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Preface

Welcome to the proceedings of the 37th German Conference on Artificial Intelli-
gence (KI 2014)! Known as the German Workshop on Artificial Intelligence at its
inauguration in 1975, this annual conference brings together academic and indus-
trial researchers from all areas of AI, providing the premier forum in Germany
for exchanging news and research results on theory and applications of intelli-
gent system technology. For the first time, the conference comes to Stuttgart, a
metropolitan area that is one of the leading hubs for high-tech innovation and
development in Europe.

KI 2014 received 62 submissions with authors from 21 countries. Each sub-
mission was reviewed by at least three Program Committee members or external
referees. A lively and intense discussion ensued among the reviewers, Program
Committee members, and program chairs. After this thorough assessment, 21
submissions (34%) were finally accepted to be published as full papers in the
proceeding and an additional 7 (11%) as short papers.

KI 2014 featured three exciting keynote speeches by distinguished scientists:
Wolfram Burgard (Freiburg University, Germany) gave an overview of Proba-
bilistic Techniques for Mobile Robot Navigation. Hans van Ditmarsch (LORIA
Nancy, France) spoke about Dynamic Epistemic Logic and Artificial Intelligence.
Toby Walsh (NICTA and UNSW Sydney, Australia) talked about Allocation in
Practice.

Three workshops with their own proceedings were held on the first two days
of the conference: the 8th Workshop on Emotion and Computing — Current
Research and Future Impact; the 28th Workshop Planen/Scheduling und Kon-
figurieren/Entwerfen (PuK); and the workshop on Higher-Level Cognition and
Computation. The workshops were complemented by two tutorials: Probabilis-
tic Programing by Angelika Kimmig, KU Leuven; and Human Computation by
François Bry, LMU Munich. Together these tutorials and workshops, which were
overseen by the workshop and tutorial chair Frieder Stolzenburg, provided an
excellent start to the event.

KI 2014 would not have been successful without the support of authors, re-
viewers, and organizers.We thank the many authors for submitting their research
papers to the conference and for their collaboration during the preparation of
final submissions. We thank the members of the Program Committee and the
external referees for their expertise and timeliness in assessing the papers. We
also thank the organizers of the workshops and tutorials for their commitment
and dedication. We are very grateful to the members of the Organizing Com-
mittee for their efforts in the preparation, promotion, and organization of the
conference, especially Andrés Bruhn for coordinating with INFORMATIK 2014
and Maximilian Altmeyer for setting up and maintaining the conference web-
page. We acknowledge the assistance provided by EasyChair for conference
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management, and we appreciate the professional service provided by the Springer
LNCS editorial and publishing teams.

September 2014 Carsten Lutz
Michael Thielscher
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Thomas Stützle Free University of Brussels (ULB), Belgium
Moritz Tenorth University of Bremen, Germany
Matthias Thimm University of Koblenz-Landau, Germany
Ingo Timm University of Trier, Germany
Johanna Völker University of Mannheim, Germany
Toby Walsh NICTA and UNSW, Australia
Dirk Walther Technical University of Dresden, Germany
Stefan Wölfl University of Freiburg, Germany

Additional Reviewers

Albrecht, Rebecca
Asmus, Josefine
Bader, Sebastian
Classen, Jens
Dörksen, Helene
Gessinger, Sarah
Goerke, Nils
Görg, Sebastian
Hein, Albert
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Nico Höft, Hannes Schulz, and Sven Behnke

Constraint Satisfaction, Search, and Optimization

Energy-Efficient Routing: Taking Speed into Account . . . . . . . . . . . . . . . . . 86
Frederik Hartmann and Stefan Funke

CDCL Solver Additions: Local Look-Ahead, All-Unit-UIP Learning
and On-the-Fly Probing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Norbert Manthey



X Table of Contents

Formula Simplifications as DRAT Derivations . . . . . . . . . . . . . . . . . . . . . . . 111
Norbert Manthey and Tobias Philipp

A More Compact Translation of Pseudo-Boolean Constraints into CNF
Such That Generalized Arc Consistency Is Maintained . . . . . . . . . . . . . . . . 123

Norbert Manthey, Tobias Philipp, and Peter Steinke

Knowledge Representation and Reasoning

Matching with Respect to General Concept Inclusions in the
Description Logic EL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Franz Baader and Barbara Morawska

Evaluating Practical Automated Negotiation Based on Spatial
Evolutionary Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Siqi Chen, Jianye Hao, Gerhard Weiss, Karl Tuyls, and
Ho-fung Leung

Towards a New Semantics for Possibilistic Answer Sets . . . . . . . . . . . . . . . 159
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The Ditmarsch Tale of Wonders

Hans van Ditmarsch

LORIA — CNRS, Université de Lorraine
hans.van-ditmarsch@loria.fr

Abstract. We propose a dynamic logic of lying, wherein a ‘lie that ϕ’
(where ϕ is a formula in the logic) is an action in the sense of dynamic
modal logic, that is interpreted as a state transformer relative to ϕ. The
states that are being transformed are pointed Kripke models encoding
the uncertainty of agents about their beliefs. Lies can be about factual
propositions but also about modal formulas, such as the beliefs of other
agents or the belief consequences of the lies of other agents.1

1 Introduction

I will tell you something. I saw two roasted fowls flying; they flew quickly and
had their breasts turned to Heaven and their backs to Hell; and an anvil and a
mill-stone swam across the Rhine prettily, slowly, and gently; and a frog sat on
the ice at Whitsuntide and ate a ploughshare.

Four fellows who wanted to catch a hare, went on crutches and stilts; one of
them was deaf, the second blind, the third dumb, and the fourth could not stir a
step. Do you want to know how it was done? First, the blind man saw the hare
running across the field, the dumb one called to the deaf one, and the lame one
seized it by the neck.

There were certain men who wished to sail on dry land, and they set their
sails in the wind, and sailed away over great fields. Then they sailed over a high
mountain, and there they were miserably drowned.

A crab was chasing a hare which was running away at full speed; and high up
on the roof lay a cow which had climbed up there. In that country the flies are
as big as the goats are here.

Open the window that the lies may fly out.

My favourite of Grimm’s fairytales [9] is ‘Hans im Glück’ (Hans in Luck).
A close second comes ‘The Ditmarsch Tale of Wonders’, integrally cited above.
In German this is called a ‘Lügenmärchen’, a ‘Liar’s Tale’. A passage like “A
crab was chasing a hare which was running away at full speed; and high up
on the roof lay a cow which had climbed up there.” contains very obvious lies.
Nobody considers it possible that this is true. Crabs are reputedly slow, hares
are reputedly fast.

In ‘The Ditmarsch Tale of Wonders’, none of the lies are believed.

1 This contribution is based on [27].

C. Lutz and M. Thielscher (Eds.): KI 2014, LNCS 8736, pp. 1–12, 2014.
c© Springer International Publishing Switzerland 2014



2 H. van Ditmarsch

In the movie ‘The Invention of Lying’ the main character Mark goes to a bank
counter and finds out he only has $300 in his account. But he needs $800. Lying
has not yet been invented in the 20th-century fairytale country of this movie.
Then and there, on the spot, Mark invents lying: he tells the bank employee
assisting him that there must be a mistake: he has $800 in his account. He is lying.
She responds, oh well, then there must be a mistake with your account data,
because on my screen it says you only have $300. I’ll inform system maintenance
of the error. My apologies for the inconvenience. And she gives him $800! In the
remainder of the movie, Mark gets very rich.

Mark’s lies are not as unbelievable as those in Grimm’s fairytale. It is possible
that he has $800. It is just not true. Still, there is something unrealistic about the
lies in this movie: new information is believed instantly, even if it is inconsistent
with prior information, or with direct observation. There are shots wherein Mark
first announces a fact, then its negation, then the fact again, while all the time
his extremely credulous listeners keep believing every last announcement. New
information is also believed if it contradicts direct observation. In a café, in
company of several of his friends, he claims to be a one-armed bandit. And they
commiserate with him, oh, I never knew you only had one arm, how terrible for
you. All the time, Mark is sitting there drinking beer and gesturing with both
hands while telling his story.

In the movie ‘The Invention of Lying’, all lies are believed.

In the real world, if you lie, sometimes other people believe you and some-
times they don’t. When can you get away with a lie? Consider the well-known
consecutive numbers riddle, often attributed to Littlewood [14].

Anne and Bill are each going to be told a natural number. Their numbers
will be one apart. The numbers are now being whispered in their respective
ears. They are aware of this scenario. Suppose Anne is told 2 and Bill is
told 3. The following truthful conversation between Anne and Bill now
takes place:
– Anne: “I do not know your number.”
– Bill: “I do not know your number.”
– Anne: “I know your number.”
– Bill: “I know your number.”

Explain why is this possible.

Initially, Anne is uncertain between Bill having 1 or 3, and Bill is uncertain
between Anne having 2 or 4. So both Anne and Bill do not initially know their
number. Suppose Anne says to Bill: “I know your number.” Anne is lying. Bill
does not consider it possible that Anne knows his number, so he tells Anne that
she is lying. However, Anne did not know that Bill would not believe her. She
considered it possible that Bill had 1, in which case Bill would have considered
it possible that Anne was telling the truth, and would then have drawn the
incorrect conclusion that Anne had 0. I.e., if you are still following us... It seems
not so clear how this should be formalized in a logic interpreted on epistemic
modal structures, and this is the topic of our contribution.

In everyday conversation, some lies are believed and some are not.
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1.1 The Modal Dynamics of Lying

What is a lie? Let p be an atomic proposition (propositional variable). You lie to
me that p, if you believe that p is false while you say that p, and with the intention
that I believe p. The thing you say, we call the announcement. If you succeed
in your intention, then I believe p, and I also believe that your announcement
of p was truthful, i.e., that you believed that p when you said that p. In this
investigation we abstract from the intentional aspect of lying. We model lying
as a dynamic operation, and in that sense we only model the realization of the
intention. This is similar to the procedure in AGM belief revision [1], wherein one
models how to incorporate new information in an agent’s belief set, but abstracts
from the process that made the new information acceptable to the agent. Our
proposal is firmly grounded in modal logic. We use dynamic epistemic logic [28].

What are the modal preconditions and postconditions of a lie? Let us for now
assume that p is a Boolean proposition, and two agents a (female) and b (male).
The precondition of ‘a is lying that p to b’ is Ba¬p (i.e., ‘Agent a believes that p
is false’, where Ba stands for ‘a believes that’ and ¬ for negation). Stronger pre-
conditions are conceivable, e.g., that the addressee considers it possible that the
lie is true, ¬Bb¬p, or that the speaker believes that, Ba¬Bb¬p; or even involv-
ing common belief. These conditions may not always hold while we still call the
announcement a lie, because the speaker may not know whether the additional
conditions are satisfied. We therefore will (initially) only require precondition
Ba¬p.

We should contrast the lying announcement that p with other forms of an-
nouncement. Just as a lying agent believes that p is false when it announces p,
a truthful agent believes that p is true when it announces p. The precondition
for a lying announcement by a is Ba¬p, and so the precondition for a truthful
announcement by a is Bap. Besides the truthful and the lying announcement
there is yet another form of announcement, because in modal logic there are
always three instead of two possibilities: either you believe p, or you believe
¬p, or you are uncertain whether p. The last corresponds to the precondition
¬(Bap∨Ba¬p) (∨ is disjunction). An announcement wherein agent a announces
p while she is uncertain about p we call a bluffing announcement.

We now consider the postconditions of ‘a is lying that p to b’. If a’s intention
to deceive b is successful, b believes p after the lie. Therefore, Bbp should be a
postcondition of a successful execution of the action of lying. (If the precondition
of the lie is Ba¬p, then the postcondition becomes BbBap instead of Bbp. In the
presence of common belief the postcondition should clearly be BbCabp.) Also,
the precondition should be preserved: Ba¬p should still be true after the lie.
Realizing Bbp may come at a price. In case the agent b already believed the
opposite, Bb¬p, then b’s beliefs are inconsistent afterwards. (This means that
b’s accessibility relation is empty.) There are two different solutions for this:
either b does not change his beliefs, so that Bb¬p still holds after the lie (this we
call the skeptical agent), or the belief Bb¬p is given up in order to consistently
incorporate Bbp (which in our treatment corresponds to the plausible agent).
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The action of lying is modelled as a dynamic modal operator. The dynamic
modal operator for ‘lying that p’ is interpreted as an epistemic state transformer,
where an epistemic state is a pointed Kripke model (a model with a designated
state) that encodes the beliefs of the agents.

The belief operators Ba do not merely apply to Boolean propositions p but to
any proposition ϕ with belief modalities. This is known as higher-order belief.
The preconditions and postconditions of lying may be such higher-order formu-
las. In the semantics, the generalization from ‘lying that p’ to ‘lying that ϕ’ for
any proposition does not present any problem. But in the syntax it does: we
can no longer require that the beliefs of the speaker a remain unchanged, or
that, after the lie, the addressee b believes the formula of the lie. For a typical
example, suppose that p is false, that a knows the truth about p, and that b
is uncertain whether p. Consider the lie by a to b that p ∧ ¬Bbp (a Moorean
sentence). This is a lie: a knows (believes correctly) that p is false, and therefore
that the sentence p ∧ ¬Bbp is false. But a does not want b to believe p ∧ ¬Bbp!
Of course, a wants b to believe p and thus no longer to be ignorant about p.

1.2 A Short History of Lying

Philosophy. Lying has been a thriving topic in the philosophical community for
a long time [21,5,16]. Almost any analysis quotes Augustine on lying:

“that man lies, who has one thing in his mind and utters another in
words” and “the fault of him who lies, is the desire of deceiving in the
uttering of his mind.”

In other words: lying amounts to saying that p while believing that ¬p, with
the intention to make believe p, our starting assumption. The requirements for
the belief preconditions and postconditions in such works are illuminating. For
example, the addressee should not merely believe the lie but believe it to be
believed by the speaker. Gettier-like scenarios are presented, including delayed
justification [18]: Suppose that you believe that ¬p and that you lie that p. Later,
you find out that your belief was mistaken because p was really true. You can
then with some justification say “Ah, so I was not really lying.” Much is said on
the morality of lying [5] and on its intentional aspect, that we do not discuss.

Cognitive science and economics. Lying excites great interest in the general
public [23]. In psychology, biology, and other experimental sciences, lying and
deception are related. In economics, ‘cheap talk’ is making false promises. Your
talk is cheap if you do not intend to execute an action that you publicly an-
nounced to plan. It is therefore a lie, it is deception [8,11].

Logic. Papers that model lying as an epistemic action, inducing a transformation
of an epistemic model, include [2,22,4,26,13,29,19]. Lying by an external observer
has been discussed by Baltag and collaborators from the inception of dynamic
epistemic logic onward [2]; the later [4] also discusses lying in logics with plausible
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belief, as does [26]. In [29] the conscious update in [7] is applied to model lying
by an external observer. In [20] the authors give a modal logic of lying and
bluffing, including intentions. Instead of bluffing they call this bullshit, after
[6]. In [19], varous modal logics combining knowledge and intention are listed,
where the philosophically familiar themes of how to stack belief preconditions
and belief postconditions reappear. The recent [15] allows explicit reference in
the logical language to truthful, lying and bluffing agents, thus enabling some
form of self-reference.

2 Agent Announcements

In this section we present agent annoucement logic, in order to model lying by one
agent to another agent, where both are modelled in the system. (An example is
lying in the consecutive numbers riddle.) Let us retrace this agent announcement
logic to better known logics. It can be seen as a version of a logic of truthful
and lying public announcements [29], which in its turn is based on the logic of
so-called ‘arrow elimination’ public announcements [7], and that, finally, can be
seen as an alternative for the better known ‘state elimination’ logic of truthful
public announcements [17,3].

In public announcement logics, the announcing agent is an outside observer
and is implicit. Therefore, it is also implicit whether it believes that the an-
nouncement is false or true. (The usual assumption is that it is true.) In dynamic
epistemic logic, it is common to formalize ‘agent a truthfully announces ϕ’ as
‘the outside observer truthfully announces Baϕ’. However, ‘agent a lies that ϕ’
cannot be modelled as ‘the outside observer lies that Baϕ’. What do we want?

Consider an epistemic state (with equivalence relations, encoding knowledge)
where b does not know whether p, a knows whether p, and p is true. (We underline
the actual state.) Agent a is in the position to tell b the truth about p. A truthful
public announcement of Bap, in the usual semantics where we eliminate states
that do not satisfy the announcement, has the following effect (!Bap stands for
‘truthful public announcement of Bap’).

¬p p
b

ab ab
!Bap⇒ p ab

In the alternative arrow-eliminating semantics the result is slightly different.
But also now, truthful public announcement of Bap indeed simulates that a
truthfully and publicly announces p. (From the perspective of the actual state,
the results are bisimilar.)

¬p p
b

ab ab
!Bap⇒ ¬p p

b
ab

Given the same model, now suppose p is false, and that a lies that p. In a
lying public announcement of ϕ we eliminate all arrows pointing to ϕ states, on
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condition that ¬ϕ is true in the actual state [29]. A lying public announcement
of Bap (it is lying, because it satisfies the required precondition ¬Bap) does not
result in the desired information state for a lying to b that p, because this makes
agent a believe her own lie. And as she already knew ¬p, this makes a’s beliefs
inconsistent (¡Bap stands for ‘lying public announcement of Bap’).

¬p p
b

ab ab
¡Bap⇒ ¬p p

b
ab

The problem here is that, no matter how complex the formula of the announce-
ment, both lying and truthful public announcements will always similarly affect
the (accessibility relations and thus) beliefs of the speaker and the addressee.
This is because the announcements are public actions.

To model one agent lying to another agent we need a more complex form of
model change than uniform restriction of the accessibility relation for all agents.
We need to differentiate between the relation encoding the uncertainty of the
speaker and the relation encoding the uncertainty of the addressee. A lie by a to b
that p should have the following effect. (¡ap stands for ‘lying agent announcement
—by agent a— of p’).

¬p p
b

ab ab

¡ap⇒ ¬p p
b

a ab

After this lie we have that a still believes that ¬p, but that b believes that p.
(We even have that b believes that a and b have common belief of p.) We see
that lying does not affect the accessibility relation of the speaker but only of
that of the addressee. This implements the intuition that the speaker a can say
ϕ no matter what, whether she believes what she says, believes the opposite, or
is uncertain (as in the truthful, lying, and bluffing announcement). Whereas the
addressee b takes ϕ to be the truth no matter what.

These requirements for agent announcements are embodied by the following
language, structures, and semantics. Given are a finite set of agents A and a
countable set of propositional variables P (let a ∈ A and p ∈ P ).

Definition 1. The language of agent announcement logic is defined as

L(!a, ¡a, !¡a) � ϕ ::= p | ¬ϕ | (ϕ ∧ ψ) | Baϕ | [!aϕ]ψ | [¡aϕ]ψ | [!¡aϕ]ψ

Other propositional connectives are defined by abbreviation. For Baϕ, read
‘agent a believes formula ϕ’. Agent variables are a, b, c, . . . . The inductive con-
structs [!aϕ]ψ, [¡aϕ]ψ, and [!¡aϕ]ψ incorporate modalities for the agent announce-
ments !aϕ, ¡aϕ, and !¡aϕ that stand for, respectively, a truthfully announces ϕ, a
is lying that ϕ, and a is bluffing that ϕ; where agent a addresses all other agents
b. We also define by abbreviation [aϕ]ψ as [!aϕ]ψ ∧ [¡aϕ]ψ ∧ [!¡aϕ]ψ.
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Definition 2. An epistemic model M = (S,R, V ) consists of a domain S of
states (or ‘worlds’), an accessibility function R : A → P(S × S), where each
R(a), for which we write Ra, is an accessibility relation, and a valuation V :
P → P(S), where each V (p) represents the set of states where p is true. For
s ∈ S, (M, s) is an epistemic state.

An epistemic state is also known as a pointed Kripke model. We often omit the
parentheses in (M, s). The model class without restrictions we call K, the one
where all accessibility relations are transitive and euclidean K45, and if they are
also serial KD45; if accessibility relations are equivalence relations we get S5.
Class KD45 is said to have the properties of belief, and S5 to have the properties
of knowledge. We target KD45.

Definition 3. Assume an epistemic model M = (S,R, V ).

M, s |= p iff s ∈ Vp

M, s |= ¬ϕ iff M, s �|= ϕ
M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ
M, s |= Baϕ iff for all t ∈ S : Ra(s, t) implies M, t |= ϕ
M, s |= [!aϕ]ψ iff M, s |= Baϕ implies Mϕ

a , s |= ψ
M, s |= [¡aϕ]ψ iff M, s |= Ba¬ϕ implies Mϕ

a , s |= ψ
M, s |= [!¡aϕ]ψ iff M, s |= ¬(Baϕ ∨Ba¬ϕ) implies Mϕ

a , s |= ψ

where Mϕ
a is as M except for the accessibility relation R′ defined as (a �= b)

R′
a := Ra R′

b := Rb ∩ (S × [[Baϕ]]M ).

The principles for a making a truthful, lying, or bluffing announcement to b are
as follows. The belief consequences for the speaker a are different from the belief
consequences for the addressee(s) b.

Definition 4 (Axioms for agent announcements).

[!aϕ]Bbψ ↔ Baϕ → Bb[!aϕ]ψ [¡aϕ]Baψ ↔ Ba¬ϕ → Ba[aϕ]ψ
[!aϕ]Baψ ↔ Baϕ → Ba[aϕ]ψ [!¡aϕ]Bbψ ↔ ¬(Baϕ ∨Ba¬ϕ) → Bb[!aϕ]ψ
[¡aϕ]Bbψ ↔ Ba¬ϕ → Bb[!aϕ]ψ [!¡aϕ]Baψ ↔ ¬(Baϕ ∨Ba¬ϕ) → Ba[aϕ]ψ

To the addressee, the announcement always appears to be the truth. Therefore
(in the third axiom), after the lie by a that ϕ the addressee b believes ψ, iff, on
the condition Ba¬ϕ that it is a lie, the addressee believes that ψ holds after the
truthful announcement by a that ϕ. Whereas after the lie that ϕ by a the speaker
a herself believes ψ, iff, on the condition Ba¬ϕ that it is a lie, the speaker believes
that ψ holds after any (either truthful or lying or bluffing) announcement by a
that ϕ. All other axioms and rules are as usual in dynamic epistemic logics. By
way of an embedding into action model logic [3] it is easy to prove that:

Proposition 1 ([27]). The axiomatization of the logic of agent announcements
is sound and complete.
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3 Lying in the Consecutive Numbers Riddle

The consecutive numbers riddle (see the introduction) illustrates very well the
agent announcements. The standard analysis, in terms of S5 knowledge, is by
[30] and played an important role in the development of the area of dynamic
epistemic logic. The initial model encodes that the numbers are consecutive
and consists of two disconnected countable parts, one where the agents have
common knowledge (correct common belief) that a’s number is odd and b’s
number is even, and another one where the agents have common knowledge that
a’s number is even and b’s number is odd. For simplicity of the presentation we
only display the part of the model where a’s number is even. States are pairs
(x, y) where x is a’s number and y is b’s number. The transitions are as follows.
(The fourth announcement, by b, does not have an informative consequence.)
Symmetry and reflexivity are assumed in the figures.

(0,1) (2,1) (2,3) (4,3) . . .b a b
A: “I do not know your no.” (2,1) (2,3) (4,3) . . .a b
B: “I do not know your no.” (2,3) (4,3) . . .b
A: “I know your no.” (2,3)

Next, we show two different scenarios for the consecutive numbers riddle with
lying. With lying, the riddle involves a speaker feigning knowledge and con-
sequently an addressee incorrectly believing something to be knowledge, so we
move from knowledge to belief. In the communication, only the sentences ‘I know
your number’ and ‘I do not know your number’ occur. Bluffing can therefore not
be demonstrated: introspective agents believe their uncertainty and believe their
beliefs. As beliefs may be incorrect, we show (again) all arrows.

First scenario. The first scenario consists of Anne lying in her first announce-
ment. Bill does not believe Anne’s announcement: his accessibility relation from
actual state (2, 3) has become empty. Bill’s beliefs are therefore no longer con-
sistent. (We can adapt the example to model Bill as a ‘skeptical agent’ thus
preserving consistency. See Section 4.) Here, the analysis stops. We do not treat
Bill’s ‘announcement’ “That’s a lie” as a permitted move in the game. On the
assumption of initial common knowledge Bill knows that Anne was lying and
not mistaken.

(0,1) (2,1) (2,3) (4,3) . . .
b a b

ab ab ab ab

– Anne: “I know your number.” Anne is lying

(0,1) (2,1) (2,3) (4,3) . . .
b a

ab a a a

– Bill: “That’s a lie.”
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Second scenario. In the second scenario Anne initially tells the truth, after
which Bill is lying, resulting in Anne mistakenly concluding (and truthfully an-
nouncing) that she knows Bill’s number: she believes it to be 1. This mistaken
announcement by Anne is informative to Bill. He learns from it (correctly) that
Anne’s number is 2, something he didn’t know before. Bill gets away with lying,
because Anne considered it possible that he told the truth. Bill knows (believes
correctly and justifiably) that Anne’s second announcement was a mistake and
not a lie. The justification is, again, common knowledge in the initial epistemic
state.

(0,1) (2,1) (2,3) (4,3) . . .
b a b

ab ab ab ab

– Anne: “I do not know your number.”

(0,1) (2,1) (2,3) (4,3) . . .
b a b

a ab ab ab

– Bill: “I know your number.” Bill is lying

(0,1) (2,1) (2,3) (4,3) . . .
b a b

a ab b b

– Anne: “I know your number.” Anne is mistaken.

(0,1) (2,1) (2,3) (4,3) . . .
b a b

a ab b

4 Some Results for Agent Announcements

Public announcements are agent announcements. Consider a depiction of an
epistemic model. The outside observer is the guy or girl looking at the picture:
you, the reader. She can see all different states. She has no uncertainty and her
beliefs are correct. It is therefore that her truthful announcements are true and
that her lying announcements are false. It is also therefore that ‘truthful public
announcement logic’ is not a misnomer, it is indeed the logic of how to process
new information that is true. We can model the outside observer as an agent gd,
for ‘god or the devil’, with as its associated accessibility relation the identity on
the domain. And therefore, public announcements are a special form of agent
announcements.
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Lying about beliefs. Agents may announce factual propositions (Boolean formu-
las) but also modal propositions, and thus be lying and bluffing about them.
In the consecutive numbers riddle (Section 3) the announcements ‘I know your
number’ and ‘I do not know your number’ are modal propositions, and the agents
may be lying about those.

For agents that satisfy introspection (so that BaBaϕ ↔ Baϕ and Ba¬Baϕ ↔
¬Baϕ are validities) the distinction between bluffing and lying seems to become
blurred. If I am uncertain whether p, I would be bluffing if I told you that p, but I
would be lying if I told you that I believe that p. This is how: The announcement
that p satisfies the precondition ¬(Bap ∨Ba¬p). It is bluffing that p (it is !¡ap).
But the announcement that Bap satisfies the precondition Ba¬Bap, the negation
of the announcement. (From ¬(Bap ∨ Ba¬p) follows ¬Bap, and with negative
introspection we get Ba¬Bap.) It is lying that Bap (it is ¡aBap). We would prefer
to call both bluffing, and that ‘a announces that Bap’ is strictly ‘a announces
that p’. One can define a notion of ‘strictness’ that avoid this ambuity and then
show, by employing the alternating disjunctive forms proposed in [10], that for
each formula there is an equivalent strict formula [27].

Mistakes and lies. I am lying that ϕ if I say ϕ and believe ¬ϕ (independently
from the truth of ϕ), whereas I am mistaken about ϕ (I mistakenly but truthfully
announce ϕ) if I say ϕ and believe ϕ, but ϕ is false. Let a be the speaker, then the
precondition of lying that ϕ is Ba¬ϕ and the precondition of a mistaken truthful
announcement that ϕ is ¬ϕ ∧ Baϕ. The speaker can therefore distinguish a lie
from a mistake.

If both knowledge and belief play a role, then the addressee can distinguish a
lie from a mistake (and otherwise, not). In ‘fair games’ there is initial common
knowledge of what agents know about each other. For a player b in that game, a
mistake is that player a says ϕ when Kb(¬ϕ∧Baϕ), whereas a lie is that a says
ϕ when KbKa¬ϕ (where Ka means ‘a knows that’). The consecutive numbers
riddle gave an example.

Action models. Action models [3] are a familiar way to formalize different per-
spectives on ‘what the real action is’. The action model for truthful public an-
nouncement (state elimination semantics) can be viewed as a singleton action
model. This is well-known. We can view truthful and lying public announce-
ment (‘believed announcement’, the arrow elimination semantics) as the differ-
ent points, respectively, of a two-point action model. This is somewhat less well-
known [24,12]. We can also view truthful, lying and bluffing agent announcement
as the respective different points of a three-point action model [27].

Unbelievable lies and skeptical updates. If I tell you ϕ and you already believe the
opposite, accepting this information will make your beliefs inconsistent. This is
not merely a problem for lying (‘unbelievable lies’) but for any form of informa-
tion update. One way to preserve consistent beliefs is to reject new information
if it is inconsistent with your beliefs. Such agents may be called skeptical. By a
minor adaptation of the semantics (replace condition Ba¬ϕ of the lie by a to
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b that ϕ, by Ba¬ϕ ∧ ¬Bb¬ϕ) we can model announcements to skeptical agents
[22,13,27].

Plausible reasoning. Going mad is too strong a response (credulous agents), not
ever accepting new information seems too weak a response (skeptical agents), a
solution in between (plausible agents), also resulting in consistency preserving
belief change, involves distinguishing stronger from weaker beliefs when revising
beliefs. To achieve that, we need to give epistemic models more structure: given a
set of states all considered possible by an agent (its epistemic equivalence class),
it may consider some states more plausible than other states, and belief in ϕ can
then be defined as the truth of ϕ in the most plausible states that are considered
possible. We now have more options to change beliefs. We can change the sets
of states considered possible by the agent, but we can also change the relative
plausibility of states within that set. Such approaches for belief change involving
plausibility have been proposed in [25,24,4], and are applied in [27].

Future research. We envisage future research involving the integration of com-
mon knowledge in our framework, on the comparative complexity of reasoning
without considering lies and reasoning while keeping track of possible lies, and
on modelling the liar paradox in a dynamic epistemic logic. Many others actively
pursue novel results in the area of lying and logic. Chiaki Sakama is working on
lying in argumentation, and investigates the ‘white lie’. You truthfully announce
p knowing that your opponent falsely believes p → q and thus will incorrectly
deduce q. Is this a lie? Yanjing Wang models lying in the setting of protocol anal-
ysis. His convincing lying example involves you telling both your feet-dragging
friends that the other is going to accept the invitation for a party, thus success-
fully managing that both will indeed accept. Thomas Ågotnes investigates the
syntactic characterization of the ‘true lie’ that is a lie indeed but that will always
become true when announced. Rineke Verbrugge and her group investigate ly-
ing and deception in higher-order cognition, see the workshop series ‘Reasoning
about other minds’.
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Abstract. How do we allocate scarce resources? How do we fairly allocate costs?
These are two pressing challenges facing society today. I discuss two recent
projects at NICTA concerning resource and cost allocation. In the first, we have
been working with FoodBank Local, a social startup working in collaboration
with food bank charities around the world to optimise the logistics of collecting
and distributing donated food. Before we can distribute this food, we must decide
how to allocate it to different charities and food kitchens. This gives rise to a fair
division problem with several new dimensions, rarely considered in the literature.
In the second, we have been looking at cost allocation within the distribution net-
work of a large multinational company. This also has several new dimensions
rarely considered in the literature.

1 Introduction

The next decade will throw up some fundamental and deep challenges in resource and
cost allocation that computer science can help solve.

Environmental challenges: the world’s resources are under increasing pressure with
threats like global warning, and with the impact of an increasing population. This
will require us to find ways to allocate scarce resource more efficiently and more
fairly. There will also be increasing pressure to allocate costs fairly to those con-
suming these resources.

Economic challenges: the fall out from the global financial crisis will continue, with
fresh shocks likely to occur. With growth faltering, both government and industry
will increasingly focus on efficiency gains. As wealth concentrates into the hands
of a few, a major and highly topical concern will be equitability.

Technological challenges: new markets enabled by the internet and mobile devices
will emerge. These markets will require computational mechanisms to be devel-
oped to allocate resources and share costs fairly and efficiently.

As an example of one of these new markets, consider users sharing some resources in
the cloud. How do we design a mechanism that allocates CPU and memory to those
users that reflects their different preferences, and that is fair and efficient? Such a mech-
anism needs to be computational. We will want to implement it so that it is highly
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responsive and runs automatically in the cloud. And users will want to implement com-
putational agents to bid for resources automatically. As a second example of one of
these new markets, consider sharing costs in a smart grid. How do we design a mech-
anism that shares costs amongst users that is fair and encourages efficiency? Such a
mechanism again needs to be computational. We will want to implement it so that it
is highly responsive and runs automatically over the smart grid. And users will again
want to implement computational agents to monitor and exploit costs in the smart grid
as they change rapidly over time.

There are a number of ways in which computation can help tackle such resource and
cost allocation problems. First, computation can help us set up richer, more realistic
models of resource and cost allocation. Second, within such computational models,
users will be able to express more complex, realistic, combinatorial preferences over
allocations. Third, computation can be used to improve efficiency and equitability, and
to explore the trade off between the two. And fourth, users will increasingly farm out
decision making to computational agents, who will need to reason rapidly about how
resources and costs are allocated.

Central to many allocation problems is a trade off between equitability and effi-
ciency. We can, for example, give each item to the person who most values it. Whilst
this is efficient, it is unlikely to be equitable. Alternatively, we can allocate items at
random. Whilst this is equitable, it is unlikely to maximise utility. Rather than accept
allocations that are equitable but not efficient, or efficient but not equitable, we can now
use computing power to improve equitability and efficiency. Computing power can also
be used to explore the Pareto frontier between equitability and efficiency.

One related area that has benefitted hugely of late from the construction of richer
computational models is auctions. Billions of dollars of business have been facilitated
by the development of combinatorial auctions, transforming several sectors including
procurement and radio spectrum allocation. We expect rich new models in resource
and cost allocation will drive similar transformations in other sectors. It is perhaps not
surprising that a transformation has already been seen in auctions where efficiency (but
not equitability) is one of the main drivers. By comparison, many of the examples we
give here are in the not-for-profit and public sector where criteria like equitability are
often more important. Indeed, equitability is looking increasingly likely to be a major
driver of political and economic reform over the next few decades. In the not-for-profit
and public sector, research like this can quickly inform both practice and policy and
thereby impact on society in a major way. Indeed, such richer models are now starting
to be seen in one area of resource allocation, namely kidney exchange (e.g. [1]).

2 Allocation in Theory

The theoretical foundations of resource and cost allocation have been developed using
simple abstract models. For example, one simple model for resource allocation is “cake
cutting” in which we have a single resource that is infinitely divisible and agents with
additive utility functions [2]. As a second example, a simple model for cost allocation in
cooperative game theory supposes we can assign a cost to each subset of agents. As we
will demonstrate shortly, abstract models like these ignore the richness and structure of
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many allocation problems met in practice. For example, allocation problems are often
repeated. The problem we meet today is likely to be similar to the one we will meet
tomorrow. As a second example, allocation problems are often online. We must start
allocating items before all the data is available. As a third example, cost functions are
often complex, and dependent on time and other features of the problem. Such real
world features offer both a challenge and an opportunity. For instance, by exploiting
the repeated nature of an allocation problem, we may be able to increase equitability
without decreasing efficiency. On the other hand, the online nature of an allocation
problem makes it harder both to be efficient and to be equitable.

Our long term goal then is to develop richer, more realistic computational models
for resource and cost allocation, and to design mechanisms for such models that can be
fielded in practice. Many of the new applications of such models will be in distributed
and asynchronous environments enabled by the internet and mobile technology. It is
here that computational thinking and computational implementation is necessary, and
is set to transform how we fairly and efficiently allocate costs and resources. Hence,
a large focus of our work is on applying a computational lens to resource and cost
allocation problems. To this end, we are concentrating on designing mechanisms that
work well in practice, even in the face of fundamental limitations in the worst case.

3 Allocation in Practice

We have two projects underway in NICTA which illustrate the richness of allocation
problems met in practice.

3.1 Case Study #1: The Food Bank Problem

Consider the classical fair division problem. Fair division problems can be categorised
along several orthogonal dimensions: divisible or indivisible goods, centralised or de-
centralised mechanisms, cardinal or ordinal preferences, etc [3]. Such categories are,
however, not able to capture the richness of a practical resource allocation problem
which came to our attention recently. FoodBank Local is a social startup founded by
students from the University of New South Wales that is working with food bank char-
ities around the world, as well as with us, to improve the efficiency of their operations.
FoodBank Local won the Microsoft Imagine Cup in Australia in 2013, and were final-
ists worldwide for their novel and innovative approach to using technology for social
good. After supermarkets, catering companies and the public have donated food, the
food bank must allocate and distribute this food to charities in the local area. This re-
quires solving a fair division problem. Fairness is important as charities often cater to
different sectors of the population (geographical, social and ethnic), whilst efficiency
is important to maximise the overall good. This fair division problem has several new
dimensions, rarely considered in the literature.

Online: Offers of donated food arrive throughout the day. The food bank cannot wait
till the end of the day before deciding how to allocate the donated food. This means
we have an online problem, where decisions must be made before all the data is
available.
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Fig. 1. FoodBank Local’s app for donating, allocating and distributing food

Repeated: Each day, a food bank repeats the task of allocating, collecting and dis-
tributing food with a similar amount of donated food and set of charities. The re-
peated nature of the problem provides fresh opportunities. For example, we can be
somewhat unfair today, in the expectation that we will compensate tomorrow.

Unequal entitlements: The different charities working with the food bank have differ-
ent abilities at feeding their clients. The allocation of food needs to reflect this.

Combinatorial: The different charities had complex, combinatorial preferences over
the donated food. A charity might want the donated apples or the bananas but not
both. Models based on simple additive utilities, like those often considered in the
literature, are inadequate to describe their true preferences.

Constrained: There are various constraints over the allocations. For example, we must
allocate all the foods requiring refrigeration to charities served by the same truck.
As a second example, certain combinations of food cannot be put together for health
and safety or religious reasons.

Mixed: Each allocation problem induces a new pickup and delivery problem. This
means that we have a mixed problem that combines resource allocation and lo-
gistics. We need to both ensure a fair division whilst at the same time optimising
distribution.

To reason about such issues, we need to develop more complex and realistic models of
resource allocation that borrow techniques from related areas like constraint program-
ming [4]. Note that some of these features have individually been considered in the
past. For example, we recently initiated the study of online cake cutting problems [5] in
which agents being allocated the cake arrive over time. In the FoodBank problem, by
comparison, it is the goods that arrive over time. Our model of online cake cutting also
has none of the other features of the FoodBank problem (e.g. the FoodBank problem
is repeated and preferences are combinatorial, whilst in online cake cutting, the cake is
cut only once and preferences are described by a simple additive utility function). As a
second example, Guo, Conitzer and Reeves have looked at repeated allocation problems
[6] but their study was limited to just to one indivisible good and had none of the other
features of the FoodBank problem.
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We now describe our first step in building a richer model for online fair division. We
stress that this is only the first step in putting together a richer model that has more of
the features required by FoodBank Local. There are many more features which we need
to add before we have a model that is close to the actual requirements. Our online model
supposes items arrive over time and each item must be allocated as soon as it arrives.
For simplicity, we suppose one new item arrives at each time step. Again, as a first step,
we also suppose that the utility of an agent for each item is either 0 or 1. A next step
would be to consider more general utilities. A simple mechanism for this model is the
like mechanism. Agents declare whether they like an item, and we allocate each item
uniformly at random between the agents that like it.

We can study the axiomatic properties of such an online fair division mechanism. For
instance, it is strategy proof (the agents have an incentive to like all items with non-zero
utility and no incentive to like any item with zero utility)

Proposition 1. The like mechanism is strategy proof.

The like mechanism is also envy free as an agent will not have greater expected
utility for another agent’s items.

Proposition 2. Supposing agents bid sincerely, the like mechanism is envy free ex ante.

However, ex post, agents can have considerable envy for the actual allocation of
items given to another agent. For example, one agent could get unlucky, lose every
random draw and end up being allocated no items. This agent would then envy any agent
allocated item which they like. We have therefore been designing more sophisticated
mechanisms which are fairer ex post. A challenge is to do so without losing a good
property like strategy proofness. We also need to explore how such mechanisms work
in practice, and not just in the worst case. For example, in real world problems, agents’
preferences are likely to be correlated. A tool that is likely useful in such studies is
identifying computational phase transitions (e.g. [7–11]), as well as related phenomena
like backbones and backdoors (e.g. [12–14]).

3.2 Case Study #2: Cost Allocation in a Complex Distribution Network

We have come across similar rich features in real world cost allocation problems. In
particular, we have been working with a large multinational company which spends
hundreds of millions of dollars each year on distributing fast moving consumer goods
to 20,000 customers using a fleet of 600 vehicles. They face a very challenging problem
of allocating costs between customers1. By working with us, they have saved tens of
millions of dollars per annum.

A standard method to allocate costs is to use co-operative game theory and one of
the well defined cost allocation mechanisms like the Shapley value which considers
the marginal cost of a customer in every possible subset of customers. In reality, the

1 These are not the actual costs charged to the customer but the costs used to decide if a customer
is profitable or not. They are used as the basis for reorganising their business (e.g. changing
distribution channels, renogiating contracts).
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problem is much richer than imagined in a simple abstract model like the Shapley value
which supposes we can simply and easily cost each subset of customers. This rich-
ness raises several issues which are rarely considered in the literature. Several of these
issues are similar to those encountered in the last example. For instance, the cost al-
location problem is repeated (every day, we deliver to a similar set of customers), and
constrained (since we must deliver to all supermarkets of one chain or none, we must
constrain the subsets of customers to consider only those with all or none of the super-
markets in the chain). However, there are also several new issues to consider:

Computational complexity: we need a cost allocation method that is computation-
ally easy to compute. As we argue shortly, the Shapley value is computationally
challenging to compute.

Heterogeneous customers: the Shapley value supposes customers are identical, which
is not the case in our problem as different customers order different amounts of
product. In addition, the trucks are constrained by volume, weight, and the number
of stops. We therefore need principled methods of combining the marginal cost of
each unit of volume, of each unit of weight, and of each customer stop.

Complex cost functions: a cost allocation mechanism like the Shapley value supposes
a simple cost function for every subset of customers. However, the cost function in
our cost allocation problem is much more complex. For example, it is made up
of both fixed and variable costs. As a second example, the cost function is time
dependent because of traffic whilst a mechanism like the Shapley value ignores
time. As a third example, the cost function depends not just on whether we deliver
to a customer or not but on the channel and delivery frequency.

Strategic behaviour: cooperative game theory supposes the players are truthful and
are not competing with each other. In practice, however, we have business alliances
where two or more delivery companies come together to share truck space to remote
areas and must then share costs. We must consider therefore that the players may
game the system by misrepresenting their true goals or costs.

Sensitivity analysis: in some situations, a small change to the customer base has a
very large knock-on effect on marginal costs. We are therefore interested in cost
allocations that are robust to small changes in the problem.

As before, some of these features have been considered individually in the past, but
combinations of these features have not. For example, [15] looked at cost allocation
in a vehicle routing game with a heterogeneous fleet of vehicles. However, this study
considered the solution concepts of the core and the nucleolus rather than the Shapley
value. The study also ignored other features of the actual real world problem like the
repeated nature of the delivery problems and the full complexity of the cost function.

A naive method to allocate costs is simply to use the marginal cost of each customer.
However, such marginal costs will tend to under-estimate the actual cost. Consider two
customers in the middle of the outback. Each has a small marginal cost to visit since
we are already visiting the other. However, their actual cost to the business is half the
cost of travelling to the outback. Cost allocation mechanism like the Shapley value deal
with such problems. The Shapley value equals the average marginal cost of a customer
in every possible subset of customers. It has nice axiomatic properties like efficiency
(it allocates the whole cost), anonymity (it treats all customers alike) and monotonicity
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(when the overall costs go up, no individual costs go down). However, we run into
several complications when applying it to the our cost allocation problem.

One complication is that the Shapley value is computationally challenging to com-
pute in general [16]. It involves summing an exponential number of terms (one for each
possible subset of customers), and in our case each term requires solving to optimality
a NP-hard routing problem. One response to the computational intractability of com-
puting the Shapley value, is to look to approximate it. However, we have proved [17]
that even finding an approximation to the Shapley value of a customer is intractable in
general.

Proposition 3. Unless P=NP, there is no polynomial time α-approximation to the Shap-
ley value of a customer for any constant factor α > 1.

We have therefore considered heuristic methods based on Monte Carlo sampling
[18, 19], and on approximating the cost of the optimal route. We have also considered
simple proxies to the Shapley value like the depot distance (that is, allocating costs
proportional to the distance between customer and depot). Unfortunately we were able
to identify pathological cases where there is no bound on how poorly such proxies
perform. These pathologies illustrate the sort of real world features of routing problems
like isolated customers which can cause difficulties.

Proposition 4. There exists a n customer problem on which Φdepot/Φ goes to 0 as n
goes to ∞, and another on which Φ/Φdepot goes to 0 where Φ is the true Shapley value
for a customer and Φdepot is the estimate for it based on the proxy of distance from
depot.

Despite such pathological problems, we were able to show that more sophisticated
proxies, especially those that “blend” together several estimates, work well in practice
on real world data. Figure 1 illustrates the performance of two different sampling meth-
ods. It shows that in just a few iterations we can converge on estimates that are within
5-10% of the actual Shapley value.

There are other complications that we run into when allocating costs in this domain.
For example, costs are not simple but made up of fixed and variable costs which depend
on the size of the delivery. As a second example, costs depend on the time of day as
traffic has a large impact on the problem. As a third example, customers should not
be treated equally as they order different amounts of product, and delivery vehicles
are limited by both the weight and volume of product that they can deliver. As a fourth
example, there are supermarket chains that require us to deliver to all their supermarkets
or none. We cannot choose some profitable subset of them. All these features need
ultimately to be taken into account. We are thus only at the beginning of developing
richer models of cost allocation for this domain. Nevertheless, we are encouraged by
these preliminary results which have resulted in significant cost savings and greatly
increased profits for our business partner.
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Fig. 2. Performance of the ApproShapley method [19] for Monte Carlo sampling to estimate the
Shapley value in a distribution costs game. After just 100 iterations ApproShapley achieves an
average error of less than 10% per location with a maximum error of less than 20%.

4 Related Work

A limited number of richer models for resource and cost allocation have been consid-
ered previously. However, such models have only considered a small number of the
additional features that we have described here.

One sided markets: In an one sided market, we allocate items to agents based on the
preferences of the agents. The market is one sided as the items do not have preferences
over the agents. It covers the allocation of goods, the division of chores, roommates
and other related problems. For example, in the roommates problems, agents express
preferences over each other, and the goal is to pair these agents up subject to these pref-
erences. There has been some work already to look at more realistic models of resource
allocation in one sided markets. For example, we have proposed an online version of
the cake cutting problem in which agents arrive over time [5]. As a second example,
[6] looked at repeated allocation problems with a single indivisible good. As a third
example, [20] studied the fair division problems of indivisible goods when agents do
not have completely ordered preferences over the goods, but instead have dichotomous
and other succinctly specified types of preferences. As a fourth example, [21] consid-
ered roommate problems in which agents can express ties in their preference lists rather
than the basic assumption of completed ordered preferences. As a fifth example, [22]
set up a dynamic version of fair division, proposed some desirable axiomatic properties
for such dynamic resource allocation, and designed two mechanisms that satisfy these
properties. However, real world features like those met in these five examples have usu-
ally been considered in isolation. For instance, there has not been proposed a model of
resource allocation in an one sided market that is simultaneously online, repeated and
involves preferences that go beyond totally ordered lists.

Two sided markets: In a two sided market, both sides of the market can have pref-
erences over each other. For example, in a stable marriage problem, the women have
preferences over the men they marry and vice versa. Another example of a two sided
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market is kidney exchange. There has been some work already to look at more realis-
tic models in two sided markets. For example, in the hospital residents problem, a two
sided problem in which we allocate residents to hospitals according to the preferences
of the residents for the hospitals and of the hospitals for the residents, a number of real
world features have been considered like couples [23], and ties in preference lists [24].
As a second example, in kidney exchange problems, a number of real world features
have been considered like dynamic allocation [1], and probabilistic models of clearing
(since many transplants never take place due to unforeseen logistical and medical prob-
lems) [25]. As a third example, the student-project allocation problem [26] generalises
the hospital residents problem by adding capacity constraints. However, as with one
side markets, such real world features have usually been considered in isolation and not
in combination.

Cost allocation: Cost allocation has been widely studied in game theory and combi-
natorial optimisation [27–29]. Due to its good axiomatic properties, the Shapley value
has been used in many domains [30]. A number of special cases have been identified
where it is tractable to compute (e.g. [31]). However, due to the computational chal-
lenges we outlined, the Shapley value has rarely been used in the past in the sort of
complex problems like the distribution problem discussed earlier. An exception is [32]
which introduced the cooperative travelling salesperson (TSP) game. This also intro-
duced the routing game in which the locations visited in a coalition must be traversed
in a (given) fixed order. This gives a polynomial time procedure for computing cost
allocations [33]. [34] developed a column generation procedure to allocate costs for a
homogeneous vehicle routing problem. [15] extended this to a more practical setting of
distributing gas using a heterogeneous fleet of vehicles. However, this study considered
the solution concepts of the core and the nucleolus rather than the Shapley value. It also
ignored other real world features like the repeated nature of such delivery problems.
More recently [35] developed cost allocation methods for inventory routing problems
in which customers have a capacity to hold stock, consume product at a fixed rate and
the goal is to minimise costs whilst preventing stock-outs. Whilst this model has many
real world features, it continues to miss others like inventory and delivery costs.

Related problems: There have been a number of complex markets developed to allocate
resources which use money. For example, in a combinatorial auction, agents express
prices over bundles of items [36]. Our two projects, however, only consider allocation
problems where money is not transfered. Nevertheless, there are ideas from domains
like combinatorial auctions which we may be able to borrow. For example, we expect
the bidding languages proposed for combinatorial auction may be useful for compactly
specifying complex, real world preferences even when money is not being transferred.
As a second example, as occurs in some course allocation mechanisms used in practice,
we can give agents virtual “money” with which to bid and thus apply an auction based
mechanism [37, 38].

Finally, computational phase transitions have been observed in a number of related
areas including constraint satisfaction [39–43], number partitioning [44, 45], TSP [46],
social choice [47–49], and elsewhere [50–54]. We predict that a similar analysis of



22 T. Walsh

phase transitions will provide insight into the precise relationship between equitability
and efficiency in allocation problems.

5 Conclusions

I have discussed two recent projects at NICTA involving resource and cost allocation.
Each is an allocation problem with several new dimensions, rarely considered in the
literature. For example, our resource allocation problem is online, repeated, and con-
strained, whilst our cost allocation problem is also repeated and constrained, and ad-
ditionally involves a complex cost function. These projects suggest that models for
allocation problems need to be developed that are richer and more complex than the
abstract models which have been used in the past to lay the theoretical foundations of
the field.
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Abstract. Induction of number series is a typical task included in in-
telligence tests. It measures the ability to detect regular patterns and
to generalize over them, which is assumed to be crucial for general in-
telligence. There are some computational approaches to solve number
problems. Besides special-purpose algorithms, applicability of general
purpose learning algorithms to number series prediction was shown for
E-generalization and artificial neural networks (ANN). We present the
applicability of the analytical inductive programming system Igor2 to
number series problems. An empirical comparison of Igor2 shows that
Igor2 has comparable performance on the test series used to evalu-
ate the ANN and the E-generalization approach. Based on findings of a
cognitive analysis of number series problems by Holzman et al. (1982,
1983) we conducted a detailed case study, presenting Igor2 with a set
of number series problems where the complexity was varied over differ-
ent dimensions identified as sources of cognitive complexity by Holzman.
Our results show that performance times of Igor2 correspond to the
cognitive findings for most dimensions.

1 Introduction

The ability to reason inductively is one of the core features of any intelligent
system (Holland, Holyoak, Nisbett, & Thagard, 1986; Schmid & Kitzelmann,
2011). In cognitive science research, inductive reasoning is considered as ba-
sic mechanism for knowledge expansion by exploiting previous experience
(Tenenbaum, Griffiths, & Kemp, 2006). Inductive reasoning is also a central
component of intelligence tests – often completion of number series is used to
measure inductive reasoning ability. In the context of research on the Turing test
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to evaluate machines, researchers proposed algorithms which are able to solve
number series as one of several problems (Dowe & Hernández-Orallo, 2012).

Typically, a number series completion problem is presented as a series of
numbers whose elements feature a special relation among one another which can
be described algorithmically. To solve the series, a generalized pattern has to be
identified in the given series and this pattern has then to be applied to generate
the most plausible successor number. In the 1980s, Holzman et al. analyzed
the influence of several characteristics of number series – like the magnitude of
the starting value and the kind of operator involved in the series – on human
performance (Holzman, Pellegrino, & Glaser, 1982, 1983). These characteristics
can be used for systematic evaluation of computational approaches to number
series problems and their comparison to human performance.

In general, computational approaches for number series induction can be in-
tended as a cognitive model or as a general AI approach, they can be based on
symbolic or sub-symbolic computation, and they can be designed specifically to
solve number series or they can be realized as a specific application of a general
induction algorithm. For example, Stranneg̊ard, Amirghasemi, and Ulfsbäcker
(2013) proposed a special-purpose, symbolic, cognitive model which relies on pre-
defined patterns and which addresses the (small) class of number series problems
used in IQ tests. Siebers and Schmid (2012) presented a symbolic AI algorithm
based on a pre-defined set of numerical operators (addition, subtraction, division,
multiplication and exponentiation). Patterns which capture the regularity in a
series are generated by analysis of the given numbers and hypotheses are enu-
merated based on a heuristics. Ragni and Klein (2011) presented an application
of an artificial neural network (ANN) which was trained with a large number
of examples of different partial sequences of a number series and learned to
(approximately) predict the next number. Burghardt (2005) demonstrated that
E-generalization can be applied to generate rules which capture the regularities
in number series.

E-generalization extends the notion of anti-unification by the use of equa-
tional theories as background knowledge. For an equational theory E, a term t
is the E-generalization or E-anti-unification of two terms t1, t2, if there are two
substitutions σ1, σ2, such that tσ1 =E t1 and tσ2 =E t2, where =E denotes the
smallest congruence relation containing all equations from E. Given equational
theories for +, ∗, if and even, examples can be generalized to patterns such as
vp ∗ vp for 0, 1, 4, 9, or if(even(vp), vp, 1) for 0, 1, 2, 1, 4, 1 where vp represents
the current position.

Providing specialized algorithms which can deal with inductive reasoning
problems typically used to measure human intelligence is interesting for cog-
nitive science research. However, in our opinion, demonstrating that a general
purpose machine learning algorithm can be successfully applied to such a task
is of interest not only to cognitive AI research but for AI in general. Compar-
ing the two general-purpose systems which have been applied to number series
problems, in our opinion, E-generalization is the more convincing approach: In
E-generalization, the generalization is based on the identification of the regular-
ities in the number series and the most simple pattern which covers the series is
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constructed. In contrast, the ANN application is trained with many partial se-
quences of the original input. Furthermore, E-generalization learns a generalized
rule which can not only be applied to predict the next number in the sequence
but which can also be presented as an explanation for the proposed solution. In
the ANN approach, on the other hand, the output is an approximative prediction
of the next number in the sequence only.

Analytical approaches to inductive programming can be considered as a
generalization of the E-generalization approach proposed by Burghardt. In-
ductive programming systems address the problem of generalizing recursive
functional or logical programs from small numbers of input/output examples
(Flener & Schmid, 2009). Like E-generalization, analytical approaches generate
hypothetical programs by identifying regularities in the given examples and gen-
eralize over the found regularities. However, since the hypothesis language is a
subset of the set of possible programs, the hypothesis space is larger than for
E-generalization and therefore, inductive programming approaches have a larger
scope. A current analytical system is Igor2 (Kitzelmann, 2009). The authors
of Igor2 already demonstrated the applicability of Igor2 to cognitive domains
such as learning from problem solving, reasoning, and natural language process-
ing (Schmid & Kitzelmann, 2011). For that reason, we identified Igor2 as a
suitable inductive programming system to investigate its applicability to auto-
mated induction of number series.

The rest of this paper is organized as follows: We shortly introduce Igor2 and
propose some ideas for the representation of number series as an inductive pro-
gramming problem. Afterwards, we demonstrate that Igor2 can be successfully
applied to number series problems which were investigated by (Ragni & Klein
2011) and (Burghardt, 2005). We present a detailed case study we conducted to
ascertain the specific characteristics of number series – including characteristics
identified in psychological research – which influence the performance of Igor2.
We conclude with a short evaluation and discussion of future research.

2 Solving Number Series with IGOR2

Igor2 is an inductive programming system which learns functional (Maude or
Haskell) programs from small sets of input/output examples. For instance,
given examples for reversing a list with up to three elements, Igor2 generalizes
the recursive reverse function together with helper functions last and init (see
Figure 1). Igor2 relies on constructor-term-rewriting (Baader & Nipkow, 1998).
That is, besides the examples for the target function, the data types have to be
declared. For lists, the usual algebraic data type [a] = [] | a:[a] is used.

The algorithm of Igor2 was developed from IGOR1 (Kitzelmann & Schmid,
2006) which is in turn based on Summers’s inductive system Thesys (Summers,
1977). While many inductive programming systems are based on generate-and-
test strategies (Quinlan & Cameron-Jones, 1993; Olsson, 1995; Katayama, 2005),
Igor2 uses an analytical, example-driven strategy for program synthesis.
That is, generalized programs are constructed over detected regularities in the
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I/O Examples

reverse [] = [] reverse [a,b] = [b,a]

reverse [a] = [a] reverse [a,b,c] = [c,b,a]

Generalized Program

reverse [] = []

reverse (x:xs) = last (x:xs) : reverse(init (x:xs))

Automatically Induced Functions (renamed from f1, f2)

last [x] = x init [a] = []

last (x:xs) = last xs init (x:xs) = x:(init xs)

Fig. 1. Inductive Programming with Igor2: Generalizing reverse from Examples

examples. Igor2 incorporates concepts introduced in inductive logic program-
ming (Muggleton & De Raedt, 1994), mainly, the possibility to use background
knowledge (in form of additional functions which can be used while synthesizing
a program besides the pre-defined constructors) and the invention of additional
functions on the fly (see init and last in Figure 1). A detailed description of
Igor2 is given by Kitzelmann (2009), an empirical comparison of the perfor-
mance of Igor2 with other state-of-the-art inductive programming systems is
given by Hofmann, Kitzelmann, and Schmid (2009).

The task of solving number series with Igor2 differs from its primary appli-
cation area, that is, induction of recursive functions over lists. However, Igor2
was already applied successfully to several domains of cognitive rule acquisition,
namely learning from problem solving, reasoning, and natural language process-
ing (Schmid & Kitzelmann, 2011). Therefore, we consider the system a good
candidate for an approach to solving number series. To apply Igor2 for induc-
tion of a constructor-function which correctly describes and continues a given
number series, as a crucial first step, we have to decide how to represent the
needed data types, equations, and background knowledge.

Data Types. Igor2 is able to handle any user defined data type. For our purpose,
to represent sequences containing natural numbers, we needed constructors for
numbers and for lists. Numbers are defined recursively by the base case 0 and
the successor of a natural number, s. The list constructors are defined in the
established form of the empty list and a constructor adding an element to an
existing list.

Input/Output Equations. To make Igor2 generalize over the given number se-
ries, the sequences have to be presented as input/output equations. There are
different possibilities to represent number series in such a way: (1) The input
can be presented as a list and the output as successor number, (2) the input can
be presented as index position in the list and the output as number sequence up
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(1) Input List – Output Successor Value

eq Plustwo((s 0) nil) = s^3 0

eq Plustwo((s^3 0) (s 0) nil) = s^5 0

eq Plustwo((s^5 0) (s^3 0) (s 0) nil) = s^7 0

(2) Input Position – Output List

eq Plustwo(s 0) = (s 0) nil

eq Plustwo(s^2 0) = (s^3 0)(s 0) nil

eq Plustwo(s^3 0) = (s^5 0)(s^3 0)(s 0) nil

eq Plustwo(s^4 0) = (s^7 0)(s^5 0)(s^3 0)(s 0) nil

(3) Input Position – Output Value

eq Plustwo(s 0) = s 0

eq Plustwo(s s 0) = s s s 0

eq Plustwo(s s s 0) = s s s s s 0

eq Plustwo(s s s s 0) = s s s s s s s 0

Fig. 2. Different Representations for the Number Series Problem PlusTwo (For repre-
sentations (1) and (2) successor sequences are abbreviated for better readability)

to this position or (3) as the value at this position. An example for the number
series PlusTwo (1, 3, 5, 7) is given in Figure 2. To generalize a recursive function
from the equations it is necessary to explicitly state every equation which could
result from a recursive call of one of the given equations. Therefore, an example
series 1, 3, 5, 7 has to be represented by three equations for representation 1 and
four equations for representations 2 and 3.

Background Knowledge. In the context of number series, Igor2 has to be pro-
vided with knowledge about arithmetic operations. These operations can be
specified as background knowledge (BK). BK is presented in the same manner
as the input/output equations – with the only difference that there is no gen-
eralization on the BK equations. This means that every equation which could
occur while inducing the series has to be defined explicitly. For example, for the
series 2, 4, 8, 16 we need to define 2 ∗ 2 = 4, 2 ∗ 4 = 8 and 2 ∗ 8 = 16, if we want
Igor2 to be able to use this BK by pattern matching. In this context, the BK
given to Igor2 corresponds to the way arithmetic knowledge is handled in other
symbolic approaches such as action planning (Ghallab, Nau, & Traverso, 2004)
or in cognitive architectures such as ACT-R (see, e.g., the model discussed in
(Lebiere, 1999)). However, the number of equations – input/output as well as
background knowledge – is critical for performance.

3 Comparing IGOR2 with E-Generalization and ANNs

We conducted a first test with Igor2 on solving number series on the sequences
which were tested with the ANN (Ragni & Klein 2011) and E-generalization
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Table 1. Sample of series tested with ANN and Igor2

By ANN and Igor2: 7,10,9,12,11 f(n− 1) + 3, f(n− 1) − 1
By Igor2 but not by ANN: 3,7,15,31,63 2 ∗ f(n− 1) + 1
By ANN but not by Igor2: 6,9,18,21,42 f(n− 1) + 3, f(n− 1) ∗ 2
Not by ANN and not by Igor2: 2,5,9,19,37 f(n− 1) ∗ 2 + 1, f(n− 1) ∗ 2− 1

Table 2. Series solved by E-generalization and Igor2

0,1,4,9 vp ∗ vp 0,1,2,1,4,1 if (ev(vp); vp; 1)
0,2,4,6 s(s(vp)) 0,0,1,1,0,0,1,1 ev(v2)
0,2,4,6 vp + vp 0,1,3,7 s(v1 + v1)
1,1,2,3,5 v1 + v2 1,2,2,3,3,3,4,4,4,4 —

(Burghardt, 2005) approaches. To examine the general ability to solve these
number series we decided to test representations 1 and 2 for the input/output
equations and set the time-out to 30 minutes.1

Ragni and Klein (2011) presented an initial evaluation of their ANN approach
with 20 selected number series as well as an extensive evaluation with over 50,000
number series from the Online Encyclopedia of Integer Sequences (OEIS2). We
tested Igor2 with the initial 20 number series. The ANN approach could solve
17, Igor2 14 of these series correctly. However, Igor2 was able to correctly
generalize two number series which no configuration of the networks was able to
predict. Example series are given in Table 1. Here, the first problem was solved
by Igor2 without background knowledge, the second problem with multiplica-
tion as background knowledge. Note that the 14 problems were solved with one
instance of Igor2 while for ANN 840 network configurations were run where the
highest number of series solved by one single network was 14.

To compare Igor2 with the E-generalization approach we used the 8 example
series reported in Burghardt (2005). The results show that both systems solve
the same 7 series (see Table 2). Background knowledge for Igor2 was addition
and multiplication. Background knowledge for E-generalization was addition,
multiplication, conditional expression, and even.

During this first test we were able to find some general constraints for Igor2
on the task of correctly generalizing number series. Due to the chosen constructor-
symbols which define a natural number as a successor of 0, we found that there
is no elegant way to represent negative numbers. Even defining a predecessor
constructor and binding it with the successor via background knowledge did not
lead to success.

Another difficulty came up with descending number series. Igor2 was able to
solve these sequences with the needed background knowledge (e.g., division), but

1 Note that run-times for Igor2 are typically below 100 ms. Detailed performance
results for Igor2 on all three representations are given in section 4.

2 https://oeis.org/

https://oeis.org/
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not with every kind of representation. Even if representation 1 (input: list, out-
put: successor) is the most intuitive one, the input format restricts the solvability
of number series. As the input represents the whole number series, it automati-
cally restricts the possible input for the generalized function. If we want Igor2
to generalize over 16, 8, 4, the generalized function accepts as lower bound 4,
because this is the smallest number presented in the input. This problem results
from the definition of natural numbers as successors of natural numbers, which
makes it easy for Igor2 just to count up, but difficult to subtract some s from
the given number.

The last limitation appeared by trying to solve alternating sequences. To date
we were not able to implement some kind of separating function to split functions
or divide them by the parity of the current position. Therefore, Igor2 has only
very restricted ability to solve alternating number series, yet. Solving alternating
series is possible for Igor2, if it is able to find a global operation of two or
more alternating operations. E.g., for a number series alternating adding 3 and
subtracting 1 (see first line in Table 1), Igor2 induces the operation add 2 to
the pre-predecessor in the sequence. Otherwise, if one alternating sequence could
be split up in two individual and independent series without intersection, Igor2
is able to generalize the original sequence by simply pattern matching over the
given elements. E.g., a constructor-function for the series 1, 2, 1, 4, 1 (see Table
2) can be correctly induced by checking if the predecessor is 1 and if so, adding 2
to the pre-predecessor. If not, the induced function just appends 1 to the number
series.

4 A Case Study on Solving Number Series

For a systematic evaluation of the performance of Igor2 we systematically con-
structed number series varying in different characteristics. Several of these series
are included in OEIS. The evaluation was conducted on a computer with Win-
dows 7, Intel Core i5-2410M with 2.3 GHz and 8 GB RAM.

4.1 Materials

Holzman et al. defined a set of characteristics of number sequences which
influence humans on their performance when solving such sequences (Holzman
et al., 1982, 1983). Based on these findings we generated a set of 100 num-
ber series, varying in the following features: Operator (+, ∗, ∗/+,=), Number
of Operators (1 or 2), Magnitude of Starting Value (low, high), Magnitude of
Argument (low, high, variable), Recursion (linear, cascading), Reference (pre-
/prepre-/preprepre-decessor, pre- and prepredecessor), Position (yes or no).

To be able to compare all three kinds of representation, we omitted operators
producing descending number series, like − or /. We had to distinguish the
magnitude of argument for the operators. Multiplication by 2 was considered as
low, multiplication by 3 as high. For addition, low is in the range of 2−4 and high
11−13. For the equivalence operator (=) the argument is variable. Magnitude of
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starting value was defined as low in the range of 1−4 for all operators and high in
the range of 14− 17 for addition and 3− 8 for multiplication. Reference specifies
the element in the number series from which the current value is calculated.

We used mostly number series of a length of five elements. Seven elements
were used, if the reference is the preprepredecessor. The background knowledge
for every number series was explicitly given and optionally used by Igor2.

4.2 Hypotheses

Although this was the first time Igor2 was applied on solving number series,
we tried to formulate some assumptions of how it performs:

Assumption for Representations. As representation 1 offers the whole list
to Igor2 as input and just asks for the successor as output, we considered it to
be the fastest representation. Furthermore, we expected representation 2 to be
much slower than representation 3, because the output of the second version is
the whole list, which means additional computation time.

Assumption for Reference. We expected Igor2 to perform more slowly for
larger distances between the reference value and the actual value. As the pre-
decessor is available to Igor2 before the prepredecessor, Igor2 will first try to
build the constructor-function with the value which is available earlier before
moving left in the sequence.

4.3 Results

Every number series was solved ten times by Igor2 while we recorded the needed
time to solve it in milliseconds. Although Igor2 is a deterministic approach,
some variations in run time typically occur, e.g., due to processes of the operating
system.

Differences in Representations. With respect to the different representa-
tions, the results show that the means of the running times of representation 1
and 3 are quite similar (36 ms vs. 33 ms). Pairwise t-tests showed that there is
no significant difference. However, there is a much higher variance in the run-
ning times of representation 1 than representation 3 (standard deviations 198 for
representation 1 and 74 for representation 3). That is, representation 3 does not
differ strongly in its individual results and is therefore more predictable. Rep-
resentation 2 turned out to be significantly (p < 0.001) slower than the others
with a mean of 83 ms.

Furthermore, we examined the interaction between the kind of representation
and a) the operator and b) the reference in the series with two-factorial ANOVAs
and Tukey post-hoc tests. Interaction-analysis showed significant (p < 0.001)
differences for the representations and operators. As the Tukey post-hoc analysis
showed, the operators = and + differed significantly within the representations.
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Fig. 3. Interaction of Representation Format and Operator (a) / Reference (b)

This result is illustrated in Figure 3(a). The interaction between representation
and reference in the sequence showed no significant effect. As shown in Figure
3(b), the shapes of the graphs look quite similar, except for the reference point of
pre- and pre-predecessor, where inference times for representation 3 were slightly
(but not significantly) slower than for representation 1.

Regression Model To Predict Running Time. To assess the relative influ-
ence of the different characteristics of the number series, we conducted a multiple
regression analysis for the varied characteristics. We excluded the features recur-
sion and number of operators because they can be explained completely through
other features (like reference and operator). The parameter position was also
ignored because of an imbalanced distribution of the frequencies of its char-
acteristics. The coefficients of the analysis are shown in table 3. As we used
dummy variables for all parameters within the model, there are no different
scales whereby the coefficients can be directly compared. The model explains
23.98%, 32.48% and 26.40% of the variances of representations 1, 2, and 3.

The magnitude of sequence elements has a comparable impact for all
three representations. A higher magnitude of the starting value leads to a signif-
icant rise of the mean running time. The magnitude of the argument, however,
shows less impact, but also the tendency for higher running times for higher
magnitudes.

Regarding the kind of operator, the influence on different representations differ
from each other. As interaction-analysis has already shown, the running times
of representation 1 are significantly higher for the equivalence operator than for
the others. In contrast, representation 3 shows the tendency to be faster for
the equivalence operator than for the others. However, this tendency becomes
only significant in comparison to addition. For representation 2, running times
for addition are significantly higher than for the equivalence-relation, whereas
multiplication could be solved significantly faster.

The coefficients for the references weremuchmore surprising. In contrast to our
initial assumption, the nearer the reference the faster the algorithm, the regres-
sion analysis shows different results. The running times for referring to the pre-
predecessor instead of the predecessor do not show significant differences. Even a
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Table 3. Multiple regression-analysis for the running times

Representation 1 Representation 2 Representation 3
B t B t B t

Starting Value 69343.9*** 6.31 127320.7*** 11.21 52832.8*** 13.07
Arg high 1905.3 0.15 10659.6 0.80 11601.1* 2.43
Arg var 33752.1 1.43 -33008.2 -1.36 8916.3 1.03
+ vs. = -188598.6*** -6.89 67657.0* 2.39 24700.3* 2.45
∗ vs. = -198261.2*** -7.24 -68438.0* -2.42 1587.0 0.16
∗/+ vs. = -199648.3*** -6.69 -59873.6 -1.94 2.207 0.00
(n-2) -72.65 -0.00 -10445.2 -0.69 -9711.4 -1.80
(n-3) 120029.7*** 8.17 192171.5*** 12.66 48409.7*** 8.96
((n-1),(n-2)) 6682.1 0.24 54458.6 1.92 34595.5*** 3.42
β0 128650.5*** 3.97 -16099.1 -0.48 -22568.5 -1.89

Table 4. *

* p < 0.05 ** p < 0.01 *** p < 0.001
B = unstandardized coefficient

small tendency to faster running times for the pre-predecessor can be seen (as co-
efficients are negative). By moving the reference one step further left, the running
times become significantly slower than before for all three representations.

4.4 Interpretation

The results of the ANOVAs as well as the regression analysis illustrate in general
that with higher values within the number series the running times rise. The
fact that the magnitude of the starting value has a much higher influence than
that of the argument can be explained by the use of background knowledge. As
mentioned above, we decided to explicitly give the needed background knowledge
to Igor2. Therefore, if the argument to be added to an existing value is 3 or
13 does not make a strong difference. Nevertheless, the model shows a tendency
towards faster running times for lower arguments, which results from the general
increasing values in the number series if a larger argument is added.

Regarding the results of the influence of the kind of operator, the discovered
differences are not very evident. The significant increase of the running time for
representation 1 for the equivalence operator resulted from the very high running
times for two number series with the operator =. Unfortunately, we were not
able to detect the reason for these values.

Only about a third of the existing variance within the independent variable
running time can be explained with the presented model. However, we expected
these values to be a lot higher because we have generated the series completely
from the parameters covered in the model. Deeper analyses of the concrete run-
ning time values for each number series did not reveal any further systematic
variance. We recognized that Igor2s performance varied strongly by minimal
changes of the values of the elements. As our model represents the magnitudes
nominally instead of metrically, we developed a second model for a subset of the
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number series to see if this explains more variance within the variable. The new
model explained a total of 32, 12% of the existing variance for representation 1.

5 Conclusions and Further Work

We could demonstrate that the general-purpose inductive programming sys-
tem Igor2 can be applied to solve number series problems. To our knowl-
edge, most approaches to number series induction are based on algorithms
specifically designed for this problem class. Two applications of general-purpose
algorithms previous to our Igor2 experiments are the ANN approach of
Ragni and Klein (2011) and the application of E-generalization by (Burghardt,
2005). We could demonstrate that Igor2 can solve a superset of series solv-
able with E-generalization. Even compared to the ANN approach, its scope is
acceptable and Igor2 can solve some types of series not solvable by the ANN.

Performance constraints of Igor2 are due to the use of background knowledge
and its limited ability to deal with negative numbers and alternating sequences.
In our evaluation we presented only those arithmetic operations in background
knowledge which were necessary to solve a series. This is necessary because
matching examples against background knowledge results in exponential growth
of run time. This problem could be reduced by providing a pre-filtering of the
possibly needed background knowledge. To deal with negative numbers, one
could think of an extra implementation of integers and not only natural numbers.
For solving alternating series, it is necessary to implement some kind of query
to rely on invariances, such as the parity of the actual position. As a next step,
we plan to introduce such extensions.

In our opinion, the generic induction algorithm underlying Igor2 can be seen
as one possible realization of a cognitive rule acquistion device. In Schmid and
Kitzelmann 2011 we could show that Igor2 can be applied to learn generalized
strategies for Tower of Hanoi and other problem solving puzzles. In this paper we
demonstrated that the same algorithm can be applied to number series problems.
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B., Krüger, A. (eds.) KI 2012. LNCS, vol. 7526, pp. 249–252. Springer, Heidelberg
(2012)

Stranneg̊ard, C., Amirghasemi, M., Ulfsbäcker, S.: An anthropomorphic method for
number sequence problems. Cognitive Systems Research 22-23, 27–34 (2013)

Summers, P.D.: A methodology for LISP program construction from examples. Journal
ACM 24(1), 162–175 (1977)

Tenenbaum, J., Griffiths, T., Kemp, C.: Theory-based Bayesian models of inductive
learning and reasoning. Trends in Cognitive Sciences 10(7), 309–318 (2006)



Algorithmic Debugging and Literate

Programming to Generate Feedback
in Intelligent Tutoring Systems

Claus Zinn

Department of Computer Science, University of Konstanz
claus.zinn@uni-konstanz.de

Abstract. Algorithmic debugging is an effective diagnosis method in in-
telligent tutoring systems (ITSs). Given an encoding of expert problem-
solving as a logic program, it compares the program’s behaviour during
incremental execution with observed learner behaviour. Any deviation
captures a learner error in terms of a program location. The feedback
engine of the ITS can then take the program clause in question to gen-
erate help for learners to correct their error. With the error information
limited to a program location, however, the feedback engine can only
give remediation in terms of what’s wrong with the current problem
solving step. With no access to the overall hierarchical context of a stu-
dent action, it is hard to dose scaffolding help, to explain why and how
a step needs to be performed, to summarize a learner’s performance so
far, or to prepare the learner for the problem solving still ahead. This is
a pity because such scaffolding helps learning. To address this issue, we
extend the meta-interpretation technique and complement it with a pro-
gram annotation approach. The expert program is enriched with terms
that explain the logic behind the program, very much like comments
explaining code blocks. The meta-interpreter is extended to collect all
annotation in the program’s execution path, and to keep a record of the
relevant parts of the program’s proof tree. We obtain a framework that
defines sophisticated tutorial interaction in terms of Prolog-based task
definition, execution, and monitoring.

1 Introduction

The core part of an intelligent tutoring system can be based upon logic pro-
gramming techniques. The expert knowledge that learners need to acquire is
represented as a Prolog program, and the meta-interpretation technique algo-
rithmic debugging is used to diagnose learners’ problem solving steps. Algorith-
mic debugging meta-interprets the expert program in an incremental manner.
At any relevant stage, it compares its behaviour with the behaviour of the stu-
dent by making use of a mechanised Oracle. Any deviation between observed
learner behaviour to Prolog-encoded expert behaviour is captured in terms of
a program location. The deviation can be used by the feedback component of
the ITS to address learners’ incorrect or incomplete answers. Given the program
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clause in question, the feedback engine generates remediation or hints to help
learners overcome the error. The feedback engine, however, has no access to the
overall hierarchical context of the program clause in question, and also has no
information about a learner’s past performance and the problem solving steps
still ahead. An engine deprived of such information is not capable of generating
more sophisticated feedback to further support student learning and motivation.
It is also a pity because Prolog’s hierarchical encoding of expert knowledge must
surely be beneficial to tackling this issue quite naturally. If, in addition, the
expert program would be annotated with terms that explain the role of each
relevant clause in the overall context, we could further harness the potential of
logic programming techniques for computer-aided education. In this paper, we:

– define a simple program annotation language. Each relevant program clause
modeling a skill can be associated with a term that describes its use and role
in the overall program;

– extend algorithmic debugging to collect all annotations it encounters on the
execution path, and to keep a record of all skills tackled; and

– specify a feedback engine that exploits the wealth of information provided
by the algorithmic debugger.

A prototype has been implemented to test and show-case our innovative ap-
proach to authoring intelligent tutoring systems, and which defines tutorial in-
teraction in terms of task definition, execution and monitoring.

2 Background

Shapiro’s algorithmic debugging technique defines a systematic manner to iden-
tify bugs in programs [6]. It is based upon a dialogue between the programmer
(the author of the program) and the debugging system. In the top-down variant,
using the logic programming paradigm, the program is traversed from the goal
clause downwards. At each step during the traversal of the program’s AND/OR
tree, the programmer is taking the role of the Oracle, and answers whether the
currently processed goal holds or not. If the Oracle and the buggy program agree
on the result of a goal G, then algorithmic debugging passes to the next goal
on the goal stack. Otherwise, the goal G is inspected further. Eventually an ir-
reducible disagreement will be encountered, hence locating the program’s clause
where the buggy behaviour is originating from.

Algorithmic debugging can be used for tutoring [7] when Shapiro’s algorithm
is turned on its head: the expert program takes the role of the buggy program,
and the student takes on the role of the programmer. Now, any irreducible
disagreement between program behaviour and given answer indicates a student’s
potential error.

We give an example. For this, consider multi-column subtraction as domain of
instruction. Fig. 1 depicts the entire cognitive model for multi-column subtrac-
tion using the decomposition method. The Prolog code represents a subtraction
problem as a list of column terms (M, S, R) consisting of a minuend M, a sub-
trahend S, and a result cell R. The main predicate subtract/2 determines the
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subtract(PartialSum ,Sum)←
length(PartialSum ,LSum),
mc subtract(LSum,PartialSum , Sum).

mc subtract( , [ ], [ ]).
mc subtract(CurCol , Sum,NewSum)←

process column(CurCol ,Sum,Sum1 ),
shift left(Sum1 ,Sum2 ,ProcessedColumn ),

CurCol1 is CurCol − 1,
mc subtract(CurCol1 , Sum2 ,SumFinal),
append(SumFinal , [ProcessedColumn ],NewSum).

process column(CurCol , Sum,NewSum)←
last(Sum ,LastColumn), allbutlast(Sum ,RestSum),
subtrahend(LastColumn ,Sub),minuend(LastColumn ,Min),
Sub > Min ,
CurCol1 is CurCol − 1,
decrement(CurCol1 ,RestSum,NewRestSum ),
add ten to minuend(CurCol ,LastColumn ,LastColumn1 ),
take difference(CurCol ,LastColumn1 ,LastColumn2 ),
append(NewRestSum , [LastColumn2 ],NewSum).

process column(CurCol , Sum,NewSum)←
last(Sum ,LastColumn), allbutlast(Sum ,RestSum),
subtrahend(LastColumn ,Sub),minuend(LastColumn ,Min),

Sub =< Min ,
take difference(CurCol ,LastColumn ,LastColumn1 ),
append(RestSum, [LastColumn1 ],NewSum).

shift left( CurCol ,SumList ,RestSumList , Item )←
allbutlast(SumList ,RestSumList), last(SumList , Item).

add ten to minuend( CurCol , (M ,S ,R), (NM ,S ,R)) ←
irreducible, NM is M + 10.

decrement(CurCol ,Sum ,NewSum )← irreducible,
last( Sum, (M ,S ,R) ), allbutlast( Sum ,RestSum),
M == 0,
CurCol1 is CurCol − 1,
decrement(CurCol1 ,RestSum,NewRestSum ),
NM is M + 10, NM1 is NM − 1,
append( NewRestSum, [ ( NM1 ,S ,R)],NewSum).

decrement(CurCol ,Sum ,NewSum)← irreducible,
last( Sum, (M ,S ,R) ),
allbutlast( Sum,RestSum),
�� (M == 0)
NM is M − 1,
append( RestSum, [(NM , S ,R) ],NewSum ).

take difference( CurCol , (M , S , R), (M ,S ,R)) ← irreducible,
R is M − S .

minuend((M , S , R),M ).
subtrahend(( M , S , R), S).

irreducible.

Fig. 1. The Decomposition Method for Subtraction
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number of columns and passes its arguments to mc_subtract/3.1 This predicate
processes columns from right to left until all columns have been processed and the
recursion terminates. The predicate process column/3 receives a partial sum,
and processes its right-most column (extracted by last/2). There are two cases.
Either the column’s subtrahend is larger than its minuend, when a borrowing
operation is required, or the subtrahend is not larger than the minuend, in which
case we can subtract the former from the latter (calling take difference/3).
In the first case, we add ten to the minuend (add ten to minuend/3) by bor-
rowing from the left (calling decrement/3). The decrement operation also has
two clauses, with the second clause being the easier case. Here, the minuend
of the column left to the current column is not zero, so we simply reduce the
minuend by one. If it is zero, we need to borrow again, so decrement/3 is called
recursively. When we return from recursion, we add ten to the minuend, and
then reduce it by one.

Consider three solutions to the task of solving the subtraction ’32 − 17’:
Fig. 2(a) depicts the correct solution, Fig. 2(b) an instance of the no-payback
error, and Fig. 2(c) a situation with no problem solving steps.

2 12
3 2

- 1 7

= 1 5
(a) correct

12
3 2

- 1 7

= 2 5
(b) no payback

3 2
- 1 7

=
(c) no steps

Fig. 2. A correct and two incorrect answers

For the solution shown in Fig. 2(b), our variant of algorithmic debugging
generates this dialogue between expert system and the learner:

> algo_debug(subtract([(3,1,S1),(2,7,S2)], [(3,1,2),(12,7,5)],ID).

do you agree that the following goal holds:

subtract([(3,1,R1),(2,7,R2)], [(2,1,1),(12,7,5)]) |: no.

mc_subtract(2,[(3,1,R1),(2,7,R2)], [(2,1,1),(12,7,5)]) |: no.

process_column(2,[(3,1,R1),(2,7,R2)], [(2,1,R1),(12,7,5)]) |: no.

decrement(1,[(3,1,R1)],[(2,1,R1)]) |: no.

ID = (decrement(1,[(3,1,R1),(2,1,R1)]),missing)

The dialogue starts with the program’s top clause, where a disagreement is
found, follows the hierarchical structure of the program, until it ends at a leaf
node with an irreducible disagreement that locates the learner’s “no payback”
error in the decrement skill.

1 The argument CurCol is passed onto most other predicates; it is used to help au-
tomating the Oracle and to support the generation of feedback.

mc_subtract/3
CurCol
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With the mechanisation of the Oracle [7], it is not necessary for learners to
respond to Prolog queries (or more readable variants thereof). All answers to
Oracle questions can be derived from a learner’s (potentially partial) answer to
a subtraction problem.

Once a program clause has been identified as irreducible disagreement, our
previous system used a template-based mechanism for verbalisation, mapping
e.g., the disagreement decrement(1,[(3,1,R1),(2,1,R1)]),missing) to the
natural language feedback “you need to decrement the minuend in the tens” [7].

Note however, that the learner’s partial answer in Fig. 2(c) has algorithmic
debugging to return the same irreducible disagreement, also by traversing the
same intermediate nodes of the proof tree. Consequently, we also generated the
same feedback, which left us with a feeling of unease and pedagogical inadequacy.
A learner giving the solution in Fig. 2(b), a full albeit incorrect answer, should
get a different response than the learner in Fig. 2(c) who provided none of the
steps. In general, we believe that the analysis of learner input could profit from
embedding the irreducible disagreement in the overall task context. Hence, we
will need to enhance our algorithmic debugger to collect all relevant information
from the program’s proof tree. Moreover, we will annotate the expert model with
additional information about the logic behind each relevant program clause.

3 Program Annotation Language

Comments are a construct that allow programmers to annotate the source code
of a computer program. Comments are used, e.g., to outline the logic behind
the code rather than the code itself, to explain the programmer’s intent, or to
summarize code into quick-to-grasp natural language. In general, comments are
ignored by compilers and interpreters, and this also holds for Prolog.

We will use comments in the spirit of the literate programming idea [4]. Our
comments construct is a regular Prolog predicate with no effect on the program’s
semantics. Each comment goal is bound to succeed, and has access to variable
bindings in its vicinity:

@comment(Str , Arg)← (format(Str , Arg), !) ; true.

The predicate @comment/2 is thus mostly syntactic sugar for Prolog’s built-in
format/2 predicate. It has two arguments: a string with format specifications,
and a list of associated arguments.

Fig. 3 shows a fragment of the expert model for multi-column subtraction, now
enriched with comments. Consider the first clause process_column/3, which has
two comments. Both comments make use of the Prolog goal get_label/2 that
converts the number denoting the current column to a natural language label
such as “ones” or “tens” and writes it to the current_output stream. The string
is then inserted in the result string of @comment/2.

The feedback engine assumes that @comment/2 constructs within the same
clause are ordered from low to high specificity. The first occurrence of @comment/2
in process_column/3 gives away less information than its second occurrence.

