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Abstract. To solve big data problems which occur in modern data min-
ing applications, a comprehensive approach is required that combines a
flexible model and an optimisation algorithm with fast convergence and
a potential for efficient parallelisation both in the number of data points
and the number of features.

In this paper we present an algorithm for fitting additive models based
on the basis expansion principle. The classical backfitting algorithm that
solves the underlying normal equations cannot be properly parallelised
due to inherent data dependencies and leads to a limited error reduction
under certain circumstances. Instead, we suggest a modified BiCGStab
method adapted to suit the special block structure of the problem. The
new method demonstrates superior convergence speed and promising
parallel scalability.

We discuss the convergence properties of the method and investigate
its convergence and scalability further using a set of benchmark problems.

Keywords: backfitting, additive models, parallelisation, regression.

1 Introduction

Approximation of high-dimensional functions from data is an important area of
machine learning research.With increasing interest in data mining and increasing
computational power more effort is spent on collecting and analysing data and,
hence, data mining applications continuously grow in size and dimensionality.

Some algorithms, e.g. sparse grids [1], show linear complexity with respect
to the amount of data points for storage and computation. This result is al-
ready optimal, as we cannot process data without looking at least once at every
data point, although the multiplicative complexity constants for different mod-
els and algorithm implementations could lead to significant differences in actual
runtime. Hence, further development is focused on minimising complexity con-
stants by improving implementation efficiency, by parallelising, or by developing
sub-sampling heuristics [2–4].

Dimensionality of the approximation problem poses a more difficult challenge.
In 1961 Richard Bellman coined the term “curse of dimensionality”, which refers
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to the observation that the costs for computation and storage of an approxima-
tion for a d-dimensional function and a pre-defined accuracy ε have the complex-
ity O (

ε−d/r
)
[5]. The constant r depends on the properties of the problem, e.g.

smoothness, separability, etc., as well as on the kind of approximation method
and its implementation.

The exponential dependency of the cost on the dimensionality is inherent in
the nature of the problem. Research in information-based complexity suggests
that the curse of dimensionality can be avoided only if a problem possesses a
special structure that algorithms exploit, e.g. sufficiently fast converging ANOVA
decomposition [6–10].

To solve big data problems which occur in modern data mining applications,
a comprehensive approach is required that combines a flexible model and an
optimisation algorithm with fast convergence and a potential for efficient par-
allelisation both in data size and dimensionality. In this paper we discuss such
a comprehensive approach based on additive models and a parallel BiCGStab
algorithm for optimisation.

Additive models are well established in statistics and thoroughly studied in
the literature [11, 12]. The concept with somewhat different model requirements,
is popular in the machine learning community. For example, recent developments
apply new optimisation methods [13] and a parallelisation paradigm [14].

Moreover, estimation of additive models is an integral part of generalised
additive models – a more powerful but also more computationally demanding
representation concept [11].

We begin with a revision of the original formulation of additive model es-
timation proposed by Buja, Hastie, and Tibshirani [12] and show how beside
smoothing problems (Section 2), many current regression methods can be cast
into this form (Section 3). In Section 4 we then suggest a Krylov-space method
for solution of normal equations and show how the problem structure can be
exploited for efficiency and parallelisation. We illustrate convergence and scal-
ability of the new method using benchmark problems in Section 5. Finally, we
conclude with a discussion of the results and provide an overview of future work
in Section 6.

2 Theoretical Background

We consider a dataset of the form (t(1), y(1)), . . . , (t(N), y(N)) with input variables
t(i) and target variables y(i) and make a basic assumption about the existence
of an underlying function f(t) that generates the data and some additive model
error and measurement noise summarised in the term ε(t). Then the input-target
relationship can be represented as

y = f(t) + ε(t).
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Different methods to find an approximation of f in a functional space V often
lead to a penalised least squares problem

min
f∈V

1
N

N∑

i=1

(f(t(i))− y(i))2 + λ‖Df‖22 (1)

with a positive regularisation parameter λ and some smoothness operator D.
As mentioned above, (1) suffers from the curse of dimensionality so that only

the problems with moderate dimensionality can be handled. Approaches that do
not face the curse, e.g. additive models or ANOVA [15], are based on decompo-
sition of the space V into a sum of simpler function spaces

V = V1 + . . .+ Vn. (2)

For example, in the context of ANOVA the decomposition of a function f
with a d-dimensional input has the form

f(t) = f0 +
d∑

j=1

fj(tj) +
∑

1≤i<j≤d

fi,j(ti, tj) +
∑

1≤i<j<k≤d

fi,j,k(ti, tj , tk) + . . . ,

where tj stands for the j-th component of the data point t.
For tractability we drop the higher-order interaction terms. This corresponds

to an assumption that the structure of the problem admits reasonably accurate
representation which utilises only low-order interaction terms. In the following
we consider only the 1-dimensional terms fj. However, the extension to first-
order interaction terms fi,j is straightforward.

