.

What’s the Gist? Privacy-Preserving Aggregation of User Profiles 133

1. Customer Query: A customer queries the aggregator. The query contains infor-
mation about the type of aggregates and users. In practice, it could be formatted as
an SQL query.

2. User Selection: The aggregator selects users based on the customer query. To do
so, we consider that users shared some basic information with the aggregator, such
as their demographics. Another option is for the aggregator to forward the customer
query to users, and let users decide whether to participate or not.

3. Aggregator Query: The aggregator forwards the customer’s query to the users,
together with a public feature extraction function f .

4. Feature Extraction: Each user i can optionally execute a public feature extraction
function f : DK → OL on pi, where L is the dimension of the output feature
space O, thus resulting in a feature vector fi. In our implementation, we consider a
simple function that extracts the value of an attribute and its square.

5. Encryption and Obfuscation: Each user adds noise to fi, obtaining f̂i, and en-
crypts it. Encryption and obfuscation provide strong guarantees both in terms of
data confidentiality and differential privacy [28]. Each user sends the encrypted
vector E(f̂i) to A.

6. Aggregation, Decryption, and Pricing: A combines all E(f̂i) and decrypts the
result, generating a 2-tuple (Vj ,Wj) ∈ R2 for each attribute j. These tuples are
used to approximate the probability density function of attributes across users. A
uses (Vj ,Wj) to create a discrete sampled probability distribution function dNj

for each attribute j. A then computes a distance measure dj = d(dNj , dUj) ∈
[0, 1] between dNj and dUj , where dUj is a discrete uniform distribution in the
interval [mj ,Mj]. A small/large distance corresponds to an attribute with low/high
information “value”, as described later in the text.
A determines the cost Cost(j) of each attribute j by taking into account both the
distances dj , the number of contributing users, and the price per attribute.

7. Answer: A sends a set of 2-tuples {(dρz
, Cost(ρz))}Kρz=1 to C, which selects ag-

gregates to purchase. After the purchase, A obtains a share of the total sale revenue
and equally distributes the remainder to users.

3.2 Detailed Description

We detail the functions and primitives for the aggregation and monetization of user
data. In this paper, we compute aggregates by estimating the probability density func-
tion (pdf) of user attributes. We use the Gaussian approximation to estimate pdfs for
two reasons. First, existing work shows that this will lead to precise aggregates with few
users. The CLT [29,30] states that the arithmetic mean of a sufficiently large number of
independent random variables, drawn from distributions of expected value μ and vari-
ance σ2, will be approximately normally distributedN (μ, σ2). Second, a Gaussian pdf
N is fully defined by two parameters and thus we do not need additional coordination
among users (after the initialization phase). For information leakage ranking, we use a
well-established information-theoretic distance function.

For conciseness, we focus on the description of privacy-preserving aggregation and
pricing (phases 4 to 6, i.e., feature extraction, encryption, aggregation and ranking).

134 I. Bilogrevic et al.

With respect to the initialization and query forwarding phases (1-3), our method is
general enough and can be adapted to any specific implementation.

Phase 4-5: Feature Extraction and Encryption. Each user i generates a profile vec-
tor pi = [xi,1, . . . , xi,K]. Each attribute j takes value xi,j ∈ {mj, . . . ,Mj}, where
mj ,Mj ∈ Zp are the minimum and maximum value. Note that as in [27], computations
are in cyclic group Zp of prime order p. The aggregator also chooses a generator g at
random, such that g ∈ Zp, and H is a Hash function. Remember that in practice, a
user can derive pi either from an existing online profile (e.g., Facebook) or by manu-
ally entering values xi,j . In our evaluation, we use values from the U.S. Census Bureau
[31,32].

We consider a simple feature extraction f that consists in providing xj and com-
puting x2

j . Obviously, other feature extraction method may contribute higher-order mo-
ments or simply combine attributes together to obtain richer xj ’s.

To guarantee (ε, δ)-Differential Privacy, each user i adds noise ri,j , oi,j to attribute
values sampled from a symmetric Geometric distribution according to Algorithm 1
in [27]. In particular, in the following we add noise to both xi,j and x2

i,j , as they will
be subsequently combined to obliviously compute the parameters of the model that
underlies the actual data:

x̂i,j = xi,j + ri,j mod p

and
x̂i,j

(2) = x2
i,j + oi,j mod p

where p is the prime order [27].
With x̂i,j and x̂i,j

(2), each user generates the following encrypted vectors (ci,bi):

ci =

⎛⎜⎜⎜⎝
ci,1
ci,2

...
ci,K

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
gx̂i,1H(t)si

gx̂i,2H(t)si

...
gx̂i,KH(t)si

⎞⎟⎟⎟⎠, bi =

⎛⎜⎜⎜⎝
bi,1
bi,2

...
bi,K

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
gx̂i,1

(2)

H(t)si

gx̂i,2
(2)

H(t)si

...

gx̂i,K
(2)

H(t)si

⎞⎟⎟⎟⎟⎠
Each user i then sends (ci,bi) to A. Note that the encryption scheme guarantees that

A is unable to decrypt the vectors (ci,bi). However, thanks to its own secret share s0,
A can decrypt aggregates as explained hereafter.

Phase 6: Privacy-Preserving Aggregation and Pricing. To compute the sample mean

μ̂j and variance σ̂2
j without having access to the individual values x̂i,j , x̂i,j

(2) of any
user i, A first computes intermediate 2-tuple (Vj ,Wj):

Vj = H(t)s0ΠN
i=1ci,j = H(t)

∑N
k=0 skg

∑N
i=1 x̂i,j = g

∑N
i=1 x̂i,j

Wj = H(t)s0ΠN
i=1bi,j = H(t)

∑
N
k=0 skg

∑
N
i=1 x̂i,j

(2)

= g
∑

N
i=1 x̂i,j

(2)

What’s the Gist? Privacy-Preserving Aggregation of User Profiles 135

To obtain (μ̂j , σ̂2
j), A takes the discrete logarithm base g of (Vj ,Wj):

μ̂j =
logg(Vj)

N
=

∑N
i=1 x̂i,j

N

σ̂2
j =

logg(Wj)

N
− μ̂j

2
=

∑N
i=1 x̂i,j

(2)

N
− μ̂j

2

Finally, using the derived (μ̂j , σ̂2
j), A computes the Normal pdf approximation Nj ∼

N (μ̂j , σ̂2
j) for each attribute j.

Ranking. In order to estimate the amount of “valuable” information (i.e., sensitivity)
that each attribute leaks, we propose to measure the distance (i.e., divergence) between
the Normal approximation Nj and the Uniform distribution U . This makes sense be-
cause divergence measures distance between distributions: By comparing Nj to the
Uniform, we measure how much information Nj leaks compared to the distribution U
that leaks the least amount of information [33]. This approach applies to a variety of
computing scenarios. For example, a related concept was studied in [22,34] for measur-
ing the “interestingness” of textual data by comparing it to an expected model, usually
with the Kullback-Liebler (KL) divergence.

To the best of our knowledge, we are the first to explore this approach in the context
of information privacy. Instead of the KL divergence, we rely on the Jensen-Shannon
(JS) divergence for two reasons: (1) JS is a symmetric and (2) bounded equivalent of
the KL divergence. It is defined as:

JS(u, q) =
1

2
KL(u,m) +

1

2
KL(q,m) = H(

1

2
u +

1

2
q)− 1

2
H(u)− 1

2
H(q)

where m = u/2 + q/2 and H is the Shannon entropy. As JS is in [0, 1] (when using
the logarithm base 2), it quantifies the relative distance between Nj and Uj , and also
provides absolute comparisons with distributions different from the uniform.

As JS operates on discrete values, A must first discretize distributions Nj and Uj .
Given the knowledge of intervals {mj , . . . ,Mj} for each attribute j, we can use Rie-
mann’s centered sum to approximate a definite integral, where the number of approxi-
mation bins is related to the accuracy of the approximation. We choose the number of
bins to be Mj −mj , and thus guarantee a bin width of 1. We approximate Nj by the
discrete random variable dNj with the following probability mass function:

Pr(dNj) =

⎛⎜⎜⎜⎝
Pr(xj = mj)

Pr(xj = mj + 1)
...

Pr(xj = Mj)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
pdfj(

1
2 (mj + mj − 1))

pdfj(
1
2 (mj + 1 + mj))

...
pdfj(

1
2 (Mj + Mj − 1))

⎞⎟⎟⎟⎠
where pdfj is the probability density function Nj and xj ∈ {mj, . . . ,Mj}. We
then normalize Pr(dNj) such that

∑
k Pr(xj = k) = 1, for each j. For the uni-

form distribution Uj , the discretization to dUj is straightforward, i.e., Pr(dUj) =
(1/(Mj −mj), . . . , 1/(Mj −mj))

T , where dim(dUj) = Mj −mj .

136 I. Bilogrevic et al.

A can now compute distances dj = JS(dNj , dUj) ∈ [0, 1] and rank attributes in
increasing order of information leakage such that dρ1 ≤ dρ2 ≤ . . . ≤ dρK

, where
ρ1 = arg minj dj and ρz (for 2 ≤ z ≤ K) are defined as ρz = arg minj �={ρk}z−1

k=1
(dj)

At this point, A computed the 3-tuple (dρj
, μ̂j , σ̂2

j) for each attribute j. Each user
i can now decide whether it is comfortable sharing attribute j given distance dj and
privacy sensitivity λi,j . To do so, each user i sends λi,j to A for comparison. A then
checks which users are willing to share each attribute j and updates the ratio γj =
Sj/N , where Sj is the number of users that are comfortable sharing, i.e., Sj = |{i ∈
U s.t. dj ≤ 1−λi,j}|. In practice, A could then use the majority rule to decide whether
or not to monetize attribute j.

Pricing. After this ranking phase, the data broker A concludes the process with the
pricing and revenue phases. Prior work shows that users assign unique monetary value
to different types of attributes depending on several factors, such as offline/online activ-
ities [10], type of third-parties involved [10], privacy sensitivity [23], amount of details
and fairness [8].

We measure the value of aggregates depending on their sensitivity, the number of
contributing users, and the cost of each attribute. Without loss of generality, we estimate
the value of an aggregate j using the following linear model:

Cost(j) = Price(j) · dj ·N
where Price(j) is the monetary value that users assign to attribute j. Without loss of
generality, we assume in our pricing scheme a relative value of 1 for each attribute.
Existing work discussed the value of user attributes, and estimated a large range from $
0.0005 to $33 [10,35] highlighting the difficulty in determining a fixed price. In practice,
this is likely to change depending on the monetization scenario.

A then sends the set of 2-tuples {(dρz
, Cost(ρz))}Kρz=1 to C. Based on the tuples, C

selects the set P of attributes it wishes to purchase. After the purchase is complete, A
re-distributes revenue R among users and itself, according to the agreement stipulated
with the users upon their first registration with A.

We consider a standard revenue sharing monetization scheme, where the revenue is
split among users and the data aggregator (i.e., aggregator takes commissions):

R(A) =
∑
j∈P

ωj · Cost(j), R(i) =
1

N

∑
j∈P

(1− ωj) · Cost(j), ∀i ∈ U

where ωj is the commission percentage of A. This system is popular in existing aggre-
gating schemes [26], credit-card payments, and online stores (e.g., iOS App Store). We
assume a fixed ωj for each attribute j.

4 Evaluation

To test the relevance and the practicality of our privacy-preserving monetization solu-
tion, we measure the quality of aggregates, the overhead, and generated revenue. In par-
ticular, we study how the number of protocol participants and their privacy sensitivities
affect the accuracy of the Gaussian approximations, the computational performance,
the amount of information leaked for each attribute, and revenue.

What’s the Gist? Privacy-Preserving Aggregation of User Profiles 137

Table 1. Summary of the U.S. Census dataset used for the evaluation. We considered three types
of attributes (level of income, education and age), which reflect different types of sample distri-
butions (as shown in Fig. 2).

 Number of randomly selected users in the dataset
 10 100 1k 10k 50k 100k

In
co

m
e μ 6.50 9.72 10.30 10.87 10.83 10.89

σ 19.17 18.70 20.04 17.05 16.72 16.52
(mj, Mj) (1, 10) (1, 15) (1, 15) (1, 16) (1, 16) (1, 16)

E
du

c.
 μ 5.70 7.23 10.29 10.38 10.21 10.18

σ 15.57 7.07 7.96 7.68 7.73 7.63
(mj, Mj) (1, 9) (1, 12) (1, 15) (1, 16) (1, 16) (1, 16)

A
ge

 μ 38.10 35.40 41.91 42.44 41.49 39.79
σ 252.54 502.79 563.32 546.40 553.68 539.60
(mj, Mj) (11, 67) (1, 85) (0, 85) (0, 85) (0, 85) (0, 85)

4.1 Setup

We consider secret shares in Zp where p is a 1024 bits modulus, the number of users
N ∈ [10, 100000], and each user i with profile pi. We implemented our privacy-
preserving protocol in Java, and rely on public libraries for secret key initialization,
for multi-threading decryption, and on the MALLET [36] package for computation of
the JS divergence.

We run our experiments on a machine equipped with Mac OSX 10.8.3, dual-core
Core i5 processor, 2.53 GHz, and 8 GB RAM. Measurements up to 100 users are av-
eraged over 300 iterations, and the rest (from 1k to 100k users) are averaged over 3
iterations due to large simulation times.

We populate user profiles with U.S. Census Bureau information [31,32]: We obtained
anonymized offline and online attributes about 100,000 people. We pre-processed the
acquired data by removing incomplete profiles (i.e., some respondents prefer not to
reveal specific attributes).

Without loss of generality, we focus on three types of offline attributes: Yearly in-
come level, education level and age. We selected these attributes because (1) a recent
study [10] shows that these attributes have high monetary value (and thus privacy sen-
sitivity), and (2) they have significantly different distributions across users. This allows
us to compare retribution models, and measure the accuracy of the Gaussian approxi-
mation for a variety of distributions.

Table 1 shows the mean and standard deviation for the three considered attributes
with a varying number of users. Note that the provided values for income and education
use a specific scale defined by the Census Bureau. For example, a value of 1 and 16 for
education correspond to “Less than 1st grade” and “Doctorate”, respectively.

We could consider other types of attributes as well, such as internet, music and video
preferences from alternative sources, such as Yahoo Webscope [37]. Although an ex-
haustive comparison of the monetization of all different attributes is an exciting per-
spective, it is out of the scope of this paper and we leave this for future work.

138 I. Bilogrevic et al.

0.00

0.05

0.10

0.15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PD
F

Income Level

Gaussian Actual

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PD
F

Income Level

Gaussian Actual

0.00

0.05

0.10

0.15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PD
F

Income Level

Gaussian Actual

(a) Attribute income, sampled from 100 users (left), 1k users (middle) and 100k users (right).

0.00

0.10

0.20

0.30

0.40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PD
F

Education Level

Gaussian Actual

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 3 4 5 6 7 8 9 10 11 12

PD
F

Education Level

Gaussian Actual

0.00

0.10

0.20

0.30

0.40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PD
F

Education Level

Gaussian Actual

(b) Attribute education, sampled from 100 users (left), 1k users (middle) and 100k users (right).

0

0.005

0.01

0.015

0.02

0.025

0.03

1 7 13

19

25

31

37

43

49

55

61

67

73

79

85

PD
F

Age

Gaussian Actual

0

0.01

0.02

0.03

0.04

0.05

1 7 13

19

25

31

37

43

49

55

61

67

73

79

PD
F

Age

Gaussian Actual

0

0.005

0.01

0.015

0.02

0.025

1 7 13

19

25

31

37

43

49

55

61

67

73

79

85

PD
F

Age

Gaussian Actual

(c) Attribute age, sampled from 100 users (left), 1k users (middle) and 100k users (right).

Fig. 2. Gaussian approximation vs. actual distribution for each considered attribute

4.2 Results

We evaluate four aspects of our privacy-preserving scheme: model accuracy, informa-
tion leakage, overhead and pricing.

Model Accuracy. In our proposal, we approximate empirical probability density func-
tions with Gaussian distributions. The accuracy of approximations is important to assess
the relevance of derived data models. In Fig. 2, we compare the actual distribution of
each attribute with their respective Gaussian approximation and vary the number of
users from 100 to 100,000. Note that in order to compare probabilities over the domain
[mj ,Mj], we scaled both the actual distribution and the Gaussian approximation such
that their respective sums over that domain are equal to one. We observe that, visually,
the Gaussian approximation captures general trends in the actual data.

We measure the accuracy of the Gaussian approximation in more details with the
JS divergence (Fig. 3a). We observe that with 100 users, the approximation reaches a
plateau for education, whereas income and age require 1k users to converge. For the
two latter attributes, the approximation accuracy triples when increasing from 100 to
1k users. Moreover, as the number of user increases, the fit of the Gaussian model for
income and age is two times better (JS of 0.05 bits) than for education (JS of 0.1 bits).

What’s the Gist? Privacy-Preserving Aggregation of User Profiles 139

0.00

0.20

0.40

0.60

0.80

10 100 1k 10k 50k 100k

JS
 (d
N
j, A

ct
ua

l j)

Number of users

Income Education Age

(a) Divergence between the Gaussian approx-
imation and the actual distribution of each at-
tribute j, computed as the JS(dNj ,Actualj).
Lower values indicate better accuracy.

0.00

0.05

0.10

0.15

0.20

10 100 1k 10k 50k 100k

JS
 (d
N
j,

dU
j)

Number of users

Income Education Age

(b) Information leakage for each type of at-
tribute j (income, education and age), de-
fined as JS(dNj , dUj). Lower values indicate
smaller information leaks.

1.00E-07
1.00E-05
1.00E-03
1.00E-01
1.00E+01
1.00E+03
1.00E+05
1.00E+07

10 100 1k 10k 50k 100k

T
im

e
[m

s]

Number of users

Profile decr. Distr. Sampl.
Inf. Leakage Revenue

(c) Performance measurements for each of
the four phases of the protocol performed by
the data broker.

0.0

0.1

1.0

10.0

100.0

1,000.0

10 100 1k 10k 50k 100k

R
el

at
iv

e
re

ve
nu

e

Number of users

Aggr. - Rand Aggr. - Indiv. Aggr. - All
User - Rand. User - All Series6

(d) Relative revenue (per attribute) for each user
i ∈ U and the data aggregator A, assuming that
an attribute is valued at 1.

Fig. 3. Results of the evaluation of the proposed framework on the U.S. Census dataset

The main reason is that education has more data points with large differences between
actual and approximated distributions than income and age (as shown in Fig. 2).

These results indicate that, for non-uniform distributions, the Gaussian approxima-
tion is accurate with a relatively small number of users (about 100). It is interesting to
study this result in light of the Central Limit Theorem (CLT). Remember that the CLT
states that the arithmetic mean of a sufficiently large number of variables will tend to be
normally distributed. In other words, a Gaussian approximation quickly converges to the
original distribution and this confirms the validity of our experiments. This also means
that C can obtain accurate models even if it requests aggregates about small groups of
users. In other words, collecting data about more than 1k users does not significantly
improve the accuracy of approximations, even for more extreme distributions.

Information Leakage. We compare the divergence between Gaussian approximations
and uniform distributions to measure the information leakage of different attributes. Fig.
3b shows the sensitivity for each attribute with a varying number of users. We observe
that the amount of information leakage stabilizes for all attributes after a given number

140 I. Bilogrevic et al.

of participants. In particular, education and age reach a maximum information leakage
with 1k users, whereas 10k users are required for income to achieve the same leakage.

Overall, we observe that education is by far the attribute with the largest distance to
the uniform distribution, and therefore arguably the most valuable one. In comparison,
Income and age are 50% and 75% less “revealing”. Information leakage for age de-
creases from 100 to 1k users, as age distribution in our dataset tends towards a uniform
distribution. In contrast, education and income are significantly different from a uni-
form distribution. An important observation is that the amount of valuable information
does not increase monotonically with the number of users: For age, it decreases by 30%
when the number of users increases from 100 to 1k, and for education it decreases by
3% when transitioning from 10k to 50k users.

These findings show that larger user samples do not necessarily provide better dis-
criminating features. This also shows that users should not decide whether to partici-
pate in our protocol solely based on a fixed threshold over total participants, as this may
prove to leak slightly more private information.

Overhead. We measure the computation overhead for both users and the data broker.
For each user, we find that one execution of the protocol requires 0.284 ms (excluding
communication delays), out of which 0.01 ms are spent for the profile generation, 0.024
ms for the feature extraction, 0.026 ms for the differential-privacy noise addition, and
0.224 ms for encryption of the noisy attribute. In general, user profiles are not subject
to change within short time intervals, thus suggesting that user-side operations could be
executed on resource-constrained devices such as mobile phones.

From Fig. 3c, observe that the data broker requires about one second to complete its
phases when there are only 10 users, 1.5 min with 100 users, 15 min with 1k users, and
27.7 h for 100k users. Note, however, that running times can be remarkably reduced
using algorithmic optimization and parallelization, which is part of our future work. In
our results, decryption is the most time-consuming operation for the data broker as it
incurs (O(N ·Mj)): this could be reduced to O(

√
N ·Mj) by using the Pollard’s Rho

method for computing the discrete logarithm [38]. Also, decryption can be speedup up
by splitting decryption operations across multiple machines (i.e., the underlying algo-
rithm is highly-parallelizable).

Pricing. Recall that the price of an attribute aggregate depends on the number of con-
tributing users, the amount of information leakage, and the cost of the attribute. We
consider that each attribute j has a unit cost of 1 and the data broker takes a com-
mission ωj . We consider three types of privacy sensitivities λ: (i) a uniform random
distribution of privacy sensitivities λi,j for each user i and for each attribute j, (ii) an
individual privacy sensitivity λi for each user (same across different attributes), and (iii)
an all-share scenario (λi = 0 and all users contribute). The commission percentage is
set to ωj = ω = 0.1.

Fig. 3d shows the average revenue generated from one attribute by the data broker
and by users. We observe that user revenue is small and does not increase with the
number of participants. In contrast, the data broker revenue increases linearly with the
number of participants. In terms of privacy sensitivities, we observe that with higher

What’s the Gist? Privacy-Preserving Aggregation of User Profiles 141

privacy sensitivities (λi > 0), fewer users contribute, thus generating lower revenue
overall and per user. For example, users start earning revenue with 10 participants in
the all-share scenario, but more users are required to start generating revenue if users
adopt higher privacy sensitivities.

We observe that users are incentivized to participate as they earn some revenue
(rather than not benefiting at all), but the generated revenue does not generate signif-
icant income, thus, it might encourage user participation from “biased” demographics
(e.g., similar to Amazon Mechanical Turk). In contrast, the data broker has incentives
to attract more users, as it revenue increases with the number of participants. However,
customers are incentivized to select fewer users because cost increases with the number
of users, and 100 users provide as good an aggregate as 1000 users. This is an intriguing
result, as it encourages customers to focus on small groups of users representative of a
certain population category.

4.3 Security

Passive adversaries. To ensure privacy of the personal user attributes, our framework
relies on the security of the underlying encryption and differential-privacy methods
presented in [27]. Hence, no passive adversary (a user participating in the monetization
protocol, the data aggregator or an external party not involved in the protocol) can
learn any of the user attributes, assuming that the key setup phase has been performed
correctly and that a suitable algebraic group (satisfying the DDH assumption) with a
large enough prime order (1024 bits or more) has been chosen.

Active adversaries. As per [27], our framework is resistant to collusion attacks among
users and between a subset of users and the data broker, as each user i encrypts its
attribute values with a unique and secret key si. However, pollution attacks, which
try to manipulate the aggregated result by encrypting out-of-scope values, can affect
the aggregate result of our protocol. Nevertheless, such attacks can be mitigated by
including, in addition to encryption, range checks based on efficient (non-interactive)
zero-knowledge proofs of knowledge [39,40,41]: each user could submit, in addition to
the encrypted values, a proof that such values are indeed in the plausible range specified
by the data aggregator. However, even within a specific range, a user can manipulate its
contributed value and thus affect the aggregate. Although nudging users to reveal their
true attribute value is an important challenge, it is outside of the scope of this paper.

5 Related Work

Our work builds upon two main domains, in order to provide the privacy and incentives
for the users and data aggregators: (1) privacy-preserving aggregation [42,27,43,44],
and (2) privacy-preserving monetization of user profiles [15,12,16,14]. Hereafter we
discuss these two sets of works.

5.1 Privacy-Preserving Aggregation

Erkin and Tsudik [42] design a method to perform privacy-preserving data aggregation
in the smart grid. Smart meters jointly establish secret keys without having to rely on a

142 I. Bilogrevic et al.

trusted third party, and mask individual readings using a modified version of the Paillier
encryption scheme [45]. The aggregator then computes the sum of all readings without
seeing individual values. Smart meters must communicate with each other, thus limiting
this proposal to online settings. Shi et al. [43] compute the sum of different inputs based
on data slicing and mixing with other users, but have the same limitation: all participants
must actively communicate with each other during the aggregation.

Another line of work [18,19] introduces privacy-preserving aggregation by combin-
ing homomorphic encryption and differential privacy, i.e., users encrypt their data with
the customer public key and send it to a trusted aggregator. The aggregator adds differ-
ential noise to encrypted values (using the homomorphic property), and forwards the
result to the customer. The customer decrypts contributions and computes desired ag-
gregates. These proposals, however, suffer from a number of shortcomings as: (i) they
rely on a trusted third party for differential privacy; (ii) they require at least one pub-
lic key operation per single bit of user input, and one kilobit of data per single bit of
user answer, or rely on XOR encryption; and (iii) contributions are linkable to users as
aggregation occurs after decryption.

The work by Shi et al. [27] supports computing the sum of different inputs in
a privacy-preserving fashion, without requiring communication among users, nor re-
peated interactions with a third party. It also provides differential privacy guarantees
in presence of malicious users, and establishes an upper bound on the error induced
by the additive noise. This work formally shows that a Geometric distribution provides
(ε, δ)-differential privacy (DD) in Zp. We extend the construction in [27] to support the
privacy-preserving computation of probability distributions (in addition to sums). Intu-
itively, we use the proposed technique to compute the parameters of Gaussian approx-
imations in a privacy-preserving way. As we maintain the same security assumptions,
our framework preserves provable privacy properties. As part of future work, we intend
to explore the properties of regression modeling and privacy-preserving computation of
regression parameters [46,44], in addition to distributions.

5.2 Privacy-Preserving Monetization

Previous work investigated two main approaches to privacy-preserving Online Be-
havioral Advertisement (OBA). The first approach minimizes the data shared with
third parties, by introducing local user profile generation, categorization, and ad selec-
tion [17,12,13,14]. The second approach relies on anonymizing proxies to shield users’
behavioral data from third parties, until users agree to sell their data [15,16].

Toubiana et al. [14] propose to let users maintain browsing profiles on their device
and match ads with user profiles, based on a cosine-similarity measure between visited
websites meta-data (title, URL, tags) and ad categories. Users receive a large number
of ads, select appropriate ones, and share selected ads with ad providers (not revealing
visited websites nor user details). Guha et al. [12] propose to do the ad matching with
an anonymization proxy instead. Although the cost of such system is estimated at
$0.01/user per year, such solution demands significant changes from web browser ven-
dors and online advertisers. Akkus et al. propose to let users rely on the website publisher
to anonymize their browsing patterns vis-à-vis the ad-provider.Their protocol introduces

What’s the Gist? Privacy-Preserving Aggregation of User Profiles 143

significant overhead: The website publisher must repeatedly interact with each visitor
and forward encrypted messages to the ad-provider.

Instead of local profiles, Riederer et al. [16] propose a fully centralized approach,
where an anonymization proxy mediates interactions between users and website pub-
lishers. The proxy releases the mapping between IP addresses and long-term user iden-
tifiers only after users agree to sell their data to a customer, thus allowing the customer
to link different visits by the same users. However, users have to entrust a third party
with their personal information.

In contrast, our framework does not rely on any additional user-side software, does
not impose computationally expensive cryptographic computation on user devices, and
prevents the customer from learning individual user data.

6 Conclusion

As the amount and sensitivity of personal data shared with service providers increases,
so do privacy concerns. Users usually have little control over what information is pro-
cessed by service providers and how it is monetized with advertisers. Our work offers
a privacy-preserving alternative where users only disclose an aggregate model of their
profiles, by means of encrypted and differentially private contributions. Our solution
tackles trust and incentive challenges: rather than selling data as-is, users trade a model
of their data. Users also monetize their profiles by dynamically assessing the value of
data aggregates. To this end, we use an information-theoretic measure to compute the
amount of valuable information provided to advertisers.

We evaluate our framework on a real and anonymized dataset with more than
100,000 users (obtained from the U.S. Census Bureau) and show, with an experimental
evaluation, that our solution (i) provides accurate aggregates with as little as 100 users,
(ii) introduces low overhead for both users (less than 1ms on commodity hardware) and
data aggregators, and (iii) generates revenue for both users and aggregators.

As part of future work, we plan to enhance our scheme with new features, includ-
ing fault-tolerant aggregation [47] to allow users to join/leave dynamically and range
checks for the encrypted user attributes, based on efficient zero-knowledge proofs,
against active pollution attacks. Users could also contribute higher order moments (e.g.,
x3 or x4) for the aggregator to obtain more precise approximations using moment-
generating functions (an alternative to pdfs). Finally, we intend to investigate schemes
for targeting ads to users contributing data to the aggregation, by allowing the aggrega-
tor to select specific subgroups of users according to the customer’s target population.

References

1. ComRes: Big Brother Watch Online Privacy Survey (2013), http://www.comres.co.
uk/polls/Big_Brother_Watch_Online_Privacy_Survey.pdf

2. Flood, G.: Online Privacy Worries Increasing Worldwide. InformationWeek (2013),
http://www.informationweek.co.uk/security/privacy/
online-privacy-worries-increasing-worldw/240153200

http://www.comres.co.uk/polls/Big_Brother_Watch_Online_Privacy_Survey.pdf
http://www.comres.co.uk/polls/Big_Brother_Watch_Online_Privacy_Survey.pdf
http://www.informationweek.co.uk/security/privacy/online-privacy-worries-increasing-worldw/240153200
http://www.informationweek.co.uk/security/privacy/online-privacy-worries-increasing-worldw/240153200

144 I. Bilogrevic et al.

3. Tanzina Vega, E.W.: U.s. agency seeks tougher consumer privacy rules. The New York Times
(2012), http://nyti.ms/GQQCrY

4. Wyatt, E.: U.S. Penalizes Online Company in Sale of Personal Data. The New York Times
(2012), http://nyti.ms/OsDrgI

5. Gellman, B., Poitras, L.: US Intelligence Mines Data from Internet Firms in Secret Program.
The Washington Post (2013), http://wapo.st/J2gkLY

6. Greenwald, G., MacAskill, E.: NSA Prism program taps in to user data of Apple, Google
and others. The Guardian (2013), http://www.theguardian.com/world/2013/
jun/06/us-tech-giants-nsa-data

7. Natasha: Congress to examine data sellers. The New York Times (2012), http://nyti.
ms/Pewbq1

8. Malheiros, M., Preibusch, S., Sasse, M.A.: “Fairly truthful”: The impact of Perceived Effort,
Fairness, Relevance, and Sensitivity on Personal Data Disclosure. In: Huth, M., Asokan, N.,
Čapkun, S., Flechais, I., Coles-Kemp, L. (eds.) TRUST 2013. LNCS, vol. 7904, pp. 250–266.
Springer, Heidelberg (2013)

9. Tunner, A.: Bizarro World of Hilarious Mistakes Revealed In Long Secret Personal Data
Files Just Opened. Forbes, http://onforb.es/1rZ5PZQ (2013)

10. Carrascal, J.P., Riederer, C., Erramilli, V., Cherubini, M., de Oliveira, R.: Your Browsing
Behavior for a Big Mac: Economics of Personal Information Online. In: WWW (2013)

11. Singel, R.: Encrypted E-Mail Company Hushmail Spills to Feds (2007), http://www.
wired.com/threatlevel/2007/11/encrypted-e-mai/

12. Guha, S., Cheng, B., Francis, P.: Privad: practical privacy in online advertising. In: NSDI
(2011)

13. Mohan, P., Nath, S., Riva, O.: Prefetching Mobile Ads: Can Advertising Systems Afford It?
In: EuroSys (2013)

14. Toubiana, V., Narayanan, A., Boneh, D., Nissenbaum, H., Barocas, S.: Adnostic: Privacy
preserving targeted advertising. In: NDSS (2010)

15. Backes, M., Kate, A., Maffei, M., Pecina, K.: Obliviad: Provably secure and practical online
behavioral advertising. In: IEEE Security and Privacy (2012)

16. Riederer, C., Erramilli, V., Chaintreau, A., Krishnamurthy, B., Rodriguez, P.: For Sale: Your
Data: By: You. In: HotNets (2011)

17. Akkus, I.E., Chen, R., Hardt, M., Francis, P., Gehrke, J.: Non-tracking Web Analytics. In:
ACM CCS (2012)

18. Chen, R., Akkus, I.E., Francis, P.: SplitX: High-performance Private Analytics. In: ACM
SIGCOMM (2013)

19. Chen, R., Reznichenko, A., Francis, P., Gehrke, J.: Towards statistical queries over distributed
private user data. In: NSDI (2012)

20. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: IEEE
Security and Privacy (2008)

21. Lin, J.: Divergence measures based on the shannon entropy. IEEE TIT 37(1) (1991)
22. Feldman, R., Dagan, I.: Knowledge Discovery in Textual Databases. In: KDD (1995)
23. Aperjis, C., Huberman, B.A.: A market for unbiased private data: Paying individuals accord-

ing to their privacy attitudes. ArXiv Report 1205.0030 (2012)
24. Kumaraguru, P., Cranor, L.F.: Privacy Indexes: A Survey of Westins Studies. Institute for

Software Research International (2005)
25. Singer, N.: Mapping, and sharing, the consumer genome. The New York Times (2012),

http://nyti.ms/LcBw0g
26. DataCommons: Partner Organizations Helping to Advance Healthcare (2014), http://

mydatacommons.org
27. Shi, E., Chan, T.H.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-Preserving Aggregation of

Time-Series Data. In: NDSS (2011)

http://nyti.ms/GQQCrY
http://nyti.ms/OsDrgI
http://wapo.st/J2gkLY
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
http://nyti.ms/Pewbq1
http://nyti.ms/Pewbq1
http://onforb.es/1rZ5PZQ
http://www.wired.com/threatlevel/2007/11/encrypted-e-mai/
http://www.wired.com/threatlevel/2007/11/encrypted-e-mai/
http://nyti.ms/LcBw0g
http://mydatacommons.org
http://mydatacommons.org

What’s the Gist? Privacy-Preserving Aggregation of User Profiles 145

28. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006, Part II. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

29. Laplace, P.S.: Mémoire sur les approximations des formules qui sont fonctions de très-grands
nombres, et sur leur application aux probabilités. Baudouin (1810)

30. Rice, J.A.: Mathematical statistics and data analysis. Wadsworth & Brooks/Cole (1988)
31. U.S. Census Bureau: DataFerrett Analysis and Extraction Tool,

http://dataferrett.census.gov
32. U.S. Government: The home of the U.S. Government’s open data, www.data.gov
33. Hamilton, H.J., Hilderman, R.J., Cercone, N.: Attribute-oriented induction using domain

generalization graphs. In: IEEE ICTAI (1996)
34. Hilderman, R.J., Hamilton, H.J., Barber, B.: Ranking the interestingness of summaries from

data mining systems. In: FLAIRS Conference (1999)
35. Olejnik, L., Minh-Dung, T., Castelluccia, C.: Selling Off Privacy at Auction. In: NDSS

(2014)
36. McCallum, A.K.: Mallet: A machine learning for language toolkit (2002), http://

mallet.cs.umass.edu
37. Yahoo Labs: Webscope, http://webscope.sandbox.yahoo.com
38. Pollard, J.M.: Monte carlo methods for index computation. Mathematics of Computation

32(143) (1978)
39. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In:

ACM STOC (1988)
40. Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.)

EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)
41. Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments. In: Laih,

C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer, Heidelberg (2003)
42. Erkin, Z., Tsudik, G.: Private computation of spatial and temporal power consumption with

smart meters. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp.
561–577. Springer, Heidelberg (2012)

43. Shi, J., Zhang, R., Liu, Y., Zhang, Y.: Prisense: Privacy-preserving Data Aggregation in
People-Centric Urban Sensing Systems. In: IEEE INFOCOM (2010)

44. Xing, K., Wan, Z., Hu, P., Zhu, H., Wang, Y., Chen, X., Wang, Y., Huang, L.: Mutual privacy-
preserving regression modeling in participatory sensing. In: IEEE INFOCOM (2013)

45. Paillier, P.: Public-key Cryptosystems Based on Composite Degree Residuosity Classes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 233–238. Springer, Heidelberg
(1999)

46. Ahmadi, H., Pham, N., Ganti, R., Abdelzaher, T., Nath, S., Han, J.: Privacy-aware regression
modeling of participatory sensing data

47. Chan, T.-H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with fault tolerance.
In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214. Springer, Heidelberg
(2012)

http://dataferrett.census.gov
www.data.gov
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://webscope.sandbox.yahoo.com

Challenging Differential Privacy:

The Case of Non-interactive Mechanisms

Raghavendran Balu1, Teddy Furon1, and Sébastien Gambs1,2

1 Inria Rennes Bretagne-Atlantique, France
2 Université de Rennes 1 / IRISA, France

{rbalu,teddy.furon}@inria.fr, sgambs@irisa.fr

Abstract. In this paper, we consider personalized recommendation sys-
tems in which before publication, the profile of a user is sanitized by a
non-interactive mechanism compliant with the concept of differential pri-
vacy. We consider two existing schemes offering a differentially private
representation of profiles: BLIP (BLoom-and-flIP) and JLT (Johnson-
Lindenstrauss Transform). For assessing their security levels, we play
the role of an adversary aiming at reconstructing a user profile. We com-
pare two inference attacks, namely single and joint decoding. The first
one decides of the presence of a single item in the profile, and sequentially
explores all the item set. The latter strategy decides whether a subset
of items is likely to be the user profile, and considers all the possible
subsets. Our contributions are a theoretical analysis as well as a prac-
tical implementation of both attacks, which were evaluated on datasets
of real user profiles. The results obtained clearly demonstrates that joint
decoding is the most powerful attack, while also giving useful insights on
how to set the differential privacy parameter ε.

Keywords: Differential privacy, Joint decoding.

1 Introduction

Most of the social applications, like recommender systems or private matching,
require computing some kind of pairwise similarity between the profiles of dif-
ferent users. Some of the challenges that such systems face include privacy and
scalability issues. For instance, privacy concerns arise naturally due to the poten-
tially sensitive nature of profiles, and some users may even refuse to participate
if they have no guarantees on the privacy of their profiles.

To address these concerns, the concept of differential privacy [1] has been in-
troduced by Dwork in the context of private analysis on statistical databases and
has known a widespread adoption in the privacy community. In a nutshell, the
main privacy guarantee provided by differential privacy is that for any compu-
tation that will be performed on the database, adding or removing a single row
from the database will not significantly change the probability of a particular
output. Usually, the database is composed of the collection of the individuals’
data, and differential privacy protects the privacy of a particular individual,

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 146–164, 2014.
c© Springer International Publishing Switzerland 2014

Challenging Differential Privacy 147

which corresponds to a row of the database. In contrast in our context, the
“database” is actually the profile of an individual (e.g., composed of the items
he has liked) and therefore the guarantees provided by differential privacy applies
to the protection of the items contained in the profile.

One of the usual limits of differential privacy is that each time a differentially
private computation takes place, the user loses a little bit of privacy (as measured
by the value of the privacy parameter ε). Therefore, if this computation takes
place too many times, the user may spend all his privacy budget and remains
with no privacy left. The adversary is then able to reconstruct almost entirely
the user’s profile. One possible approach to solve this problem is to sanitize the
profile of a user with a non-interactive mechanism compliant with the concept of
differential privacy before his publication. In particular, this paper investigates
the privacy guarantees offered by two non-interactive mechanisms offering a
differentially private representation of profiles: BLIP (BLoom-and-flIP) [2] and
JLT (Johnson-Lindenstrauss Transform) [3].

In this paper, we propose two inference attacks that help to assess the privacy
guarantee provided by the BLIP and JLT mechanisms. We provide an analysis of
the utility and the protection offered by BLIP and JLT against these attacks, by
deriving theoretical bounds on the resulting approximation error generated by
a specific value of the privacy parameter. Furthermore, we evaluate experimen-
tally the trade-off between privacy and utility achieved by these mechanisms.
These attacks helps to better understand the privacy guarantees offered by a
differentially-private mechanism, while also enabling the privacy practitioner to
tune ε experimentally.

A detailed survey on inference attacks on sanitized data can be found in [4]
and [5]. Common attacks include eigen-analysis [6,7], MAP estimation [7], In-
dependent Component Analysis (ICA) [8] and distribution analysis [9]. MAP
estimation and ICA make direct assumptions on the distribution of the original
data, whereas distribution analysis and our approach estimate it from publicly
available information. In addition, eigen-analysis makes even stronger assump-
tions on the representation of data and thus is not generic enough to apply
to representations studied in this paper. Furthermore, the possibility of using
probabilistic inference techniques to attack sanitized histogram data has been
illustrated in [10] and [11]. In these works, bounds of records count are esti-
mated from histogram of attributes coming from a Markov Chain Monte Carlo
(MCMC) simulation. This line of work is different from our approach aiming at
reconstructing a user profile from perturbed data. Application of probabilistic
inference techniques for parameter estimation on differentially private data is
illustrated in [12]. In this work, the authors have also experimentally validated
their approach using MCMC on parameter estimation of logistic regression and
probabilistic inference of principal components. Although their objective was not
directly the reconstruction of data, their approach demonstrates that probabilis-
tic inference is possible on differentially private data.

The outline of the paper is the following. First in Section 2, we give an overview
of the concept of differential privacy. Then, we describe two non-interactive

148 R. Balu, T. Furon, and S. Gambs

differentially private mechanisms in Sections 3 and 4 that have been recently pro-
posed: BLIP (BLoom-and-flIP) [2] and one based on the Johnson-Lindenstrauss
Transform (JLT in short) [3]. These mechanisms transform the profile of a user
into a compact representation that estimate the similarity between profiles while
hiding the presence or absence of a particular item in the profile (in the sense
of differential privacy). Afterwards in Section 5, we provide a theoretical anal-
ysis showing that the joint decoding strategy is more powerful than the single
decoding strategy in reconstructing the profile of a user. Finally in Section 6,
we propose a tractable implementation of this strategy based on the MCMC
algorithm before reporting in Section 7 the results on two real datasets.

2 Differential Privacy

In this paper, we are interested in a strong privacy notion called differential pri-
vacy [1]. Differential privacy aims at providing strong privacy guarantees with
respect to the input of some computation by randomizing the output of this com-
putation, and this independently of the auxiliary information that the adversary
might have gathered. In our setting, the input of the computation is the profile
of a user and the randomized output will be a perturbed version of a compact
representation of this profile (e.g., a Bloom filter or a random projection).

Two profiles x and x′ are said to differ in at most one element or said to be
neighbors if they are equal except for possibly one entry.

Definition 1 (Differential privacy [13]). A randomized function F : Dn →
Dn is ε-differentially private, if for all neighboring profiles x,x′ ∈ Dn and for
all t ∈ Dn:

P[F(x) = t] � eε · P[F(x′) = t] .

This probability is taken over all the coin tosses of F and e is the base of the
natural logarithm.

The parameter ε is public and may take different values depending on the appli-
cation (for instance it could be 0.1, 0.25, 1.5 or even 10). The smaller the value
of ε, the higher the privacy but also as a consequence the higher the impact
might be on the utility of the resulting output. A relaxed notion differential pri-
vacy called (ε,δ)-differential privacy [14], can be seen as a probabilistic variant
in which the guarantees of differential privacy hold with probability of 1− δ.

Originally, differential privacy was developed within the context of private
data analysis and the main guarantee is that if a differentially private mecha-
nism is applied on a dataset composed of the personal data of individuals, no
output would become significantly more (or less) probable whether or not a sin-
gle participant contributes to the dataset. This means that observing the output
of the mechanism only gains negligible information about the presence (or ab-
sence) of a particular individual in the database. This statement is a statistical
property about the behavior of the mechanism (i.e., function) and holds inde-
pendently of the auxiliary knowledge that the adversary might have gathered.

Challenging Differential Privacy 149

More specifically, even if the adversary knows the whole database but one indi-
vidual row, a mechanism satisfying differential privacy still protects the privacy
of this individual row. In our setting, the database that we want to protect is
the profile of a user and the objective of a differentially private mechanism is to
hide the presence or absence of a particular item in the profile.

Dwork, McSherry, Nissim and Smith have designed a generic technique, called
the Laplacian mechanism [13], that achieves ε-differential privacy for a function
f by adding random noise to the true answer of f before releasing it. Subse-
quently, McSherry and Talwar have proposed the exponential mechanism [15]
which unlike the Laplacian mechanism that works only for functions with nu-
merical output, provides differential privacy for functions whose output is more
structured (e.g., graphs or trees). Both previous mechanisms (i.e., Laplacian and
Exponential mechanisms) are interactive as they require a two-way communica-
tion protocol between the curator (the entity in charge of the database) and the
client performing the query. Therefore, the curator has to be online in order to
receive the query and prepare the associate response to this query.

On the other hand, a non-interactive mechanism computes some function
from the original database and releases it once and for all, which corresponds to
a one-way communication protocol. The output released by the non-interactive
mechanism can later be used by anyone to compute the answer to a particular
class of queries (usually not just a single specific query), without requiring any
further interactions with the curator. It is important to understand that the
answer is computed from the output released by the non-interactive mechanism,
thus after publishing this output the curator can go offline. One particular type
of non-interactive mechanism is the generation of a synthetic dataset that allows
the answer to certain class of queries (but not necessarily all) to be approximated.
Examples of non-interactive mechanisms for differential privacy include [16,17].

In the next sections, we describe two non-interactive mechanisms that have
recently been proposed. The first mechanism is based on randomizing a Bloom
filter representation of the profile [2] while the second relies on the application of
the Johnson-Lindenstrauss transform and the addition of noise [3]. Both mecha-
nisms preserve some global properties such as the ability to compute a distance
between two profiles while hiding the details of the profiles themselves.

3 BLIP

The main objective of BLIP [2] is to prevent the adversary from learning the
presence (or absence) of an item in the profile of a user by observing the Bloom
filter representation of this profile. Our theoretical analysis provided in Section 5
is based on the model of profiles and the BLIP sanitization described thereafter.

3.1 Setup of BLIP

The setup that we consider for the theoretical analysis is the following. We
assume that a profile P is a list of c items randomly picked from a set of N ∈

150 R. Balu, T. Furon, and S. Gambs

N� possible items: P = {j1, . . . , jc}. We denote the set of items by [N], with
[N] � {1, . . . , N} and the set of all possible profiles by P . This set is a subset
of the power set of [N] and we have |P| =

(
N
c

)
. For the moment, we make the

assumption that c is publicly known, but this hypothesis will be lifted later by
inferring this value directly from the Bloom filter.

The profile is first encoded in the form of a Bloom filter, which is a binary
string of L bits. Each item j ∈ P is hashed through K different hash functions
(h1, . . . , hK). Each hash function yields a position hk(j) in the Bloom filter,
pseudo-randomly selected based on the identifier of the item j. One simple tech-
nique to implement this is to rely on K cryptographic hash functions modulo L.
We call the codeword Xj associated to item j the following string of L bits:

Xj(�) =

{
1 if ∃k ∈ [K] such that hk(j) = �,
0 otherwise.

(1)

The Bloom filter associated to the profile P = {j1, . . . , jc} is denoted by BP

and computed as the aggregation of the codewords:

BP = Xj1 ∨ . . . ∨Xjc , (2)

in which ∨ denotes the bit-wise (inclusive) OR operator. Our presentation of
Bloom filters is different than usual to stress the link with our general problem.

The BLIP mechanism adds noise to the Bloom filter representation of a profile
before publishing it. We denote the output of BLIP by B̃P :

B̃P = BP ⊕N, (3)

in which ⊕ corresponds to the bit-wise logical (exclusive) XOR operator and N ∈
{0, 1}L is a random binary string of size L, whose symbols are i.i.d. (independent
and identically distributed) as a Bernoulli distribution B(pε) (i.e. , N(�) ∈ {0, 1}
and P[N(�) = 1] = pε, ∀� ∈ [L]). Alaggan, Gambs and Kermarrec [2] proved that
the BLIP mechanism ensures ε-differential privacy for the items of the profile if

pε = 1/(1 + eε/K). (4)

3.2 The Simple Model

We assume that the hash functions produce independently random outputs,
which means that the probability that hk(j) “points” to a given index is 1/L.
This assumption implies that the bits of the codewords can be modeled as in-
dependent Bernoulli random variables: Xj(�) ∼ B(p), ∀(j, �) ∈ [N] × [L] with

p � P[Xj(�) = 1] = 1−
(

1− 1

L

)K

. (5)

For a random P composed of c items, we have BP (�) ∼ B(πc), ∀� ∈ [L], with

πc � P[BP (�) = 1] = 1− (1 − p)c = 1−
(

1− 1

L

)cK

. (6)

Challenging Differential Privacy 151

As for the BLIP, B̃P contains i.i.d. random symbols B̃P (�) ∼ B(π̃c) with

π̃c � P[B̃P (�) = 1] = (1− pε)πc + pε(1− πc). (7)

3.3 More Complex Models

This subsection presents two possible extensions of the simple model, in which
we no longer assume that c is fixed in advance and publicly known.

To account for this, we introduce the probability P[|P | = c], in which |P |
denotes the number of items in P . Then, we have to replace πc by:

πc → π =
∑
c>0

πcP[|P | = c]. (8)

This new expression leads to π̃ = (1− pε)π + pε(1− π). Not knowing c may not
be a big challenge for the adversary because he can easily infer the number of
items in a profile. The quantity ω(B̃P)/L, in which ω(.) is the Hamming weight
of a binary string (the number of bits set to one), is an unbiased estimator of
π̃c. Inverting (7) is possible when pε �= 1/2 (i.e. , ε > 0) since pε is public:

π̂c =
ω(B̃P)/L− pε

1− 2pε
, (9)

which in turn gives an estimator ĉ by inverting (6). In the same way, a confidence
interval for π̃c based on ω(B̃P)/L yields a confidence interval [cmin, cmax] on c.

An even more refined model consists in taking into account the popularity of
the items. Indeed, popular items impact the Bloom filter by ensuring that some
of its bits are more likely to be set to one. To tackle this issue, we still pretend
that the bits are independent but distributed according their own Bernoulli
law: BP (�) ∼ B(π(�)), ∀� ∈ [L]. The same model holds for the BLIP symbols:
B̃P (�) ∼ B(π̃(�)), with π̃(�) = (1− pε)π(�) + pε(1− π(�)).

4 JLT

Kenthapadi and co-authors [3] proposed another mechanism to prevent the ad-
versary from learning the presence (or absence) of an item in the profile, although
their scheme tackles a different data type (i.e., real vector). In the sequel, we
denote this proposal by JLT because it is based on the Johnson-Lindenstrauss
Transform.

4.1 Description

The profile is encoded in the form of a real vector of length L as follows. A
codeword Xj associated to item j is a real vector. Its L components have been

independently and identically drawn such that Xj(i)
i.i.d.∼ N (0, 1/L), ∀(i, j) ∈

[L]×N . The codebook (X1,X2, · · · ,XN) is generated once for all and is public.

152 R. Balu, T. Furon, and S. Gambs

Profile P is encoded into vector YP =
∑

j∈P Xj , then the user adds a noise N

(private data) before publishing ỸP = YP + N. The authors of [3] recommend

a white Gaussian noise: N(i)
i.i.d.∼ N (0, σ2). According to [3, Lemma 2], if

L ≥ 2(log(N) + log(2/δ)), σ ≥ 4

ε

√
log(1/δ) and ε < log(1/δ) (10)

then this mechanism complies with (ε, δ)-differential privacy (for 0 < δ < 1).

4.2 A Simple Probabilistic Model

The adversary does not know the profile P and therefore he models the observa-
tion ỸP as a white Gaussian noise since ỸP is the sum of c + 1 white Gaussian
noises. As these patterns are statistically independent, their powers sum up so

that ỸP (i)
i.i.d.∼ N (0, σ2 + c/L). We assume now that σ2 is a recommended noise

power, and thus that it is a public parameter. This allows the adversary to
estimate the number of items in profile P in the following manner:

ĉ =
L

L− 1

L∑
i=1

ỸP (i)2 − Lσ2. (11)

Consider now the case in which the adversary knows that the item j is in the
profile. This knowledge stems into a refined statistical model of the observation:

ỸP (i)
i.i.d.∼ N (Xj(i), σ

2 +(c−1)/L). In the same way, knowing the profile P ends

up with ỸP (i)
i.i.d.∼ N

(∑
j∈P Xj(i), σ

2
)

.

5 Theoretical Analysis

In this section, we propose two decoders that can be used by an adversary to
reconstruct the profile of a given user out of his public representation. This
analysis is detailed for the BLIP mechanism, but similar concepts hold for the
JLT scheme. The expressions of the information theoretical quantities are given
in Appendix A for BLIP and Appendix B for JLT.

5.1 Single Decoder

From the observation of one BLIPed representation b̃, the adversary would like
to infer which item belongs to the original profile. The adversary can conduct
this inference by analyzing the L symbols of b̃ and making an hypothesis test
about the presence of item j in the underlying profile.

– H0: Item j is not in the profile, which means that the observed BLIP
symbols are statistically independent from the symbols of codeword Xj :

P[B̃P (�), Xj(�)] = P[B̃P (�)]P[Xj(�)], ∀� ∈ [L].

Challenging Differential Privacy 153

– H1: Item j belongs to P , and thus there is a slight dependency between the
symbols of the observed BLIP and that of codeword Xj : P[B̃P (�), Xi(�)] =

P[B̃P (�)|Xi(�)]P[Xi(�)], ∀� ∈ [L].

For a given item, this test may make two types of error: 1) False positive rate
α1: The probability of detecting the presence of an item that does not belong
to the profile; 2) False negative rate α2: The probability of missing the presence
of an item that belongs to the profile. Information theory gives an upper bound
on the performance of the test thanks to the Stein’s lemma. More precisely, for
a given α2, the probability of false positive cannot be lower than

α1 ≥ e−(I(B̃P ;X)+1)/(1−α2), (12)

in which I(B̃P ;X) is the mutual information between a BLIPed filter and the
codeword of an item of the profile.

This test concerns a particular item, but an adversary that wants to recon-
struct the whole profile needs to repeat it for the whole ensemble of size N . This
repetition increases the global probability of false positive η1:

η1 = 1− (1− α1)N−c � Nα1, (13)

in which we assume that Nα1 � 1 and c � N . η1 is the probability that at
least one item not in the profile is detected as belonging to the profile. At the
end, for targeted error probabilities (α2, η1), inequality (12) constraints the size
of the item ensemble the adversary can deal with:

log(N) ≤ I(B̃P ;X)

1− α2
+ log η1. (14)

The last inequality stresses the important role of I(B̃P ;X). Appendices A
and B provide expressions of this quantity for the BLIP and JLT mechanisms.

5.2 Joint Decoder

Let us consider another strategy. From the observation b̃, the adversary would
like to test whether P was the original profile that gave birth to this BLIPed
representation. The difference with the previous approach is that the presence of
items are not tested independently but jointly, hence the name “joint decoder”.

Basically, the analysis is the same as previously except that the information
theoretic quantity is now I(B̃P ;P) = I(B̃P ; (Xj1 , . . . ,Xjc)) and that the en-
semble of profiles is much bigger. Roughly, log(|P|) ≈ c logN , thus we have:

log(N) ≤ I(B̃P ;P)

c(1− α2)
+ log η1. (15)

Stated differently, the performance of this approach is driven by the quan-
tity I(B̃P ;P)/c. Theorem [18, Eq. (3.4)] states that I(B̃P ; (Xj1 , . . . ,Xjc))/c ≥

154 R. Balu, T. Furon, and S. Gambs

I(B̃P ;Xj), which means that considering the items jointly yields better perfor-
mances. Appendices A and B provide expressions of this quantity for respectively
the BLIP and JLT mechanisms. For this first scheme, subsection A.2 shows that
the difference I(B̃P ; (Xj1 , . . . ,Xjc))/c − I(B̃P ;Xj) can be be substantial for
practical setups. We also provide upper bounds simply depending on ε.

6 Practical Decoders

The previous section can be summarized as follows: joint decoding is theoretically
more powerful than single decoding. However, no complexity argument has been
so far taken into account. This section deals with this issue by proposing practical
implementations of a single and a joint decoder. Again, we take the example of
BLIP but our approach is more generic as it works also with JLT.

6.1 Single Decoders

In practice, a single decoder computes from the observed BLIPed profile a score
sj for any item j ∈ [N], which reflects the likelihood of belonging to the pro-
file (i.e., the most likely item has the highest score). The score is compared to
a threshold to decide whether or not the item should be included in the re-
constructed profile. The complexity of this single decoder is O(N) since it is
exhaustive and goes through all the possible items.

As a practical implementation, we propose the Maximum Likelihood decoder

in which the score sj = log P[B̃P =b̃|j∈P]

P[B̃P =b̃]
equals, by independence of the symbols:

sj = n11 log
1− pε
π̃

+ n01 log
pε

1− π̃
, with: (16)

n11 = |{� ∈ [L]|b̃(�) = 1 ANDXj(�) = 1}|, (17)

n01 = |{� ∈ [L]|b̃(�) = 0 ANDXj(�) = 1}|. (18)

This decoder is derived from models that are more realistic in which πc ≈ πc−1 ≈
π, so that the score of item j only takes into account the (n11 +n01) symbols in
which Xj(�) = 1 (i.e., at most K symbols over L).

6.2 Joint Decoder

In practice, a joint decoder computes from the observed BLIPed filter a score
for any profile P ′ ∈ P , which reflects the likelihood that P ′ is the true profile.
This score is computed by taking into account L symbols but the complexity
of a joint decoder is proportional to |P| (i.e., O(N c)), which is computationally
expensive. Yet, there exists at least three possible approaches that approximate
joint decoding with a reasonable complexity: 1) Monte Carlo Markov Chain
(MCMC) [19,20], 2) Belief Propagation Decoder [21] and 3) Joint Iterative De-
coder [22].

Challenging Differential Privacy 155

In this paper, we investigate the first approach. The MCMC decoder is based
on two key ideas. First, it receives as input an observed BLIPed filter b̃ and
then creates a Markov Chain that will be used to sample profiles according to
the posterior distribution P[P |b̃]. This sampling requires a burn-in period after
which the Markov Chain has converged. Once this convergence has occurred, it
samples profiles with the targeted posterior distribution. During a second phase,
some profiles are sampled and statistics are computed such as the marginal a
posteriori distribution P̂[j ∈ P |b̃] that item j belongs to the true profile.

Posterior distribution. The objective is to sample profiles according to the pos-
terior distribution P[P |b̃], which can be written as:

P[P |b̃] =
P[B̃P = b̃|P]P[P]

P[B̃P = b̃]
. (19)

In this equation, P[P] is the a priori probability of P . To simplify our pre-
sentation, we consider only the simple model exposed in Section 3.2. We de-
note by |P | the size of profile P (i.e., the number of his items), and we set by
P[P] = 0 if |P | �= c, and 1/|P| otherwise. Any profile is equally likely provided
it has exactly c items. When we use more realistic models in our experimental
work, the prior will be substantially different. We denote by ω(B) the Hamming
weight of a binary vector B (i.e., the number of bits set to 1). The probability
P[B̃P = b̃|P] = P[N = BP ⊕ b̃] has the following expression

P[B̃P = b̃|P] = pω(BP⊕b̃)
ε (1− pε)

L−ω(BP⊕b̃). (20)

The evaluation of the last quantity P[B̃P = b̃] in (19) is more involved:

P[B̃P = b̃] =
∑
P∈P

P[B̃P = b̃|P]P[P]. (21)

It requires a screening of P , which is intractable for large c and N , which is why
we will rely on the Markov chain.

Markov Chain. A Markov Chain is an iterative process with an internal state
(i.e., a profile in our case) taking value P (t) at iteration t. The next itera-
tion draws a new state P (t+1) according to a transition probability distribu-
tion P[P (t+1)|P (t)]. The Markov Chain is initialized randomly at state P (0). The
probability distribution of transitions is crafted with care to enforce a conver-
gence of the distribution of sampled profile P (t) to the posterior P[P |b̃] of (19)
as t→∞ (see Section 6.3). In practice, the convergence occurs after the first T
iterations, the so-called burn-in period. Once this period has passed, it means
that the Markov Chain has forgotten its starting point (i.e., the samples are
now independent of P (0)) and that the distribution of the sample profiles has
converged.

156 R. Balu, T. Furon, and S. Gambs

Monte Carlo method. After the burn-in period, the Markov Chain keeps on
sampling for M more iterations. The marginal a posteriori probabilities are then
estimated by a Monte Carlo method, which computes the empirical frequency
that item j is present in sample P (t):

P̂[j ∈ P |b̃] = |{t ∈ [T + 1, T + M]|j ∈ P (t)}|/M. (22)

From these estimations, several post-processing are possible such as:

– inferring the most likely items of the true profile by ranking them in decreas-
ing marginal probabilities,

– reconstructing the profile as the set of items whose marginal probability is
above a given threshold,

– reconstructing the profile as the set of items with highest marginal.

6.3 Transition Probabilities

Algorithmic coding of a profile. Section 3.3 describes how to infer from the
observed BLIP a maximum number cmax of items of the corresponding profile. In
this algorithm, we code a profile as a vector of cmax components taking values in
[N]∪{0}. Some of these components may take the value “0” meaning an “empty
item”, while the others have different values (i.e., there is no pair of non-zero
components with the same value). For instance, for cmax = 5, P = (0, 3, 2, 0, 4)
represents the profile of 3 items: #2, #3 and #4.

We define V(P0, i) as the neighborhood of profile P0 in the following manner:

V(P0, i) = {P ∈ P|P (k) = P0(k) ∀k �= i}. (23)

This neighborhood profile is the set of all profiles whose coding differs at most
from the i-th component. Note that P0 ∈ V(P0, i). If P0(i) = 0, this neighbor-
hood comprises profiles having at most one more item. Otherwise if P0(i) > 0,
this neighborhood contains profiles having at most one different item (i.e., P0(i)
is substituted by another item) and one profile having one less item (i.e., item
P0(i) is substituted by 0, the “empty item”).

Multi-stage Gibbs sampling. Instead of computing the transition probabilities for
all the possible profiles, we restrict the transitions to the neighborhood of the
actual state. At the iteration t+ 1, an integer i is first uniformly drawn in [cmax]
that indicates the subset V(P (t), i). Then, the following transition probability
distribution is computed: ∀P ∈ V(P (t), i)

P[P (t+1) = P |P (t)] =
P[B̃P = b̃|P]P[P]∑

P ′∈V(P (t),i) P[B̃P ′ = b̃|P ′]P[P ′]
(24)

Iteration t + 1 ends by randomly drawing state P (t+1) from this distribution.
This choice of probabilistic transitions is called a multi-stage Gibbs sam-

pler with random scan [23, Alg. A.42]. It guarantees that the law of sampled

Challenging Differential Privacy 157

Table 1. Datasets characteristics

Nb of users Training set size Testing set size N cavg Sparsity %

Digg 531 331 200 1237 317 25.63%

MovieLens 943 600 343 1682 106 6.30%

profiles converges to the stationary distribution P[P |b̃], which legitimates our
approach [23, Sect. 10.2.1]. The unknown multiplicative constant P[B̃P = b̃]
in (19) has disappeared in the ratio. This transition probability distribution
only depends on the priors P[P] (which depends on the mathematical model
of a profile), and the conditional probabilities P[B̃P = b̃|P] (which depends
on the privacy-preserving mechanism). For instance, for the JLT mechanism,
P[ỸP = ỹ|P] ∝ exp(−‖ỹ −

∑
j∈P Xj‖2/2σ2).

7 Experiments

7.1 Setup

In this section, we test the inference attacks designed on two real datasets: Digg
and MovieLens. The Digg dataset has been collected on a social news aggregator
and the profile of a user is composed of the news he has read. The MovieLens
dataset is a snapshot from a movie recommendation site and in this dataset the
profile of a user is composed of the movies he likes. For the experiments, we
split both datasets into two parts : the training set and the testing set. The
characteristics of these datasets are summarized in Table 1, in which cavg is the
average number of items per profile and sparsity is the average occupancy of
items among the user profiles.

During the experiments, we assume that the adversary has access to some
raw profiles of users to estimate the item priors (i.e., popularities of items).
This is similar to assuming that the adversary has access to some global infor-
mation about the general distribution of items in the population. We rely on
the training dataset for computing the frequencies of items while the testing
dataset is used solely for evaluating the performance of the attacks. In terms
of parameters, for BLIP we set the number of hash functions K = 20 and
the number of bits of the representation to L = 5, 000. The values of ε are
from the set {59, 28, 17, 8, 6, 5, 3, 2, 0}, which equivalently translate to the corre-
sponding flipping pε from the range {0.05, 0.2, 0.3, 0.4, 0.42, 0.44, 0.46, 0.48, 0.5}.
For the JLT scheme, we set the size of the representation L to 1, 000. L is
set to a lower value as the representation, a dense real vector, is richer than
the binary version of BLIP. The privacy parameter ε takes value in the set
{600, 6, 3, 2, 1, 0.75, 0.5, 0.25, 0.1}, which translates into a noise level σ in {0, 1, 2,
3, 6, 8, 12, 24, 61}.

For MCMC, we used a burn-in period of T = 1, 000 samples and estimation
sample size of M = 19, 000 for all the experiments. In practice, we observed that
the performance is not very sensitive to the burn-in period length. As with other

158 R. Balu, T. Furon, and S. Gambs

MCMC based approaches proper initialization for sampling is highly desirable
for a faster convergence to the stationary distribution. We used the input public
representation of the profile to estimate ĉ and started with ĉ random items. A
poor estimation of ĉ has to be traded-off with a longer burn-in period. We also
prefilter items that are to be tested against the public profile for joint decoder, to
reduce the search space. To realize this, we first predict the f × ĉ most probable
items for a given profile (f ∈ [2, 6]) using single decoder and then run the
joint decoder on the filtered items to return ĉ items. This prefiltering decreases
significantly the running time of the algorithm without impacting the prediction
as only unlikely items will not be considered by the joint decoder.

7.2 Reconstruction Attacks

We benchmark four attacks that produce a score per item:

– The single decoder described in [2].
– The popularity-based attack in which the score of an item is its prior esti-

mated from the training data, independent of the given public representation.
– Our MCMC joint decoder with and without priors (i.e., with flat priors) in

which the scores are the estimated marginal a posteriori probabilities.

Reconstruction P̂ is then the list of the top ĉ items ranked based on their scores.
We measure the performance of a reconstruction attack by computing the

cosine similarity between the reconstruction P̂ and the true profile P as expressed
in (25) for all the profiles of the testing set.

cos(P, P̂) =
|P.P̂ |
|P ||P̂ |

(25)

Afterwards, we compute the following statistics: average, the 10% and the 90%
quantiles of the cosine similarities.

The plots in Figure 1 show that the performance of the reconstruction attack
is better for high values of ε while it degrades as ε→ 0. In this case, pε → 0.5 and
every profile becomes equiprobable so that inferring the original profile becomes
impossible. In addition, ĉ depends on ε and low value results in a poor estimation
of ĉ, which impacts the similarity measure as only top ĉ items of the prediction
is considered in the reconstructed profile. As the estimation of ĉ is performed
similarly for all the four attacks, the performance drop is common to all of them.
Overall the performance of our MCMC attack is better than the single decoder
of [2] for almost all ε values over the two datasets. Another way to see this is
to find the range of ε in which a given attack performs worse than the baseline
(i.e., the popularity-based attack). For instance, by setting ε = 8, the designer
is sure that the single attack is no longer a threat. However, a skilled adversary
can reconstruct almost 50% of the profile thanks to our MCMC attack.

Challenging Differential Privacy 159

Taking into account the prior of items improves the efficiency in the recon-
struction significantly, provided that the estimation is reliable. This improvement
is clearly observed on the MovieLens dataset. As for the Digg setup, priors of the
training set do not generalized to the test set, hence they do not help much. We
conducted the same experiment with the JLT scheme. The figure is not included
in the paper due to a lack of space, but the results that we obtained are very
close from the one of BLIP and thus we can draw the same conclusions.

0 2 3 5 6 8 17 28 59
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
si

ne

epsilon

joint decoder with prior
joint decoder uniform prior
 single decoder
 popular items

0 2 3 5 6 8 17 28 59
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
si

ne

epsilon

joint decoder with prior
joint decoder uniform prior
 single decoder
 popular items

Fig. 1. Values of the cosine similarity (average, 10% quantile and 90% quantile) of BLIP
for MCMC with prior, with no prior and single decoding for various ε on Movielens
(left) and Digg (right) dataset

7.3 Identifying the Presence of an Item

When ε is very small, Figure 1 clearly shows that the adversary cannot hope
to reconstruct the full profile. In this situation, we evaluate the prediction of
top R items, with R� c, as another assessment of the privacy guarantees. The
success is measured in terms of the mean Average Precision at R (mAP@R) given
in (26), which is the mean over the Q profiles in the test dataset of the average
of the precisions at rank 1 ≤ r ≤ R. The precision(r) refers to the fraction of
correct items out of the top r predicted items. The mAP is sensitive to the order
of the correct results and is a better gauge of the quality of a ranking.

mAP@K =
1

Q

Q∑
q=1

(
1

R

R∑
r=1

precisionq(r)

)
. (26)

The characteristics of mAP@R depicted in Figure 2 are almost similar to the
exact reconstruction measurement. Even if the exact reconstruction of profile
is hardly possible for a given ε, predicting the top R items work. For instance,
the maximum reconstruction for ε = 0 for Movielens is 0.23 whereas the mean
average precision is close to 0.5. The same conclusion holds for the Digg dataset.

160 R. Balu, T. Furon, and S. Gambs

0 2 3 5 6 8 17 28 59
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
A

P
@

10

epsilon

joint decoder with prior
joint decoder uniform prior
 single decoder
 popular items

0 2 3 5 6 8 17 28 59
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
A

P
@

10

epsilon

joint decoder with prior
joint decoder uniform prior
 single decoder
 popular items

Fig. 2. Mean Average Precision for R = 10 for BLIP for MCMC with prior, with no
prior and single decoding for various ε on Movielens (left) and Digg (right) dataset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

pr
iv

ac
y

utility

joint decoder on BLIP
joint decoder on JLT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

pr
iv

ac
y

utility

joint decoder on BLIP
joint decoder on JLT

Fig. 3. Utility against privacy for BLIP and JLT for various ε on Movielens (left) and
Digg (right) datasets

7.4 Utility-Privacy Trade-Off

Finally, we also studied the achievable trade-off between privacy and utility.
Since BLIP and JLT are used for similarity estimation, we quantify the utility
in terms of the recall, which is defined as the probability of identifying the k-
nearest neighbors (we set k = 10 in our experiments). In this experiment, we
measure privacy as 1− cos(P, P̂) (see (25)) based on the joint decoder. Figure 3
illustrates the utility-privacy trade-off obtained for various ε. The trade-off is
almost similar on the two datasets. The privacy preserving properties of JLT
transform is slightly better than BLIP, at least for the parameters we used in our
simulation. This difference in performance is due partially to the representation
superiority of dense real vector over binary vector. However, BLIP offers a more
compact representation of the profile (5, 000 bits versus 1, 000 scalars). The plot
is helpful in fixing ε giving good utility without compromising much on privacy.

Challenging Differential Privacy 161

8 Conclusion

In differential privacy, the trade-off between utility and privacy is set by the
parameter ε. However, being able to choose an appropriate value for this param-
eter is still an open research question, which has not been deeply investigated,
with a few exceptions [24,25]. In this paper, we have made a step forward to
answer this question by proposing two generic inference attacks, namely single
and joint decoding, whose objective is to reconstruct the profile of a user out of
a differentially-private representation produced through a non-interactive mech-
anism. The first inference attack decides of the presence of a single item and
sequentially explores all the item set, while the latter strategy decides whether a
subset of items is likely to be the user profile and considers all possible subsets.

We have evaluated the effectiveness of the attack on two schemes produc-
ing differentially private representations: BLIP (BLoom-and-flIP) [2] and JLT
(Johnson-Lindenstrauss Transform) [3]. Our theoretical analysis as well as the
experimental results clearly shows that joint decoding is more powerful than sin-
gle decoding. Overall, we believe that this attack helps better understanding the
privacy guarantees offered by a wide class of differentially-private mechanisms
(interactive or not) as well as for the privacy practitioner to tune experimentally
ε to ensure the maximum utility without compromising much on privacy.

References

1. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg
(2006)

2. Alaggan, M., Gambs, S., Kermarrec, A.-M.: BLIP: Non-interactive Differentially-
Private Similarity Computation on Bloom Filters. In: Richa, A.W., Scheideler, C.
(eds.) SSS 2012. LNCS, vol. 7596, pp. 202–216. Springer, Heidelberg (2012)

3. Kenthapadi, K., Korolova, A., Mironov, I., Mishra, N.: Privacy via the johnson-
lindenstrauss transform. arXiv preprint arXiv:1204.2606 (2012)

4. Liu, K., Giannella, C., Kargupta, H.: A survey of attack techniques on privacy-
preserving data perturbation methods. In: Privacy-Preserving Data Mining. Ad-
vances in Database Systems, vol. 34, pp. 359–381. Springer (2008)

5. Chen, K., Liu, L.: A survey of multiplicative perturbation for privacy-preserving
data mining. In: Privacy-Preserving Data Mining, pp. 157–181. Springer (2008)

6. Guo, S., Wu, X.: On the use of spectral filtering for privacy preserving data mining.
In: ACM Symp. on Applied Computing, pp. 622–626 (2006)

7. Huang, Z., Du, W., Chen, B.: Deriving private information from randomized data.
In: ACM SIGMOD Int. Conf. on Management of Data, pp. 37–48. ACM (2005)

8. Guo, S., Wu, X.: Deriving private information from arbitrarily projected data. In:
Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp.
84–95. Springer, Heidelberg (2007)

9. Agrawal, D., Aggarwal, C.C.: On the design and quantification of privacy preserv-
ing data mining algorithms. In: 20th ACM SIGMOD-SIGACT-SIGART Symp. on
Principles of Database Systems, pp. 247–255 (2001)

10. Diaconis, P., Sturmfels, B.: Algebraic algorithms for sampling from conditional
distributions. The Annals of Statistics 26(1), 363–397 (1998)

162 R. Balu, T. Furon, and S. Gambs

11. Dobra, A.: Measuring the disclosure risk for multi-way tables with fixed marginals
corresponding to decomposable log-linear models. Technical report (2000)

12. Williams, O., McSherry, F.: Probabilistic inference and differential privacy. In:
Advances in Neural Information Processing Systems, pp. 2451–2459 (2010)

13. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006)

14. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, our-
selves: Privacy via distributed noise generation. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006)

15. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: IEEE
Symposium on Foundations of Computer Science, pp. 94–103 (2007)

16. Beimel, A., Nissim, K., Omri, E.: Distributed private data analysis: Simultaneously
solving how and what. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
451–468. Springer, Heidelberg (2008)

17. Li, Y.D., Zhang, Z., Winslett, M., Yang, Y.: Compressive mechanism: utilizing
sparse representation in differential privacy. CoRR abs/1107.3350 (2011)

18. Moulin, P.: Universal fingerprinting: capacity and random-coding exponents.
arXiv:0801.3837 (January 2008)

19. Knill, E., Schliep, A., Torney, D.C.: Interpretation of pooling experiments using
the Markov chain Monte Carlo method. J. Comput. Biol. 3(3), 395–406 (1996)

20. Furon, T., Guyader, A., Cerou, F.: Decoding fingerprints using the Markov Chain
Monte Carlo method. In: IEEE Int. Work. on Information Forensics and Security
(WIFS), pp. 187–192 (2012)

21. Sejdinovic, D., Johnson, O.: Note on noisy group testing: asymptotic bounds and
belief propagation reconstruction. In: Proc. 48th Allerton Conf. on Commun., Con-
trol and Computing, Monticello, IL, USA (October 2010) arXiv:1010.2441v1

22. Meerwald, P., Furon, T.: Toward practical joint decoding of binary Tardos finger-
printing codes. IEEE Trans. on Inf. Forensics and Security 7(4), 1168–1180 (2012)

23. Robert, C., Casella, G.: Monte Carlo statistical methods. Springer (2004)
24. Lee, J., Clifton, C.: How much is enough? Choosing ε for differential privacy. In:

Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 325–340. Springer,
Heidelberg (2011)

25. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Palamidessi, C.: On the rela-
tion between differential privacy and quantitative information flow. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 60–76.
Springer, Heidelberg (2011)

A Appendix A: BLIP Mechanism

A.1 Single and Joint Decoding

We have I(B̃P ;X) = H(B̃P)−H(B̃P |X), in which H is the (Shannon) entropy
of a random variable. With the simple model detailed in Section 3.2, we get that

I(B̃P ;X) = L(hb(π̃c)− (1− p)hb(π̃c−1)− phb(pε)), (27)

with hb(p) the entropy of a Bernoulli distribution B(p) (in hats):

hb(p) � −p log(p)− (1− p) log(1− p) = hb(1− p). (28)

Challenging Differential Privacy 163

0

200

400

600

800

1000

0
10

20

30
40

50

60
70

80

0

2

4

6

Lc
0

200
400

600
800

1000

0

20

40

60

80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Lc

Fig. 4. (Left): Mutual information of the joint decoder I(B̃P ;P)/c in nats as a function
of (c, L). (Right): Difference I(B̃P ;P)/c− I(B̃P ;X) in nats as a function of (c, L).

The probabilities π̃c and π̃c−1 appear in (27) because we assume that the
profiles are of identical size c. When considering more complex but also more
practical models, this difference vanishes as π̃c and π̃c−1 are replaced by π̃:

I(B̃P ;X) ≈ Lp(hb(π̃)− hb(pε)). (29)

As for the joint decoding, Bloom filter being a deterministic process, we write:

I(B̃P ;P) = I(B̃P ;BP) = H(B̃P)−H(B̃P |BP)

= H(B̃P)−H(N) = L(hb(π̃c)− hb(pε)). (30)

A.2 Comments

Example. Figure 4 (left) shows I(B̃P ;P)/c as a function of c and L. From a
particular (c, L), we set

K =

⌊
log(2)

L

c

⌋
, (31)

which is the recommended number of hash functions in Bloom filter design, and
we apply the model of Section 3.2 with ε = 20. For a given c, too small L
means too few observed symbols for reliably estimating the profile. Too large L
implies a big K and therefore, pε tends to 1/2 according to (4). Figure 4 (right)
shows that I(B̃P ;P)/c − I(B̃P ;X) can be substantial: a joint decoding allows
the adversary to tackle up to 3.5 (i.e. e1.25) times more items.

Upper bounds. As ε→ 0, pε → 1/2 as well as π̃, so that I(B̃P ;X) → 0 and also
I(B̃P ;P) → 0. When ε = 0, observing the BLIP is useless since it brings no
information. In this situation, neither the single nor the joint decoding can do
anything. We can bound the quantity in common in both expressions as follows:

hb(π̃c)− hb(pε) ≤ log(2)− hb(pε) ≤ log(2)− log
(

1 + eε/K
)

+
ε

K

eε/K

1 + eε/K

≤ ε

K

eε/K

1 + eε/K
≤ ε

K
. (32)

164 R. Balu, T. Furon, and S. Gambs

Typical Bloom filter setup. Figure 4 shows that estimating an important number
of items is possible provided that L grows linearly with c. Indeed, it is also
common practice in the design of Bloom filter to set:

L =

⌈
−c log(Pfp)

(log 2)2

⌉
, (33)

in which Pfp is the probability of false positive of the Bloom filter (i.e., to
detect the presence of an item not belonging to P). Inserting (31) and (33) in
the expression of the mutual informations, we get quantities independent of c:

1

c
I(B̃P ;P) ∼ − log(Pfp)

log(2)

(
1− 1

log(2)
hb

(
(1 + 2

ε
− log(Pfp))−1

))
, (34)

I(B̃P ;X) ∼ log(2).
1

c
I(B̃P ;P). (35)

This shows that if the Bloom filter is properly designed, the power of the attack
does not depend on c but solely on the values of − log(Pfp) and ε. Moreover, the
joint decoder is 1/ log(2) ∼ 1.44 more “powerful” than the single decoder.

B Appendix B: JLT Mechanism

The same analysis holds for the JLT representation described in Section 4. The
main difference lies in the fact that we manipulate differential entropies because
the JLT representation is a real vector. The quantities at stake respectively for
the single and joint decoders are upper bounded, thanks to conditions (10)

I(ỸP ;X) =
L

2
log

(
1 +

1

(c− 1) + Lσ2

)
≤ ε

32 + 2ε(c− 1)L
, (36)

I(ỸP ;P)

c
=

L

2c
log

(
1 +

c

Lσ2

)
≤ ε

32
, (37)

Optimality and Complexity of Inference-Proof

Data Filtering and CQE�

Joachim Biskup1, Piero A. Bonatti2, Clemente Galdi2, and Luigi Sauro2

1 Fakultät für Informatik, TU Dortmund
2 Dip. Ing. Elet. e Tecnologie dell’Informazione, Università di Napoli Federico II

Abstract. The ample literature on confidentiality-preserving data pub-
lishing – and controlled query evaluation (CQE) in particular – leaves
several questions open. Are the greedy data-filtering algorithms adopted
in the literature maximally cooperative? Can novel secure view formats
or answer distortion methods improve security or cooperativeness? What
is the inherent complexity of confidentiality-preserving data publishing
under different constraints, such as cooperativeness and availability? Can
the theoretical results on CQE be systematically extended to more gen-
eral settings? In this paper we answer the above questions using a com-
pletely generic, abstract data filtering framework, independent from any
syntactic details and data source encodings, and compatible with all
possible distortion methods. Some of the main results are: Refusal-based
filterings can be adopted as a normal form for all kinds of filterings;
greedy refusal-based filterings are optimal; cooperativeness checks and
some availability checks are coNP-hard in the simplest case.

Keywords: Controlled query evaluation, Maximally cooperative filter-
ings, Refusals and lies.

1 Introduction

The studies on confidentiality-preserving data publishing introduced a variety
of inference-proof, data filtering methods, including controlled query evaluation
(CQE) as a special case [1–4]. The main goal is protecting confidentiality from
inferences that exploit a mix of background knowledge and data source answers.
In CQE, confidentiality is protected by refusing to answer some queries, by lying,
and by a combination of these two approaches. Data filtering can be dynamic
or static. Dynamic approaches process a stream of queries one by one, and aim
at answering each query correctly whenever the previous answers allow. Static
approaches, instead, construct a secure view of the data source before publishing
it. Many works focussed on databases [1–4]; later studies have been extended to
knowledge bases, where inferences can naturally be automated using standard
semantic web technology [5, 6]. This substantial body of works analyzes in depth
the properties of various query distortion methods (including refusals, lies, and

� This work has been partially supported by the Italian projects PRIN Security Hori-
zons and PON SmartHealth 2.0, and by the German DFG under grant SFB 876/A5.

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 165–181, 2014.
c© Springer International Publishing Switzerland 2014

166 J. Biskup et al.

combined methods) and their mutual relationships. Despite this, several open
questions remain:

1. Most of the static and dynamic CQE methods in the literature construct
secure views by processing a query sequence in a greedy fashion. Since greedy
algorithms, in general, do not yield an optimal solution, there is no guarantee
of obtaining a maximally cooperative confidentiality protection mechanism,
that maximizes the amount of correct information disclosed while protecting
confidentiality. In this paper, we are going to prove that greedy refusal-
based CQE is optimal (w.r.t. different filtering methods, too), while greedy
lie-based CQE is not.

2. The inherent complexity of inference-proof data filtering is not yet known. It
clearly depends on the languages used to describe data sources and formulate
queries. However, even if these languages were tractable (or could be pro-
cessed with an oracle), how much additional complexity would be caused by
confidentiality-preserving query processing? We are going to investigate this
issue with a fully generic account of deterministic, inference-proof data filter-
ing that abstracts away all the details about syntax and distortion methods.
In this framework, the computational complexity of secure, inference-proof
query answering will be investigated under different constraints (e.g. maxi-
mal cooperativeness and selected query preservation, that is, availability).

3. In principle, there is no a priori bound to the range of answer distortion
methods applicable to inference-proof data filtering. Could a novel answer
transformation method improve confidentiality or cooperativeness? With the
help of the abstract data filtering framework we shall answer this question
by showing that every protection method can be turned into an equivalent
refusal-based CQE method. Also lying and combined CQE approaches can
be reduced to pure refusal-based methods, which means that for a smart,
informed attacker there are no real lies.

As a further advantage, the abstract data-filtering framework applies to data
sources of different nature, including databases, RDF stores, OWL ontologies,
and their respective query languages, just to name a few. So, our results apply
to a wide range of information and knowledge systems.

The paper is organized as follows: We start with a brief summary of the liter-
ature on inference-proof query answering and CQE (Sec. 2), then introduce the
abstract framework and prove the reducibility of all deterministic data-filtering
mechanisms to essentially equivalent refusal-based methods (Sec. 3). The com-
plexity analysis is carried out in Sec. 4, followed by a security and optimality
analysis of (the abstract versions of) the greedy CQE mechanisms based on re-
fusals and lies introduced in [3] (Sec. 5). Finally, Sec. 6 is devoted to a discussion
of the paper’s results and future work.

2 Related Work

The systematic studies of inference-proof, secure query answering based on re-
fusals date back at least to [7]. The confidentiality criterion introduced in that

Optimality and Complexity of Inference-Proof Data Filtering and CQE 167

paper is based on the indistinguishability of each information system that en-
tails a secret S from at least another information system that does not entail
S. The same criterion has been systematically adopted later in the literature on
CQE and is embraced by the abstract framework introduced in the following sec-
tion.1 Analogous criteria had already been adopted for addressing information
flow control (e.g. [8]) and inference control problems in non-logical, operational
settings (cf. the non-interference property [9]). A general overview of inference
control can be found in [10, Chapter 4]; [1] surveys a number of deterministic
and probabilistic privacy-preserving methods.

Lie-based approaches are implicit in cover stories and polyinstantiation [11,
12] and have been explicitly studied in a logical, epistemic framework in [13].
However, that paper did not address the indistinguishability-based security cri-
terion of [7].

A first comparison of lies and refusals in terms of that criterion, published
in [2], has been later extended to more general policies and assumptions about
user knowledge in [3]. A hybrid CQE method that combines lies and refusals
is analyzed and compared with “pure” approaches in [4]. These works focus
on dynamic CQE, that will be formalized in the abstract framework in Sec. 5.
Lies, refusals and combined methods were essentially regarded as incomparable
methods, from an information disclosure perspective; with lies, the first answer
distortion may occur earlier, but from that point on the other methods may
obfuscate incomparable sets of answers. With the help of a novel, absolute coop-
erativeness criterion, we shall prove in Sec. 5 that dynamic refusal-based CQE
converges to a maximally cooperative set of views, while the lie-based version
does not.

The representation and query language investigated in the earliest CQE pa-
pers is propositional logic. First-order databases and open queries have been
dealt with in [14, 15]. In both cases, open queries are reduced to propositional
queries. CQE methods have been further extended to handle updates in [16].
Efficient implementations have been studied in [17].

Along the years, CQE has been extended from relational databases to more
general kinds of data sources, such as incomplete databases (e.g. [15]) and OWL
ontologies [5, 6]. The results of [14] are relevant to knowledge bases, too, since
they apply to rich description logics such as ALCIO with boolean role operators.

3 The Abstract Data Filtering Framework

Let D be a set of data sources.2 They can be queried by means of a set of boolean
queries B ⊆ P(D).3 The set B represents the query language, abstracting
away its syntax. A data source d ∈ D is meant to satisfy a query Q ∈ B iff

1 More precisely, the abstract framework adopts the confidentiality criterion for known
potential secrets, cf. [3].

2 To help intuition, the reader may assume that data sources are database instances,
or knowledge bases.

3 P(X) denotes the powerset of X.

168 J. Biskup et al.

d ∈ Q (in other words a query Q is identified with the set of data sources that
satisfy it). For all queries Q ∈B, Q̄ denotes its complement (Q̄ = D \Q).

Restricting the query language to boolean queries helps in abstracting away
query language syntax and data source structure; it is not a severe restriction,
since open queries can be reduced to suitable sets of boolean queries (cf. [14, 15]).
In general, B does not equal P(D), because the query language may not be
expressive enough to encode all boolean properties. In a propositional framework,
where D is a finite set of interpretations and queries are propositional formulae,
B would cover all P(D).

If two real-world data sources answer each possible query in the same way,
then—from a confidentiality perspective—they are equivalent, and can be re-
garded as a single entity in the abstract framework. Accordingly, for all d1, d2 ∈
D such that d1 �= d2, we assume that there exists a query Q ∈B that is satisfied
by exactly one of d1 and d2 (formally, Q ∩ {d1, d2} �= ∅ and {d1, d2} �⊆ Q).

The abstract framework further comprises a nonempty set of secrets S ⊆
B. We assume that for all S ∈ S, D �⊆ S, otherwise S could not be kept
confidential because all data sources would satisfy it (like a tautology). Note
that this framework, based on boolean queries, can represent k-anonymity as a
special case:

Example 1. Each row 〈I1, . . . , In〉 in a k-anonymized table with attributes
〈A1, . . . , An〉 is like a boolean statement:

“there exist ≥ k individuals such that A1 ∈ I1, . . . , An ∈ In”

where I1, . . . , In represent abstracted values such as incomplete birthdates, salary
ranges, and so on. Similarly, secrets are boolean queries like:

“there exist x individuals, 0 < x < k, such that A1 ∈ I1, . . . , An ∈ In”. ��
Secrets are protected by computing filtered views of the data sources, by means

of a filtering function f : D→ V. In general, we place no restriction on V, that
is, on the structure of filtered views, so as to cover all possible query modification
methods (refusals, lies, and more).

For example, the filterings based on refusal can be represented by setting
V = P(D); the answer to a query Q evaluated against f(d) is “yes” if f(d) ⊆ Q
(i.e., all data sources in f(d) satisfy Q), “no” if f(d) ⊆ Q̄ (i.e., none of the
data sources in f(d) satisfy Q), and “query refused” otherwise. Since refusal-
based CQE is not allowed to lie, refusal-based filterings satisfy the property
d ∈ f(d), for all data sources d, which guarantees that the real data source d
is compatible with all the answers computed against the filtering. The filterings
based on lies can be encoded in a similar way, with the restriction that f(d) is
always a singleton (so there are no refused answers). Differently from refusals, a
data source d is not guaranteed to belong to f(d). In combined methods, f(d)
may contain multiple data sources (i.e., some queries may be refused) none of
which is d (that is, some answers may be lies).

Definition 1. Two data sources d and d′ are indistinguishable with respect to
f iff f(d) = f(d′). In this case, we write d ∼f d′.

Optimality and Complexity of Inference-Proof Data Filtering and CQE 169

Note that ∼f is an equivalence relation. The equivalence class of a data source d
in ∼f will be denoted by [d]f . We denote with [·]f the function that maps each
d ∈ D on [d]f .

The following definition of secure filtering generalizes the notion of confiden-
tiality adopted in the CQE literature. A smart, informed attacker, who knows
the protection method f , given an output v ∈ V, may invert f and compute the
set f−1(v) = {d | f(d) = v}. If all d ∈ f−1(v) satisfy a secret S ∈ S (that is,
f−1(v) ⊆ S), then the attacker can reliably conclude that the data source being
protected with f satisfies the secret. Therefore, for all v ∈ V, f−1(v) should not
be included in any secret S. Note that d ∈ f−1(v) iff f−1(v) = [d]f , so the above
confidentiality criterion becomes:

Definition 2. A filtering f is secure (i.e. confidentiality preserving) iff for all
datasets d ∈ D and all secrets S ∈S, [d]f �⊆ S.4

Example 2. Suppose that the data source instances are the interpretations of the
propositional language with propositional symbols p and q, and that queries are
propositional formulae. This setting can be represented in the abstract frame-
work as follows. Interpretations can be represented by the subsets of {p, q}, so
let D = P({p, q}). There are 16 different queries up to logical equivalence. Each
sentence ϕ can be represented by {d ∈ D | d |= ϕ}, so B = P(D). Assume that
p is the only secret. The corresponding query is S = {{p}, {p, q}} and S = {S}.
A possible filtering f : D → P(D) is f(d) = {d}. This filtering answers each
query Q honestly: f(d) ⊆ Q iff d ∈ Q. This filtering is not secure, because f is
a bijection, therefore, for all d ∈ S, [d]f = {d} ⊆ S. Another possible filtering
with the same type is g(d) = {d\{p}}. This filtering sometimes lies, for instance
g({p, q}) = {{q}} ⊆ {∅, {q}} which, in logical terms, means that g answers
“yes” to query ¬p, although {p, q} |= p. This filtering is secure: for all d ∈ D,
d \ {p} ∈ [d]g so [d]g �⊆ S. ��

The abstract framework highlights that confidentiality does not depend on
the structure and nature of the filtered views (i.e., it does not depend on V).
Indeed, from Def. 2 we easily get:

Proposition 1. A filtering f is secure iff [·]f is secure.

Therefore, every secure filtering f can be replaced with the “standard” filtering
[·]f , preserving confidentiality. Note that [·]f has the same type as refusal filter-
ings ([·]f : D → P(D)), and that for all d ∈ D, d ∈ [d]f , which implies that
the filtering [·]f never lies (see the discussion before Def. 1). Consequently, [·]f is
in all respects a refusal-based filtering, and the above proposition actually says
that every secure filtering can be equivalently replaced with a refusal filtering, as
far as the confidentiality criterion is the one formalized in Def. 2.

4 This definition corresponds to the preservation of potential secrets, as opposed to
secrecies [3]. The latter would require both [d]f �⊆ S and [d]f �⊆ S̄. Clearly, secre-
cies can be simulated with potential secrets by including in S both S and S̄, so
Definition 2 provides the most general formulation.

170 J. Biskup et al.

Alternative secure filterings can be compared based on the accuracy of the
answers they return. Again, accuracy is measured in terms of the inferences that
a smart, informed user can draw from the filtered view: the smallest f−1(v), the
largest the set of queries that can be answered using f−1(v) (i.e., those whose
answer is invariant over f−1(v)). Using the relationships between f−1 and [·]f ,
the above accuracy criterion can be formalized as follows:

Definition 3. A filtering f is more cooperative than a filtering g iff for all
d ∈ D, [d]f ⊆ [d]g. If f1 is more cooperative than f2 then we write f1 * f2. If
f1 * f2 and f2 �* f1, then we write f1 + f2.

Maximally cooperative filterings are called optimal.

Definition 4. A secure filtering f is optimal iff there exists no secure filtering
f ′ such that f ′ + f .

Example 3. The filtering g defined in Example 2 is optimal. It partitions D in
two equivalence classes: {∅, {p}} and {{q}, {p, q}}. Each filtering h + g must
split either the former or the latter class. In the first case, one of the equivalence
classes induced by h is {p} ⊆ S. In the other case, one of the new equivalence
classes is {p, q} ⊆ S. So h cannot possibly be secure. ��

Proposition 2. Let g = [·]f be the standard refusal-based filtering corresponding
to f . Then f is optimal iff g is.

Proof. Note that if g = [·]f , then for all d ∈ D, [d]f = [d]g. The proposition
immediately follows. ��

Summarizing, the standard refusal-based filtering [·]f induced by any filtering
f preserves f ’s security and optimality properties. Thus, standard refusal based
filterings can be adopted as a sort of normal form for arbitrary filterings, as far
as the reference criteria are those formalized by Def. 2 and Def. 4.

4 Complexity

In this section we present some relevant decision problems related to secure data
filtering, and study their computational complexity. We are primarily interested
in checking whether confidentiality preservation is intrinsically intractable under
different constraints, abstracting away the additional complexity of specification
and query languages. We shall choose problem size measures accordingly. Let us
start by introducing the decision problems of interest:

Definition 5. Let f range over filtering functions with type D → V, where V
is an arbitrary set of views. Consider the following decision problems:

Security checking: Given f and S, decide whether f is a secure filtering;
Optimal security checking: Given f and S, decide whether f is an optimal

secure filtering;

Optimality and Complexity of Inference-Proof Data Filtering and CQE 171

Pointwise availability: Given D, a data source d ∈ D, and a boolean query
Q ⊂ D, decide whether there exists a secure filtering f such that [d]f ⊆ Q
iff d ∈ Q;

Global availability: Given D and a boolean query Q ⊂ D, decide whether
there exists a secure filtering f such that for all d ∈D, [d]f ⊆ Q iff d ∈ Q.

In other words, the two availability problems aim at preserving confidentiality
without modifying the answers to the given query Q. The goal of pointwise
availability is preserving Q over a single data source of interest d (e.g. the actual
data source being protected). The goal of global availability is preserving Q
across all possible datasets, which may be useful in the presence of updates, that
may transform the current data source d into a member of another equivalence
class.

Complexity will be analyzed under the following assumptions: (i) D is finite5

and S = {S1, . . . , Sn}; (ii) secrets are not violated a priori, that is, for all
1 ≤ i ≤ n, Si ⊂ D; (iii) V contains at least two views, |V | ≥ 2. If a filtering
f is part of a problem instance, then it is encoded by its graph.6 This encoding
ensures that f and [·]f can be computed in polynomial time.

Our complexity results make use of the following classical NP-complete prob-
lem [18]:

Definition 6 (Set Splitting Problem). Let {C1, . . . , Cm} be a collection of
subsets of a ground set G. Decide whether there exists a bipartition (G1, G2) of
G such that for each 1 ≤ i ≤ m, Ci �⊆ G1 and Ci �⊆ G2.

Theorem 1. Security checking and global availability are in P . Pointwise avail-
ability is NP-complete whereas optimal security checking is coNP-complete.

Proof. Security checking. It suffices to check that for each S ∈ S and for all
d ∈ D, [d]f �⊆ S. Since [d]f can be computed in polynomial time, security
checking can be solved in polynomial time w.r.t. |D |.

Global availability. Let fQ be a characteristic filtering of Q, that is: fQ(d) =
v1, if d ∈ Q, fQ(d) = v2, otherwise (where v1 and v2 are two distinct views in
V). The filtering fQ induces a bipartition of D in two equivalence classes Q and
Q = D \ Q. Let f be a filtering such that for all d ∈ D, [d]f ⊆ Q iff d ∈ Q.
Clearly, if d ∈ Q, then [d]f ⊆ Q, whereas if d �∈ Q then [d]f ⊆ Q, that is fQ , f .
Consequently, if f is secure, then also fQ is secure. It follows that the global
availability problem can be answered by checking whether fQ is secure. Since
security checking is tractable, global availability is tractable, too.

Optimal security checking. By the results of Sec. 3, f is not optimal iff there
exists a secure, standard refusal-based filtering [·]g + f . The filtering [·]g can be
guessed in polynomial time, and checking that it is secure and that [·]g + f is
in P, too. Therefore, checking that f is not optimal is in NP.

5 This assumption applies directly to propositional frameworks such as those adopted
in [2–4]. However, also first-order database frameworks and open queries can be
reduced to a propositional model, see for example [17].

6 Recall that the graph of f is { (d, f(d)) | d ∈ D }.

172 J. Biskup et al.

Hardness is proved by reducing the set splitting problem to the problem of
checking that a degenerate filtering f (i.e. a constant filtering, inducing a single
equivalence class) is not optimal. Given an instance 〈G, {C1, . . . , Cm}〉 of the set
splitting problem, let D = G and S = {C̄1, . . . , C̄m} where for each 1 ≤ i ≤ m,
C̄i = D \ Ci. Now f is not optimal iff there exists a secure filtering g such that
g + f . Since f is degenerate, this is equivalent to say that there exist a secure
filtering g and a dataset d such that [d]g ⊂ D. Consider the filtering g′ such that
for all d′ ∈ D, g′(d′) = v1 if d′ ∈ [d]g, and g′(d′) = v2 if d′ �∈ [d]g (where v1 and
v2 are two distinct views). Notice that (i) g′ + f , (ii) g′ induces a bipartition
(G1, G2) of G such that G1 = [d]g and G2 = D \ [d]g, (iii) since g is secure and
g * g′, g′ is secure as well, that is for each 1 ≤ i ≤ m, G1 �⊆ C̄i and G2 �⊆ C̄i.
This is equivalent to say that Ci �⊆ G1 and Ci �⊆ G2. It follows that f is not
optimal iff there exists a set splitting (G1, G2) for {C1, . . . , Cm}.

Pointwise availability. Given a query Q and a dataset d, let f be a filtering
such that [d]f ⊆ Q iff d ∈ Q. Consider two distinct views v1, v2 ∈ V and a
filtering f ′ such that for all d′ ∈ D f ′(d′) = v1 if d′ ∈ [d]f , and f ′(d′) = v2,
otherwise. Clearly, f ′ , f , therefore if f is secure, then f ′ is secure as well. This
means that in order to check pointwise availability it suffices to guess in linear
time a subset Q′ ⊆ Q if d ∈ Q (resp. Q′ ⊆ Q if d �∈ Q) and check whether the
characteristic filtering fQ′ (resp. fQ′) is secure. Since security checking is in P ,
pointwise availability is in NP.

Hardness is proved by reducing the set splitting problem to pointwise avail-
ability. That is, given an instance of the set splitting problem, we transform it
into an instance of the pointwise availability problem such that there exists a
secure filtering f for the latter iff there exists a bipartition for the former.

Given an instance 〈G, {C1, . . . , Cm}〉 of the set splitting problem, we construct
an instance (D, d,Q,S) for the pointwise availability problem as follows: let
D = G ∪ {d0}, where d0 �∈ G, d ∈ G, Q = G and S = {S0, S1, . . . , Sm} where
S0 = {d0} and for each 1 ≤ i ≤ m, Si = (Q \ Ci) ∪ {d0}. By applying the
same argument as for optimal security checking, it can be proved that there
exists a secure filtering f for S such that [d]f ⊆ Q iff there exists a secure
filtering f ′ that induces a bipartition of D in two equivalent classes H1 = [d]f
and H2 = D \ [d]f . By definition f ′ is secure iff for all 0 ≤ i ≤ m, H1 �⊆ Si and
H2 �⊆ Si. In particular, we have that H2 �⊆ S0 implies that H2∩Q �= ∅, therefore
G1 = H1 and G2 = H2 \ {d0} are a bipartition of G.

Finally, we have that, for all 1 ≤ i ≤ m (i) G1 = H1 �⊆ Si = (G\Ci)∪{d0} ⇐⇒
Ci ∩ G2 �= ∅ and (ii) H2 �⊆ Si ⇐⇒ Ci ∩ G1 �= ∅. The two latter relations are
equivalent to Ci �⊆ G1 and Ci �⊆ G2, which means that (G1, G2) is a set splitting
for {C1, . . . , Cm}. ��

4.1 Poly-Time Computability of Optimal Filterings

There exist special cases in which optimal filterings can be computed in polyno-
mial time. Let us start by introducing some terminology.

We call a data source d free if it does not belong to any secret (in logical
terms, all secrets are false in d). Furthermore, we say that a secret S exclusively

Optimality and Complexity of Inference-Proof Data Filtering and CQE 173

includes d if d belongs to S and it does not belong to any other secret S′ �= S
(in logical terms, the only secret satisfied by d is S).

An optimal filtering f secure for a set of m secrets S = {S0, . . . , Sm−1} can
be easily constructed if the sets Si are non-overlapping (i.e. secrets are mutually
inconsistent) and at least m free data sources d0, . . . , dm−1 are available. To prove
this, consider a filtering f in which equivalence classes are obtained as follows:
for each di ∈ {d0, . . . , dm−1}, let [di]f = Si ∪ {di}; for each d �∈ ∪m−1

i=0 Si ∪
{d0, . . . , dm−1} let [d]f = {d}. It is easy to see that this filtering function is
secure, since no [di]f is included in any secret Sj . Optimality follows immediately
by observing that every partition of [di]f contains a subset of Si, and hence it
induces a non-secure filtering.

Another assumption (perhaps more frequently satisfied in practice) under
which optimal filterings can be found in polynomial time is the following: each
Si exclusively includes at least one data source7 and a sufficient number of free
data sources exist. The exact number k of free data sources is specified in the
next theorem, and is bounded by the number of secrets.

Theorem 2. Let S = {S0, . . . , Sm−1} and assume that each Si exclusively in-
cludes at least one data source. Furthermore, let k be the number of secrets that
exclusively include exactly one data source. If there exist at least k distinct, free
data sources, then an optimal secure filtering f for S can be computed in poly-
nomial time.

Proof. For each i = 0, . . . ,m− 1, let Si = Ci∪Ei, where Ci are the data sources
that Si shares with the other secrets in S, while Ei contains the data sources
that exclusively belong to Si. By hypothesis, |Ei| ≥ 1. If |Ei| > 1, let S′

i = Si,
otherwise, let S′

i = Ci ∪ Ei ∪ {d′i}, where each d′i is a distinct, free data source.
Clearly the total number of free data sources used to construct the sets S′

i is k.
Observe that, for each i, there exist at least two data sources, {di, d′i} ⊆ S′

i, that
belong neither to S′

j nor to Sj , for each j �= i. Let DS = ∪m−1
i=0 S′

i.

Define f : D→ D as follows:

– ∀d ∈ δ0
def
= (S′

0 \ {d′0}) ∪ {d′1}, let f(d) = d′1
– ∀d ∈ δi

def
= (S′

i \ ∪j<iδj) ∪ {d′i+1 mod m}, with 1 ≤ i ≤ m − 1, let f(d) =
d′i+1 mod m

– ∀d ∈ D \DS , let f(d) = d

Note that di ∈ Si while d′i may or may not belong to Si. Furthermore, di ∈ δi
while d′i ∈ δi−1, with the special case d′0 ∈ δm−1. This implies, d′i �∈ δi and
δi ⊆ Si ∪ {d′i+1 mod m}.

First we show that f is secure for S. For each δi we have: (a) di ∈ δi, and (b)
d′i+1 mod m ∈ δi. By (a), since di exclusively belongs to Si, it follows that δi �⊆ Sj

for each j �= i. By (b), since d′i+1 mod m either exclusively belongs to Si+1 mod m

7 In logical terms, this means that each secret must be consistent with the negation
of all the other secrets, that is, a kind of logical independence between secrets.

174 J. Biskup et al.

or is a free data source, it follows that, δi �⊆ Si. Finally, for each d ∈ D \DS

and for all i, [d]f ∩ Si = ∅. This proves security.
Concerning optimality, assume per absurdum that there exists a secure fil-

tering function g + f . By definition, for each d ∈ D, [d]g ⊆ [d]f where the
containment is strict for at least one data source. Clearly, for each d ∈D\DS it
holds that [d]g = [d]f = {d}. Therefore, there exists d ∈ DS such that [d]g ⊂ [d]f
which means that g partitions [d]f into at least two parts, say [d1]g and [d2]g.
Since [d]f = δi ⊆ Si ∪ {d′i+1 mod m} it holds that either [d1]g ⊆ Si or [d2]g ⊆ Si,

i.e. g is not a secure filtering for S. ��

5 Greedy CQE and Optimality

A dynamic CQE method [3, 4] is a greedy algorithm that answers a given (pos-
sibly infinite) sequence of queries Q1, Q2, . . . , Qi, . . ., in the order they are pre-
sented, and for each Qi returns the correct answer whenever this is safe with
respect to how Q1, . . . , Qi−1 have been answered. The decision of whether the
correct answer to the current query can be safely returned is based on a boolean
censor function that given a data source, the knowledge disclosed by the pre-
vious answers (traditionally called log), and the current query Qi, returns true
iff the answer to Qi needs to be modified to preserve confidentiality. Formally,
the type of the censor function is D×P(D)×B → {true, false}. The second
parameter of the censor encodes the log as the set of all the data sources that
answer the previous queries as observed in the history.

In the literature, answers are modified by rejecting the query (refusals), chang-
ing the result (lies), and combinations thereof. In the abstract framework, the
filterings produced by dynamic CQE will be represented as functions f : D →
P(D), adopting the convention that the answer to a query Q evaluated against
f(d) is “yes” if f(d) ⊆ Q (i.e., all data sources in f(d) satisfy Q), “no” if f(d) ⊆ Q̄
(i.e., none of the data sources in f(d) satisfy Q), and “query refused” otherwise.

Greedy approaches have also been used to statically construct secure views.
See for example [5], where a selected sequence of queries is pre-processed using
the same greedy approach sketched above; the sequence of answers is used to
construct a secure knowledge base view.

In the following, we assume that B is denumerable, since greedy filtering
constructions need to iteratively process all possible queries.

5.1 Greedy CQE Based on Refusals

When confidentiality is protected with refusals, the decision of whether the cur-
rent query should be answered or refused is based on the refusal censor function.
The original, logic-based formulation of the refusal censor is: if either the cor-
rect answer to the current query Qi or its negation (together with the previous
answers) implies a secret, then the query must be refused. In the abstract frame-
work, this definition becomes:

cenr(d, L,Q) =

{
true if for some S ∈S, either L ∩Q ⊆ S or L ∩ Q̄ ⊆ S;
false otherwise.

Optimality and Complexity of Inference-Proof Data Filtering and CQE 175

Since this censor does not depend on d we shall omit the first argument and
write cenr(L,Q). The log, for a given d ∈ D, is maintained as follows:

Li+1(d) =

⎧⎨⎩Li(d) if cenr(Li(d), Qi+1) = true (refusal);
Li(d) ∩Qi+1 if cenr(Li(d), Qi+1) = false and d ∈ Qi+1 (yes);
Li(d) ∩ Q̄i+1 if cenr(Li(d), Qi+1) = false and d ∈ Q̄i+1 (no).

The initial log L0(d) represents the background knowledge of the user. For sim-
plicity, in our abstract framework, we assume that such background knowledge
is already captured by D and assume that L0(d) = D. Note that at each step,
the log represents the conjunction of answers that have been returned up to that
point.

Now a greedy refusal filtering fr can be defined as follows: given any enumer-
ation Q1, Q2, . . . , Qi, . . . of B, and the corresponding sequence of logs 〈Li(d)〉i,

fr(d) =
⋂
i

Li(d) .

Greedy CQE methods have been proved to be secure at all finite prefixes of
the query sequence (cf. [3, Def. 1]), while the above greedy refusal filtering (as
well as the greedy lying filtering defined in the next section) captures the limit
of the logs Li(d). In order to prove security at the limit, we need to assume that
the query language is compact like first-order logic.8 In the abstract framework,
compactness is defined as follows:

Definition 7. B is compact if for all (possibly infinite) B′ ⊆ B and for all

Q ∈ B,
⋂
{Q′ | Q′ ∈ B′} ⊆ Q only if there exists a finite B′′ ⊆ B′

such that⋂
{Q′′ | Q′′ ∈B′′} ⊆ Q.

Theorem 3. If B is compact, then greedy refusal filterings are secure.

Proof. Suppose that the greedy refusal filtering fr generated by some query
sequence 〈Qi〉i is not secure, and let d be a data source such that [d]fr ⊆ S, for
some secret S ∈ S. By definition, fr(d) is the intersection of the non-refused
queries of B, therefore, by compactness, there is a log Lk(d) such that Lk(d) ⊆ S.
Without loss of generality, let k be the minimal such index. This implies that
Qk is not refused, otherwise Lk(d) = Lk−1(d), contradicting the minimality of k.
Then, either Lk(d) = Lk−1(d) ∩Qk ⊆ S or Lk(d) = Lk−1(d) ∩ Q̄k ⊆ S; in both
cases, cenr(Lk−1, Qk) = true. But then Qk should be refused—a contradiction.

��

Greedy refusal filterings can be proved to be optimal under mild hypotheses:

1. B is closed under finite set union, finite intersection, and complement. In
logical terms: Queries are closed under negation and under finite conjunction
and disjunction.

8 First-order logic’s compactness states that if an infinite set of sentences T entails a
sentence ϕ, then some finite subset of T must entail ϕ, too.

176 J. Biskup et al.

2. The set of secrets S is finite.

First we need a simple technical lemma that confirms that greedy refusal filter-
ings tell no lies:

Lemma 1. For all d ∈ D, d ∈ fr(d).

Proof. It suffices to prove, by induction on i, that for all non-negative integers
i, d ∈ Li(d). The base case is trivial, since L0(d) = D. The induction step is a
straigthforward consequence of the induction hypothesis (d ∈ Li−1(d)) and the
definition of Li(d). ��

Theorem 4. If the above two hypotheses hold, than every greedy refusal filtering
fr is optimal.

Proof. Suppose not, which implies that for some d ∈ D, its equivalence class
[d]fr can be split into two nonempty partitions D and E both of which intersect
the complements of all secrets. In other words, assuming that S = {S1, . . . , Sn},
there must be data sources di ∈ D∩ S̄i and ei ∈ E ∩ S̄i (1 ≤ i ≤ n). Since for all
i = 1, . . . , n, di and ei belong to [d]fr by assumption (that is, fr(di) = fr(ei) =
fr(d)), Lemma 1 implies:

{d1, . . . , dn, e1, . . . , en} ⊆ fr(d) . (1)

Recall that all distinct data sources can be distinguished with some query and
B is closed under complements. So, for each pair di, ej there exists a query Qi,j

such that di ∈ Qi,j and ei ∈ Q̄i,j . Moreover, since B is closed under finite unions
and intersections, it contains the query:

Q∗ =
n⋃

i=1

n⋂
j=1

Qi,j ,

that has the property of containing all di and none of the ei (1 ≤ i ≤ n). Now let
Qk be the element in the enumeration of B such that Qk = Q∗. By definition,
Lk−1(d1) ⊇ fr(d1) = fr(d), therefore – using the property of Q∗ and (1) –
{d1, . . . , dn} ⊆ Lk−1(d1) ∩Qk and {e1, . . . , en} ⊆ Lk−1(d1) ∩ Q̄k. It follows that
cenr(Lk−1(d1), Qk) = false. But then, by definition, Lk(d1) = Lk−1(d1) ∩ Qk,
and hence fr(d1) does not contain any of the ei. Since fr(d1) = fr(d), this
contradicts (1). ��

Theorem 4 can be proved also under a different, alternative hypothesis: namely,
that the query language is expressive enough to capture all possible sets of in-
formation sources (as it happens in finite propositional frameworks).

Theorem 5. If B = P(D), then greedy refusal filterings are optimal.

Proof. Similar to the proof of Theorem 4. The query Q∗ containing d1, . . . , dn
and none of e1, . . . , en exists by hypothesis. ��

Optimality and Complexity of Inference-Proof Data Filtering and CQE 177

5.2 Greedy CQE Based on Lies

When confidentiality is protected with lies, the decision of whether the true an-
swer to the current query should be returned is based on the lie censor function.
Its logic-based definition is: if the honest answer to the current query Qi (to-
gether with the previous answers) entails a disjunction of secrets, then lie. The
corresponding definition in the abstract framework is:

cen l(d, L,Q) =

⎧⎨⎩
true if d ∈ Q and L ∩Q ⊆

⋃
{S | S ∈S};

true if d ∈ Q̄ and L ∩ Q̄ ⊆
⋃
{S | S ∈S};

false otherwise.

The log, for a given d ∈D, is maintained as follows:

Li+1(d) =

⎧⎪⎪⎨⎪⎪⎩
Li(d) ∩Qi+1 if cen l(d, Li(d), Qi+1) = false and d ∈ Qi+1 (yes);
Li(d) ∩ Q̄i+1 if cen l(d, Li(d), Qi+1) = false and d ∈ Q̄i+1 (no).
Li(d) ∩Qi+1 if cen l(d, Li(d), Qi+1) = true and d ∈ Q̄i+1 (lie).
Li(d) ∩ Q̄i+1 if cen l(d, Li(d), Qi+1) = true and d ∈ Qi+1 (lie).

Now greedy lying filterings fl can be defined analogously to greedy refusal fil-
terings: given any enumeration Q1, Q2, . . . , Qi, . . . of B, and the corresponding
sequence of logs Li(d), let fr(d) =

⋂
i Li(d) .

Since the invariant preserved by the lying censor is stronger than the invariant
maintained by the refusal censor, security can only be guaranteed if the disjunc-
tion of all secrets is not trivially violated a priori, that is, if D �⊆

⋃
{S | S ∈S}.

Theorem 6. If B is compact and closed under complements, and if D �⊆
⋃
{S |

S ∈S}, then greedy lying filterings are secure.

Proof. Suppose that the greedy lying filtering fl generated by some query se-
quence 〈Qi〉i is not secure, and let d be a data source such that [d]fl ⊆ S, for
some secret S ∈ S. By definition, fl(d) is an intersection of queries (and com-
plements thereof, that are in B as well), therefore, by compactness, there is a
log Li(d) such that Li(d) ⊆ S ⊆

⋃
{S | S ∈S}. Let k be the minimal index such

that Lk(d) ⊆
⋃
{S | S ∈S}. This implies that cen l(d, Lk−1(d), Qk) = true, and

that both Lk−1(d) ∩ Qk ⊆
⋃
{S | S ∈ S} and Lk−1(d) ∩ Q̄k ⊆

⋃
{S | S ∈ S}

hold. But then Lk−1(d) ⊆
⋃
{S | S ∈S}, contradicting the minimality of k. ��

Using (a) the definition of the logs, and (b) the assumption that two distinct
data sources can be distinguished by at least one query, it can be proved that:

Proposition 3. If D �⊆
⋃
{S | S ∈S}, then fl(d) is a singleton.

Proof. (Sketch) It can be proved by induction that Li(d) �⊆
⋃
{S | S ∈S}, for all

i ≥ 0. In particular, this ensures that fl(d) is nonempty. Now assume that fl(d)
contains two different data sources d1 and d2. There must be a query Qk in the
enumeration of B that contains exactly one of d1 and d2. Then, by definition,
Lk+1(d) must not contain both, and the same holds for fl(d) ⊆ Lk+1(d) (a
contradiction). ��

178 J. Biskup et al.

The above proposition makes it explicit that lying filterings answer all queries
(not always truthfully), as required by cover stories. Note that queries are an-
swered as if d were the member of fl(d).

Theorem 7. Greedy lying filterings are not optimal, in general, even if the hy-
potheses of Theorem 4 and Theorem 5 hold.

Proof. Take the abstract version of the propositional framework with secrets
{p, q} and background knowledge r → p ∨ q. Formally, let D = P({p, q, r}) \
{{r}}, B = P(D), and S = {Sp, Sq}, where Sp = {d ∈ D | p ∈ d} and Sq =
{d ∈ D | q ∈ d}. For all enumerations of B, the corresponding lying filtering
fl maps all d onto {∅}, that is, fl induces a single equivalence class and for all
data sources d, f ′

l (d) = ∅ (the data source where p, q, r are false). The optimal
filtering, instead, yields two equivalence classes containing the data sources that
include r and those that don’t (respectively), that is, (in propositional terms)
the refusal filtering permits to answer the queries r and ¬r correctly. ��

Suboptimal filterings (that in some sense mean less cooperative answers) are
the price to pay for cover stories, that is, the cost of avoiding explicit, visible
answer distortions (such as refusals). As we pointed out, this requires protecting
disjunctions of secrets (encoded by unions of secrets in the abstract framework)
rather than individual secrets ([3, Prop. 4] shows why this is necessary). Not
surprisingly, the need of preserving this stronger variant makes the lying filtering
less cooperative.

In the previous works on CQE, the lack of an independent notion of filtering
optimality prevented a thorough comparison of lying and refusal-based methods.
It was only established that on a same query sequence, the lying method starts
distorting queries before the refusal method, but after the first distortion the
answers returned by the two methods are incomparable, in general. Thanks to
our completely abstract notions of filtering and optimality (that are compatible
with all possible output domains V), now we know that refusal-based CQE is at
least as cooperative as any other deterministic data-filtering method, including
those that do not fall within the category of CQE.

6 Discussion and Future Work

The abstract framework introduced in Sec. 3 covers all the concrete, determinis-
tic data-filtering mechanisms introduced in the literature, and more. It is largely
independent from any syntactic detail of the query languages; it makes no as-
sumption on the structure of data sources, that may be standard relational
database instances, XML documents, RDF/OWL knowledge bases, and so on;
it makes no assumption on the structure of secure views, that may be thought of
as incomplete databases, sets or sequences of query answers, labelled knowledge
bases, as in [19, 20], and so forth. In particular, the generic representation of
secure views covers answer distortion mechanisms different from the standard
approaches based on refusal and lies (e.g. partial or “blurred” answers that are

Optimality and Complexity of Inference-Proof Data Filtering and CQE 179

neither a “yes” nor a “no”, such as returning birth year instead of a full birth
date).

At this abstraction level, it is possible to compare very different mechanisms
(static, dynamic, based on different answer distortion methods) in terms of the
amout of information they disclose, that is, in terms of the mechanism’s cooper-
ativeness. It is also possible to define an optimality criterion (corresponding to
maximal cooperativeness).

We showed that each of the above different mechanisms f can be associated
to a refusal-based censor [·]f that conveys to a smart, informed user exactly
the same amount of information as f , and hence preserves important properties
such as security and optimality (cf. Prop. 1 and Prop. 2). This result generalizes
to the above variety of settings the analysis of unreliable answers (sometimes
called potential lies) [3, Sec. 3.3 and Theorem 13]. Of course, this does not mean
that lies can be simply replaced by refusals: cover stories are incompatible with
refusals, and although a smart user who knows the protection method f may tell
which answers are unreliable as if they were refused, the system should not be
allowed to reject any query. The issue of the value and function of the verbatim
meaning of answers will be dealt with in an extended version of this paper.
The standardized representation of filterings as refusal-based filterings may also
become a useful tool for proving general properties of CQE methods.

We proved further nice properties of refusal filterings. Under mild assumptions
(B should be compact and S finite), greedy, refusal-based CQE remains secure
at the limit of the query sequence (Theorem 3), and the disclosed information
converges to an optimal (maximally cooperative) secure filtering (cf. Theorems 4
and 5). On the contrary, the greedy lying filtering is not optimal, in general
(Theorem 7). The consequences are novel: previously, refusal and lies were simply
considered incomparable protection methods. Non-optimality depends on the
need of protecting the union of all secrets—which is known to be an essential
prerequisite to the security of lie-based CQE. The study of optimality with
respect to this stronger constraint will be a subject of future work.

We introduced a few interesting decision problems related to CQE: Security
checking (i.e. checking whether a given filtering f is secure); Optimal security
checking (which further checks whether f is optimal); Pointwise and Global
availability (that check whether there is a way of preserving confidentiality that
preserves the answers to a given query Q). The inherent complexity of these
problems has been analyzed assuming that the list of possible data sources is
part of the input and that the given filterings are computable in polynomial
time, in order to remove all the complexity related to the structure of data
sources and the filtering method. In this setting, security checking and global
availability are in P, while pointwise availability and optimal security are hard
(NP and coNP-complete, respectively), as proved in Theorem 1. Interestingly,
preserving a query Q in a single, given data source (if at all possible) is harder
than preserving Q in all data sources, because in the latter case it is easier
to detect that the problem has no solution. These results tells us that in no
concrete framework the pointwise availability problem and the optimal security

180 J. Biskup et al.

checking problem can be tractable. The construction of optimal secure filterings
becomes easier in some cases, e.g. when secrets satisfy a certain degree of logical
independence (Theorem 2). Moreover, greedy refusal-based filterings constitute
a method for approximating an optimal secure filtering on a query-by-query
basis (Theorem 4). We are planning to investigate the above decision problems
in more concrete settings and derive specific complexity bounds. We are also
going to extend our results to availability problems where multiple queries must
be simultaneously preserved.