With the annotation, we obtain this execution trace of the expert model:

decrement(1,[(3,1,R1),(2,1,R1)]),missing)
@comment/2
process_column/3
get_label/2
current_output
process_column/3


42 C. Zinn

subtract(PartialSum, Sum)← length(PartialSum, LSum),
@comment('Subtract�the�two�numbers�with�the�decomposition�method.', [ ]),
@comment('Columns�are�processed�from�left�to�right.' , [ ]),
mc subtract(LSum, PartialSum, Sum).

mc subtract( , [ ], [ ])← @comment('Problem�solved.~n', [ ]).
mc subtract(CurCol , Sum, NewSum)←

@comment('Now,�process�the�~@�column.~n', get label(CurCol)),
process column(CurCol , Sum, Sum1 ),CurCol1 is CurCol − 1,
shift left(CurCol1 , Sum1 , Sum2 , ProcessedColumn),
mc subtract(CurCol1 , Sum2 , SumFinal),
append(SumFinal , [ProcessedColumn ], NewSum).

process column(CurCol , Sum, NewSum)← last(Sum, LastColumn), [...],
subtrahend(LastColumn, Sub), [...], Sub > Min, CurCol1 is CurCol − 1,
@comment('In�the�~@,�cannot�take�away�~d�from�~d.',

[get label(CurCol), Sub, Min]),
@comment('Need�to�borrow�from�the�~@�before�taking�differences.~n',

[get label(CurCol1 )]), [...]

Fig. 3. Annotation of the Expert Program (Fragment)

Subtract the two numbers with the decomposition method. Columns are

processed from right to left. Now, process the units column. In the units, cannot

take away 7 from 2. Need to borrow from the tens before taking differences.

Reduce the minuend in the tens. Do this by scoring out the 3 and writing a

small 2. Add ten to the minuend. For this, put the figure 1 (representing one

tens = 10 units) in front of the 2 units to obtain 12 units. Subtract 7 from 12

to yield 5. Put the figure 5 in the units column. Now, process the tens column.

In the tens, the minuend is larger or equal to the subtrahend. Subtract 1 from

2 to yield 1. Put the figure 1 in the tens column. Problem solved.

Clearly, only selected, situation-specific, parts will be required for tutoring.

4 Extension of Meta-interpretation

The algorithmic debugger that meta-interprets the expert program to identify a
learner’s error needs to be augmented in three ways:

– rather than terminating with the first irreducible disagreement found, it now
traverses the entire program;

– it must keep a record of all the goals visited during code walking;
– it must collect all program annotation attached to goals.

Fig. 4 depicts the enhanced meta-interpreter. The predicate adebug/5 gets five
arguments: a goal, and input and output arguments for agreements and disagree-
ments, respectively. Four cases are distinguished. If the goal is a goal structure
(Goal1, Goal2), then the goal Goal1 is processed first. The results of the first
recursive call, updated values for agreements AINTER and disagreements DINTER,

adebug/5
AINTER
DINTER
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adebug((Goal1 , Goal2 ), AIN , AOUT , DIN , DOUT )←
adebug(Goal1 , AIN , AINTER, DIN , DINTER),
adebug(Goal2 , AINTER, AOUT , DINTER, DOUT ).

adebug(Goal , AIN , AOUT , DIN , DOUT )←
on discussion table p(Goal), !,
copy term(Goal , CopyGoal ), call(Goal),
ask oracle(Goal , Answer),
(Answer = yes
→
( get annotation(Goal , Ann),

AOUT = [agr(Goal , Ann ,DIN )|AIN ], DOUT = DIN ))
;
(get applicable clause(CopyGoal , Clause, Ann),
(irreducible clause(Clause)
→
(AOUT = AIN , DOUT = [irrdis(Goal , Ann)|DIN ])

;
adebug(Clause, AIN , AOUT , [dis(Goal ,Ann)|DIN ], DOUT )
)))

adebug(Goal , A, A, D , D)←
system defined predicate(Goal), !, call(Goal).

adebug(Goal , AIN , AOUT , DIN , DOUT )←
clause(Goal , Clause), adebug(Clause, AIN , AOUT , DIN , DOUT ).

Fig. 4. Extended Meta-Interpreter

are passed on to the recursive call to process Goal2. The other tree cases pro-
cess atomic goals. If the Goal is relevant enough to be discussed with the Oracle
(on_discussion_table_p/1 holds), we check whether expert behaviour and Or-
acle agree on the results of calling Goal. If we obtain an agreement, we update
AOUT and DOUT accordingly. A record is kept on the agreement, its annotation as
well as its history, i.e., its path to the root node, where each node on the path has
been disagreed upon. If expert program and Oracle disagree, the disagreement
must be examined further. We identify an applicable clause that corresponds
to Goal – a clause is applicable when its body succeeds when evaluated. If the
goal belongs to a clause marked irreducible, the disagreement is atomic, and
we update the variables AOUT and DOUT accordingly. Otherwise, we continue to
explore the execution tree below Goal to identify the irreducible disagreement.
The last two clauses of adebug/5 handle the cases where Goal is a built-in pred-
icate, and where Goal is not on the discussion table. In the latter, the goal’s
body is investigated.

If we run algorithmic debugging with an expert program, the learner’s an-
swer, and the Oracle, we obtain all the program clauses where learner behaviour
matches expert behaviour, and all program clauses where there is no such match.
Each agreement and each irreducible disagreement is decorated with the execu-
tion path and its annotations.

on_discussion_table_p/1
AOUT
DOUT
AOUT
DOUT
adebug/5
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5 Feedback Engine

We illustrate the design rationale of the feedback engine by reconsidering the
two erroneous learner’s solutions to the task of solving the subtraction ’32− 17’.

5.1 Rationale

For the first solution in Fig. 2(b), the new algorithmic debugger returns two
irreducible disagreements: a missing payback operation located at decrement/3,
and an incorrect difference in the tens at take_difference/3. Also, there are
two irreducible agreements: the learner correctly added ten to the minuend in
the ones at add_ten_to_minuend/3, and also took the correct difference in this
column at take_difference/3. For Fig. 2(c), the algorithmic debugger returns
four irreducible disagreements: there are missing operations for decrementing the
minuend in the tens, adding ten to the minuend in the ones, taking differences
in the ones, and taking differences in the tens. Each of the (dis)-agreements is
embedded in its hierarchical structure, and is associated with its annotations.

Both solutions share the same first irreducible disagreement, with the same
path to the expert model’s top clause. Our old approach, where algorithmic
debugging terminates with the first irreducible disagreement, generated only a
single feedback candidate to both learners:

decrement/3 Reduce the minuend in the tens. Do this by scoring out the 3 and
writing a small 2.

Our new approach exploits the hierarchical context of the first irreducible
disagreement and we get these candidates for both of Fig. 2(b) and Fig. 2(c):

decrement/3 Reduce the minuend in the tens. Do this by scoring out the 3 and
writing a small 2.

process_column/3 In the units, cannot take away 7 from 2. Need to borrow
from the tens before taking differences.

mc_subtract/3 Now, process the ones column
subtract/2 Subtract the two numbers using the decomposition method. Columns

are processed from left to right.

For Fig. 2(c), it is rather inappropriate to start with the first and most specific
feedback candidate. There is no single agreement in the proof tree, and all irre-
ducible disagreements are of type missing. Here, it is rather better to start with
the least-specific feedback associated with the top node, and then to proceed
downwards, if necessary.

For Fig. 2(b), it is more appropriate to consider more specific feedback early.
Rather than starting with the most specific feedback at decrement/3, we back-up
to its parent node, which has two child nodes that expert and learner behaviour
agree upon. We consider such feedback to be more natural as it acknowledges a
learner’s past achievements. For Fig. 2(b), we obtain these candidates:

take_difference/3
add_ten_to_minuend/3
take_difference/3
decrement/3
decrement/3
process_column/3
mc_subtract/3
subtract/2
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process_column/3 In the units, cannot take away 7 from 2. Need to borrow
from the tens before taking differences.

add_ten_to_minuend/3 Add( ten to the minuend.

take_difference/3 Subtract 7 from 12 to yield 5.

decrement/3 Reduce the minuend in the tens. Do this by scoring out the 3 and
writing a small 2.

Whenever there is a candidate node that is parent to child nodes that have
been agreed upon, the annotations attached to all nodes are verbalised together.
For each child node, however, only the least specific feedback is given to learners.

5.2 Algorithm

Whenever the learner asks for help, the current problem solving state is read
and sent to the algorithmic debugger for analysis. The list of agreements and
disagreements returned are then passed onto the feedback engine, see Fig. 5.
The engine’s task is to process all information and to compute a sequence of
candidate nodes and their associated annotations. For this, feedback_engine/3
will use the first irreducible agreement and its hierarchical embedding DPath. If
there is a path to a parent node with agreement children, it will use these nodes
as candidate nodes; otherwise it will take the path to the top node and use it in
reverse order. The engine takes the first element from the candidate list that does
not appear in the dialogue history. Once a @comment/2 is realized, it is added to
the dialogue history. When a user repeatedly clicks on help without advancing
the problem solving state, a bottom-out hint will be eventually generated that
advances the problem solving state. A subsequent run of the algorithmic debug-
ger will hence return other (dis-)agreement structures, until the task at hand is
solved.

give feedback( As , Ds )← feedback engine(As, Ds, Acts),
realize acts(Acts).

feedback engine(As, Ds, Acts )←
get first disagreement path(Ds, DPath),
( path to parent with agr( As , DPath , ParentPath , AgrNodes)
→ combine nodes( ParentPath , AgrNodes , CandidateNodes)
; reversePath(DPath, CandidateNodes)
),
extract comments(CandidateNodes , Acts).

realize acts( Acts )← member(A, Acts),
dialogue history( DH ), �� member(A, DH ), realize act( A ).

Fig. 5. Feedback Engine

process_column/3
add_ten_to_minuend/3
take_difference/3
decrement/3
feedback_engine/3
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6 Discussion

There is little recent research in the ITS community that builds upon logic
programming. In [2], Beller & Hoppe use a fail-safe meta-interpreter to iden-
tify student error. A Prolog program, encoding the cognitive model, is executed
by instantiating its output parameter with the student answer. While standard
Prolog interpretation would fail, a fail-safe meta-interpreter can recover from
execution failure, and can also return an execution trace. Beller & Hoppe for-
mulate error patterns which are then matched against the execution trace, and
where each successful match indicates a plausible student bug.

In [7], we have presented our first meta-interpreter approach to analyse learner
input in intelligent tutoring systems. In this initial version, algorithmic debug-
ging terminated with the first irreducible disagreement between Prolog-encoded
expert and observed learner behaviour. The disagreement was then directly ver-
balised by the feedback engine to help learners correct their error. All student
actions that were in line with the expert model were ignored. In this paper,
we address the drawback and keep a record of all agreements and deviations
between expert and learner behaviour and also maintain their hierarchical em-
bedding. Also, we now attach comments to each clause of the expert model.

The association of feedback messages to cognitive models is nothing new. In
tutoring systems driven by production rules, expert skills are represented as ex-
pert rules and anticipated erroneous behaviour is being simulated by an encoding
of buggy rules. Fig. 6 depicts a production rule taken from the the CTAT tutor
[1]. It represents one of the skills for adding fractions. The rule’s IF-part lists a
number of conditions that are checked against the content of a global working
memory that captures the current problem solving state. If all conditions are
met, the actions in the THEN-part are carried out, usually changing the con-
tents of the working memory. In the THEN part, we find a message construct
that is directly used for the generation of remedial feedback. Tutoring systems
based on production rules systems perform model tracing. After each and every
student step, the rule system is executed to identify a rule that can reproduce a
learner’s action. When such a rule if found, its associated feedback is produced.
Each student action is thus being commented on, advancing a tutorial dialogue
context by continually tracking student actions. Model-tracing tutors thus keep
learners on a tight leash. They have little opportunity to explore different solu-
tions paths; with every step, they are exposed to potentially corrective feedback.

In constraint-based tutors, the correctness of learner input in diagnosed in
terms of a problem state, given a set of constraints that test whether relevant
aspects of the state are satisfied or not. Each relevant but unsatisfied constraint is
flagged as potential source of error; its associated feedback message is given to the
learner, see Fig. 7. As constraint-based models do not model learner action, there
is no hierarchy of skills. Also, developers of constraint-based systems must cope
with situations where more than a single relevant constraint is unsatisfied. In
ASPIRE’s fraction addition tutor, this is addressed by artificially partitioning the
problem solving state into discrete units, where the next unit can only be tackled
when the current one has been successfully completed. The set of constraints is
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Fig. 6. A Production Rule, see [1]

Fig. 7. An ASPIRE constraint, see [5]

de facto divided into subsets that correspond to units. Similar to model tracing,
this restricts learners exploring the solution space.

In our approach, learners only get feedback when they explicitly ask for it,
and learners may ask for help early or late in their problem solving process.
Each help request starts algorithmic debugging anew, now taking into account
and acknowledging all learner actions. Hence, we can now create a more natural
tutorial dialogue context, which is a huge improvement to our earlier work [7].

7 Conclusion

In this paper, we extend our previous work on using logic programming and
meta-level techniques for the analysis of learner input in intelligent tutoring
systems. We modified algorithmic debugging to traverse the entire proof tree, and
to mark each node as agreeing or disagreeing with learner behaviour. Following
the spirit of literate programming, we enrich the expert model with comments
that explain the role of each relevant clause in natural language. This is a rather
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straightforward idea, and very much in line with the feedback structures attached
to production rules or constraints. In combination with algorithmic debugging,
the anytime-feedback capability, and the hierarchical representation of expertise,
this simple idea is rather powerful, yielding to the generation of sophisticated
feedback that is very hard to replicate in the other two approaches.

In the future, we would like to use a fully-fledged natural language generation
engine to make generation more flexible (e.g., variation in lexicalisation; tense
and formality of language). Also we would like to extend learners’ ability to con-
tribute to the dialogue. Instead of pressing the help button, they shall be able to
click on any subtraction cell to get help specific to the cell in question. Moreover,
we would like to manage multi-turn Socratic dialogues were learners are lead to
discover and correct their misconceptions (e.g., [3]). Here, we anticipate the need
for additional annotations of the task structure. To further test-drive, validate
and fine-tune our approach, we will also implement different domains to explore
the use of hierarchically organised annotations and their use to support learning.
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Abstract. Human-level artificial intelligence (HAI) surely is a special research
endeavor in more than one way: In the first place, the very nature of intelligence
is not entirely clear; there are no criteria commonly agreed upon necessary or
sufficient for the ascription of intelligence other than similarity to human perfor-
mance (and even this criterion is open for a plethora of possible interpretations);
there is a lack of clarity concerning how to properly investigate HAI and how to
proceed after the very first steps of implementing an HAI system; etc. In this note
I assess the ways in which the approach of Psychometric Artificial Intelligence
[1] can (and cannot) be taken as a foundation for a scientific approach to HAI.

1 Introduction

From a certain perspective AI seems to stand out between the modern sciences for more
than one reason: Neither is there agreement upon what shall be AI’s overall objective
(i.e., whether the purpose of AI is the implementation of technical systems support-
ing humans in their everyday tasks and facilitating human intellectual activity, or if the
purpose of AI is the creation of a computer system exhibiting general intelligence —
in doing so possibly outperforming humans in tasks requiring reasoning and thought
—, or something in between these two extremes), nor is there a commonly accepted
methodology for conducting research in AI, nor is there consensus concerning the val-
uation of previous developments and of the actual status quo in AI as a story of success
or perpetual failure.

These and related observations repeatedly caused philosophers of science and even
some researchers from within AI to wonder about AI being a special type of science,
or to even question (and occasionally finally deny) the status of AI as a science. In
this note, specifically focussing on the subbranch of AI dealing with human-level AI
(HAI), I want to undertake a critical review of Psychometric AI (PAI) [1] which has
been proposed as a strictly scientific approach and conceptual framework suitable for
measuring, evaluating, and guiding progress during the development of an HAI system.

2 Introducing Psychometric AI

Psychometric AI [1] aims to apply the full battery of techniques from psychometrics to
an HAI context, setting its internal standard by declaring an agent as intelligent if and
only if it does well in all established, validated tests of intelligence.1 PAI as a dedicated

1 This definition of PAI actually only is approximate and partially incomplete. For the actual
detailed phrasing see the following section introducing and discussing PAI in detail.
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research program was first explicitly institutionalized a decade ago in [1] and has been
actively worked on since (as, e.g., documented by the articles collected in [2]).

2.1 Psychometrics and Intelligence

Psychometrics as a field is by definition concerned with analyzing and developing
means of psychological measurement as, for instance, personality assessments or ques-
tionnaires for measuring certain abilities or knowledge. For doing so, psychometrics
engages in the study of theoretical approaches to measurement as well as in the ac-
tive development and implementation of the corresponding concrete instruments and
procedures. For a long time special interest has been taken in the measurement of the
phenomena commonly subsumed under the term “intelligence”: There is a wide va-
riety of psychometric tests of intelligence, ranging from tests with only one type of
item to varied batteries of different questions, combining verbal and non-verbal items
and requiring subjects to perform qualitatively very different tasks (e.g., spatial tasks as
opposed to language-related tasks).

2.2 Psychometrics and Artificial Intelligence

The goal of PAI now is to carry over the quantitative assessment of intelligence from
the realm of classical psychometrics into artificial intelligence. In his programmatic
papers [1,3,4], Bringsjord introduces PAI as a research program and discusses various
objections critics might have.

Naive Psychometric AI: The first attempt at defining what it means for an agent (hu-
man or artificial) to be intelligent, given in [1] and repeated in the later publications,
reads as follows: “Some agent is intelligent if and only if it excels at all established,
validated tests of intelligence.”

So in this account, which I will refer to as “naive PAI” (nPAI) in the following, AI
in its entirety is reduced to a strictly psychometric core, namely the construction of
a system which outperforms most humans in all currently available intelligence tests.
Clearly, as also noticed by Bringsjord, this definition is overly narrow and insufficient
for the purpose of building an HAI. Even the most advanced and broad battery of items
has to be considered as too narrow when compared to the full range of cognitive ca-
pacities seen in humans. And also from a system engineer’s perspective, given that at
any point in time there will only be a finite number of commonly accepted tests of in-
telligence available, the maxim underlying nPAI seems dubious: Each of the individual
capacities could be addressed by a specifically dedicated standalone subsystem, so that
intelligence would actually be reduced to correctly selecting and executing the respec-
tive module from a finite number of available subprograms based on a finite number of
possible input categories. But this could hardly be considered satisfactory as an answer
to the intelligence puzzle for anyone but diehard followers of Descartes: At least the
Cartesian would be comforted in that the resulting AI — being an almost ideal instan-
tiation of a “type-c machine” [5] — might be able to pass any test for a particular set of
cognitive capacities, whilst still failing a test for any mental power whatsoever.

General Psychometric AI: A second, more commonly used definition of PAI, to which
I will henceforth refer as “general PAI” (gPAI), is also introduced in [1]: “Psychometric
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AI is the field devoted to building information-processing entities capable of at least
solid performance on all established, validated tests of intelligence and mental ability,
a class of tests that includes not just the rather restrictive IQ tests, but also tests of
artistic and literary creativity, mechanical ability, and so on.”

Clearly, gPAI intuitively feels a lot like the classical Turing Test [6]. And this im-
pression is not unfounded: Having a look at Harnad’s Total Turing Test (TTT; [7]) as
modernized and (possibly) broadened version of Turing’s original proposal, we notice
that — due to the simple mass of possible test methods, presentation modalities and
required modes of interaction — a solution to gPAI would most likely also serve as an
important step towards solid performance on the TTT. Conversely, a system convinc-
ingly solving the TTT most likely would also encompass the ability to solve gPAI.

So instead of focusing exclusively on the classical psychometric battery of tests for
intelligence, gPAI widens its focus to also encompass all other available tests for cogni-
tive capacities whatsoever. As there are now at least two possible reading to this claim.
In order to avoid misunderstandings, let us clarify what in all probability is the intended
meaning of this statement: Although the definition could be read as universally quanti-
fied statement in a strong sense, demanding from a system trying to accomplish gPAI to
solve all possible tests for all conceivable mental capacities which might be validated
at some point, this does not seem meaningful as a standard for evaluation.2 In light
of these considerations what is meant by the description of gPAI quoted above is the
requirement for an AI system to pass, at a given point in time, all available validated
psychometric tests for any kind of mental ability. So although the number of possible
tests would still be enormous, gPAI would in this reading (contrary to the first possible
interpretation) nonetheless be dealing with a finite and well-defined set of tests; the sig-
nificant difference to nPAI resulting from opening up the scope of the tests from a strict
focus on tests of intelligence to also include other mental abilities in general.

3 (Dis)Advantages of Psychometric AI for Guiding HAI

Let us return to the initial considerations concerning the use of PAI as means of guid-
ance and assessment for the development of human-level artificial intelligence.

3.1 The Beauty of Numbers: What PAI Can Do

The great advantage of an approach such as PAI over, for instance, the (Total) Turing
Test is the quantitative nature of the used evaluation method. Psychometric methods and
tests are metric by their very nature, they are designed to provide assessments in terms
of numbers on a scale. This clearly has already two advantages by itself: On the one
hand, if psychometrics is applied in the evaluation of an artificial agent the result is a
number which is at first glance directly comparable to the results of other systems on the
same test(s). There is no question of how to compare outcomes of different evaluation

2 Especially not since gPAI claims superiority over the Turing Test/Total Turing Test amongst
others also for being — from an engineering perspective — in its goals and conditions of
success less elusive and for almost automatically enforcing a more feasible and manageable
approach by gPAI’s test-based nature (see [1] for details).
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runs, the standardized nature of the testing technique is meant to take care of these and
similar issues. On the other hand, this also allows for a fairly unquestionable measure
of progress, both due to the applied evaluation method as well as due to the overall
goal of the PAI approach. A higher score on a particular battery of tests simply and
straightforwardly indicates that the examined agent has advanced towards the target
of performing decently on the respective tests. And, in turn, the term “decently” is
(at least for HAI) also clearly defined by, for example, the average outcome human
test subjects achieve on the tests under consideration; so even problems surrounding
optimality criteria and/or the choice of an appropriate normative dimension seem to be
addressable by the framework.

These advantages should by no means be underappreciated. Research in HAI has in
many ways suffered from a lack of quantitative assessment methods for its systems:
Neither could researchers easily compare the performance of their different agents and
AIs, nor could they themselves know whether and how well they were advancing in the
outcomes of their work. In summary, PAI does offer several very pleasant properties
which many other paradigms lack and, I believe, can with a clear conscience be rec-
ommended for consideration as a solution to everyone whose main concern lies with
having a research program with completely transparent and hard-to-question means of
evaluation. Still, as will be discussed in the following subsection, this comes at a price
which casts serious doubt on the applicability of PAI in HAI, and even the satisfiability
of PAI’s own goals by means of PAI.

3.2 A (Possibly) Fatal Flaw: What PAI Cannot Do

HAI has been characterized as the endeavor to create computer systems that exhibit
intelligence at a level similar to humans. This by itself is ambiguous in many ways as
neither “exhibit” nor “intelligence” are well-defined in the given context. Against this
background, PAI3 now offers clear specifications for both terms, equating a system’s
exhibition of intelligence with its performance on a huge variety of psychometric tests
for different mental capacities — the act of solving the tests becomes the active demon-
stration, the resulting scores define the (level of) intelligence. But it is here where a
quite troublesome conceptual flaw in the PAI framework comes to light.

[1] justifies the reliance on psychometrics as crucially defining criterion of an agent’s
intelligence as follows: “What’s intelligence? (...) [M]ost thinkers seem to forget that
there is a particularly clear and straightforward answer available, courtesy of the field
that has sought to operationalize the concept in question; that field is psychometrics.
Psychometrics is devoted to systematically measuring psychological properties, usu-
ally via tests. These properties include the one most important in the present context:
intelligence.”

But this reading of psychometrics and the relation between its tests and the respective
objects of investigation unfortunately turns out to be overly simplistic. Psychometric
tests do not directly measure any mental ability as, for example, intelligence or creativ-
ity. There even is no unanimously agreed upon definition of what exactly intelligence is

3 As already discussed above, nPAI (when seen in an HAI context) clearly seems to be overly
simplistic in many ways. As, moreover, it is trivially subsumed under the notion of gPAI I will
in the following argument without loss of generality only refer to the latter notion.
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as a mental faculty and what its defining characteristics would be; and the same holds
for many other high-level cognitive capacities. Psychometric measures are correlational
measures, measuring the performance of traits which are commonly associated (and as-
sumed to be strongly positively correlated) with what is considered intelligence — and
even these correlations are in part justified merely by plausibility arguments and general
agreement within the respective research community.

Therefore, what PAI actually trains its systems on (and measures them against) is
not a standard for human-like intelligence of what form soever, but are benchmarks
for better defined, more or less clearcut cognitive capacities which are quite plausibly
intimately related and/or part of what is considered human intelligence. But even when
taking the entirety of available psychometric tests available at a specific point in time (as
proposed by gPAI) and having a system succeed on them, we still would only be dealing
with placeholders and parts without any guarantee at all that an immediate measure
of “human intelligence” would implicitly or explicitly have emerged from within the
collection of different tests (leaving . In a way similar to the case of a person suffering
from the savant syndrome [8], when an AI should exceed human performance on all
available psychometric means of assessment of intelligence or other high-level mental
abilities, all we would know for sure is that the system performs better on the tested
correlated tasks — but nothing would be revealed about whether the system is “truly
intelligent” in the general way typically developing humans are deemed to be.

Clearly, a strict behaviorist would disagree with this conclusion as at least from
the exclusively behavior-oriented point of view human and machine would be indis-
tinguishable in their performance on the applied psychometric tests. But at the same
time, even from this perspective, it could not be excluded that there might still be the
possibility of some aspect of intelligence that simply had not yet been accounted for in
the available battery of measures — so even under a behaviorist angle the verdict that
solving PAI guarantees that human-level intelligence has been achieved by an artificial
intelligence would require a considerable leap of faith.

4 Comparison to Related Work and Conclusion

Trying to establish an adequate standard for ascertaining the level of human-like intelli-
gence an artificial agent has achieved goes back to the very beginning of AI research —
one might even say that the field started out from this question in [6]. Thus it should not
come by surprise that by now there is a remarkable variety of tests on the market, two
of them being the above mentioned original Turing Test and Harnad’s expansion of it,
the Total Turing Test. As already discussed, Total Turing Test and gPAI seem to share
a close relationship in terms of their generality and requirements. Unfortunately, this
closeness also makes them share a weakness usually brought forth against the Turing
Test (and thus even more applicable to the more general TTT): Amongst others, [9,10]
remark that the Turing Test might be effectively useless as a test of machine intelligence
as for passing it something similar to a “human subcognitive substrate” [9] would be
needed. For a task like the Turing Test this seems fairly straightforward, as the machine
would have to make sure that it can reflect all the behaviors produced by low- and mid-
level cognitive structures in humans. And to a lesser degree, this also holds for PAI:
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Amongst the battery of eligible psychometric tests there also are items which assess not
only high-level capacities, but which move down in the cognitive hierarchy.

Still, PAI indeed has at least one advantage over the Turing Test, the TTT, and most
(if not all) other versions and variants thereof: Contrary to them, due to its reliance
exclusively on quantitative psychometrics tests, PAI offers a well-defined goal and the
option of quantifying progress towards meeting it, getting rid of the seemingly un-
avoidable vagueness and ambiguity in the evaluation of a system’s performance. From
a purely engineering-oriented perspective, this argument should not be dismissed too
easily — it should just always be kept in mind at which price this clarity is obtained.

Going back to the original undertaking of this note, trying to address the question
whether PAI can serve as a guiding force for HAI, tying it even closer to standard
scientific procedures, the answer as so often is not a simple “Yes.” or “No.”, but rather a
“Up to a certain point.”. On the one hand, it surely will have to be the case that an actual
HAI system eventually must be able to perform well on psychometric tests, so using a
wide variety of the latter as means of quantitatively assessing progress in HAI has to
be seen as beneficial. On the other hand, it cannot be presumed that excelling on all
available validated psychometrical measures at any point in time will guarantee that an
artificial system has reached human-level intelligence. In summary, PAI unfortunately
still will not serve as a final methodological answer deciding the question for human-
level intelligence in artificial systems and, thus, falls fundamentally short of its own
promises.
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Abstract. This paper forms the final part of a short series of related articles[1,2]
dedicated to highlighting a fruitful type of application of cognitively-inspired anal-
ogy engines in an educational context. It complements the earlier work with an
additional fully worked out example by providing a short analysis and a detailed
formal model (based on the Heuristic-Driven Theory Projection computational
analogy framework) of the Number Highrise, a tool for teaching multiplication-
based relations in the range of natural numbers up to 100 to children in their first
years of primary school.

1 Introduction

With this paper we want to complete a line of work dedicated to showing an additional
way of how methods and technology developed in AI, and more precisely in the sub-
field of cognitive systems, can provide valuable support in the learning sciences and
education studies on a conceptual level: Based on the theoretical underpinnings pre-
sented in [1], this paper complements the earlier [2] by presenting a second large-scale
application case for the use of computational analogy engines in modeling, simulating,
and analyzing analogy-related tools and scenarios from classroom teaching. We thus
propose to apply intelligent systems not only at the stage of implementation and de-
ployment but already earlier at the level of research and conceptualization of teaching
methodology and tools.

As case study we first provide a description and short analysis of the analogy-based
Number Highrise [3] used for teaching multiplication-based relations in the range of
natural numbers up to 100 to children attending basic mathematics classes in primary
school, before showing how a computational analogy-making framework as Heuristic-
Driven Theory Projection (HDTP; [4]) can be used to provide a formal computational
reconstruction of the highrise as an example of targeted analogy-use taken from a real-
life teaching situation.

2 Case Study: The Number Highrise

In this section we develop and analyze the HDTP-based model for the Number Highrise.
By constructing this kind of model we hope to identify underlying principles and factors
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Table 1. An idealized form of the children’s initial conception of the [0;100] integer number
space (n0 − n99) and the times tables up to 10 (n100 − n390). multiply represents multiplication
over [0;100], laws n391 −n393 define the successor and the lower and greater ordering relations.

Sorts:
natural_number, operation, relation.

Entities:
zero,one, two, . . . ,one_hundred,N1,N2,N3 : natural_number. multiply : operation. <,>: relation.

Functions:
apply : operation×natural_number×natural_number → natural_number.

Predicates:
succ : natural_number×natural_number. holds : relation×natural_number×natural_number.

Facts:
(n0) succ(zero,one). (n1) succ(one, two). (n2) succ(two, three). . . . (n99) succ(ninety-nine,one_hundred).
(n100) apply(multiply,one,one) = one. (n101) apply(multiply,one, two) = two.
(n102) apply(multiply,one, three) = three. . . . (n199) apply(multiply,one,one_hundred) = one_hundred.
(n200) apply(multiply, two,one) = two. (n201) apply(multiply, two, two) = four. . . .
(n249) apply(multiply, two,fifty) = one_hundred.
(n250) apply(multiply, three,one) = three. . . . (n282) apply(multiply, three, thirty-three) = ninety-nine.
(n283) apply(multiply, four,one) = four. . . . (n390) apply(multiply, ten, ten) = one_hundred.

Laws:
(n391) succ(N1,N2)→ holds(<,N1,N2).
(n392) holds(<,N1,N2)∧holds(<,N2,N3)→ holds(<,N1,N3).
(n393) holds(<,N1,N2)↔ holds(>,N2,N1).

which shed light on some of the basic mechanisms of human developmental learning
and knowledge transfer.

2.1 Discovering the Number Space from 0 to 100

As described in [3], the Number Highrise is a mathematical toy world designed for
exploring the space of the natural numbers up to 100 making explicit use of multipli-
cation-based relations. It consists of 10 so called hallways each made up by 100 pearls.
In each hallway the pearls are connected in chunks going in accordance with one of the
basic times tables for numbers between 1 and 10 (the leftmost hallway corresponding
to the one times table, the one to its right corresponding to the two times table, etc.).The
resulting segments within each hallway are marked by separating slices of acrylic glass,
the so called platforms (similar to half landings in a hallway). Not all of the hallways
terminate in a platform, depending on the respective times table there might be some
remaining pearls needed for reaching the 100.

The children interact with toy figures which can travel the different hallways up and
down. Fitting with the difference in the number of pearls between two platforms, the
toy figures can be equipped with different pairs of number shoes (having the respective
segment size written on them). Wearing a specific pair of number shoes allows a toy
figure to navigate from platform to platform within one specific hallway, namely the
hallway with the corresponding distance between platforms. If two or several differently
shod toy figures within their respective hallway can reach platforms on equal height
with each other, they are called neighbors and can celebrate a party together. If this
is the case, an elevator mechanism within the Number Highrise allows the toy figures
to actually meet at the height of their platforms: The elevator is a horizontal batten
movable vertically along the row of hallways. It can be stopped at each point along the
height of the highrise and can be used for checking for numerical factor relations.
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Table 2. Partial formalization of the Number Highrise focusing on multiplication-based relations

Sorts:
pearl, hallway, platform, number_shoe, toy_figure, batten, operation, relation, time, natural_number.

Entities:
zero,one, two, three, . . . ,one_hundred,P1,P2,P3 : pearl. h1,h2,h3, . . . ,h10,H1,H2 : hallway.
pl1,pl2, . . . ,pln : platform. s1,s2,s3, . . . ,s10,S1 : number_shoe. fi1,fi2, . . . ,fim,F1,F2 : toy_figure.
elevator : batten. climb : operation. below, above : relation. T1,T2 : time.

Functions:
value : pearl → natural_number. location : hallway → natural_number. caption : number_shoe → natural_number.
apply : operation×natural_number×natural_number → natural_number.

Predicates:
holds : relation×pearl×pearl. platf_at : hallway×pearl. stands_on : toy_figure×hallway×pearl× time.
wears : toy_figure×number_shoe. meets : batten×hallway×platform× time. on_top_of : pearl×pearl.
party_location : hallway×pearl× time. neighbors : toy_figure× toy_figure.

Facts:
(h0) on_top_of(base,one). (h1) on_top_of(one, two). . . . (h99) on_top_of(ninety-nine,one_hundred).
(h100) platf_at(h1,one). (h101) platf_at(h1, two). . . . (h199) platf_at(h1,one_hundred).
(h200) platf_at(h2, two). (h201) platf_at(h2, four). . . . (h249) platf_at(h2,one_hundred).
(h250) platf_at(h3, three). . . . (h390) platf_at(h10,one_hundred).
(h391) value(base) = 0. (h392) value(one) = 1. (h393) value(two) = 2. . . . (h491) value(one_hundred) = 100.
(h492) location(h1) = 1. . . . (h501) location(p10) = 10.
(h502) caption(s1) = 1. . . . (h511) caption(s10) = 10.

Laws:
(h512) on_top_of(P1,P2)→ holds(below,P1,P2).
(h513) holds(below,P1,P2)∧holds(below,P2,P3)→ holds(below,P1,P3).
(h514) holds(below,P1,P2)↔ holds(above,P2,P1).
(h515) T1 < T2 : platf_at(H1,P1)∧ stands_on(F1,H1,P1,T1)∧wears(F1,S1)∧ location(H1) = caption(S1)∧ value(P2) =
value(P1)+ caption(S1)∧ apply(climb,1,caption(S1))→ stands_on(F1,H1,P2,T2).
(h516) T1 < T2,∀n ∈ [0;100] : platf_at(H1,P1) ∧ stands_on(F1,H1,P1,T1) ∧ wears(F1,S1) ∧ location(H1) =
caption(S1) ∧ value(P2) = value(P1) + caption(S1) ∧ apply(climb,n,caption(S1)) → stands_on(F1,H1,P2,T2) ∧
apply(climb,n−1,caption(S1)).
(h517) platf_at(H1,P1) ∧ platf_at(H2,P2) ∧ meets(elevator,H1,P1,T1) ∧ meets(elevator,H2,P2,T1) →
party_location(H1,P1,T1)∧party_location(H2,P2,T1).
(h518) stands_on(F1,H1,P1,T1) ∧ stands_on(F2,H2,P2,T1) ∧ meets(elevator,F1,P1,T1) ∧ meets(elevator,F2,P,T1) →
neighbors(F1,F2).
(h519) neighbors(F1,F2)↔ neighbors(F2,F1).

In class the Number Highrise can be used in several ways: From teaching the basic
conception of the natural number space, through the discovery of concepts like the least
common multiple and the greatest common factor, to finding and exploring the notion
of prime numbers.

2.2 An HDTP-Based Model of the Number Highrise

We now reconstruct the Number Highrise as an analogy-based model for discover-
ing and experiencing the space of natural numbers between 0 and 100, together with
multiplication-based relations within this number space.

The analogy uses the Number Highrise as a base domain, transferring the structure
and relational conception children acquire by playing with it into their previously ac-
quired knowledge about natural numbers as target domain. Although already populated
with previous knowledge, the latter domain is most likely initially relatively poor (es-
pecially with regard to the internal relational structure) as compared to the Number
Highrise domain as only limited internal structure or relations have been acquired. The
pre-existing relational concepts are most likely rather simple in that they are either based
on equality between magnitues (i.e., “=”) and ordering relations for simple magnitudes
— as commonly represented by the “<” and “>” relations — or that they are based on
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Table 3. Generalized theory of the Number Highrise and the children’s conception of the non-
negative integers, expanded by the generalized forms of the candidate elements for analogical
transfer from base to target domain (marked with ∗)

Sorts:
pearl/natural_number, hallway, platform, number_shoe, toy_figure, batten, operation, relation, time, natural_number.

Entities:
zero,one, . . . ,one_hundred,P1,P2,P3 : pearl/natural_number. Climb/Multiply : operation.
Below/<, Above/> : relation.
(∗) h1,h2,h3, . . . ,h10,H1,H2 : hallway. (∗) pl1,pl2, . . . ,pln : platform. (∗) s1,s2,s3, . . . ,s10,S1 : number_shoe.
(∗) fi1,fi2, . . . ,fim,F1,F2 : toy_figure. (∗) elevator : batten. (∗) T1,T2 : time.

Functions:
apply : operation×natural_number×natural_number → natural_number.
(∗) value : pearl/natural_number → natural_number. (∗) location : hallway → natural_number.
(∗) caption : number_shoe → natural_number.

Predicates:
holds : relation×pearl/natural_number×pearl/natural_number.
GenSucc : pearl/natural_number×pearl/natural_number.
(∗) platf_at : hallway×pearl/natural_number. (∗) stands_on : toy_figure×hallway×pearl/natural_number× time.
(∗) wears : toy_figure×number_shoe. (∗) meets : batten×hallway×platform× time.
(∗) party_location : hallway×pearl/number× time. (∗) neighbors : toy_figure× toy_figure.

Facts:
(g0) GenSucc(zero,one). (g1) GenSucc(one, two). . . . (g99) GenSucc(ninety-nine,one_hundred).
(g100∗) platf_at(h1,one). (g101∗) platf_at(h1, two). . . . (g199∗) platf_at(h1,one-hundred).
(g200∗) platf_at(h2, two). (g201∗) platf_at(h2, four). . . . (g249∗) platf_at(h2,one_hundred).
(g250∗) platf_at(h3, three). . . . (g390∗) platf_at(h10,one_hundred).
(g391∗) value(zero) = 0. (g392∗) value(one) = 1. . . . (g491∗) value(one_hundred) = 100.
(g492∗) location(h1) = 1. . . . (g501∗) location(p10) = 10.
(g502∗) caption(s1) = 1. . . . (g511∗) caption(s10) = 10.

Laws:
(g512) GenSucc(P1,P2)→ holds(Below/<,P1,P2).
(g513) holds(Below/<,P1,P2)∧holds(Below/<,P2,P3)→ holds(Below/<,P1,P3).
(g514) holds(Below/<,P1,P2)↔ holds(Above/>,P2,P1).
(g515∗) T1 < T2 : platf_at(H1,P1)∧ stands_on(F1,H1,P1,T1)∧wears(F1,S1)∧ location(H1) = caption(S1)∧value(P2) =
value(P1)+ caption(S1)∧ apply(Climb/Multiply,1,caption(S1))→ stands_on(F1,H1,P2,T2).
(g516∗) T1 < T2,∀n ∈ [0;100] : platf_at(H1,P1) ∧ stands_on(F1,H1,P1,T1) ∧ wears(F1,S1) ∧ location(H1) =
caption(S1)∧value(P2) = value(P1)+caption(S1)∧apply(Climb/Multiply,n,caption(S1))→ stands_on(F1,H1,P2,T2)∧
apply(Climb/Multiply,n−1,caption(S1)).
(g517∗) platf_at(H1,P1) ∧ platf_at(H2,P2) ∧ meets(elevator,H1,P1,T1) ∧ meets(elevator,H2,P2,T1) →
party_location(H1,P1,T1)∧party_location(H2,P2,T1).
(g518∗) stands_on(F1,H1,P1,T1) ∧ stands_on(F2,H2,P2,T1) ∧ meets(elevator,F1,P1,T1) ∧ meets(elevator,F2,P,T1) →
neighbors(F1,F2).
(g519∗) neighbors(F1,F2)↔ neighbors(F2,F1).

the arithmetic operations of addition and subtraction. The notion of multiplication is
known on a mostly abstract basis (as are the corresponding times tables), but has not
yet been developed into a grounded, constructively applicable conceptualization. Also,
the more complex multiplication-based concepts as, e.g., the least common multiple or
prime numbers are not yet present.

An idealized version (i.e., a version featuring complete times tables, which in reality
should be assumed to be rather incomplete or sparse) of the students’ initial conceptu-
alization of the natural number space can formally be represented as shown in Table 1,
whilst Table 2 gives a partial formal HDTP-style model of the Number Highrise (on the
relational side focusing only on the multiplication-based aspects).

We shortly want to focus on some aspects of the respective formalizations. The for-
malization of the target domain of the later analogy, i.e., of an idealized version of the
children’s initial conception of the integer number space [0;100], contains mostly facts
the children have learned by heart, namely the order of the number terms between zero
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Table 4. Analogically enriched conception of the non-negative integers

Sorts:
natural_number, operation, relation, hallway, platform, number_shoe, toy_figure, batten, time.

Entities:
zero,one, . . . ,one_hundred,N1,N2,N3 : natural_number. multiply : operation. <, > : relation.
(∗) h1,h2,h3, . . . ,h10 : hallway. (∗) pl1,pl2, . . . ,pln : platform. (∗) s1,s2,s3, . . . ,s10 : number_shoe.
(∗) fi1,fi2, . . . ,fim : toy_figure. (∗) elevator : batten. (∗) T1,T2 : time.

Functions:
apply : operation×natural_number×natural_number → natural_number.
(∗) value : natural_number → natural_number. (∗) location : hallway → natural_number.
(∗) caption : number_shoe → natural_number.

Predicates:
holds : relation×natural_number×natural_number. succ : natural_number×natural_number.
(∗) platf_at : hallway×natural_number. (∗) stands_on : toy_figure×hallway×natural_number× time.
(∗) wears : toy_figure×number_shoe. (∗) meets : batten×hallway×platform× time.
(∗) party_location : hallway×natural_number× time. (∗) neighbors : toy_figure× toy_figure.

Facts:
(e0) succ(zero,one). (e1) succ(one, two). . . . (e99) succ(ninety-nine,one_hundred).
(e100) apply(multiply,one,one) = one. (e101) apply(multiply,one, two) = two. . . .
(e390) apply(multiply, ten, ten) = one_hundred.
(e391∗) platf_at(h1,one). (e392∗) platf_at(h1, two). . . . (e490∗) platf_at(h1,one-hundred).
(e491∗) platf_at(h2, two). (e492∗) platf_at(h2, four). . . . (e540∗) platf_at(h2,one_hundred).
(e541∗) platf_at(h3, three). . . . (e681∗) platf_at(h10,one_hundred).
(e682∗) value(zero) = 0. . . . (e782∗) value(one_hundred) = 100.
(e783∗) location(h1) = 1. . . . (e792∗) location(h10) = 10.
(e793∗) caption(s1) = 1. . . . (e802∗) caption(s10) = 10.

Laws:
(e803) succ(N1,N2)→ holds(<,N1,N2).
(e804) holds(<,N1,N2)∧holds(<,N2,N3)→ holds(<,N1,N3).
(e805) holds(<,N1,N2)↔ holds(>,N2,N1).
(e806∗) T1 < T2 : platf_at(H1,N1)∧stands_on(F1,H1,N1,T1)∧wears(F1,S1)∧ location(H1) = caption(S1)∧value(N2) =
value(N1)+ caption(S1)∧ apply(multiply,1,caption(S1))→ stands_on(F1,H1,N2,T2).
(e807∗) T1 < T2,∀n ∈ [0;100] : platf_at(H1,N1) ∧ stands_on(F1,H1,N1,T1) ∧ wears(F1,S1) ∧ location(H1) =
caption(S1) ∧ value(N2) = value(N1) + caption(S1) ∧ apply(multiply,n,caption(S1)) → stands_on(F1,H1,N2,T2) ∧
apply(multiply,n−1,caption(S1)).
(e808∗) platf_at(H1,N1) ∧ platf_at(H2,N2) ∧ meets(elevator,H1,N1,T1) ∧ meets(elevator,H2,N2,T1) →
party_location(H1,N1,T1)∧party_location(H2,N2,T1).
(e809∗) stands_on(F1,H1,N1,T1)∧ stands_on(F2,H2,N2,T1)∧meets(elevator,F1,N1,T1)∧meets(elevator,F2,N2,T1)→
neighbors(F1,F2).
(e810∗) neighbors(F1,F2)↔ neighbors(F2,F1).

and one hundred, and the times tables up to 10 within this range. In reality it has to
be assumed that the times tables are significantly more sparsely populated than in our
formalization, corresponding to incomplete recall of the memorized full tables.

The base domain of the later analogy, i.e., the formalization of the Number Highrise,
exhibits a rich structure concerning facts and laws alike. The facts represent the easily
accessible structure of the highrise, namely the order of succession of the pearls, the
distinction between the different hallways, and the placement of the platforms within the
respective hallways. The laws cover the rules of the transformational and constructive
process by which the children can interact with the highrise: For instance (h515) and
(h516) encompass the process of having the toy figure climb the highrise, and (p517)
to (p519) add the notion of several figures meeting on the same level and celebrating a
party together.

The HDTP mechanism can now be used for computing a common generalization of
both domains, yielding a generalized theory like given in Table 3. The main domain
elements defining the alignment of formulae are the matching between the entities of
sort pearl and natural_number, between the apply functions, the matching of the holds
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predicates, the thus induced alignment of the respective operation and relation entities,
as well as the alignment between the successor and on_top_of predicates (in turn in-
duced by the alignment of the operation and relation entities and the resulting structural
similarity between predicates).

In conclusion, the generalized theory forms the basis for transferring knowledge in
an analogy-based way from the (originally richer) Number Highrise domain to the chil-
dren’s number domain, resulting in an expanded theory for the numbers as given in
Table 4. The important aspect in this expanded version is the availability of the con-
structive relations and insights obtained in the interaction with the Number Highrise.
These give, for instance, meaning to the multiplication relation via the assignment of
the constructive process of climbing the highrise and the corresponding platforms for
the intermediate steps and the result. Furthermore laws (e806∗) and (e807∗) allow for
the independent computation of parts of the times tables that might not be obtainable
from memory (i.e., that would not explicitly be present as a fact in a more realistic
formalization of the number domain).

2.3 Example: Discovering the Least Common Multiple

We now can reconstruct, for instance, the children’s discovery of the least common
multiple of three numbers documented in [3]: At the cognitive level the analogy-based
process of transfer of the gained insights from the Number Highrise into the children’s
conception of the [0;100] number space can be exemplified in the given HDTP model.
Taking the definition of the least common multiple lmc of two natural numbers x and y
(i.e., lmc|x and lmc|y and �a ∈ N : a < lmc,a|x,a|y), it becomes obvious that the con-
cept of a party location and the notion of neighborhood between toy figures (i.e., laws
(e808∗) to (e810∗) in the analogically enriched formalization in Table 4, together with
the game-immanent concept of having the toy figures start at level zero of the hallways
and the task to find the first possible party location between all three neighbors, natu-
rally induces the least common multiple concept in the children’s number domain. Via
analogical transfer from the Number Highrise, building upon the already pre-existing
basic structure of natural numbers and times tables, the more complex idea of the least
common multiple has been acquired by the children — experience-grounded concept
learning has taken place in a rather abstract domain.

3 Conclusion

In general, this work is an example for the application of AI techniques and tools in
gaining deeper understanding of the mechanisms underlying analogy-based teaching
material. Modeling educational analogies, on the one hand, sheds new light on a par-
ticular analogy, in terms of which information is transferred, what the limitations of the
analogy are, or whether it makes unhelpful mappings; and what potential extensions
might be needed. On the other hand, it also contributes to a deeper general understand-
ing of the basic principles and mechanisms underlying analogy-based learning (and
subsequently teaching) in fairly high-level and abstract domains.
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Abstract. So far most cognitive modeling approaches have concentrated
on modeling and predicting the actions of an “average user” – a user pro-
file that in reality often does not exist. User performance is highly de-
pendent on psychological factors like working memory, planning depth,
search strategy etc. that differ between users. Therefore, we propose a
combination of several AI methods to automatically identify user pro-
files. The proposed method assigns each user a set of cognitive agents
which are controlled by several psychological factors. Finally, this method
is evaluated in a case study on preliminary user data on the PSPACE-
complete planning problem Rush-Hour.

Keywords: Identification of Heuristics, Cognitive Modeling, Spatial
Planning, Data Analysis in Planning Domains, Strategy Analysis.

1 Introduction

Identifying common move and strategy patterns of agents in planning problems
can be difficult, especially if the state space is large. If, furthermore, human
agents are considered, these patterns (or planning profiles) will also depend
on psychological factors that are known to restrict the performance of human
agents, e.g., working memory capacity [6]. In this work, we combine different
methods to identify such cognitive planning patterns and evaluate this method
on preliminary results from a case study.

The proposed method consists of three steps. Firstly, for a given planning
domain, so-called strategy graphs for single problem instances are introduced.
A strategy graph represents all strategies used by a group of agents. We de-
fine a strategy of an agent in a problem instance as a path from a given initial
state to one or many given goal states. Secondly, a group of artificial agents
programmed to comply to restricting psychological factors (controlled by pa-
rameters) is introduced. These factors include, for example, working memory
capacity and planning depth. Thirdly, to each human agent a set of best repli-
cating artificial agents is assigned. We define the notion best replicating agent
based on the maximal path similarity for a human agent and a set of artificial
agents. The values of parameters which are used to control the best replicating
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agents’ planning behavior is identified as the planning profile of the assigned
human agent.

The presented method is evaluated in a case study in the Rush Hour planning
domain. We introduce a group of human and a group of artificial agents which
both solved selected Rush Hour instances. In order to identify best replicating
artificial agents for each human agent we use the Smith-Waterman algorithm [8]
as a similarity measure. The quality of the presented approach is evaluated based
on the mean similarities of human agents with best replicating artificial agents.

2 Methodology

Strategy Graphs. In this section we describe the data structure used to represent
all strategies used by a group of agents A, in a problem instance p of a planning
domain D. We identify a strategy s for a problem instance p as a path from a
initial state to a goal state in the problem space induced by the planning domain
D.

A strategy graph with respect to a problem instance p is a directed, labelled
multigraph Gp = (Vp, Ep, Sp, Gp). The set of vertices Vp represents all states
traversed by any agent in A in the solution of problem p. The set of edges
Ep ⊂ Vp ×Vp ×N×N represents the application of legal actions in the planning
domain D including information about an agent’s id ∈ N and a step number in
the solution process t ∈ N. Additionally, a strategy graph includes a set of initial
states Sp ⊂ Vp and a set of goal states Gp ⊂ Vp. Note that the strategy graph
may include multiple edges between two states, each labelled with an agent id
and a step number.

As we evaluate human agents’ strategies, we have to account for several factors
which do not contribute to identifying human planning profiles. Therefore, we
propose several graph reduction mechanisms. Firstly, we automatically identify
and remove cycles of a certain length. This is important to exclude moves which
are immediately retracted. We define a cycle in the strategy graph as a path
s → s′ → . . . → s′′ → s, where s �= s′ �= s′′, and for edges (s, s′, id, t) and
(s′′, s, id, t′) it holds that t < t′.

Secondly, we remove outlier strategies for each problem instance p with respect
to threshold values τp. An outlier is a strategy which is only used by a very small
number of agents. In order to detect these outlier strategies we use a significance
measure Sigp : Vp × Vp → N, which for two given states returns the number of
edges between these states. With respect to a threshold τp, we remove all edges
(s, s′, id, t) where Sigp((s, s

′)) < τp.
Thirdly, we merge partial strategies which are equivalent wrt. partial order

planning [7]. The basic idea is to exclude strategies which correspond to sub-
sequent moves here it does not matter in which sequence they are played (cp.
move transpositions in chess). The term strategy equivalence is defined with re-
spect to a parameter ε (also called epsilon equivalence). We call two strategies
s10 → s11 → . . . → s1n and s20 → s21 → . . . → s2m n − ε equivalent iff n ≤ m,
s10 = s20, s

1
n = s2m, s1n, s

2
m �∈ {s11, . . . , s1n−1, s

2
1, s

2
m−1}, and m − n ≤ ε. For every
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detected n− ε equivalence we exclude all involved edges and include a new edge
given by the start and the goal state, e.g. (s10, s

2
m, id, t).

Agent Similarity. In this section we show how strategy graphs are used to identify
a set of best replicating artificial agents for one human agent. As a first step,
we will introduce the notion of strategy similarity generally for two arbitrary
sets of agents A1 and A2. The motivation is to allow for different similarity
measures to be used. An agent is given by a partial strategy graph, i.e. a path
from a start to a goal state. We define that A1 and A2 are pairwise disjoint
sets, i.e. the same agent is not in both sets. However, two agents from different
sets may use the same planning strategy. We denote the similarity between
two agents a1 and a2 for one problem instance p as 0 ≤ Simp(a1, a2) ≤ 1,
and the similarity for two agents a1 and a2 over all instances in the problem

domainD as SimD(a1, a2) =
∑

p∈D Simp(a1 ,a2 )

|D| . Furthermore, we denote the set of

similarity values for one agent a1 ∈ A1 and a group of agentsA2 as Sim(a1, A2) =
{Sim(a1, a2) | a2 ∈ A2}, where Sim is either Simp or SimD.

– For each agent a1 ∈ A1 we identify the set of best replicating agents for
agent a1 in one problem instance p ∈ D as

brap(a1) = {a2 ∈ A2 | max (Simp(a1, A2))}

– For each agent a1 ∈ A1 we identify the set of best replicating agents for
agent a1 over all problem instances p ∈ D as

braD(a1) = {a2 ∈ A2 | max (SimD(a1, A2))}

We denote the set of best replicating agents from group A2 for all agents in
group A1 for one problem instance p as brap(A1) =

⋃
a1∈A1

brap(a1), and over
all problem instances in D as braD(A1) =

⋃
a1∈A1

braD(a1), respectively. Note
that the considered search space is restricted to moves applied by agents.

3 Case Study

Planning Domain. As planning domainD we consider the planning problemRush
Hour developedbyNobYoshigahara1.RushHour is a two-dimensional puzzle game
where a specified object (exit car) has to be moved out of the grid. The (general-
ized) computational complexity of this game is known to be PSPACE-complete [2].
Other characteristics are that it is well-defined, solvable, decomposable, not dy-
namic and has only one goal (to free the red car) to be reached [3].

Agent Groups. In the following, we consider two groups of agents, one group
only consisting of human agents AH and one consisting of artificial agents AA.
Both groups were tested on the same problem set selected from the ”Junior

1 A description of RushHour can be found at http://www.thinkfun.com/
instructions

http://www.thinkfun.com/instructions
http://www.thinkfun.com/instructions
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Edition” problem set of the Rush Hour game2. The problem selection was based
on different problem attributes: (1) existing classification of the tasks (beginner,
intermediate, and advanced), (2) the optimal solution length, (3) number of
moves of the exit car. This includes 22 problem instances.

The human group AH consisting of 20 participants (or agents) was tested in
a psychological experiment. The experiment was conducted using a computer-
based version of Rush Hour3 for recording selected actions and response times
during the solution process. The problems were presented in a randomized order.
Human agents had three minutes to solve each trial.

The group of artificial agents AA is programmed to use Means-End-Analysis
[1, 4, 5] particularly tailored to the Rush Hour planning domain. We identified
seven parameters to control the agent’s local planning behavior based on psycho-
logical factors to identify planning profiles of human agents. Parameter values
characterize the planning profiles of the artificial agents. Most importantly, these
parameters include the move distance for game objects, the goal stack capac-
ity (corresponding to human working memory capacity), and several parameters
controlling the greedy selection of sub goals.

Rush Hour Strategy Graphs. In order to construct Rush Hour strategy graphs,
we use the graph reduction mechanisms described in Section 2. Cycle detection
is restricted to cycles of length two. For human agents, this corresponds to moves
which are immediately retracted. For outlier detection parameters τp were de-
termined based on statistical evaluation of strategy frequencies for each problem
instance p. We remove equivalent strategies with respect to the introduced n− ε
measure with ε = 2. The choice of these parameters is highly specific to Rush
Hour and the used problem instance in particular. These decisions were made
based on a detailed analysis of the planning domain and problem instances.

Similarity Measure. In Section 2 we defined the notion of best replicating agents
based on similarity measures for two agents a1, a2 in one problem instance p, de-
noted by Simp(a1, a2) ∈ R. In this paragraph, we will define this value. For mea-
suring the similarity between the two agent groups we use the Smith-Waterman
Algorithm (SW) algorithm for local sequence alignment used in bioinformat-
ics [8]. In this approach we compare sequences of states to find the optimal local
alignment of the two sequences, i.e. the longest state sequence occurring in both
strategies. The SW algorithm computes a scoring matrix H based on weights
for sequence matches (wm), insertions (wi) and deletions (wd). In this approach,
we use the weights wm = 1, wi = −1, and wd = −1, as we do not have inser-
tions and deletions. The maximum value of H is the similarity score of the local
alignment with the highest similarity. With respect to the chosen weights, this
score reflects the length of the longest local alignment. We define the similarity

of two agents a1 and a2 for problem instance p as Simp(a1, a2) =
Sim(a1,a2)

max(|a1|,|a2|) ,
where |ai| is the path length of the strategy used by agent ai.

2 https://portal.uni-freiburg.de/cognition/alte-seite/research/

projects/cspace/rushhour
3 By courtesy of the Dept. of Theoretical Psychology, University of Heidelberg.

https://portal.uni-freiburg.de/cognition/alte-seite/research/projects/cspace/rushhour
https://portal.uni-freiburg.de/cognition/alte-seite/research/projects/cspace/rushhour
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Problem ids from Rush Hour Junior Edition
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Fig. 1. Mean similarities of all human agents AH and best replicating artificial agents
in brap(AH) for each of the 22 tested Rush Hour problem instances

Results. We evaluated the average similarity for each of the 22 tested problem
instances for both the best replicating artificial agents for human agents over
all problem instance (braD(AH)) and the best replicating artificial agents with
respect to single problem instances (brap(AH)). The best replicating agents in
braD(AH) are assigned based on the maximum mean similarity of human agents
and artificial agents over all 22 tasks. Therefore, the best replicating agents in
this group correspond to planning profiles for a human agent which are constant
over all problem instances. The mean similarity for all best replicating agents in
braD(AH) and over all problem instances is 44%.

The best replicating agents in brap(AH) are assigned based on the maximum
mean similarity of human agents and artificial agents for each task separately.
Therefore, the best replicating agents in this group correspond to different plan-
ning profiles for a human agent in every problem instance. The mean similarity
for all best replicating agents in brap(AH) and over all problem instance is 76%.
Figure 1 shows the average similarities for each problem instance for artificial
agents in brap(AH).

4 Discussion

In this work, we present a method to automatically identify psychological plan-
ning profiles for human agents. A planning profile is given by a set of parameters
used to control the planning behavior of artificial agents. A planning profile for
one human agent is identified as the values of parameters of artificial agents
which best replicated human planning strategies.

We report preliminary results on a case study based on this method in the
Rush Hour planning domain. The results show that best replicating agents which
are assigned to human agents constantly over all problem instances can be iden-
tified as planning profiles for only half of the human agents. Best replicating
agents assigned to human agents for each problem instance separately can be
identified as planning profiles for three quarter of the agents. A possible expla-
nation is that human planning profiles are not only different for each user but
also different for each user in each task.

Another possible explanation for the results, especially for planning constantly
assigned planning profiles, is the conservative similarity measure used. This
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measure only considers the longest sequence alignment of states in two differ-
ent strategies. However, if two strategies only deviate in one state, the shorter
sequence is not considered.

Further extension of the presented methods include, for example, the auto-
matic identification of branching points, i.e. states where agents choose differ-
ent successor states, to further classify different strategies. This can be used to
identify and analyze preferred user strategies. Another possible extension is the
introduction of a measure to describe deviations from optimal strategies as a
measure of success.

To conclude, we believe that the presented preliminary methods are a first
step for automatically analyzing large and heterogeneous data sets generated by
human planners. Especially the strategy graphs are useful for an abstraction of
large data sets. In order to analyze this method further, other similarity mea-
sures, for example based on all local sequence alignments or based on the number
of deviating states, and additional psychological factors should be considered.
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Abstract. In this paper, we propose a method to combine unsuper-
vised and semi-supervised learning (SSL) into a system that is able to
adaptively learn objects in a given environment with very little user in-
teraction. The main idea of our approach is that clustering methods can
help to reduce the number of required label queries from user interac-
tion, and at the same time provide the potential to select useful data
to learn from. In contrast to standard methods, we train our classifier
only on data from the actual environment and only if the clustering gives
enough evidence that the data is relevant. We apply our method to the
problem of object detection in indoor environments, for which we use a
region-of-interest detector before learning. In experiments we show that
our adaptive SSL method can outperform the standard non-adaptive
supervised approach on an indoor office data set.

Keywords: Semi-supervised learning, active learning.

1 Introduction

Current machine perception systems often rely on their capabilities to automat-
ically learn a mapping from the set of potential observations to a set of semantic
annotations, for example class labels from a natural language. The biggest chal-
lenges for the employed learning algorithms are the large amount of labelled data
they usually require, and their potential to adapt to new, unseen environments
and situations. In many applications, and particularly in mobile robotics, this
adaptability is an important requirement, because it is impossible to anticipate
all situations that the robot might encounter before deployment. Therefore, we
investigate learning mechanisms that are capable of adapting to new observa-
tions by updating their internal representation as new information arrives. This
implies that the learning step is performed during operation of the system and
not beforehand, and that the data used for training is acquired online. However,
the main question is: what are good data to train on? A good answer to this
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question directly leads to a shorter training time and in a reduced amount of
required human data annotations.

In this paper, we address this question using a simple, but effective idea: Be-
fore asking the human supervisor for a semantic label, we group the observed
data into clusters using unsupervised learning. Then, our algorithm queries one
common label for each cluster from the supervisor and uses the so obtained
training data in a semi-supervised learning step. This approach has two major
advantages: first, it further reduces the amount of human intervention signifi-
cantly by asking labels for multiple instances at the same time. And second, it
gives us the potential to pre-select interesting data to train on, for example by
asking labels only for clusters that are significantly represented. We apply our
method to the problem of object detection in indoor office environments, and we
show in experiments that this adaptive way of learning can outperform the stan-
dard approach, where a purely supervised classifier is learned before observing
the actual test data.

2 Related Work

Our work is mostly related to the area of semi-supervised learning (SSL) and
transductive learning methods, which have become very popular in the last
decade. A good overview of this field is given by Zhu [1,2], who also proposed
a graph-based SSL method named Label Propagation. Other methods include
the sparse Gaussian Process classifier with null category noise model [3], semi-
supervised boosting [4] and the transductive Support Vector Machine (tSVM)
[5]. In our work, we also use unsupervised learning as in [6] and combine it with
a tSVM to reduce the required interaction with the human supervisor even fur-
ther. Example applications of SSL in computer vision include image classification
from labelled and unlabelled, but tagged images [7], object recognition [8], and
video segmentation [9].

Furthermore, our work is also related to the area of active learning, because
it involves a user interaction step, for which queries for class labels are actively
generated. A good overview on the active learning literature is given by Settles
[10]. One interesting example of active learning is the work of Kapoor et al.
[11] on object categorization using a GP classifier (GPC), where data points
possessing large uncertainty (using posterior mean and variance) are queried for
labels and used to improve the classification. Triebel et al. [12] use active learning
for semantic mapping where a sparse GP classifier actively learns to distinguish
traffic lights from background. In contrast to classical active learning methods,
our approach chooses the data to be asked for labelling based on a relevance
criterion rather than, e.g. based on the entropy of the underlying classifier.

3 Combined Unsupervised and Semi-supervised Learning

Fig. 1 gives an overview of our proposed semi-supervised learning method. We
start with a sequence of input images and determine first an appropriate set of
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Fig. 1. Flow chart of our proposed system. From a sequence of images, regions of
interest are detected using super pixel segmentation and by comparing the segments
based on SIFT features. Then the resulting patches are clustered. From each cluster, a
subset of patches is used to query object labels from a human supervisor. The resulting
hand-labelled data together with some unlabelled samples is then used to train a semi-
supervised classifier.

rectangular regions of interest named patches. From these patches, we extract
SIFT features (“Scale-invariant feature transform”, [13]) and use them to define
a similarity measure between patches. Based on these similarities, we cluster the
patches using spectral clustering. Then, we select a subset of appropriate patches
from each cluster and query object labels from a human supervisor as described
below. The resulting labelled patches, together with the remaining unlabelled
ones are then passed into a multi-class transductive SVM, which then returns
predicted labels for the unlabelled patches. In the following sections we describe
each step in more detail and give motivations for our algorithm design.

3.1 Region of Interest Detection

Object detection for a given image of a scene is much harder than pure object
recognition, because it is not even known to the algorithm if the object to be
recognized exists in the scene and where it is. The common approach to this
problem is to determine small sub-windows within the image which potentially
contain the object(s) to be classified. In the simplest case, these so-called regions
of interest (ROI) are obtained using a sliding-window approach. However, to re-
duce the number of potential ROIs, we use a different method: Given an image
sequence, we first compute a superpixel segmentation for each image based on
the SLIC algorithm [14]. Then, we compute the bounding box for each segment in
every image. For each such resulting candidate patch, we extract SIFT features
[13] and compare the patches across the image sequence using a similarity mea-
sure s. The motivation for the choice of SIFT descriptor is their high expressive
power and their ability to find good matches even under changes of illumination,
orientation and scale. In our application, object instances do not vary much in
color or texture, which is an ideal condition for the SIFT descriptor. Of course,
in a more general setting, where the appearance between the objects of a class
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Fig. 2. Example result of our ROI detector. From left to right: 1. Original image 2.
SLIC superpixels with boundaries in red, 3. Bounding boxes of the super pixels, 4.
Detected ROIs after threshold.

may vary more, other descriptors, for example based on the geometry may be
more appropriate.

To compute the similarity measure s, we first define a distance function d
between two patches A and B as:

d(A,B) =
1

n

n∑

i=1

‖x̃i − ỹi‖2 , (1)

where n is the number of matches found by the SIFT algorithm and i iterates over
all these matches. The vectors x̃i and ỹi denote the 128-dimensional descriptor
values computed at the key points found by the SIFT method in patches A and
B, respectively. From this distance measure, we define the similarity s between
two patches as:

s(A,B) = 1− d(A,B)

max
A′,B′

d(A′, B′)
, (2)

thus, s gives values between 0 and 1, where 1 corresponds to maximal similar-
ity. To find patches that contain potentially interesting objects, we compute a
similarity score p for patch A as follows:

p(A) =
∑

B �=A

s(A,B), (3)

i.e. the score is defined by the sum of similarities to all other patches. The intu-
ition here is that patches that are very similar to many others more likely contain
objects of interest, because they give evidence that there are many instances of
the same object class. Note that our formulation implicitly deals with the prob-
lem that background patches containing walls, the floor, etc., despite occurring
very often will not give a high score, because their appearance is usually much
more uniform, which means that much less SIFT key points are detected on
them.

Using these score values, an ROI is then detected as the patches A for which
p(A) exceeds the average score over an entire image. This simple statistical
method finds patches that stick out in terms of their similarities and has the
advantage that it does not require to introduce a threshold parameter. In our
experiments, this gave good results (see Fig. 2 for an example sequence of our
detector), but of course other methods could be used here.
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3.2 Clustering of Patches

The main contribution of our work is the idea of using unsupervised learning
before employing a semi-supervised method for classification. The motivation
of this approach is two-fold: first, the number of required user interactions, i.e.
label queries, is further reduced compared to standard semi-supervised learning,
because we query only one common label for an entire group (cluster) of data
instances. And second, the clustering step gives us the opportunity to pre-select
interesting data to train on, because typically some clusters can be easily iden-
tified as more relevant for the learning task based on simple characteristics such
as cluster size or similarities of elements within a cluster. The intuition here
is that only those data instances should be learned by the classifier, for which
there is enough evidence that they correspond to a meaningful object class. For
example, in an office environment, usually there are many instances of classes
like telephone, chair or monitor, and the mere fact that there are many very
similar instances makes them highly relevant, for example for a mobile robotic
system operating in the environment. In contrast, in a home environment, there
might be other types of relevant objects, and our approach particularly aims at
finding such relevant classes adaptively.

To perform the clustering step, we use the same SIFT descriptors computed
earlier for each patch and rely on the same similarity measure s to cluster the
patches. We ran experiments with two different standard clustering methods:
k-means clustering and spectral clustering. Both methods have been used very
successfully in many different kinds of applications, and we found that the dif-
ference in performance is not very substantial. We evaluated both methods on
our data using the V-measure [15], which is defined as the harmonic mean of
homogeneity and completeness of the clustering algorithm. In these experiments,
the spectral clustering was slightly better, and it has the further advantage that
it does not necessarily require the number of clusters specified as a parameter.
The reason is that it is based on the eigen decomposition of the graph Laplacian
of the data, and that a method called the eigen gap heuristic can be used to
determine a good value for the number of clusters. For more details on spectral
clustering, we refer to the work of Luxburg [16].

3.3 Querying Object Labels

The next step in our proposed method is to receive class label information from
a human supervisor for the patches that have been clustered beforehand. To
perform this label query, some important considerations need to be taken into
account: On one side, the algorithm should ask the user as few times as possible
to give a label input, because this is one of the main motivations of this work.
Thus, we want to ask only once for each cluster. On the other side, we need to
make sure that the data we provide as training samples to the semi-supervised
learning method is as pure as possible, i.e. ideally there should be no instances
of different objects labelled by the human with the same label. Unfortunately,
no clustering algorithm can guarantee complete purity, neglecting of course the
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trivial clustering that assigns every data point to its own cluster. Therefore, we
propose to use a quality measure q for all patches within a cluster, which is based
on the similarities s computed earlier. Concretely, for every patch A of a given
cluster C, we compute q as the sum of similarities within the cluster :

q(A) =
∑

B∈C
s(A,B). (4)

Note that this is different from the scores computed in Eq. (3), because here, our
goal is to find the best cluster representatives. After computing the q-values, we
sort all elements within a cluster in descending order of q and ask one common
label from the user for the first m such elements of each cluster. This policy
gives a good trade-off between the two opposing objectives of generating few
label queries and providing pure training data. Of course, this method does not
guarantee that there are no instances of different object classes that receive the
same label from the supervisor. However, from our experience, the number of
cases where queried data points are inconsistent can be reduced substantially
using this method.

To illustrate this step, Fig. 3 shows an example result of the clustering step,
where each row corresponds to a different cluster and only the first 3 elements
according to the quality measure q are shown. As we can see, in two out of
four cases the first three cluster elements only contain objects of the same class,
and in the other two cases the mistakes made by the algorithm are completely
comprehensible. We also note that the clustering result yields more clusters than
there are actual classes, i.e. we have an over-clustering. This is only a problem in
the sense that it requires the user to give more class labels than actually needed,
but this effect was only minor in our experiments.

3.4 Training a Classifier

As a final step in our approach, we use the labelled data obtained from the
previous step to learn a classifier for the objects discovered in the environment.
Here, we considered three different strategies. First, we investigated the use of
a standard supervised learning method using a linear Support Vector Machine
(SVM). Then, we evaluated two semi-supervised learning techniques, where the
first was a simple nearest neighbour rule, i.e. each unlabelled sample was assigned
the label of the closest labelled sample according to our similarity measure. And
finally, we used a transductive SVM [5] with an RBF kernel. Thus, in addition
to the labelled training set D of size l, the algorithm is also given an unlabelled
set D� = {x�

i ∈ R
p}ki=1 of test examples to be classified. Formally, a transductive

SVM is defined by the following primal optimization problem:
Find (y�

1 , y
�
2 , . . . , y

�
n, w, b) so that

min
1

2
‖w‖2

subject to yi[w · xi − b] ≥ 1, y�j [w · x�
j − b] ≥ 1, (5)

y�j ∈ {−1, 1} ∀i = 1, . . . l, ∀j = 1, . . . , k
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Fig. 3. Examples of clusters obtained from the clustering algorithm (every row cor-
responds to a different cluster). For each cluster, we show the first three elements
according to the quality measure defined in (4).

where (xi,yi) are the training examples, y�
i are the predicted labels for the

unlabelled test example and w is the weight vector. This means, that the trans-
ductive SVM learns from both the labelled and the unlabelled examples, and it
returns label predictions for the unlabelled ones. In that sense, the training and
the inference step are contained within the same common procedure.

From these three methods the worst in our experiments was the standard
supervised SVM, and we did not consider this further. The highest classification
performance was obtained with the transductive SVM, and we give more details
in the experimental section. As feature vectors for training, we compute for
every patch the Hierarchical Matching Pursuit (HMP) descriptor introduced
by Bo et al. [17]. The HMP features are calculated in a multi-layer process
where each layer is computed on a different scale, containing the same three
steps: Matching Pursuit, Pyramid Max Pooling and Contrast Normalization.
The key element in this process is the Matching Pursuit step, which is based
on a sparse coding algorithm known as K-SVD. Given a set of h-dimensional
observations Y = [y1, ..., yn] ∈ Rh×n (image patches in our case), K-SVD learns
a dictionary D = [d1, ..., dn] ∈ Rh×m, and an associate sparse code matrix
X = [x1, ..., xn] ∈ Rm×n by minimizing the following reconstruction error,
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min
xi

‖yi −Dxi‖2 s.t. ‖xi‖0 ≤ K, (6)

where xi are the columns of X, the zero-norm ‖xi‖0 counts the non-zero entries
in the sparse code xi, and K is the sparsity level, which bounds the number of
the non-zero entries. The Matching Pursuit step finds an approximate solution
to the optimization problem mentioned above using a greedy approach. Pyramid
Max Pooling is a non-linear operator that generates higher level representations
from sparse codes of local patches which are spatially close. And Contrast Nor-
malization turns out to be essential for good recognition performance, since the
magnitude of sparse codes varies over a wide range due to local variations in
illumination and foreground-background contrast. Bo et al. [17] used a linear
SVM in combination with HMP features and reported very good classification
results. We verified these results using data from the Caltech 101 benchmark,
and we show them in the results section. From this, we conclude that HMP
features exhibit a high amount of expressiveness, because they give very good
classification results for a comparably simple classifier such as the linear SVM.

In practice, the use of HMP features consists of two phases: one where the
dictionaries are learned from some given training data, and one where feature
vectors are computed for new test data based on the sparse codes with respect
to the learned dictionaries. While the first phase can require huge computation
time, as it usually uses a large training data set, the online phase is comparably
fast, as it only requires the computation of a sparse representation for a given
dictionary. We note however, that the dictionary learning step is completely
unsupervised, as it does not require any human-labelled data.

4 Experiments and Results

To measure the performance of our approach, we performed several experiments.
First, we evaluated our method to detect regions of interest. Then, we evaluated
two different semi-supervised learning methods on a benchmark and on our own
data. And finally, we verified experimentally the benefits of using our adaptive,
semi-supervised learning method over a standard non-adaptive supervised strat-
egy. More details about all experiments are given in the following.

4.1 Evaluating the ROI Detector

As mentioned above, our ROI detector finds patches that occur often with high
similarity across images. Therefore, to assess this method quantitatively, we first
created ground truth data for the objects that occurred most frequently in our
data. Concretely, we labelled those ROIs as correct detections, which contained
chairs, monitors or telephones. Results on 7 different images in terms of precision
and recall are given in table 1. We see that our detector tends to find more
ROIs than there actually are, and the recall is much better than the precision.
However, for ROI detection we are actually more interested in recall than in
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Table 1. Evaluation of the ROI detector on 7 input images. While the precision is
comparably low, recall is good, which is the main purpose of this step.

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 Image 7

Actual ROIs 2 3 2 1 1 2 2

Predicted ROIs 4 4 2 3 3 4 4

Recall 1 0.67 1 1 1 1 1

Precision 0.5 0.5 1 0.33 0.33 0.5 0.5

precision, because missing a candidate for classification is worse than reporting
a background patch as a ROI, as the latter can be handled by the classifier.

For a qualitative evaluation, we show an example result of the ROI detector in
Fig. 4. As we can see here, the detector found the two regions of actual interest,
i.e. the chair and the monitor, and it only returned one false positive.

4.2 Comparison of Adaptive Semi-supervised Learning and
Standard Supervised Learning

To measure the performance of our adaptive semi-supervised learning method,
we ran experiments on a subset of the standard benchmark data set Caltech
101, and on our own data. The subset consisted of 10 classes (see Fig. 5), for the
Caltech 101 and 3 classes for our data. For both experiments, we used dictionar-
ies for the HMP features that were learned from 10 images per class from the
benchmark set. For the Caltech 101 we did not employ the ROI detector, be-
cause these images already contain one major object and not much background.
Thus, we only clustered the data, computed HMP features for each image and
trained a semi-supervised learner on a mixture of labeled and unlabeled images,
where the labels were obtained from querying the best 3 representatives of each
cluster. The results for the k-nn method and the transductive SVM with RBF
kernel are given in the left column of Table 2. As we can see, the transductive
SVM performs much better than the k-nn approach, and the final accuracy is
comparably high, given that only very few data samples used for training were
actually labeled.

Fig. 4. Example result of our ROI detector. The ground-truth ROIs are shown on the
left and the predicted ROIs on the right.
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Fig. 5. Examples from each of the 10 classes in the Caltech 101 data set which were
used for the experiments

The same conclusion we can draw for our indoor office data set (see right
column of Table 2). Here, we used 25 ROIs for evaluation, consisting of 6 chairs,
13 monitors and 6 telephones. Again, the transductive SVM performs better than
the naive k-nn approach. Also, it is interesting to see that supervised learning
works well when trained and tested on the same kind of data, but when tested
on data from a different environment, it may fail as in our example. To overcome
such problems our adaptive SSL method seems to be an appropriate approach.

Note that our adaptive TSVM approach gives somewhat worse results than
the standard SVM method on Caltech101. This is because the clustering step for
this data set had to be done using the HMP features and not SIFT, as for our
own data: the appearances of the objects in Caltech 101 are simply too diverse
to compare them using SIFT. However, we experienced that spectral clustering
works worse on HMP features, which means that for Caltech 101 the training
data provided to TSVM was of less quality than if we had chosen standard
supervised learning. For our evaluation, this is however of little importance, as
our method anyhow aims at adapting to a given environment with no previously
labelled data where objects of the same class are not very diverse. An application
of our method to an environment-independent, pre-labelled data set such as
Caltech101 is therefore not very meaningful.

4.3 Number of Generated Label Queries

In another experiment, we investigated the correspondence of the number of
label queries made by the algorithm and the classification accuracy. There are
two parameters that can be set: the number of clusters c and the number m of
patches per cluster, which receive a label after the query (see above). On one
side, we want to have few clusters, i.e. c should be low. However, if there are
more clusters, then the clusters are smaller and therefore purer, i.e. there are
more elements that agree on the true class label. Purer clusters means that we
can increase m, without assigning wrong labels to patches, thus we obtain better
training data. This relationship is shown in Fig. 6. If the number of clusters is
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Table 2. Classification accuracy of standard SVM learning and adaptive SSL methods
on different data sets. The standard SVM was trained on a subset of Caltech 101 in
both cases. Thus, while standard supervised learning gives good results when training
and test data are similar, it can perform badly when they are dissimilar. However, our
adaptive SSL performs much better, because it queries the relevant class labels from
the data before learning the classifier. From the two considered methods, transductive
SVMs perform better than the k-nearest neighbour method.

Learning method Caltech 101 Our data

standard SVM 95.25% 52.00%

adaptive k-nn SSL 55.86% 58.00%

adaptive TSVM 81.43% 88.00%

Fig. 6. Accuracy vs. number of clusters and numberm (m = 1, 2, 3) of patches receiving
a label from the query. More clusters lead to a higher cluster purity. Then, higher values
of m are more effective, because the tSVM receives better training data.

small, we get the best accuracy for m = 1. But for more clusters, m = 2 is better,
because by assigning the same label to the first m elements of each cluster, we
get fewer wrong labels. In general we found that having less labels for training
is better than having more, but wrong labels.

5 Discussion and Conclusions

Our proposed approach for adaptive semi-supervised learning for object detec-
tion in indoor environments has two major advantages over standard super-
vised learning methods: first, it is able to select informative data to learn from
and to adapt to a given environment by only querying labels for currently ob-
served, situation-relevant data and using them to train a classifier. And second,
it reduces the number of required user interactions by making more informed
questions about the data based on a pre-clustering step. Our experiments show
that the proposed approach can outperform standard non-adaptive supervised
learning when applied to environment-dependent data.
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Abstract. In semantic scene segmentation, every pixel of an image is
assigned a category label. This task can be made easier by incorporat-
ing depth information, which structured light sensors provide. Depth,
however, has very different properties from RGB image channels. In this
paper, we present a novel method to provide depth information to convo-
lutional neural networks. For this purpose, we apply a simplified version
of the histogram of oriented depth (HOD) descriptor to the depth chan-
nel. We evaluate the network on the challenging NYU Depth V2 dataset
and show that with our method, we can reach competitive performance
at a high frame rate.

Keywords: Deep learning, neural networks, object-class segmentation.

1 Introduction

Semantic scene segmentation is a major challenge on the way to functional com-
puter vision systems. The task is to label every pixel in an image with surface
category it belongs to. Modern depth cameras can make the task easier, but
the depth information needs to be incorporated into existing techniques. In this
paper, we demonstrate how depth images can be used in a convolutional neural
network for scene labeling by employing a simplified version of the histogram
of oriented gradients (HOG) descriptor to the depth channel (HOD). We train
and evaluate our model on the challenging NYU Depth dataset and compare its
classification performance and execution time to state of the art methods.

2 Network Architecture

We train a four-stage convolutional neural network, which is illustrated in Fig. 1,
for object-class segmentation. The network structure, proposed by Schulz and
Behnke [1], is derived from traditional convolutional neural networks, but has
inputs at multiple scales. In contrast to classification networks, there are no fully
connected layers at the top—the output maps are also convolutional.

The first three stages s = {0, 1, 2} have input, hidden convolutional, and
output maps Is, Cs, Os, respectively. Pooling layers Ps, P ′

s between the stages
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c© Springer International Publishing Switzerland 2014



Fast Semantic Segmentation of RGB-D Scenes with Deep Neural Networks 81

I0

I1

I2

C0

C1

C2

O0

O1

O2

P0

P1

P ′
0

P ′
1

O′
2

Fig. 1. Network structure used in this paper. On stage s, Is is input, Cs a convolution,
Os the output, and Pi a pooling layer. Outputs of stage s are refined in stage s + 1,
final outputs are refined from O2 to O′

2. Solid and dashed arrows denote convolution
and max-pooling operations, respectively. Every stage corresponds to a scale at which
inputs are provided and outputs are evaluated.

reduce the resolution of the map representations. The output layer O′
2 is the last

stage. The network differs from common deep neural networks, as it is trained in
stage-wise supervised manner and the outputs of the previous stage are supplied
to the next stage to be refined. Thus, the lower stages provide a prior for the
higher stages, while the simultaneous subsampling allows for the incorporation
of a large receptive field into the final decision.

Every layer consists of multiple maps. Input layers have three maps for ZCA-
whitened RGB channels, as well as five maps for histograms of oriented gradients
and depth each (detailed in Section 4). Intermediate layers contain 32 maps.
Convolutions extract local features from their source maps. Following Schulz and
Behnke [1], all convolution filters have a size of 7×7, except for the last filter.
The last filter has a size of 11×11 and only re-weights previous classification
results, taking into account a larger receptive field. Also note that there are no
fully connected layers—the convolutional output layers have one map for every
class, and a pixel-wise multinomial logistic regression loss is applied. In contrast
to Schulz and Behnke [1], we use rectifying non-linearities σ(x) = max(x, 0)
after convolutions. This non-linearity improves convergence [2] and results in
more defined boundaries in the output maps than sigmoid non-linearities. When
multiple convolutions converge to a map, their results are added before applying
a non-linearity.

3 Related Work

Our work builds on the architecture proposed in Schulz and Behnke [1], which
(in the same year as Farabet et al. [3]) introduced neural networks for RGB
scene segmentation. We improve on their model by employing rectifying non-
linearities, recent learning algorithms, online pre-processing, and providing depth
information to the model.
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Scene labeling using RGB-D data was introduced with the NYU Depth V1
dataset by Silberman and Fergus [4]. They present a CRF-based approach and
provide handcrafted unary and pairwise potentials encoding spatial location and
relative depth, respectively. These features improve significantly over the depth-
free approach. In contrast to their work, we use learned filters to combine predic-
tions. Furthermore, our pipeline is less complex and achieves a high framerate.
Later work [5] extends the dataset to version two, which we use here. Here,
the authors also incorporate additional domain knowledge into their approach,
which further adds to the complexity.

Couprie et al. [6] present a neural network for scene labeling which is very
close to ours. Their network processes the input at three different resolutions
using the same network structure for each scale. The results are then upsampled
to the original size and merged within superpixels. Our model is only applied
once to the whole image, but uses inputs from multiple scales, which involves less
convolutions and is therefore faster. Outputs are also produced at all scales, but
instead of a heuristic combination method, our network learns how to use them
to improve the final segmentation results. Finally, the authors use raw depth
as input to the network, which cannot be exploited easily by a convolutional
neural network, e.g., absolute depth is less indicative of object boundaries than
are relative depth changes.

A common method for pixel-wise labeling are random forests [7, 8], which
currently provide the best results for RGB-D data [9, 10]. These methods scale
feature size to match the depth for every image position. Our convolutional
network does not normalize the feature computation by depth, which makes it
easy to reuse lower-level features for multiple higher-level computations.

4 Pre-processing

Since our convolution routines1 only support square input images, we first ex-
tend the images with mirrored margins. To increase generalization, we generate
variations of the training set. This is performed online on the CPU while the
GPU evaluates the loss and the gradient, at no cost of speed. We randomly flip
the image horizontally, scale it by up to ±10%, shift it by up to seven pixels in
horizontal and vertical direction and rotate by up to ±5◦. The depth channel is
processed in the same way. We then generate three types of input maps.

From random patches in the training set, we determine a whitening filter that
decorrelates RGB channels as well as neighboring pixels. Subtracting the mean
and applying the filter to an image yields three zero phase (ZCA) whitened image
channels.

On the RGB-image as well as on the depth channel, we compute a computa-
tionally inexpensive version of histograms of oriented gradients (HOG [11]) and
histogram of oriented depth (HOD [12]) as follows.

For every pixel p, we determine its gradient direction αp and magnitude np.
The absolute value of |αp| is then quantized by linear interpolation into two of

1 We employ convolutions from the cuda-convnet framework of Alex Krizhevsky.
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Fig. 2. Network maps, inputs and outputs. First row, ignore mask and ZCA-whitened
RGB channels. Second and third row, HOG and HOD maps, respectively. Fourth row,
original image, ground truth and network prediction multiplied by ignore mask for
reference. Mirrored margins are removed for presentation to save space. Note that
HOG and HOD encode very different image properties with similar statistics.

five bins at every image location, and weighted by np. To produce histograms of
the orientation strengths present at all locations, we apply a Gaussian blur fil-
ter to all quantization images separately. Finally, the histograms are normalized
with the L2-hys norm.

The main difference to the standard HOG descriptor is that no image cells are
combined into a single descriptor. This leaves it to the network to incorporate
long-range dependencies and saves space, since our descriptor contains only five
values per pixel.