While it is not assumed that the Vj are linearly independent, we assume
that the penalty term is consistent with the decomposition of V , such that
fj, j = 0, . . . , d, solve the optimisation problem

min
f0∈R,f1∈V1,...,fd∈Vd

1
N

N∑

i=1

⎛

⎝f0 +

d∑

j=1

fj(t
(i)
j )− y(i)

⎞

⎠

2

+

d∑

j=1

λj‖Djfj‖22. (3)

As discussed in the next section, many models for representation of fj can
be cast in terms of linear algebra. Denote x as the vector of components of f(t)
with respect to some generating system, e.g. coefficients of a polynomial model.
Furthermore, let Ax be a vector of function values f(t(i)) and y the vector of
data values y(i). Taking into account the residual r we obtain

[A1 . . .Ad]︸ ︷︷ ︸
A

⎡

⎢
⎣

x1

...
xd

⎤

⎥
⎦

︸ ︷︷ ︸
x

= y − r (4)

with xj ∈ R
mj , Aj ∈ R

N×mj , y, r ∈ R
N , x ∈ R

m,A ∈ R
N×m, and m :=

m1 + . . .+md. The problem (3) can now be written as

min
x

‖Ax− y‖22 + λxTDx (5)
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with D a block diagonal matrix, which can be partitioned such that its block
structure is compatible with that of x. Often D will just be an identity matrix.

In order to minimise (5) one needs to solve the normal equations

(ATA+ λD)x = ATy (6)

If we substitute (4) into (6) we obtain an m×m system
⎡

⎢
⎢
⎢
⎣

AT
1 A1 + λD1 AT

1 A2 · · · AT
1 Ad

AT
2 A1 AT

2 A2 + λD2 · · · AT
2 Ad

...
...

. . .
...

AT
dA1 AT

d A2 · · · AT
dAd + λDd

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

x1

x2

...
xd

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

AT
1 y

AT
2 y
...

AT
d y

⎤

⎥
⎥
⎥
⎦
. (7)

We are particularly interested in problems where (7) is used to determine the

predicted values f̂ = Ax = y − r, which in view of (4) can be written as

f̂ := f1 + . . .+ fd, with fi = Aixi, i = 1, . . . , d. (8)

If we multiply every row block i of (7) by Ai(A
T
i Ai + λDi)

−1 from the left
and introduce

Si := Ai(A
T
i Ai + λDi)

−1AT
i (i = 1, . . . , d), (9)

we obtain equations of the form
⎡

⎢⎢
⎢
⎢
⎢
⎣

I S1 S1 . . . S1

S2 I S2 . . . S2

S3 S3 I . . . S3

...
...

. . .
...

Sd Sd Sd . . . I

⎤

⎥⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
S

⎡

⎢⎢
⎢
⎢
⎢
⎣

f1
f2
f3
...
fd

⎤

⎥⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
f

=

⎡

⎢⎢
⎢
⎢
⎢
⎣

S1y
S2y
S3y
...

Sdy

⎤

⎥⎥
⎥
⎥
⎥
⎦
. (10)

Following the tradition from statistics we call matrices Si smoothing matrices.
The normal equation (10) is the one we are interested in solving. In Section 5
we discuss why we prefer it over (7).

3 Regression Models

Problem (7) arises naturally in a number of regression models which utilise the
basis expansion [16]

fj(tj) =

mj∑

l=1

βlφl(tj) (11)

with functions φl being a basis of a function space Vj and βl being model pa-
rameters.

The matrix Aj has the components

{Aj}kl = φl(t
(k)
j ), k = 1, . . . , N, l = 1, . . . ,mj .
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We illustrate this on the example of regression splines. The derivation for
other basis expansion models, e.g. linear and polynomial regression or sparse
grids, is analogous.

