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Abstract. Case-based reasoning (CBR)based ondescription logics (DLs)
has gained a lot of attention lately. Adaptation is a basic task in CBR
that can be modeled as a knowledge base revision problem which has been
solved in propositional logic. However, in DLs, adaptation is still a chal-
lenge problem since existing revision operators only work well for DLs of
the DL-Lite family. It is difficult to design revision algorithms that are
syntax-independent and fine-grained. In this paper, we propose a new
method for adaptation based on the tractable DL EL⊥. Following the idea
of adaptation as revision, we firstly extend the logical basis for describ-
ing cases from propositional logic to DL and present a formalism for adap-
tation based on EL⊥. Then we show that existing revision operators and
algorithms in DLs can not be used for this formalism. Finally we present
our adaptation algorithm. Our algorithm is syntax-independent and fine-
grained, and satisfies the requirements on revision operators.

Keywords: description logic, case-based reasoning, adaptation, knowl-
edge base revision, EL⊥.

1 Introduction

Description logic (DL) is a family of logics for representing and reasoning about
knowledge of static application domains [2]. It is playing a central role in the
Semantic Web, serving as the basis of the W3C-recommended Web ontology
language OWL [11]. The main strength of DLs is that they offer considerable
expressive power often going far beyond propositional logic, while reasoning is
still decidable. Furthermore, DLs have well-defined semantics and are supported
by many efficient reasoners.

In the last few years, there has been a growing interest in bringing the power
and character of DLs into case-based reasoning (CBR) [9,10,18]. CBR is a type
of analogical reasoning in which a new problem is solved by reusing past ex-
periences called source cases. There are two basic tasks in the CBR inference:
retrieval and adaptation. Retrieval aims at selecting a source case that is similar
to the new problem according to some similarity criterion. Adaptation aims at
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generating a solution for the new problem by adapting the solution contained in
the source case. At present, most research is concerned with the retrieval task
when introducing DLs into CBR [9,18].

In comparison to retrieval, adaptation is often considered to be the more
difficult task. One approach for this task is to model the adaptation process
as the revision problem of a knowledge base (KB) [7,17]; it is hoped that an
adaptation algorithm satisfies the AGM postulates on revision operators [1,13].
In propositional logic, there are many revision operators which satisfy the AGM
postulates and can be applied to complete the adaptation task [17]. However,
in DLs, it is difficult to design revision operators and algorithms that satisfy
the AGM postulates [4]. Especially, it is a great challenge to design revision
algorithms that are independent of the syntactical forms of KBs and are fine-
grained for the minimal change principle.

According to the semantics adopted for defining “minimal change”, existing
revision operators and algorithms for DLs can be divided into two groups:model-
based approaches (MBAs) [14] and formula-based approaches (FBAs) [4,16,20].
In MBAs, the semantics of minimal change is defined by measuring the distance
between models. MBAs are syntax-independent and fine-grained, but at present
they only work for DLs of the DL-Lite family [14]. In FBAs, the semantics
of minimal change is reflected in the minimality of formulas removed by the
revision process. There are two FBAs in the literature. One is based on the
deductive closure of a KB [4,16]; it is syntax-independent and fine-grained, but
again only works for DL-Lite. Another is based on justifications [20]; although
it is applicable to DLs such as SHOIN , it is syntax-dependent and not fine-
grained.

DLs of the EL family are popular for building large-scale ontologies [3]. Some
important medical ontologies and life science ontologies are built in EL, such
as the SNOMED CT [19] and the Gene Ontology [8]. A feature of this family
of DLs is that they allow for reasoning in polynomial time, while being able to
describe “relational structures”. They are promising DLs for CBR since they
are, on the one hand, of interesting expressive power and, on the other hand,
restricted enough so that we can hope for a practical adaptation approach.

In the literature, some good results on combining DLs of the EL family with
the retrieval task of CBR have been presented [18]; many algorithms for mea-
suring the similarity of concepts in these DLs have also been proposed [15].
However, adaptation based on these DLs is still an open problem. One reason
is that existing revision operators applicable to these DLs, to the best of our
knowledge, are syntax-dependent and not fine-grained.

In this paper we present a new method for adaptation in the DL EL⊥ of the
EL family. Our contributions regard three aspects. Firstly, we extend the logical
basis for describing cases from propositional logic to the DL EL⊥, with a powerful
way of describing cases as ABoxes in DL. Secondly, we extend the “adaptation
as KB revision” view from [17] to the above setting and get a formalism for
adaptation based on EL⊥. Finally, for the adaptation setting we provide an
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adaptation algorithm which is syntax-independent and fine-grained. The proofs
of all of our technical results are given in the accompanying technical report [5].

2 The Description Logic EL⊥

The DL EL⊥ extends EL with bottom concept (and consequently disjointness
statements) [3]. Let NC , NR and NI be disjoint sets of concept names, role
names and individual names, respectively. EL⊥-concepts are built according to
the following syntax rule C ::= � | ⊥ |A | C �D | ∃r.C, where A ∈ NC , r ∈ NR,
and C,D range over EL⊥-concepts.

