
Adapting Propositional Cases Based on
Tableaux Repairs Using Adaptation Knowledge�

Gabin Personeni1,2,3, Alice Hermann1,2,3, and Jean Lieber1,2,3

1 Université de Lorraine, LORIA, UMR 7503 — 54506 Vandœuvre-lès-Nancy, France
{Gabin.Personni,Alice.Hermann,Jean.Lieber}@loria.fr

2 CNRS — 54506 Vandœuvre-lès-Nancy, France
3 Inria — 54602 Villers-lès-Nancy, France

Abstract. Adaptation is a step of case-based reasoning that aims at modifying
a source case (representing a problem-solving episode) in order to solve a new
problem, called the target case. An approach to adaptation consists in apply-
ing a belief revision operator that modifies minimally the source case so that
it becomes consistent with the target case. Another approach consists in using
domain-dependent adaptation rules. These two approaches can be combined: a
revision operator parametrized by the adaptation rules is introduced and the cor-
responding revision-based adaptation uses the rules to modify the source case.
This paper presents an algorithm for revision-based and rule-based adaptation
based on tableaux repairs in propositional logic: when the conjunction of source
and target cases is inconsistent, the tableaux method leads to a set of branches,
each of them ending with clashes, and then, these clashes are repaired (thus mod-
ifying the source case), with the help of the adaptation rules. This algorithm has
been implemented in the REVISOR/PLAK tool and some implementation issues
are presented.

Keywords: Case-based reasoning, adaptation, tableaux repairs, propositional
logic, belief revision, adaptation rules.

1 Introduction

Case-based reasoning (CBR [1]) is a reasoning paradigm based on the reuse of chunks
of experience called cases. A case is a representation of a problem-solving episode,
often separated in a problem part and a solution part: this separation is not formally
necessary but is useful to the intuitive understanding of the notion of case. The input
of a CBR system is a target case, which represents an underspecified case (intuitively,
its problem part is well specified, whereas its solution part is not). A classical way to
implement a CBR system consists in (1) selecting a case from a case base that is similar
to the target case, (2) adapting this retrieved case in order to solve the target case, i.e.,
in order to add information to it (intuitively, this consists in specifying the solution part
of the target case by reusing the solution part of the retrieved case). Variants of this
approach to CBR and other steps related to it can be found in, e.g., [2].

� This research was partially funded by the project Kolflow of the French National Agency for
Research (ANR), program ANR CONTINT (http://kolflow.univ-nantes.fr).

L. Lamontagne and E. Plaza (Eds.): ICCBR 2014, LNCS 8765, pp. 390–404, 2014.
c© Springer International Publishing Switzerland 2014

Adapting Propositional Cases Based on Tableaux Repairs 391

This paper concentrates on step (2), adaptation. Despite its importance, this step
of CBR has been a little bit neglected in the CBR literature, though it has recently
received some attention (see, e.g., [3–6]). In particular, the paper concentrates on an
approach to adaptation that we introduced some years ago [7] and studied according
to various aspects (see [8] for a synthesis). This approach called (now) revision-based
adaptation or �-adaptation is based on a belief revision operator �. According to the
AGM postulates (called after the names of [9]), the belief revision of a belief base ψ
by a belief base μ—ψ � μ—consists in minimally modifying ψ into ψ′ such that the
conjunction of ψ′ and μ is consistent; then ψ � μ is this conjunction. It must be noticed
that, since there are many ways to “measure” modifications, there are also many ways to
“minimally modify” a belief base, hence there are multiple revision operators satisfying
the AGM postulates.

Roughly said, �-adaptation consists in using � in order to modify the retrieved case
so that it is consistent with the target case, and the adaptation process returns the result
of this revision. So, implementing a revision-based adaptation amounts to implementing
a revision operator. This implementation depends on the formalism used in the CBR
system. In particular, we have studied how �-adaptation can be implemented within the
description logic ALC [10].1 The approach to adaptation in ALC consisted in applying
tableaux repairs. The same idea of tableaux repairs can be used for revision of ψ by
μ according to the following principle: the tableaux method is applied separately on
ψ and μ, then the consistent branches are combined, which leads to a set of inconsis-
tent branches (unless the conjunction of ψ and μ is consistent). Then, tableaux repair
consists in removing the parts of the clashes whose origin is ψ and the formulas of the
branch from which these parts of clashes are deduced. This involves a weakening of ψ
into ψ′ such that ψ′ is consistent with μ, and the result of the revision is the conjunction
of ψ′ and μ. This approach for belief revision algorithm has been found in parallel by
Camilla Schwind [11], who has applied it to propositional logic with a finite number of
variables and thus, this work can be used for �-adaptation of propositional cases.

This paper proposes to go one step beyond Camilla Schwind’s work, by integrat-
ing, in the tableaux repairs, some domain-specific adaptation knowledge in the form of
adaptation rules (also called reformulations in [12]). Such rules represent the fact that,
in a given context, a given part of a case can be substituted by something. Thus, the idea
is to use such rules for tableaux repairs.