References

1. Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing:
A survey of recent developments. ACM Comput. Surv. 42(4) (2010)

2. Biskup, J.: For unknown secrecies refusal is better than lying. Data Knowl.
Eng. 33(1), 1–23 (2000)

3. Biskup, J., Bonatti, P.A.: Lying versus refusal for known potential secrets. Data
Knowl. Eng. 38(2), 199–222 (2001)

4. Biskup, J., Bonatti, P.A.: Controlled query evaluation for known policies by com-
bining lying and refusal. Ann. Math. Artif. Intell. 40(1-2), 37–62 (2004)

5. Bonatti, P.A., Sauro, L.: A confidentiality model for ontologies. In: [21], pp. 17–32
6. Grau, B.C., Kharlamov, E., Kostylev, E.V., Zheleznyakov, D.: Controlled query

evaluation over OWL 2 RL ontologies. In: [21], pp. 49–65
7. Sicherman, G.L., de Jonge, W., van de Riet, R.P.: Answering queries without

revealing secrets. ACM Trans. Database Syst. 8(1), 41–59 (1983)
8. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),

236–243 (1976)
9. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-

posium on Security and Privacy, pp. 11–20 (1982)
10. Biskup, J.: Security in Computing Systems - Challenges, Approaches and Solutions.

Springer (2009)
11. Lunt, T.F.: Polyinstantiation: An inevitable part of a multilevel world. In: CSFW,

pp. 236–238. IEEE Computer Society (1991)
12. Sandhu, R.S., Jajodia, S.: Polyinstantation for cover stories. In: Deswarte, Y.,

Quisquater, J.-J., Eizenberg, G. (eds.) ESORICS 1992. LNCS, vol. 648, pp. 307–
328. Springer, Heidelberg (1992)

13. Bonatti, P.A., Kraus, S., Subrahmanian, V.S.: Foundations of secure deductive
databases. IEEE Trans. Knowl. Data Eng. 7(3), 406–422 (1995)

14. Biskup, J., Bonatti, P.A.: Controlled query evaluation with open queries for a
decidable relational submodel. Ann. Math. Artif. Intell. 50(1-2), 39–77 (2007)

15. Biskup, J., Tadros, C., Wiese, L.: Towards controlled query evaluation for in-
complete first-order databases. In: Link, S., Prade, H. (eds.) FoIKS 2010. LNCS,
vol. 5956, pp. 230–247. Springer, Heidelberg (2010)

16. Biskup, J., Gogolin, C., Seiler, J., Weibert, T.: Inference-proof view update trans-
actions with forwarded refreshments. Journal of Computer Security 19(3), 487–529
(2011)

17. Biskup, J., Hartmann, S., Link, S., Lochner, J.H.: Efficient inference control for
open relational queries. In: Foresti, S., Jajodia, S. (eds.) Data and Applications
Security XXIV. LNCS, vol. 6166, pp. 162–176. Springer, Heidelberg (2010)

Optimality and Complexity of Inference-Proof Data Filtering and CQE 181

18. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman & Co., New York (1979)

19. Baader, F., Knechtel, M., Peñaloza, R.: A generic approach for large-scale onto-
logical reasoning in the presence of access restrictions to the ontology’s axioms.
In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta,
E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 49–64. Springer,
Heidelberg (2009)

20. Knechtel, M., Stuckenschmidt, H.: Query-based access control for ontologies. In:
Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 73–87. Springer,
Heidelberg (2010)

21. Alani, H., et al. (eds.): ISWC 2013, Part I. LNCS, vol. 8218. Springer, Heidelberg
(2013)

New Insight to Preserve Online Survey

Accuracy and Privacy in Big Data Era

Joseph K. Liu1, Man Ho Au2,4, Xinyi Huang3,�, Willy Susilo4,
Jianying Zhou1, and Yong Yu4,5

1 Infocomm Security Department, Institute for Infocomm Research, Singapore
{ksliu,jyzhou}@i2r.a-star.edu.sg

2 Department of Computing, The Hong Kong Polytechnic University, Hong Kong
allen.au@gmail.com

3 Fujian Provincial Key Laboratory of Network Security and Cryptology, School of
Mathematics and Computer Science, Fujian Normal University, Fuzhou, China

xyhuang81@gmail.com
4 Centre for Computer and Information Security Research, School of Computer

Science and Software Engineering, University of Wollongong, Australia
{aau,wsusilo,yyong}@uow.edu.au

5 School of Computer Science and Engineering, University of Electronic Science and
Technology of China, Chengdu, China

yyucd2012@gmail.com

Abstract. An online survey system provides a convenient way for peo-
ple to conduct surveys. It removes the necessity of human resources to
hold paper surveys or telephone interviews and hence reduces the cost
significantly. Nevertheless, accuracy and privacy remain as the major ob-
stacles that need additional attention. To conduct an accurate survey,
privacy maybe lost, and vice versa. In this paper, we provide new in-
sight to preserve these two seeming contradictory issues in online survey
systems especially suitable in big data era. We propose a secure sys-
tem, which is shown to be efficient and practical by simulation data.
Our analysis further shows that the proposed solution is desirable not
only in online survey systems but also in several potential applications,
including E-Voting, Smart-Grid and Vehicular Ad Hoc Networks.

Keywords: Online Survey, Privacy, Big Data.

1 Introduction

Privacy has always been considered as a significant issue in our daily life. As an
age-old concern, it is not unique in the digital world but the advances in digital
technologies have brought an array of new privacy challenges. The granularity
(or depth) of information captured in the digital world and the rapid information

� Xinyi Huang is supported by Distinguished Young Scholars Fund of Department
of Education, Fujian Province, China (JA13062) and Fok Ying Tung Education
Foundation (Grant No. 141065).

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 182–199, 2014.
c© Springer International Publishing Switzerland 2014

New Insight to Preserve Online Survey Accuracy and Privacy 183

dissemination facilitated by the Internet are factors that contribute most to those
new privacy concerns.

Online Survey System. One of the situations that privacy plays an important
factor is an online survey system. An online survey system (e.g., Kwik Survey
[1], My3q [2] or Survey Monkey [3]) is an Internet surveying technique in which
the interviewee follows a script provided in a website. The questionnaires are
created in a program for creating web interviews. The program allows for the
questionnaire to contain pictures, audio and video clips, or links to different web
pages. The website is able to customize the flow of the questionnaire based on the
answers provided, as well as information already known about the participant.
It is considered to be a cheaper way of conducting surveys since it does not
require any human resources to conduct surveys or telephone interview. With
the increasing use of the Internet, online questionnaires have become a popular
way of collecting information. The design of an online questionnaire often has
an effect on the quality of data gathered. There are many factors in designing an
online questionnaire, and issues including guidelines, available question formats,
administration, accuracy and privacy should be carefully addressed. Here we
focus on the last two factors.

A survey form may collect the interviewee’s personal particulars, such as sex,
age, salary range and interest. Such information may be very useful for the inter-
viewer to conduct a survey with accurate information. However, the interviewer
has no way to verify the authenticity of this information. For example, a 15 years
old boy may say that “she” is a 50 years old woman earning one million US dol-
lars per annual. This may not be possible if a face-to-face survey or telephone
interviewing survey is carried out, or at least to some certain extent. Never-
theless, in a virtual world such as Internet, anonymity without authentication
means the source is highly questionable. Furthermore, this 15 years old boy may
fill in the online survey multiple times. Next time he may pretend he is a retired
80 years old man. There is no way to verify whether these 2 different surveys
are from the same source or not.

Digital signature provides an easy and convenient way to authenticate the
message sender in the Internet. By digitally signing a message (the survey), the
verifier (the interviewer) can be convinced that the sender is a person with true
particulars provided. Using the above example, assume Bob is that 15 years old
boy. If he signs the survey, the interviewer may check his certificate (or identity
if ID-based signature [4] is used) to find out his personal information from the
certificate authority (or private key generator for ID-based signature). He cannot
pretend to be another person. If he conducts the survey more than once, it will
be easily detected since the signature contains the information of the signer.

It seems that digital signature can easily solve the problem of accuracy. How-
ever, on the other side, signing the survey means the loss of privacy. In reality,
many users are not willing to reveal their real identities to interviewers due to
privacy concerns. If it is a compulsory requirement for conducting the survey,
they will decline the survey invitation. It maybe the main reason that many
existing online survey systems do not compulsorily require interviewees to input

184 J.K. Liu et al.

their real identifying information (or no need to verify their information, e.g.,
no email validation is required).

Contributions. In this paper, we provide a new insight to preserve accuracy
and privacy in online survey systems. We propose a new system which provides
the following desirable features:

1. Authentication: It allows only those authenticated or qualified users to
take part into the survey.

2. Anonymity: No one knows the identity of the user who has submitted the
survey.

3. Detection of double submission: No one can submit more than once in
a single survey event without being detected.

4. Unlinkability: Given two surveys from two different events, no one can tell
whether they are from the same user.

5. Constant Complexity: The complexity of our system is independent to
the total number of users in the system. Thus it is particularly suitable for
any system with large user database in the big data analytic era.

We provide a concrete instantiation of our system. Further, we show our system
to be efficient and practical by some simulation data analysis.

We believe our proposed system can fully resolve the contradiction between
accuracy and privacy in online survey system. We also suggest other practical
applications that can employ our system with only slightly modification required.

Organization. The rest of this paper is organized as follows. Some related works
will be given in Section 2. Section 3 reviews the preliminaries required in this
paper. In Section 4 we give an overview of our scheme, which is followed by
detail description in Section 5. We present other applications that can deploy
our primitive in Section 6 and conclude our paper in Section 7.

2 Related Works

There are many ways to resolve the contradiction between user privacy and data
accuracy. Several solutions have been proposed and notable examples include
ring signatures [5, 6] and group signatures [7, 8]. In ring signatures, one can
spontaneously form a group of possible signers and sign on behalf of the group
anonymously. One can also use group signatures to sign on behalf of a group of
possible signers, but group signatures require an initial group setup procedure
performed by the group manager who can revoke the anonymity of any group
signer.

Attribute-Based Signatures [9–12] (or, ABS for short) is another primitive
proposed to provide signer anonymity. As a versatile primitive, ABS allows an
entity to sign a message with fine-grained control over identifying information.
A valid ABS signature attests to the fact that “A single user, whose attributes
satisfy the predicate, has endorsed the message”. Ring signatures and group

New Insight to Preserve Online Survey Accuracy and Privacy 185

signatures are then comparable to special cases of ABS, in which the only al-
lowed predicates are disjunctions over the universe of attributes (identities). In
ABS, each entity possesses a set of attributes and a key-authority generates
the associated private keys, with which one can sign a message with a predi-
cate satisfied by his/her attributes. The signature reveals no more than the fact
that a single user with some set of attributes satisfying the predicate has at-
tested to the message. In particular, ABS does not provide any information on
the particular set of attributes used to satisfy the predicate. For example, an
“(Engineer, Department A)” or an “(Engineer, Department B)” can independently
generate an ABS to assure the recipient that the signature was produced by an
“Engineer” without disclosing the department information. Furthermore, users
of ABS cannot collude to pool their attributes together (which separates ABS
from mesh signatures): It is never possible for an “(Engineer, Department A)”
and an “(Auditor, Department B)” to collude and generate an ABS satisfying the
predicate “(Auditor, Department A)”.

Yet all these solutions cannot resolve the contradiction. They are not practical
enough to be used in an online survey system. For example, in a ring signature,
it requires the signer to know all other members within the group. It is obvious
impossible for an interviewee to know all other interviewee in a survey. For group
signature, the properties of the group have to be fixed at the beginning. That is,
assume we need to conduct a survey for female engineers aged between 20-25.
Such a group has been formed (thus a group manager needs to distribute user
secret keys for every user). Later on, another survey for British engineers ages
between 20-25 will be conducted. Although there are some overlaps between
these two groups of people, the secret key (obtained from the first group) cannot
be reused, even for the same person since the properties of the group are fixed.
In other words, for every single survey, it is required for the group manager to
generate a new set of secret keys to every user. It is again impractical.

ABS seems to be the nearest solution. It provides user privacy. At the same
time, it also authenticates the signers for some attributes at a flexible way.
For example, assume Alice is a “female” “engineer” working in “Department
A”. Now there is a survey for all engineers in Department A. Those eligible
interviewee including Alice can use their attribute “(Engineer, Department A)”
to sign the survey. Later on, another survey for all female staff in department
will be conducted. Alice can reuse her secret key but on a different attribute set
“(Female, Department A)” to sign the survey. Different from ring signature, she
does not need to know who else users will participate the survey. Also different
from group signature, she does not need to obtain a different secret key for a
different survey.

There is just one problem that ABS cannot resolve. Since ABS is anonymous,
by no mean the verifier knows whether Alice has conducted twice or more in a
survey, as depicted in Fig 1. In the Internet world, the situation is even worse.
There are many programming scripts that can automatically submit online form.
By using these scripts, one can submit a thousand of online forms in a very short

186 J.K. Liu et al.

period of time. The result will then be heavily biased. No existing designs of ABS
can detect this kind of behavior.

“Female”, “Engineer”
“Department A”

Alice Survey
Collector

Survey
Submission 1

Ordinary ABS

“Female”, “Engineer”
“Department A”

Alice

Survey
Submission 2

Ordinary ABS

Fig. 1. Undetectable Double Submission Using Ordinary ABS

It is fair to say no existing solutions can perfectly resolve the contradiction in
an online survey system.

3 Preliminaries

3.1 Mathematical Definitions

Bilinear Maps. Let G1,G2, GT be cyclic (multiplicative) groups of order p,
where p is a prime. Let g be a generator of G1, and h be a generator of G2.
Then ê : G1 × G2 → GT is a bilinear map if ê(g, h) is a generator of GT , and
ê(ga, hb) = ê(g, h)ab for all a, b ∈ Zp.

Mathematical Hard Problem. The security of our construction depends on
the hardness of the following problem:

Definition 1 (Decisional Diffie-Hellam Problem (DDH).). On input g,
ga, gb, Z ∈ G, decide whether Z = gab or just a random element in G. The
DDH assumption states that the DDH problem is hard for any polynomial-time
bounded algorithm.

3.2 Monotone Span Programs

Let Υ : {0, 1}n → {0, 1} be a monotone boolean function. A monotone span
program for Υ over a field F is an � × t matrix M with entries in F, along with
a labeling function a : [�] → [n] that associates each row of M with an input
variable of Υ , that for every (x1, ..., xn) ∈ {0, 1}n, satisfies the following:

Υ (x1, ..., xn) = 1 ⇐⇒ ∃v ∈ F1×� such that

vM = [1, 0, 0, ..., 0], and (∀i : xa(i) = 0 ⇒ vi = 0).

In other words, Υ (x1, ..., xn) = 1 if and only if the rows of M indexed by
{i|xa(i) = 1} span the vector [1, 0, 0, ..., 0]. We call � the length and t the width
of the span program, and � + t the size of the span program.

Readers may refer to [11] for the details.

New Insight to Preserve Online Survey Accuracy and Privacy 187

4 Overview

4.1 Basic Idea

There are three entities in our system:

– Attribute Authority (AA): It is responsible for setting up the public param-
eters and issuing user secret keys for various attributes. In practice, it can be
a government authority, computer service centre of an university or human
resources department of a company.

– User: Any entity who has a user secret key is an user. A user can have
different attributes.

– Survey Centre (SC): It is an organization to organize a survey. It is respon-
sible to define the required policy of the survey, to collect the survey from
users and to verify the result.

Basically our system is an ABS scheme. Each user generates an ABS using his
own attributes required by the current survey. However, due to the unlinkability
property of an ABS scheme, it is not suitable to be used directly, since a user
may submit the survey more than once. We modify an ABS scheme from [11]
by adding linkability to it. That is, any verifier is able to detect whether two
signatures are generated by the same user within a single survey. Yet any user
that generates two signatures in two different surveys cannot be linked. The
survey centre can discard any double-submitted survey to maintain the accuracy
of the result.

4.2 Assumptions

We assume each user communicates with SC through an anonymous channel
[13, 14] or uses some IP-hiding technology. We also assume that the user keeps
his secret key in a safe place. This can be achieved by some external means,
such as keeping the secret key in a device to be always in possession or set it
to be password-protected. When considering some attacks such as IP hijacking,
distributed denial-of-service attack, man-in-the-middle attack etc., it is out of
the scope of this paper.

4.3 Threat Model

In this sytem, we consider the following attacks:

1. (Unforgeability Attack:) The attacker acts as an unauthorized user (who
does not possess the required attributes) who tries to submit a survey to the
SC for being accepted.

2. (Anonymity Attack:) The attacker acts as the AA colluded with the SC who
tries to find out the identity of the user of a particular submission.

3. (Linkability Attack:) The attacker acts as an authorized user who tries to
submit more than one survey to the SC for being accepted in a single survey
event.

188 J.K. Liu et al.

4. (Unlinkability (for different users) Attack:) The attacker acts as an autho-
rized user who tries to submit some surveys to link with other surveys sub-
mitted by honest users. The attack may have intention to do so in order to
remove other undesirable results submitted by other users.

4.4 Notations

Notations used in our system are summarized in Table 1.

Table 1. Frequently Used Notations

TPK system parameters
APK public key of the AA
ASK master secret key of the AA
A universe of attributes
A an attribute set of a user

USK user secret key
m data or the content of a survey

event the description of a particular survey event
Υ policy of the survey
σ signature of the survey

5 Details of Our Online Survey System

5.1 The Construction

Our system consists of different phases. The detailed step-by-step construction
of each phase is given in the framed box.

Setup. The AA defines all system parameters and generates the public key and
a master secret key.

Details: The AA first generates the system parameters as follows:

1. Let ê : G1 × G2 → GT be a bilinear map (defined in Section 3.1) such
that |G1| = |G2| = |GT | = p for some prime p. Let g,G be generators
of G1 and g, h, h, h0, . . . , htmax

, H be generators of G2. The value tmax

is the maximum width of the monotone span programs as defined in
Section 3.2. Let A = Z∗

p be the universe of attributes.
2. Assume the DDH problem (defined in Section 3.1) is hard in G1 and G2.

Let G : {0, 1}∗ → G1, H : {0, 1}∗ → Zp be hash functions that will be
modeled as random oracles. The system parameters TPK is (G1, G2,
GT , ê, p, g, G, g, h, h, h0, . . ., htmax

, H , H, G).

Then it generates the public and master secret keys as follows:

1. Choose a0, a, b, c ∈R Zp. Compute: C = gc, A0 = ha0
0 , Aj = ha

j , Bj =

hb
j for j = 1, . . . , tmax.

2. Choose s, v, w, z ∈R Zp. Compute U = Gs, V = Hv,W = Hw, Z = Hz.
3. Set the public key APK as (C, A0, {Aj, Bj}tmax

j=1 , U , V , W , Z) and the
master secret key ASK as (a, a0, b, s, v, w, z). Publish both APK and
TPK while keep ASK secret.

New Insight to Preserve Online Survey Accuracy and Privacy 189

User Key Generation. The AA issues user secret key to each user, according
to different attributes each user possesses. This is an interactive protocol between
each user and the AA.

Details:

1. The user with an attribute set A ∈ A randomly selects L, rL ∈ Zp and
computes CL = gLhrL ∈ G2 and sends CL to the AA.

2. The AA randomly chooses Kbase ∈R G1, r ∈R Zp and uses the master

secret key ASK to compute: K0 = K
1
a0

base, Ku = K
1

a+bu

base ∀u ∈ A,
R = Gr, S = Gz−rvK−w

base, T = (HCL
−s)

1
r .

3. The AA returns Kbase, K0, {Ku}u∈A, R, S, T to the user.
4. The user parses his user secret key SKA as (Kbase, K0, {Ku}u∈A, R, S,

T , L, rL).

Survey Submission. The SC defines a survey event and a policy such that only
those users that fulfill the policy with their attributes can participate this survey.
The user submits the survey data together with the corresponding signature
signed with his user secret key through an anonymous channel to the SC.

Details: Let m be the data and event be the description of this survey. For a
given policy Υ such that if a user with an attribute set A fulfills this policy,
we have Υ (A) = 1. First convert the policy to its corresponding monotone
span programM ∈ Z�×t

p (defined in Section 3.2), with row labeling function
u : [�] → A and the vector v that corresponds to the satisfying assignment
of A. The user executes the following steps with his user secret key SKA:

1. Compute μ = H(m||Υ) and τ = G(event)L.
2. Pick r0 ∈R Z∗

p, r1, . . . , r� ∈R Zp and compute Y = Kr0
base, W =

Kr0
0 , Si = (K

v[i]
u(i))

r0(Cgμ)ri(∀i ∈ [�]), Pj =
∏�

i=1(AjB
u(i)
j)Mij ·ri(∀j ∈

[t]).
3. Compute Πτ as a non-interactive zero-knowledge proof-of-knowledge of

the values (R, S, T , Kbase, r0, L, rL) satisfying the following relation:

ê(R, V)ê(S,H)ê(Kbase,W) = ê(G,Z) ∧
ê(R, T)ê(U, gLhrL) = ê(G,H) ∧

Y = Kr0
base ∧

τ = G(event)L.

The details of Πτ are shown in Appendix A.
4. Submit the survey data m with its signature σ =(

Y,W, {Si}i∈[�], {Pj}j∈[t], τ,Πτ

)
to the SC.

190 J.K. Liu et al.

Validity Checking. Upon received the survey, the SC checks its validity. The
checking consists of two parts. In the first part, it verifies the signature to see
whether it is generated by a qualified user. In the second part, it checks whether
this user has submitted another survey before. Note that the user is not allowed
to submit more than one survey, no matter the content is the same or not.

Details: Upon received the data m and the signature σ, the SC executes the
followings:

1. Signature Verification:
(a) Convert the policy Υ such that Υ (A) = 1 to its corresponding

monotone span program M ∈ Z�×t
p , with row labeling function

u : [�] → A.

(b) Compute μ = H(m||Υ) and check if ê(W,A0)
?
= ê(Y, h0) and

�∏
i=1

ê(Si,(AjB
u(i)
j)Mi,j)

?
={

ê(Y, h1)ê(Cgμ, P1), for j = 1.
ê(Cgμ, Pj), for j > 1.

(c) Checks if Πτ is a valid proof. The verification of Πτ is also shown
in Appendix A.

If all equalities hold and the proof is correct, it outputs ACCEPT and
proceeds to the second part. Otherwise it outputs REJECT.

2. Double Submission Checking: The SC extracts τ from σ and checks its
database whether any other signatures for this survey event also contain
the the same τ . If yes, that means the user has double submissions. It
then outputs REJECT. Otherewise, it outputs ACCEPT and stores the
data and signature into its database.

5.2 Security Analysis

To explain the security of our online survey system, we first present our design
philosophy in details. As discussed in Section 2, the primitive attribute-based
signature (ABS) is the closest solution to our problem. Thus, it is natural to
construct our system from an existing ABS. An ABS is a tuple of five algorithms,
namely, TSetup, ASetup, AttrGen, Sign, Ver, which are briefly reviewed below for
completeness. Interested readers may refer to [11] for their formal definitions.

– TSetup is responsible for system parameters creation.
– ASetup is the process of creating the master key of the attribute authority.
– AttrGen is invoked to certify the attribute of a user.
– Sign is responsible for signature generations.
– Ver is responsible for signature verifications.

New Insight to Preserve Online Survey Accuracy and Privacy 191

It is straightforward to observe the correspondence of an ABS and an online sur-
vey system. The Setup procedure of our system consists of TSetup and ASetup.
User Key generation procedure corresponds to AttrGen. For survey submission,
the user submits the survey response together with an ABS-signature gener-
ated from Sign. Finally, the validity checking is realized by verifying the ABS-
signature on the survey response, that is, an invocation of the algorithm Ver.

The security properties of any ABS, namely, unforgeability and perfect pri-
vacy would protect the online survey system from unforgeability, anonymity and
linkability attack. Unfortunately, such a system will be vulnerable under unlink-
ability attack. The reason is obvious, since an authorized user can submit the
survey response together with a freshly generated attribute-based signature re-
peatedly without being detected. This lead to our approach, which is to restrict
the number of times a signing key can be used for each survey event.

Our idea is to require that for each signature, the signer is required to attach
with a piece of information called tag, which is a pseudo-random function on
input of event and a secret that is known only to the user. If the user is in
possession of one single secret, for each event, he/she can only create one tag
without being detected. At the same time, since the secret is known only to the
user, no one will be able to trace this user given tag.

The final issue is to bind the user secret to his/her signing key. With this bind-
ing, one authorized user can only to use the specific signing key. We introduce
the technique of “certified signing key”. Specifically, for each attribute-based
signing key issued to an authorized user, the attribute authority also generates
a standard signature on the signing key together with the commitment of the
user secret. This standard signature is used to certify that this specific signing
key is generated directly from the attribute authority and binds the signing key
to this specific user secret. At the same time, the user secret is not revealed to
the attribute authority due to the hiding property of the commitment scheme.

Finally, whenever the user uses his/her signing key, a zero-knowledge proof will
be attached. The zero-knowledge proof serves as an evidence that the attribute-
based signature is created from a “certified” signing key and that the tag is
generated correct from event and the committed user secret.

Notes on Our Practical System. Our online survey system is built following
the above framework using the ABS from [11]. The standard signature scheme
used to certify the signing key together with the committed user secret is the
signature scheme from [15]. The user secret is just a random element from L ∈ Zp

for some prime p and that the commitment scheme is the well-known Pedersen
commitment. The pseudo-random function on the user secret and event was
defined as: F : L, event �→ G(event)L.

It can be seen easily that the user secret key (Kbase, K0, {Ku}u∈A, R, S, T ,
L, rL) in our system can be classified into three groups.

1. ABS signing key. (Kbase, K0, {Ku}u∈A) is exactly a signing key from the
ABS scheme due to [11]

2. User secret: (L). The Pedersen commitment of the user secret is CL = gLhrL

and thus rL is the randomness used in the commitment.

192 J.K. Liu et al.

3. Certification of the signing key. (R,S, T, L) is the standard signature (of the
scheme [15]) on the tuple (Kbase, CL).

Note that we have simplified the process of “certified signing key” by signing
Kbase and CL since each signing key is uniquely determined by the value Kbase.

The role of the zero-knowledge proof Πτ in the survey submission can be
explained easily after this classification. It states that the generator of the ABS
signature is in possession of a user secret L and that the tag τ is created correctly
from τ . In addition, the generator of the signature is creating this signature from
a “certified signing key” (i.e., he/she is in possession of a standard signature
(R,S, T, L) on the tuple (Kbase, CL) and that Kbase is used in this ABS signature
creation and CL is a commitment of L).

Now we are ready to give a security argument based on the threat model defined
in Section 4.3.

1. Security against Unforgeability Attack. Each survey response has to
be accompanied with a properly created attribute-based signature. In our
system only authorized users are issued the signing keys. If the ABS scheme
from [11] is unforgeable, our system is secure against unforgeability attack.

2. Security against Anonymity Attack. The only information related to
the survey participant is the ABS signature, the zero-knowledge proof Πτ

and the tag τ . Due to the perfect privacy of the ABS scheme from [11],
the ABS part leaks no information about the actual participant. The zero-
knowledge proof Πτ (details are given in the Appendix), a standard non-
interactive Σ-protocol, leaks no information due to its zero-knowledgeness
(in the random oracle model). Finally, the tag τ itself is created from
G(event)L. Since L is never shown in plain and is protected by the per-
fect hiding property of the Pedersen commitment, it again leaks no infor-
mation about the survey participant. In fact, our construction provides a
stronger level of privacy. Specifically, if the user never participate in the
same survey more than once, his participation across different surveys are
not relatable under the decisional Diffie-Hellman assumption. That is, given
event1, event2, G(event1)L and a value τ∗, it is computationally hard to tell
if τ∗ = G(event2)L or not. Recall that our system is built on bilinear groups
with pairing ê : G1 ×G2 → GT such that the DDH problem is hard in both
G1 and G2.

3. Security against Linkability Attack. Each authorized user in our system
is given only one “certified signing key” only and thus for each survey, he
or she can only generate one unique tag τ . This is due to the fact that the
non-interactive zero-knowledge proof Πτ is sound (i.e. the attacker cannot
produce a fake proof) and the signature from [15] is unforgeable (i.e. the
attacker cannot produce a fake certified signing key).

4. Unlinkability (for different users) Attack. Two surveys are linked if
they share the same tag τ . In order to use a tag, the attacker has to produce
the zero-knowledge proof Πτ . That is, the attacker either produces a fake
proof or has to know the value of L that is used to generate τ . The former

New Insight to Preserve Online Survey Accuracy and Privacy 193

is computationally impossible under the soundness property of the zero-
knowledge proof Πτ . The latter is computationally impossible under the
discrete logarithm assumption.

5.3 A Practical Example

Here we briefly describe how to deploy our system in a company. Assume there
is a multinational corporation ABC, which is working in the cosmetics business
arena. The human resources department (HR) acts as the AA to carry out the
Setup phase. When a new staff joins this corporation, the HR issues his/her
secret key by executing User Key Generation phase. The attribute set may
contain the following items: sex, marital status, location, date of birth and de-
partment. Suppose the marketing department of ABC intends to introduce a
new night cream product into its Japanese market product line. Part of the fea-
sibility study involves conducting an online survey to find out the preference of
Japanese women in the Japanese market. As a preliminary step, the marketing
department would like to conduct the survey to the staff of ABC before gathering
responses from the public. To do this, firstly the marketing department will act
as the SC. In this scenario, the targets are very clear, namely Japanese female
staffs. All the Japanese female staffs can use their secret key to sign the com-
pleted online form by using Survey Submission algorithm using the attribute
“female” and “Japanese”. The signed and completed form may be sent back to
the server through an anonymous channel. The marketing department executes
Validity Checking to check the validity of each survey. It discards any survey
which has not been signed by the attribute “female” and “Japanese”, and those
who are linked (that means duplicated copies).

5.4 Performance Analysis

Generic Analysis. We give the performance analysis of our concrete instanti-
ation described in Section 5.1. We first give a generic analysis, which varies for
different attribute sets and signing policies. We only count the time required for
exponentiation and pairing. Other operations such as hashing, group addition,
integer addition/multiplication etc. are insignificant compared with exponentia-
tion and pairing. For exponentiation, we further optimize for those bases which

Table 2. Operations required

ASetup AttrGen Sign Verify

Group G1 / G2 exponentiation
6 + 2 tmax 3 12 0

(pre-processed)

Group G1 / G2 exponentiation
0 2 + |A| 2 + 2 � + t� 6 + t�

(no pre-processed)

Group GT exponentiation
0 0 7 7

(pre-processed)

Group GT exponentiation
0 0 0 2

(no pre-processed)

Pairing (1 element is
0 0 0 5 + t

a constant)

Pairing (both elements
0 0 0 2 + t�

are not constant)

194 J.K. Liu et al.

are constant. It allows the use of some pre-processed data for faster computation.
For pairing, we also optimize for those such that one of the pairing elements is
a constant. We put our analyzed result in Table 2. We use tmax to represent the
maximum width of the monotone span program, |A| to represent the number of
attributes a user has, t and � to represent the width and length of the monotone
span program converted from the signing claim policy respectively.

Concrete Example. Next we analyze the efficiency of our scheme using the
simulation result from jPBC [16] for the following devices:

– A desktop equiped with Intel(R) Core(TM)2 Quad CPU Q6600 2.40GHz,
3 GB RAM, Ubuntu 10.04 as the simulation device.

We measured the performance using a 160-bit secret key in elliptic curve cryp-
tosystem (ECC). It is generally believed that a 160-bit secret key in ECC pro-
vides stronger security than a 1024-bit key in RSA. We use the example described
in Section 5.3 to illustrate the exact running time and communication overhead.
In the example, we assume the following attributes:

– Sex: {Male}, {Female}
– Marriage Status: {Single}, {Married}, {Divoice}
– Office Location: {United States}, {United Kingdom}, {Australia}, {Japan},
{China}

– Year of Bith: {≤ 1960}, {1961 − 1970}, {1971 − 1980}, {1981− 1990}, {>
1990}

– Department: {Sales}, {Finance}, {Logistic}, {Human Resources}

Now it plans to carry out some surveys based on the following different cases:

1. All staffs who are based in Japan.
2. All Female staffs who are Married.
3. All Male staffs who are based in Australia and working in the Sales depart-

ment.
4. All Female staffs who are Single, born after 1990 and based in Japan.
5. All Male staffs who are Married, based in United States,

born between 1971-1980 are working in the Finance department.
6. All staffs who are based in either Australia or China and working in the Sales

department.
7. All Female staffs who are based in United Kingdom and working in either

Finance or Human Resources department.

Table 3. Performance

Case
Size of Ur. Key Gen. Size of Survey Subm. Size of Val. Check
APK running time se. key running time signature running time

1

880 138.667 220

127.052 480 225.915
2 182.828 520 333.185
3 350.156 560 506.893
4 517.484 600 747.12
5 721.996 640 1053.839
6 294.38 540 399.65
7 443.116 580 606.631

New Insight to Preserve Online Survey Accuracy and Privacy 195

The simulation result is shown in Table 3. The unit for running time is ms while
the unit for public parameter APK, secret key and signature is byte.

6 Other Applications

We note that the protocol described in this paper is specifically designed for
online survey systems. However, we do not eliminate the possibility to apply our
scheme (or modified version) in other environments if they find it suitable. We
list some of the potential applications:

Electronic Voting (E-Voting) [17–22] is introduced to replace existing punched-
card and mechanical voting systems. With e-voting, one can cast ballots from the
comfort of his/her home or from mobile devices like cellular phones or iPads,
and this is a great convenience to people, especially those disabled and aging
population. On the other hand, e-voting also introduces a wide range of privacy
and security issues. As an example, tallying authorities want to be assured that
a ballot is from a voter satisfying certain requirements and any eligible voter can
vote only once (to eliminate double-voting), but due to privacy concerns voters
want to prevent tallying authorities from telling who they are.

One of the solutions is using linkable ring signatures [23–29]. Like normal
ring signatures, linkable ring signatures provide signer anonymity but one can
verify whether or not two ring signatures were signed using the same key. In the
scenario of e-voting, the voter first creates a group of eligible voters and then
produces a linkable ring signature on the ballot. Such a signature ensures the
tallying authority that the ballot is from an eligible person in the group but does
not tell who the actual voter is, due to the anonymity of ring signatures. Any
double voting will be detected since the signature is linkable.

E-voting based on linkable ring signature has demonstrated several practice-
friendly properties, but a closer look discovers a subtle issue to be addressed,
namely how to tell if someone else is eligible for the voting when one forms a
group of eligible persons. This issue can be easily solved in some cases, e.g., “any
female staff is eligible for voting”, but not if the requirements include “anyone
with monthly income less than $1,000”. It is very unlikely that such privacy
information is publicly known, or an entity wants to share it with others. In
such cases, it would be difficult to form a group with a large number of eligible
persons, and this could put the privacy of the actual voter at risk.

Another disadvantage of linkable ring signature based e-voting system is the
requirement for voters to know the identities or public keys of all eligible voters,
especially in the case when the number of voters is very large. It is certainly
a desirable choice if one can vote anonymously without the need to find other
eligible persons, and this reminds us of attribute-based signatures. Each entity
in attributed-based signatures is given a private key according to the attributes
he/she possesses. One can use the private key to sign the ballot, and the result-
ing signature only shows that it is from a person satisfying certain attributes
(e.g., the voting requirements). Compared with ring signatures, the advantage

196 J.K. Liu et al.

of attribute-based signatures is that there is no need to form a group of el-
igible persons, and thus issues like “Does Alice satisfy voting requirements?”
are eliminated. However, we still need to detect double-voting if attribute-based
signatures are used in e-voting, and this would require the linkability in ABS.

Smart Grid [30] is a form of electricity network utilizing modern digital tech-
nology. The most distinctive feature in smart grid is its two-way capabilities
for data communication: Not only the grid controller can issue commands to
intelligent devices, consumers and devices can also send data to grid controllers.
This feature brings controllers and consumers with an in-depth insight of energy
usage, which would lead to a more efficient electricity system.

Attribute-based signature seems to be a promising approach to address the
aforementioned issue. Each entity is given a private key according to the at-
tributes he/she possesses. One can sign the energy consumption data using
his/her own private key, and such a signature can convince the service provider
that the data is from a person satisfying certain attributes, without the need to
seek other consumers with similar attributes. It is a natural requirement that
each data is counted only once in statistical reports, and an attribute-based sig-
nature scheme with linkability will better suit that situation. More importantly,
smart grid usually comprises big data for analysis. Attribute-based protocol
allows a constant complexity for authentication, which is independent to the
number of users in the system. Thus it is particularly suitable in this scenario.

Vehicular Ad Hoc Networks (VANETs) allow wireless communications between
vehicles and roadside infrastructures. Chen et al. [31] addressed the problem of
reliability of information exchange between vehicles. Suppose that a car driver
Bob receives a message from another vehicle reporting some traffic jam a few
miles away, he has no idea whether the message is true or not. At the beginning,
he attempts to ignore it. But shortly after that he receives several messages (say
n) reporting the same traffic jam. If this number n is a reasonably large number
and these messages are sent by n different vehicles, this information is likely to
be true, as it seems unlikely that any n vehicles would collude to lie. However,
all these messages are sent anonymously due to privacy concern, how can Bob
find out whether n received messages are sent by n different legitimate vehicles
without discovering the identities of these vehicles? The authors proposed a
solution using Threshold Anonymous Announcement (TAA) service.

TAA allows every vehicle to obtain a token from a trusted party. One may
broadcast an anonymous message to other vehicles signed by this token so that
anyone received this broadcast message may know that it is from a legitimate
vehicle yet the identity is unknown. At the same time, TAA provides linka-
bility. That is, if a vehicle sends the same message twice, the receiver will be
able to know these two messages are sent by the same vehicle. So it is easy
to distinguish whether n messages are from n different vehicles. However, their
scheme only provides linkability to the same message from the same signer. If
the signer slightly changes the message, e.g., change from “The city area is

very congested now.” to “Now the city area is very congested.”, they

New Insight to Preserve Online Survey Accuracy and Privacy 197

appear as two different messages and thus cannot be linked. That is, a receiver
cannot distinguish whether these two messages are sent by the same signer.

Using linkable ring signature may resolve this issue, because linkable ring sig-
nature provides event-based linkability. In a single event (e.g., traffic congestion
announcement in the city area), any two signatures generated by the same singer
will be linked, no matter the two signed messages are the same or not. Never-
theless, linkable ring signature requires the signer to know the identities of all
legitimate vehicles in the area, which is impossible. An event linkable attribute-
based signature provides a better solution because it does not require anyone to
know other legitimate vehicles, while providing event-based (instead of message-
based) linkability. Simultaneously anonymity of the signer is also preserved.

7 Conclusion

In this paper, we provided a new insight to preserve accuracy and privacy in
online survey systems simultaneously. The new insight comes from our proposed
system. We proved the security of it. The performance analysis is also given
to show that our system is efficient and practical. In addition to online survey
systems, we further suggested several other applications that can make use of our
new system, including e-voting, smart-grid and vehicular ad hoc networks. We
believe our system is particular suitable for handling big data as the complexity
remains constant, regardless to the number of users.

References

1. Kwik Survey: KwikSurveys: Offical Free online survey and questionnaire tool,
http://www.kwiksurveys.com/

2. My3q: FREE Online Survey Questionnaire Research by my3q,
http://www.my3q.com/

3. SurveyMonkey: SurveyMonkey: Free online survey software and questionnaire tool,
http://www.surveymonkey.com/

4. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) Advances in Cryptology - CRYPTO 1984. LNCS, vol. 196,
pp. 47–53. Springer, Heidelberg (1985)

5. Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

6. Boyen, X.: Mesh Signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS,
vol. 4515, pp. 210–227. Springer, Heidelberg (2007)

7. Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) Advances in
Cryptology - EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidel-
berg (1991)

8. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A Practical and Provably Secure
Coalition-Resistant Group Signature Scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

9. Shahandashti, S.F., Safavi-Naini, R.: Threshold Attribute-Based Signatures and
Their Application to Anonymous Credential Systems. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 198–216. Springer, Heidelberg (2009)

http://www.kwiksurveys.com/
http://www.my3q.com/
http://www.surveymonkey.com/

198 J.K. Liu et al.

10. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-Based Signature and Its
Applications. In: Feng, D., Basin, D.A., Liu, P. (eds.) ASIACCS, pp. 60–69. ACM
(2010)

11. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-Based Signatures. In: Ki-
ayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg
(2011)

12. Okamoto, T., Takashima, K.: Efficient Attribute-Based Signatures for Non-
Monotone Predicates in the Standard Model. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 35–52. Springer, Heidelberg
(2011)

13. Okamoto, T.: Receipt-Free Electronic Voting Schemes for Large Scale Elections. In:
Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997.
LNCS, vol. 1361, pp. 25–35. Springer, Heidelberg (1998)

14. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
WPES 2005, pp. 61–70. ACM Press (2005)

15. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal Structure-Preserving
Signatures in Asymmetric Bilinear Groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)

16. Lynn, B.: The Java Pairing Based Cryptography Library, jPBC (2010),
http://libeccio.dia.unisa.it/projects/jpbc/

17. Chaum, D.: Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Communications of the ACM 24(2), 84–88 (1981)

18. Fujioka, A., Okamoto, T., Ohta, K.: A Practical Secret Voting Scheme for Large
Scale Election. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718,
pp. 244–260. Springer, Heidelberg (1993)

19. Benaloh, J., Tuinstra, D.: Receipt-Free Secret-Ballot Elections (Extended Ab-
stract). In: STOC 1994: Proceedings of the Twenty-sixth Annual ACM Symposium
on Theory of Computing, pp. 544–553. ACM Press (1994)

20. Hirt, M., Sako, K.: Efficient Receipt-Free Voting Based on Homomorphic Encryp-
tion. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556.
Springer, Heidelberg (2000)

21. Groth, J.: A Verifiable Secret Shuffle of Homomorphic Encryptions. In: Desmedt,
Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2002)

22. Liu, J.K., Wong, D.S.: A Restricted Multi-show Credential System and its Appli-
cation on E-Voting. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.) ISPEC 2005.
LNCS, vol. 3439, pp. 268–279. Springer, Heidelberg (2005)

23. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable Spontaneous Anonymous Group Signa-
ture for Ad Hoc Groups (Extended Abstract). In: Wang, H., Pieprzyk, J., Varad-
harajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg
(2004)

24. Liu, J.K., Wong, D.S.: Enhanced security models and a generic construction ap-
proach for linkable ring signature. Int. J. Found. Comput. Sci. 17(6), 1403–1422
(2006)

25. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Certificate based (linkable) ring signa-
ture. In: Dawson, E., Wong, D.S. (eds.) ISPEC 2007. LNCS, vol. 4464, pp. 79–92.
Springer, Heidelberg (2007)

26. Chow, S.S.M., Liu, J.K., Wong, D.S.: Robust Receipt-Free Election System with
Ballot Secrecy and Verifiability. In: NDSS. The Internet Society (2008)

27. Yuen, T.H., Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Efficient linkable and/or
threshold ring signature without random oracles. Comput. J. 56(4), 407–421 (2013)

http://libeccio.dia.unisa.it/projects/jpbc/

New Insight to Preserve Online Survey Accuracy and Privacy 199

28. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Secure id-based linkable and revocable-
iff-linked ring signature with constant-size construction. Theor. Comput. Sci. 469,
1–14 (2013)

29. Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Linkable ring signature with uncondi-
tional anonymity. IEEE Trans. Knowl. Data Eng. 26(1), 157–165 (2014)

30. of Standards, N.I., Technology: NIST IR 7628: Guidelines for Smart Grid Cyber
Security. Technical report (2010),
http://csrc.nist.gov/publications/PubsNISTIRs.html

31. Chen, L., Ng, S.L., Wang, G.: Threshold Anonymous Announcement in VANETs.
IEEE Journal on Selected Areas in Communications 29(3), 605–615 (2011)

A Details of Πτ

Πτ can be constructed in the random oracle model using 19 elements.
Let g1, g2 be generators of G1 and h1, h2 be generators of G2. They can

be regarded as part of TPK. The signer randomly chooses x1, . . . , x6 ∈R Zp,
computes: X1 = gx1

1 g2
x2 , X2 = Rgx2

1 , X3 = Sg1
x3 , X4 = gx4

1 gx5
2 , X5 =

Kbaseg
x5
1 , Y1 = Thx6

1 . The signer also randomly chooses ρ1, . . . , ρ13 ∈R

Zp and computes: T1 = gρ1

1 gρ2

2 , T2 = gρ4

1 gρ5

2 , T3 = X−ρ6

1 gρ7

1 gρ8

2 , T4 =
X−ρ11

4 gρ9

1 gρ10

2 , T5 = ê(g1, V)ρ2 · ê(g1, H)ρ3 · ê(g1,W)ρ5 , T6 = ê(X2, h1)−ρ6 ·
ê(g1, Y1)−ρ2 · ê(g1, h1)ρ8 · ê(U, g)ρ12 · ê(U, h)ρ13 , T7 = Xρ11

5 g−ρ10

1 , T8 =
G(event)ρ12 . Then, the signer computes k = H(T1 . . . || T8||X1|| . . . ||X5|| Y1||m||
event||Υ) and computes: z1 = ρ1 − kx1, z2 = ρ2 − kx2, z3 = ρ3 − kx3, z4 =
ρ4−kx4, z5 = ρ5−kx5, z6 = ρ6−kx6, z7 = ρ7−kx1x6, z8 = ρ8−kx2x6, z9 =
ρ9−kx4r0, z10 = ρ10−kx5r0, z11 = ρ11−kr0, z12 = ρ12−kL, z13 = ρ13−krL.
Parse Πτ as (k, X1, . . ., X5, Y1, z1, . . . , z12). It consists of 5 elements in G1, one
element in G2 and 13 elements of Zp.

To verify Πτ , the verifier computes: T′
1 = Xk

1 g
z1
1 gz22 , T′

2 = Xk
4 g

z4
1 gz52 , T′

3 =

X−z6
1 gz71 gz82 , T′

4 = X−z11
4 gz91 gz102 , T′

5 = (ê(X2,V)ê(X3,H)ê(X5,W)
ê(G,Z))k ·

ê(g1, V)z2 ·ê(g1, H)z3 · ê(g1,W)z5 , T′
6 = (ê(G,H)

ê(X2,Y1))k ê(X2, h1)−z6 ê(g1, Y1)−z2 ·
ê(g1, h1)z8 ê(U, g)z12 ê(U, h)z13 , T′

7 = Y kXz11
5 g−z10

1 , T′
8 = τkG(event)z12 . Accept

the proof if and only if:

k
?
= H(T′

1 . . . ||T′
8||X1|| . . . ||X5||Y1||m||event||Υ).

http://csrc.nist.gov/publications/PubsNISTIRs.html

Software Countermeasures for Control Flow

Integrity of Smart Card C Codes

Jean-François Lalande1,3, Karine Heydemann2, and Pascal Berthomé3

1 Inria, Supélec, CNRS, Univ. Rennes 1, IRISA, UMR 6074
35576 Cesson-Sévigné, France

jean-francois.lalande@insa-cvl.fr
2 Sorbonne Universités, UPMC, Univ. Paris 06, CNRS, LIP6, UMR 7606

75005 Paris, France
karine.heydemann@lip6.fr

3 INSA Centre Val de Loire, Univ. Orléans, LIFO, EA 4022
18022 Bourges, France

pascal.berthome@insa-cvl.fr

Abstract. Fault attacks can target smart card programs in order to
disrupt an execution and gain an advantage over the data or the embed-
ded functionalities. Among all possible attacks, control flow attacks aim
at disrupting the normal execution flow. Identifying harmful control flow
attacks as well as designing countermeasures at software level are tedious
and tricky for developers. In this paper, we propose a methodology to
detect harmful intra-procedural jump attacks at source code level and
to automatically inject formally-proven countermeasures. The proposed
software countermeasures defeat 100% of attacks that jump over at least
two C source code statements or beyond. Experiments show that the re-
sulting code is also hardened against unexpected function calls and jump
attacks at assembly level.

Keywords: control flow integrity, fault attacks, smart card, source level.

1 Introduction

Smart cards or more generally secure elements are essential building blocks for
many security-critical applications. They are used for securing host applications
and sensitive data such as cryptographic keys, biometric data, pin counters,
etc. Malicious users aim to get access to these secrets by performing attacks on
the secure elements. Fault attacks consists in disrupting the circuit’s behavior by
using a laser beam or applying voltage, clock or electromagnetic glitches [5,6,24].
Their goal is to alter the correct progress of the algorithm and, by analyzing
the deviation of the corrupted behavior with respect to the original one, to
retrieve the secret information [14]. For java card, fault attacks target particular
components of the virtual machine [3,4,9].

Many protections have therefore been proposed to counteract attacks. Fault
detection is generally based on spatial, temporal or information redundancy at
hardware or software level. In java card enabled smart cards, software compo-
nents of the virtual machine can perform security checks [18,20,10].

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 200–218, 2014.
c© Springer International Publishing Switzerland 2014

Software Countermeasures for Control Flow Integrity 201

In practice, developers of security-critical applications often manually add
countermeasures into an application code. This operation requires knowledge
about the target code vulnerabilities. Both these tasks are time-consuming with
direct impact on the certification of the product. One harmful consequence of
fault attacks is control flow disruption which may bypass some implemented
countermeasures. It is difficult for programmers to investigate all possible con-
trol flow disruption in order to detect sensitive parts of the code and then inves-
tigate how to add countermeasures inside these sensitive parts. Moreover, secure
smart cards have strong security requirements that have to be certified by an
independent qualified entity before being placed on the market. Certification can
rely on a review of source code and the implemented software countermeasures.
The effectiveness of software security countermeasures is then guaranteed by the
use of a certified compiler [21]. Injecting control flow integrity checks at compile
time would require to certify the modified compiler. To avoid this difficult and
expensive task, countermeasures must be designed and inserted at a high code
level.

In this paper, we propose a full methodology 1) to detect harmful attacks that
disrupt the control flow of native C programs executed on a secure element and
2) to automatically inject formally verified countermeasures into the code. In the
first step of our methodology, the set of harmful attacks is determined through
an exhaustive search relying on a classification of attack effects from a functional
point of view. The identified harmful attacks can be visualized spatially in or-
der to identify the affected functions and to precisely locate the corresponding
sensitive code regions. Following our methodology, a tool automatically injects
countermeasures into the code to be protected without any direct intervention
of a developer. The countermeasure scheme proposed in this paper operates
at function level. Countermeasures rely on counters that are incremented and
checked throughout execution enabling detection of any attack that disrupts
control flow by not executing at least two adjacent statements of the code. The
effectiveness of the proposed countermeasure scheme has been formally verified:
any attack that jumps over more than two C statements is detected. This is
confirmed by experimental results for three well-known encryption algorithms
and additionally results show that 1) attacks are much more difficult to perform
on the secured code and that 2) attacks trying to call an unexpected function
are detected.

The paper is organized as follows: Section 2 discusses related work. Section 3
gives an overview of our methodology detecting application weaknesses and au-
tomatically securing an application code. Section 4 details the detection of weak-
nesses and visualization. Section 5 and 6 respectively presents the countermea-
sures for hardening a code against control flow attacks and the formal approach
used for verifying their correctness. Section 7 presents experimental results.

2 Related Work

This section discusses work related to fault models before presenting previously
proposed countermeasures for smart card and control flow integrity.

202 J.-F. Lalande, K. Heydemann, and P. Berthomé

2.1 Fault Models

Countermeasures are necessarily designed with respect to a fault model specify-
ing the type of faults an attacker is able to carry out [27]. Elaborating a fault
model requires analysis of the consequences of physical attacks and modeling
them at the desired level (architectural level, assembly code level, source code
level). Consequences of fault attacks, at program level, include the processing
of corrupted values by the program, a corrupted program control flow or a cor-
rupted program as a result of changed instructions. In this paper, we focus on
attacks that impact control flow of native C programs.

Several works [24,2] have shown that attacks can induce instruction replace-
ments. For example, electromagnetic pulse injections can induce a clock glitch
on the bus during transmission of instruction from the Flash memory resulting
in an instruction replacement [24]. Such an instruction replacement can provoke
a control flow disruption in the two following cases:

1. The evaluation of a condition is altered, by the replacement of one instruc-
tion involved in the computation, causing the wrong branch to be taken.
Inverting the condition of a conditional branch instruction by only replacing
the opcode in the instruction encoding has the same consequence.

2. The replacement of a whole instruction by a jump at any location of the
program. The executed instruction becomes a jump to an unexpected tar-
get [9,24]. The same effect is obtained if the target address of a jump is
changed by corrupting the instruction encoding or, in case of indirect jump,
if computation of the target address is disrupted. This also happens if the
program counter becomes the destination operand of the replacing instruc-
tion, e.g. an ALU instruction such a PC = PC +/- cst which are the most
likely to succeed into a correct jump.

In this paper, we consider jump attacks as described in the second case just
above.

2.2 Code Securing and Control Flow Securing

Code securing techniques can be applied to the whole application or only to
specific parts. Securing only sensitive code regions requires to know weaknesses
which need to be strengthened for a given fault model. When considering some
convenient fault models or when varying input, tractable static analysis, such as
taint analysis, can be used to infer the impact of a fault on control flow [12] or to
detect missing checks [29]. To the best of our knowledge, no previous work has
considered a jump attack fault model probably due to its complexity: all possible
jumps from one point of the program to another point have to be considered.

Protections against control flow attacks depend then on the nature of the
attacks. If the evaluation of a condition involved in a conditional branch is dis-
rupted at runtime, recovering techniques must strengthen the condition compu-
tation. This can be achieved by inserting redundancy and appropriate checks [5].
Countermeasures designed for ensuring control flow integrity or code integrity

Software Countermeasures for Control Flow Integrity 203

often rely on signature techniques or on checks to ensure the validity of accesses
to the instruction memory or of the target address of jump instructions.

Signature techniques typically rely on an offline computation of a checksum
for each basic block. At runtime, the protected code recomputes the checksum
of the basic block being executed and compares with the expected result. Dedi-
cated hardware [28,15] can be used to compute signatures dynamically. However,
solutions requiring hardware modification are unpractical for smart cards. Sev-
eral works proposed to integrate the checks at software level [26,13,16]. Oh et
al. [26] only checks the destinations of all jumps. Bletsch et al. [8] focus on
return-oriented attacks. Abadi et al. [1] proposed a broader method for ensuring
control flow integrity which checks for both the source and the destination of
jumps. However, this approach relies on a new machine instruction.

For javacard enabled smart card, software components of the virtual machine
can perform security checks. Basic block signature computations and checks can
then be carried out by the virtual machine, as proposed by [18]. A transition
automaton, in which each state corresponds to a basic block and each transition
corresponds to allowed control flow, can also be built by analyzing the byte-
code [10]. Calls to setState(), added to the source code, instruct the virtual
machine to check the integrity of the control flow by comparing the current state
with the allowed ones according to the automaton. The virtual machine can also
check the validity of the bytecode address to avoid the execution of any byte-
code stored outside the applet currently being executed [20]. However, a small
jump inside the allowed bytecode, for example inside a function, would not be
detected and might have serious consequences for security. These java card ap-
proaches rely on the ability to perform runtime checks during the interpretation
of the bytecode. For native programs, it is mandatory to include any software
countermeasure inside the code, as proposed in [26,13,16].

Approaches that verify the direction or the target address of branches or
jumps only harden the control flow integrity at basic blocks boundaries. This is
not sufficient to cover physical faults that cause an unconditional jump from an
instruction inside a basic block to another instruction inside another basic block.
The approach proposed in this paper enforces the control flow integrity with a
granularity of one C statement, which is finer than basic block granularity.

Two previously proposed approaches also use a step counter to protect a code
region [10,25]. The former targets computation disruption while the latter com-
bined counters with a signature approach at assembly level to ensure tolerance
to hardware fault. The use of a certified compiler requires to work at the source
code level as proposed in this paper. Our approach, based on counters, is similar
to the intra basic block approach of [25] for securing sequential code. But our
approach operates at higher code level and is able to harden control flow of high
level constructs.

Thus, in the specific context of smart cards or secure elements, to the best of
our knowledge, no research work has proposed formally verified and experimen-
tally evaluated countermeasures at C level that ensure control flow integrity in
the presence of jump attacks during native execution.

204 J.-F. Lalande, K. Heydemann, and P. Berthomé

Fig. 1. Code securing methodology

statement 1;

statement 2;

if (cond1) {

statement 3;

statement 4;

} else {

statement 5;

while (cond2) {

if (cond1) {

statement 6;

statement 7;

}

statement 8;

}

1jump size: 2

statement 9;

3

P1

P10

P2

P3

P4

P5

P6

P7

P8

P9

P11

P12

P13

P14

P15

P16

int f(...) {

return 0; }

Fig. 2. Injection of jump attacks at C level

3 Weakness Detection and Code Securing; Overview

This section gives an overview of our methodology, supported by tools and rep-
resented in Figure 1, to help developers to improve the security of smart card
C codes subject to physical attacks inducing jumps. Our approach starts with
a functional C code of the application. A distinguisher is necessary in order to
discriminate between an execution that gives advantage to an attacker and an
execution that does not. The full code security analysis and securing methodol-
ogy can be split into two main steps.

The first step identifies the weaknesses in the code by simulating all possible
attacks during code execution. The output of all these executions is passed to
a classification tool that classifies attacks as harmful or as harmless. We refer
to these classes as bad and good, respectively. While the bad class contains all
attacks that give advantages to the attacker, the good class is the set of attacks
that have no effect from a security point of view.

The second step consists in hardening the code. It relies on automated in-
jection of countermeasures that ensure control flow integrity for any function
that has been successfully attacked in the first step. The design of the coun-
termeasures is detailed in Section 5 and the verification of their correctness is
explained in Section 6. Note that, once a code has been secured, the evaluation
of the efficiency of the implemented countermeasures or the identification of re-
maining weaknesses can be achieved by returning to the weaknesses detection
step.

We have also implemented a visualization tool offering a graphical representa-
tion of the attacks classification and enabling to have a look at the code regions
corresponding to harmful attacks.

Software Countermeasures for Control Flow Integrity 205

4 Detection of Weaknesses and Visualization

In this section, we describe the part of our methodology that identifies harmful
attacks. The identification of weaknesses is carried out by simulating, classifying
and visualizing physical attacks at source code level.

4.1 Simulation of Attacks

Motivations to work at source code level. As code securing is often performed
at source level by developers, simulating attacks at this level allows to identify
the harmful ones as well as the code regions that should be secured. Simulat-
ing attacks at assembly level would require to match assembly instructions with
the source code which is not trivial [7]. Furthermore, assembly programs are
tightly coupled to specific architectures. Thus, simulating attacks at assembly
programming limits portability. It is also time-consuming. Indeed, simulation of
attack injection at the source code level speeds up the detection of weaknesses
compared to injection at assembly level due to the lower number of source state-
ments. However, jump attacks that start/arrive inside a C statement cannot be
simulated at C level [7]. Nevertheless, it is helpful to detect as many weaknesses
as possible at source code level, and as we show in the experimental results,
working at this level enables to strengthen code security by making successful
attacks very difficult to perform.

Simulation of C level attacks. In order to discover harmful attacks, we simulate
jump attacks using software hacks at C level, as proposed in [7]. For each function
of the application, all possible intra-procedural jump attacks that jump backward
or forward C statements are injected at source level. Figure 2 illustrates all
possible jumps within a function, sorted according to their distance expressed
in statements. Statements in this context are C statements such as assignments,
conditional expressions (e.g. if (cond1) or while(cond2)) and also any bracket
or syntactic elements (e.g. }else{ or the bracket between P14 to P15) that
impact control flow.

4.2 Classification of Simulated Attacks

The benefits of an attack differ depending on the application and the context
of its use. A successful attack may break data confidentiality (by forcing a leak
of sensitive data such as an encryption key or a PIN code) or may break the
integrity of an application (by corrupting an embedded service). In order to cover
the various benefits for an attacker in a general way, our methodology requires a
distinguisher to be provided. This distinguisher must be able to classify as bad
any execution where an attack has succeeded in breaking the expected security
property of the code. Other attacks can be assigned to the good class. A finer
classification of the effects of an attack can be achieved by providing a more
precise distinguisher. In the remainder of the paper, we consider four different
classes: bad: during execution a benefit has been obtained by the attacker; good:

206 J.-F. Lalande, K. Heydemann, and P. Berthomé

237 void aes addRoundKey cpy(
uint8 t *buf, uint8 t *key,
uint8 t *cpk)

238 {
239 register uint8 t i = 16;
240
241 while (i--)
242 {
243 buf[i] ^= key[i];
244 cpk[i] = key[i];
245 cpk[16+i] = key[16+i];
246 }
247 ;
248 }

Source line number

D
es

tin
at

io
n

lin
e

nu
m

be
r

Source line number

D
es

tin
at

io
n

lin
e

nu
m

be
r

Source line number

D
es

tin
at

io
n

lin
e

nu
m

be
r

238 240 242 244 246 248 250

238

240

242

244

246

248

250

bad (j=1)

killcard

error

good

bad (j>1)

out−aes_addRoundKey_cpy.datu

Fig. 3. Result of weakness detection for the aes addRoundKey cpy function

the behavior of the application remains unchanged; error or timeout: the program
has seemed to not terminate and has to be killed or finished with an error
message, a signal (sigsegv, sigbus, ...) or crashes; killcard: a countermeasure
has detected an attack and has triggered a security protection to terminate the
program and possibly to destroy the card. We assume that no benefit can be
obtained by an erroneous or endless execution, so both error and timeout cases
are distinguished from bad cases in the remainder of the paper. If an error is
preceded by a gain, such as a leak of sensitive information, the distinguisher
must be able to discriminate between these attack effects.

4.3 Weaknesses Analysis and Visualization

Since our securing scheme operates at function level, the detection of weaknesses
aims at identifying harmful attacks at source code level in order to identify the
functions to be secured. Thus, any function that, when attacked, exhibits a bad
case is considered for the countermeasure injection. The tools supporting our
methodology offer a visualization tool that can be used by a security expert or a
developer to quickly understand which variables and functionalities are involved
in the generation of harmful attacks by analyzing the jumped part of the code.

The visualization tool builds a graphical representation of the results of the
identification of weaknesses by drawing a square at the coordinate (source line,
target line) using the color associated to its class. To illustrate this, consider the
function aes addRoundKey cpy of an implementation of AES-256 [22] in C, used
later in experiments, given in Figure 3. The distinguisher considers as bad any
execution producing incorrect encrypted data, representing the attacker’s ability
to disrupt the encryption. The visualization of the weaknesses is illustrated in
the right part of Figure 3. All except one forward jump generate a bad case
(orange squares correspond to a jump size of one statement, red squares to a
larger jump distance). Analyzing statements impacted by these harmful attacks
shows that the whole loop body, hence the whole function, must be secured.

Software Countermeasures for Control Flow Integrity 207

#define DECL_INIT(cnt, x) int cnt; if ((cnt = x) != x) killcard();
#define CHECK_INCR(cnt, x) cnt = (cnt == x ? cnt +1 : killcard());
#define CHECK_INCR_FUNC(cnt1, x1, cnt2, x2) cnt1 = ((cnt1 == x1) && (cnt2 == x2) ? cnt1 +

1 : killcard());
#define CHECK_END_IF_ELSE(cnt_then, cnt_else, b, x, y) if (! ((cnt_then == x && cnt_else

== 0 && b) || (cnt_else == y && cnt_then == 0 && !b))) killcard();
#define CHECK_END_IF(cnt_then, b, x) if (! ((cnt_then == x && b) || (cnt_then == 0 && !

b))) killcard();
#define CHECK_INCR_COND(b, cnt, val, cond) (b = (((cnt)++ != val) ? killcard() : cond))
#define RESET_CNT(cnt_while, val) cnt_while = !(cnt_while == 0 || cnt_while == val) ?

killcard() : 0;
#define CHECK_LOOP_INCR(cnt, x, b) cnt = (b && cnt == x ? cnt +1 : killcard());
#define CHECK_END_LOOP(cnt_while, b, val) if (! (cnt_while == val && !b)) killcard();

Fig. 4. Security macros used for control flow securing

5 Countermeasure for C Code Securing

In this section, we present the countermeasures we have designed to detect jump
attacks with a distance of at least two C statements. These countermeasures deal
with the different high-level control-flow constructs such as straight line flow, if-
then-else and loops. Countermeasures are presented in C-style in Appendix A
and use the macros shown in Figure 4. Note that all macros are expanded to
only one line of source code.

5.1 Protection of a Function and Straight-Line Flow of Statements

To secure the control flow integrity of a whole function or a whole block of
straight-line statements, our securing scheme uses a dedicated counter. Each
function or each block of sequential code has its own counter to ensure its con-
trol flow integrity. Counters are incremented after each C statements of the
original source code using the CHECK INCR macro. Before any incrementation, a
check of the expected value of the counter is performed. When a check fails, a
handler named, killcard() as the one used in smart card community, stops the
execution.

To ensure control flow integrity, checks and incrementations of counters need
to be nested. Consider the example in Figure 5 that illustrates the countermea-
sure for a function g with a straight-line control flow composed of N statements.
The dedicated statement counter cnt g is declared and initialized outside the
function, i.e., in any function f calling g prior to each call to g. The initialization
associated to the counter declaration is surrounded by two checks and incremen-
tations of the counter cnt f dedicated to the block of the function f where g

is called. Moreover, the initialization value is different for each function which
enables the detection of any call to another function as shown in the experi-
ments. A reference to the counter cnt g is passed to g as an extra parameter.
Upon return from g, a check of the values of both counters cnt f and cnt g is
performed in order to detect any corruption of the flow inside the function g.
This way, any jump to the beginning of the function is detected inside the called

208 J.-F. Lalande, K. Heydemann, and P. Berthomé

g

f

L7

L7+N

L8

......

L7

L7+N

L8

stmt2

L6+N

stmtN

return

L2

L3

L2

L3

L4 *cnt_f, val_f + 2)

CHECK_INCR(*cnt_f, val_f + 1)

CHECK_INCR(*cnt_f, val_f)

CHECK_INCR(*cnt_g, val + 1)

f

g

DECL_INIT(cnt_g, val)

CHECK_INCR_FUNC(

CHECK_INCR(*cnt_g, val + N)

cnt_g, val + N+1,

CHECK_INCR(*cnt_g, val + 2)

L6+N

stmt1

stmt2

stmtN

CHECK_INCR(*cnt_g, val + N−1)

Flow representationInitial sequential code

}

return

stmt1

CHECK_INCR(*cnt_g, val)

L4ca
ll

to
 g

()

void f(){
...

g();
...

}

void g(){

stmt1;
stmt2;

stmtN;
return;

L1:

L3:
L4:

L7:
L8:
L9:

L6+N:
L7+N:

L2:

ca
ll

to
 g

(&
cn

t_
g)

Securing straight−line flow

Fig. 5. Securing function call and straight-line flow

function g. Any jump to the end of a function is caught when the control flow
returns to the calling function. The nesting of counter checks is at the core of
our countermeasure scheme ensuring control flow integrity.

5.2 Conditional if-then and if-then-else Constructs

High level conditional control flow refers to if-then or if-then-else constructs,
illustrated by the example on the left part of Figure 6. The securing scheme for
conditional flow is illustrated in the right part of the Figure. For such a construct,
our securing scheme requires 2 counters cnt then and cnt else (for the control
flow integrity of each branch of the conditional construct) and one extra variable
b to hold the value of the condition of the conditional flow. Declarations and
initializations of cnt then, cnt else and b are performed outside the if-then-
else block. Similar to functions or straight-line blocks, these new statements
are interleaved with checks and incrementations of the counter cnt used for
the control flow of the surrounding block. This is performed by the additionnal
statements in the red box on the upper right part of Figure 6.

The condition evaluation in the secured version is performed through the
macro CHECK INCR COND: if the counter cnt for the flow integrity of the sur-
rounding block holds the expected value, cnt is incremented and the condition is
evaluated. Thus, any jump attack over the condition evaluation is detected after
the if-then-else construct, when checking the cnt counter. The extra variable b is
set to the value of the condition, in order to be able to distinguish, after the exe-
cution of the if-then-else construct, which branch has been taken. Both counters
dedicated to the conditional branches are then checked according to the value
of b. This is performed by the code corresponding to the CHECK END IF ELSE

Software Countermeasures for Control Flow Integrity 209

L10

L8

L9

L10

L8

L9

L1

L2

L3

L1

L2 CHECK_INCR(*cnt, val + 2)

CHECK_INCR(*cnt, val + 3)
DECL_INIT(b, 1)

stmt2

stmt1

Securing conditional flow

stmt3

else1

then2

then1
 CHECK_INCR(cnt_then, 2)

CHECK_INCR(cnt_then, 3)

if (CHECK_INCR_COND(b, *cnt, val + 5, cond))

CHECK_INCR(cnt_else, 1)

 CHECK_INCR(cnt_then, 1)

stmt2

if (cond)

Conditional flow

stmt1

then1

then2

else1

stmt3

L1: stmt1;
L2 smt2;:
L3: if (cond){

 void f() {

L4: then1;
L5; then2;
L6; }
L7: else
L8: else1;
L9: stmt3;
L10: }

CHECK_INCR(cnt_else, 2)

CHECK_INCR(*cnt, val + 8)

CHECK_INCR(*cnt, val + 7)
CHECK_END_IF_ELSE(cnt_then, cnt_else, b, 4, 3)
CHECK_INCR(*cnt, val + 6)

L3

L4 L4

L5 L5

Conditional code

CHECK_INCR(*cnt, val)

DECL_INIT(cnt_else, 1)

CHECK_INCR(*cnt, val + 4)

DECL_INIT(cnt_then, 1)

CHECK_INCR(*cnt, val + 1)

Fig. 6. Securing conditional control flow

macro inserted between two checks of the counter cnt. Again, this nesting of
counter checks is at the core of the effectiveness of our countermeasure scheme.

5.3 Loop Constructs

We have also designed a countermeasure scheme for loops. Due to lack of space,
we only present while loops. Any other loop constructs (for, do while) can
be rewritten into a while construct. The left part of Figure 7 shows a while

loop and the corresponding control flow between statements stmt 1, stmt 2 and
stmt 3 of the surrounding sequential code. Our countermeasure scheme uses one
counter, cnt while, for securing the control flow of the loop body. Similar to
conditional constructs, our countermeasure scheme requires an extra variable b

to hold the value of the loop condition. The variable b is needed at the end of
the loop to verify correct execution of the loop body and correct termination of
the loop. This is performed by the CHECK END LOOP macro which is surrounded
by CHECK INCR of the counter cnt. The b variable is declared and initialized
outside the loop as for the other constructs. The initial value must be true: if
an attack jumps over the loop, b holds true and the CHECK END LOOP macro,
checking for b being false after the loop, detects the attack. The cnt while

counter is reset before each initial iteration using the RESET CNT(cnt while,

val) macro with val being the final value of the counter after one iteration.
The reset is performed only if cnt while is equal to 0 or to the value val that
is expected after one complete iteration. As a jump from the end of the loop
to the beginning of the body would result in a correct value for cnt while that
is reset before each new iteration, the first check inside the loop body of the
while counter is guarded with b to detect a jump attack leading to an additional

210 J.-F. Lalande, K. Heydemann, and P. Berthomé

L1

L2

L3

L4

L5

L6

L7

L8

L9

L1

L2

L3

L4

L5

L6

L7

L8

L9

while1

while2

while3

stmt1

stmt2
DECL_INIT(b, 1)
CHECK_INCR(*cnt, val+3)
DECL_INIT(cnt_while, 0)
CHECK_INCR(*cnt, val+4)

while(cond)

while1

while2

while3

stmt1

stmt2

CHECK_END_LOOP(cnt_while, b, 1)
CHECK_INCR(*cnt, val+6)

CHECK_INCR(*cnt, val+5)

 ...
L1: stmt1;
L2: stmt2;
L3: while (cond){

 while1;
 while2;
 while3;
}
stmt3;
...

L4:
L5:
L6:
L7:
L8:
L9:
L10: }

void f(){
CHECK_INCR(*cnt, val)
CHECK_INCR(*cnt, val+1)

CHECK_INCR(*cnt, val+2)

RESET_CNT(cnt_while, 4)
if (CHECK_INCR_COND(b, cnt_while, 0, cond))

CHECK_LOOP_INCR(cnt_while, 1, b)
CHECK_INCR(cnt_while, 2)

CHECK_INCR(cnt_while, 3)

CHECK_INCR(cnt_while, 4)

Securing loop flowLoop code Loop flow

CHECK_INCR(*cnt, val+7)
stmt3stmt3

Fig. 7. Securing loop control flow

iteration of the loop. Moreover, the evaluation of the condition (that may update
an induction variable) is performed along with a check and an incrementation
of the counter cnt while using the CHECK INCR COND macro. Hence, any attack
that jumps over the evaluation of the condition of the loop will then be detected
inside the loop.

We have also designed a countermeasure scheme for other C constructs such
as switch case, break, multiple returns, goto. Due to space limitations and
their absence in applications we have considered, they are not presented here.

6 Formal Verification of Countermeasures

Formal verification of our securing scheme helped us designing effective coun-
termeasures and gives strong confidence in their effectiveness against attacks. In
this section, we present the models used for program execution from a control
flow point of view and for jump attacks, as well as properties to check to ensure
the control flow integrity of a secured program execution even in presence of
attacks. The verification of the correctness of the secured code is based on an
equivalence checking with the original code.

6.1 Code Representation and Decomposition for CFI Verification

From a control flow perspective, a program execution can be viewed as the exe-
cution of a sequence of statements. A high-level program can be represented as a

Software Countermeasures for Control Flow Integrity 211

transition system whose states are defined by the values of variables of the pro-
gram (contents of the memory) and of the program counter whose value specifies
a source code line in the C program. Any transition mimics the state transforma-
tion induced by the execution of an individual statement: updating the program
counter and potentially changing variables or the contents of memory. Figure 8
illustrates the representation of a program as a transition system.

A program can be decomposed into functions, and any function body can
be decomposed into top-level code regions containing either only straight-line
statements or a single control flow construct (loops or if-then-else). Sequential
execution of these regions guarantees that, if the control flow integrity is ensured
at the end of a code region, the following code region starts with a correct input
from a control flow point of view. Thus, the integrity of the control flow of both
code regions can be proven by proving the control flow integrity of each code
region. Our countermeasure scheme relies on securing each control flow construct
(function call/sequential code, if-then-else, while constructs) nested with few
straight-line statements of the surrounding block. Then, our approach consists
in verifying separately for each control flow construct enclosed with straight-line
statements of the surrounding block that all possible executions of the secured
version are stopped by a countermeasure in presence of harmful attacks or their
control flow is upstanding with respect to the initial code.

As control flow constructs can be nested, many combinations of control flow
constructs could be modeled. However, any control flow construct can be viewed
as a single statement which is correctly executed or not. Thus, in the models
used for verification of our countermeasures, we only consider straight-line state-
ments inside control flow constructs. The idea is that, if properties hold for each
individual construct, they hold for all of their combinations.

6.2 Models for Verification of Control Flow Integrity

State machine model. To model and verify the integrity of the control flow,
we associate to each statement stmt i of the original code of a function α a
dedicated verification counter denoted cntv αi. In the remainder of the paper,
we refer to such counters as statement counter. We model the execution of a
statement stmt i by incrementing its associated statement counter cntv αi.

Then, the execution of a sequence of statements is modeled by a transition
system TS, defined by TS = {S, T, S0, Sf , L}, where S is the set of states, T
the set of transitions T : S → S, S0 and Sf are the subsets of S containing the
initial states and final states respectively. The final states from Sf are absorbing
states. A state from S is defined by the value of the program counter and the
value of statement counters associated to every statement of the initial code. L
is a set of labels corresponding to the possible values of the program counter,
i.e. line numbers in the source code. Initial states are states with a program
counter value equal to the first line of the modeled code and where all statement
counters hold 0. Any transition from T is defined by the effect of the statement
stmt i associated to the program counter value. Transitions change the pro-
gram counter value to the next line number to be executed and increment the

212 J.-F. Lalande, K. Heydemann, and P. Berthomé

...
void f(){

g();
...

}

L1:
L2:
L3:
L4:

void g(){
stmt1;
stmt2;
return;

}

L7:
L8:
L9:

L2

L4

L3_0

L3

L2_3

L2_1

L2_0

cntv_f2++

L1

Model CM for the secured version

*cnt_f, val_f+2)

L7

stmt2

stmt1

ca
ll

to
 g

()

L2

L3

L4

L9

L8

cntv_f1++

cn
tv

_f
2+

+

cntv_g1++

cntv_g2++
g

L1

ju
m

p
 a

tt
ac

k
tr

an
si

ti
o

n
s

killcard

CHECK_INCR(*cnt_f, val_f)

CHECK_INCR(*cnt_f, val_f+1)

CHECK_INCR_FUNC(

call to g(&cnt_g)

cntv_f1++

cntv_f3++

DECL_INIT(cnt_g, val)

cnt_g, val + 3,

L7

L8

L9

L6_0

L7_0

L8_0

cntv_g2++

stmt1

stmt2

CHECK_INCR(*cnt_g, val+1)

CHECK_INCR(*cnt_g, val+2)

return
cntv_g3++

return cntv_g3++

cntv_g1++

CHECK_INCR(*cnt_g, val)

cntv_f3++

Model M for the initial codeInitial sequential code

f

Fig. 8. Compact representation of TS for a function call and straight-line statements

statement counter cntv αi associated to stmt i of function α. A jump attack,
as considered, can only corrupt the program counter. Thus, for such attacks,
modeling the memory and other registers is not relevant.

To prove that our countermeasure scheme for a construct c is robust against a
jump attack and that its secured version is equivalent to the initial one, we build
two transition systems: one for the initial control-flow construct named M(c) and
another one for the version including countermeasures named CM(c). Figure 8
illustrates a compact representation of both transition systems for a generic
example code with a call to a function composed of straight-line statements.
In a secured version, checks may result in a call to killcard(). Hence, there
is an additional program counter value denoted killcard in any CM(c). All
states with this program counter value are final. All transitions labeled with a
countermeasure macro may change the program counter to killcard. Due to
the high number of such transitions, only a subset is represented in order to keep
the Figure readable.

Jump attack model. A jump attack is equivalent to the modification of the pro-
gram counter with an unexpected value. As our countermeasures are effective
against attacks that jump at least two lines, we add faulty transitions between
every pair of states of CM(c) separated by at least one line of C. These transi-
tions only update the program counter. The green arrows in CM(c) in Figure 8
illustrate all possible jump attacks occurring at line 3 of the code. As we as-
sume that only a single fault can occur, every fault transition is guarded with a
boolean indicating that a fault has already occurred.

6.3 Specification of Control Flow Integrity and Equivalence
Checking

To perform the verification of the control flow integrity and the correctness of a
secured code, we connect the two transition systems M(c) and CM(c) in order to

Software Countermeasures for Control Flow Integrity 213

force the input (such as condition value, iteration counts), if any, to be identical.
The model checker builds a product of both models. We explain in this section,
the properties to verify on this product.

To verify the correctness of the secured code, in the presence or absence of an
attack, we need to prove that:

1. Any path in M(c) or CM(c) reaches a final absorbing state.
2. The statement counter values in any final correct state in CM(c) (with a

program counter value different from killcard) are equal to the statement
counter values in final states of M(c).

3. In CM(c) at any time and in any path, counters cntv αi and cntv α(i+1)
for two adjacent statements stmt i and stmt i+1 in a straight-line flow
respects 1 ≥ cntv αi ≥ cntv α(i+1) ≥ 0 or execution will reach a final
state with the killcard value for the program counter.

Property 2 ensures the right execution counts of statements in CM(c) if the
execution reaches a correct final state. Property 3 checks that line i is always
executed before line i+1 and after line i-1 or the execution will reach a killcard
state. By transitivity, this property, if verified by all statement counters, ensures
that in a straight-line flow, the statement of line k is always executed after line
i and before line l with i < k < l both in M(c) and CM(c). Hence, Property 3
ensures the right order of execution of statements.

For a conditional flow or for a loop, Properties 1 and 2 are the same but
the Property 3 changes slightly. For a conditional flow, such as the example
in Figure 6, Property 3 specifies that at any time in an execution path that
reaches a correct final state 1) the straight-line flow before and after the branches,
condition included, is correct and 2) inside both branches, condition included,
the straight-line flow is correct. Property 2 ensures that only one branch is
executed. For a while loop as in Figure 7, Property 3 says that at any time
in an execution that reaches a correct final state 1) the statements before and
after the loop (condition excluded) are executed only once and in order; 2) the
condition is never executed before its preceding statements, 3) statements inside
the loop, condition included, are executed in order but their execution counts is
not limited. Property 2 ensures the right number of iterations and Property 3
ensures the right control flow during execution.

We have chosen the Vis model checker [11] to prove the effectiveness of our
countermeasure scheme. After modeling all the constructs given in this section
and expressing the properties in CTL, all properties hold.

7 Experimental Results

We implemented all software components1 presented in Figure 1. The counter-
measures for control flow securing as well as the jump attacks for the detection
of weaknesses are injected using a python C parser that manipulates the C
instructions. For the experiments, we considered three well-known encryption
algorithms available in C: AES [22], SHA [17] and Blowfish [17].

1 A demonstration video is available at: http://dai.ly/x205n3x

http://dai.ly/x205n3x

214 J.-F. Lalande, K. Heydemann, and P. Berthomé

Table 1. Jump attack classification for original and secured version (+ CM)

bad bad good killcard error total
size > 1 size = 1

c jump attacks Attacking all functions at C level for all transient rounds

AES 7786 29% 1104 4.2% 17 372 65% 108 0.4% 26 370
AES + CM 0 528 0.2% 18 015 5.3% 318 972 94% 1 0.0% 337 516
SHA 32 818 75% 1528 3.5% 8516 19% 412 1.0% 43 274
SHA + CM 0 1149 0.3% 5080 1.2% 421 200 98% 261 0.1% 427 690
Blowfish 70 086 32% 3550 1.7% 134 360 62% 5725 2.7% 213 721
Blowfish + CM 0 2470 0.2% 331 664 23% 1 060 156 75% 6065 0.4% 1 400 355

asm jump attacks Attacking the aes encrypt function at ASM level for the first transient round

aes encrypt 1566 82.8% 36 1.9% 179 9.4% 111 5.9% 1892
aes encrypt + CM 627 0.2% 21 0% 63 040 20.2% 239 303 78.4% 2264 0.7% 305 255

asm call attacks Attacking all function calls at ASM level for the first transient round

AES 249 59.3% 139 33.1% 32 5% 420
AES + CM 0 21 5% 398 94.8% 1 0.2% 420
SHA 35 48.7% 13 18% 24 33.3% 72
SHA + CM 0 8 11.1% 61 84.7% 3 4.2% 72
Blowfish 9 21.4% 18 42.9% 15 35.7% 42
Blowfish + CM 0 18 42.9% 17 40.5% 7 16.6% 42

First, we simulated all the intra-procedural jump attacks at C level for each
function (such as in Figure 2). A simulated attack is transient and triggered once
during execution. However, using the gcov tool to determine how many times
each line is executed, we simulated all possible instances of jump attacks from a
Line i to a Line j. In all our experiments, the distinguisher classifies as bad any
attack that provokes program termination with corrupted output. The second
column of Table 1 shows that all attacks with a jump distance greater than or
equal to two C statements are captured by our countermeasures. For example,
32 818 jump attacks were harmful for SHA whereas none was for its secured
version (SHA + CM). The number of attacks jumping only one C statements is
also reduced (third column). More important, the ratio of the remaining jump
attacks of size one becomes very low (≤ 0.3%). For example, for AES the bad
cases of size one decrease from 33.2% to 0.2%.

Also, we simulated all possible intra-procedural jump attacks at assembly
level targeting the aes encrypt function of AES executed by an ARM Cortex-
M3 processor. We used the Keil ARM-MDK compiler and Keil simulator [19] for
the replacement of any instruction by a jump anywhere into the same function.
We considered only one function due to a very long simulation time (3 weeks),
highlighting the benefits to perform the attack simulation at source level. Re-
sults are presented in the asm jump attacks section of Table 1. The harmful
attacks in the secured version represent only 40% of the ones in the original
code: our countermeasures enable to defeat 60% of the attacks on this exam-
ple. Moreover, only 0.2% of attacks give advantage to the attacker while 78.4%
are detected. Thanks to the frequent checks added by our countermeasures, the
harmful attacks are much harder to perform on the secured code. It shows our
countermeasures are effective while being implemented at source code level.

Software Countermeasures for Control Flow Integrity 215

Table 2. Size and overhead for original and secured version (+ CM)

x86 arm-v7m
Simulation Size Execution time Size Execution time

time bytes overhead time overhead bytes overhead time overhead

AES 27m 17 996 1.27 ms 4216 38.3 ms

AES + CM 9h 46m 30 284 (+68%) 2.61 ms (+106%) 15 696 (+272%) 191.7 ms (+400.5%)

SHA 1h 18m 13 235 1.47 µs 3184 106.5µs
SHA + CM 16h 52m 21 702 (+64%) 2.81 µs (+91%) 7752 (+143%) 499.1µs (+368%)

Blowfish 5h 52m 30 103 47.6 µs 6292 3.02 ms

Blowfish + CM 3d 6h 19m 46 680 (+55%) 70.6 µs (+48%) 16 396 (+161%) 6.3 ms (+109%)

Finally, we simulated attacks that call an unexpected function instead of the
expected one for all the benchmarks using the Keil simulator. Results, presented
in the asm call attacks section of Table 1, show that all harmful attacks are
captured and many harmless attacks are also detected. Thus, our countermea-
sures are also very effective against unexpected function calls.

Table 2 reports code sizes as well as execution times of both the original
version and the secured one, for a x86 target machine and a cortex-M3 processor.
For the x86 platform, the execution time overhead ranges from +59% (blowfish)
up to +106% (AES). For the embedded ARM processor, the overhead is higher as
the simpler processor does not exploit instruction level parallelism. The highest
overhead is also achieved for AES (+400%). As all functions of our benchmarks
exhibit vulnerabilities, they were all fully secured by our methodology. We will
consider in future work how to achieve at least the same level of security without
fully securing sensitive functions. However, as a smart card is primarily the host
of sensitive operations, ensuring the required security level is crucial. Full code
securing often implies such a high overhead [23,25].

8 Conclusion

This paper has presented a methodology to automatically secure any C applica-
tion with formally verified countermeasures at source level. Results has shown
that these countermeasures defeat 100% of C jump attacks with a distance of
two statements or beyond. Moreover, our countermeasures are able to capture
all unexpected function calls. They also have been able to reduce significantly
the number of attacks injected at assembly level: for the studied function, 60%
of the assembly jump attacks were eliminated. Future work will address the op-
timization of countermeasure injection according to the weaknesses detection
step. If harmless attacks are found inside a function, countermeasures might be
adapted accordingly to reduce their cost while preserving their effectiveness.

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: Atluri,
V., Meadows, C., Juels, A. (eds.) 12th ACM Conference on Computer and Com-
munications Security, pp. 340–353. ACM Press, Alexandria (2005)

216 J.-F. Lalande, K. Heydemann, and P. Berthomé

2. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box characteri-
zation of the effects of clock glitches on 8-bit MCUs. In: Breveglieri, L., Guilley, S.,
Koren, I., Naccache, D., Takahashi, J. (eds.) The 8th Workshop on Fault Diagnosis
and Tolerance in Cryptography, pp. 105–114. IEEE Computer Society Press, Nara
(2011)

3. Barbu, G., Duc, G., Hoogvorst, P.: Java card operand stack: fault attacks, combined
attacks and countermeasures. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079,
pp. 297–313. Springer, Heidelberg (2011)

4. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on java card 3.0 combining fault and
logical attacks. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS
2010. LNCS, vol. 6035, pp. 148–163. Springer, Heidelberg (2010)

5. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault Injection Attacks on
Cryptographic Devices: Theory, Practice, and Countermeasures. Proceedings of
the IEEE 100(11), 3056–3076 (2012)

6. Barenghi, A., Trichina, E.: Fault attacks on stream ciphers. In: Joye, M., Tunstall,
M. (eds.) Fault Analysis in Cryptography. Information Security and Cryptography,
pp. 239–255. Springer, Heidelberg (2012)

7. Berthomé, P., Heydemann, K., Kauffmann-Tourkestansky, X., Lalande, J.F.: High
level model of control flow attacks for smart card functional security. In: 7th In-
ternational Conference on Availability, Reliability and Security, AReS 2012, pp.
224–229. IEEE Computer Society, Prague (2012)

8. Bletsch, T., Jiang, X., Freeh, V.: Mitigating code-reuse attacks with control-flow
locking. In: Zakon, R.H., McDermott, J.P., Locasto, M.E. (eds.) 27th Annual Com-
puter Security Applications Conference, pp. 353–362. ACM Press, Orlando (2011)

9. Bouffard, G., Iguchi-Cartigny, J., Lanet, J.L.: Combined software and hardware
attacks on the java card control flow. In: Prouff, E. (ed.) CARDIS 2011. LNCS,
vol. 7079, pp. 283–296. Springer, Heidelberg (2011)

10. Bouffard, G., Thampi, B.N., Lanet, J.-L.: Detecting laser fault injection for smart
cards using security automata. In: Thampi, S.M., Atrey, P.K., Fan, C.-I., Perez,
G.M. (eds.) SSCC 2013. CCIS, vol. 377, pp. 18–29. Springer, Heidelberg (2013)

11. Brayton, R., et al.: Vis: A system for verification and synthesis. In: Alur, R., Hen-
zinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 428–432. Springer, Heidelberg
(1996), http://vlsi.colorado.edu/~vis/

12. Ceara, D.: Detecting Software Vulnerabilities - Static Taint Analysis. Bsc thesis,
Universitatea Politehnica Bucuresti, Verimag (2009)

13. Chen, Y., Venkatesan, R., Cary, M., Pang, R., Sinha, S., Jakubowski, M.H.: Obliv-
ious hashing: A stealthy software integrity verification primitive. In: Petitcolas,
F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 400–414. Springer, Heidelberg (2003)

14. Dehbaoui, A., Mirbaha, A.-P., Moro, N., Dutertre, J.-M., Tria, A.: Electromag-
netic glitch on the AES round counter. In: Prouff, E. (ed.) COSADE 2013. LNCS,
vol. 7864, pp. 17–31. Springer, Heidelberg (2013)

15. Fiskiran, A.M., Lee, R.B.: Runtime execution monitoring (REM) to detect and
prevent malicious code execution. In: IEEE International Conference on Computer
Design: VLSI in Computers and Processors, pp. 452–457. IEEE Computer Society,
San Jose (2004)

16. Goloubeva, O., Rebaudengo, M., Reorda, M.S., Violante, M.: Soft-error detection
using control flow assertions. In: 18th International Symposium on Defect and
Fault Tolerance in VLSI Systems, pp. 581–588. IEEE Computer Society, Boston
(2003)

http://vlsi.colorado.edu/~vis/

Software Countermeasures for Control Flow Integrity 217

17. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown,
R.B.: MiBench: A free, commercially representative embedded benchmark suite.
In: 4th Annual Workshop on Workload Characterization, pp. 3–14. IEEE Computer
Society, Austin (2001), http://www.eecs.umich.edu/mibench/

18. Iguchi-cartigny, J., Lanet, J.L.: Evaluation of Countermeasures Against Fault At-
tacks on Smart Cards. International Journal of Security and Its Applications 5(2),
49–60 (2011)

19. Keil: Keil uVision for ARM processors (2012),
http://www.keil.com/support/man_arm.htm

20. Lackner, M., Berlach, R., Raschke, W., Weiss, R., Steger, C.: A defensive virtual
machine layer to counteract fault attacks on java cards. In: Cavallaro, L., Gollmann,
D. (eds.) WISTP 2013. LNCS, vol. 7886, pp. 82–97. Springer, Heidelberg (2013)

21. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: Morrisett, J.G., Jones, S.L.P. (eds.) 33rd ACM Sympo-
sium on Principles of Programming Languages, pp. 42–54. ACM Press, Charleston
(2006)

22. Levin, I.: A byte-oriented AES-256 implementation (2007),
http://www.literatecode.com/aes256

23. Moro, N., Heydemann, K., Encrenaz, E., Robisson, B.: Formal verification of a
software countermeasure against instruction skip attacks. Journal of Cryptographic
Engineering, 1–12 (2014)

24. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electro-
magnetic Fault Injection: Towards a Fault Model on a 32-bit Microcontroller. In:
Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 77–88. IEEE
Computer Society, Santa Barbara (2013)

25. Nicolescu, B., Savaria, Y., Velazco, R.: SIED: Software implemented error detec-
tion. In: 18th International Symposium on Defect and Fault Tolerance in VLSI
Systems, pp. 589–596. IEEE Computer Society, Boston (2003)

26. Oh, N., Shirvani, P., McCluskey, E.: Control-flow checking by software signatures.
IEEE Transactions on Reliability 51(1), 111–122 (2002)

27. Verbauwhede, I., Karaklajić, D., Schmidt, J.M.: The fault attack jungle - a clas-
sification model to guide you. In: Breveglieri, L., Guilley, S., Koren, I., Naccache,
D., Takahashi, J. (eds.) 8th Workshop on Fault Diagnosis and Tolerance in Cryp-
tography, pp. 3–8. IEEE Computer Society, Nara (2011)

28. Xia, Y., Liu, Y., Chen, H., Zang, B.: CFIMon: Detecting violation of control flow
integrity using performance counters. In: Swarz, R.S., Koopman, P., Cukier, M.
(eds.) IEEE/IFIP International Conference on Dependable Systems and Networks,
pp. 1–12. IEEE Computer Society, Boston (2012)

29. Yamaguchi, F., Wressnegger, C., Gascon, H., Rieck, K.: Chucky: exposing missing
checks in source code for vulnerability discovery. In: Sadeghi, A.R., Gligor, V.D.,
Yung, M. (eds.) ACM Conference on Computer and Communications Security,
Berlin, Germany, pp. 499–510 (November 2013)

A Countermeasures Securing Codes

This section presents the implementation of the countermeasures of Figure 5, 6
and 7 using the macros of Figure 4.

The implementation of countermeasures for function calls and sequence of
statements are shown in the two listings below. The statement counter cnt g for

http://www.eecs.umich.edu/mibench/
http://www.keil.com/support/man_arm.htm
http://www.literatecode.com/aes256

218 J.-F. Lalande, K. Heydemann, and P. Berthomé

a function g must be initialized with a value different that the one for all other
functions in order to capture jump attacks that try to call another function.
Moreover, the range of values taken by the statement counter of a function must
be different from the ones of other functions in order to detect inter-procedural
jumps.

int g(int n, int m, int * cnt g){
CHECK INCR(*cnt g, 8)
statement;
CHECK INCR(*cnt g, 9)
...
CHECK INCR(*cnt g, 10)
statement;
CHECK INCR(*cnt g, 11)
return res;
}

int f(int * cnt f){
...
CHECK INCR(*cnt f, 15)
// initialization value �= for each func.
DECL INIT(cnt g, 8)
CHECK INCR(*cnt f, 16)
x = g(p, q, &cnt g)
CHECK INCR FUNC(*cnt f, 17, cnt g, 12);
...
}

The listings below illustrate the implementation of the countermeasures for
an if construct (left) and for a while construct (right). The while construct
example contains the statements to be inserted to handle a for construct for
the initialization of the induction variable and its incrementation.
...
CHECK INCR(*cnt, 8)
statement;
CHECK INCR(*cnt, 9)
DECL INIT(cnt then, 1)
CHECK INCR(*cnt, 10)
DECL INIT(cnt else, 1)
CHECK INCR(*cnt, 11)
DECL INIT(b, 1)
CHECK INCR(*cnt, 12)
if (CHECK INCR COND(b, *cnt, 13, cond))
{

CHECK INCR(cnt then, 1)
statement;
CHECK INCR(cnt then, 2)
...
CHECK INCR(cnt then, 4)

}
else
{

CHECK INCR(cnt else, 1)
statement;
CHECK INCR(cnt else, 2)
...
CHECK INCR(cnt else, 6)

}
CHECK INCR(*cnt, 14)
CHECK END IF ELSE(cnt then, cnt else, b, 5,

7)
CHECK INCR(*cnt, 15)
statement;

...
CHECK INCR(*cnt, 8)
statement;
CHECK INCR(*cnt, 9)
DECL INIT(b, 1)
CHECK INCR(*cnt, 10)
DECL INIT(cnt while, 1)
CHECK INCR(*cnt, 11)
// optional induction variable
// initialization statement for a for
CHECK INCR(cnt, 12)
while: {

RESET CNT(cnt while, 8)
if (! CHECK INCR COND(b, cnt while,

0, cond)) goto next;
CHECK LOOP INCR(cnt while, 1, b)
statement;
CHECK INCR(cnt while, 2)
statement;
CHECK INCR(cnt while, 3)
...
CHECK INCR(cnt while, 6)
// optional incrementation statement
// for a for
CHECK INCR(cnt while, 7)
goto while;

}
next:
CHECK INCR(*cnt, 13)
CHECK END LOOP(cnt while, b, 1)
CHECK INCR(*cnt, 14)
statement;

LeakWatch: Estimating Information Leakage

from Java Programs

Tom Chothia1, Yusuke Kawamoto2,�, and Chris Novakovic1

1 School of Computer Science, University of Birmingham, UK
2 INRIA Saclay & LIX, École Polytechnique, France

Abstract. Programs that process secret data may inadvertently reveal
information about those secrets in their publicly-observable output. This
paper presents LeakWatch, a quantitative information leakage analy-
sis tool for the Java programming language; it is based on a flexible
“point-to-point” information leakage model, where secret and publicly-
observable data may occur at any time during a program’s execution.
LeakWatch repeatedly executes a Java program containing both secret
and publicly-observable data and uses robust statistical techniques to
provide estimates, with confidence intervals, for min-entropy leakage (us-
ing a new theoretical result presented in this paper) and mutual informa-
tion. We demonstrate how LeakWatch can be used to estimate the size
of information leaks in a range of real-world Java programs.

Keywords: Quantitative information flow, statistical estimation, Java,
mutual information, min-entropy leakage.

1 Introduction

An information leak occurs when a passive observer learns something about
a system’s secret data by observing its public outputs. Information leaks may
be a side effect of a correctly-functioning system, and pose no real threat to
security (e.g., a rejected guess of a secret, high-entropy password leaks some
information: that this value is not the correct password). Larger information
leaks, on the other hand, may lead to a complete breakdown of security (e.g., a
flawed random number generator may give an observer all the information they
need to guess important secret values). It is therefore important for a designer
or analyst of a system to know exactly where information leaks occur and to be
able to quantify them.

Information theory is a useful mechanism for providing quantitative bounds
on what an attacker can learn. The attacker’s uncertainty about a system’s
secret data is usually represented as Shannon entropy [1], and the reduction in
uncertainty about the secret data is represented using a measure such as the
mutual information of the secret data and publicly-observable data [2], or the

� Work by Yusuke Kawamoto was supported by a postdoc grant funded by the IDEX
Digital Society project.

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 219–236, 2014.
c© Springer International Publishing Switzerland 2014

220 T. Chothia, Y. Kawamoto, and C. Novakovic

min-entropy leakage from the secret data to the publicly-observable data [3].
Although the bounds provided by these measures are meaningful, it is tedious
to manually compute them; there is therefore a need for tools that automatically
and robustly detect information leakage vulnerabilities in software.

This paper presents LeakWatch, a quantitative information leakage analy-
sis tool for the Java programming language. It is based on a “point-to-point”
information leakage model in which secret and publicly-observable data may oc-
cur at any time during the program’s execution, including inside complex code
structures such as branches and nested loops. This model, which we developed
previously using a semantics based on discrete-time Markov chains [4], is par-
ticularly well-suited to analysing complex programs where secret and publicly-
observable data may occur at any point: if secret and publicly-observable values
are “tagged” using the secret and observe commands respectively, it measures
how much information a passive attacker with knowledge of the program’s source
code learns about the secret values by examining the observable values.

Given a Java program whose source code has been annotated with the posi-
tions where its secret and publicly-observable data occurs, LeakWatch repeatedly
executes it, recording the occurrences of secret and public data, and then per-
forms robust statistical tests to detect whether an information leak is present
and, if so, estimate the size of the leak. We note that this relies on the analyst
correctly identifying which values in their program should be kept secret and
which other values might be observable to an attacker, but, assuming this is
done correctly (a reasonable assumption for most programs), LeakWatch can be
used to verify whether the program is secure, or whether it contains an informa-
tion leak that could lead to an attack.

LeakWatch uses previous techniques [5,6] for estimating mutual information
and a new technique for estimating min-entropy leakage. These are brute-force
approaches for probabilistic systems; i.e., we must run the program enough times
to collect sampled data for every possible secret value. If the systems we target
were deterministic, we could compute the information leakage precisely; however,
since they are probabilistic, we use these statistical estimation techniques to
distinguish a real information leak from noise in the measurements and to place
bounds on the possible leakage.

We note that this estimation technique is quite different from those that
estimate mutual information or min-entropy leakage with sampled data for only
some of the possible secrets (e.g., [7]). These results often require additional
assumptions about the distribution of the secret values, which we do not make,
and may only work for non-probabilistic systems. Practically, we can analyse
systems containing tens (or, in some cases, hundreds) of thousands of secret and
observable values that occur with a non-negligible probability, and in which each
trial run of the system is independent and identically distributed. We show that
this provides interesting results for complex systems.

We present new results for calculating when enough samples have been col-
lected for our estimates to be accurate, and handling user (but not attacker)
input to a system. We provide a full Java-based implementation of our analysis

LeakWatch: Estimating Information Leakage from Java Programs 221

method, and illustrate its power with three realistic security-themed examples.
Other tools, such as QUAIL [8], QIF [9] and our earlier CH-IMP implemen-

tation [4], compute the leakage from small formal models of programs. A key
difference in this work is that we target full Java programs, at the cost of esti-
mating leakage instead of computing it precisely.

There are other information leakage tools built on model checkers for C and
Java [10,11,12]. They require the secret values to be inputs to the program and
the observable values to be the program’s final outputs; they are also restricted to
the subset of the language’s syntax supported by the model checker. LeakWatch
has neither of these constraints.

In summary, our main contributions are the following:

a) a new result for estimating min-entropy leakage from trial runs of systems,
as well as providing confidence intervals for those estimates using χ2 tests;

b) a technique that, given certain assumptions, ensures we have enough samples
to estimate information leakage from trial runs of a system;

c) LeakWatch, a robust information leakage analysis tool that can estimate
mutual information and min-entropy leakage in Java programs; LeakWatch
is freely available at [13], with full documentation and a range of sample
Java programs.

The rest of the paper is organised as follows. In Section 2 we introduce relevant
theoretical background information. In Section 3 we show a new theoretical result
for estimating min-entropy leakage and its confidence interval from trial runs of
a system. In Sections 4 and 5 we discuss LeakWatch’s design and implementation
respectively. In Section 6 we show three examples of LeakWatch being used to
uncover information leakage vulnerabilities in real-world Java programs.

2 Background

2.1 Leakage Measures and Estimating Mutual Information

Our approach assumes that trial runs of the system are independent and iden-
tically distributed; the analyst must verify that this is the case. We also assume
the system has probabilistic behaviour: each run results in some secret values
x ∈ X occurring from some probability distribution X , and some observable
behaviour y ∈ Y occurring from some probability distribution Y . Then, for each
run of the system, the probability of the secrets x occurring and the attacker
observing y is given by the joint probability distribution p(x, y). The question
we wish to answer is “how much does an attacker learn about the value of the
secret from the observable behaviour of the system?”.

We use two popular measures of information leakage: mutual information and
min-entropy leakage. Mutual information is given by the equation

I(X ;Y) =
∑

x∈X ,y∈Y
p(x, y) log2

(
p(x, y)

p(x)p(y)

)
(1)

222 T. Chothia, Y. Kawamoto, and C. Novakovic

and tells us how much information, in bits, we learn about X by observing Y .
Min-entropy leakage is given by the equation

L(X ;Y) = log2

∑
y∈Y

max
x∈X

p(x, y)− log2 max
x∈X

∑
y∈Y

p(x, y) (2)

and tells us how difficult it is for the attacker to guess the secret values in one
attempt, given the observable behaviour. We refer the reader to [2] for a more in-
depth evaluation of mutual information and min-entropy leakage as information
leakage measures.

From trial runs of a system we can estimate the joint distribution p̂(x, y) and
the distributions p̂(x) and p̂(y); we can use these distributions in Equation 1 to
estimate the mutual information Î(X ;Y). To find bounds on the true mutual
information of the secret and observable values in a system, we need to know
how Î(X ;Y) relates to I(X ;Y). We have shown previously [14] how these values
are related when the distribution on secrets is known and we estimated p̂(y|x);
however, this case is different, in that we are also estimating p̂(x). This case has
been studied by Moddemeijer [5] and Brillinger [6], who found that:

Theorem 1. When I(X ;Y) = 0, for a large number of samples n, 2nÎ(X ;Y)
will be drawn from a χ2 distribution with (#X − 1)(#Y − 1) degrees of freedom;
i.e., Î(X ;Y) has an average value of (#X −1)(#Y−1)/2n and variance (#X −
1)(#Y − 1)/2n2.

Theorem 2. When I(X ;Y) > 0, for a large number of samples n, the estimates
Î(X ;Y) will be drawn from a distribution with mean I(X ;Y) + (#X − 1)(#Y −
1)/2n + O

(
1
n2

)
and variance

1

n

⎛⎝∑
x,y

p(x, y)log2

(
p(x, y)

p(x)p(y)

)
−

(∑
x,y

p(x, y)log

(
p(x, y)

p(x)p(y)

))2
⎞⎠ + O

(
1

n2

)
.

Using these results, we first test a Î(X ;Y) value against the χ2 distribution
from Theorem 1; if it is consistent with the 95% confidence interval for this
distribution, we conclude that there is no evidence of an information leak in our
sampled data. If Î(X ;Y) is inconsistent with the distribution from Theorem 1,
we conclude that there is evidence of an information leak in our sampled data
and use Theorem 2 to calculate a confidence interval for the leakage.

In both cases “a large number of samples” means enough samples to ensure
that every p̂(x, y) is close to p(x, y), so it is important to note that this is a brute-
force approach that requires many more samples than the product of the number
of secret and observable values. The contribution of the estimation results is to
allow us to analyse systems that behave probabilistically.

The O(n−2) term in Theorem 2 is an infinite sum on descending powers of n.
This term is a result of using the Taylor expansion of entropy and conditional
entropy. To make use of Theorem 2 we require enough samples for the O(n−2)
term to be small. This will always be the case for a sufficiently large n, and we
address how to tell when n is large enough in Section 4.1. In practice, these results
let us analyse systems with tens of thousands of unique secrets and observables.

LeakWatch: Estimating Information Leakage from Java Programs 223

2.2 Our Information Leakage Model

Our tool uses a “point-to-point” information leakage model, which tells us how
much an attacker learns about a secret value at a particular point in a program
from the program’s observable outputs. This model is particularly well-suited to
analysing entire programs (rather than code fragments), and it is a generalisation
of the more common model of information flow that measures the leakage from
high-level secret inputs of a function to its low-level public outputs [15]. It is im-
portant to note that our information flow model measures the information leakage
from the value of variable at a particular point in the program. This differs from
(e.g.) the Jif [16] information flow model, which ensures that no value stored in
a high-level variable ever affects the value stored in a low-level variable. We have
previously [4] developed a formal model of this information leakage, showed that it
can be computed precisely for a simple probabilistic language using discrete-time
Markov chains and that it can be estimated from trial runs of a program.

The LeakWatch API provides the command secret(v1) to denote that the
current value of the variable v1 should be kept secret, and observe(v2) to denote
that v2 is a value the attacker can observe; it is up to the analyst to decide
where to place these commands. We then measure the information leakage from
occurrences of v1 to occurrences of v2.

For example, consider a Java card game program in which a Card object
(theirCard) is drawn from a deck and sent over an insecure socket to an opposing
player. Another Card object (ourCard) is drawn from the deck and stored locally;
the opponent is then given the opportunity to make a bet based on the value
of theirCard. If an analyst wanted to estimate how much information a remote
attacker learns about ourCard from theirCard, the code could be annotated as:

Card theirCard = deck.drawCard();

LeakWatchAPI.observe(theirCard);

opponent.writeToSocket(theirCard);

Card ours = deck.drawCard();

LeakWatchAPI.secret(ours);

if (opponent.placedBet()) determineWinner();

This would, for example, alert the analyst to a badly-implemented random num-
ber generator in the deck-shuffling algorithm that allows the opposing player to
predict the value of the next card dealt from the deck, giving them an unfair
advantage when deciding whether to bet.

We note that our measure of information leakage only tells us what a passive
attacker learns about the secret values by examining the observable values; it
does not measure how easy the secret value is to guess (e.g., because it has
low entropy). Therefore, the leakage measurement is only useful when there is
uncertainty about the secret values. This could be due to secret values being
randomly-generated numbers, or programs exhibiting unpredictable behaviour
such as process scheduling or network timing. In cases where the secret is an
input to the system, code can be added to generate a truly random value for the
secret and then measure the leakage to the observable values. We give examples
illustrating all of these cases in Section 6 and on the LeakWatch web site [13].

224 T. Chothia, Y. Kawamoto, and C. Novakovic

3 Estimating Min-Entropy Leakage

Our mutual information estimation result calculates the exact distribution of
the estimates and so lets us calculate exact confidence intervals; obtaining a
similar result for min-entropy leakage is difficult because of the maximum in
its definition. So, to allow us to calculate this popular leakage measure, we find
upper and lower bounds for a (more than) 95% confidence interval.

The estimation gives a point estimate of the leakage L(X ;Y) from a distribu-
tion X on secret values to a distribution Y on observable values, and its (more
than) 95% confidence interval. We do not know the exact distribution X , so we
estimate it from the trial run data. Since we do not know the exact joint prob-
ability distribution p(x, y) for the system, we first calculate the empirical joint
distribution from the trial runs. Let L be the total number of trial runs, and
ŝ(x, y) be the frequency of (i.e., the number of trial runs with) a secret x ∈ X
and an observable y ∈ Y; then the empirical probability of having a secret x and

an observable y is defined by ŝ(x,y)
L . Also, let û(x) be the frequency of a secret

x ∈ X ; i.e., û(x) =
∑

y∈Y ŝ(x, y); then we calculate the empirical probability of

seeing x as û(x)
L . Using these empirical distributions we obtain a point estimate

L̂(X ;Y) of the min-entropy leakage:

L̂(X ;Y) = − log2 max
x∈X

û(x)

L
+ log2

∑
y∈Y

max
x∈X

ŝ(x, y)

L
.

Given L independent and identically distributed trial runs, the frequency ŝ(x, y)
follows the binomial distribution B(L, p(x, y)), where p(x, y) is the true joint
probability of a secret x and an observable y occurring. We note that we cannot
treat each of the empirical joint probabilities as independently sampled from a
binomial distribution, because together they must sum to 1. Instead, we perform
Pearson’s χ2 tests [17,18] for a large number L of trial runs.

The estimation of a confidence interval is based on the fact that, with a high
probability, each observed frequency ŝ(x, y) is close to the “expected frequency”
p(x, y)L, where p(x, y) is the true probability we want to estimate. By applying
χ2 tests, we evaluate the probability that the observed frequencies ŝ(x, y) come
from the joint probability distributions p(x, y). Given the observed frequencies
ŝ(x, y) and the expected frequencies p(x, y)L, the χ2 test statistics is defined by:

χ2 =
∑

x∈X , y∈Y

(ŝ(x, y)− p(x, y)L)2

p(x, y)L
.

Since the joint probability distribution is regarded as a one-way table in this
setting, the χ2 test statistics follows the χ2 distribution with (#X · #Y) − 1
degrees of freedom. We denote by χ2

(0.05,k) the test statistics with upper tail area
0.05 and k degrees of freedom.

The goal of our new method is to obtain a (more than) 95% confidence in-
terval of the min-entropy leakage L(X ;Y) between the secret and observable

LeakWatch: Estimating Information Leakage from Java Programs 225

distributions X , Y . To obtain this, we estimate the 95% confidence intervals of
the min-entropy H∞(X) = − log2 maxx∈X p(x) and the conditional min-entropy
H∞(Y |X) = − log2

∑
y∈Y maxx∈X p(x, y) respectively.

We first present a method for obtaining the confidence interval of the
conditional min-entropy H∞(Y |X). Given L independent and identically dis-
tributed trial runs of the system, we obtain the observed frequencies ŝ. Then
we construct expected frequencies smax that give the largest a posteriori
vulnerability

∑
y∈Y maxx∈X p(x, y) among all expected frequencies that sat-

isfy: χ2
(0.05,#X#Y−1) =

∑
x∈X , y∈Y

(ŝ(x,y)−smax(x,y))2

smax(x,y) . More specifically, smax

is constructed from ŝ by increasing only the maximum expected frequencies
maxx∈X ŝ(x, y) and by decreasing others, while keeping the total number of
frequencies as L; i.e.,

∑
x∈X ,y∈Y smax(x, y) = L. From smax we calculate the

empirical distribution P post
max [x, y] = smax(x,y)

L . Next, we construct expected
frequencies smin that give the smallest a posteriori vulnerability. Keeping
the total number of frequencies as L, we repeatedly decrease the current
maximum expected frequency and increase the smallest frequencies until we

obtain χ2
(0.05,#X#Y−1) =

∑
x∈X , y∈Y

(ŝ(x,y)−smin(x,y))2

smin(x,y) . Then we calculate the

corresponding distribution P post
min . From P post

max and P post
min we obtain the following

confidence interval of the conditional min-entropy:

Lemma 1. The lower and upper bounds for the 95% confidence interval of the
conditional min-entropy H∞(Y |X) are respectively given by:

H low
∞ (Y |X) = − log2

∑
y∈Y

max
x∈X

P post
max [x, y], H up

∞ (Y |X) = − log2

∑
y∈Y

max
x∈X

P post
min [x, y].

Next, we compute the confidence interval of the min-entropy H∞(X). Given
the observed frequencies û, we construct expected frequencies umax that give the

largest vulnerability max
x∈X

p(x) such that χ2
(0.05,#X−1) =

∑
x∈X

(û(x)−umax(x))2

umax(x) . We

calculate the empirical distribution P prior
max [x] = umax(x)

L . Similarly, we construct
expected frequencies umin giving the smallest vulnerability, and calculate the
corresponding distribution P prior

min . Then we obtain the following:

Lemma 2. The lower and upper bounds for the 95% confidence interval of the
min-entropy H∞(X) are respectively given by:

H low
∞ (X) = − log2 max

x∈X
P prior

max [x], H up
∞ (X) = − log2 max

x∈X
P prior

min [x].

Finally, we obtain a confidence interval for the min-entropy leakage:

Theorem 3. The lower and upper bounds for a more than 95% confidence in-
terval of the min-entropy leakage L(X ;Y) are respectively given by:

Llow(X ;Y) = H low
∞ (X)−H up

∞ (Y |X), Lup(X ;Y) = H up
∞ (X)−H low

∞ (Y |X).

226 T. Chothia, Y. Kawamoto, and C. Novakovic

Note that our estimation technique for min-entropy leakage requires a large
number of trial runs (usually many more than that required to estimate mu-
tual information) to ensure that no more than 20% of the non-zero expected
frequencies are below 5, which is a prerequisite for χ2 tests.

Fig. 1 shows an example of mutual information and min-entropy leakage esti-
mation; the graph is generated with 1,000 estimates of leakage from the 4-diner
DC-net described in depth in Section 6.1) in which the random bits are bi-
ased towards 0 with probability 0.75. The graph shows the true leakage result,

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

F
re

qu
en

cy

Leakage (bits)

Corrected
mutual information

Lower
bounds

Min-entropy
leakage

Upper
bounds

Fig. 1. The sampling distributions of mutual infor-
mation and min-entropy leakage (and the lower/
upper bounds for min-entropy leakage’s confidence
interval)

the estimated results from
10,000 runs of LeakWatch, and
the bounds for min-entropy
leakage. Our mutual informa-
tion result gives the exact dis-
tribution of the estimates and
so LeakWatch calculates the
exact 95% confidence interval.

In this case, we observe
that the estimation of min-
entropy leakage is slightly bi-
ased and that it demonstrates
more variation in the range
of results than mutual infor-
mation, although other exam-
ples (especially examples with
unique maximum probabili-
ties) demonstrate more varia-
tion in the mutual information estimate. In all cases, our bounds for the mutual
information estimate are better than our bounds for min-entropy leakage; this is
because we find the exact distribution of the estimates for mutual information
and so can find a more accurate confidence interval.

4 The Design of LeakWatch

LeakWatch is a robust tool intended for testing general-purpose, real-world Java
programs where the presence of information leakage vulnerabilities may be a
concern. It repeatedly executes a target program, recording the secret and ob-
servable values it encounters, and then uses the estimation results described in
Sections 2 and 3 to find bounds on the information leakage from the program.

We target Java because of its enterprise popularity and common usage in large
software projects. LeakWatch requires minimal modifications to be made to the
target program’s source code: the analyst simply inserts calls to the LeakWatch
API methods, secret() and observe() (indicating the occurrence of a secret
and observable value respectively), identifies the name of the main class contain-
ing the target program’s main method and instructs LeakWatch to estimate the
leakage from that program. The repeated execution of the program in a manner

LeakWatch: Estimating Information Leakage from Java Programs 227

that guarantees the correctness of the leakage estimation — including handling
idiosyncrasies of the Java Virtual Machine (JVM), such as class-loading — and
computation of the leakage estimation are then performed by LeakWatch. As
the target program is repeatedly executed, LeakWatch automatically determines
whether the amount of secret and observable information gathered is sufficient
to produce a reliable leakage estimation; no further user interaction is required.

An important requirement of our statistical tests is that the sampled data is
independent and identically distributed. This requirement is easily fulfilled if the
target program does not rely on any external state (e.g., a value read from a file)
that may change between executions. Programs that rely on some external state
that does not have a statistically significant effect on the observable behaviour
of the program can also be analysed without modification. It may be possible
to modify programs that do rely on external state (e.g., by replacing a network
read with a randomly generated value) and still obtain useful results.

4.1 Collecting Sufficient Program Execution Data

For our estimation results to be meaningful, we must collect enough samples to
ensure that the estimated joint distribution of the secret and observable informa-
tion that occurs in the program is a close approximation of the true distribution.
Recall from Theorem 2 that the mean and variance of the distribution from which
mutual information estimates are drawn are both defined as Taylor series. For ef-
ficiency reasons, LeakWatch only evaluates the first-order Taylor polynomial (e.g.,
Î(X ;Y)− (#X − 1)(#Y − 1)/2n for the point estimate of mutual information).
Evaluating more terms in the Taylor series is computationally expensive because
the joint distribution of X and Y must be enumerated differently for each term.
For a small number of samples n, it is likely that the O(n−2) and higher-order
terms are too large for the first-order Taylor polynomial to be a good approxima-
tion of the sum of the series, and so Î(X ;Y)− (#X − 1)(#Y − 1)/2n will change
as n increases. However, for a large enough number of samples, the higher-order
terms quickly become small enough to have no meaningful effect on the result, and
Î(X ;Y)− (#X − 1)(#Y − 1)/2n will no longer change as n increases.

Based on this observation, LeakWatch uses the following heuristic to automat-
ically determine when a sufficient amount of trial run data has been collected
to minimise the higher-order terms in the Taylor series and therefore provide an
accurate mutual information estimate. It computes an estimate Î(X ;Y) after
max(#X ×#Y, 100) samples have been collected, and stops collecting samples
if all of the following conditions are met:
1) #X , #Y > 1 (otherwise a leakage measure cannot be computed from the

joint probability distribution);
2) #X and #Y have remained constant since these conditions were last checked

(otherwise the values in condition 4 cannot be compared meaningfully);
3) the minimum number of samples (4×#X ×#Y) has been collected;
4) the value Î(X ;Y)− (#X −1)(#Y−1)/2n has not changed beyond a certain

amount, configurable by the analyst, since these conditions were last checked
(otherwise the higher-order Taylor series terms are non-negligible).

228 T. Chothia, Y. Kawamoto, and C. Novakovic

If these conditions are not met, the process is repeated again when #X ×#Y
more samples have been collected.

This heuristic allows LeakWatch to produce accurate mutual information es-
timates and confidence intervals for target programs containing both small and
large numbers of unique secret and observable values that occur with a non-
negligible probability. The initial number of samples max(#X ×#Y, 100) pre-
vents LeakWatch from terminating too early when analysing very small systems
(e.g., those containing fewer than ten unique secret and observable values in
total) due to the low value of #X ×#Y in these systems.

To estimate min-entropy leakage, we need many more trial runs than we need
to estimate mutual information. As mentioned in Section 3, we require that
no more than 20% of the non-zero expected frequencies are below 5; LeakWatch
therefore collects samples until this condition as well as the first three conditions
in the above procedure for mutual information estimation are met.

5 Implementing LeakWatch

To test a program for information leakage, an analyst simply imports the
LeakWatch API class into their Java program and tags the secret and publicly-
observable data with the API’s secret() and observe() methods. Execution
and sandboxing of the target program are achieved using the core Java libraries,
and leakage estimates are calculated by leakiEst [19,20], our information leakage
estimation library for Java, which now implements our min-entropy leakage
result from Section 3; this ensures that LeakWatch is not tethered to a particular
version or implementation of the JVM specification.

We now discuss two implementation issues: ensuring the independence of tar-
get program executions, and automatically providing programs with simulated
user input.

5.1 Ensuring the Independence of Target Program Executions

When a Java program is executed, a new JVM is created; this involves loading
and uncompressing many megabytes of Java class files. To generate test data ef-
ficiently, LeakWatch uses the same JVM to execute each trial run of the program.
However, ensuring that programs sharing the same JVM execute independently
(a requirement for our statistical estimation method) is not trivial to guarantee.

Java programs consist of one or more classes that are loaded into memory
on-demand; the task of locating the bytecode that defines a class, parsing the
bytecode, and returning a reference to the new class to the caller is performed
by a classloader, itself a Java class. A class with a given name may be loaded
only once by a given classloader. The JVM contains three classloaders by default,
arranged in a hierarchy: the bootstrap classloader loads the core Java classes (e.g.,
those whose names begin with java.), the extensions classloader loads the Java
extension classes (e.g., those that perform cryptographic operations), and the

LeakWatch: Estimating Information Leakage from Java Programs 229

Core Java
classes

Java
extension
classes

Other
classes in
classpath

Bootstrap classloader

Extensions classloader

System classloader

LeakWatch classes

LeakWatch
classloader (1)

Target
program
classes

LeakWatch
classloader (2)

Target
program
classes

LeakWatch
classloader (3)

Target
program
classes

· · ·

Fig. 2. The LeakWatch classloader hierarchy. Multiple
copies of the target program can be executed simulta-
neously and in isolation using separate instances of the
LeakWatch classloader.

system classloader loads
other classes. This hier-
archy is strictly enforced;
e.g., the system class-
loader delegates the load-
ing of java.lang.String
to the extensions class-
loader, which in turn del-
egates it to the boot-
strap classloader. By de-
fault, this means that
both LeakWatch’s classes
and the target program’s
classes are loaded by the
system classloader.

