
Workflow Streams: A Means for Compositional

Adaptation in Process-Oriented CBR

Gilbert Müller and Ralph Bergmann

Business Information Systems II
University of Trier

54286 Trier, Germany
{muellerg,bergmann}@uni-trier.de

http://www.wi2.uni-trier.de

Abstract. This paper presents a novel approach to compositional adap-
tation of workflows, thus addressing the adaptation step in process-
oriented case-based reasoning. Unlike previous approaches to adaptation,
the proposed approach does not require additional adaptation knowledge.
Instead, the available case base of workflows is analyzed and each case
is decomposed into meaningful subcomponents, called workflow streams.
During adaptation, deficiencies in the retrieved case are incrementally
compensated by replacing fragments of the retrieved case by appropri-
ate workflow streams. An empirical evaluation in the domain of cooking
workflows demonstrates the feasibility of the approach and shows that
the quality of adapted cases is very close to the quality of the original
cases in the case base.

Keywords: process-oriented case-based reasoning, compositional adap-
tation, workflows.

1 Introduction

Adaptation in Case-Based Reasoning (CBR) is still a very important research
field, even after more than 30 years of research in CBR. One obstacle that pre-
vents comprehensive adaptation capabilities is the knowledge acquisition bottle-
neck for adaptation knowledge, which is required by many adaptation methods.
Therefore, most commercial applications of CBR are developed for application
domains in which adaptation is not a primary concern, such as in knowledge man-
agement or service support. However, in application domains involving complex
cases with highly structured solutions, adaptation cannot be disregarded as it
is an ability that could lead to significant benefits for the users. One such area
is process-oriented case-based reasoning (POCBR) [11], which deals with CBR
applications for process-oriented information systems (POIS). POCBR has the
potential of enabling POIS to support domain experts in defining, executing,
monitoring, or adapting workflows. Thus, workflow adaptation is an important
field, in which still little research exist so far.

Existing methods to adaptation in CBR can be roughly classified into trans-
formational and generative adaptation [18]. Transformational adaptation relies

L. Lamontagne and E. Plaza (Eds.): ICCBR 2014, LNCS 8765, pp. 315–329, 2014.
c© Springer International Publishing Switzerland 2014



316 G. Müller and R. Bergmann

on adaptation knowledge representing links between differences in the problem
description and resulting modifications of the solution. For POCBR we investi-
gated a transformational adaptation approach using adaptation cases as adap-
tion knowledge [9], but the acquisition of adaptation cases, although addressed
in [10], is still a difficult issue. Methods for learning adaptation knowledge from
a case base have been proposed by various authors [7,18,8,3], but no approaches
yet exist that are appropriate for complex case representations such as used in
POCBR.

Generative adaptation, on the other hand, demands general domain knowl-
edge appropriate for an automated (knowledge-based) problem solver to solve
problems from scratch. While this approach is quite successful in planning be-
cause knowledge about actions need to be present anyway, it is not appropriate
for POIS as the task descriptions of workflows may describe human activities,
which cannot be formalized in sufficient detail.

To circumvent the problems with these approaches, we investigate the idea
of compositional adaptation for POIS. While compositional adaptation usually
means that several cases are used during adaptation, still incorporating trans-
formational or generative adaptation methods involving adaptation knowledge
(such as in Composer [12], DéjàV u [15] or Prodigy/Anology [17] – to cite
some classic examples), we propose a pure compositional adaptation approach
waiving of any adaptation knowledge (see [1] p.232ff and [16]). Instead, the avail-
able case base of workflows is analyzed and each case is decomposed into mean-
ingful subcomponents, called workflow streams. During adaptation, deficiencies
in the retrieved case are incrementally compensated by replacing fragments of
the retrieved case by appropriate workflow streams. The proposed method de-
pends on cases being represented as block-oriented workflows, as the workflow
structure is exploited to define the borders of the workflow streams, ensuring
their reusability. Hence, the next section introduces the workflow representation
as well as certain formal notations being further used. In Section 3, the workflow
streams are formally defined as a prerequisite for the compositional adaptation
method described in Section 4. Finally, we report on the results of an empiri-
cal evaluation of the proposed method in the domain of cooking workflows and
wrap-up by discussing related and potential future work.