The paper is organized as follows. In Section 2, some preliminaries introduce the
notions and the notations used throughout the paper. In Section 3, the adaptation process
in CBR is presented, pointing out the notions of adaptation rules and of revision-based
adaptation. Then, the algorithm for adaptation by tableaux repairs using adaptation rules
is presented in Section 4. The approach has been implemented in an inference engine
called REVISOR/PLAK: this system and some implementation issues are described, in
Section 5, as well as a concrete example. Section 6 concludes the paper.

The research report [13] is a long version of this paper including the proofs.

1 Technically, we have not defined a revision operator in ALC, since the implemented operator
violates some of the postulates of [9], but we have implemented an adaptation operator inspired
from the ideas of revision-based adaptation.

392 G. Personeni, A. Hermann, and J. Lieber

2 Preliminaries

2.1 Propositional Logic

Let V = {a1, . . . , an} be a set of n distinct symbols called propositional variables. A
propositional formula built on V is either a variable ai or of one of the forms ϕ1 ∧ ϕ2,
ϕ1 ∨ ϕ2, ¬ϕ1, ϕ1 ⇒ ϕ2, and ϕ1 ⇔ ϕ2, where ϕ1 and ϕ2 are two propositional
formulas. Let L be the set of the propositional formulas.

Let IB = {T, F} be a set of two elements. Given x = (x1, . . . , xn) ∈ IBn and ϕ ∈ L,
ϕx ∈ IB is defined as follows: axi = xi, (ϕ1 ∧ ϕ2)

x = T iff ϕx
1 = T and ϕx

2 = T,
(ϕ1 ∨ ϕ2)

x = T iff ϕx
1 = T or ϕx

2 = T, (¬ϕ1)
x = T iff ϕx

1 = F, (ϕ1 ⇒ ϕ2)
x =

(¬ϕ1 ∨ ϕ2)
x, and (ϕ1 ⇔ ϕ2)

x = ((ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1))
x.

For ϕ ∈ L, let M(ϕ) = {x ∈ IBn | ϕx = T} called the set of models of ϕ. Given
ϕ1, ϕ2 ∈ L, ϕ1 |= ϕ2 if M(ϕ1) ⊆ M(ϕ2), and ϕ1 ≡ ϕ2 if M(ϕ1) = M(ϕ2). (L, |=)
is called the propositional logic with n variables.

A literal � is a propositional formula of the form ai (positive literal) or ¬ai (negative
literal), where ai ∈ V . If � = ¬ai is a negative literal, then ¬� denotes the positive
literal ai (instead of the equivalent formula ¬¬ai). A formula is in disjunctive normal
form or DNF if it is a disjunction of conjunctions of literals. A formula is in negative
normal form (NNF) if it contains only the connectives ∧, ∨ and ¬, and if ¬ appears
only in front of propositional variables. Every formula can be put in NNF by applying,
as rewriting rules oriented from left to right, the following equivalences, until none of
these equivalences is applicable (for ϕ, ϕ1, ϕ2 ∈ L):

ϕ1 ⇔ ϕ2 ≡ (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1)

ϕ1 ⇒ ϕ2 ≡ ¬ϕ1 ∨ ϕ2

¬¬ϕ ≡ ϕ

¬(ϕ1 ∨ ϕ2) ≡ ¬ϕ1 ∧ ¬ϕ2

¬(ϕ1 ∧ ϕ2) ≡ ¬ϕ1 ∨ ¬ϕ2

A formula in DNF is necessarily in NNF (the converse is false).
A set of literals L is often assimilated to the conjunction of its elements, for example

{a,¬b,¬c} is assimilated to a ∧ ¬b ∧ ¬c and vice-versa. In particular, L is satisfiable
iff there is no literal � ∈ L such that ¬� ∈ L.

An implicant of ϕ, I is a conjunction or a disjunction of literals, such that I |= ϕ and
I is satisfiable. However, as there exists a duality between conjunctive and disjunctive
implicants, only conjunctive implicants will be considered in this paper. An implicant
I of ϕ is prime if for any conjunction of literals C such that C ⊂ I , C
|= ϕ. That is, a
prime implicant I is minimal. Let PI(ϕ) be the set of prime implicants of ϕ. Then:

ϕ ≡
∨

I∈PI(ϕ)

I

An algorithm to find efficiently prime implicants of a formula is detailed in [14].

Adapting Propositional Cases Based on Tableaux Repairs 393

2.2 Distances

Let U be a set. In this paper, a distance on U is a function d : U × U → [0; +∞] such
that d(x, y) = 0 iff x = y (the other properties of a distance function are not required
in this paper). Given A,B ∈ 2U and y ∈ U , the following shortcuts are used:

d(A, y) = inf
x∈A

d(x, y) d(A,B) = inf
x∈A,y∈B

d(x, y)

where inf X denotes the infimum of the set X , with the convention inf ∅ = +∞ (e.g.,
d(A,∅) = +∞).

The Hamming distance on propositional logic interpretations, dH , is defined by
dH(x, y) = |{i | i ∈ {1, 2, . . . , n}, xi
= yi}|, for x, y ∈ IBn. In other words, dH(x, y)
is the number of variable flips to go from x to y.