LeakWatch runs the target program by invoking the main method in the target
program’s main class and waiting for it to return. Because a class may contain
static member variables, having the system classloader load the target program’s
classes would be problematic: LeakWatch would not be able to “reset” the value
of static member variables present in the target program’s classes before invoking
the main class’s main method again, so some state may be preserved between
executions of the target program. This potentially violates the independence of
trial runs.

LeakWatch solves this problem by loading target program classes with its own
classloader, positioned in the hierarchy between the system classloader and any
classloaders used by the target program (see Fig. 2). Before each invocation
of the main class’s main method, a new LeakWatch classloader is initialised; it
contains only the definition of the main class. As the main method executes,
the LeakWatch classloader creates a new instance of any class required by the
target program; subsequent requests for the class with that name will return
this instance of the class, rather than the instance that would usually be re-
turned by the system classloader. When the main method returns, LeakWatch
destroys this classloader (and therefore any class loaded by it), ensuring that
earlier invocations of the main method cannot interfere with future invocations.
This guarantee even holds when multiple instances of the LeakWatch classloader
exist concurrently, allowing LeakWatch to perform multiple isolated invocations
of the main method at the same time using multithreading.

If a class is usually loaded by either the bootstrap or extensions classloaders,
the LeakWatch classloader must delegate the request to them, so all executions
of the target program “see” the same copies of the Java API classes. Although
information could be shared between executions in this way, it is only possible
with methods in a handful of classes (e.g., java.lang.System’s setProperty()
method) and it is easy for the analyst to verify whether they are used.

230 T. Chothia, Y. Kawamoto, and C. Novakovic

5.2 Automatically Providing User Input to Target Programs

So that programs that rely on user input can be tested for information leakage,
LeakWatch allows the analyst to specify an input strategy that provides input
values to the program based on observable values that have previously occurred.
To ensure independence of trial runs of the target program, we place two re-
strictions on LeakWatch’s behaviour: only one input strategy may be defined for
all trial runs, and the input values provided by the input strategy must depend
only on the observable values that have occurred in the current trial run, and
not in other trial runs. In previous work [4], we proved that if a program leaks
information for any input strategy then it will also leak a non-zero amount of
information for the input strategy that selects all possible inputs uniformly, so
the uniform input strategy is a good default strategy.

Input can be provided to Java programs in many ways. We focus on input
provided via the standard input stream, a universal method of supplying data
to software; in Java, this stream is accessed with the static member variable
System.in of type java.io.InputStream, whose read() method returns the
next byte from the input buffer.

Operating systems provide a single standard input stream to a process; this
means that all classes loaded by a particular JVM read from the same System.in
stream. This is problematic because LeakWatch’s classes and the target pro-
gram’s classes all execute within the same JVM; even though LeakWatch sand-
boxes each execution of the target program using its own classloader, all in-
stances of the target program will share (and therefore read from) the same
input stream. This is most noticeable when using multithreading to perform
multiple isolated executions of the target program concurrently: two instances
of a program reading 20 bytes of input from System.in will conflict, each using
the read() method to read approximately 10 bytes from the same stream. This
leaves both instances of the program with meaningless input, and violates the
requirement that trial runs be independent and identically distributed.

We solve both problems by transforming every target class that reads from
the standard input stream to instead read from an input driver, a mock object
that mimics System.in. When using LeakWatch to analyse a program that reads
from the standard input stream, the analyst must also write an appropriate input
driver to supply input when it is required. The purpose of the input driver is to
implement the input strategy described above: like System.in, it is a subclass of
java.io.InputStream, but its read() method may consult the list of observable
values that have been encountered so far during execution and return a stream
of bytes comprising the selected input to the target program. When classes are
loaded by LeakWatch’s classloader, their bytecode is dynamically transformed
(using the ASM [21] library) so that all references to System.in are replaced
with references to the analyst’s input driver. The loading of the input driver
class is also performed by LeakWatch’s classloader, so each execution of the
target program believes it alone is reading from the standard input stream;
this means that concurrent executions of a target program that reads from the
standard input stream can progress without interfering with each other.

LeakWatch: Estimating Information Leakage from Java Programs 231

6 Practical Applications

We now present three examples demonstrating how LeakWatch can be applied
to real-world situations to detect the presence of information leaks, quantify
their size, and remove or mitigate them; they were benchmarked on a desktop
computer with a quad-core CPU and 4GB of RAM. The source code for these
examples is available for download from [13].

6.1 A Poorly-Implemented Multi-Party Computation Protocol

Diner 1
1 ⊕ 1 = 0

Diner 2
¬1⊕1 = 1

Diner 3
0 ⊕ 1 = 1

Diner 4
1 ⊕ 0 = 1

Table

0⊕ 1⊕ 1⊕ 1 = 1

Waiter

(1) Random bit: 1

(1
)
R
a
n
d
o
m

b
it:

1

(1) Random bit: 0

(1
)
R
a
n
d
o
m

b
it
:

1

(2) Payment details

(2)
0

(2)
1

(2
)
1

(3
)
1

Private channel

Public channel

Fig. 3. An overview of the Java DC-net implementation.
Diner 2 pays the bill; the final result is 1, indicating that
one of the Diners paid.

The dining cryptogra-
phers problem [22] inves-
tigates how anonymity
can be guaranteed during
secure multi-party com-
putation. Informally: a
group of cryptographers
dine at a restaurant, and
the waiter informs them
that the bill is to be paid
anonymously; it may be
paid by any of the diners,
or (e.g.) by the national
security agent sitting at
an adjacent table. After
the bill has been paid, how do the diners collectively discover whether one of
them paid the bill, while respecting their fellow diners’ right to anonymity?

The DC-net is a solution to the dining cryptographers problem; it provides
unconditional sender and recipient untraceability. Briefly, each diner generates
a random bit visible only to them and the diner to their left, giving each diner
sight of two separate randomly-generated bits; each diner computes the XOR
of these two bits and announces the result publicly to the rest of the table —
except for the payer, who announces the inverse of their XOR computation. The
XOR of the announcements themselves allow each diner to verify whether one
of them paid: if this value is 1, one of the diners claimed to have paid; if it is
0, nobody claimed to have paid. This protocol preserves the anonymity of the
payer; however, care must be taken when implementing the protocol to ensure
that side-channels do not leak information about the payer’s identity.

This example implements a multithreaded, object-oriented DC-net in Java
(see Fig. 3). Four Diners are seated at a Table and — for the purposes of
verifying whether the code contains an information leak — one of them is ran-
domly selected to be the payer; the identity of the payer is marked as a secret
with secret(). The Diners then concurrently execute the protocol described
above: they privately exchange their randomly-generated bits with each other
using the socket libraries in the Java API, and the payer sends their payment
details to the Waiter over another private socket. The Diners then announce the

232 T. Chothia, Y. Kawamoto, and C. Novakovic

results of their XOR computation to the rest of the Table; the messages sent
to the Table’s socket are publicly visible, and are marked as observable with
observe(). LeakWatch then answers the question “what does a passive attacker
learn about the payer’s identity by watching the messages sent to the Table?”.

After 2,600 trial runs (taking 9 minutes to perform the required number of
trial runs and 300ms to calculate the leakage estimate), LeakWatch estimates that
there are ca. 1.15 of a possible 2 bits of mutual information between the identity
of the payer and the messages the Diners broadcast to the Table. The min-
entropy leakage is found to be 0.47 bits after 6,080 trial runs; 11 minutes were
spent performing the trial runs, and 221ms were spent calculating the estimate.
Although the messages themselves reveal no information about the identity of
the payer, the order in which they are sent does: the additional time taken by
the payer to send their payment details to the Waiter means that, more often
than not, they are one of the last Diners to announce the result of their XOR
computation to the Table. This leakage can be eliminated in several ways; e.g.,
modifying the implementation so that each Diner waits 100ms before sending
their announcement to the Table’s socket makes it more likely that messages will
arrive at the Table’s socket in any order. After 5,700 trial runs of this modified
DC-net, LeakWatch confirms that there is no leakage of the payer’s identity.

By increasing the number of Diners participating in the DC-net, the com-
munication protocol becomes more complex, and the amount of observable in-
formation increases exponentially. Fig. 5 (3 pages below) shows the amount of
time LeakWatch takes to estimate the leakage from a simplified DC-net, with
all socket-based communication removed and a new leak caused by biased ran-
dom bit generation inserted (a 0 is generated with probability 0.75, rather than
0.5). The graph shows that, as more Diners are added to this simplified DC-net,
the amount of time LeakWatch takes to perform a number of trial runs that is
sufficient to compute an accurate leakage estimate increases exponentially (ca.
2 hours when 17 Diners participate). The amount of time required to estimate
the size of the leak also increases exponentially, but remains comparatively very
small (ca. 12 seconds when 17 Diners participate), indicating that the vast ma-
jority of LeakWatch’s time is spent collecting sufficient trial run data, and not
computing leakage estimates.

6.2 Analysing the Design of Stream Ciphers

Crypto-1 is a stream cipher used to encrypt transmissions in commercial RFID
tags. The design of this cipher was kept secret, but careful analysis (e.g., [23])
revealed that it is based on a 48-bit linear feedback shift register (LFSR). Each
keystream bit is generated by applying two functions (fa, fb) to 20 bits of the
state, and then applying a third function (fc) to the outputs of these functions.
In this example we use LeakWatch to show that the mutual information between
the state bits and the keystream bits reveals much of this structure.

The initial state of the LFSR is derived from the key; to simplify the example,
we assume that we can set the initial state directly. Information about the struc-
ture of Crypto-1 is revealed by loading different initial states into the LFSR and

LeakWatch: Estimating Information Leakage from Java Programs 233

observing the output from the final Boolean function fc. Using a Java implemen-
tation of Crypto-1, an LFSR is created with a randomly-generated initial state,
and the first output bit from fc is computed. The value of this bit is marked as
observable with observe(). Another LFSR is created with the same initial state
as before, but with the value of the bit at index i flipped with probability 1

2 —
the decision about whether or not to flip this bit is marked as secret information
with secret(). The output from fc in this second cipher is then computed, and
its value is also marked as observable with observe(). The question being asked
here is “what is the correlation between the LFSR bit at index i being flipped
and the output of fc changing?”; informally, this can be seen as the influence of
the bit at index i on the cipher’s keystream.

By running LeakWatch 48 times, each time using a different value of i be-
tween 0 and 47 (taking a total of 19 seconds to perform the trial runs and a
total of 425ms to produce the 48 leakage estimates), LeakWatch reveals which
indices of the LFSR are tapped and passed as input to the Boolean functions;
each execution of LeakWatch performs approximately 220 trial runs to determine
the influence that that particular bit has on the keystream. Fig. 4 graphs the
influence of each LFSR bit on the output of the cipher; points that fall above the
dashed line near the x axis indicate a statistically significant correlation between

0

0.1

0.2

0.3

0 5 10 15 20 25 30 35 40 45

Key bit index

Zero leakage upper bound (bits)
Mutual information (bits)

Fig. 4. The influence over the first bit of the keystream
of each bit in a 48-bit secret initial state for Crypto-1

flipping the LFSR bit
at the index on the x
axis and the first bit
of the keystream chang-
ing. By reading off these
indices on the x axis,
we see which bits are
tapped to produce the
keystream. Moreover, the
relative vertical distances
between the points for
each group of four in-
dices reveal two distinc-
tive patterns: these are
the Boolean functions fa
and fb (i.e., the pattern for groups {9, 11, 13, 15} and {33, 35, 37, 39} represents
fa, and the pattern for groups {17, 19, 21, 23}, {25, 27, 29, 31} and {41, 43, 45, 47}
represents fb); it is therefore possible to “see” which indices are tapped by each
of these functions, as indicated by the dashed lines between the points in each
group. The slight variation in the groups’ distances from the x axis is accounted
for by the third Boolean function fc, into which the output from the other
Boolean functions is fed.

This analysis shows that the output of this popular but flawed cipher reveals
a lot of information about its internal design; it is therefore unsurprising that
the cipher’s design was fully reverse-engineered. The same technique can also be
used to analyse other LFSR-based stream ciphers, such as Hitag-2 [24].

234 T. Chothia, Y. Kawamoto, and C. Novakovic

6.3 Recipient Disclosure in OpenPGP Encrypted Messages

OpenPGP [25] is a data encryption standard. In a typical usage scenario, en-
crypted OpenPGP messages contain two packets : the first contains a randomly-
generated symmetric session key encrypted with the recipient’s public key, and
the second contains the sender’s message, encrypted under the session key. Al-
though OpenPGP provides message confidentiality and integrity, it does not
necessarily provide recipient confidentiality because the first packet contains the
recipient’s key ID — the low 64 bits of the SHA-1 hash of their public key
— which may be used to corroborate the recipient’s identity with a resource
mapping public keys to identities, such as an OpenPGP key server.

To demonstrate this, we present an example where two principals attempt to
communicate securely using OpenPGP while concealing their identities from a
passive attacker with the ability to read messages sent over the communication
medium; the OpenPGP API is provided by the BCPG Java library [26]. In
the program, a sender is chosen randomly from a pool of six principals, and
a recipient is chosen from the remaining five; their identities are both marked
as secret (with secret()). The sender greets the recipient by name, encrypts
the greeting with the recipient’s public key, and sends the encrypted message
over an insecure medium, where it is monitored by the attacker. Two pieces of
information are marked as observable by the attacker using separate calls to
observe(): the header of the first packet in the encrypted OpenPGP message,
and the length (in bytes) of the entire encrypted message. Thus, LeakWatch
answers the question “how much information does an attacker learn about the
principals’ identities by observing these two features of the encrypted traffic?”.

Assuming the two principals are selected uniformly, there are ca. 4.9 bits of
secret information in this scenario (ca. 2.6 bits from the sender’s identity and
ca. 2.3 bits from the recipient’s identity). After 550 trial runs (taking 17 seconds
to perform the required number of trial runs and 300ms to produce the leakage
estimate), LeakWatch reveals that, because BCPG includes the recipient’s key ID
in the first packet, there is a leakage of ca. 2.52 bits about the secret information:
there is complete leakage of the recipient’s identity, and a further leakage of ca.
0.2 bits of the sender’s identity, because the attacker also knows that the sender
is not the recipient.

Some OpenPGP implementations mitigate this leakage of the recipient’s iden-
tity; e.g., GnuPG features a -R option that replaces the key ID in the first packet
with a string of null bytes. By patching BCPG to do the same, the leakage de-
creases to ca. 1.86 bits after 350 trial runs: the recipient’s identity is no longer
leaked completely via the first packet, but because the attacker knows the for-
mat of the unencrypted message being sent, the length of the second packet still
reveals some information about the recipient’s identity (because the sender’s
encrypted message will be longer when greeting a recipient with a longer name).

Fig. 5 shows how increasing the number of bits in the first packet that are
observable by the attacker affects LeakWatch’s execution time. It reveals a result
similar to that in Section 6.1: as the number of bits in the observable output
increases, the amount of time required for LeakWatch to perform the number

LeakWatch: Estimating Information Leakage from Java Programs 235

of trial runs required to estimate leakage increases exponentially (ca. 6 hours
when the observation size reaches 132 bits); this is because of the exponentially-
increasing number of trial runs required to verify whether parts of the randomly-
generated encrypted session key leak information about the principals’ identities.
The amount of time required to estimate the size of the information leak from
the trial run data, however, remains comparatively very small (ca. 1.5 seconds
when the observation size reaches 132 bits), as it does in Section 6.1.

0

50

100

150

4 8 12 16

Number of Diners

Leakage estimation time (min)
Program execution time (min)

0

100

200

300

96 104 112 120 128

Number of observable bits

Leakage estimation time (min)
Program execution time (min)

Fig. 5. The effect on LeakWatch’s execution time of increasing the amount of secret
or observable information in the examples in Sections 6.1 (the number of Diners, left)
and 6.3 (the number of observable bits in the encrypted OpenPGP message, right).

7 Conclusion

We have presented new theoretical results and practical techniques for the sta-
tistical estimation of information leakage from real-world Java programs, based
on trial runs. In particular, we have described a new method for estimating min-
entropy leakage and its confidence interval, and a technique for ensuring the
collection of a sufficient number of samples. We have also presented a mecha-
nism that ensures the independence of trial runs of Java programs, and applied
our information leakage model and estimation techniques to input-consuming
Java programs. Using three examples, we have demonstrated that our robust
information leakage analysis tool LeakWatch can uncover information leakage
vulnerabilities in Java programs.

References

1. Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technical
Journal 27(3), 379–423 (1948)

2. Smith, G.: On the Foundations of Quantitative Information Flow. In: de Alfaro, L.
(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

3. Smith, G.: Quantifying Information Flow Using Min-Entropy. In: Proc. of the 8th
Conference onQuantitativeEvaluation of Systems (QEST2011), pp. 159–167 (2011)

4. Chothia, T., Kawamoto, Y., Novakovic, C., Parker, D.: Probabilistic Point-to-Point
Information Leakage. In: Proc. of the 26th IEEE Computer Security Foundations
Symposium (CSF 2013), pp. 193–205. IEEE Computer Society (June 2013)

5. Moddemeijer, R.: On estimation of entropy and mutual information of continuous
distributions. Signal Processing 16, 233–248 (1989)

6. Brillinger, D.R.: Some data analysis using mutual information. Brazilian Journal
of Probability and Statistics 18(6), 163–183 (2004)

236 T. Chothia, Y. Kawamoto, and C. Novakovic

7. Boreale, M., Paolini, M.: On formally bounding information leakage by statistical
estimation (2014) (Unpublished Manuscript)

8. Biondi, F., Legay, A., Traonouez, L.-M., W ↪asowski, A.: QUAIL: A Quantitative
Security Analyzer for Imperative Code. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 702–707. Springer, Heidelberg (2013)

9. Mu, C., Clark, D.: A tool: quantitative analyser for programs. In: Proc.of the 8th
Conference onQuantitativeEvaluation of Systems (QEST2011), pp. 145–146 (2011)

10. McCamant, S., Ernst, M.D.: Quantitative Information Flow as Network Flow Ca-
pacity. In: Proc. of the Conference on Programming Language Design and Imple-
mentation (PLDI 2008), pp. 193–205 (2008)

11. Heusser, J., Malacaria, P.: Quantifying Information Leaks in Software. In: Proc. of
the 2010 Annual Computer Security Applications Conference (ACSAC 2010), pp.
261–269. ACM Press, Austin (2010)

12. Phan, Q.S., Malacaria, P., Tkachuk, O., Păsăreanu, C.S.: Symbolic quantitative
information flow. ACM SIGSOFT Software Engineering Notes 37(6), 1–5 (2012)

13. Chothia, T., Kawamoto, Y., Novakovic, C.: LeakWatch, http://www.cs.bham.ac.
uk/research/projects/infotools/leakwatch/

14. Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical Measurement of Information
Leakage. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp.
390–404. Springer, Heidelberg (2010)

15. Denning, D.E.: Cryptography and Data Security. Addison-Wesley (May 1982)
16. Myers, A.C., Liskov, B.: Complete, Safe Information Flow with Decentralized La-

bels. In: Proc. of the 1998 IEEE Symposium on Security and Privacy, pp. 186–197.
IEEE Computer Society, Oakland (1998)

17. Pearson, K.: X. on the criterion that a given system of deviations from the probable
in the case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling. Philosophical Magazine Series
5 50(302), 157–175 (1900)

18. Diez, D.M., Barr, C.D., Cetinkaya-Rundel, M.: OpenIntro Statistics. CreateSpace
(2012)

19. Chothia, T., Kawamoto, Y., Novakovic, C.: A Tool for Estimating Information
Leakage. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 690–
695. Springer, Heidelberg (2013)

20. Kawamoto, Y., Chatzikokolakis, K., Palamidessi, C.: Compositionality Results for
Quantitative Information Flow. In: Proc. of the 11th International Conference on
Quantitative Evaluation of Systems, QEST 2014 (to appear, September 2014)

21. OW2 Consortium: ASM, http://asm.ow2.org
22. Chaum, D.: The Dining Cryptographers Problem: Unconditional Sender and Re-

cipient Untraceability. Journal of Cryptology, 65–75 (1988)
23. Garcia, F.D., van Rossum, P., Verdult, R., Schreur, R.W.: Wirelessly pickpocketing

a Mifare Classic card. In: IEEE Symposium on Security and Privacy (S&P 2009),
pp. 3–15. IEEE (2009)

24. Verdult, R., Garcia, F.D., Balasch, J.: Gone in 360 seconds: Hijacking with Hitag2.
In: 21st USENIX Security Symposium (USENIX Security 2012), pp. 237–252.
USENIX Association (2012)

25. Callas, J., Donnerhacke, L., Finney, H., Shaw, D., Thayer, R.: OpenPGP Message
Format, http://tools.ietf.org/html/rfc4880

26. Legion of the Bouncy Castle Inc.: The Legion of the Bouncy Castle Java Cryptog-
raphy APIs, https://www.bouncycastle.org/java.html

http://www.cs.bham.ac.uk/research/projects/infotools/leakwatch/
http://www.cs.bham.ac.uk/research/projects/infotools/leakwatch/
http://asm.ow2.org
http://tools.ietf.org/html/rfc4880
https://www.bouncycastle.org/java.html

SIGPATH: A Memory Graph Based Approach
for Program Data Introspection and Modification

David Urbina1, Yufei Gu1, Juan Caballero2, and Zhiqiang Lin1

1 UT Dallas
2 IMDEA Software Institute

firstname.lastname@utdallas.edu,juan.caballero@imdea.org

Abstract. Examining and modifying data of interest in the memory of a tar-
get program is an important capability for security applications such as memory
forensics, rootkit detection, game hacking, and virtual machine introspection. In
this paper we present a novel memory graph based approach for program data
introspection and modification, which does not require source code, debugging
symbols, or any API in the target program. It takes as input a sequence of mem-
ory snapshots taken while the program executes, and produces a path signature,
which can be used in different executions of the program to efficiently locate and
traverse the in-memory data structures where the data of interest is stored. We
have implemented our approach in a tool called SIGPATH. We have applied SIG-
PATH to game hacking, building cheats for 10 popular real-time and turn-based
games, and for memory forensics, recovering from snapshots the contacts a user
has stored in four IM applications including Skype and Yahoo Messenger.

Keywords: program data introspection, memory graph, game hacking.

1 Introduction

Many security applications require examining, and possibly modifying, data structures
in the memory of a target program. These data structures store private, often sensi-
tive, data of interest such as running processes in an OS, unit and resource information
in online games, and credentials and contact information in Instant Messengers (IM).
Such capability is crucial for memory forensics [1–4], rootkit detection [5–7], game
hacking [8], reverse engineering [9–11], and virtual machine introspection (VMI) [12].

We call the process of examining in-memory data structures of a target program
from an external introspector program data introspection (PDI). The introspector can
run concurrently with the target on the same OS, e.g., a user-level debugger or a kernel
module, or out-of-VM for improved isolation and higher privilege. The introspection
can be done online as the program runs or offline on a snapshot of the target’s memory.

The main challenges in EDI are how to efficiently locate the in-memory data struc-
tures storing the data of interest and how to traverse them to examine their data. Prior
memory analysis works reuse the target’s binary code or APIs to dump the data of
interest (e.g., the UNIX ps command to list processes) [13, 14], or leverage the tar-
get’s source code and debugging symbols [5, 15, 16]. However, most application-level
programs do not expose external APIs to examine the data of interest and commercial
off-the-self (COTS) programs rarely have source code or debugging symbols available.

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 237–256, 2014.
c© Springer International Publishing Switzerland 2014

238 D. Urbina et al.

In this paper we propose a novel memory-based approach for program data intro-
spection and modification that does not require source code or debugging symbols for
the target program, or the target to expose any APIs. Our lightweight approach takes as
input memory snapshots taken while the program runs and generates path signatures
that capture how to efficiently retrieve the data of interest in memory by traversing
pointers starting from the program’s global variables.

Prior techniques that reverse-engineer data structures from binary programs through
static (TIE [10]) or dynamic (REWARDS [9] and Howard [11]) analysis have three lim-
itations for PDI. First, even if they recover the data structures related to the data of
interest they do not address how to locate those data structures in memory. Second,
they aim to recover all data structures used by a program, thus requiring very high cov-
erage of the application’s code, even when only a few data structures may be related to
the data of interest. Third, they do not address recursive data structures (e.g., lists, trees)
where much data of interest is stored.

More similar to our approach are techniques that compare memory snapshots such
as LAIKA [17] and KARTOGRAPH [8]. However, these techniques have two limitations.
First, they do not allow to reuse their results, i.e., every time the program executes they
need to redo their expensive analysis. In contrast, our path signatures are created once
and can then be used in many program executions. Second, they compare memory snap-
shots at the page level, including large chunks of dead memory. In contrast, we propose
a novel technique to build a memory graph from a memory snapshot, structuring the live
memory of a process. To the best of our knowledge ours is the first technique that can
build an accurate memory graph without tracking the execution of the target program
from its start and without source code or symbols, simply by using introspection on a
memory snapshot. The memory graph is at the core of two techniques used to locate the
data of interest in memory: structural memory diffing, which compares memory snap-
shots based on their underlying graph structure; and fuzzing, which modifies memory
and observes its effects.

We have implemented our memory graph based approach to PDI into SIGPATH, a
tool that creates path signatures to efficiently locate and traverse the (potentially recur-
sive) data structures storing the data of interest. SIGPATH also provides an introspection
component that takes as input a path signature and can examine and modify the data of
interest while the program runs (and also from a memory snapshot). We have applied
SIGPATH to two important security applications: game hacking and memory forensics.

Game Hacking. The goal of game hacking is modifying the in-memory data structures
of a game to cheat it into providing the player with an advantage, e.g., an immortal unit.
SIGPATH’s path signatures can be used to efficiently examine the game’s data structures
as it executes to locate the resource targeted by the cheat. Once located, it can modify
its value. Our cheats need to be constructed only once and can then be used every time
the game is played without further analysis. We have evaluated SIGPATH on 10 popular
RTS and turn-based games, building a variety of cheats for them.

Memory Forensics. The path signatures produced by SIGPATH can be used to retrieve
private data from a memory snapshot of a suspect’s computer. We apply SIGPATH to
recover the list of contacts from a variety of IM applications a suspect may have been
running when the snapshot was taken. Such a snapshot can be obtained by connecting

SIGPATH: A Memory Graph Based Approach for Program Data Introspection 239

an external memory capture device to the Firewire interface of the suspect’s laptop if
left unattended, even if the laptop screen was locked. We have successfully applied
SIGPATH to recover the user contacts from 4 popular IM applications including Skype
and Yahoo Messenger.

In short, this paper makes the following contributions:

– We propose a novel technique to build a memory graph exclusively from a memory
snapshot by introspecting the OS data structures. The memory graph is the foun-
dation of structural memory diffing and fuzzing, two techniques for identifying the
location of the data of interest in memory.

– We develop a novel memory-based path signature generation technique, which does
not require source code, debugging symbols, or API information from the target
program. The produced path signatures capture how to find a data structure in mem-
ory and how to traverse it (even if recursive) to examine its data.

– We implement SIGPATH, a tool that generates path signatures from memory snap-
shots and uses them to introspect live programs or snapshots. We evaluate SIGPATH

for game hacking and memory forensics.

2 Overview and Problem Definition

SIGPATH generates path signatures that capture how to reach the data of interest by
traversing pointers from the program’s global variables. Our path signatures have 3
important properties: they have high coverage, are efficient and stable.

First, despite their name, our path signatures capture multiple paths in memory. This
is fundamental because the data of interest may be stored in an array or in a recursive
data structure, e.g., a list or a tree. Here, the introspection needs to examine all instances
of the data of interest in those data structures, e.g., all entries in a list. Second, our path
signatures are stable. They are created once per program and can then be applied to any
execution of that program, i.e., the paths they capture occur across executions. Third,
our path signatures are efficient; they can quickly locate the data of interest by traversing
a few pointers. They do not need to scan the (potentially huge) address space of the
application. This makes them suitable for online introspection while the target program
runs, when efficiency is key, as the program may frequently modify the introspected
data structures. Of course, they can also be used offline on a snapshot of memory taken
while the program was running.

typedef struct _contacts { typedef struct _node {
unsigned int num_groups; struct _node *next;
node_t **groups; char *email;

} contacts_t; } node_t;
contacts_t *mycontacts;

Fig. 1. Data structures used by our example IM application
to store the user contacts

Running Example. To demon-
strate our techniques through-
out the paper we use a simpli-
fied instant messaging applica-
tion (im.exe) that stores the
contacts of the user in the data
structures shown in Figure 1.
The application allows the user to store contacts in 16 groups (groups array in
contacts t). For each group array entry there is a linked list (node t) that stores the
email addresses of the users in the group. The application accesses the contact informa-
tion from the mycontacts global variable. The data of interest is the email addresses
of the user contacts.

240 D. Urbina et al.

Fig. 2. On the left, simplified memory graph for two consecutive snapshots with the memory
diffing results highlighted. On the right, the same memory at the page level.

2.1 The Memory Graph

The memory of a process has an inherent graph structure, which can be represented as a
memory graph. A memory graph is a directed labeled graph G = (V,E), where nodes
(V) correspond to contiguous regions of live memory, often called buffers or objects.
Nodes can represent modules loaded by the application or live heap allocations. Edges
(E) represent pointers and capture the points-to relationships between live buffers when
the snapshot was taken. The left side of Figure 2 shows the memory graphs for two snap-
shots in our running example. The path at the top of both memory graphs corresponds
to data structures not shown in Figure 1.

A crucial characteristic of our approach is that it operates on a memory graph, which
structures the otherwise chaotic memory of a process. The memory graph has 3 funda-
mental advantages over the page level representation of memory offered by a snapshot:
(1) it captures only live memory; (2) it enables analyzing subgraphs of interest, e.g.,
only the memory reachable from the main module of the application; and (3) it captures
structural locality, e.g., that two nodes belong to the same recursive data structure.

A snapshot of the memory of a process often comprises hundreds of MBs, of which
large parts correspond to noise. This noise has two main components: dead memory
and live memory largely independent of the application. Dead memory is very common
in the heap. For example, LAIKA notes that only 45% of the heap is occupied by live
objects, the rest being dead allocations and reserved memory not yet allocated [17]. The
memory graph removes the noise introduced by dead memory. Furthermore, much live
memory corresponds to external libraries, e.g., OS and graphics libraries, and the heap
allocations used to store their internal data. The application requires these external li-
braries and their data to function but is largely independent of them. The memory graph
enables further eliminating noise by removing memory only reachable by independent
external libraries. The reduction in noise achieved by the memory graph is fundamental
for finding the data of interest (i.e., a needle) in memory (i.e., the haystack). Our exper-
imental results show that using the memory graph reduces the size of the memory of a
process that needs to be analyzed by up to 73%.

SIGPATH: A Memory Graph Based Approach for Program Data Introspection 241

In addition, the graph representation captures structural locality, i.e., nodes in the
same data structure appear close, even if they have distant starting addresses. Structural
locality enables identifying recursive data structures such as lists or trees. This is fun-
damental because the data of interest is often stored in recursive data structures, which
need to be traversed to extract all data of interest instances (e.g., all users in a contact
list). As illustrated in Figure 2, at the page level representation it is very difficult to
identify recursive data structures, thus missing the multiple instances of data of interest
they may store.

Clearly, the memory graph is a very effective representation of the memory of a pro-
cess, but to the best of our knowledge there is currently no solution on how to build an
accurate memory graph from a memory snapshot. The main challenge when building
the memory graph is to identify where the nodes are located, i.e., their start address and
size. Prior works that operate on memory snapshots such as LAIKA [17] and KARTO-
GRAPH [8] do not offer a solution for this. In this work we propose a novel approach
to build the memory graph that applies introspection on OS data structures to extract
fine-grained information about the location and size of the loaded modules and the live
heap allocations. We describe this process in §3.2.

2.2 Path Signatures

A path signature is a directed labeled graph S = (VS , ES). Nodes correspond to
memory buffers and can be of two types: root and normal (VS = Vroot ∪ Vnor).
Edges correspond to pointers and can be of three types: normal, recursive, and array
(ES = Enor ∪ Erec ∪ Earr). A path signature has a single root node corresponding to
the module (i.e., executable or DLL), where the path starts. A normal node represents a
buffer in memory and is labeled with its size in bytes. Figure 3 shows the path signature
for our running example where the root is the im.exe module and the Normal node
corresponds to an instance of contacts t.

A normal pointer corresponds to a concrete pointer in the path to the data of inter-
est. It is a tuple (src, dst, o) where src, dst ∈ VS are the source and destination nodes
(src �= dst), and o is the offset in the src node where the pointer is stored. In Fig-
ure 3 there are 3 normal pointers (with offsets 3460,4,4) and the one with offset 3460
corresponds to the mycontacts global variable.

Fig. 3. Path signature for running example

A recursive pointer is an abstraction
representing that the path to the data
of interest traverses a recursive data
structure. During introspection SIG-
PATH needs to extract all instances of
the data of interest in the recursive data
structure, so the recursive pointer needs
to be unrolled multiple times. In our running example, traversing the next pointer of
the linked list once leads to one email, traversing it twice to a different email, and so on.
A recursive pointer is a tuple (src, dst, o, cond) where src, dst, o are the same as in a
normal pointer and cond is a boolean condition that captures when the end of the recur-
sion has been reached, e.g., when the recursive pointer is null. We call the source node

242 D. Urbina et al.

of a recursive pointer, a recursive node. In Figure 3 the Recursive node corresponds
to an instance of node t and its recursive pointer to next.

An array pointer is an abstraction representing that the path to the data of interest
traverses an array of pointers (or an array of a data type that contains a pointer). Again,
the introspection needs to extract all instances of the data of interest reachable from
the array, so all pointers in the array need to be traversed. An array pointer is a tuple
(src, dst, o, step, size). Iterating from o in step increments until size returns all off-
sets of the src node where a pointer to be traversed is stored. If o is zero and size
corresponds to the size of src we omit them and call src an array node. In Figure 3 the
Array node corresponds to the groups pointer array.

A path signature comprises two parts: the prefix and the suffix. The prefix is the
initial part of the path signature before any recursive or array pointer. It captures a
single path in memory leading from the root to the entry point of the data structure that
stores all instances of the data of interest (an array of lists in our example). The suffix
captures multiple paths inside that data structure that need to be traversed to examine
all instances of the data of interest. The presence of recursive and array pointers is what
makes the suffix capture multiple paths. Signatures that have no suffix indicate that the
program stores a single instance of the data of interest.

2.3 Approach Overview

Using SIGPATH comprises three phases: preparation, signature generation, and intro-
spection. The offline preparation and signature generation phases run once to produce
a stable path signature to the data of interest. The introspection phase can run many
times applying the path signature to examine, and possibly modify, the data of interest
in different executions of the application. In some scenarios, preparation and signature
generation could be run by one entity and introspection by another, e.g., when a com-
pany sells game cheats to end-users who apply them. Next, we introduce each phase.

Preparation. The first step in our approach is to gather a sequence of memory snapshots
during the execution of the application (§3.1). All snapshots come from the same execu-
tion and between two consecutive snapshots an analyst takes an application-specific ac-
tion related to the data of interest. For example, in our IM application the analyst inserts
new contacts, taking a snapshot after each insertion. Next, SIGPATH builds a memory
graph for each snapshot, which structures the application’s live memory when the snap-
shot was taken (§3.2). Then, SIGPATH labels which nodes in each graph store the data of
interest (§3.3). To identify the data of interest it uses a combination of three techniques:
memory diffing, value scanning, and fuzzing. Memory diffing compares consecutive
snapshots guided by their graph structure to identify their differences; value scanning
searches for values of the data of interest using different encodings; and fuzzing mod-
ifies values in memory while monitoring the modification’s effect. Preparation is the
only phase where an analyst is involved, specifically for collecting the snapshots and
during fuzzing (needed for only 12% of programs).

Path Signature Generation. The annotated memory graphs and the snapshots are
passed to the automatic path signature generation process (§4). For each memory graph
it first extracts all simple paths leading to the data of interest. Then, it identifies recur-
sive pointers in each path and path prefixes that appear in all snapshots. Next, it locates

SIGPATH: A Memory Graph Based Approach for Program Data Introspection 243

arrays in those paths. Finally, it generalizes the paths by removing absolute addresses,
and outputs stable path signatures.

Introspection. The generated path signatures can be used for examining and mod-
ifying the data of interest in different executions (or snapshots) of the application.
To apply the signature, SIGPATH first identifies the base address of the root mod-
ule and then traverses the signature pointers, unrolling recursive and array pointers as
needed. For online introspection (and fuzzing) we have implemented two instrospec-
tors: a user-level one that reads and modifies the target application’s memory using the
ReadProcessMemory and WriteProcessMemory functions, and a customized
KVM monitor that introspects an application running in a VM (used for applications
that check if they are monitored). For modifying the data of interest, if the data encoding
is known (e.g., found through value scanning) SIGPATH can modify the data of interest
to an arbitrary value. Otherwise, it can modify it to a previously observed value or fuzz
it with arbitrary values until the desired effect is observed.

3 Preparation

3.1 Collecting the Snapshots

The first step in our approach is to take a number of memory snapshots while running
the application. A snapshot is a dump of the content of all physical memory pages
that are part of the application’s address space at the time the snapshot is taken, the
base virtual address of those pages, and additional metadata. SIGPATH supports two
types of snapshots: Minidumps [18] produced by Microsoft’s off-the-shelf tools running
in parallel with the target on the same OS (e.g., WindDbg, Visual Studio, Windows
Task Manager), and out-of-VM snapshots produced by the TEMU emulator [19]. The
snapshots are collected at different times during the same execution. An analyst takes a
snapshot before and after an action. There are positive and negative actions.

– A positive action forces the application to operate on the data of interest, leaking
some information about its location in memory. For example, in our running IM ex-
ample the analyst inserts a series of new contacts through the GUI taking a snapshot
after each insertion. Each insertion forces the application to add the contact into its
internal data structures. In a game hacking scenario where the goal is to create a
unit that cannot be killed, the analyst orders one of her units to attack another of
her units, forcing the game to reduce the life of the second unit.

– A negative action makes the program not to operate on the data of interest. The
simplest negative action is to let time pass without doing anything, which helps
identifying memory areas that change value independently of the data of interest.

The analyst selects one positive and one negative action for each application. It pro-
duces a sequence with an initial snapshot followed by a number of positive and negative
snapshots (taken after the positive and the negative action, respectively). Obtaining both
positive and negative snapshots is fundamental to structural memory diffing, detailed in
§3.3. When possible, the analyst also annotates the snapshots with the value of the data
of interest being inserted or modified, e.g., the contact’s email address or the unit’s life.

244 D. Urbina et al.

In some cases, value annotations cannot be added, e.g., when the game displays a unit’s
life using a bar rather than a value.

In our running example, the analyst inserts the email addresses of two contacts tag-
ging each as group 1 and then another two tagged as group 2. It produces a sequence
of 6 snapshots: one before any insertion, a positive snapshot after each insertion, and a
negative snapshot a few seconds later without taking any action.

3.2 Building the Memory Graph

Algorithm 1: Memory Graph Creation
Input: A Memory Snapshot S
Output: A Memory Graph G

1 H ← IntrospectHeap(S);
2 M ← IntrospectModules(S);
3 X ← IntrospectStack(S);
4 V ← H ∪M ∪X;
5 G ← (V, ∅);
6 for each v ∈ V do
7 b ← ReadNodeBlock(S, v);
8 P ← FindPointers(V, b);
9 for each p ∈ P do

10 G.AddEdge(p);

11 return G;

For each memory snapshot SIGPATH builds
a memory graph G = (V,E) using Algo-
rithm 1. A node v ∈ V corresponds to a live
memory buffer and has three attributes: type,
start address, and size. A node can be of 2
types: a module loaded into the application’s
address space (main executable or DLL) and
a live heap buffer. An edge p ∈ E is a tu-
ple (src, dst, osrc, odst), where src, dst ∈ V
are the source and destination nodes, osrc is
the offset in the src node where the pointer
is stored, and odst is the offset into dst where
the pointer points-to. For pointers to the head
of the destination node we omit odst.

Nodes. SIGPATH extracts the node information using introspection on the OS data
structures present in the memory snapshot. Introspection is very efficient, recovering
all live objects (including their size) at once from the snapshot. The alternative would
be to hook the heap allocation/deallocation and module load/unload functions during
program execution. tracking the size and lifetime of those objects. We have used this
approach in the past and found it problematic due to: (1) being expensive and cum-
bersome as it has to track execution from the start (including process creation and ini-
tialization), (2) need to identify and track hundreds of Windows allocation functions
built atop the Heap Manager, (3) the targeted program may contain protections against
tracing (e.g., games check for debuggers and Skype rejects PIN-based tracing). These
problems justify our lightweight memory introspection approach.

The introspected data structures are OS-specific and we focus on the Windows plat-
form because that is where most proprietary programs run. SIGPATH supports both
Windows 7 and Windows XP. The data structures containing the module and heap in-
formation are stored in user-level memory and can be accessed following paths starting
at the Process Environment Block (PEB), whose address is included in the snapshots.

The live heap allocations can be recovered from the Windows heap management data
structures. In Windows, heaps are segments of pages controlled by the Heap Manager
from which the application can allocate and release chunks using OS-provided func-
tions. Each process has a default heap provided by the OS and can create additional
heaps. Standard C/C++ functions such as malloc or new allocate memory from the
CRT heap. As far as we know, no prior tool extracts the individual heap allocations
of a process, so we have manually built a path signature (Fig. 4, top) to introspect the

SIGPATH: A Memory Graph Based Approach for Program Data Introspection 245

Heap Manager’s data structures (based on the information on the ntdll.dll PDB
file and external sources, e.g., [20]). SIGPATH uses this signature to automatically re-
cover the live heap allocations from a memory snapshot. The signature captures that
a process has an array of heaps (HEAP), each containing a linked list of segments
(HEAP SEGMENT) where each segment points to a list of the individual heap entries
(HEAP ENTRY). Each heap entry contains the start address and size of a live heap
buffer. For each heap entry SIGPATH adds a node to the memory graph.

In contrast with the heap allocations there are off-the-shelf tools that can extract the
loaded modules [21,22] but we have also built our own path signature (Fig. 4, bottom).
The loaded modules can be recovered from the loader information in PEB LDR DATA,
which points to three lists with the loaded modules in different orderings (InLoadOrder,
InMemoryOrder, and InInitializationOrder). Each list entry contains among others the
module name, load address, and total module size. Note that for each loaded module
there is a single node in the memory graph, representing the module’s code and data.
We could alternatively build a separate node for each module region (e.g., .data, .text)
by parsing the PE header in memory. However, this is not needed as offsets from the
module base are stable.

_PEB
[580]

Array
[64]

_HEAP
[312]

144 4x _HEAP_SEGMENT
[46]

16

16

_HEAP_ENTRY
[8]

36

_PEB
[580]

_PEB_LDR_DATA
[48]

_LDR_DATA_TABLE_ENTRY
[120]

0

1212

Fig. 4. Path signatures for examining the heaps and loaded
modules of a process in Windows 7

Pointers. To extract the
pointers SIGPATH scans the
ranges in the snapshot that
correspond to live buffers.
Each consecutive four bytes
(8 for 64-bit) in a live buffer
that forms an address point-
ing inside the range of a live
buffer is considered a candi-
date pointer. This pointer detection technique is similar to the mark phase of a garbage
collector and was also used by LAIKA. It can find spurious pointers (e.g., 1% of integers
and 3% of strings point to the heap [17]). However, the advantage of using the memory
graph is that only live memory is considered, so the probability of spurious pointers is
significantly smaller. In addition, as will be shown in §4, the probability of an spurious
pointer ending up in a path signature is negligible because a spurious pointer would
have to appear at the same address in all snapshots and in the path to the data of interest
to end up in a signature.

Reducing the Graph Size. Full memory graphs can contain hundreds of thousands of
nodes. To reduce their size, SIGPATH includes only loaded modules shipped with the
application, i.e., it excludes any libraries that are shipped with the OS. In addition, it re-
moves any nodes not reachable from the remaining modules, e.g., those only reachable
from the OS libraries. Again, as stated earlier, the memory graph we constructed can
contain on average 27% of the memory in the corresponding snapshot.

3.3 Finding the Data of Interest

SIGPATH needs to identify which nodes store instances of the data of interest to extract
paths leading to them. For this, it uses a combination of three techniques: structural

246 D. Urbina et al.

memory diffing, value scanning, and fuzzing. The first two are new evolutions of previ-
ously proposed techniques for identifying data of interest in games, and our fuzzing is
inspired by vulnerability discovery techniques.

In particular, structural memory diffing significantly evolves the snapshot diffing
technique in KARTOGRAPH [8] and value scanning is used among others by the CHEAT-
ENGINE [23]. Our structural memory diffing and value scanning techniques differ in
that they operate on the memory graph rather than on the unstructured raw memory,
which makes them substantially more accurate. For example, compared with the page
level diffing in KARTOGRAPH [8], structural memory diffing greatly reduces the mem-
ory to diff as illustrated in Fig. 2, where the page level view (right) contains many more
changes due to dead and unrelated memory. Our evaluation (§5) shows an average mem-
ory reduction of 82% on the memory graph after the application of structural memory
diffing. In addition, structural memory diffing enables comparing the structure of the
changes, which is fundamental to identify changes in the same recursive data structure.

Structural Memory Diffing. Given a sequence of memory graphs G1, . . . , Gn and the
corresponding snapshots S1, . . . , Sn structural memory diffing compares each pair of
consecutive memory graphs Gi, Gi+1 extracting 3 sets: the nodes added into Gi+1 and
not present in Gi (Ai,i+1), the nodes removed from Gi and not present in Gi+1 (Ri,i+1),
and the modified nodes present in both (Mi,i+1). Fig. 2 highlights the nodes in these 3
sets after diffing the two memory graphs.

To obtain the set of changes across all snapshots, structural memory diffing computes
the intersection of the sets of nodes (and byte ranges in them) modified across pairs of
positive snapshots and then substracts the modifications in the negative snapshots (as
they are unrelated to the data of interest):

M =

p−1⋂
i=1

MP
i,i+1 \

n−1⋃
i=1

MN
i,i+1

where MP
i,i+1 and MN

i,i+1 represent the nodes modified between snapshot i and positive
or negative snapshot i + 1, respectively.

It also computes the union of all sets of nodes added across pairs of positive snap-
shots minus the removed ones, and then substracts the set of nodes removed in the
negative snapshots:

A =

p−1⋃
i=1

A
P
i,i+1 \

p−1⋃
i=1

R
P
i,i+1 \

n−1⋃
i=1

R
N
i,i+1

where AP
i,i+1 represents the set of nodes added between snapshot i and positive snap-

shot i + 1, and RP
i,i+1 and RN

i,i+1 represent the set of nodes removed between snapshot
i and positive or negative snapshot i+1, respectively. These two sets (M,A) are passed
to the next technique as candidate locations storing data of interest.

Value Scanning. If the snapshots have a value annotation, SIGPATH linearly scans the
buffers output by memory diffing for the annotated value using common encodings. In
our running example the first 4 snapshots are annotated respectively with: alex@test.com,
bryan@test.com, charles@test.com, and david@test.com. SIGPATH scans for the ASCII
and Unicode versions of those email addresses. Similarly, for a unit’s life it uses encod-
ings such as short, integer, long, float, and double.

SIGPATH: A Memory Graph Based Approach for Program Data Introspection 247

Note that we only use value scanning during preparation, as scanning memory at
introspection while the program runs is too slow and precisely one of the reasons to
generate path signatures. Also, value scanning is applied after structural memory diffing
has significantly reduced the number of candidates. This is important because some
values may not be discriminating enough and would match many locations otherwise.
Value scanning is a simple yet surprisingly effective technique, and if it finds a value it
also identifies its encoding. However, it does not work when the value is very common
(e.g., zero); when the data uses non-standard encoding; is obfuscated or encrypted; or
when the value to search is unknown.

Fuzzing. If multiple candidate nodes are still left the analyst uses fuzzing. In fuzzing,
the analyst modifies the value of memory locations and monitors the effect of the modi-
fication. If the modification produces a visually observable result such as modifying the
unit’s life or changing the name of a contact on the screen, then the node stores the data
of interest. Fuzzing is an online technique, similar to the process of modifying the data
of interest in game hacking.

4 Path Signature Generation

Algorithm 2: Path Signature Generation
Input: A sequence of pairs 〈Si, Gi〉, and the data of interest d
Output: A set of stable path signatures SIGS for d

1 SIGS ← ∅;
2 NSP ← ∅;
3 for each Gi ∈ 〈Si, Gi〉 do
4 SPi ← ExtractSimplePaths(Gi, d);
5 NSP ← NSP ∪ FindRecursivePointers(SPi);

6 CP ← FindSetsOfPathsWithCommonPrefix(NSP);
7 for each pathSet ∈ CP do
8 C ← ChunkPaths(pathSet);
9 if EquivalentChunks(C) then

10 A ← FindArrays(C);
11 sig ← MergeChunks(C,A);
12 SIGS ← SIGS ∪ sig;

13 SIGS ← GeneralizePathSignatures(SIGS);
14 return SIGS;

The input to the signature
generation is a sequence of
pairs 〈Si, Gi〉 where Gi is
the memory graph for snap-
shot Si, annotated with the
nodes storing the data of in-
terest. The output is a set of
stable path signatures. Al-
gorithm 2 describes the sig-
nature generation. For each
memory graph Gi, SIG-
PATH first extracts the set of
simple paths rooted at one
of the loaded modules and
leading to any of the nodes
labeled as data of interest (line 4). Simple paths do not contain repeating vertices (i.e.,
no loops) and for each data of interest node SIGPATH may extract multiple simple paths,
possibly rooted at different nodes. Fig. 5 shows the 5 paths extracted from the 4 positive
snapshots (S2–S5) in our running example.

Next, SIGPATH searches for recursive pointers in each of the paths (line 5). A re-
cursive pointer is a pointer that points-to a node of the same type as the node holding
the pointer. If a path contains two consecutive nodes of the same type, then the pointer
linking them is recursive. As we do not know the type of each node, we approximate it
using its size and internal structure. In particular, for each pair of consecutive nodes of
the same size, we compare the offsets of all the pointers stored in each node, including
those not in the path and taking special care of null pointers, as well as the offset of
any ASCII or Unicode string they may store. If the offsets are identical, we consider the
nodes to be of the same type and mark the pointer linking them as recursive.

248 D. Urbina et al.

Fig. 5. Paths from 4 snapshots of running example

Then, SIGPATH

searches for stable pre-
fixes, which are path
prefixes that appear in
at least one path from
each memory graph
(line 6). Such prefixes
capture structural prox-
imity, i.e., data in the
same data structure. To
identify stable prefixes
SIGPATH compares the

paths node by node, considering two nodes from different paths equivalent if the source
offset of the pointer leading to them, their address, and their size are identical. Shared
prefixes stop at recursive pointers. Once the stable prefixes are identified, any paths that
do not contain a stable prefix are removed as they cannot lead to a stable path signature.
If no stable prefix is found, the process stops. However, this situation is unlikely and
does not happen in our experiments. Fig. 6 shows the paths in our running example after
identifying recursive pointers and stable prefixes.

Fig. 6. Recursive pointers and stable prefix in paths from run-
ning example

Stable prefixes that reach
the data of interest corre-
spond already to stable path
signatures and can proceed
to generalization. For the
remaining paths, SIGPATH

splits them into chunks (line
8), ending a chunk at a re-
cursive node (dashed verti-
cal lines in Fig. 6). Then, it
compares the shape of each
chunk across the paths. If
the nodes in the chunk have the same address, are data of interest nodes, or have the
same size and internal structure, they are considered equivalent. In Fig. 6 all four nodes
in chunks 1 and 2 are equivalent. If the chunks are not equivalent, the shared prefix
cannot generate a stable signature, so the paths containing them are removed (line 9).

For each chunk where the nodes are equivalent, SIGPATH looks for arrays (line 10).
If the offset of the pointers leading to the chunk are different across snapshots there may
be an array that is being exited through different array elements. This is the case with the
last node in the shared prefix in Fig. 6, which leads to chunk 1 through offset 0 and 4 in
different snapshots. Here, SIGPATH computes the greatest common denominator (gcd)
of the offsets of the pointers leading to the chunk. If the gcd is larger or equal to the
word size, the node is flagged as an array with step = gcd. The array size is determined
by the largest offset leading to the chunk plus the step, accounting for NULL entries
and being limited by the heap object size.

SIGPATH: A Memory Graph Based Approach for Program Data Introspection 249

At this point, only stable paths that reach the data of interest in each of the snapshots
remain and their chunks and arrays can be combined into a path signature (line 11).
Finally, the path signatures are generalized by removing the nodes’ memory addresses,
since the same node on different executions will have different addresses (line 13).
Fig. 3 shows the resulting stable path signature for our running example.

5 Evaluation

We have implemented the memory graph construction, finding the data of interest, and
path signature generation components of SIGPATH using 3,400 lines of Python code
(excluding external libraries). In addition, the user-level introspector comprises 1,500
lines of C++ and the KVM introspector with another 1,800 lines of C. In this section
we present our evaluation results.

Table 1. Applications used in our evaluation

Type Application Version Data of Interest

IM

Yahoo Msg 11.5 Email
Skype 6.6.0.106 Contact ID
Pidgin 2.10.7 Email
Miranda 0.10 Contact ID

RTS

SimCity 4 – Money
StarCraft 1.15 Mineral, Gas, CC life, SCV life
Age of Empires II 0.14 Gold, Wood, Iron, Food
WarCraft III 1.24 Gold, Wood
Dune 2000 1.02 Money
Emperor 1.04 Money
Warlords Battlecry III 1.03 Gold, Hero experience
C&C Generals 1.80 Money

BG
Spider Solitaire 5.10 Cards, Points
Monopoly 1.00 Money

Experiment Setup. Table 1
presents the applications used
to evaluate SIGPATH. For each
application it details the differ-
ent data of interest for which
we use SIGPATH to produce a
path signature. Applications are
grouped into 3 categories: in-
stant messengers (IM), real-time
games (RTS), and board games
(BG). The goal with IM ap-
plications is to retrieve from a
given memory snapshot the user
contacts the application stores
(email address or contact iden-
tifier). In RTS games the goal is
to modify the game’s state at runtime to gain advantage, i.e., to cheat. The cheater
plays against a variable number of adversaries controlled by remote players (or by the
computer), and his goal is to (unfairly) beat them by obtaining an unlimited number
of resources and units that heal themselves. Finally, in board games, the cheater plays
against the computer and his goal is to set high scores to impress his friends.

All applications are 32-bit and run on both Windows 7 and Windows XP SP3 Virtual
Machines. Experiments are performed on an host Intel Xeon with 16 cores 2.4GHz,
with 48GB RAM, running Red Hat Enterprise 64-bit with kernel 2.6.32.

Collecting the Snapshots. For each application and data of interest we select a positive
action and take snapshots after performing the action. For IM applications the positive
action is inserting a new contact. For RTS games and resources (i.e., money, mineral,
gas, gold, wood, iron, food) it is to put a unit to collect the resource, taking a snapshot
when the resource counter increases. For StarCraft and the life of a unit (CC life, SCV
life) it is to order one unit to attack the target unit (CC, SCV) taking a snapshot when-
ever the target’s life decreases. For Warlords Battlecry III and the Hero experience it
is to use the Hero unit to kill other units, taking a snapshot after each killing, which

250 D. Urbina et al.

Table 2. Evaluation results for the preparation and signature generation phases

Snapshot Memory Graph Generation Finding the Data of Interest Signature
Collection Generation

Application DOI #S
na

ps
.

A
vg

.S
iz

e
(M

B
)

A
vg

.#
N

od
es

A
vg

.#
Pt

r

A
vg

.S
iz

e
(M

B
)

A
vg

.F
ilt

er
ed

Si
ze

(M
B

)
A

vg
.R

at
io

(%
)

M
em

or
y

D
if

fin
g

(M
B

)

V
al

ue
Sc

an
ni

ng
(b

yt
es

)

Fu
zz

in
g

(b
yt

es
)

E
nc

od
in

g

#N
od

es

#P
at

hs

#S
ig

.

Yahoo Msg Email 6 93 8,422 14,837 20 19 20 2 16 - ASCII 2 6 1
Skype Contact ID 6 102 3,761 12,618 70 63 61 8 20 - ASCII 7 10 1
Pidgin Email 6 52 6,305 41,981 5.6 5.5 10 1 32 - ASCII 7 123 2
Miranda Contact ID 6 34 671 5,790 6.2 6 17 2 16 - ASCII 4 11 1

SimCity 4 Money 6 269 32,643 128,637 102 97 36 13 4 - Integer 1 1 1

StarCraft

Minerals 10 45 1,069 1,672 5.5 5.2 12 1.1 4 - Integer 1 1 1
Gas 10 45 1,069 1,672 5.5 5.2 12 1.1 4 - Integer 1 1 1
CC life 10 45 1,069 1,672 5.5 5.2 12 1.1 2 - Short 1 1 1
SCV life 10 45 1,069 1,672 5.5 5.2 12 1.1 2 - Short 1 1 1

Age of Empires II

Gold 6 157 488 1,709 85 79 50 5 4 - Float 1 1 1
Food 6 157 488 1,709 85 79 50 5 4 - Float 1 1 1
Wood 6 157 488 1,709 85 79 50 5 4 - Float 1 1 1
Iron 6 157 488 1,709 85 79 50 5 4 - Float 1 1 1

WarCraft III
Gold 6 269 4,419 12,649 27 24 8 9 4 - Integer 1 2 1
Wood 6 269 4,419 12,649 27 24 8 9 4 - Integer 1 2 1

Dune 2000 Money 6 40 842 1,575 10 10 4 2 4 - Integer 1 1 1

Emperor Money 10 114 37,129 10,232 70 65 57 7 102 4 Integer 1 4 1

Warlords Battlecry III
Gold 6 218 13,242 5,784 42 41 18 1 2 - Short 1 1 1
Hero XP 6 218 13,242 5,784 42 41 18 1 2 - Short 1 1 1

C&C Generals Money 10 339 2,537 140,157 68 56 17 10 4 - Integer 1 2 1

Spider Solitaire
Cards 6 26 372 819 3 3 12 1 - 4 (Integer) 18 18 1
Points 6 26 372 819 3 3 12 1 4 - Integer 1 1 1

Monopoly Money 6 114 4,628 55,389 24 19 17 8 2 - Short 1 2 1

increases the Hero’s experience. For Spider (both cards and points) it is to move a card
from one stack of cards to another and for Monopoly to buy some new property, which
reduces the player’s money. By default we collect 6 snapshots for each application. We
take an initial snapshot, then apply the positive action 4 times, and finally collect a final
snapshot after 5 minutes of inactivity (negative action). When finding the data of inter-
est, if SIGPATH cannot locate it (i.e., too many candidate locations are left), we redo
this process doubling the number of positive actions.

The first part of Table 2 summarizes the snapshot collection. It presents the number
of snapshots taken for each game and the average size in Megabytes of those snap-
shots. For all games except StarCraft, Emperor, and C&C Generals the first batch of 6
snapshots was enough to identify the data of interest. These three games exhibit a large
number of memory changes between snapshots, which makes it more difficult to pin-
point the data of interest. Taking a second batch of snapshots was enough to locate the

SIGPATH: A Memory Graph Based Approach for Program Data Introspection 251

data of interest. The snapshots are in Windows Minidump format and contain all user-
level memory pages (0–0x7fffffff). The largest snapshots correspond to RTS games and
all applications increase their memory usage as time passes.

Generating the Memory Graphs. The next part of Table 2 shows the average number
of nodes and pointers in the memory graphs generated from the snapshots. These num-
bers are obtained after removing all nodes unreachable from the modules shipped with
the program’s executable, i.e., those only reachable from Windows libraries. The num-
bers show that memory graphs can be large comprising up to tens of thousands of nodes
and over a hundred thousand pointers. However, their total size is still a small fraction
of the snapshot size, as an important fraction of the pages in the snapshot corresponds
to dead memory and OS data structures. Additionally, we also present the average size
of the graph before and after removing unreachable nodes. Finally, we show the ratio
between the average graph size and the average snapshot size, representing the fraction
of the original process memory that needs to be examined. The results show that using
the memory graph translates in an average 73% reduction of the memory space.

Finding the Data of Interest. The following part of Table 2 captures the combination
of techniques needed to identify the data of interest, its encoding, and the total number
of nodes flagged storing data of interest. We depicted the average size of memory space
where the data of interest must be searched for after the application of each technique.
A dash sign represents that the technique was not needed.

In 22 of 23 cases the combination of structural memory diffing and value scanning
located the data of interest. This combination is very powerful as structural memory
diffing first reduces the set of candidate locations up to 82% on average of the memory
graph, and then value scanning pinpoints the data of interest. Without memory diffing,
value scanning flagged too many candidate locations. For the money in Emperor, we
needed to apply fuzzing as two candidate nodes remained after memory diffing and
value scanning. For the cards in Spider, value scanning does not apply because we
move cards rather than inserting data. In this case, a combination of structural memory
diffing and fuzzing identifies the data of interest.

Signature Generation. The last part of Table 2 shows the number of paths passed
to the signature generation and the final number of path signatures produced. For cases
where multiple paths are input to the signature generation, the common prefix extraction
identifies which of those paths are stable and discards the rest. For all applications
except Pidgin, there is only one stable path and thus have a single path signature. We
find that Pidgin stores two different copies of the contact’s email address. Both of them
are stored in the same contacts data structure but their paths differ on the final steps.
Both paths are stable producing two different signatures, both of which can be used to
identify the contact emails during introspection.

For RTS games and Monopoly, the path signatures have a single node indicating that
those games store resources, unit life, and unit experience in global variables, likely
for performance reasons. One could naively think that such signatures do not contain
important information, but this is hardly so. They capture at which offset and in which
module the global variable is stored. This enables to quickly introspect the application
without having to scan all modules for a value that is likely to appear many times. Dur-
ing preparation, our approach combines memory diffing, value scanning, and fuzzing

252 D. Urbina et al.

Table 3. Path signatures produced by SIGPATH

Application DOI Segment Example Signature

Yahoo Msg Email Heap yahoo.exe[2394323]→ A(32)[4]→ B(46)[*4][32]→ C(12)[4]→ D[0]“Email”

Skype Contact ID Heap
skype.exe[7930844]→ A(64)[60]→ B(2062)[136]→ C(686)[16]→ D(488)[244]
→ E(553)[360] → F(256)[8*x]→ G[0]“Contact ID”

Pidgin Email

Heap libpurple.dll[495776]→ A(12)[0]→ B(48)[16]→ C(56)[*8][48]→ D(64)[32]
→ E[0]“Email”

Heap libpurple.dll[495776]→ A(12)[0]→ B(48)[16]→ C(56)[*8][48]→ D(64)[56]
→ E(40)[32]→ F[0]“Email”

Miranda Contacts ID Heap
yahoo.dll[147340]→ A(12)→ B(92)[32]→ C(12)[*0][8]→ D(28)[4]
→ E[0]“Contact ID”

SimCity 4 Money Global SimCity 4.exe[25674647]“Money”

StarCraft

Mineral Global StarCraft.exe[1569012]”Mineral”
Gas Global StarCraft.exe[1569060]”Gas”
CC Life Global StarCraft.exe[2241505] ”Command Center Life”
SCV life Global StarCraft.exe[2241231]”SCV life”

Age of Empires II

Gold Global empires2.exe[4564562]“Gold”
Wood Global empires2.exe[4564566]“Gas”
Food Global empires2.exe[4564570]“Food”
Iron Global empires2.exe[4564574]“Iron”

WarCraft III
Gold Global war.exe[3022425]“Gold”
Wood Global war.exe[3022445]“Wood”

Dune 2000 Money Global dune2000.dat[3901300]“Money”
Emperor Money Global game.dat[3530433]“Money”

Warlords Battlecry III
Gold Global Battlecry III.exe[3400232]“’Gold”
Hero XP Global Battlecry III.exe[2374828]“Hero XP”

C&C Generals Money Global game.dat[55456432]“Money”

Spider Solitaire
Card Heap spider.exe[73744]→ A(120)[4*x]→ B(4)[0]→ C(12)[*8]“Card”
Points Global spider.exe[77664]“Points”

Monopoly Money Global Monopoly.exe[3230202]“Money”

to accurately pinpoint the location of the data of interest, so that there is no need to
check during online introspection which candidate is the right location. The root of the
path signatures is not always the main module of the application, e.g., libpurple.dll in
Pidgin. A special case happens with games where the main executable starts a separate
process in charge of the game, such as in Emperor and C&C Generals. Table 3 shows
the path signatures in a path-like representation.

Performance Evaluation. We have measured the execution time and memory usage
of SIGPATH. On average it takes an analyst 25 minutes to collect the 6 snapshots, the
largest being 45 minutes for Warcraft III. After that, SIGPATH takes on average 10
minutes to produce the path signatures. The slowest generation is 22 minutes for Pidgin
due to the large number of candidate paths. Overall, it takes 35–60 minutes to create the
signatures. Signature generation is memory consuming because it requires operating
on large memory graphs and snapshots. The largest memory consumption was C&C
Generals with close to 4GB. We plan to add optimizations to minimize the number of
memory graphs and raw pages from snapshots to be simultaneously loaded in memory.

Application: Game Hacking. For each tested game in Table 2 and data of interest
pair we create a cheat and use SIGPATH to identify the location of the data of interest
in memory, modifying it with the cheat’s value. During preparation we identified the
encoding for each data of interest, so here we only need to select an appropriate value.
For RTS games we select a large number corresponding to a ridiculously high amount

SIGPATH: A Memory Graph Based Approach for Program Data Introspection 253

of resources, unit life, or unit experience. For board games we select a very large score
and make sure that the game stores it in its high score list. The cheats work flawlessly.
As an example, one cheat for StarCraft increases the Command Center unit life to 9,999
points, even if the maximum life of that unit type is 1,500 points. After the cheat the
game continues operating correctly and the unit’s life is accepted to be 9,999. Setting
the life to zero is even a better cheat as it makes the unit immortal.

Application: Memory Forensics. We evaluated whether our path signatures are able to
recover all email contacts stored by the IM programs in Table 2, given a snapshot taken
from a suspect’s computer. We run each IM application and insert 3 new contacts (dif-
ferent from the ones inserted when collecting the snapshots during preparation) taking a
single snapshot for each application after all insertions. Then, we use the introspection
component of SIGPATH to apply the signature on the snapshot. SIGPATH successfully
identifies and dumps the email addresses of all 3 contacts in all 4 IM applications. This
demonstrates that the generated path signatures can examine all instances of the data of
interest stored in a data structure. It also demonstrates that they can be used to examine
a different execution from the one used to generate them.

6 Limitations and Future Work

Obfuscation. Our approach works with many common code protections such as those
used by Skype [24]. For data obfuscation, if the data of interest is encrypted SIGPATH

can still find it using structural memory diffing and fuzzing, and can modify it by re-
playing a previously seen (encrypted) value. Other obfuscation techniques such as data
structure randomization (DSR) [25] target data analysis techniques. SIGPATH cannot
handle DSR, but DSR requires expensive code refactoring to existing programs.

Correlating Actions and Effects. Our memory diffing technique requires positive ac-
tions chosen by the analyst to affect the data of interest. And, our fuzzing technique
requires modifications of the data of interest to be observable by the analyst. Such di-
rect relationships between analyst actions and effects on the data of interest was easy to
find in our applications. However, other scenarios may prove more difficult.

Complex Code Idioms. Some complex code idioms are unsupported or only supported
partially by SIGPATH. For example, while SIGPATH handles most unions, a subtle case
is a union of two types, both with a pointer at the same offset and only one those
pointers leading to the data-of-interest, which produces an unstable path. Another issue
are tail-accumulator arrays; while our array detection technique identifies the array at
the end of the node, full support would require handling variable-length nodes. Also
problematic are data structures whose traversal requires computation, e.g., masking the
bottom 7 bits of a pointer field used as a reference count. Finally, custom allocators hide
the proper structure of memory, but can be identified by recent techniques [26].

3D Support. VirtualBox, QEMU, and XEN do not support 3D graphics, required by
some recent games like StarCraft2. We are developing a VMWare introspector for these.

254 D. Urbina et al.

7 Related Work

Game Hacking. Hoglund and McGraw [27] describe common game cheating tech-
niques such as memory editing, code injection, and network traffic forgery. CHEAT-
ENGINE [23] is an open source engine that uses value scanning to identify the data of
interest while the game runs. As acknowledged by the author, such approach does not
work with highly dynamic online games. KARTOGRAPH [8] is a state-of-the-art tool for
hacking games. It differs from SIGPATH in two key properties. First, SIGPATH produces
path signatures, which can be reused to cheat the game in many runs without redoing
the analysis. In addition, SIGPATH operates on memory graphs while KARTOGRAPH

operates at the page level. The memory graph removes dead memory and unrelated
data, and enables structural memory diffing, which improves accuracy over the page
level diffing in KARTOGRAPH.

Data Structure Reverse Engineering. Prior works recover data structures using pro-
gram analysis without source code or debugging symbols, e.g., REWARDS [9],
HOWARD [11], and TIE [10]. In contrast, SIGPATH employs a lightweight memory-
based approach that locates the data of interest and generates a path signature to it,
avoiding the need to recover all data structures. Most similar is LAIKA [17], which ap-
plies machine learning to identify data structures in a memory snapshot, clusters those
of the same type, and computes the similarity of two snapshots. SIGPATH differs in
that it produces path signatures that identify the exact location of the data of interest in
memory and that its structural memory diffing operates on a memory graph rather than
at the page level.

Memory Forensics. Prior work identifies data structures in memory by traversing point-
ers starting from program (kernel) global variables and following the points-to relation-
ships to reach instances of the data structure. KOP [5], MAS [16], FATKIT [1] and
VOLATILITY [3] all use such technique. While SIGPATH also leverages this approach
the substantial difference is that these works require access to the target’s source code
or its data structure definitions in symbol files. They also often involve sophisticated
points-to analysis (e.g., for void pointers), whereas SIGPATH simply requires mem-
ory snapshots. Instead of object traversal, other works use data structure signatures
to scan for instances of data structures in memory, such as PTFINDER [2], Robust-
Signatures [6], and SIGGRAPH [7]. SIGPATH differs in that it produces path signatures
that do not require to scan memory and also in that it does not require access to the type
definitions in the source code.

Virtual Machine Introspection (VMI). LIVEWIRE [12] demonstrated the concept of
VMI and there is a significant amount of works that improve VMI for better prac-
ticality, automation, and wider applications such as VMWATCHER [15], SBCFI [28],
VIRTUOSO [13] and VMST [14]. The difference with SIGPATH is that these systems
focus on kernel level introspection, whereas SIGPATH focuses on user level data intro-
spection. Recently, TAPPAN ZEE BRIDGE [29] finds hooking points at which to inter-
pose for active monitoring. Our work differs on being snapshot-based and producing
path signatures.

SIGPATH: A Memory Graph Based Approach for Program Data Introspection 255

8 Conclusion

In this paper we have presented a novel memory graph based approach for program
data introspection and modification that generates path signatures directly from mem-
ory snapshots, without requiring source code, debugging symbols, or APIs in the target
program. To this end, we have developed a number of new techniques include a tech-
nique for generating a memory graph directly from a snapshot without tracking the pro-
gram execution; a structural memory diffing technique to compare the graph structure
of two snapshots; and a signature generation technique that produces path signatures
that capture how to efficiently locate and traverse the in-memory data structures where
the data of interest is stored. We have implemented our techniques into a tool called
SIGPATH and have evaluated SIGPATH for hacking popular games and for recovering
contact information from IM applications.

Acknowledgements. The authors thank the anonymous reviewers for their feedback.
This material is based upon work supported by The Air Force Office of Scientific Re-
search under Award No. FA-9550-12-1-0077.This research was also partially supported
by the Spanish Government through Grant TIN2012-39391-C04-01 and a Juan de la
Cierva Fellowship for Juan Caballero. All opinions, findings and conclusions or recom-
mendations expressed herein are those of the authors and do not necessarily reflect the
views of the sponsors.

References

1. Petroni Jr., N.L., Walters, A., Fraser, T., Arbaugh, W.A.: Fatkit: A framework for the ex-
traction and analysis of digital forensic data from volatile system memory. Digital Investiga-
tion 3(4), 197–210 (2006)

2. Schuster, A.: Searching for processes and threads in Microsoft Windows memory dumps.
Digital Investigation 3(suppl.-1), 10–16 (2006)

3. Walters, A.: The volatility framework: Volatile memory artifact extraction utility framework,
https://www.volatilesystems.com/default/volatility

4. Lin, Z., Rhee, J., Wu, C., Zhang, X., Xu, D.: Dimsum: Discovering semantic data of interest
from un-mappable memory with confidence. In: Proceedings of Network and Distributed
System Security Symposium, San Diego, CA (February 2012)

5. Carbone, M., Cui, W., Lu, L., Lee, W., Peinado, M., Jiang, X.: Mapping Kernel Objects
to Enable Systematic Integrity Checking. In: Proceedings of the 16th ACM Conference on
Computer and Communications Security, Chicago, IL (November 2009)

6. Dolan-Gavitt, B., Srivastava, A., Traynor, P., Giffin, J.: Robust Signatures for Kernel Data
Structures. In: Proceedings of the 16th ACM Conference on Computer and Communications
Security, Chicago, IL (November 2009)

7. Lin, Z., Rhee, J., Zhang, X., Xu, D., Jiang, X.: SigGraph: Brute Force Scanning of Kernel
Data Structure Instances Using Graph-based Signatures. In: Proceedings of the 18th Annual
Network and Distributed System Security Symposium, San Diego, CA (February 2011)

8. Bursztein, E., Hamburg, M., Lagarenn, J., Boneh, D.: OpenConflict: Preventing Real Time
Map Hacks in Online Games. In: Proceedings of the IEEE Symposium on Security and
Privacy, Oakland, CA (May 2011)

9. Lin, Z., Zhang, X., Xu, D.: Automatic Reverse Engineering of Data Structures from Binary
Execution. In: Proceedings of the 17th Annual Network and Distributed System Security
Symposium, San Diego, CA (February 2010)

https://www.volatilesystems.com/default/volatility

256 D. Urbina et al.

10. Lee, J., Avgerinos, T., Brumley, D.: TIE: Principled Reverse Engineering of Types in Binary
Programs. In: Proceedings of the 18th Annual Network and Distributed System Security
Symposium, San Diego, CA (February 2011)

11. Slowinska, A., Stancescu, T., Bos, H.: Howard: A Dynamic Excavator for Reverse Engineer-
ing Data Structures. In: Proceedings of the 18th Annual Network and Distributed System
Security Symposium, San Diego, CA (February 2011)

12. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architecture for In-
trusion Detection. In: Proceedings of the 10th Annual Network and Distributed Systems
Security Symposium, San Diego, CA (February 2003)

13. Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J., Lee, W.: Virtuoso: Narrowing the Semantic
Gap in Virtual Machine Introspection. In: Proceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA (May 2011)

14. Fu, Y., Lin, Z.: Space Traveling across VM: Automatically Bridging the Semantic-Gap in
Virtual Machine Introspection via Online Kernel Data Redirection. In: Proceedings of the
IEEE Symposium on Security and Privacy, San Francisco, CA (May 2012)

15. Jiang, X., Wang, X., Xu, D.: Stealthy Malware Detection Through VMM-Based Out-of-
the-Box Semantic View Reconstruction. In: Proceedings of the 14th ACM Conference on
Computer and Communications Security, Alexandria, VA (November 2007)

16. Cui, W., Peinado, M., Xu, Z., Chan, E.: Tracking Rootkit Footprints with a Practical Memory
Analysis System. In: Proceedings of the USENIX Security Symposium (August 2012)

17. Cozzie, A., Stratton, F., Xue, H., King, S.T.: Digging for Data Structures. In: Proceedings
of the 8th Symposium on Operating System Design and Implementation, San Diego, CA
(December 2008)

18. Microsoft: Minidump definitions, http://msdn.microsoft.com/en-us/
library/windows/desktop/ms680378.aspx

19. Yin, H., Song, D.: TEMU: Binary Code Analysis via Whole-System Layered Annotative Ex-
ecution. Technical Report UCB/EECS-2010-3, EECS Department, University of California,
Berkeley, CA (January 2010)

20. McDonald, J., Valasek, C.: Practical windows xp/2003 heap exploitation (2009)
21. Russinovich, M., Cogswell, B.: Vmmap,

http://technet.microsoft.com/en-us/sysinternals/dd535533.asp
22. Russinovich, M.: Process explorer,

http://technet.microsoft.com/en-us/sysinternals/bb896653
23. Team, C.E.: Cheat engine, http://www.cheatengine.org/
24. Biondi, P., Desclaux, F.: Silver Needle in the Skype. In: BlackHat Europe (March 2006)
25. Lin, Z., Riley, R.D., Xu, D.: Polymorphing Software by Randomizing Data Structure Layout.

In: Proceedings of the 6th SIG SIDAR Conference on Detection of Intrusions and Malware
and Vulnerability Assessment, Milan, Italy (July 2009)

26. Chen, X., Slowinska, A., Bos, H.: Who Allocated my Memory? Detecting Custom Memory
Allocators in C Binaries. In: Working Conference on Reverse Engineering (October 2013)

27. Hoglund, G., McGraw, G.: Exploiting Online Games: Cheating Massively Distributed Sys-
tems, 1st edn. Addison-Wesley Professional (2007)

28. Petroni Jr., N.L., Hicks, M.: Automated Detection of Persistent Kernel Control-Flow Attacks.
In: Proceedings of the 14th ACM Conference on Computer and Communications Security,
Alexandria, VA (October 2007)

29. Dolan-Gavitt, B., Leek, T., Hodosh, J., Lee, W.: Tappan zee (north) bridge: Mining mem-
ory accesses for introspection. In: Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security (November 2013)

http://msdn.microsoft.com/en-us/library/windows/desktop/ms680378.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms680378.aspx
http://technet.microsoft.com/en-us/sysinternals/dd535533.asp
http://technet.microsoft.com/en-us/sysinternals/bb896653
http://www.cheatengine.org/

ID-Based Two-Server Password-Authenticated

Key Exchange

Xun Yi1, Feng Hao2, and Elisa Bertino3

1 School of CS and IT, RMIT University, Australia
2 School of Computing Science, Newcastle University, UK

3 Department of Computer Science, Purdue University, USA

Abstract. In two-server password-authenticated key exchange (PAKE)
protocol, a client splits its password and stores two shares of its password
in the two servers, respectively, and the two servers then cooperate to au-
thenticate the client without knowing the password of the client. In case
one server is compromised by an adversary, the password of the client
is required to remain secure. In this paper, we present a compiler that
transforms any two-party PAKE protocol to a two-server PAKE proto-
col. This compiler is mainly built on two-party PAKE and identity-based
encryption (IBE), where the identities of the two servers are used as their
public keys. By our compiler, we can construct a two-server PAKE proto-
col which achieves implicit authentication with only two communications
between the client and the servers. As long as the underlying two-party
PAKE protocol and IBE scheme have provable security without random
oracles, the two-server PAKE protocol constructed by our compiler can
be proven to be secure without random oracles.

Keywords: Password-authenticated key exchange, identity-based encryp-
tion, Diffie-Hellman key exchange, Decisional Diffie-Hellman problem.

1 Introduction

Bellovin and Merritt [4] were the first to introduce password-based authenticated
key exchange (PAKE), where two parties, based only on their knowledge of
a password, establish a cryptographic key by exchange of messages. A PAKE
protocol has to be immune to on-line and off-line dictionary attacks. In an off-
line dictionary attack, an adversary exhaustively tries all possible passwords
in a dictionary in order to determine the password of the client on the basis
of the exchanged messages. In on-line dictionary attack, an adversary simply
attempts to login repeatedly, trying each possible password. By cryptographic
means only, none of PAKE protocols can prevent on-line dictionary attacks. But
on-line attacks can be stopped simply by setting a threshold to the number of
login failures.

Since Bellovin and Merritt [4] introduced the idea of PAKE, numerous PAKE
protocols have been proposed. In general, there exist two kinds of PAKE settings,
one assumes that the password of the client is stored in a single server and
another assumes that the password of the client is distributed in multiple servers.

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 257–276, 2014.
c© Springer International Publishing Switzerland 2014

258 X. Yi, F. Hao, and E. Bertino

PAKE protocols in the single-server setting can be classified into three cate-
gories as follows.

– Password-only PAKE: Typical examples are the “encrypted key exchange”
(EKE) protocols given by Bellovin and Merritt [4], where two parties, who
share a password, exchange messages encrypted by the password, and estab-
lish a common secret key. The formal model of security for PAKE was firstly
given in [3, 7]. Based on the security model, PAKE protocols [1, 2, 9, 10, 17,
21, 23] have been proposed and proved to be secure.

– PKI-based PAKE: PKI-based PAKE protocol was first given by Gong et al.
[18], where the client stores the server’s public key in addition to share a
password with the server. Halevi and Krawczyk [19] were the first to provide
formal definitions and rigorous proofs of security for PKI-based PAKE.

– ID-based PAKE: ID-based PAKE protocols were proposed by Yi et al. [33,
34], where the client needs to remember a password in addition to the identity
of the server, whereas the server keeps the password in addition to a private
key related to its identity. ID-based PAKE can be thought as a trade-off
between password-only and PKI-based PAKE.

In the single-server setting, all the passwords necessary to authenticate clients
are stored in a single server. If the server is compromised, due to, for example,
hacking or even insider attacks, passwords stored in the server are all disclosed.
To address this problem, the multi-server setting for PAKE was first suggested
in [15, 20], where the password of the client is distributed in n servers.

PAKE protocols in the multi-server setting can be classified into two categories
as follows.

– Threshold PAKE: The first PKI-based threshold PAKE protocol was given
by Ford and Kaliski [15], where n severs, sharing the password of the client,
cooperate to authenticate the client and establish independent session keys
with the client. As long as n − 1 or fewer servers are compromised, their
protocol remains secure. Jablon [20] gave a protocol with similar function-
ality in the password-only setting. MacKenzie et al. proposed a PKI-based
threshold PAKE protocol which requires only t out of n servers to cooperate
in order to authenticate the client. Their protocol remains secure as long
as t − 1 or fewer servers are compromised. Di Raimondo and Gennaro [27]
suggested a password-only threshold PAKE protocol which requires fewer
than 1/3 of the servers to be compromised.

– Two-server PAKE: Two-server PKI-based PAKE was first given by Brainard
[8], where two servers cooperate to authenticate the client and the password
remains secure if one server is compromised. A variant of the protocol was
later proved to be secure in [28]. The first two-server password-only PAKE
protocol was given by Katz et al. [24], in which two servers symmetrically
contribute to the authentication of the client. The protocol in the server
side can run in parallel. Efficient protocols [30–32, 22] were later proposed,
where the front-end server authenticates the client with the help of the back-
end server and only the front-end server establishes a session key with the

ID-Based Two-Server Password-Authenticated Key Exchange 259

client. These protocols are asymmetric in the server side and have to run in
sequence. Recently, Yi et al. gave a symmetric solution [35] which is even
more efficient than asymmetric protocols [22, 30–32].

In this paper, we will consider the two-server setting for PAKE only. A typical
example is the two-server PAKE protocol given by Katz et al. [24], which is built
upon the two-party PAKE protocol (i.e., the KOY protocol [23]), where two
parties, who share a password, exchange messages to establish a common secret
key. Their basic two-server protocol is secure against a passive (i.e., “honest-but-
curious”) adversary who has access to one of the servers throughout the protocol
execution, but cannot cause this server to deviate from its prescribed behavior.
In [24], Katz et al. also showed how to modify their basic protocol so as to achieve
security against an active adversary who may cause a corrupted server to deviate
arbitrarily from the protocol. The core of their protocol is the KOY protocol.
The client looks like running two KOY protocols with two servers in parallel.
However, each server must perform a total of roughly 70 exponentiations (i.e.,
each server’s work is increased by a factor of roughly 6 as compared to the basic
protocol [24]). In general, this construction implies a compiler which transfers a
two-party PAKE protocol to a two-server PAKE protocol. The compiler employs
a two-party PAKE protocol between the client and the servers.

Our Contribution. In this paper, we propose a new compiler to construct a
two-server PAKE protocol with any two-party PAKE protocol. Our compiler em-
ploys the two-party PAKE protocol between two servers when they authenticate
the client.

To achieve the goal, our compiler needs an identity-based encryption (IBE)
scheme to protect the messages (containing the password information) from the
client to the two servers. The basic idea is: first of all, the client splits its password
into two shares and each server keeps one share of the password in addition to
a private key related to its identity. In key exchange, the client sends to each
server one share of the password encrypted according to the identity of the server.
From the client messages, both servers can derive the same one-time password,
by which the two servers can run a two-party PAKE protocol to authenticate the
client. Our compiler also needs a public key encryption scheme for the servers
to protect the messages (containing the password information) from the servers
to the client. The one-time public key is generated by the client and sent to the
servers along with the password information in the first phase.

In an IBE scheme, the decryption key of a server is usually generated by a
Private Key Generator (PKG). Therefore the PKG can decrypt any messages
encrypted with the identity of the server. As mentioned in [5], using standard
techniques from threshold cryptography, the PKG can be distributed so that the
master-key is never available in a single location. In order to prevent a malicious
PKG from decrypting the password information encrypted with the identity of
a server, a strategy is to employ multiple PKGs which cooperate to generate the
decryption key for the server. As long as one of the PKGs is honest to follow the
protocol, the decryption key for the server is known only to the server. Since we

260 X. Yi, F. Hao, and E. Bertino

can assume that the two servers in two-server PAKE never collude, we can also
assume that at least one of the PKGs do not collude with other PKGs.

We define an ID-based security model for two-server PAKE. Unlike the ID-
based security model for single-server PAKE defined in [33, 34], an adversary
can compromise one of the two servers, each having one share of the password.
Based on our security model, we provide a rigorous proof of security for our
compiler. Our compiler does not rely on the random oracle model as long as the
underlying primitives themselves do not rely on it. For example, by using the
KOY protocol [23] and the Waters IBE scheme [29] and the Cramer-Shoup public
key encryption scheme [12], our compiler can construct a two-server PAKE with
provable security in the standard model.

We also compare our ID-based two-server PAKE protocol with the Katz et
al.’s two-server PAKE protocol [24] with provable security in the standard model.
The Katz et al.’s protocol is password-only, where the client needs to remember
the password only and refer to common public parameters, and each server,
having a public and private key pair, and keeps a share of the password. Our
protocol is identity-based, where the client needs to remember the password in
addition to the meaningful identities of the two servers, and refer to common
public parameters, including the master public key, and each server, having a
private key related to his identity, keeps a share of the password.

In terms of setting, the Katz et al.s protocol is superior to our protocol. How-
ever, in the Katz et al.’s protocol, each server performs approximately six times
the amount of the work as the KOY protocol, whereas in our protocol, each server
performs the same amount of work as the KOY protocol in addition to one IBE
decryption and one public key encryption. In addition, the Katz et al.’s protocol
needs three communications between the client and the servers to achieve im-
plicit authentication, whereas our protocol achieves implicit authentication with
only two communications between the client and the servers.

Organization. In Section 2, we introduce our security model for ID-based two-
server PAKE. In Section 3, we present our ID-based two-server PAKE compiler.
After that, in Section 4, a sketch of security proof for our protocol is provided.
We conclude this paper in Section 5.

2 Definitions

A formal model of security for two-server PAKE was given by Katz et al. [24]
(based on the MacKenzie et al.’s model for PKI-based PAKE [26]). Boneh and
Franklin [5] defined chosen ciphertext security for IBE under chosen identity
attack. Combining the two models, we give an ID-based model for two-server
PAKE.

Participants, Initialization and Passwords. An ID-based PAKE protocol
involves three kinds of protocol participants: (1) A set of clients (denoted as
Client), each of which requests services from servers on the network; (2) A set
of servers (denoted as Server), each of which provides services to clients on the
network; (3) A group of Private Key Generators (PKGs), which generate public
parameters and corresponding private keys for servers.

ID-Based Two-Server Password-Authenticated Key Exchange 261

We assume that ClientServerTriple is the set of triples of the client and two
servers, where the client is authorized to use services provided by the two servers,
Client

⋂
Server = ∅, User = Client

⋃
Server, and any PKG �∈ User. It is obvious

that ClientServerTriple ⊆ Client× Server × Server.
Prior to any execution of the protocol, we assume that an initialization phase

occurs. During initialization, the PKGs cooperate to generate public parameters
for the protocol, which are available to all participants, and private keys for
servers, which are given to the appropriate servers. The user may keep the public
parameter in a personal device, such as a smart card or a USB flash drive. When
the PKGs generate the private key for a server, each PKG generates and sends
a private key component to the server via a secure channel. The server then
derives its private key by combining all private key components from all PKGs.
We assume that at least one of PKGs is honest to follow the protocol.
Therefore, the private key of the server is known to the server only.

For any triple (C,A,B) ∈ ClientServerTriple, we assume that the client C
chooses its password pwC independently and uniformly at random from a “dic-
tionary” D = {pw1, pw2, · · · , pwN} of size N , where D ⊂ Zp, N is a fixed
constant which is independent of any security parameter, and p is a large prime.
The password is then split into two shares pwC,A and pwC,B and stored at the
two servers A and B, respectively, for authentication. We assume that the
two servers never collude to determine the password of the client. The
client C needs to remember pwC to log into the servers A and B.

For simplicity, we assume that each client C shares its password pwC with
exactly two servers A and B. In this case, we say that servers A and B are
associated with C. A server may be associated with multiple clients.

Execution of the Protocol. In the real world, a protocol determines how users
behave in response to input from their environments. In the formal model, these
inputs are provided by the adversary. Each user is assumed to be able to execute
the protocol multiple times (possibly concurrently) with different partners. This
is modeled by allowing each user to have unlimited number of instances (please
refer to [3]) with which to execute the protocol. We denote instance i of user U
as U i. A given instance may be used only once. The adversary is given oracle
access to these different instances. Furthermore, each instance maintains (local)
state which is updated during the course of the experiment. In particular, each
instance U i is associated with the following variables, initialized as NULL or
FALSE (as appropriate) during the initialization phase.

– sidiU , pid
i
U and skiU are variables containing the session identity, partner iden-

tity, and session key for an instance U i, respectively. Computation of the ses-
sion key is, of course, the ultimate goal of the protocol. The session identity
is simply a way to keep track of the different executions of a particular user
U . Without loss of generality, we simply let this be the (ordered) concatena-
tion of all messages sent and received by instance U i. The partner identity
denotes the identity of the user with whom U i believes it is interacting. For a
client C, skiC consists of a pair (skiC,A, sk

i
C,B), which are the two keys shared

with servers A and B, respectively.

262 X. Yi, F. Hao, and E. Bertino

– acciU and termi
U are boolean variables denoting whether a given instance U i

has been accepted or terminated, respectively. Termination means that the
given instance has done receiving and sending messages, acceptance indicates
successful termination. In our case, acceptance means that the instance is
sure that it has established a session key with its intended partner; thus,
when an instance U i has been accepted, sidiU , pidiU and skiU are no longer
NULL.

– stateiU records any state necessary for execution of the protocol by U i.
– usediU is a boolean variable denoting whether an instance U i has begun

executing the protocol. This is a formalism which will ensure each instance
is used only once.

The adversaryA is assumed to have complete control over all communications
in the network (between the clients and servers, and between servers and servers)
and the adversary’s interaction with the users (more specifically, with various
instances) is modelled via access to oracles. The state of an instance may be
updated during an oracle call, and the oracle’s output may depend upon the
relevant instance. The oracle types include:

– Send(C, i, A,B,M) – This sends message M to a client instance Ci, sup-
posedly from two servers A and B. Assuming termi

C = FALSE, this instance
runs according to the protocol specification, updating state as appropriate.
The output of Ci (i.e., the message sent by the instance) is given to the
adversary, who receives the updated values of sidiC , pid

i
C , acc

i
C , and termi

C .
This oracle call models the active attack to a protocol. If M is empty, this
query represents a prompt for C to initiate the protocol.

– Send(S, i, U,M) – This sends message M to a server instance Si, supposedly
from a user U (either a client or a server). Assuming termi

S = FALSE, this
instance runs according to the protocol specification, updating state as ap-
propriate. The output of Si (i.e., the message sent by the instance) is given
to the adversary, who receives the updated values of sidiS , pid

i
S , acc

i
S , and

termi
S . If S is corrupted, the adversary also receives the entire internal state

of S. This oracle call also models the active attack to a protocol.
– Execute(C, i, A, j, B, k) – If the client instance Ci and the server instances

Aj and Bk have not yet been used (where (C,A,B) ∈ ClientServerTriple),
this oracle executes the protocol between these instances and outputs the
transcript of this execution. This oracle call represents passive eavesdropping
of a protocol execution. In addition to the transcript, the adversary receives
the values of sid, pid, acc, and term for client and server instances, at each step
of protocol execution. In addition, if S ∈ {A,B} is corrupted, the adversary
is given the entire internal state of S.

– Corrupt(S) – This sends the private key of the server S in addition to all
password information stored in the server S to the adversary. This oracle
models possible compromising of a server due to, for example, hacking into
the server.

– Corrupt(C) – This query allows the adversary to learn the password of the
client C, which models the possibility of subverting a client by, for example,

ID-Based Two-Server Password-Authenticated Key Exchange 263

witnessing a user typing in his password, or installing a “Trojan horse” on
his machine.

– Reveal(U,U ′, i) – This outputs the current value of session key skiU,U ′ held

by instance U i if acciU = TRUE, where U ′ ∈ pidiU . This oracle call models
possible leakages of session keys due to, for example, improper erasure of
session keys after use, compromise of a host computer, or cryptanalysis.

– Test(U,U ′, i) – This oracle does not model any real-world capability of the
adversary, but is instead used to define security. Assume U ′ ∈ pidiU , if acciU =
TRUE, a random bit b is generated. If b = 0, the adversary is given skiU,U ′ ,
and if b = 1 the adversary is given a random session key. The adversary is
allowed only a single Test query, at any time during its execution.

Partnering. Let (C,A,B) ∈ ClientServerTriple. For the client instance Ci, let
sidiC = (sidiC,A, sid

i
C,B), where sidiC,A (resp., sidiC,B) denotes the ordered sequence

of messages sent to / from the client C and the server A (resp., server B). For the
server instance Aj , let sidjA = (sidjA,C , sid

j
A,B), where sidiA,C denotes the ordered

sequence of messages sent to / from the server A and the client C, and sidjA,B

denote the ordered sequence of message sent to / from the server A and the server
B. We say that instances Ci and Aj are partnered if (1) sidiC,A = sidjA,C �= NULL

and (2) A ∈ pidiC and C ∈ pidjA. We say that instances Aj and Bk are partnered

if (1) sidjA,B = sidkB,A �= NULL and (2) A ∈ pidkB and B ∈ pidjA.

Correctness. To be viable, a key exchange protocol must satisfy the following
notion of correctness: If a client instance Ci and server instances Aj and Bk runs
an honest execution of the protocol with no interference from the adversary,
then acciC = accjA = acckB = TRUE, and skiC,A = skjA,C , skiC,B = skkB,C and

skiC,A �= skiC,B.

Freshness. To formally define the adversary’s success we need to define a notion
of freshness for a session key, where freshness of a key is meant to indicate that the
adversary does not trivially know the value of the session key. We say a session
key skiU,U ′ is fresh if (1) both U and U ′ are not corrupted; (2) the adversary
never queried Reveal(U,U ′, i); (3) the adversary never queried Reveal(U ′, U, j)
where U i and U ′j are partnered.

Advantage of the Adversary. Informally, the adversary succeeds if it can
guess the bit b used by the Test oracle. We say an adversary A succeeds if it
makes a single query Test(U,U ′, i) to a fresh instance U i, with acciU = TRUE at
the time of this query, and outputs a single bit b′ with b′ = b (recall that b is the
bit chosen by the Test oracle). We denote this event by Succ. The advantage of
adversary A in attacking protocol P is then given by AdvPA(k) = 2 ·Pr[Succ]− 1,
where the probability is taken over the random coins used by the adversary
and the random coins used during the course of the experiment (including the
initialization phase).

An adversary can always succeed by trying all passwords one-by-one in an on-
line impersonation attack. A protocol is secure if this is the best an adversary
can do. The on-line attacks correspond to Send queries. Formally, each instance

264 X. Yi, F. Hao, and E. Bertino

for which the adversary has made a Send query counts as one on-line attack.
Instances with which the adversary interacts via Execute are not counted as on-
line attacks. The number of on-line attacks represents a bound on the number
of passwords the adversary could have tested in an on-line fashion.

Definition 1. Protocol P is a secure two-server protocol for PAKE if, for all
dictionary size N and for all PPT adversaries A making at most Q(k) on-line
attacks, there exists a negligible function ε(·) such that AdvPA(k) ≤ Q(k)/N +
ε(k).

3 Our Compiler for Two-Server PAKE Protocol

3.1 Description of Our Compiler

In this section, we present our compiler transforming any two-party PAKE pro-
tocol P to a two-server PAKE protocol P ′. Besides P , we need an identity-based
encryption scheme (IBE) as our cryptographic building block. If we remove au-
thentication elements from our compiler, our key exchange protocol is essentially
the Diffie-Hellman key exchange protocol [13]. A high-level description of our
compiler is given in Figure 1, in which the client C and two servers A and B
establish two authenticated keys, respectively.

We present the protocol by describing initialization and execution.

Initialization. Given a security parameter k ∈ Z∗, the initialization includes:

Parameter Generation: On input k, (1) m PKGs cooperate to run SetupP of the
two-party PAKE protocol P to generate system parameters, denoted as paramsP .
(2) m PKGs cooperate to run SetupE of the IBE scheme to generate public system
parameters for the IBE scheme, denoted as paramsE , and the secret master-keyE .
Assume that G is a generator of IBE plaintext group E with an order n. (3) m
PKGs cooperate to choose a large cyclic group G with a prime order q and two
generators g1, g2, and two hash functions, H1 : {0, 1}∗ → Z∗

n and H2 : {0, 1}∗ →
Z∗
q , from a collision-resistant hash family. The public system parameters for the

protocol P ′ is params = paramsP,E
⋃
{E,G, n,G, q, g1, g2, H1, H2} and the secret

master-keyE is secretly shared by the PKGs in a manner that any coalition of
PKGs cannot determine master-keyE as long as one of the PKGs is honest to
follow the protocol.

Remark. Taking the Waters’ IBE scheme [29] for example, m PKG agree on
randomly chosen G,G2 ∈ G and each PKG randomly chooses αi ∈ Zp and
broadcast Gαi with a zero-knowledge proof of knowing αi and a signature. Then
we can set G1 = G

∑
i
αi as the public master key and the secret master-keyE =

G
∑

i
αi

2 . The secret master key is privately shared among m PKGs and unknown
to anyone even if m− 1 PKGs maliciously collude.

Key Generation: On input the identity S of a server S ∈ Server, paramsE , and the
secret sharing master-keyE , PKGs cooperate to run ExtractE of the IBE scheme
and generate a private (decryption) key for S, denoted as dS , in a manner that
any coalition of PKGs cannot determine dS as long as one of the PKGs is honest
to follow the protocol.

ID-Based Two-Server Password-Authenticated Key Exchange 265

Public: P, IBE,E,G, n,G, q, g1, g2, H1, H2

Client C

pwC

(= pwC,A + pwC,B(mod n))

(= pw∗
C,A + pw∗

C,B(mod q))

Server A

(GpwC,A , g
pw∗

C,A

2 , dA)

Server B

(GpwC,B , g
pw∗

C,B

2 , dB)

pw1
R← Z∗

n

pw2 = pwC − pw1(mod n)

rc, x1, x2, y1, y2, z
R← Z∗

q

Wc = grc1 , X = gx1
1 gx2

2 , Y = gy11 gy22 , Z = gz1

h = H1(C,Wc, X, Y, Z)

Ea = IBE(Gpw1h
−1

, A)

Eb = IBE(Gpw2h
−1

, B)

�msg1 = 〈C,Wc, X, Y, Z,Ea〉
�msg2 = 〈C,Wc, X, Y, Z,Eb〉

h′ = H1(C,Wc, X, Y, Z)

ωa = IBD(Ea, dA)
h′
/GpwC,A

= Gpw1−pwC,A

if accPA = TRUE

ra, r1
R← Z∗

q ,Wa = gra1

S1 = gr11 , T1 = gr12 ,

ha = H2(A,Wa, C,Wc)

U1 = g
pw∗

C,Ah−1
a

2 Zr1

h1 = H2(S1, T1, U1)

V1 = Xr1Y h1r1

accA = TRUE, skA,C = W ra
c

else return ⊥

h′ = H1(C,Wc, X, Y, Z)

ωb = GpwC,B/IBD(Eb, dB)
h′

= GpwC,B−pw2

if accPB = TRUE

rb, r2
R← Z∗

q ,Wb = g
rb
1

S2 = gr21 , T2 = gr22 ,

hb = H2(B,Wb, C,Wc)

U2 = g
pw∗

C,Bh−1
b

2 Zr2

h2 = H2(S2, T2, U2)

V2 = Xr2Y h2r2

accB = TRUE, skB,C = W
rb
c

else return ⊥

�
�
P (ωa, ωb)

�msgA = 〈A,S1, T1, U1, V1,Wa〉
� msgB = 〈B,S2, T2, U2, V2,Wb〉

h′
a = H2(A,Wa, C,Wc), h

′
1 = H2(S1, T1, U1)

h′
b = H2(B,Wb, C,Wc), h

′
2 = H2(S2, T2, U2)

if {Sx1+h′
1y1

1 T
x2+h′

1y2
1 = V1} ∧ {Sx1+h′

2y1
2 T

x2+h′
2y2

2 = V2} ∧ {(U1/S
z
1)

h′
a(U2/S

z
2)

h′
b = g

pwC
2 }

accC = TRUE, skC,A = W rc
a , skC,B = W rc

b

else return ⊥

Fig. 1. Two-Server PAKE Protocol P ′

266 X. Yi, F. Hao, and E. Bertino

Remark. In the Waters’ IBE scheme with m PKG , each PKG computes one
component of the private key for a server S, i.e., (Gαi

2 H(S)ri ,Gri), where H
is the Waters’ hash function, and sends it to the server via a secure chan-
nel. Combining all components, the server can construct its private key dS =

(G
∑

i
αi

2 H(S)
∑

i
ri ,G

∑
i
ri), which is known to the server only even if m−1 PKGs

maliciously collude. In addition, the identity of a server is public, meaningful,
like an e-mail address, and easy to remember or keep. Anyone can write down
the identity of a server on a note.

Password Generation: On input a triple (C,A,B) ∈ Client ServerTriple, a string
pwC , the password, is uniformly drawn from the dictionary D = {pw1, pw2,
· · · , pwN} by the client C, and randomly split into pwC,A and pwC,B such that
pwC,A+pwC,B = pwC(mod n), and pw∗

C,A and pw∗
C,B such that pw∗

C,A+pw∗
C,B =

pwC(mod q), and stored in the servers A and B, respectively. We implicitly
assume that N < min(n, q), which will certainly be true in practice.

Protocol Execution. Given a triple (C,A,B) ∈ Client ServerTriple, the client
C (knowing its password pwC) runs the protocol P ′ with the two servers A

(knowing GpwC,A , g
pw∗

C,A

2 and its private key dA) and B (knowing GpwC,B , g
pw∗

C,B

2

and its private key dB) to establish two session keys, respectively, as shown in
Figure 1.

At first, the client randomly chooses pw1 from Z∗
n and computes pw2 = pwC−

pw1(mod n). Next the client C randomly chooses rc, x1, x2, y1, y2, z from Z∗
q and

computes Wc = grc1 , X = gx1
1 gx2

2 , Y = gy1

1 gy2

2 , Z = gz1 , h = H1(C,W,X, Y, Z),
where (X,Y, Z) is one-time public encryption key and (x1, x2, y1, y2, z) is one-
time private decryption key of the Cramer-Shoup public key encryption scheme
[12].

Next, according to the identities of the two servers A and B, the client C per-
forms the identity-based encryptions Ea = IBE(Gpw1h

−1

, A), Eb = IBE(Gpw2h
−1

,
B).

Then, the client sends msg1 = 〈C,W,X, Y, Z,Ea〉 and msg2 = 〈C,W,X, Y,
Z,Eb〉 to the two servers A and B, respectively.

After receiving msg1 = 〈C,W,X, Y, Z,Ea〉 from C, the server A computes
h′ = H1(C,W,X.Y, Z), ωa = IBD(Ea, dA)h

′
/GpwC,A = Gpw1−pwC,A , where IBD

denotes identity-based decryption.
After receiving msg2 = 〈C,W,X.Y, Z,Eb〉 from C, the server B computes

ωb = GpwC,B/IBD(Ea, dB)h
′

= GpwC,B−pw2 , where h′ = H1(C,W,X, Y, Z).
Because pwC = pwC,A + pwC,B(mod n) and pwC = pw1 + pw2(mod n), we

have pw1 − pwC,A = pwC,B − pw2(mod n) and thus ωa = ωb.
Using ωa and ωb as one-time password, the servers A and B run a two-party

PAKE protocol P to establish a session key. If the server A accepts the session
key as an authenticated key according to P (i.e., accPA = TRUE), it randomly
chooses two integers ra, r1 from Z∗

q and computes Wa = gra1 , S1 = gr11 , T1 =

gr12 , ha = H2(A,Wa, C,Wc), U1 = g
pw∗

C,Ah−1
a

2 Zr1 , h1 = H2(S1, T1, U1), V1 =
Xr1Y h1r1 , skA,C = W ra

c , where skA,C is the session key between A and C and

ID-Based Two-Server Password-Authenticated Key Exchange 267

(S1, T1, U1, V1) is the Cramer-Shoup encryption of g
pw∗

C,Ah−1
a

2 . Then the server A
sets accA = TRUE and replies to the client C with msgA = 〈A,S1, T1, U1, V1,Wa〉.

If the server B accepts the session key as an authenticated key according to P
(i.e., accPB = TRUE), it randomly chooses two integers rb, r2 from Z∗

q and com-

putes Wb = grb1 , S2 = gr21 , T2 = gr22 , hb = H2(A,Wb, C,Wc), U2 = g
pw∗

C,Bh−1
b

2 Zr2 ,
h2 = H2(S2, T2, U2), V2 = Xr2Y h2r2 , skB,C = W rb

c , where skB,C is the session
key between B and C and (S2, T2, U2, V2) is the Cramer-Shoup encryption of

g
pw∗

C,Bh−1
b

2 . Then the server B sets accB = TRUE and replies to the client C with
msgB = 〈B,S2, T2, U2, V2,Wb〉.

Finally, after the client C receives msgA and msgB, it computes h′
a = H2(A,

Wa, C,Wc), h
′
1 = H2(A,S1, T1, U1), h′

b = H2(B,Wb, C,Wc), h
′
2 = H2(B,S2, T2,

U2), and check if

S
x1+h′

1y1

1 T
x2+h′

1y2

1 = V1, S
x1+h′

2y1

2 T
x2+h′

2y2

2 = V2, (U1/S
z
1)h

′
a(U2/S

z
2)h

′
b = g

pwC

2 .

If so, the client C sets accC = TRUE and computes two session keys skC,A =
W rc

a , skC,B = W rc
b .

3.2 Correctness, Explicit Authentication, and Efficiency

Correctness. Assume that a client instance Ci and server instances Aj and
Bk runs an honest execution of the protocol P ′ with no interference from the
adversary and the two-party PAKE P has the correctness property.

With reference to Figure 1, the server instances Aj and Bk are able to derive
the same one-time password ωa (= ωb). Because P has the correctness property,
after running P based on ωa and ωb, the server instances Aj and Bk accept the
established session key as an authenticated key. This indicates that the client
C has provided a correct password pwC . Next, the server instances Aj and Bk

compute the session keys with the client C, i.e., skA,C = W ra
c and skB,C = W rb

c ,

and let accjA = TRUE and acckB = TRUE.
With reference to Figure 1, we have h′

a = ha, h
′
1 = h1, h

′
b = hb, h

′
2 = h2, and

S
x1+h′

1y1

1 T
x2+h′

1y2

1 = g
r1(x1+h1y1)
1 g

r1(x2+h1y2)
2

= (gx1
1 gx2

2)r1(gy1

1 gy2

2)r1h1 = Xr1Y h1r1 = V1,

U1/S
z
1 = g

pw∗
C,Ah−1

a

2 (gz1)r1/(gr11)z = g
pw∗

C,Ah′
a
−1

2 ,

S
x1+h′

2y1

2 T
x2+h′

2y2

2 = g
r2(x1+h2y1)
1 g

r2(x2+h2y2)
2

= (gx1
1 gx2

2)r2(gy1

1 gy2

2)r2h2 = Xr2Y h2r2 = V2,

U2/S
z
2 = g

pw∗
C,Bh−1

b

2 (gz1)r2/(gr21)z = g
pw∗

C,Bh′
b
−1

2 ,

268 X. Yi, F. Hao, and E. Bertino

(U1/S
z
1)h

′
a(U2/S

z
2)h

′
b = g

pw∗
C,A

2 g
pw∗

C,B

2 = g
pwC

2 .

If the three checks succeed, the client C computes two session keys, i.e.,
skC,A = W rc

a , skC,B = W rc
b , and lets acciC = TRUE. Since Wc = grc1 ,Wa =

gra1 ,Wb = grb1 , we have skC,A = W rc
a = grarc1 = W ra

c = skA,C and skC,B =
W rc

b = grbrc1 = W rb
c = skB,C . In addition, because ra, rb are chosen randomly,

the probability of skC,A = skC,B is negligible. Therefore, our protocol has the
correctness property.

Explicit Authentication. By running the two-party PAKE protocol P based
on wa (derived by pwC,A) and wb (derived by pwC,B), the two servers A and B
can verify if the client C provides a password pwC such that pwC = pwC,A +

pwC,B(mod n). In addition, by checking that (U1/S
z
1)h

′
a (U2/S

z
2)h

′
b = g

pwC

2 (in-
volving pwC), the client C can verify if the two servers provide two shares of
the password, pw∗

C,A and pw∗
C,B, such that pwC = pw∗

C,A + pw∗
C,B(mod q). This

shows that when accjA = TRUE, the server A knows that its intended client C
and server B are authentic, and when acciC = TRUE, the client C knows that
its intended servers A and B are authentic. Our protocol achieves the implicit
authentication by only two communications between the client and the servers.
Using standard techniques, however, it is easy to add explicit authentication to
any protocol achieving implicit authentication.

Efficiency. The efficiency of our protocol depends on performance of the under-
lying two-party PAKE protocol and IBE scheme. Suppose that our compiler uses
the KOY PAKE protocol [23] and the Waters IBE scheme [29] as cryptographic
building blocks, the performance comparison of the Katz et al. two-server PAKE
protocol [24] (secure against active adversary) and our protocol can be shown in
Table 1.

In Table 1, Exp., Sign. and Pairing for computation (comp.) represent the
computation complexities of a modular exponentiation, a signature generation
and a pairing, respectively. Exp. and Sign. in communication (comm.) denote

Table 1. Performance Comparison of Katz et al. Protocol and Our Protocol

Katz et al. Protocol [24] Our Protocol

Public Keys Client: None Client: None
Sever A: Public Key pkA Server A: A
Sever B: Public Key pkB Server B: B

Private Keys Client: pwC Client: pwC

Sever A: pwC,A, Private Key skA Server A: pwC,A, pw
∗
C,A, dA

Sever B: pwC,B , Private Key skB Server B: pwC,B , pw∗
C,B , dB

Computation Client: 21(Exp.)+1(Sign) Client: 23(Exp.)
Complexity Server: about 6(KOY) Server: about 1(KOY)+

2(Pairing)+9(Exp.)

Communication Client/Server: 27(Exp.)+1(Sign) Client/Server: 24(Exp.)
Complexity Server/Server: about 2(KOY) Server/Server: about 1(KOY)

ID-Based Two-Server Password-Authenticated Key Exchange 269

the size of the modulus and the size of the signature. KOY stands for the compu-
tation or communication complexity of the KOY protocol. From Table 1, we can
see that the client has almost the same computation and communication com-
plexities in both protocols, but the server in our protocol has about 1/3 of the
computation complexity, 1/2 of the communication complexity of the Katz et al.
two-server PAKE protocol if the computation of a pairing approximates to the
computation of 4 exponentiations. Furthermore, our protocol achieves implicit
authentication with only two communications between the client and the servers,
whereas the Katz et al. two-server PAKE protocol needs three communications
between the client and the servers to achieve implicit authentication.

The purpose of the users personal device is to keep public parameters. To
efficiently compute 23 modular exponentiations, the client may load the public
parameters from the personal device into a computing device.

4 Proof of Security

Based on the security model defined in Section 2, we have the following theorem:

Theorem 1. Assuming that (1) the identity-based encryption (IBE) scheme is
secure against the chosen-ciphertext attack; (2) the Cramer-Shoup public key
encryption scheme is secure against the chosen-ciphertext attack; (3) the deci-
sional Diffie-Hellman problem is hard; (4) the protocol P is a secure two-party
PAKE protocol with explicit authentication; (5) H1, H2 are collision-resistant
hash functions, then the protocol P ′ illustrated in Figure 1 is a secure two-server
PAKE protocol according to Definition 1.

Proof. Given an adversary A attacking the protocol, we imagine a simulator S
that runs the protocol for A.

First of all, the simulator S initializes the system by generating params =
paramsP,E

⋃
{E,G, n,G, q, g1, g2, H1, H2} and the secret master-keyE . Next, Client,

Server, and Client ServerTriple sets are determined. Passwords for clients are cho-
sen at random and split, and then stored at corresponding servers. Private keys
for servers are computed using master-keyE .

The public information is provided to the adversary. Considering (C,A,B) ∈
ClinetServerTriple, we assume that the adversary A chooses the server B to cor-
rupt and the simulator S gives the adversary A the information held by the
corrupted server B, including the private key of the server B, i.e., dB , and one

share of the password of the client C, GpwB,C and g
pw∗

B,C

2 . After computing the
appropriate answer to any oracle query, the simulator S provides the adversary
A with the internal state of the corrupted server B involved in the query.

We view the adversary’s queries to its Send oracles as queries to four different
oracles as follows:

– Send(C, i, A,B) represents a request for instance Ci of client C to initiate
the protocol. The output of this query is msg1 = 〈C,Wc, X, Y, Z,Ea〉 and
msg2 = 〈C,Wc, X, Y, Z,Eb〉.

270 X. Yi, F. Hao, and E. Bertino

– Send(A, j,msg1) represents sending message msg1 to instance Aj of the server
A. The output of this query is either msgA = 〈A,S1, T1, U1, V1,Wa〉 or ⊥.

– Send(C, i,msgA|msgB) represents sending the message msgA|msgB to in-
stance Ci of the client C. The output of this query is either acciC = TRUE
or ⊥.

– SendP (A, j,B,M) represents sending message M to instance Aj of the server
A, supposedly by the server B, in the two-party PAKE protocol P . The input
and output of this query depends on the protocol P .

When A queries the Test oracle, the simulator S chooses a random bit b. When
the adversary completes its execution and output a bit b′, the simulator can tell
whether the adversary succeeds by checking if (1) a single Test query was made
regarding some fresh session key skiU,U ′ , and (2) b′ = b. Success of the adversary is

denoted by event Succ. For any experiment P , we denote AdvPA = 2 ·Pr[Succ]−1,
where Pr[·] denotes the probability of an event when the simulator interacts with
the adversary in accordance with experiment P .

We will use some terminology throughout the proof. A given message is
called oracle-generated if it was output by the simulator in response to some
oracle query. The message is said to be adversarially-generated otherwise. An
adversarially-generated message must not be the same as any oracle-
generated message.

We refer to the real execution of the experiment, as described above, as P0.
We introduce a sequence of transformations to the experiment P0 and bound the
effect of each transformation on the adversary’s advantage. We then bound the
adversary’s advantage in the final experiment. This immediately yields a bound
on the adversary’s advantage in the original experiment.

Experiment P1: In this experiment, the simulator interacts with the adversary
as P0 except that the adversary does not succeed, and the experiment is aborted,
if any of the following occurs:

1. At any point during the experiment, an oracle-generated message (e.g., msg1,
msg2, msgA, or msgB) is repeated.

2. At any point during the experiment, a collision occurs in the hash function
H1 or H2 (regardless of whether this is due to a direct action of the adversary,
or whether this occurs during the course of the simulator’s response to an
oracle query).

It is immediate that events 1 occurs with only negligible probability, event
2 occurs with negligible probability assuming H1, H2 as collision-resistant hash
functions. Put everything together, we are able to see that

Claim1. IfH1 andH2 are collision-resistant hash functions, |AdvP0

A (k)−AdvP1

A (k)|
is negligible.

Experiment P2: In this experiment, the simulator interacts with the adversary
A as in experiment P1 except that the adversary’s queries to Execute oracles are
handled differently: in any Execute(C, i, A, j, B, k), where the adversary A has

ID-Based Two-Server Password-Authenticated Key Exchange 271

not queried corrupt(A), but may have queried corrupt(B), the plaintext Gpw1h
−1

in the ID-based encryption Ea is replaced with a random element in E.

The difference between the current experiment and the previous one is bounded
by the probability that an adversary breaks the semantic security of the identity-
based encryption (IBE) scheme. More precisely, we have

Claim 2. If the identity-based encryption (IBE) scheme is semantically secure,
|AdvP1

A (k)− AdvP2

A (k)| is negligible.

Experiment P3: In this experiment, the simulator interacts with the adversary
A as in experiment P2 except that: for any Execute(C, i, A, j, B, k) oracle, where
the adversaryA has not queried corrupt(A), but may have queried corrupt(B), the

plaintext g
pw∗

C,Ah−1
a

2 in the Cramer-Shoup encryption (S1, T1, U1, V1) is replaced
by a random element in the group G.

The difference between the current experiment and the previous one is bounded
by the probability that an adversary breaks the semantic security of the Cramer-
Shoup encryption scheme. More precisely, we have

Claim3. If the Cramer-Shoup encryption scheme is semantically secure, |AdvP2

A (k)

−AdvP3

A (k)| is negligible.

Experiment P4: In this experiment, the simulator interacts with the adversary
A as in experiment P3 except that: for any Execute(C, i, A, j, B, k) oracle, where
the adversary A has not queried corrupt(A), but may have queried corrupt(B),
the session keys skC,A and skA,C are replaced with a same random element in
the group G.

The difference between the current experiment and the previous one is bounded
by the probability to solve the decisional Diffie-Hellman (DDH) problem over
(G, g, q). More precisely, we have

Claim 4. If the decisional Diffie-Hellman (DDH) problem is hard over (G, q, g),
|AdvP3

A (k)− AdvP4

A (k)| is negligible.

If |AdvP3

A (k)−AdvP4

A (k)| is non-negligible, we show that the simulator can use
A as a subroutine to solve the DDH problem with non-negligible probability in
a similar way as follows.

Given a DDH problem (gα, gβ , Z), where α, β are randomly chosen from Z∗
q

and Z is either gαβ or a random element z from G, the simulator replaces Wc

with gα, and Wa with gβ, and the session keys skC,A, skA,C with Z. When
Z = gαβ , the experiment is the same as the experiment P3. When Z is a random
element z in G, the experiment is the same as the experiment P4. If the adversary
can distinguish the experiments P3 and P4 with non-negligible probability, the
simulator can solve the DDH problem with non-negligible probability. Assuming
that the DDH problem is hard, Claim 4 is true.

In experiment P4, the adversary’s probability of correctly guessing the bit b
used by the Test oracle is exactly 1/2 when the Test query is made to a fresh client
instance Ci or a fresh server instance Aj invoked by an Execute(C, i, A, j, B, k)
oracle, even if the adversary queried corrupt(B) (i.e., the adversary corrupted the

272 X. Yi, F. Hao, and E. Bertino

server B). This is so because the session keys skC,A and skA,C for such instances
in P4 are chosen at random from G, and hence there is no way to distinguish
whether the Test oracle outputs a random session key or the “actual” session
key (which is just a random element, anyway). Therefore, all passive adversaries
cannot win the game, even if they can query Corrupt(B) oracles.

The rest of the proof concentrates on the instances invoked by Send oracles.

Experiment P5: In this experiment, we modify the simulator’s responses to
Send(A, j,msg1) and Send(C, i,msgA|msgB) queries.

Before describing this change we introduce some terminology. For a query
Send(A, j,msg1), where msg1 is adversarially - generated, if accjA = TRUE, then
msg1 is said to be valid. Otherwise, msg1 is said to be invalid. Similarly, for
a query Send(C, i,msgA|msgB), where msgA|msgB is adversarially-generated, if
acciC = TRUE, then msgA|msgB is said to be valid. Otherwise, it is said to be in-
valid. Informally, valid messages use correct passwords while invalid messages do
not. Given this terminology, we continue with our description of experiment P5.
When the adversary makes oracle query Send(A, j,msg1), the simulator exam-
ines msg1. If it is adversarially-generated and valid, the simulator halts and accjA
is assigned the special value ∇. In any other case, (i.e., msg1 is oracle-generated,
or adversarially-generated but invalid), the query is answered exactly as in ex-
periment P4. When the adversary makes oracle query Send(C, i,msgA|msgB),
the simulator examines msgA|msgB . If the message is adversarially-generated
and valid, the simulator halts and acciC is assigned the special value ∇. In any
other case, (i.e., msgA|msgB is oracle-generated, or adversarially-generated but
invalid), the query is answered exactly as in experiment P4.

Now, we change the definition of the adversary’s success in P5. At first, we de-
fine that a server instance Aj is fresh if the adversary has not queried Corrupt(A)
and a client instance Ci is fresh if the adversary has not queried Corrupt(C). If
the adversary ever queries Send(A, j,msg1) oracle to a fresh server instance Aj

with accjA = ∇ or Send(C, i,msgA|msgB) oracle to a fresh client instance Ci

with acciC = ∇, the simulator halts and the adversary succeeds. Otherwise the
adversary’s success is determined as in experiment P4.

The distribution on the adversary’s view in experiments P4 and P5 are identi-
cal up to the point when the adversary queries Send(A, j,msg1) oracle to a fresh
server instance with accjA = ∇ or Send(C, i,msgA|msgB) oracle to a fresh client
instance with acciC = ∇. If such a query is never made, the distributions on the
view are identical. Therefore, we have

Claim 5. AdvP4

A (k) ≤ AdvP5

A (k).

Experiment P6: In this experiment, the simulator interacts with the adversary
A as in experiment P5 except that the adversary’s queries to Send(C, i, A,B) and
Send(A, j,msg1) oracles are handled differently: in any Send(C, i, A,B), where
the adversary A has not queried corrupt(A), but may have queried corrupt(B),

the plaintext Gpw1h
−1

in Ea is replaced with a random element in the group E;
in any Send(A, j,msg1), where the adversary A has not queried corrupt(A), but

may have queried corrupt(B), the plaintext g
pw∗

C,Ah−1
a

2 in the Cramer - Shoup

ID-Based Two-Server Password-Authenticated Key Exchange 273

encryption (S1, T1, U1, V1) (if any) is replaced with a random element in the
group G.

As we prove Claims 2 and 3, we can prove

Claim 6. If both the IBE scheme and the Cramer-Shoup scheme are semantically
secure, |AdvP5

A (k)− AdvP6

A (k)| is negligible.

