
Updaticator: Updating Billions of Devices

by an Efficient, Scalable and Secure
Software Update Distribution

over Untrusted Cache-enabled Networks

Moreno Ambrosin1,�, Christoph Busold2, Mauro Conti1,��,
Ahmad-Reza Sadeghi3, and Matthias Schunter4

1 University of Padua, Italy
{lastname}@math.unipd.it

2 Intel CRI-SC, TU Darmstadt, Germany
christoph.busold@trust.cased.de
3 CASED/TU Darmstadt, Germany
ahmad.sadeghi@trust.cased.de

4 Intel Labs, Darmstadt, Germany
schunter@acm.org

Abstract. Secure and fast distribution of software updates and patches
is essential for improving functionality and security of computer sys-
tems. Today, each device downloads updates individually from a software
provider distribution server. Unfortunately, this approach does not scale
to large systems with billions of devices where the network bandwidth
of the server and the local Internet gateway become bottlenecks. Cache-
enabled Network (CN) services (either proprietary, as Akamai, or open
Content-Distribution Networks) can reduce these bottlenecks. However,
they do not offer security guarantees against potentially untrusted CN
providers that try to threaten the confidentiality of the updates or the
privacy of the users. In this paper, we propose Updaticator, the first
protocol for software updates over Cache-enabled Networks that is scal-
able to billions of concurrent device updates while being secure against
malicious networks. We evaluate our proposal considering Named-Data
Networking, a novel instance of Cache-enabled overlay Networks. Our
analysis and experimental evaluation show that Updaticator removes
the bottlenecks of individual device-update distribution, by reducing the
network load at the distribution server: from linear in the number of
devices to a constant, even if billions of devices are requesting updates.
Furthermore, when compared to the state-of-the-art individual device-
update mechanisms, the download time with Updaticator is negligible,
due to local caching.

� Corresponding author.
�� Mauro Conti is supported by a Marie Curie Fellowship funded by the European

Commission under the agreement n. PCIG11-GA-2012-321980. This work has been
partially supported by the TENACE PRIN Project 20103P34XC funded by the
Italian MIUR. Part of this work has been performed while Mauro Conti was visiting
TU Darmstadt thanks to a German DAAD fellowship.

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 76–93, 2014.
c© Springer International Publishing Switzerland 2014

Updaticator: Updating Billions of Devices 77

Keywords: Software Updates, Secure Updates Distribution, Attribute-
based Encryption, Internet of Things, Cache-enabled Network.

1 Introduction

The growing diffusion of electronic devices creates new issues and challenges.
Consider billions of lighting devices [29], embedded controllers, or mobile and
wearable devices. More generally, the so-called Internet of Things is extending
the Internet to billions of devices that need to be connected and updated. One
of the resulting challenges is efficient and secure distribution of software updates
to these devices. According to the 2013 US-CERT Security Alerts [1], most of
the new software vulnerabilities can be resolved by applying software updates.
Hence, fast and secure delivery of software updates plays a key role in securing
software systems. In particular, once a vulnerability is published (e.g., see the
case of the recent SSL “Heartbleed” vulnerability [18]), the system becomes ex-
posed to a large base of potential adversaries. Here, a fast update is fundamental.

Most of the existing remote update protocols focus on ensuring integrity and
authenticity of the transmitted updates, i.e., they guarantee that only untam-
pered updates from a legitimate source will be installed on the device. However,
in many cases software updates are required to be confidential. Examples include
protection of embedded software against reverse-engineering or the distribution
of valuable map updates in automotive systems and portable devices. A simplis-
tic approach to achieve confidentiality for updates is securing the communication
between client and software provider server applying end-to-end encryption (e.g.,
using SSL [31]). Each client device then requests and downloads the latest avail-
able update directly from the software provider, encrypted and signed by the
software update source. Although this approach guarantees confidentiality and
authenticity of software updates, it is not suitable for large-scale systems, since
it would not scale due to the load on the software distribution servers, which is
increasing linearly in the number of devices.

To mitigate this efficiency problem, software providers usually rely on third-
party distribution infrastructures [5], e.g., Content Delivery Networks (CDNs)
such as Akamai [2] or Windows Azure CDN [33]. These infrastructures apply in-
network caching and replication strategies in order to speed-up content distribu-
tion. However, by using third-party distribution networks, software providers can
no longer apply end-to-end encryption. Instead, they must allow point-to-point
encryption between client devices and the distribution network, and between
the distribution network and the software provider [3]. This poses security and
privacy issues, since transferred updates are cached unencrypted by each distri-
bution network server, and the software provider or the distribution nodes know
which device (or user) is asking for what.

Our Contribution. In this paper, we propose a new solution for efficient distribu-
tion of confidential software updates that is scalable and optimized for untrusted
distribution media which support in-network caching. The contributions of this
paper are threefold:

78 M. Ambrosin et al.

i) We present Updaticator, a protocol for efficient distribution of confidential
software updates, optimized for untrusted cache-enabled distribution media.
The protocol reduces bandwidth consumption and server load, provides end-
to-end security, and is scalable to billions of devices. To enable caching, one
main goal is to encrypt each given update under a corresponding symmetric
key to ensure identical ciphertexts for all devices receiving this update. These
keys are then distributed using Attribute-based Encryption (ABE).

ii) We define a system model and security requirements for this class of protocols
and analyze the security of the proposed protocol.

iii) We describe a prototype implementation of our protocol on Named-Data
Networking [21] as broadcast medium for efficient and secure distribution of
updates, and evaluate its performance.

