
Securely Outsourcing Exponentiations with

Single Untrusted Program for Cloud Storage

Yujue Wang1,2,3, Qianhong Wu3,1, Duncan S. Wong2, Bo Qin4,
Sherman S.M. Chow5, Zhen Liu2, and Xiao Tan2

1 Key Laboratory of Aerospace Information Security and Trusted Computing
Ministry of Education, School of Computer, Wuhan University, Wuhan, China

2 Department of Computer Science
City University of Hong Kong, Hong Kong

wyujue2-c@my.cityu.edu.hk, {duncan,zhenliu7}@cityu.edu.hk,
xiaotan4@gapps.cityu.edu.hk

3 School of Electronic and Information Engineering
Beihang University, Beijing, China

qianhong.wu@buaa.edu.cn
4 School of Information, Renmin University of China, Beijing, China

bo.qin@ruc.edu.cn
5 Department of Information Engineering

Chinese University of Hong Kong, Hong Kong
sherman@ie.cuhk.edu.hk

Abstract. Provable Data Possession (PDP) allows a file owner to out-
source her files to a storage server such that a verifier can check the
integrity of the outsourced file. Public verifiable PDP schemes allow any
one other than the file owner to be a verifier. At the client side (file
owner or verifier), a substantial number of modular exponentiations is
often required. In this paper we make PDP more practical via propos-
ing a protocol to securely outsource the (most generic) variable-exponent
variable-base exponentiations in one untrusted program model. Our pro-
tocol demonstrates advantages in efficiency or privacy over existing pro-
tocols coping with only special cases in two or single untrusted program
model. We then apply our generic protocol to Shacham-Waters PDP and
a variant of Yuan-Yu PDP. The analyses show that our protocol makes
PDP much more efficient at the client side.

Keywords: Offloading computation, Verifiable computation, Modular
exponentiation, Provable Data Possession, Cloud storage.

1 Introduction

A recent trend to reduce the storage costs is to outsource it to a cloud service
provider. It is beneficial to the (cloud service) clients since the outsourced files
can be easily shared with others. There are also increasing concerns about the
security of their outsourced files. In addition to the many secrecy issues [1–3],
there are concerns about whether those outsourced files are still kept intact.

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 326–343, 2014.
c© Springer International Publishing Switzerland 2014

Securely Outsourcing Exponentiations with Single Untrusted Program 327

Traditional primitives like signature or signcryption (e.g., [4, 5]) are insufficient
for this purpose since it requires the signed message for verification.

Considerable efforts have been devoted to addressing these concerns. A promis-
ing one is to verify the outsourced file integrity via provable data possession
(PDP) [6–11]. In many scenarios, publicly verifiable PDP is preferable. However,
existing such schemes need many modular exponentiations, especially in file pro-
cessing and integrity verification. Exponentiations are relatively expensive for
devices with limited computation capacity such as mobile phones or tablet, al-
beit outsourcing files is attractive to mobile terminals due to their limited storage
space. This motivates us to consider how to make PDP more affordable by se-
curely outsourcing exponentiation to a computation server.

1.1 Our Contributions

Secure Exponentiations Outsourcing. We present the first generic scheme that al-
lows to securely outsource variable-exponent variable-base multi-exponentiations
to just one untrusted computation server. Although a few schemes have been pro-
posed for securely outsourcing variable-exponent variable-base exponentiations,
they treat the special cases of our setting and are not satisfactory enough for
outsourcing multi-exponentiations in practice. Both Hohenberger-Lysyanskaya
scheme [12] and Chen et al.’s scheme [13] are presented in two untrusted pro-
gram model. This seems a strong assumption hard to be met as the client needs
to outsource her exponentiations to two computation servers who will not col-
lude. Our scheme is implemented in single untrusted program model, and is also
superior since less interactions are needed between the client and the computa-
tion server. Although Dijk et al.’s scheme [14] is presented in a single untrusted
program model, it cannot ensure the privacy of the queried input since the base
of the outsourced exponentiation is known to the untrusted server. In contrast,
our scheme is computationally more efficient and ensures higher privacy level.

Before showing our algorithm of outsourcing exponentiations, we provide two
preprocessing subroutines which generate random pairs. The first one, called
BPV+, generates statistically indistinguishable random pairs and is suitable to
implement outsourcing schemes over cyclic groups of large prime order. The
other one, standard multiplicative base list (SMBL), is more efficient especially
for applications over finite groups on elliptic curves.

Secure Offloading Provable Data Possession. Built on our scheme of outsourcing
generic exponentiations, we investigate how to efficiently and securely offload
PDP schemes. As we know, most existing publicly verifiable PDP schemes take
many expensive exponentiations. Specifically, those exponentiations intensively
occur in two stages. One is the file processing algorithm ProFile, which is carried
out by the file owner to generate the verifiable metadata for a given file before
uploading it to the storage server. The other one is the verification algorithm
Vrfy, which is executed by a verifier to check whether the outsourced file is kept
intact. Thus, to speed-up PDP schemes at the client side, we let the file owner
and the verifier securely outsource exponentiations to an untrusted computation

328 Y. Wang et al.

server. To showcase the effectiveness of our protocol, we show how to securely
offload Shacham-Waters PDP [8] and a variant of Yuan-Yu PDP [11]. Analyses
show that for both offloaded PDP schemes, the computational efficiency at the
client side is greatly improved compared with the plain ones. Furthermore, the
saving computation cost increases with the number of elements involved in a
multi-exponentiation.