A TBox T is a finite set of general concept inclusions (GCIs) of the form C �
D, where C and D are concepts. An ABox A is a finite set of concept assertions
of the form C(a) and role assertions of the form r(a, b), where a, b ∈ NI , r ∈ NR,
and C is a concept. A knowledge base (KB) is a pair K = 〈T ,A〉.

Example 1. Consider the example on breast cancer treatment discussed in [17].
We add some background knowledge to it and describe the knowledge by the
following GCIs in a TBox T :

Tamoxifen � Anti-oestrogen, Anti-aromatases � Anti-oestrogen,

Tamoxifen � ∃metabolizedTo.(Compounds� ∃bindto.OestrogenReceptor),

(∃hasGene.CY P2D6) � (∃TreatBy.Tamoxifen) � ⊥.

These GCIs state that both tamoxifen and anti-aromatases are anti-oestrogen;
tamoxifen can be metabolized into compounds which will bind to the oestrogen
receptor; and tamoxifen is contraindicated for people with some gene of CYP2D6.

Suppose Mary is a patient with a gene of the class CYP2D6 and with some
symptom captured by a concept Symp. Then we can describe these information
by an ABox Npb = {Symp(Mary), ∃hasGene.CY P2D6(Mary)}. �


The semantics of EL⊥ is defined by an interpretation I = (ΔI , ·I), where the
interpretation domain ΔI is a non-empty set composed of individuals, and ·I is
a function which maps each concept name A ∈ NC to a set AI ⊆ ΔI , maps each
role name r ∈ NR to a binary relation rI ⊆ ΔI ×ΔI , and maps each individual
name a ∈ NI to an individual aI ∈ ΔI . The function ·I is inductively extended
to arbitrary concepts as follows: �I := ΔI , ⊥I := ∅, (C �D)I := CI ∩DI , and
(∃r.C)I := {x ∈ ΔI | there exists y ∈ ΔI such that (x, y) ∈ rI and y ∈ CI}.

The satisfaction relation “|=” between any interpretation I and any GCI
C � D, concept assertion C(a), role assertion r(a, b), TBox T or ABox A is
defined inductively as follows: I |= C � D iff CI ⊆ DI ; I |= C(a) iff aI ∈ CI ;
I |= r(a, b) iff (aI , bI) ∈ rI ; I |= T iff I |= X for every X ∈ T ; and I |= A iff
I |= X for every X ∈ A.

I is a model of a KB K = 〈T ,A〉 if I |= T and I |= A. We use mod(K) to
denote the set of models of a KB K. Two KBs K1 and K2 are equivalent (written
K1 ≡ K2) iff mod(K1) = mod(K2).
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There are many inference problems on DLs. Here we only introduce consis-
tency and entailment. A KB K = 〈T ,A〉 is consistent (or A is consistent w.r.t.
T ) ifmod(K) �= ∅. K entails a GCI, assertion or ABoxX (written K |= X) if I |=
X for every I ∈ mod(K). For these two inference problems the following results
hold: a KB K is inconsistent iff K |= � � ⊥ iff K |= ⊥(a) for some individual
name a occurring in K. If K is inconsistent, then we say that K entails a clash.

Example 2. Consider the TBox T and ABox Npb presented in Example 1. Sup-
pose there is an ABox Asol = {TreatBy(Mary, y), T amoxifen(y)} and a KB
K = 〈T ,Asol ∪ Npb〉. It is obvious that K is inconsistent and entails a clash.
More precisely, we have that K |= � � ⊥ and K |= ⊥(Mary). �


For any TBox, ABox or KB X , we use NX
C (resp., NX

R , NX
I ) to denote the

set of concept names (resp., role names, individual names) occurring in X , and
define the signature of X as sig(X) = NX

C ∪NX
R ∪NX

I .
For any concept C, the role depth rd(C) is the maximal nesting depth of “∃”

in C. For any TBox or ABox X , let sub(X) =
⋃

C�D∈X

{C,D} if X is a TBox,

and sub(X) = {C | C(a) ∈ X} if X is an ABox, then the depth of X is defined
as depth(X) = max{rd(C) | C ∈ sub(X)}.

3 Formalization of Adaptation Based on EL⊥

In this section we present a formalism for adaptation based on EL⊥. There are
many different approaches for the formalization of adaptation in CBR. Here we
follow the approach presented in [17] to formulate adaptation as knowledge base
revision, with the difference that our formalism is based on the DL EL⊥ instead
of propositional logic.

The basic idea of CBR is to solve similar problems with similar solutions. The
new problem that needs to be solved is called target problem. The problems which
have been solved and stored are called source problems. Each source problem pb
has a solution sol, and the pair (pb, sol) is called a source case. A finite set of
source cases forms a case base. Given a target problem tgt, the retrieval step
of CBR will pick out a source case (pb, sol) according to the similarity between
target problem and source problems, then the adaptation step will generate a
solution soltgt for tgt by adapting sol.