Organization. The remainder of the paper is organized as follows. In Sec. 2
we describe the system model and the security requirements for the design of
Updaticator. In Sec. 3 we introduce the primitives used in the description of
our protocol. In Sec. 4 we introduce the Updaticator protocol while in Sec. 5
we provide a security analysis, based on the security requirements introduced
in Sec. 2. In Sec. 6 we present an experimental evaluation, which demonstrates
the benefits of our solution. Finally, in Sec. 7 we analyze current state-of-the-
art approaches to updates delivery and differentiate our results. Eventually, we
conclude in Sec. 8 and describe possible future work.

2 System Model and Requirements

In this section we introduce the system model, on which we base our work, and
derive the security requirements for our software updates distribution protocol.

2.1 System Model

In our model, groups of clients request software updates from a specified update
source. As shown in Fig. 1, we assume the presence of an Update Server (US), as
introduced in [14]. Each client queriesUS to retrieve information about the latest
available update package. Furthermore, we assume the presence of a Distribution
Server (DS), which is responsible for efficient dissemination of updates. For the
sake of generality, we also assume the presence of a Policy Server (PS), that
generates keys, imports updates into the system, and defines the update policy,
i.e., which update should be provided to which device.

2.2 Security Requirements

We now define the desirable security requirements for Updaticator.

Confidentiality. Our solution for update distribution must be able to guaran-
tee the confidentiality of updates, since we assume the distributed updates to
be proprietary data. This means that each client should be able to decrypt a
software update if and only if it has been authorized by PS .

Updaticator: Updating Billions of Devices 79

Fig. 1. System model

Authenticity and Integrity. Our solution for update distribution must guaran-
tee the possibility for all the clients to verify the integrity and authenticity of
the downloaded software updates, in order to prevent attackers from replacing
legitimate software updates with malicious code.

Freshness. Network caches reduce network traffic and server load. However, it
is possible that device requests are satisfied by outdated updates still in cache.
Furthermore, attackers could intentionally mask the presence of new updates
in order to prevent devices from patching security issues. For this reason, our
solution should provide clients with the means to verify whether the answer to
its update request is fresh, i.e., corresponds to the most recent update released
by PS . We achieve this by introducing a freshness interval Δt that defines the
maximum age of the latest update information.

2.3 Adversary Model

Informally, we consider the following attack scenarios:

(1) Legitimate devices could try to obtain software updates which are not
intended for them.

(2) Network attackers could try to get access to confidential updates or compro-
mise devices by injecting unauthorized or modified updates.

More formally, the adversary model is defined as follows: the policy server PS
is an internal server that feeds information to the externally-facing servers US
and DS . We assume that the update infrastructure consisting of US and PS is
secure (including the internal communication between US and PS) and trusted
by all devices that are updated by these servers. For the confidentiality of a
given update, we assume that the client devices receiving this update neither

80 M. Ambrosin et al.

reveal the update packages nor their private keys. As a consequence, we cannot
guarantee confidentiality of updates that are targeted to compromised devices.

In order to allow our solution to scale to a huge number of devices, we do not
consider revocation of individual devices or keys. Revocation is important for
broadcast media, where cloned subscriber cards pose a high risk. For software
updates, in contrast, rebroadcasts of decrypted updates are more likely. This risk
cannot be mitigated by revocation alone, since it further requires traitor tracing
in order to identify the key that should be revoked. Traitor tracing techniques
such as watermarking, however, require individualized updates, which would
prevent caching and thereby compromise the scalability of our scheme.

The update distribution is carried out over an untrusted network, therefore
neither the update infrastructure nor individual devices trust DS . The consid-
ered attackers are Dolev-Yao [13] adversaries that have full control over the com-
munication channel and can eavesdrop, manipulate, inject and replay messages
between any device and the update infrastructure.

3 Background

We now provide some background knowledge, introducing Attribute-based
Encryption, and Named-Data Networking.

3.1 Attribute-Based Encryption

Attribute-based Encryption (ABE), first proposed by Sahai and Waters in
2005 [30], is a type of public-key encryption that allows fine-grained data access
control based on attributes. With ABE, the data owner defines an access policy
w, i.e., a combination of attributes that a legitimate user must own in order
to access the data. An access policy can be represented as a Boolean expres-
sion, specifying the attributes required to access the data. For example, suppose
we define three different attributes, Student,MSc, and Professor . If we want to
make some data accessible only to users that are professors or MSc students, a
possible access policy can be expressed as {{Student ∧MSc} ∨ Professor}.

In our work, we consider Ciphertext-Policy Attribute-based Encryption (CP-
ABE), an Identity-based Encryption scheme first introduced by Bethencourt et
al. [6], and then refined and extended in several other works [36], [35]. With CP-
ABE, the access policy is bound to the ciphertext, while users’ private keys are
generated based on the users’ attributes. CP-ABE allows the definition of high-
level policies, and therefore is particularly useful in scenarios where an entity
wants to restrict the access of a piece of information only to a subset of users
within the same broadcast domain [15]. Moreover, CP-ABE is resistant against
collusion attacks by design [6].

A generic CP-ABE scheme provides the following four basic algorithms:

– Setup(). This algorithm generates public key pkABE and master secret
mkABE .