All maps are normalized to have zero mean and unit variance over the train-
ing set. The process is repeated for every scale, where the size is reduced by a
factor of two. For the first scale, we use a size of 196×196. The teacher maps are
generated from ground truth by downsampling, rotating, scaling, and shifting
to match the network output. We use an additional ignore map, which sets the
loss to zero for pixels which were not annotated or where we added a margin to
the image by mirroring. Sample maps and segmentations are shown in Fig. 2.

5 Experiments

We split the training data set into 796 training and 73 validation images. In
a stage s, we use the RMSProp learning algorithm with an initial learnrate
10−4, to train the weights of all stages below or equal to s. The active stage is
automatically switched once the validation error increases or fails to improve.
The pixel mean of the classification error over training is shown in Fig. 3. During
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Fig. 3. Classification error on NYU Depth V2 during training, measured as the mean
over output pixels. The peaks and subsequent drops occur when one stage is finished
and learning proceeds to the next—randomly initialized—stage.

Table 1. Classification Results on NYU Depth V2

Method Floor Structure Furniture Props Pixel Acc. Class Acc.

Ours without depth 69.1 57.8 55.7 41.7 56.2 56.1
Ours with depth 77.9 65.4 55.9 49.9 61.1 62.0
[6] without depth 68.1 87.8 51.1 29.9 59.2 63.0
[6] with depth 87.3 86.1 45.3 35.5 63.5 64.5

the first two stages, training and validation error behave similarly, while in the
final stages the network capacity is large enough to overfit.
Classification Performance. To evaluate performance on the 580 image test
set, we crop the introduced margins, determine the pixel-wise maximum over
output maps and scale the prediction to match the size of the original image.
There are two common error metrics in the literature, the average pixel accu-
racy and the average accuracy over classes, both of which are shown in Table 1.
Our network benefits greatly from the introduction of depth maps, as apparent
in the class accuracy increase from 56.1 to 62.0. We compare our results with
the architecture of Couprie et al. [6], which is similar but computationally more
expensive. While we do not reach their overall accuracy, we outperform their
model in two of the four classes, furniture and, interestingly, the rather small
props—despite our coarser output resolution.
Prediction Speed. We can also attempt to compare the time it takes to pro-
cess an image by the network. Couprie et al. [6] report 0.7 s per image on a
laptop. We process multiple images in parallel on a GPU. With asynchronous
pre-processing, our performance saturates at a batch size of 64, where we are
able to process 52 frames per second on a 12 core Intel Xeon at 2.6 GHz and a
NVIDIA GeForce GTX TITAN GPU. Note that this faster than the frame rate
of the sensor collecting the dataset (30 Hz). While the implementation of Couprie
et al. [6] could certainly also profit from a GPU implementation, it requires more
convolutions as well as expensive superpixel averaging and upscaling operations.
Our network is also faster than random forests on the same task (30.3 fps [10],
hardware similar to ours).
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6 Conclusion

We presented a convolutional neural network architecture for RGB-D seman-
tic scene segmentation, where the depth channel is provided as feature maps
representing components of a simplified histogram of oriented depth (HOD) op-
erator. We evaluated the network on the challenging NYU Depth V2 dataset
and found that introducing depth significantly improved the performance of our
model, resulting in competitive classification performance. In contrast to other
published results of neural network and random-forest based methods, our GPU
implementation is able to process images at a high framerate of 52 fps.
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Abstract. We introduce a novel variant of the problem of computing
energy-efficient and quick routes in a road network. In contrast to previ-
ous route planning approaches we do not only make use of variation of
the routes to save energy but also allow variation of driving speed along
the route to achieve energy savings. Our approach is based on a simple
yet fundamental insight about the optimal velocities along a fixed route
and a reduction to the constrained shortest path problem.

1 Introduction

Taking energy consumption into account when planning a road trip becomes
more and more of an issue. While in the old days, gasoline was cheap, today
fuel prices are constantly increasing and due to the limited supply of fossil fuels
probably always will be. While in this case taking energy consumption into ac-
count is mostly a means of saving money and reducing carbon dioxide emissions,
in the context of electric vehicles (EVs) energy-aware route planning might even
make the difference between reaching the destination and getting stranded half-
way due to a depleted battery. In the medium term, EVs (in particular when
recharged using renewable energies, e.g. from solar or wind power) are to replace
fossil fuel driven vehicles, but currently the limited energy reservoir (typically
around or less than 200 km cruising range) as well as the sparsity of battery
reloading/switch stations makes energy awareness mandatory for EVs.

Artmeier et al. in [2] formalized one variant of energy-constrained route plan-
ning, taking into account special characteristics of EVs like energy recuperation.
They essentially use a variant of the Bellman-Ford algorithm to compute the
most energy-efficient route for an EV. Later Eisner et al. in [3] showed how to
transform the problem instance such that Dijkstra’s algorithm as well as the
speedup technique of contraction hierarchies [6] apply. This resulted in data
structures that can be precomputed in few minutes even on country-sized road
networks like that of Germany allowing for query times several orders of magni-
tude faster than Bellman-Ford or Dijkstra. There is a fundamental disadvantage
of this approach, though: it only aims at minimizing the energy consumption
not taking into account travel time or length of the respective route. In partic-
ular, since the models in [2] and [3] always assume that road segments are used
with their typical maximum speed (e.g. residential roads at 30 km/h, inner city
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roads 50 km/h, country roads 100 km/h, autobahns 130 km/h), applying these
approaches often leads to routes which excessively use residential and inner city
roads since at these lower speeds the energy consumption is minimal – routes of
this type are hardly useful in practice.

In [7] Storandt considered the constrained shortest path (CSP) problem in
the energy-aware routing context: for a given bound T on the travel time the
goal is to compute the most energy-efficient path from some node s to some
node t in the road network not exceeding travel time T (alternatively, one could
also bound the energy-consumption and optimize the travel time). Typically one
would query with a bound T which is – let’s say – 10% above the time of the
quickest path from s to t takes. The resulting paths are considerably more useful
in practice since nobody is willing to take a route which takes twice as long as
the quickest route just for some minuscule energy savings. One difficulty with
this approach is the hardness of the CSP problem in general, even though for
real-world problem instances, a carefully tuned implementation like the one in
[7] can compute probably optimal results in reasonable time. A similar result in
the context of bicycle routes has been presented in [8]. The approach by Funke
and Storandt [5] on the other hand allows to optimize a conic combination of
two or more criteria, e.g., energy consumption and travel time. While excluding
some Pareto-optimal solutions, the preprocessing and the query – in contrast
to the CSP approach – can be performed in polynomial time. Still, [7] and [5]
assume that road segments are always traversed at their typical maximum speed,
ignoring the fact that it is well possible to save some energy e.g. on an autobahn
by going 100 km/h instead of 140 km/h.

Our Contribution

In this paper we introduce a novel variant of the problem of computing energy-
efficient yet quick routes in a road network. In contrast to previous route planning
approaches we do not only deliberately choose the routes to save energy but also
allow variation of the driving speed along the route to achieve energy savings.
The main insight which our approach is based upon is the fact that for a fixed
route and travel time it is most energy-efficient to drive with uniform speed if
possible. We propose efficient solution strategies to obtain solutions to the prob-
lem via reduction to several constrained shortest path (CSP) problem instances.
In spite of CSP being NP-hard we can compute exact solutions for real-world
problem instances within a reasonable amount of time.

2 Fundamentals and Basic Techniques

Before we can talk about actual algorithms we first need to introduce our mo-
bility model. We assume the road network is given as a directed acyclic graph
G(V,E) with a straightline embedding in the plane. Each edge e ∈ E has a road
type type(e) ∈ R. Each road type r ∈ R has an associated upper bound vmax(r)
on the allowed speed on a road of that respective type. For example, for the road
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type ’autobahn’, we might have vmax(autobahn) = 150; often we directly write
vmax(e) = 150 for an edge e of type ’autobahn’. By |e| we denote the Euclidean
length of an edge in the given straightline embedding.

Obviously, when travelling at speed v, it takes |e|/v time to traverse a road
segment e of length |e|. The energy consumption along a road segment has a
more complicated dependence on the speed, though.

2.1 Energy Model

Air resistance is the main factor that influences energy/fuel consumption when
the speed increases. This essentially leads to a quadratic dependence on the
speed. We use the following function as proposed in [4]

f(v)[ml/m] : v → c1v
2 − c2v + c3 +

c4
v

where c1 = 0.00625968, c2 = 0.11736, c3 = 2.1714, c4 = 18 1
3 , see Figure 1.

The speed v is expected to be given as [m/s], the fuel consumption as [ml/m].
Above 54 km/h, this function is non-negative, convex and strictly increasing (in
the E-mobility context, the minimum is already at a lower speed). Observe that
it never pays off to drive more slowly than 54 km/h, and in case of edges e with
vmax(e) < 54km/h, it is most beneficial to use them at that maximum speed.

Fig. 1. Energy/Fuel Consumption dependent on velocity

2.2 Crucial Insight: Varying Speed Does Not Pay Off

Let us first examine how speed can be varied in different parts of a route if the
travel time is to be kept constant. To that end consider without loss of generality
a route section of unit length (not necessarily contiguous!) that is traversed in
one unit of time and divide the route section into two halves of length 1/2 each.



Energy-Efficient Routing: Taking Speed into Account 89

Lemma 1. If a unit length route section is traversed such that the speed in the
first half is v(l), in the second half v(r), and the total travel time is one time unit,
then for v(l) ≤ v(r) we have

v(r) =
v(l)

2v(l) − 1

Proof. We have that 1/2

v(l) +
1/2

v(r) = 1, the above inequality follows. ��

The following lemma essentially states that if we go 1 km/h slower on the
first half, we have to go faster by more than 1 km/h in the second half:

Lemma 2. If a unit length route section is traversed in one unit of time, once

with speeds v
(l)
1 (v

(r)
1 ) in the left (right) half, once with speeds v

(l)
2 (v

(r)
2 ), and

1/2 < v
(l)
1 < v

(r)
2 ≤ 1, then we have v

(l)
1 + v

(r)
1 > v

(l)
2 + v

(r)
2

Proof. Lemma 1 implies that the dependence of v(r) from v(l) behaves like x �→
x

2x−1 for x ∈ (0.5, 1] which has slope less or equal to 1. The lemma follows. ��

We use the above two lemmas to prove the main theorem of this section.

Theorem 1. Assume a unit length route section is traversed in one unit of time,

once with speeds v
(l)
1 (v

(r)
1 ) in the left (right) half, once with speeds v

(l)
2 (v

(r)
2 ),

and 1/2 < v
(l)
1 < v

((l))
2 ≤ 1. Then, the energy consumption of traversing the route

section with speeds v
(l)
1 , v

(r)
1 is strictly greater than the energy consumption of

traversing the route section with speeds v
(l)
2 , v

(r)
2 for strictly monotone and convex

energy functions.

Proof. Lemma 2 implies v
(l)
1 < v

(l)
2 ≤ 1 ≤ v

(r)
2 < v

(r)
1 . The energy consumptions

to compare are E1 := (f(v
(l)
1 ) + f(v

(r)
1 ))/2 and E2 := (f(v

(l)
2 ) + f(v

(r)
2 ))/2.

Let p
(l)
i := (v

(l)
i , f(v

(l)
i )) ∈ R

2 and p
(r)
i := (v

(r)
i , f(v

(r)
i )) ∈ R

2. By convexity of

f we know that the segment p
(l)
2 p

(r)
2 lies below the segment p

(l)
1 p

(r)
1 between v

(l)
2

and v
(r)
2 . Lemma 2 also implies that (v

(l)
2 + v

(r)
2 )/2 < (v

(l)
1 + v

(r)
1 )/2, hence with

the monotonicity of f we obtain E1 > E2. ��

Essentially this theorem states that if a route section is to be traversed within
a certain time, it is most energy-efficient to do so at a uniform speed if possible.
This leads to the following corollary which lies at the very heart of our routing
approach.

Corollary 1. If for a route section s that has to be traversed in time t it is
possible to traverse it at uniform speed v := |s|/t, this is the most energy efficient
way of traversal.

Proof. Assume the most energy efficient way of traversal is not at uniform
speed. Then we can identify a subsection (potentially infinitesimally small) where
the first half is traversed at speed v(l), the second half at speed v(r), w.l.o.g.



90 F. Hartmann and S. Funke

v(l) < v(r). Increasing v(l) a bit and hence being able to decrease v(r) without
affecting the travel time for this subsection, we obtain a more energy efficient
way of traversal according to our Theorem, contradicting the assumption that
we started with the most energy efficient way of traversal. ��

This corollary immediately implies that on road sections of the same type (uni-
form speed-limit, not necessarily contiguous), we should always drive with uni-
form speed.

Furthermore, if we have a route composed of different road sections (with
differing maximum speeds), the energy-optimal traversal strategy if a fixed travel
time t has to be met is the following:

– along the route the maximum speed of travel is v∗

– for all road sections e with vmax(e) < v∗, we travel at speed vmax

– for all road sections e with vmax(e) ≥ v∗ we travel at speed v∗

Again, correctness follows from the fact that for road sections (even non-
contiguous) with the same maximum speed limit it is most beneficial to drive
at uniform speed. If, there is some route section e where we drive at speed
v′ < vmax(e) and v′ < v∗, it is more economical to drive slightly slower than v∗

on some other route section and slightly faster on e according to our Theorem.
In summary, the above discussion implies that once we fix a maximum speed

in our search for an energy-optimal s-t path with time bound T , the speeds on
all edges (and hence both time-consumption as well as energy consumption) are
uniquely determined, hence turning our problem into an ’ordinary’ constrained
shortest path problem where for two fixed metrics we are to compute the optimal
path with respect to one metric satisfying a constraint on the second.

Furthermore observe that due to the fact that road sections of the same type
have to be traversed at the same speed, the energy/travel time characteristics of
a path are solely determined by the aggregated lengths of the different road type
sections (e.g. 20 km inner-city road, 80 km country road, 400 km autobahn).

2.3 Contraction Hierarchies (CH)

Our proposed algorithms make use of a very elegant yet effective speedup tech-
nique for shortest path queries which we will sketch briefly in the following. The
CH preprocessing technique as introduced by Geisberger et al. in [6] augments
the graph G(V,E) with a set E′ of so called shortcuts, which span (large) sec-
tions of shortest paths and hence allow for a reduction of edge relaxations and
node settling steps in a Dijkstra run. During the CH-construction nodes are con-
tracted one-by-one in some suitable order, thereby assigning a label l : V → N

to each node. An edge (v, w) is referred to as upwards if l(v) < l(w) and down-
wards otherwise, a path is called upwards/downwards if it consists exclusively
of edges of that type. Shortcuts are inserted in such a way, that for each source-
target pair s, t ∈ V a shortest path exists in G′ = G(V,E ∪ E′) which can be
decomposed into an upward section starting at s followed by a downward sec-
tion ending in t. This property allows to restrict a bidirectional Dijkstra run
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to G↑
out(s) and G↓

in(t) which refer to the subgraphs of G′ containing only all
upwards paths starting in s or all downwards paths ending in t respectively. For
’normal’ shortest path queries, the restriction to G↑

out(s) and G↓
in(t) improves

query times by several orders of magnitude.

2.4 The Constrained Shortest Path Problem

The two-criteria Constrained Shortest Path problem (CSP) can be defined as
follows: We are given a (di)graph G(V,E) (|V | = n, |E| = m), a cost function
c : E → R

+ and a resource consumption function r : E → R
+ on the edges. A

query is specified by a source and a target node s, t ∈ V as well as a resource
bound R ∈ R

+. The goal is to determine the minimum cost path from s to t
whose resource consumption does not exceed R.

In our context of energy-efficient routing, the cost function equals energy
consumption, and the resource consumption equals travel time. It is important
to note, though, that CSP assumes scalar values for the cost and resource values
of individual edges, whereas in our case part of the problem is determining the
optimum speed for each road segment.

Typical solutions to the CSP problem enumerate Pareto-optimal solutions
by for example label setting [1]. In spite of NP-hardness of the CSP problem in
general, these approaches are somewhat feasible for real-world data, in particular
when combined with speedup techniques like contraction hierarchies, e.g. [7].

Our approach of taking into account speed variations into the energy-
optimization problem will use (CH-accelerated) CSP as a basic building block.

2.5 The General Energy-Efficient Routing Problem

With our insights from Section 2.2 we are now ready to formally define the
General Energy-Efficient Routing Problem (GEERP):

Definition 1 (GEERP). Given the straightline embedding of a directed graph
G(V,E), maximum speeds vmax : E → R on the edges, and an energy consump-
tion function f : R → R, the goal is to determine for a query (s, t, T ) a path π
from s to t as well as a speed value v∗ such that

– travel time along π does not exceed the time bound T :

∑

e∈π

|e|
min(vmax(e), v∗))

≤ T

– the energy consumption

∑

e∈π

|e| · f(min(vmax(e), v
∗))

is minimal over all possible paths and speed values.
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The assumption that one drives either at speed v∗ or vmax(e) on an edge e of
the path seems to be restrictive at first, but the above discussion has hopefully
made clear that an optimal solution to the problem must have this special struc-
ture, so in fact we are also taking care of the general problem where arbitrary
speeds are allowed on the road segments along the path π.

3 Algorithms

In the following we will describe algorithms to solve GEERP using the insights
of the previous Section. For simplicity let us first assume that the possible speed
values are discrete. We will come back to that issue later again.

3.1 Simple Reduction to CSP

If we have a discrete set of speeds {v1, v2, . . . vk}, we can ’simply’ solve GEERP
by considering k CSP instances; the i-th CSP instance is constructed by setting
the travel times and energy consumption according to a speed of vi (or the
respective maximum speed if that lies below vi). Among the at most k feasible
CSP solutions we pick the one with minimum energy consumption.

Note, though, that binary search over the set of feasible speeds is not possible,
since the minimum energy consumption to get from s to t within a certain time
limit does not depend monotonically on the speed, see Figure 2.

(a) Street Graph (b) Optimal CSP Solutions

Fig. 2. Non-monotonical energy consumption with two alternative routes and a time
constraint of 55 seconds (speed limits as in Table 1). Up to 25 m/s the lower path
yields the optimal fuel consumption.

3.2 SpeedUp Using CH

The running times to solve the CSP problem on real-world roadmap data can be
drastically improved by employing the speedup technique of contraction hierar-
chies. For example in [8], a contraction hierarchy is constructed which guarantees
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to preserve all Pareto-optimal paths. The crucial operation in the course of the
CH construction is a node contraction. In [8], whenever a node v with neigh-
bors u,w and (u, v) ∈ E, (v, w) ∈ E is to be contracted, a shortcut (u,w)
(with cost/resource consumption of the path uvw) has to be created if uvw is
a Pareto-optimal path (note that this – in contrast to the single-metric case –
typically leads to multi-edges between nodes). We could transfer this idea in a
straightforward manner by constructing for each speed vi a respective contrac-
tion hierarchy and use this for answering of the respective CSP instance. This
seems ineffective, though, since we expect a lot of correlation between ’good’
paths in the different contraction hierarchy graphs in particular for only slight
variations of the speed. The space consumption of this approach is prohibitive:
essentially we would need to store k times the CH-augmented road network
(here k is the number of different velocities to be considered) – unrealistic for
county-sized networks like that of Germany.

Instead our approach is to construct one contraction hierarchy that can be
used for all CSP instances to be solved during the course of our algorithm. Again,
the crucial operation is the node contraction step. When contracting a node v
with neighbors u,w and (u, v) ∈ E and (v, w) ∈ E, we need to create a shortcut
uw if there exists a velocity s∗ for which uvw is Pareto optimal. So we have to
compare the velocity-dependent functions associated with paths(which have the
same source and target) to decide on the creation of a shortcut. In Figure 3, left,
we have depicted two paths with their velocity/fuel-consumption dependency.
Each of the paths W1 and W2 is optimal for some choices of velocity. On the
other hand, Figure 3, right, depicts three paths W1, W2, W3, where W1 is
dominated by W2 and W3 since there is no speed value where W3 is on the
boundary of the lower envelope. To decide whether a shortcut replacing uvw has
to be created, we need to determine for all possible velocities the most energy-
efficient paths from u to w; if uvw is amongst them the shortcut is necessary.
We do this by explicitly computing the lower envelope of the speed-vs-energy
function of all paths from u to w. Note that while the complexity of the speed-vs-
energy function of a single route is constant (due to constantly many road types
only), the lower envelope might exhibit almost arbitrary complexity. If during
the CH construction the complexity of the lower envelope for some u,w-pair
explodes, we refrain from contracting node v. In general – as for example in [8] –
we only contract about 99.3% of all nodes leaving the remaining uncontracted.

In our experimental Section we will see that while we are far away from the
speedups possible for ’ordinary’ shortest path queries (see [6]), our CH con-
structed on edge cost functions still yields an order of magnitude improvement
compared to unaccelerated CSP constructions.

3.3 Heuristic Solutions

Even the fastest exact solution is bound by the possibly exponential-sized Pareto-
optimal solution sets, therefore a fast and simple solution to the CSP instances
(and hence GEERP) cannot be expected. For many real world applications like
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(a) Pareto-optimal Set after Insertion of
W1 and W2

(b) Set after Insertion of Path W3 with
now obsolete Path W1

Fig. 3. Two dimensional Example for combined Domination of Paths

the energy efficient routing a really optimal solution is not required, since a good
approximation will already lead to a substantial improvement.

If we only consider a solution to be Pareto-optimal if it improves the target
function by at least x% we are able to reduce the size of the solution sets sub-
stantially in real world applications. Even though the theoretical approximation
guarantee is only (1 + x)(i−1) with i being the edge count in the optimal path,
in practice, the resulting solutions are very close to optimal.

3.4 Further Remarks

At the very beginning we have restricted ourselves to a discrete set of veloci-
ties. Intuitively, this should not make a big difference, but we need to convince
ourselves that this is indeed the case. Consider our energy cost function and an
optimal path π∗ from s to t with maximum velocity v∗. Clearly, we can also
traverse the same path with the ’next’ velocity v′ > v∗ present in our discrete

set of velocities using at most a factor of f(v′)
f(v∗) more energy. If we discretize

the velocities at a granularity of at most 1 m/s, the respective difference cannot
exceed 5.1%; a finer discretization, of course, leads to a reduction of the provable
error (e.g. 0.5m/s yields at most 2.1%).

4 Experimental Results

To validate our approach and obtain approximation estimates, several real world
graphs from OpenStreetMap were chosen as test instances. We used Java 7 as
programming language with OpenJDK 7 as runtime environment. The contrac-
tion hierarchy was computed on a server with two AMD Opteron 6172 CPUs
and 96 GB RAM. All queries were performed on a workstation with one Core i7
4770K CPU and 16GB RAM.
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4.1 Benchmark Instances

The edge types shown in Table 1 represent the main types of streets found
in Germany with their usual speed limitations. Note that our observations in
Section 2.2 can easily be extended to the case where minimum speeds are given.
In this case, if v∗ is smaller than vmin(e), e is traversed at speed vmin(e).

Table 1. Used Street Types

City Country Autobahn

vmin[km/h] 50 80 100
vmax[km/h] 50 100 150

vmin[m/s] 14 22 28
vmax[m/s] 14 28 42

Table 2. Size and Area of used Graphs

Graph Area Nodes Edges

DE Germany 19, 478, 240 39, 454, 253

BW Baden-Württ. 2, 911, 711 5, 903, 801

ST Stuttgart 924, 688 1, 876, 030

We created the graphs shown in Table 2 by mapping the OSM edge types to
their closest representative. Edge types that can’t be used by motorized vehicles
or requiring special permits have been removed.

4.2 CH-Creation

Table 3 shows the statistics for the CH construction. As can be seen, the number
of edges has increased by less than factor of 2 after contraction of 99.3% of
the nodes, the remaining 0.7% peak nodes were left uncontracted. As observed
previously, e.g. in [7], contracting all nodes typically leads to a huge number of
shortcuts and even worse query performance.

Table 3. Size and preprocessing Time of CH Creation (using 20 cores on our server)

Graph Nodes Edges Peak Nodes Preprocessing Time[s]

DE-CH 19, 478, 240 70, 128, 496 154, 856 (0.7%) 11, 174

BW-CH 2, 911, 711 10, 972, 106 20, 317 (0.7%) 4, 767

ST-CH 924, 688 3, 452, 011 2, 743 (0.7%) 2, 408

4.3 CH-Accelerated CSP Queries – Exact and Approximate

We compared the runtime and number of priority queue pulls of the standard
label-setting CSP algorithm with the CH-label-setting algorithm. As to be ex-
pected we observe an improvement by an order of magnitude, see Table 4.

With these query times being considerably above the response times desirable
for route planning, we applied the heuristic proposed in Section 3.3 to reduce
the runtime while preserving a good solution quality. As shown in Table 5,
the runtime improves dramatically while keeping the average error below the
required minimal Pareto difference. If we accept an average error of 0.4%, a
CSP Query in BW can be answered in about 700 ms. Even on a country-sized
road network like that of Germany, we achieve query times of few seconds.
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Table 4. Query times for label-setting und CSP-CH at 42 m/s for the most energy-
efficient path using at most 20% more time than the quickest path. Average of 1, 000
(100 for BW/BW-CH) queries.

Graph label-setting CSP-CH

Query[ms] Pulls Query[ms] Pulls

BW / BW-CH 331, 143 6.3 · 108 17, 911 1.8 · 107
ST / ST-CH 27, 010 8.2 · 107 1, 730 2.4 · 106

Table 5. Heuristic CSP solution; pruning ratio for Pareto sets, average (ΔE) and
maximum (ΔEmax) deviation from energy consumption of optimal solution. ’Unused’
time budget (ΔT ). 42 m/s; at most 20% above quickest path.

ST-CH BW-CH DE-CH
Pruning query time ΔE ΔEmax ΔT query time ΔE ΔEmax ΔT query
ratio (ms) (ms) (ms)
1 1, 500 - - - 25, 900 (100%) - - - 570, 691

1.001 416 0.009% 0.06% −0.017% 4, 100 (16%) 0.015% 0.08% −0.016% 77, 300
1.005 146 0.114% 0.91% −0.174% 1, 200 (5%) 0.152% 0.85% −0.136% 20, 200
1.01 103 0.300% 1.512% −0.321% 692 (3%) 0.375% 1.83% −0.405% 8, 900

4.4 Solving GEERP

To solve the actual GEERP instance, we proceed as follows: First, we compute
for every possible speed a rough solution using a rather coarse pruning rule for
the Pareto sets. We start with the highest possible speed decreasing as long as
feasible (i.e. within the given time bound T ) solutions are found. This initial run
identifies a smaller set of velocities where a more fine-grained approximation is
computed. Table 6 lists the results.

Table 6. Heuristic GEERP solution results for DE-CH with total query time, pres-
election time and average cardinality of the preselected velocity set. The preselected
velocity set was obtained by performing a coarse approximation and selecting velocities
around the best solution. Average of 100 queries.

Fine-Grained Preselection Query Time[s] Preselected
Approximation Pruning Rule (including Preselection) Velocities

1.005 1.05 106.7 (30.3) 7.6

1.005 1.025 80.7 (49.1) 4.4

1.005 1.01 126.2 (109.6) 2.1

1.005 - 196.0 -

1.001 1.05 327.2 (30.3) 7.6

1.001 1.025 175.6 (49.1) 4.4

1.001 1.01 325.3 (109.6) 2.1

1.001 - 1,009.8 -
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In summary, we can compute a very good approximation to the most energy-
efficient route for given source and target within Germany meeting a hard time
constraint within a few minutes. As an example, we considered a source-target
pair in Germany with a minimum travel time of 3, 815 seconds and a fuel con-
sumption of 9, 025ml. If we accepted a travel time of 4, 570 seconds, a path
could be found by using a maximum speed CSP that required 6, 825ml of fuel.
By applying our GEERP solution, a path could be found that only required
6, 098ml fuel, an improvement of about 25% compared to the shortest path and
an additional improvement of 10% compared to the CSP path.
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Abstract. Many applications can be tackled with modern CDCL SAT solvers.
However, most of todays CDCL solvers guide their search with a simple, but very
fast to compute decision heuristic. In contrast to CDCL solvers, SAT solvers that
are based on look-ahead procedures spend more time for decisions and with their
local reasoning. This paper proposes three light-weight additions to the CDCL
algorithm, local look-ahead, all-unit-UIP learning and on-the-fly-probing which
allow the search to find unit clauses that are hard to find by unit propagation and
clause learning alone. With the additional reasoning steps of these techniques the
resulting algorithm is able to solve SAT formulas that cannot be solved by the
original algorithm.

1 Introduction

Complex search problems arise from various domains, ranging from logic puzzles over
scheduling problems like railway scheduling [11] to large industrial problems like ver-
ification [6]. All these problems can be solved natively with a special domain solver, or
the problem can be translated into satisfiability testing (SAT) [6]. Where randomly gen-
erated SAT formulas can be solved well with stochastic local search solver [17], SAT
instances from applications are usually solved with solvers rooted in the DPLL proce-
dure [7, 26], which perform a search that can be described as a depth-first-search. The
best improvement of the DPLL algorithm is clause learning [22, 27]. This algorithm
is known as the conflict driven clause learning (CDCL) algorithm, and adds learned
clauses to the formula during search.

With this algorithm, modern SAT solvers can process a huge search space in a short
amount of time. Reasons are for example the Two-Watched-Literal data structure [28],
which is a slim data structure for the major inference technique, or the VSIDS heuris-
tic [9,28], which leads to cheap to compute, but good decisions. With the help of restarts
of the search [10, 18, 32], and frequently removing learned clauses from the formula
again [1] the efficiency of the algorithm is increased even more.

The simplification of the formula is performed before the actual search of a SAT
solver is started in a preprocessing step [2, 9, 24] with tools like SATELITE [8] or CO-
PROCESSOR [25]. There are only a few SAT solvers, like for example LINGELING [5],
that interleave the search with simplification (inprocessing). Hence, by the way the
CDCL algorithm works, the majority of modern solvers miss a more global reasoning.

This paper proposes three simple and cheap to compute additions to the CDCL ar-
chitecture that can be efficiently embedded without decreasing the speed of the CDCL
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algorithm. Furthermore, the proposed techniques add only unit clauses, which are never
redundant.

The first addition proposes to perform a look-ahead step, which is capable of finding
backbones [29] (also known as necessary assignments [15]), by performing look-ahead
with up to five literals whenever five search decision have been made. By intersecting
the 25 sets of implied literals, the literals in the intersection can be added as unit clauses
to the formula. Typically, these unit clauses are hard to find for the CDCL algorithm.
The motivation for the second addition is the following fact: When the CDCL algo-
rithm learns a unit clause C1, the procedure is stopped and the clause is added. The
second addition proposes to continue the learning procedure in case the learned clause
is a unit clause, because the next learned clause C2 can be another unit clause as well.
Interestingly, the clause C2 cannot necessarily be found by unit propagation after C1

is learned. Hence, adding C2 to the formula prunes the search space. Finally, the third
technique performs probing [23] with a learned clause C by finding the set of literals
that is commonly implied by all literals of that clause. This probing is done on the bi-
nary implication graph of the formula to approximate costly operations on the formula,
similarly to the work of Heule et al. [16]. With each technique instances can be solved
that were not solved with the default setup of the solver, while the number of totally
solved instances does not decrease significantly.

The paper is structured as follows: first, basic notations for satisfiability testing are
given in Section 2. There, the algorithm of modern CDCL solvers is discussed as well.
Next, the proposed additions are presented in Section 3 and after the proposed algo-
rithms are compared to related work in Section 4, an empirical evaluation is presented
in Section 5. Section 6 concludes the paper.

2 Preliminaries

Let V be a fixed infinite set of Boolean variables. A literal is a variable v (positive
literal) or a negated variable v (negative literal). The complement x of a positive (neg-
ative, resp.) literal x is the negative (positive, resp.) literal with the same variable as x.
In SAT, formulas are finite clause sets. Each clause C is a finite set of literals. A clause
{x1, . . . , xn} is also written as disjunction (x1 ∨ . . .∨xn) and a formula {C1, . . . , Cn}
as a conjunction (C1 ∧ . . . ∧ Cn). The empty clause is denoted with ⊥, the empty for-
mula is denoted with �. The set of all variables occurring in a formula F (in positive
or negative literals) is denoted by vars(F ). Moreover, the set of all literals occurring in
a formula F is denoted with lits(F ).

The semantic of formulas is built on interpretations. An interpretation J is a set of
literals where for all variables v ∈ V it holds that either v ∈ J or ¬v ∈ J . A literal that
is present in the interpretation J is called satisfied, and if the complement l is present
in the interpretation, then the literal l is said to be falsified. As usual, the satisfaction
relation |= is defined as follows: J |= �, J �|= ⊥, J |= (x1 ∨ . . . ∨ xn) iff J |= xi

for some i ∈ {1, . . . , n}, and J |= (C1 ∧ . . . ∧ Cn) iff J |= Ci for all i ∈ {1, . . . , n}.
The interpretation J is a model for the formula F if and only if J |= F . In the case
that a formula F has a model, the formula F is satisfiable and otherwise the formula F
is unsatisfiable. The satisfiability problem (SAT) then asks whether a given formula F
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is satisfiable. This problem is solved with so called SAT solvers. An interpretation can
also be partial. In this case, not all variables of V are present in the interpretation. Still,
partial interpretations can satisfy formulas with the above definition.

The reduct of the formula F w.r.t. the interpretation J [14], in symbols F |J is com-
puted as follows: First, all satisfied clauses are removed from F and in the second step,
every falsified literal in F is removed. Intuitively, the reduct operator expresses the state
of a DPLL-based SAT solver, where the formula F is the working formula and J is the
working assignment.

In modern SAT solvers, the main deduction technique is unit propagation [2,5,9,24].
Given a formula F , and a partial interpretation J , then if there is a unit clause C = x
present in the reduct, C ∈ F |J , then this clause can be satisfied only by assigning
x to true. This assignment can only be achieved by adding the literal x to J . Such
an extension is denoted as a procedure UP, which returns the extended interpreta-
tion: UP(F, J) = Jx. Since there can be many unit clauses present in a formula, unit
propagation is executed until a fixed point is reached. This execution is denoted with
J ′ = UP(F, J)

�.
Finally, to approximate unit propagation of a formula F , only the binary clauses of

the formula can be considered separately, and then unit propagation is performed only
on this subset of clauses. This approximation is build on the binary implication graph
(BIG) of the formula. A BIG is a graph (V,E), where V is the set of literals of the
formula F , in symbols V = lits(F ), and the set of edges E is build on the implications
that are present as binary clauses: E = {(x, y), (y, x) | C ∈ F,C = (x ∨ y)}. To
approximate unit propagation for a literal x ∈ F , a depth-first-search can be run in the
BIG starting with node x. The set J ′ of literals of all the nodes that are visited during
this search are implied by x with respect to F , in symbols: (F ∧ x) |= J ′.

3 Finding Backbone Literals on the Fly

This section first discusses the CDCL algorithm that is used in modern SAT solvers.
Then, three additions are presented, which enable the algorithm to perform more global
reasoning.

3.1 The CDCL Algorithm

For applications, the satisfiability problem is solved best with the conflict driven clause
learning (CDCL) algorithm [26, 27]. The CDCL algorithm takes a formula F as argu-
ment and returns either SAT or UNSAT as result, in case the formula is satisfiable or un-
satisfiable. The algorithm starts with an empty partial interpretation J , and then extends
this interpretation by adding search decisions, and implied literals. The implied liter-
als are added by unit propagation, which is the major forward deduction technique of
modern SAT solvers. With the help of specialized data structures, like the two-watched
literal data structure, unit propagation can handle a large amount of clauses [28].

Search decisions are performed with so called decision heuristics. Such a heuristic
selects the variable that should be used for the decision, and decides whether this vari-
able should be bound to � or ⊥. The number of decision variables in an interpretation
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define the decision level of all following variables in that interpretation. A widely used
heuristic is the VSIDS heuristic [28] to select variables. A polarity is usually selected
by phase-saving [31], which tries to assign the variable its most recent polarity, or
the Jeroslow-Wang heuristic [21], which chooses the more frequent polarity. All these
heuristics have in common that their computation is very cheap. This way, the heuristic
decision might not be optimal, but the processing speed of the algorithm is kept high.

Another reason for the fast computation of the decision heuristic is the fact that as
soon as a conflicting state is reached, the CDCL algorithm might undo all decisions that
have been made so far. The reason is the conflict analysis procedure [27, 28, 34]. Let C
be a clause of the current formula F , and J be the current partial interpretation that has
been constructed by decisions and unit propagation. When the clause C is mapped to ⊥
by J , then there is no extension of J that could satisfy C. Hence, literals are removed
from J . These literals are determined by creating a new clause D with resolution. This
clause D is also mapped to ⊥ by J . Hence, J is reduced, such that the clause D can
still be satisfied. Next, D is added to the formula, and then the algorithm continues with
unit propagation and search. Since the clause D can be a unit clause, all literals of J
might be removed, so that all decisions are undone. There is no information available,
when the next conflict will be found, and how large the reduction of J might be. Thus,
in current SAT solvers it pays off to spend little time on search decisions, because the
quality of the current decision heuristics seems to be good enough.

Two more additions have been added to the CDCL algorithm: Restarts [10] are an-
other technique that helps to search in the right place, or at least to stop searching in
the wrong place. When the search is restarted, all learned clauses are kept, but all lit-
erals are removed from J . Modern solvers perform quite frequent restarts [18, 32]. By
keeping the decision heuristic information and learned clauses, solvers do not loose too
much information about their previous search focus, but by performing a restart, they
can escape hard sub formulas [10].

The second addition is manage the added learned clauses. As there are exponentially
many clauses that may be learned, SAT solvers aggressively remove clauses again to
keep the deduction of all technique quick [1]. For the performance of CDCL solvers
this step is crucial, because by removing irrelevant clauses, the current speed of the
search can be kept high.

The widely used version of CDCL has a few weaknesses. First, only unit propagation
is used as a deduction technique. Although with unit propagation implied literals can
be computed fast, there exists reasoning techniques that deduce more literals. Another
drawback is that only a single learned clause is generated from a conflict.1 By gener-
ating multiple good clauses, the search space is pruned without introducing significant
overhead. Finally, learned clauses can be used not only for unit propagation, but also for
probing based techniques [23]. In the following sections for each of these weaknesses
a solution is provided.

1 An exception is the solver in [20], which generates multiple clauses to reduce the conflict
graph.
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3.2 Local Look Ahead

Given the current formulaF and the current interpretation J , then the decision heuristic
of CDCL solvers selects a single literal x and next this literal is used for unit propaga-
tion. Differently, look-ahead solvers test the immediate implications J ′ = UP(F, Jx)
and J ′′ = UP(F, Jx) before using x as a decision literal. The literals in the intersection
of J ′ and J ′′ are known to be implied by the current reduct, F |J |= (J ′ ∩ J ′′), so that
these literals are added to J before x is used. Since CDCL solvers backjump and undo
multiple decisions in one step, this kind of reasoning might introduce overhead com-
pared to its contribution. However, as long as the interpretation J does not contain any
decision literal, then the literals of the intersection (J ′∩J ′′) are entailed by the formula
F directly, and hence these literals can be added as unit clauses to the formula.

A first extension is to use two literals for the propagation, to be able to infer more
literals during unit propagation, known as double-look-ahead [15]: For two literals L1

and L2, and for the four combinations L1L2, L1L2, L1L2 and L1L2 unit propagation
is executed and the intersection of the four resulting sets of immediate implications is
used. Since double-look-ahead cannot be executed for all variables of modern formulas,
look-ahead solver preselect a set of literals and perform the double-look-ahead only
based on these literals [15].

A similar idea can be used to run a more expensive look-ahead procedure dynam-
ically during search. Let n be a fixed number of look-ahead literals. When the n-th
decision literal L̇n is added to the current interpretation J , the n decision literals are
used to collect 2n sets of immediate implications by performing unit propagation with
the 2n possible combinations of the literal L1 to Ln and their complements. Finally, by
building the intersection of all collected sets, a set of unit clauses that is entailed by the
current formula F can be obtained.

The algorithm in Figure 1 illustrates this procedure. For the given set S of n = |S|
decision literals, the look-ahead procedure is executed. The intersection of all immedi-
ate implications J ′ is updated iteratively, and hence this intersection is initialized with
the set of all the literals of the formula F (line 1). Next, for all combinations of the
variables in S, where for each variable a polarity can be chosen (lines 2–6), the actual
combination of literals M is created (line 2), and with this combination unit propagation
is performed to collect the immediate implications J ′ (line 3). If this interpretation J ′

leads to a conflict with respect to the formula F , then the intersection I is not updated,
because a conflict implies all literals. Otherwise, the intersection I is reduced J ′ (lines
4–5). The procedure is interrupted as soon as the intersection I becomes empty(line 6),
because in this case no additional literals can be added. If the intersection contains lit-
erals after collecting all immediate implications, these literals are added to the formula
(line 7).

As already explained, the first n decision literals of the interpretation J can be used
for this procedure. Hence, the proposed algorithm executes local look-ahead as soon
as the n-th decision literal is added to J . After the look-ahead procedure has been
executed, the search should continue with the empty interpretation J .

Since n decisions will be reached soon again, and furthermore at least the first de-
cision literal will be the same as before, the proposed look-ahead procedure should not
be executed again as soon as the next n-th decision literal is added. Therefore, the set of
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LocalLookAhead (CNF formula F , set of literals S)

1 I := lits(F ) // initialize intersection
2 for each M ∈ complementPermutations(S) // all combinations to negate literals
3 J ′ := UP(F,M)� // execute unit propagation
4 if ⊥ �∈ F |J′ then // if there is no conflict
5 I := I ∩ J ′ // update intersection
6 if I = ∅ then break // early abort
7 F := F ∪ I // add the entailed unit clauses

Fig. 1. Pseudo code of the LocalLookAhead procedure

used decision literals S is stored as a tabu list. Only if the variables of this tabu list do
not contain any of the current n decision literals, the look-ahead procedure is executed
again, and the tabu list is updated. Furthermore, the presented algorithm is executed
only right after adding the n-th decision literal, (and not after some number m of de-
cisions greater n is added). This way, an additional disturbance of the search deeper
in the search tree is avoided. In general the number n can be chosen arbitrarily. Since
the number of combinations grows exponentially, the value n = 5 is proposed. Then,
the intersection I can be computed efficiently, because this way a single 64 bit integer
can store the truth value of a variable for all the 32 combinations, by using two bits per
variable assignment to represent �, ⊥ or whether the variable is not assigned.

3.3 Learning Multiple Unit Clauses

Modern SAT solvers learn a single clause when a conflict is obtained, usually by resolu-
tion according to the first-UIP scheme [28]. In case a unit clause C = x is learned, then
all decision literals are removed from the current interpretation J , the unit clause (x) is
added and then unit propagation is performed. As illustrated in the following example,
the standard learning procedure might miss learning additional unit clauses which can
be collected easily by a slight modification of the learning procedure. Given the formula

F =
(a ∨ b) ∧ (b ∨ c ∨ d) ∧ (d ∨ e) ∧ (e ∨ f)

∧ (e ∨ g) ∧ (f ∨ g ∨ i) ∧ (i ∨ j)

∧ (i ∨ k) ∧ (i ∨ l) ∧ (j ∨ k ∨m) ∧ (j ∨ l ∨m)

and let J be the interpretation of the form J = ȧbċdefgijlkm after the two decisions
a and c. Then, the clause (j ∨ l ∨m) is the empty clause under the interpretation J .

The conflict graph in Figure 2 illustrates the interpretation J with respect to the
clauses in the formula F . Each node in the graph represents a literal of the interpre-
tation, or in case of m the complement of a literal in the interpretation. Furthermore,
each literal is labeled with its decision level. The light grey nodes m and m mark the
conflicting literal on the right side of the graph. The black nodes a and c on the left side
of the graph represent the decision literals of J . Finally, the dark grey literals d, e and
j represent the unique implication points (UIPs) of the conflict graph [28]. Each solid
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Fig. 2. A conflict graph that motivates all-unit-UIP learning

incoming arc shows for a literal which literal assignments led to the propagation of the
current literal. Hence, the arc from f to i, and from g to i show that by assigning f
and g to �, the literal i has to be assigned to � as well. For each node with incoming
edges and the corresponding literal there is a clause in the formula F that is responsible
for the assignment of the literal. These clauses are called reason clause. For the literal
i, the clause (f ∨ g ∨ i) is the reason clause. The dashed arc from e to i in the graph
show the implication e → i, which is present in the formula F implicitly, meaning that
the clause (e ∨ i) is not present in the formula.

Typically, modern CDCL search learns first UIP clauses only [2, 5, 9, 24]. Such a
clause is obtained by first resolving the reason clauses for the conflict literals m and
m. Then, resolution is performed with the reason clauses along the arcs of the conflict
graph until only a single literal of the current decision level is left in the resolvent [27,
28]. The order of reason clauses to choose for resolution is obtained by traversing the
interpretation J from its back to the front. When a variable is found in the interpretation
J that is also present in the current resolvent, then this variable is used for resolution.
Otherwise the next variable in J is considered [9].

In the above example, the unit clause (i) is the first UIP clause. The second UIP is
the clause (e), the third UIP clause is the clause (d), and the fourth and last UIP clause
is the binary clause (b ∨ c). Although all mentioned unit clauses could be learned from
the given conflict graph, and thus are entailed by the underlying formula, the first UIP
scheme generates only the clause (i). Note that, based on the given formula, the unit
clause (i) does not find the other unit clauses unit propagation.

This weakness of the first UIP scheme can be overcome by continuing resolution
along the arcs in the conflict graph, in case the learned clause is a unit clause. This ad-
dition is called all-unit-UIP learning. Hence, the proposed addition to the usual CDCL
algorithm is to continue the learning procedure in case a unit clause C is learned. In
the above example, the continued conflict analysis detects the other unit clauses (e) and
(d), and also adds them to the formula.2 Note that the presented situation can occur
on any decision level, because missing all the unit clauses during conflict analysis is
independent of the first decision level.

2 Another way to resolve this issue would be to use (lazy) hyper binary resolution (LHBR), and
to generate the clause (i ∨ e) by resolving the clauses (e ∨ f) and (e ∨ g) with (f ∨ g ∨ i).
However, LHBR checks have to be performed during unit propagation, whereas the proposed
addition is necessary only during conflict analysis, and only if the learned clause is a unit
clause. Therefore, the introduced overhead of multi-unit learning is considered to be lower.
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3.4 Performing Probing During Search

After a clause is learned in the CDCL algorithm, this clause is added to the formula.
Most of the learned clauses are removed again after a short time [1, 9]. By using an
approximation of unit propagation and probing, additional knowledge can be inferred
from the formula by testing each learned clause further.

Given a learned clause C = (x1 ∨ . . . ∨ xk), then unit propagation on each literal
can be performed with the formula F to collect a set of intermediate implications: Ji =
UP(F, (xi))

�, 1 ≤ i ≤ k. As already shown by Lynce et al. in [23], the intersection
of these sets Ji is entailed by the formula F , in symbols F |=

⋂
1≤i≤k Ji, so that the

units of the intersection can be added to the formula. Since, this algorithm is considered
expensive [23] an approximation is proposed.

Similarly to the ideas of Heule et al. in [16], the binary implication graph (BIG) can
be used to cheaply approximate unit propagation. The approximation collects only the
literals that are implied by the current literal xi in the BIG of the formula F . A further
approximation is to not compute the transitive closure of the implied literals in the BIG,
but only considering the adjacency list of the literal xi. This adjacency list stores exactly
those literals that appear in a binary clause with the literal xi. This way, the overhead
of this technique is reduced. However, when building the intersection of the sets of the
immediate implications Ji, this approximation yields another benefit. By sorting the
adjacency lists in the BIG, the intersection of all sets

⋂
1≤i≤k Ji can be computed in a

single merging routine.

Treating Binary Clauses Specially. For special clause sizes extra inferences can be
used. For unit clauses no deduction is necessary, because all immediate implications
will be added by unit propagation. For learned binary clauses C = (a ∨ b), literals x
have to be found, which are implied by both a and b, in symbols a → x and b → x. This
check can be performed with the approximation presented by Heule et al. in [16]. They
traverse the BIG in a depth first manner and label each literal with two time stamps start
and end. The time stamp start is assigned when the literal is seen the first time in the
search, and the time stamp end is set when the depth first search finished the sub tree of
the literal. The value of the stamp is increased whenever a new literal is visited, or when
a visiting a literal finished. Let start be the function that returns that start time stamp
for a literal, and let end be the function that returns the end time stamp for a literal.
Then, a literal l is implied by another literal a in the BIG, if start(a) < start(l) and
end(l) < end(a). Unfortunately, this check is incomplete, as also argued by Heule et al.
Still, such a check enables adding more literals to the set of commonly implied literals
for binary clauses, because literals can be added even when they are not present in the
adjacency list of both literals a and b.

In general, for binary learned clauses, all literals of the formula could be tested with
the above approximation. However, since such an exhaustive check is expensive, the
literals for the check are limited to the literals x that are present in the adjacency lists
of the two literals a and b. A literal x can be added to the set J ′ of commonly implied
literals, if x is present in both adjacency lists, or if x is present in the adjacency list of
one literal, and is implied by the other literal – checked with the approximation above.
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Table 1. Empirical evaluation on the full benchmark

AUIP LLA PLAIN OTFP

Solved 1594 1588 1615 1604
Unique 13 53 22 11

SAT 917 916 935 925
UNSAT 677 672 680 679

conflicts / s 13338 11101 12123 11681

4 Related Work

There are additional techniques that help to simplify the formula during search or that
infer additional knowledge. A technique that leads to similar effects as the all-unit-UIP
learning is lazy hyper-binary-resolution(LHBR) [4], that checks for binary resolvents
during propagation. By adding these binary resolvents, the missing implication is added
to the formula. However, the computation of LHBR is more expensive than the compu-
tation of all-unit-UIP learning, because LHBR is tested for a clause during propagation
whereas all-unit-UIP learning is only executed if the first UIP clause is a unit clause.
Similarly to LHBR, the dominator analysis [12] analyzes clauses during propagation,
and infers additional literals during conflict analysis.

Another technique that uses learned clauses for more deduction than unit propagation
is on-the-fly self subsumption [13]. During the conflict analysis it is checked whether the
resolvent D of the previous resolvent C1 and the reason clause C2 subsumes the reason
clauseC2. In this case,C2 is replaced in the formula byD, effectively removing one literal
from that clause. This technique is enhanced by the concurrent clause strengthening of
Wieringa [33]. By running the clause vivification algorithm [30] on the learned clauses
in a separate solver environment, the size of learned clauses can be reduced.

Finally, the most powerful extra deduction during search can be achieved by using
a complex CNF simplifier during search, as done for example in LINGELING [5]. This
way, hyper binary resolution and clause strengthening can be executed to cover for ex-
ample all-unit-UIP learning, however, implementing a full CNF simplifier is non-trivial.
On the contrary, implementing the proposed additions to a CDCL solver requires the
addition only a few lines of code. Furthermore, inprocessing could miss some relevant
learned clauses, because the removal heuristic can delete these clauses before the next
inprocessing step is scheduled.

5 Empirical Evaluation

The presented algorithm additions are implemented into the SAT solver RISS [24],
which is an extension of the SAT solver GLUCOSE 2.2 mainly by incorporating the
CNF simplifier COPROCESSOR [25].3 To stay as close as possible to GLUCOSE, GLU-
COSE’s simplification algorithms are used. The evaluation is performed on all industrial

3 RISS 4.27 with the additions is available at
http://tools.computational-logic.org.

http://tools.computational-logic.org
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instances and all crafted instances that have been used in the SAT Race 2010, the SAT
Competitions 2011 and 2013, and the SAT Challenge 2012. Furthermore, the unse-
lected instances of these competitions 2011 and 2012 are added. The CPU time limit is
set to 3600 seconds and the memory limit is 3.5 GB. The used CPU is an AMD Opteron
6274 with 2 MB level 2 cache that is shared by two cores. The experiment uses one out
of four cores for a SAT solver to achieve stable results. The following abbreviations
are used for the configurations: local look-ahead (LLA), all-unit-UIP learning (AUIP),
on-the-fly-probing (OTFP) and PLAIN for the default configuration.

Table 1 shows the data for all the proposed additions to the algorithm, as well as run-
ning the plain algorithm on the full benchmark. Besides the number of solved instances,
the number of unique contributions are presented – this number shows how many in-
stances can be solved by the given configuration only – as well as the number of solved
satisfiable and unsatisfiable instances. Interestingly the configuration with the highest
number of unique contributions, namely LLA, solves the least number of instances. An-
other interesting fact is that the configuration AUIP cannot solve more instances than
the configuration PLAIN, although it generates more conflicts per second, indicating
that the search of this solver is faster. The solver seems to be tuned highly, so that any
small change decreases its performance. The number of less solved instances can be
explained better for the two remaining configurations: both LLA and OTFP produce
less conflicts per second than the configuration PLAIN. The unique solver contribu-
tion of each solver gives a hint how well a portfolio of the four configurations would
perform, by simply summing up the number of solved instances of the configuration
PLAIN, with the unique solver contributions of the other configurations – with this cal-
culation 1692 instances could be solved. The actual number of solved instances of all
the configurations, also known as the virtual best solver, is 1726 solved instances.

The number of revealed additional unit clauses varies for each technique and each
instance. Most unit clauses can be found with LLA, followed by OTFP and some unit
clauses can be found by AUIP. For more than half of the formulas of the benchmark no
additional unit clauses are found with a technique. For the formulas where unit clauses
can be found, up to 10% of the variables of the formula can be found. When all three
techniques are enabled together, then the performance of the solver does not improve,
but the median run time decreases due to the overhead of all techniques. The number

Table 2. Empirical evaluation on crafted competition benchmark

Category (instances) AUIP LLA PLAIN OTFP
CRAFTED2011 (300) 85 83 85 85

SAT 58 (0) 57 (6) 60 (0) 60 (0)
UNSAT 27 (1) 26 (1) 25 (0) 25 (0)

CRAFTED2012 (600) 286 291 294 290
SAT 180 (0) 183 (13) 186 (2) 183 (0)

UNSAT 106 (0) 108 (2) 108 (1) 107 (1)

CRAFTED2013 (300) 118 116 115 108
SAT 84 (3) 86 (7) 85 (1) 80 (0)

UNSAT 34 (4) 30 (1) 30 (0) 28 (0)
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Table 3. Empirical evaluation on industrial competition benchmark

Category (instances) AUIP LLA PLAIN OTFP

INDUSTRIAL2010 (100) 65 65 65 65
SAT 14 (0) 15 (2) 14 (0) 15 (1)

UNSAT 51 (0) 50 (0) 51 (0) 50 (0)

INDUSTRIAL2011 (300) 157 155 158 159
SAT 75 (0) 74 (1) 75 (1) 76 (0)

UNSAT 82 (0) 81 (0) 83 (2) 83 (1)

INDUSTRIAL2012 (600) 434 437 440 444
SAT 205 (1) 204 (5) 208 (3) 207 (1)

UNSAT 229 (1) 233 (7) 232 (3) 237 (4)

INDUSTRIAL2013 (300) 112 107 120 115
SAT 66 (1) 65 (4) 72 (4) 68 (2)

UNSAT 46 (2) 42 (2) 48 (2) 47 (1)

of revealed unit clauses also increases for some formulas, so that different techniques
reveal different unit clauses. However, this additional number of unit clauses does not
improve the solver to solve more formulas than the configuration PLAIN.

Next, Table 2 shows the results on crafted competition instances. On this kind of
instances, the additional reasoning helps solving more instances. Especially on unsatis-
fiable instances, this effect is visible. An effect that can be seen is that the performance
of a configuration is not stable over the different benchmark sets. The 2011 bench-
mark can be solved equally well by all configurations, for 2012 PLAIN solves most
instances, and the 2013 benchmark can be solved best by AUIP. Industrial benchmarks
show a similar picture (Table 3). The number of solved instances is again different for
each year. In the 2012 benchmark the additionally solved unsatisfiable instances of the
configuration OTFP result in the highest number of total solved instances. Similarly, the
configuration PLAIN solves the most instances of 2013.

As in the instance sets before, the configuration LLA usually solves less instances,
but has more unique contributions. This effect might be explained as follows: The un-
derlying solver RISS is already tuned on existing benchmark sets based on the number
of totally solved instances. Hence, any addition to the algorithm usually results in de-
creasing the number of instances, since the default configuration resulted in a local
minimum. The configuration LLA seems to push the algorithm configuration into an
interesting direction, so that the solver is able to solve different instances, however, at
the same time other instances cannot be solved any more in the time limit. By tuning the
complete solver configuration with a tool like PARAMILS or SMAC [19], a setup might
be found that can solve many instances, and furthermore provides a higher number of
unique contributions. This step is considered as future work.

6 Conclusion

Modern CDCL solvers are very important for solving many industrial applications, as
well as academic problems. The used algorithm is optimized to process a huge search
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space in a short amount of time. This paper proposes three additions to this algo-
rithm that aim at finding backbone literals on the fly during search without significant
overhead. The three techniques local look-ahead, all-unit-UIP learning and on-the-fly-
probing allow to solve instances that cannot be solved with the plain algorithm, but
the total number of solved instance of the benchmark does not increase due to the fact
that the used SAT solver is already highly tuned. This drawback can be weakened by
two additions that are considered as future work. First, by tuning the parameters of the
solver with the new techniques a configuration might be found that outperforms the
current setup. Furthermore, by combining the different techniques as a portfolio may
also result in a higher performance.

Acknowledgments. The author thanks the ZIH of TU Dresden for providing the com-
putational resources to produce the experimental data for the empirical evaluation and
the reviewers for the helpful comments.
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Abstract. Many real world problems are solved with satisfiability testing (SAT).
However, SAT solvers have documented bugs and therefore the answer that a
formula is unsatisfiable can be incorrect. Certifying algorithms are an attractive
approach to increase the reliability of SAT solvers. For unsatisfiable formulas
an unsatisfiability proof has to be created. This paper presents certificate con-
structions for various formula simplification techniques, which are crucial to the
success of modern SAT solvers.

1 Introduction

The complexity class NP is one of the mostly studied classes in artificial intelligence.
Due to the improvement of SAT solving technology in the last two decades, translating
NP problems into Boolean satisfiability problem (SAT) became a successful and at-
tractive approach. SAT solving is now widely applied to many applications in software
verification [6], planning [24, 35], bioinformatics [27] or scheduling [12]. This success
is also due to formula simplification that became an important part of SAT solvers and
increase the robustness of the solver [8, 13, 14, 17, 18, 21, 26, 28, 29, 36, 37].

However, SAT solvers have documented bugs and therefore the answer of the solver
can be incorrect. Certifying algorithms [7,32] are an attractive approach to increase the
reliability of SAT solvers. For satisfiable formulas, a model serves as a certificate for
satisfiability; for unsatisfiable formulas, a proof of unsatisfiability is constructed: Van
Gelder introduced resolution graph proofs in [10], which trace the clauses that have
been used for deriving the learned clause. When the empty clause is derived, the for-
mula is unsatisfiable and the trace can be easily verified. However, it requires significant
effort to modify the SAT solver to emit resolution graph proofs and these proofs require
a significant amount of space. Therefore, Goldberg et al. proposed reverse unit propa-
gation (RUP) [11], which is more compact: If unit propagation on the formula together
with the negated literals from the clause results in a conflict, the clause follows from
the formula. In particular, learned clauses are RUP inferences [5]. Consequently, the se-
quence of learned clauses of CDCL-based SAT solvers is a RUP-proof. The verification
of RUP proofs is more complex than for resolution graph proofs, but the RUP proof
size is much smaller. Clause deletion is an important improvement of RUP proofs [15]
(DRUP) and captures clause forgetting [2, 3, 9] in SAT solvers. Since DRUP cannot
verify the addition of clauses that are not entailed by the formula, the format deletion
resolution asymmetric tautology (DRAT) was proposed [16], that combines clause dele-
tion, reverse unit propagation [11], and the redundancy property resolution asymmetric
tautology [22].

C. Lutz and M. Thielscher (Eds.): KI 2014, LNCS 8736, pp. 111–122, 2014.
c© Springer International Publishing Switzerland 2014
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Järvisalo et al. have shown in [22] that many important techniques, such as pure
literals, blocked clauses [21] are resolution asymmetric tautologies. For bounded vari-
able addition [29] and extended resolution [37], it is stated how to construct DRAT
derivations in [16]. Unfortunately, the general structure of DRAT derivations for gen-
eral resolution-based techniques is not explicitly stated in the literature, and for some
techniques such as covered clause elimination, a short DRAT derivation is not known.

Our Contributions. This paper presents various DRAT constructions. In particular:

– We develop a general structure for DRAT derivations for resolution-based simplifi-
cation techniques, and apply the structure to obtain short derivations for hyper binary
resolution, common direct implication, variable elimination, self-subsuming resolu-
tion, equivalent literal elimination, vivification and 2SAT-based reasoning. To the
best our knowledge, the DRAT construction for covered clause elimination, and a
variation of bounded variable addition are new.

– We discuss the novel simplification technique covered literal elimination and show
that this technique is covered with DRAT.

– We extend the preprocessor Coprocessor1 to emit DRAT derivations.

Structure. Section 2 presents preliminaries about propositional logic. Thereafter, in
Sect. 3 we present DRAT derivations as certificates of unsatisfiability. Our contributions
are then presented in Sect. 4, where we construct DRAT derivations for various formula
simplifications, and proof various properties. We conclude in Sect. 5.

2 Preliminaries

We assume the reader familiar with propositional logic. We consider a fixed infinite set
V of Boolean variables. A literal is a variable v (positive literal) or a negated variable v
(negative literal). The set of all literals is denoted by L. The complement x of a positive
(negative, resp.) literal x is the negative (positive, resp.) literal with the same variable
as x. In SAT, we deal with finite clause multisets, called formulas. Each clause C is a
finite set of literals. Multiset operators are denoted as set operators, but marked with
a dot. The set of variables occuring in a formula F is denoted by vars(F ). An inter-
pretation is a mapping from the set of truth values {�,⊥} and interprets clauses as
disjunctions and a multiset of clauses as a conjunction under the usual semantics. A
clause is a tautology, if it contains x and x for some variable x ∈ V . If I(F ) = �,
then I is a model of F and F is called satisfiable In the case that there is no model of a
formula F , it is unsatisfiable. We use |= to denote logical entailment. Two formulas F
and F ′ are equisatisfiable, if they are both satisfiable or both unsatisfiable. Replacing
all occurrences of the variable v with the variable w in the formula F is denoted by
F [v �→ w]. The set of all variables occurring in a formula F (in positive or negative
literals) is denoted by vars(F ). Moreover, we denote the set of all literals occurring in
a formula F as elements in a clause by lits(F ).

1 Available at http://tools.computational-logic.org/

http://tools.computational-logic.org/
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Let x ∈ C1 and x ∈ C2. Then the clause (C1 \ {x}) ∪ (C2 \ {x}), denoted
by C1 ⊗x C2, is the resolvent of the clauses C and D upon the literal x. A linear
resolution derivation from the clause C to the clause D in the formula F is a finite
sequence of clauses (Ci | 1 ≤ i ≤ n) such that C1 = C, Cn = D and Ci is a resolvent
of the clause Ci−1 and some clause in the formula F for all i ∈ {2, . . . , n}. A resolu-
tion derivation in the formula F to the clause D is a finite sequence (Ci | 1 ≤ i ≤ n)
of clauses such that D = Dn, Ci ∈ F or Ci is a resolvent of two clauses Cj and Ck,
where 1 ≤ j < i ≤ n, and 1 ≤ k < i ≤ n.

3 DRAT as a Certificate for Unsatisfiability

Given a formula F and a literal set S, asymmetric literal addition is the function
ALA : 2L �→ 2L where

ALAF (S) = S ∪ {x | {x1, . . . , xn, x} ∈ F and xi ∈ S for all 1 ≤ i ≤ n}.

A clause C is an asymmetric tautology (AT) in the formula F , if ALAn
F (C) is a tautol-

ogy for some n ∈ N. If the context is clear, we will sometimes drop the index F . The
following example illustrate the definitions:

Example 1. Consider the formulaF = {̇{x1, x2}, {x1, x2, x3}, {x3, x2}}̇. We have the
following: (i) the clause {x1} is an asymmetric tautology w.r.t. the formula F , because
ALAF ({x1}) = {x1, x2} and ALAF ({x1, x2}) = {x1, x2, x3, x3}, (ii) the clause ∅ is
not an asymmetric tautology because ALAF (∅) = ∅, and (iii) the clause {x2} is not
an asymmetric tautology because ALAF ({x2}) = {x2, x1} is a fixed point. In fact, the
clause {x1} is the single, subset minimal asymmetric tautology in the formula F .

The clause C is a resolution asymmetric tautology (RAT) w.r.t F , if there is a literal x
such that all resolvents of the clause C and clauses D ∈ F with x ∈ D upon x are
asymmetric tautologies.

Example 2. Consider the formula from the previous example. We have the following:
(i) the clause {x1} is a RAT because there is no clause D ∈ F with x1 ∈ D, (ii) the
clause {x2} is a RAT, because there is only one resolvent {x1} which is an AT, (iii)
the clause {x3} is a RAT, because there is only one resolvent {x1, x2}, which is an AT
because it is subsumed by the AT {x1}, and (iv) the clause {x2, x3} is a RAT w.r.t. the
literal x2 because the resolvent {x1, x3} is an AT and the resolvent {x3, x3} is an AT.

Järvisalo et al. have shown two nice properties in [22]: the addition of asymmetric
tautologies and resolution asymmetric tautologies preserve satisfiability. We will now
present DRAT derivations, that were introduced by Heule at. al. in [16].

A labelled clause is a pair (C,L), where C is a clause and L ∈ {d, at, rat}. To
ease our notation, we write CL instead of (C,L). We consider finite sequences of la-
belled clauses, where the empty sequence is denoted by Λ. The associated formula of
a sequence of labelled clauses (Ci | 1 ≤ i ≤ n) w.r.t. the formula F is recursively
defined as follows: F0 = F , and Fi = Fi−1 ∪̇ {̇C}̇, if Ci = Cat or Ci = Crat, and
Fi = Fi−1 \̇ {̇C}̇ if Ci = Cd for all i ∈ {1, . . . , n}. A sequence of labelled clauses
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Method Structure of the Resulting Formula

Clause Elimination F \̇ {̇C}̇
Clause Addition F ∪̇ {̇C}̇
Literal Elimination (F \̇ {̇C}̇) ∪̇ {̇C \D}̇
Literal Addition (F \̇ {̇C}̇) ∪̇ {̇C ∪D}̇
Resolution-based (F \̇G) ∪̇ {̇C1, . . . , Cn}̇
2SAT-based (F \̇G) ∪̇ {̇D1, . . . , Dn}̇

Fig. 1. Categorization of formula simplification methods. F,G denote (possibly empty) formulas,
C,D non-empty clauses, and the clauses Ci are obtained by a general resolution derivation in
F ∪̇G, and Di denote clauses that are logically entailed by the binary clauses in F ∪̇G.

(Ci | 1 ≤ i ≤ n) is a deletion resolution asymmetric tautology (DRAT) derivation in
the formula F if and only if for all 1 ≤ i ≤ n it holds that 1. if Ci = Cat, then C is
an asymmetric tautology in the associated formula Fi−1, and 2. if Ci = Crat, then C is
a resolution asymmetric tautology in the associated formula Fi−1. A DRAT refutation
for the formula F is a DRAT derivation (Ci | 1 ≤ i ≤ n) w.r.t. F such that ∅ ∈ Fn. If
a DRAT refutation for the formula F exists, then the empty clause can be inferred from
which we conclude that the formula F is unsatisfiable.

4 Formula Simplification Techniques

A formula simplification technique T is a mapping T : F �→ F from the set of formu-
las F into the set of formulas F . We investigate the question whether we can construct
a short, corresponding DRAT derivation for formula simplification techniques:

Definition 1. A technique T has short DRAT-derivations, if there is a polynomial p
such that for every formula F there is a DRAT-derivation (Ci | 1 ≤ i ≤ n) w.r.t. F
such that Fn = T (F ) and n ≤ p(|F |+ |T (F )|).

We distinguish between clause elimination methods, resolution-based methods, clause
addition methods, literal elimination, 2SAT-based and addition techniques (see Fig 1).

4.1 Clause Elimination and Literal Addition Techniques

First, we consider clause elimination and literal addition techniques. For instance, sub-
sumption elimination, tautology elimination, hidden tautology elimination [17] and
blocked clause elimination [21], covered clause elimination [18] belong to the first cat-
egory, while techniques such as hidden literal addition [19] and covered literal addi-
tion [18] belong to literal addition techniques.

Proposition 1. Clause elimination and literal addition techniques have short DRAT-
derivations.
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Proof. Consider a clause elimination technique TCE, the polynomial p(s) = 2, and
a formula F . Then TCE(F ) = F \̇ {̇C}̇ for some clause C, and the labelled clause
sequence Cd is a DRAT derivation of length 1 < p(|F | + |T (F )|). Hence, clause
elimination techniques have short DRAT-derivations. Consider a literal addition tech-
nique TLA. Then, TLA(F ) = (F \̇ {̇C}̇) ∪̇ {̇C ∪ {x}}̇ for some clause C and literal x.
Note that the clause C ∪ {x} is an asymmetric tautology in F , because C ∈ F and
therefore {y, y} ⊆ ALAF (C) for some literal y ∈ C. Hence, the labelled clause se-
quence (C ∪ {x})atCd is a DRAT derivation w.r.t. F of length 2 ≤ p. �

Hence, if a technique removes a clause C from a formula, we can add Cd to the
DRAT derivation, and if a techniques adds the literal x to a clause C, we add
(C ∪ {x})atCd to the DRAT derivation.

4.2 Resolution-Based Simplification Techniques

We proceed with resolution-based techniques. In fact, many important techniques such
variable elimination [8, 36] self-subsuming resolution [13, 14] and equivalent literal
substitution [26] are resolution-based techniques. Before we study these techniques,
we first proof various properties of resolution in general. We start with the proof that
resolvents are asymmetric tautologies:

Lemma 1. Let C be the resolvent of the clauses D ∈ F and E ∈ F upon the vari-
able v. Then the clause C is an asymmetric tautology in F .

Proof. Follows straightforward since {v, v} ⊆ ALAF (C). Hence, resolvents in the
formula F are asymmetric tautologies in F . �

The above Lemma allows us to add a resolvent in the formula F to a DRAT deriva-
tion in F as Cat. However, this is not the case when the added clause is the result of
multiple resolution steps, as the following example demonstrates:

Example 3. Consider the formula F = {̇{x, y, z}, {z, y}, {x, y, z}, {y, z}}̇. The re-
solvent of the clauses {x, y, z} and {z, y} upon z is C = {x, y}, and the resolvent
of the clauses {x, y, z} and {y, z} upon z is the clause D = {x, y}. However, the
resolvent {x} of the clauses C and D upon y is not an asymmetric tautology, since
ALAF ({x}) = {x}.

To add the result of multiple resolution steps D to a DRAT derivation, we need to
add auxiliary clauses before we add Dat to the derivation. Note that not all intermediate
resolution steps need to be added:

Lemma 2. Let C and D be asymmetric tautologies w.r.t. F with x ∈ C and x ∈ D.
Then the resolvent E of C and D upon x is an asymmetric tautology in the formula
F ∪̇ {̇C}̇ and in the formula F ∪̇ {̇D}̇.

Proof. Consider the first formula. We then know that E∪{x} ⊆ ALAF ∪̇ {̇C}̇(E). Since
D = E ∪ {x} and D is an asymmetric tautology, there is n ∈ N such that ALAF (D)
contains a complementary pair of literals. Then,ALAn+1

G (E) contains a complementary
pair of literals.
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This means that the clauses C and D are not required to be both in the formula
F . Instead, it is sufficient to just add one of these clauses to the formula, to add their
resolvent. If we consider linear resolvents, we do not need to add auxiliary clauses.

Lemma 3. If there is a linear resolution derivation to the clause C in the formula F ,
then the clause C is an asymmetric tautology in the formula F . [5]

Proof. We proof the claim by induction on the length of the derivation. For the base
case, n = 1, we know that C = D and then D ∈ F . Every clause in a formula F is
an asymmetric tautology in F . For the induction step, assume that Ci is an asymmetric
tautology and the resolution candidate Di ∈ F . Then, there is m such that ALAm

F (Ci)
is a tautology. Then Ci+1 = Ci ⊗x Di for some literal x ∈ Ci and xi ∈ Di, where
Ci ⊗x Di = (Ci \ {x}) ∪ (Di \ {x}). Then, x ∈ ALAF (Ci ⊗x Di) and because
ALAm

F (Ci) is a tautology we conclude that ALAm+1
F (Ci ⊗x Di) is a tautology. �

In particular, this means that all resolution-based techniques, i.e. formula simplifica-
tion methods that add resolvents and delete some clauses, have corresponding DRAT-
derivations. The result of a resolution-based technique is (F \̇G) ∪̇ {̇C1, . . . , Cn}̇. Let
G = {̇D1, . . . , Dn}̇. Recall that there is a resolution derivation (Ci,j | 1 ≤ j ≤ k) in
the formula F ∪̇G to the clause Ci for each i ∈ {1, . . . ,m} by definition of resolution-
based techniques. We construct the proof derivation P1P2P3. Intuitively, the deriva-
tion P1 adds all intermediate resolvents and the clauses Ci, the derivation P2 deletes all
intermediate resolvents but not the clauses Ci, and the derivationP3 removes all clauses
in G. Formally,

P1 = Cat
1,1C

at
1,2 . . . C

at
1,kC

at
2,1 . . . C

at
m,k

P2 = Cd
1,1 . . . C

d
1,k−1C

d
2,1 . . . C

d
2,k−1

P3 = Dd
1 . . . D

d
n

Then the labelled clause sequenceP1P2P3 is a DRAT derivation in F ∪̇G. In the rest of
this subsection, we present the DRAT derivation for some important resolution-based
formula simplification techniques.

Hyper Binary Resolution [4]. Given an input formula F with {y, x1, . . . , xn} ∈ F
and {xi, z} ∈ F for all i ∈ {1, . . . , n}. Then, the clause {y, z} is a hyper binary
resolvent w.r.t. the formula F , and the result of applying hyper binary resolution is
the formula F ′ = F ∪̇ {̇{y, z}}̇. A hyper binary resolvent C in the formula F is an
asymmetric tautology in the formula F . In fact, the hyper binary resolvent can be
obtained by the finite linear resolution derivation (Ci | 1 ≤ i ≤ n + 1), where
C1 = {y, x1, . . . , xn}, and the resolution candidate in the formula is Di = {xi, z}.
Then, Ci = {y, z, xi, xi+1, . . . , xn} for i ∈ {2, . . . , n + 1}. Consequently, hyper bi-
nary resolvents are asymmetric tautologies in the formulaF . Then, the addition of hyper
binary resolvents has the corresponding short DRAT-derivation Cat.

Common Direct Implication [23]. A literal x is a common direct implication, if there
is a clause {x1, . . . , xn} ∈ F and {xi, x} ∈ F for all i ∈ {1, . . . , n}. There is a
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linear resolution derivation (Ci | 1 ≤ i ≤ n + 1) from the clause {x1, . . . , xn} to the
clause {x}, where Ci = {x, xi, xi+1, . . . , xn} for all i ∈ {2, . . . , n + 1}. Hence, the
clause {x} is an asymmetric tautology in the formula F . Consequently, the addition of
direct implications has a short and corresponding DRAT-derivation Cat.

Variable Elimination [8, 36]. For two formulas F1, F2 and a variable v, the multiset
of all non-tautological resolvents of a clause in the formula F1 with a clause in the
formula F2 upon the variable v is denoted by F1 ⊗v F2. The multiset of clauses in the
formula F that contain the literal x is denoted by Fx. Given an input formula F and a
variable v ∈ V , variable elimination adds all resolvents of the input formula F upon the
variable v, and afterwards deletes all clauses containing the literals v or v. Formally, the
result of applying variable elimination is the formula

F ′ = (F ∪̇ (F v ⊗v F v)) \̇ (F v ∪̇F v).

Let F v ∪̇F v = {̇D1, . . . , Dm}̇. By Lemma 3, the clauses Fv ⊗ Fv = {̇C1, . . . , Cn}̇
are asymmetric tautologies in the formula F , and therefore the labelled clause sequence
Cat

1 . . . Cat
n Dd

1 . . . D
d
m is a DRAT derivation. Moreover, it is short, because n ≤ |F |2

and m ≤ |F |.

Self-Subsuming Resolution [13, 14]. Given a formula F with C ∈ F and D ∈ F .
Suppose that C ⊗ D subsumes the clause C, i.e. C ⊗ D ⊆ C, self-subsuming reso-
lution produces the formula (F \̇ {̇C}̇) ∪̇ {̇C ⊗ D}̇. By Lemma 1, the clause C is an
asymmetric tautology and consequently, (C ⊗D)atCd is a short DRAT derivation.

Equivalent Literal Elimination [26]. Two variables x and y are equivalent in the
formula F , if the formula F logically entails the equivalence of the two literals. We
assume that the equivalence is stated in the formula, i.e. {̇{x, y}, {x, y}}̇ ⊆̇F . Typically
equivalent literals are obtained by reasoning in the binary causes of the formula F and
therefore are asymmetric tautologies (see Sect. 4.3). Equivalence elimination produces
the formulaF ′ that is obtained by F by replacing each occurrence of x with y. Formally,

G1 = {̇C ∈ F | x ∈ C or x ∈ C}̇ = {̇C1, . . . , Cn}̇
G2 = {̇(C \ {x}) ∪ {y} | x ∈ C and C ∈ F }̇
G3 = {̇(C \ {x}) ∪ {y} | x ∈ C and C ∈ F }̇
F ′ = (F \̇G1) ∪̇G2 ∪̇G3

Note that (C \ {x}) ∪ {y} = C ⊗x {x, y} if x ∈ C and consequently, the introduced
clauses {̇D1, . . . , Dm}̇ = G2 ∪̇G3 are asymmetric tautologies by Lemma 1. Then,
Dat

1 . . . Dat
mCd

1 . . . C
d
n is the corresponding DRAT-derivation. Moreover, it is short, be-

cause n ≤ |F | and m ≤ |F |.

Vivification, Asymmetric Branching [34]. Vivification shortens clauses in the for-
mulaF by replacing the clauseC = {x1, . . . , xn}with the clauseD = {x1, . . . , xn−1}
if unit propagation in F ∪̇ {̇{x1}, . . . , {xn−1}}̇ leads to a conflict. i.e. C′ is an asym-
metric tautology. Hence, DatCd is the corresponding, short DRAT derivation.
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4.3 2SAT-Based Simplifications

2SAT-based simplification methods are very attractive in theory as reasoning in 2SAT
can be done in polynomial time. Reasoning uses the implication graph of the binary
clauses in a formula F . Formally, the binary implication graph of the formula F is
BIG(F ) = (V,E), where V = {x, x | x ∈ vars(F )} are the vertices and the set of
edges is E = {(x, y), (x, y) | {x, y} ∈ F} . We consider the extended graph BIG∗(F )
that also contains the edge (x, x) for each literal x ∈ L.

Lemma 4. x ∈ ALAn
F ({x1, . . . , xn}) if and only if there is a path of length smaller

than n from xi to x in BIG∗(F ) for some i ∈ {1, . . . , n}.

Proof. We show the claim by induction on n. For the induction base n = 0: The “only-
if” part follows immediately because whenever x ∈ {x1, . . . , xn}, then x = xi. Hence,
it is trivially contained in BIG∗. Likewise, the “if”-part follows immediately from the
monotonicity of the ALA function. We proceed to the induction step: Consider the
“only-if” part. Let x ∈ ALA(ALAn

F ({x1, . . . , xm})). If x ∈ ALAn
F ({x1, . . . , xm})

holds, we apply inductive arguments. Otherwise, there is the clause {xj , x} ∈ F and
xj ∈ ALAn

F (C). By induction, there is a path from xi to xj of length smaller than n.
Then, there is a path from xj to x. Hence, there is a path from xi to x of length smaller
than n+1. Consider the “if”-part. Suppose there is a path from xi to x of length smaller
than n+1. Then, there is a path from xi to z of length smaller than n and (z, x). Then,
z ∈ ALAn

F (C) and {x, z} ∈ F . Then x ∈ ALAn+1
F (C).

Proposition 2. Let F be a binary formula. Then the clause {x, y} is an asymmetric
tautology in F iff there is a path from x to y in BIG∗(F ).

Proof. Straightforward from Lemma 4.

2SAT-based techniques have short DRAT-derivations, i.e. whenever the binary clauses
entail a clause C, it is an asymmetric tautology. We now consider common implications
in the general setting and in the 2SAT-setting.

Common Implications. Suppose that there are n,m ∈ N such that x ∈ ALAn
F ({y})

and x ∈ ALAm
F ({y}). Then, the literal x is a common implication of the literal y. It is

clear that the clauses {y, x} and {y, x} are asymmetric tautologies. Therefore, {x} is an
asymmetric tautology in F ∪̇ {̇{y, x}}̇ and inF ∪̇ {̇y, x}̇. However, the clause {x} is not
in general an asymmetric tautology in the formulaF in general (see Example 4). There-
fore, we use the clause {y, x} or the clause {y, x} as an auxiliary clause (see Lemma 2).
Hence, {y, x}at{x}at{y, x}d is a short DRAT derivation.

Example 4. Consider the formula F = {̇{y, z}, {y, z, x}, {y, z}, {y, z, x}}̇. Then, the
literal x is a common implication of the variable x, but the clause (x) is no AT.

Common Implications in 2SAT Reasoning. Consider the case that x is a common
implication of the literal y w.r.t. the binary clauses of a formula F . Then the clauses
{x, y} and {x, y} are asymmetric tautologies w.r.t. the binary clauses in the formula F .
But then there is path from y to x and a path from y to x by Lemma 4. Then we can
conclude by Lemma 4 that {x.x} ⊆ ALAn({y}) for some n ∈ N. Hence, {y} is an
asymmetric tautology, i.e. we can add common implications in 2SAT case.
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4.4 Literal Elimination Techniques

Given a formula F , general clause addition techniques produce the formula F ∪̇ {̇C}̇
such that the formulas F and F ∪̇ {̇C}̇ are equisatisfiable. We will now consider some
important techniques that are used in state-of-the-art SAT solvers and that are under
active research. For blocked clause addition [22,25], the technique is the dual technique
of blocked clause elimination, it is shown that the introduced clause is a resolution
asymmetric tautology. Hence, the technique has short DRAT derivations.

Extended Resolution [37]. A variable v is fresh in a certain context, if the variable v
does not occur in a formula. This technique adds a definition of a fresh variable v to
the formula, i.e. given an input formula F , two literals x, y ∈ lits(F ) and the fresh
variable v, the technique produces the formula F ′ = F ∪̇ {̇{v, x, y}, {x, v}, {y, v}}̇. It
is easy to see that {v, x, y} is a RAT in F w.r.t. v, {x, v} is a RAT in F ∪̇ {̇{v, x, y}}̇
w.r.t. v, and {x, v} is a RAT in F ∪̇ {̇{v, x, y}, {x, v}}̇ w.r.t. v. We therefore conclude
that {v, x, y}rat{x, v}rat{y, v}rat is the corresponding short DRAT derivation [16].

Bounded Variable Addition (BVA-OR) [29]. This technique adds a partial definition
of a fresh variable v to the formula: First, a fresh variable v is introduced like in ex-
tended resolution, resulting in the formula G = F ∪̇ {̇{v, x, y}, {v, x}, {v, y}}̇, where
x, y ∈ lits(F ). Next, all clauses C,D ∈ F , which have a common subclause E such
that C = E ∪ {x} and D = E ∪ {y} are replaced by the new clause {v} ∪E, resulting
in the formula H . Finally, the formula F ′, the result of applying bounded variable ad-
dition, is obtained from the formula H by removing the clause {v, x, y}. We construct
the corresponding DRAT derivation as follows: First, note that the clause {v, x, y} is
a RAT in F w.r.t. v, the clause {v, x} is a RAT in F ∪̇ {̇{v, x, y}}̇ w.r.t. x, and that
the clause {v, y} is a RAT in F ∪̇ {̇{v, x, y}, {v, x}}̇ w.r.t. x. Consider some clause
pair C,D with the common subclause E. Then the clause E ∪ {v} is an asymmet-
ric tautology in F ∪̇ {̇{v, x, y}, {v, x}, {v, y}}̇, because {x, y} ∈ ALA(E ∪ {v}) and
then {v, v} ∈ ALA2(E ∪ {v}). Finally, the clauses C,D can be removed. Hence,
{v, x, y}rat{v, x}rat{v, y}rat({v}∪E)atCdDd{v, x, y}d is a short DRAT derivation [16].

Bounded Variable Addition with XOR Gates (BVA-XOR). The idea of bounded
variable can be adapted in the sense that we define XOR gates: Given a fresh vari-
able x, BVA-XOR adds the clauses {̇{x, y, z}, {x, y, z}, {x, y, z}, {x, y, z}}̇, that en-
code x ↔ xor(y, z). Afterwards, we replace all subformulas in the intermediate formula
of the form {̇{y, z} ∪ C, {y, z} ∪C}̇ with {̇{x} ∪ C}̇. Note that the clause {x} ∪ C
is not an asymmetric tautology. However, the clause {x, y} ∪ C is an asymmetric tau-
tology and acts as an auxiliary clause. The resulting DRAT derivation is then P1 P2,
where

P1 = {x, y, z}rat{x, y, z}rat{x, y, z}rat{x, y, z}rat({x, y} ∪ C)at({x} ∪ C)at

P2 = ({x, y} ∪C)d({y, z} ∪C)d({y, z} ∪C)d
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4.5 Literal Elimination

Literal elimination techniques remove a literal x from a clause C. Usually, literals are
removed by a two-stage process: First, a shorter clause is constructed and afterwards
subsumption elimination is applied. Often, the shorter clause can be constructed by
resolution as for example with strengthening or vivification.

Hidden Literal Elimination. This technique is clause strengthening with a resolvent
that can be obtained in the binary implication graph. From Prop. 2 we know that the
clause is an asymmetric tautology. Hence, CatDd is a short DRAT derivation.

Covered Literal Elimination. Covered literal elimination is the reverse direction of
covered clause addition [18]. Consider a formulaF and the clause C ∈ F where x ∈ C.
Suppose there is a literal y ∈ C with x �= y. Then, covered literal elimination replaces
the clause C with C \ {x}, if x ∈ ((C \ {x}) ⊗y D) or ((C \ {x}) ⊗y D) is a tau-
tology for all D ∈ F with y ∈ D. We need to show that the clause C \ {x} is a
resolution asymmetric tautology w.r.t. y: Consider a clause D ∈ F with y ∈ D. Then,
y ∈ ALAF ((C \ {x})⊗y D) follows immediately. Because x ∈ (C \ {x})⊗y D and
ALAF is a monotone, we know that x ∈ ALAF ((C \ {x})⊗y D). We then know that
C ⊆ ALAF ((C \ {x})⊗y D). Moreover, we know that C ∈ F , and conclude that
ALA2

F ((C \ {x})⊗y D) is a tautology. Hence, covered literal elimination has short
DRAT-derivations of the form (C \ {x})ratCd.

5 Conclusion and Future Work

Boolean satisfiability testing is an important field in artificial intelligence and receives a
lot of attention due to the enormous performance improvements of SAT solvers. Many
formula simplifications were proposed to speed up SAT solvers. Formalizations of SAT
solvers [1, 20, 30, 31, 33] are necessary tools to study soundness of various systems,
but they do not guarantee the absence of bugs. For solving this issue, the DRAT proof
format was developed such that SAT solvers can emit a witness of unsatisfiability which
can be easily verified [16, 38].