In experiment P6, msg1 and msgA from Execute and Send oracles become
independent of the password pwC used by the client C in the view of the adver-
sary A, even if A may require Corrupt(B). In addition, although the adversary

who has corrupted the server B is able to obtain Gpw2 , GpwC,B and g
pw∗

C,B

2 , they
are independent of the password pwC in the view of the adversary because the
references msg1 and msgA are independent of the password in the view of the
adversary. In view of this, any off-line dictionary attack cannot succeed.

The adversaryA succeeds only if one of the following occurs: (1) the adversary
queries Send(A, j,msg1) oracle to a fresh server instance Aj for adversarially-
generated and valid msg1, that is, accjA = ∇ (let Succ1 denote this event); (2)
the adversary queries Send(C, i,msgA|msgB) oracle to a fresh client instance Ci

for adversarially-generated and valid msgA|msgB, that is, acciC = ∇ (let Succ2

denote this event); (3) neither Succ1 nor Succ2 happens, the adversary wins the
game by a Test query to a fresh instance Ci or a server instance Aj .

To evaluate Pr[Succ1] and Pr[Succ2], we assume that the adversary A has
corrupted the server B and consider four cases as follows.

Case 1. The adversary A modifies msg1 = 〈C,Wc, X, Y, Z, Ea〉 from the client

by changing Wc, X, Y, Z and then the plaintext Gpw1h
−1

in Ea. Changing the
plaintext in a ciphertext works with a public key cryptosystem with homomor-
phic property, such as the ElGamal scheme [14]. It does not work with the
IBE scheme which is secure against the chosen-ciphertext attack. The best the
adversary can do is choosing W ′

c, X
′, Y ′, Z ′ such that H1(C,W ′

c, X
′, Y ′, Z ′) =

H1(C,Wc, X, Y, Z). But H1 is a collision-resistant hash function. Therefore, the
probability of Succ1 in this case is negligible.

Case 2. The adversary A forges msg′1 = 〈C,W ′
c, X

′, Y ′, Z ′ E′
a〉 by choosing

his own W ′
c, X

′, Y ′, Z ′, E′
a. In this case, the best the adversary can do is to

choose r′c, x
′
1, x

′
2, y

′
1, y

′
2 and computes W ′

c = g
r′c
1 , X ′ = g

x′
1

1 g
x′
2

2 , Y ′ = g
y′
1

1 g
y′
2

2 , Z ′ =

gz
′

1 , h∗ = H1(C,W ′
c, X

′, Y ′, Z ′) and performs identity-based encryption E′
a =

IBE(G−pwC,Bh∗−1

, A), and sends msg′1 to the server A. Note that the adversary
A has corrupted B and know GpwC,B . After receiving msg′1, the server A derives
ωa = G−pwC,B−pwC,A = G−pwC and then runs two-party PAKE protocol P with
the server B (controlled by the adversary) on the basis of ωa. Without knowing
ωa, the probability of Succ1 depends on the protocol P . If P is a secure two-
party PAKE protocol with explicit authentication, Pr[Succ1] ≤ QP (k)/N + ε(k)
for some negligible function ε(·), where QP (k) denotes the number of on-line
attacks in the protocol P .

Case 3. The adversary A modifies msgA = 〈A,S1, T1, U1, V1,Wa〉 from the

server A. In msgA, (S1, T1, U1, V1) is a Cramer-Shoup encryption of g
pw∗

C,Ah−1
a

2 ,

274 X. Yi, F. Hao, and E. Bertino

where ha = H2(A, Wa, C,Wc). If the adversary A changes the plaintext in
(S1, T1, U1, V1), the message becomes invalid because the Cramer-Shoup encryp-
tion scheme is secure against the chosen ciphertext attack. The best the the
adversary can do is choosing his own W ′

a such that H2(A,W ′
a, C,Wc) = H2(A,

Wa, C,Wc). But H2 is a collision-resistant hash function. Therefore, the proba-
bility of Succ2 in this case is negligible.

Case 4. The adversary A forges msg′A = 〈A,S′
1, T

′
1, U

′
1, V

′
1 ,W

′
a〉 by choosing

a password pw′
C from the dictionary D and r′a, r′1 ∈ Z∗

q and computing W ′
a =

g
r′a
1 , S′

1 = g
r′1
1 , T ′

1 = g
r′1
2 , h∗

a = H2(A,W ′
a, C,Wc), U1 = g

(pw′
C−pw∗

C,B)h∗
a
−1

2 Zr′1 , h∗
1

= H2(S′
1, T

′
1, U

′
1), V1 = X ′r′1Y ′h∗

1r
′
1 . Then A sends msg′A|msgB to the client,

suppose that msgB is constructed as defined by the protocol. In this case, the
event Succ2 occurs if and only if pw′

C = pwC . Therefore, Pr[Succ2] ≤ QC(k)/N ,
where QC(k) denotes the number of on-line attacks to the client instance Ci.

The above discussion shows that

Claim 7. If (1) P is a secure two-party PAKE protocol with explicit authenti-
cation; (2) the IBE scheme and the Cramer-Shoup scheme are secure against the
chosen-ciphertext attack; (4) H1 and H2 are collision-resistant hash functions,
then Pr[Succ1 ∨ Succ2] ≤ Q(k)/N + ε(k), where Q(k) denotes the number of
on-line attacks and ε(k) is a negligible function.

Remark. If a public key encryption scheme is secure against the chosen-
ciphertext attack (CCA), it is secure against the chosen-plaintext attack (CPA)
(i.e., it is semantically secure).

In experiment P6, the adversary’s probability of success when neither Succ1

nor Succ2 occurs is 1/2. The preceding discussion implies that

PrP6

A [Succ] ≤ Q(k)/N + ε(k) + 1/2 · (1 −Q(k)/N − ε(k))

and thus the adversary’s advantage in experiment P6

AdvP6

A (k) = 2PrP6

A [Succ]− 1

≤ 2Q(k)/N + 2ε(k) + 1−Q(k)/N − ε(k)− 1

= Q(k)/N + ε(k)

for some negligible function ε(·). The sequence of claims proved above show that

AdvP0

A (k) ≤ AdvP6

A (k) + ε(k) ≤ Q(k)/N + ε(k)

for some negligible function ε(·). This completes the proof of the theorem.

5 Conclusion

In this paper, we present an efficient compiler to transform any two-party PAKE
protocol to a two-server PAKE protocol from identity-based encryption. In ad-
dition, we have provided a rigorous proof of security for our compiler with-
out random oracle. Our compiler is in particular suitable for the applications
of password-based authentication where an identity-based system has already
established.

ID-Based Two-Server Password-Authenticated Key Exchange 275

References

1. Abdalla, M., Fouque, P.A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 65–84. Springer, Heidelberg (2005)

2. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer,
Heidelberg (2005)

3. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

4. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocol
secure against dictionary attack. In: Proc. 1992 IEEE Symposium on Research in
Security and Privacy, pp. 72–84 (1992)

5. Boneh, D., Franklin, M.: Identity based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

6. Boneh, D., Katz, J.: Improved efficiency for CCA-secure cryptosystems built using
identity based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 87–103. Springer, Heidelberg (2005)

7. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000)

8. Brainard, J., Juels, A., Kaliski, B., Szydlo, M.: Nightingale: A new two-server
approach for authentication with short secrets. In: Proc. 12th USENIX Security
Symp., pp. 201–213 (2003)

9. Bresson, E., Chevassut, O., Pointcheval, D.: Security proofs for an efficient
password-based key exchange. In: Proc. CCS 2003, pp. 241–250 (2003)

10. Bresson, E., Chevassut, O., Pointcheval, D.: New security results on encrypted key
exchange. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp.
145–158. Springer, Heidelberg (2004)

11. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

12. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

13. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory 32(2), 644–654 (1976)

14. ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

15. Ford, W., Kaliski, B.S.: Server-assisted generation of a strong secret from a pass-
word. In: Proc. 5th IEEE Intl. Workshop on Enterprise Security (2000)

16. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

17. Goldreich, O., Lindell, Y.: Session-key generation using human passwords only. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 408–432. Springer, Heidelberg
(2001)

276 X. Yi, F. Hao, and E. Bertino

18. Gong, L., Lomas, T.M.A., Needham, R.M., Saltzer, J.H.: Protecting poorly-chosen
secret from guessing attacks. IEEE J. on Selected Areas in Communications 11(5),
648–656 (1993)

19. Halevi, S., Krawczyk, H.: Public-key cryptography and password protocols. ACM
Transactions on Information and System Security 2(3), 230–268 (1999)

20. Jablon, D.: Password authentication using multiple servers. In: Naccache, D. (ed.)
CT-RSA 2001. LNCS, vol. 2020, pp. 344–360. Springer, Heidelberg (2001)

21. Jiang, S., Gong, G.: Password based key exchange with mutual authentication.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 267–279.
Springer, Heidelberg (2004)

22. Jin, H., Wong, D.S., Xu, Y.: An efficient password-only two-server authenticated
key exchange system. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS,
vol. 4861, pp. 44–56. Springer, Heidelberg (2007)

23. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)

24. Katz, J., MacKenzie, P., Taban, G., Gligor, V.: Two-server password-only authen-
ticated key exchange. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS
2005. LNCS, vol. 3531, pp. 1–16. Springer, Heidelberg (2005)

25. MacKenzie, P., Patel, S., Swaminathan, R.: Password-authenticated key exchange
based on RSA. Intl. J. Information Security 9(6), 387–410 (2010)

26. MacKenzie, P., Shrimpton, T., Jakobsson, M.: Threshold password-authenticated
key exchange. J. Cryptology 19(1), 27–66 (2006)

27. Di Raimondo, M., Gennaro, R.: Provably Secure Threshold Password-
Authenticated Key Exchange. J. Computer and System Sciences 72(6), 978–1001
(2006)

28. Szydlo, M., Kaliski, B.: Proofs for two-server password authentication. In: Menezes,
A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 227–244. Springer, Heidelberg (2005)

29. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

30. Yang, Y., Bao, F., Deng, R.H.: A new architecture for authentication and key
exchange using password for federated enterprise. In: Sasaki, R., Qing, S., Okamoto,
E., Yoshiura, H. (eds.) SEC 2005. IFIP AICT, vol. 181, pp. 95–111. Springer,
Heidelberg (2005)

31. Yang, Y., Deng, R.H., Bao, F.: A practical password-based two-server authenti-
cation and key exchange system. IEEE Trans. Dependable and Secure Comput-
ing 3(2), 105–114 (2006)

32. Yang, Y., Deng, R.H., Bao, F.: Fortifying password authentication in integrated
healthcare delivery systems. In: Proc. ASIACCS 2006, pp. 255–265 (2006)

33. Yi, X., Tso, R., Okamoto, E.: ID-based group password-authenticated key ex-
change. In: Takagi, T., Mambo, M. (eds.) IWSEC 2009. LNCS, vol. 5824, pp.
192–211. Springer, Heidelberg (2009)

34. Yi, X., Tso, R., Okamoto, E.: Identity-based password-authenticated key exchange
for client/server model. In: SECRYPT 2012, pp. 45–54 (2012)

35. Yi, X., Ling, S., Wang, H.: Efficient two-server password-only authenticated key
exchange. IEEE Trans. Parallel Distrib. Syst. 24(9), 1773–1782 (2013)

Modelling Time for Authenticated Key

Exchange Protocols

Jörg Schwenk

Horst Görtz Institute for IT-Security, Ruhr-University Bochum
joerg.schwenk@rub.de

Abstract. The notion of time plays an important role in many practi-
cally deployed cryptographic protocols, ranging from One-Time-Password
(OTP) tokens to the Kerberos protocol. However, time is difficult to
model in a Turing machine environment.

We propose the first such model, where time is modelled as a global
counter T . We argue that this model closely matches several implemen-
tations of time in computer environments. The usefulness of the model is
shown by giving complexity-theoretic security proofs for OTP protocols
and HMQV-like one-round AKE protocols.

Keywords: Authenticated key agreement, timestamps, provable secu-
rity, OTP, Kerberos.

1 Introduction

The Notion of Time in Cryptography. In cryptography, time values are used for
many different purposes: To limit the lifetime of public keys in X.509 certificates,
to reduce the impact of breaking an authentication protocol to a certain time
slot, and to guarantee the freshness of messages. For each of these purposes,
a different model is necessary to formally define the security goals. Moreover,
in real implementations either local or global clocks may be used. Again, this
requires different computational models: based on interactive Turing Machines
(the standard TM model for cryptographic protocols) for global (external) clocks,
or (still to be defined) synchronized Turing Machines for local clocks.

In this paper, we try to start a discussion on the formal modelling of time.
We concentrate on timestamps to guarantee freshness, and on global clocks. This
allows us to use interactive Turing Machines in our computational model, and
to stay as close as possible to the definition for secure authentication protocols
given in [1]. Our focus is on the model, not on the cryptographic techniques; thus
our proofs are fairly straightforward.

Authentication. Authentication is, besides key agreement, the most important
security goal in cryptographic protocols. Loosely speaking, an authentication
protocol is secure if the probability that an active adversary breaks the pro-
tocol is the same as for a passive adversary. For many cryptograhic protocols,
authentication is of major importance: TLS is used to authenticate the server

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 277–294, 2014.
c© Springer International Publishing Switzerland 2014

278 J. Schwenk

(e.g. through EV certificates), and One-Time-Password (OTP) schemes (e.g. Se-
cureID) or Kerberos (and WWW variants like OpenID or SAML) have been
designed as authentication protocols.

Authentication with nonces. Replay attacks are one major threat for authenti-
cation protocols, so the freshness of a message must be guaranteed. In practical
implementations, this is achieved by securely including “new” values into some
protocol messages: either nonces chosen by the other party, or timestamps.

Nonces can easily be modelled in a Turing machine based environment: They
are either read from a random input tape, or they are randomly generated by
a probabilistic Turing machine. The security analysis then only has to take into
account the probability distribution of these values. However, for one-sided au-
thentication, this implies at least two messages, and for mutual authentication
at least three messages, since each authenticating party has to receive back the
nonce chosen by itself, and returned by the authenticated party.

Authentication with Timestamps. Timestamps are more difficult to model,
because time is not measurable for a Turing machine after it finished its com-
putation, and waits for fresh input. (In practice, this is comparable to the prob-
lem of using time in smartcard computations: If the smart card is disconnected
from power supply, it is no longer able to even increase a local clock.) However,
timestamps enable us to design more efficient protocols, with less latency. Thus
timestamps can be seen as a replacement for nonces, but they are not identical:
They allow us to design more efficient protocols.

Reduction-based proofs in a Turing Machine model. A Turing Machine (TM) is
a mathematical model of a (von Neumann) computer [2]. The famous Church-
Turing thesis states that any computable algorithm can be implemented using a
TM. Since a TM is a mathematical object, mathematical proof techniques can
be applied, and these proofs form the basis of all theoretical computer science.
On the other hand, subtle errors in the model may invalidate such proofs [3].

Definition 1 (Turing Machine [2]). A Turing Machine M is a tuple M =
(Q,Γ, b,Σ, δ, q0, F), where Q is a finite, non-empty set of states, Γ is the tape
alphabet, b ∈ Γ is the blank symbol, Σ ⊆ Γ − {b} is the input alphabet, q0 ∈ Q
is the initial state, F ⊆ Q is the set of final or accepting states, and δ : (Q−F)×
Γ → Q×Γ×{L,R} is a partial function called the transition function. A Turing
machine is started by setting its internal state to q0, writing the input string on
the (infinite) tape, and positioning its read/write head on the first input symbol.
As long as no accepting state is reached, δ(s, q) = (s′, q′,m) is evaluated, where
s is the actual state of the TM, and q is the symbol read by the read/write head
from the tape. As a result of this evaluation of δ, the internal state of M is set
to s′, the symbol q′ is written on the tape by overwriting q, anf the read/write
head either moves right (m = R) or left (m = L).

In cryptography, complex systems are shown to be secure by giving a polyno-
mial reduction to a well-studied assumption (e.g. factoring of large integers, or

Modelling Time for Authenticated Key Exchange Protocols 279

P �= NP). The basis for this research was the formalization of all computational
processes as (probabilistic) Turing Machines (TM). Research on reduction-based
proofs for cryptographic protocols started with the seminal paper of Bellare and
Rogaway [1] in 1993. Up to the best of our knowledge, randomness played an im-
portant role in all subsequent papers, but time stamps were never investigated,
except in informal models (Section 2).

Modelling Time. Time plays an important role in IT security: X.509 certifi-
cates and other security tokens have a validity period, some One-Time-Password
(OTP) systems need loosely synchronized clocks between hardware token and
server, GPS Spoofing may only be detected by comparing internal clock val-
ues with the time contained in GPS signals, and malware may protect itself by
querying external time sources.

However, running an internal (independent) clock always means measuring
some physical parameter: movements of a pendulum, oscillation rate of a crystal,
or an electronic transition frequency. Thus the main problem with time is that we
simply cannot model “real” time in a Turing Machine based model. All formal
models claiming to be able to model time must therefore be carefully checked if
they satisfy all restrictions imposed by Definition 1 or one of its variants. If they
deviate from this strict formalism, the results may become invalid.

Instead, we have to find a suitable approximation for time, which preserves
the most important security guarantees offered by “real” time.1

If we look at one implementation of time, we get a motivation for the choice
of our model: The Network Time Protocol (NTP, [4]) delivers the actual time
to an application on request. Thus in our model we have chosen to implement
time as a global counter T , which is accessible to all Turing machines in our
computing environment. If a fresh message has to be sent, the sending TM
request a timestamp ts = (t, aux) from T . Upon reception of such a request, T
first increases its local counter (t← t + 1). Then the actual value t is returned,
optionally with auxiliary data aux appended. This auxiliary data may e.g. be
a digital signature, to prevent Denial-of-Service attacks by an adversary who
would issue large values like t + 2k >> t.

One can easily derive variants of this model, for example: Turing Machines
may query T whenever they are activated, or even on each computation step
they make. Each query may increase the counter, or a different pattern may
be designed to increase it. The channel between T and the process oracles may
be insecure, authentic, or even untappable [5], the latter guaranteeing that the
adversary may never influence the communication with the time source. From
all these variants, we have chosen what we believe to be the simplest model,
which however offers similar security guarantees than the other variants.

The Notion of Time-Security. Our starting point is the definition of secure au-
thentication protocols, given in the seminal paper by Bellare and Rogaway [1].
They motivated their definitions by introducing a benign adversary, who for-
wards all messages faithfully. They defined an authentication protocol to be

1 Please note that other usecases of time may cause additional modeling problems.

280 J. Schwenk

secure if the winning probability of any adversary is (up to a negligible differ-
ence) equal to the winning probability of this benign adversary. They showed
that this condition is, for many protocols using random nonces, equivalent to
requiring that both parties only accept if they have matching conversations (cf.
Definition 3). Our main goal is to find a replacement for the concept of match-
ing conversations, since in one- and two-message protocols, this concept is not
applicable: here the responder oracle always has a matching conversation to the
initator oracle, but due to replay attacks active adversaries may influence the
system significantly: With a benign adversary, there is at most one responder
oracle that will accept on a single message; with an active adversary, there may
be arbitrary many.

In this paper we only consider cryptographic protocols consisting of one or two
messages.2 (If we have three messages, we can use random nonces, and achieve
better security goals.) Thus there always is one oracle (responder) that has to
decide whether to accept or reject after receiving a single message, and before
(or without) sending a message. We will consider a protocol to be time-secure, if
for each initiator oracle that has sent a message there is at most one responder
oracle that accepts, and that this responder oracle will accept only if the message
was forwarded unmodified by the adversary. The second goal can be achieved
by using cryptographic primitives like message authentication codes or signature
schemes, but for the first goal we need timestamps.

For two-message protocols, we can additionally base the acceptance condition
for initiator oracles (which send and receive one message) on the classical notion
of matching conversations (if a nonce is used, which is however not the case in
all previously proposed two-message protocols), or we can also apply the notion
of time-security here.

Scope of our results. The results presented in this paper are directly applicable
to OTP schemes based on counters, e.g. all OTP schemes based on the HOTP
algorithm [6], which is the basis for many commercially deployed OTP schemes.
HOTP uses an 8 Byte counter, a shared key between initiator and responder,
and HMAC-SHA-1 as the MAC algorithm. The counter value at the initiator is
incremented with every OTP generation, whereas the counter at the server is
only incremented after a successful authentication, to the counter value used in
the OTP. This exactly mirrors our time model. However, usability considerations
have lead to the introduction of a truncation function, which reduces the entropy
of the OTP significantly, and thus a throttling scheme must be used to prevent
exhaustive MAC searches. These usability enhancements are out-of-scope here.

OTP schemes using loosely synchronized clocks (e.g. RSA SecureID or TOTP
[7]) are based on clock counters, the main difference to HOTP being that the
responder counter is increased independantly. We could modify the acceptance
condition and the communication with T at the responder to include this in our
model (see Appendix); however, in oder to get similar security properties, we

2 Please note that we need a different security definition for each protocol type, but
our definition of time remains unchanged.

Modelling Time for Authenticated Key Exchange Protocols 281

would also have to add a second counter at the responder, in order to prevent
replay attacks of OTPs within one given time step (default value is 30 seconds).

For two-message protocols, our results can be used to devise new protocols
which may achieve explicit authentication for both initiator and responder, in
addition to authenticated key exchange. With respect to the latter property, the
model presented here is “weak” in the sense that it does not consider queries
like RevealDHExponent or RevealState [8]; again, this is in order to keep the
model (and the proofs) simple.

One important motivation for considering a hybrid definition of explicit au-
thentication (using nonces and timestamps) was the fact that the two-party
two-message building blocks of the Kerberos protocol. In the full paper [9] we
give a security proof for a modified version of the basic Kerberos building block.

Contribution. The contributions of this paper are as follows:

– We propose the first theoretically consistent model for timestamps in cryp-
tograhic protocols, which covers all Turing Machine-based implementations.

– We give a security definition for explicit authentication extending [1], appli-
cable to a wide range of protocols.

– We show the usefulness of our definition by giving examples of secure one
and two message protocols, together with formal security proofs.

2 Related Work

Timestamps. An overview on usage and security problems of timestamps can be
found in [10]. (See [11] for an updated version.) Moran et al. [12] use a different
model for timestamping documents: they assume that a unique random string
is broadcasted in each time period. An actual overview on hash-then-publish
timestamping can be found in [13]. [14] shows that if malleable encryption (e.g.
a streamcipher) is used, timestamp based authentication protocols may fail. [15]
covers one-time passwords, but in the different context of password-based au-
thenticated key exchange (PAKE). Please note that Lamport timestamps, which
play an inportant role in distributed systems, are a completely different concept.

Authenticated Key Exchange. Reasearch on formal security models for two-party
authentication and authenticated key exchange (AKE) protocols started with
the seminal paper of Bellare and Rogaway [1]. In [16], 3-party session key dis-
tribution protocols were investigated, but authentication was omitted. In the
following years, research on cryptographic protocols focused either on authenti-
cated group key exchange [17], or the higly efficient two-message protocols (see
below). Explicit authentication was difficult to achieve in these protocols, thus
variants of the AKE model introduced by Canetti and Krawczyk [18] were used.

Authenticated Key Exchange with Timestamps. In a paper whose goals are clos-
est to our work, Barbosa and Farshin [19] introduce two different models (one
based on Canetti-Krawczyk and one following Bellare-Rogaway) to model AKE

282 J. Schwenk

with timestamps, and a total of 6 theorems. In [19], time is modeled as a local
clock LocalTime, which is incremented by sending TICK requests. In compari-
son to our work (we use a global clock), [19] has a couple of drawbacks, the most
important being that there is no mathematically sound definition of the local
clock as part of a Turing machine.

Two-message protocols. In 1986, Matsumoto et al. [20] first studied implicitly
authenticated Diffie-Hellman protocols, which results in a line of research gener-
ated many protocols. Research on this topic was re-initiated by the introduction
of the MQV [21,22], KEA1 [23] and HMQV [24] protocols. The latter is formally
proven secure in a modified CK [18] model, where no explicit authentication is
defined (only authenticated key exchange). A short overview on the employed
models is given in [25].

3 Formal Model

In this section, we describe the execution environment, where we try to model
normal protocol execution, the adversarial capabilities, which describe against
which type of adversary our protocol should be secure, and the security model
which describes security games where the winning events correspond to a secu-
rity breach of the protocol. In this and the following sections, we use standard
notations and for cryptographich primitives (cf. [9])

3.1 Execution Environment

Parties and process oracles We distinguish between parties {P1, . . . , Pn} and
process oracles πs

i , i ∈ {1, . . . , l}, run by party Pi. These process oracles and the
party itself are modelled as Turing machines. Oracles can be initialized, can send
and receive messages according to the protocol specification, and terminate either
in finished, accept or reject state3. The complete set of states for oracles is
Λ = {not initialized, wait, finished, accept, reject}. In addition, we have
two special parties T and A.

Each party Pi has two local variables: A local time counter Ti, and a long-
lived key ki. This long-lived key is either a public key pair, or a list of n − 1
symmetric keys shared with the other parties.

Long-lived keys of party Pi can be accessed for cryptographic operations, and
the counter values ti of Pi can be increased, by all process oracles (or oracles,
for short) π1

i , ..., π
l
i of this party. Computed nonces, intermediate state values,

and session keys are only known to a single oracle. If a session key is computed
by an oracle πs

i , the value k is stored in a variable K when the oracle enters
accept or finished state. The current state of each oracle is stored in variable

3 We need an additional final finished state for one-message protocols because ini-
tiator oracles always have to reach a final state, but this can be no winning event
for the adversary.

Modelling Time for Authenticated Key Exchange Protocols 283

Λ, and the transcript of all messages sent and received (in chronological order)
in variable Ti,s.

There is one special party T , which has a local counter T with actual state t;
on request, this party increases the value of t by 1 and returns the actual value
of t as a message ts = (t, aux) over the network.

The adversary A is another special party which implements, as a Turing
machine, a strategy to break the cryptographic protocol. The event(s) which
define a protocol break are modelled as winning events in different games defined
below.

Initiator and responder oracles. Our security definition is focused on protocols
with one and two messages; for protocols with three and more messages nonces
can be used instead of timestamps, and the classical definitions and results from
the Bellare-Rogaway and Canetti-Krawczyk models apply. For our security def-
initions, we need to distinguish between initiator and responder oracles.

Definition 2. An oracle who sends the first message in a protocol is called ini-
tiator, and an oracle who receives the first message is called responder.

Increase local time on message reception. Each party Pi has a local timer Ti

with actual state ti. Each time a message with a valid timestamp ts = (t, aux)
is received by some oracle πs

i , the value t is compared to the actual state ti. If
t ≤ ti, the message is rejected. If t > ti, the message is validated further, and
ti is replaced by the (greater) value t: ti ← t. (This is how many smartcards
handle time.) Only after this update of the local timer Ti, πs

i may accept or
send a message (if required by the protocol specification).

Retrieve actual time when sending a message. When trying to send a message
to Pj , π

s
i has no knowledge about the local time tj . Therefore the oracle requests

an (authenticated) new timestamp ts = (t, aux) from T , and compares it with
Ti. If t > Ti, this value is securely included in the protocol message.

Remark: Without any interference from an active adversary, t is guaranteed
to be strictly greater than all local time values. However, an active adversary
controlling the network may replay old time values.

Non-authenticated Time. In practice, timestamps may be signed, or they may
be sent unauthenticated. For our model, we have chosen that timestamps are
not authenticated. The reason for this is simple: The only attack that signed
timestamps would prevent is a Denial-of-Service (DoS) attack, where the adver-
sary would intercept the time request of an oracle, and return a large time value
t∗ = t + 2k. All parties receiving a valid message containing this time value will
be blocked for 2k time periods.

However, our model uses an active adversary with complete control on the
network. Thus he can always perform DoS attacks, e.g. disconnect some party
for 2k time periods from the network. Thus the power of our adversary is not
increased by omitting signatures.

284 J. Schwenk

In a weaker adversarial model however, e.g. where the adversary controls only
well-defined parts of a communication network, authenticated timestamps may
make sense.

Local states of oracles. An initiator oracle πs
i will, after being initiated, retrieve the

actual time value t, prepare and send a message of the form4 (Pi, Pj , t, n
s
i ,m, σ)

where Pj denotes the identity of the intended receiving party, ns
i a nonce chosen

randomly by πs
i , m the actual message, and σ the cryptographic protection of the

message.
In a one-message protocol, πs

i will immediately switch to finished state, and
can no longer be activated; here the nonce may be omitted. A responder oracle
πt
j will be activated by a protocol message, which will be checked according to

the protocol specification. If the check succeeds, πt
j will switch to accept state.

In a two-message protocol, after sending the first message, an initiator oracle
πs
i will switch to a wait state to wait for a response message, and can also no

longer be activated to send messages. A responder oracle πt
j will be activated

by a message, which will be checked according to the protocol specification. If
the check succeeds, πt

j will prepare a response message which includes the nonce
from the received message, send this message, and switch to accept mode. Upon
reception of a message from some responder, an initiator oracle will check if this
message contains the nonce from the first message, and if the message is valid
according to the protocol specification. If both criteria are fulfilled, it will switch
to accept mode.

Matching Conversations. Bellare and Rogaway [1] have introduced the notion
of matching conversations in order to define correctness and security of an AKE
protocol precisely. We adapt this notion and use it accordingly to define secure
authentication for all following protocol types.

Recall, that Ti,s consists of all messages sent and received by πs
i in chrono-

logical order (not including the initialization-symbol 0). We also say that Ti,s

is the transcript of πs
i . For two transcripts Ti,s and Tj,t, we say that Ti,s is a

prefix of Tj,t, if Ti,s contains at least one message, and the messages in Ti,s are
identical to and in the same order as the first |Ti,s| messages of Tj,t.

Definition 3 (Matching conversations). We say that πs
i has a matching

conversation to πt
j, if

– Tj,t is a prefix of Ti,s and πs
i has sent the last message(s), or

– Ti,s = Tj,t and πt
j has sent the last message(s).

We say that two processes πs
i and πt

j have matching conversations if πs
i has a

matching conversation to process πt
j, and vice versa.

3.2 Adversarial Capabilities

We assume that the adversary completely controls the network, including access
to the time oracle T . He may learn session keys, and he may learn some long-

4 The exact structure of the message is specified for each protocol separately.

Modelling Time for Authenticated Key Exchange Protocols 285

lived keys. All this is modelled through queries. The Send query models that the
adversary completely controls the network: All messages are sent to A, who may
then decide to drop the message, to store and replay it, or to alter and forward it.
Thus messages received through a Send query are handled by the process oracles
exactly like real protocol messages: They may be rejected, they may be answered,
or they may start or terminate a protocol session. The Send message enables
the adversary to initiate and run an arbitrary number of protocol instances,
sequential or in parallel.

The Reveal and Corrupt queries model real world attacks: Brute force key
searches or malware attacks on PC systems in case of the Reveal query, and
e.g. sidechannel of fault attacks on smartcards in the case of the Corrupt query.
Finally the Test query is one important building block in defining security of a
protocol (more precisely: key indistinguishability). Formally stated:

– Send(πs
i ,m): The adversary can use this query to send any message m of his

own choice to oracle πs
i . The oracle will respond according to the protocol

specification, depending on its internal state. If m = 0 consists of a special
symbol 0, then πs

i will respond with the first protocol message.
– Reveal(πs

i): Oracle πs
i responds to a Reveal-query with the contents of variable

K. Note that we have k �= ∅ only if Λ ∈ {accept, finished}.
– Corrupt(Pi): This query is used in a public key setting. Oracle π1

i responds
with the private key ski from the long-term key pair ki = (pki, ski) of party
Pi. Then the party and all its oracles are marked as corrupted.

– Corrupt(Pi, j): This query is used in symmetric key settings. Oracle π1
i re-

sponds with the long-term secret key ki,j shared between party Pi and party
Pj . Then this key is marked as corrupted.

– Test(πs
i): This query may only be asked once throughout the game. Oracle

πs
i handles this query as follows: If the oracle has state K = ∅, then it returns

some failure symbol ⊥. Otherwise it flips a fair coin b, samples a random

elem‘ent k0
$← K, sets k1 = k to the ’real’ session key, and returns kb.

Definition 4. An oracle is called corrupted if it is marked as corrupted (public
key case), or if it uses a corrupted long-term key in its computations (symmetric
case).

3.3 Security Model 1: One-Message Protocols

One-message protocols like OTP are used for explicitly authenticating a party.
Thus we have to find a definition for secure authentication taking into account
the ideas from [1], and the pecularities of our definition of time.

A benign adversaryA is an adversary that forwards messages without modify-
ing them. We would like to define a secure authentication protocol as a protocol
where the winning probability of any adversary equals, up to a negligible differ-
ence, the winning probability of a benign adversary.

Freshness vs. validity time periods. One major difference to [1], due to our defi-
nition of time, is the fact that even with a benign adversary there are situations

286 J. Schwenk

where the responder oracle may not accept: Assume there are two different ini-
tiator oracles πs1

A1
and πs2

A2
, who both intend to send a message to party B. They

retrieve two time values t1, t2 from T , with t2 = t1 + 1. Now if πs2
A2

is the first
oracle who actually sends a message to B, then some responder oracle πt

B will
accept this message, and increase TB := t2. If now πs1

A1
sends its message, it will

be rejected due to the fact that t1 < TB. Please note that this may happen even
if a benign adersary also forwards all messages in the same order as received.

Real-world protocols avoid this problem by defining validity time periods: A
message will be accepted if it is not older than, say, 5 minutes, or if it was
received at a time that is within the timeframe explicitely mentioned in the
message. However, including validity time periods in the model poses different
problems: either replay attacks will become possible during the validity time
frame and we must change our security definitions, or we have to introduce an
additional counter at each party for each other party to exclude these replay
attacks (see Appendix).

Thus, for the sake of clarity, we decided to keep the model of time simple, and
to accept the consequence that even with benign adversaries, responder oracles
may not accept.

Replay attacks. The main class of attack we want to protect against is replay
attacks. In a replay attack, A may intercept a message sent by a sending oracle,
and forward it to two or more receiving oracles. We would like to call a protocol
secure if at most one of these receiving oracles accepts, because this is exactly
what we can expect from a benign adversary. To achive this goal across several
parties, we have to include the identity of the receiving party in the first message.

Security Game GA−1. In this game, the challenger C sets up a protocol
environment with n parties P1, ..., Pn, and prepares l protocol oracles π1

i , ..., π
l
i

for each party. If initiated by the adversary by a special start message, these
oracles act as initiator oracles, and if initiated with a normal protocol message,
they act as responder oracles. C generates long-lived keys (or long-lived key
pairs, resp.) for each party (for each pair of parties, resp.), and simulates the
time oracle T . T and all counters Ti, i ∈ {1, ..., n} are initialized to 0.
A may now ask up to q Send and Corrupt queries. A wins the game if there are
at least two responder oracles that accept the same message, or if there is a
responder oracle that accepts a message from an uncorrupted expected sender
which has not been issued by any sender oracle.

Definition 5. A protocol Π is a (τ, q, ε) time-secure authentication protocol,
if for each adversary A that runs in time τ and asks at most q queries, with
probability at least 1− ε we have that

1. for each responder oracle that accepts, there is exactly one uncorrupted fin-
ished initiator oracle, and

2. for each finished initiator oracle, there is at most one responder oracle that
accepts.

Modelling Time for Authenticated Key Exchange Protocols 287

Authenticated Key Exchange. We will now extend the definition to key exchange.
Here each session key should be indistinguishable from a randomly chosen key,
for any adversary.

Security Game GAKE−1. The setup of this game is the same as in GA−1. In
addition, the adversary is allowed to ask upt to q − 1 Reveal queries, and one
Test query to an oracle πs

i , subject to the following conditions:

– If πs
i is an initiator, then no Reveal query may be asked to any responder

oracle receiving the message from πs
i .

– If πs
i is an responder, then no Reveal query may be asked to the unique

initiator oracle that has sent the message, and the party of this initiator
oracle ust be uncorrupted.

At the end of the game, A issues a bit b′ and wins the game if b = b′, where b
is the bit chosen by πs

i in answering the Test query.

Definition 6. A one-message protocol Π is a (τ, q, ε) time-secure authenticated
key exchange protocol, if Π is a (τ, q, ε) time-secure authentication protocol in
the sense of Definition 5, and if for each adversary A that runs in time τ and
asks at most q queries, in Game GAKE−1 we have that that

AdvA = |Pr(b = b′)− 1/2| ≤ ε

3.4 Security Model 2: Two-Message Protocols

With the publication of HMQV [26] research on one-round key agreement proto-
cols intensified. However, since the responder is always subject to replay attacks,
the notion of authentication protocol developed in [1] was given up, and was re-
placed by a new definition for authenticated key exchange proposed by Canetti
and Krawczyk [18].

In this section, we try to give a new definition of a secure authentication
protocol, by combining timestamps and nonces. We use this hybrid approach
since this is a building block of the Kerberos protocol, where several two-message
protocols of this kind are combined.5

Remark: Please note that this definition does not apply to two-message pro-
tocols currently discussed in the literature, because most of them neither use
timestamps nor nonces.

Security Game GA−2. In this game, the setup is identical to Game GA−1.
A may now ask up to q Send and Corrupt queries. A wins the game if there
are at least two responder oracles that accept the same message, if there is a
responder oracle that accepts a message from an uncorrupted expected sender
which has not been issued by any sender oracle, or if there is a initiator oracle
that accepts without having a matching conversation with a responder.

5 It should be clear that we also can achive mutual authentication by simply apply-
ing the one-message protocol of Section 4 in both directions, using the model for
authentication proposed there.

288 J. Schwenk

Definition 7. A two-message protocol Π is a (τ, q, ε) time-nonce-secure authen-
tication protocol, if for each adversary A that runs in time τ and asks at most q
queries, with probability at least 1− ε we have that

1. for each responder oracle that accepts, there is exactly one uncorrupted fin-
ished initiator oracle,

2. for each finished initiator oracle, there is at most one responder oracle that
accepts, and

3. for each initiator oracle that accepts, there is exactly one responder oracle
that has a matching conversation.

Authenticated Key Exchange We will again extend the definition to key ex-
change. Here each session key should be indistinguishable from a randomly cho-
sen key, for any adversary.

Security Game GAKE−2. The setup of this game is the same as in GA−1. In
addition, the adversary is allowed to ask up to q − 1 Reveal queries, and one
Test query to an uncorrupted oracle πs

i , subject to the following conditions:

– If πs
i is an initiator, then no Reveal query may be asked to any responder

oracle receiving the message from πs
i , and all responder oracles must be

uncorrupted.
– If πs

i is an responder, then no Reveal query may be asked to the unique
initiator oracle that has sent the message, and the party of this initiator
oracle must be uncorrupted.

At the end of the game, A issues a bit b′ and wins the game if b = b′, where b
is the bit chosen by πs

i in answering the Test query.

Definition 8. A two-message protocol Π is a (τ, q, ε) time-nonce-secure authen-
ticated key exchange protocol, if Π is a (τ, q, ε) time-nonce-secure authentication
protocol in the sense of Definition 7, and if for each adversary A that runs in
time τ and asks at most q queries, we have that

AdvA = |Pr(b = b′)− 1/2| ≤ ε

in Game GAKE−2.

4 One-Time-Passwords

In a One-Time-Password (OTP) protocol, an initiator (party A) wants to au-
thenticate against a responder (party B). To achieve this goal, A requests a
timestamp from T , and appends a cryptographic checksum to the message con-
sisting of the identifiers of A and B, and the timestamp t. Typically, symmetric
cryptography is used in OTP protocols. Thus in our example, we assume that a
message authentication code MAC is used for this purpose. The OTP protocol
is defined in Figure 1.

Modelling Time for Authenticated Key Exchange Protocols 289

A: (kAB , . . .), tA
πs
A

B: (kAB , . . .), tB
πt
B

request t from T ; tA := t;
macsA := MAC(kAB , A|B|t)

−
otp = (A,B, t,macsA)
−−−−−−−−−−−−−−−−−→

If macsA �= MAC(kAB , A|B|t)
reject; If t ≤ tB reject;

tB := t; accept

Fig. 1. The One-message Authentication protocol ΠOTP

Theorem 1. If MAC is a (τMAC , εMAC , qMAC) secure message authentication
code, then ΠOTP is a (τ, q, ε) time-secure authentication protocol with τMAC ≈ τ ,
qMAC ≈ q, and

ε ≤ n2 · εMAC .

5 One-Round Authentication Protocols

We first give an example of a two-message mutual authentication protocol with-
out key exchange, to exemplify the use of our model. In the second part of this
section, we will extend this to authenticated key exchange, where the session
key is chosen by the responder. This special choice is made to closely match the
building blocks of Kerberos, and can easily be extended to other key exchange
methods.

5.1 Authentication

Theorem 2. If MAC is a (τMAC , εMAC , qMAC) secure message authentication
code, then the ΠH2A protocol defined in Figure 2 is a (τ, q, ε) time-nonce-secure
authentication protocol with respect to Definition 7 with τ ≈ τMAC , q ≈ qMAC ,
and

ε ≤ n2 · εMAC + n2l · ((nl)2

2λ
+ εMAC).

5.2 Authenticated Key Exchange

The novel authenticated key exchange protocol presented in Figure 3 is modelled
after the building blocks of the Kerberos protocol: authentication and session key
encryption are based on symmetric cryptography, and the session key is chosen
by the responder (the Kerberos server). Variants of this protocol are used three
times sequentially in Kerberos, with the same initiator (the Kerberos client), but
different responders (Ticket Granting Ticket Server, Ticket Server, Server).

290 J. Schwenk

A: (kAB , . . .), tA
πs
A

B: (kAB , . . .), tB
πt
B

request t from T ; tA := t;
choose nA;

macsA := MAC(kAB , A|B|t|nA)

−
A,B, t, nA,macsA−−−−−−−−−−−−−−→

reject if
macsA �= MAC(kAB , A|B|t|nA);

If t ≤ tB reject; tB := t;
mactB := MAC(kAB , B|A|nA);

accept

←−
B,A, nA,mactB−−−−−−−−−−−−−

If mactB �= MAC(kAB , B|A|nA)
reject;

If nA is not correct reject;
accept

Fig. 2. The Two-message Authentication protocol ΠH2A

A
(kAB = (ke

AB , k
m
AB), . . .), tA

πs
A

B
(kAB = (ke

AB , k
m
AB), , . . .), tB

πt
B

request t from T ; tA := t;
choose nA;

macsA := MAC(km
AB , A|B|t|nA)

−
A,B, t, nA,macsA−−−−−−−−−−−−−−→

reject if
macsA �= MAC(km

AB , A|B|t|nA);
If t ≤ tB reject; tB := t;

choose k;
ctB := SE.Enc(ke

AB , k);
mactB :=

MAC(km
AB , B|A|nA|ctB); accept

←−
B,A, nA, c

t
B ,mactB−−−−−−−−−−−−−−−

If mactB �=
MAC(km

AB , B|A|nA|ctB) reject
If nA is not correct reject

k := SE.Dec(ke
AB , c

t
B); accept

Fig. 3. The One-Round Authenticated Key Exchange (ORAKE1) protocol

Modelling Time for Authenticated Key Exchange Protocols 291

Theorem 3. If MACis a (τ, εMAC , qMAC) secure message authentication code,
and SE is a (τ, εSE , qSE) secure symmetric encryption scheme, then the ΠORAKEl

protocol defined in Figure 3 is a (τ, q, ε) time-secure authented key exchange pro-
tocol with respect to Definition 8 with

ε ≤ n2 · εMAC + ln2(
(nl)2

2λ
+ εMAC) + n2 · εSE .

6 Conclusion and Future Work

In this paper we have presented a first simple formal model to prove the security
of timestamp-based authentication protocols, with reduction-based proofs, in a
Turing Machine environment. We tried to formalize the security goal that replay
attacks are prevented by timestamps.

This model can be extended in various directions: (1) Most time-based security
infrastructures or protocols use validity time frames, which can be modelled by
allowing the responder to query the time oracle T on reception of a message.
However, precautions must be taken to disallow replay attacks. (2) If time is
involved, the power of an active adversary should be restricted to get more
realistic security models: currently, DoS attacks by the adversary cannot be
prevented.

References

1. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

2. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. 3rd edn. Addison-Wesley (2006)

3. Hofheinz, D., Shoup, V.: Gnuc: A new universal composability framework. Cryp-
tology ePrint Archive, Report 2011/303 (2011), http://eprint.iacr.org/

4. Mills, D., Martin, J., Burbank, J., Kasch, W.: Network Time Protocol Version
4: Protocol and Algorithms Specification. RFC 5905 (Proposed Standard) (June
2010)

5. Magkos, E., Burmester, M., Chrissikopoulos, V.: Receipt-freeness in large-scale
elections without untappable channels. In: Schmid, B., Stanoevska-Slabeva, K.,
Tschammer, V. (eds.) Towards the E-Society. IFIP, vol. 202, pp. 683–694. Springer,
Boston (2001)

6. M’Raihi, D., Bellare, M., Hoornaert, F., Naccache, D., Ranen, O.: HOTP: An
HMAC-Based One-Time Password Algorithm. RFC 4226 (Informational) (Decem-
ber 2005)

7. M’Raihi, D., Machani, S., Pei, M., Rydell, J.: TOTP: Time-Based One-Time Pass-
word Algorithm. RFC 6238 (Informational) (May 2011)

8. Cremers, C.J.F.: Session-state reveal is stronger than ephemeral key reveal: Attack-
ing the naxos authenticated key exchange protocol. In: Abdalla, M., Pointcheval,
D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 20–33.
Springer, Heidelberg (2009)

http://eprint.iacr.org/

292 J. Schwenk

9. Schwenk, J.: Modelling time, or a step towards reduction-based security proofs for
otp and kerberos. IACR Cryptology ePrint Archive 2013, 604 (2013)

10. Massias, H., Avila, X.S., Quisquater, J.J.: Timestamps: Main issues on their use
and implementation. In: WETICE, pp. 178–183. IEEE Computer Society (1999)

11. Haber, S., Massias, H.: Time-stamping. In: van Tilborg, H.C.A., Jajodia, S. (eds.)
Encyclopedia of Cryptography and Security, 2nd edn., pp. 1299–1303. Springer
(2011)

12. Moran, T., Shaltiel, R., Ta-Shma, A.: Non-interactive timestamping in the
bounded-storage model. J. Cryptology 22(2), 189–226 (2009)

13. Buldas, A., Niitsoo, M.: Optimally tight security proofs for hash-then-publish time-
stamping. In: [27], pp. 318–335

14. Liu, Z., Lu, M.: Authentication protocols with time stamps: – encryption algorithm
dependent. In: Arabnia, H.R. (ed.) International Conference on Internet Comput-
ing, pp. 81–86. CSREA Press (2006)

15. Paterson, K.G., Stebila, D.: One-time-password-authenticated key exchange. In:
[27], pp. 264–281

16. Bellare, M., Rogaway, P.: Provably secure session key distribution: The three party
case, pp. 57–66 (1995)

17. Manulis, M.: Provably secure group key exchange (2007)
18. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for

building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

19. Barbosa, M., Farshim, P.: Security analysis of standard authentication and key
agreement protocols utilising timestamps. In: Preneel, B. (ed.) AFRICACRYPT
2009. LNCS, vol. 5580, pp. 235–253. Springer, Heidelberg (2009)

20. Matsumoto, T., Takashima, Y., Imai, H.: On seeking smart public-key-distribution
systems. IEICE Transactions E69-E(2), 99–106 (1986)

21. Menezes, A., Qu, M., Vanstone, S.A.: Some new key agreement protocols pro-
viding mutual implicit authentication. In: Second Workshop on Selected Areas in
Cryptography, SAC 1995 (1995)

22. Law, L., Menezes, A., Qu, M., Solinas, J.A., Vanstone, S.A.: An efficient protocol
for authenticated key agreement. Des. Codes Cryptography 28(2), 119–134 (2003)

23. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273–289. Springer, Heidelberg (2004)

24. Krawczyk, H.: HMQV: A high-performance secure diffie-hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005)

25. Choo, K.K.R., Boyd, C., Hitchcock, Y.: Examining indistinguishability-based proof
models for key establishment protocols. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS,
vol. 3788, pp. 585–604. Springer, Heidelberg (2005)

26. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005)

27. Steinfeld, R., Hawkes, P. (eds.): ACISP 2010. LNCS, vol. 6168. Springer, Heidelberg
(2010)

Modelling Time for Authenticated Key Exchange Protocols 293

A Proofs of Theorems 1, 2 and 3

Proof of Theorem 1. Game G0 is the original game, where our adversary tries
to force an oracle to accept with otp∗ which is either faked, or has already been
accepted by a different oracle. Thus we have ε0 = ε.

In G1, we guess the initiator party A, and the receiver party B. They share
a common symmetric key kAB. Our guess is that the adversary will succeed in
making one receiver oracle πt

B accept either a fake OTP otp∗, or that two oracles

πt
B and πt′

B will accept the same OTP otp. If our guess is wrong, we abort the
game, and the adversary looses. Thus his winning probability is reduced by a
factor n2. n2 · ε1 = ε0.

In G2, we abort the game if the adversary A forges a valid message authen-
tication code MAC for key kAB. This may happen only with probability εMAC :
The simulator replaces all MAC computations involving the key kAB with calls
to a MAC challenger CMAC which uses a randomly chosen MAC key k; if A forges
a valid message authentication code mac for a fresh otp message which has not
been queried from the MAC challenger, then we have broken the MAC challenge.
Thus we have ε1 ≤ ε2 + εMAC.

Since we have excluded MAC forgeries in this game, we are left with OTPs
otp = (C, S, ts,MAC(kCS , C.S.ts)) which were generated by non-corrupted ora-
cles, where only the value ts may be influenced by the adversary. Thus condition
1 of Definition 5 is always true (i.e. holds with probability 1), and we are left
with condition 2.

If A tries to send otp to any oracle of a party T �= S, T will not accept because
the target identity is different. If A tries to send otp to oracle πs

C , but otp has
already been accepted by πt

C , πs
C will not accept because ts ≤ tC . Thus also

condition 2 is always fulfilled (i.e. holds with probability 1) we have ε2 = 0. ��
Proof of Theorem 2. Adversary A can win the game by either making an

initiator oracle accept, or a responder oracle, or both. Thus we have ε ≤ εI + εR.
Since we can apply the proof of Theorem 1 to the responder oracle, we have

εR ≤ n2 · εMAC .
Thus we are left with the proof for the initiator oracle. The proof is modelled

as a short sequence of games. Game G0 is the original game, but the adversary
only wins this game if an initiator oracle to accepts. Thus we have ε0 = εI .

In G1, we guess the initiator oracle πs
A that will accept, and the responder

party B. They share a common symmetric key kAB. If our guess is wrong,
we abort the game, and the adversary looses. Thus his winning probability is
reduced by a factor l · n2. l · n2 · ε1 = ε0.

In G2, the simulator replaces all computations with the key kAB with a MAC
oracle. We abort the game if the adversary A forges a valid message authentica-
tion code MAC for this oracle. Thus we have ε1 ≤ ε2 + εMAC.

In G3, we abort the game if two oracles choose the same nonce. The probability

for this is bounded above by (nl)2

2λ . Thus we have ε2 ≤ ε3 + (nl)2

2λ .

294 J. Schwenk

Since we have excluded MAC forgeries and nonce collisions, A can only make
an initiator oracle accept if he forwards a message from one of the (possibly
many) responder oracles that have received the message from the initator oracle
containing the chosen nonce. Thus there is a matching conversation, and we have
ε3 = 0. ��

Proof of Theorem 3. Adversary A can win the game by either breaking the
acceptance condition, or key indistinguishability, or both. Thus we have ε ≤
εA + εKE .

Since we can apply the proof of Theorem 2 to the responder oracle, we have

εA ≤ n2 · εMAC + ln2((nl)2

2λ + εMAC).
Thus we are left with the proof for key indisinguishability. In Game G1, we

first have to guess the symmetric key keAB that will be used to encrypt the session
key for the test oracle. If we guessed wrong, the adversary loses the game. Thus
we loose a factor n2 in this game.

In Game G2, we replace all computations involving the key keAB with our
SE-challenger. Since A is not allowed to corrupt the key used in the test session,
we can still simulate all protocol messages. Now if A is able to distinguish real
from random keys, our SE-challenger is able to break the CCA-security of the
symmetric encryption scheme. ��

B Modeling Validity Time Intervals

To be able to model validity time intervals, the model can be modified as follows.

Retrieve actual time when sending a message. When trying to send a message
to Pj , π

s
i requests a new timestamp ts = (t, aux) from T , and compares it with

Ti. If t > ti, the oracle calculates another value texp := t+nexp. Both t and texp
are securely included in the protocol message.

Increase local time on message reception. Each party Pi has a local timer Ti

with actual state ti. Each time a message with a timestamp tj is received from
some oracle πt

j , the oracle πs
i receiving this message compares the value tj to the

actual state ti of Ti. If tj ≤ ti, the message is rejected. If tj > ti, ti is replaced
by the (greater) value tj : ti ← tj , and the message is validated further. Now πs

i

requests a new timestamp ts = (t, aux) from T , and compares it with texp from
the message. If texp ≤ t, the message is rejected, else ti ← t and the message is
validated further.

Zero-Knowledge Password Policy Checks
and Verifier-Based PAKE

Franziskus Kiefer and Mark Manulis

Surrey Centre for Cyber Security,
Department of Computing, University of Surrey, UK

mail@franziskuskiefer.de, mark@manulis.eu

Abstract. Zero-Knowledge Password Policy Checks (ZKPPC), intro-
duced in this work, enable blind registration of client passwords at re-
mote servers, i.e., client passwords are never transmitted to the servers.
This eliminates the need for trusting servers to securely process and store
client passwords. A ZKPPC protocol, executed as part of the registration
procedure, allows clients to further prove compliance of chosen passwords
with respect to password policies defined by the servers.

The main benefit of ZKPPC-based password registration is that it
guarantees that registered passwords never appear in clear on the server
side. At the end of the registration phase the server only receives and
stores some verification information that can later be used for authentica-
tion in a suitable Verifier-based Password Authenticated Key Exchange
(VPAKE) protocol.

We give general and concrete constructions of ZKPPC protocols and
suitable VPAKE protocols for ASCII-based passwords and policies that
are commonly used on the web. To this end we introduce a reversible
mapping of ASCII characters to integers that can be used to preserve
the structure of the password string and a new randomized password
hashing scheme for ASCII-based passwords.

Keywords: Password policies, password registration, authentication,
verification, password hashing, ASCII passwords, verifier-based PAKE.

1 Introduction

Password policies set by organizations aim at enforcing a higher level of security
on used passwords by specifying various requirements that apply during their
selection process and the actual usage. Especially, when passwords are selected
and used by users in a remote way strong, password policies can help not only
to protect data behind individual user accounts but also to prevent malicious
activities from compromised accounts that could further harm the organization
due to liability issues or even lead to a compromise of the entire system or
service. It is known that in the absence of any password policy users tend to
choose “weak” passwords that are easily guessable and have higher risk of being
compromised through dictionary attacks [1]. It is worth noting that coming up

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 295–312, 2014.
© Springer International Publishing Switzerland 2014

296 F. Kiefer and M. Manulis

with a good password policy is still considered a difficult task since policies must
also remain usable in practice [2].

In this work we focus on widely used password policies that specify the re-
quirements on the selection of passwords such as the minimum password length,
define sets of admissible password characters, and may contain further restric-
tions on the number of characters from each set. These requirements are typically
enforced during the initial password registration process and aim at preventing
users from choosing “weak” passwords. These policies are often extended with
additional restrictions on the usage of passwords by requiring users to change
their passwords within a certain period of time.

When users select passwords for remote access to systems or services on their
own, the password policy enforcement mechanism must be able to verify that
selected passwords comply with the existing policy. This compliance check can
be performed either on the client side or on the server side. For instance, when
a commodity web browser is used to register for some web service the policy
can be checked within the browser using scripts embedded into the registration
website, or on the server side upon the initial transmission of the password (e.g.
over a TLS channel). Both approaches, however, have security risks as discussed
in the following. If policy enforcement is performed solely on the client side, the
server must trust the client to obey the policy and execute the check correctly.
This is not a threat if the compliance check is assumed to be in the interest of
an honest user. Nonetheless, malicious users or users who are lazy to remember
complicated passwords can easily circumvent such script-based verification and
register passwords that are not compliant with the policy. The corresponding
service provider might want to exclude this threat. In this case the compliance
check must be performed on the server side. In order to perform policy check with
available technologies the client’s password must be transmitted to the server,
possibly over a secure channel. This ultimately requires the client to trust the
server to process and store the received password in a secure way. While many
servers adopt the current state-of-the-art approach for storing passwords in a
hashed form, e.g. using PBKDF2 [3,4] or bcrypt [5], with a random salt to pro-
tect against server compromise or re-use attacks, there have been many known
cases, e.g. [6,7,8,9], where passwords have been stored in clear and compromised
subsequently. The ultimate goal, therefore, is to avoid trusting servers with se-
cure processing and storage of user passwords.

This goal imposes two main challenges: (1) in the registration phase users
must be able to choose passwords and prove their policy compliance to a remote
server without actually transmitting their passwords, and (2) after the registra-
tion phase users must be able to authenticate themselves to the server using their
passwords without transmitting them. Interestingly, authentication protocol ad-
dressing the second challenge already exist in form of Password-Authenticated
Key Exchange (PAKE) protocols, e.g. [10,11,12,13]. PAKE protocols offer au-
thentication and computation of secure session keys in a password-only setting
in a way that makes it hard for an active adversary to recover passwords via of-
fline dictionary attacks. Traditional PAKE protocols, however, assume that the

Zero-Knowledge Password Policy Checks and Verifier-Based PAKE 297

password is used in clear on the server sides. To alleviate the threat that pass-
words are revealed immediately when server’s database is compromised, the so-
called Verifier-based PAKE (VPAKE) protocols [14,15,16] assume that instead
of plain password servers are using some verification information that is derived
from the password such that if an attacker breaks into the server and compro-
mises its database it must still execute an expensive offline dictionary attack
to recover the plain password. For this reason VPAKE protocols offer a better
protection than PAKE. The aforementioned trust assumption on the server to
securely process and store passwords becomes irrelevant if the password setup
only transmits password verification information to the server, which can later
be used in VPAKE protocols. In combination with password policy enforcement
this approach would however require a solution to the first challenge; namely the
client must be able to prove that the verification information for VPAKE has
been derived from a password that complies with the server’s password policy.

Zero-Knowledge Password Policy Checks (ZKPPC). Our first contribu-
tion, in Section 5, is the concept of Zero-Knowledge Password Policy Checks
(ZKPPC), a new class of protocols that allows servers to perform policy checks
on client passwords without ever receiving them in clear. ZKPPC protocols can
be used for blind registration of policy-conform passwords and thus solve the
aforementioned challenge of password setup where only password verification
information is supposed to be stored at the server and where the server can-
not be trusted to process passwords securely. We present a security model for
ZKPPC, a general ZKPPC framework, and a concrete ZKPPC protocol based
on Pedersen commitments. In the construction of ZKPPC protocols we make use
of the new randomized password hashing scheme, introduced in Section 4 and
the reversible structure-preserving mapping of ASCII-based password strings to
integers, introduced in Section 3.

ZKPPC-compliant VPAKE. Our second contribution are one-round VPAKE
protocols, in Section 6, that can be used with verification information obtained
from our blind password registration protocols based on ZKPPC. We design
VPAKE protocols based on the framework from [16]. We propose a general
VPAKE protocol that can be used in combination with our general ZKPPC
framework for ASCII-based passwords and policies and a concrete VPAKE con-
struction that suits particularly well with our ZKPPC-based blind password reg-
istration protocol that is based on Pedersen commitments and our randomized
password hashing scheme.

2 Concept Overview and Building Blocks

Our concept entails performing a zero-knowledge password policy check during
the client registration phase, which results in password verification information
being passed on to the server, and later use of this verification information

298 F. Kiefer and M. Manulis

on the server side as input to a suitable VPAKE protocol for the purpose of
authentication. A client wishing to register its user id and password at a remote
server that maintains a password policy will initially pick a password and execute
the ZKPPC protocol with the server. The ZKPPC protocol ensures that client’s
password complies with server’s password policy and is linked to the verification
information communicated at the end of the registration phase. This verification
information is computed through a randomised password hashing scheme and
includes (partial) randomness that was used by the client in the ZKPPC protocol.
Plain password is never transmitted to the server and the only way for the server
to reveal it is to execute an expensive offline dictionary attack. That is, an honest-
but-curios server would have to perform about the same amount of computation
to recover plain passwords as an attacker who breaks into that server at any
time. The server will be able to recognise and reject any cheating attempt of the
client to set up a non-policy conform password, still without learning the latter.
In the realization of this concept we apply the following building blocks.

Zero-Knowledge Proofs. A proof of knowledge PoK between prover P and
verifier V for a (public) binary relation R = {(C, w)} is denoted PoK{(w) : (C,
w) ∈ R} where w is a secret witness for C. PoK is a zero-knowledge proof of
knowledge ZKPoK if V is convinced that (C, w) ∈ R without learning any infor-
mation about w known by P . More formally, an interactive PoK for R = {(C, w)}
between P and V is a ZKPoK if the following holds:

– Completeness: For any (C, w) ∈ R, honest verifier V (C) accepts in the in-
teraction with an honest prover P (C, w).

– Soundness: If an honest V (C) accepts in the interaction with a malicious
prover P ∗(C) then there exists an efficient knowledge extractor Ext that
extracts a witness w for C from the interaction with P ∗(C).

– Zero-Knowledge: For any (C, w) ∈ R there exists an efficient simulator Sim
such that the views of a malicious verifier V (C) in interactions with Sim(C)
and an honest prover P (C, w) remain indistinguishable.

Commitments. A commitment scheme C = (CSetup, Com, Open) contains three
polynomial time algorithms and satisfies the following properties:

– Completeness: For all pC ← CSetup(λ), x ∈ X, r ∈ S: x ← Open(pC, C, d) for
all (C, d) ← Com(pC, x; r)).

– Binding: For all PPT algorithms A that on input pC ← CSetup(λ) output
(C, d, d′) there exists a negligible function ε(·) such that

Pr[x �= x′ ∧ x ← Open(pC, C, d) ∧ x′ ← Open(pC, C, d′)] ≤ ε(λ)

– Hiding: For all PPT algorithms A = (A1, A2) where A1 on input pC ←
CSetup(λ) outputs x0 and x1 of the same length and where A2 on input
(C, d) ← Com(pC, xb; r) for a random bit b ∈ {0, 1}, r ∈ S outputs bit b′ there
exists a negligible function ε(·) such that | Pr[b = b′] − 1/2| ≤ ε(λ).

Zero-Knowledge Password Policy Checks and Verifier-Based PAKE 299

A commitment scheme is said to be (additively) homomorphic if for all pC ←
CSetup(λ), (Ci, di) ← Com(pC, xi; ri) with xi ∈ X and ri ∈ S for i ∈ 0, . . . , m it
holds that

∏m
i=0 Ci = Com(pC,

∑m
i=0 xi; ψm

i=0ri) for some function ψ. We will omit
pC and d from the notation and write C ← Com(x; r) to denote the commitment
of x using randomness r.

Pedersen commitments [17]. The commitment scheme from [17] is perfectly
hiding and additively homomorphic. Its CSetup(λ) algorithm outputs (g, h, p, λ),
where g and h are generators of a cyclic group G of prime order p of length λ and
the discrete logarithm of h with respect to g is unknown. Com(x; r) for x, r ∈ Z∗

p

outputs C = gxhr and d = (x, r). Open(C, d) returns x iff C = gxhr.

Set Membership Proofs on Committed Values. These zero-knowledge
proofs can be used to prove that a committed value x is an element of a specific
set Ω. Let C ← Com(x; r) be some commitment of x with randomness r. The
corresponding proof for x ∈ Ω is defined as ZKPoK{(ξ, ρ) : C ← Com(ξ; ρ) ∧ ξ ∈
Ω}. We will use SMP(ξ, ρ, Ω) as a shorter notation for this proof.

Labeled Public Key Encryption. A labeled encryption scheme E = (KGen,
Enc, Dec) is IND-CCA2 secure for all PPT algorithms A = (A1, A2) where A1 on
input pk for (pk, sk) ← KGen(λ) and access to the decryption oracle Dec(sk, ·)
outputs two messages m0 and m1 of equal length and a label � and where A2
on input c ← Enc�(pk, mb; r) for a random bit b ∈R {0, 1} with access to the
decryption oracle outputs bit b′ without querying Dec(sk, (�, c)) there exists a
negligible function ε(·) such that | Pr[b′ = b] − 1

2 | ≤ ε(λ).

Labeled Cramer-Shoup Encryption [18]. The labeled CS encryption scheme from
[18] is IND-CCA2 secure. Its key generation algorithm KGen(λ) outputs sk =
(x1, x2, y1, y2, z) and pk = (p, g1, g2, h, c, d, Hk) with c = gx1

1 gx2
2 , d = gy1

1 gy2
2 , h =

gz
1 , where g1 and g2 are generators of a cyclic group G of prime order p of

length λ and Hk : {0, 1}∗ �→ Z∗
p is a hash function. The encryption algorithm

Enc�(pk, m; r) outputs C = (u1, u2, e, v) where u1 = gr
1, u2 = gr

2, e = mhr

and v = (cdξ)r with ξ = Hk(�, u1, u2, e). The decryption algorithm Dec�(sk, C)
outputs m = e/uz

1 if ux1+y1·ξ′
1 ux2+y2·ξ′

2 = v with ξ′ = Hk(�, u1, u2, e).

Smooth Projective Hashing (SPHF). Let L = {C} denote a language with
L ⊂ X such that C ∈ L if there exists a witness w for C. A SPHF for L ⊂ X ,
as defined in [19], consists of the following algorithms:

– HKGen(L) generates a hashing key hk for L.
– PKGen(hk, L, C) derives the projection key hp, possibly depending on C.
– Hash(hk, L, C) outputs the hash value h, for any C ∈ X .
– PHash(hp, L, C, w) outputs the hash value h, for any C ∈ L with witness w.

A SPHF is correct if for all C ∈ L with witness w: Hash(hk, L, C) = PHash(hp,
L, C, w). A SPHF is smooth if for all C �∈ L, the hash value h is indistinguishable
from a random element in G.

300 F. Kiefer and M. Manulis

SPHF for Labeled CS Ciphertexts [19]. Let Lm ={(�, C)|∃r, C ← Enc�(pk, m; r)},
where pk = (p, g1, g2, h, c, d, Hk). Note that C = (u1, u2, e, v), where u1 = gr

1 ,
u2 = gr

2, e = mhr, and v = (cdξ)r with ξ = Hk(�, u1, u2, e). A perfectly smooth
SPHF from [19] for Lm is defined as follows:

– HKGen(Lm) generates a hashing key hk = (η1, η2, θ, μ, ν) ∈R Z1×5
p .

– PKGen(hk, Lm) derives the projection key hp=(hp1, hp2)=(gη1
1 gθ

2hμcν , gη2
1 dν).

– Hash(hk, Lm, C) outputs the hash value h = uη1+ξη2
1 uθ

2(e/m)μvν .
– ProjHash(hp, Lm, C, r) outputs the hash value h = (hp1hp2

ξ)r.

3 Modeling Passwords and Policies

In the following we model passwords and their dictionaries. Note that password
strings are typically mapped to integers before they are processed in crypto-
graphic operations. For our purposes such integer mapping must be able to
preserve password structures. In particular, the way a password string is com-
posed from single characters must remain visible from the resulting integer value.
As part of password modeling we describe an appropriate encoding scheme that
maps password strings defined over the alphabet of printable ASCII characters to
integers while preserving their structures. We further model and define password
policies as regular expressions over different ASCII character sets.

3.1 Password Strings and Dictionaries

We consider password strings pw over the ASCII alphabet Σ containing all 94
printable ASCII characters.1 We split Σ = d ∪ u ∪ l ∪ s into four subsets:

– set of digits d = [0 − 9] (or ASCII codes [48 − 57]),
– set of upper case letters u = [A − Z] (or ASCII codes [65 − 90])
– set of lower case letters l = [a − z] (or ASCII codes [97 − 122])
– set of symbols s = [!"#$%&’()*+,-./ :;<=>?@ [\]ˆ_‘ {|}~] (or ASCII codes

[33 − 47, 58 − 64, 91 − 96, 123 − 126])

By D we denote a general dictionary containing all strings that can be formed
from printable ASCII characters, i.e. all power sets of Σ. A password string
pw = (c0, . . . , cn−1) ∈ Σn ⊂ D of length n is an ordered set of characters ci ∈ Σ.

3.2 Structure-Preserving Mapping of Password Strings to Integers

Mapping of Password Characters to Integers. In order to preserve the
character structure of a password string pw upon its mapping to an integer we
first define a character mapping function CHRtoINT : Σ �→ Z95 for any printable
1 Although we do not consider password strings consisting of other characters, our

approach is easily adaptable to UTF-8 and other character sets.

Zero-Knowledge Password Policy Checks and Verifier-Based PAKE 301

ASCII character c ∈ Σ that internally uses its decimal ASCII code ASCII(c) to
output an integer in Z95:

CHRtoINT(c) =

⎧
⎨

⎩

⊥ if ASCII(c) < 32
ASCII(c) − 32 if 33 ≤ ASCII(c) ≤ 126
⊥ if 126 < ASCII(c)

Position-Dependent Mapping of Password Characters to Integers. A
printable ASCII character c ∈ Σ may appear at any position i ∈ [0, n − 1] in a
password string pw ∈ Σn. For every position i we require a different integer to
which ci ∈ pw can be mapped to. Assuming a reasonable upper bound nmax on
the password length n, i.e. n ≤ nmax, we define four integer sets Ωx, x ∈ Σ′ =
{d, u, l, s}, where d, u, l, s are the identifiers of the four ASCII character subsets
that were used to define Σ as follows:

– Ωd = {95iCHRtoINT(c)} for all digits c ∈ d and i = 0, . . . , nmax − 1.
Note that |Ωd| = 10nmax.

– Ωu = {95iCHRtoINT(c)} for all upper case letters c ∈ u and i = 0, . . . , nmax−1.
Note that |Ωu| = 26nmax.

– Ωl = {95iCHRtoINT(c)} for all lower case letters l ∈ u and i = 0, . . . , nmax −1.
Note that |Ωl| = 26nmax.

– Ωs = {95iCHRtoINT(c)} for all symbols c ∈ s and i = 0, . . . , nmax − 1.
Note that |Ωs| = 32nmax.

Any password character ci ∈ pw, i ∈ [0, nmax − 1] can therefore be mapped to
one of the four sets Ωx, x ∈ Σ′ with the position-dependent character mapping
function CHRtoINTi : Σ �→ Ωx, defined as

CHRtoINTi(c, i) = 95iCHRtoINT(c)

We write πi ← CHRtoINTi(c, i) for the integer value of the ith character ci ∈ pw.

Mapping of Password Strings to Integers. A password mapping function
PWDtoINT : Σn �→ Z95nmax that maps any password string pw = (c0, . . . , cn−1) ∈
Σn to an integer in a larger set Z95nmax in a way that preserves the ith position
of each character ci is defined as follows:

PWDtoINT(pw) =
n−1∑

i=0
95iCHRtoINT(ci) =

n−1∑

i=0
CHRtoINTi(ci, i) for ci ∈ pw

We will use pw to denote a password string and π ← PWDtoINT(pw) for its
integer value. Note that π =

∑n−1
i=0 πi.

The mapping computed through PWDtoINT is injective and reversible. For
example, π = 797353 is the integer value of password string pw = (2, A, x). The
string can be recovered by concatenation of 797353 mod 95 = 18 =̂ 2 at position
0, (797353 mod 952) − (797353 mod 95) = 3135 = 33 · 951 =̂ A at position 1
and 797353 − (797353 mod 952) = 794200 = 88 · 952 =̂ x at position 2.

302 F. Kiefer and M. Manulis

3.3 Password Policies

A password policy f = (R, nmin, nmax) is modeled using a regular expression R
over Σ′ = {d, u, l, s}, a minimum length nmin and a maximum length nmax that
a password string pw must fulfill.2 We write f(pw) = true to indicate that the
policy is satisfied by the password string pw. For example,

– f = (ds, 6, 10) means that pw must have between 6 and 10 characters with
at least one digit and one symbol.

– f = (uss, 8, 12) means that pw must have between 8 and 12 characters with
at least one upper-case letter and two symbols.

– f = (duls, 8, 16) means that pw must have between 8 and 16 characters with
at least one character of each type.

Remark 1. Note that in practice password policies do not specify nmax. We leave
it for the server administrator to decide whether nmax should be mentioned ex-
plicitly in f or fixed in the system to allow for all reasonable password lengths.

4 Randomized Password Hashing

A password hashing scheme Π that is used to compute password verification
information for later use in VPAKE protocols from [16] is defined as follows:

– PSetup(λ) generates password hashing parameters pP. These parameters con-
tain implicit descriptions of random salt spaces SP and SH .

– PPHSalt(pP) generates a random pre-hash salt sP ∈R SP .
– PPreHash(pP, pw, sP) outputs the pre-hash value P .
– PHSalt(pP) generates a random hash salt sH ∈R SH .
– PHash(pP, P, sP , sH) outputs the hash value H .

In the above syntax the algorithm PPreHash is randomized with a pre-hash
salt sP , which extends the syntax from [16], where PPreHash is deterministic
(and realized in constructions as a random oracle output H(pw)). In contrast
we are interested in algebraic constructions of both PPreHash and PHash to
allow for efficient proofs of knowledge involving pre-hash values P . The ran-
domization of PPreHash further increases the complexity of an offline dictionary
attack that recovers pw from P since it removes the ability of an attacker to
pre-compute pairs (P, pw) and use them directly to recover pw (see also Sec-
tion 5.4). We write H ← HashP(pw, r) to denote H ← PHash(pP, P, sP , sH) with
P ← PPreHash(pP, pw, sP), where r = (sP , sH) combines the randomness used
in PHash and PPreHash. A secure Π must satisfy the following security prop-
erties. Note that password-hiding is a new property that is used in ZKPPC to
ensure that password hashes H do not leak any information about pw. The re-
maining four properties are from [16], updated where necessary to account for
the randomized PPreHash:
2 The way password policies are modeled in this work is suitable for policies that put re-

strictions on the password length and the nature of password characters. Other types
of policies, e.g. search for natural words in a password (cf. dropbox password-meter)
are currently not supported by our framework and thus left for future work.

https://tech.dropbox.com/2012/04/zxcvbn-realistic-password-strength-estimation

Zero-Knowledge Password Policy Checks and Verifier-Based PAKE 303

– Password hiding: For all PPT algorithms A = (A1, A2) where A1 on input
pP ← PSetup(λ) outputs two equal-length password strings pw0 and pw1
and where A2 on input H ← PHash(pP, P, sP , sH), where sH ← PHSalt(pP),
sP ← PPHSalt(pP), and P ← PPreHash(pP, pwb, sP) for a random bit b ∈R

{0, 1} outputs bit b′ there exists a negligible function ε(·) such that | Pr[b′ =
b] − 1

2 | ≤ ε(λ).
– Pre-image resistance (called tight one-wayness in [16]): For all PPT algo-

rithms A running in time at most t, there exists a negligible function ε(·)
such that

Pr[(i, P) ← AHashP (·)(pP); Finalise(i, P) = 1] ≤ αt

2βtPPreHash
+ ε(λ),

for small α and tPPreHash being the running time of PPreHash, where pP ←
PSetup(λ) and each ith invocation of HashP(·) returns (H, sH) with H ←
PHash(pP, P, sP , sH) and stores T [i] ← PPreHash(pP, pw, sP), where sH ←
PHSalt(pP), sP ← PPHSalt(pP), and pw ∈R D. Finalise(i, P) = 1 if T [i] =
P . (Note that HashP(·) does not return sP .)

– Second pre-image resistance: For all PPT algorithms A there exists a negli-
gible function ε(·) such that for P ′ ← A(pP, P, sH)

Pr[P ′ �= P ∧ PHash(pP, P, sH) = PHash(pP, P ′, sH)] ≤ ε(λ),

with pP ← PSetup(λ), sP ← PPHSalt(pP), sH ← PHSalt(pP) and P ←
PPreHash (pP, pw, sP) for any pw ∈ D.

– Pre-hash entropy preservation: For all polynomial time samplable dictionar-
ies D with min-entropy β, and any PPT algorithm A, there exists a negligible
function ε(λ) such that for (P, sP) ← A(pP) with pP ← PSetup(λ) and ran-
dom password pw ∈R D:

Pr[sP ∈ SP ∧ P = PPreHash(pP, pw, sP)] ≤ 2−β + ε(λ).

– Entropy preservation: For all polynomial time samplable dictionaries D with
min-entropy β, and any PPT algorithm A, there exists a negligible function
ε(λ) such that for (H, sP , sH) ← A(pP)

Pr[sP ∈ SP ∧ sH ∈ SH ∧ H = HashP(pP, pw, sP , sH)] ≤ 2−β + ε(λ),

where pP ← PSetup(λ) and pw ∈R D.

4.1 Randomized Password Hashing from Pedersen Commitments

We introduce a randomized password hashing scheme Π = (PSetup, PPHSalt,
PPreHash, PHSalt, PHash) for ASCII-based passwords using Pedersen commit-
ments. We assume that π ← PWDtoINT(pw) and construct Π as follows:

– PSetup(λ) generates pP = (p, g, h, λ) where g, h are independent generators
of a cyclic group G of prime order p of length λ.

304 F. Kiefer and M. Manulis

– PPHSalt(pP) generates a pre-hash salt sP ∈R Z∗
p.

– PPreHash(pP, π, sP) outputs the pre-hash value P = gsP π.
– PHSalt(pP) generates a hash salt sH ∈R Z∗

p.
– PHash(pP, P, sP , sH) outputs hash value H = (H1, H2) = (gsP , P hsH).

Observe that H2 = Hπ
1 hsH , i.e., H1 can be seen as a fresh generator that is

used to compute the Pedersen commitment H2. The security properties of our
password hashing scheme Π follow from the properties of the underlying cyclic
group G and from the security of Pedersen commitments. We argue informally:

– The password hiding property of the scheme, assuming that pw0 and pw1
are mapped to corresponding integers π0 and π1 in Z95n , is perfect and
holds based on the perfect hiding property of the Pedersen commitment
scheme. Note that the adversary receives the corresponding hash value H =
(H1, H2) = (gsP , P hsH), where H2 = gsP πhsH is a Pedersen commitment
on π with respect to two independent bases gsP and h. The ability of A to
distinguish between π0 and π1 can thus be turned into the attack on the
hiding property of the commitment scheme.

– The pre-image resistance holds since sP and sH are randomly chosen on
every invocation of HashP(·) with a negligible probability for a collision and
H2 is a perfectly hiding commitment with bases gsP and h. Therefore, for
any given output (H = (H1, H2), sH) of HashP(·), A must perform 2β expo-
nentiations Hπ∗

1 , one for each candidate π∗, in order to find P = H2h−sH .
This roughly corresponds to 2β invocations of PPreHash.

– The second pre-image resistance holds since H1 is uniform in G and H2 is a
computationally binding commitment with bases gsP and h. Note that for
any P ′ generated by A, Hπ

1 hsH = P ′hsH is true only if P ′ = Hπ
1 .

– The pre-hash entropy and hash entropy preservation hold since H1 is a gen-
erator of G such that for every (P, sP) chosen by the pre-hash entropy ad-
versary, Pr[P = Hπ

1] ≤ 2−β +ε(λ), and for every (H, sH) chosen by the hash
entropy adversary, Pr[H2 = Hπ

1 hsH] ≤ 2−β + ε(λ) for a random pw ∈R D.

5 ZKPPC and Password Registration

We first define the ZKPPC concept enabling a client to prove compliance of
its chosen passwords pw with respect to a server’s password policy f without
disclosing pw. We propose a general framework for building ZKPPC protocols
for ASCII-based passwords and a concrete ZKPPC instantiation. We further
explain how to build registration protocols that use ZKPPC as a building block.

5.1 Zero-Knowledge Password Policy Checks

A Password Policy Check (PPC) is an interactive protocol between a client C
and a server S where server’s password policy f and the public parameters of
a password hashing scheme Π are used as a common input. At the end of the
PPC execution S accepts H ← HashP(pw, r) for any password pw ∈ D of client’s

Zero-Knowledge Password Policy Checks and Verifier-Based PAKE 305

choice if and only if f(pw) = true. A PPC protocol is a proof of knowledge for
pw and r such that H ← HashP(pw, r) and f(pw) = true. It thus includes the
requirements on completeness and soundness. In addition, a ZKPPC protocol
is a PPC protocol with zero-knowledge property to ensure that no information
about pw is leaked to S. More formally,

Definition 1 (ZKPPC). Let Π =(PSetup, PPHSalt, PPreHash, PHSalt, PHash)
be a password hashing scheme and f be a password policy. A ZKPPC protocol is
a zero-knowledge proof of knowledge protocol between a prover C (client) and a
verifier S (server), defined as

ZKPoK{(pw, r) : f(pw) = true ∧ H = HashP(pw, r)}.

5.2 A General ZKPPC Framework for ASCII-Based Passwords

We present a general ZKPPC construction for password strings pw composed of
printable ASCII characters using a commitment scheme C = (CSetup, Com, Open),
a password hashing scheme Π = (PSetup, PPHSalt, PPreHash, PHSalt, PHash)
and appropriate set membership proofs SMP. We assume that the common input
of C and S includes pP ← PSetup(λ), pC ← CSetup(λ), and the server’s password
policy f = (R, nmin, nmax) that is communicated to C beforehand.

The ZKPPC protocol proceeds as follows (see also Figure 1 for an overview).
Let Rj be the jth character of R. Rj uniquely identifies one of the four ASCII
subsets of Σ = d ∪ u ∪ l ∪ s and one of the four integer sets Ωx, x ∈ Σ′ =
{d, u, l, s}. Let ΩΣ =

⋃
x∈Σ′ Ωx be a joint integer set of these four sets. The

client picks an ASCII string pw = (c0, . . . , cn−1) such that f(pw) = true, com-
putes integer values πi ← CHRtoINTi(c, i) for all i = 0, . . . , n − 1 and π ←
PWDtoINT(pw) =

∑n−1
i=0 πi, and the password hash H ← HashP(π, (sP , sH)) using

salt sP ← PPHSalt(λ) and sH ← PHSalt(λ). For each position i = 0, . . . , n − 1
the client computes commitment Ci ← Com(πi, ri) and sends its password hash H
with the set of commitments {Ci} to S that by checking |{Ci}| ∈ [nmin, nmax] will
be able to check the password length requirement from f . Since f(pw) = true,
for each Rj in R the client can determine the first character cj ∈ pw that fulfils
Rj and mark it as significant. Let {ci1 , . . . ci|R|} denote the set of significant
characters from pw that is sufficient to fulfill R. For each significant cij ∈ pw,
j = 1, . . . , |R| client C as prover and server S as verifier execute a set member-
ship proof SMP(πij , rij , Ωx), i.e. proving that position-dependent integer value
πij committed to in Cij is in Ωx for one of the four ASCII subsets in Σ identified
by Rj . These SMPs ensure that characters fulfill R. For every other character
ci ∈ pw, i �= ij , j = 1, . . . , |R| client C as prover and server S as verifier execute
SMP(πi, ri, ΩΣ) proving that position-dependent integer value πi committed to
in Ci is in the joint integer set ΩΣ . This proves that each remaining ci is a
printable ASCII character without disclosing its type and thus ensures that S
doesn’t learn types of (remaining) password characters that are not necessary
for R. Note that in the notation SMP(πi, ri, Ω′) used in Figure 1, set Ω′ is either
one of Ωx, x ∈ Σ′ if πi represents a significant character or ΩΣ for all remaining
characters.

306 F. Kiefer and M. Manulis

C(f = (R, nmin, nmax), pP, pC) S(f = (R, nmin, nmax), pP, pC)

Choose pw ∈R D with f(pw) = true;
Let n ← |pw|;
∀i = 0, . . . , n − 1:

πi ← CHRtoINTi(ci, i) for ci ∈ pw;
ri ∈R SC; Ci ← Com(πi; ri);

π ← ∑
i πi; r ← ∑

i ri; C ← ∏
i Ci;

sP ←R PPHSalt(pP);
sH ←R PHSalt(pP);
H ← HashP(π; (sP , sH));

H, {Ci}, ∀i : SMP(πi, ri, Ω′) Let n ← |{Ci}|.
If n �∈ [nmin, nmax] then ABORT.
Else C ← ∏

i Ci;

ZKPoK{(π, sP , sH , r) :
H = HashP(π; (sP , sH)) ∧ C = Com(π; r)}

If any SMP or ZKPoK is not success-
ful then ABORT.
Else ACCEPT and store H .

Fig. 1. General ZKPPC Framework for ASCII-based Passwords

If all SMPs are successful then S is convinced that commitments {Ci} contain
some integer values πi representing characters ci that fulfill R and that n ∈
[nmin, nmax]. This doesn’t complete the proof yet since two issues remain: (1)
committed πi are not yet linked to the integer value π that represents pw, and (2)
the client hasn’t proved yet that this π was used to compute the hash value H . In
order to address (1) and (2) our ZKPPC framework first uses the homomorphic
property of the commitment scheme. Both C and S independently compute
C ← ∏n−1

i=0 Ci = Com(
∑n−1

i=0 πi, r) = Com(π, r), where r =
∑n−1

i=0 ri, whereas C
additionally uses the knowledge of all ri to compute r. As a last step of the
ZKPPC protocol client C as prover and server S as verifier execute a ZKPoK
proof that C knows π and random salts (sP , sH) that were used to compute H
and that π is an integer contained in the (combined) commitment C for which
the client knows the (combined) randomness r. If this final ZKPoK is successful
then S accepts the hash value H .

In reference to Definition 1, our ZKPPC framework in Figure 1 tailors the
general statement f(pw) = true to ASCII-based policies f = (R, nmin, nmax) and
corresponding password hashing schemes Π so that the resulting ZKPPC proof
is of the following form:

ZKPoK{(π, r, {πi}, {ri} for i = 0, . . . , n − 1) :

Ci = Com(πi, ri) ∧
∏

i

Ci = Com(π,
∑

i

ri) ∧ πi ∈ Ω′ ∧ H = HashP(π, r)}.

Theorem 1. If C = (CSetup, Com, Open) is an (additively) homomorphic com-
mitment scheme, Π = (PSetup, PPHSalt, PPreHash, PHSalt, PHash) a secure
randomized password hashing scheme, SMP a zero-knowledge set membership
proof and ZKPoK a zero-knowledge proof of knowledge, then the protocol from
Figure 1 is a ZKPPC protocol according to Definition 1.

Proof. Protocol completeness follows by inspection. To prove soundness we as-
sume that the server accepts H from a malicious client that was not computed

Zero-Knowledge Password Policy Checks and Verifier-Based PAKE 307

as HashP(π, r) for integer π that represents a policy-conform password string pw.
By construction of the protocol the client must have either (1) cheated in one of
the SMP(πi, ri, Ω′) proofs or the final ZKPoK proof which contradicts the sound-
ness properties of those proofs, or (2) was is able to compute H in two different
ways, as HashP(π, r) using π that corresponds to a policy-conform pw ∈ D and as
HashP(π∗, r∗) using π∗ for some pw∗ ∈ D that is not policy-conform, which con-
tradicts to the second pre-image resistance of Π , or (3) was is able to compute
at least one Ci in two different ways, as Com(πi, ri) using πi that corresponds to
a character ci that is significant for the regular expression R and as Com(π∗

i , r∗
i)

using π∗
i that doesn’t fulfill any character Rj from R, which contradicts to the

binding property of C.
To prove the zero-knowledge property we need to build a simulator Sim to

simulate the view of the server. Sim internally uses the simulators for SMP
proofs and the ZKPoK proofs to simulate server’s view, thereby relying on the
password hiding property of Π and the hiding property of C in the simulation
of H and every Ci, respectively. ��
Remark 2. Depending on the maximal password length nmax and complexity of
f = (R, nmin, nmax) using range proofs instead of set membership proofs, may
be more efficient. Although ZKPPC complexity is currently dominated by set
membership proofs, passwords in practice are rather short and policies not too
complex, so that set membership proofs will be sufficiently efficient in most cases.
Further notice that leakage of password length n to the server is not considered
as an attack against the ZKPPC protocol. For policies those regular expression
R implicitly defines nmin the length n can be hidden using the homomorphic
property the commitment scheme C, i.e., by combining commitments Ci for πi

representing (remaining) password characters that are not needed to satisfy R.

5.3 A Concrete ZKPPC Protocol for ASCII-Based Passwords

We show feasibility of our approach by giving a concrete ZKPPC protocol con-
struction for ASCII-based passwords in a cyclic group G of prime order p. The
protocol is built from the Pedersen commitment scheme C = (CSetup, Com, Open)
from Section 2 and the randomized password hashing scheme Π = (PSetup,
PPHSalt, PPreHash, PHSalt, PHash) from Section 4.1 that share the same group
G. In particular, public parameters used by C and S in the ZKPPC pro-
tocol are defined as (p, g, h, λ) where g and h are independent generators of
G. For set membership proofs SMP(πi, ri, Ω′) we adopt a three-move honest-
verifier proof ZKPoK{(πi, ri) : Ci = gπihri ∧ (πi = ω0 ∨ · · · ∨ πi = ω|Ω′|)} for
ωj ∈ Ω′, whose length is proportional to |Ω′|. Assuming that for each ωj ∈ Ω′

the corresponding value gωj ∈ G is pre-computed this proof can be realized
as ZKPoK{(πi, ri) : Ci = gπihri ∧ (Ci = gω0hri ∨ · · · ∨ Ci = gω|Ω′| hri)}.3

3 More efficient SMPs, e.g. [20], can possibly be used with a different commitment
and password hashing scheme. In this case care must be taken when it comes to the
instantiation of VPAKE that must be able to handle password hashes generated in
ZKPPC (cf. Section 6).

308 F. Kiefer and M. Manulis

The final ZKPoK proof is instantiated as a three-move honest-verifier proof
ZKPoK{(π, sP , sH , r) : H1 = gsP ∧ H2 = Hπ

1 hsH ∧ C = gπhr} that proceeds
in the following classical way. C picks random kπ, ksP , ksH , kr ∈ Zp, computes
t1 = gksP , t2 = Hkπ

1 hksH , and t3 = gkπ hkr , and sends (t1, t2, t3) to S that
replies with a random challenge c ∈ Zp. C computes a1 = ksP + csP mod p,
a2 = kπ + cπ mod p, a3 = ksH + csH mod p and a4 = kr + cr mod p, and
sends (a1, a2, a3, a4) to S that accepts the proof if ga1 = t1Hc

1 , Ha2
1 ha3 = t2Hc

2 ,
and ga2ha4 = t3Cc holds.

Remark 3. The honest-verifier ZK property of the adopted three-move SMP and
ZKPoK protocols is sufficient since ZKPPC will be executed as part of the reg-
istration protocol over a server-authenticated secure channel (cf. Section 5.4)
where the server is assumed to be honest-but-curios. If ZKPPC protocol is exe-
cuted outside of such secure channel then common techniques from [21] can be
applied to obtain ZK property in presence of malicious verifiers. We also observe
that all SMP and ZKPoK protocols can be made non-interactive (in the random
oracle model) using the techniques from [22].

5.4 Blind Registration of Passwords Based on ZKPPC

Blind registration of passwords based on our generic ZKPPC construction from
Section 5.2 proceeds in three main stages and requires server-authenticated se-
cure channel (e.g. TLS) between C and S: (1) S sends its password policy f to C;
(2) C picks its user login credentials, containing id (e.g. its email address) which
C wants to use for later logins at S, and initiates the execution of the ZKPPC
protocol. If the ZKPPC protocol is successful then C has a policy-conform pass-
word pw and S receives id and the password hash H = HashP(π, r); (3) C sends
used random salt r to S and S stores a tuple (id, H, r) in its password database.

The use of server-authenticated secure channel guarantees that no active ad-
versary A can impersonate honest S and obtain (id, H, r) nor can A mount an
attack based on modification of server’s policy f , e.g. by replacing it with a
weaker one. Especially, r needs protection since knowledge of (H, r) enables an
offline attack that recovers pw. Assuming an efficiently samplable dictionary D
with min-entropy β a brute force attack would require at most 2β executions of
HashP(π∗, r), where π∗ ← PWDtoINT(pw∗), pw∗ ∈ D.

The execution of the ZKPPC protocol in the second stage doesn’t require a
secure channel due to the assumed ZK property. However, if secure channel is in
place then we can work with the honest-verifier ZK property, which may lead
to more efficient ZKPPC constructions. Note that S is not assumed to be fully
malicious but rather honest-but-curios since it cannot be trusted to process plain
passwords in a secure way. By modeling S as a malicious party in the ZKPPC
protocol we can offer strong guarantees that no information about pw is leaked
to S in the second stage and so the only way for S to recover pw at the end is
to mount an offline dictionary attack using r from the third stage.

The resulting password registration protocol guarantees that no server S can
do better in recovering client’s pw than any attacker A who compromises S

Zero-Knowledge Password Policy Checks and Verifier-Based PAKE 309

during or after the registration phase. This is an ideal security requirement for
the registration of passwords that will be used in authentication protocols with
password verifiers on the server side. Note that security of such verifier-based
authentication protocols implies that any A who breaks into S cannot recover
pw better than by mounting an offline dictionary attack. Our approach thus
extends this requirement to password registration protocols.

For our concrete ZKPPC construction from Section 5.3 we can modify the
third stage of the registration protocol such that instead of r = (sP , sH) server
S receives only sH and stores (id, H, sH), where H = (H1, H2), H2 = Hπ

1 hsH .
This trick helps to significantly increase the complexity of an offline dictionary
attack. Note that pre-image resistance of Π guarantees that an offline password
test based on equality Hπ

1 = H2h−sH would require 2β exponentiations Hπ∗
1

until π∗ = π is found. Note that if sP is disclosed then the above equality can be
re-written to gπ = (H2h−sH)1/sP and a pre-computed table T = (π∗, gπ∗) would
immediately reveal π∗ = π. The computation of T requires 2β exponentiations
gπ∗ but T would need to be computed only once. This also explains why we use
Π with randomized PPreHash.

6 VPAKE Protocols for ZKPPC-Registered Passwords
We now focus on suitable VPAKE protocols where the server S using (id, H, r)
stored from the ZKPPC-based registration protocol can authenticate the client
C that uses only its pw. Such protocols can be constructed with a general
VPAKE framework introduced by Benhamouda and Pointcheval [16]. Their
framework constructs one-round VPAKE protocols with C and S sending one
message each, independently, using a generic password hashing scheme Π =
(PSetup, PPHSalt, PPreHash, PHSalt, PHash) with deterministic PPreHash, la-
beled public key encryption scheme E = (KGen, Enc, Dec), and secure SPHFs
(HKGen, PKGen, Hash, ProjHash) for two languages LH = {(�, C) | ∃r : C =
Enc�(pk, H ; r)} and Ls,H = {(�, C)|∃P, ∃r : C = Enc�(pk, H ; r) ∧ H = PHash(pP,
P, s)}. Their approach can directly be used for our generic scheme Π with
randomized PPreHash if we assume that Ls,H is defined using s = (sP , sH).
This readily gives us a generic VPAKE protocol that is suitable for our general
ZKPPC construction for ASCII-based passwords in Figure 1 and those security
follows from the analysis of the framework in [16].

For the concrete VPAKE construction based on our scheme Π from Section 4.1
we can use labeled CS encryption scheme for E from Section 2. The common
input of C and S contains the CS public key pk = (p, g1, g2, h, c, d, Hk), where
generators g1 = g and h must be the same as in the ZKPPC protocol from
Section 5.3. Since H = (H1, H2) we need to slightly update the language LH =
{(�, C)|∃r : C = Enc�(pk, H2; r)} by using H2 as an encrypted message. We can
still use the SPHF for CS ciphertexts from Section 4.1 to handle this LH . Since
the pre-hash salt sP is not transmitted in the registration phase, i.e. S stores
(id, H, sH) where H = (H1, H2) with H1 = gsP

1 and H2 = Hπ
1 hsH , we replace

Ls,H with the following language LsH ,H = {(�, C)|∃π, ∃r : C = Enc�(pk, gπ
1 ; r) ∧

H2 = Hπ
1 hsH } and construct a suitable SPHF for LsH ,H as follows:

310 F. Kiefer and M. Manulis

C(pk, (id, π)) S(pk, (id, H = (H1, H2), sH))

hk ← HKGen(LH); hp ← PKGen(hk, LH);
r ∈R Zp; � = (id, S, hp);
C ← Enc�(pk, gπ

1 ; r);

hk′ ← HKGen(LsH ,H); hp′ ← PKGen(hk′, LsH ,H);
r′ ∈R Zp; �′ = (S, id, hp′);
C′ ← Enc�′(pk, H2; r′);

hp, C

hp′, C′, H1, sH

�′ = (S, id, hp′); H2 ← Hπ
1 hsH ;

K1 ← Hash(hk, LH , C′);
K2 ← ProjHash(hp′, LsH ,H , C, π, r);
K ← K1 · K2

� = (id, S, hp);
K1 ← ProjHash(hp, LH , C′, r′);
K2 ← Hash(hk′, LsH ,H , C);
K ← K1 · K2

Fig. 2. A VPAKE Protocol for Blindly Registered ASCII-based Passwords

– HKGen(LsH ,H) generates hk = (η1, η2, θ, μ, ν) ∈R Z1×5
p .

– PKGen(hk, LsH ,H) derives hp = (hp1, hp2, hp3) = (gη1
1 gθ

2hμcν , gη2
1 dν , gμ

1 H−μ
1).

– Hash(hk, LsH ,H , C) outputs hash value h = uη1+ξη2
1 uθ

2[e/(H2h−sH)]μvν .
– ProjHash(hp, LsH ,H , C, π, r) outputs hash value

h = (hp1hp2
ξ)rhp3

π = gη1r
1 gθr

2 hμrcνrgη2ξr
1 dνξr(gμ

1 H−μ
1)π.

Note that projection key hp depends on H1 ∈ G, which can be seen as a
parameter in the definition of LsH ,H , but hp does not depend on C. The re-
sulting VPAKE protocol can thus still proceed in one round. The smooth-
ness of our SPHF construction for LsH ,H can be proven as follows. Let π ←
PWDtoINT(pw), H2 = Hπ

1 hsH , with H1 = gsP
1 for some unknown sP , and (�, C =

(u1, u2, e, v)) �∈ LsH ,H , i.e. C ← Enc�(pk, gπ∗
1 ; r) for some π∗ �= π. Assuming the

second pre-image resistance of Π it follows that (u1, uξ
1, u2, e/(H2h−sH), v) �=

(gr
1, grξ

1 , gr
2, gπ−sP π

1 hr, (cdξ)r) with overwhelming probability for all (r, rξ) ∈
Z2

p. Since (hp1, hp2, hp3) are linearly independent the resulting hash value h =
uη1

1 uξη2
1 uθ

2[e/(H2h−sH)]μvν is uniformly distributed in G.
Our concrete VPAKE construction is illustrated in Figure 2. We assume that

C uses π ← PWDtoINT(pw) as its input and has already sent its login name id to
S who picked the corresponding tuple (id, H, sH) from its password database.
Note that C can also act as initiator and send its id as part of its message, in
which case S must act as a responder. Which SPHF algorithms HKGen, PKGen,
Hash, ProjHash are used by C and S is visible from the input language, either
LH or LsH ,H . By inspection one can see that if both C and S follow the protocol
and H used on the server side is a password hash of π used on the client side then
both parties compute the same (secret) group element K = K1 ·K2. Note that C
derives K1 using its own hashing key hk and received server’s CS ciphertext C′

that encrypts H2, whereas S derives K1 using client’s projection key hp, its own
C′ and r′. Similarly, S derives K2 using its own hashing key hk′ and received
client’s CS ciphertext C that encrypts gπ

1 , whereas C derives K2 using server’s
projection key hp′, its own C and r. Security of this VPAKE protocol follows
from the security of the generic scheme.

Zero-Knowledge Password Policy Checks and Verifier-Based PAKE 311

7 Conclusion

The proposed ZKPPC framework with additional password registration and
VPAKE protocols presented in this work can be used to securely register pass-
words chosen by clients at remote servers while simultaneously achieving the
following properties: (1) registered passwords are never disclosed to the server
and the only way for the server or any attacker who compromises the server to
recover passwords is by mounting an expensive offline dictionary attack; (2) each
registered password provably satisfies server’s password policy, which is ensured
through the use of homomorphic commitments and appropriate set membership
proofs; (3) servers can authenticate clients those passwords were registered using
the ZKPPC framework by means of efficient VPAKE protocols. We believe that
the concept underlying the ZKPPC framework and its current realization for
ASCII-based passwords and policies can solve problems related to the inappro-
priate handling of user passwords that frequently occurs in the real world.

Future work may include extension of the ZKPPC concept towards Two-Server
PAKE (2PAKE) protocols, e.g. [23], where the client password is secretly shared
amongst two servers from which at most one is assumed to be compromisable.
Under this security assumption 2PAKE servers fully eliminate threats from of-
fline dictionary attacks. However, blind registration of policy-conform passwords
for 2PAKE protocols under this security assumption is a challenge.

Acknowledgements. This research was supported by the German Science
Foundation (DFG) through the project PRIMAKE (MA 4957).

References
1. Ur, B., Kelley, P.G., Komanduri, S., Lee, J., Maass, M., Mazurek, M.L., Passaro,

T., Shay, R., Vidas, T., Bauer, L., Christin, N., Cranor, L.F.: How Does Your
Password Measure Up? The Effect of Strength Meters on Password Creation. In:
USENIX Security 2012, p. 5. USENIX Association (2012)

2. Inglesant, P., Sasse, M.A.: The true cost of unusable password policies: password
use in the wild. In: CHI, pp. 383–392. ACM (2010)

3. Kaliski, B.: PKCS #5: Password-Based Cryptography Specification Version 2.0.
RFC 2898 (Informational) (September 2000)

4. Turan, M.S., Barker, E., Burr, W., Chen, L.: Recommendation for password-based
key derivation, pp. 800–132. NIST Special Publication (2010)

5. Provos, N., Mazières, D.: A Future-Adaptable Password Scheme. In: USENIX An-
nual Technical Conference, FREENIX Track, pp. 81–91 (1999)

6. Reuters: Trove of Adobe user data found on Web after breach: secu-
rity firm (2014), http://www.reuters.com/article/2013/11/07/us-adobe-cyber
attack-idUSBRE9A61D220131107 (accessed: April 01, 2014)

7. Cubrilovic, N.: RockYou Hack: From Bad To Worse (2014),
http://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-
facebook-passwords/ (accessed: April 01, 2014)

8. Reuters, T.: Microsoft India store down after hackers take user data (2014),
http://ca.reuters.com/article/technologyNews/idCATRE81C0E120120213
(accessed: April 01, 2014)

http://www.reuters.com/article/2013/11/07/us-adobe-cyberattack-idUSBRE9A61D220131107
http://www.reuters.com/article/2013/11/07/us-adobe-cyberattack-idUSBRE9A61D220131107
http://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
http://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
http://ca.reuters.com/article/technologyNews/idCATRE81C0E120120213

312 F. Kiefer and M. Manulis

9. Goodin, D.: Hack of Cupid Media dating website exposes 42 million plain-
text passwords (2014), http://arstechnica.com/security/2013/11/hack-of-
cupid-media-dating-website-exposes-42-million-plaintext-passwords/ (ac-
cessed: April 01, 2014)

10. Bellovin, S.M., Merritt, M.: Encrypted Key Exchange: Password-Based Protocols
Secure Against Dictionary Attacks. In: IEEE S&P 1992, pp. 72–84. IEEE CS (1992)

11. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

12. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally Compos-
able Password-Based Key Exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005)

13. Pointcheval, D.: Password-Based Authenticated Key Exchange. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 390–397.
Springer, Heidelberg (2012)

14. Bellovin, S.M., Merritt, M.: Augmented Encrypted Key Exchange: A Password-
Based Protocol Secure against Dictionary Attacks and Password File Compromise.
In: ACM CCS 1993, pp. 244–250. ACM (1993)

15. Gentry, C., MacKenzie, P.D., Ramzan, Z.: A Method for Making Password-Based
Key Exchange Resilient to Server Compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006)

16. Benhamouda, F., Pointcheval, D.: Verifier-Based Password-Authenticated Key Ex-
change: New Models and Constructions. IACR Cryptology ePrint Archive 2013,
833 (2013)

17. Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology - CRYPTO 1991. LNCS,
vol. 576, pp. 129–140. Springer, Heidelberg (1992)

18. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

19. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
smooth projective hash functions and one-round authenticated key exchange. Cryp-
tology ePrint Archive, Report 2013/034 (2013), http://eprint.iacr.org/

20. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient Protocols for Set Membership
and Range Proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008)

21. Cramer, R., Damgård, I., MacKenzie, P.D.: Efficient Zero-Knowledge Proofs of
Knowledge Without Intractability Assumptions. In: Imai, H., Zheng, Y. (eds.)
PKC 2000. LNCS, vol. 1751, pp. 354–373. Springer, Heidelberg (2000)

22. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identifica-
tion and Signature Problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology -
CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

23. Kiefer, F., Manulis, M.: Distributed Smooth Projective Hashing and Its Appli-
cation to Two-Server Password Authenticated Key Exchange. In: Boureanu, I.,
Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 199–216.
Springer, Heidelberg (2014)

http://arstechnica.com/security/2013/11/hack-of-cupid-media-dating-website-exposes-42-million-plaintext-passwords/
http://arstechnica.com/security/2013/11/hack-of-cupid-media-dating-website-exposes-42-million-plaintext-passwords/
http://arstechnica.com/security/2013/11/hack-of-cupid-media-dating-website-exposes-42-million-plaintext-passwords/
http://eprint.iacr.org/

Bitcoin Transaction Malleability and MtGox

Christian Decker and Roger Wattenhofer

ETH Zurich, Switzerland
cdecker@tik.ee.ethz.ch, wattenhofer@ethz.ch

Abstract. In Bitcoin, transaction malleability describes the fact that
the signatures that prove the ownership of bitcoins being transferred in
a transaction do not provide any integrity guarantee for the signatures
themselves. This allows an attacker to mount a malleability attack in
which it intercepts, modifies, and rebroadcasts a transaction, causing
the transaction issuer to believe that the original transaction was not
confirmed. In February 2014 MtGox, once the largest Bitcoin exchange,
closed and filed for bankruptcy claiming that attackers used malleability
attacks to drain its accounts. In this work we use traces of the Bitcoin
network for over a year preceding the filing to show that, while the prob-
lem is real, there was no widespread use of malleability attacks before
the closure of MtGox.

Keywords: Bitcoin, Transaction, Signature, Malleability, MtGox, Theft.

1 Introduction

In recent years Bitcoin [1] has gone from a little experiment by tech enthusiasts to
a global phenomenon. The cryptocurrency is seeing a rapid increase in adoption
as well as in value. Bitcoin is inching closer to the stated goal of creating a truly
decentralized global currency that facilitates international trade.

A major contribution of the success that Bitcoin is having today has to be at-
tributed to the emergence of Bitcoin exchanges. A Bitcoin exchange is a platform
that facilitates buying and selling bitcoins for fiat money like US dollars. This
enables a larger public to come in contact with bitcoins, increasing their value
as a means to pay for goods and services. Exchanges also provide the ground
truth for the value of bitcoins by publishing their trade book and allowing mar-
ket dynamics to find a price for the traded bitcoins. Finally, much of the media
attention focuses on the rapid gain in value that these services have enabled.

However, centralized exchanges are also potential points of failure, in a system
that is otherwise completely decentralized. Several high value thefts from these
services have made the headlines, never failing to predict the impending doom
of Bitcoin as a whole. Additionally a small and mostly sentiment driven market,
combined with a quick and easy way to buy and sell bitcoins, facilitates flash
crashes and rapid rallies for no apparent reason.

The first, and for a long time largest, Bitcoin exchange was MtGox. Founded
in 2010 it was a first stop for many early adopters. With the creation of other

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 313–326, 2014.
c© Springer International Publishing Switzerland 2014

314 C. Decker and R. Wattenhofer

exchanges its monopoly slowly faded, but in February 2014 it still accounted for
close to 70% of all bitcoins ever traded. In February 2014 MtGox had to file for
bankruptcy and suspend operations following the loss of over 500 million USD
worth of bitcoins owned by its customers.

As the principal cause for the loss, MtGox cited a problem in the Bitcoin pro-
tocol: transaction malleability. A user could request a withdrawal from MtGox to
a Bitcoin address. The exchange would then create a corresponding transaction
and publish it to the Bitcoin network. Due to the way MtGox tracked confirma-
tion of these transactions it could be tricked, exploiting transaction malleability,
into believing the transaction to have failed even though it was later confirmed
by the network. MtGox would then credit the amount back to the user’s account.
Effectively the user would have doubled the withdrawn bitcoins, once from the
withdrawal and once on its account on MtGox.

In this work we investigate two fundamental questions: Is transaction mal-
leability being exploited? And is the claim that it has been used to bring down
MtGox plausible?

2 Transaction Malleability

The Bitcoin network is a distributed network of computer nodes controlled by a
multitude of owners. They collectively implement a replicated ledger that tracks
the address balances of all users. Each user may create an arbitrary number of
addresses that can be used to send and receive bitcoins. An address is derived
from an ECDSA key pair that is later used to prove ownership of the bitcoins
associated with that address.

The only operation allowed to modify address balances are transactions. A
transaction is a signed data structure that on the one hand claims some bitcoins
associated with a sending address and on the other hand reassigns them to
receiving addresses. Transactions are identified by the SHA256 hash of their
serialized representation. A transaction consists of one or more inputs and an
ordered list of one or more outputs. An input is used to specify which bitcoins
will be transferred, while an output specifies the address that should be credited
with the bitcoins being transferred. Formally, an output is a tuple comprising the
value that is to be transferred and a claiming condition, expressed in a simple
scripting language. An input includes the hash of a previous transaction, an
index, and a claiming script. The hash and index form a reference that uniquely
identifies the output to be claimed and the claiming script proves that the user
creating the transaction is indeed the owner of the bitcoins being claimed.

2.1 Bitcoin Scripts

The scripting language is a, purposefully non-Turing complete, stack-based lan-
guage that uses single byte opcodes. The use of the scripting language to set up
both the claiming conditions and the claiming scripts allows the creation of com-
plex scenarios for the transfer of bitcoins. For example, it is possible to create

Bitcoin Transaction Malleability and MtGox 315

multi-signature addresses that require m-of-n signatures to spend the associated
bitcoins for arbitration purposes. However, the vast majority of transactions use
standard scripts that set up a claiming condition requiring the claiming script to
provide a public key matching the address and a valid signature of the current
transaction matching the public key. For this reason the standard claiming script
is generally referred to as scriptSig (a script encoding a signature), whereas the
standard claiming condition is referred to as scriptPubKey (a script requiring a
public key and a signature). Figure 1 shows the structure of the standard claim-
ing condition (scriptPubKey) as well as the standard claiming script (scriptSig).

Of particular interest in this work are the OP PUSHDATA operations which
specify a number of following bytes to be pushed as a string on the stack. De-
pending on the length of the string one of several possible flavors may be used.
The simplest is a single byte with value between 0x00 and 0x4b, also called
OP 0 which simply encodes the length of the string in itself. Additionally, three
other operations allow pushing data on the stack, namely OP PUSHDATA1,
OP PUSHDATA2 and OP PUSHDATA4, each followed by 1, 2 or 4 bytes, respec-
tively, encoding a little endian number of bytes to be read and pushed on the stack.

In order to verify the validity of a transaction t1 claiming an output of a
previous transaction t0 the scriptSig of t1 and the scriptPubKey specified in t0
are executed back to back, without clearing the stack in between. The scriptSig
of t1 pushes the signature and the public key on the stack. The scriptPub-
Key of t0 then duplicates the public key (OP DUP) and replaces the first copy
with its RIPEMD160 hash (OP HASH160), this 20 byte derivative of the pub-
lic key is also encoded in the address. The address from the scriptPubKey is
then pushed on the stack and the two top elements are then tested for equal-
ity (OP EQUALVERIFY). If the hash of the public key and the expected hash
match, the script continues, otherwise execution is aborted. Finally, the two el-
ements remaining on the stack, i.e., the signature and the public key, are used
to verify that the signature signs t1 (OP CHECKSIG).

Listing 1.1. scriptPubKey

OP DUP
OP HASH160
OP PUSHDATA∗
<pubKeyHash>
OP EQUALVERIFY
OP CHECKSIG

Listing 1.2. scriptSig

OPPUSHDATA∗
<s i g>
OPPUSHDATA∗
<pubKey>

Fig. 1. The standard claiming condition and claiming script as used by simple trans-
actions transferring bitcoins to an address backed by a single public key

Notice that, although the scriptSigs are attached to the inputs of the trans-
action, they are not yet known at the time the signature is created. In fact a
signature may not sign any data structure containing itself as this would cre-
ate a circular dependency. For this reason all the claiming scripts are set to a

316 C. Decker and R. Wattenhofer

script consisting only of a single OP 0 that pushes an empty string on the stack.
The user signing the transaction then iterates through the inputs, temporarily
replaces the scriptSig field with the corresponding scriptPubKey1 from the ref-
erenced output, and creates a signature for the resulting serialized transaction.
The signatures are then collected and inserted at their respective positions before
broadcasting the transaction to the network.

The fact that the integrity of the scriptSig cannot be verified by the sig-
nature is the source for transaction malleability: the claiming script may be
encoded in several different ways that do not directly invalidate the signature
itself. A simple example replaces the OP 0 that pushes the public key on the
stack with OP PUSHDATA2 followed by the original length. The claiming script
is changed from 0x48<sig>41<pubKey> to 0x4D4800<sig>4D4100<pubKey>.
The encoded signature is valid in both cases but the hash identifying the trans-
action is different.

Besides these changes in the way pushes are encoded, there are numerous
sources of malleability in the claiming script. A Bitcoin Improvement Proposal
(BIP) by Wuille [2] identifies the following possible ways to modify the signature
and therefore exploit malleability:

1. ECDSA signature malleability: signatures describe points on an elliptic
curve. Starting from a signature it is trivial to mathematically derive a sec-
ond set of parameters encoding the same point on the elliptic curve;

2. Non-DER encoded ECDSA signatures: the cryptographic library used by
the Bitcoin Core client, OpenSSL, accepts a multitude of formats besides
the standardized DER (Distinguished Encoding Rules) encoding;

3. Extra data pushes: a scriptPubKey may push additional data at the begin-
ning of the script. These are not consumed by the corresponding claiming
condition and are left on the stack after script termination;

4. The signature and public key may result from a more complex script that
does not directly push them on the stack, but calculates them on the fly, e.g.,
concatenating two halves of a public key that have been pushed individually;

5. Non-minimal encoding of push operations: as mentioned before there are
several options to specify identical pushes of data on the stack;

6. Zero-padded number pushes: excessive padding of strings that are interpreted
as numbers;

7. Data ignored by scripts: if data pushed on the stack is ignored by the script-
PubKey, e.g., if the scriptPubKey contains an OP DROP, the corresponding
push in the scriptSig is ignored;

8. Sighash flags can be used to ignore certain parts of a script when signing;

9. Any user with access to the private key may generate an arbitrary number
of valid signatures as the ECDSA signing process uses a random number
generator to create signatures;

1 The use of the scriptPubKey in the signed data as placeholder for the scriptSig is
likely to avoid collisions.

Bitcoin Transaction Malleability and MtGox 317

2.2 Malleability Attacks

One of the problems that Bitcoin sets out to solve is the problem of double
spending. If an output is claimed by two or more transactions, these transactions
are said to conflict, since only one of them may be valid. A double spending attack
is the intentional creation of two conflicting transactions that attempt to spend
the same funds in order to defraud a third party.

Research so far has concentrated on a classical version of the double spend-
ing attack. An attacker would create two transactions: (1) a transaction that
transfers some of its funds once to a vendor accepting bitcoins and (2) a trans-
action that transfers those same funds back to itself. The goal would then be
to convince the vendor that it received the funds, triggering a transfer of goods
or services from the vendor to the attacker, and ensuring that the transaction
returning the funds to the attacker is later confirmed. This would defraud the
vendor as the transfer to the vendor would not be confirmed, yet the attacker
received the goods or services.

A malleability attack, while a variant of the double spending attack, is different
from the above. The attacker no longer is the party issuing the transaction,
instead it is the receiving party. The attacker would cause the victim to create a
transaction that transfers some funds to an address controlled by the attacker.
The attacker then waits for the transaction to be broadcast in the network.
Once the attacker has received a copy of the transaction, the transaction is then
modified using one of the above ways to alter the signature without invalidating
it. The modification results in a different transaction identification hash. The
modified transaction is then also broadcast in the network. Either of the two
transactions may later be confirmed.

A malleability attack is said to be successful if the modified version of the
transaction is later confirmed. The mechanics of how transactions are confirmed
are complex and are out of scope for this work. For our purposes it suffices to
say that the probability of a malleability attack to be successful depends on the
distribution of nodes in the Bitcoin network first seeing either of the transactions
(cf. [3–5]). So far the attack has not caused any damage to the victim. To be
exploitable the victim also has to rely solely on the transaction identity hash to
track and verify its account balance. Should a malleability attack be successful
the victim will only see that the transaction it issued has not been confirmed,
crediting the amount to the attacker or attempting to send another transaction
at a later time. The attacker would have effectively doubled the bitcoins the
victim sent it.

It is worth noting that the reference client (Bitcoin Core) is not suscepti-
ble to this attack as it tracks the unspent transaction output set by applying
all confirmed transactions to it, rather than inferring only from transactions it
issued.

318 C. Decker and R. Wattenhofer

3 MtGox Incident Timeline

In this section we briefly describe the timeline of the incident that eventually
led to the filing for bankruptcy of MtGox. The timeline is reconstructed from a
series of press release by MtGox as well as the official filings and legal documents
following the closure.

Following several months of problems with Bitcoin withdrawals from users,
MtGox announced [6] on February 7 that it would suspend bitcoin withdrawals
altogether. The main problem with withdrawals was that the associated Bitcoin
transactions would not be confirmed. After this press release it was still possible
to trade bitcoins on MtGox, but it was not possible to withdraw any bitcoins
from the exchange. Specifically [6] does not mention transaction malleability.

In order to trade on MtGox, users had transferred bitcoins and US dollars
to accounts owned by MtGox. Each user would have a virtual account that is
credited with the transferred amounts at MtGox. The withdrawal stop therefore
denied users access to their own bitcoins. While fiat currency was still with-
drawable, such a withdrawal involved a long process that would sometimes fail
altogether.

The first press release was followed by a second press release [7] on February
10, 2014. This press release claims that the problem for the non-confirming
withdrawal transactions has been identified and names transaction malleability
as the sole cause:

“Addressing Transaction Malleability: MtGox has detected unusual ac-
tivity on its Bitcoin wallets and performed investigations during the past
weeks. This confirmed the presence of transactions which need to be ex-
amined more closely.
Non-technical Explanation: A bug in the bitcoin software makes it possi-
ble for someone to use the Bitcoin network to alter transaction details to
make it seem like a sending of bitcoins to a bitcoin wallet did not occur
when in fact it did occur. Since the transaction appears as if it has not
proceeded correctly, the bitcoins may be resent. MtGox is working with
the Bitcoin core development team and others to mitigate this issue.”

Allegedly a user of MtGox would request a withdrawal and listen for the
resulting transaction. The transaction would then be intercepted and replaced
by a modified version that would then race with the original transaction to be
confirmed. Should the original transaction be confirmed, the user would receive
its balance only once, but not lose any bitcoins by doing so. Should the modified
transaction be confirmed, then the user would receive the bitcoins twice: once
via the modified withdrawal transaction and a second time when MtGox realized
that the original withdrawal transaction would not confirm and credit the users
account. Implicitly in this press release MtGox admits to using a custom client
that tracks transaction validity only via its hash, hence being vulnerable to the
transaction malleability attack.

Two more press releases followed on February 17 and February 20, both claim-
ing that the withdrawals would resume shortly and that a solution had been

Bitcoin Transaction Malleability and MtGox 319

found that would eliminate the vulnerability to malleability attacks. On Febru-
ary 23 the website of MtGox returned only a blank page, without any further
explanation, resulting in a trading halt and the complete disappearance of Mt-
Gox. Finally on February 28 MtGox announced during a press conference that
it would be filing for bankruptcy in Japan and in the USA [8, 9].

4 Measurements

Due to the nature of double spending attacks, they may only be detected while
participating in the network. As soon as one of the two conflicting transactions is
considered to be confirmed the nodes will drop all other conflicting transactions,
losing all information about the double spending attack. Malleability attacks
being a subset of double spending attacks suffer from the same limitation.

We created specialized nodes that would trace and dump all transactions and
blocks from the Bitcoin network. These include all double spending attacks that
have been forwarded to any of the peers our nodes connected to. Our collection
of transactions started in January 2013. As such we are unable to reproduce
any attacks before January 2013. The following observations therefore do not
consider attacks that may have happened before our collection started.

Our nodes were instructed to keep connection pools of 1,000 connections open
to peers in the Bitcoin network. On average we connected to 992 peers, which
at the time of writing is approximately 20% of the reachable nodes. Accord-
ing to Bamert et al. [3] the probability of detecting a double spending attack
quickly converges to 1 as the number of sampled peers increases. We therefore
feel justified in assuming that the transactions collected during the measure-
ments faithfully reflect the double spending attacks in the network during the
same period.

4.1 Global Analysis

Given the set of all transactions, the first task is to extract all potential double
spend attacks. In general double spending attacks can be identified by associ-
ating a transaction with each output that it claims. Should there be more than
one transaction associated with the same output the transactions conflict. The
malleability attack being a specialized case of the double spend attack could also
be identified by this generic procedure, however we opted for a simpler process.
Removing the signature script from a transaction results in the signed part of
the transaction, forcing all malleability attacks to produce the same unique key.
The unique key is then used to group transactions together into conflict sets.

During the measurement period a total of 35,202 conflict sets were identified,
each evidence of a malleability attack. Out of these conflict sets 29,139 contained
a transaction that would later be confirmed by a block. The remaining 6,063
transactions were either invalid because they claimed non-existing outputs, had
incorrect signatures, or they were part of a further double spending.

The conflict set value is defined as the number of bitcoins transferred by
any one transaction in the conflict set. The outputs of the transactions in a

320 C. Decker and R. Wattenhofer

conflict set are identical, since any change to them would require a new signature.
In particular the value of outputs may not be changed. Each transaction in a
conflict set therefore transfers an identical amount of bitcoins. Summing the
value of all conflict sets results in a total of 302,700 bitcoins that were involved
in malleability attacks.

As mentioned in Section 2.1, there are a multitude of ways to use the malleabil-
ity in the signature encoding to mount a malleability attack. The most prominent
type of modification was replacing the single byte OP 0 with OP PUSHDATA2
which then encodes the length of the data to push on the stack with 2 bytes.
The resulting signature script would be 4 bytes longer, because two strings are
usually pushed on the stack, but would still encode the same DER encoded sig-
nature and the same public key, hence still be valid. A total of 28,595 out of the
29,139 confirmed attacks had this type of modifications. For the remaining 544
conflict sets we were unable to identify the original transactions. All transactions
in these conflict sets had genuine signatures with the correct opcodes and did
not encode the same signature. We therefore believe these transactions to be
the result of users signing raw transactions multiple times, e.g., for development
purposes.