Updaticator: Updating Billions of Devices 81

– KeyGen(mkABE , AttrC). This algorithm takes as input the master key
mkABE and the user attribute list AttrC , and outputs the user’s private key
skABE,C .

– ABEncpkABE ,w(m). The encryption algorithm takes the public key pkABE ,
the specified access policy w, and the message m as input. It outputs a
ciphertext that can only be decrypted by a user with an attribute list AttrC

such that AttrC satisfies the access policy w.
– ABDecskABE,C (c). The decryption algorithm takes as input the public key

pkABE , the private key skABE ,C of user C, and the ciphertext c. It returns
the plaintext m if and only if user attribute list AttrC satisfy the access
policy w.

3.2 Named-Data Networking

Named-Data Networking (NDN) [21] is a new Internet architecture optimized
for efficient content distribution. NDN is an instantiation of the Content-Centric
Networking (CCN) approach [19], in which data is accessed by name instead of
location, and the routing is based on content names. In NDN, each content is
bound to a unique hierarchically-structured name, formed by different compo-
nents separated by “/”. As an example, a possible name for the opinions web-
page of the CNN website is /cnn/politics/opinion, while /cnn/politics/ is
a name prefix for that name.

Communication in NDN is consumer-driven: each consumer requests data
by issuing interest packets, which are then satisfied by data packets provided
by content producers. When a consumer sends a request for a particular con-
tent, the corresponding interest is forwarded to the first-hop router. Each
NDN router maintains two lookup tables: Pending Interest Table (PIT) and
Forwarding Information Base (FIB). PIT is used to keep track of all the
pending requests for a given content name. Each entry of the PIT is in the
form < interest , arrival interfaces >, where arrival interface is the set of
the router’s interfaces to which the interest have been already forwarded. FIB
is populated by a name-based routing protocol, and used by routers to forward
outgoing interests to the right interface(s). When a router receives an interest,
it first checks its PIT to determine whether another interest for the same name
is currently outstanding. If the same name is already inside the PIT, then the
interest arrival interface is searched inside the corresponding arrival interfaces
set. If the router finds a match, the interest is discarded, otherwise, the new
interface is added to arrival interfaces set, but the interest is not forwarded.
If no matching entry was found in the PIT, a new PIT entry is created, and
the interest is forwarded based on the FIB table. Once received the interest, the
producer of the content injects a matching data packet into the network, thus
satisfying the interest. The data packet is then forwarded towards the consumer,
traversing, in reverse, the path of the corresponding interest.

An important feature of NDN is distributed caching, which is intended to
reduce traffic and load of the network. Once a data packet is received by a
router, it is stored inside its local cache, named Content Store (CS), according

82 M. Ambrosin et al.

to some cache policies. In this way, all subsequent interests matching the same
data packet previously stored inside the CS, will be immediately satisfied with
the local copy of the content, thus being no longer forwarded.

Most currently existing implementations of NDN are built as an overlay on
top of the TCP/UDP transport protocols, e.g., NDNx [23]. This allows easy
integration with the current Internet infrastructure.

4 Updaticator: Our Scalable Update Protocol with
End-to-End Security

We now describe Updaticator, our solution for scalable and secure software up-
dates distribution over Cache-enabled networks. Our protocol comprises three
different phases:

(1) Update publication. In this phase, a new available update is published. The
Policy Server (PS) generates and sends the access policy for the update
package, and a new random encryption key for this update, to the Update
Server (US). Then, PS sends the encrypted package to the Distribution
Server (DS), which takes care of its distribution.

(2) Update selection. In this phase, a client (C) checks for the presence of new
updates, issuing a request to US . The information is used to eventually
retrieve a new software update.

(3) Update retrieval. In this phase, C downloads the update package, issuing a
request to DS .

Without loss of generality, we now provide a detailed description of each phase
of our protocol on top of NDN.

Notation. In the remainder of this paper, we assume that both PS and US have
a key pair, (skPS , pkPS) and (skUS , pkUS), respectively, that they can use for
generating signatures. We refer to pkgu as the software update package, and to
idu as its identifier, calculated asHash(pkgu), whereHash is a collision-resistant
hash function. Moreover, we suppose that each software update package pkgu
has an associated access policy wu, set by PS . Each client C has an attribute
list AttrC , which is represented by his private key skABE,C . We indicate with ku
the symmetric key used to encrypt pkgu, and with Encku and Decku symmetric
encryption and decryption functions, respectively. We also indicate with SignskX

the computation of a signature using secret key skX , and with VerifypkX the
verification of a signature.

On Scalability. In typical deployments, devices are connected to the Internet
via a gateway with limited bandwidth. Our main goal is to ensure scalability to
billions of devices, i.e., to ensure that the network load on the distribution server
as well as the network load on the gateway is constant in the number of devices
and only depends on the stable number of available updates. This is achieved
by ensuring that all the phases of our protocol, involving client devices, are

Updaticator: Updating Billions of Devices 83

non-interactive and cacheable. Regarding the complexity of CP-ABE policies,
each device class can be targeted with one instance of the CP-ABE scheme.
Furthermore, each device usually has a limited set of (licensing) options that
determine the set of updates (and corresponding keys) this device may receive.
Therefore the complexity does not increase with the number of devices.

4.1 Update Publication Phase

The update publication phase of Updaticator is presented in Fig. 2. When a new
software update package, pkgu, is released, PS computes its identifier idu as the
hash value of pkgu, and generates a new key ku, for symmetric encryption.