2 Foundations

2.1 Workflows

A workflow is “the automation of a business process, in whole or part, during
which documents, information or tasks are passed from one participant to an-
other for action, according to a set of procedural rules” [19]. Broadly speaking,
workflows consist of a set of activities (also called tasks) combined with control-
flow structures like sequences, parallel (AND) or alternative (XOR) branches,
as well as repeated execution (LOOPs). Tasks and control-flow structures form
the control-flow. In addition, tasks exchange certain data items, which can also
be of physical matter, depending on the workflow domain. Tasks, data items,



Workflow Streams 317

and relationships between the two of them form the data flow. We illustrate our
approach in the domain of cooking recipes. A cooking recipe is represented as
a workflow describing the instructions for cooking a particular dish [14]. Here,
the tasks represent the cooking steps and the data items refer to the ingredi-
ents being processed by the cooking steps. An example cooking workflow for a
pizza recipe is illustrated in Figure 1 also showing the commonly used graph
representation, formally defined below.

Definition 1. A workflow is a graph W = (N,E) with a set of nodes N and
edges E ⊆ N×N . The nodes N = D∪T∪C can be of different types, namely data
nodes D, task nodes T , and control-flow nodes C. The control-flow nodes C =
C∗∪C∗ construct blocks of sequences and are either opening C∗ = CA∪CX ∪CL

or closing control-flow nodes C∗ = CA ∪ CX ∪ CL representing AND, XOR
and LOOP nodes. The set of sequence nodes is defined as S = T ∪ C. Edges
E = CE ∪DE can be control-flow edges CE ⊆ S × S, which define the order of
the sequence nodes or data-flow edges DE ⊆ (D × S) ∪ (S × D), which define
how the data is shared between the tasks.

Figure 1 shows an opening AND control-flow node A∗ and a related closing
AND control-flow node A∗. Further, it is important to note that the control-flow
edges CE induce a strict partial order on the sequence nodes S. Thus, we define
s1 < s2 for two sequence nodes s1, s2 ∈ S as a transitive relation that expresses
that s1 is executed prior to s2 in W . We further define n ∈ [x1, x2] iff x1 <
n < x2, describing that node n is located between x1 and x2 in W w.r.t. the
control-flow edges.

blend mash add

combine

knead roll combinecut addgrate sprinkle bake

tomatoes salt pepper sauce

butter rye-flour yeast water dough
salami cheese

pizza

+ +

task nodedata nodecontrol-flow edgedata-flow edge control-flow node

A* A*

Fig. 1. Example of a block-oriented cooking workflow

2.2 Block-Oriented Workflows

Block-oriented workflows are workflows that are constructed from blocks of work-
flow elements as defined in Definition 2.



318 G. Müller and R. Bergmann

Definition 2. A block-oriented workflow W = (N,E) is a workflow with a
block-oriented graph structure according to the following rules:

a) A block element is a workflow subgraph of the Graph (N \ D,CE) which
contains either:

– a task node
– a sequence of block elements
– a LOOP block containing an opening loop node, 1 block element, and a

closing loop node
– a XOR/AND block containing an opening XOR/AND node, 2 branches

containing a block element, and a matching closing XOR/AND node1

– a XOR block containing an opening XOR node, 1 branch with a block
element, an empty branch and a closing XOR node

b) Each block element must either contain one task or another block element
c) The workflow W is a single block

The workflow shown in Figure 1 is a block-oriented workflow. Figure 2 illus-
trates the workflow blocks, which are marked with dashed rectangles. Workflow
block elements may be nested (e.g. see loop block), but not interleaved. The
construction of block-oriented workflows restricts the usage of control-flow edges
w.r.t. block elements by the correctness-by-construction principle [13,4]. Such
a construction ensures the syntactic correctness of the workflow, e.g., that the
workflow has one start node (node without ingoing control-flow edges) and one
end node (node without outgoing control-flow edges). Such workflows are re-
ferred to as consistent workflows. In contrast to the control-flow, the data-flow
is not restricted by the block-oriented workflow construction.

task block block element sequence LOOP block

AND block XOR block

+ + ? ?

L* L*

A* A* X* X*

XOR block

? ?
X* X*

Fig. 2. Illustration of workflow block elements

2.3 Partial Workflows

As we aim at reusing meaningful parts of workflows, we define the notion of a
partial workflow as follows.

1 For the sake of simplicity only 2 branches are contained in an XOR/AND block, as
multiple branches can be easily be constructed by nesting other XOR/AND blocks.