2.3 Belief Revision

Let ψ be the beliefs of an agent about the world, expressed in a logic (L, |=). This agent
is confronted to new beliefs expressed by μ ∈ L. These new beliefs are assumed to be
non revisable, whereas the old beliefs ψ can be changed. If μ does not contradict ψ (i.e.
if ψ ∧ μ is consistent), then the new beliefs are simply added to the old beliefs. Other-
wise, according to the minimal change principle [9], ψ has to be modified minimally
into ψ′ ∈ L such that ψ′ ∧ μ is consistent, and then the revision of ψ by μ, denoted by
ψ � μ, is this conjunction.

There are multiple ways of measuring modifications of beliefs, hence multiple re-
vision operators �. In [9], a set of postulates has been defined that a revision operator
is supposed to verify. In [15], these postulates have been reformulated in propositional
logic and a family of revision operators based on distances has been defined as follows.
Let d be a distance on U = IBn. Let ψ and μ be two formulas. The revision of ψ by μ
according to �d (ψ �d μ) is a formula whose models are the models of μ that are the
closest ones to the models of ψ according to d (the change from an interpretation x to
an interpretation y is measured by d(x, y)). Formally, ψ �d μ is such that:

M(ψ �d μ) = {y ∈ M(μ) | d(M(ψ), y) = d∗}
with d∗ = d(M(ψ),M(μ))

Note that this definition specifies ψ �d μ up to logical equivalence, but this is sufficient
since a revision operator has to satisfy the irrelevance of syntax principle (this is one of
the [15]’s postulates: if ψ1 ≡ ψ2 and μ1 ≡ μ2 then ψ1 � μ1 ≡ ψ2 � μ2).

2.4 A∗ Search

A∗ is a heuristic-based best-first search algorithm [16]. It is suited for searching state
spaces where there are a finite number of transitions from a given state to its successor
states and for which the cost of a path is additive (the cost of a path is the sum of the
cost of the transitions it contains). A search problem is given by a finite set of initial
states and by a goal giving a condition for a state to be final. Given a state S, let F∗(S)

394 G. Personeni, A. Hermann, and J. Lieber

be the minimum of the costs of the paths from an initial state to a final state that contain
S. F∗(S) = G∗(S) + H∗(S) where G∗(S) (resp., H∗(S)) is the minimal of the costs
of the paths from an initial state to S (resp., from S to a final state). In general, F∗ is
unknown and is approximated by a function F = G +H. F is said to be admissible if
G ≥ G∗ and H ≤ H∗. If F is admissible, then the A∗ procedure is optimal: if there is
a solution (a path from an initial to a final state), then this solution has a minimal cost.
The A∗ procedure consists in searching the state space, starting from the initial states,
by increasing F(S): among two successors of the current state, the one that is minimum
for F is preferred. Usually, G(S) is the cost of the path that has already been generated
for reaching S and thus, G ≥ G∗. Then, the main difficulty is to find an admissible
H (the constant function 0 is an admissible H—and using it corresponds to dynamic
programming—but the closer an admissible H is to H∗, the faster the search is).

3 Adaptation in Case-Based Reasoning

Let (L, |=) be the logic in which the knowledge containers of the CBR application are
defined. A source case Source ∈ L is a case of the case base. Often, such a case rep-
resents a specific experience: M(Source) is a singleton. However, this assumption is
not formally necessary (though it has an impact on the complexity of the algorithms).
A target case Target ∈ L represents a problem to be solved. This means that there
is some missing information about Target and solving Target leads to adding infor-
mation to it. So, adaptation of Source to solve Target consists in building a formula
ComplTarget ∈ L that makes Target precise in the sense that it adds information and,
therefore, reduces the set of models: ComplTarget |= Target. To perform adaptation,
the domain knowledge DK ∈ L can be used. Therefore, the adaptation process has the
following signature:

Adaptation : (DK, Source, Target) �→ ComplTarget

(Source, Target) is called the adaptation problem (DK is supposed to be fixed).
Of course, this does not completely specify the adaptation process. Several

approaches are introduced in the CBR literature. Two of them are presented below,
followed by a combination of them.

Revision-Based Adaptation. Let � be a revision operator in the logic (L, |=) used for
a given CBR system. The �-adaptation is defined as follows:

ComplTarget= (DK ∧ Source) � (DK ∧ Target)

Intuitively, the source case is modified minimally (according to �) so that it satisfies
the target case. Both cases are considered w.r.t. the domain knowledge.

Rule-Based Adaptation. is a general approach to adaptation relying on domain-
specific adaptation knowledge in the form of a set AK of adaptation rules (see, e.g., [12],
where adaptation rules are called reformulations). An adaptation rule R ∈ AK, when ap-
plicable on the adaptation problem (Source, Target), maps Source into ComplTarget

Adapting Propositional Cases Based on Tableaux Repairs 395

which makes Target precise. Adaptation rules can be composed (or chained):
if R1, R2, . . . , Rq ∈ AK are such that there exist q + 1 cases C0, C1, . . . , Cq verifying:

– C0 = Source,
– Cq makes Target precise (Cq |= Target),
– for each i ∈ {1, . . . , q}, Ri is applicable on (Ci−1, Ci) and maps Ci−1 into Ci,

then Cq = ComplTarget is the result of the adaptation of Source to solve Target.
The sequence R1; R2; . . . ; Rq is called an adaptation path.