Policy Server (PS) Update Server (US) Distribution Server (DS)

Input : skPS , pkgu, wu

1. idu ← Hash(pkgu)

2. ku ← GenKey()

3. A ← {AttrCj , s.t. AttrCj satisfies wu}
4. idu, ku, wu, A �
5. Store(idu, ku, wu)

6. ku,enc ← ABEncpkABE,wu
(ku)

7. for all AttrCj ∈ A do

8. t ← TimeStamp()

9. Payload ← (ku,enc, idu, t,Δt)

10. σUS ← SignskUS (Payload)

11. Content ← CreateContent(Payload , σUS
)

12. Publish(/.../info/a
Cj
1 /a

Cj
2 /.../a

Cj

|Attr
Cj |

, Content)

13. end for

14. pkgu,enc ← Encku (pkgu)

15. idu, pkgu,enc �
16. Publish(/.../new/idu, pkgu,enc)

Fig. 2. Update Publication

Then, PS associates an access policy wu to pkgu, creates the set A of all
the existing attribute combinations that match with wu, and finally forwards
the tuple (idu, ku, wu, A) to US , where it is stored inside a database (Fig. 2,
lines 1-5). After that, US proceeds with the publication of the symmetric key
ku. Here, the idea is to allow scalable distribution of the encryption key ku, at
the same time taking advantage from in-network caching provided by the NDN
distribution network, and providing fine-grained access control to ku. We achieve
this with the aid of CP-ABE. In our solution, each client has an attribute-
specific decryption key skABE,C corresponding to its set of attributes AttrC ,
while US has the public key pkABE that is used for encryption. US encrypts the
key ku with the public key pkABE , together with the access policy wu (Fig. 2,
line 6). Then, US records the current timestamp t and determines the time

84 M. Ambrosin et al.

interval Δt within which the update information should be considered fresh by
clients. This will allow clients to verify the freshness of the retrieved information
(Fig. 2, lines 8-9). Finally, US produces a signature σUS of idu, ku, t and Δt
(Fig. 2, line 10), and publishes the NDN content data = (idu, ku,enc, t,Δt, σUS),
according to a specific naming scheme (Fig. 2, line 12). A possible example is the
following. Suppose AttrC = [aC1 , a

C
2 , ..., a

C
n] being the list of attributes of client

C. US distributes data under the NDN name /.../info/aC1 /a
C
2 /.../a

C
n , for

each AttrC that satisfies the access policy wu. Let A be the set of all m different
possible combinations of client attributes that satisfies the access policy wu.
US will publish the content data under m different names, thus treated by NDN
asm different contents. Let size(data) be the size of the packet data. In the worst
case, the same content will be cached m times by the distribution network, with
a theoretical maximum cost for the entire caching network, in term of space, of
m·size(data). However, optimized caching policies could reduce the space needed
to cache contents. For example, a possible improvement is the adoption of the
following caching policy: each data packet is decomposed into payload pdata ,
header hdata and packet signature sigdata . Then, the data packet payload pdata
is cached if and only if pdata is not already present in router cache, while header
and signature are always stored. This caching policy could reduce the required
caching space for contents with the same payload that are distributed under
different names, to a maximum of m · [size(hdata) + size(sigdata)] + size(pdata).

The update package pkgu is finally encrypted by PS with the symmetric key
ku (Fig. 2, line 14), and published by DS under the NDN name /.../new/idu

(Fig. 2, line 16). In this way, each interest issued by the client, for the software
update package identified by idu, will be satisfied either by DS directly or by
a NDN router within the distribution network, with a cached copy of pkgu,enc.
Note that the communication between PS , US and DS does not impose a specific
communication protocol to be used. We only assume that this communication
is secure (e.g., via the SSL/TLS protocol).

4.2 Update Selection Phase

The update selection phase of Updaticator is presented in Fig. 3. In order to ob-
tain information on the latest available update, a client C sends a request speci-
fying its attributes AttrC , i.e., issuing an interest for /.../info/aC1 /a

C
2 /.../a

C
n

(Fig. 3, line 1). The interest is forwarded to the NDN distribution network, which
either satisfies it with a matching copy of the required content, or forwards the
interest up to US , if no matching contents are available. In the latter case, the
information is then stored by the routers on its path back to the client (Fig. 3,
lines 2-5).

Upon receiving the response, the client first verifies the freshness of the re-
ceived content, i.e., if the software update information is outdated (Fig. 3, line
6). This is done checking if the value t+Δt is greater than the current time. If
the information is fresh, C proceeds by verifying the signature σUS and checking
if idu is already contained in UpdatesList, the list of all the updates previously

Updaticator: Updating Billions of Devices 85

Client (C) NDN Distribution Update Server (US)

Input : AttrC , skABE ,C , Network Input : skUS , pkABE ,

pkABE , pkUS

1. I: /.../info/aC
1 /aC

2 /.../aC
n �

2. if not CacheHit(I)

3. I: /.../info/aC
1 /aC

2 /.../aC
n �

4. C: (ku,enc, idu, t,Δt, σUS)�

5. C: (ku,enc, idu, t,Δt, σUS)�

6. if Fresh(t,Δt)

7. Verify
pkUS (σUS : (ku,enc, idu, t, Δt))

8. Verify(idu �∈ UpdatesList)

9. ku ← ABDec
pkABE ,skABE,C (ku,enc)

10. Add(idu, UpdatesList)

Fig. 3. Update Selection

installed by C (Fig. 3, lines 7-8). If all these tests pass, C decrypts ku,enc with
its secret key skABE,C and finally adds idu to UpdatesList (Fig. 3, lines 9-10).