In [17], the adaptation process is modeled as KB revision in propositional
logic. More precisely, let two formulas kb1 = pb ∧ sol and kb2 = tgt, then the
solution soltgt is generated by calculating (dk ∧ kb1) ◦ (dk ∧ kb2), where dk is
a formula describing the domain knowledge, and ◦ is a revision operator that
satisfies the AGM postulates in propositional logic.

In our paper, after introducing the DL EL⊥ into CBR, knowledge in a CBR
system is composed of three parts:

– the domain or background knowledge which is represented as a TBox T ;
– the knowledge about case base in which each source case is described by an

ABox A = Apb ∪ Asol, where Apb describes the source problem and Asol

describes the solution;
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– the knowledge about target problem described by an ABox Npb.

With such a framework, given a target problem Npb, we can make use of
similarity-measuring algorithms presented in the literature [18,15] to select a
source case A = Apb ∪ Asol such that, by treating individual names occurring in
srce as variables, there exists a substitution σ such that σ(Apb) and Npb has the
maximum similarity. The retrieval algorithm will applies σ on Asol and return
σ(Asol) as a possible solution for the target problem.

Since retrieval algorithm is not the topic of this paper, we do not discuss it in
detail here. In the rest of this paper, we will omit the notation σ and use Asol

directly to denote the possible solution returned by the retrieval algorithm.
Now suppose a possible solution has been returned by the retrieval algorithm,

we define adaptation setting as follows.

Definition 1. An adaptation setting based on EL⊥ is a triple AS = (T ,Asol,
Npb), where T is a TBox describing the domain knowledge of the CBR system,
Npb is an ABox describing the target problem, and Asol is an ABox describing
the possible solution returned by the retrieval algorithm.

An ABox A′ is a solution case for an adaptation setting AS = (T ,Asol,Npb)
if sig(A′) ⊆ sig(T ) ∪ sig(Asol) ∪ sig(Npb) and the following statements hold:

(R1) 〈T ,A′〉 |= Npb;
(R2) A′ = Asol ∪ Npb if Asol ∪ Npb is consistent w.r.t. T ; and
(R3) if Npb is consistent w.r.t. T then A′ is also consistent w.r.t. T .

There may be more than one solution cases for an adaptation setting. From
these solution cases, the user will select the best one and get a solution for the
target problem.

The adaptation setting defined above is similar to the instance-level revision
based on DLs [4]; R1-R3 are just the basic requirements specified by the AGM
postulates on revision operators [1,13]. More precisely, R1 specifies that a re-
vision result must entail the new information Npb; R2 states that the revision
operator should not change the KB 〈T ,Asol ∪ Npb〉 if there is no conflict; R3
states that the revision operator must preserve the consistency of KBs.

From the point of view of adaptation, these requirements on solutions are
explained as follows [17]. If R1 is violated, then it means that the adaptation
process failed to solve the target problem. R2 states that if the possible solution
does not contradict the target problem w.r.t. the background knowledge, then
it can be applied directly to the target problem. R3 states that whenever the
description of the target problem is consistent w.r.t. the domain knowledge, the
adaptation process provides satisfiable result.

In the literature, there exist many revision operators and algorithms that can
generate revision results satisfying the above requirements [4,14,16,20]. However,
in practice, besides the necessary requirements specified by the definition, we
hope that the adaptation algorithm satisfies two more requirements.

Firstly, the adaptation algorithm should be syntax-independent. Especially, if
two target problems are logically equivalent w.r.t. the domain knowledge, then
they should have the same solution. This requirement is formalized as follows:
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(R4) LetAS1 = (T ,Asol1 ,Npb1) andAS2 = (T ,Asol2 ,Npb2) be two adaptation
settings with 〈T ,Asol1〉 ≡ 〈T ,Asol2〉 and 〈T ,Npb1〉 ≡ 〈T ,Npb2〉. If A′

1 is a
solution case for AS1, then there must be a solution case A′

2 for AS2 such
that 〈T ,A′

1〉 ≡ 〈T ,A′
2〉.

Secondly, the adaptation algorithm should guarantee a minimal change so that
the experience contained in the solution of source cases is preserved as much
as possible. Without such a requirement, given an adaptation setting AS =
(T ,Asol, Npb), if Asol ∪ Npb is inconsistent w.r.t. T , then the ABox Npb itself
is a solution case by the definition. However, it is obvious that Npb does not
contain any information on solution, and all the experiences contained in the
solution Asol of the source case are completely lost.

We hope to specify the requirement on minimal change formally. However,
it is non-trivial to do it in a framework based on DLs. Furthermore, it is well-
accepted that there is no general notion of minimality that will “do the right
thing” under all circumstances [4]. Therefore, under the framework of adaptation
setting, we only specify this requirement informally as follows:

(R5) If A′ is a solution case for the adaptation setting AS = (T ,Asol,Npb),
then the change from the KB 〈T ,Asol〉 to the KB 〈T ,A′〉 is minimal.

To sum up, given an adaptation setting, we hope to generate solution cases
which not only satisfy R1-R3 specified by Definition 1, but also satisfy R4 and
“some reading” of R5.