In order for a malleability attack to be exploitable two conditions have to
be fulfilled: (a) the modified transaction has to be later confirmed and (b) the
system issuing the transaction must rely solely on the transaction’s original hash
to track its confirmation. The first condition can be easily reconstructed from
the network trace and the Bitcoin blockchain since only one of the transactions
will be included in the blockchain. The second condition is not detectable in
our traces since it depends on the implementation of the issuing system. In
particular, it is not possible to determine whether two payments with the same
value to the same address were intended as two separate payments or whether
an automated system issued the second one believing the first to be invalid.

We call a malleability attack successful if it resulted in the modified trans-
action to be later confirmed in a block, i.e., when condition (a) holds. From
the data derived from the attack classification we can measure the rate of suc-
cessful malleability attacks. Out of the 28,595 malleability attacks that used an
OP PUSHDATA2 instead of the default OP 0 only 5,670 were successful, i.e.,
19.46% of modified transactions were later confirmed. Considering the value in
malleable transactions the success rate is comparable with 21.36%. This reduces
the total profit of the successful attacks from 302,700 to 64,564. The strong
bias towards the original transaction is explained by the fact that the proba-
bility of being confirmed depends on the distribution of the transaction in the
network [3]. During a malleability attack the attacker listens for an incoming
transaction that match its address, modifies it and redistributes it. In the mean-
time however the original transaction has been further forwarded in the network
and the modified transaction is not forwarded by nodes seeing the original trans-
action. The attacker must connect to a large sample of nodes in the network for
two reasons: (a) intercept the original transaction as soon as possible and (b)

Bitcoin Transaction Malleability and MtGox 321

Fig. 2. Malleability attacks during period 1, before the press release blaming transac-
tion malleability as the sole cause of losses

compensate the head start that the original transaction has compared to the
modified transaction.

So far we assumed that the conflict sets were a direct result of a targeted
attack by an attacker against a service. There are however other causes for this
kind of conflict that should not go unmentioned. An automated system may
inadvertently create, sign a transaction and broadcast a transaction multiple
times. Due to a random parameter in the signing process the system would
produce a different signature each time, causing the conflict that we detected.
This appears to be the case with transactions having conflict set cardinality
larger than 2, that would often not be confirmed.

4.2 The MtGox Incident

Returning to the specific case of the MtGox incident of February 2014, that
eventually lead to the closure and the bankruptcy filing later that same month.
In the press release of February 10, the transaction malleability bug was explicitly
named as the root cause of the loss. The loss is later detailed as amounting to
over 850,000 bitcoins, of which 750,000 bitcoins were customer owned bitcoins
that were managed by MtGox. At the time of the first press release bitcoins were
trading at 827 US Dollars per bitcoin,2 resulting in a total value of lost bitcoins
of 620 million US Dollars.

Assuming malleability attacks have indeed been used to defraud MtGox, then
we should be able to verify the claim by finding the transactions used for the
attack in our dataset. The above mentioned total amount of 302,700 bitcoins
involved in malleability attacks already disproves the existence of such a large
scale attack. However, it could well be that malleability attacks contributed
considerably in the declared losses.

Reconstructing the timeline of the attacks from the announcements made by
MtGox we identify 3 time periods:

2 Exchange rate taken as the open value on MtGox of February 7, 2014.

322 C. Decker and R. Wattenhofer

– Period 1 (January 2013 — February 7, 2014): over a year of measurements
until the closure of withdrawals from MtGox;

– Period 2 (February 8 — February 9, 2014): withdrawals are stopped but no
details about the attack known to the public;

– Period 3 (February 10 — February 28): time following the press release
blaming transaction malleability as the root cause of the missing bitcoins
until MtGox filed for bankruptcy.

Malleability attacks in period 2 and 3 could not contribute to the losses de-
clared by MtGox since they happened after withdrawals have been stopped.
Figure 2 visualizes both the number of bitcoins involved in malleability attacks
as well as the number of attacks during period 1. During this period a total of
421 conflict sets were identified for a total value of 1,811.58 bitcoins involved
in these attacks. In combination with the above mentioned success rate of mal-
leability attacks we conclude that overall malleability attacks did not have any
substantial influence in the loss of bitcoins incurred by MtGox.

Fig. 3. Cumulative graph of the number and value of malleability attacks during the
time of the press releases

During period 2, we gathered 1,062 conflict sets, totalling 5,470 bitcoins. A
noticeable increase of attacks at 17:00 UTC on February 9, from 0.15 attacks
per hour to 132 attacks per hour. While we do not have any information about
the time the second press release has been published, the measured increase in
attacks at 17:00 UTC and the date on the press release, hints at a time between
0:00 and 2:00 JST. The sudden increase suggests that immediately following the
press release other attackers started imitating the attack, attempting to exploit
the same weakness that had allegedly been used against MtGox.

After the second press release, in period 3, there is a sudden spike in activity.
Between February 10 and 11 we identified 25,752 individual attacks totalling
286,076 bitcoins, two orders of magnitude larger than all attacks from period 1
combined. A second, smaller, wave of attacks starts after February 15, with a

Bitcoin Transaction Malleability and MtGox 323

total of 9,193 bitcoins. The attacks have since calmed, returning to levels compa-
rable to those observed in period 1, before the press releases. Figure 3 summarizes
the situation plotting the cumulative value and number of malleability attacks
in February 2014, i.e., from the end of period 1 to period 3.

The strong correlation between the press releases and the ensuing attacks
attempting to exploit the same weakness is a strong indicator that the attacks
were indeed triggered by the press releases.

Assuming MtGox had disabled withdrawals like they stated in the first press
release, these attacks can not have been aimed at MtGox. The attacks therefore
where either attempts to investigate transaction malleability or they were aimed
at other businesses attempting to imitate the purveyed attack for personal gain.
The sheer amount of bitcoins involved in malleability attacks would suggest that
the latter motive was prevalent.

It remains questionable whether other services have been informed by MtGox
in time to brace for the sudden increase in malleability attacks. Should this
not be the case then the press release may have harmed other businesses by
triggering imitators to attack them.

4.3 Beyond Our Data

In the previous subsections we presented an analysis of malleability attacks based
on data we collected for over a year preceding the bankruptcy filing by MtGox.
We have limited the analysis to the timespan we have first-hand data, starting
January 2013. Clearly attacks may have happened even before our measurements
started. However, in our opinion, it is unlikely that transaction malleability was
exploited on a large scale before our measurements, and not during our measure-
ments. After all, why would an attacker, having found such a lucrative attack
before 2013, suddenly stop exploiting it? It seems more likely that an attacker
would use this risk-free and successful attack more often and with larger amounts
of bitcoins!

While it is not possible to detect all malleability attacks without participating
in the network at the time they occur, we can estimate the number of attacks
preceding our measurements, just by reading the blockchain. By far the most
common modification during our measurements was the use of non-minimal push
opcodes, over 98% out of all attacks use this modification. Successful attacks,
i.e., those that were eventually confirmed, can be found by searching for this
modification in the set of all confirmed transactions. Given the success rate and
the number of successful attacks we can extrapolate the number of attacks that
were attempted before our measurements began.

By inspecting all confirmed transactions for signature scripts that do not use
minimal push opcodes we found a total of 48 transactions, involving a total
of 33.92 bitcoins, before our measurements started, i.e., in the period 2009 –
2012. Assuming that the success rate of 21.34% did not change significantly, we
can extrapolate a total of less than 160 bitcoins involved in a few hundreds of
attempted malleability attacks preceding our measurements. This is equivalent
to less than 10% of the attacks identified during our measurements.

324 C. Decker and R. Wattenhofer

Besides the temporal restriction of our study, we also restricted ourselves
to one specific attack, made possible by transaction malleability. Malleability
attacks as defined in Section 2.2 require that both the original and the modified
transaction are broadcast in the Bitcoin network. This reflects the description
of the attack in the MtGox press release of February 10, 2014 [7].

In addition to broadcasting the transactions in the network, MtGox also pub-
lished withdrawal transactions on their website. This may have resulted in a
different attack, only partially covered by this work. MtGox sometimes created
invalid transactions with non-canonical signatures which would not be forwarded
by newer Bitcoin clients. An attacker could retrieve the invalid transactions, cor-
rect the signatures and release the corrected transactions into the network.

We were able to collect these invalid transactions until October 2013, but
not after that. The collected invalid transactions were considered when creating
the conflict sets and figures in the analysis. It is however possible that some
transactions did not even reach the Bitcoin network, and that some different
type of attack might have played a role in MtGox’ loss. We would like to stress
that this paper does focus on malleability attacks only, as defined by MtGox and
in this paper. Other types of attacks are outside the scope of this paper.

Finally, it is worth noting that the attacks described in this work could have
been countered by adhering to basic best practices. Failed transactions should
not be automatically retried, since a failure to confirm is indicative of other
errors, as would have been the case with non-canonical signatures or malleability
attacks. Should automatic retrial be desired, then the transaction issuer must
ensure that the same inputs are reused. By doing so the issuer ensures that the
funds are transferred at most once, even if an attacker may arbitrarily delay the
transaction or exploit transaction malleability to render the original transaction
unrecognizable.

5 Related Work

Transaction malleability has been known about since at least 2010, when it was
first documented. It has however received very little attention so far as it was
categorized as a low priority issue.

Andrychowicz et al. [10, 11] mention transaction malleability as a potential
problem in contracts and two party computations based on Bitcoin transactions.
These schemes can be used for example to implement a fair coin toss [12], auc-
tions or decentralized voting. Their method to eliminate transaction malleabil-
ity in their protocols resembles our construction of conflict sets, i.e., eliminating
malleable parts of the transaction in the hash calculation. However, they limit
their observations to advanced schemes for encoding contracts and two party
computations.

A related class of doublespending attacks, which we shall refer to as clas-
sical doublespending, has received far more attention. In this class of attacks
the transaction issuer creates two transactions to defraud the receiving party.
Karame et al. [5] first studied the problem of arising from fast transactions,

Bitcoin Transaction Malleability and MtGox 325

i.e., accepting non-confirmed transactions. Rosenfeld [13] showed that the suc-
cess probability of a doublespending attack can be further increased if coupled
with computational resources. Bamert et al. [3] later improved the security of
accepting fast payments by observing how transactions are propagated in the
network.

To the best of our knowledge this paper is the first publication describing
transaction malleability and the resulting malleability attack in detail.

6 Conclusion

The transaction malleability problem is real and should be considered when im-
plementing Bitcoin clients. However, while MtGox claimed to have lost 850,000
bitcoins due to malleability attacks, we merely observed a total of 302,000 bit-
coins ever being involved in malleability attacks. Of these, only 1,811 bitcoins
were in attacks before MtGox stopped users from withdrawing bitcoins. Even
more, 78.64% of these attacks were ineffective. As such, barely 386 bitcoins could
have been stolen using malleability attacks from MtGox or from other businesses.
Even if all of these attacks were targeted against MtGox, MtGox needs to explain
the whereabouts of 849,600 bitcoins.

References

1. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system,
https://bitcoin.org/bitcoin.pdf (Online; accessed March 26, 2014)

2. Wuille, P.: BIP 0062: Dealing with Malleability (2014),
https://github.com/bitcoin/bips (Online; accessed March 10, 2014)

3. Bamert, T., Decker, C., Elsen, L., Welten, S., Wattenhofer, R.: Have a snack, pay
with bitcoin. In: IEEE Internation Conference on Peer-to-Peer Computing (P2P),
Trento, Italy (2013)

4. Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In:
IEEE International Conference on Peer-to-Peer Computing (P2P), Trento, Italy
(September 2013)

5. Karame, G., Androulaki, E., Capkun, S.: Two Bitcoins at the Price of One? Double-
Spending Attacks on Fast Payments in Bitcoin. In: Proc. of Conference on Com-
puter and Communication Security (2012)

6. MtGox: Mtgox press release announcing the stop of withdrawals (2014),
https://www.mtgox.com/press_release_20140210.html

(Online; accessed February 10, 2014)

7. MtGox: Mtgox press release about transaction malleability (2014), https://www.
mtgox.com/press release 20140210.html (Online; accessed February 10, 2014)

8. MtGox: Announcement regarding an application for commencement of a prodedure
of civil rehabilitation, https://www.mtgox.com/img/pdf/20140228-
announcement eng.pdf (Online; accessed March 19)

9. MtGox: Announcement regarding the applicability of us bankruptcy code chapter
15, https://www.mtgox.com/img/pdf/20140314-announcement_chapter15.pdf

(Online; accessed March 19)

https://bitcoin.org/bitcoin.pdf
https://github.com/bitcoin/bips
https://www.mtgox.com/press_release_20140210.html
https://www.mtgox.com/press_release_20140210.html
https://www.mtgox.com/press_release_20140210.html
https://www.mtgox.com/img/pdf/20140228-announcement_eng.pdf
https://www.mtgox.com/img/pdf/20140228-announcement_eng.pdf
https://www.mtgox.com/img/pdf/20140314-announcement_chapter15.pdf

326 C. Decker and R. Wattenhofer

10. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: Fair two-party
computations via the bitcoin deposits. Technical report, Cryptology ePrint Archive
(2013)

11. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: How to deal
with malleability of bitcoin transactions. arXiv preprint arXiv:1312.3230 (2013)

12. Back, A., Bentov, I.: Note on fair coin toss via bitcoin. arXiv preprint
arXiv:1402.3698 (2014)

13. Rosenfeld, M.: Analysis of hashrate-based double spending (2012),
https://bitcoil.co.il/Doublespend.pdf (Online; accessed February 17, 2014)

https://bitcoil.co.il/Doublespend.pdf

Election Verifiability for Helios under Weaker Trust
Assumptions�

Véronique Cortier1, David Galindo1, Stéphane Glondu2, and Malika Izabachène1,3

1 LORIA - CNRS, France
2 INRIA Nancy Grand Est, France

3 École Polytechnique Féminine, France

Abstract. Most electronic voting schemes aim at providing verifiability: voters
should trust the result without having to rely on some authorities. Actually, even
a prominent voting system like Helios cannot fully achieve verifiability since a
dishonest bulletin board may add ballots. This problem is called ballot stuffing.

In this paper we give a definition of verifiability in the computational model
to account for a malicious bulletin board that may add ballots. Next, we provide a
generic construction that transforms a voting scheme that is verifiable against an
honest bulletin board and an honest registration authority (weak verifiability) into
a verifiable voting scheme under the weaker trust assumption that the registration
authority and the bulletin board are not simultaneously dishonest (strong verifi-
ability). This construction simply adds a registration authority that sends private
credentials to the voters, and publishes the corresponding public credentials.

We further provide simple and natural criteria that imply weak verifiability. As
an application of these criteria, we formally prove the latest variant of Helios by
Bernhard, Pereira and Warinschi weakly verifiable. By applying our generic con-
struction we obtain a Helios-like scheme that has ballot privacy and strong verifi-
ability (and thus prevents ballot stuffing). The resulting voting scheme, Helios-C,
retains the simplicity of Helios and has been implemented and tested.

Keywords: voting protocols, individual verifiability, universal verifiability, bal-
lot stuffing, ballot privacy, Helios.

1 Introduction

Ideally, a voting system should be both private and verifiable. Privacy ensures that no
one knows that a certain voter has voted in a particular way. Verifiability ensures that
voters should be able to check that, even in the presence of dishonest tallying authori-
ties, their ballots contribute to the outcome (individual verifiability) and that the the pub-
lished result corresponds to the intended votes of the voters (universal verifiability). One
leading voting system designed to achieve both privacy and verifiability is Helios [1],
based on a classical voting system proposed by Cramer, Gennaro and Schoenmakers [2]
with variants proposed by Benaloh [3]. Helios is an open-source voting system that has

� The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement n◦ 258865.

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 327–344, 2014.
c© Springer International Publishing Switzerland 2014

328 V. Cortier et al.

been used several times to run real-world elections, including the election of the pres-
ident of the University of Louvain-La-Neuve and the election of the 2010, 2011, and
2012 new board directors of the International Association for Cryptographic Research
(IACR) [4]. Helios has been shown to ensure ballot privacy for successively stronger
notions of privacy and more accurate implementations [5–7].

The remaining question is whether the result of an election run through Helios does
correspond to the votes cast by the voters. Put in other words, is Helios verifiable? Ac-
cording to Juels, Catalano and Jakobsson (JCJ) definition [8], Helios is individually
and universally verifiable1, although we are not aware of any proof of verifiability in
a computational model. In fact, Bernhard, Pereira and Warinschi (BPW) [7] showed
recently that existing Helios versions [9] are not verifiable due to the use of a weak ver-
sion of the Fiat-Shamir transformation in the non-interactive zero-knowledge proofs of
ballot well-formedness. They showed that when the standard version of Fiat-Shamir is
used, then Helios has ballot privacy but they do not prove verifiability. The forthcoming
Helios version 4.0 is planned to incorporate these changes [9].

Still, JCJ’s definition assumes the bulletin board to be honest: an attacker may cast
dishonest ballots on the behalf of dishonest voters but no extra ballots may be added
nor deleted. This means for example that the result of the election of the 2012 board of
the IACR can be trusted only under the assumption that the election server was neither
dishonest nor attacked, during the whole duration of the election. This is a rather unsat-
isfactory assumption, since adding a few extra ballots may easily change the outcome
of an election. In the case of Helios, this is mitigated by the fact that voters’ identities
are public. If the bulletin board adds ballots, it has to tell which voters are supposed
to have cast these ballots. Thus hopefully, these voters should notice that the server
wrongly cast ballots on their names and would complain. Such complaints are however
not guaranteed since absentees typically do not care much about the election. Things
may be even worse. In some countries (like France), whether someone voted or not is a
private information (that can be accessed only by voters of the same precinct, through
a rather heavy procedure). It is therefore forbidden to publicly reveal the identities of
the voters who cast a vote. Moreover, publishing voters identities compromises privacy
in the future: once the public key of the election will be broken (say in 20 years), ev-
eryone will learn the vote of each voter. A simple alternative consists in removing the
disclosure of voters’ identities. This variant of Helios remains perfectly practical and
of course still preserves ballot privacy. But it then becomes completely straightforward
for a corrupted bulletin board to add as many ballots as needed to change the legitimate
election result.

Election Verifiability under Weaker Trust Assumptions. We first provide an exten-
sion of the definition of individual and universal verifiability by Juels, Catalano and
Jakobsson [8], that accounts for ballot stuffing. Throughout the paper we will some-
times use verifiability to refer to individual and universal verifiability. Intuitively, a
voting scheme is verifiable if the result corresponds to the votes of

1 JCJ uses the terms correctness and verifiability, which we rename as individual and universal
verifiability and tally uniqueness respectively, as we think the latter terminology matches better
the e-voting literature and it is also more accurate.

Election Verifiability for Helios under Weaker Trust Assumptions 329

– all honest voters that have checked that their vote was cast correctly (in Helios, this
amounts into checking that the encrypted vote appears on the bulletin board);

– at most n valid votes where n is the number of corrupted voters (i.e. the attacker
may only use the corrupted voters to cast valid votes);

– a subset of the votes cast by honest voters that did not check their vote was cast
correctly (in practice, many voters do not perform any check).

As in [8], this definition requires the tally function to admit partial tallying (that is,
it is possible to compute the tally by blocks and then retrieve the final result). This is
satisfied by most election systems, notably those consisting on counting the number of
votes that every candidate from a given list received, and those whose outcome is the
multiset of cast votes.

Our first main contribution is a generic construction that transforms any verifiable
voting scheme that assumes both the registration authority and the bulletin board hon-
est, into a verifiable voting scheme under the weaker trust assumption that the regis-
tration authority and the bulletin board are not simultaneously dishonest. We show that
our transformation also turns ballot privacy and tally uniqueness (as defined in Section
3.3) w.r.t. honest bulletin board and registration authority, into ballot privacy and tally
uniqueness w.r.t. non simultaneously dishonest bulletin board and registration authority.
Throughout the paper we will sometimes use strong verifiability to refer to individual
and universal verifiability against non simultaneously dishonest bulletin board and reg-
istration authority.

We stress that verifiability cannot come without trust assumptions: the key issue re-
lies on the fact that some mechanism is necessary to authenticate voters, that is, to
make sure that Bob is not voting in the name of Alice. In Helios-like protocols, the bul-
letin board is the only authority that controls the right to vote. It may therefore easily
stuff itself, that is, it may easily add ballots. To control the bulletin board, it is neces-
sary to consider an additional authority. In our solution, a so-called registrar authority,
provides each voter with a private credential (actually a signing key) that has a public
part (the verification key). The set of all public credentials is public and, in particular,
known to the bulletin board. Then each voter simply signs his ballot with his private
credential. Note that the association between a public credential and the correspond-
ing voter’s identity does not need to be known and actually, should not be disclosed
to satisfy e.g. the French requirements regarding voting systems. It is also possible to
have the registration authority to generate the credentials off-line and to distribute them
using a non-digital channel, e.g. snail mail. This minimizes the risk of Internet-based
attacks against the registration authority. We have designed our solution having in mind
the guidelines set for the e-voting setup used for the expatriates at the 2012 French
legislative elections [10].

The advantage of our approach relies on its simplicity: the additional authority is
only responsible for generating and distributing the credentials of the voters. Once it
is done, it can erase these records. It consists on one offline layer added on top of the
existing voting protocol; therefore it needs not to be changed and its infrastructure is
kept. In particular, our solution does not require any additional server.

We have also considered the possibility of using anonymous credentials [11]. Our
preliminary conclusion discards a direct application in our transformation. This is due

330 V. Cortier et al.

to the fact that anonymous credentials allow its owners to unlinkably “show” the same
credential multiple times. In our case this property potentially allows a voter to vote
several times without being detected, and then verifiability cannot be achieved.

Criteria for Universal Verifiability. Since proving verifiability against cheating tally-
ing authorities, even assuming honest bulletin board and registration authority, may not
be easy, we provide a simple and natural criteria that implies verifiability. We show that
any correct and accurate voting protocol with tally uniqueness is universally verifiable
(w.r.t. an honest bulletin board). Correctness accounts for the natural property that the
tally of just honestly cast ballots should always yield the expected result (typically the
sum of the votes). Accuracy ensures that any ballot (possibly dishonest) that passes the
verification check (e.g. valid proof, well-formedness of the ballots) corresponds to a
valid vote. Tally uniqueness ensures that two different results cannot be announced for
a single election. Our criteria are satisfied in particular by Helios and we expect it to
be satisfied by many existing voting protocols. As a result we provide the first proof of
verifiability for the Helios-BPW voting scheme [7] in a computational model.

A Verifiable Helios-Like Scheme That Prevents Ballot Stuffing. By applying our
generic construction to Helios-BPW we obtain a voting scheme, that we name as Helios
with Credentials (Helios-C), which is verifiable against cheating tallying authorities
under the weak assumption that the bulletin board and the registration authority are not
simultaneously dishonest. Helios-C is ballot private if the tallying authority behaves
honestly. We have implemented Helios-C and used it in a mock election.

Related Work. To the best of our knowledge, the only proofs of verifiability for Helios
have been conducted in abstract models. Delaune, Kremer and Ryan [12] define indi-
vidual and universal verifiability in a symbolic model and prove that Helios satisfy both.
Like for all symbolic models, the cryptographic primitives are abstracted by terms and
are not analyzed. Küsters et al. have put forward quantitative measurements of verifia-
bility and accountability in [13–15] that take into account ballot stuffing. In particular,
[15] gives accountability measures on several abstractions of Helios. In contrast to [15],
our verifiability framework is less expressive, but on the contrary we prove verifiabil-
ity in the computational model. Verifiability proofs like those of [12] and [13–15] can
typically not detect flaws that on the cryptographic primitives, like those found by Bern-
hard, Pereira and Warinschi [7]. Groth [16] studies a generalized version of Helios in
the Universal Composability framework, but it does not address universal verifiability.

2 Syntax of a Voting System

Election systems typically involve several entities. For the sake of simplicity we con-
sider each entity to consist of only one individual but all of them could be thresholdized.

1. Election Administrator: Denoted by E , is responsible for setting up the election.
It publishes the identities id of eligible voters, the list of candidates and the result
function ρ of the election (typically counting the number of votes every candidate
received).

2. Registrar: Denoted byR, is responsible for distributing secret credentials to voters
and registering the corresponding public credentials.

Election Verifiability for Helios under Weaker Trust Assumptions 331

3. Trustee: Denoted by T , is in charge of tallying and publishing a final result.
4. Voters: The eligible voters id1, . . . , idτ are participating in the election.
5. Bulletin board manager: Denoted by B, is responsible for processing ballots and

storing valid ballots in the bulletin board BB.

2.1 Voting Algorithms

We continue by describing the syntax for an electronic voting protocol that we will
be using thorough the paper. The syntax below considers single-pass schemes, namely
systems where voters only have to post a single message in the board. A voting proto-
col is always relative to a family of result functions R = {ρτ}τ≥1 for τ ∈ N, where
ρτ : Vτ → R , R is the result space and V is the set of admissible votes. A voting proto-
col V = (Setup,Credential,Vote,Validate,Box,VerifyVote,Tally,Verify) consists of
eight algorithms whose syntax is as follows:

Setup(1λ) on input a security parameter 1λ, outputs an election public/secret pair
(pk, sk), where pk typically contains the public key of the election and/or a list of
credentials L. We assume pk to be an implicit input of the remaining algorithms.

Credential(1λ, id) on inputs a security parameter 1λ and an identifier id, outputs the
secret part of the credential uskid and its public credential upkid, where upkid is
added to the list L = {upkid}.

Vote(id, upk, usk, v) is used by voter id to cast his choice v ∈ V. It outputs a ballot
b, which may/may not include the identifier id or the public credential upk. The
ballot b is sent to the bulletin board through an authenticated channel. At some
point, the voter may reach a state where he/she considers his/her vote has been
counted, typically after having run the algorithm VerifyVote defined below. The
voter then set CheckedVoter(id, v, b) to true.

Validate(b) on input a ballot b returns 1 for well-formed ballots and 0 otherwise.
Box(BB, b) takes as inputs the bulletin board BB and a ballot b and outputs an up-

dated BB. Typically, this algorithm performs some checks on b with respect to the
contents of BB and, possibly, a local state st. Depending on these checks, BB and
st are updated; in any case BB remains unchanged if Validate(b) rejects (that is
returns 0). We say that BB is well-formed if Validate(b) = 1 for every b ∈ BB.

VerifyVote(BB, id, upk, usk, b) is a typically light algorithm intended to the voters, for
checking that their ballots will be included in the tally. On inputs the board BB, a
ballot b, and the voter’s identity and credentials id, usk, upk, returns 1 or 0.

Tally(BB, sk) takes as input the bulletin board BB and the secret key sk. After some
checks, it outputs the tally ρ, together with a proof of correct tabulationΠ . Possibly,
ρ =⊥, meaning the election has been declared invalid.

Verify(BB, ρ,Π) on inputs the bulletin board BB, and a pair (ρ,Π), checks whether
Π is a valid proof of correct tallying for ρ. It returns 1 if so; otherwise it returns 0.

The exact implementation of the algorithms of course depends on the voting protocol
under consideration. In Helios, the authenticated channel is instantiated by a login and
a password and we have upkid ∈ {∅, id, pid} depending on the variants. upkid = id
corresponds to the standard case where the identity of the voter is appended to the

332 V. Cortier et al.

ballot and displayed on the bulletin board. upkid = pid, where pid is a pseudonym on
identity id, corresponds to the case where only pseudonyms are displayed, to provide
more privacy to the voters. Finally, upkid = ∅ corresponds to the case where only
the raw ballot is displayed on the bulletin board. We provide in Section 5 a complete
description of the Helios protocol and our variant of it.

2.2 Correctness

Next we define the minimal requirement, called correctness, that any voting protocol
must satisfy. It simply requires that honest executions yield the expected outcome, that
is, honestly cast ballots are accepted to theBB (and pass the verification checks) and that,
in an honest setting, the tally procedure always yields the expected outcome (that is, the
result function). Let BB := {∅}. A voting scheme is correct if: (1) For i ∈ {1, . . . , τ},
it holds that Validate(bi) = 1, VerifyVote

(
Box(BB, bi), idi, upki, uski, bi

)
= 1, and

Box(BB, bi) = BB ∪ {bi}, where bi ← Vote(idi, upki, uski, vi) for some vi ∈
V; (2) Tally({b1, . . . , bτ}, sk) outputs (ρ(v1, . . . , vτ), Π); and (3) Verify({b1, . . . , bτ},
ρ(v1, . . . , vτ), Π) = 1. The above properties can be relaxed to hold only with over-
whelming probability.

3 Verifiability Definitions

In this section we give individual and universal verifiability definitions in which the
election administrator is honest, but trustee and voters are assumed to be dishonest.
As emphasized in Introduction, verifiability partly relies on the authentication of the
voters. There are various ways to authenticate voters, but in each case, it requires some
trust assumptions. Our minimal trust assumption is that the registrar and the bulletin
board are not simultaneously dishonest. We further define a property, that we call tally
uniqueness, where no party is assumed be honest (except for the election administrator).

Partial Tallying. We focus on voting protocols that admit partial tallying. This
property is specified by two natural requirements usually satisfied in most election
scenarios. Firstly, the result function ρ : Vτ → R for V must admit partial count-
ing, namely ρ(S1 ∪ S2) = ρ(S1) �R ρ(S2) for any two lists S1, S2 containing
sequences of elements v ∈ V and where �R : R × R → R is a commutative
operation. For example, the standard result function that counts the number of votes
per candidate admits partial counting. Secondly, the algorithm Tally must admit par-
tial tallying, i.e. let (ρ1, Π1) ← Tally(BB1, sk) and (ρ2, Π2) ← Tally(BB2, sk). Let
(ρ,Π) ← Tally(BB1 ∪ BB2, sk) with ρ different from invalid and BB1 and BB2 dis-
joint. Then, ρ = ρ1 �R ρ2, with overwhelming probability.

3.1 Strong Verifiability

We say that a voting scheme achieves strong verifiability if it has individual and univer-
sal verifiability under the sole trust assumption that the registrar and the bulletin board
are not simultaneously dishonest. More formally, a voting scheme has strong verifia-
bility if it has verifiability against a dishonest bulletin board and verifiability against a
dishonest registrar. These are defined below.

Election Verifiability for Helios under Weaker Trust Assumptions 333

Election Verifiability against a Dishonest Bulletin Board. This is an extension of
security property already addressed in [8, 17]. Our novelty is that we assume the bulletin
board to be possibly dishonest, and in particular it may stuff ballots in the name of voters
who did never cast a vote. Of course, a verifiable protocol should forbid or at least detect
such a malicious behavior.

We consider an adversary against individual and universal verifiability that is allowed
to corrupt trustee, users and bulletin board. Only the registration authority is honest.
More precisely, for the bulletin board, we let the adversary replace or delete any ballot.
The adversary only looses control on the bulletin board once the voting phase ends and
before the tallying starts. Indeed, at this point it is assumed that everyone has the same
view of the public BB.

Let L denote the set of public credentials, U the set of public/secret credentials pairs,
and CU the set of corrupted users. The adversary can query oraclesOreg,Ocorrupt and
Ovote. Let HVote contain triples (id, v, b) that have been output by Ovote (if voter id
voted multiple times, only the last ballot is retained); while the list Checked consists
of all pairs (id, v, b) ∈ HVote such that CheckedVoter(id, v, b) = 1, that is, Checked
corresponds to voters that have checked that their ballots will be counted (typically
running VerifyVote).

– Oreg(id): invokes algorithm Credential(λ, id), it returns upkid and keeps uskid
secret. It also updates the lists L = L∪ {upkid} and U = U ∪ {(id, upkid, uskid)}.

– Ocorrupt(id): firstly, checks if an entry (id, ∗, ∗) appears in U ; if not, stops. Else,
outputs (upkid, uskid) and updates CU = CU ∪ {(id, upkid)}.

– Ovote(id, v): if (id, ∗, ∗) /∈ U or (id, ∗) ∈ CU or v /∈ V, aborts; else returns
b = Vote(id, upkid, uskid, v) and replaces any previous entry (id, ∗, ∗) in HVote
with (id, v, b).

Any voting scheme should guarantee that the result output by Tally(BB, sk) counts
the actual votes cast by honest voters. In particular an adversary controlling a subset of
eligible voters, the trustee and the bulletin board, should not be able to alter the output of

Experiment Expverb
A,V(λ)

(1) (pk, sk) ← Setup(λ)

(2) (BB, ρ,Π) ← AOreg,Ocorrupt,Ovote

(3) if Verify(BB, ρ,Π) = 0 return 0

(4) if ρ =⊥ return 0

(5) if ∃ (idA1 , v
A
1 , ∗), . . . , (idAnA

, vAnA
, ∗) ∈ HVote\Checked

∃ vB1 , . . . , vBnB
∈ V s.t. 0 ≤ nB ≤ |CU|

s.t. ρ = ρ
(
{vEi }nE

i=1

)
�R ρ

(
{vAi }nA

i=1

)
�R ρ

(
{vBi }nB

i=1

)
return 0 else return 1

where Checked = {(idE1 , vE1 , bE1), . . . , (id
E
nE

, vEnE
, bEnE

)}

Fig. 1. Verifiability against a malicious bulletin board

334 V. Cortier et al.

the tally so that honest votes are not counted in ρ. More precisely, verifiability against a
dishonest board shall guarantee that ρ as output by the algorithm Tally actually counts:

1. votes cast by honest voters who checked that their ballot appeared in the bulletin
board (corresponds to {vEi }nE

i=1 in Figure 1);
2. a subset of the votes cast by honest voters who did not check this. Indeed it can not

be ensured that ρ counted their votes but it might still be the case that some of their
ballots were not deleted by the adversary (corresponds to {vAi }nA

i=1 in Figure 1).
3. For corrupted voters, it is only guaranteed that the adversary cannot cast more bal-

lots than users were corrupted, and that ballots produced by corrupted voters con-
tribute to ρ only with admissible votes v ∈ V (corresponds to {vBi }nB

i=1).

The verifiability against a malicious board game is formally given by experiment
ExpverbA in Figure 1. We say that a voting protocol V is verifiable against a dishonest
board if there exists a negligible function ν(λ) such that, for any PPT adversary A,

SuccverbV (A) = Pr
[
ExpverbA,V(λ) = 1

]
< ν(λ).

Election Verifiability against a Dishonest Registration Authority. The correspond-
ing experiment ExpvergA,V defining verifiability against a malicious registration authority
and malicious trustee and voters, but honest bulletin board, is very similar to the exper-
iment in Figure 1. The adversary has access to oracles Ovote(id, v) and Ocorrupt(id)
as before, and is additionally given access to an oracle Ocast(id, b), which runs
Box(BB, b). This models the fact that the adversary cannot delete nor add ballots any-
more since the bulletin box is now honest. However, the adversary is not given in this
experiment access to theOreg oracle, since it controls the registrar and thus can register
users arbitrarily, even with malicious credentials. The adversary uses Ocorrupt(id) to
define voter id as a corrupted user, i.e. voter id’s actions are under the control of the
adversary.

In ExpvergA,V , the adversary does not output BB, since the bulletin board is honest. Note
that a dishonest registration authority may prevent some voters from voting by provid-
ing wrong credentials. Depending on the protocol, voters may not notice it, therefore
some honestly cast ballots may be discarded.

We say that V is verifiable against a dishonest registration authority if there exists

a negligible function ν(λ) such that, SuccvergV (A) = Pr
[
ExpvergA,V(λ) = 1

]
< ν(λ), for

any PPT adversaryA.

3.2 Weak Verifiability

We say that a voting scheme has weak verifiability if it has individual and universal ver-
ifiability assuming that the bulletin board and the registration authority are both honest.
That is, an adversary in the weak verifiability game can only corrupt a subset of voters
and the trustee.

The experiment ExpverwA,V defining weak verifiability, is a variation of the exper-
iment ExpvergA,V . In this case, the adversary can only add ballots to the box viaOcast (so it

Election Verifiability for Helios under Weaker Trust Assumptions 335

cannot stuff the ballot box nor delete ballots). The adversary is only allowed to regis-
ter voters through Oreg, and can only access voters’ secret credentials by calling the
Ocorrupt oracle. We say that a voting protocol V is weakly verifiable if there exists a
negligible function ν(λ) such that, SuccverwV (A) = Pr

[
ExpverwA,V(λ) = 1

]
< ν(λ), for

any PPT adversaryA.

3.3 Tally Uniqueness

In addition to verifiability, Juels, Catalano and Jakobsson [8], as well as Delaune, Kre-
mer and Ryan [12], put forward the notion of tally uniqueness. Tally uniqueness of a
voting protocol ensures that the tally of an election is unique. In other words, two dif-
ferent tallies ρ �= ρ′ can not be accepted by the verification algorithm, even if all the
players in the system are malicious.

More formally, the goal of the adversary against tally uniqueness is to output a public
key pk, that contains a list of public credentials, a bulletin board BB, and two tallies
ρ �= ρ′, and corresponding proofs of valid tabulation Π and Π ′, such that both pass
verification, i.e. Verify(BB, ρ,Π) = Verify(BB, ρ′, Π ′) = 1. A voting protocol V has
tally uniqueness if every PPT adversaryA has a negligible advantage in this game.

Intuitively, verifiability ensures that the tally corresponds to a plausible instantiations
of the players (onto property) while tally uniqueness ensures that, given a tally, there is
at most one plausible instantiation (one-to-one property).

4 Sufficient Conditions for Verifiability

In this section we identify sufficient conditions for (individual and universal) verifiabil-
ity in single-pass voting protocols. In the first place, Section 4.1, we define a property
for voting protocols, that we call accuracy, and we show that it implies weak verifiabil-
ity. As explained in the introduction, weak verifiability is not a completely satisfactory
property, but it is the highest verifiability level that can be achieved in remote voting sys-
tems where the only the bulletin board authenticates voters and therefore it can easily
stuff itself. This is notably the case for Helios [9]. Nevertheless, we give in Section 4.3
a generic construction that transforms a voting protocol that has weak verifiability, into
a voting protocol that has strong verifiability, namely it is verifiable under the weaker
trust assumption that the registrar and the board are not simultaneously dishonest.

4.1 Accuracy

We introduce a property for voting protocols that is called accuracy. We say that a
voting protocol V has accuracy (equivalently it is accurate) if for any ballot b it holds
with overwhelming probability that

1. (Validate(b) = 1 ∧ Verify({b}, ρb, Πb) = 1) =⇒ ρb = ρ(vb) for some vb ∈ V
2. Verify (BB,Tally(BB, sk)) = 1 for any bulletin board BB

336 V. Cortier et al.

Condition 1 reflects the natural requirement that even a dishonest ballot that passes
the validity test corresponds to an admissible vote. In Helios-like protocols, this is typ-
ically ensured by requiring the voter to produce a proof that the encrypted vote belongs
to V. Condition 2 guarantees that the proof produced by a faithful run of the tally pro-
cedure passes the verification test. In practice, this property usually holds by design.

4.2 A Sufficient Condition for Weak Verifiability

We show that correctness (Section 2.2), accuracy (Section 4.1) and tally uniqueness
(Section 3.3) suffice to ensure weak verifiability against a dishonest tallying authority.
Since these properties are simple and easy to check, this result may often ease the proof
of verifiability. We illustrate this fact by using these criteria to give in Section 5 a simple
proof that Helios-BPW is weakly verifiable.

Theorem 1. Let V be a correct, accurate and tally unique voting protocol that admits
partial tallying. Then V satisfies weak verifiability.

The proof is given in the full version [18].

Signature Schemes with Verification Uniqueness. We aim at designing a generic con-
struction that provides strong verifiability. Our construction relies on an existentially-
unforgeable (EUF-CMA) signature scheme as a building block, whose syntax and prop-
erties are given next.

Definition 1 (Signature scheme). A signature scheme consists of three algorithmsS =
(SKey, Sign, SVerify), such that

– SKey(1λ) outputs a pair of verification/signing keys (upk, usk).
– Sign(usk,m) on inputs a signing key usk and a message m outputs a signature σ.
– SVerify(upk,m, σ) on inputs a verification key upk, a message m and a string σ,

outputs 0/1, meaning invalid/valid signature.

A signature scheme must satisfy correctness, namely SVerify(upk,m, Sign(usk,m)) =
1 with overwhelming probability, where (upk, usk) ← SKey(1λ).

We further need to control the behaviour of the signature scheme when keys are (dis-
honestly) chosen outside the expected range. More precisely, we need to ensure that the
output of SVerify(upk,m, σ) is deterministic, even for inputs outside the corresponding
domains. We call this verification uniqueness.

4.3 A Sufficient Condition for Strong Verifiability

We provide a generic construction that protects any voting scheme that has weak verifia-
bility, that is assuming that the bulletin board and registrar are both honest, into a voting
scheme that has string verifiability, that is under the weaker assumption that board and
registrar are not simultaneously dishonest.

Election Verifiability for Helios under Weaker Trust Assumptions 337

Let V = (Setup′,Credential′,Vote′,VerifyVote′,Validate′,Box′,Tally′,Verify′) be
a voting protocol, possibly without credentials, like Helios. Our generic construction
transforms V into Vcred as follows. We first require the registration authority to create
a public/secret credential pair (upk, usk) for each voter. Each key pair corresponds to
a credential needed to cast a vote. The association between credentials and voters does
not need to be publicly known and only the unordered list of verification keys (the pub-
lic credentials) is published. In the resulting voting scheme Vcred, every player acts as in
V except that now, each voter further signs his/her ballot with his/her signing key usk.
Moreover, the bulletin board, upon receiving a ballot, performs the usual checks and
further verifies the signature (that should correspond to one of the official verification
keys). The board also needs to maintain an internal state st that links successful voters’
authentications with successful signature verifications, i.e. it keeps links (id, upkid).
This is needed to prevent a dishonest voter id′, who has gained knowledge of several
secret credentials usk1, . . . , uskt, from stuffing/overriding the board with ballots con-
taining the corresponding public credentials upk1, . . . , upkt. We call this a multiple
impersonation attack. Our generic transformation is summarized in Figure 2.

Voter

Election Administrator

Registrar

login/pwd

Sign(usk,ballot)

ballot

upk

list of voters

upk,usk

list of voters

Bulletin Box

V

Vcred

Fig. 2. Generic construction for strong verifiability

Formally, let S = (SKey, Sign, SVerify) be a signature scheme. Let us consider
Vcred = (Setup,Credential,Vote,Validate,Box,VerifyVote,Tally,Verify) the voting
protocol with credentials obtained from V and S as follows:

Setup(1λ) runs (pk′, sk′) ← Setup′(1λ) and sets pk ← (pk′, L), sk ← sk′, where
L is a list initialized to empty that is defined below. Let us recall that pk′ potentially
contains a list L′ of public credentials inherited from V ′. Returns (pk, sk). We say
that L is ill-formed if |L| > τ , (i.e. there are more public credentials than eligible
voters) or if L has repeated elements.

338 V. Cortier et al.

Credential(1λ, id) is run by the registrar and computes (upk, usk) ← SKey(1λ); the
bulletin board computes (upk′, usk′) ← Credential′(1λ, id). The list L is updated
as L← L∪{upk}. Next, upk← (upk, upk′) and usk← (usk, usk′) are returned.

Vote(id,upk,usk, v) runs α ← Vote′(id, upk′, usk′, v), σ ← Sign(usk, α) and re-
turns a ballot b ← (upk, α, σ), which is sent to the bulletin board through an au-
thenticated channel2.

Validate(b) parses b = (upk, α, σ). If SVerify(upk, α, σ) �= 1 outputs 0. Else, outputs
Validate′(α).

Box(BB, b) parses b = (upk, α, σ) after a successful authentication, by voter id with
credentials (upk′, usk′), to the bulletin board. BB is let unchanged if upk /∈ L, or if
Validate(b) rejects. Next (1) if an entry of the form (id, ∗) or (∗, upk) exists in its
local state st, then: (1.a) if (id, upk) ∈ st and α ∈ Box′(BB′, α) (BB′ is updated
with α), then removes any ballot in BB containing upk, updates BB ← BB ∪ {b},
and returns BB; (1.b) else, returns BB. Otherwise, (2) adds (id, upk) to st, and
(2.a) if α ∈ Box′(BB′, α), adds b to BB, and returns BB; else (2.b) returns BB.
The checks in Steps (1) and (2) are performed to prevent multiple impersonation
attacks.

VerifyVote(BB, id,upk,usk, b) verifies that the ballot b appears in BB. Intuitively,
this check should be done by voters when the voting phase is over. If b =
(upk, α, σ) ∈ BB, then outputs VerifyVote′(BB′, id, upk′, usk′, α). Otherwise, out-
puts 0.

Tally(BB, sk) returns ρ :=⊥ and Π := ∅ if L is not well-formed. Else, checks next
whether BB is well-formed. We say BB is well-formed if: every upk in BB appears
only once; every upk in BB appears in L; Validate(b) = 1 for every b ∈ BB.
If any of these checks fails (meaning that the bulletin board cheated) the trustee
outputs ρ :=⊥ and Π := ∅. Else the trustee runs Tally′(BB′, sk), where BB′ =
{α1, . . . , ατ} if BB = {(upk1, α1, σ1), . . . , (upkτ , ατ , στ)}.

Verify(BB, ρ,Π) starts by checking whether L and BB are well-formed. If not, out-
puts 1 if ρ =⊥; else it outputs 0. Else, runs Verify′(BB′, ρ,Π), where BB′ =
{α1, . . . , ατ} if BB = {(upk1, α1, σ1), . . . , (upkτ , ατ , στ)}.

From Weak to Strong Verifiability. Our generic construction converts a weakly veri-
fiable voting scheme into a strongly verifiable voting scheme.

Theorem 2. Let V be a voting protocol that satisfies weak verifiability, admits partial
tallying and satisfies tally uniqueness. Let S be an existentially unforgeable signature
scheme. Then Vcred satisfies strong verifiability.

Proof. It is a consequence of Lemma 1 and Lemma 2 below.

Lemma 1. Let V satisfy weak verifiability and tally uniqueness. Let S be an existen-
tially unforgeable signature scheme. Then Vcred has verifiability against a dishonest
bulletin board.

2 This channel is built around the credential information (id, upk′, usk′).

Election Verifiability for Helios under Weaker Trust Assumptions 339

This lemma is proven by showing that any adversary against the verifiability of Vcred,
controlling the bulletin board, is “as powerful” as any adversary against the weak veri-
fiability of V , unless it can break the existential unforgeability of the signature scheme
S. The proof is given in the full version [18].

Lemma 2. Let V be weakly verifiable and tally unique. Then Vcred has verifiability
against a dishonest registrar.

Note that Lemma 2 relies on the weak verifiability of the voting scheme. Indeed, if
the registrar is dishonest, it has all the credentials. Therefore only the bulletin board
may prevent him from stuffing the box. Typically, weakly verifiable schemes assume an
authenticated channel between the voters and the box, e.g. using some password-based
authentication mechanism. This simple proof is given in the full version [18].

Theorem 3. If V satisfies tally uniqueness and S satisfies verification uniqueness, then
Vcred preserves tally uniqueness.

Our transformation also preserves ballot privacy. Intuitively, this is due to the fact that
our transformation of the original protocol does not significantly change the behaviour
of the underlying voting scheme. In particular, every valid ballot produced by our trans-
formed voting scheme corresponds to a valid ballot in the original voting scheme, and
viceversa. In the full version of this work we give a proof of ballot privacy using the
game-based game definition from [7]. The reduction is straightforward and there are no
technical difficulties involved.

Theorem 4. If V satisfies privacy then Vcred satisfies privacy.

5 Helios-C : Helios with Credentials

In this section we modify the design of Helios 4.0 voting system [9]. Actually, the cur-
rent version does not ensure ballot privacy due to the fact that dishonest voters may
duplicate ballots [5]. We therefore consider a slight modification of Helios 4.0 that
includes weeding of duplicate ballots and that has been proved secure w.r.t. ballot pri-
vacy [7]. We aim at achieving (individual and universal) verifiability under a weaker
trust assumption. Our modification consists in adding (verifiable) credentials to prevent
ballot stuffing. We name it Helios-C, as a shortening for Helios with Credentials. For
readability, we describe Helios for a single choice election (voters may simply vote 0 or
1). It can be easily generalized to elections with several candidates. We assume an au-
thenticated channel between each voter and the bulletin board. This is typically realized
in Helios through password-based authentication.

We use the ElGamal [19] IND-CPA cryptosystem D = (KeyGen,Enc,Dec) in a
given group G where the Decisional Diffie-Hellman assumption holds; the Schnorr
signature scheme S = (SKeyGen, Sign, SVerify) [20] over the group G; the NIZK
proof system [21, 22] DisjProofH(g, pk, R, S) to prove in zero-knowledge that (R,S)
encrypts g0 or g1 (with proof builder DisjProve and proof verifier DisjVerify); and the
NIZK proof system [21] EqDlG(g,R, vk, c) to prove in zero-knowledge that logg vk =

340 V. Cortier et al.

logR c for g,R, vk, c ∈ G (with proof builder PrEq and proof verifier VerifyEq). H and
G are hash functions mapping to Zq .

Formally, Helios-C consists of eight algorithms Vheliosc = (Setup,Credential,Vote,
Validate,VerifyVote,Box,Tally,Verify) defined below:

Setup(1λ) chooses G a cyclic group of order q and g ∈ G a generator. It randomly

chooses sk
R← Zq and sets pk = gsk. Hash functions G,H : {0, 1}� → Zq are

chosen. It outputs pk ← (G, q, pk, L,G,H,V = {0, 1}), the public key of the
election and sk = (pk, sk), with L initialized as the empty set.

Credential(1λ, id, L) generates a signing key pair for each voter. It runs (upk, usk) ←
SKeyGen(1λ). It adds upk to L and outputs (upk, usk).

Vote (id, upk, usk, v) it is used by a voter of identity id with credentials (upk, usk) to
create a ballot b corresponding to vote v as follows:

(1) Encrypts v ∈ {0, 1} as C = Enc(pk, gv) = (R,S). Computes a proof π =
DisjProveH(g, pk, R, S, r) showing that the encrypted vote is 0 or 1.

(2) Computes σ ← Sign(usk, (C, π)), namely a signature on the ciphertext and its
proof. The ballot is defined as b = (upk, (C, π), σ).

(3) The voter submits the ballot b by authenticating itself to the bulletin board.

Validate(b) checks that the ballot is valid, that is, that all proofs are correct. Formally,
it parses the ballot b as (upk, (C, π), σ). It then checks whether: (1) upk ∈ L;
(2) DisjVerifyH(g, pk, C, π) = 1; (4) SVerify(upk, σ, (C, π)) accepts. If any step
fails, it returns 0; else it returns 1.

VerifyVote(id, upk, usk, b) returns the value of the test b ∈ BB.

Box(BB, b) parses b = (upk, (C, π), σ) after a successful authentication from a voter
id. BB is let unchanged if upk /∈ L, or Validate(b) rejects or C appears previously
in BB. Next, (1) if an entry of the form (id, ∗) or (∗, upk) exists in its local state
st, then: (1.a) if (id, upk) ∈ st, removes any previous ballot in BB containing upk,
updates BB ← BB ∪ {b} and returns BB; (1.b) else, returns BB. Otherwise, (2)
adds (id, upk) to st, updates BB← BB ∪ {b} and returns BB.

Tally(BB, sk) consists of the following steps:
(1) Runs Validate(b) for every b ∈ BB. Outputs ρ =⊥ and Π = ∅ if any such b is

rejected.
(2) Parses each ballot b ∈ BB as (upkb, (Cb, πb), σb).
(3) Checks whether upkb appears in a previous entry in BB or whether upkb /∈ L.

If so, outputs ρ =⊥ and Π = ∅. Else,
(4) Computes the result ciphertext CΣ = (RΣ , SΣ) = (

∏
b∈BB Rb,

∏
b∈BB Sb),

where Cb = (Rb, Sb). This of course relies on the homomorphic property of
the El Gamal encryption scheme.

(5) Computes gρ ← SΣ · (RΣ)−sk. Then ρ to be published is obtained from gρ in
time

√
τ for ρ lying in the interval [0, τ] and τ equals the number of legitimate

voters.
(6) Finally Π := PrEqG

(
g, pk, RΣ , SΣ · (gρ)−1, sk

)
.

Verify(BB, ρ,Π)

Election Verifiability for Helios under Weaker Trust Assumptions 341

(1) Performs the checks (1-3) done in Tally. If any of the checks fails, then returns
0 unless the result is itself ⊥, in which case outputs 1. Else,

(2) Computes the result ciphertext (RΣ , SΣ) =
(∏

b∈BB Rb,
∏

b∈BB Sb

)
.

(3) Returns the output of VerifyEqG
(
g, pk, RΣ , SΣ · (gρ)−1, Π

)
.

Theorem 5. Helios-C has tally uniqueness, strong verifiability and ballot privacy un-
der the Decisional Diffie-Hellman assumption in the Random Oracle Model.

Since Helios-C = Helios-BPWcred and the Schnorr signature scheme is EUF-CMA
in the Random Oracle Model under the Discrete Logarithm assumption in G, Theo-
rem 2 (Section 4.3) allows to deduce the strong verifiability of Helios-C from the weak
verifiability of Helios-BPW. Finally, since Helios-BPW has ballot privacy under the
DDH assumption in the Random Oracle Model (Theorem 3 in [7]), then Helios-C has
ballot privacy under the same assumptions.

Theorem 6. Helios-BPW is weakly verifiable under the Discrete Logarithm assump-
tion in the Random Oracle Model.

Proof. We need to show that Helios-BPW is correct, accurate and has tally uniqueness
thanks to Theorem 1. We omit the proof of correctness for Helios-BPW since it easily
follows from the correctness of the involved primitives, i.e. the ElGamal cryptosystem,
Schnorr signature and NIZKs.

Let us show that Helios-BPW has tally uniqueness, where Helios-BPW = (Setup′,
Vote′,Validate′,VerifyVote′,Box′,Tally,′ Verify′). The output of Verify′ is determined
by the outputs of the verification tests of the NIZK systems DisjProofH and EqDlG,
which constitute proof of memberships to the corresponding languages with negligible
error probability, and hence the output of Verify′ is unique on his inputs.

With respect to the accuracy of Helios-BPW, we need to show that for any ballot b it
holds that if Validate′(b) = 1 and Verify′({b}, ρb, Πb) = 1, then ρb = ρ(vb) for some
vb ∈ V. Let α = (C, π) be such that DisjVerify(g, pk, C, π) = 1. Since DisjProofH is
a NIZK obtained by applying Fiat-Shamir to a Σ-protocol [23], then DisjProofH is a
proof that (g, pk, Rb, Sb) ∈ LEqDl or (g, pk, Rb, Sb · g−1) ∈ LEqDl with soundness error
1/q. In other words, if Validate′(b) = 1 and Verify′({b}, ρb, Πb) = 1, then vb ∈ {0, 1}
with overwhelming probability. This proves accuracy of Helios-BPW. ��

6 Implementation

We have implemented a proof of concept of Helios-C, openly accessible at [24], and
tested it in a mock election in our lab.

In Helios-C credentials are generated by a third-party provider and sent to the vot-
ers by snail mail. Clearly, it would be cumbersome for voters to copy their signature
key by typing it. We used a trick that consists in sending only the random seed used
for generating the key, which can be encoded in about 12-15 alphanumeric characters
depending on the desired entropy. It is expected that this seed is used by the provider to
add the generated public key to L, then sent (as a password) to its rightful recipient and
immediately destroyed.

342 V. Cortier et al.

candidates 2 5 10 20 30 50

enc+proofs 600 1197 2138 4059 6061 9617
sign 196 215 248 301 358 484

sig verif < 10 < 10 < 10 < 10 < 10 < 10

ballot verif 110 210 390 720 1070 1730

Fig. 3. Overhead in miliseconds induced by adding credentials to Helios

Our variant of Helios requires voters to additionally sign their ballots. Table 3 shows
the overhead induced by the signature, for various numbers of candidates (from 2 to 50).
The two first lines are timings on the client side: the first one indicates the time needed
by the voter’s browser to form the ballot (without signature) while the second line in-
dicates the computation time for signing. The third and fourth lines indicate the com-
putation time on the server side for performing the verification tests (well-formedness
of the ballot, validity of the proofs of knowledge and validity of the signature). Since
the ballot includes the public key of the voter, the server simply needs to verify one
signature for each ballot and to verify that the public keys indeed belongs to the set
of authorized keys, which can be done in logarithmic time. We use a 256-bit multi-
plicative subgroup of a 2048-bit prime field for ElGamal and Schnorr operations. The
figures have been obtained on a computer with an Intel(R) Core(TM) i7-2600 CPU @
3.40GHz, running Firefox 18. Unsurprisingly, the overhead of the signature is small
compared to the computation time of the whole ballot.

We have tested our implementation in a mock election in June 2013, among approxi-
mately 30 voters. The result of the election and in particular all its public data (including
ballots) can be found at [24].

In practice, it is also needed to provide a password/credential recovery procedure in
case voters lose their credentials. In case revoting is authorized, we further assume that
the registrar keeps the link between users and public credentials during the election so
that the old (lost) credential can be erased from the authorized list.

7 Conclusion

We have presented a generic construction that enforces strong verifiability. Applied to
Helios, the resulting system Helios-C prevents ballot stuffing, still retaining the sim-
plicity of Helios, as demonstrated by our test election, under the trust assumption that
registrar and bulletin board are not simultaneously dishonest. For simplicity, we have
presented our framework for a single vote (yes/no vote) and for a single trustee. All our
results can be easily extended to multiple candidates elections and multiple trustees,
possibly with threshold decryption as described in [25].

We would like to point out a more appealing variant of our transformation from a
theoretical point of view. In this variant, voters generate their individual credentials (i.e.
a signing key pair) by themselves. Thus a malicious registrar cannot sign on behalf
of honest users, as it would only be responsible of registering credentials for eligible
voters. We think, however, that letting the registrar generate credentials on behalf of
voters, as we do in Helios-C, is a more practical choice: most voters will not have the

Election Verifiability for Helios under Weaker Trust Assumptions 343

required knowledge to perform the critical procedure of generating credentials with a
minimum of security guarantees.

Even if most ballot counting functions admit partial tallying, especially for practi-
cal counting functions, some functions do not admit partial tallying, like the majority
function. As future work, we plan to investigate whether we can devise a definition of
verifiability for schemes that do not admit partial tallying.

Strong verifiability of Helios-C assumes that either the registration authority or the
ballot box is honest. We could further thresholdize the registration authority, by dis-
tributing each credential among several registrars. We plan to explore the possibility
to go further and design a (practical) voting scheme that offers verifiability without any
trust assumption (like vote by hand-rising), and ballot privacy under some trust assump-
tions, like the fact that some of the authorities are honest.

References

1. Adida, B., de Marneffe, O., Pereira, O., Quisquater, J.J.: Electing a university president us-
ing open-audit voting: Analysis of real-world use of Helios. In: Proceedings of the 2009
Conference on Electronic Voting Technology/Workshop on Trustworthy Elections (2009)

2. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority
election scheme. In: Fumy, W. (ed.) Advances in Cryptology - EUROCRYPT 1997. LNCS,
vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

3. Benaloh, J.: Ballot casting assurance via voter-initiated poll station auditing. In: Proceedings
of the Second Usenix/ACCURATE Electronic Voting Technology Workshop (2007)

4. International association for cryptologic research, Elections page at
http://www.iacr.org/elections/

5. Cortier, V., Smyth, B.: Attacking and fixing Helios: An analysis of ballot secrecy. In: CSF,
pp. 297–311. IEEE Computer Society (2011)

6. Bernhard, D., Cortier, V., Pereira, O., Smyth, B., Warinschi, B.: Adapting Helios for provable
ballot secrecy. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 335–354.
Springer, Heidelberg (2011)

7. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of the Fiat-
Shamir heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012)

8. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In: Chaum,
D., Jakobsson, M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski, M., Adida, B. (eds.)
Towards Trustworthy Elections. LNCS, vol. 6000, pp. 37–63. Springer, Heidelberg (2010)

9. Adida, B., de Marneffe, O., Pereira, O.: Helios voting system,
http://www.heliosvoting.org

10. Pinault, T., Courtade, P.: E-voting at expatriates’ MPs elections in France. In: Kripp, M.J.,
Volkamer, M., Grimm, R. (eds.) Electronic Voting. LNI, vol. 205, pp. 189–195. GI (2012)

11. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous cre-
dentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

12. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: A formal analysis of authentication in the
TPM. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 111–
125. Springer, Heidelberg (2011)

13. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship to verifiabil-
ity. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM Conference on Computer
and Communications Security, pp. 526–535. ACM (2010)

http://www.iacr.org/elections/
http://www.heliosvoting.org

344 V. Cortier et al.

14. Küsters, R., Truderung, T., Vogt, A.: Verifiability, privacy, and coercion-resistance: New in-
sights from a case study. In: IEEE Symposium on Security and Privacy, pp. 538–553. IEEE
Computer Society (2011)

15. Küsters, R., Truderung, T., Vogt, A.: Clash attacks on the verifiability of e-voting systems.
In: IEEE Symposium on Security and Privacy, pp. 395–409. IEEE Computer Society (2012)

16. Groth, J.: Evaluating security of voting schemes in the universal composability framework.
In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 46–60.
Springer, Heidelberg (2004)

17. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In: Atluri, V.,
di Vimercati, S.D.C., Dingledine, R. (eds.) WPES, pp. 61–70. ACM (2005)

18. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Election verifiability for Helios under
weaker trust assumptions. HAL - INRIA Archive Ouverte/Open Archive, Research Report
RR-8855 (2014), http://hal.inria.fr/hal-01011294

19. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory 31(4), 469–472 (1985)

20. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptology 4(3), 161–174
(1991)

21. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) Advances
in Cryptology - CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

22. Cramer, R., Damgård, I.B., Schoenmakers, B.: Proofs of partial knowledge and simplified de-
sign of witness hiding protocols. In: Desmedt, Y.G. (ed.) Advances in Cryptology - CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

23. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and Constructions.
Information Security and Cryptography. Springer (2010)

24. Glondu, S.: Helios with Credentials: Proof of concept and mock election results,
http://stephane.glondu.net/helios/

25. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Distributed ElGamal à la Pedersen:
Application to Helios. In: Sadeghi, A.R., Foresti, S. (eds.) WPES, pp. 131–142. ACM (2013)

http://hal.inria.fr/hal-01011294
http://stephane.glondu.net/helios/

CoinShuffle: Practical Decentralized

Coin Mixing for Bitcoin

Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate

MMCI, Saarland University
{tim.ruffing,pedro,aniket}@mmci.uni-saarland.de

Abstract. The decentralized currency network Bitcoin is emerging as a
potential new way of performing financial transactions across the globe.
Its use of pseudonyms towards protecting users’ privacy has been an at-
tractive feature to many of its adopters. Nevertheless, due to the inherent
public nature of the Bitcoin transaction ledger, users’ privacy is severely
restricted to linkable anonymity, and a few transaction deanonymization
attacks have been reported thus far.

In this paper we propose CoinShuffle, a completely decentralized Bit-
coin mixing protocol that allows users to utilize Bitcoin in a truly anony-
mous manner. CoinShuffle is inspired by the accountable anonymous
group communication protocol Dissent and enjoys several advantages
over its predecessor Bitcoin mixing protocols. It does not require any
(trusted, accountable or untrusted) third party and it is perfectly com-
patible with the current Bitcoin system. CoinShuffle introduces only a
small communication overhead for its users, while completely avoiding
additional anonymization fees and minimalizing the computation and
communication overhead for the rest of the Bitcoin system.

Keywords: Bitcoin, decentralized crypto-currencies, coin mixing, ano-
nymity, transaction linkability, mix networks.

1 Introduction

Bitcoin [1] is a fully decentralized digital crypto-currency network that does
not require any central bank or monetary authority. Over the last few years we
have observed an unprecedented and rather surprising growth of Bitcoin and
its competitor currency networks [2, 3, 4]. Despite a few major hiccups, their
market capitalizations are increasing tremendously [5]. Many now believe that
the concept of decentralized crypto-currencies is here to stay.

Nevertheless, these decentralized currency systems are far from perfect. Tra-
ditional payment systems rely on a trusted third party (such as a bank) to
ensure that money cannot be spent twice. Decentralized currencies such as Bit-
coin employ a global replicated append-only transaction log and proof-of-work
(POW) instead to rule out double-spending. This requires managing a public
ledger such that every transaction is considered valid only after it appears in the
ledger. However, given that the Bitcoin transactions of a user (in particular, of

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 345–364, 2014.
c© Springer International Publishing Switzerland 2014

346 T. Ruffing, P. Moreno-Sanchez, and A. Kate

her pseudonyms, called Bitcoin addresses) are linkable, the public transaction
ledger constitutes a significant privacy concern: Bitcoin’s reliance on the use of
pseudonyms to provide anonymity is severely restricted.

Several studies analyzing the privacy implications of Bitcoin indicate that
Bitcoin’s built-in privacy guarantees are not satisfactory. Barber et al. [6] observe
that Bitcoin exposes its users to the possible linking of their Bitcoin addresses,
which subsequently leads to a weak form of anonymity. Meiklejohn et al. [7]
demonstrate how to employ a few basic heuristics to classify Bitcoin addresses
that are likely to belong to the same user; this is further refined by Spagnuolo,
Maggi, and Zanero [8]. Koshy, Koshy, and McDaniel [9] show that it is possible
to identify ownership relationships between Bitcoin addresses and IP addresses.

Recently, some efforts have been made towards overcoming the above attacks
and providing stronger privacy to the Bitcoin users by mixing multiple trans-
actions to make input and output addresses of transactions unlinkable to each
other. In this direction, some third-party mixing services [10, 11, 12] were first to
emerge, but they have been prone to thefts [7]. Mixcoin [13] allows to hold these
mixing services accountable in a reactive manner; however, the mixing services
still remain single points of failure and typically require additional mixing fees.
Zerocoin [14] and its successors [15, 16, 17] provide strong anonymity without
any third party, but lack compatibility with the current Bitcoin system.

Maxwell proposes CoinJoin [18] to perform mixing in a manner that is perfectly
compatible with Bitcoin, while ensuring that even a malicious mixing server can-
not steal coins. CoinJoin is actively used in practice [19] but suffers from a sub-
stantial drawback: The mixing server still needs to be trusted to ensure anonymity,
because it learns the relation between input and output addresses. To tackle this
problem, Maxwell mentions the possibility to use secure multi-party computation
(SMPC) with CoinJoin to perform the mixing obliviously without a trusted server.
Yang [20] proposes a concrete scheme based on SMPC sorting. However, against
a fully malicious attacker, generic SMPC as well as state-of-the-art SMPC sort-
ing [21, 22] is not yet practical for any reasonable number of parties required in
mixing to ensure a good level of anonymity. Furthermore, it is not clear how to
ensure robustness against denial-of-service (DoS) attacks in these approaches, be-
cause a single user can easily disrupt the whole protocol while possibly remaining
unidentified. As a result, defining a practical and secure mixing scheme is consid-
ered an open problem by the Bitcoin community [23, 24, 25].

Our Contribution. We present CoinShuffle, a completely decentralized protocol
that allows users to mix their coins with those of other interested users. CoinShuf-
fle is inspired by CoinJoin [18] to ensure security against theft and by the account-
able anonymous group communication protocol Dissent [26] to ensure anonymity
as well as robustness against DoS attacks. The key idea is similar to decryption mix
networks, and the protocol requires only standard cryptographic primitives such
as signatures and public-key encryption. CoinShuffle is a practical solution for the
Bitcoin mixing problem and its distinguishing features are as follows:

No Third Party. CoinShuffle preserves Bitcoin’s decentralized trust ideology:
it is executed exclusively by the Bitcoin users interested in unlinkability for

CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin 347

their Bitcoin transactions, and it does not require any trusted, accountable,
or untrusted third party. The unlinkability of transactions is protected as
long as at least any two participants in a run of the protocol are honest.

Compatibility. CoinShuffle is fully compatible with the existing Bitcoin net-
work. Unlike other decentralized solutions, it works immediately on top of
the Bitcoin network without requiring any change to the Bitcoin rules or
scripts.

No Mixing Fee. In absence of a third party that acts as a service provider,
CoinShuffle does not charge its users any additional mixing fees. It also
performs well in terms of Bitcoin transaction fees, because the participants
are only charged the fee for a single mixing transaction.

Small Overhead. Our performance analysis demonstrates that CoinShuffle in-
troduces only a small communication overhead for a participant (less than a
minute for an execution with 20 participants), while the computation over-
head remains close to negligible. Finally, CoinShuffle introduces only minimal
additional overhead for the rest of the Bitcoin network.

Outline. In Section 2, we explain the basics of the Bitcoin protocol and Bit-
coin mixing. We define the problem of secure mixing in detail in Section 3. In
Sections 4 and 5, we outline and specify the CoinShuffle protocol. We analyze
its properties in Section 6 and evaluate its performance in Section 7. We discuss
related work in Section 8 and conclude in Section 9.

2 Background

We start by presenting the basics of Bitcoin as well as Bitcoin mixing, the most
prevalent approach to strengthening users’ anonymity in the system. We explain
only the aspects of the Bitcoin protocol that are relevant for mixing and refer
the reader to the original Bitcoin paper [1] and the developer documentation [27]
for further details.

2.1 Bitcoin

Bitcoin (symbol: B) is a digital currency run by a decentralized network. The
Bitcoin network maintains a public ledger (called blockchain) whose purpose is
to reach consensus on the set of transactions that have been validated so far
in the network. As long as the majority of computation power in the system is
honest, transactions accepted by the system cannot be changed or invalidated,
thus preventing double-spending of money.

User accounts in the Bitcoin system are identified using pseudonymous ad-
dresses. Technically, an address is the hash of a public key of a digital signature
scheme. To simplify presentation, we do not differentiate between the public key
and its hash in the remainder of the paper. Every user can create an arbitrary
number of addresses by creating fresh key pairs.

The owner of an address uses the corresponding private key to spend coins
stored at this address by signing transactions. In the simplest form, a transaction

348 T. Ruffing, P. Moreno-Sanchez, and A. Kate

Fig. 1. A valid Bitcoin transaction
with multiple input addresses and mul-
tiple output addresses. This transac-
tion is signed using both the private key
for input address A and the private key
for input address B; the corresponding
signatures are denoted by σA and σB ,
respectively.

transfers a certain amount of coins from one address (the input address) to
another address (the output address). While multiple sets of coins may be stored
at one address, we assume in the remainder of the paper that only one set of coins
is stored at an address; these coins can only be spent together. This simplification
is purely for the sake of readability.

As depicted in Fig. 1, transactions can include multiple input addresses as well
as multiple output addresses. Three conditions must be fulfilled for a transaction
to be valid: First, the coins spent by the transaction must not have been already
spent by another transaction in the blockchain. Second, the sum of the input
coins must equal the sum of the output coins.1 Third, the transaction must be
signed with the private keys corresponding to all input addresses.

2.2 Bitcoin Mixing

The most prevalent approach to improve anonymity for Bitcoin users is the idea
of hiding in a group by Bitcoin mixing: the users in the group exchange their coins
with each other to hide the relations between users and coins from an external
observer. Assume that in a group of several users, every user owns exactly one
Bitcoin (B 1). In the simplest form, mixing is done with the help of a trusted
third-party mixing server, the mix : every user sends a fresh address in encrypted
form to the mix and transfers her coin to the mix. Then, the mix decrypts and
randomly shuffles the fresh addresses and sends B 1 back to each of them. While
such public mixes are deployed in practice [28, 10, 11, 12], they suffer from two
severe drawbacks: First, the mix might just steal the money and never return it
to the users. Second, the mix learns which output address belongs to a certain
input address. Thereby, users’ anonymity relies on the assumption that the mix
does not log or reveal the relation between input and output addresses.

2.3 Bitcoin Mixing with a Single Transaction

Assume a group of users would like to mix their coins with the help of a third-
party mix. To solve the problem that the mix can steal the money, Maxwell
proposes CoinJoin [18]: The mix generates one single mixing transaction con-
taining the users’ current addresses as inputs and the shuffled fresh addresses as

1 In practice, a small transaction fee is typically required. In that case, the sum of the
input coins must exceed the sum of the output coins by the amount of the fee.

CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin 349

outputs. Recall that a transaction with several input addresses is only valid if it
has been signed with all keys belonging to those input addresses. Thus each user
can verify whether the generated mixing transaction sends the correct amount
of money to her fresh output address; if this is not true the user just refuses to
sign the transaction and the protocol aborts without transferring any coins.

Several implementations of CoinJoin are already actively being used [19, 29,
30], and the Bitcoin developers consider adding CoinJoin to the official Bitcoin
client [31]. Still, the problem that the mix learns the relation between input and
output addresses persists, and no fully anonymous and efficient solution has been
proposed to the best of our knowledge.

3 Problem Definition

In this section, we define the properties that a Bitcoin mixing protocol should
satisfy. Furthermore, we present the threat model under which we would like to
achieve these properties.

3.1 Design Goals

A Bitcoin mixing protocol must achieve the following security and privacy goals.

Unlinkability. After a successful Bitcoin mixing transaction, honest partici-
pants’ input and output addresses must be unlinkable.

Verifiability. An attacker must not be able to steal or destroy honest partici-
pants’ coins.

Robustness. The protocol should eventually succeed even in the presence of
malicious participants as long as the communication links remain reliable.

Besides ensuring security and privacy, a Bitcoin mixing protocol must addition-
ally overcome the following system-level challenges:

Compatibility. The protocol must operate on top of the Bitcoin network, and
should not require any change to the existing system.

No Mixing Fees. The protocol should not introduce additional fees specifi-
cally required for mixing. As every mixing transaction necessarily requires
a Bitcoin transaction fee, the protocol must ensure that this transaction fee
remains as low as possible.

Efficiency. Even users with very restricted computational capacities should be
able to run the mixing protocol. In addition, the users should not be required
to wait for a transaction to be confirmed by the Bitcoin network during a
run of the protocol, because this inherently takes several minutes.2

Small Impact on Bitcoin. The protocol should not put a large burden on
the efficiency of the Bitcoin network. In particular, the size of the executed
transactions should not be prohibitively large because all transactions have
to be stored in the blockchain and verified by all nodes in the network.

2 Several confirmations are recommended, each taking 10 minutes on average. As
mixing inherently requires at least one transaction, it is adequate to wait for confir-
mations at the end of a run, provided the run fails gracefully if the transaction is
not confirmed.

350 T. Ruffing, P. Moreno-Sanchez, and A. Kate

3.2 Non-goals

Bitcoin users who wish to participate in a mixing protocol need a bootstrapping
mechanism to find each other, e.g., through a public bulletin board acting as
facilitator or through a peer-to-peer protocol specifically crafted for this pur-
pose. A malicious facilitator may try to undermine unlinkability by forcing an
honest participant to run the protocol only with malicious participants. Thus, in
general, the bootstrapping mechanism should resist attempts to exclude honest
users from the protocol. Since the Bitcoin network does not allow nodes to send
arbitrary messages, the participants must additionally agree on a channel for
further communication during bootstrapping. We consider bootstrapping to be
orthogonal to our work and assume that it is available to all Bitcoin users.

The main goal of a Bitcoin mixing protocol is the unlinkability between input
and output addresses in a mixing transaction. If after the mixing, a user would
like to spend the mixed coins associated with the output address while maintain-
ing her anonymity, she has to ensure that network metadata, e.g., her IP address,
does not reveal her identity or make the spending transaction linkable to a run
of the mixing protocol. This problem is not in the scope of the Bitcoin mixing
protocol and can be addressed, e.g., by connecting to the Bitcoin network via
an anonymous communication protocol such as Tor [32].

3.3 Threat Model

For unlinkability and verifiability, we assume an active network attacker. (Ro-
bustness cannot be ensured in the presence of an active network attacker, be-
cause such an attacker can always stop the communication between the honest
participants.)

We do not require any trust assumption on a particular party: for verifiability
and robustness, we assume that an honest participant can be faced with an
arbitrary number of malicious participants. For unlinkability, we require that
there are at least two honest participants in the protocol. Otherwise the attacker
can trivially determine the mapping between input and output addresses and
meaningful mixing is not possible.

4 Solution Overview

Our main contribution is CoinShuffle, a Bitcoin mixing protocol that achieves
the aforementioned goals. In this section, we give an overview of our solution.

4.1 Main Idea

To ensure verifiability, our protocol follows the CoinJoin paradigm (Section 2.3):
A group of users jointly create a single mixing transaction and each of them can
individually verify that she will not lose money by performing the transaction. In
case of a fraud attempt, the defrauded user can just refuse to sign the transaction.

Unlinkability and robustness, however, are the most challenging problems: To
create a mixing transaction while assuring that input addresses are not linkable

CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin 351

to fresh output addresses, the participants shuffle their output addresses in an
oblivious manner, similar to a decryption mix network [33]. This shuffling is
inspired from one phase of the accountable anonymous group messaging protocol
Dissent [26, 34], which builds on an anonymous data collection protocol due to
Brickell and Shmatikov [35]. We are able to simplify and optimize ideas from
Dissent. For instance, the number of encryption operations is reduced by a factor
of four. Even though the special nature of the problem that we would like to
solve enables most of these optimizations, we conjecture that one of them is not
particular to our setting and can be applied to Dissent. We refer readers that
are familiar with Dissent to Appendix A for details and a high-level comparison.

The shuffling provides robustness in the sense that attacks that aim to dis-
rupt the protocol can be detected by honest users and at least one misbehaving
participant can be identified and excluded.3 The other participants can then run
the protocol again without the misbehaving participant.

4.2 Protocol Overview

The main part of the CoinShuffle protocol can roughly be split into three phases
as depicted in Fig. 2. (As elaborated later, the complete instantiation contains
more phases.) If the protocol does not run successfully, an additional blame phase
will be reached. In the following we give an overview of every phase. Assume that
every participant holds the same amount of coins at some Bitcoin address. This
address will be one of the input addresses in the mixing transaction, and every
protocol message from this participant is supposed to be signed with the private
signing key that belongs to this address.

Announcement. Every participant generates a fresh ephemeral encryption-
decryption key pair, and broadcasts the resulting public encryption key.

Shuffling. Every participant creates a fresh Bitcoin address, designated to be
her output address in the mixing transaction. Then the participants shuffle the
freshly generated output addresses in an oblivious manner, similar to a decryp-
tion mix network [33].

In more detail, every participant (say participant i in a predefined shuffling
order) uses the encryption keys of all participants j > i to create a layered
encryption of her output address. Then, the participants perform a sequential
shuffling, starting with participant 1: Each participant i expects to receive i− 1
ciphertexts from participant i− 1. Upon reception, every participant strips one
layer of encryption from the ciphertexts, adds her own ciphertext and randomly
shuffles the resulting set. The participant sends the shuffled set of ciphertexts
to the next participant i + 1. If everybody acts according to the protocol, the
decryption performed by the last participant results in a shuffled list of output
addresses. The last participant broadcasts this list.

3 This property is called accountability in Dissent. We use a different term to avoid
confusion with the concept of accountable Bitcoin mixing services in Mixcoin [13].

352 T. Ruffing, P. Moreno-Sanchez, and A. Kate

Fig. 2. Overview of CoinShuffle: First, the participants announce their input addresses.
Second, they shuffle their fresh output addresses obliviously. (Colored boxes represent
ciphertexts encrypted with the respective encryption key.) Third, the participants check
if all their output addresses are contained in the final list of output addresses. In this
case (left-hand side), the transaction is signed by the participants and submitted to
the Bitcoin network. If, on the contrary, an output address is missing (e.g., C′ has
been replaced by D′, right-hand side), the transaction does not become valid and the
participants enter the blame phase to find out which participant deviated from the
protocol specification. Even though not explicit in the figure, all messages are signed.

Transaction Verification. Each participant can individually verify if her out-
put address is indeed in the list. If this is true, every participant deterministically
creates a (not yet signed) mixing transaction that spends coins from all input ad-
dresses and sends them to the shuffled list of output addresses. Every participant
signs the transaction with her Bitcoin signing key and broadcasts the signature.

Upon receiving signatures from all other participants, every participant is able
to create a fully-signed version of the mixing transaction. The transaction is thus
valid and can be submitted to the Bitcoin network.

Blame. In every step of the previous phases, every participant checks that all
other participants follow the protocol. If some participant deviates from the pro-
tocol, an honest participant would report the deviation and the protocol enters
the blame phase, which is then performed to identify the misbehaving partici-
pant. The misbehaving participant can then be excluded from a subsequent run
of the protocol. There are three cases in which participants enter the blame phase.
First, the blame phase is entered if some participant does not have enough coins
at her input address to perform the mixing transaction, or if she just spends the

CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin 353

money at the input address before the mixing protocol is completed. In both sit-
uations, the Bitcoin network provides evidence for the misbehavior. Second, the
blame phase is entered if the shuffling has not been performed correctly. In that
case, the participants can broadcast their ephemeral decryption keys, along with
the messages they have received. This information allows every participant to
replay the computations of the rest of participants and expose the misbehaving
one. Third, participants could equivocate in the broadcasts of the protocol, e.g.,
by sending different public keys to different participants in the announcement
phase. All participants exchange messages before creating the mixing transaction
to ensure that nobody has equivocated. In case of equivocation, the blame phase
is entered. Since all protocol messages are signed, the equivocating participant
can be identified; two signed messages that are different but belong to the same
sender and the same broadcast step provide evidence of the misbehavior.

5 The CoinShuffle Protocol

This section details the CoinShuffle protocol, first by covering its cryptographic
building blocks and later by formally describing the protocol.

5.1 Cryptographic Primitives

To connect CoinShuffle to Bitcoin, the participants use the Elliptic Curve Digital
Signature Algorithm (ECDSA) already deployed in Bitcoin. Formally, we require
the signature scheme in CoinShuffle to be (weakly) unforgeable under chosen-
message attacks (UF-CMA). Given a message m and a signing key sk , we denote
by Sig(sk ,m) the signature of m using sk . The verification algorithm Verify(vk , σ)
outputs 1 if σ is a valid signature for m under the verification key vk .

CoinShuffle requires an IND-CCA secure public-key encryption scheme. We
denote by Enc(ek ,m) the ciphertext that encrypts the message m with the en-
cryption key ek . For all possible outputs (ek , dk) of the key generation algo-
rithm, we have that if c is a valid ciphertext encrypted with encryption key
ek , then the decryption algorithm Dec(dk , c) outputs the message m contained
in c, or ⊥ otherwise. The encryption scheme must adhere to several additional
conditions: First, it must be possible to check if a pair of bitstrings (ek , dk) is
a valid key pair, i.e., a possible output of the key generation algorithm. This
can be achieved, e.g., as described in [26, Appendix]. Second, we require the
encryption algorithm Enc to be length-regular, i.e., for all encryption keys ek
and messages m and m′ with |m| = |m′|, we have |Enc(ek ,m)| = |Enc(ek ,m′)|
with probability 1. We denote the layered encryption of m with multiple keys
by Enc((ek1, . . . , ekn),m) ··= Enc(ek1,Enc(ek2, . . .Enc(ekn,m) . . .)). Finally, we
require a collision-resistant hash function H.

5.2 Core Protocol Description

We assume that every participant i ∈ {1, . . . , N} already possesses a Bitcoin
address, i.e., a public verification key vk i and the corresponding signing key sk i.

354 T. Ruffing, P. Moreno-Sanchez, and A. Kate

The address vk i will be one of the input addresses of the mixing transaction. The
order of the participants is publicly known, e.g., the lexicographical order of the
verification keys. We further assume that every participant already knows the
verification keys of all other participants. All participants have already agreed
upon a fresh session identifier τ and an amount B ν of coins that they would
like to mix. Since the participants use their private Bitcoin keys to sign protocol
messages, we require an encoding that ensures that protocol messages are distinct
from Bitcoin transactions. This guarantees that participants cannot be tricked
into signing transactions unknowingly. During the whole protocol, parties ignore
incorrectly signed messages and unexpected messages.

To simplify presentation, we assume implicitly that signed messages can be
extracted from their signatures. We write σa,b for the signature produced by
participant a in phase b.

Phase 1: Announcement. Every participant i ∈ {2, . . . , N} randomly
chooses a fresh ephemeral encryption-decryption key pair (ek i, dk i) and broad-
casts σi,1 = Sig(sk i, (ek i, 1, τ)). After participant i receives a correctly signed
message σj,1 from each participant j, she checks that the address vk j holds
at least B ν to ensure that enough money is available to carry out the mixing
transaction. Otherwise, participant i enters the blame phase.

Phase 2: Shuffling. Every participant chooses a fresh Bitcoin address, i.e.,
the verification key vk ′

i of a fresh verification-signing key pair (vk ′
i, sk

′
i). The

signing key sk ′
i is kept secret and can be used to spend the mixed coins that will

be associated with the output address vk ′
i after a successful run of the protocol.

Participant 1 creates a layered encryption c1 = Enc((ek2, . . . , ekN), vk ′
i) of her

output address vk ′
i and sends σ1,2 = Sig(sk1, (C1, 2, τ)) to participant 2, where

C1 = (c1) is the unary vector with the component c1. Upon receiving a vectorCi−1,
participant i ∈ {2, . . . , N−1}decrypts each message in the vector. Afterwards, she
encrypts her Bitcoin output address vk′i with the public keys of the remaining (N−i)
participants, obtaining ci = Enc((ek i+1, . . . , ekN), vk ′

i). Then participant i adds
ci to the vector of decrypted messages and shuffles the extended vector randomly,
obtaining a new vector Ci. If a decryption fails or if two decryption operations lead
to the same output, participant i enters the blame phase. Otherwise, participant i
sends σi,2 = Sig(sk i, (Ci, 2, τ)) to participant i + 1.

Phase 3: Broadcast of the Output. Upon receiving σN−1,2, participant
N strips the last layer of encryption of every ciphertext in the vector CN−1. Then
participant N shuffles the resulting vector of output addresses after extending it
by her own output address vk ′

N , obtaining the final vector Tout . Finally, partici-
pant N broadcasts σN,3 = Sig(skN , (Tout , 3, τ)) to the rest of the participants. If
the protocol has been correctly carried out by all participants, every participant
has received a copy of the shuffled vector Tout of output addresses at this point.
Every participant i checks if her output address vk ′

i is contained in Tout , and
otherwise enters the blame phase.

Phase 4: Equivocation Check. To ensure that nobody has equivocated
during a broadcast, every participant i computes hi = H((ek2, . . . , ekN), Tout)
and broadcasts σi,4 = Sig(sk i, (hi, 4, τ)). After having received a correctly signed

CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin 355

message from each participant j, participant i checks if there are two participants
a and b with ha �= hb. In this case, participant i enters the blame phase.

Phase 5: Transaction Verification and Submission. Every participant
deterministically creates a (not yet signed) mixing transaction tx that spends
B ν from each of the input addresses in Tin = (vk1, . . . , vkN) and sends B ν to
each of the output addresses in Tout . Participant i signs the transaction tx ac-
cording to the specification of the Bitcoin protocol and broadcasts the signature
σi,5 = Sig(sk i, tx). Upon receiving a valid signature σj,5 from each participant
j, participant i adds all signatures to tx and submits the resulting valid transac-
tion to the Bitcoin network. Participant i checks if any of the other participants
has spent her money reserved for mixing in the meantime. If this is the case,
participant i enters the blame phase. Otherwise the protocol is finished.

Phase 6: Blame. This phase is only reached when any of the checks de-
scribed above fails. When a participant i enters the blame phase, it broadcasts
a signed message explaining the reason for entering the blame phase. Depending
on the failed check, additional information may be included as follows:
1. If the Bitcoin network reports that the value of the coins at an input address

is below B ν, or that the coins at an input address vk j have already been
spent, participant i broadcasts the transaction that sent the insufficient coins
to the input address or the transaction that spent the coins, respectively.

2. If there are participants i and j with hi �= hj : Participants i and j publish
all signed messages that have been received in phase 1 and phase 3. Note
that these messages contain all encryption keys (ek2, . . . , ekN) and the final
vector Tout . Every participant recomputes hi and hj and checks if they have
been correctly reported. If not, this exposes participant i or j. If both hi

and hj have been reported correctly, there are two cases: First, a participant
has equivocated in phase 1 by sending different encryption keys to i and
j. Second, participant N has equivocated in phase 3 by sending different
vectors of output addresses to i and j. In either case, the published messages
expose the misbehaving participant.

3. If in phase 2, a decryption fails, a duplicate ciphertext is detected, or if after
phase 2 an output address is missing in the final vector, the participants per-
form the skipped equivocation check in phase 4, but only for the encryption
keys: Every participant i computes h′

i = H((ek2, . . . , ekN)) and broadcasts
Sig(sk i, (h

′
i, 4, τ)). After having received a correctly signed message from each

participant j, participant i checks that there are no two participants a and
b with h′

a �= h′
b. Otherwise, the protocol continues as in the case above. If

the equivocation check succeeds, every participant i signs and broadcasts
her decryption key dk i together with all messages that have been received
in phases 2 and 3. The participants verify that all key pairs (ek i, dk i) are
valid and blame the participant with an invalid key pair otherwise. If all key
pairs are valid, the participants have enough information to replay phases 2
and 3 on their own and identify at least one misbehaving participant.

At the end of the blame phase, at least one misbehaving participant is identified
and excluded from the protocol. The remaining participants can start a new run of
the protocol without the misbehaving participant, using a fresh session identifier.

356 T. Ruffing, P. Moreno-Sanchez, and A. Kate

It is worth noting that, whenever the blame phase is reached, the participants do
not construct a transaction that is accepted by the Bitcoin network.

5.3 Practical Considerations

Transaction Fees. In practice, the Bitcoin network charges a small fee for
mixing transactions4 to prevent DoS attacks that flood the network with a large
number of transactions [36]. Transaction fees can easily be dealt with in Coin-
Shuffle. Before creating the transaction, the N participants calculate the required
fee μ and reduce the size of each output by μ/N , splitting the fee equally among
all participants. This ensures that the transaction will be accepted by the Bitcoin
network. If a participants tries to cheat by deviating from this policy, e.g., to
pay a lower fee, the mixing transaction will not become valid as only the correct
transaction will be signed by the honest participants.

Change Addresses. A user that would like to spend exactly Bx typically does
not hold an input address with exactly this balance, but rather an address with
a higher balance B (x+ y). In order to perform the payment, the user will create
a transaction with one input B (x + y) and two outputs: Bx go to the address
of the payee and B y go to a change address belonging to the original user.

The use of change addresses is supported in CoinShuffle: Participants can
announce additional change addresses in phase 1, if they do not have an address
holding exactly the mixing amount B ν. In phase 5, every participant adds all
the change addresses as outputs of the mixing transaction tx before it is signed.
CoinShuffle still preserves the unlinkability between the input addresses and the
(regular) output addresses of the honest participants.

Communication and Liveness. In practice, broadcasts can be implemented
by sending all messages to a randomly chosen leader that relays the messages
to all participants. Furthermore, instead of misbehaving actively, participants
might passively disrupt a protocol run by simply going offline at any time, either
maliciously or due to a network failure or asymmetric connectivity. This problem
is not particular to CoinShuffle and can be handled using the same techniques
as in Dissent [26], which in turn borrows ideas from PeerReview [37]. We only
present the idea and refer the reader to the original papers for details. When
the protocol states that a participant i must receive a properly signed message
from participant j, but participant j does not send such a message within a
predefined timeout period, i suspects j. In this case, i asks another participant k
(or several participants) to request the desired message from j and relay it to i. If
k does not receive the message either, also k suspects j and can in turn ask other
members. In case nobody receives the message from j, i.e., everybody suspects
j eventually, the participants can start a new run of the protocol without j.

4 At the time of writing, a fee of B 0.0001 (≈ $ 0.06) per 1000 bytes of transaction size
is mandatory for transactions of at least 1000 bytes. Due to their nature, mixing
transactions contain several addresses and are typically larger than 1000 bytes. A
mixing transaction with 25 participants has an approximate size of 5000 bytes.

CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin 357

6 Analysis

We discuss why CoinShuffle achieves the design goals described in Section 3.1.

6.1 Security Analysis

Recall that we aim for three security and privacy properties, namely unlinkability,
verifiability and robustness. We explain why CoinShuffle achieves all of these.

Unlinkability. A Bitcoin mixing protocol provides unlinkability if given a single
output address vk ′ from a successful mixing transaction, the scenario that vk ′

belongs to some honest user a is indistinguishable from the scenario that vk ′

belongs to a different honest user b �= a.
First, observe that we do not have to consider failed runs of the protocol.

Indeed, if the blame phase is reached, the attacker might be able to link an
output address to an input address, e.g., if the participants publish decryption
keys. However, if the blame phase is reached, the mixing transaction and in
particular the generated output addresses are discarded and the protocol will be
restarted with fresh output addresses.

Now consider a successful run of the protocol, i.e., assume that the blame
phase has not been reached. Observe that phase 4 of the protocol ensures that
no participant has equivocated while announcing her ephemeral encryption key
in phase 1. Let i be the highest index of an honest participant in the shuffling
order and let U<i be the set of honest participants with index smaller than i.
Participant i has received a vector Ci−1 of i − 1 ciphertexts. All messages that
have been sent so far in the shuffling phase have been encrypted with ek i (and
other keys). These messages do not reveal the link between input and output
addresses, because the attacker does not know dk i and thus cannot observe which
output address is contained in which layered ciphertext.

We continue by arguing that the output of participant i does not reveal the
link between input and output addresses either. Since the shuffling has been
performed successfully and the blame phase has not been reached, the ciphertexts
in vector Ci−1 that belong to the users in U<i have not been tampered with.
Furthermore, because we have excluded equivocation, these ciphertexts share the
same structure, i.e., they are all of the form Enc((ek i, . . . , ekN), vk ′

j) for j ∈ U<i

and uniquely defined encryption keys ek i, . . . , ekN . Participant i strips one layer
of encryption from the ciphertexts in Ci−1, adds her own ciphertext and shuffles
the resulting vector Ci. Consequently, participant i outputs a randomly shuffled
vector Ci that contains at least |U<i|+ 1 honestly generated ciphertexts of the
form Enc((ek i+1, . . . , ekN), vk ′

j) for j ∈ U<i∪{i}, where all output addresses vk ′
j

have the same fixed length, because they are Bitcoin addresses. Let Di be the
a vector that is obtained by keeping only those honestly generated ciphertexts
and removing the others from Ci. Di is implicitly associated with a permutation
π of the output addresses of the honest participants in U<i ∪ {i}.

Since i is honest and does not collude with malicious participants, the IND-CCA
property of the encryption scheme ensures that all pairs of possible output vec-
tors D0

i and D1
i (resulting from potentially different permutations π0 and π1 of

358 T. Ruffing, P. Moreno-Sanchez, and A. Kate

the output addresses) are indistinguishable.5 Note that at least two different per-
mutations π0 �= π1 exist, because by assumption, there are at least two honest
participants whose ciphertexts can be shuffled, which implies |U<i| ≥ 1.

Verifiability. A Bitcoin mixing protocol ensures verifiability if no attacker can
steal or destroy honest participants’ coins. This is immediate from the description
of CoinShuffle: a honest participant i signs the final mixing transaction only if
she has verified that (i) her own output address vk ′

i is included in the list of
output addresses, and (ii) the amount sent to the output address is the amount
of coins taken from her input address (possibly reduced by a transaction fee).

Robustness. A Bitcoin mixing protocol ensures robustness if it finishes even in
the presence of malicious participants. Since CoinShuffle enters the blame phase
if a run does not successfully create a transaction, we have to argue why at least
one misbehaving participant can be identified in the blame phase. We distinguish
the same cases as in the blame phase of the protocol description:

1. In this case, the signed announcement message together with the evidence
from the Bitcoin network proves that the participant in question misbehaved.

2. Recall that participants i and j publish all signed messages that have been
received in phases 1 and 3. If hi or hj have been computed incorrectly, this is
evidence that i or j, respectively, has misbehaved. If both hi and hj have been
reported correctly, the published messages expose the equivocating participant.

3. If a participant detects an invalid key pair, the signed announcement mes-
sage (containing the purported encryption key) and the signed message in the
blame phase containing the purported decryption key provide evidence of misbe-
havior. Otherwise, the participants have enough information to replay the steps
of each participant in phases 2 and 3 and identify the misbehaving participant.
The signed messages of phases 1 to 3 prove the misbehavior.

Double-Spending. Note that due the nature of the Bitcoin network, a malicious
participant might disrupt the protocol by a double-spending attempt: Shortly be-
fore all participants submit the mixing transaction to the network, the malicious
participant submits a transaction that spends her input coins that have actually
been designated for mixing. The Bitcoin network will eventually reach consensus
which of the two transactions becomes valid and discard the other one to ensure
that coins cannot be double-spent. If the malicious transaction is accepted, honest
parties do not lose their coins, but the mixing will have failed. Then, it might be
the case that a restart of the protocol is not possible because the participants have
already gone offline, in the belief that the protocol has been successful.

We consider protection against double-spending in Bitcoin to be orthogonal
to our work [38]. Typically, the attacker’s goal in double-spending is to make a
recipient of a transaction believe that she has received some coins. As a result

5 Note that the length-regularity of Enc implies that not only the output addresses
but also the inner layers of encryptions (at the same depth) have the same length.
This is necessary, because otherwise the IND-CCA property does not guarantee in-
distinguishability for the encryptions of these inner ciphertexts.

CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin 359

the recipient will, e.g., hand over a valuable good to the attacker, even though
the transaction will be invalidated and replaced by a different one that sends the
coins back to attacker. However, this attack is not possible in mixing, because
sender and recipient are the same party. Instead, invalidating a mixing transac-
tion is only an attack against robustness. If protection against a double-spending
attack becomes necessary to ensure robustness, the participants will have to wait
for the transaction to be confirmed by the Bitcoin network before they go offline.

6.2 System Analysis

We discuss why CoinShuffle achieves the desired system-level goals.

Compatibility. CoinShuffle does not require any change to the Bitcoin protocol
or to the transaction format, because a successful run of CoinShuffle results in
a transaction that is valid according to the current rules of Bitcoin. Thus the
protocol is immediately deployable.

No Mixing Fees. Systems in which a trusted third party performs the mixing
typically charge users two fees: a transaction fee as defined in Bitcoin and a mix-
ing fee required by the trusted third party [10, 11, 12]. In CoinShuffle, however,
no mixing fee is required. Users who jointly execute CoinShuffle are only charged
the transaction fee as defined in the currently deployed Bitcoin protocol.

Efficiency. As signatures and hash functions are already used in Bitcoin, public-
key encryption is the only cryptographic primitive added by CoinShuffle. This
allows to run the protocol even on computationally restricted hardware. The
performance evaluation (Section 7) shows the practical feasibility of CoinShuffle.

Small Impact on Bitcoin. Upon successful protocol execution, the partici-
pants jointly create only a single Bitcoin transaction that must be stored in the
public blockchain and has to be verified by all nodes in the network. Thus, the
execution of CoinShuffle introduces only a minimal overhead in terms of storage
and computation for nodes in the Bitcoin network.

7 Performance Evaluation

We have developed a proof-of-concept implementation [39] of CoinShuffle lever-
aging an existing implementation of the Dissent protocol. In particular, we have
implemented phases 1 to 5 of the protocol (Section 5.2), which suffice to measure
the performance of a single successful run without disruption.

The implementation is written in Python and uses OpenSSL to sign and en-
crypt messages. As required by the Bitcoin network, signatures have been imple-
mented using ECDSA on the secp256k1 elliptic curve [40] at a security level of
128 bits. We use the Elliptic Curve Integrated Encryption Scheme (ECIES) [40]
on the same curve together with standard AES in CBC mode for encryption.
The communication among the participants has been implemented using TCP.
When a message is broadcast, it is first sent to the first participant in the shuffling
order, who in turn sends a copy to every participant.

360 T. Ruffing, P. Moreno-Sanchez, and A. Kate

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

ec
on

ds
)

Number of participants

local network
global network

Fig. 3. Overall execution time

 0

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

ec
on

ds
)

Number of participants

Average
Max and min

Fig. 4. Processing time per node

We tested our implementation in Emulab [41], a testbed for distributed sys-
tems, in which network parameters such as topology or bandwidth of links can
be easily configured. In this setting, we have run several experiments under con-
trolled network conditions. We consider two scenarios: a local network and a
global network. In the former, we connected all the participants to a LAN with
100 Mbit/s bandwidth without delays. In the latter, we split the participants in
two LANs of 100 Mbit/s bandwidth each. Both LANs were connected through a
router with a bandwidth of 20 Mbit/s and a delay of 50 ms. In the global network
scenario we considered the worst case for the shuffling phase: participants with
an odd index in the shuffling order were placed in one LAN while participants
with an even index were placed in the other LAN. Thus every message in the
shuffling phase had to traverse the whole network.

We have run the protocol with different numbers of participants, ranging from
5 to 50. Figure 3 shows the overall time needed to create a Bitcoin transaction
in a run without misbehaving participants. In the local network, 50 participants
need approximately 40 seconds to run CoinShuffle, while in the global network,
slightly less than 3 minutes are necessary to complete the protocol.

Figure 4 shows the overhead of the computation carried out by every par-
ticipant on average. As expected, the average processing time increases linearly
with the number of participants, because every participant must shuffle a vec-
tor of ciphertexts containing one ciphertext more than the previous participant.
Furthermore, the computation overhead constitutes only a small fraction of the
overall time. In the case of 50 participants, the average computation time is
slightly larger than 3 seconds, which constitutes approximately 2% of the overall
time in the local network scenario and less than 1% in the global network setting.

In summary, the experimental results demonstrate the feasibility of the Coin-
Shuffle protocol even in scenarios with a large number of participants.

8 Related Work

Zerocoin [14], an extension to Bitcoin, was among the first proposals to pro-
vide unlinkability between individual Bitcoin transactions without introducing a
trusted party. It employs a cryptographic accumulator of minted zerocoins and

CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin 361

a zero-knowledge proof of inclusion of a certain zerocoin within the accumulator.
Zerocoin introduces a significant computation and communication overhead: the
size of the proof that has to be stored in the blockchain for each transaction is
prohibitively large (i.e., approximately 25 KB) and far exceeds the size of the
Bitcoin transaction itself.

Recently, there have been some proposals to reduce the Zerocoin proof size.
Garman et al. [16] propose a set of extensions to Zerocoin that reduces the
proof size by modeling the cost of forging a coin and picking cryptographic
parameters to make such forgery uneconomical. Both Pinocchio Coin [15] and
Zerocash [17] are promising improvements of Zerocoin that significantly reduce
the proof size (to less than 1 KB) and the computational costs. Nevertheless, this
line of research is severely restricted in terms of adaptability. Zerocoin and all
of the above extensions require substantial modifications to the Bitcoin system.
Thus, Zerocoin and its variants cannot be directly deployed in Bitcoin. Instead,
they would need an incremental deployment that requires acceptance by the
majority of the Bitcoin nodes (measured in computational resources). So far,
it looks unlikely for the Bitcoin network to employ the Zerocoin strategy [42].
In contrast, while requiring more communication, CoinShuffle is immediately
adaptable and works on top of the existing Bitcoin network.

The Mixcoin [13] protocol facilitates anonymous Bitcoin payments without mak-
ing any modifications to the Bitcoin protocol. Here, Bitcoin users send their coins
to a central accountable mix which in turn replies with a guarantee of returning
the funds to the user. Afterwards, the mix sends the coins back to the user ensur-
ing unlinkability between the user input and output addresses. Although the mix
can be held accountable for thefts, the system still has several drawbacks. First,
the use of a central mix introduces a single point of failure, where the mix becomes
a suitable target for DoS attacks from competing mixes as well as governmental
agencies. Second, the provided accountability is reactive in nature, and the mix
can still steal users’ coins before going out of business. Third, a payment in Mix-
coin requires two Bitcoin transactions and additionally a fee charged by the mix.
Finally, unlinkability is only guaranteed against external observers, because mix
learns which address belongs to which user. In comparison to Mixcoin, CoinShuffle
relies on the interaction between the users in the mixing to achieve unlinkability,
verifiability, robustness, and cost effectiveness without a trusted third party.

Maxwell [43] sketches a modification to the CoinJoin protocol using blind sig-
natures to avoid the problem of a centralized mix learning the relation between
input and output addresses. This protocol employs the anonymous communica-
tion network Tor [32] as a building block to provide unlinkability. In contrast,
CoinShuffle provides full resistance against traffic correlation attacks by using a
decentralized high-latency mix network run only by the participants.

9 Conclusion

The linkable pseudonymity provided by the Bitcoin system leads to significant
privacy concerns for its users. A few solutions that aim at mixing transactions

362 T. Ruffing, P. Moreno-Sanchez, and A. Kate

of a group of users have been proposed in the last two years to address this
concern; however, none of them has been found to be satisfy all requirements of
a practical and compatible solution. In this paper, we have presented the Bitcoin
mixing protocol CoinShuffle, which is secure, robust, and perfectly compatible
with the existing Bitcoin system. Adhering to the Bitcoin ideology, CoinShuffle is
completely decentralized, and it neither requires any third party nor introduces
any additional anonymization fees for the users.

We implemented CoinShuffle and tested it in a local as well as in a global net-
work scenario in the Emulab environment. Our experiments demonstrate that
CoinShuffle introduces only a small (suitable for Bitcoin) computation and com-
munication overhead to a participant, even when the number of CoinShuffle par-
ticipants is large (≈ 50). Moreover, CoinShuffle leads only to a minimal overhead
for the Bitcoin blockchain and thus for the rest of the Bitcoin network.

Finally, although we have focused on the crypto-currency Bitcoin in the paper,
we stress that our protocol is compatible with all competing currencies derived
from Bitcoin, e.g., Litecoin [2], Mastercoin [4], and others.

Acknowledgments. We thank Bryan Ford for his insightful comments on an
earlier draft and Henry Corrigan-Gibbs for helping us with running the proof-of-
concept implementation on Emulab. We further thank the anonymous reviewers
for their helpful comments. This work was supported by the German Universities
Excellence Initiative.

References

[1] Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Technical report
(2008), https://bitcoin.org/bitcoin.pdf

[2] Litecoin, https://litecoin.org
[3] Ripple, https://ripple.com
[4] Mastercoin, http://www.mastercoin.org
[5] BitInfoCharts, http://bitinfocharts.com/comparison/transactions-

marketcap-btc-ltc.html (accessed on March 28, 2014)
[6] Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better — how to make Bitcoin a

better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414.
Springer, Heidelberg (2012)

[7] Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of bitcoins: Characterizing payments among men with
no names. In: IMC 2013, pp. 127–140. ACM (2013)

[8] Spagnuolo, M., Maggi, F., Zanero, S.: BitIodine: Extracting intelligence from the
Bitcoin network. In: FC 2014. Springer (2014)

[9] Koshy, P., Koshy, D., McDaniel, P.: An analysis of anonymity in Bitcoin using
P2P network traffic. In: FC 2014. Springer (2014)

[10] Bitcoin Fog, http://www.bitcoinfog.com
[11] BitLaundry, http://app.bitlaundry.com
[12] BitLaunder, https://bitlaunder.com
[13] Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mix-

coin: Anonymity for Bitcoin with accountable mixes. In: FC 2014. Springer (2014)

https://bitcoin.org/bitcoin.pdf
https://litecoin.org
https://ripple.com
http://www.mastercoin.org
http://bitinfocharts.com/comparison/transactions-marketcap-btc-ltc.html
http://bitinfocharts.com/comparison/transactions-marketcap-btc-ltc.html
http://www.bitcoinfog.com
http://app.bitlaundry.com
https://bitlaunder.com

CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin 363

[14] Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed
e-cash from Bitcoin. In: S&P 2013, pp. 397–411. IEEE Press (2013)

[15] Danezis, G., Fournet, C., Kohlweiss, M., Parno, B.: Pinocchio Coin: Building
Zerocoin from a succinct pairing-based proof system. In: PETShop 2013, pp. 27–
30. ACM (2013)

[16] Garman, C., Green,M.,Miers, I., Rubin,A.D.: Rational Zero: Economic security for
Zerocoin with everlasting anonymity. In: 1st Workshop on Bitcoin Research (2014),
https://fc14.ifca.ai/bitcoin/papers/bitcoin14_submission_12.pdf

[17] Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from Bitcoin. In: S&P 2014.
IEEE Press (2014)

[18] Maxwell, G.: CoinJoin: Bitcoin privacy for the real world. Post on Bitcoin Forum
(August 2013), https://bitcointalk.org/index.php?topic=279249

[19] Qkos Services Ltd.: Shared Coin, https://sharedcoin.com
[20] Yang, E.Z.: Secure multiparty Bitcoin anonymization. Blog posting (2012),

http://blog.ezyang.com/2012/07/secure-multiparty-bitcoin-

anonymization/

[21] Jónsson, K.V., Kreitz, G., Uddin, M.: Secure multi-party sorting and applications.
IACR ePrint Cryptology Archive 2011/122, https://eprint.iacr.org/2011/122

[22] Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically effi-
cient multi-party sorting protocols from comparison sort algorithms. In: Kwon, T.,
Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 202–216. Springer,
Heidelberg (2013)

[23] Rosenfeld, M.: Using mixing transactions to improve anonymity. Post on Bitcoin
Forum (December 2011), https://bitcointalk.org/index.php?topic=54266

[24] Murphant (pseudonym). Post on Bitcoin Forum (August 2013),
https://bitcointalk.org/index.php?topic=279249.msg3057216#msg3057216

[25] Maxwell, G.: Post on Bitcoin Forum (September 2013),
https://bitcointalk.org/index.php?topic=279249.msg3013970#msg3013970

[26] Corrigan-Gibbs, H., Ford, B.: Dissent: Accountable anonymous group messaging.
In: CCS 2010, pp. 340–350. ACM (2010)

[27] Bitcoin project: Bitcoin developer documentation,
https://bitcoin.org/en/developer-documentation

[28] Möser, M., Böhme, R., Breuker, D.: An inquiry into money laundering tools in
the Bitcoin ecosystem. In: ECRIME 2013. IEEE Press (2013)

[29] Duffield, E., Hagan, K.: Darkcoin: Peer-to-peer crypto currency with anonymous
blockchain transactions and an improved proof-of-work system. Technical report
(March 2014), http://www.darkcoin.io/downloads/DarkcoinWhitepaper.pdf

[30] Buterin, V., Malahov, J., Wilson, C., Hintjens, P., Taaki, A., et al.: Dark Wallet,
https://darkwallet.unsystem.net

[31] van der Laan, W.J.: Implement coinjoin in wallet. GitHub Issue #3226 of official
Bitcoin repository, https://github.com/bitcoin/bitcoin/issues/3226

[32] Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: USENIX Security 2004, pp. 21–37. USENIX Assoc. (2004)

[33] Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM 24(2), 84–90 (1981)

[34] Syta, E., Johnson, A., Corrigan-Gibbs, H., Weng, S.C., Wolinsky, D., Ford, B.: Se-
curity analysis of accountable anonymous group communication in Dissent. ACM
Transactions on Information and System Security (TISSEC) (to appear)

[35] Brickell, J., Shmatikov, V.: Efficient anonymity-preserving data collection. In:
SIGKDD 2006, pp. 76–85. ACM (2006)

https://fc14.ifca.ai/bitcoin/papers/bitcoin14_submission_12.pdf
https://bitcointalk.org/index.php?topic=279249
https://sharedcoin.com
http://blog.ezyang.com/2012/07/secure-multiparty-bitcoin-anonymization/
http://blog.ezyang.com/2012/07/secure-multiparty-bitcoin-anonymization/
https://eprint.iacr.org/2011/122
https://bitcointalk.org/index.php?topic=54266
https://bitcointalk.org/index.php?topic=279249.msg3057216#msg3057216
https://bitcointalk.org/index.php?topic=279249.msg3013970#msg3013970
https://bitcoin.org/en/developer-documentation
http://www.darkcoin.io/downloads/DarkcoinWhitepaper.pdf
https://darkwallet.unsystem.net
https://github.com/bitcoin/bitcoin/issues/3226

364 T. Ruffing, P. Moreno-Sanchez, and A. Kate

[36] Transaction fees. Bitcoin Wiki, https://en.bitcoin.it/w/index.php?title=
Transaction fees&oldid=45501 (revision as of March 28, 2014)

[37] Haeberlen, A., Kouznetsov, P., Druschel, P.: PeerReview: Practical accountability
for distributed systems. In: SOSP 2007, pp. 175–188. ACM (2007)

[38] Karame, G.O., Androulaki, E., Capkun, S.: Double-spending fast payments in
Bitcoin. In: CCS 2012, pp. 906–917. ACM (2012)

[39] Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: Practical decentralized
coin mixing for Bitcoin. Full version of this paper and prototype implementation,
http://crypsys.mmci.uni-saarland.de/projects/CoinShuffle

[40] Certicom Research: Sec 1: Elliptic curve cryptography,
http://www.secg.org/download/aid-780/sec1-v2.pdf

[41] White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hi-
bler, M., Barb, C., Joglekar, A.: An integrated experimental environment for dis-
tributed systems and networks. In: OSDI 2002, pp. 255–270. USENIX (December
2002)

[42] Thread on Bitcoin Forum, https://bitcointalk.org/index.php?topic=175156
[43] Maxwell, G.: Post on Bitcoin Forum (2013), https://bitcointalk.

org/index.php?topic=279249.msg2984051#msg2984051

A High-Level Comparison with Dissent

CoinShuffle has been inspired by the shuffling phase of the Dissent protocol [26,
34], which adds robustness to a data collection protocol due to Brickell and
Shmatikov [35]. The fact that CoinShuffle is crafted specially to be used on top
of the Bitcoin protocol allows us to apply several optimizations. In the following
we describe the two most important improvements as compared to Dissent. We
assume the reader to be familiar with the Dissent protocol [26, 34].

First, observe that in Dissent, the shuffling phase must hide participants’ in-
puts even in case of failure, i.e., even if the blame phase is reached. For that,
Dissent needs N additional inner layers of encryption, because each message is
additionally encrypted with the encryption keys of all participants. This makes
it possible to introduce an additional step after the shuffling: Participants check
first if the shuffling was performed correctly, and they reveal their inner decryp-
tion keys only if the check succeeds. In contrast, hiding the plaintexts is not
necessary in a failed run of CoinShuffle, because the plaintexts are only fresh
Bitcoin addresses that are discarded when the protocol fails; it is not a problem
to create new addresses in the subsequent run of the protocol. As a result, the
additional inner layers of encryption are not necessary in CoinShuffle.

Second, the description of the shuffling phase of Dissent specifies that every
participant sends and receives a vector of N ciphertexts. In CoinShuffle, every
participant i receives a vector of only i−1 ciphertexts and sends only i ciphertexts
to the next participant. The communication overhead is thereby further reduced,
and fewer encryption and decryption operations are necessary as compared to
Dissent. We conjecture that this improvement is also applicable to the shuffling
phase of Dissent, but we leave a formal treatment for future work.

https://en.bitcoin.it/w/index.php?title=Transaction_fees&oldid=45501
https://en.bitcoin.it/w/index.php?title=Transaction_fees&oldid=45501
http://crypsys.mmci.uni-saarland.de/projects/CoinShuffle
http://www.secg.org/download/aid-780/sec1-v2.pdf
https://bitcointalk.org/index.php?topic=175156
https://bitcointalk.org/index.php?topic=279249.msg2984051#msg2984051
https://bitcointalk.org/index.php?topic=279249.msg2984051#msg2984051

LESS Is More: Host-Agent Based Simulator

for Large-Scale Evaluation of Security Systems

John Sonchack1 and Adam J. Aviv2

1 University of Pennsylvania, Philadelphia, PA 19104, USA
2 United States Naval Academy, Annapolis, MD 21402, USA

Abstract. Recently proposed network security systems have demon-
strated the benefits of scale for achieving many security goals, including
the detection of worm outbreaks, botnets, and denial of service attacks.
However, scale is also a barrier to further advancement of such systems:
obtaining and working with appropriately large data sets is difficult, and
existing simulation techniques are ill suited for this domain. To overcome
these challenges, we propose a host behavior simulator, LESS, designed
for evaluating large scale network security systems. LESS build and auto-
matically configures the behaviors of host agents using background traffic
samples and malicious traffic models. In turn, host agents communicate
with each other throughout a simulation, generating traffic records. We
demonstrate the applicability and benefits of LESS by tuning it with
publicly available traces, and then using generated records to reproduce
results from several recently proposed systems. We also used LESS to
extend the evaluations of these systems, highlighting dimensions of large
scale security system performance that would be difficult to study with-
out simulation.

Keywords: Data Challenges, Large Scale Security, Simulation, Agent
Based, Stochastic.

1 Introduction

Many recently proposed network security systems leverage scale [1, 2, 3, 4, 5].
By analyzing diverse data sets gathered from many vantage points, a network
security system can identify macroscopic host behavior patterns that cannot be
observed at the local network level. Although beneficial, the scale of such pro-
posed techniques also results in a high bar for advancement and investigation
from the general research community [6, 7]. Internet- or ISP- scale data sets
appropriate for studying large-scale security systems are difficult to acquire and
share. Furthermore, data sets of sufficient scale that are publicly available often
lack context that is important for meaningful evaluation, such as ground truth
about which traffic is malicious. These data limitations affect the ability of re-
searchers to reproduce existing results, and limit the dimensions in which they
can analyze their systems.

In this paper, we argue that novel simulation techniques specifically designed
to analyze large scale security systems can directly address these challenges. In

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 365–382, 2014.
c© Springer International Publishing Switzerland 2014

366 J. Sonchack and A.J. Aviv

other areas of network research, simulation has proven an effective tool to over-
come similar data-related challenges. However, available simulation tools do not
model the usage and behavior patterns in a way well suited for evaluating large
scale security systems. We propose an alternate simulation strategy that is agent
based: the Large-scale Evaluation for Security Simulation (LESS). LESS gener-
ates host agents that communicate and generate traffic based on behavior defined
by tunable stochastic processes. LESS automatically tunes these processes using
small samples of real traffic and user provided models of well defined network
security threats.

We implemented the LESS simulator, and assessed its effectiveness by using it
to re-evaluate four large scale network security systems. These systems were orig-
inally evaluated on real traffic traces, inaccessible to the public. However, using
publically available network traffic samples, intuitive malicious traffic models,
and previously published traffic parameters, LESS generated traces that repro-
duced results from the original evaluations, confirming prior results with access
to just public data. Furthermore, LESS allowed us to extend the original evalu-
ations, studying prior systems in new dimension that could not be achieved with
the original data. These results suggest that domain-specific simulation, and
LESS in particular, is a vital tool in studying large scale collaborative security
techniques.

In summary, our contributions are:

– The design and implementation of LESS: an agent based simulator for eval-
uating large scale network security systems.

– A tunable, stochastic host-behavior process that allows hosts-agents to gen-
erate background traffic based on parameters from real traffic samples, and
malicious traffic based on parameters from intuitive threat models.

– Simulation based reproductions and extensions of results from four large
scale security system evaluations.

In the remainder of this paper, we examine the intersection of large scale
security systems and simulation based analysis. First, in Section 2, we discuss
related simulation techniques. Next, in Section 3, we summarize four recently
proposed large scale security systems, and their evaluations. We discuss the
implementation of LESS in Section 4. Then, in Section 5, we use LESS, along
with publicly accessible data sets, to reproduce and extend the evaluations of
the surveyed security systems. Finally, we discuss limitations and future work in
Section 6, and conclude in Section 7.

2 Related Work

Simulation offers many benefits for computer network related research [8]. Dis-
crete event simulators [9], and virtual networks [10] provide frameworks for sim-
ulating many network connected devices on a single machine, and are useful for
evaluating distributed systems. However, these tools require users to completely
specify the actions of each simulated device, making them ill-suited for evaluat-
ing large scale security systems, which are designed to detect or prevent specific

LESS Is More 367

types of malicious activity based on usage patterns. Our work is complemen-
tary: LESS models inter-host communication patterns and behaviors, but not
the networks that connect hosts.

Traffic generators, such as [11] generate synthetic packets to be carried on
real or virtual networks. These systems model packet and payload level features,
and are used to evaluate techniques that are sensitive to these features, such
as congestion control [12]. However, large scale network security systems are
sensitive to higher level features, such as traffic dispersion or host communication
patterns. LESS is orthogonal to synthetic traffic generators, in that it models
these higher level network-flow properties and is better suited for evaluating
large scale security systems.

User behavior modeling has been proposed to generate specific classes of
non-malicious Internet traffic, such as HTTP traffic [13]. LESS differs in two
important ways from these systems: first, it models behavior patterns at the
host level; second, it allows users to augment hosts with malicious behaviors
that model large scale security threats such as worm outbreaks [14], correlated
attackers [4], and bot communication networks [15]. Thus, LESS applies similar
behavior modeling techniques, but in a way better suited for evaluating large
scale security systems.

Simulation techniques tailored for specific classes of security systems have
been proposed; Sommers et al. [16] craft flow payloads to evaluate and tune in-
trusion detection systems, and Chen et al. [17] propose a simulator for evaluating
worm outbreaks in a peer-to-peer network. These techniques are complementary
to LESS in scope and scale, but motivated by the common observation that
other network simulation techniques are ill-suited for security research.

Testbed systems, such as Lariat [18], are platforms that use real or virtual-
ized networks along with complex models of host behaviors to evaluate security
systems of varying scale. Testbeds require careful tuning: the authors of Lar-
iat, for example, estimated that configuring their system to test a new intrusion
detection system takes approximately four months [18]. In contrast, LESS uses
more general models that can be automatically fit to and validated against real
traffic traces. Simpler models also lead to quicker run times: each simulation that
we ran to generate experimental results for Section 5 executed in one hour or
less. LESS and security testbeds could be used complementary: for example, the
preliminary evaluation of a new technique could be done using LESS, followed
by a testbed evaluation of the system in a specific scenario.

LESS applies two general classes of simulation techniques to large scale secu-
rity system experimentation. First, agent based simulation [19], in which com-
plex systems are modeled as a set of agents that interact with each other based
on individual decision processes. Second, stochastic simulation [20], in which
systems are analyzed with inputs drawn from statistical distributions of real ob-
servations. More specifically, LESS models usage in a large scale network from
the perspective of a collection of host agents that interact with each other in
a client-server model to generate both background and malicious traffic. The

368 J. Sonchack and A.J. Aviv

actions and behaviors of these host agents are defined by processes that are
configured stochastically, with distributions derived from real sample traces.

3 Large Scale and Collaborative Security Systems

In this section, we summarize four systems that demonstrate both the potential
of large scale security and the data related challenges of experimentation in this
domain.

3.1 Entropy Based Anomaly Detection

Wagner et al. [1] observed that large scale security threats, such as worm out-
breaks and high volume DDoS attacks, skew the distribution of flow level traffic
features such as source and destination IP addresses. Based on these observa-
tions, they proposed a technique to detect such events by measuring the entropy
of traffic features.

Wagner et al. evaluated their technique using large scale traces from the out-
breaks of two real worms. Such traces are difficult to acquire, and do not allow
researchers to analyze how worm behavior properties (e.g. inter-scan time) af-
fect system performance. LESS allows researchers to work around these issues
by generating background traffic based on parameters measured from publicly
accessible samples, and malicious traffic based on parameters selected by tunable
threat models.

3.2 Highly Predictive Blacklisting

The Highly Predictive Blacklisting System [3] generates blacklists customized for
individual networks by analyzing the attack patterns of malicious hosts across
multiple collaborating networks. The proposed approach is based on the obser-
vation that many attackers target small, stable sets of networks [4].