Workflow Streams 319

Definition 3. For a subset of tasks T ′ ⊆ T , a partial workflow W ′ of a block-
oriented workflow W = (N,E) is a block-oriented workflow W ′ = (N ′, E′ ∪
CE′

+), with a subset of nodes N ′ = T ′∪C′∪D′ ⊆ N . D′ ⊆ D is defined as the set
of data nodes that are linked to any task in T ′,i.e., D′ = {d ∈ D|∃t ∈ T ′ : ((d, t) ∈
DE∨(t, d) ∈ DE)}. W ′ contains a subset of edges E′ = E∩(N ′×N ′) connecting
two nodes of N ′ supplemented by a set CE′

+ of additional control-flow edges
that retain the execution order of the sequence nodes, i.e., CE′

+ = {(n1, n2) ∈
S′ × S′|n1 < n2∧ 	 ∃n ∈ S′ : ((n1, n) ∈ CE′ ∨ (n, n2) ∈ CE′ ∨ n ∈ [n1, n2])}

In general, control-flow nodes are part of a partial workflow if they construct
a workflow w.r.t. the block-oriented workflow structure. This basically means
that each block nested in a control-flow block element must either contain one
task or some child block element containing a task. The additional edges CE′

+

are required, to retain the execution order s1 < s3 of two sequence nodes if
for s1, s2, s3 ∈ S holds s2 ∈ [s1, s3] but s2 	∈ N ′. Figure 3 illustrates a partial
workflowW ′ of the workflowW given in Figure 1. One additional edge is required
in this example, depicted by the double-line arrow since “grate” and “add” are
not linked in W .

cut addgrate sprinkle bake

salami cheese

pizza

Fig. 3. Example of a partial workflow W ′

2.4 Semantic Workflows and Semantic Workflow Similarity

To support retrieval and adaptation of workflows, the individual workflow ele-
ments are annotated with ontological information, thus leading to a semantic
workflow [2]. In particular, all task and data items occurring in a domain are
organized in taxonomy, which enables the assessment of similarity among them.
We deploy a taxonomy of cooking ingredients and cooking steps for this purpose.
In our previous work, we developed a semantic similarity measure for workflows
that enables the similarity assessment of a case workflow w.r.t. a query workflow
[2]. The similarity of task or data items reflects the closeness in the taxonomy,
and further regards the level of the taxonomic elements. In particular, if a more
general query element such as “meat” is compared with a specific element below
it, such as “pork”, the similarity value is 1. This ensures that if the query asks
for a recipe containing meat, any recipe workflow from the case base containing
any kind of meat are considered highly similar.

The similarity measure performs a kind of inexact subgraph matching, opti-
mizing the overall similarity between the matched workflow elements. It is used
during case retrieval in order to find workflows which best match a certain query.



320 G. Müller and R. Bergmann

Within the adaptation method described in this paper, the same similarity based
retrieval method is used to identify reusable workflow streams, as we will show
in Section 4.

3 Workflow Streams

According to Davenport, “[...] a process is simply a structured, measured set of
activities designed to produce a specific output for a particular customer on the
market” [5]. We define this specific output as the goal of a workflow. This goal is
reached by producing partial outputs and combining them to the specific output.
Thus, a workflow that, for example, prepares a pizza dish, also prepares the
dough, the pizza sauce, and the toppings. Hence, these partial outputs represent
partial goals of a workflow. While the entire workflow is designed to fulfill the
overall goal of a workflow, particular parts of the workflow attain partial goals
(see Fig. 4). Tasks in a workflow that fulfill a partial goal, produce a data node
that is not consumed by the same task, i.e., task having at least one outgoing
data edge but no ingoing data edge referring to the same data node d. We call
such tasks creator tasks. For a workflow W the set of creator tasks is defined as
follows:

CT = {t ∈ T |∃d ∈ D : ((t, d) ∈ DE ∧ (d, t) 	∈ DE)} (1)

The creator tasks of the workflow illustrated in Figure 4 are marked with 

symbols. They create the dough, the sauce or combine the dough, and sauce to
create the pizza.

blend mash add

combine

knead roll combinecut addgrate sprinkle bake

tomatoes salt pepper sauce

butter rye-flour yeast water dough
salami cheese

pizza

1

2

3

4 1

1 PROCESS pizza
PREPARE sauce
PREPARE dough
PREPARE pizza

2
3
4

+ +

∞ ∞

∞

Stream SStream S

Fig. 4. Wokflow and workflow streams

Furthermore, not only the creator task is sufficient to produce new data. For
example, the preparation steps to blend and mash the tomatoes have to be com-
pleted before the pizza sauce can be produced. Thus, all tasks that are required,
before the creator task can be completed have to be identified. Such tasks can
be recognized by aid of the data-flow. We define that two tasks t1, t2 ∈ T are
data-flow connected t1 � t2 if t1 < t2 and t2 consumes a data node produced
by t1. Thus, t1 has to be completed before task t2 can be executed as otherwise