In case either the authentication or the freshness verification fails, C will
repeat the update selection procedure, this time requesting the update in-
formation directly from US . In NDN, this can be achieved by setting the
AnswerOriginKind parameter of the interest packet to 0 [22]. In this way, NDN
routers will never satisfy the interest with cached content, but route it up to
US instead. It should be noted that in this case, the newly received message is
expected to be fresh, since it should originate directly from US . Otherwise the
client will conclude that it is under a DoS attack. Similarly, if the response is not
authentic, the client can detect the presence of a possible DoS attack, which pre-
vents the client from downloading new updates. Finally, only in the case in which
the newly received response is authentic and fresh, and idu ∈ UpdatesList, the
client will conclude that there are no available updates. Since any client whose
attributes match the access policy wu, can decrypt the response data, the same
content can be cached by the network and served to all the clients with the same
attributes.

4.3 Update Retrieval Phase

Fig. 4 shows the Updaticator update retrieval phase. After obtaining a valid
update identifier idu and the corresponding symmetric key ku, the client can
download the encrypted update package pkgu,enc from DS , specifying only the
update identifier idu, i.e., issuing an interest for /.../new/idu (Fig. 4, line 1).
Similar to the update selection phase, the interest is forwarded to the NDN

86 M. Ambrosin et al.

Client (C) NDN Distribution Distribution Server (DS)

Input : idu, ku Network

1. I: /.../new/idu �
2. if not CacheHit(I)

3. I: /.../new/idu �
4. C: pkgu,enc�

5. C: pkgu,enc�
6. pkgu ← Decku (pkgu,enc)

7. Verify(Hash(pkgu) = idu)

Fig. 4. Update Retrieval

distribution network, which either satisfies it with cached content matching the
interest, or forwards it up to DS (Fig. 4, lines 2-5). After receiving the encrypted
software update package, the client can decrypt it and verify its integrity by
comparing Hash(pkgu) with idu (Fig. 4, lines 6-7).

It should be noted that the probability of the request hitting a cache closer
to the client increases with the number of clients downloading the same soft-
ware update. Finally, for low-memory devices the encryption of the distributed
software updates can be performed with the encryption technique proposed by
Nilsson et al. in [25]. This technique splits the update in fragments. In reverse
order, for each fragment a hash is computed and the hash of each fragment is
stored together with the following fragment, i.e., forming a hash chain. Only the
fragment containing the information about the update, together with the hash
of the first fragment, is signed. In this way, a client can verify the authenticity
and integrity of the first fragment, and of all the other fragments verifying the
hash chain, thus allowing “load-and-install” of the update.

5 Security Analysis

We now provide a security analysis regarding the requirements from Sec. 2.2.

Confidentiality. Updaticator provides software update confidentiality through
the use of symmetric encryption. During the update publication phase of our
protocol, PS generates a key ku and associates it with the new software up-
date package pkgu. Since each key ku is randomly chosen, we can assume that
it is unique for each pkgu. Following the assumption that the publication in-
frastructure is secure, during this phase an attacker can neither extract ku from
PS or US , nor access the unencrypted update package. Furthermore, only the
encrypted package pkgu,enc and the hash of pkgu, i.e., idu, are transmitted or
published during each phase. As a consequence, since the cryptographic prim-
itives are assumed to be secure, both values do not allow the attacker to gain

Updaticator: Updating Billions of Devices 87

information on the unencrypted update package or key ku. The confidentiality
of the update package can therefore be reduced to the confidentiality of ku, i.e.,
an attacker can obtain the update package if and only if she is in possession
of ku, which she only can obtain through the update selection protocol. The
update selection phase uses CP-ABE in order to distribute ku. Each client has a
decryption key skABE , which matches exactly its set of attributes. Only clients
with a matching list of attributes will be able to decrypt it. We can conclude
that the confidentiality of each software update is assured.

Authenticity and Integrity. During update publication phase, the update identi-
fier idu is computed as the hash value of pkgu. Then, during the update selection
phase idu is provided by US in response to each device request inside a signed
message. Hence, the client can verify the authenticity of idu. As the client ver-
ifies the hash of the package against idu during the update retrieval phase of
Updaticator, and the hash function is collision-resistant, the authenticity and
integrity of the update package depends solely on the authenticity and integrity
of idu. Since US is trusted and the signature scheme is assumed to be secure, idu
is authentic and the client can conclude that the package is authentic as well.

Freshness of the Interactive Update Selection Protocol. During update selection
phase, the information about the latest software update available is distributed
in a cacheable form, i.e., it is intended for offline updates and is identical for a
class of clients. Consequently, such a response can also be provided by caches
or by offline media. When US first publishes a new available update package
pkgu, it also specifies the publication timestamp t and a time interval Δt, that
indicates the time interval in which a client should consider the information
fresh. A client can verify information freshness by checking its current timestamp
against t+Δt. If the content is not fresh, i.e., not received before t+Δt, the client,
once verified data authenticity, requests the same information directly from US .
For this reason, we conclude that Updaticator guarantees content freshness.

6 Prototype and Evaluation

We now present an evaluation of the proposed updates distribution scheme.
While arbitrary Cache-enabled Networks can be used, we benchmarked our
scheme using a distribution network built with Named-Data Networking as an
overlay network on top of TCP/IP. In this scenario, NDN nodes can be dis-
tributed over the Internet and can be used for cached distribution of arbitrary
content including updates.