Given an adaptation problem (Source, Target), there may be several adaptation
paths to solve it. In order to make a choice among them, a cost function is introduced:
cost : R ∈ AK �→ cost(R) > 0. The cost of an adaptation path is the sum of the costs
of its adaptation rules.

In this paper, an adaptation rule R is defined by two sets of literals, left and right,
and is denoted by R = left � right. Let (Source, Target) be an adaptation prob-
lem. Several cases have to be considered:

– If Source is a conjunction of literals represented by a set of literals L, then R is
applicable on Source if left ⊆ L. In this situation:

R(Source) = R(L) = (L \ left) ∪ right

– If Source is in DNF, such that Source =
∨

i Li, where the Li’s are conjunctions
of literals, R is applicable on Source if it is applicable on at least one Li. Then:

R(Source) =
∨

i

{
R(Li) if R is applicable to Li,
Li otherwise.

– If Source is not in DNF, it is replaced by an equivalent formula in DNF.

Given an adaptation rule R = left � right, repairs(R) = left \ right.
left is the set of literals whose presence is necessary to apply R, and is then removed
by application of R. Every adaptation rule must be such that repairs(R)
= ∅.

Combining Rule-Based and Revision-Based Adaptation. Let us consider the fol-
lowing distance on U = IBn (for x, y ∈ U):

δAK(x, y) = inf{cost(p) | p: adaptation path from x to y based on rules from AK}
(x and y are interpretations that are assimilated to conjunctions of literals). By con-
vention, inf ∅ = +∞ and thus, if there is no adaptation path relating x to y, then
δAK(x, y) = +∞ and vice-versa. Otherwise, it can be shown that the infimum is always
reached and so, δAK(x, y) = 0 iff x = y (corresponding to the empty adaptation path).

It has been shown [8] that rule-based adaptation can be simulated by revision-based
adaptation with no domain knowledge (i.e., DK is a tautology) and with the �δAK re-
vision operator. When rule-based adaptation fails (no adaptation path from Source
to Target), �δAK-adaptation gives ComplTarget equivalent to Target (no added
information).

396 G. Personeni, A. Hermann, and J. Lieber

A failure of rule-based adaptation is due to the fact that no adaptation rules can be
composed in order to solve the adaptation problem. In order to have an adaptation that
always provides a result, the idea is to add 2n adaptation rules, one for each literal:
given a literal �, the flip of the literal � is the adaptation rule F� = � � �, where �
is the empty conjunction of literals.2 It can be noticed that a cost is associated to each
literal flip and that it may be the case that cost(F¬�)
= cost(F�).

Now, let dAK be the distance on U = IBn defined, for x, y ∈ U , by

dAK(x, y) = inf

{
cost(p)

∣∣∣∣
p: adaptation path from x to y based on
rules from AK and on flips of literals

}

Let �AK = �dAK . �AK-adaptation is a revision-based adaptation using the adaptation
rules, thus combining rule-based adaptation and revision-based adaptation, and that can
take into account domain knowledge.

It can be noticed that if AK = ∅ and cost(F�) = 1 for every literal � then dAK = dH .
Moreover the following assumption is made:

For any R ∈ AK, cost(R) ≤
∑

�∈repairs(R)

cost(F�) (1)

In fact, this assumption does not involve any loss of generality: if an adaptation rule
violates (1), then it does not appear in any optimal adaptation path, since applying the
flips of all the literals of its repair part will be less costly then applying the rule itself.

4 Algorithm of Adaptation Based on Tableaux Repairs

The adaptation algorithm is based on the revision of the source case by the target case,
both w.r.t. the domain knowledge. As such, the algorithm performs the revision of a
formula ψ by a formula μ, with:

ψ = DK ∧ Source μ = DK ∧ Target

and so: ComplTarget= ψ �AK μ

This section presents the algorithm, which uses a heuristic function H, that is defined
and proven to be admissible. Then, an example is detailed. Finally, the termination and
the complexity of the algorithm are studied.

4.1 Algorithm

Let ϕ be a formula and let branches(ϕ) be the set of branches of the tableaux of ϕ, or
implicants of ϕ, as a set of sets of literals, that is:

– For any literal �: branches(�) = {{�}};

2 In the literature, a flip is more frequently a rule of the form � � ¬� but it can be shown that
at the definition level, this amounts to the same kind of adaptation (using either � � � or
� � ¬�) but the first form makes explanations easier for the paper.

Adapting Propositional Cases Based on Tableaux Repairs 397

– For any formulas ϕ1 and ϕ2:
branches(ϕ1 ∨ ϕ2) = branches(ϕ1) ∪ branches(ϕ2)
branches(ϕ1 ∧ ϕ2) = {B1 ∪B2 | B1 ∈ branches(ϕ1), B2 ∈ branches(ϕ2)}.

Furthermore, in order to preserve the independence to the syntax of the algorithm,
we introduce the function min-branches, that converts the output of the branches
function into the set of prime implicants of the formula, represented as sets of literals.