Workflow Streams 321

the data wouldn’t be processed in the correct order. Hence, if the data-flow con-
nectedness is regarded and retained when modifying the workflow, the semantic
correctness of the workflow is ensured. We define:

t1 � t2, iff t1 < t2 ∧ ∃d ∈ D : ((t1, d) ∈ DE ∧ (d, t2) ∈ DE) (2)

Further, let t1
d
� t2 denote that two tasks t1, t2 ∈ T are data-flow connected

via the data object d. Figure 4 shows that the tasks “grate cheese” and “sprinkle
cheese over the pizza” (marked with�) are data-flow connected via the data node
“cheese”. Additionally, we define t1�

∗ t2 to express that two tasks t1, t2 ∈ T are
transitively data-flow connected:

t1 �
∗ t2, iff t1 � t2 ∨ ∃t ∈ T : (t1 � t ∧ t�∗ t2) (3)

We use the definition of creator tasks and data-flow connectedness to decom-
pose a workflowW into partial workflows each of which represent disjoint partial
goals. Each workflow W can be partitioned by the definition given below.

Definition 4. A partition SW = {SW
1 , . . . ,SW

n } of a block-oriented workflow
W is a set of partial workflows SW

i , such that each task t ∈ T is contained in a
partial workflow SW

i and such that the tasks in each SW
i are transitively data-

flow connected and not contained in any other partial workflow SW
j �=i. All creator

tasks y ∈ CT are end nodes of any partial workflow in SW . Each partition SW
i

is called workflow stream.

In order to partition the workflow W into streams, for each creator task y ∈
CT a set of transitively data-flow connected and disjoint tasks TS is identified.
TS is constructed, by adding all data-flow connected tasks that are not data-flow
connected to any predecessor creator task of CT (as the creator tasks represent
end nodes of partial workflows):

TS(y) := {t ∈ T |t�∗ y ∧ t 	∈ CT∧ 	 ∃x ∈ CT : (t�∗ x ∧ y 	< x)} ∪ {y} (4)

Based on the set of tasks TS that belong to a workflow stream S, a partial
workflow can be constructed according to Definition 3, which is then finally re-
ferred to as workflow stream. For each of the creator tasks illustrated in Figure
4 (marked with 
) the dashed lines represent the tasks assigned to the referring
stream (see stream 2,3,4). Regarding task disjointness, the task “mash toma-
toes”, for example, does not belong to the workflow stream 4, although it is
transitively data-flow connected, as it is separated though a data-flow connected
creator task (see “combine” task of stream 4).

According to Definition 4, each task is contained in a partial workflow SW
i .

Thus, each set of transitively data-flow connected tasks not already contained in
any stream SW

i derived from a creator task, is assigned to a new stream. Thus,
not only streams that produce new data nodes are regarded, but also streams
processing a data node. As an example, see stream 1 in Fig. 4 for putting the
toppings on the pizza.



322 G. Müller and R. Bergmann

To summarize, the workflow is partitioned in such a manner that each task is
assigned to exactly one stream of the workflow. The extracted workflow streams
are themselves consistent workflows as they are block-oriented. Furthermore,
due to the data-flow connectedness, the streams maintain their “semantic cor-
rectness” as they represent meaningful connected subcomponents of the original
workflow.

The basic idea for compositional adaptation is, to adapt a workflow by using
the workflow streams of other workflows that fulfill the same partial goal in a
different manner, e.g., with other tasks or data. In the pizza domain, for exam-
ple, toppings or preparation steps, can be replaced. Therefore it is required to
identify whether some streams can be substituted. We require that substitutable
streams must produce the same data and that they must consume the identical
data nodes. This ensures that replacing an arbitrary stream doesn’t violate the
semantic correctness of the workflow, e.g. that a data object is never produced or
consumed (except of those never produced or consumed by the entire workflow).
The following notion of anchors is used to define the relevant data notes to be
considered to decide whether two streams are substitutable.

Definition 5. For a stream S, a set of anchors is defined as AS = {d ∈ DS |(∃t ∈
T \ TS ∧ ∃tS ∈ TS) : (t

d
� tS ∨ tS

d
� t)}

Thus, anchors of a stream SW
i are data nodes of this stream that are either

produced or consumed by a task of another stream SW
j �=i of the same workflow

W . Two streams are substitutable if they have identical anchor sets. The anchor
nodes of all streams are marked with ∞ symbols in Figure 4, i.e., sauce, dough,
and pizza.