Before the end of this section, we look an example of adaptation setting.

Example 3. Consider the TBox T and ABox Npb presented in Example 1. Sup-
pose Npb is a description of the target problem. Suppose many successful treat-
ment cases have been recorded in the case base, and from them a possible solution
Asol = {TreatBy(Mary, y), T amoxifen(y)} is returned by the retrieval algo-
rithm. Then we get an adaptation setting AS = (T ,Asol,Npb). �


4 Existing Approaches to Instance-Level Revision

As we mentioned in Section 1, there are two groups of revision operators and
algorithms for DLs in the literature. In this section, we show that they either do
not support the DL EL⊥ or do not satisfy R4 and R5.

4.1 Model-based Approaches

MBAs define revision operators over the distance between interpretations [14].
Under the framework of adaptation setting, suppose A′

i (1 ≤ i ≤ n) are all the
solution cases for AS = (T ,Asol,Npb), and let M =

⋃

1≤i≤n

mod(〈T ,A′
i〉), then,

with MBAs, M should satisfy the following equation:

M = {J ∈ mod(〈T ,Npb〉) | there exists I ∈ mod(〈T ,Asol〉) with dist(I,J ) =

min{dist(I ′,J ′) | I ′ ∈ mod(〈T ,Asol〉),J ′ ∈ mod(〈T ,Npb〉)} }.
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With MBAs, we can firstly calculate the set M by the above equation, and
then construct the ABoxes A′

i (1 ≤ i ≤ n) correspondingly.
In propositional logic, since each interpretation is only a truth assignment

on propositional symbols, it is not difficult to measure the distance between
interpretations and to calculate the set of models according to the distance [17].
However, it becomes very complex for DL, since basic symbols of DL are concept
names, role names and individual names which are interpreted with set theory.

Let Σ be the set of concept names and role names occurring in AS. There
are four different approaches for measuring the distance dist(I,J ):

– dists�(I,J ) = �{X ∈ Σ | XI �= XJ },
– dists⊆(I,J ) = {X ∈ Σ | XI �= XJ },
– dista� (I,J ) = sum

X∈Σ
�(XI �XJ ),

– dista⊆(I,J , X) = XI �XJ for every X ∈ Σ,

where XI �XJ = (XI \XJ )∪ (XJ \XI). Distances under dists� and dista� are
natural numbers and are compared in the standard way. Distances under dists⊆
are sets and are compared by set inclusion. Distances under dista⊆ are compared
as follows: dista⊆(I1,J1) ≤ dista⊆(I2,J2) iff dista⊆(I1,J1, X) ⊆ dista⊆(I2,J2, X)
for every X ∈ Σ. It is assumed that all models have the same interpretation
domain and the same interpretation on individual names. In [14], the above four
different semantics for MBAs are denoted as Gs

� , Gs
⊆, Ga

� , and Ga
⊆ respectively.

The limitation of applying these MBAs in our adaptation setting is shown by
the following example.

Example 4. Consider an adaptation setting AS1 = (T1,A1,N1), where

T1 = {A � ∃R.A, A � C, E � ∃R.A � ⊥}, A1 = {A(a)}, N1 = {E(a)}.

Firstly, by applying MBAs with the semantics Gs
⊆ and Gs

� , we can calculate
the set M and get the following result:

M = {J ∈ mod(〈T1,N1〉) | there exists I ∈ mod(〈T1,A1〉) such that

CI = CJ and RI = RJ }.

We can show that there does not exist a finite number of ABoxes A′
i (1 ≤ i ≤

n) such that sig(A′
i) ⊆ sig(T1) ∪ sig(A1) ∪ sig(N1) and

⋃

1≤i≤n

mod(〈T1,A′
i〉)

= M. Interested readers can refer to [6] for further details. Therefore, MBAs
under the semantics Gs

⊆ and Gs
� suffer from inexpressibility.

Secondly, by applying MBAs with the semantics Ga
⊆ and Ga

� , we will get

M = {J ∈ mod(〈T1,N1〉) | there exists I ∈ mod(〈T1,A1〉) such that

AI �AJ = EI � EJ = {aI}, CI = CJ and RI = RJ }.

From M we can construct an ABox A′
1 = {E(a), C(a), R(a, a)} which satisfies

mod(〈T1,A′
1〉) = M. Therefore, under the semantics Ga

⊆ and Ga
� , A′

1 is the only
solution case. This result is very strange, since during the adaptation process
there seems to be no “good” reason to enforce the assertion R(a, a) to hold, and
to exclude other possible assertions such as ∃R.A(a). �
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To sum up, there are four notions of computing models in existing MBAs. For
the adaptation based on EL⊥, two notions suffer from inexpressibility and the
other two notions only generate solution cases which are counterintuitive.

4.2 Formula-Based Approaches

In the literature there are two typical formula-based approaches for instance-level
revision in DLs.