6.1 Evaluation Setup

In order to provide a large-scale evaluation of the use of Named-Data Networking
(NDN) to build a network for efficient software update distribution, we carried
out our tests on the ns-3 simulator [24]. We focused on update requests generated

88 M. Ambrosin et al.

by always-on-line devices, which check for updates periodically. We assumed that
update requests are generated in bursts, i.e., n devices check for updates and/or
download an update within a time window interval tw = [tu, tu +Δt].

We compared content download via the HTTP protocol and a distribution
network built with NDN as a TCP/IP overlay. In the former case, we published
the content through an thttpd Web Server [32], while in the latter case, we
published the content on an NDN repository built using the NDNx protocol [23].
The integration of such an application with the ns-3 simulator has been achieved
by leveraging the DCE module [12] of ns-3. Our experiments were carried out
on a DFN-like topology [11], depicted in Fig. 5.

Fig. 5. DFN-like network topology

In our simulated topology, we introduced three different types of nodes. Core
nodes represent the main part of the topology and are connected through 1 Gbps
point-to-point links. We introduced two types of core nodes: NDN-capable core
nodes (triangles in Fig. 5), which can communicate via the NDN protocol, and
simple TCP/IP core nodes (white circles in Fig. 5). Edge nodes (dark circles
in Fig. 5) are used to access the network. In our simulation, edge nodes are
connected to core nodes through 100 Mpbs links. Entry nodes (rhombus in Fig. 5)
are nodes to which all clients are connected. Each client can perform both HTTP
and NDN requests.

We considered an increasing number of clients, from 100 to 900, connected
on the entry point nodes. Each device requested a content of 1 MB, starting
the download at a uniformly chosen time t in tw = [tu, tu + 30] seconds. We
then measured the average Content Retrieval Time (CRT) for the devices and
the total amount of traffic at the server side. Moreover, in order to provide a
complete vision of the advantages in adopting a Cache-enabled Network, we
analyzed the bandwidth utilization.

6.2 Network Load on the Update Server

The first result of our analysis was that our approach indeed reduces the network
load on the update server from linear (or worse) to just a constant level (Fig. 6).

Updaticator: Updating Billions of Devices 89

This is achieved by the caching of updates over the NDN distribution network
so that the server only needs to deliver a small number of original copies of
each update to populate the caches. Fig. 6a and Fig. 6b depict average data
traffic sent and received by the server. Results are shown for a time window of
30 seconds. The results show that the use of a Cache-enabled Network as NDN
highly reduces the load at the server side from linear (please note that graphs
in Fig. 6a and Fig. 6b are represented in log-scale) to constant, thus allowing
system scalability and preventing DDoS attacks against DS .

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900

T
ra

ns
m

itt
ed

 D
at

a
(M

B
)

Number of clients

HTTP
NDN

(a) Sent data

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900

R
ec

ei
ve

d
D

at
a

(M
B

)

Number of clients

HTTP
NDN

(b) Received data

Fig. 6. Sent and received data by the server, NDN vs. direct download (content size
1 MB; time window of 30 s; log-scale transforms linear growth into a log curve)

6.3 Time Required to Retrieve an Update

The introduction of a Cache-enabled Network also reduces the average Content
Retrieval Time (CRT) (Fig. 7) to a constant even for large numbers of devices.
The traditional scheme without caching only performs for a small number of
devices. For larger numbers the performance drops dramatically. Furthermore,
under load the individual times vary within in a wide range. This makes the
individual update times largely unpredictable.

Crypto Performance. For performance testing purposes, we adopted the cpabe

library [9], which provides an implementation of the CP-ABE scheme proposed
by Walters et al. [6], and the openssl library [27]. We selected AES-CBC, with
key size of 256 bits for the symmetric encryption of the software update package
and the symmetric key ku, and adopted the RSA algorithm with a 4096 bits key
for content signing. Moreover, we considered SHA256 and SHA384 for hashing.
Our tests have been conducted on a system equipped with two 2.4 GHz Intel
CoreTM 2 Duo CPUs and 4 GB RAM and a 256 bit key ku for AES-CBC. Results
are reported in Table 1.

90 M. Ambrosin et al.

 0

 10

 20

 30

 40

 50

 60

 70

 100 200 300 400 500 600 700 800 900

C
R

T
 (

s)

Number of clients

NDN
HTTP

Fig. 7. Average time needed to retrieve a content of size 1 MB via NDN vs. direct
download via HTTP for 900 clients and 1 MB content download; time window tMAX =
30

Table 1. Evaluation of the cryptographic primitives used in our simulation (AES,
SHA256 and SHA384 with 1 MB input; CP-ABE with 65 bytes input and 5 attributes;
signatures with 438 bytes input; average numbers over 10,000 runs

Function Time Function Time

CP-ABE encrypt 77.47 ms CP-ABE decrypt 32.62 ms

AES-256-CBC encrypt 28.77 ms AES-256-CBC decrypt 26.61 ms

RSA signature create 31.64 ms RSA signature verify 5.20 ms

SHA256 13.3 ms SHA384 10.99 ms

6.4 Power Consumption of the Client Devices

Reducing the network load and required computation is essential in order to limit
power consumption. This is particularly true for resource-constrained devices.
The introduction of the freshness interval “Δt” allows each device to remain
off-line most of the time (only checking for updates once in each time interval),
and also provides the possibility for software distributors to determine the best
tradeoff between client device power consumption and software update freshness.