In this paper, we considered the straight-forward techniques: clause elimination, lit-
eral addition, resolution, 2SAT reasoning, general clause addition, probing as well as
literal elimination techniques. We have formally proven that clause elimination, literal
addition and 2SAT-based techniques have short DRAT-derivations. Furthermore, we
have presented a general structure of how DRAT derivations can be constructed for
resolution-based methods.

As future work, we are interested in DRAT proof construction for parallel SAT
solvers and for complex reasoning systems like the Fourier-Motzkin procedure.

Acknowledgements. We want to thank the reviewers for the proposed improvements
and advises.
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Abstract. In this paper we answer the open question for the existence
of a more compact encoding from Pseudo-Boolean constraints into CNF
that maintains generalized arc consistency by unit propagation, formal-
ized by Bailleux et al. in [21]. In contrast to other encodings our approach
is defined in an abstract way and we present a concrete instantiation,
resulting in a space complexity of O(n2 log2(n) log(wmax)) clauses in con-
trast to O(n3 log(n) log(wmax)) clauses generated by the previously best
known encoding that maintains generalized arc consistency.

1 Introduction

Many applications benefit from the fast developments in the area of SAT solving
by translating the high level description into rather simple conjunctive normal
form (CNF) formulas. With the help of the Tseitin-translation, it is possible to
solve many problems like hardware verification and model checking [5,26,22] as
a SAT problem. However, for pseudo-Boolean (PB) constraints, that frequently
occur in problems like scheduling, planning, and translations of problems from
languages like CSP, ASP or integer programming, there is no straight-forward
translation into CNF [13,14,23,7]. Being provided with a good translation is also
relevant to solve optimization problems like MaxSAT, or to solve minimal set
problems like the extraction of minimal unsatisfiable cores or maximal satisfying
subformulas, or PB optimization itself [18,4,16,20,6].

Much effort has been put in finding good translations for PB constraints into
CNF, because many problems can be expressed as conjunction of clauses and
require only a few PB constraints. This fact can be illustrated by the distribution
of PB constraints in recent PB competitions: only 11.6% of all constraints are
PB constraints, and the majority of 88.4% are clauses [18]. Proposed encodings
differ in the number of required clauses, auxiliary variables and the properties
the translation guarantees. It is widely assumed that generalized arc consistency
(GAC), known from constraint programming [23], is an important property,
which is used to cut off the search space as soon as possible. An encoding of
a PB constraint is considered better, if unit propagation (UP) in the encoding
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maintains GAC. A weaker property than GAC is that an encoding detects incon-
sistent variable assignments. Furthermore, SAT solvers are assumed to achieve
a higher performance when the number of clauses is rather small [25,10,17].

Given a PB constraint of the form
∑n

i=1 wi xi ≤ k, where wi and k are posi-
tive integers, and xi Boolean literals, the following encodings are known: binary
decision diagrams (BDD), which maintain GAC, and require O(n · k) clauses in
the worst case [11,1,2]. In particular, this means that BDDs produce exponential
many clauses, since k can be exponential in the size of n. However, BDDs are
very competitive, since due to their construction they simplify the PB constraint
implicitly. Sorting networks do not maintain GAC, nor detect inconsistent as-
signments, but produce only O(N log2(N)) clauses, where N is bounded by
�logw1� + · · · + �logwn�. Similarly, adder networks neither maintain GAC nor
detect inconsistencies, but produce only O(n log k) clauses. Sorting networks are
assumed to provide a better performance for current SAT solvers, since adder
networks are based on XOR-constraints [11]. The only non-exponential encoding
that maintains GAC is the local watchdog encoding with O(n3 logn logwmax))
clauses.

Our contribution in this paper is twofold: First we introduce the Binary
Merger encoding that is strongly related to the known watchdog encoding [21].
We present this encoding in a more abstract way, based on an extended propo-
sitional logic formula. We prove that it is possible to translate the sorters and
mergers – the fundamental parts of these encodings – into CNF with any sound
translation that holds certain conditions. Second, with another CNF translation
of these sorters and mergers as in the watchdog encoding, it is possible to answer
an open question from Bailleux et al. [21]. They ask for a more compact encoding
of PB constraints that maintains GAC. The Binary Merger encoding requires
O(n2 log2 n logwmax)) clauses. If GAC should not be maintained, our encoding
requires only O(n log2 n logwmax)) clauses. Since the Binary Merger encoding is
defined in an abstract way, it is also possible to find an instantiation that results
in the watchdog encoding. Hence both encodings are strongly related.

In Section 2 we will describe basic concepts, notation of PB constraint and
CNF encodings, as well as some bit operations. We will outline the idea of the
encoding in Section 3 and present the abstract Binary Merger encoding and its
properties in Section 4. Section 5 concludes the paper.

2 Preliminaries

We assume a fixed infinite set V of Boolean variables. A literal is a variable v
(positive literal) or a negated variable v (negative literal). The complement x of
a positive (negative, resp.) literal x is the negative (positive, resp.) literal with
the same variable as x. For a set of literals J the complement of J , denoted
with J , is defined as J = {x | x ∈ J}. We deal with finite constraint sets called
formulas. Each constraint is either

– a clause (x1 ∨ . . . ∨ xn), where xi is a literal or a truth value �,⊥,
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– a PB constraint
∑n

i=1 wi · xi � k, where xi is either a literal or one of the
truth values �,⊥, wi ∈ Z are the associated weights for the literal xi for
every i ∈ {1, . . . , n}, k ∈ Z and � ∈ {=,≤, <,>,≥},

– a sorter constraint sort(X,Y ) where X and Y are finite sequences of literals
and truth values, or

– a merger constraint merge(X,Y, Z) where X,Y, Z are finite sequences of
literals and truth values.

To address an specific element xi in the sequence X = (x1, x2, · · · , xn), we will
write Xi and the length n of a sequence X is denoted with |X | = n.

We write a formula {C1, . . . , Cn} also as a conjunction (C1 ∧ . . . ∧ Cn). The
replacement of a variable v with a truth value t ∈ {�,⊥} in a constraint C is
denoted with C[v �→ t]. CNF formulas are formulas that consist only of clauses.
The set of all variables occurring in a formula F (in positive or negative literals)
is denoted by vars(F ) and the set of all variables F and their complement is
lits(F ) := vars(F ) ∪ vars(F ).

An interpretation I is a set of literals that contains for all variables v ex-
actly one of v or v. An interpretation I[x] denotes the interpretation which is
like the interpretation I except that I[x] maps the literal x to true, that is
I[x] = (I \ {x}) ∪ {x}. Likewise, I[J ] denotes the interpretation which is like
the interpretation I, but maps every literal in the literal set J to true, that is
I[J ] = (I \ J) ∪ J .

Intuitively, an interpretation I satisfies a formula F , if it satisfies every con-
straint in F . Such interpretations are models of F . If a formula has at least one
model, the formula is called satisfiable and otherwise unsatisfiable. The satis-
faction relation |= for the standard proposition logic concepts is defined in the
usual way: Let xi be literals, Ci clauses, F a formula, wi, k ∈ Z and � ∈ {=,≤
, <,>,≥}, then I |= �, I �|= ⊥, I |= x iff x ∈ I, I |= (x1 ∨ . . . ∨ xn) iff I |= xi

for some i ∈ {1, . . . , n}, I |= (C1 ∧ . . . ∧ Cn) iff I |= Ci for all i ∈ {1, . . . , n},
I |= F iff I �|= F and I |= x1 → x2 iff I |= (x1∨x2). We also introduce some non
standard concepts:

I |= Σn
i=1wixi � k iff

∑
{wi | xi ∈ I and 1 ≤ i ≤ n}� k.

unary(X, I) = k iff k = |{Xi | Xi ∈ I and 1 ≤ i ≤ n}|.
I |= sort(X) iff I |= (Xi+1 → Xi) for all 1 ≤ i < n.
I |= sort(X,Y ) iff I |= sort(Y ) and unary(Y, I) = unary(X, I).
I |= merge(X,Y, Z) iff (I |= sort(X) and I |= sort(Y )) implies that

(I |= sort(Z) and unary(Z, I) = unary(X, I) + unary(Y, I))

F entails the G, in symbols F |= G iff every model of F is a model G. F and G
are equivalent, in symbols F ≡ G, iff F entails G and G entails F .

Encodings and Generalized Arc Consistency. Formally, the formula F
encodes the formula G iff i) F |= G and ii) for every model I of the formula G
there is an interpretation I ′ with I ′ |= F and I ′∩vars(G) ⊆ I. The first condition
states that we can use every model of the encoding as a model for the original
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formula, whereas the second condition states that we can construct a model of
the encoding from a model of the original formula by changing the interpretation
of auxiliary variables.

Encodings can have certain kinds of structural properties. Generalized arc
consistency (GAC) is an important inference rule in constraint programming
and can significantly reduce the search space [23]. As in [21], we describe the
notions of GAC and inconsistency detection in terms of the entailment relation.
An assignment J is a set of literals that may contain a literal and its complement,
where J is inconsistent w.r.t. a constraint C iff the formula (

∧
x∈J x) ∧ C is

unsatisfiable. Informally, GAC refers to the property that we cannot extend
an assignment with further entailed literals. Formally, the assignment J is GAC
w.r.t. the constraint C iff for every literal y ∈ lits(C) holds that (

∧
x∈J x)∧C |= y

implies y ∈ J .
Unit propagation is the main inference rule in SAT solving [9,8,19,12]. For-

mally, unit propagation is defined as follows: UP0(F, J) = J , UPn+1(F, J) =
UPn(F, J) ∪ {x | (x ∨ x1 ∨ . . . xn) ∈ F and xi ∈ UPn(F, J) for every 1 ≤ i ≤ n}
and UP(F, J) = UP∞(F, J). For convenience we write ⊥ ∈ UP(F, J) iff there is a
propositional variable v such that v ∈ UP(F, J) and v ∈ UP(F, J). A formula F
detects inconsistencies of the constraint C iff for every inconsistent assignments
J of the constraint C we find that ⊥ ∈ UP(F, J), i.e. unit propagation is powerful
enough to find an inconsistency in the formula F if the current variable assign-
ment is inconsistent w.r.t the constraint C. A formula F maintains GAC of the
constraint C iff UP(F, J) is GAC w.r.t. the constraint C for every assignment J .
That is, unit propagation infers every literal that is entailed by the constraint
C and assignment J .

Bit Operations. In this paper, we intensively exploit the properties of the
binary representation of numbers. We denote the binary representation of a
number with a b as a suffix, e.g. 19 = 10011b. The symbol bits(n) = �ld(n− 1)�
denotes the number of bits without leading zeros in the binary representation
of the number n ∈ N. Let n, p ∈ N and p ≥ 1. Then the symbol bit(n, p)
denotes the p’th least significant bit in the binary representation of the number
n. For instance, bit(19, 1) = 1, bit(19, 2) = 1 and bit(19, 3) = 0, with 19 =
10011b. The binary cut of a number n up to the p′th bit, in symbols bcut(n, p),
is bit(n, 1) · 20 + bit(n, 2) · 21 + . . .+ bit(n, p) · 2p−1. For instance, the binary cut
of the number 19 up to the third bit is bcut(19, 3) = 011b = 3. A bit bucket
Ba of a PB constraint

∑n
i=1 wixi � k is a sequence of propositional variables in

arbitrary but fixed order, such that xi ∈ Ba iff bit(wi, a) = 1. For instance, the
bit bucket B1 of the PB constraint 3x1+5x2+3x3+6x4 < 12 is (x1, x2, x3) and
B2 = (x1, x3, x4). For a sequence of propositional variables B = (b1, b2, . . . , bn),
we construct the sequence �

B = (b2, b4, . . . , b2·�n/2�), to denote the sequences
that contain only the elements of B with even indices.

Normalization of Pseudo-Boolean Constraints. We consider PB
constraints in normal-form, i.e. they are of the form

∑n
i=1 wixi < q ·2m−1 where

wi ≥ 0, m = bits(wmax) and wmax = max{wi | 1 ≤ i ≤ n} is the largest weight wi

in the constraint. Every PB constraint can be translated into a set of normalized
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PB constraints (in fact at most two PB constraints with at most n literals each)
by the rules given in [24] and with

∑n
i=1 wixi < k ≡ w� +

∑n
i=1 wixi < k + w

to adjust k = q · 2m−1.

Example Normalization:

3x1 + 5x2 + 3x3 ≥ 6 ≡ −3x1 − 5x2 − 3x3 < −5
≡ 3x1 + 5x2 + 3x3 < 6
≡ 2�+ 3x1 + 5x2 + 3x3 < 8

3 Encoding Idea

The idea of the encoding is related to the calculation of the sum of multiple
binary numbers, which is done with additional natural numbers for the sum of the
bits of a certain significance Sj , the carry of the previous sum Cj and the sum of
both M j (the merge). Formally, given a set W of natural numbers, the sum over
the numbers W , represented in binary in rzrz−1 · · · r1, is computed as follows:
Let rj(W ) = M j(W ) mod 2 for every j ≥ 0, where M j(W ) = Cj(W ) + Sj(W )
for j > 0, M0(W ) = 0, Sj(W ) =

∑
w∈W bit(w, j) for every j ≥ 0, and Cj(W ) =

�M j−1(W )/2�.
An example of the computation of the sum of the numbers {7, 2, 3} is presented

in Fig. 1 as well as an illustration of the general algorithm.

1 1 1
0 1 0

+ 0 1 1

sum of bits
carry

sum of both

result

1 1 1
0 1 0

+ 0 1 1

1 3 2
carry

sum of both

result

1 1 1
0 1 0

+ 0 1 1

1 3 2
1 2 1
3 4

1 1 0 0

bmn · · · b2n b1n
...

...
...

bm2 · · · b22 b12
+ bm1 · · · b21 b11
Sm · · · S2 S1

Cz · · · Cm · · · C2

Mz · · · Mm · · · M2

rz · · · rm · · · r2 r1

Fig. 1. Calculation of the sum of multiple binary numbers in general on the right side,
where m := max{bits(wi) | 1 ≤ i ≤ n}. The example 111b + 010b + 011b is illustrated
on the left.

In the proposition below we relate the value Mp(W ) and the sum over the
binary cuts up to the p′th bit of the set W . If the sum of all bits in W up to the
position p is greater equal a · 2p−1 then Mp(W ) is greater equal a as well and
vice versa.

Proposition 1. Let W ∈ P(N), a, p ∈ N then
∑

{bcut(w, p) | w ∈ W} ≥ a·2p−1

iff Mp(W ) ≥ a.
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Proof. We prove the statement by induction over p. For the induction base p = 1,
we know that

∑
{bcut(w, 1) | w ∈ W} =

∑
{bit(w, 1) | w ∈ W} = S1(W ) =

M1(W ). Consequently, the claim follows since 20 = 1. For the induction step,
assume that the claim holds for an arbitrary p, and we now prove the claim for
p+ 1:
∑

{bcut(w, p+ 1) | w ∈ W} ≥ a · 2p iff∑
{bcut(w, p) | w ∈ W}+

∑
{bit(w, p+ 1) | w ∈ W} · 2p ≥ a · 2p iff∑

{bcut(w, p) | w ∈ W}+ Sp+1(W ) · 2p ≥ a · 2p iff∑
{bcut(w, p) | w ∈ W} ≥ a · 2p − Sp+1(W ) · 2p iff∑
{bcut(w, p) | w ∈ W} ≥ (a− Sp+1(W )) · 2p iff∑
{bcut(w, p) | w ∈ W} ≥ 2 · (a− Sp+1(W )) · 2p−1

We consider the ⇒ direction: By induction, we can conclude that Mp(W ) ≥
2 · (a − Sp+1(W )). By the definition of the function Mp+1(W ) = Cp+1(W ) +
Sp+1(W ) = �Mp(W )/2�+Sp+1(W ) we conclude thatMp+1(W ) ≥ a−Sp+1(W )+
Sp+1(W ) ≥ a. The converse ⇐ can be proven analog. ��

The idea of the encoding is to introduce propositional variables Sp
a and Mp

b ,
which are true if Sp(W ) ≥ a and Mp(W ) ≥ b respectively, where W are the
weights of the currently satisfied literals.

4 The Abstract Binary Merger Encoding

In this section, we present the abstract binary merge encoding for normalized PB
constraints. In particular, we prove correctness of the encoding and show that
the encoding detects inconsistencies, if the used sorters and mergers maintain
GAC. Finally, we prove that the encoding with support clauses maintain GAC.

Definition 1 (Binary Merger). Let C =
∑n

i=1 wixi < q · 2m−1 be a normal-
ized PB constraint. Then, the formula BinaryMerger(C) is defined as:

Mm
q ∧

m∧

i=1

sort(Bi, Si) ∧merge(Si,
�

M i−1,M i)

where wmax = max{w1, . . . , wn} is the largest weight, m = bits(wmax), M
0 is the

empty sequence and M i, Si are sequences of propositional variables and Bi is the
sequence of literals in the bit bucket i w.r.t. C, with 1 ≤ i ≤ m, with |Si| = |Bi|
and |M i| = |Si|+ | �

M i−1 |.

We illustrate the encoding of the PB constraint 3x1 + 5x2 + 3x3 + 6x4 < 12
in Fig. 2. The bit buckets are B1 := (x1, x2, x3), B

2 := (x1, x3, x4) and B3 :=
(x2, x4). The sorters are on the top and the mergers at the bottom in the figure,
where the inputs are on the left half of a sorter and merger box and the output
is on the right side. The mapping of the literals under the interpretation I ⊇
{x1, x2, x3, x4} is shown in the right part in the figure. The encoding contains

the clause (M3
3 ) since k = q · 2m−1 = 3 · 22 = 12. Hence the interpretation I is

inconsistent w.r.t. the considered PB constraint, since 3 + 5 + 0 + 6 ≥ 12.
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Fig. 2. Binary Merger for the PB constraint 3x1 + 5x2 + 3x3 + 6x4 < 12. On the left
side there is the generic overview of the sorters and mergers and on the right side there
is the literal mapping under the interpretation I ⊇ {x1, x2, x3, x4}. The mapping for
the x1, x2, x3, x4 is set into italic numbers and the auxiliary variables Si

j and M i
j are

mapped by I such that I is a model for BinaryMerger(C) \ [M3
3 ].

4.1 The Binary Merger Encodes Pseudo-Boolean Constraints

We proceed with the proof that the binary merger formula encodes normalized
PB constraints. First, we derive a meaning for the variables Sp

b and Mp
a , where

a and b are the positions in the sequences Sp and Mp.

Proposition 2 (Semantic Invariants). Let I |= BinaryMerger(
∑n

i=1 wixi <
q · 2m−1) and let W = {wi | xi ∈ I and 1 ≤ i ≤ n}. Then the following holds:

(i) I |= Sp
b iff Sp(W ) ≥ b for every b ∈ {1, . . . ,m},

(ii) I |= sort(Sp) and I |= sort(Mp), and
(iii) I |= Mp

a iff Mp(W ) ≥ a for every a ∈ {1, . . . ,m}.

Proof. We prove the claims separately.

(i) follows straightforward from the definition of the binary merger constraint
and the definition of the sort constraint: I |= Sp

b iff
∑

{bit(w, p) | xi ∈ I} ≥
b iff Sp(W ) ≥ b.

(ii) can be easily shown by induction over p.
(iii) is shown by induction over p: For the induction base p = 1. We know that

I |= M1
a iff I |= S1

a by the definition of the encoding. By (i) this is the case
iff S1(W ) ≥ a and since M1(W ) = S1(W ) we know that Mp(W ) ≥ a. For
the induction step, assume that the claim (iii) holds for p − 1. We show
both directions:

⇒ Let I |= Mp
x . By the definition of the merger constraint, we conclude

that there are numbers a, b such that x = a+ b and 1) I |= Mp−1
2·a and 2)

I |= Sp
b . Then by induction we know that Mp−1(W ) ≥ 2 · a and by (i)

we know that Sp(W ) ≥ b. Then by definition of Mp we conclude that
Mp ≥ a.
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⇐ Assume that Mp(W ) ≥ x. Consequently, there are numbers x = a + b
such that this is the case iff Mp(W ) = Cj(W ) + Sj(W ) iff Mp(W ) =
�Mp−1(W )/2� + Sj(W ). Then Mp−1 ≥ a/2 and Sj(W ) ≥ b. Then by
induction I |= Mp−1

a/2 and I |= Sp
b . By definition of merger we conclude

that I |= Mp
a . ��

We can now show that the Binary Merger correctly encodes normalized PB-
constraints.

Theorem 1. The formula F = BinaryMerger(
∑n

i=1 wixi < q ·2m−1) encodes the
constraint

∑n
i=1 wixi < q · 2m−1.

Proof. We have to show the two conditions of the definition of encoding.

i) Let I be a model of F . SinceMm
q ∈ F we know that I �|= Mm

q . By Prop. 2 (iii)
we conclude that Mm(W ) < q. By Prop. 1 we conclude that

∑
{bcut(w,m) |

w ∈ W} =
∑

W < q · 2m−1. Hence I |=
∑

wixi < q · 2m−1.
ii) Assume that I is a model of

∑
wixi < q · 2m−1. Then, we construct a model

I ′ for the formula F by assigning the auxiliary variables Sp
a and Mp

b as stated
in Prop. 2. We can then show in a straight-forward way that I ′ |= F . ��

4.2 The Binary Merger Detects Inconsistencies

In the following, we consider instantiations of the Binary Merger encoding, where
unit propagation maintains GAC for the sorter and merger constraints. For-
mally, the formula F is a suitable Binary Merger encoding of the PB constraint∑n

i=1 wixi < k if the formula F encodes BinaryMerger(
∑n

i=1 wixi < k) and the
formula F maintains GAC for the used sorters and mergers. We prove that the
propositional variables Sp

b and Mp
a are inferred by unit propagation.

Proposition 3 (Propagation Properties). Let C =
∑n

i=1 wixi < k be a
normalized PB-constraint, J be a variable assignment, and W = {wi | xi ∈
J and 1 ≤ i ≤ n} is the set of weights of all satisfied literals xi w.r.t. J . For
every suitable Binary Merger encoding F of the constraint C holds that:

i) Sp
b ∈ UP(F, J), if Sp(W ) ≥ b, and

ii) Mp
a ∈ UP(F, J), if Mp(W ) ≥ a.

Proof. (i) follows straightforward from the assumption that the sorter maintains
GAC: If more than b input variables of the sorter are assigned to true in J ,
then output sequence must start necessarily with at least b true literals. (ii) is
shown by induction over p. For the induction base p = 1, the argumentation
is analog to the proof of (i) since M1(W ) = S1(W ). For the induction step,
assume that the claim holds for p and we prove it now for p+ 1. Suppose that
Mp+1(W ) ≥ x. By the definition of the function M , there are numbers a and
b such that x = a + b and a = �Mp(W )/2� and b = Sp+1(W ). By induction
we conclude that Mp

2·a ∈ UP(F, J) and Sp+1
b ∈ UP(F, J). Since the merger is

assumed to maintain GAC, we then know that Mp+1
a+b = Mp+1

x ∈ UP(F, J). ��
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We can now prove the claim in this section that suitable Binary Merger en-
codings detect inconsistencies.

Theorem 2. Every suitable Binary Merger encoding of
∑n

i=1 wixi < k detects
inconsistencies by unit propagation.

Proof. Assume that the assignment J is inconsistent with the PB constraint C =∑n
i=1 wixi < q · 2m−1. We now prove that ⊥ ∈ UP(J,E). Since J is inconsistent,

we know that (
∧

x∈J x)∧C is unsatisfiable. Consequently,
∑

{wi | x ∈ J and 1 ≤
i ≤ n} ≥ q · 2m−1. By Prop 3, we know that Mm

q ∈ UP(F, J) and we know that

Mm
q ∈ UP(F, J) sinceMm

q ∈ F . Consequently, ⊥ ∈ UP(F, J). Hence, the formula
F detects inconsistencies by unit propagation for the constraint C. ��

We require that suitable Binary Merger encodings maintain GAC for the
sorters and mergers. Intuitively, if we consider instantiations of the Binary
Merger that detects inconsistencies but do not maintain GAC for the sorters
and mergers, then we cannot detect inconsistencies of the PB constraint. The
reason is that the notion of inconsistency detection is too weak to infer the y
literals in the sorter.

Note that we cannot prove this property for PB constraints of the form∑n
i=1 wixi = k, since we split the constraint up into two normalized PB con-

straints and the propagation property only holds for a individual normalized PB
constraint.

4.3 The Binary Merger and Support Clauses Maintain GAC

We now proceed with a technique makes the Binary Merger encoding GAC-
maintaining by adding support clauses.

Proposition 4. Let E(C) denote a formula that detects inconsistencies of the
normalized PB constrain C. Consider C =

∑n
i=1 wixi < k, where V is the set

vars(C) ∪ vars(C) Then the following holds:

(i) (
∧

xi∈V (E(C[xi �→ �]) ∨ xi)) encodes the constraint C, and
(ii) (

∧
xi∈V (E(C[xi �→ �]) ∨ xi)) maintains GAC, and

(iii) |F | = 2 · vars(C) · |E(C)|.

Proof. We show each statement separately:

(i) We have to show that the formula F = (
∧
E(C[xi �→ �]) ∨ xi) satisfies the

two conditions in the definition of encodings.
1 Assume that the interpretation I is a model of the formula F . Conse-
quently we know that either I |= xi or I |= xi holds. We consider the
first case, and the second can be analogously treated. Then it follows
that I |= E(C[xi �→ �]) since I |= xi and I |= E(C[xi �→ �]) ∨ xi. By
the fact that the formula E(C) encodes the constraint C we can then
conclude that I |= C[xi �→ �]. Since I |= xi, we know that I |= C.
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2 Assume that the interpretation I is a model of the constraint C. Con-
sequently, we know that either I |= xi or I |= xi. Consider the first
case, as the second can be treated analogy. Since E(C[xi �→ �]) is an
encoding, we construct I ′ over the auxiliary variables of this encoding.
Then we know that I ′ |= E(C[xi �→ �]). Since the encoding use pairwise
disjunct sets of auxiliary variables, we can continue the construction in
the sketched way. Finally, we obtain that I ′ |= F .

(ii) Suppose that the formula F does not maintain GAC. Then there is an as-
signment J and literal x such that J ∧ F |= x, but x �∈ UP(F, J). It is
easy to see that J is inconsistent w.r.t. the constraint C[x �→ ⊥] Since
E(C[x �→ ⊥]) detects inconsistencies, we conclude that x ∈ UP(F, J) since
x ∨ E(C[x �→ ⊥]) ∈ F . But this is a contradiction.

(iii) Follows directly from the definition of the encoding. ��

4.4 Complexity of the Binary Merger

In this paper, we do not present encodings of the merger and sorter constraint,
and instead want to refer the reader to cardinality networks [3].

Proposition 5. The Binary Merger formula can be encoded with a space com-
plexity of O(n log2(n) log(wmax)) clauses and variables.

Proof. For the encoding of the sorter and merger we use the cardinality networks
as presented in [3], that maintain GAC using O(n log2(n)) clauses and variables,
where n is the number of literals in the sequence that is sorted. Note that an
encoding for a sorter can be used as an encoding for a merger as well since
merge(X,Y, Z) ≡ sort(X · Y, Z) since X and Y are sorted in every model and
where X · Y is the concatenation of two sequences.

Each Si contains at most n literals and since the input for the merger is
|Si| + |M i| we have at most n(1 + 1/2 + 1/4 + 1/8 . . .1/m) < 2n literals as
input for the merger. Hence each sorter and merger results in O(n log2n) clauses
and variables. With m mergers and sorters we result in O(n log2(n) log(wmax))
clauses and variables. ��

Theorem 3. Pseudo-Boolean constraints can be encoded with a space complex-
ity of O(n2 log2(n) log(wmax)) clauses and variables such that unit propagation
maintains GAC.

Proof. Follows directly from Propositions 4 and 5. ��

Hence with the Binary Merger encoding it is possible to encode a PB con-
straint with less then O(n3 log(n) log(wmax)) clauses and a bit more than the
O(n2 log(n) log(wmax)) variables used in the polynomial watchdog encoding, the
previously best known encoding for PB constraint that maintains GAC.
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5 Conclusion

Pseudo-Boolean constraints of the form
∑n

i=1 wi · xi < k frequently arise in real
world problems and are translated into CNF to use the strength of modern SAT
reasoning systems. This paper presents the novel Binary Merger encoding for
PB constraints. It uses O(n log2(n) log(wmax)) clauses, where wmax is the largest
weight in the PB constraint. The addition of support clauses makes the Binary
Merger GAC-maintaining and, to the best of our knowledge, the Binary Merger
with support clauses is the asymptotically smallest encoding that maintains
GAC, i.e. uses O(n2 log2(n) log(wmax)) clauses. In particular, this answers the
open question by Bailleux et al. in [21] for a more compact encoding.
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Abstract. Matching concept descriptions against concept patterns was
introduced as a new inference task in Description Logics (DLs) almost 20
years ago, motivated by applications in the Classic system. For the DL
EL, it was shown in 2000 that matching without a TBox is NP-complete.
In this paper we show that matching in EL w.r.t. general TBoxes (i.e.,
finite sets of general concept inclusions, GCIs) is in NP by introducing
a goal-oriented matching algorithm that uses non-deterministic rules to
transform a given matching problem into a solved form by a polynomial
number of rule applications. We also investigate some tractable variants
of the matching problem w.r.t. general TBoxes.

1 Introduction

The DL EL, which offers the constructors conjunction (�), existential restric-
tion (∃r.C), and the top concept (�), has recently drawn considerable attention
since, on the one hand, important inference problems such as the subsumption
problem are polynomial in EL, even in the presence of general concept inclusions
(GCIs) [12]. On the other hand, though quite inexpressive, EL can be used to
define biomedical ontologies, such as the large medical ontology SNOMEDCT.1

Matching of concept descriptions against concept patterns is a non-standard
inference task in Description Logics, which was originally motivated by appli-
cations of the Classic system [9]. In [11], Borgida and McGuinness proposed
matching as a means to filter out the unimportant aspects of large concept de-
scriptions appearing in knowledge bases of Classic. Subsequently, matching (as
well as the more general problem of unification) was also proposed as a tool for
detecting redundancies in knowledge bases [8] and to support the integration of
knowledge bases by prompting interschema assertions to the integrator [10].

All three applications have in common that one wants to search the knowl-
edge base for concepts having a certain (not completely specified) form. This
“form” can be expressed with the help of so-called concept patterns, i.e., concept
descriptions containing variables (which stand for descriptions). For example,
assume that we want to find concepts that are concerned with individuals hav-
ing a son and a daughter sharing some characteristic. This can be expressed
� Supported by DFG under grant BA 1122/14-2.
1 See http://www.ihtsdo.org/snomed-ct/
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by the pattern D := ∃has-child.(Male � X) � ∃has-child.(Female � X), where X
is a variable standing for the common characteristic. The concept description
C := ∃has-child.(Tall�Male) � ∃has-child.(Tall � Female) matches this pattern in
the sense that, if we replace the variable X by the description Tall, the pattern
becomes equivalent to the description. Thus, the substitution σ := {X �→ Tall} is
a matcher modulo equivalence of the matching problem C ≡? D since C ≡ σ(D).

The original paper by Borgida and McGuinness actually considered matching
modulo subsumption rather than matching modulo equivalence: such a problem
is of the form C �? D, and a matcher is a substitution σ satisfying C � σ(D).
Obviously, any matcher modulo equivalence is also a matcher modulo subsump-
tion, but not vice versa. For example, the substitution σ� := {X �→ �} is a
matcher modulo subsumption of the matching problem C �? D, but it is not a
matcher modulo equivalence of C ≡? D. For both cases of matching, the original
definitions were formulated for concept descriptions without any TBox, i.e., the
subsumption or equivalence that has to be achieved by an application of the
matcher does not take a TBox into account. The reason was that at that time
TBoxes were usually acyclic, and thus could be reduced away by unfolding.

The first results on matching in DLs were concerned with sublanguages of
the Classic description language, which does not allow for existential restrictions
of the kind used above. A polynomial-time algorithm for computing matchers
modulo subsumption for a rather expressive DL was introduced in [11]. The
main drawback of this algorithm was that it required the concept patterns to be
in structural normal form, and thus it was not able to handle arbitrary match-
ing problems. In addition, the algorithm was incomplete, i.e., it did not always
find a matcher, even if one existed. For the DL ALN , a polynomial-time algo-
rithm for matching modulo subsumption and equivalence was presented in [6].
This algorithm is complete and it applies to arbitrary patterns. In [5], match-
ing in DLs with existential restrictions was investigated for the first time. In
particular, it was shown that in EL the matching problem (i.e., the problem of
deciding whether a given matching problem has a matcher or not) is polyno-
mial for matching modulo subsumption, but NP-complete for matching modulo
equivalence.

Unification is a generalization of matching where both sides of the problem are
patterns and thus the substitution needs to be applied to both sides. In [8] it was
shown that the unification problem in the DL FL0, which offers the constructors
conjunction (�), value restriction (∀r.C), and the top concept (�), is ExpTime-
complete. In contrast, unification in EL is “only” NP-complete [7]. In the results
for matching and unification mentioned until now, there was no TBox involved,
i.e., equivalence and subsumption was considered with respect to the empty
TBox. For unification in EL, first attempts were made to take general TBoxes,
i.e., finite sets of general concept inclusions (GCIs), into account. However, the
results obtained so far, which are again NP-completeness results, are restricted to
general TBoxes that satisfy a certain restriction on cyclic dependencies between
concepts [2,3].



Matching with Respect to General Concept Inclusions in the DL EL 137

For matching, we solve the general case in this paper: we show that match-
ing in EL w.r.t. general TBoxes is NP-complete by introducing a goal-oriented
matching algorithm that uses non-deterministic rules to transform a given match-
ing problem into a solved form by a polynomial number of rule applications.
The matching problems considered in this paper are actually generalizations of
matching modulo equivalence and matching modulo subsumption. For the spe-
cial case of matching modulo subsumption, we show that the problem is tractable
also in the presence of GCIs. The same is true for the dual problem where the
pattern is on the side of the subsumee rather than on the side of the subsumer.

Due to space constraints, we cannot provide complete proofs of our results.
They can be found in [1].

2 The Description Logics EL
The expressiveness of a DL is determined both by the formalism for describing
concepts (the concept description language) and the terminological formalism,
which can be used to state additional constraints on the interpretation of con-
cepts and roles in a so-called TBox.

The concept description language considered in this paper is called EL. Start-
ing with a finite set NC of concept names and a finite set NR of role names,
EL-concept descriptions are built from concept names using the constructors
conjunction (C � D), existential restriction (∃r.C for every r ∈ NR), and top
(�). Since in this paper we only consider EL-concept descriptions, we will some-
times dispense with the prefix EL.

On the semantic side, concept descriptions are interpreted as sets. To be more
precise, an interpretation I = (ΔI , ·I) consists of a non-empty domain ΔI and
an interpretation function ·I that maps concept names to subsets of ΔI and
role names to binary relations over ΔI . This function is inductively extended to
concept descriptions as follows:

�I := ΔI , (C �D)I := CI ∩DI , (∃r.C)I := {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

A general concept inclusion axiom (GCI) is of the form C � D for concept
descriptions C,D. An interpretation I satisfies such an axiom C � D iff CI ⊆
DI . A general EL-TBox is a finite set of GCIs. An interpretation is a model of
a general EL-TBox if it satisfies all its GCIs.

A concept description C is subsumed by a concept description D w.r.t. a
general TBox T (written C �T D) if every model of T satisfies the GCI C � D.
We say that C is equivalent to D w.r.t. T (C ≡T D) if C �T D and D �T C.
If T is empty, we also write C � D and C ≡ D instead of C �T D and
C ≡T D, respectively. As shown in [12], subsumption w.r.t. general EL-TBoxes
is decidable in polynomial time.

An EL-concept description is an atom if it is an existential restriction or a
concept name. The atoms of an EL-concept description C are the subdescriptions
of C that are atoms, and the top-level atoms of C are the atoms occurring in
the top-level conjunction of C. Obviously, any EL-concept description is the
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conjunction of its top-level atoms, where the empty conjunction corresponds
to �. The atoms of a general EL-TBox T are the atoms of all the concept
descriptions occurring in GCIs of T .

We say that a subsumption between two atoms is structural if their top-level
structure is compatible. To be more precise, following [2] we define structural
subsumption between atoms as follows: the atom C is structurally subsumed by
the atom D w.r.t. T (C �s

T D) iff one of the following holds:

1. C = D is a concept name,
2. C = ∃r.C′, D = ∃r.D′, and C′ �T D′.

It is easy to see that subsumption w.r.t. ∅ between two atoms implies structural
subsumption w.r.t. T , which in turn implies subsumption w.r.t. T . The matching
algorithms presented below crucially depend on the following characterization
of subsumption w.r.t. general EL-TBoxes first stated in [2]:

Lemma 1. Let T be an EL-TBox and C1, . . . , Cn, D1, . . . , Dm be atoms. Then
C1 � · · · � Cn �T D1 � · · · �Dm iff for every j ∈ {1, . . . ,m}

1. there is an index i ∈ {1, . . . , n} such that Ci �s
T Dj or

2. there are atoms A1, . . . , Ak, B of T (k ≥ 0) such that
(a) A1 � · · · � Ak �T B,
(b) for every η ∈ {1, . . . , k} there is i ∈ {1, . . . , n} with Ci �s

T Aη, and
(c) B �s

T Dj.

3 Matching in EL
In addition to the set NC of concept names (which must not be replaced by sub-
stitutions), we introduce a set NV of concept variables (which may be replaced
by substitutions). Concept patterns are now built from concept names and con-
cept variables by applying the constructors of EL. A substitution σ maps every
concept variable to an EL-concept description. It is extended to concept patterns
in the usual way:

– σ(A) := A for all A ∈ NC ∪ {�},
– σ(C �D) := σ(C) � σ(D) and σ(∃r.C) := ∃r.σ(C).

An EL-concept pattern C is ground if it does not contain variables, i.e., if it is
a concept description. Obviously, a ground concept pattern is not modified by
applying a substitution.

Definition 2. Let T be a general EL-TBox.2 An EL-matching problem w.r.t.
T is a finite set Γ = {C1 �? D1, . . . , Cn �? Dn} of subsumptions between EL-
concept patterns, where for each i, 1 ≤ i ≤ n, Ci or Di is ground. A substitution σ
is a matcher of Γ w.r.t. T if σ solves all the subsumptions in Γ , i.e. if σ(C1) �T
σ(D1), . . . , σ(Cn) �T σ(Dn). We say that Γ is matchable w.r.t. T if it has a
matcher.
2 Note that the GCIs in T are built using concept descriptions, and thus do not contain

variables.
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Matching problems modulo equivalence and subsumption are special cases of
the matching problems introduced above:

– The EL-matching problem Γ is a matching problem modulo equivalence if
C �? D ∈ Γ implies D �? C ∈ Γ . This coincides with the notion of matching
modulo equivalence considered in [6,5], but extended to a non-empty general
TBox.

– The EL-matching problem Γ is a left-ground matching problem modulo sub-
sumption if C �? D ∈ Γ implies that C is ground. This coincides with the
notion of matching modulo subsumption considered in [6,5], but again ex-
tended to a non-empty general TBox.

– The EL-matching problem Γ is a right-ground matching problem modulo
subsumption if C �? D ∈ Γ implies that D is ground. To the best of our
knowledge, this notion of matching has not been investigated before.

We will show in the following that the general case of matching, as introduced
in Definition 2, and thus also matching modulo equivalence, is NP-complete,
whereas the two notions of matching modulo subsumption are tractable, even in
the presence of GCIs.

4 Matching Modulo Subsumption

The case of left-ground matching problems modulo subsumption can be treated
as sketched in [5] for the case without a TBox. Given a general EL-TBox T and
two substitutions σ, τ , we define: σ �T τ iff σ(X) �T τ(X) for all X ∈ NV .

Consequently, if σ� denotes the substitution satisfying σ�(X) = � for all X ∈
NV , then σ �T σ� holds for all substitutions σ. Since the concept constructors
of EL are monotonic w.r.t. subsumption, this implies σ(D) �T σ�(D) for all
concept patterns D.

Lemma 3. Let Γ = {C1 �? D1, . . . , Cn �? Dn} be a left-ground matching
problem modulo subsumption. Then Γ has a matcher w.r.t. T iff σ� is a matcher
of Γ w.r.t. T .

Proof. The “if” direction is trivial. Conversely, assume that σ is a matcher of
Γ w.r.t. T . Then we have, for all i, 1 ≤ i ≤ n, that σ�(Ci) = Ci = σ(Ci) �T
σ(Di) �T σ�(Di), which shows that σ� is a matcher of Γ w.r.t. T . ��

The lemma shows that it is sufficient to test whether the substitution σ�
is a matcher of Γ , i.e., whether σ�(Ci) �T σ�(Di) holds for all i, 1 ≤ i ≤
n. Since in EL subsumption w.r.t. general TBoxes is decidable in polynomial
time, this yields a polynomial-time algorithm for left-ground matching modulo
subsumption in EL.

Theorem 4. Let Γ be a left-ground EL-matching problem modulo subsumption
and T a general EL-TBox. Then we can decide in polynomial time whether Γ
has a matcher w.r.t. T or not.
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The case of right-ground matching problems modulo subsumption can be treated
similarly. However, since EL does not have the bottom concept ⊥ as a concept
constructor, we cannot simply define σ⊥ as the substitution satisfying σ⊥(X) = ⊥
for all X ∈ NV , and then show that that the right-ground matching problems
modulo subsumption, Γ , has a matcher w.r.t. T iff σ⊥ is a matcher of Γ w.r.t. T .
Instead, we need to define σ⊥ in a more complicated manner.

Given a general EL-TBox T and a right-ground matching problems modulo
subsumption Γ = {C1 �? D1, . . . , Cn �? Dn}, we use ⊥(Γ, T ) to denote the
EL-concept description that is the conjunction of all the atoms of T and of
D1, . . . , Dn. We now define σ⊥(Γ,T ) as the substitution satisfying σ⊥(Γ,T )(X) =
⊥(Γ, T ) for all X ∈ NV

Lemma 5. Let Γ = {C1 �? D1, . . . , Cn �? Dn} be a right-ground matching
problem modulo subsumption. Then Γ has a matcher w.r.t. T iff σ⊥(Γ,T ) is a
matcher of Γ w.r.t. T .

Proof. The “if” direction is trivial. To see the “only-if” direction, assume that
σ is a matcher of Γ w.r.t. T . We need to show that this implies the σ⊥(Γ,T ) is
also a matcher of Γ w.r.t. T , i.e., that it satisfies σ⊥(Γ,T )(C) �T D for every
subsumption C �? D ∈ Γ .

More generally, we consider subsumptions C �? D where C is a subpattern
of a pattern occurring in Γ or T and D is an atom of T or D1, . . . , Dn. We show
the following claim:

Claim: For every such subsumption C �? D, it holds that σ(C) �T D implies
σ⊥(Γ,T )(C) �T D.

Before proving the claim, let us show that this implies that σ⊥(Γ,T ) solves Γ

w.r.t. T . In fact, any subsumption in Γ is of the form C �? E1 � . . .�Ek where
C is a subpattern of a pattern occurring in Γ , and E1, . . . , Ek are atoms of one
of the Di. In addition, a substitution solves C �? E1 � . . . � Ek w.r.t. T iff it
solves all the subsumptions C �? Ei for i = 1, . . . , k.

We prove the claim by induction on the size |C| of the left-hand side C of the
subsumption C �? D. Let C = F1 � . . . � F�, where F1, . . . , F� are atoms. We
distinguish the following three cases:

1. If there is an index i ∈ {1, . . . , �} such that Fi is a variable, then σ⊥(Γ,T )(Fi) �
D since D occurs as a conjunct in ⊥(Γ, T ). This implies σ⊥(Γ,T )(C) �T D.

2. If there is an index i ∈ {1, . . . , �} such that Fi is ground and σ(Fi) �T D,
then σ⊥(Γ,T )(Fi) = Fi = σ(Fi) �T D. This again implies σ⊥(Γ,T )(C) �T D.

3. Assume that the above two cases do not hold. Using Lemma 1, we can
distinguish two more cases, depending on whether the first or the second
condition of the lemma applies.
(a) If the first condition applies, then there is an index i ∈ {1, . . . , �} such

that Fi �s
T D. Since Fi is neither ground nor a variable, we know

that Fi is a non-ground existential restriction. Thus, Fi = ∃r.F ′, D =
∃r.(D1 � . . . � Dm) with D1, . . . , Dm atoms, and σ(F ′) �T Di for all
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i ∈ {1, . . . ,m}. Since F ′ is a subpattern of C, Di are atoms of D, and
|F ′| < |C|, we can apply the induction hypothesis to the subsumptions
F ′ �? Di. This yields σ⊥(Γ,T )(F

′) �T Di for all i ∈ {1, . . . ,m}, and thus
σ⊥(Γ,T )(C) �T D.

(b) If the second condition applies, then there are atoms A1, . . . , Ak, B of T
such that A1 � · · · � Ak �T B �T D and for each η ∈ {1, . . . , k}, there
is j ∈ {1, . . . , �} such that
i. Fj is a concept variable and σ(Fj) �T Aη, or
ii. Fj is ground and Fj �T Aη, or
iii. Fj = ∃r.F ′, Aη = ∃r.A′ and σ(F ′) �T A′.
It is sufficient to show that the subsumption relationships in 3(b)i and
3(b)iii also hold if we replace σ by σ⊥(Γ,T ). For 3(b)i this can be shown
as in 1 and for 3(b)iii as in 3a.

This completes the proof of the claim, and thus of the lemma. ��

Since the size of ⊥(Γ, T ) is polynomial in the size of Γ and T , this lemma
yields a polynomial-time decision procedure for right-ground matching modulo
subsumption.

Theorem 6. Let Γ be a right-ground EL-matching problem modulo subsumption
and T a general EL-TBox. Then we can decide in polynomial time whether Γ
has a matcher w.r.t. T or not.

5 The General Case

NP-hardness for the general case follows from the known NP-hardness result
for matching modulo equivalence without a TBox [5]. In the following, we show
that matching in EL w.r.t. general TBoxes is in NP by introducing a goal-
oriented matching algorithm that uses non-deterministic rules to transform a
given matching problem into a solved form by a polynomial number of rule
applications.

Let T be a general EL-TBox and Γ0 an EL-matching problem. We can assume
without loss of generality that all the subsumptions C �? D in Γ0 are such that
either C or D is non-ground. In fact, if both C and D are ground, then the
following holds:

– If C �T D, then Γ0 has a matcher w.r.t. T iff Γ0 \ {C �? D} has a matcher
w.r.t. T .

– If C ��T D, then Γ0 does not have a matcher w.r.t. T .

Consequently, we can either remove all the offending ground subsumptions with-
out changing the solvability status of the problem, or immediately decide non-
solvability. Using the fact that C �T D1 � D2 iff C �T D1 and C �T D2, we
can additionally normalize Γ0 such that the right-hand side of each subsumption
in Γ0 is an atom. We call an EL-matching problem normalized if C �? D ∈ Γ0

implies that (i) either C or D is non-ground, and (ii) D is an atom.
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Eager Solving (variable on the right):

Condition: A subsumption C �? X ∈ Γ where X ∈ NV .
Action:
– If there is some subsumption of the form X �? D ∈ Γ such that C ��T D,

then the rule application fails.
– Otherwise, mark C �? X as “solved.”

Eager Solving (variable on the left):

Condition: A subsumption X �? D ∈ Γ where X ∈ NV .
Action:
– If there is some subsumption of the form C �? X ∈ Γ such that C ��T D,

then the rule application fails.
– Otherwise, mark X �? D as “solved.”

Fig. 1. Eager Rules

Thus, assume that Γ0 is a normalized EL-matching problem. Our algorithm
starts with Γ := Γ0, and then applies non-deterministic rules to Γ . A non-
failing application of a rule may add subsumptions to Γ . Note, however, that
a subsumption is only added if it is not yet present. New subsumptions that
are added are marked as “unsolved,” as are initially all the subsumptions of
Γ0. A rule application may fail, which means that this attempt of solving the
matching problem was not successful. A non-failing rule application marks one
of the subsumptions in the matching problem as “solved.” Rules are applied until
all subsumptions are marked “solved” or an attempt to apply a rule has failed.

Our definition of the rules uses a function Dec(. . . ) on subsumptions of the
form C �? D, where C and D are atoms and D is not a variable. A call of
Dec(C �? D) returns a (possibly empty) set of subsumptions or it fails:

1. Dec(C �? D) := {C �? D}, if C is a variable.
2. If D1, . . . , Dn are atoms, then Dec(∃r.C′ �? ∃r.(D1 � · · · � Dn)) fails if

there is an i ∈ {1, . . . , n} such that both sides of C′ �? Di are ground and
C′ ��T Di. Otherwise, Dec(∃r.C′ �? ∃r.(D1 � · · · �Dn)) := {C′ �? Di | 1 ≤
i ≤ n and C′ or Di is non-ground}.

3. If C = ∃r.C′ and D = ∃s.D′ for roles s �= r, then Dec(C �? D) fails.
4. If C = A is a concept name and D = ∃r.D′ an existential restriction, then

Dec(C �? D) fails.
5. If D = A is a concept name and C = ∃r.C′ an existential restriction, then

Dec(C �? D) fails.
6. If both C and D are ground and C ��T D then Dec(C �? D) fails, and

otherwise returns ∅.

Algorithm 7. Let Γ0 be a normalized EL-matching problem. Starting with
Γ := Γ0, apply the rules of Figure 1 and Figure 2 exhaustively in the following
order:
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Decomposition:

Condition: This rule applies to s = C1 � · · · � Cn �? D ∈ Γ .
Action: Its application chooses an index i ∈ {1, . . . , n} and calls Dec(Ci �? D).
If this call does not fail, then it adds the returned subsumptions to Γ , and marks
s as solved. If Dec(Ci �? D) fails, it returns “failure.”

Mutation :

Condition: This rule applies to s = C1 � · · · � Cn �? D in Γ .
Action: Its application chooses atoms A1, . . . , Ak, B of T . If A1�· · · �Ak �T B
does not hold, then it returns “failure.” Otherwise, it performs the following two
steps:
– Choose for each η ∈ {1, . . . , k} an i ∈ {1, . . . , n} and call Dec(Ci �? Aη). If

this call does not fail, it adds the returned subsumptions to Γ . Otherwise, if
Dec(Ci �? Aη) fails, the rule returns “failure.”

– If it has not failed before and Dec(B �? D) does not fail, it adds the returned
subsumptions to Γ . Otherwise, if Dec(B �? D) fails, it returns “failure.”

If these steps did not fail, then the rule marks s as solved.

Fig. 2. Non-deterministic rules

(1) Eager rule application: If an eager rule from Figure 1 applies to an un-
solved subsumption, apply it. If the rule application fails, stop and return
“failure.”

(2) Non-deterministic rule application: If no eager rule is applicable, let s
be an unsolved subsumption in Γ . Choose one of the non-deterministic rules
of Figure 2, and apply it to s. If this rule application fails, then stop and
return “failure.”

If no more rule applies and the algorithm has not stopped returning “failure,”
then return “success.”

In (2), the choice which unsolved subsumption to consider next is don’t care
non-deterministic. However, choosing which rule to apply to the chosen sub-
sumption is don’t know non-deterministic. Additionally, the application of a
non-deterministic rules may require don’t know non-deterministic choices to be
made. If a non-deterministic rule is applied to a subsumption s, then neither its
left-hand side nor its right-hand side is a variable. In fact, a subsumption that
has a variable on one of its sides is solved by one of the eager rules, which have
precedence over the non-deterministic rules.

It is easy to see that the subsumptions added by the non-deterministic rules
satisfy the normalization conditions (i) and (ii), and thus all the sets Γ generated
during a run of the algorithm are normalized EL-matching problems. The next
lemma states an important property ensured by the presence of the eager rules.

Lemma 8. If Γ is a matching problem generated during a non-failing run of
the algorithm, and both C �? X ∈ Γ and X �? D ∈ Γ are solved, then C �T D.
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Proof. Obviously, one of the two subsumptions was solved after the other. This
means that, when it was solved by the application of an eager rule, the other
one was already present. Since we consider a non-failing run, the application of
the eager rule did not fail, which yields C �T D. ��

Any run of the algorithm terminates after a polynomial number of steps. The
main reason for this is that there are only polynomially many subsumptions that
can occur in the matching problems Γ generated during a run.

Lemma 9. Let Γ be a matching problem generated during a run of Algorithm 7.
Then any subsumption occurring in Γ is of one of the following forms:

1. A subsumption contained in the original input matching problem Γ0.
2. A subsumption of the form C �? D where C,D are subpatterns of concept

patterns occurring in Γ0.
3. A subsumption of the form C �? A or A �? C where A is an atom of T and

C is a subpattern of a concept pattern occurring in Γ0.

Since any rule application either fails while trying to solve an unsolved sub-
sumption (in which case the algorithm stops immediately) or actually solves an
unsolved subsumption, there can be only polynomially many rule applications
during a run. In addition, it is easy to see that each rule application can be real-
ized in polynomial time, with a polynomial number of possible non-deterministic
choices. This shows that Algorithm 7 is indeed an NP-algorithm. It remains to
show that it is sound and complete.

To show soundness, assume that Γ is a matching problem obtained after ter-
mination of a non-failing run of the algorithm. Since the run terminated without
failure, all the subsumptions in Γ are solved. We use the subsumptions of the
form X �? C ∈ Γ to define a substitution σΓ . Note that the fact that Γ is
a normalized EL-matching problem implies that C is a ground pattern, i.e., a
concept description. For each variable X ∈ NV , we define

SΓ
X := {C | X �? C ∈ Γ},

and denote the conjunction of all the elements of SΓ
X as �SΓ

X , where the empty
conjunction is �. The substitution σΓ is now defined as

σΓ (X) := �SΓ
X for all X ∈ NV .

Lemma 10. σΓ is a matcher of Γ w.r.t. T .

Since the input matching problem Γ0 is contained in Γ , this lemma shows
that σΓ is a matcher also of Γ0 w.r.t. T . This completes the proof of soundness.

Regarding completeness, we can use a given matcher of Γ0 w.r.t. T to guide the
application of the non-deterministic rules such that a non-failing run is generated
(see [1] for details).

Lemma 11. Let σ be a matcher of Γ0 w.r.t. T . Then there is a non-failing and
terminating run of Algorithm 7 producing a matching problem Γ such that σ is
a matcher of Γ w.r.t. T .
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This lemma provides the final step towards showing that Algorithm 7 is an
NP-decision procedure for matching w.r.t. general TBoxes in EL.

Theorem 12. The problem of deciding whether a given EL-matching problem
has a matcher w.r.t. a given general EL-TBox or not is NP-complete.

Let us illustrate the working of the algorithm with a small example. We con-
sider the TBox T := {C � A,C � ∃s.C, ∃s.B � ∃s.C} and the matching
problem Γ := {X � B �? ∃s.A, ∃s.B �? ∃s.X}. Obviously, this problem is nei-
ther left- nor right-ground, and thus we need to use Algorithm 7 to solve it.
In the beginning, all the subsumptions in Γ are unsolved, and no eager rule is
applicable.

In order to apply a non-deterministic rule, the algorithm chooses one of the
unsolved subsumptions. Let us assume that this is the first one, i.e., X � B �?

∃s.A. Now, we have a (don’t know non-deterministic) choice between applying
Decomposition or Mutation. Consider the case where Decomposition is applied
in such a way that it produces Dec(X �? ∃s.A) = {X �? ∃s.A}. The unsolved
subsumption X �? ∃s.A is then added to Γ , while X �B �? ∃s.A is marked as
“solved.”

Now, the algorithm applies Eager Solving (variable on the left) to X �? ∃s.A.
Since there are no subsumptions with right-hand side X , the rule application
does not fail and X �? ∃s.A is marked as “solved.”

The algorithm then chooses the only unsolved subsumption left: ∃s.B �?

∃s.X . Again, there is the choice between applying Decomposition and Mutation.
Let us assume that Decomposition is chosen, which yields Dec(∃s.B �? ∃s.X) =
{B �? X}. The subsumption ∃s.B �? ∃s.X is marked as “solved” and the
unsolved subsumption B �? X is added to Γ .

Now Eager Solving (variable on the right) is applied to this subsumption,
which leads to failure since B ��T ∃s.A.

Backtracking to the last choice point, the algorithm applies Mutation to
∃s.B �? ∃s.X . Let us assume that it chooses the atoms ∃s.B, ∃s.C of T , which is
a good choice since ∃s.B �T ∃s.C. Mutation then yields Dec(∃s.B �? ∃s.B) = ∅
and Dec(∃s.C �? ∃s.X) = {C �? X}. The subsumption ∃s.B �? ∃s.X is then
marked as “solved” and the unsolved subsumption C �? X is added to Γ .

Finally, Eager Solving (variable on the right) is applied to this subsumption,
which does not fail since C �T ∃s.A.

Since now all subsumptions are solved, no more rules apply, and the algorithm
returns “success.” The matcher computed by this run of the algorithm (as defined
in the proof of soundness) is {X �→ ∃s.A}.

6 Conclusion

We have extended the known results for matching in EL [5] to the case where
subsumption and equivalence is considered w.r.t. a non-empty general TBox, i.e.,
a non-empty set of GCIs. For the DL FL0, matching without GCIs is polynomial,
and this remains true even in the extension ALN of FL0. It would be interesting
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to see how one can solve matching problems w.r.t. general TBoxes in these DLs.
Since already subsumption in FL0 w.r.t. general TBoxes is ExpTime-complete
[4], the complexity of solving such matching problems is at least ExpTime-hard.
Another interesting open problem is unification in EL w.r.t. general TBoxes.

References

1. Baader, F., Morawska, B.: Matching with respect to general concept inclusions in
the description logic EL. LTCS-Report 14-03, Chair of Automata Theory, Insti-
tute of Theoretical Computer Science, Technische Universität Dresden, Dresden,
Germany (2014), http://lat.inf.tu-dresden.de/research/reports.html

2. Baader, F., Borgwardt, S., Morawska, B.: Extending unification in EL towards
general TBoxes. In: Proc. of the 13th Int. Conf. on Principles of Knowledge Rep-
resentation and Reasoning (KR 2012), pp. 568–572. AAAI Press (2012)

3. Baader, F., Borgwardt, S., Morawska, B.: A goal-oriented algorithm for unification
in ELHR+ w.r.t. cycle-restricted ontologies. In: Thielscher, M., Zhang, D. (eds.)
AI 2012. LNCS, vol. 7691, pp. 493–504. Springer, Heidelberg (2012)

4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI
2005), pp. 364–369. Morgan Kaufmann, Los Altos (2005)

5. Baader, F., Küsters, R.: Matching in description logics with existential restrictions.
In: Proc. of the 7th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR 2000), pp. 261–272 (2000)

6. Baader, F., Küsters, R., Borgida, A., McGuinness, D.L.: Matching in description
logics. J. of Logic and Computation 9(3), 411–447 (1999)

7. Baader, F., Morawska, B.: Unification in the description logic EL. Logical Methods
in Computer Science 6(3) (2010)

8. Baader, F., Narendran, P.: Unification of concept terms in description logics. J. of
Symbolic Computation 31(3), 277–305 (2001)

9. Borgida, A., Brachman, R.J., McGuinness, D.L., Alperin Resnick, L.: CLASSIC:
A structural data model for objects. In: Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, pp. 59–67 (1989)

10. Borgida, A., Küsters, R.: What’s not in a name? Initial explorations of a structural
approach to integrating large concept knowledge-bases. Tech. Rep. DCS-TR-391,
Rutgers University (1999)

11. Borgida, A., McGuinness, D.L.: Asking queries about frames. In: Proc. of the
5th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR
1996), pp. 340–349 (1996)

12. Brandt, S.: Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and—what else? In: de Mántaras, R.L., Saitta, L. (eds.)
Proc. of the 16th Eur. Conf. on Artificial Intelligence (ECAI 2004), pp. 298–302
(2004)

http://lat.inf.tu-dresden.de/research/reports.html


Evaluating Practical Automated Negotiation
Based on Spatial Evolutionary Game Theory

Siqi Chen1, Jianye Hao2, Gerhard Weiss1, Karl Tuyls3, and Ho-fung Leung4

1 Dept. of Knowledge Engineering, Maastricht University, NL
siqi.chen@maastrichtuniversity.nl
2 Massachusetts Institute of Technology, USA

3 University of Liverpool, UK
4 The Chinese University of Hong Kong, HK

Abstract. Over the past decade automated negotiation has developed into a sub-
ject of central interest in distributed artificial intelligence. For a great part this is
because of its broad application potential in different areas such as economics,
e-commerce, the political and social sciences. The complexity of practical auto-
mated negotiation – a multi-issue, incomplete-information and continuous-time
environment – poses severe challenges, and in recent years many negotiation
strategies have been proposed in response to this challenge. Traditionally, the per-
formance of such strategies is evaluated in game-theoretic settings in which each
agent “globally” interacts (negotiates) with all other participating agents. This
traditional evaluation, however, is not suited for negotiation settings that are pri-
marily characterized by “local” interactions among the participating agents, that
is, settings in which each of possibly many participating agents negotiates only
with its local neighbors rather than all other agents. This paper presents an ap-
proach to handle this type of local setting. Starting out from the traditional global
perspective, the negotiations are also analyzed in a new fashion that negotiation
locality (hence spatial information about the agents) is taken into consideration.
It is shown how both empirical and spatial evolutionary game theory can be used
to interpret bilateral negotiation results among state of the art negotiating agents
in these different scenarios.

1 Introduction

As one of the most fundamental and powerful mechanisms for managing inter-agent de-
pendencies, automated negotiation is central for resolving distributed conflicts between
two or multiple parties [11]. Recent years have witnessed an increasing interest in de-
veloping negotiation models and strategies for a variety of problems, for example, its
deployment in business process management, electronic commerce and markets, task
and service allocation, etc. As a result, automated negotiation brings together research
topics of artificial intelligence, machine learning, game theory, economics, and social
psychology.

Although automated negotiation has been a very active topic for decades, most of the
research efforts in this area focus either on theoretical negotiation models or on simpli-
fied models for practical negotiation applications. Owing to the growing popularity of
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the international agent-based negotiation competition ANAC [10], more recent research
has concentrated on practical bilateral negotiation [3,8]. They together advance the state
of the art of negotiation theory to a more realistic and complex stage. This kind of ne-
gotiation normally shares the following five features that are still poorly understood.
(1) Negotiations occur in continuous time. (2) The behavior model1 of the opposing
party is not available and can only be observed indirectly through the exchange of of-
fers. (3) There are multiple items under negotiation. (4) The achievable profit through
an agreement decreases over time. Finally, (5) participants have a private reservation
value, which is set as the agent’s minimal benefit when no mutually acceptable agree-
ment can be found. Since the negotiation strategies discussed here are all implemented
in the form of (software) agents, in this paper no explicit distinction is made between
the terms negotiation strategy and negotiating agent.

There exist a number of good examples of research on complex negotiation such as
[4,5,8,16]. Williams et al. [16] employ Gaussian processes for optimizing an agent’s
own concession rate by predicting the maximal concession that the opponent is ex-
pected to make in the future. This strategy, known as IAMhaggler2011, made the third
place in ANAC 2011. Another successful strategy based on Gaussian processes is de-
scribed in [3], where Sparse Pseudo-input Gaussian processes are applied to alleviate
the computational complexity of building an opponent model. Hao and Leung [8] pro-
pose a novel strategy, which was the winner of ANAC 2012. This method attempts
at exploiting the opponent as much as possible by learning opponent behavior and also
predicts the optimal offer for the opposing side to improve the acceptance probability of
its own proposals, using a reinforcement-learning based approach. Chen et al. [5] adopt
an approach called OMAC to complex negotiations that aims at learning an opponent’s
strategy by analyzing its behavior through discrete wavelet transformation and cubic
smoothing spline. With the learnt opponent model, OMAC dynamically adjusts its con-
cession rate in response to uncertainties in the environment. OMAC outperformed the
five best agents of ANAC 2011 and was finally awarded the third place in ANAC 2012.
To tackle the problem of limited experience available in a single negotiation, Chen et
al. [4] then develop a strategy that is able to transfer knowledge efficiently from pre-
vious tasks on the basis of factored conditional restricted Boltzmann machines. In the
latest edition of the negotiation competition, ANAC 2013 [1], agents can make use of
their negotiation history to improve their performance in new encounters. According to
the final results, the best-performing agent is Fawkes, which learns an opponent model
by combining the two approaches proposed in [5,8].

Many new and novel strategies for complex negotiations have been proposed, but
they are primarily evaluated in terms of their scores in fixed negotiation tournaments
[7,14], where agents leave their strategies unchanged through tournaments, and which
opponents an agent needs to interact with and when they encounter are both fixed. Even
although some recent works [4,6] employ empirical game theory to investigate the fit-
ness of the strategies (or so-called robustness in other research) in more open settings
where agents are allowed to deviate to different strategies, it still suffers from the small
number of possible involved players, and more importantly, the limitation of not con-

1 Because both an agent’s utility function and bidding strategy is hidden, we will often use the
term behavior model to refer to both as the “joint forces” that govern its negotiating behavior.
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sidering the location of individuals. Against this background, the contributions of this
paper are as follows. We first provide a standard evaluation of state-of-the-art negoti-
ating agents, which is still missing from current literature. These agents are tested in a
number of tournament competitions, where the domains are adopted from the most re-
cent international agent-based negotiation competition (i.e., ANAC 2013). The results
are also used as a basis of further analysis. Second, dependent on a strategy-pair pay-
off matrix (which comes from results of previous tournament competitions), the fitness
of the strategies is studied using empirical game theory in a setting where only a few
agents globally negotiate with all others. Lastly, we extend this setting to a more in-
teresting but complicated one in which the number of players can be very large and
the interaction range of each involved agent is locally limited. Specifically, we consider
negotiation settings in which the location of players may affect other agents’ choices of
new strategies. Spatial evolutionary game theory is applied to analyze the changes of
each strategy share in the whole population. This allows to better understand the impact
of different settings on negotiation strategies’ fitness.

The remainder of this paper is organized as follows. Section 2 briefly introduces
the negotiating agents analyzed in this work as well as the test domains and the ne-
gotiation simulation environment used for the analysis. Section 3 shows results of the
performance of a number of state of the art negotiating agents in tournament experi-
ments. Section 4 provides a thorough game-theoretic analysis of the fitness of negoti-
ation strategies in different cases. Finally, Section 5 concludes the paper and identifies
some important research lines opened by the described work.

2 Agents and Test Domains

To provide an extensive coverage of advanced negotiation agents, this work considers
those agents which are ranked the first three places in ANAC 2011 – 2013 and whose
sources can also be publicly accessed. They together result in a highly competitive
negotiation setting. An overview of these ANAC agents is given in Table 1. Due to
space limitation, here we do not discuss the technicalities of these agents. The interested
reader is suggested to refer to [1,5,10] for a thorough discussion.

Table 1. Overview of top three agents of ANAC 2011 – 2013

Agent Affiliation Achievement

Fawkes Delft University of Technology 1st in 2013
Meta Agent Ben Gurion University of the Negev 2nd in 2013
TMF Agent Ben Gurion University of the Negev 3rd in 2013

CUHKAgent Chinese University of Hong Kong 1st in 2012
AgentLG Bar-Ilan University 2nd in 2012
OMAC Maastricht University 3rd in 2012

HardHeaded Delft University of Technology 1st in 2011
Gahboninho Bar Ilan University 2nd in 2011

IAMhaggler2011 University of Southampton 3rd in 2011
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The test domain is another decision factor for the quality of evaluation results. On the
contrary to previous work that only examines the efficiency of negotiating agents in a
relatively small number of domains, for the sake of a high level of generality, we adopt
the whole set of domains created for ANAC 2013 (18 domains in total). Moreover,
to capture the influence of the discounting factor δ and the reservation value ϑ on the
performance of agents, different values for these two parameters are considered. Thus,
experiments are conducted with three discounting factors (i.e., δ = {0.5, 0.75, 1.0})
and three reservation values (i.e., ϑ = {0, 0.25, 0.5}), which produce nine (3×3) dif-
ferent scenarios for each domain. In doing so, possible bias on domain selection can be
avoided. The agents cannot get chances to optimize their strategies in such a circum-
stance; on the other hand, a good spread of domain characteristics is also ensured.

The performance evaluation on negotiating agents is done with the simulation envi-
ronment – Genius [9]. It is the official testbed of the ANAC competition, which allows
to evaluate intelligent agents employing different negotiation strategies across a variety
of application domains under real-time constraints. Incorporating many key features to
support and analyze automated negotiation, Genius facilitates the research on the field
and provides a standard platform for people from the community to easily compare
newly developed agents with those existing ones. For each scenario of every single do-
main, we run a tournament ten times to guarantee results with statistical confidence.
In each tournament agents repeat negotiation against the same opponent with different
negotiation roles (i.e., buyer and seller role) as well as the order in which they start with
bidding. If a negotiation fails (e.g., no agreement is made before/at the end of an en-
counter), then the disagreement solution applies, which means that each agent merely
receives its own reservation value ϑ.

3 Tournament Competition Results

Because of space limitation, the detailed negotiation settings are not presented here; the
interested reader is suggested to refer to [3,6] for more information. As specified in the
previous section, nine variants of each of these 18 domains with different discounting
factors and reservation values were used, totalling up to 162 scenarios. This resulted in
a total number of 524,880 negotiations in the experiments (with each scenario repeated
10 times).

The overall performance of the agents is summarized in Table 2 with the mean utility
and standard deviation. The best performance came from CUHKAgent and AgentLG
(1st and 2nd in ANAC 2012), followed by TMF-Agent (3rd in 2013) with a very small
difference. Meta-Agent (2nd in 2013), OMAC (3rd in 2012) and Hardheaded (1st in
2011) then took the fourth and sixth place in the competition, respectively. As the latest
edition of the competition focuses more on learning and adaption in negotiation, it is
surprising to see that ANAC 2013 agents that are given negotiation history to aid their
performance in new tasks still (on average) lag behind those 2012 agents. These findings
revealed an important fact that the scope of the tournament pool has a significant impact
on the experimental results, and illustrated the necessity of a wide range of state-of-the-
art benchmarking agents when assessing a negotiation strategy.

According to the experimental results, the strategy-pair payoff matrix is set up and
shown in Table 3 (which are averaged over all negotiation encounters considered in our
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Table 2. Overall performance of all agents across all scenarios in descending order. The letter in
bold of each strategy is taken as its identifier for the later game-theoretic analysis.

Agent Mean utility Standard deviation

CUHKAgent 0.656 0.0002
AgentLG 0.656 0.0003

TMF-Agent 0.648 0.0003
Meta-Agent 0.645 0.0004

OMAC 0.638 0.0002
HardHeaded 0.635 0.0002
Gahboninho 0.626 0.0002

Fawkes 0.619 0.0003
IAMhaggler2011 0.581 0.0001

work). The first letter of each strategy is used as its identifier. As the matrix is sym-
metric, we only present the row strategy’s payoff. On the basis of this payoff matrix, in
the subsequent sections we perform the game-theoretic analysis of repeated negotiation
scenarios that is more open than those in this section.

Table 3. Strategy-pair payoff matrix, where the score pair in each entry is averaged over all
domains, with the score representing the column player’s payoff (as the matrix is symmetric).
The first letter (bold) of each agent is used as the identifier.

Payoff G H I A C O M T F
G 0.686 0.672 0.639 0.707 0.731 0.698 0.694 0.706 0.674
H 0.559 0.616 0.592 0.608 0.647 0.640 0.630 0.658 0.609
I 0.788 0.743 0.715 0.766 0.796 0.750 0.773 0.772 0.758
A 0.607 0.593 0.621 0.591 0.582 0.581 0.609 0.536 0.562
C 0.616 0.626 0.522 0.672 0.619 0.628 0.621 0.630 0.592
O 0.585 0.579 0.534 0.584 0.610 0.596 0.592 0.599 0.573
M 0.654 0.648 0.609 0.676 0.661 0.636 0.677 0.653 0.662
T 0.534 0.577 0.478 0.614 0.550 0.545 0.570 0.551 0.515
F 0.660 0.635 0.653 0.617 0.668 0.621 0.666 0.629 0.325

4 Game-Theoretic Analysis of Automated Negotiations

We have deeply studied the strategy performance from the competition perspective.
As discussed before, there however exists a significant limitation of this performance
measure because it cannot give any indication about the fitness of these strategies in a
open environment. It is unclear, for instance, which strategy will become the winner of
a competition when the players are allowed to deviate, i.e., to switch to another strat-
egy for the sake of better individual profits, or when the mixture of opponent strategies
changes. For the purpose of providing a broader view of the agents’ performance, em-
pirical game theory and spatial evolutionary game theory are both applied in this section
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Fig. 1. Deviation analysis for the two-player negotiation. Each node shows a strategy profile and
the average score of the two involved strategies with the higher scoring one marked by a color
background. The arrow indicates the statistically significant deviation between strategy profiles.
The equilibria are the nodes marked with a thicker border.

to analyze the fitness of the strategies in two distinct cases. The following analysis is
performed based on the payoff matrix shown in Table 3.

4.1 Small Number of Players with Global Interaction

We start by studying strategy fitness in the case where several players negotiate with
others. To appropriately address strategy fitness with global interaction, empirical game
theory (EGT) analysis [12] is employed, which was initially developed to analyze the
Trading Agent Competition (TAC). We consider the strategy deviations as discussed
in [16], where there is an incentive for one agent to unilaterally change the strategy in
order to statistically improve its own profit. The aim of using EGT is to search for pure
Nash equilibria in which no agent has an incentive to deviate from its current strategy,
or best reply cycle where there exists a set of profiles (i.e., the combination of strategies
chosen by players) for which a path of deviations exists that connect them, with no
deviation leading to a profile outside of the set. For convenience, these two types of
states are both called empirical stable states.

We investigated strategy fitness with global interaction by means of EGT in the two
different scenarios with increasing complexity below:

Scenario 1: a negotiation encounter between two players.
Scenario 2: the full tournament composed of nine players with nine strategies.
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This is because the former represents the underlying bilateral negotiation, i.e., only
two players participate in the game, and the other illustrates such kinds of negotiations
in more complex tournaments. For brevity, we use the bold letters in Table 2 as the
identifier for each strategy (e.g., H means Hardheaded, C means CUHKAgent). The set
of strategies is given by Σ = {G, H, I, A, C, O, M, T, F}.

In the first scenario, the resulting graph under EGT analysis contains
(|p|+|s|−1

|p|
)
=

(
10
2

)
= 45 distinct nodes, where |p| means the number of players and |s| the number of

strategies. A profile is defined as the two strategies used by the players in the game (it is
worth noting that the two players may use the same strategy). Furthermore, the score of
a specific strategy in a particular profile is decided by the payoff matrix given in Table 3.
The results are depicted in Figure 1. Each node represents a strategy profile being a mix
of two strategies; an arrow indicates the statistically significant deviation to a different
strategy profile. Please note that this figure only cares about the strategy mixture and
therefore the player order is not taken into account. Under this EGT analysis, there
exists one pure Nash equilibrium and a best reply cycle, highlighted by a thick border
in Figure 1 as follows:

1. The players both use Meta-Agent, i.e., [M|M].
2. a best reply cycle consists of [A|C], [I|C] and [I|A].

The sole equilibrium is the strategy profile [M|M]. This stable state only attracts few
profiles. For the remaining states, there exists a path of statistically significant devia-
tions that leads to one state of the best reply cycle. This cycle has a basin of attraction2

of 89% of the profiles. The results of repeated single negotiations (i.e., between two
players) show that there are four empirical stable states including four robust strategies
– Meta-Agent, CUHKAgent, IAMhaggler2011 and AgentLG; moreover, Meta-Agent,
CUHKAgent and AgentLG are the winning strategies in one or more states (i.e., they
gain a higher score). In addition, the analysis also indicates that high-scoring strate-
gies (e.g., TMF-Agent and OMAC) do not necessarily perform well in repeated single
encounters, or in other words, they are not robust. It is, however, worth pointing out
that the repeated single encounter analysis, while useful, cannot tell anything about the
strategy robustness when the setup gets more complicated. Next, we turn our attention
to a more complex setting composed of more players with more strategies.

For scenario 2, we consider tournaments consisting of nine players, where each can
select one of the nine strategies introduced in Table 2. The results are given in Figure 2.
Here a profile is defined as the mixture of strategies used by players in a tournament.
The nodes in this figure consist of two rows. The top row explains the set of strategies
selected by agents in the tournament; the second means the number of agents choosing
each strategy. As Figure 2 tells, there is one pure Nash equilibrium that only includes
Meta-Agent; in other words, all the players switch to this strategy in the end. The basin
of attraction of the equilibrium state includes 100% of the profiles. With that, the re-
sults of the second case suggest that in the setting of more complex tournaments, only

2 The basin of attraction [2] of a stable state is the number of profile states which converge to
a stable state. The likelihood of reaching that stable state can be measured on the basis of the
size of the basin of attraction.
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Fig. 2. Deviation analysis for nine-player tournaments composed of nine strategies. The equilib-
rium is the nodes with no outgoing arrow and a thicker border.

Meta-Agent remains robust, among the four stable strategies that we have found in the
repeated single negotiations.

The EGT analysis proves good fitness of four strategies – Meta-Agent, CUHKAgent,
AgentLG and IAMhaggler2011; especially Meta-Agent performs consistently well in
both scenarios. It is very interesting to see that although not being the strongest agent in
the competition results (refer to Table 2), Meta-Agent is more suitable for an open and
competitive environment than others. A high performance in self-play and a fairly good
relative advantage of this strategy over other competitors may account for its success.

4.2 Large Number of Players with Various Interaction Ranges

The EGT analysis is based on the assumption that each player interacts with all other in-
volved players, that is, global interaction is assumed (e.g., [3,4,16]). This does not hold
in many real-life cases; for instance, in diplomatic negotiations on a territorial dispute
it is obvious that negotiation concerns only adjacent countries rather than all countries
with which the disputing countries are in some relationship. As another example, the
location of individuals is also of great importance for resources allocation in wireless
sensor networks. Locality thus is an important factor in negotiation that has not been
well studied so far. Moreover, the number of possible players is rather limited using the
EGT approach; otherwise the resulting profiles/nodes would be extremely large to be
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well analyzed. There naturally arises another question how the fitness of the strategies
changes when the player size dramatically grows. For these two reasons, we investigate
how a population of players or individuals behave by changing their negotiation strate-
gies in the case of local and global interaction ranges. In contrast to global interaction
where a player negotiates with all other players, local interaction takes into account
the agents’ local neighborhood. Toward this end, evolutionary game theory, more pre-
cisely spatial evolutionary game theory [13,15], is applied to the tournament results.
This allows to analyze the impact on fitness (i.e., how well an individual is adapted to a
dynamic environment) of each species (strategy) competing with others locally.

In the context of this research, an individual is assumed to be located at a certain
environmental position (also called cell) and its fitness is determined by the average
payoff of its strategy playing against its neighbors (refer to Table 3). Take a simple case
with three strategies as a toy example, where the center cell choosing strategy 1 meets
its neighbors as shown in Fig. 3. The fitness of the center cell is the average payoff of
playing against three opponents using strategy 1, one opponent using strategy 2, and
two opponents using strategy 3 (i.e., with the neighbor distribution x=( 36 , 16 , 26 )), which
is formally defined in Equation 1. The payoff matrix of the three strategies is given by
matrix A below:

A =

⎡

⎣
4 10 0
1 4 9
3 7 4

⎤

⎦

where an entry A(i,j) is the payoff of strategy i against strategy j. Thus, the fitness (ρ)
of the center cell is 22

6 , following the equation below.

ρ = eiAx
T (1)

where ei denotes the i-th row of a unit matrix e with the size of the number of strategies
and A denotes the payoff matrix.

In our analysis we assume that there is a population of players using the strategy set
(Σ) consisting of the nine negotiation strategies, with a payoff matrix (see Table 3) sug-
gesting utilities of any pair of strategies. Initially, every strategy has an equal population
of 100 players randomly distributed over a 30×30 two-dimensional hexagon lattice Λ.
Each cell (I) is occupied by a strategy and bordered with six other cells, that is to say,
every single cell has six neighbors in its local scale. Calculating the fitness of each cell
in the field is simultaneously performed. After this, each cell then imitates which one
has the highest fitness of its neighborhood (including itself). In this way the natural se-
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Fig. 4. Strategy distributions over generations when players interact with their direct neighbors
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Fig. 5. Strategy distributions over generations when players interact with their neighbors and
neighbors’ neighbors

lection process (i.e., how to choose the new strategy of the cell for the next generation)
is well defined.

To obtain results with high statistical significance, we ran the simulation 10,000
times with random initialization of the location arrangement of the nine strategies.
Fig. 4 shows the strategy distributions over generations in the case of players interacting
with others in their neighborhood. As can be seen, this spatial evolutionary game, after
around 25 generations, ends up with a co-existence of three strategies – Meta-Agent,
AgentLG and Gahboninho. Further, the strategy Meta-Agent plays a dominant role in
population shares, attracting more than 96% of the individuals. In spite of being the
best one in competitions (see Table 2), CUHKAgent is exterminated like other weak
strategies. With a poor performance in competitions, the survival of Gahboninho as the
second largest proportion (yet quite small) in the population is surprising.

However, if the natural selection process is modified such that a player’s interaction
range is extended to its neighbors’ neighbors, then the difference between Meta-Agent
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and others would be enlarged. We show the result in Fig.5. In this case, only two strate-
gies – Meta-Agent and Gahboninho exist, while Meta-Agent almost fully dominates
the population share. Moreover, the time needed for players to converge to Meta-Agent
also becomes shorter. As a matter of fact, when further extending agents’ interaction
range to all other players (i.e., global interaction), all individuals switch to Meta-Agent
in just few generations.

When comparing the results depending on empirical game theory and spatial evo-
lutionary game theory, we found that Meta-Agent was a very successful strategy in
various scenarios. To summarize, the more players and larger agent-interaction range in
the game, the better performance it delivers.

5 Conclusions

This paper presented a thorough review of the performance of practical negotiation
strategies from the perspective of game theory. A wide range of high quality agents (us-
ing these strategies) from ANAC competitions were evaluated with respect to two dif-
ferent game-theoretic techniques. More importantly, this paper, as the very first work,
studies the fitness of negotiation strategies in a repeated fashion where the number of
participating players is large and the location of players serves as an important factor
of how to decide their new strategies. The detailed analysis conducted in the work pro-
vided a number of valuable new insights into the efficacy of a negotiation strategy. First
of all, competition performance, while important, does not serve as a good indicator
for an agent in an open environment in which agents, having freedom to change their
strategies, repeatedly negotiate with others. Recall that some high-scoring agents like
CUHKAgent and OMAC perform disappointingly in the new settings. Then, for the ne-
gotiations where a small number of players are involved with global interaction, fitness
of strategies may be qualitatively different in settings with different complexity. For in-
stance, AgentLG is not robust anymore in the second scenario where more players and
strategies are available. Last but not least, the results obtained from spatial evolutionary
game-theoretic analysis illustrate that agent-interaction range indeed has an effect on
the evolution process of strategies in terms of when to reach a stable state and what
share a strategy can occupy in the population. Moreover, the range of interaction seem-
ingly boosts the performance of leading strategies. They together confirm the necessity
of considerations of both local and global interaction in the performance analysis of the
strategies.

Regarding future work, we believe it is worth investing research efforts in exploring
several interesting questions. For example, how would the evolution process change if
the impact of neighbors is weighted by their distance (e.g., weighted influence of neigh-
bors), or if a player is allowed to choose any strategy from Σ rather than merely from
its neighborhood (e.g., by modifying the natural selection process). Another important
avenue we see is to apply our method to the negotiation results between autonomous
negotiating agents against human negotiators.
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Abstract. Possibilistic Answer Set Programming is an extension of the standard
ASP framework that allows for attaching degrees of certainty to the rules in ASP
programs. In the literature, several semantics for such PASP-programs have been
presented, each of them having particular strengths and weaknesses. In this work
we present a new semantics that employs so-called iota-answer sets, a solution
concept introduced by Gebser et al. (2009), in order to find solutions for stan-
dard ASP programs with odd cycles or auto-blocking rules. This is achieved by
considering maximal subsets of a given ASP program for which answer sets ex-
ist. The main idea of our work is to integrate iota-semantics into the possibilistic
framework in such a way that degrees of certainty are not only assigned to atoms
mentioned in the answer sets, but also to the answer sets themselves. Our ap-
proach gives more satisfactory solutions and avoids counter-intuitive examples
arising in the other approaches. We compare our approach to existing ones and
present a translation into the standard ASP framework allowing the computation
of solutions by existing tools.

1 Introduction

Answer Set Programming (ASP) [1] is a logic programming formalism which is nowa-
days one of the main paradigms for nonmonotonic reasoning. In view of application
contexts, however, the framework has some limitations. Quite often, when a knowledge
base is to be set up, the modeler is not only aware of the nonmonotonic nature of some
general rules to be represented, but also considers some of these rules more plausible
than others. Within the standard ASP framework it is not possible to order rules ac-
cording to their certainty or plausibility in an explicit manner. Of course, the modeler
can try to modify the knowledge base by introspecting which rules are applied under
which conditions in order to obtain some expected solution to a reasoning task on the
knowledge base (see, e.g., [2]). But if the problem instance has several solution candi-
dates it is still not possible to rank them, i.e., to estimate which of them is (or should be
considered) more plausible than others.

One way to remedy this deficiency is to consider knowledge bases equipped with
probability distributions. In this context different strands of research can be found in
the literature. For the more general context of equipping conditionals with probabilities
we refer to [3], and [4]. But also in the context of logic and answer set programming,
probabilistic approaches have been discussed (see., e.g., Poole [5], Lukasiewicz [6],
Baral et al. [7]). The problem with such approaches is that most of the time exact prob-
ability values (and even lower or upper bounds of them) are not available or hard to
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argue for. A typical situation is that the modeler has just some qualitative ranking be-
tween the rules in the knowledge base in mind, and (maybe even more importantly) that
she is also only interested in an ordinal-scale ranking of the possible solutions of the
given problem.

In this situation, ideas from possibilistic logic [8] seem promising to deal with plau-
sibility degrees of general rules. Possibilistic logic is a framework for representing un-
certainty (in a propositional logic context) by using a pair of possibility and necessity
measures. These measures are understood qualitatively and are used for rank-ordering
interpretations. To combine the ideas of possibilistic logic and answer set programming
(referred to as possibilistic answer set programming) several approaches have been pro-
posed in the literature, for example, by Bauters et al. [9], and Nicolas et al. [10]. Each
of these approaches has particular strengths and weaknesses, which will be discussed
later in more detail. The reader might also consult [11] which presents a variation of
stable semantics called pstable semantics associated with possibilistic logic.

In this paper, we present a new semantics that is based on so-called ι-answer sets.
The ι-answer set semantics has been introduced by Gebser et al. [12] in order to solve
problems arising in standard logic programs, e.g., with odd cycles or with auto-blocking
rules. The main idea is to consider subsets of the program instead of the complete
program to check whether it is possible to entail a set of atoms. The semantics we
propose for possibilistic answer sets follows the ideas of ι-answer set semantics. As we
will see, the proposed semantics naturally leads to not only associating a necessity value
to each atom within a stable model, but also a possibility value to the stable models
themselves. We argue that the new semantics, while still being NP-complete, is closer
to the philosophy underlying both possibilistic logic and ASP than other semantics in
the literature.

Structure of the paper. We start by presenting in the next section the necessary back-
ground and notations, and discuss in more detail the mentioned other semantic ap-
proaches for possibilistic logic programs. We then present our new semantics, and dis-
cuss its formal properties. Finally, we present a translation of possibilistic answer set
programs into classic answer set programs which allows to use existing tools for com-
puting solutions.