4 Compositional Adaptation Using Workflow Streams

In the following, we assume that each workflow in the case base has been decom-
posed into workflow streams according to Section 3. These streams are linked to
each workflow in the case base and stored in a separate workflow stream repos-
itory. The adaptation procedure is now presented and explained by an example
scenario. After the retrieval of a most similar workflow W the user might want
to adapt this workflow to his or her preferences. Let us assume that the user
retrieved the workflow W given in Figure 4.

4.1 Change Request

Following the retrieval, a change request is defined by specifying lists of task or
data nodes that should be added (ADD list) or removed (DELETE list) from
workflow W . The change request can be either manually acquired from the user
after the workflow is presented or it can be automatically derived based on the
difference between the query and the retrieval case. As the tasks and data are
taxonomically ordered (see Section 2.4), the change request can also be defined



Workflow Streams 323

by a higher level concept of the taxonomy in order to define a more general
change of the workflow. For example, a change request specified as “DELETE
meat” ensures that the adapted recipe is a vegetarian dish.

4.2 Search of Substitute Stream Candidates

To perform a workflow adaptation, for each stream S in the retrieved workflow
W a substitute stream candidate S ′ is searched in the constructed stream pool
repository. If a candidate can be found, the stream S is substituted with stream
S ′. The identification of a substitute stream candidate S ′ requires to identify
those workflows that can be replaced with a stream S. As already mentioned,
stream S and S ′ must have the identical set of anchor elements. This condition
ensures that the adapted workflow is semantically correct, i.e., that the workflow
doesn’t contain any data nodes that are never produced or consumed by an other
workflow stream. Additionally, the substitute stream candidate must regard the
change request. Hence, streams are searched that do not contain any node given
in the DELETE list and that contain the highest number of nodes from the ADD
list of the change request. For all streams that fulfill these conditions, a retrieval
of the most similar stream to stream S is executed, considering the semantic
similarity measure sketched in Section 2.4. The retrieved most similar stream is
the substitute stream candidate. This approach ensures that a substitute stream
is selected that only changes the workflow as much as required w.r.t. the change
request.

The following example illustrates this approach. Assume that for a certain
query, the workflow from Fig. 4 is retrieved and that the change request is to
“DELETE salami” and to “ADD ground beef”. Lets assume that stream 1 of
Fig. 4 is stream S and the stream illustrated in Figure 5 is the substitute stream
candidate S ′. Both streams have an identical set of anchor elements (see ∞)
which only contains the “pizza” node. Furthermore, workflow stream S ′ regards
the change request as it contains the node given in the ADD list (“ground beef”)
and no node defined in the DELETE list (“salami”).

cook chopadd sprinkle bake

ground
beef

cheese

pizza∞

onions

Fig. 5. Substitute stream S ′

4.3 Replacing Workflow Streams

To replace stream S by the substitute stream candidate S ′, S is first removed from
the workflow. This means that a partial workflow (see Sec. 2.3) is constructed,



324 G. Müller and R. Bergmann

containing all tasks ofW except of those contained in S. The removal of the work-
flow stream in the given scenario is illustrated in Figure 6.

blend mash add

combine

knead roll combinecut addgrate sprinkle bake

tomatoes salt pepper sauce

butter rye-flour yeast water dough
salami cheese

pizza

+ +

∞

Stream SStream S

Fig. 6. Stream S removed from W

Then, the new stream S ′ is inserted at the position of the last sequence node
of the workflow stream S in W . This means that all edges, tasks, and data
nodes (if not already present) of S ′ are inserted into the workflow W . Then,
the inserted stream S ′ is connected with an additional control-flow edge that
links the tasks of the stream at the old position to the last sequence node of the
removed stream inW . In the illustrated scenario, the stream S ′ is inserted behind
the last “combine” task (see Fig. 7). In the special case that the last sequence
node of S is a control-flow node that is still a part of the partial workflow after
removing workflow stream S, the stream S ′ is inserted behind this control-flow
node.

blend mash add

combine

knead roll combine

tomatoes salt pepper sauce

butter rye-flour yeast water dough

+ +
Stream S‘

cook chopadd sprinkle bake

ground
beef

cheese

pizza∞

onions

Fig. 7. Stream S ′ added to W

Inserting the stream S ′ may lead to a shift of tasks. In the given scenario,
for example, the start node of the original workflow and the adapted workflow
differ (compare Fig. 4 and Fig. 7). However, this does not violate the semantic
correctness of the workflow, i.e., the data is still being processed in the right
order. This is ensured by the workflow stream definition as all tasks that are
transitively data-flow connected are included in the workflow stream as long as



Workflow Streams 325

they are not separated by a creator task. Additionally, the anchors ensure that
only streams are replaced representing an identical partial goal.