7 Related Work

In this section we provide an overview of previous work related to secure software
update distribution. Bellissimo et al. [5] provide a security analysis of existing
update systems, which reveals several weaknesses such as vulnerabilities against
man-in-the-middle attacks. This emphasizes the importance of secure software
update distribution mechanisms.

We focus on encrypted updates that can be cached. Due to space limitations,
we do not survey non-cacheable updates distribution protocols such as the one

Updaticator: Updating Billions of Devices 91

proposed in [14], or mechanisms that do not provide encryption such as the one
in [8]. Instead, we contrast our work to related work on updates using broadcast
encryption as the underlying key management mechanism. Adelsbach et al. [4]
propose to use broadcast encryption to distribute confidential software updates
to embedded controllers inside an automotive system. Therefore their solution
provides confidentiality and at the same time enables caching of updates, since
the encrypted update is identical for all devices. Misra et al. [20] propose to use
broadcast encryption to ensure confidentiality of a Content-Distribution Network
built on top of NDN. Unfortunately, in this work the authors do not provide a
cacheable “content selection” mechanism.

Similarly to OMA DRM [26], our scheme allows cacheable distribution of
content (by separating the encrypted object from the associated decryption key).
However, in order to retrieve the decryption key and the associated access policy,
OMA DRM requires each client to establish an interactive session with the Policy
Server. By using CP-ABE, our protocol does not require this interaction hence
allowing a cacheable and scalable distribution of the decryption key.

We believe that broadcast encryption schemes (such as the ones in [7] and [17])
are not suitable for our system model. Indeed, adopting a broadcast encryption
scheme, the Policy Server would need to define a cryptographic broadcast system
for each group of devices, hence complicating the key management for both
the Policy Server and the devices. Moreover, public-key broadcast encryption
schemes do not provide constant size encryption keys, and therefore do not scale
to billions of devices. Finally, while the broadcast encryption scheme proposed
in [10] achieves constant size keys, the group management and the encryption
must be carried out by the same entity. This is a limitation in our system model,
since the creation and management of the device group (usually done by the
device vendor) and the encryption of a targeted update (usually done by software
vendor) could no longer be separated. In contrast, CP-ABE provides constant
size keys, while allowing encryption using public parameters [16].

8 Conclusions and Future Work

Fast and secure software update distribution is a key issue in modern IT sys-
tems, particularly when the updates concern the fix of security vulnerabilities
or are essential for business. As shown by our analysis, our approach is the first
solution that makes large-scale updates practical for billions of devices. Future
work in this area will focus on the optimization of software update distribution
for local networks and resource-constrained devices. Specific constraints coming
from these environments call for novel solutions for these devices. In particular,
those solutions should be able to coordinate different devices to maintain the
compatibility among them (e.g., specifying constraints via policies), and being
resilient to malicious devices that might hinder the success of the proposal.

Finally, we plan to provide revocation of individual devices. This aspect be-
comes an essential requirement in a stronger adversary model, where we consider
compromised clients as possible attackers. Ostrovsky et al. [28] propose a CP-
ABE scheme to specify revoked users directly inside the access policy of the

92 M. Ambrosin et al.

ciphertext. However, the size of their policy grows linearly with the number of
revoked clients. Therefore we are also looking into other possible solutions, e.g.,
hybrid schemes such as [35] and [34]. Furthermore, this requires a way to identify
the source of a leaked update (traitor tracing), which is particularly challenging
in our system model, since existing solutions prevent the cacheability of updates.

References

1. 2013 US-CERT Techical Security Alerts,
http://www.us-cert.gov/ncas/alerts/2013

2. Akamai Content Delivery Network, http://www.akamai.com
3. Akamai Secure Content Delivery, http://www.akamai.com/dl/

feature sheets/fs edgesuite securecontentdelivery.pdf

4. Adelsbach, A., Huber, U., Sadeghi, A.-R.: Secure Software Delivery and Installation
in Embedded Systems. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.) ISPEC
2005. LNCS, vol. 3439, pp. 255–267. Springer, Heidelberg (2005)

5. Bellissimo, A., Burgess, J., Fu, K.: Secure Software Updates: Disappointments and
New Challenges. In: 1st USENIX Workshop on Hot Topics in Security, pp. 37–43.
USENIX Association, Berkeley (2006)

6. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-Policy Attribute-Based Encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Com-
puter Society, Washington (2007)

7. Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with
Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

8. Cameron, D., Liu, J.: apt-p2p: A Peer-to-Peer Distribution System for Software
Package Releases and Updates. In: 28th IEEE Conference on Computer Commu-
nications, pp. 864–872. IEEE, New York (2009)

9. Cpabe toolkit, http://hms.isi.jhu.edu/acsc/cpabe/#documentation
10. Delerablée, C., Paillier, P., Pointcheval, D.: Fully Collusion Secure Dynamic Broad-

cast Encryption with Constant-Size Ciphertexts or Decryption Keys. In: Takagi,
T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575,
pp. 39–59. Springer, Heidelberg (2007)

11. Deutsches forschungsnetz (DFN), https://www.dfn.de/en/
12. Direct Code Execution (DCE),

https://www.nsnam.org/overview/projects/direct-code-execution/

13. Dolev, D., Yao, A.C.: On the Security of Public Key Protocols. IEEE Transactions
on Information Theory 29(2), 198–208 (1983)