2 Background and Notations

2.1 Answer Set Programming

A logic program (or normal logic program) is a (finite) set of rules of the form

r : a ← b1, . . . , bm, not c1, . . . , not cn.

where a, bi and cj are propositional atoms. The keyword not denotes negation as fail-
ure. The atom a is called the head of the rule (denoted by head(r)) and b1, . . . , bm,
not c1, . . . , not cn is called the body of the rule. The set of all atoms bi and cj that make
up the body of the rule is denoted by body(r). The body can be divided into a positive
and negative part. Atoms bi represent the positive body, denoted by body+(r), and atoms



Towards a New Semantics for Possibilistic Answer Sets 161

cj represent the negative body, denoted by body−(r). Thus, body(r) = body+(r) ∪
body−(r) and we sometimes write r as head(r) ← body+(r), not body−(r). Further,
we extend this notation to logic programs P in the obvious way: body+(P ) = {a | a ∈
body+(r) for some r ∈ P} and body−(P ) = {a | a ∈ body−(r) for some r ∈ P}.
We denote by atoms(P ) the set of atoms that occur in P .

Intuitively, a rule can be understood as follows: if each of the atoms bi of the positive
body of the rule is true and none of the atoms cj of the negative body is true, then the
head of the rule can be inferred. Given rule r, we denote by r+ the rule head(r) ←
body+(r). A rule r with empty head is called an integrity constraint (we often write
such rules in the form ⊥ ← . . . ). Similarly, the body of a rule can be empty, thus
stating that the head is a fact.

Atoms a as well as their default negation not a are called literals. A basic program
is a logic program where all rules are of the form r : a ← b1, . . . , bm, i.e., with an
empty negative body and thus without negation as failure.

Definition 1. A set of atoms A is said to be closed under a basic program P if for each
rule r ∈ P , head(r) ∈ A whenever body(r) ⊆ A. The smallest set closed under a
basic program P is denoted by CN(P ), and referred to as the set of consequences of
the program. For arbitrary programs we write CN+(P ) for the set CN({r+ | r ∈ P}).

A stable model of a program is a set of atoms that represents a set of consequences
consistent with the beliefs expressed by the program, but also has the property that the
presence of each of the atoms in the set is justified. In other words, a stable model is
necessarily minimal with respect to set inclusion, that is, a proper subset of a stable
model cannot be a stable model. More formally, stable models can be defined in terms
of the so-called Gelfond-Lifschitz reduct [13]:

Definition 2. The Gelfond-Lifschitz reduct of a program P by a set of atoms A is
defined as the following set of rules: PA =

{
r+ | r ∈ P and body−(r) ∩ A = ∅

}
.

Given a logic program P , a set of atoms A is called a stable model of P if and only if
CN(PA) = A.

In the literature, the terms answer set and stable model are mostly used in an equiv-
alent way. For a more comprehensive introduction to answer set semantics we refer
to [14,1].

2.2 ι-Answer Sets

Gebser et al. [12] introduce the notion of ι-answer sets. This concept allows for incre-
mentally constructing solutions to a given normal logic program. Contrary to standard
answer set semantics, the ι-answer set semantics has the advantage that we can always
talk about solutions of a program, even when stable models do not exist.

Definition 3. Let P be a logic program and A be a set of atoms. Then A is called
an ι-answer set of P if A = CN+(Q) for some ⊆-maximal Q ⊆ P such that (i)
body+(Q) ⊆ CN+(Q) and (ii) body−(Q) ∩ CN+(Q) = ∅.

It is also possible to characterize the ι-answer sets in terms of applied rules.
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Definition 4. Let P be a logic program and A be a set of atoms. Then the set of applied
rules of P for A is defined as:

AppP (A) =
{
r ∈ P | body+(r) ⊆ A, body−(r) ∩ A = ∅, head(r) ∈ A

}
.

It can be shown that a set of atoms A is an ι-answer set of P if and only if A =
CN+(AppP (A)) and if for each r ∈ P \ AppP (A), at least one of the following con-
ditions holds true: (i) body+(r) 	⊆ A, (ii) body−(r) ∩ A 	= ∅, or (iii) head(r) ∈
body−(AppP (A) ∪ {r}).

2.3 Possibilistic Logic

We consider a finite propositional language L. The set of all interpretations over L is
denoted by Ω. Possibilistic logic [8] is defined in terms of a possibility distribution
π : Ω → [0, 1] representing how plausible an interpretation is with regard to the avail-
able knowledge. For an interpretation ω ∈ Ω, π(ω) = 0 means that ω is considered
impossible and π(ω) = 1 means that there is no contradiction with assuming ω to be
true. The possibility distribution only represents a preordering over the interpretations,
i.e., π(ω) > π(ω′) expresses that ω is considered more plausible than ω′. A possibility
distribution allows to define two functions Π and N from the set of formulae over L to
[0, 1] as follows:

Π(ϕ) := max {π(ω) | ω ∈ Ω, ω |= ϕ} and N(ϕ) := 1−Π(¬ϕ).

The function Π is called possibility measure and N is called necessity measure: Π(ϕ)
measures to what extent the formula ϕ is compatible with the available knowledge,
while N(ϕ) measures to what extent it is entailed. Given a possibility distribution π, a
formula ϕ is said to be a consequence of π if and only if Π(ϕ) > Π(¬ϕ). Intuitively,ϕ
is a consequence of π if the best models of ϕ (namely the models of ϕ having a highest
degree) are more plausible (or more preferred) than the best models of ¬ϕ.

A possibilistic formula is a tuple 〈ϕ, α〉 where ϕ ∈ L and α ∈ (0, 1] expresses
that ϕ is considered certain at least to the level α. Thus, given a necessity measure
N , it holds N(ϕ) ≥ α. A possibilistic knowledge base is a set K of possibilistic for-
mulas. The strict α-cut Kα of K is defined as Kα = {ϕ | 〈ϕ, β〉 ∈ K and β > α}.
From the strict α-cut, we define the inconsistency value of K Inc(K) = max{α |
Kα is inconsistent or α = 0} which is the necessity degree under which information is
ignored. We thus define Core(K) = KInc(K) and say that a formula is a consequence
of K (denoted by K �π ϕ) if Core(K) � ϕ.

3 Possibilistic Logic Programs

We define the possibilistic extension of classic logic programs following [10]. These
are logic programs where each rule is augmented with a necessity value.

A possibilistic rule is a pair r = 〈r∗, α〉 where r∗ is some rule in the sense of ASP
and α denotes the rule’s necessity degree in the range (0, 1]. The ASP rule r∗ is called
the projection of the possibilistic rule r, i.e., the rule obtained by ignoring the attached
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necessity degree. A possibilistic logic program Q is a set of possibilistic rules. The
projection of a possibilistic program Q∗ is the set of rules {r∗ | r ∈ Q}, i.e., a logic
program in the sense of ASP.

Given a set A of propositional atoms, a possibilistic atom is a pair p = 〈a, α〉 ∈
A× (0, 1] where α denotes the necessity degree of a. A possibilistic atom set is a set of
possibilistic atoms in which every propositional atom occurs in at most one possibilistic
atom. Projections are defined as before, that is p∗ = a and {p1, . . . }∗ = {p∗1, . . . }.
Because stable models are sets of atoms, it seems intuitively appropriate to consider
“possibilistic answer sets” of a possibilistic program as possibilistic atom sets. Indeed
in [10] the projection of a possibilistic stable model of a possibilistic program is always
a stable model of the projection of the program. However, in our opinion this is not
adequate for reasons discussed in the following.

Before we introduce our new semantics of possibilistic logic programs we review
the differnet semantics discussed in the literature.

Nicolas et al. [10]. Possibilistic answer sets are here defined as possibilistic atom sets
whose projection is a classic answer set of the projection of the possibilistic program.
The attached necessity values are determined according to the grounding sequence1. As
a consequence, it does not capture all possible solutions of a possibilistic logic program
with respect to possibilistic logic.

Example 1. Consider the possibilistic program Pn = {〈concert ← not canceled., 0.8〉,
〈canceled., 0.6〉}. The only possibilistic answer set (in the sense of [10]) of this program
is {〈canceled, 0.6〉}.

In this example the necessity value of canceled indicates that there exists some rea-
son to believe it was not canceled. However, this is not reflected in the concept of
possibilistic answer set by [10].

Moreover, Nicolas et al. define possibility distributions for possibilistic logic pro-
grams (although without providing an algorithm for computing it). The possibility of
a set of atoms A given a logic program P is π̃P (A) = πPA(A) with πPA(A) being
defined as 0 if A is not grounded, 1 if it is a least model of the consequence operator
applied to PA, and 1 − α otherwise (where α is the maximal possibility value among
the non-satisfied rules).

Another issue with this semantics is the way how integrity constraints are treated. A
violated integrity constraint prevents a set of atoms to be a possibilistic stable model
independently of its necessity value, and a non-violated integrity constraint is ignored
just as its necessity value. For example, the program {〈concert ← not canceled ., 1〉,
〈⊥ ← concert ., α〉} has no solution for any α ∈ (0, 1] even if α is very low.

Bauters et al. [9]. This approach starts from a different paradigm in order to overcome
the issue described above. Bauters et al. identify that the possibilistic answer sets in
the sense of Nicolas et al. [10] are computed based on the Gelfond-Lifschitz reduct of
the program, which excludes any information about the necessity or possibility value

1 A grounding sequence is the ordered set of rules involved in the deduction of an answer set.
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that could have been drawn from the negative atoms. Bauters et al. also use possibilistic
atom sets, but propose to consider and enforce the equalities N(a) = Π(not a) and
thus N(not a) = 1−N(a). In our opinion, this leads to some counter-intuitive results.
Let us consider two examples to illustrate this (the first one has already been discussed
by Bauters et al. [9]).

Example 2. Consider the possibilistic logic program: Pb1 = { 〈a ← not a., 1〉 }. The
only answer set in the sense of Bauters et al. [9] is {〈a, 0.5〉}.

The rule a ← not a. used in this example is a self-contradiction which carries the
maximal necessity value and, in the classic possibilistic logic context, would bring the
inconsistency value of the program to 1.

Example 3. Consider the following possibilistic logic programs:

Pb2 =
{
〈a ← not a., 1〉, 〈b., 0.7〉

}
Pb3 =

{
〈a ← not a., 1〉, 〈b., 0.3〉

}

The only answer set for Pb2 is {〈a, 0.5〉, 〈b, 0.7〉} and for Pb3 {〈a, 0.5〉, 〈b, 0.3〉}. The
rank-ordering of the atoms a and b in the answer set is no longer only governed by the
rank-ordering of the grounding sequence allowing their deduction. Here b is considered
more certain than a if the necessity of the rule b. is more than half the necessity of
a ← not a.

We think that the point made in the last example is in opposition to the philosophy
of possibilistic logic where the necessity values only define a preordering between the
formulas. It seems that the definition by Bauters et al. [9] introduces some logarithmic
scale within the semantics which is not suitable from our point of view.

Bauters et al. [15]. The same authors proposed another approach for dealing with
possibilistic logic and answer sets which is based on subsets of a program. This work
differs from our approach in several aspects: first they consider every possible subset
of the program which is harmful for the complexity and entails a different semantics.
Also they do not consider answer sets properly speaking but only the brave and cautious
consequences of the program. Moreover, this approach has a higher complexity, at the
second level of the polynomial hierarchy [16].

Discussion. All of the approaches presented so far have problems. One of them is
the inability to give an overall possibility value of the answer set as the possibilities
are only attached to atoms. They are, for example, unable to measure the certainty of
the empty set as a solution, e.g, to make the difference between 〈a ← not a., 0.1〉 and
〈a ← not a., 1〉. The semantics presented in the next section addresses these issues.

4 A New Definition of Possibilistic Answer Sets

In the examples presented previously, and given the non-monotonicity of the language,
we can see that we could deduce atoms by ignoring the deduction of others. Ignoring
rules as part of a definition can be helpful in two ways:
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– It allows for considering more efficiently the reason why some atoms have been
overlooked and to measure how harmful it was.

– It allows for defining possibilistic answer sets based on ι-answer sets.

As we want to represent the fact that some rules might have been ignored, we can
introduce an overall possibility value for sets of atoms from which we define the concept
of possibilistic interpretation. The possibility value is deduced from the necessity of
rules going against the set of atoms.

Definition 5. Let X be a possibilistic atom set and α ∈ (0, 1]. Then a possibilistic
interpretation is a pair 〈X,α〉 where α denotes the possibility degree of X .

In this context, a possibilistic ι-answer set can be naturally defined with the help of
an ι-answer set:

Definition 6. Let P be a possibilistic logic program and I = 〈X,α〉 be a possibilistic
interpretation. Then I is a possibilistic ι-answer set of P if there exists some Q ⊆ P
such that the following holds:

1. X∗ = CN+(Q∗),
2. body+(Q∗) ⊆ CN+(Q∗),
3. body−(Q∗) ∩ CN+(Q∗) = ∅,
4. α = 1−max {β | 〈r, β〉 ∈ P \Q} if P 	= Q, and α = 1 otherwise,
5. for each a ∈ atoms(Q∗) and r∗ ∈ Q∗ such that a = head(r∗), {b1, . . . , bm} =

body+(r∗) ⊆ X , and body−(r∗) ∩X = ∅, it holds N(a) ≥ min{α, β1, . . . , βn},
where N(r) = α and N(bi) = βi and there exists some r∗ ∈ Q∗ such that N(a) =
min{α, β1, . . . , βn},

6. there is no Q′ with Q � Q′ ⊆ P satisfying conditions 2 to 4.

On top of the necessity value of each atom, there is a possibility value for the overall
possibilistic ι-answer set, which represents its plausibility as a solution. A possibilistic
ι-answer set I = 〈X,α〉 can thus be understood as follows: X can be accepted as
a possibilistic ι-answer set but there exists a 1 − α necessity against it; in case it is
considered, the necessity of each atom is given in X .

With necessity being defined as a lower bound, classical possibilistic logic enforces
formulas in a possibilistic knowledge base not to have a necessity degree of zero be-
cause otherwise they bring no information. For possibilistic ι-answer sets we enforce
the same requirement.

Example 4. Consider the following possibilistic logic program:

P =

{
〈rain ← not sun., 1〉, 〈umbrella ← rain., 1〉,
〈sun., 0.6〉, 〈glasses ← sun., 1〉

}

It has two possibilistic ι-answer set 〈{〈sun, 0.6〉, 〈glasses, 0.6〉}, 1〉 with P = Q and
〈{〈rain, 1〉, 〈umbrella, 1〉}, 0.4〉 with P\Q = {〈sun., 0.6〉}.

A parallel can be established between possibilistic ι-answer sets and answer sets.
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Proposition 1. Let P be a possibilistic logic program and I = 〈X,α〉 be a possibilistic
ι-answer set of P . Then α = 1 if and only if X∗ is an answer set of P ∗ in the classical
sense.

The previous proposition follows directly from Theorem 3.6 of [12]. Moreover, this
immediately shows the NP-hardness of finding possibilistic ι-answer sets. Here, the
NP-membership is trivial as one has to guess the set of atoms X from Definition 6 and
from there one can polynomially compute the consequence. From these observations,
we obtain the following result.

Theorem 1. Let P be a possibilistic logic program. Deciding the existence of an pos-
sibilistic ι-answer set for P is NP-complete.

Integrity Constraints. In the original definition of ι-answer sets, Gebser et al. had to
treat integrity constraints separately from the other rules. This distinction is necessary
because discarding a rule from the applied rules set comes with no penalty in the origi-
nal context. If there is no penalty in ignoring integrity constraints, they become useless.
For our possibilistic ι-answer sets, such a special treatment is not necessary. The possi-
bility value of an answer set reflects the importance of the discarded rules. We illustrate
this in the following.

Example 5. Consider the following classic logic program and its possibilistic variant:

P = {a ← not b. b ← not a. ⊥ ← a.}
P ′ = {〈a ← not b., 1〉 〈b ← not a., 1〉 〈⊥ ← a., 0.5〉}

In P , there is one answer set here {b} as {a} is forbidden by the constraint. The con-
straint is considered part of the applied rules according to Definition 4. The necessity
value attached to constraints can be used to rank-order the answer sets. Here we have,
for example, 〈{〈b, 1〉}, 1〉 and 〈{〈a, 1〉}, 0.5〉 where the latter is considered less possi-
ble.

5 A Translation of Possibilistic Logic Programs into ASP

Gebser et al. [12] propose a translation, called ι-completion, from classical positive-
order logic programs into SAT. We use this translation as a basis for encoding possi-
bilistic logic programs into ASP.

Let P ∗ be a classical logic program, and P ∗
C denote the set of self-blocking rules

within P ∗ given by

P ∗
C =

{
r | r ∈ P ∗ and head(r) ∩ body−(r) 	= ∅

}
.

The set sup(a) allows for identifying the necessary premisses to the deduction of a.

rule(a) = {r ∈ P ∗ \ P ∗
C | head(r) = a}

sup(a) =
∨

r∈rule(a)

( ∧

p+∈body+(r)

p+ ∧
∧

p−∈body−(r)

¬p−
)
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The set block(a) allows for identifying all the self blocking rules in which a is involved.
block(a) is true if one self-blocking rule is supposed to be fired in the answer set, which
is impossible. Thus, the ι-completion forces block(a) to be false.

neg(a) =
{
r ∈ P ∗ \ P ∗

C | a ∈ body−(r)
}

block(a) =
∨

r∈neg(a)

(
head(r) ∧

∧

p+∈body+(r)

p+ ∧
∧

p−∈body−(r)

¬p−
)

Let C∗ denote the set of integrity constraints of P ∗. The ι-completion is given by:

comp(P ∗, C∗) = {a ↔ sup(a) ∧ ¬block(a) | a ∈ atoms(P ∗)}
Because existing answer set solvers cannot handle floating point numbers, we as-

sume in the following that both possibility and necessity values are given as integers in
the range V = {1, . . . , 100}. For example, a necessity 0.8 is written as 80. This is not
problematic as there are always only finitely many necessity values in a possibilistic
program, and thus they can be accommodated on some finite integer scale.

The translation for ι-answer sets is done in four steps. The idea is close to the one
introduced in [17]. The logic program checks for every possible interpretation whether
it is a ι-answer set. After the checking is done, another part of the program finds the
possibility value associated to the ι-answer set and to each of its atoms.

Step 1: Generating interpretations. In order to check every interpretation, we first
have to assert that each atom is assigned true of false. To this end, we introduce for
each atom a ∈ atoms(P ∗) an additional new atom na denoting not a, and the rules:
1{l(a), l(na)}1. and ← l(a), l(na).

Step 2: Checking for support. The second step is a translation of the completion given
before. Namely, for each atom a ∈ atoms(P ∗) we introduce the rules:

l(a) ← sup(a), not block(a). l(na) ← not sup(a). l(na) ← block(a).

as well as the rules corresponding to sup(a) and block(a). They can easily be translated
into ASP using labeling conversion.

Step 3: Computing necessity values. The third step computes the consequence of the
reduct. An atom must be deduced under two conditions: it needs to have a rule allowing
its deduction, and the atoms in this rule’s positive body must be justified. To achieve
this, we introduce the following for each rule 〈r∗, v〉 ∈ P and for each N ≤ v ∈ V .

vlip(head(r∗), N) ← l(head(r∗)), vlip(body+(r∗), N), not body−(r∗), N ≤ v.

Here N represents the necessity value of the atom which has to be equal to the minimum
amongst the necessity value of the atoms in the positive body and the rule itself. Thus,
the head is deduced with a necessity v if all atoms in body+(r∗) have been deduced
with at least a necessity v and the necessity of the rule is also at least v.

We need to compute the final necessity value for each of the atoms. For each p ∈
atoms(P ∗), ∀N,O ∈ V we introduce the rules whereL is a variable representing atoms.

negvli(L,N) ← vlip(L,N), vlip(L,O), N < O.

vli(L,N) ← vlip(L,N), not negvli(L,N).
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Step 4: Computing the possibility value. For the possibility value, we need first to check
rules that might have been ignored. We introduce the rule:

vasp(100− v) ← not head(r∗), body+(r∗), not body−(r∗).

for each rule 〈r∗, v〉 ∈ P . From all the rules ignored, the higher necessity value is
the most relevant (and thus the smaller possibility vasp(N)). The first rule marks the
values which are not minimal. Then the minimal value is the one that remains unmarked
as computed by the second rule. For each N ∈ V∪{0} this is achieved by the two rules:
negvas(N) ← vasp(N), vasp(O), N > O. vas(N) ← vasp(N), not negvas(N).
All these 4 steps together form the program τ(P ).

Theorem 2. The stable models of the translated program τ(P ) are exactly the possi-
bilistic ι-answer sets of P .

The proof comes from the separation of the program in two parts. The first part (step
1 and 2) is exactly the translation proposed in [12] and the second part (step 3 and 4)
cannot prevent a set to be a solution, but only computes the necessity and possibility
values associated.

Example 6. We present an example to illustrate the translation process. Let P be the
following possibilistic logic program:

P =

{
〈a ← not b., 1〉 〈d ← a., 1〉 〈b ← not c., 0.8〉

〈e ← b., 1〉 〈c ← not a., 0.6〉 〈f ← c., 1〉

}

Program P leads to the final translation in ASP presented in Figure 12. For the sake
of space, the sup and neg rules are given only for the atom a. Only the atoms of the
solutions which are relevant for understanding are given. This translation has 3 solutions
partially exhibited here:

⎧
⎨

⎩

{l(a), l(nb), l(nc), l(d), l(ne), l(nf), vas(20), vli(d, 100), vli(a, 100)},
{l(na), l(b), l(nc), l(nd), l(e), l(nf), vas(40), vli(e, 80), vli(b, 80)},
{l(na), l(nb), l(c), l(nd), l(ne), l(f), vas(0), vli(f, 60), vli(c, 60)}

⎫
⎬

⎭

The last solution should be ignored because its possibility is equal to zero.

Experimental Results. In order to evaluate the usability of our approach we ran a
series of tests3 with clingo [18] on an Intel Pentium with 2 GHz. The tests were per-
formed on randomly generated instances with two parameters: the number of rules nbr
and the number of atoms nba. The average running times over 1000 instances for a
pair (nbr,nba) were (500,250) in 0.34s, (1000,500) in 0.97s, (5000,2500) in 15.84s and
(10000,5000) in 58.03s. For comparison, a normal ASP (10000,5000) instance is solved
in 0.280s on average. This suggests that finding possibilistic ι-answer sets can be per-
formed on instances of acceptable size.

2 The statement 1{a1, ..., an}1 stands for ”exactly one atom in {a1, ..., an} is true”.
3 The script used is available at http://www.informatik.uni-freiburg.
de/ hue/translate.tar.gz

http://www.informatik.uni-freiburg.de/~hue/translate.tar.gz
http://www.informatik.uni-freiburg.de/~hue/translate.tar.gz
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1{l(a), l(na)}1 1{l(b), l(nb)}1 1{l(c), l(nc)}1 1{l(d), l(nd)}1
1{l(e), l(ne)}1 1{l(f), l(nf)}1

negvli(L,N) ← vlip(L,N), vlip(L,O), N < O. vli(L,N) ← vlip(L,N), not negvli(L,N).
vlip(a,N) ← l(a), l(nb), N <= 100. vlip(b,N) ← l(b), l(nc), N <= 80.
vlip(c,N) ← l(c), l(na), N <= 60. vlip(d,N) ← l(d), vlip(a,N), N <= 100.
vlip(e,N) ← l(e), vlip(b,N), N <= 100. vlip(f,N) ← l(f), vlip(c,N), N <= 100.
negvas(N) ← vasp(N), vasp(O), N > O. vas(N) ← vasp(N), not negvas(N).

vasp(0) ← l(na), l(nb). vasp(20) ← l(nb), l(nc). vasp(40) ← l(nc), l(na).
vasp(0) ← l(nd), l(a). vasp(0) ← l(ne), l(b). vasp(0) ← l(nf), l(c).
sup(a) ← suprule(a, r0). suprule(a, r0) ← l(nb). neg(a) ← negrule(a, r0).
negrule(a, r0) ← l(c), l(na). l(a) ← sup(a), not neg(a). l(na) ← not sup(a).

l(na) ← neg(a).

Fig. 1. ASP translation of Example 6

6 Conclusion

In this paper we considered an extension of ASP that involves possibilistic rules. Such
possibilistic logic programs allows for concisely expressing degrees of possibility and
giving a rank-ordering of the program’s rules. While the concept of possibilistic logic
programs has been considered before, previous semantics of the resulting possibilistic
answer sets are in our opinion contrary to the intuition behind possibilistic logic and
lack several expected properties.

We have here provided a new semantics for possibilistic programs based on the exist-
ing concept of ι-answer sets. Our semantics extends the original definition by Nicolas
et al. [10], overcoming its shortcomings and providing a reasonable concept of pos-
sibilistic solution that is not limited to the classic stable models of a logic program.
Moreover, our definition handles inconsistencies and integrity constraints much more
gracefully than alternative suggestions put forward by Bauters et al. [9]. The new se-
mantics is in line with and respects the original philosophy of possibilistic logic in the
sense of rank-ordering rules. This is in contrast to Bauters et al. [9] who require com-
putations on necessity values exceeding a pure rank-ordering.

Our definition of possibilistic answer sets allows for computing them using existing
answer set tools by transforming possibilistic logic programs into classic logic pro-
grams. Thus, possibilistic rules can be easily applied in existing application scenarios
based on modeling only without requiring new tools.
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170 J. Hué, M. Westphal, and S. Wölfl

References

1. Lifschitz, V.: Thirteen definitions of a stable model. In: Blass, A., Dershowitz, N., Reisig, W.
(eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 488–503. Springer, Heidelberg
(2010)

2. Brewka, G., Eiter, T.: Preferred answer sets for extended logic programs. Artif. Intell. 109(1-
2), 297–356 (1999)

3. Bacchus, F., Grove, A.J., Halpern, J.Y., Koller, D.: From statistical knowledge bases to de-
grees of belief. Artificial Intelligence 87(1-2), 75–143 (1996)

4. Thimm, M., Kern-Isberner, G.: On probabilistic inference in relational conditional logics.
Logic Journal of the IGPL 20(5), 872–908 (2012)

5. Poole, D.: Logic programming, abduction and probability. In: Proceedings of the Interna-
tional Conference on Fifth Generation Computer Systems (FCGS), pp. 530–538 (1992)

6. Lukasiewicz, T.: Probabilistic logic programming. In: ECAI, pp. 388–392 (1998)
7. Baral, C., Gelfond, M., Rushton, J.N.: Probabilistic reasoning with answer sets. Theory and

Practice of Logic Programming 9(1), 57–144 (2009)
8. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Handbook of Logic in Artificial Intel-

ligence and Logic Programming, vol. 3, pp. 439–513 (1994)
9. Bauters, K., Schockaert, S., De Cock, M., Vermeir, D.: Possibilistic answer set programming

revisited. In: Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence
(UAI). AUAI Press (2010)
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Abstract. In the context of Description Logics (DLs) concrete domains
allow to model concepts and facts by the use of concrete values and pred-
icates between them. For reasoning in the DL ALC with general TBoxes
concrete domains may cause undecidability. Under certain restrictions of
the concrete domains decidability can be regained. Typically, the con-
crete domain predicates are crisp, which is a limitation for some applica-
tions. In this paper we investigate crisp ALC in combination with fuzzy
concrete domains for general TBoxes, devise conditions for decidability,
and give a tableau-based reasoning algorithm.

1 Introduction

Concrete domains were introduced in [2] as an extension to DLs, which allows
to model DL concepts based on objects that come from a specified, i.e. concrete,
domain and by a set of predicates on that domain, which constrain the set of
objects. For example, the natural numbers could be used as a concrete domain
to model sizes, or regions together with the RCC relations can be used to model
geo-spatial domains.

In order to allow for reasoning a concrete domain D needs to satisfy some
conditions. A concrete domain is called admissible, if it contains a predicate for
domain membership, the set of predicates is finite and closed under negation,
and testing for finite conjunctions of predicates is decidable. In [2] these condi-
tions and a tableaux-based reasoning algorithm for testing concept satisfiability
w. r. t. terminologies were given. Concept satisfiability w. r. t. general TBoxes
easily becomes undecidable for admissible concrete domains [6]. In [7] Lutz and
Miličić give a condition for concrete domains under which decidability can be
regained. Essentially, these condition of ω-admissibility ensures that a model
for all constraints expressed in the DL knowledge base can be constructed from
locally consistent parts.

In this paper we consider fuzzy concrete domains (CDs), where objects from
the concrete domain can be related to one another to some degree. This allows for
a more fine-grained modelling for vague information as, for instance, in situation
recognition in context-aware systems or even to model fuzzy spatial relations for
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�� Partially supported by DFG in the CRC 912 HAEC.

C. Lutz and M. Thielscher (Eds.): KI 2014, LNCS 8736, pp. 171–182, 2014.
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image recognition. The combination of DLs and fuzzy concrete domains has been
investigated already in a number of settings [11,3,9,8]. However, fuzzy DLs can
easily turn out to be undecidable [4]. In our approach, we consider a crisp DL
language, with a fuzzy concrete domain. Since our underlying DL is crisp, while
the concrete domain is not, the fuzzy values from the fuzzy concrete domain need
to be discretized at some point. A natural question is whether the fuzzy CD can
be (easily) encoded in a crisp one. In principle this can be done, however, the
approach in [7] uses relational networks to represent a set of constraints imposed
on the concrete domain objects. The predicates used in relational networks are
required to be jointly exhaustive and pairwise disjoint. In a fuzzy setting, where
all tuples of concrete domain objects are related to each other via all predicates
(possibly by degree zero), this is no longer a natural requirement. Moreover,
a translation of the fuzzy constraints to crisp ones can lead to an exponential
blow-up of the knowledge base as shown in Section 4.

This finding motivates our direct reasoning algorithm for ALC (with func-
tional roles) and fuzzy concrete domains, since it allows for a more succinct rep-
resentation of the TBox. To this end we transfer the notion of ω-admissibility to
fuzzy concrete domains and give a tableaux-based reasoning procedure for con-
cept satisfiability in the presence of general TBoxes for the new DL ALC(�) in
Section 3. We show soundness, completeness and termination for our procedure.
For the full detail of the proofs, we refer the reader to [10].

We give the definition of the basic notions of DLs, (fuzzy) concrete domains
and the DL ALC(�) in Section 2. In Section 3 we devise a tableau algorithm
for ALC(�) with ω-admissible concrete domains. Afterwards we investigate the
translation-based approach to handle fuzzy concrete domains by crisp ones in
Section 4. We end the paper with conclusions and considerations for future work.

2 Preliminaries

We give only a short introduction to the basic notions of DLs—for a more thor-
ough presentation see [1]. Starting from countable and disjoint setsNC of concept
names and NR of role names, concept constructors are used to build complex
concepts. In the DL ALC complex concepts are formed using the concept con-
structors listed in Table 1.

The semantics of this logic is given by means of interpretations. An interpre-
tation I = (ΔI , ·I) is a pair consisting of an interpretation domain ΔI and a
function ·I that maps concept names to subsets of ΔI and role names to bi-
nary relations on ΔI . This function is extended to complex ALC-concepts as
shown in the last column of Table 1. As usual in DLs, we use ⊥ to denote any
contradictory concept (e.g. A � ¬A) and � to denote a tautology (A � ¬A).

Concepts are related to each other by general concept inclusions (GCIs), which
are statements of the form C � D. The interpretation I satisfies the GCI C � D,
if CI ⊆ DI . A finite set of GCIs is called a TBox T . If a TBox T contains only
GCIs, with concept names as left-hand sides, each concept name appears at most
once on the left-hand side of a GCI and the concept names in the left-hand sides
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Table 1. Syntax and semantics of ALC-concepts

Constructor Syntax Semantics

concept name A AI ⊆ ΔI

negation ¬C (¬C)I = ΔI \ CI

conjunction C �D (C �D)I = CI ∩DI

disjunction C �D (C �D)I = CI ∪DI

existential restriction ∃r.C (∃r.C)I = {d | ∃e ∈ ΔI .(d, e) ∈ rI and e ∈ CI}
value restriction ∀r.C (∀r.C)I = {d | ∀e ∈ ΔI .(d, e) ∈ rI ⇒ e ∈ CI}

of GCIs do neither directly nor indirectly refer to themselves, then the TBox T
is called a terminology. An interpretation is a model of a TBox T , if it satisfies
each GCI in T .

We consider here the reasoning task of testing satisfiability of concepts with
respect to the TBox. Given the concept C and a TBox T , C is satisfiable w. r. t.
T iff T has a model I such that CI �= ∅.

2.1 Concrete Domains

We extend the approach of Lutz and Miličić in [7] to the fuzzy setting and thus
adopt their way of introducing concrete domains. They use constraint systems
as concrete domains that have binary predicates which are interpreted as jointly
exhaustive and pairwise disjoint (JEPD) relations. This does not limit the ex-
pressiveness of the concrete domain, since any concrete domain with a finite set
of predicates can be translated into one with binary JEPD relations, e.g. see
[10]. Before introducing constraint systems, we introduce the class of structures
they describe.

Definition 1. Let V be a countably infinite set of variables and Rel a finite
set of binary relations. A Rel-constraint is a tuple of the form (t, R), where t
is a pair over V and R ∈ Rel. A Rel-network N is a (possibly infinite) set of
Rel-constraints. For a given Rel-network N , the set of its variables is denoted
by VN and the set of its relations by RelN . A Rel-network N is in normal form,
if for all x, y ∈ VN , there is exactly one constraint ((x, y), R) ∈ N .

Let τ be a mapping from variables to variables, then τ is extended to pairs
by τ((v, w)) = (τ(v), τ(w)), to constraints by τ((t, R)) = (τ(t), R), and to Rel-
networks by τ(N) = {τ(c) | c ∈ N}. A Rel-network N ′ in normal form is
a model of network N , if there is a total mapping τ : VN → VN ′ such that
τ(N) ⊆ N ′.

Intuitively, a constraint system defines a set of Rel-networks that are satisfiable.

Definition 2. A constraint system D = (V,Rel,M) is a tuple consisting of
the sets of variables V , relations Rel and M, a set of models of D , which are
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complete Rel-networks. A Rel-network N is satisfiable in D, if there is a model
M ∈ M and a total mapping τ : VN → VM from the variables of N to those of
M , such that τ(N) ⊆ M .

The notion of ω-admissible constraint systems was introduced in [7]. We refer
the reader to this paper for the definition of this notion and only give its variant
for the case of fuzzy concrete domains here.

2.2 Fuzzy Concrete Domains

While in the classical notion of concrete domains a predicate for elements holds
completely or not at all, fuzzy concrete domains can express that a predicate
holds for elements to some extent, i.e., with a membership degree from the real
unit interval. The requirement to allow for a tuple of variables to be related
exclusively via a single relation is not well-defined for fuzzy concrete domains,
since variables are always related via all relations of the same arity—possibly
only by degree 0. For that reason, we drop the requirement of JEPD relations
in the fuzzy setting.

It is not hard to show that fuzzy relations of arbitrary arity can be represented
by binary ones, see [10]. Thus relations of higher arity can be handled by our
approach, but for the ease of presentation, we only use binary relations here. To
allow for a general notion of fuzzy constraints, we use membership degree sets
defined over a domain 1 ⊆ [0, 1]. We consider a class of membership degree sets
such that 1 is a membership degree set and for every two membership degree sets
σ, σ′, (i) σ has a finite representation, and (ii) σ ∩ σ′ and 1 \ σ are membership
degree sets, too.

Definition 3. Let V and Rel be as before and 1 ⊆ [0, 1]. A fuzzy Rel-constraint
is a triple (t, R, σ) with t ∈ V 2, R ∈ Rel, and σ ⊆ 1. A fuzzy Rel-network � is
a set of fuzzy Rel-constraints. For � the set of its variables is indicated by V�
and the one for its relations by Rel�.

A fuzzy constraint system � = (V,Rel,1,M) consists of the sets of variables
V , of relations Rel, and of models M, a set of fuzzy Rel-networks.

Intuitively, a fuzzy concrete domain represents a set of Rel-networks that are
satisfiable in a fuzzy constraint system �.

Definition 4. Let � be a fuzzy Rel-network. An interpretation of � is a func-
tion � : V 2×Rel → 1 that maps pairs of variables and relations to a fuzzy degree.
An interpretation � satisfies a constraint (t, R, σ) if �(t, R) ∈ σ. If � satisfies all
constraints in a fuzzy Rel-network �, then � satisfies �.
� is satisfiable in a fuzzy constraint system � = (V,Rel,1,M), if there exists

a model � ∈ M, a mapping τ : V� → V� and an interpretation that satisfies �
and τ(�).

The idea is that the interpretation � assigns to each relation R a membership
degree function μR : V 2 → 1 such that μR(t) = d, if �(t, R) = d. In case the
elements in t are not related via R, the membership degree assigned is 0.
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A fuzzy Rel-network is in normal form, if it contains exactly one fuzzy con-
straint for each pair of variables and relation R ∈ Rel. It is shown in [10] that
every fuzzy Rel-network � can be transformed into a normalized one that is sat-
isfied by the same interpretations. Essentially, the two constraints (t, R, σ) and
(t, R, σ′) can be equivalently replaced by the constraint (t, R, σ∩σ′), which is well
defined, since the class of membership degree sets is closed under intersection.

A fuzzy Rel-network � contains a Rel-clash, if for a relation R ∈ Rel and
a tuple t there is a subset of Rel-constraints {(t, R, σi) | i ∈ I} ⊆ �, such
that

⋂
i∈I σi = ∅, with an arbitrary index set I. In other words, this fuzzy Rel-

network contains a clash iff after transforming it into normal form, it contains a
constraint of the form (t, R, ∅). Otherwise it is clash-free.

It is well-known that extending ALC with concrete domains leads to unde-
cidability of reasoning w.r.t. TBoxes. To regain decidability of reasoning in the
presence of TBoxes, conditions need to be imposed on the concrete domain or
on a constraint system, respectively. In the crisp case, the concrete domain is
required to be ω-admissible by Lutz and Miličić in [7]. We transfer this condition
now to the case of fuzzy constraint systems.

Definition 5. Given a fuzzy constraint system � = (V,Rel,1,M). � has the

– patchwork property if for two finite, satisfiable fuzzy Rel-networks �1 and
�2 holds: if �1 ∪�2 is clash-free, then �1 ∪�2 is satisfiable in �.

– compactness property if it holds that any infinite fuzzy Rel-network � in
normal form is satisfiable iff for all finite U ⊆ V the fuzzy Rel-network
�U = {((x, y), R, σ) ∈ � | x, y ∈ U} is satisfiable.

� is ω-admissible if (1) satisfiability of finite fuzzy Rel-networks in � is decid-
able, (2) � has the patchwork property, and (3) � has the compactness property.

The condition of ω-admissibility ensures decidability of reasoning when combin-
ing ALC and fuzzy constraint systems.

2.3 A DL with Fuzzy Concrete Domains: ALC(�)

To define the DL ALC(�) we need to introduce features, which are functional
roles. Let NaF be an infinite countable set of abstract feature names and NcF

be an infinite countable set of concrete feature names and NaF ∩ NcF = ∅. A
feature path P is either a concrete feature f or a pair of an abstract and a
concrete feature: P = a f with a ∈ NaF and f ∈ NcF .

Definition 6. Let � = (V,Rel,1,M) be a fuzzy constraint system, r a role
in NR ∪ NaF , R ∈ Rel, and σ ⊆ 1. Complex ALC(�)-concepts are formed
using the concept constructors of ALC listed in Table 1, where in existential
or value restrictions abstract features can be used instead of roles. Additionally,
ALC(�) allows for fuzzy constraint restrictions, which are expressions of the
form ∃(P1, P2, R, σ) or ∀(P1, P2, R, σ), where R ∈ Rel, and σ ⊆ 1 and Pi are
feature paths.
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For the semantics of ALC(�)-concepts, we need to extend the notion of an inter-
pretation to fuzzy constraint restrictions and thus accommodate Rel-networks.

Definition 7. An interpretation is a tuple II = (ΔII , ·II ,�II) consisting of a
domain ΔII, a mapping ·II, and a fuzzy Rel-network in normal form �II. The
function ·II maps names from NC ∪NR as for ALC; abstract features a ∈ NaF

are interpreted as partial functions over ΔII, and concrete features f ∈ NcF are
partial functions from ΔII to �II. The interpretation of a feature path P = a f is
the function that maps d ∈ ΔII to P (d)II = fII(aII(d)), when this is well-defined.
The semantics of the new concept constructors are:

(
∃(P1, P2, R, σ)

)II
=
{
d ∈ ΔII | ∃v, w ∈ V�II , ∃σ′ ⊆ 1 : P II

1 (d) = v ∧
P II
2 (d) = w ∧ (v, w,R, σ′) ∈ �II ∧ σ′ ⊆ σ

}

(
∀(P1, P2, R, σ)

)II
=
{
d ∈ ΔII | ∀v, w ∈ V�II , ∀σ′ ⊆ 1 :

(
P II
1 (d) = v ∧

P II
2 (d) = w ∧ (v, w,R, σ′) ∈ �II

)
=⇒ σ′ ⊆ σ

}
.

The classical DL ALC(D) is a special case of ALC(�), where σ = {0, 1} and
only the constraint restrictions with σ = {1} are mentioned.

Let r ∈ NR ∪ NaF . An ALC(�)-concept is in negation normal form (NNF),
if negation only appears in front of concept names. It is easy to see that every
ALC(�)-concept can be transformed into NNF by exhaustive application of the
following rules.

¬¬C → C

¬(∃r.C) → (∀r.¬C)

¬(∀r.C) → (∃r.¬C)

¬(C �D) → (¬C � ¬D)

¬(C �D) → (¬C � ¬D)

¬(∃(P1, P2, R, σ)) → (∀(P1, P2, R,1 \ σ))
¬(∀(P1, P2, R, σ)) → (∃(P1, P2, R,1 \ σ))

3 A Tableau Algorithm for Concept Satisfiability

We show that satisfiability of ALC(�)-concepts w.r.t. ALC(�)-TBoxes is decid-
able for any ω-admissible fuzzy constraint system � by describing a tableau-
based algorithm for this problem. For the rest of this section we consider a
fixed concept C in NNF and a TBox T containing exactly one GCI � � CT
with normalized Rel-networks. These assumptions are w.l.o.g., since every GCI
D � E can be equivalently rewritten as � � ¬D �E, and every concept can be
transformed into NNF in linear time using the rules introduced above.

The algorithm keeps as data structure a completion system S = (T,�, Σ),
where � is a finite fuzzy Rel-network, Σ is a finite set of subsets of 1 that
describes the membership degrees relevant for reasoning, and T is a labeled tree
T = (V,E,L) such that V is partitioned into two sets VA and VC , E ⊆ VA × V
and L labels every node v ∈ VA with a set of concepts L(v) ⊆ sub(C)∪sub(CT ),1

1 Here sub(C) denotes the set of subconcepts of a concept C, consider e.g. [1].
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Table 2. Tableau rules for ALC(�)

R� if D1 �D2 ∈ L(v) and {D1, D2} � L(v), then add D1, D2 to L(v)
R� if D1 �D2 ∈ L(v) and {D1, D2} ∩ L(v) �= ∅, then add D1 or D2 to L(v)

R∃
if ∃r.D ∈ L(v), v is not blocked, and there is no r-successor w of v such that
D ∈ L(w), then extend T with a fresh r-successor x of v and add D to L(x)

R∀
if ∀r.D ∈ L(v) and there is an r-successor w of v such that D /∈ L(w), then
add D to L(w)

R@
if ∃(P1, P2, R, σ) ∈ L(v), v is not blocked, and there are no c1, c2 ∈ VC , σ

′ ∈ Σ
with Pi(v) = ci, i ∈ {1, 2}, (c1, c2, R, σ′) ∈ � and σ′ ⊆ σ, then extend T with
fresh Pi-successors xi of v, i ∈ {1, 2} and add (x1, x2, R, σ) to � and σ to Σ

R5
if ∀(P1, P2, R, σ) ∈ L(v) and there are c1, c2 ∈ VC , σ

′ ∈ Σ with Pi(v) = ci,
i ∈ {1, 2} and (c1, c2, R, σ′) /∈ � for all σ′ ⊆ σ, then
add (c1, c2, R, σ) to � and σ to Σ

every edge (v, w) ∈ VA × VA with a role name L(v, w) ∈ NR ∪ NaF , and each
edge (v, c) ∈ VA × VC with a concrete feature L(v, c) ∈ NcF . T is called a
tableau tree, which intuitively describes a (partial) tree-shaped interpretation.
The nodes in VA correspond to the abstract domain elements, and VC contains
concrete domain elements. Each abstract element x ∈ VA is labeled with the set
of concepts that it satisfies. Similarly, edges are labeled with the role or feature
that associates its endpoints. The Rel-network � stores the set of constraints
that must be satisfied among the concrete domain elements appearing in T. For
each node v ∈ VA, we define the local network

�(v) := {((a, b), R, σ) ∈ � | (v, a) ∈ E or (v, b) ∈ E};

that is, �(v) contains all the fuzzy Rel-constraints that are related to the
abstract element v. We say that the local networks of two nodes v, w ∈ VA

are isomorphic, denoted as �(v) ∼ �(w), if there exists a bijective function
μ : V�(v) → V�(w) such that �(w) = μ(�(v)). Finally, the component Σ in a
completion system S = (T,�, Σ) keeps track of all relevant sets of fuzzy degrees
that may be used for satisfying �.

The completion system is initialized to the tuple S = (T0, ∅, {1}), where
T0 = ({v0}, ∅,L) is the tableau tree containing only one node v0 labeled as
L(v0) = {C,CT }. The idea is to try to build a model for T that makes the
interpretation of C non-empty. Thus, we start with one single domain element,
namely v0, that is considered to belong to this concept C. Since the interpretation
must be a model of T , v0 must also belong to CT .

The completion system is then extended by application of the rules from Ta-
ble 2. Each rule application extends the system and never removes information
from it. Only the rule R� allows for a non-deterministic choice, which corre-
sponds to deciding which disjunct is used to satisfy the concept D1 � D2. Ad-
ditionally, the two rules for handling existential restrictions R∃ and R@ have a
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special pre-condition as they are the only ones that add new nodes to the tree
T. Specifically, these rules are only applicable if the node v is not blocked, and
their application extends T with either a new r-successor, for r a role or feature
name, or P -successor, for P a feature path.

Since the GCIs in the TBox may contain cycles, termination needs to be
ensured by detecting cycles in the construction of the model. This can be done by
the well-known blocking technique, which is a detection of repetitions in partially
constructed models. In anywhere blocking [5] an element v in T is blocked, if there
is another node w that has been introduced before v and that requires the same
conditions in the model as v does—in case of ALC(�) additionally isomorphism
of their local Rel-networks is required. In that case, it suffices to use the node
w as a template to extend v into a model. Hence, there is no need to explicitly
extend v during the execution of the tableau algorithm.

The extension of the tree depends on the kind of roles used. Essentially, the
idea is that one or more new nodes are added to the tree in order to satisfy the
existential restriction. However, recall that abstract and concrete features are
restricted to be functional; that is, if g is a feature, then there is at most one
g-successor of any given node v. When extending the tree T, we need to ensure
that this functionality is preserved. If there exists already a g-successor, then it
must be reused. Formally, let T be a tableau tree. For r ∈ NR, the extension of
T with a fresh r-successor x of v is the tree T′ obtained from T such that:

– if r ∈ NR or r ∈ NaF , but v has no r-successors, then T′ contains a new
abstract node x ∈ VA and the edge (v, x) ∈ E with L(x) = {CT } and
L(v, x) = r;

– otherwise, i.e., if r ∈ NaF and v has an r-successor w, rename w to x.

Similarly, for a concrete feature f , the extension of T with a fresh f -successor x
is the tree where:

– if v has no f -successors, then T′ contains a new concrete node x ∈ VC and
the edge (v, x) ∈ E with L(v, x) = f ;

– otherwise, i.e., if v has an f -successor w, rename w to x.

Given a feature path P = a f , the extension of T with a fresh P -successor of
v is obtained by extending T with an a-successor x of v, and an f -successor
of x. If at some point the completion system is saturated, i.e., no tableau rule
is applicable to it, then the algorithm decides satisfiability of C by searching
for an obvious contradiction, or clash. The completion system S = (T,�, Σ)
contains a clash if � is unsatisfiable or there exist a node v ∈ VA and a concept
D ∈ sub(C) ∪ sub(CT ) such that {D,¬D} ⊆ L(v). Starting from the initial
completion system (T0, ∅, {1}), the algorithm applies the completion rules in
any order until a saturated system S is found. If S contains a clash, then the
algorithm answers that the concept C is unsatisfiable w.r.t. T ; otherwise, i.e., if
there is no clash in S, then C is satisfiable. We show that this tableau algorithm
is indeed a decision procedure for concept satisfiability, i.e., we show that it is
sound, complete, and terminating.
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We first show that the algorithm is sound. To show this, we will construct,
given a finite completion system S = (T,�, Σ), a model IIS of T that satisfies
C. The idea is to use T as a template for building this model, and when a blocked
node is reached, iterate using copies of the blocking node and its successors. A
T-chain is a sequence χ = v1

w1
· · · vn

wn
such that for every i, 1 ≤ i < n, vi, wi ∈ VA,

(vi, wi+1) ∈ E, and either (i) vi+1 is not blocked and wi+1 = vi+1, or (ii) vi+1 is
blocked by wi+1. In this case, we say that vn

wn
is the tail of χ, written tl(χ). We

also express as f(χ), for a concrete feature f , the concrete element f(w) where
tl(χ) = v

w . We denote as chains the set of all chains in T that start with v0
v0
.

Let IIS = (ΔIIS , ·IIS ,�IIS ) be the interpretation where ΔIIS = chains, for
every A ∈ NC , A

IIS = {χ | tl(χ) = v
w , A ∈ L(v)}, and for every role name

r ∈ NR, r
IIS = {(χ, χ v′

w′ ) | tl(χ) = v
w , (v, w′) ∈ E,L(v, w′) = r, v′ ∈ VA}.

The network �IIS is defined over the variables VIIS = {f(χ) | χ ∈ chains} and
contains all constraints

((f1(χ1), f2(χ2)), R, σ)

where for i ∈ {1, 2}:

tl(χi) =
vi
wi

, (f1(w1), f2(w2), R, σ) ∈ �, vi ∈ VA.

Notice that IIS is infinite, and also contains an infinite fuzzy Rel-network �IIS .
However, this network is built using copies of a satisfiable Rel-network �. The
patchwork property guarantees that each finite union of these copies remains
satisfiable, and hence, by compactness, the whole system is satisfiable. It can
thus be shown by induction on the structure of the concepts, and using the
properties of ω-admissibility that if S does not contain a clash, then IIS is a
model of T and v0 ∈ CIIS .

Lemma 8. Let S be a saturated completion system obtained by application of
the tableau rules to (T0, ∅, {1}) where L(v0) = {C,CT }. If S contains no clash
then C is satisfiable w.r.t. T .

Suppose now that C is satisfiable w.r.t. T . To prove that the algorithm is com-
plete, we need to show that it can produce a clash-free completion system S.
Since C is satisfiable, there exists a model II of T such that CII �= ∅. We use
this model to guide the construction of the completion system through rule ap-
plications. The idea is to identify, for each node of the tree T, an element in ΔII

that will serve as its pattern. The root node is associated to an arbitrary element
in CII . When the rule requires a non-deterministic choice (R�) or the insertion
of new elements (R∃, R@), the choice is made based on the properties of the
associated node from II. Since II is a model, the completion system built this
way is guaranteed to be clash-free. This is shown using a variant of relatively
standard proof techniques for tableau algorithms, see [7,10] for full details.

Lemma 9. If every saturated completion system obtained by the application of
tableau rules to (T0, ∅, {1}) contains a clash, then C is not satisfiable w.r.t. T .
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These two lemmas show that the tableau algorithm is sound and complete. The
only remaining issue is to show that it terminates on every input, which is
a consequence of the following observations. First, every concrete node in the
tree T is labeled with a set L(v) ⊆ sub(C) ∪ sub(CT ). Similarly, every edge is
labeled with a role name appearing in C or CT . Since sub(C) and sub(CT ) are
both finite, there are finitely many different such labels. Second, the fuzzy Rel-
network � only contains constraints of the form ((c1, c2), R, σ) where R and σ
appear explicitly in C or T . Hence, there are finitely many pairs (R, σ) appearing
in �. Third, every rule application adds at least one concept to the label of a
node, or a constraint to �, but never deletes any previous assertions. Thus, to
prove termination it suffices to show that the tree T has finitely many nodes.

Notice that new nodes are introduced to the tree T only through applications
of the rules R∃ and R@. Each application of any of these rules adds at most
two abstract and at most two concrete nodes. Thus, the number of successors
of any node is bounded linearly by the number of existential restrictions in
sub(C) ∪ sub(CT ), which is finite. In other words, T has finite branching. As
described before, the number of different node labels L(v) is bounded by the
number of sets of subconcepts of C and CT ; call this number nC . Similarly,
each local network �(v) is finite, bounded by the number n� of combinations
of concrete features f , relations R and membership degrees Σ allowed. It thus
follows that every path of length greater than nC · n� must contain at least one
directly blocked node. Since the rules R∃ and R@ are only applicable to nodes
that are not blocked, the depth of the tree T is also finite. Overall, this implies
that T must be finite, which yields the following result.

Lemma 10. The tableau algorithm terminates.

Summarizing, we showed that our tableau algorithm always terminates, is sound
and complete for testing whether a concept C is satisfiable w.r.t. a TBox T .

Theorem 11. The tableau algorithm is a decision procedure for ALC(�) con-
cept satisfiability.

Thus, the problem is decidable. A more fine-grained analysis of the bounds used
to prove termination reveals that this algorithm applies exponentially many
rules, in the worst case, until the completion system is saturated. At this point,
the Rel-network � contains exponentially many constraints and needs to be
checked for satisfiability. This satisfiability check for the Rel-network is only
sufficient for concrete domains that are ω-admissible. Assuming a constant-time
oracle for testing � and since the algorithm is non-deterministic, due to R�,
overall we obtain that concept satisfiability in ALC(�) is in NExpTime, with
an oracle for �. Next, we show that reasoning in ALC(�) can be reduced to
reasoning in ALC(D) for some, well-chosen (crisp) constraint system D.

4 Translating Fuzzy to Crisp Constraints

The extension ofALC with fuzzy concrete domains with membership degree sets,
which are closed under intersection and negation, is not more expressive than



Reasoning in ALC with Fuzzy Concrete Domains 181

ALC with (crisp) concrete domains. To be more precise, for any fuzzy constraint
system � and ALC(�)-TBox �, we can effectively construct a constraint system
D� and an ALC(D�)-TBox T that preserves the consequences of �. In this sec-
tion, we assume that � is an arbitrary, but fixed, fuzzy constraint system. Given
an ALC(�)-TBox �, let Σ� be the set of all sets σ ⊆ 1 such that σ appears in
�, extended with 1. Since � is finite, so is Σ�, and its closure under comple-
mentation and intersection Λ�. Moreover, the |Λ�| is bounded exponentially by
Σ� and is in the worst case exponential on the size of �.

Let Π� be the set of all relation names appearing in �. Obviously, |Π�| is
linear in |�|. Finally, let R1, . . . , Rm be an arbitrary, but fixed, enumeration
of the elements of Π�. We define the set of binary relations containing every
sequence of length m of elements of Λ� as Rel := {λ1 · · ·λm | λi ∈ Λ�, 1 ≤ i ≤
m}. Clearly, Rel has |Λ�|m relation names.

Intuitively, the relation λ1 · · ·λm is interpreted to include all the pairs (a, b)
of elements of the constraint model such that Ri(a, b) ∈ λi, for all i, 1 ≤ i ≤ m.
That is, each of these relations describes, in a crisp manner, the degrees to which
the pair belongs to all the relevant fuzzy relations. Following this intuition, we
denote as σ(i) the relation in Rel that has σ in its i-th position, and 1 in all other
positions. It is interpreted as all pairs of individuals that are related via Ri with
a degree in σ, regardless of the degrees associated with the other fuzzy relations.

Our translation function ν maps ALC(�) concepts to ALC(D) concepts, such
that all consequences from � are preserved by ν(�). This translation is defined
inductively over the structure of concepts. Let C,D be ALC(�)-concepts and
r ∈ NR ∪NaF , Ri ∈ Π�, σ ∈ Λ�, and P1, P2 two feature paths, the translation
ν of the fuzzy constraint restrictions is defined by:

ν(A) := A for A ∈ NC ∪ {�,⊥},
ν(¬C) := ¬ν(C),

ν(C �D) := ν(C) � ν(D),

ν(C �D) := ν(C) � ν(D) and

ν(∃r.C) := ∃r.ν(C),

ν(∀r.C) := ∀r.ν(C),

ν(∃(P1, P2, Ri, σ)) := ∃(P1, P2, σ
(i)),

ν(∀(P1, P2, Ri, σ)) := ∀(P1, P2, σ
(i)).

We define ν(�) := {ν(C) � ν(D) | C � D ∈ �}. Obviously, this construction
preserves all consequences of the original TBox. Additionally, |ν(�)| is linear
in |�|. The main difference is that the crisp constraint system D obtained has
exponentially many more relation functions than �. This is not problematic for
reasoning, since the system of constraints is solved by an external oracle. How-
ever, it must be noted that these relations are not JEPD as assumed in [7]. To
obtain a constraint system satisfying this condition, a rewriting of each con-
crete domain restriction into a possibly exponential disjunction of restrictions is
needed, which causes a blow-up in |�|.

Observe, that the translation presented depends on the specific sets of degrees
σ that appear in �. Indeed, to produce one constraint system that can be used
for any arbitrary ALC(�)-TBox, we would need to be able to handle arbitrary
subsets of 1.
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5 Conclusions

We introduced the DL ALC(�) that extends ALC with fuzzy concrete domain
restrictions. These in turn introduce fuzzy relations between elements of the con-
crete domain, i.e., functions that map tuples of concrete elements to a member-
ship degree in [0, 1]. We extended the approach from [7] for regaining decidability
of reasoning in the presence of general TBoxes, to the fuzzy setting. The required
conditions on the concrete domain are the patchwork property and compactness,
which together yield ω-admissibility. Decidability of concept satisfiability w.r.t.
TBoxes is proven by a sound, complete and terminating tableau-based algorithm
which builds a finite representation of an infinite tree-like model of the TBox and
the concept. We show that this algorithm requires (non-deterministic) exponen-
tial time, if the constraint systems can be solved in constant time. Our proofs of
correctness depend strongly on the notion of ω-admissibility. Thus, it is an open
question whether relaxed conditions would still guarantee decidability.
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Abstract. The paper contributes to the recent efforts on temporalizing
and streamifiying ontology based data access (OBDA) by discussing as-
pects of rewritability, i.e., compilability of the TBox into ontology-level
queries, and unfoldability, i.e., transformability of ontology-level queries
to queries on datasource level, for the new query-language framework
STARQL. The distinguishing feature of STARQL is its general stream
windowing and ABox sequencing strategy which allows it to plugin well-
known query languages such as unions of conjunctive queries (UCQs)
in combination with TBox languages such as DL-Lite and do temporal
reasoning with a sorted first-order logic on top of them. The paper dis-
cusses safety aspects under which STARQL queries that embed UCQs
over DL-Lite ontologies can be rewritten and unfolded to back-end re-
lational stream query languages such as CQL. With these results, the
adoption of description logic technology in industrially relevant applica-
tion areas such as industrial monitoring is crucially fostered.

Keywords: streams, OBDA, monitoring, unfolding, safety.

1 Introduction

The work described in this paper is part of recent efforts on streamifying OBDA
[11,6,17] and, to some extent, also temporalizing OBDA [5,4]. Streams, as po-
tentially infinite sequences of elements, cannot be processed as a whole. Hence
blocking operators such as the classical grouping operator and aggregation oper-
ators cannot be applied to it. The simple but fundamental idea of circumventing
this problem is to apply on streams a (small) window the content of which is
updated as new elements from the stream arrive at the query answering system.

Stream window operators play an important role also in the new query lan-
guage framework STARQL (Streaming and Temporal ontology Access with a
Reasoning-based Query Language, pronounced Star-Q-L, [16,15]). Its framework
character relies on the facts that 1) it can embed queries of various query lan-
guages, 2) refer to ontologies in various DL languages, and 3) use a first-order
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logic (FOL) fragment for temporal reasoning over ABox sequences constructed
within the query. In this paper, we focus on the latter aspect assuming for the
first two unions of conjunctive queries (UCQs) w.r.t DL-Lite ontologies.

In STARQL, the idea of processing over windows is pushed further by ex-
tending these with sequencing operators that set up at every time point a finite
sequence of ABoxes on which temporal reasoning can be applied. STARQL does
not assume a stream of ABoxes which hold universally but rather modifies/ex-
ploits the given ABox streams to build its own stream of finite ABox sequences.
This sequencing strategy, among other things, distinguishes STARQL from the
approaches in [11,6,17]. It is a natural addition to the window operators that sets
up at every time point a context in which temporal reasoning can be applied.

In this paper, we consider an instantiation of STARQL where Intra-ABox
reasoning within sequences is handled by answering UCQs over DL-Lite ontolo-
gies w.r.t. the certain answer semantics. Within Inter-ABox reasoning certain
answers from the different ABoxes are related and constrained with an outer
temporal FOL formula. This is challenging if one allows in the FOL template
negation, disjunction and all quantifiers in combination with concrete domains,
as these, if not constrained, would immediately lead to infinite sets of answers,
in particular w.r.t. concrete domain values.

STARQL uses a new adornment technique for variables to guarantee safeness.
We demonstrate the safety mechanism which will guarantee that the FOL tem-
plate language is domain independent [1] and as such can be rewritten as SQL
query. This opens the door for (rewriting and) unfolding STARQL queries into
queries of domain independent languages such as the relational stream query
language CQL [3]. Based on CQL, practical systems have been developed. Thus,
this paper provides the foundation for expressive ODBA stream querying.

2 The STARQL Framework

We describe the syntax and the semantics for a fragment of STARQL, ignoring
a.o. macro definitions, aggregators etc. (see [16] for the full version; but note
that here we use a different, more SPARQL like syntax). We assume familiarity
with the description logic DL-Lite [7].

Our running example for illustration purposes is a measurement scenario in
which there is a (possibly virtual) stream SMsmt of ABox assertions. Its initial
part, called S≤5s

Msmt here, contains timestamped ABox assertions giving the value
of a temperature sensor s0 at 6 time points starting with 0s.

S≤5s
Msmt = {val(s0, 90◦)〈0s〉, val (s0, 93◦)〈1s〉, val (s0, 94◦)〈2s〉

val(s0, 92
◦)〈3s〉, val (s0, 93◦)〈4s〉, val (s0, 95◦)〈5s〉}

Assume further, that a static ABox contains knowledge on sensors telling, e.g.,
which sensor is of which type. In particular, let BurnerT ipT empSens(s0) be in
the static ABox. Moreover, let there be a pure DL-Lite TBox with additional
information such as BurnerT ipT empSens � TempSens saying that all burner
tip temperature sensors are temperature sensors.
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We want to formalize the following information need: Starting with time point
0s, output every second those temperature sensors whose value grew monotoni-
cally in the last 2 seconds. A possible STARQL representation of the information
is illustrated in the following listing.

CREATE STREAM S_out AS
CREATE PULSE AS START = 0s, FREQUENCE = 1s
CONSTRUCT GRAPH NOW { ?s rdf:type MonInc }
FROM S_Msmt [NOW -2s, NOW]->1s , STATIC ABOX <http :// Astatic >,

TBOX <http ://TBox >
WHERE { ?s rdf:type TempSens }
SEQUENCE BY StdSeq AS SEQ
HAVING FORALL i < j IN SEQ ,?x,?y:
IF (GRAPH i { ?s val ?x } AND GRAPH j { ?s val ?y }) THEN

?x <= ?y

Though the monotonicity condition seems simple, it should be noted that recent
approaches for temporal DL-lite logics as that of [5] cannot express it.

Syntax. The example demonstrates much of the syntactical possibilities within
STARQL whose grammar is sketched in Fig. 1. The rules for the HAVING clause
are not given there but are discussed in more detail in the following sections.

After the create expressions for the stream and the output frequency the
queries’ main contents are captured by the CONSTRUCT expressions. The head of
the construct expression describes the output format of the stream, using the
named-graph notation of SPARQL for fixing a basic graph pattern (BGP) and
attaching a time expression, here NOW, for the evolving time. The general motiva-
tion for this approach is similar to the CONSTRUCT operator in the SPARQL query
language. So the actual result in the monotonicity example (in DL notation) is
a stream of ABox assertions of the form MonInc(s0)〈t〉.

S≤5s
out = {MonInc(s0)〈0s〉,MonInc(s0)〈1s〉,MonInc(s0)〈2s〉,MonInc(s0)〈5s〉}

Within the WHERE clause one can bind variables w.r.t. the non-streaming
sources (ABox, TBox) mentioned in the FROM clause by using (unions) of BGPs.
We assume an underlying DL-Lite logic for the static ABox, the TBox and the
BGP (considered as unions of conjunctive queries UCQs) which allows for con-
crete domain values, e.g., DL-LiteA [7]. In this example, instantiations of the
sensors ?s are fixed w.r.t. a static ABox and a TBox given by URIs.

The heart of the STARQL queries is the window operator in combination with
the sequencing mechanism. In the example, the operator [NOW-2s, NOW]->1s
describes a sliding window operator, which collects the timestamped ABox as-
sertions in the last two seconds and then slides 1s forward in time. Every tempo-
ral ABox produced by the window operator is converted to a sequence of (pure)
ABoxes. At every time point, one has a sequence of ABoxes on which temporal
(state-based) reasoning can be applied. This is realized in STARQL by a sorted



186 Ö.L. Özçep, R. Möller, and C. Neuenstadt

createExp −→ CREATE STREAM name AS [pulseExp] constrExp | pulseExp
pulseExp −→ CREATE PULSE AS START = startTime , FREQUENCE = freq

constrExp −→ CONSTRUCT constrHead (x,y)

FROM listWinStreamExp [ , listOfRessources ]

WHERE whereClause(x)

SEQUENCE BY seqMethod [HAVING safeHavingClause(x,y)]

constrHead (x,y) −→ GRAPH timeExp BGP(x,y) [ , constrHead ]

listWinStreamExp −→ (name | constrExp)windowExp[ , listWinStreamExp]

windowExp −→ [ timeExp1 , timeExp2 ]->sl

listOfRessources −→ typedRessourceList [ , listOfRessources]

typedRessourceList −→ STATIC ABOX listofURIstoStaticABoxes |
TEMPORAL ABOX listofURIstoTemporalABoxes |
TBOX listofURIstoTBoxes

whereClause(x) −→ Ψ(x) (Ψ(x) a union of BGPs with distinguished variables x)
seqMethod −→ StdSeq | SeqMethod (∼)

Fig. 1. Syntax for STARQL (without HAVING clauses)

first-order logic template in which state stamped UCQs conditions are embed-
ded. We use here again the GRAPH notation from SPARQL. In the example above,
the HAVING clause expresses a monotonicity condition stating that for all values
?x that are values of sensor ?s w.r.t the ith ABox (subgraph) and for all values
?y that are values of the same sensor ?s w.r.t. the jth ABox (subgraph), it must
be the case that ?x is less than or equal to ?y.

Semantics. STARQL queries have streams of ABox assertions (RDF triples)
as input and output. So, the semantics for STARQL has to explicate how the
output stream of ABox assertions is computed from the input streams. Using
compositionality, the semantics definition for STARQL can be accomplished by
defining the semantic denotations for the substructures of the query and then by
composing them to the denotation of the whole query. We sketch the semantics
of the window operator, of the sequencing, and of the HAVING clause.

A stream of ABox assertions is an infinite set of timestamped ABox as-
sertions of the form ax〈t〉. The timestamps stem from a flow of time (T,≤)
where T may even be a dense set and where ≤ is a linear order. Let S be
a stream name with its denotation �S� being such a stream of timestamped
ABox assertions. We declare the denotation of the windowed stream ws =
S winExp = S [timeExp1 , timeExp2]->sl as a stream of temporal ABoxes,
where a temporal ABox is a set of timestamped assertions.

Let λt.g1(t) = �timeExp1� and λt.g2(t) = �timeExp2� be the functions corre-
sponding to the time expressions. The pulse declaration defines a subset T ′ ⊆ T
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of the time domain. T ′ is the set of timestamps of the stream of temporal ABoxes
�ws�. Let T ′ be represented by the increasing sequence of timestamps (ti)i∈N,
where t0 is the starting point fixed in the pulse declaration.

Now, one defines for every ti the temporal ABox Ãti such that (Ãti , ti) ∈
�wS�. If ti < sl − 1, then Ãti = ∅. Else set first tstart = 	ti/sl
 × sl and
tend = max{tstart − (g2(ti)− g1(ti)), 0}, and define on that basis

Ãti = {(ass, t) | (ass, t) ∈ �S� and tend ≤ t ≤ tstart}

In our example, timeExp1 = NOW − 2s (so �timeExp1� = λt.t− 2), timeExp2 =
NOW and sl = 1s; the example’s results for second 4s and 5s are the following.

Time Temporal ABox
4s {val(s0, 94◦)〈2s〉, val(s0, 92◦)〈3s〉, val(s0, 93◦)〈4s〉}
5s {val(s0, 92◦)〈3s〉, val(s0, 93◦)〈4s〉, val(s0, 95◦)〈5s〉}

If the STARQL query refers to more than one stream, then these are joined
by time-wise union of the temporal ABoxes of the windowed streams, which is
possible as the pulse declaration synchronizes all streams of temporal ABoxes.

The stream of temporal ABoxes is the input for the sequencing operator
which produces for every time point of the pulse a sequence of (pure) ABoxes.
The sequencing methods used in STARQL refer to an equivalence relation ∼ to
specify which assertions go into the same ABox. The equivalence classes [x]∼
for x ∈ T form a partition of T . We restrict the class of admissible equivalence
relations to those ∼ that respect the time ordering, i.e., the equivalence classes
under ∼ should be intervals on the time domain.

Now, we define the sequence of ABoxes generated by seqMethod(∼) on the
stream of temporal ABoxes as follows: Let (Ãt, t) be the temporal ABox at t.
Let T ′ = {t1, . . . , tl} be the time points occurring in Ãt and let k the number of
equivalence classes generated by the time points in T ′. Then define the sequence
at t as (A0, . . . ,Ak) where for every i ∈ {0, . . . , k} the pure ABox Ai is

Ai = {ax〈t′〉 | ax〈t′〉 ∈ Ãt and t′ in ith equivalence class}

In the example above, the equivalence is the identity (keyword StdSeq for stan-
dard sequencing), so that the resulting sequence of ABoxes at time point 5s is
trivial as there are no more than two ABox assertions with the same timestamp:
{val(s0, 92◦)}〈0〉, {val(s0, 93◦)}〈1〉, {val(s0, 95◦)}〈2〉.

STARQL’s semantics for the HAVING clauses relies on the certain answer se-
mantics (see [7]) for the embedded UCQs. The idea is to view the tuples in the
certain answer sets as members of a sorted FOL structure It. Assume that the
sequence of ABoxes at some given time point t is seq = (A0, . . . ,Ak). Then the
domain of It consists of the index set {0, . . . , k} as well as the set of all indi-
vidual constants and all value constants of the signature. Now, if the HAVING
clause contains, for example, the state tagged condition query val(s, x)〈i〉 (with
embedded UCQ val(s, x)), then we introduce for it a ternary relation symbol R
and replace val(s, x)〈i〉 by R(s, x, i) in the HAVING clause. This symbol is denoted
in It by the certain answers of the embedded query extended with the index i:
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RIt = {(a, b, i) | (a, b) ∈ cert(val(s, x),Ai∪Astatic∪T )}. Constants are denoted
by themselves in It. This already fixes a structure It with finite denotations of
its relation symbols. The evaluation of the HAVING clause is then nothing more
than evaluating the FOL formula (after the substitutions) on the structure It.

3 A Safe Fragment for HAVING Clauses

As demonstrated with the monotonicity example, STARQL allows a sorted FOL
to reason on the ABox sequences. The semantics for the HAVING clauses rests on
the structure It whose domain ΔIt does not consist only of the individual and
value constants in the interpretations of the relations, the so called active domain
according to database terminology [1], but the whole set Dom of individual
constants, value constants and the indices produced in the sequencing. With a
safety mechanism on the HAVING clauses it can be guaranteed that the evaluation
of the HAVING clause on the ABox sequence depends only on the active domain,
i.e., HAVING clauses are domain independent (d.i.). Formally, a query q is d.i.
iff for all interpretations I1, I2 having domains ΔI1 , ΔI2 ⊆ Dom and identical
denotation functions (·)I1 = (·)I2 , the answers for q in I1 is the same as the
answers for q in I2. Without a safety mechanism, a HAVING clause of the form
y > 3, with free concrete domain variable y, would be allowed: the set of bindings
for y would be infinite, namely, the set of all real number bigger than 3. In
particular, y > 3 is not d.i.

Figure 2 contains the grammar for the HAVING clauses with its safety mecha-
nism realized by variable guards/adornments. The safe HAVING clauses (denoted
by the start symbol safeHavingClause) contain only those variables for individ-
uals that have guard status +. We illustrate the meaning of the rules with Rule
(1) for the OR case and then go in more detail w.r.t. adornments.

hCl (zg1∨g2

) −→ hCl (zg1

) OR hCl(zg2

) (1)

A having clause hCl may be constructed as (produces) a disjunction of two
having clauses under some conditions on the variables occurring in them. If
during production a clause hCl (zg) with variables z and some adornment g for
them is reached, then Rule (1) justifies the production of hCl(zg1

) OR hCl (zg2

)
if the adornment g can be represented as g = g1 ∨ g2, i.e., if g is the result of
applying a function ∨ on the adornment lists g1, g2.

The adornments g = g1, . . . , gn are lists of guard status gi (g-status for short),
where gi ∈ {+,−,−−, ∅}. We use zg as an abbreviation for zg11 , . . . , zgnn where
z = z1, . . . , zn and g = g1, . . . , gn. We assume the ordering ∅ � −− � − � +
on the guards. This ordering is relevant for the calculation of gmax in the rule
of Fig. 2 where the clause is constructed from an arbitrary clause hCl and an
identity atom. The special case of gi = ∅ is a convenience notation meaning for
x∅ that x does not occur at all in the formula.

The meanings of the functions ¬,∨,∧,→ over vectors of g-status are fixed
by the tables in Figure 3. Combinations with the g-status ∅ is handled in
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safeHavingClause(z) −→ hCl(z+) (for z ∈ V arval ∪ V arind)

term(i+) −→ i

term() −→ max | 0 | 1
stateAtom(y+, i+) −→ Ψ(x,y) <i>

(for a UCQ Ψ(x,y) and
x ⊆ X, y ⊆ V arind ∪ V arval \X)

stateAtom(x−−, y−−) −→ x = y (for y, x /∈ X ∪ V arval)
stateAtom(x+) −→ x = a | a = x

(for a ∈ (X ∩ V arind) ∪ Constconst, x ∈ V arind \X)
vAtom(z+1 ) −→ z1 = v | v = z1

(for z1 ∈ V arval \X and v ∈ Constval)
vAtom(z+1 ) −→ z1 = z2 | z2 = z1

(for z1 ∈ V arval \X, and z2 ∈ X ∩ V arval)
vAtom(z−−

1 , z−−
2 ) −→ z1 op z2

(for op ∈ {<,<=, >, >=, =}; z1, z2 ∈ V arval \X)

vAtom(z−−
1 ) −→ z1 op z2 (for op ∈ {<,<=, >, >=}, z1 ∈ V arval \X,

z2 ∈ V alconst ∪ (X ∩ V alvar)

stateArithAtom (ig11 , ig22 ) −→ term1(i
g1
1 ) op term2(i

g2
2 )

(for op ∈ {<,<=, =, >, >=})
stateArithAtom (ig11 , ig22 , ig33 ) −→ plus(term1(i

g1
1 ), term2(i

g2
2 ), term3(i

g3
3 ))

hCl(zg) −→ stateAtom(zg) | vAtom(zg) | stateArithAtom (zg)

hCl(zg1∨g2

) −→ hCl(zg1

) OR hCl(zg2

)

hCl(zg1∧g2

) −→ hCl(zg1

) AND hCl(zg2

) (both conjuncts are
not of form x = y for x, y ∈ V arind ∪ V arval)

hCl(zgmax
1 , zgmax

2 ,z3
g3) −→ hCl(zg11 , zg22 ,z3

g3) AND zh1
1 = zh2

2

(for gmax = max{g1, g2, h1, h2})
hCl(z¬g) −→ NOT hCl(zg)

hCl(zg1→g2

) −→ IF hCl(zg1

) THEN hCl(zg2

)

hCl(zg1→g2

) −→ FORALL y IF hCl(zg1

,y+) THEN hCl(zg2

,yg)

hCl(zg1∧g2

) −→ EXISTS y hCl(zg1

,y+) AND hCl(zg2

,yg)

Fig. 2. Grammar for HAVING clauses (the set of variables X is the set of variables that
are bounded by the WHERE clause in the STARQL query)
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an extra table 3b. So for example, assume that one has produced a HAVING
clause F (x−−

1 , x+
2 , x

−
3 ), where x1 has g-status −−, x2 has g-status +, and x3

has g-status −. Then rule (1) and the tables allow, e.g., the production of
F1(x

−−
1 , x+

2 , x
−
3 ) OR F2(x

+
1 , x

+
2 , x

∅
3). Let us verify this for the variable x1: Its g-

status −− in F1 and its g-status + in F2 combines to the g-status −− = −−∨+
in F—according to the entry for the pair (−−,+) in the table of ∨.

g1 g2 ¬g1 g1 ∧ g2 g1 ∨ g2 g1 → g2
−− −− −− −− −− −−
−− − −− −− − −
−− + −− + −− −−
− −− + −− − −−
− − + − − −
− + + + − +
+ −− − + −− −
+ − − + − −
+ + − + + −

(a) Variables existent in both subformulas

g1 g2 g1 ∧ g2 g1 ∨ g2 g1 → g2
−− ∅ −− −− −−
− ∅ − − −−
+ ∅ + −− −
∅ −− −− −− −−
∅ − − − −
∅ + + −− −−

(b) Variable missing in one subformula

Fig. 3. Combination of Guards

Now, we will show how to transform HAVING clauses to SQL. In particular this
shows that the HAVING clause language is d.i. as SQL is d.i.Ḟor a formula F let
SRNF (F ) be the formula in safe range normal form (SRNF) [1, S.85] resulting
from applying the following normalization steps: Rename variables such that no
variable symbol occurrence is bound by different quantifiers and such that no
variable occurs bound and free; rewrite IF F THEN G to NOT F OR G; eliminate
double negations; rewrite FORALLz with NOT EXISTS z NOT; push NOT through
using de Morgan rules. These steps are applied in some order until they cannot
be applied anymore. A formula F is said to be in SRNF iff F = SRNF (F ).

Domain independence for formulas in SRNF is handled in the literature [1]
also by a guard concept. This is realized by a function rr as follows.

1. rr(r(t1 , . . . , tn)) = variables in t1, . . . , tn.
2. rr(x op y) = ∅ for x, y ∈ V arval, op ∈ {<,>,≤,≥}
3. rr(x op v) = rr(x op v) = ∅ for x ∈ V arval, v ∈ Constval, op ∈ {<,>,≤,≥}
4. rr(x = a) = rr(a = x) = {x} (for x ∈ V ar, a ∈ Const)
5. rr(F AND G) = rr(F ) ∪ rr(G)

6. rr(F AND (x = y)) =

{
rr(F ) ∪ {x, y} if rr(F ) ∩ {x, y} �= ∅
rr(F ) else

7. rr(F OR G) = rr(F ) ∩ rr(G)
8. rr(NOT F ) = ∅
9. rr(EXISTS xF ) =

{
rr(F ) \ x if x ⊆ rr(F )
return ⊥ else
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The definition of rr in [1] are simpler than our adornment technique used in
the grammar because of two main reasons: the authors in [1] assume that the
formula is already in SRNF form, whereas we do not. Moreover, we define the
HAVING clause grammar in the context of the grammar for STARQL queries.
So, we have to take care of variables X that are already bounded by the WHERE
clause. This leads to many sub-cases in our grammar.

A formula F in SRNF is called range restricted iff free(F ) = rr(F ) and
no subformula returns ⊥. A well-known theorem states that range restricted
formulas in SRNF are exactly as expressive as relational algebra—which is known
to be d.i. Hence it is well-known that safe range formulas are d.i. (in particular
all sets of answers are finite).

Relating our set of g-status with the set of g-status used in [1] leads to the
desired theorem.

Theorem 1. All safe HAVING clauses (considered as queries on the DB It of
certain answers within the actual ABox sequence at t) are d.i.

Let safehCl(u+) be a safe HAVING clause. Let safehClNF (u) be the for-
mula resulting from applying the SRNF normalization rules. The status of all
the guards are not changed by the rules. Now, we see that for all subformulas
G(x+,y−, z−−) in safehClNF (u) we have

(*) rr(G) = x (= all variables in G with g-status +)

The proof of (∗) is by structural induction on construction of the formula
safehcLNF (u). Let G(x+,y−, z−−) be an atomic clause. Then rr(G) = x
follows from looking at the adornments of the atomic clauses G in Fig. 2 and
checking that only those with g-status + are in rr(G). Hereby, variables x ∈ X ,
where X is defined in the grammar, are treated as constants in the definition
of rr(·). The case of conjunction is clear too as any + g-status combines with
any other g-status to +. Now take negation G = NOT F (x+,y−, z−−). The def-
inition of rr for the negation case says rr(G) = ∅. Actually we know that F
is an atomic formula. Looking at all variables for these formulas in the gram-
mar we see that no one of these as g-status −, hence actually y = ∅ and we
have G(x−, z−−), so there is no variable in G with g-status +, hence indeed
we get that rr(G) = ∅ = the variables in G with g-status +. The case for dis-
junction is clear as a positive g-status results for a variable in a disjunction
only if both variables exists in the disjuncts and are labelled +. Now the last
case is that of the existential quantifier G = EXISTS xF (x+,y−, z−−). Accord-
ing to induction assumption rr(F ) = x. G may result from a transformation
of an exists subformula EXISTS xhCl(x+, . . . ) AND F ′ in hcl(u+). So the vari-
able x is by definition in the set x of variables in F with g-status +, hence
rr(G) = rr(F ) \ {x}. But G does not occur as free variable in G, hence the
set of variables in G with g-status + is actually x without x, which proves
the induction claim. Now G may also result from applying somewhere the rule
FORALL ≡ NOT EXISTS NOT. But again, there is a formula with variables that
have g-status + and are bounded by the all quantifier so that one gets again a
formula of the form EXISTS xhCl(x+, . . . ) AND F ′.
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4 Unfolding STARQL into CQL

Having shown domain independence for the HAVING clause language is the main
step towards using STARQL for OBDA in the classical sense according to which
queries on the ontology level are rewritten and unfolded into queries over the
data source. The general procedure is illustrated below.

Input: STARQL Query SQ , Mappings M Output: CQL query OQ
SQ1 = Rewrite(SQ , TBox (SQ))
SQ2 = SRNF (SQ1)
OQ = Unfold(SQ2 , M)

Rewriting is done locally w.r.t. every embedded UCQ, using the TBox of the
STARQL query SQ. The result SQ1 is transformed to a query SQ2 in (range-
restricted) SRNF, which can be unfolded to an SQL like streaming language
query OQ. In the following we illustrate the unfolding process into CQL queries.

CQL [3] is one of the early relational stream query languages having served
as a blue print for many stream query languages even on the ontological level
(e.g., [11],[6],[17]). CQL window operators get as input a stream and produce a
temporal relation, which is a function over the time domain T giving for every t
an ordinary (instantaneous) relation Rt. The operator RStream gets a temporal
relation R as input and produces a stream of tuples d〈t〉 such that d ∈ Rt.

Following the classical OBDA approach we assume that the streams to which
STARQL refers are produced by mappings. In our example, let be given a
CQL stream of measurements Msmt with schema Msmt(MID, MtimeStamp,
SID, Mval). A mapping takes a CQL query over this stream and produces a
stream of assertions of the form val(x, y)〈t〉.

val(x, y)〈z〉 ←− SELECT Rstream(f(SID) as x, Mval as y,
MtimeStamp as z) FROM Msmt[NOW]

We assume that the STARQL queries use the standard sequencing only, so
that from every state i in the sequence associated with tNOW one can reconstruct
the timestamps of the tuples occurring in the ABox Ai.

The following listing shows the unfolded CQL pendant of the STARQL query.
The outer WHERE clause is the pendant (in SRNF form) of the monotonicity
formula expressed in the HAVING clause.

CREATE VIEW windowRelation as
SELECT * FROM Msmt [RANGE 2s Slide 1s];
SELECT Rstream(sensor , timestamp )
FROM windowRel , sensorRel
WHERE sensorRel .type = ’’BurnerTipTempSens ’’ AND
NOT EXISTS (
SELECT * FROM
(SELECT timestamp as i, value as x FROM windowRelation ),
(SELECT timestamp as j, value as y FROM windowRelation )
WHERE i < j AND x > y );
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5 Related Work

Much of the relevant work on stream processing has been done in the context of
data stream management systems (DSMSs), mainly with SQL-like stream query
languages such as CQL [3] or the ones used in TelegraphCQ [8], Aurora/Borealis
[12], or PIPES [14]. Nevertheless, the stream community is far from having a
query standard for DSMS (see [13] for some ideas).

First steps towards streamified OBDA are C-SPARQL [11], SPARQLstream
[6], and CQELS [17]. These approaches extend SPARQL with a window operator
whose content is a multi-set of variable bindings for the open variables in the
query. This solution is not without problems. It presupposes mixed interim states
in which the constraints/consequences of the ontologies are not accounted for
out. In particular, the window operator’s forgetfulness w.r.t. time stamps lead
to inconsistencies that are not in the input streams.

The semantical foundation of evaluating HAVING clauses is similar to that of
[5], one of the recent approaches to temporalizing OBDA. (Another one is [4]).
The difference is that [5] uses an LTL based language with embedded CQs not
a sorted FOL language. For engineering applications with information needs as
in the monotonicity example the LTL framework is not sufficient, as it does not
provide existential quantifiers on top of the embedded CQs.

Safety conditions are considered in the classical DB literature [1] but also
specifically for temporal DBs [9]. We do not claim novelty w.r.t. safety aspects
but only w.r.t. the new adornment technique which directly operates on the FOL
formulas without transforming them to some normal form.

Though not directly related to OBDA, other relevant work stems from the
field of complexed event processing. For example, EP-SPARQL/ETALIS [2] uses
also a sequencing constructor; and T-REX with the event specification language
TESLA [10] uses an FOL language for identifying patterns.

6 Conclusion

The paper has presented a query framework lying in the intersection of classical
OBDA and stream processing. The query language (necessarily) extends the
sliding window concepts, which are known from many languages for relational
stream data management systems as well as recent systems for RDFS, with ABox
sequencing constructors. The advantage of using a sequence based methodology
over other approaches are, first, that the sequence sets up a (nearly) standard
context in which standard OBDA reasoning services can be applied, and second,
that the query language can be equipped with a neat semantics based on the
certain answer semantics for pure DL-Lite ABoxes (see [16]).

STARQL’s combination of sufficient expressiveness on the conceptual level
with high expressiveness w.r.t. arithmetical, and statistical computations as well
as event specifications can be implemented in a safe manner in order to reach
domain independence. This lays the ground for a complete and correct transfor-
mation to streaming query languages on the backend data sources.
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Abstract. We investigate the problem of inconsistency measurement on large
knowledge bases by considering stream-based inconsistency measurement, i. e.,
we investigate inconsistency measures that cannot consider a knowledge base as
a whole but process it within a stream. For that, we present, first, a novel in-
consistency measure that is apt to be applied to the streaming case and, second,
stream-based approximations for the new and some existing inconsistency mea-
sures. We conduct an extensive empirical analysis on the behavior of these incon-
sistency measures on large knowledge bases, in terms of runtime, accuracy, and
scalability. We conclude that for two of these measures, the approximation of the
new inconsistency measure and an approximation of the contension inconsistency
measure, large-scale inconsistency measurement is feasible.