5 Evaluation

The described approach to compositional adaptation of workflows has been fully
implemented as part of the CAKE framework2 that already includes a process-
oriented case-based reasoning component for similarity-based retrieval of work-
flows. To demonstrate its usefulness, the approach is experimentally evaluated
focussing on two hypotheses explained below.

In Section 3 it was already stated that workflows adapted by the workflow
stream method are consistent and semantically correct. Hence, this property will
not be subject to the empirical evaluation. However in the experiments the con-
sistency and semantic correctness of the constructed workflows was checked (and
confirmed) in order to validate the correctness of the implementation. We con-
ducted an empirical evaluation to analyze whether change requests are fulfilled
by the adapted workflows (Hypothesis H1) and to validate whether the adapted
workflows are of an acceptable quality (Hypothesis H2).

H1. The compositional adaptation approach is able to produce workflows that
fulfill the change requests.

H2. The compositional adaptation produces workflows, whose quality is com-
parable to the quality of the workflows in the case base.

5.1 Experimental Setup

We developed an automatic workflow generator that enables us to produce work-
flow repositories for experimental purposes with predefined properties. The gen-
erator uses the fast downward planner3 to produce sequences of tasks, which
are further organized into a (partly parallelized) workflow structure. The gener-
ated workflows are block-oriented and semantically correct w.r.t. the definition
of the planning domain. For the experiments, we generated 240 different cooking
workflows, each of which produces a pizza. Overall, 17 different ingredients and
8 different tasks occur in the workflows. Due to the limitation of the workflow
generator, the workflows do not contain any XOR or LOOP structures, but AND
blocks occur frequently.

The experimental setup to validate the hypotheses defined above is illustrated
in Figure 8. The repository of 240 workflows was split into two data sets: One
repository containing 10 arbitrary workflows (referred to as test workflows) and
a case base containing the remaining 230 workflows. A stream repository was
computed for adaptation based on the workflows contained in the case base. In

2 cake.wi2.uni-trier.de
3 www.fast-downward.org

cake.wi2.uni-trier.de
www.fast-downward.org


326 G. Müller and R. Bergmann

total 920 workflow streams were identified and stored in the stream repository.
For each test workflow TWi we retrieved a random workflow from the case
base (referred to as retrieved workflow) and constructed a pair of workflows
(TWi, RWi). If the retrieved workflow RWi was already paired with another test
workflow TWi�=j or if the set of data and task nodes was identical, a different
workflow RWi was selected from the case base. Each pair (TWi, RWi) was used
to automatically generate a change request for RWi by determining the set of
nodes to be added and deleted in order to arrive at TWi. A change request
“DELETE salami”, for example, means that the retrieved workflow RWi uses a
salami topping while the test workflow TWi does not. We executed the proposed
compositional adaptation method for each of the 10 workflows RWi using the
corresponding change request. Thus, 10 adapted workflows are computed.

Repository of
240 Workflows

Repository of
10 Test Workflows

Case Base of
230 Workflows

Retrieved Workflow

Test Workflow

Workflow Pair

Change Request
Retrieved Workflow --> Test Workflow

Adaptation
Adapted Workflow

Workflow Stream
Repository

Quality 
Comparison

Fig. 8. Experimental Setup

5.2 Experimental Evaluation and Results

To verify hypothesis H1 we analyzed the resulting adapted workflows whether
they fulfilled the change request, i.e., whether they did not contain any node
from the DELETE list but all nodes from the ADD list. It turned out that each
of the 10 adapted workflows fulfilled their change request, thus Hypothesis H1
was confirmed. This outcome was not very surprising, as the workflows in the
case base all represent pizza recipes and are thus relatively similar to each other.
Due to the large number of 920 workflow streams generated, there was a high
chance that streams could be found that perfectly matches the change request.