The authors evaluated this system on a set of over 700 million Intrusion
Detection System log entries submitted to DShield [21] by over 1500 networks
over a two month period of time. This data set cannot be used to measure false
alert rates, as IDS log entries alone do not provide sufficient context to determine
the true maliciousness of the hosts causing alerts. LESS can provide perspective
on how false alerts affect a system, by using well defined malicious traffic models
and record sets where malicious traffic is clearly marked.

3.3 Peer-to-peer Botnet Detection

Coskun et al.. [5] proposed a technique to detect peer-to-peer bots by correlating
host communication patterns, based on the observation that the bot-hosts in a
network are more likely to communicate with common external hosts.

The authors evaluate their approach by mixing a 24 hour trace collected at
the boarder of a university network containing approximately 2000 hosts, and

LESS Is More 369

Fig. 1. An overview of LESS

communication records from approximately 900 bots from the Nugache botnet.
A data set from one botnet does not allow researchers to measure how the
topology of the peer-to-peer botnet affects their systems. With LESS, however,
users can estimate the effects of this factor with a tunable botnet traffic model.
Further, this data set is from a single network, which makes it difficult to analyze
how a security system will perform at other networks that carry different types
of traffic. LESS can generate data sets based on samples of traffic from other
networks, which in turn can be used to estimate how robust a security system
is to diverse network conditions.

3.4 Collaborative Anomaly Detection

Boggs et al. [2] proposed a technique to significantly reduce the false positive rate
of anomaly detectors, by correlating the alerts generated by detectors deployed
at multiple networks. Their system is based on the observation that if multiple
unrelated hosts or networks observe similar anomalies, they are more likely to
be due to a common attack.

Boggs et al. evaluated the proposed technique on eight weeks of traffic col-
lected at two university web servers. Their evaluation demonstrates how chal-
lenging it is to collect sufficiently detailed data from multiple administrative
domains. LESS is beneficial in this scenario because it allows users to simulate
many networks based on parameters drawn from a single, more accessible traces.

4 Simulation for Large Scale Network Security

LESS, illustrated in Figure 1, generates traces for evaluating large scale security
systems by generating host agents, assigning them stochastic processes that de-
fine their behavior, and then recording their activities in a simulation where the
host agents execute their behavior processes. A behavior process models a single
host’s communication pattern using a single class of network applications (e.g.
web, email, VOIP, worm). LESS accepts the following inputs:

– a sample trace containing representative background traffic, which LESS
measures statistics from to configure non-malicious host behavior;

370 J. Sonchack and A.J. Aviv

– two simulation parameters N and T , that specify the number of host
agents to generate and the duration of the simulation;

– a malicious traffic model M , which LESS uses to configure malicious host
behavior processes.

When a LESS simulation runs, the host agents autonomously determine when
to communicate and which other host agents to communicate with using their
behavior processes. LESS monitors their communications and generates records
consisting of timestamps, source and destination host IDs, and source and des-
tination ports.

4.1 Preprocessing

LESS configures the background behavior processes of its host agents with mea-
surements derived from a user provided sample trace. The sample trace can
be anonymized and without payloads. In our LESS based security system re-
evaluations, discussed in Section 5, we used short, publicly available traces col-
lected by CAIDA from single Internet backbone links [22], and found that they
were more than sufficient.

The preprocessing stage of LESS has three steps. First, it converts the trace
into flow level records using Argus [23]. Next, it classifies the flow records based
on their application type. In our current iteration, LESS classifies based on
destination port; however, there are many more advanced techniques for traffic
classification, such as [24]. Finally, LESS determines the client / server roles of
each pair of communicating hosts. In our current version, we identify servers
by port (i.e. the server is the host using a well known port below 1024). There
are also more advanced techniques for identifying clients and servers that can
be integrated into LESS [25]. LESS currently discards all flows in which neither
port is well known.

4.2 Assigning Applications to Host Agents

After preprocessing the input trace, LESS generates N host agents and de-
termines which applications types each host agent will model, based on three
statistic samples measured from the input trace:

– client application count sample, or the number of application types each
host from the input trace uses as a client;

– server application count sample, or the number of application types
each host from the input trace uses as a server;

– application host percent sample, or the percentage of hosts from the
input trace that use each application.

LESS then assigns a set of client and server applications to each host agent h
with the following procedure:

LESS Is More 371

1. draw a client count c from the client application count sample and a server
count s from the server count sample;

2. select c applications observed in the input trace randomly without repetition,
weighted by the application host percent sample, and assign them to h’s
client application set;

3. select s applications observed in the input trace randomly without repetition,
weighted by the application host percent sample, and assign them to h’s
server application set;

4.3 Configuring Background Traffic Generation Processes

Next, LESS configures a behavior process for each client application type as-
signed to each host agent. A background behavior process accepts the following
parameters:

– connection inter-generation distribution:, a distribution that defines
how long the host agent waits before generating a new connection using the
modeled application;

– server count: a parameter that defines the maximum number of servers the
host agent should connect to with the modeled application;

– server weight distribution: a distribution that defines the preference of
the host agent for connecting to each host agent that serves the modeled
application;

– community ID: a parameter that specifies which community the host agent
belongs to for the modeled application;

– inter-community ratio: a parameter that specifies the host agent’s pref-
erence for connecting to servers belonging to its own community.

A background behavior process consists of the following two steps, that repeat
until the end of the simulation:

1. Connection Generation: determine when to generate the next connection
by drawing a sample from the connection inter-generation distribution, and
adding it to the current timestamp.

2. Destination Selection: when the timestamp computed in 1 arrives, deter-
mine what host agent to initiate a connection with using a decision process
that narrows the range of possible destinations by first determining whether
to connect with a previously contacted host or a new host (based on whether
this process has reached its server count), and then determining whether to
connect with a host agent inside or outside of its community (based on the
process’s inter-community ratio) After removing the host agents that do not
satisfy the criteria selected above, LESS selects one of the remaining host
agents randomly, weighted by the server weight distribution.

LESS selects inputs for a background behavior process p that models the use
of application a by a single host agent with measurements from the input trace,
as follows:

372 J. Sonchack and A.J. Aviv

1. LESS measures the connection inter-generation distributions and server
counts of all hosts that use application a in the input trace, and randomly
selects one inter-generation distribution and one server count for p;

2. LESS measures the server weight distribution for application a, and assigns
it to all processes that model a, including p.

3. LESS groups all the hosts from the input trace that use application a into
communities using the algorithm described in [26], and then selects a commu-
nity ID for each process that models application a by selecting a community
at random, weighted by the size of the community in the input trace;

4. Finally, LESS selects an inter-community ratio for process p at random from
the inter-community ratios of all hosts that belong to the corresponding
community from the input trace.

4.4 Configuring Malicious Traffic Generation Processes

LESS also adds malicious behavior processes to host agents, based on user pro-
vided models of malicious network behavior. Below, we define the three models
that we apply in Section 5 to re-evaluate large scale security systems. These mod-
els are straightforward, and based on previously published observations about
malicious host behavior.

The models are also tunable, with parameters specified by the user. All of the
models accept the following three parameters:

– N : the number of host agents that model the malicious behavior;
– I: an inter-event timing distribution for the malicious behavior processes;
– T : the start time of the malicious behavior processes.

Random Worm Outbreak Model The random worm outbreak model, based on
observations from [14], simulates the propagation of a randomly spreading worm.
This model accepts inputs N , I, and T , as defined above.

To augment the hosts with this malicious behavior, LESS first selects N host
agents and marks them as vulnerable to the worm. At time T , a randomly
selected vulnerable host initiates the following propagation algorithm, which re-
peats indefinitely:

1. Select a target host, uniformly at random.
2. Send a probe to the host. If the host is marked as vulnerable, mark the host

as infected and start the propagation algorithm on that host.
3. Select an inter-probe time from I. At time currenttime + selectedtime, re-

peat from step 1.

Targeted Attacker Model The targeted attacker model simulates attackers that
persistently target a small number of networks. This phenomenon has previously
been observed in large scale alert repositories [4], and is similar in nature to
Advanced Persistent Threats [27].

In addition to N , I, and T , this model also accepts an input C: a distribution
measuring the number of networks targeted by each attacker.

LESS Is More 373

To augment hosts with this malicious behavior, LESS first groups all hosts into
networks of size between 2 and 128, chosen uniformly at random. It then selects
N host agents uniformly at random, and marks them as targeted attackers.
For each attacker, LESS draws a value c from C, and then randomly selects c
networks for the attacker to target. Finally, at time T , the host agents marked
as targeted attackers begin running the follow traffic generation algorithm:

1. Select a target network from the list of targeted networks assigned to this
host agent.

2. Select a host in that network uniformly at random.
3. Initiate a connection to the selected host agent.
4. Select an inter-attack time from I. At time currenttime + selectedtime,

repeat from step 1.

P2P Botnet Communication Model The last model simulates a network of in-
fected hosts communicating in a peer-to-peer overlay network, which increases
botnet resilience [15].

In addition to N , I, and T , this model also accepts an input G: a graph
generation algorithm.

To augment hosts with this malicious behavior, LESS selects N host agents
uniformly at random to mark as bots. Next, the simulator uses G to generate an
overlay graph O, connecting all of the bots. Finally, at time T , the host agents
marked as bots begin running the following traffic generation algorithm:

1. Select a bot to communicate with by choosing one uniformly at random from
the host agents that the given bot shares an edge with in O.

2. Initiate a connection with the selected host.
3. Select an inter-communication time from I. At time currenttime +

selectedtime, repeat from 1.

4.5 Executing the Simulation

After generating the host agents and augmenting them with background and
malicious behavior processes, LESS signals the host agents to begin their behav-
ior processes. Host agents log their activities: the timestamp, destination, and
application used in each connection; and these logs are collected after the simula-
tion finishes. LESS is currently a single threaded application written in Python,
and maintains event ordering using a queue. We have found this sufficiently fast
(i.e. each of our trials finishes in under an hour on an Intel i7 laptop); however,
since host agents make decisions autonomously, LESS is well suited to scaling,
as we discuss in Section 6.

5 Evaluation

In this section, we analyze the four previously discussed large scale network secu-
rity systems using LESS. We present two types of results, reproduced results that

374 J. Sonchack and A.J. Aviv

Table 1. LESS setting for our re-evaluations of entropy-based anomaly detection [1],
Highly Predictive Blacklisting [3], peer-to-peer botnet detection [5], and cross domain
anomaly detection [2]

Param. Description [1] [3] [5] [2]

H Number of Hosts 100, 000 100, 000 100, 000 100, 000

S Simulation Duration 100 100 100 100

M Malicious Worm Targeted P2P Worm
Model Outbreak Attacker Botnet Outbreak

N Malicious Host Count 1250− 5000 5000 904 5000

T Attack Start Time 0 0 0 0

I Inter-attack Distribution N (.1, .001), From [4] N (.1, .001) N (.1, .001)

C Target Count Distribution - From [4] - -

D Number of Peers - - 5− 30 -

validate parts of the original evaluations of these systems, and extended results
that apply simulation to go beyond the original evaluations. These results serve
multiple purposes. First, they demonstrate that the generalized models used by
LESS are capable of evoking realistic performance from large scale security sys-
tems. Second, they validate and extend the evaluations of the studied systems.
Finally, they demonstrate use cases for LESS, and how it complements existing
analysis methods.

5.1 Experimental Setup

Table 1 lists the parameters we tuned LESS with, unless otherwise noted.
LESS derives configurations for background traffic generation from 60 seconds
of CAIDA’s anonymized 2012 Internet survey [22], a trace containing approx-
imately 800000 hosts with payloads stripped and prefix preserving host and
destination IP anonymization. We also apply the three malicious traffic models
described in Section 4 with varying parameters that we describe in a per exper-
iment basis. For the purpose of these evaluations, we also re-implemented each
of these systems in Python based on the original published algorithms.

To compare results from LESS based simulations with original results, we
converted graphs from the original evaluations into numeric data with the Plot
Digitizer tool [28]. All plots in this section labeled Original are based off of this
digitized data.

5.2 Entropy Based Detector

Wagner et al. tested their entropy based method for detecting large scale security
threats on a trace collected during the Code Red [29] worm outbreak. We were
able to produce similar results using LESS and the random worm outbreak model
with the following parameters: N = 5000, I = N (.1, .001), T = 0. Figure 2
illustrates both the original results, and our results from our simulation based
re-evaluation.

LESS Is More 375

0 5 10 15 20 25
Hour

0.4

0.5

0.6

0.7

0.8

0.9

1.0

In
v
e
rs

e
 C

o
m

p
re

s
s
io

n
 R

a
ti

o Original

0 20 40 60 80 100
Seconds After Outbreak

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

In
v
e
rs

e
 C

o
m

p
re

s
s
io

n
 R

a
ti

o Simulation

Source Address Destination Address Source Port Destination Port

Fig. 2. Original entropy detection results from [1], and entropy detection results in a
LESS simulation

There are several quantitative differences between the results. First, the sim-
ulated outbreak reached the maximum entropy more quickly, due to the shorter
time scale of the simulation. Second, the baseline entropy values differ signifi-
cantly.We validated that the baseline entropy values in the simulated experiment
corresponded to the average entropy values from our source CAIDA trace 1. De-
spite the differences between the baseline entropies, these results are qualitatively
similar: the entropy of each feature either increased in both experiments or de-
creased in both experiments.

0 20 40 60 80 100
Seconds After Outbreak

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

In
ve

rs
e

C
om

pr
es

si
on

R
at

io
(D

es
tin

at
io

n
A

dd
re

ss
)

I = N (.1, .001), N = 2500

I = N (.05, .001), N = 2500

I = N (.2, .001), N = 2500

I = N (.1, .001), N = 1250

I = N (.1, .001), N = 5000

Fig. 3. Extending the results of [1]
with LESS, by measuring the technique’s
sensitivity to different worm outbreak
behaviors

The quantitative differences illus-
trate a benefit of LESS: by deriving
the traffic model from a recent CAIDA
trace, we are able to investigate how
a system proposed when background
network conditions were significantly
different would perform in a present-
day scenario. Another important ben-
efit of simulation in this domain is the
ability to evaluate large scale security
techniques under different threat con-
ditions. Figure 3 shows the results of a
set of experiments where we used LESS
to compare the destination IP address
entropy rate during the outbreaks of
worms with different average scan per
second rates (I) and vulnerable population sizes (N). Scan rate and vulnerable
population size both increase the entropy rate and make the change more sud-
den. However, according to our simulation there is an upper bound on both the
maximum entropy rate and how rapidly the change can occur.

1 average source IP entropy: 0.6133, average destination IP entropy: 0.5618, average
source port entropy: 0.9289, average destination port entropy: 0.3518

376 J. Sonchack and A.J. Aviv

0 2000 4000 6000 8000 10000
Blacklist Length (Number of Sources)

0.00

0.05

0.10

0.15

0.20

M
e
d
ia

n
 H

it
 R

a
te

Original

0 20 40 60 80 100
Blacklist Length (Percent of Total Sources)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
e
d
ia

n
 H

it
 R

a
te

Simulation

HPB GWOL

Fig. 4. Predictive (HPB) and Global(GWOL) blacklist hit rates as blacklist length
increases, from the original HPB evaluation [3], and simulation experiments with LESS.

5.3 Highly Predictive Blacklisting

Zhang et al. compared the performance of blacklists generated using their system
to blacklists generate using a baseline system by measuring blacklist hit rates, or
the number of IP addresses blocked / the length of the blacklist. They used data
from the Dshield repositories for their experiments, so to re-evaluate their system
we configured LESS using statistics about Dshield repository logs measured in
[4]. We selected values for C, the target count distribution, and I, the inter
attack timing distribution, based on their measurements. We used the first half
of generated records as input to the blacklist generators, and tested the resulting
blacklists with the second half of the generated records.

Figure 4 shows the median hit rates for blacklists generated by the HPB sys-
tem, and the baseline GWOL alternative, as blacklist length varies, for both
the original evaluation and our simulation based re-evaluation. The relative dif-
ference between HPB blacklists and GWOL blacklists were similar in both the
real and simulated data sets. However, there were quantitative differences: the
scale of the hit rates for both types of blacklists were different, and the blacklist
hit rates converged sooner in simulation. We believe that there are two primary
causes for these differences. First, our simulation likely differed with respect to
the number of attackers, as we were unable to determine how many attackers
the original data set contained. Blacklist hit rate is very sensitive to this param-
eter, as it directly affects the number of attacks a network is likely to observe.
Additionally, our parameters were derived from measurements of the DShield
repository taken approximately 3 years before the HPB system was proposed;
the threat landscape, and likely DShield itself, has changed significantly in that
time.

Despite these differences, our simulation based analysis reaches the same con-
clusion as that done on a real, large scale data set: HPB generated blacklists
achieve higher hit rates than GWOL generated blacklists, especially when they
are short. This demonstrates that LESS allows researchers to reach the same
qualitative conclusions, but using significantly higher level and easier to obtain
data. Statistical summaries, like those we used as input for this experiment, re-

LESS Is More 377

veal much less sensitive information and are significantly smaller than large scale
traces or IDS log sets.

0.0 0.1 0.2 0.3
Input False Positive Rate

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

B
la

c
k
li
s
t

R
a
te

s

HPB TPR

HPB FPR

GWOL TPR

GWOL FPR

Fig. 5. Extending [3] with
LESS: the true and false pos-
itive rates (TPR & FPR) of
blacklists as the false positive
rates of input IDSes varies

We also extended the evaluation by studying
the detection rate (i.e. percentage of attackers de-
tected by a blacklist) and false alert rate(i.e. per-
centage of non-attacker hosts that the blacklist
generates alerts for) of generated blacklists. Fig-
ure 5 illustrates an experiment where we varied
the number of non-malicious records provided to
the HPB and GWOL generators, and measured
the true and false positive rates of the resulting
blacklists. As more false alerts were submitted
to the blacklist generation systems, the detection
rates of the generated blacklists decreased while
their false alert rates increased. In all cases, the
HPB blacklists performed better than the GWOL
blacklists. However, the benefit of HPB blacklists
increased with the number of false alerts, revealing that not only does HPB
achieve higher hit rates, but that it is also more robust to inaccurate input.

Although this experiment was straightforward to perform with LESS, it was
impossible using the original data set, which is composed of IDS alert logs that
lack sufficient information to determine the true maliciousness of the hosts that
caused alerts.

5.4 Peer-to-Peer Bot Detector

Coskun et al. evaluated their peer-to-peer botnet detector with traffic from ap-
proximately 900 Nugache bots grafted into a 24 hour trace collected at the border
of a university network containing approximately 2000 active hosts.

To evaluate this system with LESS, we used the peer-to-peer malicious traffic
model to augment 904 host agents with malicious behavior. We set the mali-
cious timing distribution I = N (.1, .001), and generated an overlay network
for the bot hosts using the NetworkX [30] library to generate a random regular
graph [31]. The regular graph generation algorithm requires one parameter: D,
the desired degree of each node in the generated graph.

We then replicated the original experimental procedures with the generated
data set, selecting M of the 904 agents augmented with the bot behavior at
random, to act as the bot nodes in the simulated evaluation network, and 2000−
M non-malicious host agents at random, to act as the innocuous hosts in the
simulated evaluation network.

Figure 6 shows measurements taken in both the original re-evaluation, and
our re-evaluation with LESS (using D = 21), of the number of bot and non-bot
hosts detected by the system as M , the number of bots grafted into the trace,
varied. Despite our background traffic being modeled after data collected from a
different network, our results were very similar to the original results, suggesting
that their approach would generalize well to other networks.

378 J. Sonchack and A.J. Aviv

0 1 2 3 4 5
Number of Botnet Peers (m)

0

10

20

30

40
Original

0 1 2 3 4 5
Number of Botnet Peers (m)

0

10

20

30

40
Simulation

Bots # Returned Hosts

Fig. 6. Number of bots and non-bots detected by the system proposed in [5], in the
original evaluation and our LESS based re-evaluation

5 10 15 20 25 30
D

0

10

20

30

40

c
o
u
n
t
s

m=5

5 10 15 20 25 30
D

m=9

5 10 15 20 25 30
D

m=13

5 10 15 20 25 30
D

m=17

Number of Bots Returned Number of Hosts Returned

Fig. 7. Extending [5]: evaluating the performance of the botnet detector as bot struc-
ture, parameterized by (D), varied in LESS simulations

We also extended the results from the original evaluation, by analyzing the
technique’s performance as D changed. Figure 7 shows how the number of bots
detected and number of hosts returned change, for different M values, as D var-
ied between 1 and 21. This result demonstrates that the density of the botnet
communication overlay graph has a large effect on the effectiveness of the sys-
tem: as the density decreased, so did the accuracy of the detection technique,
particularly for larger M values.

Also, this result demonstrates that LESS allows researchers to work backwards
from a published result to determine properties that the underlying data set is
likely to have. As an example, in our preliminary research with the bot detection
technique, we first generated botnet communication graphs using preferential
attachment [32] and Erdos-Renyi [33] models, based on previous results that
suggested these models fit peer-to-peer overlay networks. However, we found that
these models led to less accurate reproduction of the original results, leading us
to conclude that the random regular graph generation algorithm is a better fit for
the communication network of the Nugache bots used in the original evaluation.

5.5 Collaborative Anomaly Detection

Boggs et al. tested their proposed cross-domain anomaly detection technique on a
small deployment involving 3 HTTP servers located at different administrative
domains. Using LESS, we examined the potential for larger scale deployment
of a similar correlation technique. We implemented a simple threshold based

LESS Is More 379

anomaly detector, that monitors all the hosts in a network and generates an
alert whenever an external host initiates more than T connections with hosts
inside the network in a 1 second period of time. Each network determines T
independently, by measuring the distribution of external to internal connections
per second in a training data set, and then setting T to the 75th percentile value.

For this experiment, we ran LESS with the worm outbreak model and param-
eters set to N = 5000, I = N (.1, .001), and T = 0, and divided the 100, 000
host agents into networks of uniformly at random selected sizes between 2 and
128. We submitted the first half of generated traffic to the training process for
each network, and then ran the anomaly detector on the traffic received by each
network during the second half of the simulation. We then compared the false
positive rates of two different strategies for raising alerts, depicted in Figure 8:
first, an autonomous strategy, in which each network raises an alert for each
anomalous IP address detected; second, a collaborative strategy, in which each
network raises an alert for an anomalous IP address only if the IP address has
generated an alert at another collaborating network.

0 2 4 6 8 10 12 14
Number of Participating Networks

10
-4

10
-3

10
-2

10
-1

F
a
ls

e
 P

o
s
it

iv
e
 R

a
te

autonomous

collaborative

Fig. 8. Extending [2]:
evaluating the benefit of
cross-domain collabora-
tive anomaly detection
when used at scale, in a
LESS simulation

The benefits of collaboration increase very rapidly,
with orders of magnitude fewer false alerts when under
20 networks participate in the collaborative system,
suggesting that even a small deployment would have
large benefits. There are many other questions about
collaborative defense which we do not address here
due to space constraints (e.g. who should collaborate?
what kind of information should collaborators share?
how does scale affect detection rate). Such questions
are relevant to all the systems we have studied. LESS
allows researchers to explore these issues, without fac-
ing the often impossible challenge of acquiring a large
scale data set, or data sets from many different ad-
ministrative domains.

6 Discussion

Section 5 demonstrates that LESS simulations can evoke realistic performance
from large scale and collaborative network security systems, and has many use
cases. In this section, we discuss current limitations and potential expansions to
our simulator, as well as integration with other systems and techniques.

Long Term Temporal Dynamics and System Evolution: LESS, the security sys-
tems we evaluated, and the threats they were designed to defend against, all
only take short term temporal properties, such as inter-arrival time, into ac-
count. However, the Internet is a dynamic, evolving network: new hosts connect
to it and network applications are launched; hosts change IP addresses and net-
works; and user behaviors follow diurnal patterns [8]. These, and other long term
dynamics, could potentially affect the performance of security systems. By in-
tegrating evolutionary network models [34] and parameters that describe longer

380 J. Sonchack and A.J. Aviv

term dynamics into host agent models, our simulator could be used to evaluate
their effects.

Flow Payloads and Packets Due to the volume of traffic that large scale net-
work security systems analyze, most are prohibited from analyzing traffic at the
payload or packet level. LESS generates traffic records that do not contain these
details. However, LESS hosts’ traffic generation processes could be augmented
with payload and packet generation techniques such as [11]. This would allow
our simulator to evaluate a broader class of security systems, and provide a plat-
form to investigate the benefits of large scale collaboration and data sharing for
security systems that monitor lower level data.

Scalability and Testbed Integration Our current implementation of LESS is single
threaded. However, each host agent behaves autonomously, deciding, on its own,
when to generate traffic and which other host agents to communicate with. Due
to the decentralized nature of this process, LESS’s architecture is well suited
for deployment on a physical or virtual testbed [10, 9].The benefits of distribut-
ing the agents across such a testbed are twofold: first, it would distribute the
workload, providing faster simulations; second, and more importantly, it would
allow us to also model and evaluate the effects of network topology on large scale
security systems.

7 Conclusion

Large scale and collaborative security systems have demonstrated great poten-
tial. However, scale also presents data related research challenges. Although sim-
ulation is an effective tool for overcoming these data challenges in non-security
domains, existing simulation tools are not well suited to evaluating large scale se-
curity systems. We propose a simulator designed specifically for the large-scale
security system domain, LESS, which generates host agents, configures them
with stochastic behavior processes, and monitors their activities throughout sim-
ulations to collect experimentation data sets. LESS configures non-malicious host
behaviors with measurements from real traces, and malicious host behaviors with
user defined threat models. We used LESS to validate and extend the evalua-
tions of four recently proposed large scale security systems, demonstrating not
only that LESS generates realistic and usable data sets, but also that LESS can
compliment existing analysis techniques and real data by allowing researchers
to evaluate systems in different dimensions. LESS, and future specially designed
simulation tools, can help researchers analyze more complex issues and advance
the promising field of large scale and collaborative security.

Acknowledgements. We wish to thank the anonymous reviewers for their feed-
back. This research was partially supported by ONR grants N001614WX30023
and N00014-12-1-0757, and DoD grant contract number H98230-14-C-0137.

LESS Is More 381

References

[1] Wagner, A., Plattner, B.: Entropy based worm and anomaly detection in fast ip
networks. In: WETICE (2005)

[2] Boggs, N., Hiremagalore, S., Stavrou, A., Stolfo, S.J.: Cross-domain collaborative
anomaly detection: so far yet so close. In: Sommer, R., Balzarotti, D., Maier, G.
(eds.) RAID 2011. LNCS, vol. 6961, pp. 142–160. Springer, Heidelberg (2011)

[3] Zhang, J., Porras, P., Ullrich, J.: Highly predictive blacklisting. In: USENIX Se-
curity, vol. 8, pp. 107–122 (2008)

[4] Katti, S., Krishnamurthy, B., Katabi, D.: Collaborating against common enemies.
In: ACM IMC (2005)

[5] Coskun, B., Dietrich, S., Memon, N.: Friends of an enemy: identifying local mem-
bers of peer-to-peer botnets using mutual contacts. In: Proceedings of the 26th
Annual Computer Security Applications Conference (2010)

[6] Sonchack, J., Aviv, A., Smith, J.M.: Bridging the data gap: Data related chal-
lenges in evaluating large scale collaborative security systems. In: 6th Workshop
on Cyber Security Experitmentation and Testing (2013)

[7] Aviv, A.J., Haeberlen, A.: Challenges in experimenting with botnet detection
systems. In: USENIX 4th CSET Workshop (2011)

[8] Floyd, S., Paxson, V.: Difficulties in simulating the internet. IEEE/ACM Trans-
actions on Networking (TON) 9(4), 392–403 (2001)

[9] Riley, G.F.: The georgia tech network simulator. In: Proceedings of the ACM
SIGCOMM MoMeTools Workshop, pp. 5–12. ACM (2003)

[10] Lantz, B., Heller, B., McKeown, N.: A network in a laptop: rapid prototyping for
software-defined networks. In: Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks, p. 19. ACM (2010)

[11] Weigle, M.C., Adurthi, P., Hernández-Campos, F., Jeffay, K., Smith, F.D.: Tmix:
a tool for generating realistic tcp application workloads in ns-2. ACM SIGCOMM
Computer Communication Review 36(3), 65–76 (2006)

[12] Konda, V., Kaur, J.: Rapid: Shrinking the congestion-control timescale. In: IEEE
INFOCOM 2009, pp. 1–9. IEEE (2009)

[13] Cao, J., Cleveland, W.S., Gao, Y., Jeffay, K., Smith, F.D., Weigle, M.: Stochastic
models for generating synthetic http source traffic. In: INFOCOM 2004, vol. 3,
pp. 1546–1557. IEEE (2004)

[14] Moore, D., Shannon, C., Voelker, G.M., Savage, S.: Internet quarantine: Require-
ments for containing self-propagating code. In: IEEE INFOCOM 2003, pp. 1901–
1910. IEEE (2003)

[15] Grizzard, J.B., Sharma, V., Nunnery, C., Kang, B.B., Dagon, D.: Peer-to-peer
botnets: Overview and case study. In: HOTBOTS, pp. 1–8 (2007)

[16] Sommers, J., Yegneswaran, V., Barford, P.: Recent advances in network intrusion
detection system tuning. In: IEEE 40th Annual CISS, pp. 1490–1495 (2006)

[17] Chen, G., Gray, R.S.: Simulating non-scanning worms on peer-to-peer networks.
In: ACM INFOSCALE, p. 29 (2006)

[18] Rossey, L.M., Cunningham, R.K., Fried, D.J., Rabek, J.C., Lippmann, R.P.,
Haines, J.W., Zissman, M.A.: Lariat: Lincoln adaptable real-time information
assurance testbed. In: IEEE Aerospace Conference Proceedings 2002, vol. 6, pp.
6–2671. IEEE (2002)

[19] Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating hu-
man systems. PNAS 99(suppl. 3), 7280–7287 (2002)

[20] Ripley, B.D.: Stochastic simulation, vol. 316. Wiley. com (1987)

382 J. Sonchack and A.J. Aviv

[21] Dshield.org, http://www.dshield.org/
[22] Caida data overview, http://www.caida.org/data/overview/
[23] Argus: Audit records generation and utilization system,

http://qosient.com/argus/

[24] Xie, G., Iliofotou, M., Keralapura, R., Faloutsos, M., Nucci, A.: Subflow: Towards
practical flow-level traffic classification. In: IEEE INFOCOM, 2012 Proceedings,
pp. 2541–2545. IEEE (2012)

[25] Tan, G., Poletto, M., Guttag, J.V., Kaashoek, M.F.: Role classification of hosts
within enterprise networks based on connection patterns. In: USENIX Annual
Technical Conference, General Track, pp. 15–28 (2003)

[26] Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and Ex-
periment 2008(10), P10008 (2008)

[27] Hutchins, E.M., Cloppert, M.J., Amin, R.M.: Intelligence-driven computer net-
work defense informed by analysis of adversary campaigns and intrusion kill
chains. Leading Issues in Information Warfare & Security Research 1, 80 (2011)

[28] Plot digitizer, http://plotdigitizer.sourceforge.net/
[29] Moore, D., Shannon, C., et al.: Code-red: a case study on the spread and victims

of an internet worm. In: Proceedings of the 2nd ACM SIGCOMM Workshop on
Internet Measurment, pp. 273–284. ACM (2002)

[30] Hagberg, A., Swart, P., Schult, D.: Exploring network structure, dynamics, and
function using networkx. Technical report, Los Alamos National Laboratory,
LANL (2008)

[31] Steger, A., Wormald, N.C.: Generating random regular graphs quickly. Combina-
torics Probability and Computing 8(4), 377–396 (1999)

[32] Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Sci-
ence 286(5439), 509–512 (1999)

[33] Erdos, P., Renyi, A.: On random graphs i. Publ. Math. Debrecen 6, 290–297 (1959)
[34] Dorogovtsev, S.N., Mendes, J.F.: Evolution of networks. Advances in

Physics 51(4), 1079–1187 (2002)

http://www.dshield.org/
http://www.caida.org/data/overview/
http://qosient.com/argus/
http://plotdigitizer.sourceforge.net/

Detecting Insider Information Theft Using Features
from File Access Logs

Christopher Gates1, Ninghui Li1, Zenglin Xu1,
Suresh N. Chari2, Ian Molloy2, and Youngja Park2

1 Purdue University
2 IBM Research

{gates2,ninghui,xu218}@cs.purdue.edu,
{schari,molloyim,young park}@us.ibm.com

Abstract. Access control is a necessary, but often insufficient, mechanism for
protecting sensitive resources. In some scenarios, the cost of anticipating infor-
mation needs and specifying precise access control policies is prohibitive. For this
reason, many organizations provide employees with excessive access to some re-
sources, such as file or source code repositories. This allows the organization to
maximize the benefit employees get from access to troves of information, but ex-
poses the organization to excessive risk. In this work we investigate how to build
profiles of normal user activity on file repositories for uses in anomaly detec-
tion, insider threats, and risk mitigation. We illustrate how information derived
from other users’ activity and the structure of the filesystem hierarchy can be
used to detect abnormal access patterns. We evaluate our methods on real access
logs from a commercial source code repository on tasks of user identification and
users seeking to leak resources by accessing more than they have a need for.

Keywords: file, access, insider threat.

1 Introduction

Theft of critical information by malicious insiders is a major threat. Companies may
suffer critical damages when disgruntled employees steal intellectual property. There
are ample evidences where organizations have suffered significantly due to leakage of
large amount of sensitive information accessed by insiders who have legitimate access
control privileges to access such information. Insider threats can be caused either by
malicious employees or negligent employees who either have their credentials stolen or
their devices compromised by malware.

Current access control paradigms, such as role-based access control [1], multi-level
security [2], or originator access control [3], are insufficient to deal with this threat of
malicious insiders [4]. It is often difficult to a priori predict future needs and configure
access control to enforce least privilege in highly dynamic environments. For example,
many organizations provide employees access to large data and source code repositories
that make it easier to learn and build upon past success without having to reinvent the
wheel; in healthcare environments, emergencies often dictate needs. In these cases it

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 383–400, 2014.
c© Springer International Publishing Switzerland 2014

384 C. Gates et al.

is thus desirable to allow broader access to resources and monitor for potential abuse
later. Such systems expose themselves to risk from malicious insiders who can abuse
their authorizations by making many access requests, building up aggregate risk.

In this paper we investigate the approach of using filesystem-derived features to de-
tect such insider threats. We evaluate our techniques on a real dataset derived from a
commercial source-code repository from a large organization to detect malicious insid-
ers stealing sensitive information. The techniques developed are applicable to any large
file repository or web-based information system, such as a wiki.

Most existing solutions for anomaly detection [5–8] only consider an individual re-
source or command, or aggregate statistics about file-related operations [9]. These sys-
tems often yield high false positive rates, especially for new users or resources. Building
profiles based on past history or other resources accessed [10] often results in a blowup
in the number of probability point estimates.

One existing approach is to adopt a risk-based access control model [4]. For example,
in FuzzyMLS [11], one quantifies the risk entailed by the access to each file, and sums
up such risk. The risk is independent of a user’s access history—and the access history
of other users—and depends on a risk-model on known user- and file-attributes. Such a
model is not flexible in dynamic environments and has a high cost to deploy.

Our key insight is that the file system hierarchy, in addition to the behavior of other
users, provides meaningful information regarding the relevance of a resource. For ex-
ample, the location of a new file often indicates the project, component, revision, owner,
or type of the file. We discuss how to extract and leverage this information for anomaly
/ normality testing. Our key idea is to detect abnormal accesses based on comparing a
user’s current accesses with the history. The hypothesis is that there is significant self-
similarity in most user’s accesses. That is, each user’s accesses during the current time
period will be similar to what the user has accessed in the past.

We approach the problem in two steps. In the first step, we define a scoring function
that computes the score for the pair of a history (which we abstract as a set of files
accessed during the history) and a file that is currently accessed. This scoring function
can take into consideration extra information, such as file hierarchy and the histories of
other users.

In the second step, we explore how to use such a scoring function to detect malicious
insider behaviors. We propose and evaluate several models for scoring and aggregation,
and evaluate how well each performs at identifying anomalous behavior. We evaluate
our methods on real dataset of access logs, and find that filesystem hierarchy derived
features are promising in the field of risk scoring and anomaly detection.

The rest of this paper is organized as follows. In Section 2, we present related work.
In Section 3 we define the problem and provide an adversarial model for the scenarios
we consider in this work. Details of our proposed approach are presented in Sections 4.
We provide a description of the test system and experimental results in Section 5, and
conclude in Section 6.

2 Related Work

Most related work is in the area of anomaly or intrusion detection. Denning [7] pre-
sented the first host-based intrusion detection system leveraging statistics (frequency,

Detecting Insider Information Theft Using Features from File Access Logs 385

inter-arrival time, etc.) of events for alerting. Javitz and Valdes [12] later implemented
the concept as IDES. These works focus on building statistical profiles of past behavior
and issuing alerts when new events exceed significant thresholds, such as a set number
of standard deviations.

There has been an abundance of work on network-based intrusion detection [13–
16], typically measuring anomalies in the rate or volume of the traffic [13], abnormal
numbers of distinct hosts or ports [17], or similarity to known malicious behavior [18],
such as blacklists1 and signatures [19]. Salem et al. [5] present a survey of research on
insider attacks for host and network intrusions.

There is relatively little work specifically looking at filesystem events for anomaly
detection. Stolfo et al. [10] use filesystem features—primarily filename, working direc-
tory, and parent directory—to detect rootkits and other malicious activity. No features
are derived from the relationship between two files in the filesystem, and each resource
is treated as an opaque identifier. Deviations from first and second order density estima-
tors [8] are used to score events. The system estimates the probability of a previously
unseen event.

Huang and Wong [20] discuss the use of a Fuse virtual filesystem to monitor for
filesystem anomalies. It uses a “baseline” library of profiles, but provides no details
on how this library is generated or how filesystem requests are scored against the li-
brary. The TripWire File Integrity system2 detects anomalies in filesystems by testing
for unexpected changes in files using a file digest, similar to how ZFS detects file cor-
ruption [21], and cannot be used to detect violations of confidentiality.

Senator et al. [9] use statistical anomalies in file events, specifically the fraction of
file events on removable media, to detect injected malicious activity into activity logs
obtained from workstations at Raytheon.

Bowen et al. [22] suggest using decoy files to detect malicious insiders. Decoys
are files that contain tainted information whose use can be tracked, e.g., credentials or
account information. Their system relies on traceable or booby trapped resources rather
to detect malicious insiders rather than by analyzing resources users typically require.
It is more difficult to perform such attacks in software code repositories where use of
the software is more difficult to detect.

Chen and Malin [6] propose an anomaly detection method that clusters weighted
graphs of users’ access to resources. Their clustering approach is similar to a hybrid
of k-nearest neighbor and spectral analysis. If a user does not access similar resources
to other users, or changes the cluster of similar users over time, they are considered an
anomaly. This work is the most similar to ours in that it considers the resources other
users access, but it does not consider the relationships between resources implicit in the
filesystem or file names.

3 Problem Definition

At a high level, the problem we want to answer is how to detect malicious insiders
who try to steal files they have the privilege or clearance to access. In this section, we

1 https://developers.google.com/safe-browsing/
2 http://www.tripwire.com/it-security-software/scm/
file-integrity-monitoring/

https://developers.google.com/safe-browsing/
http://www.tripwire.com/it-security-software/scm/file-integrity-monitoring/
http://www.tripwire.com/it-security-software/scm/file-integrity-monitoring/

386 C. Gates et al.

introduce a concrete formulation of this problem. Note that while we are using the term
“files” here, our approach is applicable to other types of resources where similarity can
be measured.

We assume the following inputs. Let F denote the set of all files with associated
information, e.g., the file hierarchy, the type of the files, etc. We are given At

j for 1 ≤
t ≤ T and 1 ≤ j ≤ N , where N denotes the number of users, j ranges over all users, T
is the index of the current time period, t ranges over all time periods, and each At

j ⊆ F
denotes the set of files accessed by user j during the t’th time period. We use At1:t2

j to

denote At1
j ∪ At1+1

j ∪ · · · ∪At2
j . We use A to denote the matrix consisting of all At

j’s.
For the output, we want to identify the users that are malicious in time period T .

More specifically, we want a mechanism M that outputs a non-negative real number
when given A,F , j, where an output of 0 denotes completely normal behavior, and the
larger the value, the more suspicious the j’th user activity during the t’th time period.
Then the j indices with the highest values are considered abnormal.

3.1 Adversary Model

We try to detect malicious insiders whose objective is to steal (i.e., download/check
out) files. We assume that the attacker needs to steal a substantial number of files, and
is aware of the mechanism that is being deployed. We consider two kinds of attackers.

– An impetuous attacker is one who turns malicious only at time T . An employee
who turns malicious after learning that he will be fired soon belongs to this kind.

– A patient attacker is one who is malicious at a time earlier than T . Such an attacker
can alter his normal access pattern over time to make the attacking activities in time
T look benign.

3.2 Challenges and Evaluation Criteria

An important challenge is how to evaluate such a mechanism. While our formulation is
close to classification problems in machine learning, one challenge is that we have very
little labeled data, and the few labels we have are of limited reliability, containing both
false negatives and false positives. To deal with this challenge of limited or missing
labels, we treat this as an unsupervised learning problem, and build models using only
the access data. We assume this data is mostly benign when training and testing. For data
representing malicious activity, we inject file accesses representing attempts to steal
files. Such data are not used in training, and are used only for testing the effectiveness
of our approaches at detecting users with such injected accesses. We vary the number
of file accesses injected into one user’s access from around 500 to around 12,000, and
evaluate the robustness of different approaches.

A second challenge is to be resilient to patient adversary who knows about the de-
ployed mechanism, and may carry out evasion attacks. To evaluate effectiveness against
such adversaries, we evaluate how the adversarial strategy of accessing a few files

Detecting Insider Information Theft Using Features from File Access Logs 387

among the files one plan to steal (i.e., among the files to be injected) impacts the effec-
tiveness of different methods.

4 Proposed Approaches

Some currently deployed systems use the number of files that are accessed as a fea-
ture for detecting. This approach, however, is unlikely to be sharp enough to achieve
the needed tradeoff between false positives and false negatives. Our intuition is that
it should be possible to exploit more information between the files that are accessed
in the current period, AT

j , against the files that have been accessed during the history,

AT−�:T−1
j , which we use AH

j as a short hand. We drop the subscript j when it is not
important. First, if all files that one user currently accesses have been accessed in the
recent past by the user, then this is unlikely to be a malicious theft. Second, even if
many of the currently-accessed files have not accessed, if they are similar to the files
that have been accessed, then this is less likely to be malicious theft. Many ways to
measure similarity exist. One possibility is based on the hierarchical structure of the
file. Files under the same directory may be viewed as more similar than files that are far
apart in the hierarchy. Files that are accessed by essentially the same set of users may be
viewed as more similar than files that are accessed by mostly disjoint sets of users. Files
that have similar meta-data attribute values, such as file types (e.g., C source code files
versus HTML files) may be viewed as more similar. In summary, we want to measure
both the “amount” of accesses and the “similarity” of accesses.

At the center of our approach is a function that assigns a score for each file f when
given an access history AH , we use the notation score[f |AH] to represent the scoring
of f when given AH . Intuitively, this function measures how “unexpected” a file f is,
when given AH as access history. We desire the following algebraic properties for such
a score function:

1. score[f |AH] is low when f ⊆ AH . The intuition is that a file already accessed is
considered quite normal.

2. score[f |AH
1] ≤ score[f |AH

2] when AH
1 ⊇ AH

2 , and as a corollary, score[f |∅] should
be high.

We construct score[f |AH] by using a composition of two functions, a similarity mea-
sure between two files, and an aggregation function. For each new access f the scoring
function is mapped against f and each file in the user’s history. The aggregation func-
tion reduces the result into a final score. The general function is:

score[f |AH] = aggg∈AH score(f, g)

To instantiate this, we need to define both the aggregation function and a scoring
function. The score(f, g) function dictates how two files relate to each other while the
agg expresses how a single file f relates to the entire history AH . In the remainder of
this section we present several possible instantiations, and methods to use the scoring
function.

388 C. Gates et al.

4.1 The Scoring Function: score(f, g)

The scoring function for two individual files defines how files relate to each other within
the system. We will explore several different techniques to classify their relationships.

Binary Equality. The most basic method is to define a score to test for equality be-
tween two files:

score(f, g) =

{
0 when f = g
1 when f �= g

This method works well when users consistently access the same set of files, but cannot
adequately handle new resources, such as new files in the same directory as previous
requests.

Full Distance. This approach measure the distance between two files if one were to
walk the hierarchy to the least common ancestor, lca, which is normalized by the worst
case scenario where the lca is the root of the filesystem.

score(f, g) =
length(f, lca(f, g)) + length(g, lca(f, g))

length(f, root) + length(g, root)

Lowest Common Ancestor (LCA). Another approach is to look at the lowest common
ancestor between the two files. This gives a distance to the branch point, but does not
consider how far away the other file is from that branch point. The full distance between
two files can sometimes lead to longer than expected paths if there is a deeply nested
structure where most of the accesses are occurring at the leafs. This approach evaluates
the distance based on the branch of the filesystem being accessed as opposed to the
exact files being accessed, and under some types of systems and hierarchies may be a
more appropriate scoring technique.

score(f, g) =
length(f, lca(f, g))

length(f, root)

Note that this is not symmetric, that is score(f, g) ≡ score(g, f) is not necessarily
true.

Log LCA. The previous method penalizes files near the root more than files deep
within the hierarchy. The penalty incurred for being near the root may be too harsh,
and so different ways of scaling the score may be applied. One way to scale the score
is to take the log of the distances values, which adjusts the scores so files that are very
shallow are not penalized as much as the previous technique.

score(f, g) =
log(length(f, lca(f, g)) + 1)

log(length(f, root) + 1)

Different scaling techniques also affect how the score of non-exact matches relate
to the score of exact matches. In the case of this technique, exact matches still have
a score of 0, while matches within the same directory or close directories will have a
higher score relative to the non-scaled score.

Access Similarity. Given user sets Uf and Ug which contain the users who access files
f and g in the history, we use the Jaccard Distance to define the score function between
f and g.

Detecting Insider Information Theft Using Features from File Access Logs 389

score(f, g) = 1− |Uf ∩ Ug|
|Uf ∪ Ug|

The underlying hypothesis for this scoring method is that files dissimilar in the hier-
archy may be similar for other reasons, and this association is elevated by user access
patterns. For example, the specification and implementation files in a source code repos-
itory and their corresponding documentation. This is closely related to collaborative
filtering, where new resources are suggested based on previous requests.

Discussion. The above techniques are the primary score functions that we examine in
this work, but is not meant to be an exhaustive list of filesystem derived features. Future
work will consider the order and frequency of file accesses, as well as other file meta-
data, such as the type. We also note that it is highly unlikely any single scoring function
will be sufficient in all possible use cases or for all file requests. We will investigate how
well each scoring function performs at discriminating abnormal activity in Section 5.

4.2 The Aggregation Function: aggg∈AH

A single file f ∈ AT generates |AH | different scores, one for each g ∈ AH . The agg
function defines the way that the system aggregates the |AH | scores to create a single
score for the specific f .

Min Score. One approach is to take min, i.e., aggg∈AH score(f, g) =
ming∈AH score(f, g). The advantage of this approach is that it is simple, and in many
cases captures the distance effectively. Even a single access in a certain area may be
useful to predict where the next accesses are going to occur. The downside of this is
that it is susceptible to seeding attacks by “patient adversaries” who may perform a
single access in an area that they plan to later access much more broadly. That single
access can hide many later accesses and undermine certain scoring functions.

Average. To mitigate the patient adversary attack described above, one can calculate
the aggregate score as the average of all similarity score values. This increases the effort
for an adversary to seed their history with files similar to the intended target, but may
increase the aggregate risk scores for diverse users.

K-Nearest Scores. An alternative that balances the tradeoffs of the minimum and
average aggregate functions is to compute the average of the k files in AH that have the
lowest score. This is also vulnerable to “patient adversaries”, who can seed the past with
a few files in different locations, however it takes more of an effort and some knowledge
of k to be effective.

4.3 Feature Generation

The previous techniques produce a way to determine the score for any specific file,
in this section we focus on how to use those scores to generate a feature set for a
specific user. We look at how to use these scores for inner (to self) and outer (to others)
approaches to feature generation.

390 C. Gates et al.

4.3.1 Cumulative Score
Individual score(f,AH) results taken as a single value are not able to provide any mean-
ingful context as to possibly malicious behavior. Rather, the scores for all f ∈ AT taken
together provide more information. We focus on two primary ways of accumulating the
risk into a single feature, summing and averaging the scores.

Since we are primarily concerned with a user stealing information, the method of a
summing the scores together is one obvious choice since it will generate a higher value
when more files are accessed, we define this as

sumScore =

M∑
k=1

score[fk|AH
j]

where fk ∈ AT
j and M = |AT

j | is the number of unique files accessed in the current
period. A user who exceeds a risk budget could be flagged and their behavior reviewed.
However, summing the scores will result in very unstable values, for instance in one
period a user may perform 10x or 100x more accesses then they did in the previous
or next period. Any technique which builds a model of the user’s expected behavior
would need to normalize the information or handle these drastically different cases
accordingly.

Averaging the user’s scores against the total number of unique accesses they per-
formed is one natural way to normalize the data, aveScore = sumScore

M . In this way,
activity between periods can be compared more naturally since all values will be in
[0,1], and the overall score will be effected by the portion of files that receive a high or
low score.

One way to use both the sum or average is to create a single score for each user as
they relate to their own history. That is, for a set of users U , and j ∈ U , we calcu-
late the sumScore or aveScore given AT

j and AH
j . However, this does not use all the

information that is available.

4.3.2 Self Score vs. Relative Scores
Instead of taking a single score for user j, we can generate a matrix of scores x where
xi,j = aveScorei,j using AT

i and AH
j . Each row in the matrix represents a single user’s

current set of accesses AT
i , and each column indicates how that user relates to the his-

tory of the j’th user, AH
j . The advantage here is that instead of requiring a single score

to be fixed above some threshold, we can instead evaluate how all the scores change in
the same period. It may be that a user’s behavior deviates from their own AH by a rela-
tively high degree, however if that user’s behavior stays consistent to most of the other
AHs, then this can be an indication that the new behavior reflects a user legitimately
accessing new files. Conversely, if a user stays consistent to their own behavior, but
deviates highly from all the other AHs then this can indicate other types of abnormal
behavior.

The novelty here is that in most cases either a global model of user behavior is trained
and used to detect abnormal behavior, or a specific profile given one user’s history is
trained. While the global model is capable of incorporating some of the more complex
relationships within the data, it can be difficult to do on such high dimensional and
sparse data.

Detecting Insider Information Theft Using Features from File Access Logs 391

4.4 Using the Features

Given the scores and features constructed in the previous subsection, we now turn to
how to use this information.

4.4.1 Self Score Evaluation
The most basic way in which to use the similarity score is to look directly at the
sumScore or aveScore for the user’s own profile. There are two ways we may want to
use this information during an evaluation, anomaly detection and profile identification.

Profile Identification This is also an effective way to associate an unknown AT
? to the

actual user it belongs to. In this process we generate score[AT
? |AH

j] for all j ∈ U , and
the AH

i with the lowest scores generally help to identify the user that actually generated
the accesses.

Anomaly Detection If the score for a particular set of accesses is above some threshold,
then it is marked as abnormal.

We will see in our evaluation that even this simple metric on the scores can be effec-
tive. This is the only technique that we use which only looks at a user own score, the
rest of this section discusses techniques that look at the all of the scores as a larger set
of features, comparing a single access pattern back to all users’ histories.

4.4.2 Mean Vector
This technique is similar to centroid based clustering techniques with known user labels
for all points. Given the full features x where xi,j = score[AT

i |AH
j] over many time

periods, we find a mean vector to represent each user, which is essentially the center
point for a cluster that will represent a specific user’s expected behavior. The advantage
of this technique is that each user’s accesses will relate to other users in specific ways
based on similar access patterns and job responsibilities so it adds more information
into the system. Once we know the mean vectors for all users, we can compare any new
feature vector to determine how close that vector is to the mean of each specific user.
Cosine Similarity is used to measure the distance between the centroids and new feature
vectors. This handles outliers in the training period well by smoothing the expectation
out over all the training points. However this does not account well for cases where a
user may be performing several different job functions over different periods but works
well in general.

5 Experimental Results

The techniques presented can be applied to any system that manages sensitive resources,
such as document repositories, online wikis, and source code repositories. While we ex-
tensively leverage the filesystem hierarchy, the presented techniques are general enough
to be adapted to other domains. For example, the Wikipedia ontology or the shortest
path between two URLs can be used as a substitute.

In our experiments we focus on a commercial source code repository for a large orga-
nization. Source code is an attractive target for malicious insiders and has an extremely
high value, such as the theft of Goldman Sachs source code by Sergey Aleynikov [23],

392 C. Gates et al.

and negative impact to the organization, for example the RSA SecureID3 or Adobe
breaches4. Source code is often organized into hierarchies, and access is often limited
by job function and expertise. Source code has many of the characteristics of other file
repositories that make anomaly detection difficult. Files are not consistently accessed,
and become stable over time, e.g., libraries, while new files are constantly being added
or removed. Further, many users require different levels of access. Those responsible
for building code require broad read-only access, while many developers need narrow
read-write access. Debugging may often require an employee to investigate how other
components function to narrow down root causes. This all makes finding stable and
consistent access patterns challenging.

The source code management system we use in our study is Configuration Manage-
ment Version Control (CMVC). Each file in CMVC is associate with a filename and
a location in a hierarchy, and files can be grouped into components orthogonal to the
filesystem hierarchy. For example, not all files in a directory need to be in the same
components, and a component can contain files from any directory. The components
may be further nested, and users are granted access to check in and check out files by
authorizing them to components. CMVC also includes extensive reporting, task and
defect management, and release levels to make administration of large projects easier.

Lines from the log consist of a timestamp, userID, action performed on a resource,
and the name of the resource. The logs contain additional lines which relate to other
information such as reporting and defects, however we limit our view of the logs to the
file activity. For our task, we consider only accesses that result in file reading. CMVC
does not log which component a request pertains to, and we do not have access to the
access control lists, historical or current.

For our task we analyze one year of log data consisting of approximately two-
thousand users. There are ∼512k unique files and ∼133k unique directories in the
filesystem. Since there must be some history for all of our techniques to be useful, there
is a single period of learning the initial history. Then there are 10 meaningful periods of
training data, and a final period used for testing.

5.1 Portion of Files Accessible

One way to measure the effectiveness of each scoring technique is to measure how well
it scores files that the user does access compared to files that the user does not access in
a given time period. We generate a set of uniformly sampled files to represent the ‘All
Possible Access’ group, while using each user’s actual accesses for the other group.

Figure 1 plots t at every increment of .05 between 0 and 1, the x and y values are
generated by the following formulas :

3 http://www.darkreading.com/attacks-and-breaches/
rsa-securid-breach-cost-$66-million/d/d-id/1099232?

4 http://arstechnica.com/security/2013/10/adobe-source-code-and-
customer-data-stolen-in-sustained-network-hack/

http://www.darkreading.com/attacks-and-breaches/rsa-securid-breach-cost-$66-million/d/d-id/1099232?
http://www.darkreading.com/attacks-and-breaches/rsa-securid-breach-cost-$66-million/d/d-id/1099232?
http://arstechnica.com/security/2013/10/adobe-source-code-and-customer-data-stolen-in-sustained-network-hack/
http://arstechnica.com/security/2013/10/adobe-source-code-and-customer-data-stolen-in-sustained-network-hack/

Detecting Insider Information Theft Using Features from File Access Logs 393

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

 o
f A

ct
ua

l a
cc

es
se

s
un

de
r

a
gi

ve
n

th
re

sh
ol

d

Percent of All accesses under a given threshold

Actual vs. All Access File Exposure

min−binary
ave−loglca
knn10−log
knn10−loglca
min−access
min−distance
min−log
min−loglca

Fig. 1. Actual Access vs. All Possible Accesses

x(t) =
1

N

N∑
i=1

files in hierarchy for user i under score t
files in hierarchy

y(t) =
1

N

N∑
i=1

files access by user i under score t
of files accessed by user i

The x value represents, averaged across all users, how many files in the complete
hierarchy have a score under threshold t. The y value represents, averaged across all
users, the number of actual accessed files in a given period that have a score under
threshold t.

In an ideal scenario, with knowledge of the future, all legitimate accesses made in a
given period would receive a score less than all of the files from the group the user did
not access. This would create a line from the upper left, (0,1), to the upper right, (1,1),
of the graph. Given unpredictable human behavior and shifting responsibilities, this is
of course impossible, and so we desire a scoring function which gets closer to the upper
left but also allows for changing behavior.

All techniques which use min as the aggregation function start their curve at ∼52%
since on average a user accessed around half of their files in a previous time period, and
exact matches get a score of 0 for all min techniques. The min-loglca and min-log stand
out as performing the best among the techniques across all thresholds. The knn10-lca
and knn10-loglca show a marked difference between the lca vs loglca techniques.

Averaging the distance between all files in the history to the current file does not per-
form well overall in this task. Originally this seemed like one possibly useful technique
since it naturally weights branches of the hierarchy with more accesses, however, this
potential advantage seems to be overwhelmed by other properties of the access behavior
and file hierarchy.

394 C. Gates et al.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate
Incorrect SelfScore Identification

T
ru

e
P

os
iti

ve
 R

at
e

C
or

re
ct

 S
el

f S
co

re
 Id

en
tif

ic
at

io
n

ROC Curve

binary−min
lca−min
loglca−min
lca−knn
loglca−knn
acc−min
fdist−min
lca−ave
loglca−ave

Fig. 2. ROC curve to compare the overall relative performance of each technique

The binary score function in Figure 1 is represented by two points and creates the
line from (0,.52) to (1,1). The binary technique is useful given the nature of our target
system, a source code repository where roughly half of accesses have already been
performed in the past. However, under different conditions where most accesses are
new and unique, such as classified documents or medical records, then repeat accesses
to the same data across multiple time periods could be less common and this signal
would become weaker.

5.2 Profile Identification

Another task we explore is how effective each technique is at identifying which user
generated a specific set of access. That is, given a random AT , how well can we
predict which user generated that set of accesses. For this task we compute x where
xi,j = aveScorei,j as specified in Section 4.3.2. We denote the cases where i = j
as the “SelfScore”, and the cases where i �= j as “OtherScore”. The percent of self
scores and other scores that are assigned a score in a specific range for a subset of tech-
niques are presented in the Appendix in Figure 5 and the ROC curves for all techniques
are presented in Figure 2 in this section. This gives an indication of how well each
technique performs in identifying a user’s own behavior. One thing to note here is that
user accesses can be highly correlated, and so it is not necessarily abnormal for some
“OtherScores” to have low values.

The generic scaling for depth, taking the log of the lowest common ancestor and
log of the distance to root, has a slight performance impact for our data, seen in the
difference between Figures 5(a) and 5(b) and in Figure 2.

Given the outcome from Figure 1 and 2 we focus the remaining experiments on the
min-loglca technique to generate features. The min-binary technique is used as a base-
line that only counts unique accesses in the current period given all previous periods.
This is different from counting the unique accesses in the current period, which we also
use as another baseline since this is the most commonly used statistic in related work.

Detecting Insider Information Theft Using Features from File Access Logs 395

5.3 Attacker

The primary goal for the attacker we model is on data exfiltration of varying degrees.
While there are other potential attacks, such as targeted insertion or deletion, for this
evaluation we only focus on the general problem of stealing information. Due to the
nature of the target application domain there are several assumptions that we make
about the data and the attacker.

Arbitrarily Self Control. An attacker using account ui can arbitrarily control file
accesses in AT

i and AH
i .

Restricted Overall Control. An attacker is not able to control another user’s activity
on the system.

Targeted Knowledge. The attacker has knowledge of the files or directories they are
targeting, and does not have to perform a read all on the root of the repository.

Location Stability. For the purposes of this evaluation, we assume that files are stable
in their location in the hierarchy. It is possible that files can be moved, but given the log
data, this is very infrequent. Additionally, if an attacker wants to directly move a file,
then the action is captured in the logs and will count as both a read from the source and
write to the destination, which would translate to the same general information as just
reading or writing a file directly.

With this in mind we discuss two attack types that we test against, impetuous and
patient attackers.

5.3.1 Impetuous Attacker
An impetuous attacker is a user who does not have the time or ability to create a crafted
attack. It represents an employee who is suddenly laid off or leaving the company, a
naive user who is unaware of the protections in place, or an attacker who is afraid of
being detected and so they grab as much data as quickly as possible.

To model an impetuous attacker, we generate injections that consist of randomly se-
lected directories that contain file counts in various ranges, we then inject all files under
that directory into the accesses in AT to simulate that the user accessed all information
under a specific directory. We generate data for 3 ranges to capture the effect that dif-
ferent access counts have on detection: 500-1000 accesses contains 10 unique attacks,
1000-2500 accesses contains 12 unique attacks and 5000+ accesses contains 2 unique at-
tacks. We compare the detection rates for all injections in a given range against the actual
accesses to determine the true positive and false positive rate for various techniques.

Figure 3 demonstrates detection when a user has abnormal access activity. SumScore
and AveScore for each user, as defined in Section 4.3.1, are generated with the loglca-
min technique. NewUnique is equivalent to taking the SumScore of binary-min for a
user’s own profile.

Unique accesses in the current period and NewUnique access are a baseline,
AveScore and SumScore are calculated against the user’s own profile. The MeanDis-
tance is calculated as discussed in Section 4.4.2, using the historic x vectors from the
previous periods as training data to learn an expected profile for each user. Multiplying
the MeanDistance by the NewUnique gives a higher score to abnormal behavior that

396 C. Gates et al.

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC :500−1000

UniqueFiles
NewUnique
AveScore
SumScore
MeanDistance
NewUnique*Mean

(a)

0.8

0.85

0.9

0.95

1
ROC :500−1000

Uniq
ue

File
s

New
Uniq

ue

Ave
Sco

re

Sum
Sco

re

M
ea

nD
ist

an
ce

New
Uniq

ue
*M

ea
n

(b)

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC :1000−2500

UniqueFiles
NewUnique
AveScore
SumScore
MeanDistance
NewUnique*Mean

(c)

0.8

0.85

0.9

0.95

1
ROC :1000−2500

Uniq
ue

File
s

New
Uniq

ue

Ave
Sco

re

Sum
Sco

re

M
ea

nD
ist

an
ce

New
Uniq

ue
*M

ea
n

(d)

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC :Over5000

UniqueFiles
NewUnique
AveScore
SumScore
MeanDistance
NewUnique*Mean

(e)

0.8

0.85

0.9

0.95

1
ROC :Over5000

Uniq
ue

File
s

New
Uniq

ue

Ave
Sco

re

Sum
Sco

re

M
ea

nD
ist

an
ce

New
Uniq

ue
*M

ea
n

(f)

Fig. 3. Demonstrates the performance of detecting various quantities of injected files into other-
wise normal behavior

also accesses many files compared to abnormal behavior that only accesses a few files,
and is similar to the difference between AveScore and SumScore.

The NewUnique value generally performs well in our tests, however this is in part
due to the nature of our dataset where many accesses are not unique in the actual data.
On average, users access ∼600 unique files in the test period, and ∼300 of those are
new files the user has not previously accessed.

The AveScore performs best in the lowest range, since it is able to differentiate be-
tween expected and unexpected behavior, while the SumScore performs better as the
injected file counts increase since this more strongly penalizes larger sets of unique
accesses. The MeanDistance alone does not perform best overall, but scaled by the
number of NewUnique accesses performs well in the 500-1000 range, and best in the
1000-2500 and 5000+ ranges.

Detecting Insider Information Theft Using Features from File Access Logs 397

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SeedROC :500−1000

UniqueFiles
NewUnique
AveScore
SumScore
MeanDistance
NewUnique*Mean

(a)

0.8

0.85

0.9

0.95

1
SeedROC :500−1000

Uniq
ue

File
s

New
Uniq

ue

Ave
Sco

re

Sum
Sco

re

M
ea

nD
ist

an
ce

New
Uniq

ue
*M

ea
n

(b)

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SeedROC :1000−2500

UniqueFiles
NewUnique
AveScore
SumScore
MeanDistance
NewUnique*Mean

(c)

0.8

0.85

0.9

0.95

1
SeedROC :1000−2500

Uniq
ue

File
s

New
Uniq

ue

Ave
Sco

re

Sum
Sco

re

M
ea

nD
ist

an
ce

New
Uniq

ue
*M

ea
n

(d)

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SeedROC :Over5000

UniqueFiles
NewUnique
AveScore
SumScore
MeanDistance
NewUnique*Mean

(e)

0.8

0.85

0.9

0.95

1
SeedROC :Over5000

Uniq
ue

File
s

New
Uniq

ue

Ave
Sco

re

Sum
Sco

re

M
ea

nD
ist

an
ce

New
Uniq

ue
*M

ea
n

(f)

Fig. 4. Demonstrates the performance of detecting various quantities of injected files when the
attacker also seeds an attack ahead of time

5.3.2 Patient Attacker
Our attack model assumes that the attacker is capable of injecting accesses into their
own training periods, we model this as a patient attacker who has both the time and
knowledge to craft a more meaningful attack in order to manipulate the detection tech-
niques. Under this model, an attacker has arbitrary control over their own score, but less
control over their relation to other profiles.

We use the same set of injections as the impetuous attack evaluation. To model the
patient attacker we seed file accesses from the injection into the AH , and then generate
the features vectors x from AT based off of the seeded AH . We injected seeds for
various access counts, but find that a single seed access is nearly as effective as most
strategies, and so we present only single access seed results in Figure 4.

398 C. Gates et al.

The features are generate in such a way that xi,i uses the seeded AH , while xi,j for
i �= j uses the non-seeded AH . Each row in the feature vector x reflects the outcome
of a seeded attack by the user represented by that row, and not the case when all users
spontaneously decide to inject their own profiles with the same seed.

Any techniques that only use a the self score will be affected since the self score
is easy to manipulate under the hierarchy based similarity techniques. The SumScore
is less affected since the injection always increases the score over the normal activity.
More aggressive seeding techniques would cause a bigger drop in the SumScore AUC.

The techniques that use the entire feature vector for a user as they relate to all other
users are more robust to seeding attacks as seen in Figure 4 and particularly they are
stable when compared against Figure 3. They also get the highest AUC value and lead
to fewer false positives in the early part of the ROC curve. For the 1000:2500 case we
can detect about 80% of attacks with 2.5% of normal accesses as false positives using
the NewUnique*MeanDistance method, compared to 80% detection at just below 5%
FP for the NewUnique method. While 2.5% may be too high depending on the number
of users in the system and the resources of the organization to investigate alerts, this is
still a meaningful improvement over the baseline.

6 Conclusions

The techniques we propose in this paper are a first step to better use hierarchy and
similarity information to understand a user’s behavior and detect behavior that is most
likely malicious. While we have shown that the detection rates can be improved using
our proposed methods, this is just a first step. There seems to be potential in collabo-
rative learning on this complex data that contains rich relational information. The end
goal is to utilize this information more effectively to achieve even better detection with
fewer false positives and to take the burden away from the incident response teams who
have to deal with alerts from any such system.

References

1. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access control models.
IEEE Computer 29(2), 38–47 (1996)

2. Bell, D.E., LaPadula, L.J.: Secure computer systems: Unified exposition and Multics inter-
pretation. Technical Report ESD-TR-75-306, Mitre Corporation (March 1976)

3. Park, J., Sandhu, R.: Originator control in usage control. In: Proceedings of the Third Inter-
national Workshop on Policies for Distributed Systems and Networks 2002 (2002)

4. Horizontal integration: Broader access models for realizing information dominance, JASON
Report JSR-04-132 (2004)

5. Salem, M., Hershkop, S., Stolfo, S.: A Survey of Insider Attack Detection Research. In:
Insider Attack and Cyber Security, pp. 69–90 (2008)

6. Chen, Y., Malin, B.: Detection of anomalous insiders in collaborative environments via rela-
tional analysis of access logs. CODASPY 2011: Proceedings of the First ACM Conference
on Data and Application Security and Privacy (February 2011)

7. Denning, D.E.: An Intrusion-Detection Model. IEEE Transactions on Software Engineer-
ing SE-13(2), 222–232 (1987)

Detecting Insider Information Theft Using Features from File Access Logs 399

8. Apap, F., Honig, A., Hershkop, S., Eskin, E., Stolfo, S.J.: Detecting malicious software by
monitoring anomalous windows registry accesses. In: Wespi, A., Vigna, G., Deri, L. (eds.)
RAID 2002. LNCS, vol. 2516, p. 36. Springer, Heidelberg (2002)

9. Senator, T.E., Goldberg, H.G., Memory, A., Young, W.T., Rees, B., Pierce, R., Huang, D.,
Reardon, M., Bader, D.A., Chow, E., Essa, I., Jones, J., Bettadapura, V., Chau, D.H., Green,
O., Kaya, O., Zakrzewska, A., Briscoe, E., Mappus, R.I.L., McColl, R., Weiss, L., Diet-
terich, T.G., Fern, A., Wong, W.K., Das, S., Emmott, A., Irvine, J., Lee, J.Y., Koutra, D.,
Faloutsos, C., Corkill, D., Friedland, L., Gentzel, A., Jensen, D.: Detecting insider threats in
a real corporate database of computer usage activity. In: KDD 2013: Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM
Request Permissions (August 2013)

10. Stolfo, S.J., Hershkop, S., Bui, L.H., Ferster, R., Wang, K.: Anomaly detection in computer
security and an application to file system accesses. In: Hacid, M.-S., Murray, N.V., Raś, Z.W.,
Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 14–28. Springer, Heidelberg
(2005)

11. Cheng, P.C., Rohatgi, P., Keser, C., Karger, P.A., Wagner, G.M., Reninger, A.S.: Fuzzy MLS:
An Experiment on Quantified Risk-Adaptive Access Control. In: IEEE Symposium on Se-
curity and Privacy (2007)

12. Javitz, H.S., Valdes, A.: The SRI IDES Statistical Anomaly Detector. Research in Security
and Privacy (1991)

13. Paxson, V.: Bro: A System for Detecting Network Intruders in Real-Time. Computer Net-
works 31(23-24), 2435–2463 (1999)

14. Sommer, R., Paxson, V.: Outside the closed world: On using machine learning for network
intrusion detection. In: 2010 IEEE Symposium on Security and Privacy (SP), pp. 305–316
(2010)

15. Mahoney, M.V., Chan, P.K.: Learning nonstationary models of normal network traffic for
detecting novel attacks. In: KDD 2002: Proceedings of the Eighth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. ACM Request Permissions
(July 2002)

16. Lee, W., Xiang, D.: Information-theoretic measures for anomaly detection. In: Proceedings
of the 2001 IEEE Symposium on Security and Privacy, S&P 2001, pp. 130–143 (2001)

17. Lakhina, A., Crovella, M., Diot, C., Lakhina, A., Crovella, M., Diot, C.: Mining anomalies
using traffic feature distributions, vol. 35. ACM (October 2005)

18. Mathur, S., Coskun, B., Balakrishnan, S.: Detecting hidden enemy lines in IP address space.
In: NSPW 2013: Proceedings of the 2013 Workshop on New Security Paradigms Workshop
(December 2013)

19. Jamshed, M.A., Lee, J., Moon, S., Yun, I., Kim, D., Lee, S., Yi, Y., Park, K.: Kargus: a highly-
scalable software-based intrusion detection system. In: CCS 2012: Proceedings of the 2012
ACM Conference on Computer and Communications Security. ACM Request Permissions
(October 2012)

20. Huang, L., Wong, K.: Anomaly Detection by Monitoring Filesystem Activities. In: 2011
IEEE 19th International Conference on Program Comprehension (ICPC), pp. 221–222. IEEE
(January 2011)

21. Bonwick, J.: Zfs end-to-end data integrity (December 2005)
22. Bowen, B.M., Hershkop, S., Keromytis, A.D., Stolfo, S.J.: Baiting inside attackers using

decoy documents. In: Chen, Y., Dimitriou, T.D., Zhou, J. (eds.) SecureComm 2009. LNICST,
vol. 19, pp. 51–70. Springer, Heidelberg (2009)

23. Glovin, D., Harper, C.: Goldman trading-code investment put at risk by theft (2009)

400 C. Gates et al.

A Appendix

0−.1 .1−.2 .2−.3 .3−.4 .4−.5 .5−.6 .6−.7 .7−.8 .8−.9 .9−1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bins for each Score Range

P
er

ce
nt

 o
f s

co
re

s
in

 B
in

lca−min

SelfScore
OtherScore

(a)

0−.1 .1−.2 .2−.3 .3−.4 .4−.5 .5−.6 .6−.7 .7−.8 .8−.9 .9−1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bins for each Score Range

P
er

ce
nt

 o
f s

co
re

s
in

 B
in

loglca−min

SelfScore
OtherScore

(b)

0−.1 .1−.2 .2−.3 .3−.4 .4−.5 .5−.6 .6−.7 .7−.8 .8−.9 .9−1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bins for each Score Range

P
er

ce
nt

 o
f s

co
re

s
in

 B
in

loglca−knn

SelfScore
OtherScore

(c)

0−.1 .1−.2 .2−.3 .3−.4 .4−.5 .5−.6 .6−.7 .7−.8 .8−.9 .9−1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bins for each Score Range

P
er

ce
nt

 o
f s

co
re

s
in

 B
in

loglca−ave

SelfScore
OtherScore

(d)

0−.1 .1−.2 .2−.3 .3−.4 .4−.5 .5−.6 .6−.7 .7−.8 .8−.9 .9−1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bins for each Score Range

P
er

ce
nt

 o
f s

co
re

s
in

 B
in

fdist−min

SelfScore
OtherScore

(e)

0−.1 .1−.2 .2−.3 .3−.4 .4−.5 .5−.6 .6−.7 .7−.8 .8−.9 .9−1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bins for each Score Range

P
er

ce
nt

 o
f s

co
re

s
in

 B
in

acc−min

SelfScore
OtherScore

(f)

Fig. 5. The percent of Self Scores vs Other Scores in each score range for various techniques
using the aveScore output

SRID: State Relation Based Intrusion Detection

for False Data Injection Attacks in SCADA

Yong Wang1,2, Zhaoyan Xu1, Jialong Zhang1, Lei Xu1,
Haopei Wang1, and Guofei Gu1

1 SUCCESS Lab, Texas A&M University, College Station, Texas, USA
2 Department of Information Security, Shanghai University of Electric Power,

Shanghai, China
wybaidu@gmail.com, {z0x0427,jialong,xray2012,haopei,guofei}@cse.tamu.edu

Abstract. Advanced false data injection attack in targeted malware
intrusion is becoming an emerging severe threat to the Supervisory Con-
trol And Data Acquisition (SCADA) system. Several intrusion detection
schemes have been proposed previously [1, 2]. However, designing an ef-
fective real-time detection system for a resource-constraint device is still
an open problem for the research community. In this paper, we propose
a new relation-graph-based detection scheme to defeat false data injec-
tion attacks at the SCADA system, even when injected data may seemly
fall within a valid/normal range. To balance effectiveness and efficiency,
we design a novel detection model, alternation vectors with state rela-
tion graph. Furthermore, we propose a new inference algorithm to infer
the injection point(s), i.e., the attack origin, in the system. We evaluate
SRID with a real-world power plant simulator. The experiment results
show that SRID can detect various false data injection attacks with a
low false positive rate at 0.0125%. Meanwhile, SRID can dramatically
reduce the search space of attack origins and accurately locate most of
attack origins.

Keywords: Intrusion Detection System, Cyber Security in SCADA,
False Data Injection Attack.

1 Introduction

In recent years, we have witnessed that the great technical innovation has in-
trinsically changed our definition about the data acquisition and control system.
Nowadays, when current Supervisory Control And Data Acquisition (SCADA)
system starts to connect a great number of sensors to highly-flexible distributed
networks, it is no longer closed and single-functional, but instead open, and
complex. Across the waves of such innovation, cyber security of SCADA systems
attracts a lot of research attention. Especially after the Stuxnet[3] worm spread
across Iran nuclear infrastructure and occupied the headline of news and media,
we naturally ask the question: is our SCADA system ready for the challenges
brought by such malware intrusion?

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 401–418, 2014.
c© Springer International Publishing Switzerland 2014

402 Y. Wang et al.

Unfortunately, we may not be confident enough to declare a secure SCADA
system: Our existing system is still connected to vulnerable networks which in-
tegrate multiple communication protocols and lack proper data validation and
authentication [4–7]. It implies that attackers can easily infiltrate the network
and compromise the whole control system. Besides that, the potential vulnera-
bility of industrial control system software may also become the Achilles’ heel
and open a back-door for those malicious attackers. As stated in a vulnerabil-
ity trends report from Symantec [8], the number of vulnerabilities targeting at
SCADA systems has undergone an exponential uptrend since 2011. For example,
there were over 800% more vulnerabilities discovered in 2012 than the number
discovered in 2010.

Therefore, deploying intrusion detection onto SCADA systems becomes a
pressing task for security practitioners. Multiple schemes, such as behavior-based
scheme [9] and bloom-filter-based scheme [1], have been proposed. However,
when we review the recent intrusion incidents conducted by targeted malware,
such as the infamous Stuxnet malware, we find these IDS schemes are neither
complete nor accurate. In particular, there are two problems causing current IDS
systems vulnerable to targeted malware’s intrusion:

First, the current design of many IDS systems follows a hierarchical and dis-
tributed structure, in an attempt to secure all sensors and devices in the sys-
tem [10]. However, with too high-level view and always limited resources, this
may be ineffective and inefficient to handle some attacks deeply targeting at
some specific critical control component. In reality, it has been evidenced that
malware shows special interest in some key component, e.g., Stuxnet only infects
Siemens S7-3000 devices which control the centrifuge and pumps. Therefore, an
IDS scheme that can automatically find and protect the critical control compo-
nent(s) is a more effective solution to detect targeted malware’s intrusion.

Second, many IDS systems follow the idea of traditional intrusion detection
schemes, which detect abnormal communication flow(s) between devices. How-
ever, in the context of SCADA, our first priority is to ensure the validity of
system status. Therefore, we think our detection target should be invalid system
states. As an illustration, we examine the Stuxnet worm again: when the control
device has been compromised, the Stuxnet periodically modifies the frequency
to 1410 Hz and then to 2 Hz and then to 1064 Hz, and thus affects the opera-
tion of the connected motors by changing their rotational speed. Typically, such
behaviors cannot be detected by existing IDS because each of its operation is
under the valid threshold of IDS’s detection rules. However, the system states,
or the relations between continuous states, violate the normal disciplines, and
such inconsistency is a clear evidence when intrusion happens in the SCADA
system.

In this paper, we propose a novel relation-graph-based intrusion detection
scheme, SRID, which aims to detect false data injection attacks in SCADA sys-
tems. In particular, given a SCADA system, SRID automatically analyzes the
system and extracts independent components (each component is a logically in-
dependent control system, more details defined in Section 2.3). Then, for each

SRID 403

component, SRID extracts the internal relations among different system vari-
ables and derives a graph model to describe valid system states. To achieve a
balance between effectiveness and efficiency, we propose alternation vector and
state relation graph as our detection model. To further figure out the origins of at-
tacks, i.e, which device (among all possible data sources) has been compromised,
we propose an inference algorithm to deduce what is the possible compromised
device causing the inconsistency.

To evaluate the effectiveness and efficiency of SRID, we test it with a real-
world power plant simulator with 142 system variables. We then inject malformed
data into the simulator with both single-point and multi-point injection schemes.
As shown in the result, almost all the injected data and origins can be accurately
detected and inferred.

In summary, our paper makes the following contributions:

– We introduce a graph-based scheme for SCADA systems to detect ad-
vanced false data injection attacks, even when injected data fall within the
valid/normal range of signal specification. SRID is a systematic approach to
monitor system states, detect inconsistent states and infer the compromised
origins.

– We propose multiple novel intrusion detection models for SCADA, such as
alternation vectors and state relation graphs, to achieve real-time detection
on resource-constrained devices.

– We evaluate our system with a real-world power plant simulator and SRID
performs with a 95.83% detection rate and a 0.0125% false positive rate.
Meanwhile, our inference module can also achieve a high accuracy in locating
injected data origins.

2 Background and Problem Statement

2.1 Background

SCADA(supervisory control and data acquisition) is an advanced control system
which collects the data from system variables in real-time, operates with encoded
signals over communication channels, and provides control of local/remote equip-
ment. These years, as SCADA systems have been widely applied in Smart Grid
systems for data monitoring and state estimation [11], cyber security on SCADA
has attracted more and more public attention as an emerging, cross-disciplinary
research topic. Among those attacks, false data injection attack is of particu-
lar interest since it directly affects the reliability and robustness of systems. As
defined in related work [11], false data injection is a generalized attack which
injects any type of malformed data into the data acquisition system. Such mal-
formed data can be in any form, such as the measurement data from sensors [12],
or even the control commands from programmable logic circuits [13].

To detect such injected data, there are two lines of research work. In the first
direction, researchers treat the injected data as an injected signal and detect
it using bad-data (e.g., data out of normal ranges) processing schemes. As a

404 Y. Wang et al.

common detection strategy, existing studies, such as [14, 15], introduce artificial
redundancy to mitigate the effect of injected data. These approaches have been
proved to be effective for securing the integrity of small numbers of system
variables. The common assumption of these work is that the attacker has only
limited access to system resources, i.e, altering a small amount of measurement
data of sensors or meters. However, when well-crafted malware has been involved
in the arm race, such assumption may no longer be held because malware has
strong abilities to propagate itself among similar devices and manipulate multiple
data signals at the same time.

To defeat malware’s intrusion, another line of research concentrates on de-
ploying existing intrusion detection techniques onto SCADA systems. Multiple
different detection models, such as statistic-based [16], behavior-based [9] and
bloom-filter-based [1], have been proposed. However, as a highly complicated
control system, deploying similar or identical rules on different control compo-
nents is not an ideal choice. For example, the centrifuge control component may
require different policies from the gas pump control component. In addition, most
existing IDS systems only enforce detection rules on each communication flow,
they lack a global view of relationship among different variables to determine
whether the whole system is under attack or not.

2.2 Assumption and Approach Overview

In this paper, we focus on detecting false data injection attacks on SCADA
systems. To be concrete, we assume the following strong attack model:

– An attacker has the ability to inject single or multiple data at any time.

– The injected data can fall into the valid range of signal specification,
which can cause a difficult time for many existing anomaly-based detection
schemes.

In this paper, we provide a relation-graph-based intrusion detection scheme
for SCADA systems. Our proposal is trying to achieve two tasks complementing
the existing intrusion detection schemes:

– Component-based Policy: Our scheme automatically analyzes the inter-
nal relations among system variables. Then we extract components for each
independent control sub-system. Based on each component, we provide dif-
ferent detection rules. Through such component-based policy, we can not
only reduce the redundant overhead but also provide more accurate results.

– Correlation Model: Our detection model is based on the internal relations
among different system variables and states. Hence, we design correlation
graphs (for system variables) and state relation graphs (for system states) to
describe the valid behavior patterns of our target SCADA system. Therefore,
SRID is designed to protect the system from entering invalid running status.

Next, we provide our definition of component and correlation model.

SRID 405

2.3 Terminology

Definition of Component: In our definition, we define a component as an sub-
system which controls an independent set of system variables. As an illustration,
we show an example of the controlling component of a power plant boiler in
Figure 1. In this system, coal is automatically transported into boiler based on
the temperature meter. If the temperature is high, few coal will be transported
into the system. Otherwise, more coal is needed. The pressure is proportional
to the temperature, which is collected by the temperature meter. Thus, higher
temperature generates higher pressure. Since all these system variables affect
the control of the boiler, we treat them as a component.

coal

condensed steam
valve

steam valve
boiler

turbine

coal flow
meter

steam pressure
meter

temperature
meter

boiler condenser

Fig. 1. An Example of False Data Injection

In this example, we find a component:{t(temperature), p(pressure), c(coal)}.
The component is normally a subset of the whole control system. In our design,
we allow users to customize the system variable subset. Also, we provide another
automatic way to extract independent components from a SCADA system.

Definition of Correlation Model: In the above example, suppose that the
attacker can compromise the temperature meter to inject fake data into the
system. In order to evade bad-data based detection, she keeps changing the
value of temperature meter to a valid low value. While the temperature keeps
lower, the coal will continuously be transported. Finally, the boiler could blast.

Note that there is no detectable bad data. Hence, bad-data processing scheme
will be less effective in this case. However, if we further examine the relation
among different meters, we can find the inconsistency: while the attacker can
modify the temperature meter to a lower value, the value from the pressure meter
is unchanged, which undoubtedly violates the proportional relation between two
meters. Our definition of State-Correlation is based on such insight.

Formally, we define the Correlation Model as the correlation between different
variables xi under different time states ti.

c(xi,ti) = f(x1, x2, x3,, xn) (1)

More specifically, we consider two types of variable correlation models in our
definition:

Forward Correlation: The forward correlation is a static structure, in which all
system variables will not be affected by the time. Thus, the value of one variable

406 Y. Wang et al.

in the current state only depends on the values of other related variables in
the simultaneous state. Given the power system variables x = (x1, x2, ..., xn)T ,
Equation 2 reflects such forward relation. At any time t, the value of variable i
depends on the values of other variables such as variable j, variable k at time t.

xi,t = f(xj,t, xk,t...) (2)

Since the values of system variables do not depend on time t in the forward
correlation structure, Equation 3 can be further simplified as:

xi = f(xj , xk...) (3)

Feedback Correlation: The feedback correlation is a dynamic structure corre-
sponding to the time. In such relation, the value of one variable in the current
state depends on not only the values of other related variables in simultane-
ous states but also the values of some related variables in the previous state.
Equation 4 reflects such feedback relationship. At time t, the value of variable i
depends on the value of variable j at time t and the value of variable k at time
t− 1.

xi,t = f(xj,t, xk,t−1...) (4)

Table 1. Functions of forward and feedback data relation structures

�������structure

variable
x0 x1 x2 x3 x4 x5 x6

forward x0 x0 ∗ x0 x1 − x0 x2/x1 x2 − x3 sin(x4) cos(x5)

feedback x0,t x0,t × x0,t x1,t − xt,0 (x2,t/xt,1) + x5,t−1 x2,t − x3,t sin(x4,t) cos(x5,t)

We illustrate another example to describe the correlation model as shown in
Table 1. Given system variables x = (x0, x1, x2, x3, x4, x5, x6)T , Table 1 shows
the relationship of different variables in different types of models. For example,
variable x1 in the forward data relation structure equals the squares of x0 and
variable x3 equals x2/x1; Variable x3 in the feedback data relation structure
equals x2,t/x1,t + x5,t−1.

0 1

2

3

4

5 6 0 1

2

3

4

5 6

(a) forward relation graph of variables (b) feedback relation graph of variables

Fig. 2. Forward and Feedback Correlation Model

Based on the table description, we further generate a correlation graph, which
is shown in Figure 2. In the figure, the dash line shows the feedback correlation,
in which the value of x3 depends on the value of x1 and x2 from the current
state and the value of x5 from the previous state.

SRID 407

3 System Design

In this section, we present the detailed design of SRID. As seen in Figure 3, there
are three basic steps of SRID: Component Analysis, Detection Model Generation
and Origins Inference. In the first step, SRID automatically analyzes the internal
relations between different variables in the SCADA system. In the second step,
we propose a graph-based detection model, alternation vectors with state relation
graphs, for efficient online intrusion detection. Finally, our inference model traces
back the intrusion and infers the possible compromised origins.

Origin Inference

Detection Module Generation

Invalid
 State

N

Origin
N

state stream
Matching

State rela�on
Graph

Y

Matching
Variable rela�on

Features

Y

variables

Component Analysis

Component
Extraction

Device

State Relation Graph

Time Series Data

Variables Relation Graph

Fig. 3. Architecture of SRID

3.1 Component Analysis

In the first step, our target is to find the internal relations among system vari-
ables inside each independent component. As we discussed, the component can
be expressed as a set of system variables, such as x1, x2,xn. The goal of com-
ponent analysis is to derive the forward and backward correlations, which can
be expressed as correlation graphs, illustrated in Figure 2.

To build such relations, the most straightforward and easiest solution is to
allow the system designer to specify in advance. With the involvement of human
assistance, we can obtain an accurate model which specifies the mathematical
relations of each variable. However, since such human effort is tedious and some-
times not available, we can propose another approach for automatic extraction.

The idea is to apply classic control variate method which alters one variable’s
value at a time. When we alter one variable, we record whether any of other
variables has been changed or not. If some variable changes, we build a directed
edge from the control variable to the alternated variable in the graph. Then we
reset the system, and change another variable in the second round. The process
iteratively continues till we find all the relations between variables.

The control variate method can describe the forward correlation between vari-
ables. For the feedback correlation, we apply program analysis on the device’s

408 Y. Wang et al.

firmware. The idea is to conduct data flow analysis on each variable and deter-
mine whether the previous states may affect its current value or not. To achieve
that, we collect a set of execution traces for the firmware from t0 to time win-
dow limit tm. Then we apply the data flow analysis across different traces and
find whether the previous variable affects the following states. If so, we draw a
feedback line (as seen in Figure 2) in our graph.

One sample output of this step is the correlation graph illustrated in Figure 2.
Based on the graph, we can extract all connected components. As we mentioned,
we allow users to specify the analyzed component in advance. However, if the user
does not specify any component beforehand, we can analyze the whole SCADA
system and treat each connected component in the graph as the subject(s) of
our further steps.

3.2 Detection Model Generation

In the second step, we study the changing pattern of the variables for the com-
ponent. The task of SRID is to determine, at time ti, given the current states of
component variables, whether the system is under attack or not?

To answer the question, we need to first describe the pattern of normal system
operation. In our design, we propose a novel way, alternation vectors, to represent
real-time states of a component under normal operation.

State Representation Using Alternation Vectors. Suppose a component
has n variables (x1, x2, ..., xn)T . At each time t, a state can be represented by
a vector of different variable such as (x1,t, x2,t, ..., xn,t)

T . For that, we have to
store the concrete value for each variable and such scheme may consume large
amount of memory space when the vector is high dimensional. In our scheme, we
apply alternation vector, which only records the alternation relations between
two continuous states. It can be expressed with Equation 5:

f1(xi,t) =

⎧⎪⎨⎪⎩
1 xi,t − xi,t−1 > 0

0 xi,t − xi,t−1 = 0 or t = t0

−1 xi,t − xi,t−1 < 0

, i ∈ 1, 2, · · · , n (5)

For the initialization state, t0, we define f(xi,t0) = 0. If the value of variable i
increases from the last value, we use 1 to indicate the increase. Also if the value
of variable i decreases from the last state, we use −1 to indicate the decrease. If
the value keeps the same, we denote it as 0.

Using alteration vectors, we can model a constantly changing component by
a series of alternation vectors in a time window from t0 to tm. The advantage of
alternation vectors is to save memory for each state. Since we only store 2 bits
for each variable’s state, our scheme is efficient for resource-constraint devices.

Based on the alternation vectors, we discuss our detection scheme using state
relation graphs.

State Relation Graph. Our intrusion detection model is based on state relation
graphs. The state relation graph is a directed graph G(V,E), which describes the

SRID 409

normal states of the component. To construct the relation graph, we need to run
SRID and collect all the information about those normal states in a training
stage.

Suppose that we run SRID to train the model from a time window t0 to tm,
and we have n different variables in the analyzed component. At each time slot
ti, we compute the alternation vector based on its previous state at ti−1 and
current state. For each alternation vector, we create one node in the graph. If we
find the node has been created before, we directly use the existing node. Then we
create one edge which points from the ti−1 state’s node to ti state’s node. Each
edge is marked with a time stamp ti. This process continues until we enumerate
all the states in the time window.

The state relation graph for our illustration example(in Section 2.3) is shown
in Figure 4(a). In theory, there are at most 3n different alternation vectors in
the graph. However, for a practical system, the space is normally limited. For
the illustrated example, we have 7 variables and only 37 different state nodes in
the graph.

Using the graph, we can build our detection model. The idea for our intrusion
detection model is to assure that the variables satisfy the normal changing rule.
Intuitively, the malicious injected data, such as Stuxnet’s malformed frequency
data, can be easily detected since it clearly violates the normal changing rules.

Reduced State Relation Graph. There are two possible problems directly
using the state relation graph for detection: First, since we have to maintain
the time information for each edge, we have to consume considerable memory to
store the trained model. It may complicate the matching process and overburden
the resource-constrained device. Secondly, strictly following the transition edges
may cause some false positives if some states are not stable.

Therefore, we optimize our state relation graph and remove the time stamp
information for each edge. After removing time stamps, there are many dupli-
cated edges existed in the graph. Hence, in the second step, we traverse the
whole graph and remove all duplicated edges. The example’s reduced state rela-
tion graph is shown in Figure 4(b). As we can see, the graph is greatly simplified
and, if we apply linked list structure, it only consumes less than 360 bytes to
store the whole graph in memory.

Based on the reduced state graph, we summarize the detection steps:

– Step I: In detection phase, if we find the new alternation vector is not a node
in the graph, we directly generate an alert for Invalid State. Since we can
store all the nodes in a hashtable, it takes O(1) to fulfill the check.

– Step II: If it is a valid state in the graph, we have to check whether it is
reachable from the previous state or not. If it is not reachable from the
previous state, we generate an alert for Invalid Transition. It takes O(1)
space to maintain the last transition state and O(1) time to detect the invalid
transition (use a hashtable for each node’s edge).

In all, SRID can find possible intrusion/false data in O(1) time which is par-
ticularly attractive for real-time detection. Meanwhile, with limited number of

410 Y. Wang et al.

366

386

714

390

717

711

389

391

387

63

691

686

684

690

363

710

66

360

367

364

394

715

687

39

62

718

713

393

362

38

683

43

688

382

7060

359

366

386

714

390

717

711

389

391

387

63

691

686

684

690

363

710

66

360

367

364

394

715

687

39

62

718

713

393

362

38

683

43

688

382

706 0

359

(a)Original State Relation Graph (b)Reduced State Relation Graph

Fig. 4. Time-series State Relation Graph Reduction

possible states, it also saves the memory consumption and achieves a better
balance between effectiveness and efficiency.

3.3 Attack Origins Inference

The goal of the origins inference model is to infer the possible injection point.
Our inference is based on the correlation graph which is generated in Component
Analysis. As we introduced befor, the correlation graph describes the internal
relations of variables in the component. Therefore, when we detect the violated
state, we can trace back the dependence of violated variable(s) and find the
possible origin(s).

Next, we analyze our inference algorithms in several possible scenarios.

Scenario I: Known Mathematics Correlation
As we discussed in Section 3.1, we allow users to provide the mathematical
relations for the correlation graph. In this case, we have pre-knowledge about
the variable relation. We believe it is a valid assumption because existing bad-
data processing schemes [14, 15, 17] hold the similar assumption.

With knowing the mathematical correlation, our inference algorithms can
precisely locate all possible injection points, no matter whether it is a single-
point injection or multiple-point injection. To illustrate that, we go through an

Table 2. Example of Origin Inference

�������Infer Variable
x0 x1 x2 x3 x4 x5 x6

math correlation x0 x0 ∗ x0 x1 − x0 x2/x1 x2 − x3 sin(x4) cos(x5)

Original value 4 16 12 0.75 11.25 -0.9678 0.5671

Injection value 3.5

Invalid state 4 16 12 3.5 8.5 -0.7985 0.6978

Inference result 0 0 0 1 0 0 0

SRID 411

inference example in Table 2. We first reconstruct the time series data of the
whole component. As shown in Table 2, a false data 3.5 is injected to x3. Such
injection will also change the value of variables x3, x4, x5, x6. To infer the origins
of false data injection, we check the inner relation among the variables based on
their values in invalid states. For example, the value of x3 should be x2/x1 = 0.75,
however, the value of x3 in the invalid state is 3.5. Such inconsistency indicates
that the variable x3 is the attack origin. For variable x4, x4 = x2 − x3 = 8.5,
which is the same as the value of x4 in invalid state, thus x4 is not the attack
origin. In the same way, x1, x2, x4, x5, x6 are not the origins of the false data
injection attack.

Scenario II: Single Point Injection
When the attacker has only limited access to the system, our inference model can
also deduce its source even without the knowledge of mathematical correlation
in advance. In the single point injection case, the attacker can only inject one
data in the system. The inference algorithm is based on the backward depen-
dence traversal which starts from the violated node in the correlation graph. We
backward check whether the previous variable deviates from the normal value
or not. If the deviation is above our pre-defined deviation threshold δ, we mark
it as a possible compromised variable. We iteratively continue till we find the
first valid variable. Since we only have one injection point, the last compromised
variable, with its corresponding device, is considered as the injection point.

Scenario III: Multiple Points Injection
When there are multiple injection points, our correlation graph may not locate
the precise points, but it can still generate a set of possible compromised vari-
ables. It is also computed by the backward dependence traversal till we reach
the root node of the dependence chain. We believe our infer algorithm can save
a great amount of work in the investigation.

Finally, our overall inference algorithm is presented in Algorithm 1.

4 Evaluation

To evaluate the performance of SRID, we test it with a boiler simulator of a real
power plant.

4.1 Data Collection

The boiler system is the core part of a power plant generator, which makes it
a popular target for malware. Thus we test our SRID with a common boiler
system simulator in a coal power plant. To find the mathematical relationship
among different variables, we reverse engineering the boiler simulator system.
142 variables are extracted from the boiler system. Figure 5 shows the relation
graph of variables and the dash line represents the feedback structures.

4.2 Overhead Analysis

To evaluate the overhead of SRID, we check how many states gener-
ated/maintained by SRID. Since there are 142 variables in the boiler system,

412 Y. Wang et al.

Algorithm 1. SRID: State relation based intrusion detection
for false data injection attack

Input: A sequence of power system state 〈state(1, t), state(2, t) . . . , state(n, t)〉
Output: When dose the false data state(k, i) injection attack happen? , where is the

original injected data variable(j)?
1 � injectionDetectModel
2 time ← t0
3 stateFeatureGraph[N,N] ← normalStateFeatures
4 while time < timeEnd do
5 state[n, time] ← input(dataF low)
6 index ← 0
7 while index < N do
8 if state[index, time] < min(state[index]) or > max(state[index]) then
9 return out of normal range

10 else if state[index, time] ∈ stateFeatureGraph then
11 index ← index + 1
12 continue;

13 else
14 i ← time
15 k ← index
16 return state(k, i)

17 time ← time + 1

18 � originsInferModel
19 index ← 0
20 M ← variableNumber
21 variable[M] ← input(state(k,i))
22 variableRelationFeature[M, M] ← normalV ariableRelationFeatures
23 while index < M do
24 variable[index] ← input(variableDataF low)
25 if varialbe[index] ∈ variableRelationFeature then
26 index ← index + 1
27 continue;

28 else
29 j ← index
30 return variable(j)

31 return state(k, i), variable(j)

19

86

30

61 6364 656769 71 73 88

46

4748 49 5062 66 68 70 72 7475 85 8789 90 91 92 93

123

124

98

99

141

186

14 1534

31

2928

5

27 33

20

16 385781

21

102 103104105

125

1

101

24

2632

7

24 2535 8

36 5153

9

3752 54

10 11

12

22 79

13

82

40

58 17

23

42

39

4344

41

45

55 56 133

60

59

121

9495

76 77 78

80

84

122128 132

83

822

117

97

106107

118

108

119

109

113110

126 129

111

127 130

112

135

114 115

136

138

142

137

139

Fig. 5. Variable Relation Graph of the Boiler System in a Power Plant

theoretically there will be 3142 states. We train our system with different du-
ration t. Figure 6 shows the number of generated states along with different
training duration.

SRID 413

13

18
19

21

23

6

Fig. 6. States Number Distribution

We can see that after 1,366s, there is no more new states generated and the
total number of states is only 23, which is much smaller than 3142. Thus such
state graph can be stored in memory for realtime analysis.

4.3 Attack Detection Results

To evaluate the detection results, we first run the boiler system for 2,000s (0-
2,000s, the values of variables recorded every second, a time granularity used
for this evaluation but could be adjusted based on practical need/constraint) to
generate the corresponding state relation graph as shown in Figure 7. Then we
continue running the boiler system for another 2,000s (2,000-4,000s) to detect
when the data injection attacks happen.

9

14 10

11

18

19 22 6

2

15

16 20

17

23

21

3

7 4

8

12

13

1

5

Fig. 7. State Relation Graph of the Boiler

414 Y. Wang et al.

We test SRID with both single-point injection and multiple-point injection.
For the single-point injection, each time we randomly choose a variable and
inject with arbitrary data that falls in its valid range. Then we randomly inject
6 times in this way during the testing procedure. Thus, among 2,000 total testing
data records (one per second), there are 6 false data injection attacks. For the
multiple-points injection, instead of injecting false data on a single variable each
time, we inject false data on different numbers of randomly chosen variables at
the same time. We also launch 6 false injection attacks for each situation during
the testing procedure.

Table 3. Detection on false data injection attacks

Types
False data injection SRID detection

Injected variables Injection attacks Detected attacks False positives

Single injection 1 6 6 0
Multi-injection1 2 6 6 0
Multi-injection2 3 6 6 0
Multi-injection3 4 6 5 1

Table 3 shows the detection results. SRID can detect all the single injection
attacks without false positives. For multiple-points injection, SRID can still de-
tect all attacks with 2 and 3 variables injection without any false positives and
false negatives. However, it failed to detect one multiple-points injection attack
with 4 variables. This leads to an overall detection rate of 95.83% (23 out of
24 attacks). Further analysis shows that this missed attack is because two con-
tinuous injections on two related states happen to satisfy the learned (normal)
alternation relationship. While it is possible, we believe that this is difficult be
exploited by attackers, as further discussed in Section 5.

SRID also has one false positive (out of a total of 1994*4 normal data records),
which represents a false positive rate of 0.0125%. Further investigation shows
that it is because a normal state was not captured by the state relation graph.
Thus, SRID reports it as a false data injection attack. However, extending the
training time can reduce such false positives.

In summary, in our evaluation SRID has achieved a high overall detection rate
of 95.83% for false data injection attacks, with a very lower false positive rate of
0.0125%.

4.4 Attack Origin Inference Results

Once the false data injection is detected in the boiler system, we need to find
out what are the origins of those attacks. To evaluate the performance of our
attack origin inference algorithm, we use the same test data mentioned above
and submit the invalid states from detection results to our inference scheme.
Table 4 shows the inference results.

SRID 415

Table 4. Origin inference on data injection attacks (TP means inferred true attack
origins, and FP means inferred false positive origins. For Multi-injection3, we only test
the attack origin inference on the 5 successfully detected true attacks.)

Types
False data injection SRID Inference

Injected variables Injection attacks Total affected variables Total TP Total FP

Single injection 1 6 40 6/6 0
Multi-injection1 2 6 94 12/12 0
Multi-injection2 3 6 62 18/18 0
Multi-injection3 4 5 421 (avg. 84 per attack) 13/20 260

SRID accurately infers all the true attack origins without any false positive in
the case of single injection, multi-injection1, and multi-injection2. For example,
for the single-point injection case, totally 6 variables (1 in each attack) are in-
jected with the false data, which lead to totally 40 affected variables that change
their values, and SRID can successfully infer the 6 exact attack origins without
false positives. In the case of multi-injection3, SRID does not infer all attack
origins (inferred 13/20) and due to the large number of variables affected by the
attacks (each randomly injected attack affected 84 variables on average, causing
trouble for the inference), SRID unavoidably involves considerable false positives
(on average 52 in each multi-injection3 attack inference result). However, we ar-
gue that SRID still significantly reduces the search space of affected variables
(reducing from 421 to 273) and locates most of true attack origins, which is still
useful in practice.

Further analysis shows that if the false data is injected on source variables
(i.e., source vertex in the variable relation graph), all the children variables of
source variables will change their values according to their relations. Thus, there
will not exist any inconsistency among those variables. In this case, SRID can
not accurately locate the attack origins.

In summary, SRID can dramatically reduces the search space of attack origins
and even accurately locate most of true attack origins.

5 Discussion

In this section, we discuss possible problems and evasions of SRID.

Limitation of Component Analysis: One of our design challenges of SRID is
how to handle the case when the system is a blackbox to defenders. To solve that,
we present our component analysis to handle the challenge. However, there exists
some limitation for the scheme. First, the classic control variate method may not
be precise if the relation between variables is not instantly reactive. Second, we
apply dynamic program analysis to handle feedback relations. However, if we
cannot find the data-flow between different execution traces, we cannot find
the accurate model. As a result, it may cause some false positives in the final
detection result.

To solve these issues, one possible solution is mentioned in Section 3.3, i.e.,
applying manual effort to describe the mathematical correlation model. Since it

416 Y. Wang et al.

is a common assumption for many existing bad-data detection schemes [14], we
believe it is still feasible in many real-world circumstances.

Possible Evasions: To evade our SRID, attackers can modify the initial state
at t0, and introduce the inconsistency at the beginning of the time series. Such
attack cannot be detected by SRID. Hence, we assume we can ensure the integrity
at the starting point t0. We think it is a reasonable assumption because the initial
integrity check is required by most of the devices.

Another possible way to evade our system is to inject the data that affects all
other related states at the same time. It means the attacker has the full control
of the component, which, we believe, is not realistic in the practical scenario.
In this case, our system cannot detect the data injection attack. However, if
the injection data violates the threshold of some variable, which introduces new
states in our graph, SRID can still detect it.

Also, it is possible to overburden SRID using Denial of Service (DoS) attacks.
It can be achieved by injecting a large amount of false data continuously. Even
though such situation rarely happens in practice, we believe that our system
can still outperform existing schemes because SRID applies different policies
for different components and each component cannot be easily separated for
distributed detection.

Complement to Existing Schemes: Last but not least, we need to emphasize
that our scheme is not trying to replace existing intrusion detection systems
in the field. Our scheme is complementary to existing schemes and especially
useful when we try to protect the critical component in the system. However,
some anomaly-based [18] and behavior-based [9] schemes provide a consistent
protection for the entire SCADA system, which is not the focus of SRID.

6 Related Work

Existing intrusion detection solutions in SCADA can be classified into two cat-
egories.

In the first category, existing approaches [1, 5, 12, 13, 19, 20] monitor
the abnormal behaviors using predefined rules to detect attacks. SmartAna-
lyzer [9, 10, 12, 13] detects possible attacks on advanced metering infrastructure
(AMI). It applies a verification engine to determine whether the sensor behav-
iors obey with the predefined threat constraints, such as reachability constraint,
security pairing constraint, report schedule constraint, resource constraint, cy-
ber bandwidth constraint, priority delivery constraint and quality of delivery
constraint. Another behavior-rule based intrusion detection system, BRIDS [9],
is proposed to secure the SCADA system in a distributed way. In [1], an idea
of using bloomer-filter to detect intrusion in resource-constrained devices is pro-
posed.

In the second category, researchers applied state estimation to mitigate bad
data in the data acquisition sensor [15, 17, 21–26]. This kind of approach is
widely used to detect and identify bad data in power systems, such as power flow

SRID 417

analysis [26] and topology errors detection [25]. The detection methods include
primary detection for residual detection [21] and inflection point detection [23].
However, the application domains of these approaches are very limited, since
they only target at detecting data injection attacks with minor data alternation
[11].

Our work is different from all previous work with a stronger attack model, in
which we assume powerful attackers can even evade rule-based detection schemes
by understanding each variable’s threshold in advance. Meanwhile, the state
estimation solution also has the limitation of handling arbitrary data injection.

7 Conclusion

In this paper, we propose a novel intrusion detection system, named SRID, to
detect intrusion in SCADA systems. Our main defense focus is the false data
injection attack and SRID can not only detect such attack but also deduce the
possible attack origins in an effective and efficient way. In addition, we propose a
new graph-based detection model which combines the state alternation vectors
and state relation graph. From the evaluation results, we can see our new design
can effectively detect various data injection attacks and infer attack origins.

References

1. Parthasarathy, S., Kundur, D.: Bloom filter based intrusion detection for smart grid
scada. In: Proc. of the 25th IEEE Canadian Conference on Electrical & Computer
Engineering (CCECE 2012), pp. 1–6 (April 2012)

2. Amin, S., Litrico, X., Sastry, S., Bayen, A.: Cyber security of water scada systems
(i) analysis and experimentation of stealthy deception attacks. IEEE Transactions
on Control Systems Technology 21(5), 1963–1970 (2013)

3. Stuxnet, http://en.wikipedia.org/wiki/Stuxnet
4. Cardenas, A.A., Amin, S., Lin, Z.S., Huang, Y.L., Huang, C.Y., Sastry, S.: At-

tacks against process control systems: Risk assessment, detection, and response.
In: Proc. of the 6th ACM Symposium on Information, Computer and Communi-
cations Security, ASIACCS 2011 (March 2011)

5. Valenzuela, J., Wang, J., Bissinger, N.: Real-time intrusion detection in power
system operations. IEEE Transactions on Power Systems 28(2), 1052–1062 (2013)

6. Stouffer, K., Falco, J., Scarfone, K.: Guide to industrial control systems (ics) se-
curity. In: NIST Special Publication (2013)

7. Sridhar, S., Hahn, A., Govindarasu, M.: Cyber physical system security for the
electric power grid. IEEE Transactions on Power Systems 100(1), 210–224 (2012)

8. Scada vulnerabilities
9. Mitchell, R., Chen, I.: Behavior-rule based intrusion detection systems for safety

critical smart grid applications. IEEE Transcations on Smart Grid 4(3), 1254–1263
(2013)

10. Berthier, R., Sanders, W., Khurana, H.: Intrusion detection for advanced metering
infrastructures: Requirements and architectural directions. In: Proc. of First IEEE
International Conference on Smart Grid Communications (SmartGridComm 2010),
pp. 350–355 (October 2010)

http://en.wikipedia.org/wiki/Stuxnet

418 Y. Wang et al.

11. Liu, Y., Ning, P., Reiter, M.K.: False data injection attacks against state esti-
mation in electric power grids. ACM Transactions on Information and System
Security 14(1), 21–32 (2011)

12. Rahman, M., AL-Shaer, E., Bera, P.: A noninvasive threat analyzer for advanced
metering infrastructure in smart grid. IEEE Transcations on Smart Grid 4(1),
273–287 (2013)

13. Rahman, M., Bera, P., Al-Shaer, E.: Smartanalyzer: A noninvasive security threat
analyzer for ami smart grid. In: Proc. of the 31st IEEE International Conference
on Computer Communications (INFOCOM 2012), pp. 2255–2263 (March 2012)

14. Esmalifalak, M., Shi, G., Han, Z., Song, L.: Bad data injection attack and defense in
electricity market using game theory study. IEEE Transactions on Smart Grid 4(1),
160–169 (2013)

15. Hagh, M., Mahaei, S., Zare, K.: Improving bad data detection in state estimation
of power systems. International Journal of Electrical and Computer Engineering
(IJECE 2011) 1(2), 85–92 (2011)

16. Ning, P., Jajodia, S.: Intrusion detection techniques (2003)
17. Xu, W., Wang, M., Tang, A.: On state estimation with bad data detection. In: Pro-

ceedings of 50th IEEE Conference on Decision and Control and European Control
Conference (CDC-ECC 2011), pp. 5989–5994 (December 2011)

18. Reeves, J., Ramaswamy, A., Locasto, M., Bratus, S., Smith, S.: Intrusion detection
for resource-constrained embedded control systems in the power grid. International
Journal of Critical Infrastructure Protection 5(2), 74–83 (2012)

19. McDonald, M.J., Conrad, G.N., Service, T.C., Cassidy, R.H.: A retrofit network
intrusion detection system for modbus rtu and ascii industrial control systems.
In: Proc. of the 45th Hawaii International Conference on System Science (HICSS
2012), pp. 2338–2345 (January 2012)

20. Diaz, J.: Using snort for intrusion detection in modbus tcp/ip communications
(2011)

21. Bi, S., Zhang, Y.: Defending mechanisms against false-data injection attacks in the
power system state estimation. In: Proc. of the 2011 IEEE International Workshop
on Smart Grid Communications and Networks (GC Wkshps 2011), pp. 1162–1167
(December 2011)

22. Xie, L., Mo, Y., Sinopoli, B.: False data injection attacks in electricity markets.
In: Smart Grid Communications, pp. 226–231 (October 2010)

23. Feng, Y., Foglietta, C., Baiocco, A., Panzieri, S., Wolthusen, S.D.: Malicious false
data injection in hierarchical electric power grid state estimation systems. In: Proc.
of the 4th International Conference on Future Energy Systems (e-Energy 2013),
pp. 183–192 (May 2013)

24. Tan, R., Krishna, V.B., Yau, D.K., Kalbarczyk, Z.: Impact of integrity attacks on
real-time pricing in smart grids. In: Proc. of the 2013 ACM SIGSAC Conference
on Computer & Communications Security (CCS 2013), pp. 439–450 (November
2013)

25. Pajic, S.: Power System State Estimation and Contingency Constrained Optimal
Power Flow-A Numerically Robust Implementation. PhD thesis, Worcester Poly-
technic Institute (2007)

26. Lin, J., Yu, W., Yang, X., Xu, G., Zhao, W.: On false data injection attacks against
distributed energy routing in smart grid. In: 2012 IEEE/ACM Third International
Conference on Cyber-Physical Systems (ICCPS 2012), pp. 183–192 (April 2012)

Click Fraud Detection on the Advertiser Side

Haitao Xu1, Daiping Liu1, Aaron Koehl1,
Haining Wang1, and Angelos Stavrou2

1 College of William and Mary, Williamsburg, VA 23187, USA
{hxu,liudptl,amkoeh,hnw}@cs.wm.edu

2 George Mason University, Fairfax, VA 22030, USA
astavrou@gmu.edu

Abstract. Click fraud—malicious clicks at the expense of pay-per-click
advertisers—is posing a serious threat to the Internet economy. Although
click fraud has attracted much attention from the security community,
as the direct victims of click fraud, advertisers still lack effective defense
to detect click fraud independently. In this paper, we propose a novel ap-
proach for advertisers to detect click frauds and evaluate the return on
investment (ROI) of their ad campaigns without the helps from ad net-
works or publishers. Our key idea is to proactively test if visiting clients
are full-fledged modern browsers and passively scrutinize user engage-
ment. In particular, we introduce a new functionality test and develop
an extensive characterization of user engagement. Our detection can sig-
nificantly raise the bar for committing click fraud and is transparent to
users. Moreover, our approach requires little effort to be deployed at the
advertiser side. To validate the effectiveness of our approach, we imple-
ment a prototype and deploy it on a large production website; and then
we run 10-day ad campaigns for the website on a major ad network.
The experimental results show that our proposed defense is effective in
identifying both clickbots and human clickers, while incurring negligible
overhead at both the server and client sides.

Keywords: Click Fraud, Online Advertising, Feature Detection.

1 Introduction

In an online advertising market, advertisers pay ad networks for each click on
their ads, and ad networks in turn pay publishers a share of the revenue. As online
advertising has evolved into a multi-billion dollar business [1], click fraud has
become a serious and pervasive problem. For example, the botnet “Chameleon”
infected over 120,000 host machines in the U.S. and siphoned $6 million per
month from advertisers [2].

Click fraud occurs when miscreants make HTTP requests for destination
URLs found in deployed ads [3]. Such HTTP requests issued with malicious
intent are called fraudulent clicks. The incentive for fraudsters is to increase
their own profits at the expense of other parties. Typically a fraudster is a pub-
lisher or an advertiser. Publishers may put excessive ad banners on their pages

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 419–438, 2014.
c© Springer International Publishing Switzerland 2014

420 H. Xu et al.

and then forge clicks on ads to receive more revenue. Unscrupulous advertis-
ers make extensive clicks on a competitor’s ads with the intention of depleting
the victim’s advertising budget. Click fraud is mainly conducted by leveraging
clickbots, hiring human clickers, or tricking users into clicking ads [4].

In an act of click fraud, both an ad network and a publisher are beneficiaries
while an advertiser is the only victim, under the pay-per-click model. Although
the ad network pays out to the publisher for those undetected click fraud ac-
tivities, it charges the advertiser more fees. Thus, the ad network still benefits
from click fraud. Only the advertiser is victimized by paying for those fraudu-
lent clicks. Therefore, advertisers have the strongest incentive to counteract click
fraud. In this paper, we focus on click fraud detection from the perspective of
advertisers.

Click fraud detection is not trivial. Click fraud schemes have been continuously
evolving in recent years [3–7]. Existing detection solutions attempt to identify
click fraud activities from different perspectives, but each has its own limitations.
The solutions proposed in [8–10] perform traffic analysis on an ad network’s
traffic logs to detect publisher inflation fraud. However, an advanced clickbot
can conduct a low-noise attack, which makes those abnormal-behavior-based
detection mechanisms less effective. Haddadi [11] proposed exploiting bait ads
to blacklist malicious publishers based on a predefined threshold. Motivated
by [11], Dave et al. [4] proposed an approach for advertisers to measure click-
spam ratios on their ads by creating bait ads. However, running bait ads increases
advertisers’ budget on advertisements.

In this paper, we propose a novel approach for an advertiser to independently
detect click fraud attacks conducted by clickbots and human clickers. Our ap-
proach enables advertisers to evaluate the return on investment (ROI) of their
ad campaigns by classifying each incoming click traffic as fraudulent, casual, or
valid. The rationale behind our design lies in two observed invariants of legiti-
mate clicks. The first invariant is that a legitimate click should be initiated by a
real human user on a real browser. That is, a client should be a real full-fledged
browser rather than a bot, and hence it should support JavaScript, DOM, CSS,
and other web standards that are widely followed by modern browsers. The sec-
ond invariant is that a legitimate ad clicker interested in advertised products
must have some level of user engagement in browsing the advertised website.

Based on the design principles above, we develop a click fraud detection sys-
tem mainly composed of two components: (1) a proactive functionality test and
(2) a passive examination of browsing behavior. The functionality test actually
challenges a client for its authenticity (a browser or a bot) with the assumption
that most clickbots have limited functionality compared to modern browsers and
thus would fail this test. Specifically, a client’s functionality is validated against
web standards widely supported by modern browsers. Failing the test would in-
duce all clicks generated by the client to be labelled as fraudulent. The second
component passively examines each user’s browsing behaviors on the advertised
website. Its objective is to identify human clickers and those more advanced
clickbots that may pass the functionality test. If a client passes the functionality

Click Fraud Detection on the Advertiser Side 421

test and also shows enough browsing engagement on the advertised website, the
corresponding click is labelled as valid. Otherwise, a click is labelled as casual
if the corresponding client passes the functionality test but shows insufficient
browsing behaviors. A casual click could be generated by a human clicker or by
an unintentional user. We have no attempt to distinguish these two since neither
of them is a potential customer from the standpoint of advertisers.

To evaluate the effectiveness of the proposed detection system, we build a
prototype and deploy it on a large production web server. Then we run ad
campaigns at one major ad network for 10 days. The experimental results show
that our approach can detect much more fraudulent clicks than the ad network’s
in-house detection system and achieve low false positive and negative rates. We
also measure the performance overhead of our detection system on the client and
server sides.

Note that our detection mechanism can significantly raise the bar for commit-
ting click fraud and is potentially effective in the long run after public disclosure.
To evade our detection mechanism, clickbots must implement all the main web
standards widely supported by modern browsers. And a heavy-weight clickbot
will risk itself of being readily noticeable by its host. Likewise, human clickers
must behave like real interested users by spending more time, browsing more
pages, and clicking more links on the advertised sites, which contradicts their
original intentions of earning more money by clicking on ads as quickly as pos-
sible. At each point, the net effect is a disincentive to commit click fraud.

The remainder of the paper is organized as follows. We provide background
knowledge in Section 2. Then, we detail our approach in Section 3 and validate
its efficacy using real-world data in Section 4. We discuss the limitations of our
work in Section 5 and survey related work in Section 6. Finally, we conclude the
paper in Section 7.

2 Background

Based on our understanding of the current state of the art in click fraud, we
first characterize clickbots and human clickers, the two main actors leveraged to
commit click fraud. We then discuss the advertiser’s role in inhibiting click fraud.
Finally, we describe the web standards widely supported by modern browsers,
as well as feature detection techniques.

2.1 Clickbots

A clickbot behaves like a browser but usually has relatively limited functionality
compared to the latter. For instance, a clickbot may not be able to parse all
elements of HTML web pages or execute JavaScript and CSS scripts. Thus, at
the present time, a clickbot is instantiated as malware implanted in a victim’s
computer. Even assuming a sophisticated clickbot equipped with capabilities
close to a real browser, its actual browsing behavior when connected to the
advertised website would still be different from that of a real user. This is because

422 H. Xu et al.

Instructions
1. Target website
2. # clicks to perform
3. Referrer to use
4. Token patterns for ad
.

1. Request webpage

2. Reply webpage

3. Request ads

4. Reply Ads

5. Pick an ad to click

6.Redirect

Publisher

Ad Network

Advertiser

C&C serverBotmaster

8. Reply landing page

7.Redirect

Fig. 1. How a clickbot works

clickbots are automated programs and are not sophisticated enough to see and
think as human users, and as of yet, do not behave as human users.

A typical clickbot performs some common functions including initiating HTTP
requests to a web server, following redirections, and retrieving contents from a
web server. However, it does not have the ability to commit click fraud itself but
instead acts as a relay based on instructions from a remote bot master to com-
plete click fraud. A bot master can orchestrate millions of clickbots to perform
automatic and large-scale click fraud attacks.

Figure 1 illustrates how a victim host conducts click fraud under the com-
mand of a botmaster. First, the botmaster distributes malware to the victim
host by exploiting the host’s security vulnerabilities, by luring the victim into
a drive-by download or running a Trojan horse program. Once compromised,
the victim host becomes a bot and receives instructions from a command-and-
control (C&C) server controlled by the botmaster. Such instructions may specify
the target website, the number of clicks to perform on the website, the referrer
to be used in the fabricated HTTP requests, what kind of ads to click on, and
when or how often to click [3].

After receiving instructions, the clickbot begins traversing the designated pub-
lisher website. It issues an HTTP request to the website (step 1). The website
returns the requested page as well as all embedded ad tags on the page (step 2).
An ad tag is a snippet of HTML or JavaScript code representing an ad, usually
in an iframe. For each ad tag, the clickbot generates an HTTP request to the ad
network to retrieve ad contents just like a real browser (step 3). The ad network
returns ads to the clickbot (step 4). From all of the returned ads, the clickbot

Click Fraud Detection on the Advertiser Side 423

selects an ad matching the specified search pattern and simulates a click on the
ad, which triggers another HTTP request to the ad network (step 5). The ad
network logs the click traffic for the purpose of billing the advertiser and paying
the publisher a share, and then returns an HTTP 302 redirect response (step
6). The clickbot follows the redirection path (possibly involving multiple parties)
and finally loads the advertised website (step 7). The advertiser returns back
the landing page1 to the clickbot (step 8). At this point, the clickbot completes
a single act of click fraud. Every time an ad is “clicked” by a clickbot, the adver-
tiser pays the ad network and the involved publisher receives remuneration from
the ad network. Note that a clickbot often works in the background to avoid
raising suspicion, thus all HTTP requests in Figure 1 are generated without the
victim’s awareness.