Regression splines form piecewise-polynomials of order M (for cubic splines
M = 4) with knots ξj , j = 1, . . . ,K. The general form for the truncated-power
basis set would be [16]

φj(t) = tj−1, j = 1, . . . ,M,

φM+l(t) = max{0, (X − ξl)
M−1}, l = 1, . . . ,K.

The cubic spline regression solves the problem (5) with D having the compo-
nents {D}kl =

∫
φ

′′
k (t)φ

′′
l (t)dt.

Buja et al. have shown the existence of at least one solution for the normal
equations (10) for symmetric smoothers with eigenvalues in [0,1] and so this
result also applies for other additive models that fit the requirements [12]. Fur-
thermore, the Gauss-Seidel and related procedures would always converge to
some solution of (10).

It can be shown that for any Hermitian positive definite matrix Dj and Aj

resulting from our basis expansion the corresponding smoothing matrix Sj has
its spectrum in [0, 1) as well and hence all convergence results apply.

Problem (10) arises naturally from the models based on reproducing kernel
Hilbert spaces, such as Nadaraya-Watson kernel regression.

Nadaraya-Watson kernel regression is another popular non-parametric regres-
sion method from statistics. The estimator function describes the conditional
expectation of the target variable relative to the input variable:

f(t) =

∑N
i=1 φh(t− t(i))y(i)
∑N

i=1 φh(t− t(i))
, (12)

where φ is a kernel function with a bandwidth h.
The smoothing matrix in this case can be expressed explicitly as

{Sj}kl =
φh(t

(k)
j − t

(l)
j )

∑N
i=1 φh(t

(k)
j − t

(i)
j )

, k = 1, . . . , N, l = 1, . . . , N (13)

Convergence theory for this type of models is currently an area of active
research [17].

4 Fitting Methods

As mentioned in the previous section, the convergence of many algorithms for
solving (10) depends on properties of the spectrum of Sj . However, while the
convergence can be established, the convergence rate of the algorithms would
depend on the magnitude and distribution of the system matrix eigenvalues.

A popular method to solve (10) is the Backfitting Algorithm 1. The main
principle of the algorithm is a blocked Gauss-Seidel method.

Buja et al. show that the convergence rate of the backfitting algorithm heavily
depends on the magnitude of the eigenvalues that are significantly smaller than
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Algorithm 1 Backfitting Algorithm

Input: S1, . . . ,Sd smoothing matrices, y target vector
Output: fT := (fT1 , . . . , fTd )T predictions of the additive models
while not converged do

for j = 1 to d do

fj = Sj

(
y −∑

k �=j fk
)

end for
end while

1. This means that the error terms corresponding to the eigenvectors with eigen-
values near 1 (e.g. constant, linear and low-frequency) would not be eliminated
at all by the algorithm.

Figure 1 illustrates a typical distribution of the eigenvalues of the matrix S.
The matrix has a single large eigenvalue that is equal to the d, followed by a
cluster of eigenvalues in the range [0, 1.37).

At this point we suggest to use a BiCGStab-based Krylov method [18] instead
of Gauss-Seidel iteration for solving Equation (10) to improve the convergence.
Not only is it better suited for system matrices with clustered eigenvalues, it also
eliminates the error components that are problematic for backfitting and have
to be handled separately, e.g. using modified backfitting [12].

Algorithm 2 shows the original formulation of the BiCGStab algorithm with-
out preconditioning. It is not well suited for parallelisation as it requires syn-
chronisation in lines 9, 10, 13, and 14.

Algorithm 2 BiCGStab Algorithm

1. Input: S,S1, . . . ,Sd smoothing matrices, y target vector
2. Output: f predictions of the additive models
3. rT = (r0)T = (S1y,S2y, . . . ,Sdy)
4. f = t = v = s = 0
5. α = ω = 1 ; ρold = ρnew = β = rT r
6. while not converged do
7. β = ρnew/ρold · α/ω ; ρold = ρnew