To evaluate Hypothesis H2 a blinded experiment was performed involving 5
human experts. The experts rated the quality of the 10 test worklows and the
10 corresponding adapted workflows. These 20 workflows were presented in ran-
dom order, without any additional information. Thus the experts did not know
whether the workflow was an original workflow from the case base or an adapted
workflow. The experts were asked to assess the quality of each workflow based on
5 rating items on a 5 point Lickert scale (from 1=very low to 5=very high). The
rating items are comprised of the intelligibility of the entire preparation process,



Workflow Streams 327

Table 1. Item rating assessment

better test workflows better adapted workflows equal

intelligibility of recipe 24 10 16
correctness of recipe 14 7 29
level of process optimization 20 15 15
plausibility of preparation steps 19 11 20
overall quality 17 12 21

aggregated quality 28 15 7

Table 2. Average differences on item ratings

intelligibility of recipe 0.26
correctness of recipe 0.42
level of process optimization 0.20
plausibility of preparation steps 0.18
overall quality 0.28

average per item 0.27
average per workflow 1.34

the correctness of the recipe (w.r.t. order of tasks and data-flow), the level of
process optimization (w.r.t. parallel execution and task order), the plausibility
of the preparation steps, and the overall quality of the recipe.

The ratings from the 5 experts of all 10 workflow pairs were compared, leading
to 50 ratings. We define that one item was rated better for a workflow if it was
scored with a higher value than the corresponding item of the compared work-
flow. Based on this, we conclude that a workflow has a higher aggregated quality,
if more of its items were rated better than those of the compared workflow.

Table 1 illustrates the results for each rating item in isolation as well as for
the aggregated quality assessment. It shows the number of workflows for which
the test workflow or the adapted workflow is better, as well as the number of
workflows which were equally rated. In 22 out of 50 rated workflow pairs, the
adapted workflow was rated of higher or equal quality (concerning the aggre-
gated quality), whereas 28 test workflows were rated higher. Thus in 44% of the
assessments, the adaptation produced workflows with at least the same quality
as the workflow from the case base from which they were assembled. When only
the rating of the overall quality is regarded, even 66% of the assessments indicate
that the adaptation produces a workflow with at least the same quality as the
workflow from the case base. Additionally, table 2 illustrates the average rating
difference on the items of all 50 workflow pairs. In total, the items of each test
workflow are rated 1.34 higher than those of the adapted workflow, which means
that each item was rated about 0.27 times better than the corresponding item of
the adapted workflow. Thus, the experts rated the items and hence the quality
of the test workflows only slightly higher. Altogether, Hypothesis H2 is mostly
confirmed.



328 G. Müller and R. Bergmann

6 Conclusions and Related Work

Adaptation is a major challenge in case-based reasoning. However, most research
only considers cases represented by attribute-values [7,3,8] and there is only little
work addressing workflow adaptation. The presented approach of Minor et al.
[9], for example, executes workflow adaptations by transforming workflows in a
kind of a rule-based manner. Dufour-Lussier et al. [6] presented a compositional
adaptation approach for processes, which differs as in their work processes are
represented as trees and additional adaptation knowledge is required.

We presented a novel approach to compositional adaptation of workflows by
decomposing them into reusable workflow parts (workflow streams). We inves-
tigated how to identify and to replace workflow streams and developed an ap-
proach to adapt entire workflows regarding a change request. A major advantage
is that no manually acquired adaptation knowledge is needed, thus expensive
knowledge acquisition is avoided. Instead, the available knowledge contained in
the case base is accessed. The proposed approach ensures that the adapted work-
flows are consistent and semantically correct. Our evaluation indicates that the
adaptation process does not significantly decrease the quality of the resulting
workflows. However, the presented approach is limited, as it requires similarly
structured workflows and workflow streams to be present. Further, we employ
the domain knowledge in the ontology during the similarity assessment and for
the representation of change requests. Additional adaptation knowledge is yet
not used, but could be considered in future extension of the proposed approach.

Future work will extend the existing evaluation towards other domains and
varying characteristics of the case base. The developed workflow generator now
makes such evaluations feasible. Furthermore, we will explore various ways to
improve the proposed method by weakening the equality condition on anchors
in the substitutability of streams, and by generalizing the streams by using the
taxonomy of tasks and data items. To further increase the flexibility of workflow
reuse, workflow streams might be a means to construct abstract workflows, to
identify subworkflows, or to optimize workflows (w.r.t. parallel executions).

Acknowledgements. This work was funded by the German Research Founda-
tion (DFG), project number BE 1373/3-1.