1 Introduction

Inconsistency measurement [1] is a subfield of Knowledge Representation and Reason-
ing (KR) that is concerned with the quantitative assessment of the severity of inconsis-
tencies in knowledge bases. Consider the following two knowledge bases K1 and K2

formalized in propositional logic:

K1 = {a, b ∨ c,¬a ∧ ¬b, d} K2 = {a,¬a, b,¬b}

Both knowledge bases are classically inconsistent as for K1 we have {a,¬a∧¬b} |=⊥
and for K2 we have, e. g., {a,¬a} |=⊥. These inconsistencies render the knowledge
bases useless for reasoning if one wants to use classical reasoning techniques. In order
to make the knowledge bases useful again, one can either use non-monotonic/para-
consistent reasoning techniques [2,3] or one revises the knowledge bases appropriately
to make them consistent [4]. Looking again at the knowledge bases K1 and K2 one can
observe that the severity of their inconsistency is different. In K1, only two out of four
formulas (a and ¬a ∧ ¬b) are participating in making K1 inconsistent while for K2 all
formulas contribute to its inconsistency. Furthermore, for K1 only two propositions (a
and b) participate in a conflict and using, e. g., paraconsistent reasoning one could still
infer meaningful statements about c and d. For K2 no such statement can be made. This
leads to the assessment that K2 should be regarded more inconsistent than K1. Incon-
sistency measures can be used to quantitatively assess the inconsistency of knowledge
bases and to provide a guide for how to repair them, cf. [5]. Moreover, they can be used
as an analytical tool to assess the quality of knowledge representation. For example,
one simple inconsistency measure is to take the number of minimal inconsistent subsets

C. Lutz and M. Thielscher (Eds.): KI 2014, LNCS 8736, pp. 195–206, 2014.
c© Springer International Publishing Switzerland 2014
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(MIs) as an indicator for the inconsistency: the more MIs a knowledge base contains,
the more inconsistent it is. For K1 we have then 1 as its inconsistency value and for K2

we have 2.
In this paper, we consider the computational problems of inconsistency measure-

ment, particularly with respect to scalable inconsistency measurement on large knowl-
edge bases, as they appear in, e. g., Semantic Web applications. To this end we present
a novel inconsistency measure Ihs that approximates the η-inconsistency measure from
[6] and is particularly apt to be applied to large knowledge bases. This measure is based
on the notion of a hitting set which (in our context) is a minimal set of classical in-
terpretations such that every formula of a knowledge base is satisfied by at least one
element of the set. In order to investigate the problem of measuring inconsistency in
large knowledge bases we also present a stream-based processing framework for incon-
sistency measurement. More precisely, the contributions of this paper are as follows:

1. We present a novel inconsistency measure Ihs based on hitting sets and show how
this measure relates to other measures and, in particular, that it is a simplification
of the η-inconsistency measure [6] (Section 3).

2. We formalize a theory of inconsistency measurement in streams and provide ap-
proximations of several inconsistency measures for the streaming case (Section 4).

3. We conduct an extensive empirical study on the behavior of those inconsistency
measures in terms of runtime, accuracy, and scalability. In particular, we show that
the stream variants of Ihs and of the contension measure Ic are effective and ac-
curate for measuring inconsistency in the streaming setting and, therefore, in large
knowledge bases (Section 5).

We give necessary preliminaries for propositional logic and inconsistency measurement
in Section 2 and conclude the paper with a discussion in Section 6. Proofs of technical
results are omitted but can be found in an extended version of this paper1.

2 Preliminaries

Let At be a propositional signature, i. e., a (finite) set of propositions, and let L(At)
be the corresponding propositional language. We use the symbol ⊥ to denote con-
tradiction. Then a knowledge base K is a finite set of formulas K ⊆ L(At). Let
K(At) be the set of all knowledge bases. We write K instead of K(At) when there
is no ambiguity regarding the signature. Semantics to L(At) is given by interpretations
ω : At → {true, false}. Let Int(At) denote the set of all interpretations for At. An
interpretation ω satisfies (or is a model of) an atom a ∈ At, denoted by ω |= a (or
ω ∈ Mod(a)), if and only if ω(a) = true. Both |= and Mod(·) are extended to arbitrary
formulas, sets, and knowledge bases as usual.

Inconsistency measures are functions I : K → [0,∞) that aim at assessing the
severity of the inconsistency in a knowledge base K, cf. [5]. The basic idea is that
the larger the inconsistency in K the larger the value I(K). However, inconsistency
is a concept that is not easily quantified and there have been a couple of proposals for

1 http://www.mthimm.de/misc/thimm_inc_ki2014_extended.pdf

http://www.mthimm.de/misc/thimm_inc_ki2014_extended.pdf
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inconsistency measures so far, see e. g. [6,7,8,1,9,10]. There are two main paradigms for
assessing inconsistency [9], the first being based on the (number of) formulas needed to
produce inconsistencies and the second being based on the proportion of the language
that is affected by the inconsistency. Below we recall some popular measures from
both categories but we first introduce some necessary notations. Let K ∈ K be some
knowledge base.

Definition 1. A set M ⊆ K is called minimal inconsistent subset (MI) of K if M |=⊥
and there is no M ′ ⊂ M with M ′ |=⊥. Let MI(K) be the set of all MIs of K.

Definition 2. A formula α ∈ K is called free formula of K if there is no M ∈ MI(K)
with α ∈ M . Let Free(K) denote the set of all free formulas of K.

We adopt the following definition of a (basic) inconsistency measure from [5].

Definition 3. A basic inconsistency measure is a function I : K → [0,∞) that satisfies
the following three conditions: 1.) I(K) = 0 if and only if K is consistent, 2.) if K ⊆ K′

then I(K) ≤ I(K′), and 3.) for all α ∈ Free(K) we have I(K) = I(K \ {α}).

For the remainder of this paper we consider the following selection of inconsistency
measures: the MI measure IMI, the MIc measure IMIc , the contension measure Ic, and
the η measure Iη, which will be defined below, cf. [5,6]. In order to define the con-
tension measure Ic we need to consider three-valued interpretations for propositional
logic [3]. A three-valued interpretation υ on At is a function υ : At → {T, F,B} where
the values T and F correspond to the classical true and false, respectively. The addi-
tional truth value B stands for both and is meant to represent a conflicting truth value
for a proposition. The function υ is extended to arbitrary formulas as shown in Table 1.
Then, an interpretation υ satisfies a formula α, denoted by υ |=3 α if either υ(α) = T

Table 1. Truth tables for propositional three-valued logic [3]

α β α ∧ β α ∨ β ¬α α β α ∧ β α ∨ β ¬α α β α ∧ β α ∨ β ¬α
T T T T F B T B T B F T F T T
T B B T F B B B B B F B F B T
T F F T F B F F B B F F F F T

or υ(α) = B.
For defining the η-inconsistency measure [6] we need to consider probability func-

tions P of the form P : Int(At) → [0, 1] with
∑

ω∈Int(At) P (ω) = 1. Let P(At) be the
set of all those probability functions and for a given probability function P ∈ P(At)
define the probability of an arbitrary formula α via P (α) =

∑
ω|=α P (ω).

Definition 4. Let IMI, IMIc , Ic, and Iη be defined via

IMI(K) = |MI(K)|, Iη(K) = 1−max{ξ | ∃P ∈ P(At) : ∀α ∈ K : P (α) ≥ ξ},

IMIc(K) =
∑

M∈MI(K)

1

|M | , Ic(K) = min{|υ−1(B)| | υ |=3 K}

All these measures are basic inconsistency measures as defined in Definition 3.
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Example 1. For the knowledge bases K1 = {a, b ∨ c,¬a ∧ ¬b, d} and K2 = {a,¬a, b,
¬b} from the introduction we obtain IMI(K1) = 1, IMIc(K1) = 0.5, Ic(K1) = 2,
Iη(K1) = 0.5, IMI(K2) = 2, IMIc(K2) = 1, Ic(K2) = 2, Iη(K2) = 0.5.

For a more detailed introduction to inconsistency measures see e. g. [1,5,6] and for some
recent developments see e. g. [8,11].

As for computational complexity, the problem of computing an inconsistency value
wrt. any of the above inconsistency measures is at least FNP-hard2 as it contains a
satisfiability problem as a sub problem.

3 An Inconsistency Measure Based on Hitting Sets

The basic idea of our novel inconsistency measure Ihs is inspired by the measure Iη
which seeks a probability function that maximizes the probability of all formulas of a
knowledge base. Basically, the measure Iη looks for a minimal number of models of
parts of the knowledge base and maximizes their probability in order to maximize the
probability of the formulas. By just considering this basic idea we arrive at the notion
of a hitting set for inconsistent knowledge bases.

Definition 5. A subset H ⊂ Int(At) is called a hitting set of K if for every α ∈ K
there is ω ∈ H with ω |= α. H is called a card-minimal hitting set if it is minimal wrt.
cardinality. Let hK be the cardinality of any card-minimal hitting set (define hK = ∞
if there does not exist a hitting set of K).

Definition 6. The function Ihs : K → [0,∞] is defined via Ihs(K) = hK− 1 for every
K ∈ K.

Note, that if a knowledge base K contains a contradictory formula (e. g. a ∧ ¬a) we
have Ihs(K) = ∞. In the following, we assume that K contains no such contradictory
formulas.

Example 2. Consider the knowledge base K3 defined via

K3 = {a ∨ d, a ∧ b ∧ c, b,¬b ∨ ¬a, a ∧ b ∧ ¬c, a ∧ ¬b ∧ c}

Then {ω1, ω2, ω3} ⊂ Int(At) with ω1(a) = ω1(b) = ω1(c) = true, ω2(a) = ω2(c) =
true, ω1(b) = false, and ω3(a) = ω3(b) = true, ω3(c) = false is a card-minimal
hitting set for K3 and therefore Ihs(K3) = 2. Note that for the knowledge bases K1

and K2 from Example 1 we have Ihs(K1) = Ihs(K2) = 1.

Proposition 1. The function Ihs is a (basic) inconsistency measure.

The result below shows that Ihs also behaves well with some more properties men-
tioned in the literature [9,10]. For that, we denote with At(F ) for a formula or a set
of formulas F the set of propositions appearing in F . Furthermore, two knowledge
bases K1, K2 are semi-extensionally equivalent (K1 ≡σ K2) if there is a bijection
σ : K1 → K2 such that for all α ∈ K1 we have α ≡ σ(α).

2 FNP is the generalization of the class NP to functional problems.
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Proposition 2. The measure Ihs satisfies the following properties:

– If α ∈ K is such that At(α)∩At(K \ {α}) = ∅ then Ihs(K) = Ihs(K \ {α}) (safe
formula independence).

– If K ≡σ K′ then Ihs(K) = Ihs(K′) (irrelevance of syntax).
– If α |= β and α �|=⊥ then Ihs(K ∪ {α}) ≥ Ihs(K ∪ {β}) (dominance).

The measure Ihs can also be nicely characterized by a consistent partitioning of a
knowledge base.

Definition 7. A set Φ = {Φ1, . . . , Φn} with Φ1 ∪ . . . ∪ Φn = K and Φi ∩ Φj = ∅ for
i, j = 1, . . . , n, i �= j, is called a partitioning of K. A partitioning Φ = {Φ1, . . . , Φn}
is consistent if Φi �|=⊥ for i = 1, . . . , n. A consistent partitioning Φ is called card-
minimal if it is minimal wrt. cardinality among all consistent partitionings of K.

Proposition 3. A consistent partitioning Φ is a card-minimal partitioning of K if and
only if Ihs(K) = |Φ| − 1.

As Ihs is inspired by Iη we go on by comparing these two measures.

Proposition 4. Let K be a knowledge base. If ∞ > Ihs(K) > 0 then

1− 1

Ihs(K)
< Iη(K) ≤ 1− 1

Ihs(K) + 1

Note that for Ihs(K) = 0 we always have Iη(K) = 0 as well, as both are basic incon-
sistency measures.

Corollary 1. If Iη(K1) ≤ Iη(K2) then Ihs(K1) ≤ Ihs(K2).

However, the measures Iη and Ihs are not equivalent as the following example shows.

Example 3. Consider the knowledge bases K1 = {a,¬a} and K2 = {a, b,¬a ∨ ¬b}.
Then we have Ihs(K1) = Ihs(K2) = 1 but Iη(K1) = 0.5 > 1/3 = Iη(K2).

It follows that the order among knowledge bases induced by Iη is a refinement of the or-
der induced by Ihs. However, Ihs is better suited for approximation in large knowledge
bases than Iη , cf. the following section.

The idea underlying Ihs is also similar to the contension inconsistency measure Ic.
However, these measures are not equivalent as the following example shows.

Example 4. Consider the knowledge bases K1 = {a ∧ b ∧ c,¬a ∧ ¬b ∧ ¬c} and K2 =
{a∧ b,¬a∧ b, a∧¬b}. Then we have Ihs(K1) = 2 < 3 = Ihs(K2) but Ic(K1) = 3 >
2 = Ic(K2).

4 Inconsistency Measurement in Streams

In the following, we discuss the problem of inconsistency measurement in large knowl-
edge bases. We address this issue by using a stream-based approach of accessing the
formulas of a large knowledge base. Formulas of a knowledge base then need to be
processed one by one by a stream-based inconsistency measure. The goal of this for-
malization is to obtain stream-based inconsistency measures that approximate given
inconsistency measures when the latter would have been applied to the knowledge base
as a whole. We first formalize this setting and, afterwards, provide concrete approaches
for some inconsistency measures.
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4.1 Problem Formalization

We use a very simple formalization of a stream that is sufficient for our needs.

Definition 8. A propositional stream S is a function S : N → L(At). Let S be the set
of all propositional streams.

A propositional stream models a sequence of propositional formulas. On a wider scope,
a propositional stream can also be interpreted as a very general abstraction of the output
of a linked open data crawler (such as LDSpider [12]) that crawls knowledge formalized
as RDF (Resource Description Framework) from the web, enriched, e. g. with OWL
semantics. We model large knowledge bases by propositional streams that indefinitely
repeat the formulas of the knowledge base. For that, we assume for a knowledge base
K = {φ1, . . . , φn} the existence of a canonical enumeration Kc = 〈φ1, . . . , φn〉 of the
elements of K. This enumeration can be arbitrary and has no specific meaning other
than to enumerate the elements in an unambiguous way.

Definition 9. Let K be a knowledge base and Kc = 〈φ1, . . . , φn〉 its canonical enu-
meration. The K-stream SK is defined as SK(i) = φ(imodn)+1 for all i ∈ N.

Given a K-stream SK and an inconsistency measure I we aim at defining a method that
processes the elements of SK one by one and approximates I(K).

Definition 10. A stream-based inconsistency measure J is a function J : S × N →
[0,∞).

Definition 11. Let I be an inconsistency measure and J a stream-based inconsistency
measure. Then J approximates (or is an approximation of) I if for all K ∈ K we have
limi→∞ J (SK, i) = I(K).

4.2 A Naive Window-Based Approach

The simplest form of implementing a stream-based variant of any algorithm or function
is to use a window-based approach, i. e., to consider at any time point a specific excerpt
from the stream and apply the original algorithm or function on this excerpt. For any
propositional stream S let Si,j (for i ≤ j) be the knowledge base obtained by taking
the formulas from S between positions i and j, i. e., Si,j = {S(i), . . . ,S(j)}.

Definition 12. Let I be an inconsistency measure, w ∈ N∪{∞}, and g some function
g : [0,∞) × [0,∞) → [0,∞) with g(x, y) ∈ [min{x, y},max{x, y}]. We define the
naive window-based measure J w,g

I : S× N → [0,∞) via

J w,g
I (S, i) =

{
0 if i = 0
g(I(Smax{0,i−w},i),J w,g

I (S, i − 1)) otherwise

for every S and i ∈ N.

The function g in the above definition is supposed to be an aggregation function that
combines the new obtained inconsistency value I(Smax{0,i−w},i

K ) with the previous
value J w,g

I (S, i − 1). This function can be, e. g., the maximum function max or a
smoothing function gα(x, y) = αx + (1 − α)y for some α ∈ [0, 1] (for every x, y ∈
[0,∞)).
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Proposition 5. Let I be an inconsistency measure, w ∈ N∪{∞}, and g some function
g : [0,∞)× [0,∞) → [0,∞) with g(x, y) ∈ [min{x, y},max{x, y}].
1. If w is finite then J w,g

I is not an approximation of I.
2. If w = ∞ and g(x, y) > min{x, y} if x �= y then J w,g

I is an approximation of I.
3. J w,g

I (SK, i) ≤ I(K) for every K ∈ K and i ∈ N.

4.3 Approximation Algorithms for Ihs and Ic

The approximation algorithms for Ihs and Ic that are presented in this subsection are
using concepts of the programming paradigms of simulated annealing and genetic pro-
gramming [13]. Both algorithms follow the same idea and we will only formalize the
one for Ihs and give some hints on how to adapt it for Ic.

The basic idea for the stream-based approximation of Ihs is as follows. At any pro-
cessing step we maintain a candidate set C ∈ 2Int(At) (initialized with the empty set)
that approximates a hitting set of the underlying knowledge base. At the beginning of a
processing step we make a random choice (with decreasing probability the more formu-
las we already encountered) whether to remove some element of C. This action ensures
that C does not contain superfluous elements. Afterwards we check whether there is
still an interpretation in C that satisfies the currently encountered formula. If this is
not the case we add some random model of the formula to C. Finally, we update the
previously computed inconsistency value with |C| − 1, taking also some aggregation
function g (as for the naive window-based approach) into account. In order to increase
the probability of successfully finding a minimal hitting set we do not maintain a single
candidate set C but a (multi-)set Cand = {C1, . . . , Cm} for some previously specified
parameter m ∈ N and use the average size of these candidate hitting sets.

Definition 13. Let m ∈ N, g some function g : [0,∞) × [0,∞) → [0,∞) with
g(x, y) ∈ [min{x, y},max{x, y}], and f : N → [0, 1] some monotonically decreasing
function with limn→∞ f(n) = 0. We define Jm,g,f

hs via

Jm,g,f
hs (S, i) =

{
0 if i = 0

update
m,g,f
hs (S(i)) otherwise

for every S and i ∈ N. The function update
m,g,f
hs is depicted in Algorithm 1.

At the first call of the algorithm update
m,g,f
hs the value of currentV alue (which con-

tains the currently estimated inconsistency value) is initialized to 0 and the (mulit-)set
Cand ⊆ 2Int(At) (which contains a population of candidate hitting sets) is initialized
with m empty sets. The function f can be any monotonically decreasing function with
limn→∞ f(n) = 0 (this ensures that at any candidate C reaches some stable result).
The parameter m increases the probability that at least one of the candidate hitting sets
attains the global optimum of a card-minimal hitting set.

As Jm,g,f
hs is a random process we cannot show that Jm,g,f

hs is an approximation of
Ihs in the general case. However, we can give the following result.

Proposition 6. For every probability p ∈ [0, 1), g some function g : [0,∞)× [0,∞) →
[0,∞) with g(x, y) ∈ [min{x, y},max{x, y}] and g(x, y) > min{x, y} if x �= y,
a monotonically decreasing function f : N → [0, 1] with limn→∞ f(n) = 0, and
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Algorithm 1 update
m,g,f
hs (form)

1: Initialize currentV alue and Cand
2: N = N + 1
3: newV alue = 0
4: for all C ∈ Cand do
5: rand ∈ [0, 1]
6: if rand < f(N) then
7: Remove some random ω from C
8: if ¬∃ω ∈ C : ω |= form then
9: Add random ω ∈ Mod(form) to C

10: newV alue = newV alue+ (|C| − 1)/|Cand|
11: currentV alue = g(newV alue, currentV alue)
12: return currentV alue

K ∈ K there is m ∈ N such that with probability greater or equal p it is the case that
limi→∞ Jm,g,f

hs (SK, i) = Ihs(K).

This result states that Jm,g,f
hs indeed approximates Ihs if we choose the number of

populations large enough. In the next section we will provide some empirical evidence
that even for small values of m results are satisfactory.

Both Definition 13 and Algorithm 1 can be modified slightly in order to approximate
Ic instead of Ihs, yielding a new measure Jm,g,f

c . For that, the set of candidates Cand
contains three-valued interpretations instead of sets of classical interpretations. In line 7,
we do not remove an interpretation fromC but flip some arbitrary proposition fromB to
T or F . Similarly, in line 9 we do not add an interpretation but flip some propositions to
B in order to satisfy the new formula. Finally, the inconsistency value is determined by
taking the number of B-valued propositions. For more details see the implementations
of both Jm,g,f

hs and Jm,g,f
c , which will also be discussed in the next section.

5 Empirical Evaluation

In this section we describe our empirical experiments on runtime, accuracy, and scala-
bility of some stream-based inconsistency measures. Our Java implementations3 have
been added to the Tweety Libraries for Knowledge Representation [14].

5.1 Evaluated Approaches and Experiment Setup

For our evaluation, we considered the inconsistency measures IMI, IMIc , Iη , Ic, and
Ihs. We used the SAT solver lingeling4 for the sub-problems of determining consis-

3 IMI, IMIc , Iη , J w,g
I : http://mthimm.de/r?r=tweety-inc-commons

Ic, Ihs: http://mthimm.de/r?r=tweety-inc-pl
Jm,g,f

hs : http://mthimm.de/r?r=tweety-stream-hs
Jm,g,f

c : http://mthimm.de/r?r=tweety-stream-c
Evaluation framework: http://mthimm.de/r?r=tweety-stream-eval

4 http://fmv.jku.at/lingeling/

http://mthimm.de/r?r=tweety-inc-commons
http://mthimm.de/r?r=tweety-inc-pl
http://mthimm.de/r?r=tweety-stream-hs
http://mthimm.de/r?r=tweety-stream-c
http://mthimm.de/r?r=tweety-stream-eval
http://fmv.jku.at/lingeling/
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Table 2. Runtimes for the evaluated measures; each value is averaged over 100 random knowl-
edge bases of 5000 formulas; the total runtime is after 40000 iterations

Measure RT (iteration) RT (total) Measure RT (iteration) RT (total)

J 500,max
IMI

198ms 133m J 10,g0.75 ,f1
c 0.16ms 6.406s

J 1000,max
IMI

359ms 240m J 100,g0.75 ,f1
c 1.1ms 43.632s

J 2000,max
IMI

14703ms 9812m J 500,g0.75 ,f1
c 5.21ms 208.422s

J 500,max
IMIc

198ms 134m J 10,g0.75 ,f1
hs 0.07ms 2.788s

J 1000,max
IMIc

361ms 241m J 100,g0.75 ,f1
hs 0.24ms 9.679s

J 2000,max
IMIc

14812ms 9874m J 500,g0.75 ,f1
hs 1.02ms 40.614s

tency and to compute a model of a formula. For enumerating the set of MIs of a knowl-
edge base (as required by IMI and IMIc) we used MARCO5. The measure Iη was im-
plemented using the linear optimization solver lp solve6. The measures IMI, IMIc , and
Iη were used to define three different versions of the naive window-based measure
J w,g
I (with w = 500, 1000, 2000 and g = max). For the measures Ic and Ihs we

tested each three versions of their streaming variants Jm,g0.75,f1
c and Jm,g0.75,f1

hs (with
m = 10, 100, 500) with f1 : N → [0, 1] defined via f1(i) = 1/(i+ 1) for all i ∈ N and
g0.75 is the smoothing function for α = 0.75 as defined in the previous section.

For measuring the runtime of the different approaches we generated 100 random
knowledge bases in CNF (Conjunctive Normal Form) with each 5000 formulas (=dis-
junctions) and 30 propositions. For each generated knowledge base K we considered
its K-stream and processing of the stream was aborted after 40000 iterations. We fed
the K-stream to each of the evaluated stream-based inconsistency measures and mea-
sured the average runtime per iteration and the total runtime. For each iteration, we set
a time-out of 2 minutes and aborted processing of the stream completely if a time-out
occurred.

In order to measure accuracy, for each of the considered approaches we generated
another 100 random knowledge bases with specifically set inconsistency values7, used
otherwise the same settings as above, and measured the returned inconsistency values.

To evaluate the scalability of our stream-based approach of Ihs we conducted a third
experiment8 where we fixed the number of propositions (60) and the specifically set in-
consistency value (200) and varied the size of the knowledge bases from 5000 to 50000
(with steps of 5000 formulas). We measured the total runtime up to the point when the
inconsistency value was within a tolerance of ±1 of the expected inconsistency value.

The experiments were conducted on a server with two Intel Xeon X5550 QuadCore
(2.67 GHz) processors with 8 GB RAM running SUSE Linux 2.6.

5 http://sun.iwu.edu/˜mliffito/marco/
6 http://lpsolve.sourceforge.net
7 The sampling algorithms can be found at http://mthimm.de/r?r=tweety-sampler
8 We did the same experiment with our stream-based approach of Ic but do not report the results

due to the similarity to Ihs and space restrictions.

http://sun.iwu.edu/~mliffito/marco/
http://lpsolve.sourceforge.net
http://mthimm.de/r?r=tweety-sampler
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5.2 Results

Our first observation concerns the inconsistency measure Iη which proved to be not
suitable to work on large knowledge bases9. Computing the value Iη(K) for some
knowledge base K includes solving a linear optimization problem over a number of
variables which is (in the worst-case) exponential in the number of propositions of the
signature. In our setting with |At| = 30 the generated optimization problem contained
therefore 230 = 1073741824 variables. Hence, even the optimization problem itself
could not be constructed within the timeout of 2 minutes for every step. As we are not
aware of any more efficient implementation of Iη , we will not report on further results
for Iη in the following.
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Fig. 1. Accuracy performance for the evaluated measures (dashed line is actual inconsistency
value); each value is averaged over 100 random knowledge bases of 5000 formulas (30 proposi-
tions) with varying inconsistency values

As for the runtime of the naive window-based approaches of IMI and IMIc and our
stream-based approaches for Ic and Ihs see Table 2. There one can see that J w,g

IMI
and

J w,g
IMIc

on the one hand, and Jm,g,f
c and Jm,g,f

hs on the other hand, have comparable
runtimes, respectively. The former two have almost identical runtimes, which is obvious
as the determination of the MIs is the main problem in both their computations. Clearly,

9 More precisely, our implementation of the measure proved to be not suitable for this setting
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Fig. 2. Evaluation of the scalability of Jm,g0.75 ,f1
hs ; each value is averaged over 10 random knowl-

edge bases of the given size

Jm,g,f
c and Jm,g,f

hs are significantly faster per iteration (and in total) than J w,g
IMI

and
J w,g
IMIc

, only very few milliseconds for the latter and several hundreds and thousands of
milliseconds for the former (for all variants of m and w). The impact of increasing w
for Jm,g,f

c and Jm,g,f
hs is expectedly linear while the impact of increasing the window

size w for J w,g
IMI

and J w,g
IMIc

is exponential (this is also clear as both solve an FNP-hard
problem).

As for the accuracy of the different approaches see Figure 1. There one can see
that both Jm,g,f

hs and Jm,g,f
c (Figures 1a and 1b) converge quite quickly (almost right

after the knowledge base has been processed once) into a [−1, 1] interval around the
actual inconsistency value, where Jm,g,f

c is even closer to it. The naive window-based
approaches (Figures 1c and 1d) have a comparable bad performance (this is clear as
those approaches cannot see all MIs at any iteration due to the limited window size).
Surprisingly, the impact of larger values of m for Jm,g,f

hs and Jm,g,f
c is rather small

in terms of accuracy which suggests that the random process of our algorithm is quite
robust. Even for m = 10 the results are quite satisfactory.

As for the scalability of Jm,g0.75,f1
hs see Figure 2. There one can observe a linear

increase in the runtime of all variants wrt. the size of the knowledge base. Furthermore,
the difference between the variants is also linearly in the parameter m (which is also
clear as each population is an independent random process). It is noteworthy, that the
average runtime for J 10,g0.75,f1

hs is about 66.1 seconds for knowledge bases with 50000
formulas. As the significance of the parameter m for the accuracy is also only marginal,
the measure J 10,g0.75,f1

hs is clearly an effective and accurate stream-based inconsistency
measure.

6 Discussion and Conclusion

In this paper we discussed the issue of large-scale inconsistency measurement and pro-
posed novel approximation algorithms that are effective for the streaming case. To the
best of our knowledge, the computational issues for measuring inconsistency, in partic-
ular with respect to scalability problems, have not yet been addressed in the literature
before. One exception is the work by Ma and colleagues [7] who present an anytime al-
gorithm that approximates an inconsistency measure based on a 4-valued paraconsistent
logic (similar to the contension inconsistency measure). The algorithm provides lower
and upper bounds for this measure and can be stopped at any point in time with some
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guaranteed quality. The main difference between our framework and the algorithm of
[7] is that the latter needs to process the whole knowledge base in each atomic step and
is therefore not directly applicable for the streaming scenario. The empirical evaluation
[7] also suggests that our streaming variant of Ihs is much more performant as Ma
et al. report an average runtime of their algorithm of about 240 seconds on a knowl-
edge base with 120 formulas and 20 propositions (no evaluation on larger knowledge
bases is given) while our measure has a runtime of only a few seconds for knowledge
bases with 5000 formulas with comparable accuracy10. A deeper comparison of these
different approaches is planned for future work.

Our work showed that inconsistency measurement is not only a theoretical field but
can actually be applied to problems of reasonable size. In particular, our stream-based
approaches of Ihs and Ic are accurate and effective for measuring inconsistencies in
large knowledge bases. Current and future work is about the application of our work on
linked open data sets [12].
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Abstract. A central notion in qualitative spatial and temporal reason-
ing is the concept of qualitative constraint calculus, which captures a
particular paradigm of representing and reasoning about spatial and
temporal knowledge. The concept, informally used in the research com-
munity for a long time, was formally defined by Ligozat and Renz in
2004 as a special kind of relation algebra — thus emphasizing a particu-
lar type of reasoning about binary constraints. Although the concept is
known to be limited it has prevailed in the community. In this paper we
revisit the concept, contrast it with alternative approaches, and analyze
general properties. Our results indicate that the concept of qualitative
constraint calculus is both too narrow and too general: it disallows differ-
ent approaches, but its setup already enables arbitrarily hard problems.

1 Introduction

The research area of qualitative spatial and temporal reasoning considers rea-
soning about qualitative descriptions of space and time. For example, in the case
of linear time one can abstract from concrete time points by restricting a formal
language to the set of binary relations before, equals, and after. This disallows
specifying exact time points of events, but expresses the relations between them.

Ligozat and Renz [1] generalized on examples of finite relation algebras to
form a definition of what constitutes a qualitative constraint calculus. Often
research focuses on their algebraic properties (e.g. [2, 3]). The unique feature
of these calculi was supposed to be their underlying domains, which are usually
infinite (e.g. time and space) rather than finite as often assumed in the context
of constraint satisfaction. At first glance, such a demarcation sounds plausible,
but there are approaches to constraint satisfaction not limited to finite domains
by employing model-theoretical concepts of first-order (FO) logic (e.g. [4–6]).

Qualitative calculi are based on abstractions by means of so-called partition
schemes which induce relation algebras. However, each partition scheme can
easily be conceived of as a relational structure. Considering FO sentences over
this structure gives a well-defined satisfiability problem without committing to a
particular reasoning approach. Thus one can consider alternatives such as, e.g.,
FO theories, rule-based approaches, or structure-specific algorithms.

In this paper we revisit the definition of qualitative constraint calculi. The
aim is to provide an analysis and formal comparison to relation algebras, rela-
tional structures, and constraint satisfaction. In doing so, we show that almost

C. Lutz and M. Thielscher (Eds.): KI 2014, LNCS 8736, pp. 207–218, 2014.
c© Springer International Publishing Switzerland 2014
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any constraint problem can be defined using finite partition schemes. Moreover,
we point out that there are no guarantees of calculi having good properties
and show a central theorem by Renz and Ligozat to be incorrect. Finally, for
each qualitative calculus we define a unique FO structure that gives proper FO
semantics.

2 Preliminaries

We assume the reader is familiar with the basics of FO logic. The following def-
initions are well-known in the literature, e.g. Hodges’ book “Model Theory” [7].

A relational signature σ is a set of relation symbols each with an associated
arity n ∈ N. All signatures herein are at most countable. For a relational signa-
ture σ = {R1, . . . } a relational σ-structure Γ is a tuple

〈
D ; RΓ

1 , . . .
〉
where D is

the domain of the structure and RΓ
i is the interpretation of the symbol Ri, i.e.,

RΓ
i ⊆ Dn for an n-ary Ri. When the interpretation of symbols is clear from con-

text, we often simply write the structure as 〈D ; R1, . . . 〉. By a we denote a tuple
a1, . . . , an. A homomorphism h from Γ to a σ-structure Γ ′, written h : Γ → Γ ′,
is a map from DΓ to DΓ ′

that satisfies a ∈ RΓ ⇒
(
h(a1), . . . , h(an)

)
∈ RΓ ′

for each relation symbol R ∈ σ. An embedding of Γ in Γ ′ is an injective ho-
momorphism e : Γ → Γ ′ that satisfies a ∈ RΓ ⇔

(
e(a1), . . . , e(an)

)
∈ RΓ ′

for
each relation symbol R ∈ σ. Although we focus on relational structures, we also
work with algebraic structures, which simply are structures built on function and
constant symbols instead of relation symbols. Here the structure assigns to each
constant symbol an element of the domain, and to each n-ary function symbol
an n-ary function f : Dn → D.

A FO σ-formula is a formula using only FO logic symbols and symbols in σ.
Sentences are formulas without free variables. A FO formula is primitive positive
(short pp) if it is purely conjunctive with at most existential quantification. An
n-ary relation X ⊆ Dn is pp definable in Γ iff there exists a pp σ-formula ϕ(x)
with free variables x = x1, . . . , xn such that X = { a |Γ |= ϕ(a) }.

A structure is finite if its domain D is finite (analogously for infinite and
countable). A special kind of structures are ω-categorical structures. A countable
structure Γ is ω-categorical (or countably categorical) iff for each n ∈ N, n ≥ 1
there exist only finitely many inequivalent FO formulas with n free variables
over Γ .

Let σ, σ′ be two relational signatures and d ∈ N, d ≥ 1. A d-dimensional
syntactic interpretation π of σ′ in σ is defined by (i) a FO σ-formula (the do-
main formula) ∂π(x1, . . . , xd) with d free variables and (ii) a map assigning to
each relation symbol R ∈ σ′ of arity n a FO σ-formula (the defining formula)
ϕπ(R)(x1, . . . , xn) where the xi are disjoint d-tuples of distinct variables.

Let Γ ′ be a relational σ′-structure and Γ be a relational σ-structure. We say
that Γ ′ has a d-dimensional FO interpretation in Γ if there is a d-dimensional
syntactic interpretation π of σ′ in σ and a surjective map fπ : ∂π

(
Γ d
)
→ DΓ ′

(the coordinate map) such that for each R ∈ σ′ of some arity n and all d-tuples
ai ∈ ∂π

(
Γ d
)
it holds Γ ′ |= R

(
fπ(a1), . . . , fπ(an)

)
⇔ Γ |= ϕπ(R)(a1, . . . , an).
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A fundamental theorem in this context is the reduction theorem and its as-
sociated reduction map [7]: For any FO σ′-formula ψ(x1, . . . , xn) there exists an
inductively defined FO σ-formula ϕπ(ψ)(x1, . . . , xn) such that for all d-tuples
ai ∈ ∂π(Γ

d) it holds

Γ ′ |= ψ
(
fπ(a1), . . . , fπ(an)

)
⇐⇒ Γ |= ϕπ(ψ)(a1, . . . , an).

For our purposes it suffices to note that given a syntactic interpretation the
reduction map yields pp formulas if the syntactic interpretation consists of pp
formulas only and that it only polynomially increases the size of a formula.

2.1 Constraint Satisfaction Problems

Let Γ be a relational structure with signature σ. The problem of deciding the
satisfiability of any given pp σ-sentence ψ in Γ , i.e., to test whether Γ |= ψ,
is called the constraint satisfaction problem for Γ . We denote it by CSP(Γ ). In
this context Γ is often called a constraint language. For ψ = ∃x ϕ(x) with a
quantifier-free ϕ, we call ϕ an instance of CSP(Γ ). A solution of the instance is
a map h : {x1, . . . , xn} → DΓ that satisfies the formula ϕ in Γ . This is equivalent
to reading ϕ as a finite relational σ-structure I on domain DI = {x1, . . . , xn}
and h as a homomorphism h : I → Γ (see e.g. [6]).

Example 1 ([4]). The constraint language

Γ :=
〈
Z ;
{
(x, y, z) ∈ Z3

∣
∣x+ y + z = 1

}
,
{
(x, y, z) ∈ Z3

∣
∣ x · y = z

} 〉

has an undecidable CSP(Γ ) as it allows to formulate diophantine equations.

2.2 From Boolean Algebras to Relation Algebras

A Boolean algebra B is an algebraic structure 〈B ; ∧,∨,−, 0, 1 〉 on the domain B
with two binary functions ∧,∨ (conjunction and disjunction), a unary function
− (negation) and distinguished constants 0, 1 ∈ B (zero and universal elements).
The functions ∧ and ∨ are associative and commutative, and ∧ distributes over
∨ and vice-versa. For each a ∈ B: a∨0 = a, a∧1 = a, and a∧−a = 0, a∨−a = 1.
The Boolean ordering ≤ on B is defined by a ≤ b iff a ∨ b = b. An atom a of B
is a non-zero element that is ≤-minimal. A Boolean algebra B is atomic if for
every non-zero element b there exists an atom a such that a ≤ b. The set of all
atoms of B is denoted by At (B).

Simple examples of Boolean algebras are given by algebras of sets. In fact, any
Boolean algebra is isomorphic to one given by a field of sets. A representation
of a Boolean algebra is a pair (D, i) where i is maps each element of the algebra
to subsets of D such that i is isomorphic with regard to the functions of the
algebra. An expansion of Boolean algebras are relation algebras.

A weakly associative relation algebra (short WA) [8] A is an algebraic struc-
ture

〈
A ; ∧,∨,−, 0, 1, id, �, ·−1

〉
where id is a constant (identity), � is a binary

function (composition), ·−1 is a unary function (converse), such that its reduct
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� id R�=
id id R�=
R�= R�= 1

·−1

id id

R�= R�=

Fig. 1. Composition and converse function of the relation algebra in Example 2

〈A ; ∧,∨,−, 0, 1 〉 is a Boolean algebra, and the structure satisfies the following

axioms for all a, b, c ∈ A: id � a = a � id = a,
(
a−1

)−1
= a, (a∨ b)−1 = a−1 ∨ b−1,

(−a)−1 = −(a−1), a�(b∨c) = (a�b)∨(a�c), (a�b)−1 = b−1�a−1, (a�b)∧c−1 = 0
iff (b � c) ∧ a−1 = 0, and weak associativity (id ∧ a) � (1 � 1) =

(
(id ∧ a) � 1

)
� 1.

A WA A is integral if the identity is an atom, and associative if composition
is associative. Further A is called atomic if its Boolean algebra is atomic — in
this case the atoms of A are simply the atoms of its Boolean algebra. Note, if a
relation algebra is finite it is atomic and further all its operations are completely
determined by the operations on its atoms.

In the context of WAs a representation is a map i from the elements of the
algebra to binary relations over a domain D such that i is isomorphic with
respect to the algebra’s functions. Note, any WA that has a representation is
associative. Unlike Boolean algebras, it is not even the case that every finite
associative relation algebra has a representation (see e.g. [9]).

Example 2. The relation algebra A :=
〈
A ; ∧,∨,−, 0, 1, id, �, ·−1

〉
on domain

A := {0, id, R�=, 1} with functions as in Fig. 1 is atomic and integral. A rep-
resentation over D := {a, b, c} is given by i(id) = {(a, a), (b, b), (c, c)}, i(R�=) =
D2 \ i(id).

We recall a convenient way of defining WAs by expanding Boolean algebras.
The definition is in principle the same as the “notion of consistency” in the
sense of Hodkinson [10], but we restrict ourselves to finite algebras. Let B be a
finite Boolean algebra on domain B. A notion of consistency for B is a triple
〈 id, ·−1, T 〉 consisting of an element id ∈ B, a Boolean algebra automorphism

·−1 of B satisfying (i) id−1 = id, (ii)
(
a−1

)−1
= a for all a ∈ B, and a set T ⊆ B3

of “inconsistent triangles” satisfying the following axioms:

– for all pairs of elements a, b ∈ B it holds (a, b, id) ∈ T iff a ∧ b−1 = 0,
– for each (a, b, c) ∈ T it holds (b, c−1, a−1) ∈ T and (c, b−1, a) ∈ T , and
– for each set of elements A ⊆ B and pair of elements a, c ∈ B it holds

(a,
∨
A, c) ∈ T iff (a, b, c) ∈ T for each b ∈ A.

According to Hodkinson: Given a notion of consistency 〈 id, ·−1, T 〉 for some
finite Boolean algebra B = 〈B ; ∧,∨,−, 0, 1 〉 where id is an atom, we can define
la,b := { c ∈ B | (a, b, c) ∈ T } and if

∨
la,b exists, then a � b := −(

∨
la,b) yields a

weakly associative composition function. Together with ·−1, id this forms a WA.

Example 3. Consider the finite Boolean algebra B on domain B with atoms
{id, R, S,R′, S′} and composition and converse on atoms as given in Fig. 2. This
is an integral WA as (R �R′) � S = id � S = S �= 0 = R � 0 = R � (R′ � S).
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� id R R′ S S′

id id R R′ S S′

R R 0 id 0 0

R′ R′ id 0 0 0

S S 0 0 0 id

S′ S′ 0 0 id 0

·−1

id id

R R′

R′ R

S S′

S′ S

Fig. 2. Composition and converse functions on atoms for Example 3

We close with an observation discussed by Hodkinson. For a given Boolean
algebra B on an at most countable domain B with a representation (D, i), we
can define a relational signature σB denoting the elements of B such that Γ :=
〈D ; σB 〉 is a relational structure with bΓ := i(b) for each b ∈ B. The same
can be applied to Boolean algebra reducts of WAs. In particular if the Boolean
algebra has a representation on D2, a structure with binary relations on D can
be defined.

3 Qualitative Constraint Calculi

We define the framework of qualitative constraint calculi [1]. For the sake of
simplicity, we give the definition in the terminology we have introduced so far.
The only minor difference to [1] is that we restrict ourselves to finite algebras.

A finite partition scheme Γ is a relational structure on some domain D with a
finite signature σ consisting only of binary relation symbols, such that (1) each
relation symbol has a non-empty interpretation, (2) D2 is the disjoint union of
all relations, (3) the relations are closed under converse (i.e., for each Ri ∈ σ
there exists an Rj ∈ σ such that Ri(x, y) ≡ Rj(y, x) in Γ ), and (4) one of the
relations is the identity on D2. Due to property (2) partition schemes are called
jointly exhaustive and pairwise disjoint.

Every finite partition scheme Γ with signature {R1, . . . , Rk} induces a finite
Boolean algebra B on atoms {R1, . . . , Rk}. As the algebra consists of all disjunc-
tions of atoms, a representation of the algebra is given by an expansion of Γ ,
denoted by Γ∨, to all elements of the algebra. Naturally, here we have for each
symbol S of Γ∨ with S =

∨
i∈I Ri that S

Γ∨ =
⋃

i∈I R
Γ
i .

A qualitative constraint calculus (QCC) is the finite integral WA A given by
B and the “notion of consistency” defined by the identity in Γ , the converse
operation on relations, and the following set of inconsistent triangles

T :=
{
(R,S, T ) ∈ B3

∣
∣Γ∨ �|= ∃xyz

(
R(x, y) ∧ S(y, z) ∧ T (x, z)

) }
.

We note that by construction these calculi are atomic and weakly associative
(the latter property was not observed by Ligozat and Renz). Further, Ligozat
and Renz define QCC as the tuple (A, Γ ) — we here differentiate between the
two to have one symbolic and one semantic object. This enables a clear distinc-
tion between symbolic and semantic level, but has otherwise no bearing on the
presented material.
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The definition of QCC does not require them to be induced by a partition
scheme with an infinite domain. Arguably we do not have to resort to abstract
algebras if the original structure is finite. However, it is easy to construct exam-
ples from finite cases. Note here, for each such example, we can easily produce
an example based on a partition scheme with infinite domain by using the direct
product of the given QCC with a simple one defined on an infinite domain (con-
sider 〈N ; =, �= 〉) — the resulting QCC can be conceived of as being induced by
the direct product of their partition schemes which then has an infinite domain.

The term calculus here refers to the operations of the algebra. In standard
mathematical notation these are rules of the form

R(x, y)

R−1(y, x)

R(x, y)
S(x, y)

(R ∧ S)(x, y)

R(x, z)
S(z, y)

(R � S)(x, y)

which allows for deriving new facts. Consider as our input an instance I on the
same signature: as it is primitive positive, it is a set of facts. With the rules new
facts can be deduced until a fixpoint is reached. If 0(x, y) is derived for some
pair of variables x, y, then we know the instance is unsatisfiable. This is usually
achieved with the help of a path consistency algorithm, e.g. PC2 [11], which has
a time complexity O(n3) where n is the number of variables in the instance.

Instances where 0(x, y) is not derived for any pair x, y are those that are
consistent with regard to the calculus — they adhere to the “notion of consis-
tency”.1 Note, this is not the same as being satisfiable or k-consistent. For a
QCC A induced by a finite partition scheme Γ , it is common to say that A
solves CSP(Γ ) iff the consistent instances of CSP(Γ ) are exactly the satisfiable
ones.

Which instances satisfy the “notion of consistency”? Primarily we consider
the most refined structures, the so-called atomic networks [9].2

A partial atomic network over A is a relational structure N on a finite domain
V with a binary signature denoting the atoms of A such that the following
conditions are satisfied for all a, b, c ∈ V :

– If for some symbol R ∈ At (A) it holds (a, b) ∈ RN , then there is no distinct

R′ ∈ At (A) such that (a, b) ∈ R′N . We write N(a, b) for this (unique)
relation symbol R.

– N(a, a) exists and N(a, a) ≤ id.

– If N(a, b) exists, then N(b, a) exists.

– If N(a, b), N(b, c), and N(a, c) exist, then N(a, c) ≤ N(a, b) �N(b, c).

A (complete) atomic network is then a partial atomic network where for each
tuple (a, b) ∈ V , N(a, b) exists, i.e., there is a symbol R with (a, b) ∈ RN .

1 Unlike previous work (e.g. [9, 12]), we strictly differentiate between consistency
wrt. to given calculus rules and satisfiability in Γ .

2 Note, there are different notions of networks in the literature. Here, we restrict our-
selves to networks on atomic relations that are already consistent wrt. the calculus.
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For a given WA A, we denote by Net(A) the class of all finite atomic networks
and by PNet(A) the class of all partial finite atomic networks. Clearly, we have
Net(A) � PNet(A). We introduce some standard FO terminology for these
classes as also considered by Hirsch and Hodkinson [9]. Let K be a class of
relational structures. We say that K has the

– Joint embedding property (JEP), if for all A,B ∈ K there exists a C such
that A and B embed into C;

– Amalgamation property (AP), if for all A,B,C ∈ K and embeddings e : A →
B and f : A → C, there exists an X ∈ K with embeddings g : B → X and
h : C → X such that g ◦ e = h ◦ f .

From Hirsch and Hodkinson we know that both Net(A) and PNet(A) are closed
under substructures and here AP always implies JEP (we allow the empty net-
work). Further, PNet(A) trivially has JEP and AP.

Both JEP and AP can be motivated by practical questions: Given an instance
that consists of disjoint subproblems can you glue their solutions? Can you make
use of the instance’s graph structure for faster reasoning (e.g. [5])?

4 Properties of Qualitative Constraint Calculi

In this section we take a look at QCC from the viewpoint of relation algebras
and the CSP. Given the setting of infinite domains, QCC prove here to be a
limited framework. We are not aware that the results discussed here have been
explicitly pointed out before.

4.1 QCC and WAs

In the previous section we have stated that, by construction, every QCC is a
finite integral WA. Observe, that the converse does not hold as not every finite
integral WA can be obtained from a partition scheme.

Proposition 1. The class of qualitative constraint calculi QCC is a proper sub-
class of the class of finite integral weakly associative relation algebras.

Proof (idea). To show proper parthood consider the algebra A in Example 3.
Assuming A ∈ QCC, its Boolean algebra must have a representation as an ex-
pansion Γ∨ of a finite partition scheme which supports the notion of consistency.
A proof by contradiction shows that Γ∨ does not exist.

The fact that each QCC is integral can be detrimental as is shown next.

Example 4. Let A be the QCC induced by the partition scheme 〈{0,1};<,=,>〉.
We observe that A is not associative, as (< �<)�> is equal to the zero element,
but <�(<�>) is <. Clearly, the calculus has no representation. Further, Net(A)
does not have the AP. For example, the instance b = b embeds into both a =
a < b = b and b = b < c = c, but there is no large network that accommodates
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both as it would contain a part a′ < b = b < c′ for some a′, c′ where composition
would derive the zero element.

However, splitting = into two atoms =0, =1 results in a non-integral associa-
tive relation algebra A′ on atoms {<,=0,=1, > } where Net(A′) has the AP.
A representation of A′ is given by the intended structure Γ ′ on DΓ ′

:= {0, 1}:
<Γ ′

:= {(0, 1)}, =Γ ′
0 := {(0, 0)}, etc. Yet, A′ is not a QCC as it is not integral.

We just showed that the notion of QCC is too narrow within the general
theory of WAs. Altogether, QCC being defined amongst integral WAs seems
overly restrictive in many aspects.

4.2 Relation to CSPs

So far we have seen QCC as an abstraction on finite partition schemes that form
algebras. If we use the algebras for reasoning complete atomic networks are the
most-refined relational structures that are consistent with regard to the calculus
operations. For a QCC A induced by a finite partition scheme Γ the networks
in Net(A) can all be conceived of as instances of CSP(Γ ). The (old) important
question is whether all instances in Net(A) are indeed satisfiable in Γ . In general,
the answer is known to be negative (see e.g. [9] for relation algebras). We start
by revisiting the calculus given in Example 4.

Example 4 (continued). Let Γ be the partition scheme 〈{0,1};<,=,>〉 and A be
the QCC induced by Γ . Then every structure in Net(A) homomorphically maps
to Γ . To prove this, we can define an equivalence relation ∼ on elements of a
structure I ∈ Net(A) by v ∼ w iff (v, w) ∈ =I (as in e.g. [9]). If there were more
than two equivalence classes, composition would derive the zero element.

This example demonstrates that although the QCC is unrepresentable and the
complete atomic networks do not enjoy the AP, they all homomorphically map
to the partition scheme. Although this may seem encouraging, we now switch our
attention to the general question which types of constraint satisfaction problems
can be formulated with a finite partition scheme. As we will see, it is almost all
of them.

Theorem 1. Let Γ ′ be a constraint language with finite signature. Then there
exists a finite partition scheme Γ such that Γ ′ has a FO interpretation in Γ
based on a primitive positive syntactic interpretation.

Proof (sketch). W.l.o.g. let Γ ′ be the σ′-structure 〈D′ ; R′
1, . . . , R

′
k 〉 where each

relation is n-ary. We construct Γ with DΓ := (D′n) × N. The first n ele-
ments of a ∈ DΓ are used to define the relations of Γ ′ and the last element
is used to guarantee pairwise disjointness. For each R′

l ∈ σ′ we define RΓ
l :={

(a, b) ∈ DΓ ×DΓ
∣
∣
∣ a1, . . . , an ∈ R′

l
Γ ′
, an+1 = 0, bn+1 = l

}
and a converse rela-

tion for each. Adding the identity relation and some additional relations that
establish equality on elements of tuples one can ensure the claimed FO interpre-
tation properties. Assigning unused tuples to a fresh relation makes Γ jointly
exhaustive.
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This theorem shows any constraint language Γ ′ on a finite signature can be
wrapped inside a finite partition scheme Γ . Moreover, the syntactic interpreta-
tion is existential such that the associated reduction map allows each instance of
CSP(Γ ′) to be cast as an instance of CSP(Γ ). This suffices to show that the com-
putational complexity of the CSP for finite partition schemes is not well-behaved
in the general case — we consider examples listed in [4]: the structure in Exam-
ple 1 (undecidable decision problem) and relational structures constructed by
Bauslaugh [13] (decision problem with arbitrary time complexity).

The grand question remains: When do qualitative constraint calculi solve the
CSP of the partition scheme? Renz and Ligozat [12] claim to have characterized
these cases by the notion of being “closed under constraints”:

Let Γ be a finite partition scheme and RΓ one of its relations. Then RΓ can
be refined to a “subrelation” X �= ∅ if X � RΓ and X is pp definable in Γ with a
formula ϕ(x, y). We say Γ is “closed under constraints” if for each of its relations
RΓ all “subrelations” that RΓ can be refined to have a non-empty intersection.

The main claim of Renz and Ligozat [12] is as follows.

Claim (Theorem 1 in [12]). Let A be a qualitative constraint calculus induced
by a finite partition scheme Γ . Then A solves CSP(Γ ) iff Γ is “closed under
constraints”.

We argue that the claim is wrong by showing that the implication does not hold
in either direction.

Proposition 2. Let A be a qualitative constraint calculus induced by a finite
partition scheme Γ . Whether A solves CSP(Γ ) is independent of whether Γ is
“closed under constraints”.

Proof (sketch). First consider 3-colorability. The QCC for this problem was given
in Example 2 with a representation that serves as a finite partition scheme Γ .
Any instance I of CSP(Γ ) with (v, w) ∈ RI

�= for each distinct pair v, w ∈ DI

and (v, v) ∈ idI for each v ∈ DI is a complete atomic network. Such instances
are however never satisfiable for |DI | ≥ 4. To show that Γ is “closed under
constraints” consider that all permutations on DΓ are automorphisms of Γ . As
automorphisms preserve solutions of all FO formulas over the structure, X must
be invariant under these permutations, and thus it cannot be a subrelation.

Now consider the QCC and partition scheme Γ given in Example 4. For any
instance of CSP(Γ ) the calculus easily completes the atomic network of any
connected component and those homomorphically map to Γ . Thus it solves
CSP(Γ ). However, we can pp define the relation {(0, 0)} by ∃c (a < c ∧ b < c)
and {(1, 1)} by ∃c (a > c ∧ b > c). Thus Γ is not “closed under constraints”.

From the first part of the proof, we can also see that the original claim by
Renz and Ligozat implies that 3-colorability is in P and thus P = NP.

Proposition 3. There is a finite partition scheme Γ that induces a qualitative
constraint calculus A where Net(A) does not have the JEP.

The proof consists of constructing a counterexample based on a suitable finite
structure Γ . Unfortunately, we do not have the space to give the example here.
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We state some simple observations regarding consistency and satisfiability.

Proposition 4. Let A be a qualitative constraint calculus induced by a finite
partition scheme Γ . The following holds for CSP(Γ ) and the class of complete
atomic networks Net(A).

(a) If I is an instance of CSP(Γ ) where for a, b ∈ DI there is exactly one symbol
R with (a, b) ∈ RI , then I ∈ Net(A) iff for every V ′ ⊆ DI , |V ′| ≤ 3 there is
a homomorphism from the substructure I|V ′ to Γ .

(b) For each satisfiable instance I of CSP(Γ ) there is a network I ′ ∈ Net(A) on
the same domain with RI ⊆ RI′

for each R ∈ At (A).
(c) If A solves CSP(Γ ), then each complete atomic network homomorphically

maps to Γ .
(d) If each complete atomic network homomorphically maps to Γ , then Net(A)

has the JEP.

As we see here, qualitative constraint calculi are a very restricted setting of
relational FO structures and in particular of reasoning. Bodirsky and Dalmau [5]
already criticize relation algebras for their limitations, in particular, the limita-
tion to binary relations with a particular kind of disjunction. They also show
that the operations of the algebra correspond to a Datalog program.

4.3 Countably Categorical Representations

We shift the perspective to the CSP and the class of complete atomic networks.
In the following we “forget” the original partition scheme. This is interesting
mainly because a QCC is the algebra, not the partition scheme. For reasoning
tools the algebra and thus the notion of complete atomic networks is all that is
available.We previously stressed that QCC are purely symbolic objects. So, given
such an object what can we salvage from the calculus in terms of interpretation?
In the following, we build an interpretation of the relation symbols in a QCC
in which all complete atomic networks are satisfiable. It is already known due
to Hirsch and Hodkinson [9] that every atomic and at most countable WA has
a “relativized” representation. We apply the same argument to the QCC here,
where the result can be strengthened because the considered algebras are finite.

Proposition 5. Let A be a qualitative constraint calculus. Then the Fräıssé
limit [7] of the class PNet(A) exists. The Fräıssé limit A is ω-categorical and
embeds all structures of PNet(A). In particular, DA is countable, A is ultraho-
mogenous and determined up to isomorphism. We call A the relativized model
of the algebra A.

Using the class of partial networks is in general a necessity, as the class of
complete atomic networks might not have AP which is necessary for the con-
struction of the Fräıssé limit. In case the class of complete atomic networks has
AP one can build a representation of the complete networks by the same method
— as considered before in, e.g. [4, 6, 9, 14].
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With the relativized model A we obtain a well-defined constraint problem
CSP(A) for every QCC. Solving these problems is now not limited to the path
consistency algorithm. As A is ω-categorical the results by Bodirsky and Dal-
mau [5] on the ω-categorical approach to constraint satisfaction are applicable.

If A has signature σ naming the atoms, we naturally have the augmented
signature σ∨ denoting the disjunction of atoms. For this let A∨ be the expansion
ofA to disjunctive symbols where the new symbols have the natural FO definition
ϕ(R1 ∨ · · · ∨Rn)(v, w) = R1(v, w)∨ · · · ∨Rn(v, w). By construction we have the
following result.

Proposition 6. Let A be a qualitative constraint calculus, A its relativized model
and A∨ its expansion to all elements of the algebra A. Then

(a) any instance I of CSP (A) can be solved in time O(n3) for n = |DI |,
(b) CSP (A∨) is in NP.

In particular, for CSP(A∨) every partial atomic network is globally consistent
and path consistency implies strong 3-consistency. It is important to note that
this ignores the original finite partition scheme — which, as we have seen, might
not have much connection with A. Further, even if all complete atomic networks
are satisfiable over the original partition scheme, it is usually not the case that
partial networks are. However, we can state connectedness in each instance: We
can easily add 1(a, b) for each pair of variables a, b to force complete networks.

We summarize the relation between CSP(A∨) and CSP(Γ ) in the following.

Proposition 7. Let A be a qualitative constraint calculus induced by a finite
partition scheme Γ , A its relativized model, Γ∨,A∨ their disjunctive expansions,
and I an instance of CSP(Γ∨).

(a) If I homomorphically maps to Γ∨, then I homomorphically maps to A∨.
(b) If for each a, b ∈ DI there is at least one symbol R with (a, b) ∈ RI , I

homomorphically maps to A∨, and each complete atomic network over A
homomorphically maps to Γ , then I homomorphically maps to Γ∨.

The relativized model A allows us to define many more relations. Unlike WAs
and networks which are limited to binary relations and only disjunctions built
on atoms, A allows to consider arbitrary disjunctions of relations.

5 Conclusion

In this paper we discussed the framework of qualitative constraint calculi for
reasoning with binary constraints. We contrasted these calculi with relation alge-
bras, first-order logic, and constraint satisfaction. In the process we showed that
almost any constraint satisfaction problem falls within the scope of the frame-
work and that the central theorem of “closure under constraints” characterizing
satisfiability of instances on atoms is wrong. We conclude that qualitative calculi
as defined by Ligozat and Renz [1] are on one hand too narrow as they always



218 M. Westphal, J. Hué, and S. Wölfl

provide only one fixed type of calculus rules and too general on the other as they
attempt to cover too many constraint satisfaction problems.

Further, we have defined the relativized model for the symbolic formalism
which provides the necessary background for applying the theoretic and prac-
tical results of Bodirsky and Dalmau [5] on constraint satisfaction with ω-
categorical structures. In particular, this link enables us to consider well-defined
k-consistencies from the constraint satisfaction literature instead of being limited
to the operations of a qualitative calculus. Alternative less restrictive approaches
for constraint satisfaction that clearly separate the syntax, semantics, and rea-
soning algorithms have a lot to offer for qualitative reasoning.
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Abstract. Intelligibility is a design principle for context-aware systems
which focuses on providing information about context acquisition and
interpretation to its users. In this paper we present existing approaches
to provide intelligibility and identify a common shortcoming. Explana-
tions starting on the context level are insufficient to help users in finding
and understanding why their system is not working. Debuggability for
context-aware systems is introduced as a means to assist users in de-
bugging the cause of a failure. To achieve this we adapt an information
exchange approach from explanatory debugging. Furthermore we discuss
open problems of debuggability and provide a possible solution.

Keywords: intelligibility, debuggability, explanation generation.

1 Introduction and Motivation

In our lab we build and analyze context-aware systems that are able to provide
proactive assistance. Our use cases are smart meeting rooms and multi-display
environment and therefore the lab is equipped with multiple projection screens
and projectors. Also we have multiple conference tables and a video/audio matrix
switch to connect the video port from a table to every projector. One day we
connected a notebook using a Mini DisplayPort adapter, but the projector did
not show the notebooks’ output. After several hours of debugging we swapped
the adapter and finally saw the notebook on the screen. This whole process was
done without any assistance and we were wondering if a context-aware system
can provide assistance for debugging itself.

Users of single computer environments have experienced these kinds of prob-
lems in the past and solutions has been developed to ease the use of computers
in faulty situations, like network failures. Examples include help functions in
programs or the network diagnostics assistant. The shift towards ubiquitous
computing raises the need for new solutions, as now hundreds of computers are
surrounding the user. This has been acknowledged by other researchers and lead
to the proposition of two design principles for context-aware systems: intelligibil-
ity and control [2]. In order to achieve these principles a system has to inform its
users what context is acquired and how it is interpreted, and to provide means
to correct taken actions.
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c© Springer International Publishing Switzerland 2014
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Intelligibility is concerned about what kind of information goes into the sys-
tem, how it is interpreted, and why certain decisions are taken. So a context-
aware system with support for intelligibility is not a black box as it can provide
explanations about its details to users. In this paper we argue that the sole fo-
cus on context for intelligibility is not sufficient. The underlying infrastructure
remains a black box and the system cannot answer questions about its working
parts. A dynamic integration of components and the usage of different sensor
sources increases the complexity of context-aware systems and also increases the
chance of failures. As argued below, existing systems cannot provide the required
assistance for debugging if the cause of the failure is unrecognizable with sen-
sors. Though the system can guide the user to gather the required information
to detect the cause.

The contribution of this paper is threefold: (a) we review different approaches
to intelligibility, (b) we categorize them with respect to an extended classification
scheme, and (c) we identify the open problem of debuggability in context-aware
systems and present an approach for a solution.

2 Related Work

In the last years various efforts were made to provide intelligibility. One approach
is to provide middlewares with capabilities to track the acquirement and usage of
context. For example the Context Toolkit [5] has been extended with Situations
[6]. Situations expose application logic as they enable a declarative, rule-based
way to implement context-aware systems. The system automatically handles the
underlying details that are required to gather the context data and to perform
the specified actions. The information contained in a Situation and its current
state are used to build interfaces that provide intelligibility and also allow the
collection of application traces to support developers in debugging context rules.

A more sophisticated extension of the Context Toolkit is the Intelligibility
Toolkit [11]. It provides support for the four most popular models to build
context-aware systems and for eight out of the ten explanation types that have
been identified by Lim & Dey [10]. Explanation types express a desire for a cer-
tain kind of information from the application and intelligibility is realized by
providing answers. The explanations are generated in disjunctive normal form
with conditionals (e.g. temperature ≤ 23) as atomic unit and Presenters can be
provided for a visualization. Therefore a separation between the developer of
the context-aware system and the (intelligibility) interface designer is possible,
while the toolkit handles the explanation generation. A shortcoming is the lack
of support for the infrastructure, so the toolkit cannot generate explanations
for unexpected behavior like connectivity issues or missing components in the
environment.

Based on the ten types of explanations that are desired by users, other
researchers focused on ways to generate explanations for users’ questions. Per-
vasiveCrystal focuses on why and why not questions, and is based on event-
condition-action rules [15]. A way is presented how graphical user interfaces can
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be built to support users in asking the environment why (not) a certain action
has been taken, and to provide an interface to manually override or trigger this
action.

To show the feasibility of intelligibility in a dynamic setting, an existing assis-
tance system for smart environments has been extended to provide explanations
[1]. The developed system supports goal-based interaction [8] and is able to an-
swer how-to and why questions, and also provide hints to users how they could
optimize their usage of the environment. Instead of a disjunctive normal form
or a graphical user interface, an explanation is generated in natural language.

These solutions differ in aspects like the form of explanations and represent
different points in the design space of intelligibility. Different dimensions for this
design space have been proposed, e.g. six dimensions in [14]: I. timing (before,
during, or after an interaction), II. generality (human-computer interaction via
general or domain-specific interfaces), III. degree of co-location (intelligibility
is embedded in the system or external and needs to be switched), IV. initiative
(intelligibility is manually triggered by the user or automatically by the system),
V. modality (interaction modality, e.g. visual, auditory, haptic), and VI. level of
control (varies between intelligibility with no additional control, counteract to
undo actions of the system, configuration to tweak parameters of the system, and
programmability to change how the system works); or three dimensions in [4]:
I. timing (same as before), II. syntax (complies with modality), and III. degree
of user expertise (new dimension; different users have different requirements and
capabilities).

3 Explaining Unexpected Behavior

In the last section we have presented different solutions that provide intelligibility
to end-users. All have in common that they provide only information for designed
functionality, they can explain what context information has been used and
present the result of the internal reasoning process. Various surveys have been
performed with inhabitants of smart homes and users expressed “discomfort
with her inability to fix their system” [3] and that they “want to understand the
house. . .my home, how it works, so that I will learn [to fix] it myself” [13]. So far
these users have to rely on consultants and technicians to get problems in their
home resolved. This problem has already been identified by Edwards & Grinter
as one of the seven challenges for ubiquitous computing [7]. They mention that
home environments are not designed from the ground to contain a variety of
devices, but are piecemeally equipped with additional ones and inhabitants are
facing the challenge of understanding the interaction between the changing set of
devices in their home (they call it the “accidentally” smart home). Intelligibility
provides only a partial solution as it focuses on context and not on the underlying
infrastructure that is needed to acquire and process the context information. As
explanations about the behavior of a context-aware system result in a stronger
feeling of trust towards the system [12], we assume that explanations about
causes of malfunctions will also increase the trust.
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The creation of explanations for debugging purposes for end-users has been
discussed outside the fields of context-aware systems. For example a solution
has been developed for machine-learned programs and explanatory debugging is
described as “a two-way exchange of information, introducing new facts along
the way and using descriptions both parties understand” [9].

In this work we focus on causes of unexpected behavior that the context-
aware system cannot detect on its own, otherwise the system could either fix
them itself or instruct the user how to fix them. Without the ability to detect
the problem itself, the system is dependent on the user and an exchange of
information is required to assist the user in debugging her environment. We call
this debuggability.

4 Extending the Design Space of Intelligibility

In Sec. 2 seven different dimensions for the design space of intelligibility were
gathered from the literature. To capture the level of explanation (infrastructure,
context, assistance) we propose this as an additional dimension. We distinguish
between context to provide details about what context information are used,
assistance to provide explanations how the context is interpreted and what ac-
tions are issued, and infrastructure to provide inner details of a context-aware
system that are needed for a proper functionality. So the infrastructure level is
concerned with details below the other two levels.

As mentioned in Sec. 3, we do only consider problems that the system cannot
detect itself. This results in an exchange of roles, because now the context-aware
system has to ask questions and the user provides explanations to enable the
system to find the cause of a problem. This poses two new challenges:

1. What does the system have to ask the user to determine the cause of the
problem?

2. How have explanations to be formulated to be understandable by the system?

To the best of our knowledge all existing solutions for intelligibility generate
explanations on the context and assistance level only. Also they do not support
the exchange of roles that gives the end-user the possibility to provide expla-
nations to the system. A classification of approaches from Sec. 2 into the eight
dimensions of the design space of intelligibility is shown in Tab. 1.

The two challenges raise several sub-problems, discussed below:

How is the environment described? A problem is the knowledge about the en-
vironment, because the system requires to explicitly know what devices are
present, how they are connected to each other, and what is the cooperation
between them to reach emergent behavior. To work across different devices
from different vendors and enable subsequent usage a formal model is needed.

What is the reasoning process? With an explicit and formal description the sys-
tem is able to identify possible causes for failures. Abductive reasoning is a
suitable approach for this.
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Table 1. Solutions for intelligibility from Sec. 2 classified within the eight dimensions of
the design space. (a) = after, (as) = assistance, (ca) = counteract, (cf) = configuration,
(co) = context, (d) = developer, (e) = end-user, (em) = embedded, (ex) = external,
(g) = general, (in) = intelligibility, (s) = system, (u) = user, and (v) = visual.
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Situations [6] (a) (g) (em) (u) (v) (in), (cf) (d), (e) (co), (as)

Intelligibility Toolkit [11] (a) (g) (em) (u) (v) (in) (d), (e) (co), (as)

PervasiveCrystal [15] (a) (g) (ex) (u) (v) (ca), (cf) (e) (co), (as)

unnamed [1] (a) (g) (em) (u), (s) (v) (in) (e) (co), (as)

How does the system find the correct reason? In a complex setting abduction can
find many hypotheses for a failure. The system has to choose questions that
help to eliminate them, in order to identify the correct reason. This requires
the system to select questions optimal with respect to cost, weight, or proba-
bility.

What is the form of interaction? Yet it is unclear how the system can guide the
user. The questions have to be understandable and informative in order to
get valuable feedback and the system needs the ability to understand the
answers of the user. So the concrete form of questions and the mode of
interaction has to be chosen according to the current situation.

5 Conclusions

In this paper we presented a short overview of existing solutions for provid-
ing intelligibility in context-aware systems. We extended existing classification
schemes with another dimension (level of explanation) to describe that a system
provides information about the infrastructure, context, or assistance level. Also
we showed that debugging the infrastructure level requires an exchange of roles,
the system provides the questions and the user generates the explanations. And
we summarized open problems that we are going to investigate in future work.

In our future research we focus on systems which help users to identify infras-
tructure problems. As mentioned in Sec. 4, this includes solving various problems
ranging from natural language processing, abduction, cost-optimal planing, and
others. Debuggability for the infrastructure level is necessary to close the exist-
ing gap in former systems for intelligibility and thus necessary to solve one of
the seven challenges for ubiquitous computing [7].
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Abstract. In this paper we present first steps towards an index based
workflow similarity function. Classical approaches on workflow similarity
perform a pairwise comparison of workflows, thus the workflow similar-
ity function presented in this paper can speedup the calculation as the
comparison is performed on the index.
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1 Introduction

Similarity is a subjective concept, suited for approximate rather than exact rea-
soning [1]. Similarity functions are used in a manifold of applications for example
to retrieve similar cases of a case-base in a case-based reasoning scenario. Work-
flows are ”the automation of a business process, in whole or part, during which
documents, information or tasks are passed from one participant to another for
action, according to a set of procedural rules” [2]. Multiple different similarity
functions for workflows have been presented in the past [3–6]. There is a need
for improvement of the computational performance of workflow similarities. The
similarity function which we present in this paper employs an index to calcu-
late the similarity between two workflows. The similarity computation of two
workflows based on this novel index is much more efficient than the existing
approaches which perform a pairwise comparison on the workflow structure. A
workflow instructs a user to perform certain activities in a certain order. The
workflow index which we present in this paper is based on the precedence relation
for activities. The comparison of two workflows is done by comparing the indices
of the workflows. The index can determine multiple categories of differences be-
tween workflows. It can detect missing activities, it gathers differences in the
positioning of activities, it incorporates discrepancies of control-flow nodes and
it includes the importance of certain activities into the similarity computation.
This paper is organized as follows. In the next section we introduce our index
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and how it is used to determine the similarity of two workflows. It includes a run-
ning example illustrating the index creation. After that we are going to present
some related work on workflow similarity functions and discuss the differences
to our approach. Finally, we draw a short conclusion and provide an outlook on
our future work.

2 Workflow Similarity

This section begins with the presentation of our workflow description language.
Then we are going to recapitulate some basic definitions on multisets which
are necessary for the workflow similarity calculation. After that we present the
construction of the index and finally we are going to employ the presented index
to calculate workflow similarities. We have chosen an XML-based language [7]
for workflow descriptions that is part of the CAKE1 system. It is a block-oriented
workflow description language: The control-flow can contain sequences, XOR-,
AND-, LOOP-blocks. These building blocks cannot be interleaved but they can
be nested. Sequences contain at least an activity, XOR-, AND or, LOOP-block.
XOR- and AND-blocks contain at least two sequences. In the case of an XOR-
block one sequence is chosen which is executed. In the case of AND-blocks both
sequences are executed. Fig. 1 contains on the top a sample for a workflow in
BPMN. Activities are represented by rounded rectangles and control-flow nodes
by the diamond with ”X” for XOR-nodes and an ”+” for AND-nodes. The
arrows between the elements represent the control-flow.

We are going to recapitulate some basic definitions of multisets [8] as our
similarity function uses multisets. Multisets are sets which can contain multiple
occurrences of the same element.

Definition 1 (Multiset). Let D be a set. A multiset over D is a pair 〈D, f〉,
where D is a set and f : D → N . is the function.

Definition 2 (Multiset operations). Suppose that A = 〈A, f〉, B = 〈A, g〉
and C = 〈A, h〉 are multisets then multiset operations cardinality, sum and in-
tersection are defined as follows:

card(A) =
∑

a∈A

f(a) .

A � B = C, with h(a) = f(a) + g(a) .

A ∩ B = C, with h(a) = min
(
f(a), g(a)

)
.

The index creation is illustrated in Fig. 1. The index for a workflow is created
using its executions traces depicted in the middle layer of Fig. 1. A workflow
execution trace is a sequence of activities which represents the order of execution
of activities, as it follows a workflow model. An activity cannot occur multiple

1 Collaborative Agile Knowledge Engine.
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times in a trace. If a workflow model contains an AND-, XOR- or LOOP-block it
can produce multiple different workflow execution traces. For a given workflow
model it is possible to produce the set of possible execution traces by traversing
every possible path through the workflow. Please note that workflows containing
AND-blocks can produce a large (exponential growth) number of different traces.
The large number of traces is only a problem during the offline creation of the
index. We expect that this problem can be overcome in future by modifying the
trace creation process. Two workflows can be compared using their trace set. A
similarity function based on the trace sets could be derived from the cardinality of
the intersection of the sets. Unfortunately this would result in a very pessimistic
similarity function as one missing activity in a trace compared to another trace
is sufficient that the traces are regarded as unequal. Therefore it is necessary
to split the traces into smaller chunks. A trace of a workflow can be used to
derive a precedence relation of that particular trace. The precedence relation
of two activities is the information that an activity must be performed before
another activity. Due to control-flow nodes a workflow can contain multiple
different, even conflicting precedence relations for two activities. For example
sequences of an AND-block can produce conflicting relations, as the order of
execution between the two sequences in the block is not defined. This conflicting
precedence relations are not a problem for our similarity function as it does not
rely on a single relation but it does collect all relations for a workflow in an
index. A set of traces induces a set of precedence relations. The participants of
the precedence relations are collected by a multiset sum. The resulting multiset
is used as index. It is important that we are using multisets instead of normal
sets. If the index would use normal sets, it would lose a lot of distinctiveness.
Fig. 1 illustrates the creation of the index for a sample workflow.

Definition 3 (Trace precedence relation). Let W be a workflow. Let A be
the set of activities ai of W . Let the sequence of activities w = (am, ..., an) with
am, ..., an ∈ A be an execution trace of W . Then (<w, A,A) is the precedence
relation within a trace w. aq <w as if aq has an earlier position in w than as.

Definition 4 (Trace index). Let W be a workflow and let TW be the set of
all trace precedence relations which can be produced by the workflow W , then the
trace index of W denoted index(W ) is defined as:

index(W ) = �
∀ti∈TW

<ti .

The similarity between two workflows can be calculated by means of their
index. The index can be precomputed , thus the actual similarity computation
is very fast. The similarity of two indices is computed with a similarity measure
which is an extension of the Dice coefficient [9]. The Dice coefficient is a well-
known similarity measure for normal sets, for two sets A and B Dice(A,B) =
2 |A∩B|
|A|+|B| [9].
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Fig. 1. Illustration of index creation of a workflow

Definition 5 (Workflow similarity). Let W and G be workflows then their
similarity denoted sim(W,G) is defined as:

sim(W,G) =
2 card(index(W ) ∩ index(G))

card(index(W ) � index(G))
.

Fig. 2 shows how different types of differences between workflows are covered
by the trace index. The first example shows how the similarity functions takes
into account missing activities. In the right workflow, the activity B is miss-
ing and the trace index of the right workflow has only one precedence relation
element in common with the trace index of the left workflow. The example in
middle shows how the similarity function penalizes a misplaced activity. In the
sample workflows the last two activities swapped the position. The trace index
of the left and the right workflow contain one precedence relation element which
is not contained in the trace index of the other workflow. The higher the dif-
ference in positioning of the activities is, the more precedence relation elements
differ and thus the lower similarity is. The last example illustrates how differ-
ent control-flow nodes are taken into account. The trace index does not contain
control-flow nodes explicitly but the semantics of the control-flow nodes are used
during the trace index creation therefore the trace index of the left workflow does
only contain two precedence relation elements while the right one does contain
four precedence relation elements.
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Fig. 2. Illustration of the use of the index for the detection of differences between
workflows

3 Related Work

Multiple workflow similarity functions have been presented in the past. Wom-
bacher and Li represent workflows based on its finite set of states [4]. In their
representation states are n-grams, i.e. a sequence of n transition labels ending
in that state. To calculate the distance of two workflows, they calculate the sum
of the minimal distance of the states of a workflow with the states of the other
workflow. The distance of two states is the string edit-distance of the n-grams.
They use multiplicity of the state multisets to weight the distances of the states.
The idea to use state n-grams is similar to our idea of the trace relations and
they too use the multiplicity of multisets as means of weighting. The main dif-
ference to our approach is that they need to calculate the minimal edit-distance
for every state for every pair of workflows in the repository while in our ap-
proach workflows are compared based on their relation-fingerprint. Eshuis and
Grefen define relations between activities of a BPEL process [3]. Based on these
relations and the activities of the workflow a graph can be defined. The authors
define different exact and inexact matchings on that graph. The main advantage
of that approach is that it ignores irrelevant syntactic differences and that it
can be computed in an efficient way too. Our approach takes into account more
details (e.g. the number of occurrences of an activity) and can be computed
efficiently too. Kunze et al. calculate the similarity of two processes based on
their behavioral profile [5]. For the profile they define the relations strict order,
exclusiveness and interleaving order. The profile is built by creating a matrix
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with a column and a row for every activity in the process. For every pair of
activities the respective relation name is inserted into the matrix. The similarity
between two workflows is calculated by the Jaccard similarity coefficient of the
two behavioral profiles. The authors show that using the strict order relation
provides the best result. The strict order relation which is used by the author is
similar to our trace relation, but as we are using multisets we take into account
the weight of a relation. Earlier related work [6, 10] use graph based approaches
to compute workflow similarities. In contrast our approach uses an index.

4 Conclusion and Future Work

In this paper we presented first steps towards a similarity calculation for work-
flows based on an index induced by execution traces. In our future work we will
further improve the approach. We aim to develop a method to handle the large
number of traces created by AND-nodes. In addition we will extend the method
to cover more elements of a workflow like input- and output-objects of activities.
To compare our approach with others we are planning to perform an evaluation.
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Abstract. Artificial neural networks are fast in the application phase
but very slow in the training phase. On the other hand there are state-of-
the-art approaches using neural networks, which are very efficient in im-
age classification tasks, like the hybrid neural network plait (HNNP) ap-
proach for images from signal data stemming for instance from phonemes.
We propose to accelerate HNNP for phoneme recognition by substituting
the neural network with the highest computation costs, the convolutional
neural network, within the HNNP by a preceding local feature extrac-
tor and a simpler and faster neural network. Hence, in this paper we
propose appropriate feature extractors for this problem and investigate
and compare the resulting computation costs as well as the classifica-
tion performance. The results of our experiments show that HNNP with
the best one of our proposed feature extractors in combination with a
smaller neural network is more than two times faster than HNNP with
the more complex convolutional neural network and delivers still a good
classification performance.

Keywords: image classification, phoneme recognition, artificial neural
network, convolutional neural network, hybrid neural network plait, local
feature extraction.

1 Introduction

Artificial neural networks with multiple layers and complex connections are fast
in the application phase but need a long time for the training phase compared
to other classification approaches. That may be acceptable in approaches where
just one training phase takes place before the system is used. In areas where
periodically plenty of new data is available and has to be integrated so that
the system has to be retrained frequently, a very long training time becomes
unacceptable. On the other hand there are very strong and often used state-
of-the-art neural networks like convolutional neural networks which are mainly
used for image classification tasks like digit or face recognition (see e.g. [12],
[14]), but also for problems like phoneme recognition as in [1]. In former works
([4], [5]) we developed HNNP, a hybrid neural network plait for improving the
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classification performance of single neural networks applied to images gained
from signal data like for instance Ground Penetrating Radar data (see [2], [3]),
Synthetic Aperture Radar data ([10]) or phoneme data ([13]). HNNP is able
to improve the classification performance significantly, but the time for train-
ing HNNP is proportional to the training time of the integrated convolutional
neural network. Hence, the question arises if there is a way to profit still from
the property of HNNP to improve the classification performance and to reduce
the training time at the same time. In this paper we propose and investigate a
strategy to simulate the convolutional neural network within the HNNP by re-
placing it by a combination of a preceding local feature extraction method and a
simpler and faster neural network for the classification within HNNP. The main
contributions of this paper are: (1) proposal of a new approach for accelerating
HNNP, (2) presentation of three different feature extractors for this acceleration,
and (3) investigation of computation costs and performance of the accelerated
HNNP. In the following we will describe some related work in section 2 and the
HNNP approach in section 3. In section 4 we will explain our proposed feature
extractors. Before we conclude we will present the experiments in section 5.

2 Related Work

The most famous problems convolutional neural networks are used for are hand-
written digit classification and face recognition. Convolutional neural networks
for face recognition and gender classification are presented e.g. in [9] and [14].
The well known LeNet-5 convolutional neural network for digits recognition is
presented in [7]. A further convolutional neural network for digit recognition
with a simpler and shallower architecture is proposed e.g in [12]. However, con-
volutional neural networks are also used for problems like phoneme recognition
which can be considered as an image classification problem. In [1] a convolu-
tional neural network for phoneme recognition is described. We use a version of
this network within HNNP for the comparison with our approach of HNNP with
preceding local feature extractors and simpler neural networks instead.

Common approaches for feature extraction in image processing are methods
like edge detection (see e.g. [15], [11]), Hough transform (see e.g. [6]) or Scale-
invariant feature transform (SIFT, [8]). However, in this work we consider images
stemming from Mel Frequency Cepstral Coefficients of phonemes, representing
speech frequencies. In these images we do not search for certain shapes but for
combinations of extreme frequencies. Hence, the mentioned image feature ex-
traction methods are not appropriate for this kind of data and we will propose
in section 4 three other local feature extractors. Two of them simulate the be-
havior of a certain part of a convolutional neural network, whereas the third one
uses some background information about the considered data. Before we will
describe these feature extractors, in the next section we will explain HNNP.
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3 HNNP

The hybrid neural network plait (HNNP) approach integrates on the one hand
different information sources delivering different feature sets and requiring differ-
ent learning models, and retrains on the other hand these learning models inter-
actively within one common structure. The different information sources are the
normalized pixel values of the input image and additional side information like
statistical information or domain information. The learning model for the image
pixels is, according to state-of-the-art approaches (see sec. 2), a convolutional
neural network (cnn). For the training of the feature sets of the other information
sources fully connected multilayer perceptrons are used. The plait (see fig. 1) is

Fig. 1. Architecture of the hybrid neural network plait (HNNP). The plait is composed
of p+1 layers P0, P1, . . . , Pp. Each layer contains k+1 different neural networks (here
k = 2) according to the k+1 different information sources I0, I1, . . . , Ik for the input. I0
corresponds to the input image and the appropriate learning model is a convolutional
neural network (cnn). The learning models for the other information sources I1, . . . , Ik
are multilayer perceptrons (nn1, nn2, . . . , nnk). In every layer from P1 on the neural
networks are retrained with additional input from the former layer. After the last layer
Pp a further multilayer perceptron (nn0) is attached to achieve one common output
vector o delivering the final classification result.

composed of several layers in each of which the networks are retrained by consid-
ering the classification decisions of the other networks from the former layer. The
cnn used for HNNP for phoneme recognition is pictured in fig. 2. In these kind of
networks the input layer (L0), convolution layer (L1) and the maxpooling layer
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Fig. 2. Left: Architecture of a cnn for phoneme recognition. It is composed of 5 layers
L0, L1, L2, L3, L4, where L0 is the input layer fed with the image, L1 is a convolution
layer followed by a maxpooling layer (L2). L0, L1, L2 build the local feature extractor.
The fully connected layer (L3) and the output layer L4 instead build the trainable clas-
sifier. Right: Architecture of the cnn adapted to the plait structure with 3 information
sources. In contrast to left the output neurons of this cnn get additional input from
the other networks of the plait layer before.

(L2) serve as a local feature extractor, whereas the fully connected layer (L3) and
output layer (L4) serve as a trainable classifier. The output layer of such a cnn
delivers an output vector ôcnn := (ôcnn0 , . . . , ôcnnN ),−1 ≤ ôcnni ≤ 1, i = 0, . . . , N ,
where the actual output ôi

cnn of the ith neuron in output layer n corresponds
to

ôi
cnn = tanh(

Nn−1∑

l=0

wil
nx

l
n−1) , (1)

with Nn−1 as the number of neurons in layer n − 1, wil
n as the weight of the

lth connection between neuron i and the neurons in layer n − 1, xl
n−1 as the

output of the lth neuron in layer n − 1 and tanh (hyperbolic tangent) as acti-
vation function with an output within the interval [−1, 1]. Each neuron of the
output layer is assigned to one class in {C0, . . . , CN}. The classification result
Cargmaxiôi

cnn corresponds to the class Ci assigned to the output neuron with
maximum output value ôi

cnn. In opposite to the cnn, fully connected multilayer
perceptrons fulfill only a role as classifier (without local feature extraction) but
use the same formulas for ônni .

cnns and multilayer perceptrons are interweaved within the HNNP structure
like in a plait (fig. 1), which is enabled by adapting their architectures. In these

new architectures (fig. 2) – using the example of the cnn – every neuron ocnn
(m)

i

of the output layer Ln of a cnn in plait layer Pm is additionally connected to the

outputs ô
nn

(m−1)
1

i , ô
nn

(m−1)
2

i , . . . , ô
nn

(m−1)
k

i of the k other networks nn1, nn2, ..., nnk
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from the previous plait layer Pm−1. This leads to new output formulas for the
neural networks within the plait. In the case of k information sources for addi-
tional side information, the new output formulas for the k+1 adapted networks
cnn and nnx, x = 1, . . . , k are as follows:

ôcnn
(m)

i = tanh(

Nn−1∑

l=0

wil
nx

l
n−1 +

k∑

j=1

bij ô
nn

(m−1)
j

i ) , (2)

ô
nn(m)

x

i = tanh(

Nn−1∑

l=0

wil
nx

l
n−1 + bi0ô

cnn(m−1)

i +

k∑

j=1,j �=x

bij ô
nn

(m−1)
j

i ) . (3)

In this way each neural network learns to which degree it should consider the
classification decisions of all other networks from the previous plait layer. The
number p+ 1 of plait layers is a hyper parameter.