The first one is based on deductive closures [4,16]. With this approach, given
an adaptation setting AS = (T ,A,N ), we will firstly calculate the deductive
closure of A w.r.t. T (denoted clT (A)), then find a maximal subset Am of clT (A)
that does not conflict with N and T , and finally return Am ∪ N as a solution
case. This approach works for restricted forms of DL-Lite, by assuming that
A only contains assertions of the form A(a), ∃R(a) and R(a, b), with A and R
concept names or role names, and therefore clT (A) is finite and can be calculated
effectively. However, it does not work for EL⊥, since in our adaptation setting
any EL⊥ concept can be used for describing assertions in the ABox A.

The second FBA is based on justifications (also known as MinAs or kernel)
[20]. With this approach, given an adaptation setting AS = (T ,A,N ), we will
firstly construct a KB K0 = 〈T ,A ∪ N〉 and find all the minimal subsets of K0

that entail a clash (i.e., all justifications for clashes); then we will compute a
minimal set R ⊆ A that contains at least one element from each justification
(such a set is also called a repair); finally we will return (A\R)∪N as a solution
case. This approach is applicable to DLs such as SHOIN and therefore can deal
with EL⊥. However, as shown by the following examples, it is syntax-dependent
and not fine-grained, and therefore does not satisfy R4 and R5.

Example 5. Consider the adaptation setting AS1 = (T1,A1,N1) described in the
previous example. It is obvious that 〈T1,A1 ∪ N1〉 |= ⊥(a) and for which there
is only one justification J = {A � ∃R.A,E � ∃R.A � ⊥, A(a), E(a)}. Therefore
the only repair is R = {A(a)} and the only solution case is A′

1 = (A1 \R)∪N1

= N1 = {E(a)}.
This result is not good, since A′

1 only contains the description of target prob-
lem and does not contain any information on solution. All the experiences pro-
vided by the solution A1 of source case are completely lost, therefore this ap-
proach is not fine-grained and does not satisfy R5. �


Example 6. Consider another adaptation setting AS2 = (T2,A2,N2), where T2
= T1, N2 = N1 and A2 = {A(a), C(a), ∃R.C(a)}. Apply the FBA based on
justifications again, we will get a solution case A′

2 = {E(a), C(a), ∃R.C(a)}.
It is obvious that 〈T2,A2〉 ≡ 〈T1,A1〉 but 〈T2,A′

2〉 �≡ 〈T1,A′
1〉. In other words,

for the same target problem, we get two totally different solutions from two de-
scriptions of experiences that are syntactically different but logically equivalent.
The reason is that this approach does not satisfy R4. �


To sum up, for the adaptation based on EL⊥, existing FBAs either can not be
applied directly, or can be applied but is syntax-dependent and not fine-grained.
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5 Our Approach for Adaptation Based on EL⊥

In this section we present an algorithm for adaptation based on EL⊥. Given
an adaptation setting AS = (T ,A, N ), our algorithm will firstly construct a
non-redundant depth-bounded model for the KB 〈T ,A〉; then a revision process
based on justifications will be carried out on this model by treating a model as
a set of assertions; finally the resulting model will be mapped back to an ABox
which will be returned as a solution case.

Our algorithm is based on a structure named revision graph, which is close to
the completion graph used in classical tableau decision algorithms of DLs [12].
We firstly introduce some notions and operations on this structure and then
present the algorithm.

5.1 Notions and Operations on Revision Graph

First, we consider a set NV of variables, and extend interpretations I of EL⊥ to
interpret these variables just like individual names.

A revision graph for EL⊥ is a directed graph G = (V,E,L), where

– V is a finite set of nodes composed of individual names and variables;
– E ⊆ V × V is a set of edges satisfying:

• there is no edge from variables to individual names, and
• for each variable y ∈ V , there is at most one node x with 〈x, y〉 ∈ E;

– each node x ∈ V is labelled with a set of concepts L(x); and
– each edge 〈x, y〉 ∈ E is labelled with a set of role names L(〈x, y〉); further-

more, if y is a variable then �L(〈x, y〉) = 1.

For each edge 〈x, y〉 ∈ E, we call y a successor of x and x a predecessor of y.
Descendant is the transitive closure of successor.

For any node x ∈ V , we use level(x) to denote the level of x in the graph, and
define it inductively as follows: level(x) = 0 if x is an individual name, level(x)
= level(y) + 1 if x is a variable with a predecessor y, and level(x) = +∞ if x is
a variable without predecessor.

A graph B = (V ′, E′,L′) is a branch of G if B is a tree and a subgraph of G.
A branch B1 = (V1, E1,L1) is subsumed by another branch B2 = (V2, E2,L2)

if B1 and B2 have the same root node, �(V1 ∩ V2) = 1, and there is a function
f : V1 → V2 such that: f(x) = x if x is the root node, L1(x) ⊆ L2(f(x)) for
every node x ∈ V1, 〈f(x), f(y)〉 ∈ E2 for every edge 〈x, y〉 ∈ E1, and L1(〈x, y〉)
⊆ L2(〈f(x), f(y)〉) for every edge 〈x, y〉 ∈ E1.

A branch B is redundant in G if B is subsumed by another branch in G, and
every node in B except the root is a variable.