8. p = β(p− ωv) + r
9. v = Sp {synchronisation}

10. α = ρold/vT r0 {synchronisation}
11. s = r− αv
12. check convergence
13. t = Ss {synchronisation}
14. ω = tT s

tT t
; ρnew = −ωtT r0 {synchronisation}

15. r = s− ωt
16. f = f + ωs+ αp
17. check convergence
18. end while
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To reduce the communication we postpone the calculation of the scalar prod-
ucts until the aggregation of the results of matrix-vector multiplications is nec-
essary. We can do this because the system matrix has a very specific structure
and its application on a vector requires only minimal communication:

vj = pj + Sj(
∑

i�=j

pj) = pj + Sj(

d∑

i=1

pi − pj),

tj = sj + Sj(
∑

i�=j

sj) = sj + Sj(

d∑

i=1

si − sj)

with vj ,pj , tj , sj denoting the subvectors, similar to xj .
Furthermore, to reduce communication we found it more convenient to aggre-

gate the sum of vectors ti and vi instead of pi and si
Algorithm 3 presents the final algorithm. Vectors with the subscript “Σ”, e.g.

tΣ , represent the results of the sum of individual vectors, e.g.
∑

i ti. The scalar
products in the second argument of the Allreduce functions in lines 10 and 20
stand for variables containing the corresponding scalar products. In these calls
a vector and scalar products are joined into a single memory segment to reduce
communication.

We illustrate the scalability of the algorithm in the next section.

5 Results

To motivate the use of the smoothing matrix formulation and normal equations
of the form (10) instead of (7), we begin by illustrating the convergence speed
of the same problem in these two formulations.

A synthetic dataset used for this experiment was generated from a linear
model with random coefficients. This dataset has 100-dimensions whereas only
10 dimensions are informative. The targets were obfuscated by additive noise
term with N (0, 0.01):

y = β0 + β1t1 + . . .+ β10t10 + 0t11 + . . .+ 0t100 + ε,

β0, β1, . . . , β10 ∼ U(0, 100), ε ∼ N (0, 0.01). (14)

Altogether 1000 points were used to generate the results. To model the function
we used regression cubic splines described in Section 3 with 10 basis functions
per dimension and regression parameter λ = 10−7.

Figure 2 illustrates the norm of the residual and the prediction error. We
normalise the measurements by the norm of the residual/error at iteration 0, so
that at the beginning the residual/error norm is always 1. Equation (7) is solved
using MINRES method [19], while Equation (10) is solved once using backfitting
and once using BiCGStab method.

One can easily see the superiority of the problem formulation (10) both by
using the classical backfitting algorithm and by the BiCGStab method. While
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Fig. 1. Distribution of the 50 largest eigenvalues of the matrix S from a 4-dimensional
Friedman 2 dataset with cubic spline regressors

Algorithm 3 Parallel BiCGStab Algorithm: code for processor j, 0 ≤ j ≤ n− 1

1. Input: Sj smoothing matrix, y target vector
2. Output: fj predictions of the function fj(x) at the data points
3. r0j = Sjy; rj = r0j
4. Allreduce([rj , r

T
j rj ], [rΣ , ρnew], SUM)

5. α = ω = 1; ρold = β = ρnew

6. fj = tj = vj = vΣ = pj = pΣ = sj = sΣ = 0
7. while not converged do
8. if iteration > 0 then
9. ρold = ρnew

10. Allreduce([sTj r
0
j , t

T
j sj , t

T
j tj , t

T
j r

0
j , tj ], [s

T r0, tT s, tT t, tT r0, tΣ ], SUM)

11. ω = tT s
tT t

; ρnew = sT r0 − ωtT r0;β = ρnew

ρold
· α
ω

12. ρold = ρnew

13. rj = sj − ωtj ; rΣ = sΣ − ωtΣ
14. fj = fj + ωsj
15. check convergence on r
16. end if
17. pj = β(pj − ωvj) + rj
18. pΣ = β(pΣ − ωvΣ) + rΣ
19. vj = pj + Sj(pΣ − pj)
20. Allreduce

(
[vT

j r
0
j ,vj ], [v

T r0,vΣ ], SUM
)

21. α = ρold/vT r0

22. sj = rj − αvj ; sΣ = rΣ − αvΣ

23. fj = fj + αpj

24. check convergence on s
25. tj = sj + Sj(sΣ − sj)
26. end while
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the residual in the formulation (7) decreases, it does not seem to significantly
reduce the error of the resulting additive model which is our main goal.
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Fig. 2. Comparison of problem formulations (7) solved with MINRES and (10) solved
with backfitting and BiCGStab for minimisation of residual and error of a synthetic
100-dimensional dataset from model (14)

Figure 2 also gives an impression of the convergence comparison between
backfitting and BiCGStab. Backfitting shows more stable, but slower conver-
gence even on this simple example.