2.2 Human Clickers

Human clickers are the people who are hired to click on the designated ads
and get paid in return. Human clickers have financial incentives to click on ads
as quickly as possible, which distinguishes them from real users who are truly
interested in the advertised products. For instance, a real user tends to read,
consider, think, and surf the website in order to learn more about a product
before purchase. A paid clicker has few such interests, and hence tends to get
bored quickly and spends little time on the site [12].

2.3 Advertisers

Advertisers are in a vantage point to observe and further detect all fraudulent
activities committed by clickbots and human clickers. To complete click fraud, all
fraudulent HTTP requests must be finally redirected to the advertised website,
no matter how many intermediate redirections and parties are involved along
the way. This fact indicates that both clickbots and human clickers must finally
communicate with the victim advertiser. Thus, advertisers have the advantage
of detecting clickbots and human clickers in the course of communication. In ad-
dition, as the revenue source of online advertising, advertisers have the strongest
motivation to counteract click fraud.

2.4 Web Standards and Feature Detection Techniques

The main functionality of a browser is to retrieve remote resources (HTML, style,
and media) from web servers and present those resources back to a user [13].
To correctly parse and render the retrieved HTML document, a browser should
be compliant with HTML, CSS, DOM, and JavaScript standards which are rep-
resented by scriptable objects. Each object is attached with features including
properties, methods, and events. For instance, the features attached to the DOM
object include createAttribute, getElementsByTagName, title, domain, url, and

1 Landing page is a single web page that appears in response to clicking on an ad.

424 H. Xu et al.

JavaScript Support & Mouse Event Test Functionality Test Browser Behavior Examination
total clicks

total mouse moves

pages viewed

visit duration …

Behavioral
classification

Fail Pass Fail Pass

Fraudulent Fraudulent Valid/Casual

Supported by

Ad click

Mouse Events

click, double click, mouse
up, mouse down, mouse
move, mouse over, …

Click Fraud Detection Methodology

HTML
Standard

DOM
Standard

CSS
Standard

JavaScript
Standard

Fig. 2. Outline of click fraud detection mechanism

many others. Every modern browser supports those features. However, different
browser vendors (and different versions) vary in support levels for those web
standards, or they implement proprietary extensions all their own. To ensure
that websites are displayed properly in all mainstream browsers, web develop-
ers usually use a common technique called feature detection to help produce
JavaScript code with cross-browser compatibility.

Feature detection is a technique that identifies whether a feature or capa-
bility is supported by a browser’s particular environment. One of the common
techniques used is reflection. If the browser does not support a particular fea-
ture, JavaScript engines return null when referencing the feature; otherwise,
JavaScript returns a non-null string. For instance, if the JavaScript statement
“document.createElement” returns null in a specific browser, it indicates that the
browser does not support the method createElement attached to the document
object. Likewise, by testing a browser against a large number of fundamental
features specified in web standards for modern browsers, we can estimate the
browser’s support level for those web standards, which helps validate the au-
thenticity of the execution environment as a real browser.

Feature detection techniques have three primary advantages. First, feature
detection can be an effective mechanism to detect clickbots. A clickbot cannot
“pass” the feature detection unless it has implemented the main functionality
of a real browser. Second, feature detection stresses the client’s functionality
thoroughly, and even a large pool of features can be used for feature detection
in a fast and efficient manner. Lastly, the methods used for feature detection are
designed to work across different browsers and will continue to work over time as
new browsers appear, because new browsers fundamentally support reflection—
even before implementing other features—and should also extend, rather than
replace, existing web standards.

3 Methodology

Our approach mainly challenges a visiting client and its user engagement on
the advertised site to determine whether the corresponding ad click is valid or
not. To maximize detection accuracy, we also check the legitimacy of the origin
(client’s IP address) and the intermediate path (i.e., the publisher) of a click.

Click Fraud Detection on the Advertiser Side 425

Figure 2 provides an outline of our approach. Our detection system consists
of three components: (1) JavaScript support and mouse event test, (2) browser
functionality test, and (3) browsing behavior examination.

For each incoming user, on the landing page, we test if the client supports
JavaScript and if any mouse events are triggered. No JavaScript support or no
mouse event indicates that the client may not be a real browser but a click-
bot. Otherwise, we further challenge the client’s functionality against the web
standards widely supported by mainstream browsers. The client failed the func-
tionality test is labelled as a clickbot. Otherwise, we further examine the client’s
browsing behavior on the advertiser’s website and train a behavior-based classi-
fier to distinguish a really interested user from a casual one.

3.1 JavaScript Support and Mouse Event Test

One simple way to detect clickbots is to test whether a client supports JavaScript
or not. This is due to the fact that at least 98% of web browsers have JavaScript
enabled [14] and online advertising services usually count on JavaScript support.

Monitoring mouse events is another effective way to detect clickbots. In gen-
eral, a human user with a non-mobile platform (laptop/desktop) must generate
at least one mouse event when browsing a website. A lack of mouse events flags
the visiting client as a clickbot. However, this may not be true for users from
mobile platforms (smartphones/pads). Thus, we only apply the mouse event test
to users from non-mobile platforms.

Table 1. Tested browsers, versions and release dates

Chrome(10)

1.0.154 2.0.173 4.0.223 5.0.307.1 8.0.552.215

4/24/2009 6/23/2009 10/24/2009 1/30/2010 12/2/2010
12.0.742.100 16.0.912.63 20.0.1132.47 24.0.1312.57 27.0.1453.94

6/14/2011 12/7/2011 6/28/2012 1/30/2013 5/24/2013

Firefox(10)

2.0 3.0 3.5 3.6 4.0

10/24/2006 6/17/2008 6/30/2009 1/21/2010 3/22/2011
7.0 11.0 15.0 19.0.2 20.0.1

9/27/2011 3/13/2012 8/28/2012 3/7/2013 4/11/2013

IE(5)
6.0 7.0 8.0 9.0 10.0

8/27/2001 10/18/2006 3/19/2009 3/14/2011 10/26/2012

Safari(10)

3.1 3.2 3.2.2 4.0 4.0.5

3/18/2008 11/14/2008 2/15/2009 6/18/2009 3/11/2010
5.0.1 5.0.3 5.1 5.1.2 5.1.7

7/28/2010 11/18/2010 7/20/2011 11/30/2011 5/9/2012

Opera(10)

8.50 9.10 9.20 9.50 10.00

9/20/2005 12/18/2006 4/11/2007 6/12/2008 9/1/2009
10.50 11.00 11.50 12.00 12.15

3/2/2010 12/16/2010 6/28/2011 6/14/2012 4/4/2013

3.2 Functionality Test

A client passing the JavaScript and mouse event test is required to further un-
dergo a feature-detection based functionality test.

426 H. Xu et al.

Table 2. Authentic feature set widely supported by modern browsers

Objects Features

Browser
Window
(51)

closed, defaultStatus, document, frames, history, alert, blur, clearInterval, clearTimeout,
close, confirm, focus, moveBy, moveTo, open, print, prompt, resizeBy, resizeTo, scroll,
scrollBy, scrollTo, setInterval, setTimeout, appCodeName, appName, appVersion, cook-
ieEnabled, platform, userAgent, javaEnabled, availHeight, vailWidth, colorDepth, height,
width, length, back, forward, go, hash, host, hostname, href, pathname, port, protocol,
search, assign, reload, replace

DOM(26) doctype, implementation, documentElement, createElement, createDocumentFragment,
createTextNode, createComment, createAttribute, getElementsByTagName, title, refer-
rer, domain, URL, body, images, applets, links, forms, anchors, cookie, open, close, write,
writeln, getElementById, getElementsByName

CSS(76) backgroundAttachment, backgroundColor, backgroundImage, backgroundRepeat, bor-
der, borderStyle, borderTop, borderRight, borderBottom, borderLeft, borderTopWidth,
borderRightWidth, borderBottomWidth, borderLeftWidth, borderWidth, clear, color,
display, font, fontFamily, fontSize, fontStyle, fontVariant, fontWeight, height, letterSpac-
ing, lineHeight, listStyle, listStyleImage, listStylePosition, listStyleType, margin, margin-
Top, marginRight, marginBottom, marginLeft, padding, paddingTop, paddingRight,
paddingBottom, paddingLeft, textAlign, textDecoration, textIndent, textTransform, ver-
ticalAlign, whiteSpace, width, wordSpacing, backgroundPosition, borderCollapse, bor-
derTopColor, borderRightColor, borderBottomColor, borderLeftColor, borderTopStyle,
borderRightStyle, borderBottomStyle, borderLeftStyle, bottom, clear, clip, cursor, direc-
tion, left, minHeight, overflow, pageBreakAfter, pageBreakBefore, position, right, table-
Layout, top, unicodeBidi, visibility, zIndex

To avoid false positives and ensure that each modern browser can pass the
functionality test, we perform an extensive feature support measurement on the
top 5 mainstream browsers [15]: Chrome, Firefox, IE, Safari, and Opera. To
discern the consistently supported features, we uniformly select 10 versions for
each browser vendor with the exception of 5 versions for IE. Table 1 lists the
browsers we tested. As a result, we obtain a set of 153 features associated with
web standards, including browser window, DOM, and CSS (see Table 2). All
those features are supported by both desktop browsers and their mobile versions.
These features are commonly and consistently supported by the 45 versions of
browsers in the past ten years. We call this set the authentic-feature set. We
also create a bogus-feature set, which has the same size as the authentic-feature
set but is obtained by appending “123” to each feature in the authentic-feature
set. Thus, every feature in the bogus-feature set should not be supported by
any real browser. Note that we just use the string “123” as an example. When
implementing our detection, the advertiser should periodically change the string
to make the bogus-feature set hard to evade.

How to Perform the Functionality Test. Figure 3 illustrates how the func-
tionality test is performed. For the first HTTP request issued by a client, the ad-
vertiser’s web server challenges the client by responding as usual, but along with
a mixed set of authentic and bogus features. While the size of the mixed set is
fixed (e.g.,100), the proportion of authentic features in the set is randomly de-
cided. Then, those individual authentic and forged features in the set are randomly
selected from the authentic and bogus feature sets, respectively. The client is ex-
pected to test each feature in its environment and then report to the web server
how many authentic features are in the mixed set as the response to the challenge.

Click Fraud Detection on the Advertiser Side 427

2. HTTP Response & a mix set of authentic / bogus features

1. HTTP Request

Client
Advertiser’s Web Server

3. Report # of authentic features to server as response to challenge

Fig. 3. How the functionality test is performed by advertiser’s web server

A real browser should be able to report the correct number of authentic fea-
tures to the web server after executing the challenge code, and thus passes the
functionality test. However, a clickbot would fail the test because it is unable to
test the features contained in the set and return the correct number. Considering
some untested browsers may not support some authentic features, we set up a
narrow range [x −N, x] to handle this, where x is the expected number and N
is a small non-negative integer. A client is believed to pass the test as long as
its reported number falls within [x − N, x]. Here we set N to 4 based on our
measurement results.

Evasion Analysis. Assume that a client receives a mixed set of 150 features
from a web server and the set consists of 29 randomly selected authentic features
and 121 randomly selected bogus features. Thus, the expected number should fall
into the range [25,29]. Consider a crafty clickbot who knows about our detection
mechanism in advance. The clickbot does not need to test the features, but just
guesses a number from the possible range [0,150], and returns it to the server. In
this case, the probability for the guessed number to successfully fall into [25,29]
is only 3%. Thus, the clickbot has little chance (3%) to bypass the functionality
test.

3.3 Browsing Behavior Examination

Passing the functionality test cannot guarantee that a click is valid. An ad-
vanced clickbot may function like a real browser and thus can circumvent the
functionality test. A human clicker with a real browser can also pass the test.

However, clickbots and human clickers usually show quite different browsing
behaviors on the advertised website from those of real users. Click fraud activities
conducted by clickbots usually end up with loading the advertiser’s landing page
and do not show human behaviors on the site. For human clickers, their only
purpose is to make more money by clicking on ads as quickly as possible. They
tend to browse an advertised site quickly and then navigate away for the next
click task. Instead, real interested users tend to learn more about a product and
spend more time on the advertised site. They usually scroll up and down a page,
click on their interested links, browses multiple pages, and sometimes make a
purchase.

Therefore, we leverage users’ browsing behaviors on the advertised site to
detect human clickers and advanced clickbots. Specifically, we extract extensive

428 H. Xu et al.

Table 3. Summary of our ad campaigns

Set Campaign Clicks Impressions CTR Invalid
Clicks

Invalid
Rate

Avg.
CPC

Daily
Budget

Duration
(days)

1 bait1 1,011 417,644 0.24% 425 29.60% $0.08 $15.00 10

2 bait2 4,127 646,152 0.64% 852 17.11% $0.03 $15.00 10

3 bait3 5,324 933,790 0.57% 1,455 21.46% $0.04 $15.00 10

4 normal1 288 68,425 0.42% 18 5.88% $0.40 $20.00 10

5 normal2 224 20,784 1.08% 10 4.27% $0.48 $20.00 10

Total NA 10,974 2,086,795 0.53% 2,760 25.15% $0.06 $85.00 10

features from passively collected browsing traffic on the advertised website, and
train a classifier for detection.

4 Experimental Results

In order to evaluate our approach, we run ad campaigns to collect real-world click
traffic, and then analyze the collected data to discern its primary characteristics,
resulting in a technique to classify click traffic as either fraudulent, casual, or
valid.

4.1 Running Ad Campaigns

To obtain real-world click traffic, we signed up with a major ad network and
ran ad campaigns for a high-traffic woodworking forum website. Motivated by
the bait ad technique proposed in [11], we created three bait ads for the site
and made the same assumption as the previous works [4, 11, 16], that very few
people would intentionally click on the bait ads and those ads are generally
clicked by clickbots and fraudulent human clickers. Bait ads are textual ads
with nonsense content, as illustrated in Figure 4. Note that our bait ads were
generated in English. In addition, we created two normal ads, for which the ad
texts describe the advertised site exactly. Our goal of running ad campaigns is to
acquire both malicious and authentic click traffic for validating our click fraud
detection system. To this end, we set the bait ads to be displayed on partner
websites of any language across the world but display normal ads only on search
result pages in English to avoid publisher fraud cases from biasing the clicks on
the latter normal ads. We expect that most, if not all, clicks on bait ads and
normal ads are fraudulent and authentic, respectively.

We ran our ad campaigns for 10 days. Table 3 provides a summary of our
ad campaigns. Our ads had 2 million impressions2, received nearly 11 thousand
clicks and had a click-through rate (CTR) of 0.53% on average. Among these,
2.7 thousand clicks were considered by the ad network as illegitimate and were
not charged. The invalid click rate was 25.15%. The average cost per click (CPC)
was $0.06. Note that the two normal ads only received 512 clicks accounting for
4.67% of the total. The reason is that although we provided quite high bids for

2 An ad being displayed once is counted as one impression.

Click Fraud Detection on the Advertiser Side 429

Anchor Groundhog Estate
www.sawmillcreek.org
Variance Flock Accurate Chandelier
Cradle Naphtha Librettist Headwind

Fig. 4. A bait ad with the ad text
of randomly selected English words

55.4/0.11
5.5/0.01

3.8/0.04

2.3/0.73

2.2/0.07

2.1/75.8
1.8/0.09

1.6/0.01

1.6/0.06

1.4/0.33

1 10 100

China

Iraq

Egypt

India

Vietnam

United States

Pakistan

Algeria

Saudi Arabia

Philippines % of ad clicks from the country

% of normal daily visitors from the
country

Fig. 5. Distribution of click traffic vs. that of
normal traffic by country

normal ads, our normal ads still cannot compete with those of other advertisers
for top positions and thus received fewer clicks.

4.2 Characterizing the Click Traffic

We characterize the received click traffic by analyzing users’ geographic distri-
bution, browser type, IP address reputation, and referrer websites’ reputations.
Our goal, through statistical analysis, is to have a better understanding of both
the users who clicked on our ads and the referrer websites where our ads were
clicked. Although the ad network reported that our ads attracted close to 11
thousand clicks, we only caught on the advertised site 9.9 thousand clicks, which
serve as data objects for both closer examination and validation of our approach.

Geographic Distribution. We obtain users’ geographic information using an
IP geolocation lookup service [17]. Our 9.9 thousand clicks originate from 156
countries. Figure 5 shows the distribution of ad clicks by the top 10 countries
which generate the most clicks. The distribution of normal daily visitors to the
advertised site by country is also given in Figure 5. Note that the data form
’X/Y ’ means that X% of ad clicks and Y % of normal daily visitors are from that
specific country. The top 10 countries contribute 77.7% of overall clicks. China
alone contributes over 55% of the clicks, while the United States contributes
2.1%. This is quite unusual because the normal daily visitors from China only
account for 0.11% while the normal visitors from the United States close to
76%. Like China, Egypt, Iraq, and other generally non-English countries also
contribute much higher shares of ad click traffic than their normal daily traffic
to the site. The publisher websites from these countries are suspected to be using
bots to click on our ads. Even worse, one strategy of our ad network partner may
aggravate the fraudulent activities. The strategy says that when an ad has a high
click through ratio on a publisher website, the ad network will deliver the ad
to that publisher website more frequently. To guarantee that our ads attract as

430 H. Xu et al.

48.7

23.4
19.8

5.5
1.6 0.8 0.2

0

10

20

30

40

50

60
%

 o
f

C
lic

ks

Fig. 6. Distribution of click traffic by
browser

23.1

12.6
9.7

5.2 4.2 3.1 2.3 2.1 2 1.7

34

0

5

10

15

20

25

30

35

40

%
 o

f
C

lic
ks

Fig. 7. Distribution of click traffic by publisher

many clicks as possible within a daily budget, the ad network may deliver our
ads to those non-English websites more often.

Browser Type. Next we examine the distribution of the browsers to see which
browser vendors are mostly used by users to view and click on our ads. We
extracted the browser information from the User-Agent strings of the HTTP
requests to our advertised website.

Figure 6 shows the distribution of the browsers used by our ad clickers. IE,
Chrome, Firefox, Safari, and Opera are the top 5 desktop and laptop browsers,
which is consistent with the web browser popularity statistics from StatCounter
[15]. Notably, mobile browsers alone contribute to nearly 50% of overall traffic,
much larger than the estimated usage share of mobile browsers (about 18%
[18]). Close scrutinization reveals that 40% of the traffic with mobile browsers
originates from China. China generated over 50 percent of overall traffic, which
skews the browser distribution.

Blacklists. A fraction of our data could be generated by clickbots and com-
promised hosts. Those malicious clients could also be utilized by fraudsters to
conduct other undesirable activities, and are thus blacklisted. By looking up
users’ IP addresses in public IP blacklists [19], we found that 29% of the total
hosts have ever been blacklisted.

Referrers. Another interesting question would be which websites host our ads
and if their contents are really related to the keywords of our ads. According to
the contextual targeting policy of the ad network, an ad should be delivered to
the ad network’s partner websites whose contents match the selected keywords
for the ad.

We used the Referer field in the HTTP request header to locate the publish-
ers that displayed our ads and then directed users to our advertised website.
However, we can only identify publishers for only 37.2% of the traffic (3,685
clicks) because the remaining traffic either has a blank Referer field or has the

Click Fraud Detection on the Advertiser Side 431

domain of the ad network as the referer field. For example, the Referer field for
more than 40% of traffic has the form of doubleclick.net. We then examined,
among those detected publishers, which websites contribute to the most clicks.
Note that publishers could be websites or mobile apps. We identified 499 unique
websites and 5 apps in total. Those apps are all iPhone apps and only generate
28 clicks all together. The remaining 3,657 clicks are from the 499 unique web-
sites. Figure 7 shows the distribution of the click traffic by those 504 publishers.
The top 3 websites with the most clicks on our ads are all small game websites,
which contribute to over 45% of publisher-detectable clicks. Actually, the top 7
websites are all small game websites. Small game websites often attract many
visitors, and thus the ads on those websites are more likely to be clicked on.
However, our keywords are all woodworking-related and evidently, the contents
of those game websites do not match our keywords. According to the above
mentioned contextual targeting policy, the ad network should have not delivered
our ads to such websites. One possible reason is that from the perspective of the
ad network, attracting clicks takes precedence over matching the ads with host
websites.

4.3 Validating Detection Approach

As described before, our approach is composed of three main components: a
JavaScript support and mouse event test, a functionality test, and a browsing
behavior examination. Here we individually validate their effectiveness.

JavaScript Support and Mouse Event Test. Among the 9.9 thousand ad
clicks logged by the advertised site, 75.2% of users do not support JavaScript. We
labelled those users as clickbots. Note that this percentage may be slightly over-
estimated considering that some users (at most 2% [14]) may have JavaScript
disabled. In addition, those visits without support for JavaScript do not corre-
late with visits from mobile browsers. We have checked that nearly all mobile
browsers provide support for JavaScript despite limited computing power. We
then focused on the top 10 publisher websites with the most clicks to iden-
tify potentially malicious publishers. Figure 8 depicts the percentage of clicks
without script support from those top 10 publishers. Among them, the two non-
entertainment websites google.com and ask.com have low ratios, 9.4% and 15.2%,
respectively. In contrast, the other 8 entertainment websites have quite high click
ratios without script support. There are 86 visits from tvmao.com and none of
them support JavaScript. We believe that all 86 clicks are fraudulent and gener-
ated by bots. Similarly, 99.1% of clicks from weaponsgames.com, 96.1% of clicks
from 3dgames.org, and 95.3% from gamesgirl.net are without JavaScript support
either. Such high ratios indicate that the invalid click rate in the real-world ad
campaigns is much larger than the average invalid rate of 25.15% alleged by the
ad network for our ad campaigns, as shown in Table 3.

We observed 506 ad clicks (with JavaScript support) that result in zero mouse
events when arriving at our target site. Of those, 96 are initiated from mobile
platforms including iPad, iPhone, Android, and Windows Phone. The remaining

432 H. Xu et al.

69.60%

99.10%

34.30%

9.40%

96.10%

36.30%

100%

15.20%

84%

95.30%

853

462

356

192 155

113
86 79 75 64

594

458

122

18

149

41

86

12

63 61

0

100

200

300

400

500

600

700

800

900

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%
% of clicks from the website w/o JavaScript support
of clicks from the website
of clicks from the website w/o JavaScript support

Fig. 8. Percentage of clicks without JavaScript support for the top 10 publisher web-
sites contributing the most clicks

410 clicks are generated from desktop or laptop platforms. Those 410 ad clicks
also have few other kinds of user engagement: no mouse clicks, no page scrolls,
and short dwelling time. We labelled them as clickbots.

We further investigated the click traffic from 4399.com due to the fact that this
website generated the most clicks on our ads among all identified publishers. The
following several pieces of data indicate the existence of publisher fraud. First,
all 853 clicks from 4399.com were generated within one day. Notably, up to 95
clicks were generated within one hour. Second, several IPs were found to click
on our ads multiple times within one minute using the same User-Agent, and
one User-Agent was linked to almost 15 clicks on average. Third, close to 70%
of clients did not support JavaScript. Hence we suspect that the website owner
used automated scripts to generate fraudulent clicks on our ads. However, the
scripts are likely incapable of executing the JavaScript code attached to our
ads. In addition, they probably spoofed IP address and User-Agent fields in the
HTTP requests to avoid detection.

Functionality Test. The clickbots that cannot work as full-fledged modern
browsers are expected to fail our functionality test. Among the logged 9.9 thou-
sand clicks, 7,448 clicks without JavaScript support did not trigger the function-
ality test, and 35 of the remaining clicks with JavaScript support were observed
to fail the functionality test and were subsequently labelled as clickbots. So far,
75.6% of clicks (7,483 clicks) had been identified by our detection mechanism to
originate from clickbots. Among them, 99.5% (7,448 clicks) were simple click-

Click Fraud Detection on the Advertiser Side 433

Table 4. Features extracted for each ad click

Feature Category Feature Description

Mouse clicks
of total clicks made on the advertised site
of clicks made only on the pages excluding the landing page
of clicks exclusively made on hyperlinks

Mouse scrolls
of scroll events in total
of scroll events made on the pages excluding the landing page

Mouse moves
of mousemove events in total
of mousemove events made only on the pages excluding the landing page

Pages views # of pages viewed by a user
Visit duration How long a user stays on the site
Execution efficiency Client’s execution time of JavaScript code for challenge
Legitimacy of origin If the source IP is in any blacklist
Publisher’s reputation If the click originates from an disreputable website

bots without JavaScript support; and the rest 0.5% (35 clicks) were relatively
advanced clickbots with JavaScript support yet failed the functionality test.

Browsing Behavior Examination. After completing the two steps above and
discarding incomplete click data, 1,479 ad clicks (14.9 %) are left to be labelled.
Among them, 1,127 ad clicks are on bait ads while the other 352 clicks are
on normal ads. Here we further classify the click traffic into three categories—
fraudulent, casual, and valid—based on user engagement, client IP, and publisher
reputation information.

Features. We believe that three kinds of features are effective to differentiate
advanced clickbots and human clickers from real users. (1) How users behave at
the advertised site, i.e., users’ browsing behavior information. (2) Who clicks on
our ads, and a host with a bad IP is more likely to issue fraudulent clicks. (3)
Where a user clicks on ads, and a click originating from a disreputable website
tends to be fraudulent. Table 4 enumerates all the features we extracted from
each ad click traffic to characterize users’ browsing behaviors on the advertised
site.

Ground truth. Previous works [4, 11, 16] all assume that very few people
would intentionally click on bait ads and only clickbots and human clickers
would click on such ads. That is, a click on a bait ad is thought to be fraudulent.
However, this assumption is too absolute. Consider the following situation. A
real user clicks on a bait ad unintentionally or just out of curiosity, without
malicious intention. Then, the user happens to like the advertised products and
begins browsing the advertised site. In this case, the ad click generated by this
user should not be labelled as fraudulent. Thus, to minimize false positives,
we partly accept the above common assumption, scrutinize those bait ad clicks
which have shown rich human behaviors on the advertised site, and correct a-
priori labels based on the following heuristics. Specifically, for a bait ad click,
if the host IP address is not in any blacklist and the referrer website has a
good reputation, this ad click is relabelled as valid when one of the following
conditions holds: (1) 30 seconds of dwelling time, 15 mouse events, and 1 click;
(2) 30 seconds of dwelling time, 10 mouse events, 1 scroll event, and 1 click;
and (3) 30 seconds of dwelling time, 10 mouse events, and 2 page views. We
believe the above conditions are strict enough to avoid mislabelling the ad clicks
generated by bots and human clickers as valid clicks.

434 H. Xu et al.

Note that our normal ads are only displayed on the search engine result pages
with the expectation that most, if not all, clicks on normal ads are valid. The ad
campaign report provided by the ad network in Table 3 confirms this, showing
that the invalid click rate for normal ads is only 5.08% on average. Based on our
design and the ad campaign report, we basically assume that the clicks on normal
ads are valid. However, after further manually checking the normal ad clicks, we
found that some of them do not demonstrate sufficient human behaviors, and
these normal ad clicks will be relabelled as casual when one of the following two
conditions holds: (1) less than 5 seconds of dwelling time; (2) less than 10 seconds
of dwelling time and less than 5 mouse events. The casual click traffic could be
issued by human users who unintentionally click on ads and then immediately
navigate away from the advertised site. From the advertisers’ perspective, such
a click traffic does not provide any value when evaluating the ROI of their ad
campaigns on a specific ad network, and therefore should be classified as casual.

Actually, if there is no financial transaction involved, only a user’s intention
matters whether the corresponding ad click is fraudulent or not. That is, only
users themselves know the exact ground truth for fraudulent/valid/casual clicks.
For those clicks without triggering any financial transactions, we utilize the above
reasonable assumptions and straightforward heuristics to form the ground truth
for fraudulent/valid/casual clicks.

Evaluation metrics. We evaluated our detection against two metrics—false
positive rate and false negative rate. A false positive is when a valid click is
wrongly labelled as fraudulent, and a false negative is when a fraudulent click is
incorrectly labelled as valid.

Classification results. Using Weka [20], we chose a C4.5 pruned decision
tree [21] with default parameter values (i.e., 0.25 for confidence factor and 2 for
minimum number of instances per leaf) as the classification algorithm, and ran
a 10-fold cross-validation. The false positive rate and false negative rate were
6.1% and 5.6%, respectively. Note that these are the classification results on
those 1,479 unlabelled clicks. As a whole, our approach showed a high detection
accuracy on the total 9.9 thousand clicks, with a false positive rate of 0.79% and
a false negative rate of 5.6%, and the overall detection accuracy is 99.1%.

Overhead. We assessed the overhead induced by our detection on the client
and server sides, in terms of time delay, CPU, memory and storage usages.

The only extra work required of the client is the execution of a JavaScript
challenge script and to report the functionality test results to the server as an
AJAX POST request. We measured the overhead on the client side using two
metrics: source lines of code (SLOC) and the execution time of JavaScript code.
The JavaScript code is only about 150 SLOC and we observed negligible impact
on the client. We also estimated the client’s execution time of JavaScript from
the server side to avoid the possibility that the client could report a bogus
execution time. Note that the execution time measured by the server contains
a round trip time, which makes the estimated execution time larger than the
actual execution time. Figure 9 depicts the 9.9 thousand clients’ execution time
of the JavaScript challenge code. About 80% of clients finished execution within

Click Fraud Detection on the Advertiser Side 435

33.6

44.5

9.5

3.1 1.7 0.8 0.7 0.9 0.6 0.4
4.2

0
5

10
15
20
25
30
35
40
45
50

%
 o

f
C

lic
ks

Fig. 9. Clients’ execution time of JavaScript challenge code in milliseconds

one second. Assuming that the round trip time (RTT) is 200 milliseconds, the
actual computation overhead incurred at the client side is merely several hundred
milliseconds.

We used the SAR (System Activity Report) [22] to analyze server performance
and measure the overhead on the server side. We observed no spike in server load.
This is because most of work involved in our detection happens on the client side,
and the induced click-related traffic is insignificant in comparison with server’s
normal traffic.

5 Discussion and Limitations

In this paper, we assume that a clickbot typically does not include its own
JavaScript engine or access the full software stack of a legitimate web browser re-
siding on the infected host. A sophisticated clickbot implementing a full browser
agent itself would greatly increase its presence and the likelihood of being de-
tected. A clickbot might also utilize a legitimate web browser to generate activi-
ties, and can thus pass our browser functionality test. To identify such clickbots,
we could further detect whether our ads and the advertised websites are really
visible to users by utilizing a new feature provided by some ad networks. The
new feature allows advertisers to instrument their ads with JavaScript code for a
better understanding of what is happening to their ads on the client side. With
this feature, we could detect if our ad iframe is visible at the client’s front-end
screen rather than in the background, and if it is really focused and clicked on.

In addition, compared to our user-visit related features (dwelling time, mouse
events, scroll events, clicks and etc.), user-conversation related features3 are ex-
pected to have better discriminating power between clickbots, human clickers,
and real users in browsing behaviors. However, our advertised site is a profes-
sional forum rather than an online retailer. If a user registers (creates an account)
on the forum, it is analogous to a purchase at an online retailer. However, such
conversion from guest to member is an event too rare to rely upon to enhance
our classifier.

3 Purchasing a product, abandoning an online cart, proactive online chat, etc.

436 H. Xu et al.

6 Related Work

Browser Fingerprinting. Browser fingerprinting allows a website to identify
a client browser even though the client disables cookies. Existing browser fin-
gerprinting techniques could be mainly classified into two categories, based on
the information they need for fingerprinting. The first category fingerprints a
browser by collecting application-layer information, including HTTP request
header information and system configuration information from the browser [23].
The second category performs browser fingerprinting by examining coarse traffic
generated by the browsers [24]. However, both of them have their limitations in
detecting clickbots. Nearly all the application-layer information can be spoofed
by sophisticated clickbots, and browser fingerprints may change quite rapidly
over time [23]. In addition, an advertiser often cannot collect enough traffic
information for fingerprinting the client from just one visit to the advertiser.
Compared to the existing browser fingerprinting techniques, our feature detec-
tion technique has three main advantages. First, clickbots cannot easily pass the
functionality test unless they have implemented the main functionality present in
modern browsers. Second, the client’s functionality could be tested thoroughly
at the advertiser’s side even though the client visits the advertiser’s landing
page only once. Lastly, our technique works over time as new browsers appear
because new browsers should also conform to the those web standards currently
supported by modern browsers.

Revealed Click Fraud. Several previous studies investigate known click fraud
activities, and clickbots have been found to be continuously evolving and become
more sophisticated. As the first study to analyze the functionality of a clickbot,
Daswani et al. [3] dissected Clickbot.A and found that the clickbot could carry
out a low-noise click fraud attack to avoid detection. Miller et al. [5] exam-
ined two other families of clickbots. They found that these two clickbots were
more advanced than Clickbot.A in evading click fraud detection. One clickbot
introduces indirection between bots and ad networks, while the other simulates
human web browsing behaviors. Some other characteristics of clickbots are de-
scribed in [4]. Clickbots generate fraudulent clicks periodically and only issue
one fraudulent click in the background when a legitimate user clicks on a link,
which makes fraudulent traffic hardly distinguishable from legitimate click traf-
fic. Normal browsers may also be exploited to generate fraudulent click traffic.
The traffic generated by a normal browser could be hijacked by currently visited
malicious publishers and be further converted to fraudulent clicks [7]. Ghost click
botnet [6] leverages DNS changer malware to convert a victim’s local DNS re-
solver into a malicious one and then launches ad replacement and click hijacking
attacks. Our detection can identify each of these clickbots by actively performing
a functionality test and can detect all other kinds of click fraud by examining
their browsing behavior traffic on the server side.

Click Fraud Detection. Metwally et al. conducted an analysis on ad networks’
traffic logs to detect publishers’ non-coalition hit inflation fraud [8], coalition fraud
[9], and duplicate clicks [10]. The main limitation of these works lies in that ad

Click Fraud Detection on the Advertiser Side 437

networks’ traffic logs are usually not available to advertisers. Haddadi in [11] and
Dave et al. in [4] suggested that advertisers use bait ads to detect fraudulent clicks
on their ads. While bait ads have been proven effective in detection, advertisers
have to spend extra money on those bait ads. Dave et al. [16] presented an ap-
proach to detecting fraudulent clicks from an ad network’s perspective rather than
an advertiser’s perspective. Li et al. [7] introduced the ad delivery path related fea-
tures to detect malicious publishers and ad networks. However, monitoring and
reconstructing the ad delivery path is time-consuming and difficult to detect click
frauds in real time. Schulte et al. [25] detected client-side malware using so-called
program interactive challenge (PIC) mechanism. However, an intermediate proxy
has to be introduced to examine all HTTP traffic between a client and a server,
which would inevitably incur significant delay. Like [4, 11], our defense works at
the server side but does not cause any extra cost for advertisers. Our work is the
first to detect clickbots by testing their functionalities against the specifications
widely conformed to by modern browsers. Most clickbots can be detected at this
step, because they have either no such functionalities or limited functionalities
compared to modern browsers. For the advanced clickbots and human clickers,
we scrutinize their browsing behaviors on the advertised site, extract effective fea-
tures, and train a classifier to identify them.

7 Conclusion

In this paper, we have proposed a new approach for advertisers to independently
detect click fraud activities issued by clickbots and human clickers. Our proposed
detection system performs two main tasks of proactive functionality testing and
passive browsing behavior examination. The purpose of the first task is to detect
clickbots. It requires a client to actively prove its authenticity of a full-fledged
browser by executing a piece of JavaScript code. For more sophisticated click-
bots and human clickers, we fulfill the second task by observing what a user
does on the advertised site. Moreover, we scrutinize who initiates the click and
which publisher website leads the user to the advertiser’s site, by checking the
legitimacy of the clients’ IP addresses (source) and the reputation of the re-
ferring site (intermediate), respectively. We have implemented a prototype and
deployed it on a large production website for performance evaluation. We have
then run a real ad campaign for the website on a major ad network, during
which we characterized the real click traffic from the ad campaign and provided
advertisers a better understanding of ad click traffic, in terms of geographical
distribution and publisher website distribution. Using the real ad campaign data,
we have demonstrated that our detection system is effective in the detection of
click fraud.

References

1. https://en.wikipedia.org/wiki/Online_advertising

2. http://www.spider.io/blog/2013/03/chameleon-botnet/

https://en.wikipedia.org/wiki/Online_advertising
http://www.spider.io/blog/2013/03/chameleon-botnet/

438 H. Xu et al.

3. Daswani, N., Stoppelman, M.: The anatomy of clickbot.a. In: Proceedings of the
Workshop on Hot Topics in Understanding Botnets (2007)

4. Dave, V., Guha, S., Zhang, Y.: Measuring and fingerprinting click-spam in ad
networks. In: Proceedings of the Annual Conference of the ACM Special Interest
Group on Data Communication (2012)

5. Miller, B., Pearce, P., Grier, C., Kreibich, C., Paxson, V.: What’s clicking what?
techniques and innovations of today’s clickbots. In: Holz, T., Bos, H. (eds.) DIMVA
2011. LNCS, vol. 6739, pp. 164–183. Springer, Heidelberg (2011)

6. Alrwais, S.A., Dun, C.W., Gupta, M., Gerber, A., Spatscheck, O., Osterweil, E.:
Dissecting ghost clicks: Ad fraud via misdirected human clicks. In: Proceedings of
the Annual Computer Security Applications Conference (2012)

7. Li, Z., Zhang, K., Xie, Y., Yu, F., Wang, X.: Knowing your enemy: Understanding
and detecting malicious web advertising. In: Proceedings of the ACM Conference
on Computer and Communications Security (2012)

8. Metwally, A.: Sleuth: Single-publisher attack detection using correlation hunting.
In: Proceedings of the International Conference on Very Large Data Bases (2008)

9. Metwally, A.: Detectives: Detecting coalition hit inflation attacks in advertising
networks streams. In: Proceedings of the International Conference on World Wide
Web (2007)

10. Metwally, A., Agrawal, D., Abbadi, A.E.: Duplicate detection in click streams. In:
Proceedings of the International Conference on World Wide Web (2005)

11. Haddadi, H.: Fighting online click-fraud using bluff ads. In: ACM SIGCOMM Com-
puter Communication Review (2010)

12. Daswani, N., Mysen, C., Rao, V., Weis, S., Gharachorloo, K., Ghosemajumder,
S.: Online advertising fraud. In: Crimeware: Understanding New Attacks and De-
fenses. Addison-Wesley Professional (2008)

13. http://taligarsiel.com/Projects/howbrowserswork1.htm

14. https://developer.yahoo.com/blogs/ydnfourblog/many-users-

javascript-disabled-14121.html

15. http://gs.statcounter.com/

16. Dave, V., Guha, S., Zhang, Y.: Viceroi: Catching click-spam in search ad networks.
In: Proceedings of ACM Conference on Computer and Communications Security
(2013)

17. http://www.maxmind.com/en/web_services

18. http://en.wikipedia.org/wiki/Usage_share_of_web_browsers

19. http://www.blacklistalert.org/

20. http://www.cs.waikato.ac.nz/ml/weka/

21. Quinlan, J.: C4.5: Programs for machine learning. Morgan Kaufmann Publishers
(1993)

22. http://en.wikipedia.org/wiki/Sar_Unix

23. Eckersley, P.: How unique is your web browser? In: Proceedings of the Privacy
Enhancing Technologies Symposium (2010)

24. Yen, T.-F., Huang, X., Monrose, F., Reiter, M.K.: Browser fingerprinting from
coarse traffic summaries: Techniques and implications. In: Flegel, U., Bruschi, D.
(eds.) DIMVA 2009. LNCS, vol. 5587, pp. 157–175. Springer, Heidelberg (2009)

25. Schulte, B., Andrianakis, H., Sun, K., Stavrou, A.: Netgator: Malware detection
using program interactive challenges. In: Flegel, U., Markatos, E., Robertson, W.
(eds.) DIMVA 2012. LNCS, vol. 7591, pp. 164–183. Springer, Heidelberg (2013)

http://taligarsiel.com/Projects/howbrowserswork1.htm
https://developer.yahoo.com/blogs/ydnfourblog/many-users-javascript-disabled-14121.html
https://developer.yahoo.com/blogs/ydnfourblog/many-users-javascript-disabled-14121.html
http://gs.statcounter.com/
http://www.maxmind.com/en/web_services
http://en.wikipedia.org/wiki/Usage_share_of_web_browsers
http://www.blacklistalert.org/
http://www.cs.waikato.ac.nz/ml/weka/
http://en.wikipedia.org/wiki/Sar_Unix

Botyacc: Unified P2P Botnet Detection
Using Behavioural Analysis and Graph Analysis

Shishir Nagaraja

School of Computer Science,
University of Birmingham, UK
s.nagaraja@cs.bham.ac.uk

Abstract. The detection and isolation of peer-to-peer botnets is an ongoing prob-
lem. We propose a novel technique for detecting P2P botnets. Detection is based
on unifying behavioural analysis with structured graph analysis. First, our infer-
ence technique exploits a fundamental property of botnet design. Modern
botnets use peer-to-peer communication topologies which are fundamental to
botnet resilience. Second, our technique extends conventional graph-based de-
tection by incorporating behavioural analysis into structured graph analysis, thus
unifying graph-theoretic detection with behavioural detection under a single algo-
rithmic framework. We carried out evaluation over real-world P2P botnet traffic
and show that the resulting algorithm can localise the majority of bots with low
false-positive rate.

Keywords: Traffic analysis, botnet detection, behavioural analysis, graph theory.

1 Introduction

The detection and isolation of peer-to-peer (P2P) botnets is an ongoing problem. P2P
architectures are attractive as they offer low end-to-end routing delays and provide ro-
bustness against botnet response mechanisms by decentralising importance throughout
the network.

In response to the proliferation of P2P botnets, many researchers have proposed the
use of machine learning techniques. Essentially, these are partitioning tools which con-
vert a dataset into clusters of similar data points under some definition of similarity.
However, the context of statistical botnet detection fundamentally differs from non-
security applications: the context is adversarial and the attacker controls the data of
interest.

Partitioning algorithms leveraging traffic similarity require special statistical proper-
ties. First, cluster boundaries must be precise — approximate boundaries are not suffi-
cient. Otherwise, botnets can exploit this weakness to “blend-in” with legitimate traffic
clusters. We also require that the cluster definition is robust — the property that resists
the addition of botnet points to non-botnet clusters. Current botnet detection techniques
do not offer these properties.

To enable precise and robust characterisation of the legitimate data subspace (clus-
ters), one approach is to leverage a fundamental design characteristic of modern bot-
nets: its P2P communication architecture — P2P botnets use structured communica-
tion networks which are highly resistant to churn and adversarial takedown. However,

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 439–456, 2014.
c© Springer International Publishing Switzerland 2014

440 S. Nagaraja

anonymous proxies and NATs can hide P2P topologies from network monitors and
thereby adversely affect detection based on the structural differences in the communi-
cation graphs of the embedded botnets vis a vis the background Internet graph.

Our approach is to unify two well understood principles of botnet detection (P2P
connectivity and traffic similarity) into a single algorithm underlying out detection tech-
nique. This results in high detection accuracy as well as evasion resistance properties.
At the core of our technique is a novel Markovian diffusion process defined over input
traffic traces, that leverages patterns in connectivity as well as flow statistics. Evading
detection against our approach may be hard. First, detection is based on a fundamental
property of botnet operation; structured P2P topologies are a pre-requisite for botnet
robustness. Second, we exploit the attacker’s lack of knowledge of the precise form and
structure of legitimate traffic. To be clear, we are not proposing heuristics. This paper
realises the following contributions

– A link between network behavioural analysis and graph-theoretic approaches to
botnet detection.

– An algorithm that takes non-linearity of network traffic into account.
– A systematic approach to selection of network traffic features for capturing be-

havioural information.
– A single algorithm that works at different levels of scale, in both enterprise and ISP

settings.

2 Architecture

The need to perform efficient accounting, traffic engineering and load balancing, detec-
tion of malicious and disallowed activity, and other factors has led network operators to
pursue infrastructures to monitor traffic across multiple vantage points. Internally, en-
terprises run intrusion detection systems to collect more fine-grained information about
protocols and bit patterns occurring in packets while ISPs run monitoring infrastruc-
tures to collect information about flow-level traffic volumes.

Our architecture consists of the following parts.

Monitor: First, traffic monitors are responsible for observing and sampling traffic in-
formation from the data-plane, and building a compact representation that is used for
analysis and detection. These monitors may run at end-hosts, or on routers within the
network using monitoring techniques such as Cisco IOS’s NetFlow [9] or sFlow, the
Openflow standard. By default, NetFlow and sFlow sample traffic by processing one
out of every 200 to 500 packets. However, advances in counter architectures [20] en-
able efficient tracking of the entire traffic flows in ISP networks without need for sam-
pling. For enterprises, several products under the name of Security and Information
Event Management (SIEM) systems now seek to store full traffic trace information.
The constant threat of attacks suffered by modern networks has led operators to pursue
infrastructures to monitor for anomalous behaviour across multiple vantage points.

Aggregator: Second, an aggregator component periodically receives observed com-
munication traces from individual monitors, and merges them together to compute a
network-wide communication trace dataset. This dataset contains the overlay topology

Botyacc: Unified P2P Botnet Detection Using Behavioural Analysis 441

corresponding to all pairs of intercommunicating hosts observable across the set of
monitors. It runs an algorithm that analyses the communication traces. It then attempts
to separate the dataset into two (possibly overlapping) subsets: the botnet trace, and
the non-botnet communication traces. Bots (hosts that form the botnet communication
graph) are then output as a set of suspect hosts. This list may then be sent to the set
of clients that are subscribers to the service. The list may be used to install blacklists
into routers, to configure intrusion detection, firewall systems, and traffic shapers; or as
“hints” to human operators regarding which hosts should be investigated as being bots.
The aggregator may optionally append a likelihood that each suspect IP address has
engaged in a certain activity, so that clients can individually determine at what thresh-
old to block traffic. Aggregators may be combined in a hierarchical fashion to further
reduce control overhead. In other words, low-level aggregators can collect information
from a subset of networks and hosts, and then in turn send their results to a higher-level
aggregator.

Honeynet: Third, the network defender obtains botnet communication traces from a
honeynet. Such traces are available from third-party sources or by building a small
malware testbed. The honeynet is seeded with malware relevant to the defender. For
instance, an oil and gas company, they might be particularly interested in targeted mal-
ware attacks. Once the relevant malware is seeded into the malware, it is allowed to
connect to its control servers. The resulting traffic including C&C traffic is recorded and
forms the seed input to the inference algorithm. IP communication headers and sum-
mary information for each traffic flow is recorded and used by the detection
algorithm.

Inference Mechanism: Fourth, traffic traces from the aggregator and the honeynet is
piped to our inference technique. The algorithms underlying our technique are able to
partition the traffic into multiple botnet and non-botnet flow partitions.

3 The Problem

Our goal is to separate botnet C&C communication from legitimate network traffic.
Consider a communication graph G = (V,E) with V representing the set of hosts ob-
served in traffic traces, and an edge e ∈ E representing a traffic flow. Each edge e is
a k-dimensional vector where k is a system parameter. Consider one or more botnet
graphs Gb = (H,M) embedded within the communication graph, where H ⊆ V is the
set of bots (infected hosts) and M ⊆ H×H ⊆ E are the corresponding edges (botnet
flows). The objective of the inference algorithm is to detect subgraphs Gb whilst min-
imising false-negative rate and false-positive rate.

Graph techniques such as community detection algorithms, sybil detection algo-
rithms, and other graph partitioning methods leverage the presence of a bottle-neck
cut separating a subgraph of interest from the rest of the graph. This scenario is not ap-
plicable to botnets where there is no bottle-neck cut separating botnet edges and legiti-
mate edges. From a graph-theoretic perspective, botnet detection is an edge-partitioning
problem, an open research problem. Whereas conventional graph partitioning algo-
rithms (community and sybil detection) are designed for vertex partitioning.

442 S. Nagaraja

4 Inference Technique

4.1 The Methodology

Botnets create unique patterns in network traffic. These patterns manifest themselves
in a number of ways which can be traced to the botnet’s design. The use of struc-
tured P2P communication topologies increases resilience to bot-takedown, as well as
the anonymity of messages on the botnet C&C channel when messages are routed via
other bots.

A second source of patterns is statistical similarity of traffic patterns. Bots tend to
have similar lifecycles of reconnaissance and initial compromise, followed by the es-
tablishment of a C&C (command and control) channel, which is in turn followed by
attacks such as data-exfiltration or service denial attacks.

Botnet detection via the use of structured peer-to-peer topologies, similarity of traffic
flow patterns, and collaboration involving a large number of infected hosts, have thus
far been studied individually. In this paper, we propose a detection methodology that
unifies these approaches. The intuition behind unifying graph-theoretic and statistical
behavioural analysis, rather than their independent application, is to leverage feedback
loops across these approaches.

The feedback loop is designed as a stochastic diffusion process over ’similar’ traf-
fic flows. It is based on a new type of random walk on graphs. Random walks allow
us to reason about graph topology and have been heavily used in the development of
graph partitioning techniques. To incorporate the notion of edge ’similarity’, we apply
theoretical tools from euclidean geometry. Each traffic flow is a vector whose scalar
elements specify the Cartesian coordinates of a point with respect to a set of axes —
one axis per element. The ensemble of points resulting from considering traffic flows
constitutes a multi-dimensional geometric surface with a lot of structural information
embedded within it.

Our inference algorithm constructs geometric surfaces whose structure depends on
the communication graph as well as traffic-flow information. Our inference algorithm
is a stochastic diffusion process over ’similar’ edges. We start by representing traffic
traces into a communication graph. We define a special random walk over this graph.
The novelty of the walk is that state transition (choice of outgoing edge) depends on the
incoming edge of a random walk step. This is done to incorporate the notion of edge
’similarity’ — the walk has a bias towards similar flows. Flow similarity is defined using
Euclidean distance in a high dimensional setting where each traffic flow is a vector
whose scalar elements specify the Cartesian coordinates of a point with respect to a
set of axes – one axis per element. The ensemble of points resulting from considering
traffic flows constitutes a multi-dimensional geometric surface with a lot of structural
information embedded within it.

4.2 Step1: Constructing the Dual Graph

From captured traffic traces, we construct a communication graph G where each edge
e ∈ E(G) is a traffic flow represented by a k-dimensional vector and whose nodes rep-
resent computers. This graph only contains topology information. We then construct a

Botyacc: Unified P2P Botnet Detection Using Behavioural Analysis 443

new graph that which is influenced by communication topology and the geometry of
traffic-flow vectors. We achieve this by creating a dual graph.

To find the dual of the communication graph, we convert edges (traffic flows) into
nodes. We then connect pairs of nodes (traffic flows) whose which are locally similar:
flows must transition adjacent IP addresses (share a common node in G) and demon-
strate flow-similarity (flow vectors must be less than a threshold distance apart). The
intuition behind this step is that random walks on the dual graph will achieve the equiv-
alent of entering and exiting nodes over closely related flows in the original communi-
cation graph. Note that this would not be normally possible because random walks are
memoryless. Whereas we wish to study diffusion effects of walks over similar (traffic)
edges rather than different edges in the original communication graph — this is one of
the primary design features that will reduce the false-positive rate problem we discussed
in the motivation sub-section above.

The dual of G is a weighted graph D(G). Each edge in G is a node in D(G) therefore
|V (D(G))|= |E(G)|. An edge between two nodes in D(G) is constructed as follows:

– edge-adjacency: For a edge est between nodes s, t in G, the set of adjacent edges is
the set of all edges connecting s and x, or, t and y: Sest = {est ,exs,ety}.

– geometrical distance: Each edge e in G is represented by a k-dimensional vector
(w1, . . . ,wk). The geometrical distance between a pair of edges ei and e j is given
by:

Wi j =

{
e−

||ei−e j ||
t if||ei− e j||2 ≤ ε

0 otherwise
(1)

, where the norm is the Euclidean norm in R k.
– Each edge e in G is a node e in the dual of G, namely D(G). We place an edge with

weight Wi j between two nodes ei and e j in D(G), if they satisfy the edge-adjacency
property above and are geometrically close enough (Wi j �= 0).

4.3 Step2: Partitioning

Now that we have a graph-geometric representation (D(G)) of the traffic, our next task
is to separate subgraphs corresponding to different traffic characteristics. The geometric
space within which traffic points reside is represented as the graph, and we explore the
local and global properties of surfaces using random walks (as explained earlier).

Constructing the dual allows us to partition a communication into subgraphs with
similar traffic flow behaviour and subgraphs that have a different expansion properties
than the background graph they are embedded within. Consider the toy example of
edge-partitioning a graph consisting of a set of nodes connected using one set of edges
within a ring structure and using a second set of edges as a star structure as shown in
Fig. 1(a). Without taking geometry into account (flow-similarity), computing the dual
graph gives us Fig. 1(b), where star-edges have been converted into a clique subgraph
that is weakly connected to a subgraph containing nodes that were edges constituting
a ring in the original graph. Now, using random walks over the dual-graph, we can

444 S. Nagaraja

●

●
●

●

●

●

●
●

●

●

●

0

1

2

3

4

5

6

7

8

9

10

(a) graph G

●

●

●

●
● ●

●

●

●

●

●

●
●

●
●●

●

●

●

●0

1

2

3

4 5

6

7

8

9

10

11

12

13

1415

16

17

18

19

(b) Dual D(G)

Fig. 1. A sample graph and its dual; vertex ids are reset in the dual

partition the ring-edges and the star-edges using the relative expansion properties of
these two subgraphs in the dual.

Traffic data is represented as a graph with individual geometric surfaces represented
as subgraph communities within a single connected component. A surface corresponds
to a subset of V (DC (G)) that is richly intra-connected but sparsely connected with the
rest of the graph. To partition traffic by similarity, we consider the algebraic connectivity
properties of the graph. of each surface and locate gaps between dense surfaces.

Partitioning Technique. To find gaps that naturally partition the data, we find the
Laplacian over the graph dual. Laplacian operator is efficient at finding gaps between
geometric clusters.

The standard technique for detecting gaps using the Laplacian operator consists of
considering the adjacency matrix A and the graph edges, with weights w1,w2, . . . ,wn on
the edges, the Laplacian matrix is defined as L = AIwAT . Here Iw is a diagonal matrix
with the weights placed along the diagonal i.e. Iii = wi = di, where di is the degree
of node i. We then find the eigenvalues of the Laplacian matrix. There are standard
techniques for computing eigenvalues, for instance the well known Lanczos algorithm
which scales as O(n log n).

A partition for graph G = (V,E) is defined as a partition of V into legitimate
and botnet subgraphs L, and M, such that the number of edges across the gap
gap(L,M)/(|L||M|) is minimised. In such a scenario, the second smallest eigenvalue
(λ2) of L, yields a lower bound on the optimal cost of the gap is (1−λ2). The eigenvec-
tor (v2) corresponding to the second eigenvalue, bisects the graph into only two clusters
based on the sign of the corresponding vector entry. Division into a larger number of
clusters is achieved by repeated bisection. To prevent repetitive bisection from using
trivial gaps we use the well known conductance metric.

Quality Metric. The quality of a partition is measured by its conductance, the ratio of
the number of its external connections to the number of its total connections.

Botyacc: Unified P2P Botnet Detection Using Behavioural Analysis 445

We let d(i) denote the degree of vertex i. For S ⊂ V (DC (G)) , we define δ(S) =

∑i∈S d(i) as the volume of S. So,

δ(V (DC (G))) = 2|E(DC (G))|

. Let EE(S,V (DC (G))\S) be the set of edges connecting a vertex in S with a vertex in
V (DC (G))\ S). We define the conductance of a set of vertices S, written φ(S) as

phi(S) =
EE(S,V(DC (G))\ S)

min(δ(S),δ(V (DC (G))\ S))

The conductance of DC (G) is then given by:

min
S∈V (DC (G))

φ(S)

. To avoid obtaining trivial partitions, the conductance of a subgraph is normalised by
the size of the partition.

Generalising the Approach. The Laplacian operator is applicable for linear contexts.
However, since the botnet context is adversarial the attacker can architect bot traffic
to behave in a non-linear manner. For instance, the attacker can engineer bot traffic to
follow a non-linear geometric shape such as a sphere or a curved line. In such a case, a
linear operator would make errorneous judgements. Since the adversary controls botnet
traffic data, an assumption of linearity would be incorrect. The geometric interpretation
of this assumption is that traffic feature vectors are points on a planar surface. However,
a non-linear operator, being generic, (discards and) resists attacks based on exploiting
this assumption. For instance, as a way of increasing the false-positive rate of detection,
the botnet operator can alter botnet traffic vectors so they are a short euclidean distance
from legitimate traffic vectors. In this case, a linear operator would be successfully
misguided into accepting the botnet traffic as legitimate given their close proximity.
However, a non-linear operator would be able to leverage the actual geometric structure
of legitimate traffic (instead of assuming it is a planar surface) to resist botnet points
being accepted into the legitimate cluster. Thus, we use the laplace-beltrami operator
which allows valid distance measurements when the geometrical subspace is non-linear.

Let X denotes the set of functions defined on the vertices of D(G). The application of
laplace-beltrami operator on a function results in another function in X , i.e L f ∈ X∀ f ∈
X since L is a function of functions: from X to X . An eigenfunction of the laplace-
beltrami operator is a function f such that L f = λ f where λ is the eigenvalue of L and
represents the scaling of f . By computing the eigenfunctions we obtain a compressed
list of features that is expressed as a linear combination of the (larger number of) input
features. This approach of using eigenfunctions for feature reduction prior to inference
is well known within the machine learning community. We leverage this as a building
block in our algorithm.

– To apply the laplace-beltrami operator, we compute L = D−W , where D is the
diagonal matrix corresponding to W . L is a symmetric and positive matrix.

446 S. Nagaraja

– Compute the eigenvectors and eigenvalues of L f = λ f ordered in the increasing
order of the eigenvalues λ0 ≤ λ1 ≤ λ2 . . .λk−1.

– Ignore the first eigenvector f0 = (1, . . . ,1) with eigenvalue λ0 = 0.
– Each vertex i of D(G) is now expressed in terms of the m new features. The modi-

fied graph is referred to as DC (G). Vertices of the modified graph are now available
as V (D(G))i = (f1(i), . . . , fm(i)).

– Each edge between a pair of vertices in DC (G) is refreshed with an edge weight
that corresponds to the new set of features. Each edge between vertices i and j is
refreshed as follows:

W ′
i j =

{
e−

||vi−v j ||
t if||vi− v j||2 ≤ ε

0 otherwise
(2)

, where the norm is the Euclidean norm in R m.

5 Noise Tolerance

Our detection method leverages the attackers limited knowledge about the location and
structure of the legitimate surface to bound statistical noise injected by an adaptive
botmaster. Vectors corresponding to three categories – legitimate traffic, noise traffic
introduced by the botmaster, and genuine botnet traffic – are represented in the dual
graph. As described earlier, each traffic vector constitutes a vertex. An undirected edge
exists between two vertices if they are within a ε threshold distance of each other.

An edge may exist between a noise vector and a legitimate vector if they are within
close proximity. Such a noise edge allows “leakage” of walks between the legitimate
and botnet surfaces contributing to false positives. Each noise edge connects a noise
pack to vertices within a legitimate traffic surface.

To successfully evade detection, the attacker must succeed in placing a large number
of noise points (noise pack) in close proximity of another surface, all points within the
noise pack must be in close proximity of legitimate points rather than just a few. This
requires knowledge of the location of a majority of the points in that surface. Our design
leverages three important facts to limit the number and size of noise packs: a) legitimate
surface graphs tend to have high algebraic connectivity (the smallest positive eigenvalue
of its Laplacian matrix). b) large amounts of noise (compared to the number of noise
edges) decreases algebraic connectivity.

Capping the number of noise edges: The evasion resistance property of our detection
algorithm relies on limiting the number of noise edges (m). There are primarily two
scenarios in which botnet malware might attempt to increase m:

– No knowledge of legitimate subspace: Botnet sprays noise randomly in the data
space in the hope that some of these points will be near the legitimate surface.
Spraying is achieved by the botnet altering behaviour by modifying traffic feature
values. This is quite difficult to perform because the data space is large (theoreti-
cally infinite) whereas the legitimate surface is located on a relatively smaller geo-
metric subspace.

Botyacc: Unified P2P Botnet Detection Using Behavioural Analysis 447

– Partial knowledge of legitimate subspace: A second possibility is that the botnet
has some awareness of legitimate surface points. For instance, this information may
be gained by analysing legitimate traffic on the infected machine. It can add noise
in the proximity of known legitimate points to create edges between the botnet
surface and the legitimate surface. However, in doing so, the algebraic connectivity
characteristics are disturbed by the small set of noise edges. The noise based on
partial knowledge introduces a gap between the legitimate and botnet surface. This
is true, unless the noise surface is in the proximity of a significant majority of points
within the legitimate surface. This is very hard to accomplish unless the attacker has
full knowledge of the legitimate traffic; high-level trends or summary information
do not give information regarding structure and location of the legitimate surface,
full traffic traces would be required.

6 Results

We evaluated our algorithm in two different experimental settings. We apply our algo-
rithm on real botnet traces within an enterprise setting and measure its effectiveness.

Malware testbed: In order to obtain botnet traffic flows we created a testbed of 25
servers within a test network connected to the Internet. The computers was then seeded
with samples from three peer-to-peer versions from well known botnet families: Zeus,
Miner, and Spyeye. All three botnets have moved from centralised C&C servers to
entirely P2P communication. Zeus and Spyeye are designed for stealing banking infor-
mation while Miner steals Bitcoin credentials.

On each testbed computer, we instantiated 70 copies of a malware sample (at a time)
within a hypervisor, i.e 1750 instances from each family, or a total of 5250 malware in-
stances. The testbed allows the bot to connect with other bots in the wild which enables
us to closely observe the actions of the bot and its interactions with other bots. The
result is a lot of network traffic which will be attack traffic by definition. We exercised
due diligence to prevent our testbed from being used as an attack platform. In particular,
all probing, scanning, spam was blocked while DDOS attacks were rate-limited at the
very least. However, command and control (C&C) incoming and outgoing traffic was
allowed as this was essential for our study.

We set up traffic monitors on the backbone router at a university campus network
using an electrical signal duplicator unit that works at up to 20Gbps. As opposed to port-
mirroring, this approach allows us to capture packets at the line rate without inducing
the effects of packet sampling. The traffic rate is typically 2.5–8Gbps.

We developed an efficient network flow capture tool that processes packet traces
and generates flows. A flow is record of communication between a pair of hosts and is
represented by a tuple containing a number of fields as given below. We consider UDP
and TCP traffic. In the case of UDP traffic, the TCP fields listed are zeroed out as are
optional TCP fields.

Each flow record is a tuple structure containing two parts; inter-flow values that are
common to all flow records occurring within a ten-minute time period, and flow specific
fields. The entire set of fields comprising a flow record are given below:

448 S. Nagaraja

– Inter-flow statistics (fields) computed across the flows: traffic volume, duration,
distribution of packets per flow, distribution of flows per period, distribution of
packets per flow, throughput distribution, distribution of inter-flow arrival times
averaged distribution of inter-packet arrival times. Distributions are computed over
a time interval of ten minutes.

– Flow fields: tcp/udp.source-port, tcp/udp.destination port, IP version, IP header
length, ip.tos — precedence, ip.tos — delay, ip.tos — throughput, ip.tos — reliabil-
ity, ip.tos — reserved, ip.tos — total length, ip.flags,
ip.fragmentoffset, ip.ttl , ip.protocol, Entropy of ip.id# distribution, Entropy of
tcp.seq# distribution, Entropy of tcp.ack# distribution, tcp.offset, tcp.reserved,
tcp.flags,
tcp.maximum-segment-size, tcp.echotimedata

In the above list, each sample distribution is represented by the corresponding his-
togram. The first bin corresponds to P(X < x) ≤ 5%, the second bin corresponds to
P(X < x)≤ 15% and so on.

Algorithm Application. We now consider the application of our algorithm on a real-
world dataset. To access live traffic, we captured network traffic at a university gateway
for a period of one month between March and April 2012. This dataset has 113,576
unique source IP addresses and 11,643,993 traffic flows. This includes 432,257 embed-
ded botnet flows from seeded malware. This corresponds to a communication graph GE

containing both malware and non-malware edges.
The first step of our algorithm is to create the dual of GE , namely D(GE). At this

stage each edge (flow) becomes a node and nodes become edges, therefore flow-vectors
are now associated with each node. An edge is constructed between two nodes if the
Euclidean distance between the corresponding flow-vectors is less than a certain thresh-
old ε. We used ε = .0025. This value controls the runtime of the generation of the dual.
Our inference algorithm is not sensitive to high values of ε (leading to a denser graph),
since the diffusion effects of the subsequent random walk process is controlled by the

non-linear kernel function: e−
||ei−e j ||

t see Eqn. 1. We chose t = 1, but higher values will
produce a sharper decay. Our choice of ε leads to O(logE(D(GE))) edges per node in
the dual. This step leads to the to embedding of information from the communication
graph topology and the geometry of network traffic, within the dual graph. Figure 4(a)
shows a rendering of the dual with vertices represented by blue points and edges rep-
resented by the distance between vertices; the number of edges is too high to be repre-
sented graphically. Figures 4(b) through 4(f) show the dual graphs corresponding to the
other five weeks of enterprise traffic with embedded botnet traffic.

The second step of our algorithm is dimensionality reduction. This step prevents the
botnet from altering traffic patterns over time in order to “throw-off” the detection sys-
tem. Thus the compressed feature set selected by the algorithm can vary from across
time. Feature selection is carried out in an unsupervised manner. The compressed fea-
ture list is given by the ordered eigenvalues of the laplacian of the dual graph computed
at the end of the previous step. The first eigenvalue is zero by definition and this is
ignored. The eigenvectors corresponding to the eigenvalues represent the new mapping

Botyacc: Unified P2P Botnet Detection Using Behavioural Analysis 449

(a) (b) (c) (d)

Fig. 2. Visual representation (top three dimensions) of network traffic after dimensionality reduc-
tion, at the end of Step 2 of our algorithm

(a) (b) (c) (d)

Fig. 3. Visual representation of the results of our inference algorithm showing isolated botnet
traffic

of traffic data points as a function of the compressed feature list. The embedding of the
various geometrical surfaces within this compressed space is shown in figure 3.

Thus far, our algorithm has only partitioned traffic into different surfaces. The botnet
flows are partitioned into respective surfaces. After three iterations of the partitioning
algorithm, we obtain a subgraph (surface) of size 432,256 nodes, containing 423,906
nodes corresponding to botnet flows, and 8,350 nodes corresponding to non-botflows.
At this stage, our validation metric indicates that the sub-graph has a graph conductance
of about 0.9 (In all other scenarios, the graph conductance is less than 0.5, so we can
safely set our threshold of the graph conductance test to be 0.5).

Table 1. Zeus in enterprise traffic – detection and error rates of inference

#Malicious flows #gateway-flows Detection% % FP
Week1 3368 1211736 99.98 0.019
Week2 8836 1392755 99.93 0.037
Week3 3231 1109264 97.95 0.082
Week4 8349 1312952 98.09 0.041
Week5 8217 1130120 98.21 0.030

We evaluated the performance of detection on a weekly basis through our dataset.
Each week, we collected gateway traces and combined it with that week’s botnet traces.
The previous week’s data was discarded from the graph and dual generation. The hon-
eynet seed traces were also fresh, thus corresponding traces from each week were input
to our detection algorithm.

To evaluate performance, we are concerned with the false positive rate (the fraction
of non-bot nodes that are detected as bots) and the false negative rate (the fraction of
bot nodes that are not detected). The results of botnet detection for Zeus, Spyeye, and
Miner are shown in Table 1, Table 2, and Table 3 respectively.

450 S. Nagaraja

Table 2. Spyeye in enterprise traffic – detection and error rates of inference

#Malicious flows #gateway-flows Detection% % FP
Week1 8021 1346235 98.11 0.041
Week2 6295 1327479 98.77 0.064
Week3 4213 1180134 99.86 0.074
Week4 3538 1396174 97.86 0.047
Week5 5388 1186480 98.70 0.023

Table 3. Miner in enterprise traffic — detection and error rates of inference

#Malicious flows #gateway-flows Detection% % FP
Week1 1050 1590306 97.50 0.018
Week2 2735 1186212 96.64 0.064
Week3 5341 1560028 94.89 0.048
Week4 3099 1186929 95.52 0.062
Week5 4566 1154067 97.76 0.072

Detection rates ranged between 97% and 99% for Zeus and Spyeye. For Miner, the
detection rate was a bit lower at around 95% on the average. Importantly, for all three
peer-to-peer botnets, the false-positive rate was well below 0.1%.

6.1 Effects of Botnet Topology and Size

In the next set of experiments, we seek to understand the effectiveness of deploying our
algorithm in a setting where a majority of the botnet communication graph is embedded
within the network traffic captured from our vantage points. This is the case of multiple
ISPs cooperatively running our inference algorithm.

To study this, we constructed a dataset where traffic flows from the Zeus botnet
were embedded it within ISP traffic using various peer-to-peer structures. To improve
realism, we build the background traffic communication graph by using real packet-
level traces collected by CAIDA on OC192 Internet backbone links [2]. Since packet
level information is not available, we only used flow-level features for our experiments
with ISP data.

Another aspect we need to consider is the different sizes of botnets. An inference al-
gorithm must be able to effectively detect small botnets as well as large botnets. This
is important in order to be able to track the evolution of the botnet throughout its life-
cycle right from the early stages of deployment to large-scale botnets which may pose
significant threat due to the possible scale of geographical spread as well as size. We per-
form this experiment by keeping the size of the background traffic graph constant, and
generating synthetic botnet topologies of varying sizes (between 100 and 100,000 bots).

Finally, we must also consider the effects of partial visibility. Clearly, obtaining ac-
cess to the Internet traffic of all ISPs is a fairly difficult proposition. However, it is
certainly likely that a fraction of ISPs can be incentivised to cooperate via a combina-
tion of legal and economic incentives. We also understand from previous work that a
subset of ISPs typically have access to a significant fraction of botnet traffic. A study [1]
of 4,000 IP addresses belonging to the Storm botnet found that 60% of inter-bot paths
traverse top six ISPs, and 89% of the inter-bot paths traversed top ten ISPs. More re-
cently, reports from anti-virus companies indicates that India has the second highest
number of spam bots. Interestingly, the whole country is served by two major ISPs. To

Botyacc: Unified P2P Botnet Detection Using Behavioural Analysis 451

incorporate the effects of partial visibility, we construct the botnet graph, by selecting
a random subset of nodes in the background communication graph (CAIDA) to be bot-
net nodes, and synthetically add bot flows between them corresponding to a particular
structured overlay topology. We then simulate the effects of partial visibility by retain-
ing only 55% of the total traffic flows in the combined graph and discarding 45% of the
flows chosen uniformly at random.

We then pass the combined graph as input to our inference algorithm. By keeping
track of which nodes are bots (this information is not passed to our algorithm), we
can acquire “ground truth” to measure performance. To investigate sensitivity of our
techniques to the particular overlay structure, we consider several alternative structured
overlays, including (a) Chord [19], (b) de Bruijn [13], (c) Kademlia [14], and (d) the
“robust ring” topology described in [11]. The remainder of this section contains results
from running our algorithms over the joined botnet and Internet communication graphs,
and measuring the ability to separate out the two from each other.

Table 4. CAIDA – results if only Tier-1 ISPs contribute views

Topology |VB| % Detected % FP
de Bruijn 1000 99.97 0.0011

10000 99.98 0.0020
100000 99.98 0.0170

Kademlia 1000 99.97 0.0040
10000 99.97 0.0104
100000 99.96 0.0350

Chord 1000 99.98 0.0017
10000 99.97 0.0024
100000 99.87 0.0202

LEET-Chord 1000 99.96 0.0040
10000 99.65 0.0139
100000 98.91 0.0613

Overall, we find performance to be fairly stable across multiple kinds of botnet
topologies and sizes with detection rates higher than 98%. In addition, our algorithm is
able to achieve a false positive rate of less than 0.06% on the harder-to-detect LEET-
Chord topology. We find that as the size of the bot graph increases, performance de-
grades, but only by a small amount. For example, in Table 4, with the fully visible
deBruijn topology, for 100 nodes the false positive rate is zero, while for 10,000 nodes
the rate becomes 0.002%.

The high detection and low false-positive rates are better than state-of-the-art algo-
rithms. It shows that the combination of traffic-flow features and graph-structure infor-
mation holds good potential in designing reliable algorithms for botnet detection.

While our approach is not perfectly accurate, we envision it may be of use when
coupled with other detection strategies (e.g., previous work on botnet detection [10,8],
or if used to signal “hints” to network operators regarding which hosts may be infected.

7 Discussion

As we have demonstrated, starting with a certain definition of botnet behaviour — traf-
fic produced from the malware testbed, graph theoretic analysis can help in identi-
fying botnets in enterprise traffic. We now discuss the significance of our results and
related insights.

452 S. Nagaraja

The evaluation results indicates the usefulness of our approach. The main insight of
our work is that both both legitimate and botnet traffic have specific geometry, i.e, traffic
vectors lie on a low-dimensional geometric surface. The inference technique partitions
the dataset into multiple botnet and legitimate surfaces.

The graph underpinning the partitioning process is constructed using both commu-
nication topology information and communication flow information. Since P2P topolo-
gies are a fundamental design requirement in order to maintain the botnet’s resilience,
the botmaster cannot evade detection without giving up resilience properties. Without
P2P topologies underlying botnet communication, the C2 channel would not be robust
enough to withstand take down attempts, thus forcing the attacker to choose between
survivability and stealth.

At the same time, techniques to isolate the structured communication graphs in-
duced by botnets depend on the integrity of communication links within traffic traces
recorded by network monitoring systems. This can be a challenge when we consider the
widespread use of NATs and other traffic aggregators. Aggregators hide the presence
of communicating endpoints and appear as a few large nodes communicating with a
large number of endpoints. This induces error into the inference process. If substantial
parts of a P2P embedded botnet appear as leaf nodes connected to a few hubs, then the
basis for isolating botnets from the background traffic by leveraging communication
topology characteristics is substantially weakened.

Unifying both behavioural and structured graph approaches presents a credible ap-
proach to addressing the errors induced by traffic aggregators. When communication
topology information is hidden using anonymous relays, or is otherwise incomplete, or
mutilated in the dataset, the inference algorithm can recover from the errors. The con-
struction of the dual graph driven by the statistical similarity of traffic flows still pro-
ceeds undisturbed. However the construction of the dual graph now involves a higher
number of vector comparisons to dismantle the virtual high-degree node induced by
the aggregator — instead of O((log n)2) vector comparisons in the normal case, we
are required to carry out a significantly larger number of vector comparisons which is
O(n2) in the worst case; when all the traffic is lumped into a single node. In practice,
the computational effort to manage errors in topology is at least a large constant times
O((log n)2).

Dynamic Feature Selection: Our inference algorithm incorporates dynamic feature
selection instead of using a static heuristic-driven definition of which features are in-
dicative of botnet traffic. The relevant feature set is derived as part of the dimensionality
reduction step. This means that unlike static heuristics where the feature set has to be
constantly updated by the network defender, we derive the feature set directly from the
traffic traces. On the otherhand, this approach requires us to capture a large number of
features beforehand which can increase the load on traffic monitoring. While the eval-
uation results are fairly positive, we have been unable to evaluate how dynamic feature
selection behaves under botnet evolution. Dimensionality reduction simply selects a
combination of features that capture most of the information contained in the dataset.

Scale: Our experiments show that the inference technique can scale to large traffic
volumes, and in the presence of partial observations. This solves an number of practical
problems concerning the use of different types of algorithms for enterprise detection

Botyacc: Unified P2P Botnet Detection Using Behavioural Analysis 453

and ISP-level detection. Thus engineering and training efforts can be concentrated on
developing and operating a single functional piece of equipment, as opposed to having
different solutions each for ISPs and enterprises.

8 Related Work

Bots are unique amongst networked malware in that they collectively maintain commu-
nication structures across nodes to resiliently distribute commands from a command and
control node. The ability to coordinate and upload new commands to bots gives the botnet
owner vast power when performing criminal activities, including the ability to orchestrate
surveillance attacks, perform DDoS extortion, sending spam for pay, and phishing. This
problem has worsened to a point where modern botnets control hundreds of thousands
of hosts and generate revenue of millions of dollars per year for their owners [4].

8.1 Non-signature Based Methods

We now describe related work in non-signature based detection methods. None of the
techniques we discuss in this section, have any evasion resistance properties.

BotMiner [5] detects infected hosts without previous knowledge of botnets. In this
system, bots are identified by clustering hosts that exhibit similar communication and
(possible) malicious activities. The clustering allows hosts to be groups according to
the botnet that they belong to as hosts within the same botnet will have similar commu-
nication patterns, and will usually perform the same activities at the same time (such as
a DDoS attack).

There are also schemes that combine network- and host-based approaches. The work
of Stinson et al. [18] attempts to discriminate between locally-initiated versus remotely-
initiated actions by tracking data arriving over the network being used as system call
arguments using taint tracking methods. Following a similar approach, Gummadi et
al. [6] whitelist application traffic by identifying and attesting human-generated traffic
from a host which allows an application server to selectively respond to service re-
quests. Finally, John et al. [12] present a technique to defend against spam botnets by
automating the generation of spam feeds by directing an incoming spam feed into a
Honeynet, then downloading bots spreading through those messages and then using the
outbound spam generated to create a better feed.

Server Detection: DNS. Several works provide a detection mechanism to identify
domains associated with malware at using centralised C&C channels.

Paxson et al [16] attempt to provide a detection mechanism that leverages the amount
of information transmitted over a DNS channel in order to detect suspicious flows. The
system allows for a upper bound to be set, any DNS flow that exceeds this barrier is
flagged for inspection. The upper bound can be circumvented by limiting flows, but this
has an impact the amount of data exfiltration/command issuing that can occur. The sys-
tem looks primarily at data included within domain names, but also looks at inter-query
timings and DNS packet field values, both of which can provide low capacity channels.

Perdisci et al [17] apply clustering to domains so they are grouped according to over-
lap in the returned IP addresses. By then comparing the clusters to previously labelled
data, they can then be classified as flux or non-flux, revealing domains that make use of
the same network.

454 S. Nagaraja

8.2 Graph-Based Approaches

Several works [3,8,7,21,10] have previously applied graph analysis to detect botnets. The
technique of Collins and Reiter [3] detects anomalies induced in a graph of protocol spe-
cific flows by a botnet control traffic. They suggest that a botnet can be detected based
on the observation that an attacker will increase the number of connected graph compo-
nents due to a sudden growth of edges between unlikely neighbouring nodes. While it
depends on being able to accurately model valid network growth, this is a powerful ap-
proach because it avoids depending on protocol semantics or packet statistics. However
this work only makes minimal use of spatial relationship information. Additionally, the
need for historical record keeping makes it challenging in scenarios where the victim
network is already infected when it seeks help and hasn’t stored past traffic data, while
our scheme can be used to detect pre-existing botnets as well. Illiofotou et al. [8,7] also
exploit dynamicity of traffic graphs to classify network flows in order to detect P2P net-
works. It uses static (spatial) and dynamic (temporal) metrics centered on node and edge
level metrics in addition to the largest-connected-component-sizeas a graph level metric.

More recently, Botgrep [15] presented a scheme that searches for expander graphs to
discover P2P graphs within ISP traffic. The theoretical component of the algorithm pre-
sented is our work is much more stronger. Botgrep does not consider traffic flow categori-
sation and therefore would end up with high false-positive rates when its core assumption
is broken — high-degree nodes should not be infected and have incoming or outgoing
botnet traffic flows. In the operational context of a NAT (Network Address Translator),
the traffic of hundreds of computers would be aggregated into a single IP address. Such
NAT installations are getting rather popular: mobile broadband ISPs use carrier-NATs
where thousands of mobile consumers are behind a NAT run by the ISP, and each user is
on a separate port. Our inference algorithm, will be able to operate in such deployment
contexts very well since it combines flow clustering with structured graph analysis; even
if graph structure is obscured by the NAT the inference algorithm can still leverage non-
linear subspace analysis over traffic flow data to isolate botnet traffic.

Further, as compared with other graph-based and behaviour-analysis schemes, we
have shown (see Fig. 3) that there is more to application traffic than mere clustering:
there are intricate geometrical surfaces corresponding to application traffic characteris-
tics. Indeed our algorithm is quite generic and we hope that our results will encourage
other researchers to apply our technique to other traffic classification problems.

9 Conclusion

The ability to localise bot-infected hosts at Internet scales represents both a very chal-
lenging problem. In this work, we have approached the problem of botnet detection
with a security-by-design approach: detection evasion is based on the attacker’s de-
tailed knowledge of legitimate traffic traces. Thus detection is based on the fundamental
properties of botnets which enables evasion resistant detection. In future work, we will
provide formal bounds for evasion resistance.

In this work we have tried to build a link between graph-theoretic botnet detec-
tion approaches with network behavioural analysis approaches. Our approach works by
leveraging patterns within the communication graph as well as within network traffic

Botyacc: Unified P2P Botnet Detection Using Behavioural Analysis 455

between Internet hosts from a set of traffic-monitoring vantage points, and then exploit-
ing the intrinsic non-linear geometry of traffic in order to distinguish traffic flows that
are part of the botnet. Behavioural analysis approaches (involving machine learning)
are commonly criticised in the security community for assuming a static traffic profile
of the botnet in the form of a feature list. As a first step towards being able to operate in
an environment where the botnet evolves in response to the detection mechanism, we
adopt the notion of dynamic feature selection.

Compared with results from previous work using graph-theoretic or behavioural
analysis approaches, our techniques accomplish better results. This is not surprising
since they exploit intuitions from both. However, our techniques do not achieve perfect
accuracy, but they achieve a low enough false positive rate to be of substantial use, espe-
cially when combined with other complementary techniques. Finally, we do not attempt
to address the challenging problem of botnet response. Future work may leverage our
inferred botnet topologies by dropping crucial links to partition the botnet, based on the
structure of the botnet graph.

References

1. Botlab: A real-time botnet monitoring platform, botlab.cs.washington.edu.
2. The Cooperative Association for Internet Data Analysis, http://www.caida.org/
3. Collins, M.P., Reiter, M.K.: Hit-list worm detection and bot identification in large networks

using protocol graphs. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS,
vol. 4637, pp. 276–295. Springer, Heidelberg (2007)

4. Franklin, J., Paxson, V., Perrig, A., Savage, S.: An inquiry into the nature and causes of
the wealth of internet miscreants. In: ACM Conference on Computer and Communications
Security, pp. 375–388. ACM, New York (2007)

5. Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: Clustering Analysis of Network Traffic
for Protocol- and Structure-Independent Botnet Detection. In: Proc. of the USENIX Security
Symposium (2008)

6. Gummadi, R., Balakrishnan, H., Maniatis, P., Ratnasamy, S.: Not-a-Bot (NAB): Improving
Service Availability in the Face of Botnet Attacks. In: NSDI 2009, Boston, MA (April 2009)

7. Iliofotou, M., Faloutsos, M., Mitzenmacher, M.: Exploiting dynamicity in graph-based traffic
analysis: Techniques and applications. In: ACM CoNext (2009)

8. Iliofotou, M., Pappu, P., Faloutsos, M., Mitzenmacher, M., Varghese, G., Kim, H.: Grap-
tion: Automated detection of P2P applications using traffic dispersion graphs (TDGs). UC
Riverside Technical Report, CS-2008-06080 (2008)

9. C. S. Inc. Cisco IOS Netflow, http://www.cisco.com/en/US/products/ps6601/
products ios protocol group home.html

10. Jelasity, M., Bilicki, V.: Towards automated detection of peer-to-peer botnets: On the limits
of local approaches. In: USENIX Workshop on Large-Scale Exploits and Emergent Threats,
LEET (2009)

11. Jelasity, M., Billicki, V.: Towards automated detection of peer-to-peer botnets: On the limits
of local approaches. In: USENIX Workshop on Large-Scale Exploits and Emergent Threats
(LEET) (2009)

12. John, J.P., Moshchuk, A., Gribble, S.D., Krishnamurthy, A.: Studying spamming botnets
using botlab. In: NSDI 2009: Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation, pp. 291–306. USENIX Association, Berkeley (2009)

13. Kaashoek, M., Karger, D.: Koorde: A simple degree-optimal distributed hash table. In:
Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 98–107. Springer, Hei-
delberg (2003)

botlab.cs.washington.edu
http://www.caida.org/
http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html
http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html

456 S. Nagaraja

14. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer information system based on
the xor metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS,
vol. 2429, pp. 53–65. Springer, Heidelberg (2002)

15. Nagaraja, S., Mittal, P., Hong, C.-Y., Caesar, M., Borisov, N.: BotGrep: Finding P2P bots
with structured graph analysis. In: USENIX Security Symposium, pp. 95–110 (2010)

16. Paxson, V., Christodorescu, M., Javed, M., Rao, J., Sailer, R., Schales, D., Stoecklin, M.P.,
Thomas, K., Venema, W., Weaver, N.: Practical comprehensive bounds on surreptitious com-
munication over dns. In: Proceedings of the 22Nd USENIX Conference on Security (2013)

17. Perdisci, R., Lee, W., Feamster, N.: Behavioral Clustering of HTTP-Based Malware and
Signature Generation Using Malicious Network Traces. In: Proc. of the USENIX Symposium
on Networked Systems Design & Implementation (2010)

18. Stinson, E., Mitchell, J.C.: Characterizing bots’ remote control behavior. In: Lee, W., Wang,
C., Dagon, D. (eds.) Botnet Detection. Advances in Information Security, vol. 36, pp. 45–64.
Springer (2008)

19. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for Internet applications. In: Proceedings of ACM SIGCOMM (Au-
gust 2001)

20. Zhao, Q., Xu, J., Liu, Z.: Design of a novel statistics counter architecture with optimal space
and time efficiency. In: ACM SIGMETRICS (June 2006)

21. Zhao, Y., Xie, Y., Yu, F., Ke, Q., Yu, Y., Chen, Y., Gillum, E.: Botgraph: Large scale spam-
ming botnet detection. In: NSDI (2009)

A Appendix

In the following figure, we show a two-dimensional visual of botnet traffic. The long lines are an
artifact of DNS fast-flux.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Two dimensional representation of network traffic with embedded Zeus traffic, before
feature selection. This figure shows the dual-graph D(G) of the traffic dataset.

Feature-Distributed Malware Attack:

Risk and Defence

Byungho Min and Vijay Varadharajan

Advanced Cyber Security Research Centre
Department of Computing, Macquarie University, Sydney, Australia

{byungho.min,vijay.varadharajan}@mq.edu.au

Abstract. Modern computing platforms have progressed to more secure
environments with various defensive techniques such as application-based
permission and application whitelisting. In addition, anti-virus solutions
are improving their detection techniques, especially based on behavioural
properties. To overcome these hurdles, the adversary has been develop-
ing malware techniques including the use of legitimate digital certifi-
cates; hence it is important to explore possible offensive techniques in a
security-improved environment.

In this paper, first we propose the new technique of feature-distributed
malware that dynamically distributes its features to multiple software
components in order to bypass various security mechanisms such as ap-
plication whitelisting and anti-virus’ behavioural detection. To evaluate
our approach, we have implemented a tool that automatically gener-
ates such malware instances, and have performed a series of experiments
showing the risks of such advanced malware. We also suggest an effective
defence mechanism. It prevents loading of malicious components by util-
ising digital certificates of software components. We have implemented a
Windows service that provides our defence mechanism, and evaluated it
against the proposed malware. Another useful characteristic of our de-
fence is that it is capable of blocking general abuse of legitimate digital
certificates with dynamic software component loading.

Keywords: Security, Feature-Distribution Malware, Software Compo-
nent.

1 Introduction

Modern computing platforms have progressed to more secure environments with
various defensive techniques. For example, all the mainstream platforms such
as Windows 8, Mac OS X 10.9, iOS and Android deploy an application-based
permission model that determines which application is allowed to access which
system services such as network activity, disk access, other hardware access and
location service. Furthermore, on Mac OS X and iOS, each permission decision
is made by the user at run time right after each permission is requested by the
application, making them more secure than Android, where the list of all the

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 457–474, 2014.
c© Springer International Publishing Switzerland 2014

458 B. Min and V. Varadharajan

requested permissions of an application is presented at installation time, and al-
lowed at once when a user decides to install the application.1 As a result of this
progress, malware or compromised user applications on the modern platforms
may not be able to achieve their goals. However, attackers have always devel-
oped new ways to overcome security hurdles. In recent years, there are at least
two outstanding trends in malicious software. First, most malware instances,
even mobile ones, have become modular [1, 2]. For instance, an initial module
is responsible for installation, a networking module is in charge of command
and control (C&C) communications, and a rootkit module starts other modules
on every system boot so that they can perform respective functionalities. This
strategy lowers the possibility of detection as well as minimises exposure of the
malware and the attack operation in case of detection. Another trend in mali-
cious software is the use of legitimate certificates [3–6] so malware is allowed to
run and access system services, and not blocked or detected by security solutions
like anti-virus. Therefore, new malware that bypasses the security restrictions
imposed by the application-based permission model can emerge in the foresee-
able future, and it is important to measure the risks of such malware attack and
develop effective defence measures.

In this paper, first we present feature-distributed malware that can bypass not
only the application-based security model, but also other security schemes such
as application whitelisting and Egress filtering. Although many real world mal-
ware samples use various malicious component loading techniques [3–7], we take
a different perspective on malicious dynamic component loading. Since no matter
what technique is used, the most important objective for malware is to remain
undetected and perform its malicious activities. And commodity PCs typically
have several applications installed on them from web browser to media player,
and many such applications use diverse (open or closed source) software compo-
nents. We have categorised popular applications, such as Firefox and iTunes, and
the libraries loaded by them, and then split malware functionalities to several
components. Similar to other malicious component loading attacks [8], various
attacks including remote ones are possible with our approach as described in Sec-
tion 2. In addition, a more capable form of modular malware has been achieved
due to the dynamic feature distribution. To evaluate the risks of our technique,
we have implemented a tool that automatically generates feature-distributed
malware using three malicious component types, and showed that wide range
of malicious activities is possible, even under the application-based permission
model and with the protection of security tools such as anti-virus, application
whitelisting and Egress filtering.

Exploring the risks of the feature-distributed malware enabled us to devise
a novel defensive mechanism. In essence, a host process (i.e. original main ex-
ecutable file of an application that loads other components) checks the signer
information of components to be loaded when it verifies the validity of their
digital signatures to prevent the feature-distributed malware. This mechanism

1 This has made Android malware that requires several permissions to use social en-
gineering techniques to acquire the permissions.

Feature-Distributed Malware Attack: Risk and Defence 459

turned out to be effective in blocking most real world malware attacks that use
stolen legitimate certificates. We have implemented this mechanism as a Win-
dows service so that any application can integrate our APIs during component
loading.

The remainder of this paper is structured as follows. Section 2 describes the
background on malware features and the design of feature-distributed malware
with its attack vectors. Implementation details of the malware are discussed in
Section 3. Section 4 presents the evaluation of our offensive technique, including
characteristics and risks of the malware attack. In Section 5, we present our
general defensive technique to prevent the feature-distributed malware attack,
and evaluate its effectiveness and performance impact. We conclude the paper
with a discussion of future work in Section 6.

2 Feature-Distributed Malware

This section describes major features of modern malware, design of our feature-
distributed malware, remote attack examples applied from other malicious com-
ponent loading studies [8], and the feature distribution strategy.

2.1 Malware Features and Application-Based Permission

Extraction of modern malware characteristics should be conducted ahead of
distributing features. For this purpose, we have surveyed technical reports on
recent malware instances including Stuxnet, Duqu, Flame, Gauss, Shamoon,
Red October and Careto [3–7, 9] and analysed several samples of them. Common
features of them is summarised below, and full details of the analysis are available
in our technical report [2]:

1. Local activity

(a) Data collection: file list, files, OS account credentials, Bluetooth sniffing,
microphone recording, hardware and software information, web creden-
tials and browser cookies (via malicious browser plugin), instant messag-
ing (IM, e.g. Skype) recording, keylogging, emails, screenshots, network
shares, connected device list, information from connected devices (e.g.
SMS and contacts), saved passwords from web browsers and FTP clients
cyber assets (e.g. intellectual property)

(b) Propagation: USB infection
(c) Backdoor: Windows service installation or modification, account creation
(d) Supporting: payload generation (e.g. autorun.inf for USB infection), ini-

tialisation (e.g. module listing and loading), filename generation (only
these interesting files are collected), malware activity logging, security
tool monitoring, uninstallation

2. Remote activity

(a) Data collection: External IP address, network scanning

460 B. Min and V. Varadharajan

(b) Propagation: account login attempt (using created or stolen credentials),
serving man-in-the-middle attack, serving remote exploits such as MS08-
067

(c) Networking: several commands including update, run, and uninstall,
data exfiltration, heart beating

As modern platforms such iOS, Android and Mac OS X 10.9 are incorpo-
rating application-based permission model, some of the above activities cannot
be performed by standalone malware or infected software. For example, micro-
phone recording and Bluetooth sniffing require access to respective hardware
access, and contact information collection requires access to Contacts applica-
tion, which has to be explicitly approved by the user. Considering that most of
recent malware consists of multiple modules (at application, service, or driver
level) and their data collection and networking modules are usually running at
user-level2, this is a new hurdle for attackers to overcome.

2.2 Feature-Distributed Malware: Concept

Although the application-based permission model is strong enough to prevent
current malware threats, it is still possible to bypass it if malware is properly
implemented because there are still user-approved applications that have ac-
cess to hardware and software resources. In particular, malware can perform
its functionalities by dynamically distributing them to user-approved or system-
approved applications. For example, a networking module that has migrated into
an email application may not be able to dump OS password hashes, while a lo-
cal data collection module that has migrated into an anti-virus service running
under SYSTEM account can. On the other hand, the data collection module
may not be allowed to communicate with its C&C server due to Egress filter-
ing, whereas the networking module can perform the data exfiltration. This is
the concept of our “feature-distributed” malware; malware modules cooperate in
order to overcome application-based permission model and other security mech-
anisms such as application whitelisting and Egress filtering. In addition, the
following advantages are achieved with the feature-distributed malware:

1. More Adaptive: when a victim installs a new application, the feature-
distributed malware can further distribute its feature set to the new applica-
tion without any attacker intervention. In addition, it performs self-recovery
as long as there is at least one active malicious component as explained in
Section 3, even when an application is updated (and so are its components).

2. More Stealthy: trusted and approved application hosts malicious modules.
No new process for Windows services or applications are installed and ex-
ecuted; on the contrary, modern malware usually installs its modules as
Windows services or drivers. Furthermore, malware that is detected by anti-
virus becomes undetectable by distributing malicious features to multiple

2 Kernel-level rootkit drivers are normally backdoors for persistent compromise.

Feature-Distributed Malware Attack: Risk and Defence 461

applications (i.e. processes) as shown in Section 4. This is because anti-virus
solutions determine maliciousness of a file or a process based on its static and
dynamic characteristics; analysing all the interactions of multiple processes
and components is yet to come since it can result in a serious performance
issue and raise false positive rate.

3. More Capable: bypassing security mechanisms such as application whitelist-
ing and Egress filtering is achieved.

2.3 Remote Attacks – Examples

Although any malware attack from drive-by download to USB infection is pos-
sible with the feature-distributed malware, we describe the attack vectors that
are closely related to the concept of our proposed malware attack. These vectors
assume that the malware has been delivered to a victim by an initial attack such
as client-side attack or spear phishing, which is also assumed by most related
work [10–18]. In addition, many real world malware attack operations including
Careto, Red October, Gauss and Flame started as spear phishing.

Archive with component attack. The adversary can make an archive file
that contains a normal document file and a malicious component file with an
absolute path and overwrite option. Once the victim opens the archive, not only
the files the victim expects to see, but also the malware components are extracted
and placed in the designated path. For example, malicious sqlite3.dll can be
extracted to the Apple iTunes’ installation path. Next time iTunes starts up,
the malware module is loaded by iTunes and performs its activities from feature
distribution to malicious functionalities.

Carpet Bomb-based attack. The Carpet Bomb attack [19] can lead to
remote code execution in connection with the feature-distributed malware. This
attack happens, for instance, when Safari web browser accesses a malicious web
page, and arbitrary files that can be the feature-distributed malware file are
downloaded to the victim system without user consent. In particular, when the
location of downloaded file corresponds to the malware’s target software com-
ponent, the malware will be loaded by its target application after the Carpet
Bomb attack.

2.4 Feature Distribution Strategy

Since each application has different permission and privilege depending on its
required functionalities, malware features discussed in Section 2.1 should be
properly distributed. We categorise application types and discuss the pros and
cons of each type as a malware module. An application can be included in
more than one category. For example, Google Drive is a startup as well as a
networking application. We have tested several of the below application types
with the proposed malware concept, and have evaluated them in Section 4.

Startup (persistent). Most startup applications are automatically executed
on every boot and they keep running. Examples include cloud storage like Google
Drive and Dropbox, IM such as Skype, and anti-virus software. This type of

462 B. Min and V. Varadharajan

applications runs all the time while the system is up (unless the user explicitly
terminates it). However, they usually have user privilege (neither administrative
nor SYSTEM), and may not be allowed for networking.

- Appropriate Module: initialisation (self-recovery and feature re-distribution
that are explained in Section 3)

Startup (update checker). Some startup applications are executed on every
system boot, but terminated after they finish required tasks. Examples are update
checker of various applications such as Java and Flash plugins. They can connect
to the Internet, and may have administrative privilege so that they can update
the relevant software. But they run for a limited time, typically several seconds.

- Appropriate Module: heart beating module that reports a successful com-
promise and access maintenance.

Networking. Web browsers, email, IM, (S)FTP and other network clients,
online games, and cloud storage applications are allowed for network activity.
But they normally have user privilege, and run for a limited time (longer than
update checker).

- Appropriate Module (web browsers): “worm” (propagation) module since
C&C communication pattern that is used for worm detection is randomised
by the user; only when the user surfs the Internet, worm module performs its
communication, and each individual person has different Internet use pattern.

- Appropriate Module (the others): data exfiltration because (1) IM and email
clients tend to run all the time, and (2) network clients can transfer a large
amount of data compared to other networking software.

Security Solutions. Security tools such as anti-virus usually have the highest
privilege (i.e. SYSTEM on Windows), and cannot be killed by the user and user
level applications. However, it is much harder to load a malicious module in the
context of these applications as they protect themselves from malware so that
even the user cannot modify their components or configurations. In addition,
some executables like local file scanner may not be allowed for networking.

- Appropriate Module: local data collection, logging malware activities, and
rootkit module that maintains access, updates modules, and uninstalls all the
modules when required.

Productivity. Productivity applications are varied from office suites to per-
sonal information manager such as password manger 1Password. Even though
these applications are executed under user privilege, and do not run all the
time, they are guaranteed to have access to relevant information including office
documents to password database.

- Appropriate Module: local data collection module specialised for each
application.

Media Management and Playback. Similar to productivity applications,
this type of applications can access to their contents, which include personal
photos, videos and voice memos.

- Appropriate Module: local data collection module specialised for each appli-
cation.

Feature-Distributed Malware Attack: Risk and Defence 463

Table 1. Open Source Libraries Tested with Feature-Distributed Malware

Library Name Example of Applications

SQLite AVG, iTunes, Adobe Reader, Google Drive

OpenSSL Open Office, Mobogenie, Mumble

Network Security Services (NSS) Chrome, AIM, Pidgin, Firefox, Thunderbird

Device management. iTunes and Mobogenie are two device management
applications respectively for iOS and Android device. These applications have
access to device information and contents such as contacts and photos.

- Appropriate module: data collection module specialised for each application.

3 Implementation

To realise our proposed feature-distributed malware, we have developed an au-
tomatic malware generator on Windows, which is based on our implementations
of (1) three malicious component types and (2) malware features such as mal-
ware initialisation, feature distribution, and common malicious activities. In this
section, we discuss implementation details and considerations of the generator
and other techniques.

3.1 Three Malicious Component Types

As discussed in Section 2, a feature-distributed malware file (i.e. a software
component or an archive) is placed at a certain path after it is delivered to a
victim (e.g. via email attachment or network share) and opened. Then the file is
loaded by target applications such as Firefox, which means that the newly placed
malicious component has to provide all the functionalities of the original software
component. On Windows, exported functions of DLL are the functionalities the
malware has to provide. We have implemented three types of file-based malicious
component that satisfies this requirement.

Source code modified component. One of the best ways of providing an
entire functionality of a software component is to build them from source code.
Many popular applications use open source libraries as given in Table 1, and
this makes it feasible to implement malicious components using open source li-
braries. Open source libraries are also an attractive target for feature-distributed
malware because (1) there is no need for trampolines (described below), thus no
additional file is produced, (2) several popular open source libraries are used by
many common applications in various application types, and (3) building a multi-
platform malicious component is possible for many open source libraries. For ex-
ample, Careto [3] is a multi-platform malware that uses an open source software
for Mac OS X backdoor module. However, building an entire library can increase
the size of malware, and it takes longer than making a dummy trampoline-style
component. We have tested the proposed malware attack with three widely used

464 B. Min and V. Varadharajan

libraries: SQLite, Network Security Services (NSS), and OpenSSL. They are be-
ing adopted by a huge number of applications, and a few representative examples
are shown in Table 1. We edited the source code of these libraries so that they
can be passed to the malware generator as an input and be merged with our
malware feature implementation (Figure 1).

Trampoline-style Component. Software vendors or individual developers
may get an open source library, and then edit some of its exported functions.
Also, there are still various popular closed source libraries such as Microsoft
C Runtime (CRT) library and Microsoft Foundation Class (MFC). In these
cases, we have taken two approaches, and trampoline-style dummy library is
one of them. Trampoline is a dummy function that finds its original export
using its ordinal value, and jumps to it when it is invoked. Such trampolines
must be implemented for all the exports of a target library so that the hosting
application starts and functions correctly. We have implemented trampolines
mainly in assembly code, and tested this approach with CRT and MFC libraries.

Even though the size of trampoline-style component is smaller than that of
open source-based one, it cannot replace the original library, since it does not
provide any actual functionality. In the current implementation, the feature-
distributed malware searches for CRT libraries, and if required, renames (not
replaces) them and copies the trampoline-style dummy library in the place of
the original one. As a result, there comes an additional file introduced to the
victim system when this type of component is used. Also, it cannot be used
as an initial component because renaming can happen only when at least one
malicious component is active.

Binary modified component. Another way of developing a malware com-
ponent based on source-modified or closed source libraries is to manipulate them
at the binary level. We have implemented an on the fly binary modification rou-
tine in our malware feature set that performs the following:

1. Add a new Portable Executable (PE) section.
2. Write binary shellcode that is built from our assembly and C code.
3. Modify Entry Point (EP) so that our shellcode is executed when the library

is loaded.

When the modified component is loaded by an application, and the shellcode
is executed, it loads its modifier library then jumps back to the original entry
point (OEP) so that it can function as intended. For instance, if SQLite of iTunes
modifies the CRT of Firefox, this CRT’s shellcode loads the SQLite library of
iTunes for malware functionalities. Because the newly loaded SQLite is loaded by
a component of Firefox, it has the context of Firefox, not of iTunes. This enables
the implementation of our shellcode to be concise and reliable, with the size of
408 bytes. We verified this approach with the two libraries tested for trampoline-
style. Its limitation as a malicious component is similar to trampoline-style; it
cannot be used as an initial module since it is an implemented feature and used in
the malware, which should be used by an active malicious component. However,
no additional file is introduced in the victim system since this approach modifies
binaries on the fly.

Feature-Distributed Malware Attack: Risk and Defence 465

Fig. 1. Feature-distributed malware generator for archive with component attack

Anti-virus (AVG’s case). As discussed in Section 2, major anti-virus solu-
tions protect themselves, and AVG is not an exception. AVG anti-virus provides
“AVG Self protection” that is composed of two filter drivers. When a user or
a process (even with the highest privilege) tries to delete or modify those files,
then the two drivers block such I/O requests. Similarly, new files cannot be
added to the AVG folder. Therefore, it is much harder to replace or modify
AVG’s files [20]. After analysing AVG anti-virus, however, we found out that
AVG fails to protect the self-protection filter drivers, even though it must block
any unauthorised attempt to unload or detach them. As a result, AVG’s two
filter drivers can be detached by the user or malware using Filter Manager Con-
trol. After the detachment, arbitrary files belonging to AVG can be replaced or
modified, which can be used in the feature-distributed malware.

3.2 Automatic Malware Generation

The final form of the feature-distributed malware is one single archive or soft-
ware component that will be placed at a target path and then loaded by user
applications. We have implemented a malware generator that automates the
process of configuring, packaging and making the final component or archive
file as depicted in Figure 1. The generator takes three inputs. First, user spec-
ifies several parameters such as libraries to be included, application database,
final form to be generated (either an archive or a DLL file), absolute paths
where the generated component is to be placed, and other malware parameters
given in Table 3. Second, implemented malware features such as local password
hash dump, C&C communication and the live binary modification routine are
passed. These are embedded to the specified open source libraries at source code
level. Lastly, source code of open source target libraries such as SQLite and
OpenSSL are passed so that the generator can merge the malware features with
the libraries. When merging them, the generator adds the malware features as a
separate thread created in DllMain() so that it can run as long as the library is
loaded in memory. When a trampoline-style library such as CRT is specified in
the user input, relevant dummy trampoline DLL is generated and added to the
final archive file with a path to Windows Temporary folder. The final archive
is constructed with proper absolute paths and overwrite option using RAR or

466 B. Min and V. Varadharajan

Fig. 2. Overview: initialisation and operation of the feature-distributed malware

TAR format according to the user parameter. This is possible because files of
applications are usually not protected by the system, unlike files of security tools
or critical system files that are protected by operating system feature such as
Windows Resource Protection (WRP).

Among the input parameters, application database contains information
about target applications including their categories, allowed permissions and
privileges. This information is embedded in the malware so that it can initialise
and dynamically distribute its features based on this information. Real world
attackers behind advanced threat persistent operations usually profile their tar-
get systems, and then carefully install persistent malware for cyber espionage.
Therefore, the adversary can customise application database based on initial
profiling.

3.3 Malware Operation: Initialisation and Feature Distribution

Once a feature-distributed malware (i.e. a software component) is loaded by an
attack vector described in Section 2, the initialisation process is started as shown
in Figure 2. The component searches for other active components; remote proce-
dure call (RPC) is used for inter-component communications. Depending on the
number of active components and the configuration specified by the attacker,
the first component searches for additional target libraries and replaces them
with itself. For instance, a malicious sqlite3.dll loaded by iTunes searches for
other instances of SQLite library. Preferences on libraries are specified in the
malware parameter. When other instances of SQLite used by Open Office and
AVG are found, the malware replaces the newly found components with itself
so that they become a part of the feature-distributed malware. In the case of
binary modification, target library is modified on the fly. After sufficient num-
bers of components become active, they dynamically distribute malware features
based on their hosting process and the application database. In this example,
Thunderbird component takes the networking role, Open Office module collects
documents and other data, and AVG records keystrokes and logs malware ac-
tivities. From this point on, the malware components perform their respective
features.

When replacing a file that is currently open, the malware first renames the
target, and then copies itself to the path because renaming is allowed for locked
files on Windows. The renamed original file is deleted when the malicious DLL is

Feature-Distributed Malware Attack: Risk and Defence 467

Table 2. Applications installed on the evaluation system

Application Name Application Type Component Name

Thunderbird Networking (email client) mozsqlite3.dll

Firefox Networking (web browser) msvcr100.dll (CRT)

Adobe Reader Productivity sqlite3.dll

Open Office Productivity ssleay32.dll (OpenSSL)

iTunes Media player, iOS device manager sqlite3.dll

Mobogenie Startup, Android device manager ssleay32.dll (OpenSSL)

AVG Free Anti-virus Startup, Security avgntsqlitex.dll (SQLite)

loaded. In the case of anti-virus software, nullification of self-protection feature
is preceded the file replacement as explained in this section. In addition, if there
are multiple candidates found after the initial search, the malware selects target
components according to the following rule:

1. Search for open source libraries (no additional file resulted).
2. Search for trampoline-style target components if the number of malware

components is less than user-specified value, rename the original files and
copies the dummy trampoline file to the target paths located at Windows
Temporary folder (additional file resulted).

3. Search for binary modification targets and modify them if the number of
components is still less than three (live DLL modification performed, no
additional file resulted).

Collected information is stored in the temporary folder and sent back to the
attacker by the networking module such as Thunderbird’s SQLite. Lastly, sup-
porting features (Section 2.1) such as basic C&C and uninstallation function
have also been implemented.

4 Evaluation

In this section, we first describe how the feature-distributed malware performs
its activities, thus fulfilling usual malware requirements. Then we show how the
malware can bypass security mechanisms such as application whitelisting, Egress
filtering and anti-virus’ behavioural detection. In the evaluations, Windows 7
Ultimate edition was used as the target system, and the applications shown in
Table 2 were installed on the system.3 These selected applications use at least
one open source libraries including SQLite, NSS and OpenSSL. And the malware
instances evaluated in this section were generated by our tool with the parameter
values shown in Table 3.

3 Some applications use more than one target libraries, even though only actual target
library is specified. For example, Thunderbird loads NSS in addition to SQLite as
shown in Figure 3.

468 B. Min and V. Varadharajan

Table 3. Common parameters for feature-distributed malware generation

Parameter Value

Libraries used
SQLite (Section 4.1)
SQLite, OpenSSL (Section 4.1)
SQLite, OpenSSL, CRT (Section 4.4)

Library priority SQLite > OpenSSL > NSS

Final format RAR archive

Bait file Annual report.docx

Path #1 (SQLite) iTunes folder

Path #2 (OpenSSL) Open Office folder

Path #3 (CRT) Windows Temporary folder

Min. # of components 3 (varied from 1 to 4 in Section 4.4)

Dummy trampoline Yes

Live binary modification No

Attack AVG (when possible) No (Yes/No in Section 4.4)

Application database Application category, privilege, etc.

4.1 Malware Operation

This section describes two attacks that show fundamental operations of the pro-
posed feature-distributed malware. Both attacks are archived with component
attacks described in Section 2.3.

Attack with SQLite library. A RAR self-extracting (SFX) file delivered
to a victim contains a normal document and a malicious SQLite library. When
the victim opens the file, SQLite is extracted to iTunes folder and overwrites the
existing one as specified in the RAR. Next time iTunes is launched, the replaced
SQLite is loaded and the initialisation process begins as follows:

1. Collect basic system information (OS version, installed applications, etc.),
and send when possible. iTunes uses network from time to time, so the iTunes
component informs the attacker about this first compromise. However, other
network activities such as file transfer are performed by networking compo-
nent described below.

2. Start RPC and search for other active components.
3. After a predefined time (1 minute in the current implementation), check the

number of active components. As the number is less than configured one (3),
the SQLite component starts searching for other instances of SQLite.

4. When SQLite files of Thunderbird and AVG are found, and identified as
not-infected, iTunes component replaces those instances with itself. In the
case of AVG, disarming AVG is preceded as explained in Section 3.1. If the
SQLite files found and are identified as infected, then the iTunes component
waits until they become active, i.e. their hosting applications are launched.

After the three components become active, they split malware features ac-
cording to their hosting applications (i.e. iTunes, Thunderbird, and AVG), and
start performing their respective activities as follows:

Feature-Distributed Malware Attack: Risk and Defence 469

1. iTunes: local data collection to Windows Temporary folder (files on the sys-
tem including voice memos imported from iOS devices)

2. Thunderbird: network activity for C&C communication (e.g. archive and
send collected data to the attacker)

3. AVG: local data collection to Windows Temporary folder (keystrokes &
screenshots)

Attack with Multiple Libraries. This attack evaluates the feature-
distributed malware in a more complex form. SQLite and OpenSSL are included
in a RAR SFX archive with the normal document file, and extracted to rel-
evant paths as specified in the parameter.4 Initialisation process is similar to
the above case, except that now there are two libraries and so preference com-
parison is performed when the two components become active. Because SQLite
has a higher priority, iTunes component searches for an additional instance, and
replaces Thunderbird’s SQLite. If it cannot find any SQLite instance, OpenSSL
of Open Office looks throughout the system for other instances of OpenSSL.
Malware activities are logged and transferred back to the adversary so that it
can adjust malware parameters. For instance, if the initial component(s) could
not find enough number of target components, then the attacker can reduce this
parameter value based on the collected system information.

4.2 Bypassing Application Whitelisting

Application whitelisting is more and more deployed, especially on specific-
purpose systems such as SCADA and POS that do not need to be general purpose
machines. In particular, ENISA recommends the use of whitelisting solutions,
which restrict the execution of non-approved software and code [21].

We used AppLocker for application whitelisting. It is a security tool built in
Windows 7 that allows only the configured applications to run on the system.
Because (1) the feature-distributed malware consists of software components (not
applications), and (2) all of its hosting applications (iTunes, Thunderbird, and
Open Office in this example) are allowed in the configuration of AppLocker, we
could verify each component performed respective roles without being blocked.
This may look trivial since the malware compromised whitelisted applications
from the start, but it apparently shows its importance, considering most modern
malware instances including most advanced ones such as Stuxnet, Gauss and
Careto have their own processes, which are blocked by application whitelisting
mechanisms.

From this evaluation, we can infer how the feature-distributed malware can
bypass application-based permission model as well. Application whitelisting can
be thought as a more strict form of application-based permission model, which

4 We have experimented another way of building the initial component such as SQLite
so it contains other libraries such as OpenSSL and NSS in its PE sections. This
reduces the number of files included in the archive file, but it increases the size of
the initial component.

470 B. Min and V. Varadharajan

Fig. 3. Process ID (8064) of Thunderbird loading the malicious SQLite (left) and
successful network connection by SQLite component under the Egress filtering envi-
ronment (right)

allows only whitelisted applications to run on the system. Therefore, bypassing
application-based permission policy can be done in a similar way.

4.3 Bypassing Egress Filtering

Egress filtering is increasingly being used and/or needed to block malware com-
munications. It is required for compliance with Payment Card Industry Data
Security Standard (PCI-DSS), Section 1.2.1 and 1.3.5 of version 2.0 [22]. Also,
Egress filtering is recommended by US-CERT as a malware mitigation mecha-
nism [23]. However, even under this network activity restriction, this evaluation
shows that the feature-distributed malware bypasses Egress filtering rules, and
connects back to the attacker.

Thunderbird is an email client, and hence it must be allowed in outgoing
traffic rules. In this example, it tries a connection to the attacker since it is
responsible for networking. We verified that the malicious SQLite component of
Thunderbird bypassed Egress filtering firewall rules forced by Comodo Firewall
as shown in Figure 3. Thunderbird (thunderbird.exe, process ID: 8064) is
loading the malware component (mozsqlite3.dll) in Figure 3 (lefthand-side).
And its process (8064) is making a network connection from the victim system
(172.16.158.123) to the attacker (172.16.158.153) via the IMAP email protocol
port (993) (righthand-side of Figure 3).

4.4 Bypassing Anti-virus

In the anti-virus bypassing evaluations discussed below, what we have tested is
bypassing behavioural detection, not signature-based detection, because (1) our
evaluation goal is to show the advantage of feature distribution, and (2) making a
binary that passes signature-based detection is relatively easier to achieve using
various code obfuscation tools.

Feature distribution and detectability. In this first evaluation, we first
built a single component malware that passes AVG’s signature-based detec-

Feature-Distributed Malware Attack: Risk and Defence 471

Table 4. Anti-virus detection test

Detection Application compromised (# of comp.) Library used

Yes iTunes (1) SQLite

No iTunes, AVG (2) SQLite

No iTunes, Firefox (2) SQLite, CRT

No iTunes, AVG, Adobe Reader (3) SQLite

No iTunes, AVG, Firefox (3) SQLite, CRT

No iTunes, AVG, Thunderbird (3) SQLite

No iTunes, Thunderbird, Open Office (3) SQLite, OpenSSL

No iTunes, Adobe Reader, Firefox (3) SQLite, CRT

No iTunes, Firefox, Mobogenie (3) SQLite, OpenSSL, CRT

No iTunes, AVG, Adobe Reader, Thunderbird (4) SQLite

No iTunes, AVG, Adobe Reader, Firefox (4) SQLite, CRT

No iTunes, Adobe Reader, Firefox, Thunderbird (4) SQLite, CRT

No iTunes, Adobe Reader, Open Office, Mobogenie (4) SQLite, OpenSSL

No iTunes, Firefox, Open Office, Thunderbird (4) SQLite, OpenSSL, CRT

Table 5. Anti-virus (2014 versions) bypassed by the feature-distributed malware

Anti-virus name

AVAST Free, Pro, Internet Security

Avira Free, Commercial, Internet Security

Bitdefender Internet Security, Antivirus Plus

Kaspersky Anti-Virus, Internet Security

McAfee Antivirus Plus, Internet Security, Total Protection

NOD32 (ESET) Antivirus, Smart Security

Norton (Symantec) 360, Internet Security, AntiVirus

tion, but is detected by AVG’s behavioural engine as a “Threat: General be-
havioural detection” when it starts its operation. Then we tested multiple mal-
ware instances that are functionally identical but have multiple components. As
summarised in Table 4, none of the feature-distributed malware instances was
detected during their operation once features are distributed. This is because
anti-virus solutions determine behavioural maliciousness of a process based on
the behaviours of this particular process, and each process hosting the feature-
distributed malware performs only a portion of malware features.

Other anti-virus solutions. We have tested the feature-distributed mal-
ware’s operation against several anti-virus solutions. The malware instance used
for this experiment has four components, namely iTunes, Firefox, Open Office
and Thunderbird (the last one in Table 4). Eighteen (18) solutions of seven
antivirus vendors have been tested (AVG is excluded as it has been already dis-
cussed above), and Table 5 shows our feature-distributed malware performed its
malicious activities without being detected by behavioural and signature-based
engines of the tested anti-virus solutions.

472 B. Min and V. Varadharajan

4.5 Limitations

C&C communication of the current implementation is based on sbd that is a
Netcat-clone, designed to be portable and offer strong encryption. Therefore, by-
passing Egress filtering can be impossible if deep packet inspection is deployed on
the host or the target network infrastructure. However, it can be easily overcome
by serious attackers, since it is well-known that encapsulating any communica-
tion protocol inside another one such as actual HTTP or IMAP.

The implementation can be detected by file integrity monitoring solution.
However, the probability is lower than most modern malware instances like
Careto and Stuxnet. This security solution’s major purpose is monitoring sys-
tem’s critical files and configurations or confidential folders [24]. In other words,
application binaries are not major objects of monitoring. Moreover, some ap-
plications are frequently updated (e.g. three times in six weeks in the case of
Firefox), thus not adequate for real-time integrity monitoring. As a result, these
folders or files are often excluded from such integrity monitoring [25]. On the
contrary, many of real world malware instances change critical system config-
urations for persistent compromise (e.g. installing a new service or driver with
additional files or modifying existing service’s configuration).

5 Defence against Feature Distributed Malware

This section proposes a new mechanism to prevent the feature-distributed mal-
ware attacks. We have implemented it as a Windows service with public APIs
so that any application can use it. Thunderbird was used for the evaluation of
its effectiveness and performance.

5.1 Proposed Defence Mechanism

Our suggestion is that an application should check the validity of the digital
signature and signer information of a library before loading and using it, which
is very easy to adopt from vendors’ perspective. Typically, such verification can
be performed prior to calling LoadLibrary() API that loads a library in the
context of an application. Then, even though the malicious component has the
full functionality of the original library, it cannot be loaded because it fails to
pass the origin verification. Similarly, verifying both the digital signature and
the signer can help most modern malware attacks that use stolen legitimate
certificates. Nowadays, they are bypassing many security tools’ detection and
restriction because they have a valid digital signature. However, if software ven-
dors develop their application according to our suggestion, malware instances
signed with a stolen key cannot be loaded since the signer is different from the
vendor’s. In order to demonstrate our concept, we have implemented a Windows
service rather than implementing it into individual applications. On the appli-
cation side, it calls our service API before any invoke of LoadLibrary(). Then,
the service extracts signer information from the digital signatures of the appli-
cation binary and the library file to be loaded, and compares it. Only when the

Feature-Distributed Malware Attack: Risk and Defence 473

digital signature of the library is valid and it is signed by the same entity as the
application, the service returns true. Although we have not added error handling
code to each application, several recovery processes from simply excluding the
modified library (if the application can still work with limited functionalities) to
updating the modified component with a clean one are possible.

5.2 Evaluation of the Proposed Defence

Among the applications targeted in the attack evaluation (Section 4), we have
selected Thunderbird for the evaluation of our defence mechanism. Code that
uses the service API was added to both applications. Then the same attack sce-
nario was launched on the victim system. The SQLite library file was successfully
replaced by the archive file, but it was never loaded by Thunderbird since the
replaced SQLite library is not signed by Mozilla Corporation who signed the
Thunderbird executable file.

We have also conducted performance evaluations using Thunderbird. Even
though Thunderbird loads more than 20 libraries, the application startup time
delay was under 20ms on a Windows 7 machine with Intel Core i7 2.4 GHz CPU
and 1GB of RAM. This result shows that our defence mechanism is practical
and can be effectively applied to real world applications such as Thunderbird.

6 Concluding Remarks

In this paper, we have proposed a new advanced malware that distributes its fea-
tures to multiple software components in order to bypass various security policies
such as application whitelisting and security tools like anti-virus. A tool that au-
tomatically generates such malware has been developed, and malware instances
generated by this tool have been evaluated, showing the risks of the proposed mal-
ware. We have also suggested an effective defence mechanism that utilises digital
signatures of component files to prevent loading of malicious components. To eval-
uate the proposed solution, a Windows service has been implemented and tested.

Although we have focused on the development and evaluation of feature-
distributed malware on Windows, the underlying principle is general and can also
be applied to other client platforms including Mac OS X and Android because
component-based software engineering is widely used on these platforms. We are
especially interested in exploring the application of our feature-distributed mal-
ware on mobile platforms. The number of mobile malware has been surging [1],
and application-based permission model is already prevalent on modern mobile
platforms such as Android, where it is important to prepare appropriate defences
against the emerging threat.