14. Gkantsidis, C., Karagiannis, T., Vojnovic, M.: Planet Scale Software Updates. In:
2006 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, pp. 423–434. ACM, New York (2006)

15. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based Encryption for Fine-
grained Access Control of Encrypted Data. In: 13th ACM Conference on Computer
and Communications Security, pp. 89–98. ACM, New York (2006)

16. Guo, F., Mu, Y., Susilo, W., Wong, D.S., Varadharajan, V.: CP-ABE With
Constant-Size Keys for Lightweight Devices. IEEE Transactions on Information
Forensics and Security 9(5), 763–771 (2014)

17. Halevy, D., Shamir, A.: The LSD Broadcast Encryption Scheme. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)

http://www.us-cert.gov/ncas/alerts/2013
http://www.akamai.com
http://www.akamai.com/dl/feature_sheets/fs_edgesuite_securecontentdelivery.pdf
http://www.akamai.com/dl/feature_sheets/fs_edgesuite_securecontentdelivery.pdf
http://hms.isi.jhu.edu/acsc/cpabe/#documentation
https://www.dfn.de/en/
https://www.nsnam.org/overview/projects/direct-code-execution/

Updaticator: Updating Billions of Devices 93

18. Heartbleed SSL protocol vulnerability,
https://www.schneier.com/blog/archives/2014/04/heartbleed.html

19. Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard,
R.L.: Networking Named Content. In: 5th International Conference on Emerging
Networking Experiments and Technologies, pp. 1–12. ACM, New York (2009)

20. Misra, S., Tourani, R., Majd, N.E.: Secure Content Delivery in Information-centric
Networks: Design, Implementation, and Analyses. In: 3rd ACM SIGCOMM Work-
shop on Information-centric Networking, pp. 73–78. ACM, New York (2013)

21. Named-Data Networking Project (NDN), http://named-data.org
22. NDNx Documentation - Interest Message,

http://named-data.net/doc/0.1/technical/InterestMessage.html

23. NDNx – NDN protocol implementation,
http://named-data.net/codebase/platform/moving-to-ndnx/

24. NS-3 Simulator, https://www.nsnam.org/
25. Nilsson, D.K., Roosta, T., Lindqvist, U., Valdes, A.: Key Management and Se-

cure Software Updates in Wireless Process Control Environments. In: 1st ACM
Conference on Wireless Network Security, pp. 100–108. ACM, New York (2008)

26. Open Mobile Alliance. DRM Specification ver. 2.2, Technical Report (2011)
27. OpneSSL project, https://www.openssl.org/
28. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based Encryption with Non-

monotonic Access Structures. In: 14th ACM Conference on Computer and Com-
munications Security, pp. 195–203. ACM, New York (2007)

29. Philips Hue, http://meethue.com/
30. Sahai, A., Waters, B.: Fuzzy Identity-based Encryption. In: Cramer, R. (ed.) EU-

ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)
31. Samuel, J., Mathewson, N., Cappos, J., Dingledine, R.: Survivable Key Compro-

mise in Software Update Systems. In: 17th ACM Conference on Computer and
Communications Security, pp. 61–72. ACM, New York (2010)

32. thttpd web server, http://www.acme.com/software/thttpd
33. Windows Azure, http://www.windowsazure.com/en-us/
34. Yu, S., Wang, C., Ren, K., Lou, W.: Attribute Based Data Sharing with Attribute

Revocation. In: 5th ACM Symposium on Information, Computer and Communi-
cations Security, pp. 261–270. ACM, New York (2010)

35. Zhiqian, X., Martin, K.M.: Dynamic User Revocation and Key Refreshing for
Attribute-Based Encryption in Cloud Storage. In: 11th IEEE International Con-
ference on Trust, Security and Privacy in Computing and Communications, pp.
844–849. IEEE, New York (2012)

36. Zhou, Z., Huang, D., Wang, Z.: Efficient Privacy-Preserving Ciphertext-Policy At-
tribute Based Encryption and Broadcast Encryption. IEEE Transactions on Com-
puters PP(99) (2013)

https://www.schneier.com/blog/archives/2014/04/heartbleed.html
http://named-data.org
http://named-data.net/doc/0.1/technical/InterestMessage.html
http://named-data.net/codebase/platform/moving-to-ndnx/
https://www.nsnam.org/
https://www.openssl.org/
http://meethue.com/
http://www.acme.com/software/thttpd
http://www.windowsazure.com/en-us/

	Updaticator: Updating Billions of Devices
by an Efficient, Scalable and Secure
Software Update Distribution
over Untrusted Cache-enabled Networks

	1 Introduction
	2 System Model and Requirements
	2.1 System Model
	2.2 Security Requirements
	2.3 Adversary Model

	3 Background
	3.1 Attribute-Based Encryption
	3.2 Named-Data Networking

	4 Updaticator: Our Scalable Update Protocol with End-to-End Security
	4.1 Update Publication Phase
	4.2 Update Selection Phase
	4.3 Update Retrieval Phase

	5 Security Analysis
	6 Prototype and Evaluation
	6.1 Evaluation Setup
	6.2 Network Load on the Update Server
	6.3 Time Required to Retrieve an Update
	6.4 Power Consumption of the Client Devices

	7 Related Work
	8 Conclusions and Future Work
	References