Revision graphs can be seen as ABoxes with variables. Given a revision graph
G = (V,E,L), we call AG =

⋃

x∈V

{C(x) | C ∈ L(x)} ∪
⋃

〈x,y〉∈E

{R(x, y) | R ∈

L(〈x, y〉)} as the ABox representation of G, and call G as the revision-graph
representation of AG .
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Procedure B-MW(K, k)

Input: a KB K = 〈T ,A〉 and a non-negative integer k.
Output: a revision graph G = (V,E,L).

1 Initialize the revision graph G = (V,E,L) as
– V := NK

I ,
– L(a) := {C | C(a) ∈ A} for each node a ∈ V ,
– E := {〈a, b〉 | there is some R with R(a, b) ∈ A},
– L(〈a, b〉) := {R | R(a, b) ∈ A} for each edge 〈a, b〉 ∈ E.

2 while there exists an expansion rule in Fig. 1 that is applicable to G do
expand G by applying this rule.

3 for each node x ∈ V do
L(x) := {C | C ∈ L(x) and C is a concept name }.

4 while there exists a redundant branch B = (VB, EB,LB) in G do
E := E \EB;
V := V \ (VB \ {xB}), where xB is the root of B.

5 Return G = (V,E,L).

Given a KB K = 〈T ,A〉 and a non-negative integer k, we use the procedure
B-MW(K, k) to construct a revision graph for them, and call this revision graph
a k-role-depth bounded minimal witness for K.

Example 7. Consider the adaptation setting AS1 described in Example 4 and
call the procedure B-MW(〈T1,A1〉, 1). During the execution of this procedure,
two variables x1 and x2 will be introduced by the ∃-rule. Let G1 be the revi-
sion graph returned by this procedure, then its ABox representation is AG1 =
{A(a), C(a), R(a, x1), A(x1), C(x1), R(x1, x2), A(x2), C(x2)}.

Consider the adaptation setting AS2 described in Example 6 and call the
procedure B-MW(〈T2,A2〉, 1). During the execution of step 2, three variables
y1, z1 and z2 will be introduced by the ∃-rule. Let G′

2 be the revision graph after
the execution of step 3, then its ABox representation is AG′

2
= {A(a), C(a),

R(a, y1), C(y1), R(a, z1), A(z1), C(z1), R(z1, z2), A(z2), C(z2)}. In G′
2 there

exists a redundant branch which will be removed by step 4. Finally, let G2 be
the revision graph returned by the procedure, then its ABox representation is
AG2 = {A(a), C(a), R(a, z1), A(z1), C(z1), R(z1, z2), A(z2), C(z2)}. �
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Fig. 1. Expansion rules used by the procedure B-MW(K, k)

GCII -rule: if x ∈ NK
I , C � D ∈ T , D /∈ L(x), and 〈T ,A〉 |= C(x),

then set L(x) := L(x) ∪ {D}.
GCIV -rule: if x /∈ NK

I , C � D ∈ T , D /∈ L(x), and 〈T , {E(x) | E ∈ L(x)}〉 |= C(x),

then set L(x) := L(x) ∪ {D}.
�-rule: if C1 � C2 ∈ L(x), and {C1, C2} � L(x),

then set L(x) := L(x) ∪ {C1, C2}.
∃-rule: if ∃R.C ∈ L(x), level(x) ≤ k, and x has no successor z with C ∈ L(z),

then introduce a new variable z, set V := V ∪ {z}, E := E ∪ {〈x, z〉},
L(z) := {C}, and L(〈x, z〉) := {R}.

Given a TBox T and an ABox representation AG of some revision graph G,
we use the procedure Rolling(AG , T ) to roll up variables contained in AG .

Procedure Rolling(AG , T )

Input: an ABox AG that may contain variables, and a TBox T .
Output: an ABox A without variables.

1 Transform AG into its revision-graph representation G = (V,E,L).
2 Delete from V the variables which are not descendants of any individual name.
3 while there exists variable in V do

select a variable y ∈ V that has no successor;
x := the predecessor of y;
if L(y) 
= ∅ then Cy :=

�

C∈L(y)

C else Cy := �;

R := the role name contained in L(〈x, y〉);
if 〈T , {D(x) | D ∈ L(x)}〉 
|= (∃R.Cy)(x) then L(x) := L(x) ∪ {∃R.Cy};
E := E \ {〈x, y〉};
V := V \ {y}.

4 Return A :=
⋃

x∈V

{C(x) | C ∈ L(x)} ∪
⋃

〈x,y〉∈E

{R(x, y) | R ∈ L(〈x, y〉)}.

Example 8. Let us continue Example 7. Both the procedure Rolling(AG1 , T1)
and the procedure Rolling(AG2 , T2) return the same ABox {A(a), C(a)}.