References

1. Bergmann, R.: Experience Management. LNCS (LNAI), vol. 2432. Springer, Hei-
delberg (2002)

2. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic
workflows. Inf. Syst. 40, 115–127 (2014)

3. Craw, S., Jarmulak, J., Rowe, R.: Learning and applying case-based adaptation
knowledge. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080,
pp. 131–145. Springer, Heidelberg (2001)



Workflow Streams 329

4. Dadam, P., Reichert, M., Rinderle-Ma, S., Göser, K., Kreher, U., Jurisch, M.:
Von ADEPT zur AristaFlow BPM Suite-Eine Vision wird Realität: “Correctness
by Construction” und flexible, robuste Ausführung von Unternehmensprozessen.
University of Ulm (2009), http://dbis.eprints.uni-ulm.de/489/

5. Davenport, T.: Process Innovation: Reengineering Work Through Information
Technology. Harvard Business Review Press (2013)

6. Dufour-Lussier, V., Lieber, J., Nauer, E., Toussaint, Y.: Text adaptation using
formal concept analysis. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS,
vol. 6176, pp. 96–110. Springer, Heidelberg (2010)

7. Hanney, K., Keane, M.T.: Learning adaptation rules from a case-base. In: Smith,
I., Faltings, B. (eds.) EWCBR 1996. LNCS, vol. 1168, pp. 179–192. Springer, Hei-
delberg (1996)

8. McSherry, D.: Demand-driven discovery of adaptation knowledge. In: Dean, T.
(ed.) IJCAI, pp. 222–227. Morgan Kaufmann (1999)

9. Minor, M., Bergmann, R., Görg, S., Walter, K.: Towards case-based adaptation of
workflows. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176,
pp. 421–435. Springer, Heidelberg (2010)

10. Minor, M., Görg, S.: Acquiring adaptation cases for scientific workflows. In: Ram,
A., Wiratunga, N. (eds.) ICCBR 2011. LNCS, vol. 6880, pp. 166–180. Springer,
Heidelberg (2011)

11. Minor, M., Montani, S., Recio-Garca, J.A.: Process-oriented case-based reasoning.
Information Systems 40, 103–105 (2014)

12. Purvis, L., Pu, P.: Adaptation using constraint satisfaction techniques. In: Veloso,
M.M., Aamodt, A. (eds.) ICCBR 1995. LNCS, vol. 1010, pp. 289–300. Springer,
Heidelberg (1995)

13. Reichert, M.: Dynamische Ablaufänderungen in Workflow-Management-Systemen.
University of Ulm (2000), http://dbis.eprints.uni-ulm.de/433/

14. Schumacher, P., Minor, M., Walter, K., Bergmann, R.: Extraction of procedural
knowledge from the web. In: Workshop Proc.: WWW 2012, Lyon, France (2012)

15. Smyth, B., Cunningham, P.: Deja vu: A hierarchical case-based reasoning system
for software design. In: Neumann, B. (ed.) Proc. ECAI 1992, pp. 587–589 (1992)

16. Stahl, A., Bergmann, R.: Applying recursive CBR for the customization of struc-
tured products in an electronic shop. In: Blanzieri, E., Portinale, L. (eds.) EWCBR
2000. LNCS (LNAI), vol. 1898, pp. 297–308. Springer, Heidelberg (2000)

17. Veloso, M.M.: Planning and Learning by Analogical Reasoning. LNCS, vol. 886.
Springer, Heidelberg (1994)

18. Wilke, W., Bergmann, R.: Techniques and knowledge used for adaptation during
case-based problem solving. In: Mira, J., Moonis, A., de Pobil, A.P. (eds.) IEA/AIE
1998. LNCS, vol. 1416, pp. 497–506. Springer, Heidelberg (1998)

19. Workflow Management Coalition: Workflow management coalition glossary & ter-
minology (1999), http://www.wfmc.org/docs/TC-1011_term_glossary_v3.pdf

(last access on April 04, 2014)

http://dbis.eprints.uni-ulm.de/489/
http://dbis.eprints.uni-ulm.de/433/
http://www.wfmc.org/docs/TC-1011_term_glossary_v3.pdf

	Workflow Streams: A Means for CompositionalAdaptation in Process-Oriented CBR
	1 Introduction
	2 Foundations
	2.1 Workflows
	2.2 Block-Oriented Workflows
	2.3 Partial Workflows
	2.4 Semantic Workflows and Semantic Workflow Similarity

	3 Workflow Streams
	4 Compositional Adaptation Using Workflow Streams
	4.1 Change Request
	4.2 Search of Substitute Stream Candidates
	4.3 Replacing Workflow Streams

	5 Evaluation
	5.1 Experimental Setup
	5.2 Experimental Evaluation and Results

	6 Conclusions and Related Work
	References