A further improvement of HNNP can be reached by using within HNNP
automatically estimated subclasses like shown in [5]. The results of applying
HNNP to 400 examples of phonemes ’iy’ and ’n’ of the TIMIT data set ([13])
with 10 automatically estimated subclasses are shown in table 1 (see also [5]).
In this paper we propose to substitute the cnn within HNNP by a preceding

Table 1. Results of [5] of a 5-fold cross validation for 400 examples of phonemes ’iy’
and ’n’ of the TIMIT data set: Classification test errors (%) of the 5 baselines cnn, nn1,
nn2, majority ensemble and stacking ensemble and the HNNP (standard deviations in
brackets) with 10 automatically estimated subclasses

cnn nn1 nn2 majority stacking HNNP

27.88 35.75 30.88 26.38 22.13 12.50
(4.32) (4.04) (1.86) (1.90) (1.69) (0.99)

local feature extraction and a simpler and faster neural network to accelerate
the HNNP. Hence, in the following section we will present the proposed local
feature extractors for this purpose.

4 Local Feature Extractors for HNNP

As mentioned above, we want to substitute the cnn within the HNNP by a pre-
ceding local feature extraction and a simpler and faster neural network. This is
reasonable as in the cnn the convolution layer and the maxpooling layer serve
as a local feature extractor and the fully connected layer as a trainable classifier
(see fig. 2 and sec. 3). The mentioned simpler and faster neural network shall
adopt the rule of the trainable classifier and is realized by a fully connected mul-
tilayer perceptron equivalent to the second part of the cnn (see the classification
part in fig. 2). For the preceding local feature extraction we propose 3 differ-
ent feature extractors, which will be described in the following subsections: (1)
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tanhamd, (2) amd2 and (3) maxiv. tanhamd and amd2 are inspired by the cnn,
i.e. tanhamd and amd2 simulate the local feature extractor of the cnn, however
without learning weights, or without a training respectively, but by means of the
maximum, minimmum and average functions. maxiv instead is inspired by the
data, i.e. it considers certain characteristics of the input data.

4.1 tanhamd

tanhamd (hyperbolic tangent and average, maximum, distance) is composed
of two parts (see also fig. 3). The first part applies a convolution similar to

Fig. 3. Approach of tanhamd, as well as of amd2 if tanh(sum) is replaced by average
(1), maximum (2) and distance (3)

the convolution layer of the cnn but without weights to learn. tanhamd creates
3 equal maps with values yj stemming from applying to every possible 8 × 8
window xj of the input image a summation and the hyperbolic tangent (cp. eq.
(1)):

yj = tanh

(
64∑

i=1

x
(i)
j

)

. (4)

The x
(i)
j , i = 1, . . . , 64, correspond to the pixel values, normalized according

to [7], of the input image in the appropriate 8 × 8 window and have a value
between −0.15 and 1.175 depending on their intensity (the darkest pixels have
value −0.15 and the brightest pixels have value 1.175). That means that if there
are a few very bright pixels in the considered window, then yj converges rather
to 1 and if there are many very dark pixels yj converges rather to −1.

The second part of tanhamd applies to one of the 3 convolution maps the same
maxpooling as the cnn does. That is the maximum value wk of each second 6×6
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window vk of the considered convolution map is inserted into one of the 3 pooling
maps:

wk = max
i

(v
(i)
k ) . (5)

For the two other pooling maps instead the average value w′
k and the value w′′

k

of the distance between maximal and minimal value of each second 6×6 window
v′k and v′′k of the considered convolution maps are inserted into the appropriate
pooling maps:

w′
k =

∑36
i=1 v

′(i)
k

36
, w′′

k =
(
max

i
(v′′(i)k )−min

i
(v′′(i)k )

)
. (6)

The final output is a feature vector containing all values of the three pooling
maps.

4.2 amd2

amd2 (average, maximum and distance twice) is similar to tanhamd but it uses
instead of the hyperbolic tangent applied to the sum already in the convolution
part the average, maximum and distance functions:

y′j =

∑64
i=1 x

′(i)
j

64
, yj = max

i
(x

(i)
j ) , y′′j =

(
max

i
(x′′(i)

j )−min
i
(x′′(i)

j )
)

. (7)

That is y′j is put into the first of the 3 convolution maps (see label ’1’ in fig. 3),
yj is put into the second convolution map (label ’2’ in fig. 3) and y′′j is put into
the third convolution map (label ’3’ in fig. 3).

The second part of amd2 is the same as in the case of tanhamd and hence it
also uses formula (5) and (6). Similar to tanhamd, the final output of amd2 is a
feature vector containing all values of the three pooling maps.

4.3 maxiv

maxiv (maximum index and value) is different to tanhamd and amd2 as it does
not directly simulate the behavior of the cnn, but it is more oriented to the
data. The data we are considering in this work are phonemes. More explicitly,
as usual in phoneme recognition the input are matrices consisting of several
consecutive feature vectors with Mel Frequency Cepstral Coefficients (MFCC),
which are gained from the spectrograms of certain time segments of the speech
input. The input images for our approach contain these matrices but the values
are normalized. That means that the rows of the input images correspond to
values of certain frequencies and the columns correspond to MFCC vectors of
consecutive time segments. The characteristics of such data are that for different
instances there are different extreme frequencies at different positions. By means
of these extreme frequency values we try to distinguish the different phonemes
(see also fig. 4). maxiv uses this side information to apply a feature extraction by
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extracting from every input image for each row and each column the maximum
value (extreme frequency) and its position. As there could be more than one
pixel in a row with this maximum value, maxiv searches from left to right as
well as from right to left for the maximum in a row and stores besides the
maximum value the most left and the most right position of the maximum.
Correspondingly, it searches from top to bottom and from bottom to top in a
column for the maximum and stores besides the maximum value the topmost
position and the position closest to the bottom. Accordingly, a feature vector
extracted bymaxiv from an image with c columns and r rows consists of 3∗(c+r)
values, as there is one triple composed of the maximum value and two indexes
for each row and each column.

5 Experiments

In the preceding sections we described three different feature extractors for re-
alizing our aim to accelerate the HNNP approach by substituting the cnn by
a preceding feature extraction without weights to learn and a simpler neural
network, namely a fully connected multilayer perceptron. However, the question
arises how this approach influences the classification performance of HNNP, as
it leads to a trade-off between computation costs and classification performance.
Hence, we investigated two different aspects: (1) the different computation costs
for the training of HNNP with the cnn on the one hand and with the three
different preceding feature extractors tanhamd, amd2, maxiv plus a multilayer
perceptron on the other hand, and (2) the different classification performances
of HNNP in the different cases. Aspect (1) is discussed in section 5.2 and aspect
(2) in section 5.3. But first we will introduce the data used for the experiments
in the following section 5.1.

5.1 Data Set and Experimental Settings

For our experiments we applied HNNP with 10 automatically estimated sub-
classes to a real data set of phonemes, or of the MFCC vectors of speech signals
interpreted as images (of 19× 43 pixels, see fig. 4) by combining several chrono-
logically subsequent vectors respectively (see also [1]). The data are gained from
the TIMIT data set ([13]) by choosing 400 examples of each of two different
phonemes (’iy’,’n’). We applied the following experimental settings: the HNNP
approach uses k + 1 = 3 information sources and accordingly 3 neural net-
works in every plait layer (of p + 1 = 3 plait layers). Two of them are fully
connected multilayer perceptrons (nn1 and nn2) with input feature sets coming
from appropriate additional side information. More explicitly, nn1 is fed with 4
histograms of 16 gray values, each of which represents one quarter of the input
image. nn2 is fed with the number of pixels with a light gray value (a value
within the upper quarter of all gray values of the image) per area, where an area
is one of 105 areas of the image (partitioned by a 7× 15 grid). The third neural
network is either a cnn fed with the normalized pixel values of the images to
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classify, or a fully connected multilayer perceptron which is fed with the output
of one of the presented feature extractors tanhamd, amd2 and maxiv . The per-
formance of HNNP in the different settings is additionally compared to the three
baselines fcnn, majority ensemble and stacking ensemble. fcnn is a standalone
fully connected multilayer perceptron with input from tanhamd, amd2 or maxiv

outside of HNNP. Majority ensemble classifies according to the majority vote
of the three networks nn1, nn2 and cnn or fcnn. Stacking ensemble learns to
combine the classification decisions of nn1, nn2 and cnn or fcnn by using the
subsequent multilayer perceptron nn0. For every different setting we conducted
a 5-fold cross validation.

’iy’ ’n’

Fig. 4. Examples of the data set (phoneme ’iy’ left, ’n’ right)

5.2 Computation Costs

In neural networks the main effort is the training of the network, or learning the
weights respectively. During the training for every iteration for every training
instance every weight is updated. In our experiments we used for each network
the same number of iterations and the same number of training instances, hence
the only one of these numbers which differs is the number of weights to learn. For
this reason we consider for the comparison of the computation costs the numbers
of weights to learn within the considered neural networks. As the training within
one plait layer can be parallelized in the HNNP, the time complexity for the
training of the HNNP is proportional to the training time complexity of the one
neural network nnmax within the plait which has the highest time complexity
for training (see also [4]). In table 2 one can see that cnn corresponds to nnmax,
as it has the largest number of weights to learn. The numbers in table 2 are
gained by the following computations:

– nn1: nn1 is fully connected and has 4 · 16 neurons in its input layer, 64
neurons in a hidden layer and 10 neurons in the output layer as well as a
bias weight for every neuron, resulting in (64 ·64)+(64 ·10)+64+10 = 4, 810
weights to learn.

Table 2. Numbers of weights to learn for nn1, nn2, cnn and fcnn with tanhamd

(amd2) or maxiv. The last column reports the speedup factor of fcnn compared to
cnn.

nn1 nn2 cnn fcnn cnn
fcnn

tanhamd

amd2 4,810 12,190 44,190 20,310 2.18

maxiv 4,810 12,190 44,190 19,710 2.24
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– nn2: The only difference to nn1 is that the input is of size 105, resulting in
12, 190 weights to learn.

– cnn: In the convolution layer there are 6 maps of size 12×36 and each neuron
of them has weighted connections to a 8× 8 window of the input image, but
the weights are shared within the maps. Furthermore, every neuron possesses
an additional bias weight. The 100 neurons of the fully connected layer are
connected with a weight to every neuron in the maxpooling layer which
consists of 6 maps of size 4×16. Finally, each of the 10 output neurons has a
weighted connection to each of the 100 neurons in the fully connected layer.
The addition of all weights of every layer results in 44,190 weights to learn.

– fcnn with tanhamd or amd2: fcnn corresponds to the classification part
of the cnn, i.e. each of the 10 output neurons has a weighted connection
to each of the 100 neurons in the fully connected layer and each of the 100
neurons in the fully connected layer is connected with a weight to each of
the input neurons. The input comes from tanhamd or amd2, which deliver a
feature vector containing all 192 values of the 3 pooling maps of size 4× 16.
If one considers finally the bias weights, this results in (192 · 100) + (100 ·
10) + 100 + 10 = 20, 310 weights to learn.

– fcnn with maxiv: The only difference to fcnn with tanhamd is, that maxiv

delivers a feature vector with 3 · (19 + 43) = 186 values (3 values for each
column and row) resulting in 19, 710 weights to learn.

Table 2 and figure 5 show that for the fcnn with tanhamd, amd2 or maxiv there
are less then half of the number of weights of the cnn to learn, i.e. fcnn is more
than two times faster to train than the cnn.
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maxiv (fcnn2).
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Table 3. Results of the 5-fold cross validation for 400 examples of phonemes ’iy’ and
’n’ of the TIMIT data set: Classification test errors (%) for each proposed feature
extraction of the baselines fcnn, majority ensemble and stacking ensemble and the
HNNP (standard deviations in brackets) with 10 automatically estimated subclasses.

feature extraction fcnn majority stacking HNNP

tanhamd 31.50 25.00 22.25 18.25
(4.91) (3.03) (1.69) (0.81)

amd2 30.50 24.63 21.25 17.25
(2.18) (2.52) (4.53) (0.84)

maxiv 26.25 23.50 19.75 16.00
(1.98) (1.69) (2.44) (1.14)

5.3 Classification Performance

In the section before we investigated the computation costs, but we also have
to consider the classification performances of the accelerated HNNP versions. In
table 3 the results of the 5-fold cross validation of fcnn, the ensemble methods
and HNNP with fcnn are presented. As one can see, HNNP with fcnn with
tanhamd, amd2 or maxiv outperforms the single fcnn as well as the ensemble
methods. The best classification result delivers HNNP with fcnn with maxiv.
However, as mentioned it is a trade-off between computation costs and classi-
fication performance and – as expected – HNNP with fcnn with maxiv is not
able to outperform HNNP with cnn in terms of classification performance (cp.
tab. 1). But the classification performance improvement of HNNP with fcnn
with maxiv is still significant and it is more than two times faster than HNNP
with cnn (see sec. 5.2).

6 Conclusions

We proposed an approach for accelerating HNNP for phoneme recognition by
replacing the neural network within the HNNP with the highest computation
costs by a preceding local feature extraction and a simpler and faster network.
For this purpose we proposed three different appropriate feature extractors. We
investigated the computation costs and classification performance of HNNP with
the presented feature extractors and showed that these HNNP versions are more
than two times faster than HNNP with the more complex convolutional neural
network and deliver still a significant classification performance improvement.
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Abstract. To solve big data problems which occur in modern data min-
ing applications, a comprehensive approach is required that combines a
flexible model and an optimisation algorithm with fast convergence and
a potential for efficient parallelisation both in the number of data points
and the number of features.

In this paper we present an algorithm for fitting additive models based
on the basis expansion principle. The classical backfitting algorithm that
solves the underlying normal equations cannot be properly parallelised
due to inherent data dependencies and leads to a limited error reduction
under certain circumstances. Instead, we suggest a modified BiCGStab
method adapted to suit the special block structure of the problem. The
new method demonstrates superior convergence speed and promising
parallel scalability.

We discuss the convergence properties of the method and investigate
its convergence and scalability further using a set of benchmark problems.

Keywords: backfitting, additive models, parallelisation, regression.

1 Introduction

Approximation of high-dimensional functions from data is an important area of
machine learning research.With increasing interest in data mining and increasing
computational power more effort is spent on collecting and analysing data and,
hence, data mining applications continuously grow in size and dimensionality.

Some algorithms, e.g. sparse grids [1], show linear complexity with respect
to the amount of data points for storage and computation. This result is al-
ready optimal, as we cannot process data without looking at least once at every
data point, although the multiplicative complexity constants for different mod-
els and algorithm implementations could lead to significant differences in actual
runtime. Hence, further development is focused on minimising complexity con-
stants by improving implementation efficiency, by parallelising, or by developing
sub-sampling heuristics [2–4].

Dimensionality of the approximation problem poses a more difficult challenge.
In 1961 Richard Bellman coined the term “curse of dimensionality”, which refers
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to the observation that the costs for computation and storage of an approxima-
tion for a d-dimensional function and a pre-defined accuracy ε have the complex-
ity O

(
ε−d/r

)
[5]. The constant r depends on the properties of the problem, e.g.

smoothness, separability, etc., as well as on the kind of approximation method
and its implementation.

The exponential dependency of the cost on the dimensionality is inherent in
the nature of the problem. Research in information-based complexity suggests
that the curse of dimensionality can be avoided only if a problem possesses a
special structure that algorithms exploit, e.g. sufficiently fast converging ANOVA
decomposition [6–10].

To solve big data problems which occur in modern data mining applications,
a comprehensive approach is required that combines a flexible model and an
optimisation algorithm with fast convergence and a potential for efficient par-
allelisation both in data size and dimensionality. In this paper we discuss such
a comprehensive approach based on additive models and a parallel BiCGStab
algorithm for optimisation.

Additive models are well established in statistics and thoroughly studied in
the literature [11, 12]. The concept with somewhat different model requirements,
is popular in the machine learning community. For example, recent developments
apply new optimisation methods [13] and a parallelisation paradigm [14].

Moreover, estimation of additive models is an integral part of generalised
additive models – a more powerful but also more computationally demanding
representation concept [11].

We begin with a revision of the original formulation of additive model es-
timation proposed by Buja, Hastie, and Tibshirani [12] and show how beside
smoothing problems (Section 2), many current regression methods can be cast
into this form (Section 3). In Section 4 we then suggest a Krylov-space method
for solution of normal equations and show how the problem structure can be
exploited for efficiency and parallelisation. We illustrate convergence and scal-
ability of the new method using benchmark problems in Section 5. Finally, we
conclude with a discussion of the results and provide an overview of future work
in Section 6.

2 Theoretical Background

We consider a dataset of the form (t(1), y(1)), . . . , (t(N), y(N)) with input variables
t(i) and target variables y(i) and make a basic assumption about the existence
of an underlying function f(t) that generates the data and some additive model
error and measurement noise summarised in the term ε(t). Then the input-target
relationship can be represented as

y = f(t) + ε(t).
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Different methods to find an approximation of f in a functional space V often
lead to a penalised least squares problem

min
f∈V

1
N

N∑

i=1

(f(t(i))− y(i))2 + λ‖Df‖22 (1)

with a positive regularisation parameter λ and some smoothness operator D.
As mentioned above, (1) suffers from the curse of dimensionality so that only

the problems with moderate dimensionality can be handled. Approaches that do
not face the curse, e.g. additive models or ANOVA [15], are based on decompo-
sition of the space V into a sum of simpler function spaces

V = V1 + . . .+ Vn. (2)

For example, in the context of ANOVA the decomposition of a function f
with a d-dimensional input has the form

f(t) = f0 +
d∑

j=1

fj(tj) +
∑

1≤i<j≤d

fi,j(ti, tj) +
∑

1≤i<j<k≤d

fi,j,k(ti, tj , tk) + . . . ,

where tj stands for the j-th component of the data point t.
For tractability we drop the higher-order interaction terms. This corresponds

to an assumption that the structure of the problem admits reasonably accurate
representation which utilises only low-order interaction terms. In the following
we consider only the 1-dimensional terms fj. However, the extension to first-
order interaction terms fi,j is straightforward.

While it is not assumed that the Vj are linearly independent, we assume
that the penalty term is consistent with the decomposition of V , such that
fj, j = 0, . . . , d, solve the optimisation problem

min
f0∈R,f1∈V1,...,fd∈Vd

1
N

N∑

i=1

⎛

⎝f0 +

d∑

j=1

fj(t
(i)
j )− y(i)

⎞

⎠

2

+

d∑

j=1

λj‖Djfj‖22. (3)

As discussed in the next section, many models for representation of fj can
be cast in terms of linear algebra. Denote x as the vector of components of f(t)
with respect to some generating system, e.g. coefficients of a polynomial model.
Furthermore, let Ax be a vector of function values f(t(i)) and y the vector of
data values y(i). Taking into account the residual r we obtain

[A1 . . .Ad]
︸ ︷︷ ︸

A

⎡

⎢
⎣

x1

...
xd

⎤

⎥
⎦

︸ ︷︷ ︸
x

= y − r (4)

with xj ∈ R
mj , Aj ∈ R

N×mj , y, r ∈ R
N , x ∈ R

m,A ∈ R
N×m, and m :=

m1 + . . .+md. The problem (3) can now be written as

min
x

‖Ax− y‖22 + λxTDx (5)



246 V. Khakhutskyy and M. Hegland

with D a block diagonal matrix, which can be partitioned such that its block
structure is compatible with that of x. Often D will just be an identity matrix.

In order to minimise (5) one needs to solve the normal equations

(ATA+ λD)x = ATy (6)

If we substitute (4) into (6) we obtain an m×m system
⎡

⎢
⎢
⎢
⎣

AT
1 A1 + λD1 AT

1 A2 · · · AT
1 Ad

AT
2 A1 AT

2 A2 + λD2 · · · AT
2 Ad

...
...

. . .
...

AT
dA1 AT

d A2 · · · AT
dAd + λDd

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

x1

x2

...
xd

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

AT
1 y

AT
2 y
...

AT
d y

⎤

⎥
⎥
⎥
⎦
. (7)

We are particularly interested in problems where (7) is used to determine the

predicted values f̂ = Ax = y − r, which in view of (4) can be written as

f̂ := f1 + . . .+ fd, with fi = Aixi, i = 1, . . . , d. (8)

If we multiply every row block i of (7) by Ai(A
T
i Ai + λDi)

−1 from the left
and introduce

Si := Ai(A
T
i Ai + λDi)

−1AT
i (i = 1, . . . , d), (9)

we obtain equations of the form
⎡

⎢
⎢
⎢
⎢
⎢
⎣

I S1 S1 . . . S1

S2 I S2 . . . S2

S3 S3 I . . . S3

...
...

. . .
...

Sd Sd Sd . . . I

⎤

⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
S

⎡

⎢
⎢
⎢
⎢
⎢
⎣

f1
f2
f3
...
fd

⎤

⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
f

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

S1y
S2y
S3y
...

Sdy

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (10)

Following the tradition from statistics we call matrices Si smoothing matrices.
The normal equation (10) is the one we are interested in solving. In Section 5
we discuss why we prefer it over (7).

3 Regression Models

Problem (7) arises naturally in a number of regression models which utilise the
basis expansion [16]

fj(tj) =

mj∑

l=1

βlφl(tj) (11)

with functions φl being a basis of a function space Vj and βl being model pa-
rameters.

The matrix Aj has the components

{Aj}kl = φl(t
(k)
j ), k = 1, . . . , N, l = 1, . . . ,mj .
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We illustrate this on the example of regression splines. The derivation for
other basis expansion models, e.g. linear and polynomial regression or sparse
grids, is analogous.

Regression splines form piecewise-polynomials of order M (for cubic splines
M = 4) with knots ξj , j = 1, . . . ,K. The general form for the truncated-power
basis set would be [16]

φj(t) = tj−1, j = 1, . . . ,M,

φM+l(t) = max{0, (X − ξl)
M−1}, l = 1, . . . ,K.

The cubic spline regression solves the problem (5) with D having the compo-
nents {D}kl =

∫
φ

′′
k (t)φ

′′
l (t)dt.

Buja et al. have shown the existence of at least one solution for the normal
equations (10) for symmetric smoothers with eigenvalues in [0,1] and so this
result also applies for other additive models that fit the requirements [12]. Fur-
thermore, the Gauss-Seidel and related procedures would always converge to
some solution of (10).

It can be shown that for any Hermitian positive definite matrix Dj and Aj

resulting from our basis expansion the corresponding smoothing matrix Sj has
its spectrum in [0, 1) as well and hence all convergence results apply.

Problem (10) arises naturally from the models based on reproducing kernel
Hilbert spaces, such as Nadaraya-Watson kernel regression.

Nadaraya-Watson kernel regression is another popular non-parametric regres-
sion method from statistics. The estimator function describes the conditional
expectation of the target variable relative to the input variable:

f(t) =

∑N
i=1 φh(t− t(i))y(i)
∑N

i=1 φh(t− t(i))
, (12)

where φ is a kernel function with a bandwidth h.
The smoothing matrix in this case can be expressed explicitly as

{Sj}kl =
φh(t

(k)
j − t

(l)
j )

∑N
i=1 φh(t

(k)
j − t

(i)
j )

, k = 1, . . . , N, l = 1, . . . , N (13)

Convergence theory for this type of models is currently an area of active
research [17].

4 Fitting Methods

As mentioned in the previous section, the convergence of many algorithms for
solving (10) depends on properties of the spectrum of Sj . However, while the
convergence can be established, the convergence rate of the algorithms would
depend on the magnitude and distribution of the system matrix eigenvalues.

A popular method to solve (10) is the Backfitting Algorithm 1. The main
principle of the algorithm is a blocked Gauss-Seidel method.

Buja et al. show that the convergence rate of the backfitting algorithm heavily
depends on the magnitude of the eigenvalues that are significantly smaller than
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Algorithm 1 Backfitting Algorithm

Input: S1, . . . ,Sd smoothing matrices, y target vector
Output: fT := (fT1 , . . . , fTd )T predictions of the additive models
while not converged do

for j = 1 to d do

fj = Sj

(
y −∑

k �=j fk
)

end for
end while

1. This means that the error terms corresponding to the eigenvectors with eigen-
values near 1 (e.g. constant, linear and low-frequency) would not be eliminated
at all by the algorithm.

Figure 1 illustrates a typical distribution of the eigenvalues of the matrix S.
The matrix has a single large eigenvalue that is equal to the d, followed by a
cluster of eigenvalues in the range [0, 1.37).

At this point we suggest to use a BiCGStab-based Krylov method [18] instead
of Gauss-Seidel iteration for solving Equation (10) to improve the convergence.
Not only is it better suited for system matrices with clustered eigenvalues, it also
eliminates the error components that are problematic for backfitting and have
to be handled separately, e.g. using modified backfitting [12].

Algorithm 2 shows the original formulation of the BiCGStab algorithm with-
out preconditioning. It is not well suited for parallelisation as it requires syn-
chronisation in lines 9, 10, 13, and 14.

Algorithm 2 BiCGStab Algorithm

1. Input: S,S1, . . . ,Sd smoothing matrices, y target vector
2. Output: f predictions of the additive models
3. rT = (r0)T = (S1y,S2y, . . . ,Sdy)
4. f = t = v = s = 0
5. α = ω = 1 ; ρold = ρnew = β = rT r
6. while not converged do
7. β = ρnew/ρold · α/ω ; ρold = ρnew

8. p = β(p− ωv) + r
9. v = Sp {synchronisation}

10. α = ρold/vT r0 {synchronisation}
11. s = r− αv
12. check convergence
13. t = Ss {synchronisation}
14. ω = tT s

tT t
; ρnew = −ωtT r0 {synchronisation}

15. r = s− ωt
16. f = f + ωs+ αp
17. check convergence
18. end while



Parallel Fitting of Additive Models for Regression 249

To reduce the communication we postpone the calculation of the scalar prod-
ucts until the aggregation of the results of matrix-vector multiplications is nec-
essary. We can do this because the system matrix has a very specific structure
and its application on a vector requires only minimal communication:

vj = pj + Sj(
∑

i�=j

pj) = pj + Sj(

d∑

i=1

pi − pj),

tj = sj + Sj(
∑

i�=j

sj) = sj + Sj(

d∑

i=1

si − sj)

with vj ,pj , tj , sj denoting the subvectors, similar to xj .
Furthermore, to reduce communication we found it more convenient to aggre-

gate the sum of vectors ti and vi instead of pi and si
Algorithm 3 presents the final algorithm. Vectors with the subscript “Σ”, e.g.

tΣ , represent the results of the sum of individual vectors, e.g.
∑

i ti. The scalar
products in the second argument of the Allreduce functions in lines 10 and 20
stand for variables containing the corresponding scalar products. In these calls
a vector and scalar products are joined into a single memory segment to reduce
communication.

We illustrate the scalability of the algorithm in the next section.

5 Results

To motivate the use of the smoothing matrix formulation and normal equations
of the form (10) instead of (7), we begin by illustrating the convergence speed
of the same problem in these two formulations.

A synthetic dataset used for this experiment was generated from a linear
model with random coefficients. This dataset has 100-dimensions whereas only
10 dimensions are informative. The targets were obfuscated by additive noise
term with N (0, 0.01):

y = β0 + β1t1 + . . .+ β10t10 + 0t11 + . . .+ 0t100 + ε,

β0, β1, . . . , β10 ∼ U(0, 100), ε ∼ N (0, 0.01). (14)

Altogether 1000 points were used to generate the results. To model the function
we used regression cubic splines described in Section 3 with 10 basis functions
per dimension and regression parameter λ = 10−7.

Figure 2 illustrates the norm of the residual and the prediction error. We
normalise the measurements by the norm of the residual/error at iteration 0, so
that at the beginning the residual/error norm is always 1. Equation (7) is solved
using MINRES method [19], while Equation (10) is solved once using backfitting
and once using BiCGStab method.

One can easily see the superiority of the problem formulation (10) both by
using the classical backfitting algorithm and by the BiCGStab method. While
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Fig. 1. Distribution of the 50 largest eigenvalues of the matrix S from a 4-dimensional
Friedman 2 dataset with cubic spline regressors

Algorithm 3 Parallel BiCGStab Algorithm: code for processor j, 0 ≤ j ≤ n− 1

1. Input: Sj smoothing matrix, y target vector
2. Output: fj predictions of the function fj(x) at the data points
3. r0j = Sjy; rj = r0j
4. Allreduce([rj , r

T
j rj ], [rΣ , ρnew], SUM)

5. α = ω = 1; ρold = β = ρnew

6. fj = tj = vj = vΣ = pj = pΣ = sj = sΣ = 0
7. while not converged do
8. if iteration > 0 then
9. ρold = ρnew

10. Allreduce([sTj r
0
j , t

T
j sj , t

T
j tj , t

T
j r

0
j , tj ], [s

T r0, tT s, tT t, tT r0, tΣ ], SUM)

11. ω = tT s
tT t

; ρnew = sT r0 − ωtT r0;β = ρnew

ρold
· α
ω

12. ρold = ρnew

13. rj = sj − ωtj ; rΣ = sΣ − ωtΣ
14. fj = fj + ωsj
15. check convergence on r
16. end if
17. pj = β(pj − ωvj) + rj
18. pΣ = β(pΣ − ωvΣ) + rΣ
19. vj = pj + Sj(pΣ − pj)
20. Allreduce

(
[vT

j r
0
j ,vj ], [v

T r0,vΣ ], SUM
)

21. α = ρold/vT r0

22. sj = rj − αvj ; sΣ = rΣ − αvΣ

23. fj = fj + αpj

24. check convergence on s
25. tj = sj + Sj(sΣ − sj)
26. end while
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the residual in the formulation (7) decreases, it does not seem to significantly
reduce the error of the resulting additive model which is our main goal.
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Fig. 2. Comparison of problem formulations (7) solved with MINRES and (10) solved
with backfitting and BiCGStab for minimisation of residual and error of a synthetic
100-dimensional dataset from model (14)

Figure 2 also gives an impression of the convergence comparison between
backfitting and BiCGStab. Backfitting shows more stable, but slower conver-
gence even on this simple example.

We extend the numerical comparison by a number of benchmark datasets (see
Table 1 for description). Tables 2 and 3 compare the final normalised residual
and error for a number of problems. As our main focus is the solution of Equation
(10) we do not discuss the selection of optimal learning parameters and confine
to setting the same parameters for the backfitting and BiCGStab.

Table 1. Summary description of the benchmark datasets

Dataset Samples Dimensions Source

Boston Housing 506 13 [20]

DR 5 10000 6 [21]

Diabetes 442 10 [22]

Spam 3064 16 [16]

Friedman 1 2000 10 [23]

Friedman 2 1000 4 [23]

Friedman 3 1000 4 [23]

The BiCGStab method is at least as good and in many cases clearly superior
to the backfitting algorithm. We also observed that, depending on the problem,
backfitting would catch up with more iterations allowed or stagnate with a higher
error.
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Table 2. Results for cubic spline regression

Dataset mj λ Iter. BiCGStab res. BiCGStab error BF res. BF err.

Boston Housing 20 1E-4 6 1.87E-2 3.08E-1 3.48E-2 3.17E-1

DR 5 50 1E-6 11 1.77E-2 4.60E-1 4.74E-2 5.40E-1

Diabetes 25 1E-10 5 7.75E-2 5.46E-1 1.20E-1 5.85E-1

Spam 100 1E-10 6 2.09E-2 4.26E-1 3.27E-2 4.31E-1

Friedman 1 12 1E-7 3 3.44E-4 3.25E-1 1.04E-3 3.25E-1

Friedman 2 8 1E-7 2 9.49E-4 4.76E-1 7.17E-3 4.76E-1

Friedman 3 8 1E-7 2 6.48E-4 4.49E-1 6.98E-3 4.49E-1

Table 3. Results for Nadaraya-Watson regressor with Gaussian kernel

Dataset Kernel Width Iter. BiCGStab res. BiCGStab err. BF. res. BF. err.

Boston Housing 10 6 9.33E-3 2.81E-1 3.03E-2 2.88E-1

DR 5 10 12 1.61E-2 4.21E-1 4.27E-2 4.96E-1

Diabetes 10 4 1.00E-2 5.45E-1 5.53E-2 5.48E-1

Spam 10 5 1.43E-2 3.91E-1 4.00E-2 3.97E-1

Friedman 1 10 5 5.95E-3 2.53E-1 6.90E-3 2.53E-1

Friedman 2 10 3 2.27E-3 4.40E-1 7.67E-3 4.40E-1

Friedman 3 10 3 2.21E-3 4.23E-1 7.39E-3 4.28E-1

To study the scalability of the Algorithm 3 we implemented it in C++ using
MPI Allreduce function for data aggregation. Every processor j is responsible for
one Sj smoothing matrix so that increasing number of processors corresponds
to fitting an additive model approximation problem with more dimensions or
interaction terms. We focus on the study of weak scaling of the Algorithm 3
since our primary goal is parallelisation as a mean to solve higher-dimensional
problems.

In our experiment every processor j generates a random full-rank symmetric
positive definite matrix of a given size with spectrum in [0, 1] to use as the matrix
Sj . As, obviously, the number of synchronisation steps would usually increase
if we solve a higher-dimensional problem, we limit the runs to 50 iterations in
every case. Figure 3 illustrates the weak scaling results. The total time slightly
increases as the communication time grows logarithmically with the number of
processors. This growth however is marginal.

It is straightforward to parallelise matrix-vector and scalar products on a
shared memory (MKL, OpenBLAS) and distributed memory (PBLAS) archi-
tectures for solving problems with more data. This would allow one to study
strong scaling properties and is a topic for future work.
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Fig. 3. Weak scaling results for Algorithm 3. Time measurements were performed after
50 iterations with individual matrices Sj of sizes 1000× 1000 and 2000× 2000. Median
of 7 trials was used in the diagram, while bars indicate the standard deviation.

6 Conclusion

We presented a new approach for fitting additive models using BiCGStab algo-
rithm that, besides smoothing, can be used for larger regression problems. This
approach overcomes the shortcomings of the classical backfitting algorithm.

While the convergence of the BiCGStab method cannot be proved theoreti-
cally, it usually works well in practice. It converges fast and can be efficiently
parallelised for distributed computer architectures.

Our future work will include parallelisation of the data-intensive operations
as well as development of preconditioning methods to stabilise and accelerate
the convergence.
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Abstract. Real-parameter blackbox optimization using evolution strategies (ES)
is often applied when the fitness function or its characteristics are not explic-
itly given. The evaluation of fitness and feasibility might be expensive. In the
past, different surrogate model approaches have been proposed to address this
issue. In our previous work, local feasibility surrogate models have been pro-
posed, which are trained with already evaluated individuals. This tightly cou-
pled interdependency with the optimization process leads to complex side effects
when applied with meta-heuristics like the covariance matrix adaption ES (CMA-
ES). The objective of this paper is to propose a new type of constraint surrogate
model, which uses the concept of active learning in multiple stages for the estima-
tion of the constraint boundary for a stage-depending accuracy. The underlying
linear model of the constraint boundary is estimated in every stage with binary
search. In the optimization process the pre-selection scheme is employed to save
constraint function calls. The surrogate model is evaluated on a simple adaptive
(1 + 1)-ES as well as on the complex (1 + 1)-CMA-ES for constrained optimiza-
tion. The results of both ES on a linearly-constrained test bed look promising.

1 Introduction

Real-parameter black box optimization includes problems, in which neither the fitness
nor the constraint function and their mathematical characteristics are explicitly given.
Due to the nature of meta-heuristic search in the space of possible solutions, a relatively
large amount of fitness function calls (FFC) and constraint function calls (CFC) is re-
quired. Both types of evaluations are expensive in terms of computation power. Hence,
it is desirable to reduce the amount of FFC and CFC without hindering the convergence
of the optimization process. In the past, various surrogate models (SM) have been pro-
posed to solve this issue for fitness and constraint evaluations. The latter is by now
relatively unexplored, nevertheless for practical applications worth to investigate.

The objective of this paper is to propose a new kind of constraint surrogate model,
which uses the concept of active learning in multiple stages for the estimation of the
constraint boundary for a stage-depending accuracy. The linear model is estimated in
every stage with binary search and total least squares regression. An important aspect
of this approach is the loosely-coupled interdependency with the ES, which allows the
training of the SM nearly independent from the optimization process, s.t. the optimizer

C. Lutz and M. Thielscher (Eds.): KI 2014, LNCS 8736, pp. 255–266, 2014.
c© Springer International Publishing Switzerland 2014
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can almost be considered as black box. The feasibility and performance of this approach
is evaluated with a simple (1 + 1)-ES and the complex (1 + 1)-CMA-ES for constrained
optimization, see [2]. While the simplicity of the first allows an easy integration of a
tightly-coupled SM as in [11], the covariance matrix adaptation of the latter clearly re-
quires a loosely-coupled SM. The approach is employed in each case with a pessimistic
and an optimistic variant. The problem test bed includes sphere functions with linear
constraint boundaries.

The remainder of this paper is organized as follows. In Section 2 an overview of re-
lated work is given, the constrained real-parameter optimization problem is defined and
ES are briefly introduced. In Section 3 the SM management algorithm with multiple-
stages and the SM training algorithm with binary search and total least squares regression
are described. In Section 4 an experimental evaluation of the integrated SM is conducted
and the results are interpreted. Last, in Section 5 the results of this paper are discussed.

2 Optimization with Evolution Strategies

A constrained continuous optimization problem is defined as follows: In the n-dimen-
sional search space X ⊆R

n the task is to find the global optimum x∗ ∈X , which min-
imizes the fitness function f (x) with subject to inequalities gi(x)≥ 0, i = 1, . . . ,n1 and
equalities h j(x) = 0, j = 1, . . . ,n2. The function f : Rn → R is referred to as the objec-
tive function. The functions gi : Rn →R are the constraint functions. The constraints gi

and hi divide the search space X into a feasible subspace F and an infeasible subspace
I . Whenever the search space is restricted due to additional constraints, a constraint
handling methodology is required. In [3], different approaches are discussed. In the last
decade, various approaches for fitness and constraint SMs have been proposed to de-
crease the amount of FFC and CFC. An overview of the recent developments is given
in [8] and [13]. As stated in [8], the computationally most efficient way for estimating
fitness is the use of machine learning models.

The first ES used for experiments and integration of the SM is a simple (1 + 1)-ES.
The (1 + 1)-ES uses uncorrelated Gaussian mutation, see Figure 1(a) and plus selection.
For the adjustment of the mutation step-size Rechenberg’s original 1/5-th success rule
is employed, which was first proposed in [12]. The global step-size σ is adjusted ac-
cording to the probability of generating offspring with a better fitness. If the probability
is greater than 1/5, the step-size is increased. Increasing the step-size allows the ES to
approximate the optimum faster. If it is exactly 1/5, the step-size is left untouched. If
the probability is lower than 1/5, the step-size is decreased to allow convergence. An
offspring is generated by the following equation:

c ← xb +σ ·X s.t. X ∼ N (0,1), (1)

where c is the offspring candidate, xb is the currently best individual, σ is the global
mutation step-size and X is a random variable distributed according to the normal dis-
tribution N with a mean of 0 and a standard deviation of 1.

The (1 + 1)-CMA-ES for constrained optimization used in this paper is introduced
in [2]. The idea of this algorithm is to introduce exponentially fading constraint vec-
tors which estimate linear constraint boundaries when generating infeasible candidates,
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Fig. 1. (a) Two scenerarios are illustrated: The uncorrelated mutation ellipsoid of a (1 + 1)-ES
with a global σ (b) and the correlated mutation ellipsoid of a (1 + 1)-CMA-ES. Right: The two
steps of the SM training: First, estimation of the closest mean points to the constraint bound-
ary with binary search. Second, total least squares for an estimation of the constraint boundary
hyperplane

and use these records to reduce the variance of the distribution of offspring in the di-
rection of normal of the linear constraint boundary, see Figure 1(b). The approach is
based on the (1 + 1)-CMA-ES proposed by [7], which includes an efficient covariance
matrix adaption via Cholesky decomposition and an improved implementation of the
1/5-th success rule for step-size adaption1. In [15], an analogous efficient matrix update
is shown. Additionally, the active covariance matrix improvements of [1] are incorpo-
rated, which in addition to successful steps uses also unsuccessful steps to update the
distribution of offspring candidate solutions. An offspring solution is generated by the
following equation:

c ← xb +σ ·A ·X s.t. X ∼ N (0,1), (2)

where c is the offspring candidate, xb is the currently best individual, σ is the global
mutation step-size, A is a Cholesky factor of the covariance matrix C and X is a random
variable with standard normally distributed components. If an infeasible offspring is
generated the corresponding constraint vector is updated according to:

v j ← (1− cc) ·v+ cc · c, (3)

where v j ∈ R
n is the fading record, cc ∈ (0,1) is a fading factor and c ∈ X is the

infeasible solution. The fading factor determines how fast the past information in the
vector fades. The fading factor is heuristically determined by parameter tuning on a
test bed of multiple problems, see [2]. The constraint vectors v j are used to reduce
the variance of the distribution of offspring candidate solutions in the direction of the
(estimated) normal of the linear constraint boundary. The update is executed in those
generations where the offspring candidate solution is infeasible. The Cholesky factor A
of the covariance matrix C is adjusted according to:

A ← A− β
∑m

j=1�g j(y)>0

v j ·wT
j

wT
j ·w j

, (4)

1 This replaces the commonly used cumulation path length control, which was used in the orig-
inal CMA-ES approaches.
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Fig. 2. The accuracy of the binary classification depending on the standard deviation and the
budget of CFC invested

where w j =A−1 ·v j and �g j(c)>0 equals one if the j-th constraint is active and otherwise
zero. The parameter β adjusts the impact of the update and is heuristically determined
by parameter tuning on a test bed of multiple problems. In the remainder of this paper
the (1 + 1)-CMA-ES for constrained optimization, proposed in [2], is referred to as
(1 + 1)-CMA-ES. In the following section, the SM management, training and the inte-
gration of the SM in the ES are described.

3 Algorithm

In the following, important considerations are outlined, which motivate the desired
properties of the proposed SM. Further, the underlying heuristics are described. Last, it
is shown how the loosely-coupled SM is trained and integrated into the ES.

3.1 Considerations

In our previous studies, it has been shown that the SM management is a crucial choice.
This includes design choices like which information is used to train the SM, when to
update the SM or when to make use of the SM. In our previous work [11], a tightly-
coupled SM is employed, which only uses already evaluated solutions to train the SM.
The results of this pre-selection strategy are quite satisfying for self-adaptive ES. How-
ever, in the case of the CMA-ES a tightly-coupled SM is inappropriate: On the one
hand, the CMA-ES uses the covariance matrix adaption to adapt the offspring distribu-
tion towards better fitness while simultaneously avoiding infeasible solutions. On the
other hand, the offspring is used to estimate the constraint boundary. The latter goal
ideally requires feasible as well as infeasible solutions with the highest information
gain. Nevertheless, due to the former goal mostly feasible solutions are evaluated. A
solution for this dilemma is a separation of the SM and the ES. These loosely-coupled
SM only use the latest feasible and infeasible solutions with the highest information
gain as a starting position. Independently, the SM estimates the constraint boundary by
generating new offspring candidates and evaluating their feasibility.
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From a machine learning perspective the estimation of the constraint boundary (hy-
perplane) can be seen as an active learning scenario, where a huge amount of unlabeled
patterns is given and where labeled instances can be obtained via CFC. This scenario
implies an advantage over typical supervised machine learning scenarios. Instead of
learning a data set which minimizes the empirical risk, the SM can estimate the linear
constraint boundary by querying the feasibility of the solutions with the highest infor-
mation gain. In [9] a pre-sampling strategy is employed which uses the closest feasible
and infeasible solutions, obtained by binary search, to estimate the linear constraint
boundary. Similarly, in [4], a support vector machine with a radial basis function (RBF)
kernel function is used to iteratively sample points and train points which lie close to
the hard margin hyperplane. Using an RBF kernel function allows the estimation of
non-linear constraint boundaries.

Even though the approaches in [4,9] are loosely-coupled, a pre-sampling strategy is
employed, which only allows an estimation of the constraint boundary at the beginning
for a fixed CFC budget. The downside of these approaches is clear: If the ES converges
to solutions with an accuracy which is not reached by the pre-sampling SM, the SM
is uncertain if the solutions are feasible or not. Based on the SM management, the
SM is not used in the future if it reaches this lower bound accuracy, or false positive
classifications2 misleadingly allow infeasible solutions to be the optimum.

3.2 Learning

The proposed SM of this paper uses binary search and total least squares regression
to estimate the constraint boundary hyperplane. The following descriptions require a
basic understanding how the constraint boundary is estimated. For the sake of a better
understanding, Figure 1(a) illustrates the estimation. For an estimation of the constraint
boundary in an n-dimensional search space, one feasible and n infeasible points (or
vice versa) are required. For each pair of the feasible and one infeasible solution a bi-
nary search on the line between the two points is employed. In an uncertainty sampling
manner, the binary search calculates the mean of the feasible and infeasible solution and
evaluates it. If it is feasible, the closest feasible solution record is updated to the cal-
culated mean. Otherwise, the closest infeasible solution record is updated to the mean.
After the CFC budget is exhausted, for each pair of closest feasible and infeasible so-
lution, the mean points are calculated. The mean points are points on the estimated
constraint boundary hyperplane. The centroid c of the mean points can be used as a po-
sition vector of the hyperplane. The normal of the hyperplane is calculated by the total
least squares regression method given the means and the centroid. For an introduction
into total least squares regression, we refer to [5]. The resulting estimated hyperplane
is used to classify the feasibility of a solution by the decision function d(x):

d(x) = (x− c) ·n, (5)

where x ∈ X is the test solution, c ∈ X is the centroid of the estimated hyperplane
and n ∈ X is the estimated normal of the hyperplane, where n points to the direction
of the feasible subspace F . A solution x is predicted as feasible if d > 0 and infeasible
otherwise.

2 This is the case, when true infeasibles are by mistake classified as feasible solutions.
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3.3 Budget Heuristic

The proposed new kind of constraint surrogate model uses binary search and total least
squares regression for an estimation of the linear constraint in multiple stages. A stage is
defined as an interval of generations between two accuracies. Similar to the approaches
in [9,4], a fixed budget of CFC needs to be specified. In the following, an experimentally
determined heuristic for CFC budget per accuracy is proposed.

The heuristic is based on the assumption that binary search and total least squares
regression are employed to estimate the linear constraint boundary, see Section 3.2. In
an experiment, the constraint boundary is placed at the origin of the search space. At
the beginning, the search space is sampled normally distributed given a mean of zero
and a standard deviation of 10σc to find one feasible and n infeasible solutions, where
n is the dimension of the search space X . In the experiment, given a fixed current
accuracy exponent σc =−1, the accuracy of this hyperplane is measured depending on
the CFC budget and the goal accuracy exponent σg of the test solutions. The result of
this experiment is shown in Figure 2. Two important observations are the basis of the
proposed heuristic. First, even if σg ≥ σc, a budget smaller than 15 results in inaccurate
classification. This implies that a budget of roughly 15 CFC is needed to predict in
the same or lower accuracy. The second key observation is, that the budget required to
reach a good classification for a given σg increases linearly between σc = −1 and σg

on a log10-scale. These observations are invariant to the choice of σc. The SM should
save as much CFC as possible, but still spend enough CFC for a proper classification
with a goal accuracy. Hence, given the resulting visualization in Figure 2, the optimal
parameter choice, given a fixed σc = −1 and variable σg and budget, lies on the left
margin of the red area. A linear function, which maps CFC budget to σg is given by:

σg =−
(

σ2 −σ1

b2 − b1

)

·b+σc. (6)

with parameters b,b1, and b2. As already stated, the optimal parameter choice lies in
the left margin of the red area. Hence, the gradient of the linear function is chosen s.t.
an overlapping with the red area while saving as most CFC as possible. An appropriate
heuristically determined gradient is −(1/10). The linear function is equivalent to the
linear function expressing the amount of CFC budget needed from σc to σg:

b(σc,σg) = (σg −σc) ·−
(b2 − b1)

σ2 −σ1
=−(σg −σc) ·

10
1

. (7)

In the following, the factor resulting from the heuristically determined gradient is re-
ferred to as budget factor b f ≈ 10. In the next step, the first observation of the exper-
iment has to be incorporated into the CFC budget function B. As already mentioned,
a constant CFC budget of roughly 15 has to be spent on estimation to assert a proper
classification of solutions of a current accuracy exponent σc or higher. Therefore, the
heuristically determined constant b0 ≈ 15 is added to the linear CFC budget function b:

B(σc,σg) =−(σg −σc) ·b f + b0 =−(σg −σc) ·10+ 15. (8)

The overall CFC budget function B(σc,σg) is employed when the SM has to estimate
the constraint boundary for the next stage.
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Algorithm 1.1. (1 + 1)-ES with Pessimistic SM
1 σc,σg ← log10(σ), log10(σ)−σstep;
2 while |F |< 1 and |I |< n do
3 c ← xs +σ ·N (0,1);
4 if feasible (c) then F.append(c);
5 xb ← c;
6 ;
7 else I .append(c);
8 ;
9 end

10 mm.train (F ,I ,σc,σg);
11 σlb = log10(σ)−σstep;
12 while | f (xb)− f (x∗)|< ε do
13 c ← xs +σ ·N (0,1);
14 if mm.feasible (c) then
15 if feasible (c) then
16 if fitness (c) < fitness (x) then
17 xb ← c;
18 F.append(xb);
19 end
20 else
21 I .append(c);
22 end
23 end
24 adjust sigma ();
25 σc,σg ← log10(σ), log10(σ)−σstep;
26 if σc < σlb then
27 mm.train (F ,I ,σc,σg);
28 σlb ← log10(σ)−σstep;
29 end
30 end

3.4 General Integration

In the previous sections, considerations have been outlined which were taken into ac-
count for the design of the SM and the estimation of the constraint boundary and the
proposed CFC budget heuristic has been explained. In the following, the multi-stage
approach and its integration with ES are clarified. As already stated, the main idea of
the multi-stage SM is to estimate the constraint boundary in multiple stages for a stage-
depending accuracy. The approach makes use of the additional variables: the current
accuracy exponent σc ∈ N, the goal accuracy exponent σg ∈ N and the lower bound
accuracy exponent σlb ∈ N. Additionally, the σ -step parameter is introduced, where
σstep ∈ R and σstep > 0. The parameter σ -step defines the interval length for which
the SM for a certain stage should be able to properly predict the feasibility. The SM is
explained along the simple (1 + 1)-ES in Algorithm 1. In the algorithm a pessimistic
SM is employed, which uses the SM as a pre-selection for feasible solutions, but still
verifies the feasibility with the actual constraint function. Parameter ε specifies a fitness
threshold for the termination condition. The abbreviation mm denotes meta-model.

First, the current accuracy exponent σc and the goal accuracy exponent σg are as-
signed. Before the optimization, an initial SM is trained, given a feasible and n infea-
sible sampled solutions. The estimation of the constraint hyperplane via binary search
and total least squares regression is explained in Section 3.2. The CFC budget is de-
termined by the CFC budget heuristic proposed in Section 3.3. After training, the
lower bound accuracy exponent σlb is updated to the goal accuracy exponent σg. The
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(a) (b)

Fig. 3. (a) The cumulated amount of CFC depending on the generations with a (1 + 1)-ES: without
SM (dashed blue and nearly linear), with a pessimistic SM (colored solid) and with an optimistic
SM (dashed colored step functions). (b) The total amount of CFC depending on the budget factor
and the parameter σ -step for the (1 + 1)-ES on test problem S1.

variable σlb stores the accuracy which is still properly predictable by the SM in the
current stage. In the while-loop an offspring is generated. Its feasibility is predicted by
the SM of the current stage. The SM filters in a pre-selection manner only feasible-
predicted solutions. As already stated, due to the pessimistic variant the feasibility is
verified by the actual constraint function. The latest truly feasible and truly infeasible
solutions can be exploited as starting points for the SM in the next stage. After adjusting
the mutation step size σ , the variables σc and σg are updated. If the current accuracy
exponent σc is smaller than the lower bound accuracy exponent σlb, a new SM is trained
for the next stage is trained and the new lower bound accuracy exponent is set accord-
ingly. The optimistic variant relies on the SM without verifying the feasibility with the
actual constraint function. Hence, in the optimistic variant the latest feasible and the
latest n infeasible are used to sample truly feasible and infeasible starting points every
time the SM needs to be trained.

The interdependency between the total amount of CFC and the budget and the σ -step
parameter with the (1 + 1)-ES is visually shown in Figure 3(b). In this parameter study
experiment, the mean of 10 runs is measured. Clearly, it can be observed that a budget
factor below 20 results in wasted CFC. The leaps in the plot correspond to late CFC
investments, where the optimum is near and a lower budget would be more appropriate.

3.5 Integration with (1 + 1)-CMA-ES

Because of a lack of space, the complex (1 + 1)-CMA-ES with SM is not described in
this paper. Nevertheless, the integration with the SM is analogous, except an important
modification to the σc update. The mutation step-size is contained in the global step
size σ as well as in the Cholesky factor A. Therefore, the following equation is used to
update the current accuracy exponent:

σc ← log10(||σ ·A ·1||). (9)
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with In this equation the euclidean norm of the scaled and transformed one vector is
used to approximate the current accuracy.

4 Experimental Evaluation

In this section, the experimental evaluation of the proposed SM is described. The pro-
posed loosely-coupled multi-stage SM is evaluated by comparing the cumulated amount
of CFC as well as the cumulated amount of FFC of ES with SM to original ES with-
out the SM. The total amount of FFC is taken into account, because the use of the SM
might prevent convergence, which might lead to an increase in FFC. In the following,
the experimental settings are outlined.

(a) S1 (CFC) (b) S2 (CFC) (c) S1 (FFC) (d) S2 (FFC)

Fig. 4. Distributions of total FFC and CFC on both problems with (1 + 1)-ES depending on
surrogate model: no meta model (dashed green), pessimistic meta model (solid blue), optimistic
meta model (solid black)

4.1 Experiment Design

The experimental evaluation includes the comparison of FFC and CFC between the ES
with SM and the ES without SM. A one-factor experiment design is employed, where
the cumulated amount of FFC and the cumulated amount of CFC with different settings
are compared. Because the optimization is a stochastic process, 500 runs are simulated
per setting. In the evaluation, the simple (1 + 1)-ES and the complex (1 + 1)-CMA-ES,
proposed in [2] are employed. Further, the two variants of SM use are examined: the
pessimistic and the optimistic multi-stage SM. The test bed problems are based on the
Sphere function

minimize f (x) := x2
1 + x2

2 (10)

(a) S1 (CFC) (b) S2 (CFC) (c) S1 (FFC) (d) S2 (FFC)

Fig. 5. Distributions of total FFC and CFC on both problems with (1 + 1)-CMA-ES depending on
surrogate model: no meta model (dashed green), pessimistic meta model (solid blue), optimistic
meta model (solid black)
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subject to (S1) constraint x1 + x2 ≥ 0 and (S2) constraint x1 ≥ 0. The start position in
both experiments is (1.0,1.0)T and the initial global σ is 1.0. The parameter σ -step of
the multi-stage SM is 3.

4.2 Experiment: (1 + 1)-ES

The results of the experiment are shown visually in Figure 4. The distribution of cu-
mulated FFC and CFC is estimated with a Parzen window kernel density estimation,
see [10], where the kernel bandwidth is set according to Silverman’s rule, see [14]. The
characteristic numbers are presented in Table 1. When the total amount of FFC is com-
pared, the different SM uses do not differ. Hence, the cumulated amount of CFC can be
compared, because the SM use does not affect the cumulated amount of FFC. When the
CFC are compared, it can be observed that a pessimistic SM saves CFC. Nevertheless,
the optimistic SM saves significantly more CFC. The cumulated amount of CFC de-
pending on the generations with the (1 + 1)-ES with the different uses of SM is shown
in Figure 3(a).

4.3 Experiment: (1 + 1)-CMA-ES

The results of the experiment are shown in Figure 5. Like in the previous experiment, the
distributions are estimated with a Parzen window kernel density estimation. The char-
acteristic numbers are presented in Table 2. When the total amount of FFC is compared,
the different uses of SM do not differ. Hence, analogous to the previous experiment, the
cumulated amount CFC can be compared, because the use of SM does not affect the
total amount of FFC. In the comparison of CFC, it is observed that a pessimistic SM
requires more CFC than the original (1 + 1)-CMA-ES. A possible reason might be that
the internal SM of the (1 + 1)-CMA-ES, the covariance matrix adaption and the con-
straint vector is sufficient and the external multi-stage SM spends CFC for redundant
information. Nevertheless, the optimistic SM case saves significantly more cumulated
CFC on both problems.

Table 1. FFC and CFC with (1 + 1)-ES

FFC CFC
Min. Mean Max. Std. Min. Mean Max. Std.

without
S1 1260.00 1586.75 1798.00 74.90 2293.00 2903.15 9113.00 245.51
S2 1197.00 1593.83 1838.00 75.51 2195.00 2933.81 22279.0 632.32
pessimistic
S1 1286.00 1589.88 1831.00 70.62 1475.00 1885.14 3741.00 123.53
S2 1206.00 1586.84 1827.00 78.37 1390.00 1917.89 31539.0 1027.53
optimistic
S1 1223.00 1586.18 1840.00 77.90 188.00 323.07 14850.0 506.55
S2 1252.00 1590.91 1807.00 76.32 188.00 309.37 1969.00 113.55
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Table 2. FFC and CFC with (1 + 1)-CMA-ES

FFC CFC
Min. Mean Max. Std. Min. Mean Max. Std.

without
S1 264.00 337.17 411.00 33.98 592.00 709.35 924.00 61.64
S2 260.00 342.23 591.00 43.03 575.00 708.00 1115.00 73.75
pessimistic
S1 285.00 371.70 475.00 36.70 677.00 805.68 952.00 55.17
S2 270.00 361.61 455.00 34.60 560.00 773.36 902.00 53.44
optimistic
S1 283.00 371.78 652.00 51.41 283.00 306.51 394.00 18.89
S2 308.00 367.78 454.00 33.66 282.00 292.12 318.00 7.37

5 Discussion and Future Work

The SM proposed in Section 3.1 suggests that a loosely-coupled SM clearly is required
when the ES also has an internal SM, like the CMA-ES. Therefore, the focus of this
paper lies on the adoption of a possible loosely-coupled SM and its assumptions and
heuristics. In the experimental analysis, it is found that the optimistic SM is superior
to all other uses of SM. The experimental evaluation is arguable in its robustness given
other test problems. Nevertheless, it can be observed that the multi-stage approach is
compatible even with the complex (1 + 1)-CMA-ES. This paper proposes a working
loosely-coupled SM, however, different implementation of loosely-coupled SM might
be useful depending on the use case. For example, the SM proposed in [4] is able to
estimate the non-linear constraint boundary using a support vector machine with an
RBF kernel and an active learning approach, but the integration in ES is missing. A
promising future work might be to incorporate the multi-stage approach with a non-
linear boundary estimation to save CFC in reset strategies to find the global optimum.
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Abstract. Statistical methods have shown great success in short-term
prediction of wind power in the recent past. A preselection of turbines
is presented that is based on the segmentation of the area around the
target turbine with a specific radius. Small problem instances allow a
rigorous comparison of different input sets employing various regression
techniques and motivate the application of evolutionary algorithms for
finding adequate features. The optimization problem turns out to be
difficult to solve, while strongly depending on the target turbine and the
prediction technique.

1 Introduction

For balancing the electrical grid, the precise prediction of wind power has an
important part to play. In the taxonomy of wind prediction models, one can
differentiate between two main classes of methods, i.e., numerical weather sim-
ulations [1] and statistical models that derive functional dependencies directly
from the observations. The latter are well appropriate for short-term prediction
horizons in the range of minutes to few hours and are now in focus. In the
past, we developed prediction models that are exclusively based on wind power
time series measurements [4] and formulated the prediction task as multivari-
ate regression problem considering the time series of neighboring turbines for a
specific target turbine. We could show that our model significantly outperforms
the persistence model, which is a naive and hard to beat method for comparison
in short-term prediction assuming that the wind does not change, see Wegley
et al. [9]. In this paper, we focus on improving the forecast accuracy of our
spatio-temporal model by selecting an adequate subset of neighboring turbines
as inputs (features) of the regression model. As this task is a complex combi-
natorial optimization problem, we propose to employ evolutionary algorithms
(EAs) for turbine selection.

1.1 Related Work

EAs in data mining are often employed for feature selection. In the field of wind
power prediction, Jursa and Rohrig [3] introduced a method, based on the ap-
plication of EAs for the automated specification of two well-known time series
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c© Springer International Publishing Switzerland 2014
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prediction models with particle particle swarm optimization and differential evo-
lution. This paper presents a very comprehensive model. But a detailed analysis
of features measured at different places around the target is desirable from our
point of view. Many papers with a focus on wind energy prediction use EAs
to tune certain parameters of their introduced methods. For example, Kusiak et
al. [5] employ EAs to determine the parameters for a nonlinear modeling of wind
farm power curves. Shi et al. [7] provide a model that uses a genetic algorithm to
find appropriate parameters of a piecewise support vector machine, based on the
power curves of the wind turbine generators. In addition, evolutionary strate-
gies are used in the wind community to optimize the placement of turbines, see
e.g. [8] and [2].

1.2 Wind Data Set and Prediction Model

The experiments in this paper are based on the National Renewable Energy
Laboratory (NREL) western wind resources data set [6], which is part of a
large integration study. The data set has been designed to perform temporal
and spatial comparisons like load correlation or estimation of production from
hypothetical i.e., simulated wind turbines for demand analysis and planning
of storage based on wind variability. It consists of ten-minute wind speed and
wind power time series of 32,043 turbines for three years based on numerical
simulations and real-world wind measurements. In this paper, we predict the
power output of three arbitrarily selected wind turbines near Casper (WY, ID:
23167), Comanche (WY, ID:8419), and Tehachapi (CA, ID: 4155).

We formulate the prediction task as regression problem. Let us first assume
we want to predict the power production of a turbine only with its time series.
The wind power measurement x = p(t) (pattern) is mapped to the power pro-
duction at target time y = p(t+ λ) (label). For our regression model, we assume
to have N of such pattern label pairs (xi, yi) that are basis of our training set
T = {(x1, y1), . . . , (xN , yN )} and allow the prediction of the label for unknown
patterns via regression. One can assume, that this model generates better pre-
dictions, if more information of the times series will be used. For this reason, we
extend the patterns by appending past measurements p(t− 1), . . . , p(t−μ) with
μ ∈ N

+. To consider some spatio-temporal effects we additionally extend the
pattern by extra features xj of m neighboring turbines j = 1, 2, . . . ,m that are
generated in the same way as for the target turbine. In the end, one has a pattern
with a dimension d = (1 +m)(1 + μ), which is mapped to the power output of
the target turbine. Generally, the goal is now to find a function f that provides
good predictions to unseen patterns x. In our experiments, we employ linear
regression, support vector regression (SVR), and k-nearest neighbors (kNN).

2 Segmentation and Combinatorial Prestudies

In this section, we compare the regression methods for short-term predictions of
the selected target turbines. We use a small number of turbines that allows to
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test all possible combinations of inputs. In the following experiments, we employ
a feature window size of one, i.e., it holds μ = 0 and no past measurements are
taken into account for constructing pattern x.

2.1 Segmentation

First of all, we have to choose a radius, in which the neighboring turbines should
be located. Instead of a random selection of turbines, which would prefer loca-
tions with large aggregations, we aim at a uniform, radial distribution. For this
sake, we divide the area in a particular radius into 12 segments and choose the
turbines that are closest to the center of each segment. With given mean wind
speeds in the intervall of 8.2-9.2m/s and the assumption that wind propagates
linearly, we decide to focus on a one-hour-ahead prediction resulting in an av-
erage distance between the target and other turbines of about 30 km. Figure 1
shows the neighboring turbines of the three target turbines.

(a) Casper (b) Tehachapi (c) Comanche

Fig. 1. Segmentation of the neighborhood of the three target turbines for a finite
number of additional inputs. Available turbines are shown in blue, while the selected
ones are shown in red.

2.2 Combinatorial Tests

The question comes up, which subset of the 12 available turbines (plus the
target itself) leads to the best prediction accuracy. Due to the small solution

space size (
∑12

j=0

(
12
j

)
= 4096 possible solutions), we can evaluate the complete

search space, i.e., all turbine combinations with 0, 1, 2, . . . , 12 additional turbines.
We train the model with data from 2004 and evaluate the mean square error
(MSE) δ = 1

M

∑M
i=1(f(x

i) − yi)2 for i = 1, . . . ,M predictions f(xi) of 2005.
For the parameter tuning of the nonlinear regression techniques, we employ a
2-fold cross-validation on 2004. For kNN regression, we test various numbers of
neighbors, i.e., k = 10, 20, . . . , 130. For reasons of efficiency of the SVR training
process, we narrow the grid search for optimal parameters settings of C and γ
to the following intervals, i.e., C ∈ [500, 1000, 2000] for regularization and γ ∈
[10−3, 10−6] for the RBF kernel bandwidth, which turned out to be appropriate
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in preliminary experiments. To speed up the training process, only every fifth
time step is taken into account. In this smaller training set, still varying wind
conditions of different seasons are included. The results are shown in Table 1.
An important observation is that not the maximum number of input achieves

Table 1. Best MSE of a one-hour-ahead prediction for a varying numbers of inputs. The
values represent the MSE of the best combination of each input size. The whole space
of turbines is shown in Figure 1. The errors of the persistence model are 26.066 [MW2]
for Casper (CS), 20.715 [MW2] for Tehachapi (TC), and 24.274 [MW2] for Comanche
(CM).

linear kNN SVR
add. inputs CS TC CM CS TC CM CS TC CM

univariate 24.755 20.072 22.700 24.884 20.006 22.869 25.724 20.574 23.566
1 23.472 19.278 19.654 23.422 18.708 19.748 24.839 19.800 20.154
2 23.185 19.089 18.697 23.258 17.989 18.710 24.537 19.404 19.123
3 23.116 18.948 18.119 23.308 17.655 18.121 24.296 19.061 18.477
4 23.098 18.823 17.777 23.325 17.595 17.734 24.155 18.754 18.065
5 23.085 18.761 17.644 23.371 17.588 17.633 23.930 18.480 17.925
6 23.069 18.726 17.553 23.609 17.749 17.563 23.813 18.266 17.844
7 23.061 18.686 17.489 23.726 17.815 17.552 23.632 18.067 17.782
8 23.062 18.678 17.475 23.969 18.120 17.501 23.607 17.968 17.763
9 23.069 18.673 17.473 24.172 18.777 17.554 23.574 17.928 17.754
10 23.071 18.670 17.481 24.388 19.225 17.601 23.513 17.926 17.738
11 23.091 18.689 17.497 24.772 19.692 17.645 23.477 17.926 17.738
12 23.121 18.739 17.502 24.948 20.226 17.673 23.496 18.049 17.749

the best prediction accuracy, but a certain subset of turbines. If too few or too
many turbines are taken into account, the predictions are getting worse.

A conclusion we can draw from the experiments is that there is no superior
regression technique in general. The optimization problem turns out to be data
set- and method-specific and is hence not trivial to solve, which motivates the
application of evolutionary methods. For the following experiments, we focus on
kNN regression, since it achieves the best results in mean. However, the evo-
lutionary feature selection approach is independent of the employed regression
technique.

3 Evolutionary Turbine Selection

Now, we introduce an evolutionary approach to automatically determine the
optimal subset of turbines (size and combination) to achieve a high prediction
accuracy for a particular target turbine given a regression method. EAs are
heuristic search methods that mimic the process of natural evolution.
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3.1 Modeling

Let φ be the number of neighboring turbines the segmentation pre-processing
step selects, see Section 2. The objective is to find an optimal subsetΩ of turbines
that minimizes the prediction accuracy in terms of MSE, see Section 2.2. The
fitness function f̂(·) the EA has to optimize, determines the prediction accuracy
of a regression model given index set Ω of considered turbines. For this sake, a
training and a test set of patterns are constructed, the regression model is trained
with cross-validation and evaluated on an independent test set. We choose the
following representation for a candidate solution. A bit string z = (z1, . . . , zφ)
of length φ defines, which turbines are taken into account. If zi is One, turbine
i ∈ φ is taken into account as feature in the regression model. If zi is Zero,
turbine with index i is not considered. This representation automatically allows
an adaptation of the number of turbines.

At the beginning, the EA generates μ individuals by initializing μ bit strings
z1, . . . , zμ with elements zi that are set to One with a probabilty pset. In the
evolutionary loop, the EA generates λ children based on μ parents with 1-point
crossover. Consequently, each child carries the genetic material of two parents.
As mutation operator, bit flip mutation is employed with mutation strength
p = 1/φ. The fitness f̂(·) of all λ individuals is determined by computing the
MSE and is the basis for selecting the μ best individuals as parents for the
following generation. Plus selection selects the μ best solutions from the union
P∪P ′ of the best parental population P and the current offspring population P ′

and is denoted by (μ+λ)-EA. In contrast, comma selection chooses the parents
exclusively from the offspring population, even if the parents have a superior
fitness, and is denoted by (μ, λ)-EA.

3.2 Comparison of Selection Operators

We compare the number of generations of the kNN regression model for a (μ, λ)-
EA and a (μ+λ)-EA. Previous experiments have shown that the population size
choices μ = 5 and λ = 10 led to a good compromise between the number of fitness
function evaluations and solution quality. In our implementation, we choose the
initial probability pset = 0.5 of a turbine to be selected. The results are shown in
Table 2. The statistics are based on 30 runs for each approach. Since we assume
unequal variances, we employ the Welch test for checking the significance of the
results. With a p-value of p = 0.028 for Tehachapi and a value of p = 0.034
for Comanche, there is strong evidence against the null hypothesis. Therefore,

Table 2. Number of generations with standard deviation until best inputs are found
for the (5, 10) and (5 + 10) EA

turbine (5, 10)-EA (5 + 10)-EA

Casper 12.0 ± 8.2 10.9 ± 5.1
Tehachapi 15.4 ± 8.4 11.4 ± 4.7
Comanche 20.1 ± 13.0 13.4 ± 7.6
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we conclude that plus selection leads to a faster convergence. For Casper, no
statistical difference between both selection variants can be observed.

4 Conclusion

Prediction is an important task for the integration of wind power. In this work,
we focused on the selection of turbines with EAs for an improvement of prediction
accuracies. In particular, we have shown that the accuracy of kNN regression
prediction benefits greatly from an appropriate set of features. The implemented
EA shows a good performance by identifying the best subset of input turbines
for small problem instances with a relatively small number of regression calls.

In the future, we concentrate on mutation rate control methods to improve
the evolutionary search. A further effect of the turbine selection is a speedup of
training and prediction time due to a reduction of the feature space. We plan to
investigate the tradeoff between EA runtime and expected prediction accuracies
for a setup with more available turbines after the segmentation.
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Abstract. Even though there are sophisticated AI planning algorithms,
many integrated, large-scale projects do not use planning. One reason
seems to be the missing support by engineering tools such as syntax high-
lighting and visualization. We propose myPddl— a modular toolbox for
efficiently creating pddl domains and problems. To evaluate myPddl,
we compare it to existing knowledge engineering tools for pddl and ex-
perimentally assess its usefulness for novice pddl users.

1 Introduction

A large community of researchers dedicate their efforts to AI planning. However,
the progress made in this community is often ignored when it comes to devel-
oping complete AI systems. Planning is a fundamental cognitive function that
is useful for most systems claiming to be intelligent, such as autonomous robots
or decision support systems.

The basics of AI planning are taught in any AI course and there are many
planners readily available, also due to the International Planning Competition1.
So why is planning not used in more systems? We believe that one reason is the
gap between modeling textbook toy problems and modeling complex, real-world
problems. The standard AI planning language pddl differentiates between do-
main files with definitions of types, predicates and actions, and problem files
with definitions of objects and goals. Realistic domains contain hundreds of ob-
jects, different agents with different capabilities, able to perform a large variety
of actions. Modeling such domains soon gets confusing: object and action defini-
tions depend on the type hierarchy, goals have to be compatible with predicate
and action definitions, etc.

This problem is not specific to planning, but poses a challenge to software
engineering in general. As projects grow in size, developers have to be supported
with appropriate tools in order to keep track of the overall structure. We think
that it is time to move AI planning from a purely scientific discipline into the
direction of Planning Task Engineering in the sense that planning becomes a
standard component of AI systems, readily usable for anyone wishing to build
intelligent systems.

In this paper we propose myPddl, a set of tools for modeling large domains
and associated problems. After a review of existing tools for pddl, we introduce

1 http://ipc.icaps-conference.org/
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the myPddl modules. We then compare myPddl to the other existing tools
and present a user test for two myPddl modules. We conclude with an outlook
on further steps necessary to improve the availability of planning for intelligent
system development.

2 Existing Tools

There have been some attempts to provide modeling tools for pddl. We intro-
duce the three most sophisticated tools we found and use those as a benchmark
for myPddl in Section 4.1.

pddl studio
2 [13] is an application for creating and managing pddl projects,

i.e. a collection of pddl files. The pddl studio integrated development environ-
ment (ide) was inspired by Microsoft Visual Studio and imperative programming
paradigms. Its main features are syntax highlighting, error detection, context
sensitive code completion, code folding, project management, and planner in-
tegration. pddl studio’s error detection can recognize both syntactic (missing
keywords, parentheses, etc.) and semantic (wrong type of predicate parameters,
misspelled predicates, etc.) errors.

A major drawback of pddl studio is that it is not updated regularly and
only supports pddl 1.2. Later pddl versions contain several additional features
such as durative actions, numeric fluents, and plan-metrics [6].

itSimple [20] follows a graphical approach using Unified Modeling Language
(uml) [3] diagrams. In the process leading up to itSimple, uml.p (uml in
a Planning Approach) was proposed, a uml variant specifically designed for
modeling planning domains and problems [19].

itSimple’s modeling workflow is unidirectional as changes in the pddl do-
main do not affect the uml model and uml models have to be modeled manu-
ally, meaning that they cannot by generated from pddl. However, [18] present
a translation process from a pddl domain specification to an object-oriented
uml.p model as a possible integration for itSimple. This translation process
makes extensive semantic assumptions for pddl descriptions. For example, the
first parameter in the :parameters section of an action is automatically de-
clared as a subclass of the default class Agent, and the method is limited to
predicates with a maximum arity of two. The currently version of itSimple

does not include the translation process from pddl to uml.
Starting in version 4.0 [21] itSimple expanded its features to allow the cre-

ation of pddl projects from scratch (i.e. without the uml to pddl translation
process). Thus far, the pddl editing features are basic. A minimal syntax high-
lighting feature recognizes pddl keywords, variables, and comments. itSimple
also provides templates for pddl constructs, such as requirement specifications,
predicates, actions, initial state, and goal definitions.

Both pddl studio and itSimple do not build on existing editors and there-
fore cannot fall back on refined implementations of features that have been
modified and improved many times throughout their existence.

2 http://amis.mff.cuni.cz/PDDLStudio/

http://amis.mff.cuni.cz/PDDLStudio/
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The pddl-mode for the widely used Emacs editor [17] builds on the sophisti-
cated features of Emacs and uses its extensibility and customizability. It provides
syntax highlighting by way of basic pattern matching of keywords, variables, and
comments. Additional features are automatic indentation and code completion
as well as bracket matching. Code snippets for the creation of domains, prob-
lems, and actions are also available. Finally, the pddl-mode keeps track of action
and problem declarations by adding them to a menu and thus intending to allow
for easy and fast code navigation.

pddl-mode for Emacs supports pddl versions up to 2.2, which includes de-
rived predicates and timed initial predicates [5], but does not recognize later
features like object-fluents.

In sum, there is currently no tool available supporting all features of PDDL 3.1,
nor all the steps in the modeling process.

3 MyPDDL

myPddl is designed as a modular framework. We first introduce the imple-
mented modules and then explain their details with respect to design guidelines
for knowledge engineering tools.

3.1 Modules

mypddl-ide is an integrated development environment for the use of myPddl
in Sublime Text3. Since mypddl-snippet and -syntax are devised explicitly
for Sublime Text, their integration is implicit. The other tools can be used
independently of Sublime Text with the command-line interface and any
pddl file, but were also integrated into the editor.

mypddl-syntax is a context-aware syntax highlighting feature for Sublime
Text. It distinguishes all pddl constructs up to version 3.1. Using regu-
lar expressions that can recognize both the start and the end of code blocks
by means of a sophisticated pattern matching heuristic, mypddl-syntax
identifies pddl code blocks and constructs and divides them into so called
scopes, i.e. named regions. Sublime Text colorizes the code elements via the
assigned scope names and in accordance with the current color scheme. These
scopes allow for a fragmentation of the pddl files, so that constructs are only
highlighted if they appear in the correct context. Thus missing brackets, mis-
placed expressions and misspelled keywords are visually distinct and can be
identified (see Figure 1).

mypddl-new helps to organize pddl projects by generating the following folder
structure:

3 http://www.sublimetext.com/

http://www.sublimetext.com/
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Fig. 1. Syntax highlighting in the mypddl-ide in the Sublime Text editor. White text
contains errors.

project-name/

domains/

problems/

p01.pddl

solutions/

domain.pddl

README.md
The domain file domain.pddl and the problem file p01.pddl initially con-
tain corresponding pddl skeletons which can also be customized. All prob-
lem files that are associated with one domain file are collected in the folder
problems/. README.md is a Markdown file, which is intended for (but not
limited to) information about the author(s) of the project, contact informa-
tion, informal domain and problem specifications, and licensing information.
Markdown files can be converted to html by various hosting services (like
GitHub or Bitbucket).

mypddl-snippet provides code skeletons, i.e. templates for often used pddl

constructs such as domains, problems, type and function declarations, and
actions. They can be inserted by typing a triggering keyword.

mypddl-clojure provides a preprocessor for pddl files to bypass pddl’s lim-
ited mathematical capabilities, thus reducing modeling time without over-
charging planning algorithms. We decided to use Clojure [7], a modern Lisp
dialect that runs on the Java Virtual Machine (JVM) [9], facilitating input
and output of the Lisp-style pddl constructs. mypddl-clojure is the basis
for mypddl-distance and mypddl-diagram.

mypddl-distance provides special preprocessing functions for distance calcu-
lations. For domains with spatial components, the distance of objects is often
important and should not be omitted in the domain model. However, cal-
culating distances from coordinates requires the square root function, which
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Fig. 2. Type diagram generated by mypddl-diagram

is not supported by pddl (it only supports the four basic arithmetic oper-
ators). More sophisticated calculations can be achieved with the supported
operators, but the solutions are rather inefficent and inelegant [12]. By cal-
culating the distances offline and including them as additional predicates in
the problem file using mypddl-distance, the distances between objects are
given to the planner as part of the problem description.

mypddl-diagram generates a png image from a pddl domain file as shown
in Figure 2. The diagrammatic representation of textual information helps
to quickly understand the connection of hierarchically structured items and
should thus be able to simplify the communication and collaboration between
developers. In the process of generating the diagrams, a copy of the pddl

file is created, so that a simple version control is also included.

3.2 Design Principles

As guidelines for design decisions, we used the seven criteria for knowledge engi-
neering tools proposed by Shah et al. [16] as well as general usability principles.

Operationality asks whether the generated models can improve the planning
performance. This is not a design principle for myPddl, because we assume that
myPddl does not improve the quality (with respect to planning performance)
of the resulting pddl specifications. Therefore, we replaced this criterion with
functional suitability from the iso/iec 25010 standard, which is defined as “the
degree to which the software product provides an appropriate set of functions
for specified tasks and user objectives” (iso 25010 6.1.1). myPddl supports the
current version 3.1 of pddl. It encompasses and exceeds most of the functionality
of the existing tools. It specifically supports basic editor features with a high
customizability as well as visualization support.

Collaboration: With the growing importance of team work and team mem-
bers not necessarily working in the same building, or in the same country, there
is an increasing need for tools supporting the collaboration effort. In develop-
ing myPddl, this need was sought to be met by mypddl-diagram. Complex
type hierarchies can be hard to overlook, especially if they were constructed by
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someone else. Therefore, a good way of tackling this problem seemed to be by
providing a means to visualize such hierarchies in the form of type diagrams.

Experience: myPddl was designed specifically for users with a background in AI,
but not necessarily in pddl. The tools are similar to standard software engineer-
ing tools and should thus be easily learnable. The user evaluation (Section 4.2)
confirms that myPddl helps novices in pddl to master planning task modeling.
In addition, it is also possible to customize myPddl so as to adapt its look and
feel to other programs one is already familiar with, or simply to make it more
enjoyable to use. The project site4 provides myPddl video introductions and a
manual to get started quickly.

Efficiency: All myPddl tools are intended to increase the efficiency with which
pddl files are created. mypddl-snippet enables the fast creation of large and
correct code skeletons that only need to be complemented. mypddl-syntax

can reduce the time spent on searching errors. Code folding allows users to
hide currently irrelevant parts of the code and automatic indentation increases
its readability. To easily keep track of all the parts of a project, folders are
automatically created and named with mypddl-new. mypddl-clojure and -

distance allow for a straightforward inclusion of numerical values in the problem
definition.

Debugging: mypddl-syntax highlights all syntactically correct constructs and
leaves all syntactical errors non-highlighted. In contrast, pddl-mode for Emacs
and itSimple only provide basic syntax highlighting for emphasizing the struc-
ture. pddl studio explicitly detects errors, but the user is immediately prompted
when an error is detected. Often, such error messages are premature, for exam-
ple, just because the closing parenthesis was not typed yet, does not mean it was
forgotten. myPddl indicates errors in a more subtle way: syntactic errors are
simply not highlighted, while all correct pddl code is. The colors are customiz-
able, so that users can choose how prominently the highlighting sticks out.

Maintenance: The possibility to maintain pddl files is a key aspect of myPddl.
The automatically generated type diagram (mypddl-diagram) gives an overview
of the domain structure and thereby serves as a continuous means of documenta-
tion. Helping to understand foreign code, though, it follows logically thatmypddl-
diagram also helps in coming back and changing one’s own models if some time
has elapsed since they were last edited. The basic revision control feature of
mypddl-diagram keeps track of changes, making it easy to revert to a previous
domain version. Furthermore,mypddl-new encourages adhering to an organized
project structure and stores corresponding files at the same location. The auto-
matically created readme file can induce the user to provide further information
and documentation about the pddl project.

Support: mypddl-ide can be installed using Sublime Text’s Package Control [2].
This allows for an easy installation and staying up-to-date with future versions.
In order to provide global access and with it the possibility for developing an

4 http://pold87.github.io/myPDDL/

http://pold87.github.io/myPDDL/
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active community, the project source code is hosted on GitHub5. Additionally,
the project site provides room for discussing features and reporting bugs.

4 Validation and Evaluation

To assess the utility of myPddl, we used the criteria listed in Section 3.2. We
show the functional suitability in a benchmark validation, comparing myPddl’s
functionality with the tools described in Section 2. The criteria collaboration,
experience, efficiency and debugging were evaluated in a user test. The myPddl
components supporting maintenance are the same that are used in the user
test, but their long-term usage is difficult to evaluate. The support criterion
depends primarily on the infrastructure, which has been established as explained
in Section 3.2.

4.1 Benchmark Validation

Functional suitability encompasses the set of functions to meet the user objec-
tives. The tools of Section 2 basically all follow the same objectives as myPddl:
creating pddl domains and problems. They intend to support this process in
general and the various stages of the design cycle to different degrees. The fea-
tures offered by each tool are summarized in Table 1.

Besides supporting the latest pddl version, a strength of myPddl is its high
customizability, which comes with the Sublime Text editor. Being the only one
of the four tools capable of visualizing parts of the pddl code, it must be un-
derstood as complementary to itSimple, which takes the opposite approach of
transforming uml diagrams into pddl files. The fact that myPddl does not
check for semantic errors is not actually a drawback as planners will usually
detect semantic errors. All in all, myPddl combines the most useful tools of
pddl studio, itSimple, and pddl-mode for Emacs and strives to support the
planning task engineer during all phases of the modeling process. Additionally,
it features some unique tools, such as domain visualization. It can therefore be
concluded that myPddl provides an appropriate set of functions for developing
pddl files and is thus functionally suitable.

4.2 User Evaluation

The two most central modules of myPddl are mypddl-syntax and mypddl-

diagram, since they support collaboration, efficiency and debugging indepen-
dently of the user’s experience with pddl.

Procedure. We invited eight participants6 to a user test (three female, average
age 22.9, standard deviation 0.6), who had some basic experience with at least

5 https://github.com/Pold87/myPDDL
6 In Usability Engineering, a typical number of participants for user tests is five to
ten. Studies have shown that even such small sample sizes identify about 80% of the
usability problems [10,8]. Our study design required at least eight participants.

https://github.com/Pold87/myPDDL
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Table 1. Comparison of knowledge engineering tools and their features

Feature pddl

studio

itSimple pddl-
mode

myPddl

latest supported pddl version 1.2 3.1 2.2 3.1
syntax highlighting yes basic basic yes
semantic error detection yes no no no
automatic indentation no no yes yes
code completion yes no yes yes
code snippets no yes yes yes
code folding yes no yes yes
domain visualization no planned no yes
project management yes yes no yes
uml to pddl code translation no yes no no
planner integration basic yes no basic
plan visualization no yes no no
dynamic analysis no yes no no
declaration menu no no yes no
interface with programming language no no no yes
customization features basic no yes yes

one Lisp dialect (in order not to be confused with the many parentheses), but
no experience with pddl or AI planning in general.

No earlier than 24 hours before the experiment was to take place, participants
received the web link to a 30-minute interactive video tutorial on AI planning
and pddl

7. This method was chosen in order not to pressure the participant
with the presence of an experimenter when trying to understand the material.

We defined four tasks: two debugging tasks and two type hierarchy tasks
asking for details of a given domain (e.g. “Can a Spleus be married to a Schlok?”).
As a within-subjects design was considered most suited (to control for individual
differences within such a small sample), it was necessary to construct two tasks
(matched in difficulty) for each of these two types to compare the effects of
having the tools available. The two tasks to test syntax highlighting presented
the user with domains that were 54 lines in length, consisted of 1605 characters
and contained 17 errors each. Errors were distributed evenly throughout the
domains and were categorized into different types. The occurrence frequencies
of these types were matched across domains as well, to ensure equal difficulty for
both domains. To test the type diagram generator, two fictional domains with
equally complex type hierarchies consisting of non-words were designed (five and
six layers in depth, 20 and 21 types). The domains were also matched in length
and overall complexity (five and six predicates with approximately the same
distribution of arities, one action with four predicates in the precondition and
two and three predicates in the effect).

Each participant started either with a debugging or type hierarchy task and
was given the myPddl tools either in the first two tasks or the second two

7 http://www.youtube.com/playlist?list=PL3CZzLUZuiIMWEfJxy-G6OxYVzUrvjwuV

http://www.youtube.com/playlist?list=PL3CZzLUZuiIMWEfJxy-G6OxYVzUrvjwuV


Planning in the Wild: Modeling Tools for PDDL 281

tasks, so that each participant completed each task type once with and once
without myPddl. This results in 2 (first task is debugging or hierarchy) × 2
(task variations for debugging and hierarchy) × 2 (starting with or without
myPddl) = 8 individual task orders, one per participant.

For the debugging tasks, participants were given six minutes8 to detect as
many of the errors as possible. They were asked to record each error in a table
(pen and paper) with the line number and a short comment and to immediately
correct the errors in the code if they knew how to, but not to dwell on the
correction otherwise. For the type hierarchy task, participants were asked to
answer five questions concerning the domains, all of which could be facilitated
with the type diagram generator, but one of which also required looking into
the code. Participants were told that they should not feel pressured to answer
quickly, but to not waste time either. Also they were asked to say their answer
out loud as soon as it became evident to them. They were not told that the time
it took them to come up with an answer was recorded, since this could have
made them feel pressured and thus led to more false answers. At the end of the
usability test they were asked to evaluate the perceived usability of myPddl

using the system usability scale [4].

Results.