For any set of literals L, let L¬ = {¬� | � ∈ L}. For example, if L = {a,¬b,¬c} then
L¬ = {¬a, b, c}. L is said to be consistent if and only if L ∩ L¬ = ∅.

The algorithm is an A∗ search, where a state is an ordered pair (L, M) of consistent
sets of literals. Given the propositional formulas ψ and μ, the set of the initial states is:

min-branches(ψ)× min-branches(μ)

A final state is a state (L, M) such that L ∩ M¬ = ∅ (which is equivalent to the fact
that L ∪ M is consistent). If (L, M) is a non final state, then there exits � ∈ L such that
� ∈ L ∩ M¬: there is a clash on �.

The transitions from a state to another state are defined as follows. There is a transi-
tion σ from the state x = (Lx, Mx) to the state y = (Ly, My) if Mx = My and:

– there exists a literal � ∈ Lx such that Ly = F�(Lx) or
– there exists an adaptation rule R such that R is applicable on Lx and Ly = R(Lx).

The cost of a transition σ is the cost of the rule (literal flip or adaptation rule) it uses.
Using a slight variant of the A∗ algorithm, it is possible to determine the set of least

costly transition sequences leading to final states. That is, the algorithm does not stop
after finding the first optimal solution, but after finding every other optimal solutions
(i.e., the solutions with the same minimal cost). The detailed algorithm is presented in
Algorithm 1 and is explained hereafter.

The algorithm first creates the initial states (line 3). For every initial state S0, G(S0) =
0, that is the cost of reaching S0 is 0. In the case no value of G is set for a state S,
G(S) evaluates to +∞, meaning there is no known path from an initial state to S. The
algorithm then finds a state Sc minimizing F(Sc) = G(Sc) +H(Sc), that is the cost of
reaching Sc from an initial state plus the heuristic cost of reaching a final state from Sc
(line 10). For each rule or flip σ that can be applied on Sc, it creates the state Sd such
that Sc

σ−→ Sd. If G(Sd) > G(Sc) + cost(σ), that is there is no known less or equally
costly path to Sd, then G(Sd) is set to G(Sc) + cost(σ). Each generated Sd is added to
the set of states to explore, while Sc is removed from it (lines 15 to 20). The algorithm
repeats the previous step until it finds a state Sf minimizing F(Sf) and that is a final
state (lines 11 to 13). From this point, the algorithm carries on but ignores any state Sc
such that F(Sc) > F(Sf), which cannot lead to a less costly solution. It stops when
there is no more states that can lead to a less costly solution (line 9). Finally, all final
states Sf minimizing F(Sf) are returned in the form of tableaux branches (line 22),
that is for each state Sf defined by (Lf , Mf), the branch containing the literals Lf ∪ Mf
is returned.

398 G. Personeni, A. Hermann, and J. Lieber

1 revise(ψ,μ, AK, cost)
Input:

– ψ and μ, two propositional formulas in NNF. ψ has to be revised by μ.
– AK, the set of adaptations rules, used for repairing clashes.
– cost, a function that associates to every literal flip and adaptation rule a positive real

number.

Output: ψ �AK μ in DNF
2 begin

// open-states is initiated by initial states with cost 0.
3 open-states ← min-branches(ψ)× min-branches(μ)
4 G(S) evaluates to +∞ by default
5 G(S) ← 0 for each S ∈ open-states
6 F(S) evaluates to G(S) +H(S)
7 Solutions ← ∅

8 solutionCost ← +∞
9 while {S | S ∈ open-states and F(S) ≤ solutionCost} �= ∅ do

// (Lc, Mc) is the current state.
10 (Lc, Mc) ← one of the S ∈ open-states that minimizes F(S)
11 if (Lc ∩ M¬c) = ∅ then
12 Solutions ← Solutions ∪ {Lc ∪ Mc}
13 solutionCost ← F((Lc, Mc))
14 else
15 for each σ ∈ AK ∪ {F� | �: literal} such that σ is applicable on Lc do
16 open-states ← open-states ∪ {(σ(Lc), Mc)}
17 G((σ(Lc), Mc)) ← min(G((σ(Lc), Mc)), G((Lc, Mc)) + cost(σ))
18 end
19 end
20 open-states ← open-states \ {(Lc, Mc)}
21 end
22 return Solutions
23 end
Algorithm 1: Algorithm of revision based on tableaux repairs using adaptation
knowledge.

4.2 Heuristics

The functionH used in our algorithm is defined by: for S = (L, M),H(S) = ERC(L∩M¬)
where ERC is defined as follows (ERC stands for Estimated Repair Cost):

ERC({�}) = min{cost(F�)} ∪
{

cost(R)
|repairs(R)|

∣∣∣∣
R ∈ AK, such that
� ∈ repairs(R)

}
for any literal �

ERC(L) =
∑

�∈L

ERC({�}) for any set of literals L

Proposition 1. H is admissible.