Let A′
G1

= AG1 \ {A(a), A(x1)} = {C(a), R(a, x1), C(x1), R(x1, x2), A(x2),
C(x2)}, and let A′′

G1
= AG1 \ {A(a), R(a, x1)} = {C(a), A(x1), C(x1), R(x1, x2),

A(x2), C(x2)}. Then the procedure Rolling(A′
G1
, T1) returns the ABox {C(a),

∃R.(C � ∃R.(A � C))(a)}, and Rolling(A′′
G1
, T1) returns the ABox {C(a)}. �


5.2 The Adaptation Algorithm

Let T be a TBox, and let A, N be two ABoxes. If 〈T ,A∪N〉 |= � � ⊥, then:

– a set J ⊆ A is a (A,N )-justification for a clash w.r.t. T if 〈T ,J ∪ N〉 |=
� � ⊥ and 〈T ,J ′ ∪ N〉 �|= � � ⊥ for every J ′ ⊂ J ;
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– a set R ⊆ A is a (A,N )-repair for clashes w.r.t. T if R ∩ J �= ∅ for every
(A,N )-justification J , and for every Ri ⊂ R there must be some (A,N )-
justification Ji such that Ri ∩ Ji = ∅.

Now we are ready to present our algorithm. Given an adaptation setting
AS = (T ,A,N ) and any integer k, where k is greater than the role depths of
all the concepts occurring in AS, the algorithm Adaptation(AS, k) operates as
follows. Firstly, a revision graph G will be constructed for the KB 〈T ,A〉 and
the integer k. Secondly, a revision process based on justifications will be carried
out on the ABox representation AG of G. Thirdly, for each maximal subset Ai

of AG that does not conflict with N and T , the procedure Rolling(Ai, T ) will
be used to roll up variables and get an ABox A′

i. Finally, the ABox A′
i ∪ N

will be returned as a solution case. Together with the solution case, an ABox
Ri will also be returned; the function of Ri is to record the information which
is entailed by A but removed in A′

i, so that the user can select the best solution
according to it.

Algorithm 1. Adaptation(AS, k)
Input: an adaptation setting AS = (T ,A,N ), and a non-negative integer k.
Output: a finite number of pairs (A′

1 ∪N ,R1), ..., (A′
n ∪N ,Rn), where A′

i ∪N
is a solution case and Ri records the information been removed.

if A ∪ N is consistent w.r.t. T then
return (A ∪N , ∅);

else
G := B-MW(〈T ,A〉, k);
AG := the ABox representation of G;
SR := {R1, ...,Rn} all the (AG ,N )-repairs for clashes w.r.t. T ;
for i ← 1 to n do

Ai := AG \ Ri;
A′

i := Rolling(Ai, T );

return (A′
1 ∪N ,R1), ..., (A′

n ∪N ,Rn).

Example 9. Consider the adaptation setting AS1 = (T1,A1,N1) described in
Example 4. Since max{depth(T1), depth(A1), depth(N1)} = 1, we select k=1
and execute the algorithm Adaptation(AS1, 1).

Firstly, by calling the procedure B-MW(〈T1,A1〉, 1), we get a revision graph
G1 for which the ABox representation is AG1 = {A(a), C(a), R(a, x1), A(x1),
C(x1), R(x1, x2), A(x2), C(x2)}.

Secondly, for the clash 〈T1,AG1 ∪ N1〉 |= � � ⊥, there are two (AG1 ,N1)-
justifications J1 = {A � ∃R.A, E � ∃R.A � ⊥, E(a), A(a)} and J2 = {E �
∃R.A � ⊥, E(a), A(a), R(a, x1), A(x1)}. From them we get two (AG1 ,N1)-repairs
R1 = {A(a), A(x1)} and R2 = {A(a), R(a, x1)}.

Thirdly, from R1 we get A′
1 = Rolling(AG1 \R1, T1) = {C(a), ∃R.(C�∃R.(A�

C))(a)}. From R2 we get A′
2 = Rolling(AG1 \ R2, T1) = {C(a)}.
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Finally, the algorithm returns (A′
1 ∪ N1,R1) and (A′

2 ∪ N1,R2), from them
the user can select the best solution case with the help of R1 and R2. For
example, since R2 contains a role assertion R(a, x1) which indicates that all the
information related to x1 is lost in A′

2, the first choice for the user is A′
1∪N1. �


Example 10. Consider the adaptation setting AS = (T ,Asol,Npb) described in
Example 3. Since max{depth(T ), depth(Asol), depth(Npb)} = 2, we select k = 2
and execute the algorithm Adaptation(AS, 2).

The algorithm will return two results (A′
1 ∪ Npb,R1) and (A′

2 ∪ Npb,R2),
where A′

1 = {∃TreatBy. (Anti-oestrogen � ∃metabolizedTo.(Compounds �
∃bindto.OestrogenReceptor)) (Mary)}, R1 = {Tamoxifen(y)}, A′′

2 = ∅, and
R2 = {TreatBy(Mary, y)}.

Since R2 contains a role assertion TreatBy(Mary, y) which indicates that all
the information related to y is lost in A′

2, the first choice for the user is the
solution case A′

1 ∪ Npb. This solution case states that, for the target problem
described by Npb, a solution is to treat Mary by something that is not only
anti-oestrogen but also can be metabolized into some compounds which can be
bound to oestrogen receptors. �


The following theorems state that our algorithm satisfies R1-R4.