We extend the numerical comparison by a number of benchmark datasets (see
Table 1 for description). Tables 2 and 3 compare the final normalised residual
and error for a number of problems. As our main focus is the solution of Equation
(10) we do not discuss the selection of optimal learning parameters and confine
to setting the same parameters for the backfitting and BiCGStab.

Table 1. Summary description of the benchmark datasets

Dataset Samples Dimensions Source

Boston Housing 506 13 [20]

DR 5 10000 6 [21]

Diabetes 442 10 [22]

Spam 3064 16 [16]

Friedman 1 2000 10 [23]

Friedman 2 1000 4 [23]

Friedman 3 1000 4 [23]

The BiCGStab method is at least as good and in many cases clearly superior
to the backfitting algorithm. We also observed that, depending on the problem,
backfitting would catch up with more iterations allowed or stagnate with a higher
error.
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Table 2. Results for cubic spline regression

Dataset mj λ Iter. BiCGStab res. BiCGStab error BF res. BF err.

Boston Housing 20 1E-4 6 1.87E-2 3.08E-1 3.48E-2 3.17E-1

DR 5 50 1E-6 11 1.77E-2 4.60E-1 4.74E-2 5.40E-1

Diabetes 25 1E-10 5 7.75E-2 5.46E-1 1.20E-1 5.85E-1

Spam 100 1E-10 6 2.09E-2 4.26E-1 3.27E-2 4.31E-1

Friedman 1 12 1E-7 3 3.44E-4 3.25E-1 1.04E-3 3.25E-1

Friedman 2 8 1E-7 2 9.49E-4 4.76E-1 7.17E-3 4.76E-1

Friedman 3 8 1E-7 2 6.48E-4 4.49E-1 6.98E-3 4.49E-1

Table 3. Results for Nadaraya-Watson regressor with Gaussian kernel

Dataset Kernel Width Iter. BiCGStab res. BiCGStab err. BF. res. BF. err.

Boston Housing 10 6 9.33E-3 2.81E-1 3.03E-2 2.88E-1

DR 5 10 12 1.61E-2 4.21E-1 4.27E-2 4.96E-1

Diabetes 10 4 1.00E-2 5.45E-1 5.53E-2 5.48E-1

Spam 10 5 1.43E-2 3.91E-1 4.00E-2 3.97E-1

Friedman 1 10 5 5.95E-3 2.53E-1 6.90E-3 2.53E-1

Friedman 2 10 3 2.27E-3 4.40E-1 7.67E-3 4.40E-1

Friedman 3 10 3 2.21E-3 4.23E-1 7.39E-3 4.28E-1

To study the scalability of the Algorithm 3 we implemented it in C++ using
MPI Allreduce function for data aggregation. Every processor j is responsible for
one Sj smoothing matrix so that increasing number of processors corresponds
to fitting an additive model approximation problem with more dimensions or
interaction terms. We focus on the study of weak scaling of the Algorithm 3
since our primary goal is parallelisation as a mean to solve higher-dimensional
problems.

In our experiment every processor j generates a random full-rank symmetric
positive definite matrix of a given size with spectrum in [0, 1] to use as the matrix
Sj . As, obviously, the number of synchronisation steps would usually increase
if we solve a higher-dimensional problem, we limit the runs to 50 iterations in
every case. Figure 3 illustrates the weak scaling results. The total time slightly
increases as the communication time grows logarithmically with the number of
processors. This growth however is marginal.

It is straightforward to parallelise matrix-vector and scalar products on a
shared memory (MKL, OpenBLAS) and distributed memory (PBLAS) archi-
tectures for solving problems with more data. This would allow one to study
strong scaling properties and is a topic for future work.
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Fig. 3. Weak scaling results for Algorithm 3. Time measurements were performed after
50 iterations with individual matrices Sj of sizes 1000× 1000 and 2000× 2000. Median
of 7 trials was used in the diagram, while bars indicate the standard deviation.

6 Conclusion

We presented a new approach for fitting additive models using BiCGStab algo-
rithm that, besides smoothing, can be used for larger regression problems. This
approach overcomes the shortcomings of the classical backfitting algorithm.

While the convergence of the BiCGStab method cannot be proved theoreti-
cally, it usually works well in practice. It converges fast and can be efficiently
parallelised for distributed computer architectures.

Our future work will include parallelisation of the data-intensive operations
as well as development of preconditioning methods to stabilise and accelerate
the convergence.
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