Adapting Propositional Cases Based on Tableaux Repairs 399

Fig. 1. Application of the algorithm on the running example

4.3 Example

Let us consider the following inputs:

ψ = a ∧ b μ = ¬a ∧ ¬c
AK = {R1, R2}
R1 = a ∧ b � b ∧ c cost(R1) = 0.5

R2 = b ∧ c � a ∧ b cost(R2) = 0.5

cost(F�) = 1 for �
= a

cost(Fa) = 2

Here, branches(ψ) = {{a, b}} and branches(μ) = {{¬a,¬c}}. Figure 1 shows the
different branches developed by the algorithm. At the initial state S0, the cost is 0. The
algorithm repairs the clash on the variable a, for a minimal cost of 0.5. Two branches
are developed, the first using a flip on a and the second using the rule R1. The state S1
is a final state with a cost of 2. The variable solutionCost is set to that cost of 2. That
cost is defined as the best final cost. The state S2 has a clash on the variable c. To repair
that clash, the minimal cost is 0.5. Adding the cost of that state, the cost is lower than
solutionCost. Thus, the clash is repaired to possibly find the solution with a lower
final cost. To repair the clash on the variable c, the rule R2 and the flip Fc are used. The
use of Fc leads to a final state S3 with a final cost of 1.5. That cost becomes the best
final cost. The use of R2 gets back to a state S4 equivalent to the initial state S0 but with
a cost of 1. To repair the clash on the variable a, the minimal cost is 0.5. As the cost to
reach that state plus the cost to repair that clash is equal to solutionCost, the clash on

400 G. Personeni, A. Hermann, and J. Lieber

the variable a is repaired again. The state S5 is reached using Fa. That final state is not
a best solution because the cost of that state is higher than solutionCost. The state S6
is not final but that branch is not developed because the cost to reach that state plus the
cost to repair the clash on the variable c is higher than solutionCost. The algorithm
returns the solution L3 ∪M3, i.e. {b,¬a,¬c}.

4.4 Termination and Complexity of the Algorithm

In this section, the termination and complexity of the algorithm are studied when no
heuristics is used (H = 0). Since the heuristics introduced above is admissible, the
complexity without heuristics is an upper bound for the complexity with heuristics.

Proposition 2. The algorithm described in this paper always terminates. Its complexity
in the worst case is in O(4n×t�+1×(n+� log(t))), where n is the number of variables,
t = |AK|+ |V|, and � is the sum of each flip cost divided by the minimum transition cost.

According to [17], the complexity of a revision operator is PNP[O(logn)]-hard3 hence
this high worst-case complexity of the algorithm is not a surprise.

4.5 Optimization

The algorithm can be improved by considering the pairs of rules that commute. That
optimization is an application of symmetry breaking constraints [18]. The adaptation
rules R1 and R2 commute if the two sequences of rules R1-R2 and R2-R1 are applicable
on the same set of formulas and give equivalent results. Formally, R1 and R2 commute
if, for every set of literals L

– The two following assertions are equivalent:
(i) R1 is applicable on L and R2 is applicable on R1(L).
(ii) R2 is applicable on L and R1 is applicable on R2(L).

– and, when (i) (or (ii)) holds, R2(R1(L)) = R1(R2(L)).

So, the algorithm is changed as follows. First, an arbitrary total order ≤ is defined on
the set of rules (including the F�’s). Then, the algorithm only enables the application of
a rule σ ∈ AK ∪ {F� | �: literal} on a state such that there is no rule σ′ commuting with
σ and such that σ′ < σ, that has been applied at the previous step to build the current
state (this can be changed on line 15).

For example, if R1 and R2 commute and R1 < R2, then with the previous version of
the algorithm there may be two branches developed in the search space that contain re-
spectively the sequences R1-R2 and R2-R1 while, without loss of results, the new version
of the algorithm generates only the former sequence.

In order to determine whether two adaptation rules commute, the following proposi-
tion can be used.

3 More precisely, the complexity of the Dalal revision operator �Dalal is PNP[O(logn)]-complete
and the algorithm presented in this paper can be used for computing �Dalal: �Dalal= �AK with
AK = ∅ and cost(F�) = 1 for each literal �.

Adapting Propositional Cases Based on Tableaux Repairs 401

Table 1. Average time and standard deviation under REVISOR/PLAK according to d∗, with and
without optimization

REVISOR/PLAK without optimization REVISOR/PLAK with optimization
d∗ Average time (ms) Standard deviation Average time (ms) Standard deviation
1 0.521 0.941 0.466 0.415

2 1.965 1.978 1.309 1.146

3 127.993 708.208 10.366 24.77

4 1349.659 2347.341 43.331 54.685

Proposition 3. Let R1 = left1 � right1 and R2 = left2 � right2 be two
adaptation rules. R1 and R2 commute iff the two following conditions hold:

repairs(R1) ∩ repairs(R2) = ∅

(right1 ∪ right2) ∩ (repairs(R1) ∪ repairs(R2)) = ∅

5 Implementation Issues

5.1 REVISOR/PLAK

REVISOR/PLAK implements the algorithm for revision-based and rule-based adapta-
tion based on tableaux repairs in propositional logic. REVISOR/PLAK has been imple-
mented in Java and is available for download on the site http://revisor.loria.fr.
Java version 7 is required to launch the software.