Theorem 1. Let (A′′
i ,Ri) (1 ≤ i ≤ n) be the pairs returned by Adaptation(AS , k)

for AS = (T ,A,N ). Then the following statements hold for every 1 ≤ i ≤ n: (1)
〈T ,A′′

i 〉 |= N ; (2) A′′
i = A ∪ N if A ∪ N is consistent w.r.t. T ; and (3) if N is

consistent w.r.t. T then A′′
i is also consistent w.r.t. T .

Theorem 2. Given two adaptation settings ASi = (T ,Ai,Ni) (i = 1, 2) and
an integer k, where 〈T ,A1〉 ≡ 〈T ,A2〉, 〈T ,N1〉 ≡ 〈T ,N2〉, k ≥ max{depth(T ),
depth(A1), depth(A2), depth(N1), depth(N2)}. If (A′′

1 ,R1) is a pair returned by
the algorithm Adaptation(AS1, k), then there must be a pair (A′′

2 ,R2) returned
by Adaptation(AS2, k) such that 〈T ,A′′

1 〉 ≡ 〈T ,A′′
2 〉 and R2 = σ(R1) for some

substitution σ of variables.

Theorem 2 is based on the following fact: let Gi = B-MW(〈T ,Ai〉, k) (i = 1, 2),
then G1 and G2 are identical up to variable renaming in the case that k is
sufficiently large. For Theorem 1 there is no requirement on the value of k.

In our algorithm, the revision graph G constructed by the procedure B-
MW(〈T ,A〉, k) is in fact a non-redundant k-depth-bounded model for the KB
〈T ,A〉. Therefore, our revision process works on fine-grained representation of
models and guarantees the minimal change principle in a fine-grained level. So,
our algorithm also satisfies the property specified by R5.

The following theorem states that our algorithm is in exponential time.

Theorem 3. For any adaptation setting AS = (T ,A,N ), assume the role depth
of every concept occurring in AS is bounded by some integer k, then the algorithm
Adaptation(AS , k) runs in time exponential with respect to the size of AS.
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6 Discussion and Related Work

The idea of applying KB revision theory to adaptation in CBR was proposed
by Lieber [17]. Based on a classical revision operator in propositional logic,
a framework for adaptation was presented and it was demonstrated that the
adaptation process should satisfy the AGM postulates. This idea was extended
by Cojan and Lieber [7] to deal with adaptation based on the DL ALC. Based
on an extension of the classical tableau method used for deductive inferences in
ALC, an algorithm for adapting cases represented in ALC was proposed. It was
shown that, except for the requirements on syntax-independence and minimality
of change (i.e., R4 and R5 in our paper), all the other requirements specified by
the AGM postulates (i.e., R1-R3 in our paper) are satisfied by their algorithm.

From the point of view of KB revision in DLs, it is a great challenge to design
revision operators or algorithms that satisfy the requirements specified by the
AGM postulates. In the literature, there are two kinds of approaches, i.e., MBAs
[14] and FBAs [4,16,20], for the instance-level KB revision problem in DLs. As
we analyzed in Section 4, they either do not satisfy the requirements specified
by R4 and R5, or only work well for DLs of the DL-Lite family.

Our method is closer in spirit to the formula-based approaches, but it also
inherits some ideas of model-based ones. On the one hand, in our algorithm, the
revision graph G constructed by the procedure B-MW(〈T ,A〉, k) can be seen as
a non-redundant, k-depth-bounded model for the KB 〈T ,A〉, and therefore our
revision process essentially works on models. On the other hand, our revision
process makes use of (AG ,N )-repairs which inherits some ideas of FMAs based
on justifications. As a result, our algorithm not only satisfies the requirements
R4 and R5, but also works for the DL EL⊥.

Given an adaptation setting, our algorithm will return a finite number of pairs
(A′′

i ,Ri) (1 ≤ i ≤ n), and it is left to the user to select the best solution case
according to the sets Ri. We can extend the algorithm to sort all the solution
cases by priority. For example, if some Ri contains a role assertion R(a, x) with
x a variable, then the corresponding solution case A′′

i will has a lower priority.
Furthermore, we can define a selection function according to the user’s selection
criteria, and enable our algorithm to return only one best solution case.

7 Conclusion and Future Work

We studied the adaptation problem of CBR in the DL EL⊥. A formalism for
adaptation based on EL⊥ was presented, and in this formalism the adaptation
task was modeled as the instance-level KB revision problem in EL⊥. We illus-
trated that existing revision operators and algorithms in DLs did not work for
the adaptation setting based on EL⊥ and then presented a new algorithm. We
showed that our algorithm behaves well for EL⊥ in that it satisfies the require-
ments proposed in the literature for revision operators.

For future work, we will extend our method to support adaptation based on
EL++ [3]. Another work is to implement and optimize our algorithm and test
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its feasibility in practice. Finally, we will formalize the notion of minimality of
change under the framework of adaptation.
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