1. Debugging Tasks
As shown in Figure 3(a), on average participants found 7.6 errors without
syntax highlighting and 10.3 errors with syntax highlighting (i.e. approxi-
mately 36% more errors were found with syntax highlighting).

Two participants remarked that the syntax highlighting colors confused them
and that they found them more distracting than helpful. One of them men-
tioned that the contrast of the colors used was so low that they were hard
for her to distinguish. She found the same number of errors with and with-
out syntax highlighting. The other of the two was the only participant who
found fewer errors with syntax highlighting than without it. With mypddl-

syntax, two participants found all errors in the domain, while none achieved
this without syntax highlighting.

2. Type Hierarchy Tasks
Figure 3(b) shows the geometric mean9 of the completion time of successful
tasks for each question with and without the type diagram generator.
With the type diagram generator participants answered all questions (except
Question 4) on average nearly twice as fast. The fact that the availability of
tools did not have a positive effect on task completion times for Question 4
can probably be attributed to the complexity of this question. In contrast
to the other four questions, to answer Question 4 correctly, the participants
were required to look at the actions in the domain file in addition to the
type diagram. Most participants were confused by this, because they had

8 A reasonable time frame tested on two pilot tests.
9 The geometric mean is a more accurate measure of the mean for small sample sizes
as task times have a strong tendency to be positively skewed [15].
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(a) Comparison of detected errors
with and without the syntax high-
lighting feature. The bars display
the arithmetic mean.
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(b) Task completion time for the type hierarchy
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the the percentage of users that completed the
task successfully.

Fig. 3. Results of the user test. The crosses (×) represent single participants. red: with
myPddl, blue: without myPddl.

assumed that once having the type diagram available, it alone would suffice
to answer all questions. This initial confusion cost some time, thus negatively
influencing the time on the task.

3. System Usability Scale
myPddl reached a score of 89.6 on the system usability scale 10, with a
standard deviation of 3.9. Since the overall mean score of the system usability
scale has an approximate value of 68 with a standard deviation of 12.5 [14],
the score of myPddl is well above average with a small standard deviation. A
score of 89.6 is usually attributed to superior products [1]. Furthermore, 89.6
corresponds approximately to a percentile rank of 99.8%, meaning that it
has a better perceived ease-of-use than 99.8% of the products in the database
used by Sauro [14].

Discussion. The user test shows that overall myPddl provides very useful tools
for novices in AI planning and pddl. It also shows that customizability is im-

10 The range of possible values for the system usability scale is 0 to 100.
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portant, as not all users prefer the same colors or syntax highlighting at all and
their personal preferences seem to correlate with the effectiveness of the tools.

Visualization tools such as mypddl-diagram can improve the understand-
ing of unknown pddl code and thus support collaboration. But users may be
unaware of the limitations of such tools. A possible solution is to extend mypddl-

diagram to display actions, but this can overload the diagram and especially
for large domains render it unreadable. Different views for different aspects of
the domain or dynamically displayed content could integrate more data, but this
also hides functionality, which is generally undesired for usability [11].

5 Conclusion

myPddl was designed with the goal to support plan engineers in modeling do-
mains and planning problems as well as in understanding, modifying, extending,
and using existing planning domains. This was realized with a set of tools com-
prising code editing features, namely syntax highlighting and code snippets, a
type diagram generator, and a distance calculator. To also have all tools ac-
cessible from one place, they were made available in the Sublime Text editor.
The different needs and requirements of knowledge engineers are met by the
modular, extensible, and customizable architecture of the toolkit and Sublime
Text. The evaluation of myPddl has shown some initial evidence that it al-
lows a faster understanding of the domain structure, which could be beneficial
for the maintenance and application of existing task specifications and for the
communication between engineers. Users perceive it as easy and enjoyable to
use, and the increase in their performance when using myPddl underpins their
subjective impressions.

Despite myPddl already providing a rich modeling environment, there are
still numerous features that could be added in the future. Especially mypddl-

clojure offers multiple interesting further research directions: It provides a
basis for dynamic planning scenarios. Applications could be the modeling of
learning and forgetting (by adding facts to or retracting facts from a pddl file)
or the modeling of an ever changing real world via dynamic predicate lists.
Another way of putting the interface to use would be by making the planning
process more interactive, allowing for the online interception of planning software
in order to account for the needs and wishes of the end user.

We hope that myPddl will be accepted in the planning community, but
especially that it will be used by people who create integrated AI systems and
are not necessarily planning experts. We are looking forward to feedback for
continual improvements.

Project website: http://pold87.github.io/myPDDL/
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Abstract. In this paper we look at packing problems that naturally arise in con-
tainer loading. Given a set of 3D iso-oriented objects and a container, the task
is to find a packing sequence of the input objects consisting of the ID, location,
and orientation that minimizes the space wasted by the packing. Instead of the
decision problem, we look at the packing optimization problem, minimizing the
total height of a packing. Our solutions uses extreme points and applies Monte-
Carlo tree search with policy adaptation, a randomized search technique that has
been shown to be effective for solving single-agent games and, more recently,
complex traveling salesman and vehicle routing problems. The implementation
is considerably simple and conceptually different from mathematical program-
ming branch-and-bound and local search approaches. Nonetheless, the results in
solving 2D and 3D packing problems are promising.

1 Introduction

Industrial robots have eventually found their way into container packing and unpacking.
Such intelligent packaging robots pack and unpack containers with loose packages fully
automatically. Some companies have such systems already operating in their logistics
centers.

A packing robot system (shown in Figure 1) consists of a chassis beneath the robot,
a telescope conveyor, a 3D laser scanner and an interchangeable gripper system. The
robot is positioned on the chassis, which is connected to the conveyor belt. This can
be extended mechanically and transports robot and chassis into the container. That way
the work envelope of the robot will be extended and the gripper arm of the robot can
reach any point in the container. By use of the 3D laser scanner possible gripping po-
sitions for the pile of parcels can be analyzed and an optimal unloading sequence and
collision-free trajectories can be computed. The removed packages are then transported
by the conveyor belt until the container is completely empty. In this paper we look at
the inverse problem of optimally packing 3D objects into a container to maximize its
load. For loading the same hardware as outlined above can be used. Compared to the
unloading the loading process is simpler in handling since the size of the goods and the
depending positions for pick-up and drop-down are defined. But still there are big chal-
lenges especially for the loading of parcel with unequal sizes and weights in containers
or swap-bodies.

In a study about the contents of containers arriving in European ports it was identified
that 46,7% of the goods come in boxes of different size [8]. Another study [20] stated

C. Lutz and M. Thielscher (Eds.): KI 2014, LNCS 8736, pp. 285–296, 2014.
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that for contract logistics the biggest amount of parcels have a weight of 5-15 kg. On
average 1200 parcels fit in a 40’-container. With regard to this values the maximum
payload of a 40’-container of approx. 30t can hardly be exploited by parcels. From the
economical point of view for the full capacity of a container an optimal stacking is
required with no or minimal gaps between the goods.

Whereas parcels are mostly imported in containers they are often distributed in swap-
bodies. Here the maximum height of the pile is relevant. DHL for instance ordered a
maximum stacking height of 2m to reduce accidents by dropping goods. Optimizing the
loading process to achieve a compact and solid pile is a requirement for the effective
and safe transport and subsequent unloading process.

In this paper we aim at packing rather than unpacking. The 3D packing problem is
a true extension of the rectangle packing problem, already known to be a hard opti-
mization problem. Even the bin packing problem is known to be NP-complete. While
pseudo-polynomial time algorithms have been derived for the 1D packing problem,
no such results have been derived for the 3D packing problem. We study the packing
problem that maximizes the volume utility of a single container with and without orien-
tation restrictions on the boxes. A solution is an ordering of (possibly oriented) objects
together with a set of coordinates. We enforce objects to form a connected arrangement
of objects. Objects are only stable if their center of mass rests on top of another object.
We assume that unoccupied space can be filled with other material so stability is not an
issue.

Fig. 1. Container packing scenario with mobile robot platform and conveyor belt

The paper is structured as follows. We start with a definition of the problem fol-
lowed by an introduction to Monte-Carlo search with the concept of extreme points. We
present the adaption of the concepts to the packing of iso-oriented objects, and analyze
the time complexity of the most important method. The evaluation considers a bench-
mark for 2D square packing, and up to industry-sized random 3D problem instances.
We conclude the paper with discussing related work and future research avenues.
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2 Problem Specification

We are given a set of rectangular boxes B = {b1, . . . , bn} and a rectangular container
C. Let xi, yi and zi represent the three dimensions of the box bi, and X , Y , and Z
represent the three dimensions of the container. The objective of the problem is to select
a subset S ⊆ B and assign a position to each box bj ∈ S, in the 3D space of container
C such that

∑
bj∈S xj · yj · zj is maximized subject to the constraints that all boxes

must be totally contained in C, no two boxes intersect in 3D space and every edge of
the packed box must be parallel or orthogonal to the container walls.

If oriented boxes are to considered, the values of triples (xj , yj , zj) can be permuted.
Given that for all j the values of xj , yj , and zj are pairwise different, for the 2D problem
we have 2! = 2 possible orientations, while in 3D we have 3! = 6 different orientations
of an object (suppose an unoriented package has dimension 1x2x3; consequently, there
are 6 different orientations that lead to the following rotated dimensions for this pack-
age: 1x2x3, 2x1x3, 1x3x2, 2x3x1, 3x1x2, 3x2x1). In the 3D strip packing problem that
we consider in this paper, we are given a set of 3D rectangular items and a 3D open
box B. The goal is to pack all the items in B such that the height of the packing is
minimized. We consider the most basic version of the problem, where the items must
be packed with their edges parallel to the edges of B. In the oriented case, we allow ro-
tation. A trivial upper bound Xmax for the height of the packing is

∑n
i=1 xi. Of course,

more effective bounds can be derived.
The problem of the center of mass of a box is apparent. It is dependent on the package

weight distribution and whether additional support bridges can be inserted to support
overhanging parts. The problem of packing many small boxes into a single larger box is
part of a number of cutting, packing, scheduling, and transportation applications. There
are a number of heuristic solvers, but the progress in exact solvers that can deal also
with orientation, in general, and integer programming solvers, in particular, has been
limited. Padberg (Math. Methods Oper. Res., 52(1):1 21, 2000) estimated his extension
of the integer linear programming formulation of Chen et al. could cope with about 20
boxes.

3 Nested Monte-Carlo Search

Nested Monte-Carlo (NMC) [3] is a randomized search method that has been success-
fully applied to solve many challenging combinatorial problems, including Klondike
Solitaire [2], Morpion Solitaire, and Same Game just to name a few. Recently, a large
fraction of Traveling Salesman Problems with Time Windows benchmark set have been
solved efficiently at or very close to the optimum [4]. Compared to other specialized
heuristic methods that include much more information, a NMC solver is competitive.
Algorithmic refinements to the solver [9] further improve the solution quality by reduc-
ing the time complexity and by biasing the probability distribution used in the search
by prior knowledge.

The NMC algorithm is parametrized with the level of the search which denotes how
deep the search is and with the number of iterations, that shows how strong the policy
learning effect within the search is. At each leaf of the recursive search (Level 0), a
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s e a r c h ( l e v e l , i t e r a t i o n s , p o l )
b e s t . s c o r e = MAXVALUE
i f ( l e v e l == 0)

e v a l = r o l l o u t ( )
b e s t . s c o r e = e v a l
b e s t . p a c k i n g = p a c k i n g

e l s e
p o l i c y [ l e v e l ] = p o l
f o r ( i =0 ; i < I ; i ++)

r = s e a r c h ( l e v e l − 1 , I , p o l )
s c o r e = r . s c o r e
i f ( s c o r e < b e s t . s c o r e )

b e s t . s c o r e = s c o r e
b e s t . p a c k i n g = r . p a c k i n g
a d a p t ( b e s t . pack ing , s co re , l e v e l )

p o l = p o l i c y [ l e v e l ]
re turn b e s t

Fig. 2. NRPA (left), extreme points in 2D and 3D (right)

rollout is invoked. A rollout corresponds to a (possibly constraint violating) packing. A
rollout performs and evaluates a random run to construct a packing. An example setting
is a level-5 search with 50 iterations, which leads to 505 rollouts.

The state-of-the-art advancement to NMC is policy adaptation, that dynamically
changes the probabilities of choosing the successor states in the rollout based on the
success of previous experiences. Rather than navigating the tree directly the approach
instead uses gradient ascent on the rollout policy at each level of the nested search. Its
improved behavior has been documented on Crossword Puzzle and Morpion Solitaire
problem instances.

A generic pseudo-code implementation of NMC with policy adaptation (aka Nested
Rollout Policy Adaptation, NRPA) is shown in Fig 2 (left). NRPA is state-of-the-art in
Monte Carlo Tree Search, since it broke a 30 year old record in Morpion Solitaire [21].
We see that the evaluation of a Level k search relies on the result obtained in Level k−1
search and that the results are propagated bottom up. A policy is a mapping from a state
to the successor state in form of a probability distribution function.

4 Extreme Points

The basic idea of extreme points is that when an item j with sizes Xj , Yj andZj is added
to a given packing and is placed with the left-back-down corner in position (xj , yj ,zj)
it generates a series of new extreme points, where additional objects can be placed. The
new extreme points are generated by projecting the points with coordinates (xj +Xj ,
yj ,zj), (xj , yj + Yj ,zj) (xj , yj ,zj + Zj) on the orthogonal axes of the container. In 2D
this leads to at most 2 extreme points generated for each object being placed, while in
3D we have at most 6 extreme points (see Figure 2, right). Each point is projected on
all items lying between item i and the wall of the container in the respective direction.
If there is more than on item on which a point can be projected, the algorithm chooses
the nearest one. Moreover, to avoid wasted space by additionally sliding the object we
urge them to respect connectivity and gravity constraints.
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If the container is empty, the first object is placed in position (0, 0, 0) generating
extreme points at (Xj , 0,0), (0, Yj ,0), (0, 0,Zj).

While the extreme point approach applies to floating-point size data, in our experi-
ments we decided to discretize the domains of the object and container sizes to integers.
This change supports operations in the integer range progressing a global layout of the
objects. The test of intersection and the projection simplifies.

5 Packing

The most important function to be applied in NMC is the rollout. Code profiling shows
that most time is spend in this function. In a rollout we randomly walk down the search
tree from root to a leaf node to form a complete packing. The pseudo-code implementa-
tion of the rollout function for the packing is depicted in Fig. 3 (left). Using visited-flags,
successors are eliminated from the set of all possible values, so that any generated solu-
tion necessarily has to be a permutation of boxes. Some parameters such as visited-flags,
the set of successors found, the current assignement of packages to container cells, as
well as the incrementally generated packing (including ID, location, and orientation)
and the (layered) policy tables are kept globally in class member variables. The func-
tion legal places all remaining objects on all possible extreme points. The outcome is a
list of successors m of (possibly oriented) objects together with their coordinates l and
orientation o. In the following we describe one possible implementation.

Proposition 1. The rollout branching factor for 3D packing is at most O(n2).

Proof. In each level of the rollout at least one extreme point is consumed and 6 are
generated, so that 5n+ 1 is the maximum number of extreme points. At each extreme
point an object might be placed. For each of the remaining packages (at most n) there
are 6 possible orientations, so that we have at most 6n(5n+ 1) = O(n2) children.

Proposition 2. The time for updating all boxes is bounded by O(XY�+Y Z�+XZ�),
where XY� =

∑n
i=1 xiyi, Y Z� =

∑n
i=1 yizi, and XZ� =

∑n
i=1 xizi.

Proof. If we incrementally add and delete objects by their surrounding surfaces, the
number of cells updated in one rollout is bounded by 2XY� + 2Y Z� + 2XZ� =
O(XY� + Y Z� +XZ�).

Proposition 3. The time for all intersection tests is at most O(n2 ·(
∑n

i=1 xi+yi+zi)).

Proof. At each of the at most 5n+ 1 extreme points a skeleton of at most n objects in
any orientation is traversed, returning a false in case of an occupied cell. The incorrect
placements with an already existing box piercing the skeleton are detected in updating
the state followed by returning a very large cost value. (We do not have to test a box
at an extreme point, where it previously did not fit.) The skeleton of box i has size
O(xi + yi + zi), so that the cumulated size of all skeletons is O(

∑n
i=1 xi + yi + zi).

All intersection tests, therefore, take time O(n2 · (
∑n

i=1 xi + yi + zi)).

Theorem 1 (Time Complexity Rollout for 3D Packing with Orientation). The time
for one rollout is at most O((XY� + Y Z� +XZ�) + n2 · (

∑n
i=1 xi + yi + zi)).
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r o l l o u t ( )
c o s t = o b j e c t s S i z e = 0 ;
nex t reme = 1 ; ex t reme [ 0 ] = 0 ;
f o r ( j =0 ; j <N; j ++) v i s i t e d [ j ] = f a l s e ;
whi le ( o b j e c t s S i z e < N) {

s u c c e s s o r s = l e g a l ( nex t reme ) ;
sum = 0 ;
f o r ( i =0 ; i < s u c c e s s o r s ; i ++)

v a l u e [ i ] = exp ( p o l [ code ( l [ i ] , o [ i ] ,m[ i ] ) ] ) ;
sum += v a l u e [ i ] ;

mrand=random ( sum ) ;
i =0 ; sum = v a l u e [ 0 ] ;
whi le ( sum<mrand ) sum += v a l u e [++ i ] ;
o b j e c t = m[ i ] ;
l o c a t i o n [ o b j e c t s S i z e ] = l [ i ] ;
o r i e n t a t i o n [ o b j e c t s S i z e ] = t w i s t [ i ] ;
o b j e c t s [ o b j e c t s S i z e ++] = o b j e c t ;
p l a c e ( o b j e c t , t w i s t [ i ] , l [ i ] ) ;
v i s i t e d [ o b j e c t ] = true ;
nex t reme =

u p d a t e ( o b j e c t , t w i s t [ i ] , l [ i ] , nex t reme ) ;
i f ( c o s t < x+ s i z e s [ o b j e c t ] . x )

c o s t = x+ s i z e s [ o b j e c t ] . x ;
c l e a r ( c o s t ) ;
re turn 1000 ∗ c o s t + nex t reme ;

a d a p t ( pack ing , c o s t , l e v e l ) {
f o r ( j =0 ; j <N; j ++)

v i s i t e d [ j ] = f a l s e ;
o b j e c t = 0 ;
nex t reme = 1 ;
ex t reme [ 0 ] = 0 ;
f o r ( p =0 ; p<N; p ++)

s u c c e s s o r s = l e g a l ( nex t reme ) ;
o b j e c t = p a c k i n g . o b j e c t s [ p ] ;
l = p a c k i n g . l o c a t i o n [ p ] ;
o = p a c k i n g . o r i e n t a t i o n [ p ] ;
l a y e r [ l e v e l ] [ code ( l , o , o b j e c t ) ] +=

ALPHA;
z = 0 . 0 ;
f o r ( i =0 ; i < s u c c e s s o r s ; i ++)

z += exp ( p o l [ code ( l , o ,m[ i ] ) ] ) ;
f o r ( i =0 ; i < s u c c e s s o r s ; i ++)

l a y e r [ l e v e l ] [ code ( l , o ,m[ i ] ) ] −=
ALPHA∗

exp ( p o l i c y [ code ( l , o ,m[ i ] ) ] ) / z ;
p l a c e ( o b j e c t , o l ) ;
nex t reme =

u p d a t e ( o b j e c t , l , o , nex t reme ) ;
v i s i t e d [ o b j e c t ] = true ;

c l e a r ( c o s t ) ;

Fig. 3. Rollout and policy adaptation functions for the container packing optimization problem

To avoid the generation of clearly dominated solutions it also slides objects (in turn)
towards lower x-, y- and z coordinates. This ensures that the packing is connected and
(to some extent) stable. As we do not expect knowledge on the weight distribution
within an object, we do not compute the center of mass. This constraint can be added
by the user or bypassed by adding additional bridges.

The number of violations to the enforced constraints can be included into the cost
function evaluation that is returned to the NMC algorithm. The major objective of the
cost function is to reduce the number of layers in x-direction. As a minor objective,
the number of remaining extreme points are minimized. Our implementation features
orientation of rectangles.

Objects are placed into a one-sided open container of cells. This is done by setting
the respective cells to the id of the object. The resulting set of extreme points is com-
puted in the update procedure. While objects have to fit wrt. the x- and y-dimension
of the container, they are allowed to exceed the x-dimension. At the end of the rollout
procedure, all cells of the container are cleared.

Furthermore, packing is a global variable or the parameter and includes the object,
its location, and its orientation. Copying of pol and policy is already done in the search
procedure Fig. 2. We need a temporary, which makes the code harder to read.

For the packing problem, similar to the finding in Morpion solitaire [21], adjacencies
are less important compared to absolute coordinates. In an existing policy P rollouts
children s′ for a node s are chosen wrt. eP (s,s′). The choice of successors is done using
a roulette wheel fitness selection based on these values. Initially, the all policy values are
set to 0. As the entire state-to-state table surely is too big, it is projected to an essential
part to be learnt.
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Fig. 4. Solutions to two square packing problems (for 25 objects). The 1 × 1 square is removed
from the input and assumed to fit.

Given a packing that improves the current best cost value, policy adaptation (see
Figure 3, right) performs gradient decent as follows. The sequence of children s′ =
(s′0, . . . , s

′
l) of states s = (s0, . . . , sl) with si+1 = s′i has the probability Prob(s, s′) =

∏l
j=0 e

P (sj ,s
′
j)/
∑l

i=0 e
P (sj ,s

′
i). The gradient of the logarithm at j of this term is 1 −

eP (sj ,s
′
j)/
∑l

i=0 e
P (sj ,si), so that we add α to the best chosen successor and subtract

α · eP (sj ,s
′
j)/
∑l

i=0 e
P (sj ,s

′
i) from the others, where α is a factor for accelerating the

learning process. This ensures that policy adaptation increases the probability of the
solution sequence. The policy learned is a mapping from objects together with their
orientation to the y- and z- coordinates.

Policies are copied top-down, adapted bottom-up, and improved while progressing
from one successor to its sibling.

Solutions for packing the squares 1×1 to 22×22 into a box of size 31×69 problem
and for packing squares 1× 1 to 25× 25 into a box of size 43× 129 problem are shown
Figure 4. In the discretization objects are represented by their boundary surfaces. This
makes intersection tests easier.

6 Experiments

Our GNU C/C++ single-core implementation consist of less than 400 LOC1. It is
generic and supports 2D and 3D non-oriented and oriented packings. (The support of
higher dimensions would only require different projection and intersection functions.)
Benchmarking is made possible by changing compiler-time options. For square packing
we extracted a Java program with 200 LOC. (To our surprise it was competitive with
the C/C++ implementation).

All experiments ran on an Intel(R) Core(TM) i5-2520M CPU at 2.5 GHz running
Ubuntu 11.10 (oneiric). The computer was equipped with 8 GB RAM. The memory
requirements of our NMC implementation are negligible and dominated by the size of
the board and the policy. The objective (cost) function is to minimize the total height of

1 This is only an indicator for the simplicity of the implementation (and maybe parallelization).
Of course this does not imply much, nor is it a necessary property.
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the packing. We included the number of extreme points to aid the optimizer to continue
search for tight packings.

6.1 2D Packing

For 2D rectangle packing we look at Korf’s square packing instances [15,16]. These
combinatorial problems are defined as constraint satisfaction and not as a strip packing
minimization problems. Nonetheless, with our general approach we could solve several
benchmark problem instances within an NRPA search with 6 levels and 20 iterations.
(namely – form N : L × B (time/rollouts) – 2 : 2 × 3 (0.1s/1), 3 : 3 × 5 (0.1s/1), 4 :
5× 7 (0.1s/2), 5 : 5× 12 (0.1s/13), 6 : 9× 11 (0.1s/50), 7 : 11× 14 (0.1/48), 8 : 14× 15
(0.2s/3728), 9 : 15×20 (0.2s/8502), 10 : 15×27 (0.1s/97), 11 : 19×27 (55s/3520193),
12 : 23 × 29 (8s/329903), 13 : 22 × 38 (4s/8557), 14 : 23 × 45 (11s/335798), 15 :
23 × 55 (3s/1947), 16 : 28 × 54 (1m31s/1658002), 18 : 31 × 69 (31.4s/463297), 20 :
34× 85 (23m15s/3483648), and 22 : 39× 98 (49m26s/4418323)). We always took the
larger container size value as being undefined. With this search we could not solve the
instances 17 : 39 × 46 19 : 47 × 53, 23 : 64 × 68 24 : 56 × 88, and 25 : 43 × 1292.
Korf’s approach is based on heuristically guided depth-first branch-and-bound search
with a lower bound for computing wasted space based on a reduction to bin packing.
As we leave the container open, we do not rely on wasted space computations.

Alternative approaches for non-square problem have been addressed by [13] and
high precision rectangles have been considered by [19,12].

6.2 3D Packing

For 3D packing we generated randomly sized 3D objects. The sizes of the objects were
random choices in [1..Xmax/2]× [1..Ymax/2]× [1..Zmax/2]. As Xmax was unknown,
we used Ymax instead. As the interpretation of an ASCII output of the solution is lim-
ited, we used gnuplot to visualize the three dimensional outcome of the NRPA opti-
mization process. A simple packing example is shown in Fig. 5 (left).

In small to moderate benchmarks we tested the effect of varying the parameters of
the search, namely the level and the iterations. Table 1 shows the obtained quality in
terms of the cost function, and Table 2 provides the according runtimes. We see that a
shallow search lead to smaller runtimes and still good results.

Table 1. Solution quality in terms of the cost function value obtained by NRPA search for the
oriented packing problem with Ymax = Zmax = 10 averaged over 5 trials

n 10 15 20 25 30 35 40 45 50
5,7 4418.4 6629.0 8438.6 9853.0 11862.8 14267.8 15882.2 18283.4 20287.4

4,10 4420.6 6633.8 8639.6 9847.8 12659.8 14283.8 16082.8 18682.4 20694.8
3,22 3819.2 6027.6 8039.6 10044.4 11658.2 13672.6 15273.2 17886.4 20096.0
2,100 3819.0 5828.8 7831.4 9241.2 12459.6 12461.2 16271.6 16472.2 19290.8

2 We found a typo in Korf’s report as the first 21 square boxes exceed a container of size 38×85.
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Table 2. Runtimes of NRPA search of the oriented packing problem with Ymax = Zmax = 10
averaged over 5 runs

n 10 15 20 25 30 35 40 45 50
5,7 16.4s 34.0s 1m3.0s 1m37.8s 2m24.6s 3m26.6s 4m37.8s 6m1.0s 7m50.8s
4,10 7.4s 17.0s 31.6s 53.4s 1m19.6s 1m55.8s 2m35.6s 3m26.0s 4m26.4s
3,22 5.6s 14.2s 29.0s 49.6s 1m16.8s 1m53.6s 2m33.6s 3m27.8s 4m33.0s

2,100 4.0s 11.8s 24.0s 44.4s 1m10.6s 1m44.2s 2m26.2s 3m18.2s 4m23.2s

In Fig. 5 (right) we show four learning curves of an NRPA search with 2 levels, 100
iterations, and up to 200 objects. The experiment with 100 iterations took 24m34s, the
one with 150 68m10s, and the one with 200 152m21s.

Fig. 5. Visualization of a sample 3D packing of a simple instance (left); learning curves for
NRPA for a varying number of oriented objects (right, n = 50, 100, 150, 200 read from bottom
to top). The x-axis is the number of rollouts, the y-axis denotes the obtained solution quality in
terms of the cost function.

By reducing the number of rollouts, we could scale the algorithm to optimize pack-
ings of 1000-2000 boxes and more, and thus we can handle packing problems for
industrial-sized containers. The time complexity for the rollout operation is substan-
tial, so we can only run a smaller number of rollouts (depending on the time provided).
However, this is already sufficient for first optimizations as NRPA is anytime.

7 Related Work

Recently, Monte-Carlo tree search has been applied to routing problems. For example,
NRPA search has also applied to efficiently solve the well-known Traveling Salesman
Problem with Time Windows (TSPTW) optimal or very close to the optimum for small
problem instances with up to 50 cities [4]. For the TSP, the result of a rollout is a (possi-
bly constraint violating) tour. The policy provides information of how good an adjacent
pair of city and successor city performs in a tour. Good performing pairs are preferred
in the rollout. If hard constraints such as time windows and capacity constraints are not
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satisfied within a tour, the costs increase significantly for each violation. Consequently,
the algorithm minimizes constraint violations with highest priority. Algorithmic refine-
ments to accelerate the search are provided by [9]. This approach has been extended
to solve single-vehicle pickup and delivery problems with time windows and capacity
constraints with up to 200 cities to be visited.

There are several heuristic approaches from operations research to solve variants
of the container loading problems [1,22,7,18,14,10], but they often have difficulties to
scale to a larger number of objects, and do not cover orientation.

2D rectangle intersection for n objects can be tested by a divide-and-conquer ap-
proach in O(n lg n) time [11]. The drawback is that intersections are detected only
after all rectangles are placed leading to many invalid placements during the rollout.
In 3D the axis-aligned bounding boxes (AABB-AABB) algorithm is practically fast,
but requires O(n2) for the test. There is also the option of using range trees (with
fractional cascading) for a query time of O(lg2 n), the time for construction the range
tree, however, raises to O(n lg2 n) and is not incremental. Moreover, the algorithm is
involved [6].

In general, the logistic process chain of handling consumer goods in a distribution
center is to unload them from a carrier, to sort sometimes store and finally distribute
them. Transportation is the linking process of these steps. Carrier of the arriving goods
are commonly pallets or, if the goods are loaded loosely, containers or trucks. There is
a variety of solutions for the automation of most of the tasks mentioned above, except
the unloading process. The manual execution of this process, is a very tiring and not
ergonomically activity, because there are many recurring movements and manipulation
of goods with high weight.

In order to enable the automation of unloading palletized goods, the system Robot
Cell Light3 might be used. The loaded pallet has to be put manually inside the system.
After the process has been started, it unloads the goods independently of the packing
pattern, layer by layer and separates them while they are dropped on a conveyor. The
separation allows further logistics processes like label reading, measurement of its vol-
umes or sorting. The goods that might be unloaded with this system have to have a
closed and flat surface, like e.g. catalogues or parcels.

The unloading of loose and cubic goods is the mission of the system Parcel Robot4.
This robot has an innovative kinematics that allows a higher performance than standard
robots. Instead of gripping a parcel and transport around its own axis in order to drop
it on a conveyor, this kinematics allows the system to drop a gripped parcel underneath
itself. The parcels have to have a closed surface and a maximum weight of 31.5kg.
Mounted on a steerable platform, which banks the system to the unloading position
inside a truck or container, the system can unload up to 480 parcels per hour.

The work by Lim and Ying [17] proposes a new method for the 3D container packing
problem that deviates from the traditional approach of wall building and layering. It uses
the concept of building growing from multiple sides of the container. The idea of this
3D packing algorithm comes from the process of constructing a building. Boxes are
placed on the wall of the container first as it builds the basement on the ground. After
which, other boxes will be placed on top of the basement boxes. Following this process,
boxes will be placed one on top of another. Every wall of the container can be treated
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as the ground for boxes to stack on. One drawback of the approach is that it does not
consider gravity constraints.

Crainic et al. introduce the extreme point concept and present a new extreme point-
based rule for packing items inside a three-dimensional container [5]. The extreme point
rule is addressed independently of the particular packing problem and can handle ad-
ditional constraints, such as fixing the position of the items. The extreme point rule is
also used to derive new constructive heuristics for the three-dimensional bin-packing
problem. This rule was used in the space defragmentation heuristic [23].

8 Conclusion

In this paper we have seen a novel approach to solve multi-dimensional packing prob-
lems by applying nested Monte-Carlo tree search with policy adaptation. Our optimiza-
tion algorithm is based on a combination of random choice and machine learning and
yields a trade-off between state space exploitation and exploration.

The implementation is flexible: It can handle additional placing constraints as well
as alternative orientation. The obtained solution quality in a series of benchmarks is
promising and calls for further refinements. One core advantage of the search is the
anytime behavior: after the first random run a feasible packing is known. Another im-
portant feature are the low memory requirements. Only the amount of space for storing
the packing and the policies at each level of the search and all container cells have to be
present. As some rollouts can be executed in parallel, an implementation on a multi-core
CPU and a many-core GPU appears to be possible. So far we worked on single-threaded
implementation and experimented with several processes executed in parallel.

There are many interesting problems to be solved in container packing. Iso-oriented
boxes and the restriction to six possible orientations might be too inflexible, so that
different angles and placements based on a CAD model of the object are of interest.
Here we can foresee the potential of the randomized search approach.

Especially the inclusion of dynamics is crucial. If only parts of the conveyor belt are
accessible, we have an on-line instead of an off-line optimization problem for which an
algorithm with a good competitive ratio has to be designed. Additionally to the packing
there might also be ordering constraints, due to the partial delivery of products to the
customers. If customer A is visited before customer B on a delivery tour, the objects
should be placed in a way that it should be possible to unpack objects for A without
moving packages for B.

In conclusion, our 3D packing approach is another example of successfully applying
randomized combinatorial search to the domain of logistics. For the future, we expect to
attack other optimization problems with Monte-Carlo tree search, where local search,
branch-and-bound search, and mathematical programming together with several model-
based and algorithmic improvements are currently the options of choice.
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Abstract. Domain-independent planning in general is broadly appli-
cable to a wide range of tasks. Many formalisms exist that allow the
description of different aspects of realistic problems. Which one to use is
often no obvious choice, since a higher degree of expressiveness usually
comes with an increased planning time and/or a decreased policy quality.
Under the assumption that hard guarantees are not required, users are
faced with a decision between multiple approaches. As a generic model we
use a probabilistic description in the form of Markov Decision Processes
(MDPs). We define abstracting translations into a classical planning for-
malism and fully observable nondeterministic planning. Our goal is to
give insight into how state-of-the-art systems perform on different MDP
planning domains.

1 Introduction

Domain-independent planning is used to solve problems from various domains,
including tasks from real-world robotics applications. Often, such tasks feature
aspects that go beyond classical planning, such as nondeterministic or probabilis-
tic effects, partial observability, etc. However, when modeling a problem, there
is a tradeoff between modeling as many of these aspects as possible and finding
solutions fast. Different existing planning formalisms capture different (combina-
tions of) aspects of real-world problems. Modeling and abstracting away different
aspects, they also induce different solution concepts. Which formalism is the best
for a specific problem is not always obvious. As long as the application allows
it, a less expressive formalism is chosen often in practice.

In this work, we study the question how to best deal with probabilistic action
outcomes when modeling and solving a planning task. Classical planning formu-
lations only model deterministic actions. They are often used by embedding the
planner in an execution-monitoring-planning loop that replans on unexpected
outcomes. Fully observable nondeterministic (FOND) planning explicitly con-
siders nondeterministic actions and produces strategies that guarantee to reach
a goal. Probabilistic planning additionally considers outcome probabilities and
aims to maximize the expected accumulated reward.
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Since different formulations give different guarantees on the solution, an en-
tirely fair comparison is impossible. We therefore compare classical planning,
FOND planning and probabilistic planning experimentally and emphasize dif-
ferences in solution quality, planning time and the ability to avoid deadend
states of the considered algorithms. Since our planning systems [7,16,11] require
different levels of abstraction regarding the input, we also provide abstracting
translations between the planning formalisms.Our goal is to show how state-of-
the-art planning systems cope with different problems in a realistic setting, a
problem that users are commonly faced with when applying planning to solve
actual tasks, which also sheds some light on claimed advantages in speed or
solution quality.

We model three domains: one originally used in probabilistic planning, one
from FOND planning, and a classical planning domain that is derived from a
robotic planning scenario. Probabilistic action outcomes of the latter two are
added in a first step, such that all domains are available as a Factored MDP
[1]. These are then translated into corresponding FOND and classical planning
formulations following the set of rules described in Sec. 4, and evaluated with
three state-of-the-art planning systems in Sec. 5. Prior to that, we describe
related work and give formal definitions for the used planning formalisms.

2 Related Work

Classical planners have been successfully integrated in robotic systems – a real-
world domain known for unexpected outcomes. Kaelbling et al.[8] developed a
robot planning system that integrates task and motion planning. This system
uses a hierarchical regression planner where a refined prefix is executed directly.
They argue that “there are few catastrophic or entirely irreversible outcomes”.
Following similar arguments, Nebel et al. [18] and Keller et. al [12] demonstrate
how a classical planner embedded in a continual planning loop solves complex
mobile manipulation tasks on a robot. Replanning is used to deal with execution
failures and unexpected situations. In their KVP system, Gaschler et al. [4]
combine the power of a symbolic planner with efficient geometric computations
to create a framework for knowledge based planning in a real robot environment.

In recent years, nondeterministic planners have been improved in efficiency.
Recently, compilation approaches that compute strong cyclic plans with classical
planners became popular [14,3,17]. Mattmüller et al. [16] show how pattern
database heuristics can be used in fully observable nondeterministic domains to
guide the search more efficiently towards goal states. Little and Thiébaux [15]
investigate the notion of probabilistic interestingness, where they investigate
the effectiveness of replanning or compilation approaches to solve probabilistic
planning tasks. Keller and Eyerich [11] developed Prost, a domain independent
probabilistic planning system based on the UCT� algorithm [13], which is able
to improve the quality of the solution policy by identifying unreasonable actions
and actively searching for dead ends and goals in the MDP with a reward lock
detection procedure.
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3 Planning Formalisms

In this section, we describe the planning formalisms we use to specify classical,
FOND, and probabilistic planning tasks.

3.1 Classical Planning

A classical SAS+ planning task is a tuple Π = 〈V , s0, s�,O〉 consisting of the
following components: V is a finite set of state variables v, each with a finite
domain Dv and an extended domain D+

v = Dv � {⊥}, where ⊥ denotes the
undefined or don’t-care value. A partial state is a function s with s(v) ∈ D+

v for
all v ∈ V . We say that s is defined for v ∈ V if s(v) �= ⊥. A state is a partial
state s that is defined for all v ∈ V . The set of all states s over V is denoted as
S. Depending on the context, a partial state sp can be interpreted either as a
condition, which is satisfied in a state s iff s agrees with sp on all variables for
which sp is defined, or as an update on a state s, resulting in a new state s′ that
agrees with sp on all variables for which sp is defined, and with s on all other
variables. The initial state s0 of a problem is a state, and the goal description s�
is a partial state. A state s is a goal state iff s� is satisfied in s. O is a finite set
of actions of the form a = 〈pre, eff 〉, where the precondition pre and the effect
eff are partial states. The application of an outcome eff to a state s is the state
app(eff , s) that results from updating s with eff . An action is applicable in s iff its
precondition is satisfied in s. The application of a to s is app(a, s) = app(eff , s)
if a is applicable in s, and undefined otherwise. Solutions to a classical planning
task Π = 〈V , s0, s�,O〉 are plans, i.e. sequences of a0, a1, . . . , an, where ai ∈ O,
i = 0, . . . , n, ai is applicable in si, app(eff i, si) results in si+1 for i = 0, . . . , n−1,
and s� is satisfied in sn+1.

3.2 Nondeterministic Planning

A fully observable nondeterministic (FOND) SAS+ planning task is a tuple
Π = 〈V , s0, s�,O〉 with the same V , s0, and s� as a classical planning task
and nondeterministic actions O of the form a = 〈pre,Eff 〉 with preconditions
pre as before, but finite sets Eff of possible effects, the nondeterministic out-
comes of a. Each eff ∈ Eff is a partial state as before. The application of a set
Eff to a state s is the set of states app(Eff , s) = {app(eff , s) | eff ∈ Eff } that
might be reached by applying a nondeterministic outcome from Eff to s. The
application of a to s is app(a, s) = app(Eff , s) if a is applicable in s, and unde-
fined otherwise. Solutions to a planning task Π are now strategies, i.e., mappings
π : Sπ → O ∪ {⊥} for a set of states Sπ ⊆ S such that π(s) = ⊥ iff s is a goal
state and that for all nongoal states s in Sπ, the action π(s) is applicable in s
and Sπ contains all states in app(π(s), s). A strategy π is a strong cyclic plan
(“trial-and-error strategy”) for a planning task Π iff s0 ∈ Sπ and for each state
s reachable from state s0 following strategy π, a goal state is reachable from s
following strategy π.
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3.3 Probabilistic Planning

A factored, finite-horizon MDP [1] with initial state and goal is a seven-tuple
〈V ,O, s0, s�, P,R,H〉, where the set of states S is induced by the set of state
variables V and the remaining steps h ∈ {0, . . . , H} as S = 2V × {0, . . . , H}. O
is a finite set of actions, s0 ∈ S is the initial state, s� is a goal description as
above, P : S×O×S → [0, 1] is the transition function which gives the probability
P (s′|a, s) that applying action a ∈ O in state s ∈ S leads to state s′ ∈ S,
R : S ×O → R is the reward function, and H ∈ N is the horizon which specifies
the number of decisions before each run terminates. For the purpose of this
paper, we assume that the reward function has a special structure, specifically
that the reward reflects (unit) action costs and numbers of unsatisfied goals.
More formally, we let unsat(s) be the number of variables v such that s�(v) is
defined and s(v) �= s�(v). Then, R(s, a) = −(unsat(s) + 1), if s is not a goal
state, and R(s, a) = 0, otherwise.

4 Translation between Planning Formalisms

Conversion from the probabilistic MDP formalism to the nondeterministic and
classical planning formalism follows a set of rules that we present here. The
conversion process could be completely automated and does therefore not require
any domain-specific knowledge. However, in this paper we convert the domains
manually following those rules.

All three planning formalisms work on the same finite set of states S. Given
the goal specification for an MDP is derived from a partial state s� as described
in Sec. 3.3, we use that same partial state s� as the goal state for classical and
FOND planning. The major differences in the formalisms now lie in how actions
and action costs are derived from a given MDP.

4.1 Translating MDP to FOND Planning

An MDP action a is translated to a set of FOND actions. First, we compute all
possible predecessors, in which a could have been applied.

Pre = {s|P (s′|a, s) > 0; s, s′ ∈ S} (1)

Each such state potentially can produce multiple outcomes. We obtain a set of
effect states Eff i for each state prei ∈ Pre.

Eff i = {s′|P (s′|a, prei) > 0; s′ ∈ S} (2)

For each state prei ∈ Pre we produce a FOND action with outcomes Eff i, so that
the MDP action a results in a set of FOND actions {〈prei,Eff i〉|prei ∈ Pre}. The
actions obtained with these rules have full states as preconditions and effects.
However, logical simplifications can drastically reduce the number of generated
actions by summarizing the full states into partial states. In practice often one
MDP action translates to one FOND action.
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4.2 Translating MDP to Classical Planning

For converting MDP actions to classical actions we determine predecessors prei ∈
Pre and effect outcomes Eff i from an MDP action a analogously to the FOND
translation. In contrast to FOND, classical actions allow only one deterministic
effect eff . There are two commonly used determinizations: all-outcome deter-
minization and most-likely determinization. Both assume that a specific effect
can be chosen and plan accordingly.

An all-outcome determinization creates a separate classical action for each
possible effect eff ∈ Eff i. For each action in the MDP, we therefore obtain a set
of actions with an entry for each predecessor prei ∈ Pre:

{〈prei, eff 〉|eff ∈ Eff i} (3)

Even though there are techniques that only lead to a polynomial blowup of
the number of actions in the determinization [10], this can still be prohibitively
large in practice. An alternative is the most-likely determinization, which only
considers the effect with the highest probability. For a predecessor prei ∈ Pre
the most-likely effect eff max is determined from all possible outcomes Eff i.

eff max = argmax
eff∈Eff i

P (eff |a, prei) (4)

Now for each predecessor prei ∈ Pre only a single most-likely action is created as
〈prei, eff max〉. Similarly to FOND we apply logical simplifications when possible
to reduce the number of distinct actions for both determinizations.

As planners aim for minimal cost plans a meaningful action cost that considers
the operator cost and probability p = P (eff |a, prei) for an all-outcome operator,
or p = P (eff max|a, prei) for a most-likely determinized operator is beneficial to
improve the quality of resulting plans. Under the assumption that either that
outcome happens with probability p or the state is unchanged with 1 − p, we
use the expected cost, when retrying an action with unit cost until the desired
outcome is reached. ∞∑

i=1

(1 − p)i−1 · p · i = 1

p
(5)

If action outcomes with unit cost have probability p we therefore use 1
p as the

operator cost in the classical planning formulation. Other examples for combining
operator cost and probability are to use the negative logarithm of p, which
produces the most-likely plans (ignoring cost) or a weighted combination of
cost(a) and − log(p) [9].

4.3 Theoretical and Practical Properties of Translations and
Planning Algorithms

Classical planning, FOND, and probabilistic planning differ both in their the-
oretical and their practical computational properties. On the theoretical side,
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classical planning with all-outcome determinization, FOND planning and prob-
abilistic planning are guaranteed to preserve MDP goal paths in the translated
model. For classical planning with most-likely determinization, this is not the
case. All goal paths can be lost in the determinization. Classical planning with
all-outcome determinization and probabilistic planning have the property that
MDP plan existence implies that the translated models still have solutions. Clas-
sical planning with most-likely determinization and FOND planning do not have
this property. The major advantage of probabilistic planning is the guarantee
to find a reward-optimal solution in the limit of long deliberation time per step.
None of the other approaches has the same guarantee. On the other hand, given
that we usually do not compute optimal MDP policies online, offline FOND
planning is the only approach that is guaranteed to avoid dead-ends at execution
time. It does so at the expense of a significant amount of offline planning time
that the other approaches avoid. Finally, at execution time, the high offline plan-
ning time is compensated for by fast state-action table lookups. Online planning
speed (average response time) of classical (re-)planning and online probabilistic
planning are incomparable, since the latter can use an arbitrary timeout for each
step and return the best action so far, whereas classical planning has to expend
at least the amount of time necessary to find some classical plan.

5 Evaluation

We use three different domains, each one originating from a different planning
formalism to give a balanced evaluation. Each domain has been formulated as a
factored MDP and was translated to classical and FOND planning.

5.1 Domains

MobileManipulation. In the MobileManipulation domain, an autonomous
service robot operates in a house. The robot is equipped with two arms and
sensors to perceive the environment. There are multiple rooms with a number of
objects located on tables. The goal is to tidy up the rooms, i.e. find all objects,
pick them up and bring them to a specified destination table. In addition all
tables should be wiped clean. Within a room, the robot can move freely between
tables. Between rooms doors might need to be opened. The robot traverses
through open doors with arms either close to the robot body or not. With
retracted arms, success probabilities are higher (0.9 in comparison to 0.4). When
close to a table the robot can choose to perceive object locations increasing the
success probabilities for manipulation actions from 0.3 to 0.9. Objects can be
picked up with either hand and brought to any table. Manipulation can go wrong,
as the robot might be unable to grasp an object or might topple another object
on the table. Should an object happen to fall to the floor, the robot will not be
able to recover it. Only tables cleared of all objects can be wiped with a sponge.

TriangleTireworld. The TriangleTireworld domain was introduced by Little
and Thiébaux [15] and is a special case of the IPC Tireworld domain, in which
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a car has to drive from an initial to a goal location along directed edges. In
each step, a tire can go flat probabilistically (we use p = 0.2). Before moving
further, it has to be fixed, which is only possible if a spare tire is present in the
current location. Only a subset of the locations contain a spare, so success is
only guaranteed if the car follows a path such that every location along the path
(except the goal) has a spare. The TriangleTireworld domain is designed
for offline planners to outperform replanners. This is achieved by requiring a
particular structure of the roadmap graph: The locations form a triangle with
corners A, B and C, the start is A, the goal is B, and the only safe path with
spares in all locations is the maximal detour from A via C to B. Replanners
trying to find shortest paths from A to B have a high probability of getting stuck,
whereas offline planners should find and follow the only safe path. Instances of
the TriangleTireworld domain vary in their numbers of locations.

EarthObservation. The EarthObservation domain models a satellite orbit-
ing the earth. It can take pictures of the landscape below with a camera. The
landscape is subdivided into square regions of interest forming a grid wrapped
around a cylindrical projection of the earth surface. The camera focuses on one
region at a time and can be shifted north or south. It can take a picture of the
region currently in focus. The focus may not be shifted while taking a picture.
Regardless whether the focus is shifted or a picture is taken, the satellite travels
eastward around the earth, shifting the focus one grid cell to the east in addi-
tion to the other effects in each step. The objective is to take pictures of certain
regions in a limited timeframe with as few shifts as possible. Taking a picture
of a region does not guarantee good image quality: the worse the weather, the
lower the chance of success. Over time the visibility in each region can change
probabilistically, and changes between similar levels of visibility are more likely
than vast changes. Apart from the weather change probabilities, which vary be-
tween 0.01 and 0.5, instances of the EarthObservation domain differ in the
numbers of grid cells and imaging objectives.

5.2 Planners

We use state-of-the-art planners from the field of classical planning (Fast Down-

ward), fully observable nondeterministic planning (myND) and probabilistic
planning (Prost). We give a short overview of the underlying approaches.

Fast Downward. For classical planning, we use the Fast Downward plan-
ning system [7] in the LAMA 2011 configuration. In this setting, the planner
first looks for a suboptimal plan with Greedy Best First search. When a plan is
found, the search engine is switched to weighted A* to look for plans of higher
quality. We let the planner search until an optimal plan is found or the timeout
of 90 seconds is reached. Since we only produce classical plans for probabilistic
problems, we have to deal with unexpected results when executing a plan on
the plan simulator. Therefore, we wrap an execute-monitor-replan loop around
Fast Downward. When monitoring determines that a plan is invalid, a new
planning process is initiated for the current situation.
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myND. For offline planning, we use the FOND variant of the myND planner [16]
that uses LAO* search [5] guided by the canonical PDB heuristic [2,6]. We use
the goal variables as singleton patterns for the pattern collection. The planner
outputs strong cyclic plans in the form of state-action tables that are then in-
terpreted by an execution simulator. For each single planning task, we set an
offline planning time limit of 30 minutes. Lookup times during plan simulation
are negligible.

Prost. We use the Prost planning framework [11] for MDP planning, equipped
with the UCT� algorithm [13] as used in the configuration that won IPPC 2014.
This search procedure combines dynamic programming, heuristic search and
Monte-Carlo tree search to an algorithm that is asymptotically optimal in the
limit, but which is also able to make decisions under tight time constraints in
an online fashion. In our experiments, a time limit of one second per simulation
step was used. The heuristic is the base heuristic of Prost [11], which is based
on an iterative deepening search in the most-likely determinization.

Table 1. Average response time and rewards for the EarthObservation domain, the
average of 100 runs is shown. Time values for myND include offline planning time.

Response Time [s] Reward
eff max myND eff max myND Prost

1 8 ± 4 1 -151 ± 72 -66 ± 8 -62 ± 17
2 1 ± 1 0 -9 ± 3 -11 ± 6 -9 ± 4
3 16 ± 3 1 -391 ± 103 -109 ± 34 -85 ± 25
4 124 ± 93 3 -1141 ± 24 -399 ± 56 -355 ± 65
5 75 ± 31 3 -894 ± 35 -294 ± 64 -283 ± 46
6 9 ± 4 0 -172 ± 80 -126 ± 29 -67 ± 14
7 6 ± 3 0 -86 ± 39 -46 ± 14 -48 ± 16
8 3 ± 2 0 -16 ± 8 -10 ± 5 -10 ± 6
9 41 ± 6 2 -908 ± 146 -290 ± 94 -172 ± 35

10 39 ± 33 156 -2203 ± 18 -885 ± 187 -677 ± 97
11 1 ± 1 0 -10 ± 5 -15 ± 8 -18 ± 15
12 57 ± 12 4 -1191 ± 93 -301 ± 54 -237 ± 45
13 163 ± 53 15 -1481 ± 146 -341 ± 74 -275 ± 47
14 38 ± 8 2 -614 ± 160 -179 ± 44 -165 ± 68
15 128 ± 100 40 -2717 ± 61 -1015 ± 277 -826 ± 148
16 3 ± 1 0 -24 ± 10 -20 ± 7 -18 ± 9
17 478 ± 192 102 -2316 ± 125 -646 ± 200 -416 ± 76
18 230 ± 78 15 -1807 ± 80 -527 ± 111 -394 ± 81
19 466 ± 154 90 -2038 ± 116 -604 ± 202 -497 ± 90
20 101 ± 74 52 -2871 ± 29 -1144 ± 219 -814 ± 151
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Table 2. Average response time and rewards for the MobileManipulation domain,
the average of 100 runs is shown. Time values for myND include offline planning time.

Response Time [s] Reward
Eff � eff max myND Eff � eff max myND Prost

1 3 ± 1 2 ± 0 1 -27 ± 1 -27 ± 1 -27 ± 1 -75 ± 44
2 16 ± 6 7 ± 3 1 -82 ± 7 -81 ± 4 -84 ± 4 -218 ± 92
3 109 ± 34 34 ± 9 143 -134 ± 11 -132 ± 8 -156 ± 7 -419 ± 18
4 125 ± 45 113 ± 54 3 -123 ± 7 -127 ± 6 -146 ± 6 -396 ± 72
5 367 ± 187 218 ± 88 4 -190 ± 13 -191 ± 9 -217 ± 10 -805
6 530 ± 195 335 ± 127 5 -283 ± 16 -279 ± 11 -286 ± 14 -1005
7 312 ± 165 223 ± 109 3 -187 ± 14 -184 ± 7 -240 ± 8 -805
8 470 ± 193 299 ± 132 11 -307 ± 32 -278 ± 11 -310 ± 8 -1505
9 613 ± 259 492 ± 175 14 -413 ± 18 -421 ± 18 -460 ± 17 -1805

10 1106 ± 244 611 ± 291 134 -604 ± 59 -967 ± 656 -645 ± 18 -2105

5.3 Experiments

In this paper we compare three planning paradigms that not only differ in their
expressivity but also have unique plan representations. To find common ground
to evaluate the quality of the produced plans we use Scott Sanner’s rddlsim1,
the simulator of the International Probabilistic Planning Competition (IPPC).
For each of the three planning domains we provide between 10 and 20 instances
to be solved. Every instance is simulated 100 times with a timeout of 30 minutes
per instance. For each domain and planning formulation we record the number
of dead ends, the average response time and the average reward for each instance
when no dead end was reached. The average response time is the accumulated
time to produce an action for a simulation run. For the Classical formalization
solved by Fast Downward we denote the all-outcome determinization as Eff �
and the most-likely determinization by eff max in tables.

The EarthObservation domain does not have dead ends. The all-outcome
determinization ran into memory limitations and thus was not applicable. Re-
sponse times and rewards are given in Tab. 1. Since Prost is an online planner,
its planning time per decision is a parameter and hence not illustrated in any of
our Tables (we set it to one second per step). Classical and FOND planning are
more dependent on the problem structure as they have to find a plan first. The
most-likely determinization here suffers from the problem that the most likely
result for taking an observation with bad weather is that no picture is taken.
Thus as long as there is one patch with bad weather no proper plans are found.
The rewards in Tab. 1 illustrate this clearly. myND and Prost perform better
than the most-likely determinization.

We see a different effect for the MobileManipulation setting. Obviously,
myND never ends up in a dead-end (see Tab. 4), but the most-likely deter-
minization is also well-suited to avoid this case. This is due to the fact that
the most likely outcome of ’risky’ actions always leads to a dead-end, so Fast

1 https://code.google.com/p/rddlsim/
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Table 3. Average response time and rewards for the TriangleTireworld domain,
the average of 100 runs is shown. Time values for myND include offline planning time.

Response Time [s] Reward
Eff � eff max myND Eff � eff max myND Prost

1 0 0 0 -2 -2 -5 -5 ± 1
2 0 0 0 -4 -4 -12 -9 ± 1
3 1 1 0 -6 -6 -19 ± 2 -14 ± 1
4 1 1 2 -8 -8 -25 ± 1 -21 ± 2
5 2 1 5 -10 -10 -31 ± 2 -28 ± 2
6 2 1 10 -12 -12 -37 ± 1 -31 ± 2
7 5 2 78 -14 -14 -44 ± 2 -36 ± 2
8 16 2 n/a -16 -16 n/a -41 ± 3
9 60 3 n/a -18 -18 n/a -45 ± 2

10 94 3 n/a -20 -20 n/a -52 ± 3
11 97 5 n/a -22 -22 n/a -57 ± 3
12 99 7 n/a -24 -24 n/a -60 ± 3
13 100 8 n/a -26 -26 n/a -66 ± 3
14 102 10 n/a -28 -28 n/a -70 ± 3
15 103 13 n/a -30 -30 n/a -76 ± 3

Table 4. These tables show, how many deadends were reached in 100 iterations for
the MobileManipulation (left) and TriangleTireworld (right) domains

Eff � eff max myND Prost

1 0 0 0 0
2 29 0 0 0
3 56 0 0 0
4 68 0 0 0
5 88 0 0 0
6 67 0 0 0
7 20 0 0 0
8 52 0 0 0
9 76 0 0 0

10 78 0 0 0

Eff � eff max myND Prost

1 15 15 0 0
2 41 41 0 0
3 62 62 0 0
4 79 79 0 0
5 86 86 0 1
6 90 90 0 2
7 95 95 0 0
8 96 96 n/a 4
9 97 97 n/a 0

10 98 98 n/a 20
11 99 99 n/a 9
12 99 99 n/a 9
13 99 99 n/a 2
14 99 99 n/a 2
15 99 99 n/a 10

Downward never considers this option. Prost performs comparably bad in
the MobileManipulation domain since its heuristic maximizes the reward in
the next couple of steps rather than lead it to a goal state. Unlike the other
domains, a large number of actions must be performed until there is a positive
effect on the reward formula. Starting with instance five, it doesn’t perform any
meaningful actions. Response times in Tab. 2 show that the myND planner is
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consistently faster besides problem three, while the rewards are similar for all
planners but Prost.

For the TriangleTireworld domain we observe that classical planning
runs into dead-ends early on, while Prost solves most problems such that no
or only a few runs end in a dead end state (see Tab. 4). The response times in
Tab. 3 show the expected behavior on this domain for those runs not leading to
a dead end. No FOND strategy could be found for problem instances eight and
higher, while Fast Downward still produces optimistic plans and Prost still
manages to find a safe path to the goal in most instances. Fast Downward

is fastest finding optimal weak plans efficiently being extremely optimistic. The
rewards in Tab. 3 show this explicitly. If a plan was produced the reward always
was maximal. The FOND planner must be pessimistic and thus gains lower
rewards and solves fewer instances. However, there are no dead ends for the
solved problems. In this domain, the tradeoff between dead-end avoidance and
planning time is most obvious.

6 Conclusion

We evaluated three different planning approaches on distinctly different domains
with probabilistic outcomes. Our results indicate that more expressive planning
formulations are not necessarily slower for realistic problem sizes. Each planner
showed different behavior dependent on the specific domain. It should be noted
that classical planning performs faster, when most actions are deterministic.
However, in the presented challenging settings a clear advantage based on com-
putation times cannot be seen. If more expressive features are desired a richer
planning formalism does not need to be prohibitively slow; nondeterministic or
probabilistic planning formalisms can show better overall performance.
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Abstract. Autonomous agents interact with their environments via sen-
sors and actuators. Motivated by the observation that sensors can be
expensive, in this paper we are concerned with the problem of minimiz-
ing the amount of sensors an agent needs in order to successfully plan
and act in a partially observable nondeterministic environment. More
specifically, we present a simple greedy top-down algorithm in the space
of observation variables that returns an inclusion minimal set of state
variables sufficient to observe in order to find a plan. We enhance the
algorithm by reusing plans from earlier iterations and by the use of func-
tional dependencies between variables that allows the values of some
variables to be inferred from those of other variables. Our experimental
evaluation on a number of benchmark problems shows promising results
regarding runtime, numbers of sensors and plan quality.

Keywords: AI planning, nondeterministic planning, partial observabil-
ity, observation actions.

1 Introduction

When an autonomous agent interacts with its environment, it does so via sen-
sors and actuators [8]. We consider an agent acting in a partially observable
nondeterministic environment and equipped with an appropriate offline plan-
ning component. In particular, we consider the sensors this agent needs to be
fitted with. Assuming that sensors are expensive, e.g., regarding power consump-
tion, weight, or financially, it can be worthwhile trying to minimize the set of
sensors necessary to solve a certain planning task. For example, it might turn
out that in some specific robotic application, an RGB-D camera can handle all
the observations a laser scanner would be used for, thus obviating the latter.
In this paper, we study the problem of minimizing the set of necessary sensors,
not the problem of minimizing the number of occurrences of observations in a
plan. This makes a difference, since, e.g., excluding a laser scanner from the set
of sensors makes the robot cheaper, but may lead to more complicated behav-
ior and more compensatory observations at runtime. We simplify the problem
by assuming that the amount of sensors needed is proportional to the number
of variables that may have to be observed. Given a planning domain, this re-
duces our problem to finding a minimal set of (schematic) state variables such
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that every possible planning task from that domain is solvable if those and only
those (schematic) variables are observable. We further simplify our problem by
searching for sufficient sets of (grounded) state variables on the level of planning
tasks instead of the level of planning domains. Strictly speaking, the resulting
set of state variables is only sufficient for one specific planning task. But if that
task is reasonably chosen (featuring all interesting aspects of the underlying do-
main), the set of observation variables found for that task can again be lifted
to the schematic level of the underlying planning domain. Moreover, searching
for sufficient observation variables on the instantiated level has the advantage of
being more fine-grained than searching on the schematic level. This can poten-
tially show that some ground instances of a predicate are necessary observations,
whereas other ground instances of the same predicate are not necessary, possibly
leading to a more fine-grained choice of sensors. Consider for example a nondeter-
ministic version of the Blocksworld domain where the PutOnBlock(A,B)
actions can have the undesired outcome that the moved block A is dropped to the
table. All other actions are deterministic. If the initial state is completely known,
it turns out that it is sufficient to observe the values of the variables Clear(B)
for all blocks B for which an action PutOnBlock(A,B) occurs in the plan for
some other block A. This is because the initial belief state is a singleton belief
state and whenever a nondeterministic action of the form PutOnBlock(A,B)
is applied to a singleton belief state, the resulting belief state will contain exactly
two world states (one with A on B, the other with A on the table) that can be
distinguished by observing the variable Clear(B). Notice that depending on the
initial and goal state, not all instances of the Clear predicate may have to be
observed, but for all nontrivial tasks, at least one of them has to be. Lifting this
back to the domain level shows that observing the schematic Clear predicate
is sufficient to solve all tasks from this domain. Regarding sensors this means
that it is sufficient to install an overhead camera that is only able to observe
if blocks are clear, but not in which configurations they are stacked. To our
knowledge, there is little previous work on this topic. Huang et al. [5] study the
related problem of finding an approximately minimal set of observation variables
for strong planning, given a set of observation variables V (including possibly
derived variables) and a fixed strong plan π that works under the assumption
that all variables from V are observable. Their algorithm then reduces V to a
sufficient subset for π still to work by first identifying all state pairs that need
to be distinguishable for π to work and then identifying all variables from V
necessary to actually distinguish those. Unlike in their approach, here we retain
flexibility regarding the choice of the plan and allow any (strong cyclic) plan to
be found as long as the observation variables found along with it are sufficient
for the plan to be executable.

2 Preliminaries

We formalize partially observable nondeterministic (POND) planning tasks using
a finite-domain representation for the state variables similar to the formalization
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of Ortlieb and Mattmüller [6]. A POND planning task skeleton is a tuple Π =
〈V , B0, B�,A,W〉 consisting of the following components: V is a finite set of
state variables v, each with a finite domain Dv and an extended domain D+

v =
Dv � {⊥}, where ⊥ denotes the undefined or don’t-care value. A partial state
is a function s with s(v) ∈ D+

v for all v ∈ V . We say that s is defined for
v ∈ V if s(v) �= ⊥. A state is a partial state s such that its scope scope(s) = {v ∈
V | s(v) �= ⊥} is V . The set of all states s over V is denoted as S, and the set of all
belief states B over V is denoted as B = 2S . Depending on the context, a partial
state sp can be interpreted either as a condition, which is satisfied in a state s
iff s agrees with sp on all variables for which sp is defined, or as an update on a
state s, resulting in a new state s′ that agrees with sp on all variables for which
sp is defined, and with s on all other variables. The initial belief state B0 and the
goal description B� of a task skeleton are both belief states. A belief state B is a
goal belief state iff B ⊆ B�. A is a finite set of actions of the form a = 〈Pre,Eff 〉,
where the precondition Pre is a partial state, and the effect Eff is a finite set
of partial states eff , the nondeterministic outcomes of a. The application of a
nondeterministic outcome eff to a state s is the state app(eff , s) that results
from updating s with eff . The application of an effect Eff to s is the set of
states app(Eff , s) = {app(eff , s) | eff ∈ Eff } that might be reached by applying
a nondeterministic outcome from Eff to s. An action is applicable in a state s
iff its precondition is satisfied in s, and it is applicable in a belief state B if it is
applicable in all s ∈ B. Actions are applied in belief states and result in belief
states. The application of an action in a belief state B is undefined if the action
is inapplicable in B. Otherwise, the application of an action a = 〈Pre,Eff 〉 to B
is the set app(a,B) = {app(eff , s) | eff ∈ Eff , s ∈ B}. Finally, W ⊆ V is the set
of variables that are possibly observable.

A POND planning task skeleton still lacks observations, which we define next.
An observation is simply a variable o ∈ W . The application of an observation o
to B is the set of nonempty belief states that result from splitting B according
to possible values of o, i.e., app(o,B) = {{s ∈ B | s(o) = d} | d ∈ Do} \ {∅}.
Now, a POND planning task is a tuple Π [O] = 〈Π,O〉 consisting of a POND
planning task skeleton Π and a finite set of observations O. All actions and
observation applications have unit cost. We will sometimes abuse notation and
refer to a planning task by Π as well. POND planning tasks as defined above
induce nondeterministic transition systems where the nodes are the (reachable)
belief states and where there is an arc from a belief state B to a belief state B′

labeled with an action a (or observation o) iff a (or o) is applicable in B and
B′ = app(a,B) (or B′ ∈ app(o,B)). Given a POND planning task, we seek a
strong cyclic plan [2] solving the task, i.e., a partial mapping π from belief states
to applicable actions or observations such that for all belief states B reachable
from the initial belief state B0 following π, B is either a goal belief state, or π is
defined for B (π is closed) and at least one goal belief state is reachable from B
following π (π is proper). For a plan π, by Bπ we denote the set of belief states
for which π is defined, i.e., the set of non-goal belief states reachable following
π, including the initial belief state.
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3 Minimizing Necessary Observations

We can formalize the problem of finding minimal sets of observations sufficient
to solve a planning task either in terms of cardinality minimality or of inclusion
minimality. For cardinality minimality, we get the following search problem.

Problem 1 (ObserveCardMin).
Input: A POND planning task skeleton Π = 〈V , B0, B�,A,W〉.
Output: A cardinality minimal set of observations O ⊆ W for Π such that

there exists a strong cyclic plan for Π [O], or None if no such set O exists.

To classify the problem ObserveCardMin complexity theoretically, we need
a theorem by Rintanen.

Theorem 1 (Rintanen, 2004 [7]). The strong cyclic plan existence problem
for POND planning, PlanExPOND, is 2-Exptime-complete. 
�

Rintanen’s formalism differs slightly from ours in that his variables are propo-
sitional instead of finite-domain, that he encodes initial and goal states symbol-
ically using formulas, and that he allows conditional effects. Neither of those
differences affects the 2-Exptime-completeness result. Using Rintanen’s result,
we can immediately prove the following theorem.

Theorem 2. ObserveCardMin is 2-Exptime-complete.

Proof. To show that ObserveCardMin is 2-Exptime-hard, we polynomially
reduce PlanExPOND to ObserveCardMin. POND planning tasks in the
sense of PlanExPOND have exactly the same form as our POND planning
tasks skeletons Π = 〈V , B0, B�,A,W〉. Viewing such a POND planning task Π
as an input toObserveCardMin, we see that the output of ObserveCardMin

is different from None iff Π is a positive instance of PlanExPOND. To see
that ObserveCardMin ∈ 2-Exptime, we have to give a 2-Exptime algorithm
solving the problem. The näıve algorithm that iterates over all (exponentially
many) candidate subsets O ⊆ W , tests whether Π [O] is solvable, and returns
a cardinality minimal set O for which this is the case, is such an algorithm,
because each test if Π [O] is solvable is in 2-Exptime according to Theorem 1,
and at most exponentially many such tests have to be performed. 
�

For inclusion instead of cardinality minimality we get a similar result.

Problem 2 (ObserveInclMin).
Input: A POND planning task skeleton Π = 〈V , B0, B�,A,W〉.
Output: An inclusion minimal set of observations O ⊆ W for Π such that

there exists a strong cyclic plan for Π [O], or None if no such set O exists.

Theorem 3. ObserveInclMin is 2-Exptime-complete.

Proof. Similar to proof that ObserveCardMin is 2-Exptime-complete. 
�
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Clearly, cardinality minimal solutions are also inclusion minimal, but not ev-
ery inclusion minimal solution is also cardinality minimal. Although both Ob-

serveCardMin and ObserveInclMin are 2-Exptime-complete, we expect
ObserveCardMin to be even more challenging in practice, since, in the worst
case, the complete space of subsets of W has to be exhausted, whereas for Ob-

serveInclMin a greedy top-down or bottom-up search in the space of those
subsets is sufficient. Therefore, in the following we restrict our attention to prac-
tically solving ObserveInclMin.

3.1 Greedy Top-Down Search

When looking for minimal sets of observations, we can restrict our attention to
variables that may ever need to be observed because they are either unknown
initially or for which there is an action that makes them unknown.

Definition 1. Let B be a belief state, v ∈ V a variable, and a = 〈Pre,Eff 〉 ∈ A
an action. Then
1. v is known in B iff there exists a value d ∈ Dv such that s(v) = d for all

states s ∈ B.
2. a makes v unknown iff there are two nondeterministic effects eff , eff ′ ∈ Eff

such that eff (v) = d for some value d ∈ Dv with d �= Pre(v) and eff ′(v) �= d.
3. v may need to be observed iff v is not known in the initial belief state B0 or

there exists an action a ∈ A that makes v unknown.

Since whenever Π [O] is solvable, also Π [O∗] is solvable, where O∗ is the set
of all v ∈ O that may need to be observed, for the rest of this paper we assume
that all v ∈ W may need to be observed.

Algorithm 1 shows a simple greedy algorithm that solves ObserveInclMin.

Algorithm 1. Simple Greedy Algorithm for ObserveInclMin

1: function simpleGreedySearch(Π):
2: if Π [W] is unsolvable then
3: return None

4: Compute some plan π for Π [W]
5: Let O be the set of variables actually observed in π
6: Let O′ = O
7: for all o ∈ O′ do
8: if Π [O \ {o}] is solvable then
9: Set O to O \ {o}
10: return O

It is obvious that Algorithm 1 runs in doubly exponential time. We can also
prove correctness of the algorithm.

Theorem 4. Algorithm 1 correctly solves problem ObserveInclMin.
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Proof. Clearly, Algorithm 1 returnsNone iff no setO ⊆ W exists such thatΠ [O]
admits a strong cyclic plan. If there is a solution, then to see that Algorithm 1
returns an inclusion minimal set O ⊆ W such that Π [O] admits a strong cyclic
plan, we have to show that Π [O] is solvable and that Π [O′] is unsolvable for
all proper subsets O′ � O. Let O0 be the set of observation variables computed
in line 5 and o1, . . . , on be the order in which O0 is traversed by the algorithm,
and let Oi be the set O after the i-th iteration, i = 1, . . . , n. The fact that
Π [O] is solvable follows inductively from the fact that Π [O0] is solvable and
that Oi+1 �= Oi only if Π [Oi+1] is still solvable. To see that Π [O′] is unsolvable
for all proper subsets O′ � On, let oi ∈ On. Then in the i-th iteration, oi
was not removed, because Π [Oi−1 \ {oi}] would have been unsolvable. But since
On ⊆ Oi−1 and hence On \ {oi} ⊆ Oi−1 \ {oi}, also Π [On \ {oi}] would be
unsolvable (since removing observations only reduces solvability). 
�

Algorithm 1 is simple, but quite inefficient. Specifically, when testing if the
task remains solvable after deleting a variable (line 8), no plan information from
the previous step is reused. In the next subsection, we investigate the reuse of
portions of plans not affected by making a particular variable unobservable.

3.2 Plan Reuse

Suppose we know a plan π for Π [O] and want to test if there also exists a plan
for Π [O \ {o}] for some o ∈ O. Instead of replanning, we can try to reuse the
portions of π before the first splits of belief states with respect to o.

Let π : Bπ → A∪O be a plan forΠ [O], and let o ∈ O. Then by knownpos(π, o)
we refer to the set of all belief states B ∈ Bπ ∪ {app(π(B′), B′)) |B′ ∈ Bπ}
such that v is known in B, and by safepos(π, o) to the set of all belief states
B ∈ knownpos(π, o) that are reachable from B0 following π along paths passing
exclusively through belief states in knownpos(π, o). By gaps(π, o) we refer to
those B ∈ safepos(π, o) that (a) are not goal belief states, (b) for which the
successor belief state B′ = app(π(B), B)) following π is not in knownpos(π, o),
and (c) there exists a path from B to a goal belief state following π such that
some action along that path is the observation of o. Intuitively, gaps(π, o) is the
set of belief states that form the fringe between the portion of the plan π that
we can reuse and the portion we need to recompute. In Algorithm 2 we will
iteratively fill those gaps, starting from shallow ones and working our way down
to the deeper ones. To that end, we associate with each belief stateB ∈ gaps(π, o)
a value depth(B) that denotes the length of the shortest execution sequence of
actions (and observations) leading from B0 to B following π. By πo we denote
the part of π that lies before gaps(π, o). More formally, we can view π as a set of
pairs (B, a), where B is a belief state and a = π(B) is an action or observation.
Then such a pair from π is also contained in πo if B ∈ safepos(π, o) \ gaps(π, o).
We call πo the plan π restricted to safe prefixes with respect to o.

For all gap belief states B ∈ gaps(π, o), in order to replan for B we need to
solve the planning task that is like Π [O \ {o}], but with its initial belief state
replaced by B. We refer to a planning task skeleton (or a planning task) Π with
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initial belief state replaced by B as Π〈B〉. Therefore, the task we have to replan
for is Π [O \ {o}]〈B〉. Algorithm 2 shows a greedy algorithm with plan reuse to
(approximately) solve ObserveInclMin.

Algorithm 2. Greedy Algorithm with Plan Reuse for ObserveInclMin

1: function greedySearchWithPlanReuse(Π):
2: if Π [W] is unsolvable then
3: return None

4: Compute some plan π for Π [W]
5: Let O be the set of variables actually observed in π
6: Let O′ = O
7: for all o ∈ O′ do
8: Let G be gaps(π, o)
9: Let πo be the plan π restricted to safe prefixes with respect to o
10: Set allGapsFillable to true
11: while G �= ∅ and allGapsFillable do
12: Pick B ∈ G with minimal depth(B) and remove it from G
13: if Π [O \ {o}]〈B〉 is solvable with plan πB

−o then
14: Merge πB

−o into πo (resulting in updated πo)
15: Trace πo and retain in G only those belief states that are non-goal
16: belief states reachable following πo for which πo is undefined.
17: if G = ∅ then
18: Set O to O \ {o}
19: Set π to πo

20: else
21: Set allGapsFillable to false

22: return O

Like Algorithm 1, Algorithm 2 first tests for solvability, computes an initial
plan, and then iteratively tries to remove variables from the observation set O.
Unlike Algorithm 1, when testing if o can be removed, it determines the gaps
in π that arise if o is no longer observable and that need to be filled using
new subplans. It also identifies the portion πo of π that can be reused as it
does not depend on o. If at least one gap cannot be filled, o is retained and
the next observation variable is considered (line 21). In order to fill one gap
B, a plan πB−o for Π [O \ {o}]〈B〉 is computed. This plan πB−o is then merged
into πo (line 14), which means that all entries from πB

−o are added to πo, and if
both πo and πB

−o contain an entry for the same belief state B′, then the entry
from πB−o is used and that from πo is overridden. More formally, in line 14 we
set πo to πo ⊕ πB

−o, where (πo ⊕ πB
−o)(B

′) = πB
−o(B

′) if πB
−o(B

′) is defined, and
(πo⊕πB

−o)(B
′) = πo(B

′), otherwise. In line 15/16, the algorithm removes from G
all gaps that were “accidentally” closed by πB−o and need not be considered any
longer, i.e., all gaps B′ for which πB

−o is defined, as well as all gaps “accidentally”
circumvented by πB−o by a different choice further up in the plan. Finally, if no
gaps are left, o is removed from O, π is set to πo, and the next observation
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variable is considered. Notice that traversing the gaps from shallow to deep is
only used as a heuristic and not strictly necessary for the algorithm.

Regarding runtime, it is obvious that the POND planning steps that take
doubly exponential time in the worst case still dominate the overall runtime,
and that at most exponentially many such planning steps are necessary. All
other computations are cheaper than 2-Exptime. Therefore, Algorithm 2 runs
in doubly exponential time. We still need to show that the final plan π is really
a strong cyclic plan for the task Π [O] with the final set O, and we have to
reason about inclusion minimality of O. We first give an example showing that
the returned set O is in general not inclusion minimal, and that the fact that we
consider the removal of each observation variable only once is not the culprit.
Instead, the reason is that some gap B might not be fillable without observing
variable o, but completely replanning without observing o is possible and B
simply does not occur in a completely replanned solution.

Example 1. Consider the planning task skeleton Π = 〈V , B0, B�,A,W〉 with
V = {a, b, c} and Dv = {0, 1} for all v ∈ V . For ease of notation, we write (belief)
states and preconditions as Boolean formulas over V , and nondeterministic effects
as sets of such formulas. Furthermore, B0 = ¬a∧¬b∧¬c, B� = c, W = {b}, and
A = {a1, a2, a3, a4}, where a1 = 〈¬a, {a}〉, a2 = 〈¬b, {b,�}〉, a3 = 〈b, {c}〉, and
a4 = 〈¬a ∧ ¬b ∧ ¬c, {c}〉. A solution π for Π [W ] is depicted on the left below.

¬a ∧ ¬b ∧ ¬c

a ∧ ¬b ∧ ¬c

a∧¬b∧¬c∨
a∧ b∧¬c

a ∧ b ∧ ¬c

a ∧ b ∧ c

a1

a2

obs b

obs b

a3

¬a ∧ ¬b ∧ ¬c

¬a ∧ ¬b ∧ c

a4

When b is made unobservable, we seek a plan for Π [∅]. We can reuse the first
two belief states from π up to the (only) gap state marked in gray. However,
replanning with initial belief state a∧¬b∧¬c without observing b will fail, since
each action that makes c true needs b to be known or a to be false, neither
of which can be accomplished from a ∧ ¬b ∧ ¬c without observing b. Therefore,
Algorithm 2 will return O = {b}, whereas O∗ = ∅ would be an inclusion minimal
solution, as witnessed by the plan in the right-hand part of the figure above. 
�

Therefore, in order to find inclusion minimal observation sets, one would still
have to run Algorithm 1 initialized with the output of Algorithm 2. Next, we
show that Algorithm 2 returns a valid solution.
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Theorem 5. Assume Π [W ] is solvable and let π and O be the plan and the set
of observation variables at termination of Algorithm 2. Then π is a strong cyclic
plan for Π [O].

Proof. Let O0 be the set of observation variables used in the initial plan π0, let
o1, . . . , on be the order in which O0 is traversed by the algorithm, let Oi be the
set O after the i-th iteration, i = 1, . . . , n, and πi the corresponding plan.

We show the claim by induction over i. The induction base is obvious, since
π0 is a strong cyclic plan for Π [O0] by construction. For the inductive step
from i to i + 1, there are two cases. If Oi+1 = Oi, then also πi+1 = πi and
vice versa. Since πi is a plan for Π [Oi], also πi+1 is a plan for Π [Oi+1]. The
more interesting case is the one where Oi+1 = Oi \ {oi+1}. We have to show
that after all gaps are filled, the resulting composite plan solves Π [Oi+1]. Let
B1

i , . . . , B
k
i ∈ G be the set of all gaps that actually get filled, in that order

(some gaps might be skipped if they are accidentally filled or avoided before the

algorithm would explicitly take care of them). Let πi
j := π

Bj
i−oi+1

, j = 1, . . . , k, be

the corresponding plans to fill the gaps, and let πi
o := πi

oi+1
. Then the resulting

plan πi+1 is (. . . (πi
o⊕πi

1)⊕. . . )⊕πi
k. We have to show that πi+1 is a strong cyclic

plan for Π [Oi+1]. It is clear that π
i+1 does not observe any variable outside Oi,

and also it does not observe oi+1 by construction. What is left is showing that
πi+1 is closed and proper. To see this, notice that by construction each execution
of πi+1 starts out as an execution of πi

o (for zero or more steps), then possibly
executes πi

1 (for zero or more steps), then πi
2 and so on, with lower indices j of

the executed subplan πi
j only increasing. Eventually, it only follows πi

o or πi
j for

some maximal j ≤ k. Since πi and all πi
j , j = 1, . . . , k, are closed and proper,

the same holds for πi+1. This concludes the proof. 
�

3.3 Use of Functional Dependencies

We discuss one more way to speed up Algorithm 1 or 2, a preprocessing step
that discards potential observation variables o whose value can be derived from
the values of other observation variables. For our purpose, in order to discard
o, it is sufficient that there are observation variables o1, . . . , on that are not
discarded and a function f :

∏n
i=1 Doi → Do such that for all world states s in

all belief states B encountered following π, s(o) = f(s(o1), . . . , s(on)). For states
not encountered following the plan, this equality does not necessarily have to
hold. We call a tuple F = (o, {o1, . . . , on}, f) with this property a functional
dependency in π, head(F ) = o the head of F , body(F ) = {o1, . . . , on} the body of
F , and fun(F ) = f the function of F . We call a set of functional dependencies
F acyclic if there are no F1, . . . , Fk ∈ F such that head(Fi) ∈ body(Fi+1) for
all i = 1, . . . , k − 1 and head(Fk) ∈ body(F1). Given a plan π that observes only
variables in O and an acyclic set of functional dependencies F = {F1, . . . , Fm} in
π such that (a) for all F, F ′ ∈ F , head(F ) /∈ body(F ′) (if F is acyclic, this can be
assumed without loss of generality), (b) for all F �= F ′ ∈ F , head(F ) �= head(F ′),
and (c) for all F ∈ F , body(F ) ⊆ O, every occurrence of an observation o in π
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such that o = head(F ) for some F ∈ F can be replaced by successive observations
of (a subset of) the observation variables in body(F ). This produces a new plan
πF that observes only variables in O \ {head(F ) |F ∈ F}.

We can extend Algorithms 1 and 2 accordingly as follows: After computing
some plan π for Π [W ], find an acyclic set of functional dependencies F in π
with properties (a), (b) and (c) as above and replace π with πF . In our im-
plementation, we use a simplified version of this idea: We only identify sets
X of Boolean observation variables such that in each state reachable with π,
exactly one X ∈ X is true. Each such set X = {X1, . . . , Xk} induces k func-
tional dependencies F1, . . . , Fk, where Fi = (Xi,X \Xi, f), i = 1, . . . , k, where
f(x1, . . . , xk−1) = 1 if x1 = · · · = xk−1 = 0, and f(x1, . . . , xk−1) = 0, otherwise.
Regarding computation of such sets X1, . . . ,Xn, for all subsets of Boolean vari-
ables we test whether they satisfy the desired mutex property. Candidate sets
that obviously cannot satisfy it (after inspection of the reachable states) are not
generated. From the functional dependencies induced by the remaining sets X ,
we keep an acyclic (but not necessarily maximal) subcollection F as above.

4 Experiments

We implemented Algorithms 1 and 2 on top of the myND planner [6] that uses
LAO* search [3] guided the FF heuristic [4] applied to sampled world states of
the belief state to be evaluated. Belief states and transitions between them are
represented symbolically using BDDs [1]. Our benchmark domains are POND
versions of the IPC domains Blocksworld and FirstResponders as well as
the TidyUp domain concerned with a robot tidying up a number of tables in a
number of rooms.

Figure 1 shows the runtimes until the final set of observation variables has
been found. We used a memory limit of 8 GB and a time limit of 30 minutes
per task. The first six instances on the x-axis are our Blocksworld instances,
the next 15 are from the FirstResponders domain, and the remaining ones
are from the TidyUp domain, sorted by difficulty per domain. We can see that
the plan reuse from Algorithm 2 clearly pays off compared to the simple greedy
algorithm. Use of functional dependencies leads to little extra time savings, ex-
cept for some of the harder TidyUp instances. Figure 2 shows the cardinalities
of the sets of observation variables |W| before and |O| after minimization, with
the x-axis as before. In principle, different inclusion minimal sets are incompa-
rable cardinality-wise, but in our experiments the three configurations shown
in the figure agreed on the sizes of the sets found. In particular, the problem
from Example 1 does not occur here. The initial observation set cardinalities the
algorithm starts with are 36 for all Blocksworld instances, between 7 and 39
for FirstResponders, and between 7 and 25 for TidyUp.

We also conducted an experiment measuring the expected numbers of actions
and observations necessary to reach a goal using the different intermediate plans
πi, expecting that plans with fewer allowed observations would tend to lead
to longer execution sequences due to the need to replace simple, but forbidden
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Fig. 2. Cardinalities of the observation sets before and after minimization

observations by longer observation sequences. In a few instances we saw evidence
supporting this (e.g., in one of the Blocksworld instance, the expected plan
steps increases from 34 to 65.5), but this is an exception, and across all instances
expected execution steps mostly stay the same or increase only minimally.

Finally, it is interesting to see which sets of variables are typically left as
observation variables having domain knowledge in mind: In Blocksworld, in
most of the runs most of the remaining predicates are instances of the OnTable

predicate, followed by occasional uses of the Clear predicate as predicted in
the example in the Introduction. Both of these predicates on their own are
sufficient. In FirstResponders, we get an even clearer picture: Fires always
need to be observed in order to make sure they are eventually extinguished.
In all but one FirstResponders instance, nothing else but Fire predicates
are observed, the only exception being the only task in which there is no road
from a victim’s location to a hospital, which necessitates treating him on scene.
For that, observing his VictimStatus is identified as being necessary. In the
TidyUp domain, we always get one sensing action for the status of the grippers,
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one for whether each relevant table is clean, one for each relevant door state
(open or closed), one for the robot location, and one for each relevant cup on
any of the tables.

5 Conclusion and Future Work

We presented an asymptotically optimal greedy top-down baseline algorithm
for finding inclusion minimal observation sets and extended that algorithm by
reusing plans from earlier iterations and using functional dependencies between
observation variables. Our experiments showed superiority of the extended al-
gorithm over the baseline algorithm in terms of runtime, whereas observation
variable sets and strong cyclic plans of similar quality are generated.

For future work, we plan to complement the top-down procedure with a
bottom-up procedure and to investigate variable ordering heuristics for the it-
eration over candidate variables for removal (based on an analysis of nonde-
terministic outcomes of operators, giving preference to more volatile variables).
Moreover, we want to study the same problem on the domain instead of planning
task level.
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Kühnberger, Kai-Uwe 55

Leung, Ho-fung 147

Manthey, Norbert 98, 111, 123
Mattmüller, Robert 297, 309
Merz, Dorian 171

Minor, Mirjam 225
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Peñaloza, Rafael 171
Philipp, Tobias 111, 123
Poloczek, Jendrik 255

Ragni, Marco 62
Rohde, Moritz 285

Sankar Baishya, Shiv 68
Schatten, Carlotta 231
Schmid, Ute 25
Schmidt-Thieme, Lars 231
Schulz, Hannes 80
Schumacher, Pol 225
Steffenhagen, Felix 62
Steinke, Peter 123
Strobel, Volker 273

Thimm, Matthias 195
Treiber, Nils André 267
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