So far, empirical data shows that the computing time is largely dependent upon �.
However, a million-fold increase of � may result in only a tenfold increase of computing
time. The current implementation is vulnerable to sets of rules {(lefti, righti) | i ∈
{0, 1, . . . , n}} such that lefti ⊆ righti−1 for i ∈ {1, . . . , n} and left0 ⊆ rightn,
that is, rules that could potentially create infinite paths. While the algorithm always
terminates, the algorithm could generate very long finite paths using such rules, if their
cost is very small compared to the cost of the solution. The most important factor for
computing time is the distance between ψ and μ, d∗. Table 1 and Figure 2 present
the average time of computation of REVISOR/PLAK according to d∗, with and without
optimization. The tested adaptation problems are for n = 50 variables and 40 adaptation
rules. Each rule and flip has a cost of 1. The average time are computed on series of
1000 tests, for each value of d∗, on a computer with a 2.60Ghz processor and 10GB
of available memory. For example, for d∗ = 3, without optimization REVISOR/PLAK
solves the problems in 127.993ms in average (standard deviation of 708.208) and with
optimization in 10.366ms in average (standard deviation of 24.77). Figure 2 shows that
REVISOR/PLAK with optimization is much more efficient.

5.2 A Concrete Example

Bob searches for a pie recipe without cinnamon, egg or pear. No recipe of the case base
exactly matches Bob request. The only pie recipe is a recipe of pear pie containing eggs:

http://revisor.loria.fr

402 G. Personeni, A. Hermann, and J. Lieber

Fig. 2. Average time under REVISOR/PLAK according to d∗, with and without optimization

Source = pie ∧ pie_shell ∧ pear ∧ sugar ∧ egg

Target = pie ∧ ¬pear ∧ ¬cinnamon ∧ ¬egg

REVISOR/PLAK adapts Source to solve Target, using the following knowledge:

DK = (apple ∨ peach ∨ pear) ⇔ fruit

(apples, peaches and pears are fruits and, conversely, the only available fruits are apples,
peaches and pears)

AK = {R1, R2, R3, R4, R5, R6}
R1 = cake ∧ egg � cake ∧ banana

R2 = pie ∧ egg � pie ∧ flour ∧ cider_vinegar

R3 = pear � peach

R4 = pear � apple ∧ cinnamon

R5 = cinnamon � orange_blossom

R6 = cinnamon � vanilla_sugar

Each rule has a cost of 0.3 except R3 which has a cost of 0.7. Indeed, pears are
considered to be more similar to apples than peaches. Each flip has a cost of 1.

REVISOR/PLAK gives the following result (in 1.4ms and in 1.2ms with the opti-
mization after the computation of the function min-branches in 9.0ms):

pie ∧ pie_shell ∧ sugar ∧ fruit ∧ ¬egg ∧ flour ∧ cider_vinegar∧
¬pear ∧ apple ∧ ¬cinnamon ∧ (vanilla_sugar∨ orange_blossom)

Two recipes are proposed. In both, pears have been replaced by apples, and eggs by
flour and cider vinegar. For the cinnamon, two choices were available: either vanilla

Adapting Propositional Cases Based on Tableaux Repairs 403

sugar or orange blossom could replace it: since cost(R5) = cost(R6), the disjunction
of there possibilities is presented; if cost(R5) < cost(R6), only the orange blossom
alternative would have been given.

6 Conclusion and Future Work

This paper proposes an original algorithm for revision-based and rule-based adaptation
based on tableaux repairs in propositional logic. This algorithm modifies minimally the
source case so that it becomes consistent with the target case. The tableaux method
is applied separately on the source and target cases. Then the consistent branches are
combined, which leads to a set of branches, each of them ending with a clash (unless the
source case is consistent with the target case and need not to be adapted). Those clashes
are repaired with adaptation rules which modify the source case. Adaptation rules allow
to substitute a given part of a source case by something. If no rule is available, a flip on
the literal leading to the clash deletes it from the source case.

This algorithm has been implemented in the REVISOR/PLAK tool. For each literal
�, a heuristic function computes the minimal cost to repair a clash on �. Thus, at each
step, the branch developed is the one for which the cost plus the cost to repair the
clash is the lowest. All branches whose cost is lower or equal to the best final cost are
developed. The algorithm is optimized by considering adaptation rules that commute
which experimentally proves to improve the computational efficiency.

Belief revision is one of the operations of belief change. There are other ones (see
[19], for a synthesis) such as contraction (ψ ·−μ is a belief base obtained by minimally
modifying ψ so that it does not entail μ) or integrity constraint belief merging [20]
(Δμ({ψ1, . . . , ψn}) is a belief base obtained by minimally modifying the belief bases
ψi into ψ′

i such that μ ∧ ∧
i ψ

′
i is consistent). A possible line of future work consists

of studying how the tableaux repair approach presented in this paper can be modified
for such belief change operations. This would have an impact on CBR; in particular,
integrity constraint belief merging can be used for multiple case adaptation (i.e., com-
bining several source cases to solve the target case), see [21] for details.