References

1. Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution.
In: IEEE S&P, San Francisco, CA, USA (2012)

2. Min, B., Varadharajan, V.: Deep analysis on recent malware incidents. Technical
report (2012)

474 B. Min and V. Varadharajan

3. Kaspersky Lab: Unveiling “Careto” - The Masked APT. Technical report (Febru-
ary 2014)

4. Kaspersky Lab: Gauss: Abnormal Distribution. Technical report (August 2012)
5. Anity Labs: Analysis Report on Flame Worm Samples. Technical report (July

2012)
6. Falliere, N., Murchu, L.O., Chien, E.: W32.Stuxnet dossier. Technical report (2011)
7. Chien, E., Murchu, L.O., Falliere, N.: W32.Duqu The precursor to the next

Stuxnet. Technical report (November 2011)
8. Kwon, T., Su, Z.: Automatic detection of unsafe component loadings. In: ISSTA,

Trento, Italy (2010)
9. Tarakanov, D.: Shamoon the Wiper in details (August 2012), http://www.

securelist.com/en/blog/208193795/Shamoon the Wiper in details

10. Murad, K., Shirazi, S.N.-u.-H., Zikria, Y.B., Ikram, N.: Evading Virus Detection
Using Code Obfuscation. In: Kim, T.-h., Lee, Y.-h., Kang, B.-H., Śl ↪ezak, D. (eds.)
FGIT 2010. LNCS, vol. 6485, pp. 394–401. Springer, Heidelberg (2010)

11. O’Kane, P., Sezer, S., McLaughlin, K.: Obfuscation: The Hidden Malware. IEEE
Security & Privacy 9(5), 41–47 (2011)

12. Rad, B.B., Masrom, M., Ibrahim, S.: Camouflage in Malware: from Encryption
to Metamorphism. International Journal of Computer Science and Network Secu-
rity 12(8), 74–83 (2012)

13. Oberheide, J., Bailey, M., Jahanian, F.: PolyPack: an automated online packing
service for optimal antivirus evasion. In: Proceedings of the 3rd USENIXWorkshop
on offensive technologies, Montreal, Canada (2009)

14. Alvarez, S., Zoller, T.: The Death of AV Defense in Depth? - revisiting Anti-Virus
Software. In: CanSecWest, Vancouver, B.C., Canada (2008)

15. Alvarez, S.: Antivirus (In) Security. In: CCC (Chaos Communication Camp), Fi-
nowfurt, Germany (2007)

16. Jana, S., Shmatikov, V.: Abusing File Processing in Malware Detectors for Fun and
Profit. In: IEEE Symposium on Security and Privacy (S&P) 2012, San Francisco,
CA, USA, pp. 80–94 (2012)

17. Porst, S.: How to really obfuscate your PDFmalware. In: ReCon, Montreal, Canada
(July 2010)

18. Bilge, L., Dumitras, T.: Before we knew it: an empirical study of zero-day attacks
in the real world. In: CCS 2012, Raleigh, NC, USA (October 2012)

19. Apple: About the security content of Safari 3.1.2 for Windows (April 2012),
http://support.apple.com/kb/HT2092

20. Min, B., Varadharajan, V., Tupakula, U.K., Hitchens, M.: Antivirus security: naked
during updates. Software: Practice and Experience (April 2013) (accepted)

21. ENISA: Appropriate security measures for smart grids. Technical report (December
2012)

22. PCI Security Standards Council: Payment Card Industry (PCI) Data Security
Standard. Technical report (October 2010)

23. US-CERT: Malware Threats and Mitigation Strategies. Technical report (May
2005)

24. Tripwire: Assure system integrity, best of breed file integrity monitoring (2014),
http://www.tripwire.com/it-security-software/scm/file-

integrity-monitoring

25. Arnold, M.: Tripwire Policy (May 2010),
http://www.razorsedge.org/~mike/docs/tripwire.html

http://www.securelist.com/en/blog/208193795/Shamoon_the_Wiper_in_details
http://www.securelist.com/en/blog/208193795/Shamoon_the_Wiper_in_details
http://support.apple.com/kb/HT2092
http://www.tripwire.com/it-security-software/scm/file-integrity-monitoring
http://www.tripwire.com/it-security-software/scm/file-integrity-monitoring
http://www.razorsedge.org/~mike/docs/tripwire.html

RootkitDet: Practical End-to-End Defense

against Kernel Rootkits in a Cloud Environment

Lingchen Zhang1,2,4, Sachin Shetty2, Peng Liu3, and Jiwu Jing1

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences

2 College of Engineering, Tennessee State University
3 College of IST, Penn State University

4 University of Chinese Academy of Sciences

Abstract. In cloud environments, kernel-level rootkits still pose seri-
ous security threats to guest OSes. Existing defenses against kernel-level
rootkit have limitations when applied to cloud environments. In this
paper, we propose RootkitDet, an end-to-end defense system capable of
detecting and diagnosing rootkits in guest OSes with the intent to recover
the system modifications caused by the rootkits in cloud environments.
RootkitDet detects rootkits by identifying suspicious code region in the
kernel space of guest OSes through the underneath hypervisor, performs
diagnosis on the code of the detected rootkit to categorize it and iden-
tify modifications, and reverses the modifications if possible to eliminate
the effect of rootkits. Our evaluation results show that the RootkitDet is
effective on detection of kernel-level rootkits and recovery modifications
with less than 1% performance overhead to the guest OSes and the com-
putation and network overhead is linear with the quantity of the VM
instances being monitored.

Keywords: Hypervisor, VM, Kernel-level rootkit, Defense, Cloud.

1 Introduction

A kernel rootkit is a form of malware that may subvert the kernel to achieve
various goals, especially hiding certain malicious processes from security mon-
itoring, anti-virus software, intrusion detection, and VMI (virtual machine in-
trospection). A typical way for a kernel rootkit to achieve its goals is to modify
certain kernel data structures. During the past 10 years, kernel-level rootkits
have been emerging as a major security threat. For example, MacAfee Avert
Labs [1] reported that during the three-year period from 2004-2006, the number
of rootkits had increased 600 percent. Rootkits have been leveraged by criminals
to conduct bank fraud [2].

In this paper, we focus on defending against kernel rootkits in a cloud en-
vironment. In such cloud environments as Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS), kernel rootkits
should be as useful to criminals/attackers as in non-cloud environments. Taking
IaaS as an example, kernel rootkits may enable the criminal to keep a backdoor
in a VM (virtual machine) for the attacker to gain whole control of the guest

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 475–493, 2014.
c© Springer International Publishing Switzerland 2014

476 L. Zhang et al.

operating system. They may also hide some other malware which may inflict
serious damage or launch stealthy attacks. Due to the hiding, this malware can
become difficult to detect or eliminate by the administrator.

In a cloud environment, cloud providers are responsible for countering ker-
nel rootkits in tenant VMs as they can fully leverage the security features of
the underneath hypervisors. We focus on cloud environments since besides stan-
dard requirements such as effectiveness and efficiency, cloud environments have
several unique requirements regarding how kernel rootkits should be countered.
(R1) End-to-end defense is highly desired. Besides detecting a rootkit, cloud ad-
ministrators also need to quickly reverse the malicious modifications made by the
rootkit to its target VM. If the admin has to manually diagnose and reverse the
malicious modifications, the availability and business continuity loss could be too
much to be accepted by the tenant. (R2) Scalable defense. The total defense cost
should be linear (if not sublinear) in the number of VMs being simultaneously
protected. The defense should also facilitate dynamic addition and deletion of
VMs. (R3) Adoptable defense. The defense should be compatible with existing
commercial (and open source) cloud platforms.

Although many research works have been done to tackle kernel rootkits, ex-
isting defenses are limited in meeting the requirements cloud environments have.
To see how existing defenses are limited, let us break down the existing kernel
rootkit defenses into 4 classes which we will review shortly in Section 6: (1A) De-
tecting modified control or non-control data or violations of invariants [3] [4] [5]
[6]. (1B) Preventing installation of kernel rootkits by performing analysis on the
code being loaded into the kernel space [7] [8] [9]. (1C) Defending kernel rootkits
by cooperating with anti-malware software [10] [11]. (1D) Protecting the kernel
by restoring infected kernels to healthy state [12]. We may briefly summarize
the limitations of these defenses in terms of the requirements as follows. (a) De-
fenses in Class 1A and 1C are not end-to-end or focus only on control data. (b)
Defenses in Class 1B and 1D might be defeated by the rootkits leveraging novel
techniques or kernel vulnerabilities [13] and some of them are not very easy to
be adopted because they are designed based on special hypervisors. (c) Defenses
in Class 1C are not very scalable because they have to create multiple instances
of anti-malware sofware to monitor multiple VMs.

To overcome the above limitations, in this paper we propose RootkitDet, an end-
to-end defense against kernel rootkits in a cloud environment. RootkitDet works
as follows. First, it detects the kernel rootkits by looking for suspicious code in
the kernel space of the guest OSes. Second, once a rootkit is detected, it will do
diagnosis to precisely identify kernel data structures that were maliciously mod-
ified by the rootkit. Third, it attempts to reverse the modifications. Due to the
following insight, RootkitDet employs a simple detection idea. Insight: A registra-
tion procedure can be leveraged to enable separation between legitimate code and
rootkit code in the kernel space. After a rootkit is detected in guest OSes, Rootk-
itDet attempts to eliminate the effect of the rootkit. RootkitDet first performs
static analysis on the suspicious code to collect certain characteristic information
of the rootkit. Then, it tries to categorize the rootkit heuristically according to the

End-to-End Defense against Kernel Rootkits in a Cloud Environment 477

collected characteristic information. If the rootkit can be categorized, RootkitDet
would be able to identify the kernel data structures that were malicious modified
by the rootkit. Finally, RootkitDet reverses the modifications as follows: it restores
the modified control data with pre-known values, and recovers the broken links be-
tween the modified non-control data and other data structures.

We have designed and implemented a RootkitDet system prototype atop
KVM [14] (qemu-kvm-1.2.0).Our evaluation results show that RootkitDet can
meet the requirements cloud environments have on kernel rootkits defense. In
sum, our main contributions are as follows.

– RootkitDet offers end-to-end defense against kernel rootkits in a cloud envi-
ronment: from detection to diagnosis to recovery. To the best of our knowl-
edge, RootkitDet is the first work that focuses on end-to-end defense in cloud
environments.

– RootkitDet is an effective defense. The evaluation results show that Rootk-
itDet can detect a kernel rootkit as long as the rootkit inserts code into the
kernel space of a guest OS. RootkitDet can do recovery (i.e., reverse the
modifications by the rootkit) if the rootkit is categorized successfully.

– RootkitDet is a practical defense against kernel rootkits in cloud environ-
ments. The evaluation results show that the average performance overhead
introduced in guest OSes is less than 1% when the max detection cycle is 16
seconds, and the total defense cost (CPU, network bandwidth) is linear in
the number of the VMs being protected.

2 Threat Model and Assumptions

In this section, we present the threat model and assumptions for the kernel-level
rootkits detection system.

2.1 Threat Model

A cloud user allocates several virtual machines to provide some services, web-
based service most popular, to customers. We consider an attacker who intends
to install a rootkit into the kernel of VMs to keep the control of the system and
hide himself. Upon successful installation of a kernel-level rootkit, the attacker
will control the entire VMs and do whatever attacks he wants to except system
crash or DoS. Following are examples of attacks after a successful kernel-level
rootkit installation: collection of confidential data, arbitrary modification of all
memory contents, abuse of the computing capacity and network bandwidth.

To install the rootkit into the VMs, the attacker may take advantages of zero-
day vulnerabilities in the kernel and application software running in the VMs
to gain privilege of arbitrary code execution step by step. Due to the various
objectives, the attackers have to craft specific code and insert them into the
kernel space of the VMs. Return-oriented kernel-level rootkits are out of our
scope because they can be used to install a rootkit but not run as long-term
rootkits and are not reentrant for different processes. Due to similar reasons,
DKOM(Direct Kernel Object Manipulation), ret-to-user and rootkits that are
erased immediately after executed are also out of our scope.

478 L. Zhang et al.

2.2 Assumptions

We assume that modern CPUs of X86 architecture provide NX (non-executalbe)
feature as part of page-based memory protection. For the sake of simplicity, we
assume that the kernel of guest OSes supports loadable kernel modules(LKMs)
and a LKM may be dynamically loaded into the kernel either explicitly by the
administrator of the guest OS or implicitly by an application running in the
guest OS. Moreover, we assume that kernel and modules may be vulnerable, but
not malicious. Rootkits can be installed into the running kernel space but not
exist in the kernel or modules when the kernel is built.

3 Overview of RootkitDet System

The goal of RootkitDet system is to provide an end-to-end defense against kernel-
level rootkits in cloud environments. To achieve its goal, RootkitDet system takes
three steps: detection, diagnosis and recovery. In this section, we describe the
overview of RootkitDet system and its architecture.

3.1 Overview

The first step of RootkitDet system is to detect the kernel-level rootkits installed
into the guest OSes. RootkitDet system identifies suspicious code, which is taken
as the code of rootkits, in the kernel space of guest OSes. By ”suspicious”, we
mean a memory region that is not supposed to hold any code or a region that
holds illegitimate code. Legitimate code in the kernel space of a guest OS which
is not infected by rootkits comprises kernel code and the code of benign LKMs.
To separate the code of rootkits from legitimate code, we introduce a simple,
practical and effective registration procedure.

Registration procedure is a requirement of RootkitDet system that the ad-
ministrator of a guest OS registers the kernel and potential LKMs of the guest
OS in advance. Registration of the kernel provides enough information to bridge
semantic gap [11] in our system. To register a kernel that will run in a guest
OS, the administrator should provide the source code, configuration file, sys-
tem.map as well as the binary file of the kernel. The kernel of a guest OS should
be registered prior to the execution of the virtual machine which the guest OS
runs on. Registration of LKMs is critical to separating legitimate code and the
rootkits. To register a LKM that is probable to be loaded during the lifetime of
the guest OS, the administrator should provide the module’s name and object
file. A module should be registered before it is loaded into the kernel, even if
the guest OS is running. We suppose that registration procedure is performed
through a secure channel, which is unknown to the attacker.

To detect suspicious code in the kernel space of a guest OS, RootkitDet sys-
tem reconstructs the page directory of the kernel space of the guest OS, identi-
fies all executable regions and compares them with expected executable regions
which hold legitimate code. RootkitDet system works as follows: First, it detects

End-to-End Defense against Kernel Rootkits in a Cloud Environment 479

......
conductor

analyzerdetector

registration

hypervisor

Guest OS 1

Guest

kernel 1

metadata 1

metadata n
hypervisor

Guest OS n

Guest

kernel n
......

Hypervisor inspector

Guest OS
conductor

analyzerdetector

registration

Guest kernel

profiles of

ro
o

tk
its

Fig. 1. Basic architecture (left) and scalable architecture (right) of RootkitDet

whether extra executable regions exist in the kernel space. Extra regions are dif-
ferent from that holds legitimate code. Second, it detects whether some code
resides in unused space of modules. Finally, it detects malicious modifications
to the legitimate code by computing SHA-1 checksums of the legitimate code
and comparing them with expected values. Any mismatch means that legitimate
code is modified by the rootkits.

The second step of RootkitDet system is to diagnose the detected rootkit.
RootkitDet system attempts to categorize the detected rootkits and precisely
identify the objects and data structures that are modified by the rootkit. To
help categorization of a rootkit, we generate profiles of known typical rootkits
in advance. RootkitDet system performs static analysis on the code of the de-
tected rootkit to collect characteristic information, which is used to categorize
the rootkit by matching with the profiles of known typical rootkits.

The profile of a typical rootkit includes: a) The tactic adopted by the rootkit
to achieve its intention. We describe the tactic by a set of semantic actions,
including external function calls, access to global variables and dynamic allocated
data structures. b) The data structures that we should recover according to its
tactic. In general, these data structures are dynamically allocated but we can
find its location tracking down from a global variable with fixed location.

The final step of RootkitDet system is to recover the objects and data struc-
tures that were modified by the rootkit. The rootkit may make modifications
to control data and non-control data. Control data are usually function point-
ers existing in kinds of data structures. Therefore, the expected values of control
data are already known and it is easy to recover such modifications. By contrast,
modifications to non-control data are various and usually there are no expected
values for them. However, some modifications to non-control data break the links
to other objects or violate some invariant that keeps in uninfected kernel. We
can figure out how to recover such modifications in the kernel’s context.

3.2 Architecture

As shown in Fig. 1, the basic system of RootkitDet comprises several compo-
nents: registration, conductor, detector, analyzer and inspector. In our system,
all components except inspector are independent of the hypervisor, and thus can
run in a different OS running on a virtual machine or a physical machine.

480 L. Zhang et al.

Inspector. Inspector is integrated into the hypervisor to provide a reliable
interface to access the kernel space memory and CPU registers of guest OS. This
interface is used by detector and analyzer. It is worth noting that it is rarely
necessary to stop running of the guest OS when the inspector reads or writes
the memory of the guest OSes because our system accesses unusually changed
memory during detection and recovery procedures in most of the time. Besides,
inspector is easily developed in most cloud platforms due to its simplicity so that
our system is easy to adopt by most cloud providers.

Detector. Detector performs three detection procedures to find out whether
kernel-level rootkits exists in guest OS according to the commands coming from
the conductor. In detection procedure 1, detector reconstructs the list of loaded
modules and generates the list of executable regions in the kernel space, then
compares them to find out whether extra executable regions exist besides the
regions of the kernel code and registered modules. In detection procedure 2,
detector checks whether some code resides in the unused space of each module.
In detection procedure 3, detector calculates checksums for the code of the kernel
and modules, and compares them with original ones, which are provided by the
conductor, to check integrity of the legitimate code in the kernel space.

Detection procedure 1 and 2 might be bypassed because detector depends on
the memory of guest OSes, which might be under the control of rootkits. For
instance, a rootkit may tamper with the information of a module and change the
module’s code size to a bigger value, and put its code right behind the module’s
code, pretending itself as part of the module to escape from detection. We leave
this problem to the conductor and the conductor resolves it when generating the
original hash values for all of the modules.

Conductor. Conductor is the heart of our system. It periodically sends com-
mands to detector to start detection procedures when the guest OS is running.
Once rootkits are detected, it receives the detection report from detector, then
raises an alert to the administrator and activates analyzer. Conductor also helps
detector during detection procedure 3 by generating original checksums of the
loaded modules of the guest OS as well as descriptions of each module, which
are used to detect smart rootkits that escape from procedure 1 and 2.

Registration. Registration component stores information of the guest OSes
provided by the administrator in registration procedure. It provides information
of the kernel to bridge semantic gap in the three steps of RootkitDet system. Be-
sides, it provides the necessary information of the kernel and legitimate modules
to help RootkitDet system separate rootkits.

Analyzer. Analyzer diagnoses the code of the detected rootkit by performing
static analysis to collect related characteristic information and attempts to cate-
gorize the detected rootkit heuristically. If the analyzer succeeds in categorizing
the rootkit by matching the characteristic information with the profiles of known
rootkits, it can finally perform recovery of the guest OSes.

The analyzer performs static analysis instead of dynamic analysis due to the
following reasons. First, dynamic analysis is not applicable in practice due to its
heavy overhead to guest OSes. Second, dynamic analysis requires the execution

End-to-End Defense against Kernel Rootkits in a Cloud Environment 481

of the code of rootkits to analyze its behavior while static analysis does not.
Finally, the characteristic information collected through static analysis is enough
in most cases although it is sketchy and rough.

In order to monitor multiple guest OSes simultaneously, we expands our sys-
tem into a scalable architecture as shown in Fig. 1. For each guest OS, we gener-
ate related meta-data of the kernel in advance, which includes: (1) system.map
which contains names and locations of the kernel symbols, (2) checksum of the
kernel code which is used to detect modifications to the running kernel code, (3)
definitions of important data structures that might be referred to by the rootk-
its or during recovery, (4) type information of important global variables and
dynamically allocated objects and their relationship in the kernel. Our system
takes advantages of the kernel’s meta-data to detect kernel-level rootkits and
perform recovery. Besides, only one kernel’s meta-data is necessary if all of the
guest OSes are using the same kernel. Furthermore, several guest OSes can also
runs on the same hypervisor if the hypervisor supports multiple guest OSes.

4 Design and Implementation of RootkitDet

In this section, we describe the system design and the implementation of the
prototype of RootkitDet system.

4.1 Detection

Registration procedure. As mentioned above, registration procedure com-
prises registration of the kernel and registration of the legitimate modules. When
the kernel of a guest OS is registered, we generate the meta-data of the kernel.
System.map is provided by the administrator of the guest OS. We compute the
original checksum of the kernel code by analyzing the binary file of the ker-
nel. Definitions of important data structures and type information of important
global variables and dynamic allocated objects are excerpts of the source code
of the kernel. By ”important”, we mean the data structures and objects that
might be accessed directly or indirectly by known rootkits and that might be
accessed to recover modifications caused by known rootkits.

A module can be loaded either automatically by applications or manually by
the administrator. A module loaded into the kernel is identified by its name,
which is obtained from the filename of its original object file. To guarantee that
a legitimate module is not taken as a rootkit by our system, the module must
be registered before it is loaded into the kernel. When a module is registered, we
store its original object file with its original filename, and analyze it to extract
information of its exported symbols, which are useful when calculating original
checksums of modules that depend on it.

For the sake of efficiency and other purposes, self-modifying code might be
used in the kernel and modules to leverage advanced features of CPU, which we
need to take into account during the calculation of checksums. As self-modifying
code runs only in initialization stage of the kernel, we can compute all possible

482 L. Zhang et al.

checksums of the kernel code by creating temporary VM instances with registered
kernel and obtaining the kernel code after initialization stage. We generate the
checksum of a module by simulating the relocation process of the module, and
thus we replace customized instructions according to the state of the kernel to
generate the proper original checksum of this module.

Detection procedures. To detect rootkits that insert code into the kernel
space, our system performs three detection procedures as mentioned above. How-
ever, our system may raise false alarms in several situations. We discuss these
problems and present solutions as follows.

Under some particular conditions, inconsistency between the executable re-
gions and loaded modules may occur in the kernel of guest OSes, which causes
a false positive in detection procedure 1. Case 1: When a module is loading,
the kernel allocates another executable region for its initialization code, which is
released immediately after the initialization code is executed. The temporary ex-
istence of initialization code of a module may cause a false positive. We confirm
the detection of rootkits only when the detector continuously reports rootkits
3 times. Case 2: When a module is unloaded, the kernel doesn’t release related
regions until the total size reaches a threshold. The lazy clean-up may also cause
false positive. We require a subtle modification to the kernel source code to re-
lease all free regions once a module is unloaded. This modification doesn’t affect
the efficiency of the kernel because unloading modules happens rarely in general.

Unused space usually exists below the code of a module because of the page-
aligned allocation of memory. As far as we know, the kernel doesn’t clear the
memory regions allocated for modules before loading modules into them. As a
result, the unused space may contain nonzero data, which cause a false positive
in detection procedure 2. To eliminate this kind of false positive, we require a
subtle modification to the kernel source code to clear the last page of memory
regions allocated for modules.

The code of a module varies with the relocation address of the module when it
is loaded into the kernel. We can’t leverage previous work [9] to compute check-
sums of modules in detection procedure 3 because the original object files of
modules are not required when the detector computes checksums in our system.
To reduce the work of the detector, the original checksums of modules are pro-
vided by the conductor. The detector computes current checksums of legitimate
code respectively, and compares them with original checksums. Any mismatch
means modifications to the legitimate code.

Detection procedures are performed periodically instead of being triggered like
Patagonix [15] due to the following reasons. First of all, the rootkits that are
erased immediately after executed are out the scope of this paper, so periodic
detection works properly in our system. Secondly, Patagonix also periodically
performs a refresh to set all pages non-executable. Thirdly, our system focuses
only on the kernel space instead of the space of all processes. The overhead of
periodical detection is small. Fourth, unused space of modules should be checked
although the pages are already legitimate to be executed. Finally, our system is
more flexible to adjust periods of detection procedures.

End-to-End Defense against Kernel Rootkits in a Cloud Environment 483

static struct dentry* adore_proc_lookup(

 struct inode *i,

 struct dentry* d,

 struct namedata* nd)

{

 ...

 task_unlock(current);

 return orig_proc_lookup(i, d, nd);

}

...

mov %fs:0xc1416454, %eax

incb 0x330(%eax)

mov 0x8(%esp), %eax

mov %ebp, %ecx

mov %edi, %edx

call *0xd0c0d4d4

...

...

c1416454 r-- current

d0c0d4d4 r-- c10e6a08

c10e6a08 --x proc_root_lookup

...

Fig. 2. The example binary code snippet(middle), with its associated C snippet(left)
and associated output of static analysis

4.2 Diagnosis

To categorize the detected rootkit, we investigate well known typical rootkits
according to the intentions that rootkits achieve and the tactics that rootkits
adopt. For each typical rootkit, we generate a profile to describe its tactic to
achieve its intention as well as modified data structures and objects that we
should recover.

Generating the profiles. In our implementation, we generate profiles of typ-
ical rootkits manually due to the following reasons. First, rootkits may achieve
different intentions together, and understanding the intentions and related tac-
tics of rootkits requires manual effort. Second, data structures and objects that
are accessed in the same tactic might subtly vary with the kernel version. Third,
rootkits may implement the same tactic in different ways.

Using the profiles. To apply the profiles of known rootkits during diagnosis,
we translate the profiles into ones that coordinate with the kernel running in the
guest OS monitored by our system. Then the profiles of known rootkits are ready
to categorize the detected rootkit. Categorization is done by matching certain
characteristic information (collected from the detected rootkit) against the set
of pre-generated profiles.

RootkitDet system performs static analysis on the code of rootkit to collect
characteristic information. The characteristic information is divided into two
groups. One group is the control flow information. Usually, a rootkit calls to some
kernel functions to achieve its intentions, which we name external function calls.
The other group is the global variables and dynamically allocated data structures
accessed by the rootkit. In general, to access special data structure maintained by
the kernel, the rootkit has to find it starting from a global variable and tracking
down according to the relationship among different data structures. A global
variable is actually a kernel symbol and usually accessed by its address which
is constant. The characteristic information collected through static analysis is
binary. RootkitDet system translates the characteristic information according to
the meta-data of the kernel. Translated information is then used to categorize
the detected rootkit.

We extract the instructions of the rootkit’s code as discussed in Appendix 9.1,
and suppose that we have figured out the code of the rootkit. Next, we address
how we collect characteristic information of the rootkit through static analysis.
We focus on external function calls and memory access during static analysis in-
stead of the control flow of the code [7] [16]. Basically, what we need to do is to
determine the values of CPU registers during static analysis. We create a static

484 L. Zhang et al.

machine with a special CPU and stack to execute the code of rootkit statically.
First, we use a pair <val, flags> to represent the value of a register, in which val
represents the value while flags indicates validation of each byte of val. We up-
date the pair instead of the value of registers when we execute instructions. So
are the values on the stack. Therefore, we specially tackle instructions accessing
the stack. Second, when an instruction involves read of memory other than the
stack, we update val by the value of the memory and set flags by a value indicat-
ing val totally valid. Finally, some instructions load hard-coded immediate values
into registers. In that case, we also update the flags of the target register accord-
ing to the size of immediate value and the instruction type. In consequence, the
values of registers that we can determine during static analysis are independent
of execution environments. In most cases, we can determine the external function
calls and accesses to global variables of the kernel, which we can use to infer the
behavior of the suspicious code. Fig. 2 presents an example.

4.3 Recovery

If RootkitDet system successfully categorize the detected rootkit, it attempts to
recover the infected kernel according to the profile of the rootkit. Data structures
and objects that are modified by the rootkit are described in the profile of the
rootkit. Combined with the meta-data of the kernel, recovery-driven profile is
derived from the profile of the rootkit. Recovery-driven profile describes how to
locate the modified data structures and objects and how to recover them.

As mentioned above, we usually know the expected values of the control data,
which are the locations of kernel functions. Therefore, the key to recover control
data is how to locate it. Data structures and objects maintained by the kernel
can always be found tracking down from some global variable. Moreover, the
address of global variables are constant and can be found in the meta-data of
the kernel. As a result, the recovery-driven profile for control data describes the
tracking path from the global variable to the object containing the control data.
For example, a rootkit may overwrite the pointers of functions registered with
the virtual file system layer by the pseudo random number generator (PRNG)
to disable the PRNG [17]. The pointers of functions registered by the PRNG
are stored in structures random fops and urandom fops, which are located in
the object devlist, a list of memory devices that is a global variable. Therefore,
the recovery-driven profile for the functions registered by PRNG contains the
address of devlist, offsets of random fops and urandom fops in devlist as well as
the real addresses of the functions registered by the PRNG.

Non-control data is different because the original values are either lost forever
or not easy to calculate. Moreover, non-control data is different in the way to
locate the related data structures or objects. For example, a rootkit hides a
process by removing related item from the pid hash table. Then we can’t find
the process tracking down from the pid hash table. The only way to find the
process is tracking down from init task and checking each process whether it is
not linked into the pid hash table. As a result, the recovery-driven profile for
non-control data describes how to restore the broken links or resolve violations

End-to-End Defense against Kernel Rootkits in a Cloud Environment 485

of invariants as well as the tracking path from the global variable to the object
containing the non-control data. If the original value of a non-control data are
lost forever, we can not recover it. For example, we can not recover the entropy
pool of PRNG if it is zeroed by a rootkit [17].

4.4 Implementation

In our implementation, we use qemu-kvm-1.2.0 for creating instances of the guest
OS, and compile linux-2.6.32.60 for the guest kernel. Fig. 3 shows the internal
components of the prototype of RootkitDet system.

Detector. We integrated the detector into qemu-kvm because the guest OSes
are running as user processes on the host OS and the integration reduces inter-
process communications. Moreover, we implement the inspector as part of the
detector.

Conductor

Host OS

Qemu-kvm

VM

Detector
Inspector

C
o

m
m

u
n
ic

a
tio

n

C
o

m
p

o
n
e
n

t

Control

Component

Data Container

 Exec-region list

 Module-list

 Name

 Original hash

 Current hash

 …

Hash

Component

C
o

m
m

u
n

ic
a
tio

n

C
o

m
p

o
n
e
n

t

Control

Component

S
y

m
b

o
l

M
an

a
g

e
r

D
e
te

c
to

r

M
a
n

a
g
e
r

C
o

n
fig

u
ra

tio
n

Registration

Analyzer

S
ta

tic

m
a
c
h
in

e

Memory

access

known

rootkits

R
e
c
o

v
e
re

r

categori

zer

Fig. 3. Internal Components of
RootkitDet

The detector consists of five components:
inspector, data container, hash component,
control component and communication com-
ponent. Inspector is responsible for reading
the registers and memory of the VM. Data
container component constructs the neces-
sary semantic data structures from the raw
data of the VM’s memory given by inspector
according to the profile, and also stores data
coming from the conductor through com-
munication and control components. Hash
components is used for calculating the cur-
rent hash values for the kernel and modules’
code. The communication component takes care of all of the communication with
the conductor. The control component receives commands through the commu-
nication component from the conductor, then executes the commands and sends
the response back to the conductor.

For the sake of flexibility, we implement the detector as a command-driven
object, which is an I/O handler of qemu-kvm. It doesn’t do anything until it
receives a command from the conductor, and it goes back to the initial state as
soon as it finishes that command. If the conductor doesn’t send any commands
to the detector, the VM runs the same as if there is no detector. Therefore, it is
convenient for us to turn off/on this security feature of the VM when necessary.

Conductor. The conductor is a daemon process that periodically schedules
detectors for monitored guest OSes and starts up the analyzer when rootkits are
detected. It is also responsible for generation of original checksums of registered
modules when requested.

To generate the original checksums of kernel modules, the conductor performs
the same relocation work as the guest kernel does. The correct relocation work
of a module depends on the following information: the original object file, the
relocation address, the addresses of the used kernel symbols and the addresses
of the used symbols of other modules. The conductor acquires the original ob-

486 L. Zhang et al.

ject file of a module from the registration component and obtains its relocation
address from the detector. The conductor can figure out the address of a kernel
symbol by referring to the meta-data of the kernel. We create a database storing
the relative addresses of symbols exported by registered modules. The conductor
can calculate the absolute address of a symbol exported by a module by looking
it up in the database and adding it up to the relocation address of the mod-
ule. To resolve the potential dependency among modules during the relocation
work, the conductor calculates original checksums after collecting the relocation
addresses of all loaded modules from the detector. Consequently, the conductor
can generate original checksums for all of the loaded modules and send them
back to the detector.

We generate the original checksum of the kernel code in advance because the
kernel code is constant and never changes after it starts up. We take the original
checksum of the kernel code as part of the meta-data of the kernel.

Analyzer. The analyzer is actually an independent program in our prototype
system, and is started up by the conductor when the detector reports that a
rootkit is detected. Therefore, we save the resources consumed by the analyzer
if no rootkits are detected, which is tenable in most times.

Once the detector reports that a rootkit is detected, the conductor starts
up the analyzer immediately. Analyzer collects the characteristic information
through static analysis, translates combining the meta-data of the kernel, and
attempts to categorize the rootkit according to profiles of known rootkits. If
it successfully categorizes the rootkit, it recovers modified data structures and
objects according to the recovery-driven profile of the rootkit.

5 Evaluation of RootkitDet System

In this section, we present the evaluation results of our RootkitDet prototype.
Our evaluation has two goals. The first goal is to evaluate RootkitDet’s effec-
tiveness for detecting kernel-level rootkits that compromise the code integrity of
the OS kernel and recovering modified data to eliminate the effect of rootkits.
The second goal is to measure the overhead introduced to guest OSes and extra
resources consumed by RootkitDet.

All experiments are conducted on Dell PowerEdge M610 Server with a
2.40GHz Intel Xeon E5645 and 6GB memory. The hypervisor is qemu-kvm-1.2.0.
The host OS is Ubuntu-12.04. We used Debian-squeeze with kernel version 2.6.32
as our guest OS. The detector is integrated into qemu-kvm, and thus runs with
the guest OS. The conductor ran on another computer as a user process. They
communicated with each other through TCP connections.

5.1 Effectiveness

To evaluate the effectiveness of RootkitDet system for detecting kernel-level
rootkits, we install four representative rootkits in the guest OS monitored by our
system. As shown in Table 1, different detection procedures detect the rootkits
that hide the code in different regions.

End-to-End Defense against Kernel Rootkits in a Cloud Environment 487

...

c1106ef0 T sys_write

...

c149f1f0 R sys_call_table

...

Kernel code

malicious code

System.map

c149 f1f0

c1106ef0

...

push %ebp

mov %esp, %ebp

...

call *0xd08883c8

...

Malicious code

Fig. 4. hksc: hooking
sys write

...

c11514a0 t proc_root_readdir

...

c16bda60 d proc_fs_type

...

Kernel code

file_operations

malicious code

System.map

c16bda 60

c11514 a0

...

push %ebp

mov %esp, %ebp

...

call *0xd0899660

...

Malicious code

inode

dentry

super_block

proc_fs_type

Fig. 5. hkproc: hooking
proc filesystem

...

c106b970 T find_pid_ns

...

c16a8c60 D init_task

...

c180759c b pid_hash

...

System.map

...

push %ebp

mov %esp, %ebp

...

call 0xc106b970

mov %eax, %ebx

...

add %ebx, %edx

mov 0x14(%edx), %ecx

lea 0x14(%edx), %eax

mov 0x4(%eax), %edi

mov %ecx, (%edi)

...

Malicious code

c180759 c
pid_hash

...

...

p

pid
q

pid

init_task

c16a8c60

task p

task q

Kernel

code

malicious

code

Fig. 6. hidepc: manipulat-
ing pid hash table

Adore-ng [18] is implemented as kernel module and an extra executable
region appears when it is installed. Therefore, it is detected by procedure 1.
Enyelkm [19] is also implemented as a kernel module and thus detected by pro-
cedure 1. In addition, it also hijacks the control flow of the kernel by modifying
the system call dispatch routine to intercept several system calls, and thus it is
also detected by procedure 3. Despite of the probability that a rootkit’s code
resides in dynamically allocated executable regions or unused space of mod-
ules, we don’t find one in wild. We implement Icmp-cmd and Icmp-cmd v2,
which execute commands specified by crafted ICMP packets, to evaluate the
RootkitDet’s effectiveness in detecting such rootkits. The code of them resides
in a dynamically allocated executable region and unused space of a module, and
thus they are detected by procedure 1 and 2 respectively.

Table 1. Rootkit detection

Rootkit Method to insert code DP
adore-ng module 1
enyelkm module and substitution 1, 3
icmp-cmd executable region 1
icmp-cmd v2 unused space 2

To evaluate the effective-
ness of RootkitDet system
for eliminating the effect of
rootkits, we develop 3 rootk-
its, hksc, hkproc and hidepc,
which adopt different tactics
to hide a specific user process
from the guest system admin-
istrators, and install them in
the guest OS monitored by our
system. After detection of them, our system successfully categorizes them and
performs recovery to reveal the hidden process.

Fig. 4 shows a rootkit hijacking sys write system call to hide a specific process
by tampering with what is displayed to the administrators of guest OSes. We
recover the modified system call table to eliminate the effect of this rootkit. Fig.
5 shows a rootkit hooking the function pointer proc root readdir to hide a specific
process by removing related pid entry in the proc file system. We find the hooked
function pointer by tracking down from proc fs type, which is a global variable,
and correct it with the real location of kernel function proc root readdir. Fig. 6
shows a rootkit hiding a specific process by removing related entry in the pid

488 L. Zhang et al.

Table 2. Application-level benchmarks of overhead to guest OSes

Benchmark W/o Performance W/i Performance Relative Performance

Dhrystone 6040580.1 lps 6045164.7 lps 1.001X

Whetstone 630.6 MIPS 629.9 MIPS 0.999X

Lmbench(pipe bandwidth) 3843.2 MB/s 3810.3 MB/s 0.991X

Apache Bench(throughput) 569.95 KB/s 568.67 KB/s 0.998X

Kernel decompression 21.343 s 21.529 s 0.991X

Kernel build 1300.4 s 1292.9 s 1.001X

Table 3. Time of detection and recovery

Rootkit Code size(byte) detection time(ms) analysis time(ms) recovery time(ms)

hksc 407 < 1 14.6 3.7

hkproc 978 < 1 44.6 7.7

hidepc 565 < 1 29.1 204.8

hash table. We first find the task struct of the hidden process by tracking down
from init task, and then relink it into the pid hash table to reveal the hidden
process.

5.2 Overhead to the Guest OSes

To measure the performance cost introduced by our system to the guest OS, we
run a set of application benchmarks to compare the performance of a guest OS
that enables the detector with the one that does not. The application benchmarks
and their configuration are presented as follows: 1) Dhrystone 2 of the UnixBench
suite using register variables. 2) Double-precision whetstone of the UnixBench.
3) Pipe bandwidth of Lmbench measuring the performance of IPC interface
provided by the kernel. 4) Apache Bench configured to issue 10,000 http requests
(177B HTML file) through 1 client. 5) Kernel source code decompression using
command tar xjf to extract the compressed tarball file of Linux 2.6.32 kernel.
6) Building a Linux 2.6.32 kernel.

We run detection procedure 1 in each second, procedure 2 in 4 seconds, pro-
cedure 3 in 16 seconds because of different complexity of them. Table 2 presents
the results of these application level benchmarks. The second column shows the
performance of the guest OS which doesn’t enable the detector, while the third
column shows the performance of the guest OS that enables the detector. The
last column presents the relative performance. To reduce the effect of random
factors, we run each benchmarks 10 times, and present the average results in the
table. From table 2, we can see that the relative performance of the guest OS
that enables the detector is above 0.99X, on both CPU intensive jobs and I/O
intensive jobs. In other words, the performance cost is tolerable to most tasks.

Besides application level benchmarks, we also perform a micro-benchmark test
on the detector. In the experiment result, detection procedure 1 costs the least

End-to-End Defense against Kernel Rootkits in a Cloud Environment 489

time, which is 189 μs; detection procedure 2 costs more time, which is 713μs;
detection procedure 3 costs the most time, which is 47139 μs.

5.3 Performance

To measure the scalability of our system, we run multiple VM instances that
enable the detector at the same time and measure the network bandwidth and
CPU resources consumed by our system, i.e. the conductor. Fig. 7 shows the peak
and average network bandwidths (input and output) consumed by the conductor
are linear to the quantity of the VM instances. In addition, our system consumes
3% CPU cycles for every 10 guest OSes. As a result, our is scalable and efficient
in the cloud environment.

5 10 15 20 25 30

0

2

4

6

8

10

Quantity of VM instances

N
et

w
o
rk

b
a
n

d
w

id
th

(K
B

/
s)

Peak output
Average output

Peak input
Average input

Fig. 7. Network bandwidth consumed by
Conductor

To measure the efficiency of our
system, we measure the time of detec-
tion and recovery against the 3 rootk-
its that hide a specific user process in
the guest OS. Table 3 shows the eval-
uation result. The time of detection
is less than 1 ms because the rootk-
its are implemented as modules which
are detected by detection procedure
1. The time of analysis depends on
the code size and pages of memory ac-
cessed by the code. The time of recov-
ery mainly depends on the complexity
of recovery.

6 Related Work

Kernel-level rootkits have been distributed in the underground hacker commu-
nity for a long time [20]. In order to relieve the threat of kernel-level rootkits,
many techniques or architectures are proposed. Most recently techniques or ar-
chitectures leverages the security benefit of the hypervisor. They can be divided
into 4 classes: (1) Detecting data modifications or violations of invariants in the
kernel; (2) Preventing the installation of the rootkits by performing analysis on
the code being loaded into the kernel space; (3) Defending kernel rootkits by
cooperating with anti-malware software; (4) Protecting the kernel by restoring
infected kernels to healthy state.

In class 1, SBCFI [5] detects persistent kernel control-flow attacks by iden-
tifying function pointers in kernel data structures to the kernel and modules’
code. HookSafe [6] protects thousands of kernel hooks in a guest OS from being
hijacked. Gibraltar et al [3] detects kernel rootkits by identifying data invariants
in the kernel. The work of Petroni Jr et al [4] focuses on semantic integrity vio-
lations in kernel dynamic data. While these works focus on control/non-control
data in the kernel, our system focuses on the code inserted into kernel space and
attempts to perform recovery.

490 L. Zhang et al.

In class 2, the work of C. Kruegel et al [7] performs static analysis on the mod-
ule that is being loaded and prevents it if it resembles the behavior of rootkits.
Liveware [21] protects the guest OS kernel code and critical data structures from
being modified. Our system improves by detecting the code added into the ker-
nel space that is not in the form of a module. SecVisor [8], a tiny hypervisor
that enforces page-level protection of the memory used by the code of the kernel
and modules, prevents the installation of the kernel rootkits by ensuring the
code integrity of guest OS kernel. NICKLE [9] protects the code integrity in
the guest OS kernel by transparently routing guest kernel instruction fetches to
shadow memory which contains authenticated code and is protected from write-
access. However, they are not easy to be adopted in the cloud platforms based
on different hypervisors because they require special features of the hypervisor.

VMWatcher [11] detects malware by providing semantic view of the guest OS
to anti-malware software, and Lares [10] presents an architecture that gives the
security tools the ability to do active monitoring. While they are cooperated with
external security tools or anti-malware software, our system can defend rootkits
alone and monitor more VMs with less effort.

VICI Agent [12], which belongs to class 4, applies different repair techniques
to restore the infected kernel to healthy state after detecting kernel-modifying
rootkit infections. However, it can be defeated by novel rootkits that insert new
control-data in the kernel space instead of modifying existing control-data, such
as Icmp-cmd mentioned in Section 5.

7 Discussions and Limitations

RootkitDet system is not perfect because of the following reasons. First, it can-
not detect rootkits that are erased immediately after executed or that have no
specific code in the kernel space, like return-oriented rootkits [22]. Second, it
may not detect all of the code of a rootkit if the rootkit hides part of its code
by switching NX-bit of the corresponding pages, therefore our system may lose
some characteristic information of the rootkit during analysis. Third, it cannot
prevent the installation of the kernel-level rootkits although it detects rootkits
and recovers the kernel if possible. Fourth, it cannot certainly recover all mod-
ifications made by the rootkits, especially when categorization of the rootkits
fails. Finally, the generation of instinct information of rootkits are not auto-
matic. However, RootkitDet system are still useful and flexible in practice. In
addition, it can perform quickly detection of kernel-level rootkits by only issuing
detection procedure 1 and 2 because almost all of kernel-level rootkits in the wild
introduce extra code into the kernel space and fewer and fewer of them modify
the code of the kernel or modules. RootkitDet system provides the characteristic
information of unknown rootkits to assist further investigation.

In future work, we can focus on the analysis and recovery of novel and un-
known rootkits and automatic generation of rootkits’ instinct information.

End-to-End Defense against Kernel Rootkits in a Cloud Environment 491

8 Conclusions

In this paper, we present the design, implementation and evaluation of the
RootkitDet system, an end-to-end defense against kernel-level rootkit, which
is efficient and practical in the cloud environment. RootkitDet system detects
rootkits that insert code into kernel space of guest OSes, diagnoses the detected
rootkit to precisely locate modifications caused by the rootkit, and attempts to
recover the modifications. Our evaluation experiments show that the Rootkit-
Det system can effectively detect kernel-level rootkits and reverse modifications
if the rootkits are categorized successfully. In addition, the performance cost in-
troduced to the guest OSes by our system is less than 1%, and the complexity
of our system is linear with the quantity of the VM instances being monitored,
which is acceptable in the cloud environment.

Acknowledgments. We thank the anonymous reviewers and our shepherd, Ste-
fano Paraboschi for their constructive feedback to improve the paper. Lingchen
Zhang was supported by ARO grant W911NF-12-1-0055. Sachin Shetty was
supported by ARO grant W911NF-12-1-0055, NSF grant HRD-1137466, DHS
grants 2011-ST-062-0000046 and 2010-ST-062-0000041. Peng Liu was supported
by AFOSR W911NF1210055, ARO W911NF-09-1-0525, NSF CNS-1223710, and
ARO W911NF-13-1-0421. Jiwu Jing was partially supported by the National 973
Program of China under award No.2014CB340603 and the National 863 Program
of China under award No.2013AA01A214.

References

1. McAfee: Rootkits, Part 1 of 3: A Growing Threat. white paper (April 2006)
2. McAfee: 2010 Threat Predictions. white paper, McAfee AVERT Labs (December

2009)
3. Baliga, A., Ganapathy, V., Iftode, L.: Detecting kernel-level rootkits using data

structure invariants. IEEE Transactions on Dependable and Secure Comput-
ing 8(5), 670–684 (2011)

4. Petroni Jr., N.L., Fraser, T., Walters, A., Arbaugh, W.A.: An architecture for
specification-based detection of semantic integrity violations in kernel dynamic
data. In: Proceedings of the 15th USENIX Security Symposium, pp. 289–304 (2006)

5. Petroni Jr., N.L., Hicks, M.: Automated detection of persistent kernel control-flow
attacks. In: Proceedings of the 14th ACM Conference on Computer and Commu-
nications Security, pp. 103–115. ACM (2007)

6. Wang, Z., Jiang, X., Cui, W., Ning, P.: Countering kernel rootkits with lightweight
hook protection. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security, pp. 545–554. ACM (2009)

7. Kruegel, C., Robertson, W., Vigna, G.: Detecting kernel-level rootkits through
binary analysis. In: 20th Annual Computer Security Applications Conference 2004,
pp. 91–100. IEEE (2004)

8. Seshadri, A., Luk, M., Qu, N., Perrig, A.: Secvisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity oses. In: ACM SIGOPS Operating
Systems Review, vol. 41, pp. 335–350. ACM (2007)

492 L. Zhang et al.

9. Riley, R., Jiang, X., Xu, D.: Guest-transparent prevention of kernel rootkits with
vmm-based memory shadowing. In: Lippmann, R., Kirda, E., Trachtenberg, A.
(eds.) RAID 2008. LNCS, vol. 5230, pp. 1–20. Springer, Heidelberg (2008)

10. Payne, B.D., Carbone, M., Sharif, M., Lee, W.: Lares: An architecture for secure
active monitoring using virtualization. In: IEEE Symposium on Security and Pri-
vacy, SP 2008, pp. 233–247. IEEE (2008)

11. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through vmm-based out-
of-the-box semantic view reconstruction. In: Proceedings of the 14th ACM Con-
ference on Computer and Communications Security, pp. 128–138. ACM (2007)

12. Fraser, T., Evenson, M.R., Arbaugh, W.A.: Vici-virtual machine introspection for
cognitive immunity. In: Annual Computer Security Applications Conference, AC-
SAC 2008, pp. 87–96. IEEE (2008)

13. Kemerlis, V.P., Portokalidis, G., Keromytis, A.D.: kguard: lightweight kernel pro-
tection against return-to-user attacks. In: USENIX Security Symposium (2012)

14. Linux-KVM: Linux-KVM, http://www.linux-kvm.org/page/Main_Page

15. Litty, L., Lagar-Cavilla, H.A., Lie, D.: Hypervisor support for identifying covertly
executing binaries. In: Proceedings of the 17th Conference on Security Symposium,
pp. 243–258 (2008)

16. Wagner, D., Dean, D.: Intrusion detection via static analysis. In: Proceedings of
the 2001 IEEE Symposium on Security and Privacy, S&P 2001, pp. 156–168. IEEE
(2001)

17. Baliga, A., Kamat, P., Iftode, L.: Lurking in the shadows: Identifying systemic
threats to kernel data. In: IEEE Symposium on Security and Privacy, SP 2007, pp.
246–251. IEEE (2007)

18. Stealth: Announcing full functional adore-ng rootkit for 2.6 kernel,
http://lwn.net/Articles/75991/

19. eNYe Sec: eNYeLKM v1.1, http://www.enye-sec.org/en/tags/enye-lkm/

20. Halflife: Abuse of the Linux-kernel for Fun and Profit. Phrack Magazine 5(50)
(April 1997)

21. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: Proc. Network and Distributed Systems Security Sym-
posium (2003)

22. Hund, R., Holz, T., Freiling, F.C.: Return-oriented rootkits: Bypassing kernel code
integrity protection mechanisms. In: Proceedings of the 18th USENIX Security
Symposium, pp. 383–398 (2009)

9 Appendix

9.1 Extracting Instructions

When a rootkit is detected by our system, we get a suspicious executable region
where the code of the rootkit locates. To analyze the rootkit’s code, we need
extract instructions of the rootkit’s code from the executable region first. The
executable region is page-aligned and we don’t know the exact location of the
rootkit’s code. Moreover, it is non-trivial task to distinguish code from data
on X86 platforms. Therefore, it is difficult to find out the rootkit’s code in the
detected executable regions.

http://www.linux-kvm.org/page/Main_Page
http://lwn.net/Articles/75991/
http://www.enye-sec.org/en/tags/enye-lkm/

End-to-End Defense against Kernel Rootkits in a Cloud Environment 493

We notice that the code of rootkits usually comprises a set of functions and
the instructions are continuous unless a jump instruction occurs. Several suc-
cessive instructions of a function compose an instruction block ending with a
branch, jump, call or return instruction. If an instruction block ends with a re-
turn instruction, no more blocks follows it in logic. If a block ends with a call
instruction, the next block starts right behind the call instruction. If a block
ends with a jump instruction, the address of the following block can be calcu-
lated from the address of the jump instruction and its content. If a block ends
with a branch instruction, two blocks follow it in logic: one is just behind it
and the starting address of the other can be calculated from the address of the
branch instruction and its content.

Consequently, we can figure out all of the instruction blocks of a function as
long as we find the first block. That is to say, we should find the first instruction of
a function. We search the first instruction from the first byte of the executable
region which starts at the lowest address if multiple regions exist. If the first
instruction starts here, we can figure out the whole function. Otherwise, we
should encounter an illegal instruction in all probability during the process of
extracting instruction blocks. If it is not the first instruction, we march on by
one byte. We repeat this step until we figure out the first instruction.

Modeling Network Diversity for Evaluating
the Robustness of Networks against Zero-Day Attacks

Lingyu Wang1, Mengyuan Zhang1, Sushil Jajodia2, Anoop Singhal3,
and Massimiliano Albanese2

1 Concordia Institute for Information Systems Engineering, Concordia University
{wang,mengy zh}@ciise.concordia.ca

2 Center for Secure Information Systems, George Mason University
{jajodia,malbanes}@gmu.edu

3 Computer Security Division, National Institute of Standards and Technology
anoop.singhal@nist.gov

Abstract. The interest in diversity as a security mechanism has recently been
revived in various applications, such as Moving Target Defense (MTD), resist-
ing worms in sensor networks, and improving the robustness of network routing.
However, most existing efforts on formally modeling diversity have focused on a
single system running diverse software replicas or variants. At a higher abstrac-
tion level, as a global property of the entire network, diversity and its impact on
security have received limited attention. In this paper, we take the first step to-
wards formally modeling network diversity as a security metric for evaluating
the robustness of networks against potential zero day attacks. Specifically, we
first devise a biodiversity-inspired metric based on the effective number of dis-
tinct resources. We then propose two complementary diversity metrics, based on
the least and the average attacking efforts, respectively. Finally, we evaluate our
algorithm and metrics through simulation.

Keywords: Security Metrics, Diversity, Network Security, Zero Day Attack,
Network Robustness.

1 Introduction

Computer networks are playing the role of nerve systems in many critical infrastruc-
tures, governmental and military organizations, and enterprises. Protecting such mission
critical networks means more than just patching known vulnerabilities and deploying
firewalls or IDSs. Evaluating the network’s robustness against potential zero day attacks
(i.e., attacks exploiting previously unknown vulnerabilities) is equally important. The
fact that Stuxnet employs four different zero day vulnerabilities [1] has clearly demon-
strated the real-world significance of defending networks against zero day attacks. On
the other hand, dealing with unknown vulnerabilities is clearly a challenging task.

In a slightly different context, software diversity has previously been regarded as a
security mechanism for improving the robustness of a software system [2] (a more de-
tailed review of related work will be given later in Section 6). By comparing outputs [3]
or behaviors [4] of multiple software replicas or variants with diverse implementation

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 494–511, 2014.
c© Springer International Publishing Switzerland 2014

Modeling Network Diversity for Evaluating the Robustness of Networks 495

details, security attacks may be detected and tolerated as Byzantine faults [5]. Although
the earlier diversity-by-design approaches are usually regarded as impractical due to the
implied development and deployment cost, recent works show more promising results
on employing either opportunistic diversity already existing among different software
systems [6], or automatically generated diversity, e.g., through randomization of address
space [7,8], instruction set [9], or data space [10]. More recently, diversity has found
new applications in Moving Target Defense (MTD) [11], resisting sensor worms [12],
and improving the robustness of network routing [13].

However, at a higher abstraction level, as a global property of the entire network,
the concept of network diversity and its impact on security has received less attention.
In this paper, we take the first step towards formally modeling network diversity as a
security metric, for the purpose of evaluating a network’s robustness with respect to
zero day attacks. More specifically, following the discussion of several use cases, we
propose a series of network diversity metrics as follows.

– First, we propose a network diversity metric function by adapting well known math-
ematical models of biodiversity in ecology. The metric is based on the number of
distinct resources in a network, while considering the uneven distribution of re-
sources and similarity between different resources. This first metric is more suitable
for evaluating the scale of potential infection by a malware, and it is also a building
block of the other two metrics. The main limitation is that it ignores potential causal
relationships between resources in a network.

– Second, we design a network diversity metric based on the least attacking effort
required for compromising critical assets, while taking into account the causal re-
lationships between resources. We also study the complexity and design heuristic
algorithms for computing the metric efficiently. This second metric is suitable for
measuring a network’s capability of resisting intrusions or malware that employ
multiple related zero day attacks. The main limitation is that, by focusing on the
least attacking effort, it only provides a partial picture about the threat and cannot
reflect the average attacking effort.

– Third, we devise a Bayesian network-based model to define network diversity as a
conditional probability based on the effect of diversity on the average attack like-
lihood. This probabilistic metric provides a complementary measure to the above
metric by depicting the average attacking effort required by attackers. We show
how this metric can be instantiated from existing standard vulnerability databases.

– Finally, we evaluate the proposed heuristic algorithm and metrics through simula-
tion results, and we discuss practical limitations of our approach.

The main contribution of this paper is twofold. First, to the best of our knowledge,
this is the first effort on formally modeling network diversity as a security metric for
defending networks against zero day attacks. Second, the modeling effort not only im-
proves understanding of the network diversity concept, but may lead to better, quantita-
tive approaches to employing diversity for improving network security.

The rest of this paper is organized as follows. Section 2 describes use cases and
defines a biodiversity-inspired metric. Section 3 then presents the least attacking effort-
based metric. Section 4 presents the probabilistic diversity metric. Section 5 presents

496 L. Wang et al.

simulation results. Section 6 reviews related work, and finally Section 7 discusses main
limitations of this work and concludes the paper.

2 Preliminaries

This section motivates the study through several use cases and defines a biodiversity-
inspired network diversity metric.

2.1 Use Cases

Use Case 1: Stuxnet and SCADA Security. Stuxnet is one of the first malware that em-
ploy multiple (four) different zero day attacks [1], which clearly indicates, in a mission
critical system, such as supervisory control and data acquisition (SCADA) in this case,
the risk of zero day attacks and multiple unknown vulnerabilities is very real. There-
fore, it is important to provide network administrators a systematic way for evaluating
such a risk. On the other hand, this is clearly a challenging task due to the lack of prior
knowledge about vulnerabilities or attacking methods.

We next take a closer look at Stuxnet’s attack strategies to illustrate how a network di-
versity metric may help here. Stuxnet targets the programmable logic controllers (PLCs)
on control systems of gas pipelines or power plants [1]. Such PLCs are mostly pro-
grammed using Windows machines not connected to the network. Therefore, Stuxnet
adopts a multi-stage approach, by first infecting Windows machines owned by third
parties (e.g., a contractor or insider), next spreading to the organization’s Windows ma-
chines through the LAN, and finally covering the last hop to targeted machines, which
are disconnected from the LAN, through removable flash drives [1].

Clearly, a sufficient presence of vulnerable Windows machines inside the organiza-
tion is a necessary condition for Stuxnet to propagate and eventually infect the targeted
PLCs. On the other hand, the degree of software diversity along potential attack paths
leading from the network perimeter to the PLCs can be regarded as a critical metric of
the network’s capability of resisting a threat like Stuxnet. Our objective in this paper is
to provide a rigorous study of such diversity metrics.

Use Case 2: Worm Propagation. To make our discussion more concrete, we will refer
to the running example shown in Figure 1 from now on. Suppose our main concern is
the potential propagation of worms or bots inside a network. A common belief is that
the more diversified the network is, the higher degree of robustness it will have against
a worm propagation. In other words, we can just count the number (percentage) of
different resources inside the network, and use that count as a diversity metric. Although
such a definition of diversity is natural and intuitive, it clearly has limitations.

For example, in Figure 1, suppose host 1, 2 and 3 are all Web servers running IIS,
and host 4 a storage server. Clearly, the above count-based diversity metric will indicate
a lack of diversity among the three Web servers and suggest replacing IIS with other
software, such that a worm will unlikely infect all three. However, assuming all three
Web servers would read from a network share on the storage server (host 4), then even-
tually a worm can still propagate to all four hosts through the network share, even if it
cannot infect all three Web servers directly.

Modeling Network Diversity for Evaluating the Robustness of Networks 497

host0

host1

host2

firewall1 firewall2

host3

host4

Fig. 1. The Running Example

The lesson here is, a naive approach, such as counting the number of resources in
a network, may produce misleading results because it ignores the causal relationships
between resources. Therefore, after we discuss the count-based metric in Section 2.2,
we will address this limitation with a goal oriented approach in Section 3.

Use Case 3: Targeted Attack. Suppose now we are more concerned with a targeted
attack on the storage server, host 4, launched by human attackers. Following above dis-
cussions, an intuitive solution is to diversify resources along any path leading to the
critical asset (host 4), for example, between hosts 1 (or 2, 3) and host 4. Although this
is a valid observation, realizing it will demand a rigorous study of the causal relation-
ships between different resources, because host 4 is only as secure as the weakest path
(representing the least attacking effort) leading to it. We will propose a formal metric
and corresponding algorithm based on such an intuition in Section 3.

On the other hand, the least attacking effort by itself is not sufficient. Suppose now
host 1 and 2 are diversified to run IIS and Apache, respectively, and firewall 2 will only
allow host 1 and 2 to reach host 4. Although the least attacking effort has not changed,
this diversification effort has provided attackers more opportunities to reach host 4 (by
exploiting either IIS or Apache). That is, misplaced diversity may hurt security, which
will be captured by a probabilistic metric we will introduce in Section 4.

Use Case 4: MTD through Combinations of Web, Application, and Database Servers.
In this case, suppose host 1 and 2 are Web servers, host 3 an application server, and host
4 a database server. A Moving Target Defense (MTD) approach attempts to achieve
better security by varying in time the software components at those three tiers [11].
A common misconception here is that the combination of different components at the
three tiers will increase diversity, and the degree of diversity is equal to the product
of diversity at those three tiers. However, this is usually not the case. For example, a
single flaw in the application server (host 3) may result in a SQL injection that compro-
mises the database server (host 4) and consequently leaks the root user’s password. In
addition, diversity over time may actually provide attackers more opportunities to find
flaws. The lesson here is again that, an intuitive observation may be misleading, and
formally modeling network diversity is necessary.

498 L. Wang et al.

2.2 Biodiversity-Inspired Metrics

Although the modeling of network diversity has attracted only limited attention, a cor-
responding concept in ecology, biodiversity, and its positive impact on the ecosystem’s
stability has been investigated for many decades [14]. While many lessons may poten-
tially be borrowed from the rich literature of biodiversity, we focus on adapting existing
mathematical models of biodiversity to the modeling of network diversity in this paper.

The number of different species in an ecosystem is known as species richness [15].
Similarly, given a set of distinct resource types (we will consider similarity between
resources later) R in a network, we call the cardinality | R | the richness of resources
in the network. An obvious limitation of this richness metric is that it ignores the rel-
ative abundance of each resource type. For example, the two sets {r1, r1, r2, r2} and
{r1, r2, r2, r2} have the same richness of 2 but clearly different levels of diversity.

To address this limitation, the Shannon-Wiener index, which is essentially the Shan-
non entropy using natural logarithm, is used as a diversity index to group all systems
with the same level of diversity, and the exponential of the diversity index is regarded as
the effective number metric [16]. The effective number basically allows measuring di-
versity in terms of the number of equally-common species, even if in reality all species
are not equally common. In the following, we borrow this concept to define the effective
resource richness and our first diversity metric.

Definition 1 (Effective Richness and d1-Diversity). In a network G composed of a
set of hosts H = {h1, h2, . . . , hn}, a set of resource types R = {r1, r2, . . . , rm}, and
the resource mapping res(.) : H → 2R, let t =

∑n
i=1 | res(hi) | (total number of

resource instances), and let pj =
|{hi:rj∈res(hi)}|

t (1 ≤ i ≤ n, 1 ≤ j ≤ m) (relative

frequency of each resource). We define the network’s diversity as d1 = r(G)
t , where

r(G) is the the network’s effective richness of resources, defined as

r(G) =
1∏n

1 ppi

i

One limitation of the effective number-based metric is that similarity between dif-
ferent resource types is not taken into account and all resource types are assumed to
be entirely different, which is not realistic (e.g., the same application can be config-
ured to fulfill totally different roles, such as NGinx as a reverse proxy or a web server,
respectively, in which case these should be regarded as different resources with high
similarity). To remove this limitation, we borrow the similarity-sensitive biodiversity
metric recently introduced in [17] to re-define resource richness. With this new defini-
tion, the above diversity metric d1 can now handle similarity between resources.

Definition 2 (Similarity-Sensitive Richness). In Definition 1, suppose a similarity
function is given as z(.) : [1,m] × [1,m] → [0, 1] (a larger value denoting higher
similarity and z(i, i) = 1 for all 1 ≤ i ≤ m), let zpi =

∑m
j=1 z(i, j)pj . We define the

network’s effective richness of resources, considering the similarity function, as

r(G) =
1∏n

1 zppi

i

Modeling Network Diversity for Evaluating the Robustness of Networks 499

Note that we will simply use “the number of distinct resources” to refer to the rich-
ness of resources from now on. It is to be understood that such a term can always be
replaced with the effective richness concepts given in Definition 1 and 2 to handle the
uneven distribution of different resource types and the similarity between resources; in
other words, these are not limitations of our models.

3 Network Diversity Based on Least Attacking Effort

This section models network diversity based on the least attacking effort. Section 3.1
defines the metric, and Section 3.2 discusses the complexity and algorithm.

3.1 The Model

In order to model diversity based on the least attacking effort while considering causal
relationships between different resources, we first need a model of such relationships
and possible zero day attacks. Our model is similar to the attack graph model [18,19],
although our model focuses on remotely accessible resources (e.g., services or appli-
cations that are reachable from other hosts in the network), which will be regarded as
placeholders for potential zero day vulnerabilities, instead of known vulnerabilities (we
will discuss how to integrate known vulnerabilities into our model in Section 4). To
build intuitions, we revisit Figure 1 by making following assumptions:

– Accesses from outside firewall 1 are allowed to host 1 but blocked to host 2;
– Accesses from host 1 or 2 are allowed to host 3 but blocked to host 4 by firewall 2;
– Hosts 1 and 2 provide http service;
– Host 3 provides ssh service;
– Host 4 provides both http service and rsh service;

Figure 2 depicts a corresponding resource graph model, which is syntactically equiv-
alent to an attack graph, but models zero day attacks rather than known vulnerabilities.
Each pair in plaintext is a self-explanatory security-related condition (e.g., connectivity
〈source, destination〉 or privilege 〈privilege, host〉), and each triple inside a box is
a potential exploit of resource 〈resource, source host, destination host〉; the edges
point from the pre-conditions to a zero day exploit (e.g., from 〈0, 1〉 and 〈user, 0〉
to 〈http, 0, 1〉), and from that exploit to its post-conditions (e.g., from 〈http, 0, 1〉 to
〈user, 1〉). Note we have omitted exploits or conditions involving firewall 2 for sim-
plicity. We simply regard resources of different types as entirely different (their simi-
larity can be handled using the effective resource richness given in Definition 2). Also,
we take the conservative approach of considering all resources (services and firewalls)
to be potentially vulnerable to zero day attacks. Definition 3 formally introduces the
concept of resource graph.

Definition 3 (Resource Graph). Given a network composed of a set of hosts H , a set
of resources R with the resource mapping res(.) : H → 2R, a set of zero day exploits
E = {〈r, hs, hd〉 | hs ∈ H,hd ∈ H, r ∈ res(hd)} and the collection of their pre-
and post-conditions C, a resource graph is a directed graph G(E ∪C,Rr ∪Ri) where
Rr ⊆ C × E and Ri ⊆ E × C are the pre- and post-condition relations, respectively.

500 L. Wang et al.

<http,0,1>

<0,1> <user,0> <0,F>

<firewall,0,F>

<ssh,1,4> <http,0,2>

<2,4><user,2>

<user,4> <4,5>

<http,1,2>

<user,1><1,4> <0,2><1,2>

<rsh,4,5> <http,4,5>

<ssh,2,4>

<user,5>

Fig. 2. An Example Resource Graph

Next we consider how attackers may potentially attack a critical network asset, mod-
eled as a goal condition, with the least effort. In Figure 2, we follow the simple rule that
any zero day exploit may be executed if all its pre-conditions are satisfied, and execut-
ing the exploit will cause all its post-conditions to be satisfied. We may then observe six
attack paths as shown in Table 1 (the second and third columns can be ignored for now
and will be explained shortly). Intuitively, each attack path is a sequence of exploits
whose pre-conditions are all satisfied, either initially, or as post-conditions of preceding
exploits in the same path. Definition 4 formally introduces the concept of attack path.

Table 1. Attack Paths

Attack Path # of Steps # of Resources
1. 〈http, 0, 1〉 → 〈ssh, 1, 4〉 → 〈rsh, 4, 5〉 3 3
2. 〈http, 0, 1〉 → 〈ssh, 1, 4〉 → 〈http, 4, 5〉 3 2
3. 〈http, 0, 1〉 → 〈http, 1, 2〉 → 〈ssh, 2, 4〉 → 〈rsh, 4, 5〉 4 3
4. 〈http, 0, 1〉 → 〈http, 1, 2〉 → 〈ssh, 2, 4〉 → 〈http, 4, 5〉 4 2
5. 〈firewall, 0, F 〉 → 〈http, 0, 2〉 → 〈ssh, 2, 4〉 → 〈rsh, 4, 5〉 4 4
6. 〈firewall, 0, F 〉 → 〈http, 0, 2〉 → 〈ssh, 2, 4〉 → 〈http, 4, 5〉 4 3

Definition 4 (Attack Path). Given a resource graph G(E∪C,Rr ∪Ri), we call CI =
{c : c ∈ C, (�e ∈ E)(〈e, c〉 ∈ Ri)} the set of initial conditions. Any sequence of zero
day exploits e1, e2, . . . , en is called an attack path in G, if (∀i ∈ [1, n])(〈c, ei〉 ∈ Rr →
(c ∈ Ci ∨ (∃j ∈ [1, i − 1])(〈ej , c〉 ∈ Ri))), and for any c ∈ C, we use seq(c) for the
set of attack paths {e1, e2, . . . , en : 〈en, c〉 ∈ Ri}.

Modeling Network Diversity for Evaluating the Robustness of Networks 501

We are now ready to consider how diversity should be defined based on the least
attacking effort, which intuitively corresponds to the shortest path. However, there are
actually several possible ways for choosing such shortest paths and for defining the
metric, as we will illustrate through our running example in the following.

– First, as shown in the second column of Table 1, path 1 and 2 are the shortest in
terms of the steps (i.e., the number of zero day exploits). Clearly, the shortest path in
terms of steps does not reflect the least attacking effort, since path 4 may actually
take less effort than path 1, as attackers may reuse their exploit code, tools, and
skills while exploiting the same http service on three different hosts.

– Next, as shown in the third column, path 2 and 4 are the shortest in terms of the
number of distinct resources 1. This option is more reasonable than the above one,
since it takes into consideration the saved effort in reusing the same exploits. How-
ever, although both path 2 and 4 have the same number of distinct resources (2),
they clearly do not reflect the same diversity.

– Another attractive option is to base on the minimum ratio # of resources
of steps (which is

given by path 4 in this example), since such a ratio reflects the potential improve-
ments in terms of diversity (e.g., the ratio 2

4 of path 4 indicates there is 50% poten-
tial improvement in diversity). However, although not shown in this example, we
can easily imagine a very long attack path minimizing such a ratio (e.g., an attack
path with 9 steps and 3 distinct resources will yield a ratio of 1

3 , less than that of
path 4) but does not reflect the least attacking effort (e.g., the aforementioned attack
path will require more effort than path 4 since it has more distinct resources).

– Finally, yet another option is to pick the shortest path that minimizes both the num-
ber of distinct resources (path 2 and 4) and the above ratio # of resources

of steps (path 4).
While this may seem to be the most reasonable choice, a closer look will reveal
that, although path 4 does represent the least attacking effort, it does not represent
the maximum amount of potential improvement in diversity, because once we start
to diversify path 4, the shortest path may change to be path 1 or 2.

Based on these discussions, we define the network diversity by combining the first
two options above. Specifically, the network diversity is defined as the ratio between
the minimum number of distinct resources on a path and the minimum number of steps
on a path (note these can be different paths). Going back to our running example above,
we find path 2 and 4 to have the minimum number of distinct resources (two), and also
path 1 and 2 to have the minimum number of steps (three), so the network diversity
in this example is equal to 2

3 (note that it is a simple fact that this ratio will never
exceed 1). Intuitively, the numerator 2 denotes the network’s current level of robustness
against zero day exploits (no more than 2 different attacks) , whereas the denominator
3 denotes the network’s maximum potential of robustness (tolerating no more than 3
different attacks) by increasing the amount of diversity (from 2

3 to 1). More formally, we
introduce our second network diversity metric in Definition 5 (note that, for simplicity,
we only consider a single goal condition for representing the given critical asset, which
is not a limitation since multiple goal conditions can be easily handled through adding
a few dummy conditions [20]).

1 Note that, although we will refer to the number of distinct resources for simplicity, it is to be
understood that this can be replaced by the effective richness concept in Definition 2.

502 L. Wang et al.

Definition 5 (d2-Diversity). Given a resource graph G(E ∪ C,Rr ∪ Ri) and a goal
condition cg ∈ C, for each c ∈ C and q ∈ seq(c), denote R(q) for {r : r ∈
R, r appears in q}, the network diversity is defined as (where min(.) returns the mini-
mum value in a set)

d2 =
minq∈seq(cg) | R(q) |
minq′∈seq(cg) | q′ |

3.2 The Complexity and Algorithm

Since the problem of finding the shortest paths (in terms of the number of exploits) in
an attack graph (which is syntactically equivalent to a resource graph) is known to be
intractable [18], not surprisingly, the problem of determining the network diversity d2 is
also intractable, as stated in Theorem 1. However, we note that, for a specific network,
the two problems are not necessarily comparable in terms of their relative hardness. For
example, in a network with all resources being distinct, it is trivial that d2 = 1, whereas
the shortest paths (in terms of the number of steps) may not be easy to find. On the other
hand, the proof of Theorem 1 is based on special cases where finding the shortest paths
is trivial, whereas determining the network diversity is still intractable.

Theorem 1. Given a resource graph G(E ∪ C,Rr ∪ Ri), determining the network
diversity d2 is NP-hard.

Proof: The NP-complete Minimum Set Covering (MSC) problem [21] can be reduced
to this problem through a construction similar to that in [22]. Specifically, the MSC
problem is to determine that, given a finite set S = {c1, c2, . . . , cn} and a collection
SC = {r1, r2, . . . , rm} where ri ⊆ S(1 ≤ i ≤ m), whether there exists a minimum
SC′ ⊆ SC satisfying that every ci ∈ S is a member of some rj ∈ SC′. For any
given MSC instance, we construct a special resource graph G(E ∪ C,Rr ∪ Ri) in
which we let C = S ∪ {s, d}, where s denotes an initial condition and d the goal
condition, and whenever ci ∈ rj is true, we create an exploit that involves resource
rj , with pre-condition ci−1 (or s for i = 1) and post-condition ci. Finally, we add an
additional exploit that involves an extra resource r0, with pre-condition cn and post-
condition d. Since every attack path q in this special resource graph has the same length
| q |= n + 1, we need to find a path q that minimizes the set of distinct resources
involved in q, denoted as R(q) (which also minimizes | R(q) | / | q |). Moreover, a
path that minimizes | R(q) | clearly provides a solution to the MSC problem. Therefore,
we can determine the network diversity d2 if and only if we can solve the MSC problem,
which concludes the proof. �

Although determining network diversity is computationally infeasible in general, in
most cases the network diversity of a given network may still be computed or estimated
within a reasonable time using heuristics. In particular, Algorithm Heuristic Diversity
shown in Figure 3 employs the heuristic of only maintaining a limited number of local
optima at each step in order to keep the complexity manageable. Specifically, the algo-
rithm starts by marking all exploits and conditions as unprocessed (lines 1-2) and all
initial conditions as processed (line 3-4). Functions σ() and σ′() represent two collec-
tions of attack paths (as sets of exploits, since the order of exploits is unimportant here)

Modeling Network Diversity for Evaluating the Robustness of Networks 503

leading to an exploit or condition, to be used to calculate the minimum number of re-
sources and steps, respectively. Therefore, for each initial condition c, such collections
σ() and σ′() are both initialized as empty sets (line 5).

Procedure Heuristic Diversity
Input: Resource graph G(E ∪ C,Rr ∪Ri), goal condition cg , parameter k
Output: d2
Method:
1. For each e ∈ E and c ∈ C \ CI

2. Mark e and c as unprocessed
3. For each c ∈ CI

4. Mark c as processed
5. Let σ(c) = σ′(c) = φ
6. While (∃e ∈ E)(e is unprocessed) and (∀c ∈ C)((c, e) ∈ Rr ⇒ c is processed)
7. Let {c ∈ C : (c, e) ∈ Rr} = {c1, c2, . . . , cn}
8. Let σ(e) = ShortestK({q1 ∪ q2 ∪ . . . ∪ qn ∪ {e} : qi ∈ σ(ci), 1 ≤ i ≤ n}, k)
9. Let σ′(e) = ShortestK′({q1 ∪ q2 ∪ . . . ∪ qn ∪ {e} : qi ∈ σ(ci), 1 ≤ i ≤ n}, k)
10. Mark e as processed
11. For each c s.t. (e, c) ∈ Ri

12. If (∀e′ ∈ E)((e′, c) ∈ Ri ⇒ e′ is processed) Then
13. Let σ(c) = ShortestK(

⋃
e′ s.t. (e′,c)∈Ri

σ(e′), k)
14. Let σ′(c) = ShortestK′(

⋃
e′ s.t. (e′,c)∈Ri

σ(e′), k)
15. Mark c as processed

16. Return
minq∈seq(cg)|R(q)|
minq′∈seq(cg)|q′|

Fig. 3. A Heuristic Algorithm for Computing the Network Diversity d2

The main loop cycles through each unprocessed exploit whose pre-conditions have
all been processed (line 6). For each such exploit e, all of its pre-conditions are first
placed in a set (line 7). The collection of attack paths σ(e) (and σ′(e)) is then con-
structed from the attack paths of those pre-conditions (line 8 and 9). Specifically, since
the exploit e requires all the pre-conditions to be satisfied, an attack path leading to e
must be the union of n attack paths (q1∪q2∪ . . .∪qn, each of which leads to one of the
pre-conditions (qi ∈ σ(ci)). The function ShortestK() simply picks the top k solu-
tions, that is, the k paths with the minimum number of distinct resources (ShortestK ′()
for paths with the minimum number of steps). After this, the exploit e is marked as
processed (line 10). Next, the inner loop cycles through each post-condition of e (line
11-15) in a similar way (the differences arise from the fact that a condition c may be
satisfied by any of the exploits implying it alone). The final result is calculated based
on the two collections of attack paths leading to the goal condition (line 16).

The complexity of the algorithm is dominated by the main loop (lines 6-15). The
outer loop will execute at most | E | times since it only cycles through unprocessed
exploits while each cycle will mark one exploit as processed. The inner loop executes
at most | C | times, and its complexity is dominated by line 13 and 14 which calculate
the union over at most k paths leading to each of the | E | or less exploits. Considering

504 L. Wang et al.

the maximum length of each path | E |, the complexity of the inner loop is thus | C |
· | E |2 ·k. However, this complexity is actually dominated by line 8 and 9, in which at
most k paths may lead to every one of the | C | or less conditions, and this results in at
most k|C| candidates for ShortestK() (and ShortestK ′()) to choose from. Therefore,
heuristics will be needed in designing the ShortestK() (and ShortestK ′()) function
such that it only evaluates a limited number of candidates in picking the top k solutions.
However, in practice, the number of pre-conditions of most exploits is expected to be a
constant (compared to the size of the resource graph), and hence the overall complexity
| E | ·(| C | · | E |2 ·k + k|C|) would still be manageable.

4 Probabilistic Network Diversity

In Section 2.1, we have shown that the least attacking effort-based metric only provides
a partial picture of the threat and is insufficient by itself. In this section, we develop
a metric to capture the average attacking effort by combining all attack paths. For this
purpose, we take a probabilistic approach to modeling network diversity. More specif-
ically, we define network diversity as the conditional probability p that, given that an
attacker can compromise a given critical asset in the network, he/she would still be able
to do so even if all the resources were to be made different (i.e., every type of resource
would appear at most once). This probability p represents the level of diversity currently
present in the network, and a higher value means higher diversity (in the special case of
p = 1, the network is already perfectly diverse, since further diversification effort will
not reduce the attack likelihood with respect to the given critical asset).

Clearly, the aforementioned conditional probability is equal to the ratio between two
probabilities, the probability that an attacker may compromise the given critical asset
when all resource instances in the network are different, and the probability that he/she
can do so in the current network. Both probabilities represent the attack likelihood with
respect to the goal condition, and can be modeled using a Bayesian network constructed
based on the resource graph (a similar approach using attack graph is given in [23]).

Definition 6 formally introduces network diversity following this intuition. In the
definition, the first set of conditional probabilities represent the probability that an ex-
ploit e can be successfully executed, given that all its pre-conditions are already satis-
fied. The second and third set together represent the simple fact that an exploit cannot
be executed unless all its pre-conditions are already satisfied, whereas a condition can
be satisfied as the post-condition of one or more executed exploits. Finally, the fourth
set represents the conditional probability that an exploit e2 may be executed by an at-
tacker who has already successfully executed another exploit e1 which involves the
same resource (i.e., the attack likelihood while reusing a previous exploit).

Definition 6 (d3 Diversity). Given a resource graph G(E ∪C,Rr ∪Ri), and

1. for each e ∈ E, a given conditional probability P (e |
∧

{c:〈c,e〉∈Rr} c = TRUE),
2. conditional probabilities P (e |

∧
{c:〈c,e〉∈Rr} c = FALSE) = 0,

3. conditional probabilities P (c | e = TRUE ∧ 〈e, c〉 ∈ Ri) = 1, and
4. for any e1, e2 ∈ E involving the same resource r, conditional probabilities P (e1 |

e2 = TRUE ∧ (
∧

{c:〈c,e1〉∈Rr} c) = TRUE) (and P (e2 | e1 = TRUE ∧∧
{c:〈c,e2〉∈Rr} c = TRUE)),

Modeling Network Diversity for Evaluating the Robustness of Networks 505

Given any cg ∈ C, the network diversity d3 is defined as d3 = p′
p where p denotes the

conditional probability of cg being satisfied given that all the initial conditions are true,
and p′ denotes the probability of cg being satisfied given that all initial conditions are
true and the above fourth set of probabilities not given (i.e., without considering the
effect of reusing any exploit).

Figure 4 demonstrates the proposed metric model using our running example, by
assuming all resource instances to be different (even if they may be under the same
name) except the http service, which is the same on three different hosts. In the figure,
on the left side is the case when the effect of reusing an exploit is not considered in
the above definition, and on the right side the case when the same effect is considered.
In the figure, each number inside the box represents the first set of given conditional
probabilities (assigned with arbitrary values in this example). The dotted lines in the
right figure show the last set of given conditional probabilities. The number beside each
exploit or condition represents the probability calculated through statistical inferences
using the Bayesian network. Finally, we show part of the two conditional probability ta-
bles (CPTs) to illustrate the difference between not considering the effect of reusing the
http exploit (e.g., probability 0.5 in the left CPT), and considering it (e.g., probability
0.9 in the right CPT). The diversity in this case will be calculated as d3 = 0.007

0.0103 .
To instantiate the above model, we need to obtain the first and last set of conditional

probabilities in Definition 6. For the former, we can adopt the simple approach in [23] to
base the probability on the Common Vulnerability Scoring System (CVSS) [24] scores
(available in public databases [25]). For zero day exploits, we can assign a nominal
value as follows. Since a zero day vulnerability is commonly interpreted as a vulnera-
bility not publicly known or announced, we can interpret this using the CVSS base met-
rics [24], as a vulnerability with a remediation level unavailable, a report confidence
unconfirmed, and a maximum overall base score (and hence produce a conservative
metric value). We therefore obtain a nominal value of 0.8, converting to a probability of
0.08 (for reference purpose, the lowest existing CVSS score in [25] is currently 1.7). Fi-
nally, the last set of conditional probabilities models the attack likelihood while reusing
an exploit on different machines and therefore can be assigned with a higher value than
the corresponding attack probability in the first set.

5 Simulation

In this section, we study the performance of our proposed heuristic algorithm and briefly
compare the three proposed metrics via simulations, while leaving more detailed com-
parative studies of those metrics to future work. All simulation results are collected
using a computer equipped with a 3.0 GHz CPU and 8GB RAM in the Python environ-
ment under Ubuntu 12.04 LTS. We calculate the Bayesian network-based metric using
OpenBayes [26]. To generate a large number of resource graphs, we first construct a
small number of seed graphs based on real networks, and then we obtain larger graphs
from these seed graphs by injecting new hosts and assigning resources in a random but
realistic fashion (e.g., we vary the number of pre-conditions of each exploit within a
small range since real world exploits usually have a few pre-conditions).

506 L. Wang et al.

<http,0,1>
0.08

<0,1> <user,0> <0,F>

<firewall,0,F>
0.08

<ssh,1,4>
0.08

<http,0,2>
0.5

<2,4>user(2)

<user,4> <4,5>

<http,1,2>
0.5

<user,1><1,4> <0,2><1,2>

<rsh,4,5>
0 08

<http,4,5>
0 5

<ssh,2,4>
0.08

0.08

0.006 0.04

0.08

0.04

0.078

0.006

0.012

<http,4,5>

<user,4> <4,5> T F

T T 0.5 0.5

<user,5>

0.08 0.5

0.000099 0.006

0.007

T F 0 1

F T 0 1

F F 0 1

<http,0,1>
0.08

<0,1> <user,0> <0,F>

<firewall,0,F>
0.08

<ssh,1,4>
0.08

<http,0,2>
0.5

<2,4>
user(2)

<user,4> <4,5>

<http,1,2>
0.5

<user,1><1,4> <0,2><1,2>

<rsh,4,5>
0 08

<http,4,5>
0 5

<ssh,2,4>
0.08

0.08

0.006 0.072

0.08

0.04

0.109

0.009

0.015

<http,4,5>

<http,0,1> <http,1,2> <user,4> <4,5> T F

T T T T 0.9 0.1

T T T F 0 1

T T F T 0 1

T F T T 0.9 0.1

T T F F 0 1

<user,5>

0.08 0.5

0.00117 0.0099

0.0103

T F T F 0 1

T F F T 0 1

T F F F 0 1

Fig. 4. Modeling Network Diversity Using Bayesian Networks

The objective of the first two simulations is to evaluate the accuracy (approximation
ratio between the result obtained using our algorithm and that using brute force) of our
heuristic algorithm (in Figure 3). The left-hand side of Figure 5 shows the approxima-
tion ratio in increasing k (the parameter of the algorithm that represents the number of
local optima stored at each step). We also examine the results under different in-degrees
(i.e., the maximum number of pre-conditions of any exploit). We can see that the ap-
proximate ratios increase with the in-degrees, and they decrease to an acceptable level
(lower than 1.03) when k reaches about 4, and the trends stay flatten when k > 6 (al-
most equal to 1). Therefore, k can be chosen as around 5 in practice. The right-hand
side of Figure 5 shows that the approximation ratio grows when the resource graph gets
larger, which is expected (with a fixed parameter k, the relative amount of local optima
stored at each step will decrease when the size of resource graphs increases, and hence
worse performance). We only show k up to 3 since from the previous simulation it is
clear that the approximation ratio will be close to 1 when k is 4 or greater.

The objective of next simulation is to evaluate the processing time of the heuristic
algorithm. Since the approximation ratio will stay flatten when k ≥ 6, we only show
the processing time for k ≤ 6. The left-hand side of Figure 6 shows that the processing
time is still acceptable (about 10 seconds) when k = 6 with around 1000 nodes. For
in-degrees of 3 and 4, the trend is much closer to linear. Although it is well known
that inference using Bayesian networks is intractable in general, the right-hand side of
Figure 6 shows that our processing time for computing the Bayesian network-based
metrics (using OpenBayes [26]) exhibits an acceptable trend (mostly due to the special
structure of resource graphs).

The last two simulations compare the results of all three metrics proposed in this pa-
per. To convert the Bayesian network-based metric d3 to a comparable scale of the other

Modeling Network Diversity for Evaluating the Robustness of Networks 507

Fig. 5. Approximation Ratio in k under Different In-degrees (Left) and in Graph Size under Dif-
ferent k (Right)

Fig. 6. Processing Time for Computing d2 in Graph Size under Different k (Left) and Processing
Time for Computing d3

two, we use log0.08(p′)
log0.08(p) (i.e., the ratio based on equivalent numbers of zero day exploits)

instead of d3. In the left-hand side of Figure 7, the scatter points marked with X in the
red color are the individual values of d2. The blue points marked with Y are the values
of d3 (converted as above). Also shown are their average values, and the average value
of the effective richness-based metric d1. While all three metrics follow a similar trend
(diversity will decrease in larger graphs since there will be more duplicated resources),
the Bayesian network-based metric d3 somehow reflects an intermediate result between
the two other extremes (d1 can be considered as the average over all resources, whereas
d2 only depends on the shortest path). The right-hand side of Figure 7 shows the aver-
age value of the three metrics in increasing number of distinct resources for resource
graphs of a fixed size. All three metrics capture the same effect of increasing diversity,
and their relationships are similar to that in the previous simulation.

508 L. Wang et al.

Fig. 7. Comparison of Metrics (Left) and the Effect of Increasing Diversity (Right)

6 Related Work

The research on security metrics has attracted much attention lately. Unlike existing
work which aim to measure the amount of network security [27,28], this paper focuses
on diversity as one particular property of networks which may affect security. Nonethe-
less, our work borrows from the popular software security metric, attack surface [29],
the general idea of focusing on interfaces (remotely accessible resources) rather than
internal details (e.g., local applications). Our least attacking effort-based diversity met-
ric is derived from the k-zero day safety metric [30,31], and our probabilistic diversity
metric is based on the attack likelihood metric [23,32]. Another notable work evaluates
security metrics against real attacks in a controlled environment [33], which provides
a future direction to better evaluate our work. One limitation of our work lies in the
high complexity of analyzing a resource graph; high level models of resource depen-
dencies [34] may provide coarser but more efficient solutions to modeling diversity.

The idea of using design diversity for fault tolerance has been investigated for a long
time. The N-version programming approach generates N ≥ 2 functionally equivalent
programs and compares their results to determine a faulty version [35], with metrics
defined for measuring the diversity of software and faults [36]. The main limitation of
design diversity lies in the high complexity of creating different versions, which may
not justify the benefit [37]. The use of design diversity as a security mechanism has
also attracted much attention [38]. The general principles of design diversity is shown
to be applicable to security as well in [2]. The N-Variant system extends the idea of
N-version programming to detect intrusions [3], and the concept of behavioral distance
takes it beyond output voting [4]. Different randomization techniques have been used
to automatically generate diversity [7,9,8,10].

In addition to design diversity and generated diversity, recent work employ oppor-
tunistic diversity which already exists among different software systems. The practical-
ity of employing OS diversity for intrusion tolerance is evaluated in [6] and the feasibil-
ity of using opportunistic diversity already existing between different OSes to tolerate
intrusions is demonstrated. Diversity has also been applied to intrusion tolerant systems
which usually implement some kinds of Byzantine Fault Tolerant (BFT) replication

Modeling Network Diversity for Evaluating the Robustness of Networks 509

as fault tolerance solutions. Considering single-machine environments based on multi-
ple cores and virtualization, diversified replications are employed as a method to offer
Byzantine-fault tolerance to software attacks [5]. A generic architecture for implement-
ing intrusion-tolerant Web servers based on redundancy and diversification principles is
introduced using redundant proxies and diversified application servers with redundancy
levels selected according to threat levels [39]. Components-off-the-shelf (COTS) diver-
sity is employed to provide an implicit reference model, instead of the explicit model
usually required, for anomaly detection in Web servers [40].

7 Conclusion

In this paper, we have taken a first step towards formally modeling network diversity as
a security metric for evaluating networks’ robustness against zero day attacks. We first
devised an effective richness-based metric based on the counterpart in ecology. We then
proposed a least attacking effort-based metric to address causal relationships between
resources and a probabilistic metric to reflect the average attacking effort. Finally, we
evaluated our algorithms and metrics through simulations.

The main limitations of this work are the following.

– First, our models depend on the availability and accuracy of many inputs, such as
the modeling of resources and their relationships (to form the resource graph), the
degree of difference and similarity between different types of resources (to calcu-
late the effective richness), which may be challenging to characterize in practice.

– Second, we have employed simulations to evaluate our models, although it is cer-
tainly ideal to conduct experiments with real-world networks and attacks. Unfor-
tunately, there does not currently exist any publicly available benchmark dataset
containing a significant number of representative real networks, and with both vul-
nerabilities and attack information.

– Third, we have focused on modeling diversity, but did not address other factors
that may also affect decisions regarding diversity, such as the cost (in terms of
deployment and maintenance) and impact to functionality.

– Fourth, we regard all resources as equally likely to have zero day vulnerabilities,
which can easily be extended by assigning different weights to resources, when
their likelihood of having vulnerabilities can be estimated from past experiences.

As future work, we will address those limitations by refining and extending the mod-
els, employing real vulnerabilities for experiments and case studies, and studying vari-
ous applications of the proposed diversity metrics.

Acknowledgements. The authors thank the anonymous reviewers for their valuable
comments. The work of Sushil Jajodia and Massimiliano Albanese was partially sup-
ported by the Army Research Office under grants W911NF-13-1-0421, W911NF-09-
1-0525, and W911NF-13-1-0317, and by the Office of Naval Research under grants
N00014-12-1-0461 and N00014-13-1-0703. The work of Sushil Jajodia and Lingyu
Wang was also supported by the National Institute of Standards and Technology un-
der the grant 60NANB14D060. The work of Lingyu Wang and Mengyuan Zhang was

510 L. Wang et al.

also supported by Natural Sciences and Engineering Research Council of Canada un-
der Discovery Grant N01035. Commercial products are identified in order to adequately
specify certain procedures. In no case does such identification imply recommendation
or endorsement by the National Institute of Standards and Technology, nor does it imply
that the identified products are necessarily the best available for the purpose.

References

1. Falliere, N., Murchu, L.O., Chien, E.: W32.stuxnet dossier. Symantec Security Response
(2011)

2. Littlewood, B., Strigini, L.: Redundancy and diversity in security. In: Samarati, P., Ryan,
P.Y.A., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS, vol. 3193, pp. 423–438.
Springer, Heidelberg (2004)

3. Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu, W., Davidson, J., Knight, J., Nguyen-Tuong,
A., Hiser, J.: N-variant systems: A secretless framework for security through diversity. De-
fense Technical Information Center (2006)

4. Gao, D., Reiter, M.K., Song, D.: Behavioral distance measurement using hidden markov
models. In: Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 19–40.
Springer, Heidelberg (2006)

5. Chun, B., Maniatis, P., Shenker, S.: Diverse replication for single-machine byzantine-fault
tolerance. In: USENIX Annual Technical Conference, pp. 287–292 (2008)

6. Garcia, M., Bessani, A., Gashi, I., Neves, N., Obelheiro, R.: OS diversity for intrusion tol-
erance: Myth or reality? In: 2011 IEEE/IFIP 41st International Conference on Dependable
Systems & Networks (DSN), pp. 383–394 (2011)

7. Bhatkar, S., DuVarney, D., Sekar, R.: Address obfuscation: An efficient approach to com-
bat a broad range of memory error exploits. In: Proceedings of the 12th USENIX Security
Symposium, Washington, DC, vol. 120 (2003)

8. Team, T.P.: PaX address space layout randomization, http://pax.grsecurity.net/
9. Kc, G., Keromytis, A., Prevelakis, V.: Countering code-injection attacks with instruction-set

randomization. In: Proceedings of the 10th ACM Conference on Computer and Communi-
cations Security, pp. 272–280. ACM (2003)

10. Bhatkar, S., Sekar, R.: Data space randomization. In: Zamboni, D. (ed.) DIMVA 2008.
LNCS, vol. 5137, pp. 1–22. Springer, Heidelberg (2008)

11. Jajodia, S., Ghosh, A., Swarup, V., Wang, C., Wang, X.: Moving Target Defense: Creating
Asymmetric Uncertainty for Cyber Threats, 1st edn. Springer (2011)

12. Yang, Y., Zhu, S., Cao, G.: Improving sensor network immunity under worm attacks: a soft-
ware diversity approach. In: Proceedings of the 9th ACM International Symposium on Mo-
bile ad hoc Networking and Computing, pp. 149–158. ACM (2008)

13. Caballero, J., Kampouris, T., Song, D., Wang, J.: Would diversity really increase the robust-
ness of the routing infrastructure against software defects? In: Proceedings of the Network
and Distributed System Security Symposium (2008)

14. Elton, C.: The ecology of invasion by animals and plants. University of Chicago Press,
Chicago (1958)

15. Pielou, E.: Ecological diversity. Wiley, New York (1975)
16. Hill, M.: Diversity and evenness: a unifying notation and its consequences. Ecology 54(2),

427–432 (1973)
17. Leinster, T., Cobbold, C.: Measuring diversity: the importance of species similarity. Ecol-

ogy 93(3), 477–489 (2012)
18. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.: Automated generation and analysis of

attack graphs. In: Proceedings of the 2002 IEEE Symposium on Security and Privacy (2002)

http://pax.grsecurity.net/

Modeling Network Diversity for Evaluating the Robustness of Networks 511

19. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulnerability anal-
ysis. In: Proceedings of ACM CCS 2002 (2002)

20. Albanese, M., Jajodia, S., Noel, S.: A time-efficient approach to cost-effective network hard-
ening using attack graphs. In: Proceedings of the 42nd Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN 2012), pp. 1–12 (2012)

21. Garey, M., Johnson, D.: Computers and intractability: A guide to the theory of NP-
Completeness. W.H. Freeman, San Francisco (1979)

22. Yuan, S., Varma, S., Jue, J.: Minimum-color path problems for reliability in mesh networks.
In: 24th Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM), pp. 2658–2669 (2005)

23. Frigault, M., Wang, L., Singhal, A., Jajodia, S.: Measuring network security using dynamic
bayesian network. In: Proceedings of 4th ACM QoP (2008)

24. Mell, P., Scarfone, K., Romanosky, S.: Common vulnerability scoring system. IEEE Security
& Privacy 4(6), 85–89 (2006)

25. National vulnerability database, http://www.nvd.org (May 9, 2008)
26. Gaitanis, K., Cohen, E.: Open bayes 0.1.0 (2013),

https://pypi.python.org/pypi/OpenBayes
27. Idika, N., Bhargava, B.: Extending attack graph-based security metrics and aggregating their

application. IEEE Transactions on Dependable and Secure Computing 9, 75–85 (2012)
28. Wang, L., Singhal, A., Jajodia, S.: Toward measuring network security using attack graphs.

In: Proceedings of 3rd ACM QoP (2007)
29. Manadhata, P., Wing, J.: An attack surface metric. IEEE Trans. Softw. Eng. 37(3), 371–386

(2011)
30. Wang, L., Jajodia, S., Singhal, A., Noel, S.: k-zero day safety: Measuring the security risk

of networks against unknown attacks. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.)
ESORICS 2010. LNCS, vol. 6345, pp. 573–587. Springer, Heidelberg (2010)

31. Wang, L., Jajodia, S., Singhal, A., Cheng, P., Noel, S.: k-zero day safety: A network security
metric for measuring the risk of unknown vulnerabilities. IEEE Transactions on Dependable
and Secure Computing 11(1), 30–44 (2013)

32. Wang, L., Singhal, A., Jajodia, S.: Measuring the overall security of network configurations
using attack graphs. In: Barker, S., Ahn, G.-J. (eds.) Data and Applications Security 2007.
LNCS, vol. 4602, pp. 98–112. Springer, Heidelberg (2007)

33. Holm, H., Ekstedt, M., Andersson, D.: Empirical analysis of system-level vulnerability met-
rics through actual attacks. IEEE Trans. Dependable Secur. Comput. 9(6), 825–837 (2012)

34. Kheir, N., Cuppens-Boulahia, N., Cuppens, F., Debar, H.: A service dependency model for
cost-sensitive intrusion response. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ES-
ORICS 2010. LNCS, vol. 6345, pp. 626–642. Springer, Heidelberg (2010)

35. Avizienis, A., Chen, L.: On the implementation of n-version programming for software fault
tolerance during execution. In: Proc. IEEE COMPSAC., vol. 77, pp. 149–155 (1977)

36. Mitra, S., Saxena, N., McCluskey, E.: A design diversity metric and analysis of redundant
systems. IEEE Trans. Comput. 51(5), 498–510 (2002)

37. Littlewood, B., Popov, P., Strigini, L.: Modeling software design diversity: A review. ACM
Comput. Surv. 33(2), 177–208 (2001)

38. Maxion, R.: Use of diversity as a defense mechanism. In: Proceedings of the 2005 Workshop
on New Security Paradigms, NSPW 2005, pp. 21–22. ACM, New York (2005)

39. Saı̈dane, A., Nicomette, V., Deswarte, Y.: The design of a generic intrusion-tolerant architec-
ture for web servers. IEEE Trans. Dependable Sec. Comput. 6(1), 45–58 (2009)

40. Totel, E., Majorczyk, F., Mé, L.: Cots diversity based intrusion detection and application to
web servers. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 43–62.
Springer, Heidelberg (2006)

http://www.nvd.org
https://pypi.python.org/pypi/OpenBayes

Author Index

Ahmed, Naveed I-488
Albanese, Massimiliano II-494
Amariucai, George T. I-292
Ambrosin, Moreno I-76
Au, Man Ho II-73, II-182
Aumasson, Jean-Philippe II-19
Aviv, Adam J. II-365
Azraoui, Monir I-239

Bai, Kun I-310
Balu, Raghavendran II-146
Berthomé, Pascal II-200
Bertino, Elisa I-400, II-257
Bilogrevic, Igor II-128
Biskup, Joachim II-165
Bonatti, Piero A. II-165
Bulling, Andreas I-56
Busold, Christoph I-76

Caballero, Juan II-237
Camenisch, Jan II-109
Cao, Zhenfu II-55
Capkun, Srdjan I-488
Chari, Suresh N. II-383
Chen, Liqun I-380
Chen, Xiaofeng I-148
Chothia, Tom II-219
Chow, Sherman S.M. I-326
Christin, Nicolas I-19
Conti, Mauro I-76, I-183
Cortier, Véronique II-327

Decker, Christian II-313
De Cristofaro, Emiliano II-128
Deng, Hua I-362
Deng, Robert H. I-273, I-419
Dong, Changyu I-380
Dong, Xiaolei II-55

Elkhiyaoui, Kaoutar I-239

Federrath, Hannes I-37
Freudiger, Julien II-128
Fritz, Mario I-56

Fuchs, Karl-Peter I-37
Furon, Teddy II-146

Galdi, Clemente II-165
Galindo, David II-327
Gambs, Sébastien II-146
Gates, Christopher II-383
Glondu, Stéphane II-327
Gu, Guofei I-163, II-401
Gu, Yufei II-237
Guan, Yong I-292

Han, Jinguang II-73
Hao, Feng II-257
Herrmann, Dominik I-37
Heydemann, Karine II-200
Horne, William I-1
Huang, Xinyi I-526, II-182

Izabachène, Malika II-327

Jajodia, Sushil I-202, II-494
Jiang, Wei I-400
Jing, Jiwu I-202, II-475
Jovanovic, Philipp II-19

Kate, Aniket II-345
Kawamoto, Yusuke II-219
Kiefer, Franziskus II-295
Koehl, Aaron II-419
Koo, Woo Kwon II-1

Lai, Junzuo I-273, I-419
Lalande, Jean-François II-200
Leach, Kevin I-219
Lee, Dong Hoon II-1
Lee, Kwangsu II-1
Lehmann, Anja II-109
Leontiadis, Nektarios I-19
Li, Jin I-148
Li, Min I-310
Li, Ninghui II-383
Li, Yingjiu I-419
Liang, Kaitai I-257
Ligatti, Jay I-508

514 Author Index

Lin, Xiaodong II-55
Lin, Zhiqiang II-237
Lindemann, Jens I-37
Liu, Daiping II-419
Liu, Jianwei II-91
Liu, Joseph K. I-130, I-257, II-182
Liu, Peng I-310, II-475
Liu, Weiran II-91
Liu, Xiao I-362
Liu, Yao I-508
Liu, Zhen I-326
Lou, Wenjing I-148

Ma, Jianfeng I-148
Mace, John C. I-344
Manadhata, Pratyusa K. I-1
Manulis, Mark II-295
Mao, Jian I-362
Marson, Giorgia Azzurra II-37
Min, Byungho II-457
Molloy, Ian II-383
Molva, Refik I-239
Mónica, Diogo I-94
Moreno-Sanchez, Pedro II-345
Morisset, Charles I-344
Mu, Yi II-73

Nagaraja, Shishir II-439
Neven, Gregory II-109
Neves, Samuel II-19
Nicol, Tony I-454
Ning, Jianting II-55
Novakovic, Chris II-219

Önen, Melek I-239

Pang, Hweehwa I-273
Park, Jong Hwan II-1
Park, Youngja II-383
Peris-Lopez, Pedro I-183
Poettering, Bertram I-436, II-37
Pöpper, Christina I-488
Porras, Phillip I-163

Qin, Bo I-326, I-362, II-91

Rao, Prasad I-1
Rial, Alfredo II-109
Ribeiro, Carlos I-94
Ruffing, Tim II-345

Sadeghi, Ahmad-Reza I-76
Safavi-Naini, Reihaneh I-112
Samanthula, Bharath Kumar I-400
Sauro, Luigi II-165
Schröder, Dominique I-56
Schunter, Matthias I-76
Schwenk, Jörg II-277
Shetty, Sachin II-475
Shi, Jie I-419
Shi, Wenchang I-362
Simkin, Mark I-56
Singhal, Anoop II-494
Sonchack, John II-365
Stavrou, Angelos I-219, II-419
Stebila, Douglas I-436
Suarez-Tangil, Guillermo I-183
Sun, He I-202
Sun, Kun I-202
Susilo, Willy I-257, I-472, II-73, II-182

Tan, Xiao I-326
Tapiador, Juan E. I-183

Urbina, David II-237
Uzun, Ersin II-128

van Moorsel, Aad I-344
Varadharajan, Vijay II-457
Viet Xuan Phuong, Tran I-472

Wang, Haining I-219, II-419
Wang, Haopei II-401
Wang, Lingyu II-494
Wang, Tao I-508
Wang, Yong II-401
Wang, Yongge I-454
Wang, Yuewu I-202
Wang, Yujue I-326
Wattenhofer, Roger II-313
Wei, Lifei II-55
Weng, Jian I-148, I-273, I-419
Wong, Duncan S. I-257, I-326
Wu, Qianhong I-326, I-362, II-91

Xiang, Yang I-526
Xu, Gang I-292
Xu, Haitao II-419
Xu, Lei II-401
Xu, Li I-526

Author Index 515

Xu, Zenglin II-383
Xu, Zhaoyan I-163, II-401

Yadav, Sandeep I-1
Yang, Chao I-163
Yang, Guomin I-472
Yegneswaran, Vinod I-163
Yi, Xun II-257
Yiu, Siu Ming I-130
Yu, Meng I-310
Yu, Yong II-182
Yuen, Tsz Hon I-130

Zang, Wanyu I-310
Zha, Zili I-310
Zhang, Fengwei I-219
Zhang, Jialong II-401
Zhang, Lei I-362
Zhang, Liang Feng I-112
Zhang, Lingchen II-475
Zhang, Mengyuan II-494
Zhang, Ye I-130
Zhang, Yuexin I-526
Zhou, Jianying II-73, II-182
Zhou, Yunya II-91

	Preface
	Organization
	Table of Contents – Part II
	Public-Key Revocation and Tracing Schemes with Subset Difference Methods Revisited
	1 Introduction
	1.1 Our Contributions
	1.2 Our Technique
	1.3 RelatedWork

	2 Preliminaries
	2.1 Bilinear Groups
	2.2 Complexity Assumptions

	3 Single Revocation Encryption
	3.1 Definitions
	3.2 Construction
	3.3 Security
	3.4 Discussions

	4 Subset Cover Framework
	4.1 Full Binary Tree
	4.2 SD Scheme

	5 Revocation Encryption
	5.1 Construction
	5.2 Security
	5.3 Discussions

	6 Conclusion
	References

	NORX: Parallel and Scalable AEAD
	1 Introduction
	2 Specification
	2.1 Notations
	2.2 Generalities
	2.3 Layout Overview
	2.4 The Round Function F
	2.5 Encryption and Tag Generation
	2.6 Decryption and Tag Verification
	2.7 Datagrams

	3 Expected Strength
	4 Rationale
	5 Performance
	5.1 Software
	5.2 Hardware
	5.3 Comparison to AES-GCM

	6 Preliminary Cryptanalysis
	6.1 Differential Cryptanalysis
	6.2 Algebraic Cryptanalysis
	6.3 Other Properties

	References

	Even More Practical Secure Logging:Tree-Based Seekable Sequential Key Generators
	1 Introduction
	1.1 Contributions and Organization
	1.2 Related Work

	2 Preliminaries
	2.1 Pseudorandom Generators
	2.3 Stacks and Their Operations

	3 Seekable Sequential Key Generators
	3.1 Functionality and Syntax
	3.2 Security Requirements
	3.3 An Application: Protecting Locally Stored Log Files
	3.4 Prior Constructions

	4 SSKGs from Pseudorandom Generators
	4.1 Sequential Key Generator from Binary Trees
	4.2 Security of Our Tree-Based SSKG
	4.3 An Enhanced Seeking Procedure

	5 Practical Aspects
	Conclusion
	References

	Large Universe Ciphertext-PolicyAttribute-Based Encryption with White-BoxTraceability
	1 Introduction
	1.1 Our Contribution
	1.2 Our Technique
	1.3 Related Work
	1.4 Organization

	2 Traceable Large Universe CP-ABE
	2.1 Definition
	2.2 T-LU-CP-ABE Selective Security
	2.3 Traceability

	3 Background
	3.1 Notation
	3.2 Access Policy
	3.3 Linear Secret-Sharing Schemes
	3.4 Prime Order Bilinear Groups
	3.5 Assumptions
	3.6 Shamir’s (¯t, ¯n) Threshold Scheme

	4 OurT-LU-CP-ABESystem
	4.1 Construction
	4.2 Selective Security Proof
	4.3 Traceability Proof

	5 Extensions
	5.1 Transform from One-Use T-LU-CP-ABE to Multi-Use T-LU-CP-ABE
	5.2 Revocable T-LU-CP-ABE

	6 Conclusion and Future Work
	References

	PPDCP-ABE: Privacy-Preserving DecentralizedCiphertext-Policy Attribute-Based Encryption
	1 Introduction
	1.1 Privacy in Multi-Authority Attribute-Based Encryption
	1.2 Our Contributions
	1.3 Organization

	2 Related Work
	2.1 Attribute-Based Encryption
	2.2 Multi-Authority Attribute-Based Encryption
	2.3 Anonymous Credential

	3 Preliminaries
	3.1 Complexity Assumption
	3.2 Building Blocks
	3.3 DCP-ABE: Decentralized Cipher-Policy Attribute-Based Encryption
	3.4 Security Model of Decentralized Cipher-Policy Attribute-Based Encryption
	3.5 PPDCP-ABE: Privacy-Preserving Decentralized Cipher-Policy Attribute-Based Encryption
	3.6 Security Model of Privacy-Preserving Decentralized Cipher-Policy Attribute-Based Encryption

	4 Our Constructions
	4.1 DCP-ABE: Decentralized Cipher-Policy Attribute-Based Encryption
	4.2 Privacy-Preserving Key Extract Protocol

	5 Conclusion
	References

	Practical Direct Chosen Ciphertext SecureKey-Policy Attribute-Based Encryptionwith Public Ciphertext Test
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Bilinear Groups and Computational Assumption
	2.3 Access Structures and Linear Secret Sharing Schemes
	2.4 Chameleon Hash

	3 Key-Policy Attribute-Based Encryption
	4 Direct CCA2-Secure KP-ABE with Public Verifiability
	4.1 Basic Ideas
	4.2 Our Construction
	4.3 Performance Analysis
	4.4 Security Analysis

	5 Conclusion
	References

	Privacy-Preserving Auditingfor Attribute-Based Credentials
	1 Introduction
	2 System Overview
	3 Security Definition of Privacy-Preserving Audits
	3.1 Universally Composable Security
	3.2 Ideal Functionality of Privacy-Preserving Audits

	4 Preliminaries
	4.1 Trapdoor Commitment Schemes
	4.2 Signature Schemes
	4.3 Signatures of Knowledge

	5 Construction of Privacy-Preserving Audits
	5.1 Our Realization of FAUD
	5.2 Security Analysis

	6 Instantiation of Privacy-Preserving Audits
	7 Conclusion
	References

	What’s the Gist? Privacy-Preserving Aggregation of User Profiles
	1 Introduction
	2 System Architecture
	2.1 Problem Statement
	2.2 System Model
	2.3 Applications
	2.4 ThreatModel

	3 Monetizing User Profiles with Privacy
	3.1 High-Level Description
	3.2 Detailed Description

	4 Evaluation
	4.1 Setup
	4.2 Results
	4.3 Security

	5 Related Work
	5.1 Privacy-Preserving Aggregation
	5.2 Privacy-PreservingMonetization

	6 Conclusion
	References

	Challenging Differential Privacy:The Case of Non-interactive Mechanisms
	1 Introduction
	2 Differential Privacy
	3 BLIP
	3.1 Setup of BLIP
	3.2 The Simple Model
	3.3 More Complex Models

	4 JLT
	4.1 Description
	4.2 A Simple Probabilistic Model

	5 Theoretical Analysis
	5.1 Single Decoder
	5.2 Joint Decoder

	6 Practical Decoders
	6.1 Single Decoders
	6.2 Joint Decoder
	6.3 Transition Probabilities

	7 Experiments
	7.1 Setup
	7.2 Reconstruction Attacks
	7.3 Identifying the Presence of an Item
	7.4 Utility-Privacy Trade-Off

	8 Conclusion
	References
	A Appendix A: BLIP Mechanism
	B Appendix B: JLT Mechanism

	Optimality and Complexity of Inference-ProofData Filtering and CQE
	1 Introduction
	2 Related Work
	3 The Abstract Data Filtering Framework
	4 Complexity
	4.1 Poly-Time Computability of Optimal Filterings

	5 Greedy CQE and Optimality
	5.1 Greedy CQE Based on Refusals
	5.2 Greedy CQE Based on Lies

	6 Discussion and Future Work
	References

	New Insight to Preserve Online SurveyAccuracy and Privacy in Big Data Era
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Mathematical Definitions
	3.2 Monotone Span Programs

	4 Overview
	4.1 Basic Idea
	4.2 Assumptions
	4.3 Threat Model
	4.4 Notations

	5 Details of Our Online Survey System
	5.1 The Construction
	5.2 Security Analysis
	5.3 A Practical Example
	5.4 Performance Analysis

	6 Other Applications
	7 Conclusion
	References

	Software Countermeasures for Control FlowIntegrity of Smart Card C Codes
	1 Introduction
	2 Related Work
	2.1 Fault Models
	2.2 Code Securing and Control Flow Securing

	3 Weakness Detection and Code Securing; Overview
	4 Detection of Weaknesses and Visualization
	4.1 Simulation of Attacks
	4.2 Classification of Simulated Attacks
	4.3 Weaknesses Analysis and Visualization

	5 Countermeasure for C Code Securing
	5.1 Protection of a Function and Straight-Line Flow of Statements
	5.2 Conditional if-then and if-then-else Constructs
	5.3 Loop Constructs

	6 Formal Verification of Countermeasures
	6.1 Code Representation and Decomposition for CFI Verification
	6.2 Models for Verification of Control Flow Integrity
	6.3 Specification of Control Flow Integrity and Equivalence Checking

	7 Experimental Results
	8 Conclusion
	References

	LeakWatch: Estimating Information Leakagefrom Java Programs
	1 Introduction
	2 Background
	2.1 Leakage Measures and Estimating Mutual Information
	2.2 Our Information Leakage Model

	3 Estimating Min-Entropy Leakage
	4 The Design of LeakWatch
	4.1 Collecting Sufficient Program Execution Data

	5 Implementing LeakWatch
	5.1 Ensuring the Independence of Target Program Executions
	5.2 Automatically Providing User Input to Target Programs

	6 Practical Applications
	6.1 A Poorly-Implemented Multi-Party Computation Protocol
	6.2 Analysing the Design of Stream Ciphers
	6.3 Recipient Disclosure in OpenPGP Encrypted Messages

	7 Conclusion
	References

	SIGPATH:A Memory Graph Based Approach for Program Data Introspection and Modification
	1 Introduction
	2 Overview and Problem Definition
	2.1 The Memory Graph
	2.2 Path Signatures
	2.3 Approach Overview

	3 Preparation
	3.1 Collecting the Snapshots
	3.2 Building the Memory Graph
	3.3 Finding the Data of Interest

	4 Path Signature Generation
	5 Evaluation
	6 Limitations and Future Work
	7 Related Work
	8 Conclusion
	References

	ID-Based Two-Server Password-AuthenticatedKey Exchange
	1 Introduction
	2 Definitions
	3 Our Compiler for Two-Server PAKE Protocol
	3.1 Description of Our Compiler
	3.2 Correctness, Explicit Authentication, and Efficiency

	4 Proof of Security
	5 Conclusion
	References

	Modelling Time for Authenticated KeyExchange Protocols
	1 Introduction
	2 Related Work
	3 FormalModel
	3.1 Execution Environment
	3.2 Adversarial Capabilities
	3.3 Security Model 1: One-Message Protocols
	3.4 Security Model 2: Two-Message Protocols

	4 One-Time-Passwords
	5 One-Round Authentication Protocols
	5.1 Authentication
	5.2 Authenticated Key Exchange

	6 Conclusion and Future Work
	References

	Zero-Knowledge Password Policy Checks and Verifier-Based PAKE
	1 Introduction
	2 Concept Overview and Building Blocks
	3 Modeling Passwords and Policies
	3.1 Password Strings and Dictionaries
	3.2 Structure-Preserving Mapping of Password Strings to Integers
	3.3 Password Policies

	4 Randomized Password Hashing
	4.1 Randomized Password Hashing from Pedersen Commitments

	5 ZKPPC and Password Registration
	5.1 Zero-Knowledge Password Policy Checks
	5.2 A General ZKPPC Framework for ASCII-Based Passwords
	5.3 A Concrete ZKPPC Protocol for ASCII-Based Passwords
	5.4 Blind Registration of Passwords Based on ZKPPC

	6 VPAKE Protocols for ZKPPC-Registered Passwords
	7 Conclusion
	References

	Bitcoin Transaction Malleability and MtGox
	1 Introduction
	2 Transaction Malleability
	2.1 Bitcoin Scripts
	2.2 Malleability Attacks

	3 MtGox Incident Timeline
	4 Measurements
	4.1 Global Analysis
	4.2 The MtGox Incident
	4.3 Beyond Our Data

	5 Related Work
	6 Conclusion
	References

	Election Verifiability for Helios under Weaker Trust Assumptions
	1 Introduction
	2 Syntax of a Voting System
	2.1 Voting Algorithms
	2.2 Correctness

	3 Verifiability Definitions
	3.1 Strong Verifiability
	3.2 Weak Verifiability
	3.3 Tally Uniqueness

	4 Sufficient Conditions for Verifiability
	4.1 Accuracy
	4.2 A Sufficient Condition forWeak Verifiability
	4.3 A Sufficient Condition for Strong Verifiability

	5 Helios-C : Helios with Credentials
	6 Implementation
	7 Conclusion
	References

	CoinShuffle: Practical DecentralizedCoin Mixing for Bitcoin
	1 Introduction
	2 Background
	2.1 Bitcoin
	2.2 Bitcoin Mixing
	2.3 Bitcoin Mixing with a Single Transaction

	3 Problem Definition
	3.1 Design Goals
	3.2 Non-goals
	3.3 Threat Model

	4 Solution Overview
	4.1 Main Idea
	4.2 Protocol Overview

	5 The CoinShuffle Protocol
	5.1 Cryptographic Primitives
	5.2 Core Protocol Description
	5.3 Practical Considerations

	6 Analysis
	6.1 Security Analysis
	6.2 System Analysis

	7 Performance Evaluation
	8 Related Work
	9 Conclusion
	References

	LESS Is More: Host-Agent Based Simulatorfor Large-Scale Evaluation of Security Systems
	1 Introduction
	2 Related Work
	3 Large Scale and Collaborative Security Systems
	3.1 Entropy Based Anomaly Detection
	3.2 Highly Predictive Blacklisting
	3.3 Peer-to-peer Botnet Detection
	3.4 Collaborative Anomaly Detection

	4 Simulation for Large Scale Network Security
	4.1 Preprocessing
	4.2 Assigning Applications to Host Agents
	4.3 Configuring Background Traffic Generation Processes
	4.4 Configuring Malicious Traffic Generation Processes
	4.5 Executing the Simulation

	5 Evaluation
	5.1 Experimental Setup
	5.2 Entropy Based Detector
	5.3 Highly Predictive Blacklisting
	5.4 Peer-to-Peer Bot Detector
	5.5 Collaborative Anomaly Detection

	6 Discussion
	7 Conclusion
	References

	Detecting Insider Information Theft Using Features from File Access Logs
	1 Introduction
	2 Related Work
	3 Problem Definition
	3.1 AdversaryModel
	3.2 Challenges and Evaluation Criteria

	4 Proposed Approaches
	4.1 The Scoring Function: score(f, g)
	4.2 The Aggregation Function: aggg∈AH
	4.3 Feature Generation
	4.4 Using the Features

	5 Experimental Results
	5.1 Portion of Files Accessible
	5.2 Profile Identification
	5.3 Attacker

	6 Conclusions
	References
	A Appendix

	SRID: State Relation Based Intrusion Detectionfor False Data Injection Attacks in SCADA
	1 Introduction
	2 Background and Problem Statement
	2.1 Background
	2.2 Assumption and Approach Overview
	2.3 Terminology

	3 System Design
	3.1 Component Analysis
	3.2 Detection Model Generation
	3.3 Attack Origins Inference

	4 Evaluation
	4.1 Data Collection
	4.2 Overhead Analysis
	4.3 Attack Detection Results
	4.4 Attack Origin Inference Results

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Click Fraud Detection on the Advertiser Side
	1 Introduction
	2 Background
	2.1 Clickbots
	2.2 Human Clickers
	2.3 Advertisers
	2.4 Web Standards and Feature Detection Techniques

	3 Methodology
	3.1 JavaScript Support and Mouse Event Test
	3.2 Functionality Test
	3.3 Browsing Behavior Examination

	4 Experimental Results
	4.1 Running Ad Campaigns
	4.2 Characterizing the Click Traffic
	4.3 Validating Detection Approach

	5 Discussion and Limitations
	6 Related Work
	7 Conclusion
	References

	Botyacc: Unified P2P Botnet Detection Using Behavioural Analysis and Graph Analysis
	1 Introduction
	2 Architecture
	3 TheProblem
	4 Inference Technique
	4.1 The Methodology
	4.2 Step1: Constructing the Dual Graph
	4.3 Step2: Partitioning

	5 Noise Tolerance
	6 Results
	6.1 Effects of Botnet Topology and Size

	7 Discussion
	8 Related Work
	8.1 Non-signature Based Methods
	8.2 Graph-Based Approaches

	9 Conclusion
	References
	A Appendix

	Feature-Distributed Malware Attack:Risk and Defence
	1 Introduction
	2 Feature-Distributed Malware
	2.1 Malware Features and Application-Based Permission
	2.2 Feature-Distributed Malware: Concept
	2.3 Remote Attacks – Examples
	2.4 Feature Distribution Strategy

	3 Implementation
	3.1 Three Malicious Component Types
	3.2 Automatic Malware Generation
	3.3 Malware Operation: Initialisation and Feature Distribution

	4 Evaluation
	4.1 Malware Operation
	4.2 Bypassing Application Whitelisting
	4.3 Bypassing Egress Filtering
	4.4 Bypassing Anti-virus
	4.5 Limitations

	5 Defence against Feature Distributed Malware
	5.1 Proposed Defence Mechanism
	5.2 Evaluation of the Proposed Defence

	6 Concluding Remarks
	References

	RootkitDet: Practical End-to-End Defenseagainst Kernel Rootkits in a Cloud Environment
	1 Introduction
	2 Threat Model and Assumptions
	2.1 Threat Model
	2.2 Assumptions

	3 Overview of RootkitDet System
	3.1 Overview
	3.2 Architecture

	4 Design and Implementation of RootkitDet
	4.1 Detection
	4.2 Diagnosis
	4.3 Recovery
	4.4 Implementation

	5 Evaluation of RootkitDet System
	5.1 Effectiveness
	5.2 Overhead to the Guest OSes
	5.3 Performance

	6 Related Work
	7 Discussions and Limitations
	8 Conclusions
	References
	9 Appendix
	9.1 Extracting Instructions

	Modeling Network Diversity for Evaluating the Robustness of Networks against Zero-Day Attacks
	1 Introduction
	2 Preliminaries
	2.1 Use Cases
	2.2 Biodiversity-Inspired Metrics

	3 Network Diversity Based on Least Attacking Effort
	3.1 The Model
	3.2 The Complexity and Algorithm

	4 Probabilistic Network Diversity
	5 Simulation
	6 Related Work
	7 Conclusion
	References

	Table of Contents – Part I
	Author Index