References

1. Riesbeck, C.K., Schank, R.C.: Inside Case-Based Reasoning. Lawrence Erlbaum Associates,
Inc., Hillsdale (1989)

2. Aamodt, A., Plaza, E.: Case-based Reasoning: Foundational Issues, Methodological Varia-
tions, and System Approaches. AI Communications 7(1), 39–59 (1994)

3. Minor, M., Bergmann, R., Görg, S., Walter, K.: Towards Case-Based Adaptation of Work-
flows. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176, pp. 421–435.
Springer, Heidelberg (2010)

4. Manzano, S., Ontañón, S., Plaza, E.: Amalgam-Based Reuse for Multiagent Case-Based
Reasoning. In: Ram, A., Wiratunga, N. (eds.) ICCBR 2011. LNCS, vol. 6880, pp. 122–136.
Springer, Heidelberg (2011)

5. Coman, A., Muñoz-Avila, H.: Diverse plan generation by plan adaptation and by first-
principles planning: A comparative study. In: Díaz-Agudo, B., Watson, I. (eds.) ICCBR 2012.
LNCS, vol. 7466, pp. 32–46. Springer, Heidelberg (2012)

404 G. Personeni, A. Hermann, and J. Lieber

6. Rubin, J., Watson, I.: Opponent type adaptation for case-based strategies in adversarial
games. In: Díaz-Agudo, B., Watson, I. (eds.) ICCBR 2012. LNCS, vol. 7466, pp. 357–368.
Springer, Heidelberg (2012)

7. Lieber, J.: Application of the Revision Theory to Adaptation in Case-Based Reasoning:
The Conservative Adaptation. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS
(LNAI), vol. 4626, pp. 239–253. Springer, Heidelberg (2007)

8. Cojan, J., Lieber, J.: Applying belief revision to case-based reasoning. In: Prade, H.,
Richard, G. (eds.) Computational Approaches to Analogical Reasoning: Current Trends.
SCI, vol. 548, pp. 133–162. Springer, Heidelberg (2014)

9. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the Logic of Theory Change: partial
meet functions for contraction and revision. Journal of Symbolic Logic 50, 510–530 (1985)

10. Cojan, J., Lieber, J.: An Algorithm for Adapting Cases Represented in an Expressive De-
scription Logic. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176, pp.
51–65. Springer, Heidelberg (2010)

11. Schwind, C.: From Inconsistency to Consistency: Knowledge Base Revision by Tableaux
Opening. In: Kuri-Morales, A., Simari, G.R. (eds.) IBERAMIA 2010. LNCS, vol. 6433, pp.
120–132. Springer, Heidelberg (2010)

12. Melis, E., Lieber, J., Napoli, A.: Reformulation in Case-Based Reasoning. In: Smyth, B.,
Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 172–183. Springer,
Heidelberg (1998)

13. Personeni, G., Hermann, A., Lieber, J.: Adapting propositional cases based on tableaux re-
pairs using adaptation knowledge – extended report (2014), http://hal.archives-
ouvertes.fr/docs/01/01/17/51/PDF/report_on_revisor_plak.pdf

14. Marquis, P., Sadaoui, S.: A new algorithm for computing theory prime implicates compila-
tions. In: AAAI/IAAI, vol. 1, pp. 504–509 (1996)

15. Katsuno, H., Mendelzon, A.: Propositional knowledge base revision and minimal change.
Artificial Intelligence 52(3), 263–294 (1991)

16. Pearl, J.: Heuristics – Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley Publishing Co., Reading (1984)

17. Eiter, T., Gottlob, G.: On the Complexity of Propositional Knowledge Base Revision, Up-
dates, and Counterfactuals. Artificial Intelligence 57, 227–270 (1992)

18. Gent, I., Petrie, K., Puget, J.-F.: Symmetry in constraint programming. In: Rossi, F., van
Beek, P., Walsh, T. (eds.) Handbook for Constraint Programming, ch. 10, pp. 329–376. Else-
vier (2006)

19. Peppas, P.: Belief Revision. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook
of Knowledge Representation, ch. 8, pp. 317–359. Elsevier (2008)

20. Konieczny, S., Pino Pérez, R.: Merging information under constraints: a logical framework.
Journal of Logic and Computation 12(5), 773–808 (2002)

21. Cojan, J., Lieber, J.: Belief Merging-Based Case Combination. In: McGinty, L., Wilson, D.C.
(eds.) ICCBR 2009. LNCS, vol. 5650, pp. 105–119. Springer, Heidelberg (2009)

http://hal.archives-ouvertes.fr/docs/01/01/17/51/PDF/report_on_revisor_plak.pdf
http://hal.archives-ouvertes.fr/docs/01/01/17/51/PDF/report_on_revisor_plak.pdf

	Adapting Propositional Cases Based on Tableaux Repairs Using Adaptation Knowledge
	1 Introduction
	2 Preliminaries
	2.1 Propositional Logic
	2.2 Distances
	2.3 Belief Revision
	2.4 A Search

	3 Adaptation in Case-Based Reasoning
	4 Algorithm of Adaptation Based on Tableaux Repairs
	4.1 Algorithm
	4.2 Heuristics
	4.3 Example
	4.4 Termination and Complexity of the Algorithm
	4.5 Optimization

	5 Implementation Issues
	5.1 REVISOR/PLAK
	5.2 A Concrete Example

	6 Conclusion and Future Work
	References