1.2 Related Work

Provable Data Possession. The concept of PDP was first introduced by Ateniese
et al. [6], which allows the clients to check the integrity of an outsourced file
without retrieving its entire version from the cloud storage server. For responding
to integrity queries, the cloud server does not need to access the entire file.
There are some attempts in outsourcing operations in PDP. Wang et al. [15]
considered PDP in identity-based setting to relieve the users from complicated
certificate management. In Wang et al.’s privacy-preserving publicly-verifiable
PDP scheme [10], a third party auditor (TPA) is introduced to securely carry
out verification algorithm on behalf of file owners. Here the privacy of the file
is preserved from the view of the TPA. In another work with privacy concern,
Wang et al. [9] considered a scenario such that the members of an organization
can perform the file processing for PDP with the help of a security-mediator
(SEM). As a side effect, part of the computation workloads is also outsourced.
The privacy is preserved from the view of the SEM.

Proofs of Retrievability (PoR) is a closely related notion to PDP. PoR was first
introduced by Juels and Kaliski [7], which enables the storage server to convince
its clients that the outsourced files can be entirely retrieved. In their scheme [7],
the clients can only submit a limited number of integrity queries, because the
corresponding responses are produced by checking whether the special sentinels
have been modified. Shacham and Waters [8] presented (both privately and pub-
licly) verifiable PoR schemes, which are the first ones that being proved in the
strongest model. Based on polynomial commitments [16], Yuan and Yu [11] pro-
posed a public verifiable PoR scheme with constant communication costs for
integrity verification. Benabbas, Gennaro and Vahlis [17] investigated verifiable
delegation of computations for high degree polynomial functions to an untrusted
server, and based on which a PoR scheme is discussed where the file blocks are
represented as the coefficients in a polynomial. For reducing the computation
costs at the client sides, Li et al. [18] introduced a semi-honest cloud audit
server into PoR framework. Specifically, the audit server takes charge of prepro-
cessing the data for generating metadata as well as auditing the data integrity
on behalf of data owners.

Securely Outsourcing Exponentiations. Dijk et al. [14] considered outsourcing
algorithms of variable-exponent fixed-base and fixed-exponent variable-base ex-
ponentiations in one untrusted server model. Specifically, the computations are
outsourced to one powerful but untrusted server, where the variable parts are
blinded before sending to the server. Ma, Li and Zhang [19] also proposed se-
cure algorithms of outsourcing these two types of exponentiations by using two

Securely Outsourcing Exponentiations with Single Untrusted Program 329

non-collusion untrusted servers. An algorithm of outsourcing variable-exponent
variable-base exponentiations was also presented in [14], where the outsourced
base is known to the server. Both the schemes of Hohenberger and Lysyan-
skaya [12] and Chen et al. [13] considered outsource-secure algorithms of variable-
exponent variable-base exponentiations in one-malicious version of two untrusted
program model, that is, the computations are securely outsourced to two servers
one of which is trusted and will not collude with the other dishonest one. Chen
et al. [13] also studied how to securely and efficiently outsource simultaneous
exponentiations in this security model.

Other Secure Outsourcing Schemes. Tsang, Chow and Smith [20] proposed the
concept of batch pairing delegations for securely outsourcing expensive pairing
operations in batch. Canard, Devigne and Sanders [21] also showed delegat-
ing a pairing can be both secure and efficient. The main operation required by
the client is exponentiation. With our new protocol, it provides a “complete
solution” of outsourcing many pairing-based schemes, in particular, the PDP
schemes we concerned in this work. Xu, Amariucai and Guan [22] considered
a scenario in which the burdensome computations are delegated to a server P ,
and the verification on the outputs of P is also outsourced to another server
V . Gennaro, Gentry and Parno [23] first considered verifiable computation by
combining Yao’s Garbled Circuits with a fully-homomorphic encryption scheme,
such that the evaluation of a function can be securely outsourced to a remote
untrusted server. Carter et al. [24] also considered securely outsourcing function
evaluation by using an efficient outsourced oblivious transfer protocol. Zhang and
Safavi-Naini [25] considered special cases of securely outsourcing function evalu-
ation, i.e., univariate polynomial evaluation and matrix multiplication, without
fully-homomorphic encryption, yet with multilinear maps. Recently, Wang et
al. [26, 27] showed how to compute over data encrypted under multiple keys
in the two-server model. Two-server model is also used in other work such as
efficient privacy-preserving queries over distributed databases [28].

2 Definitions and Security Requirements

In this section, we review the definitions of outsource-secure algorithms as well
as the corresponding security requirements [12, 13].

An algorithm Alg to be outsourced is divided into two parts, namely, a trusted
part T which should be efficient compared with Alg and is carried out by the
outsourcer, and an untrusted part U which is invoked by T . Following the works
[12, 13], we use the same notations in the upcoming sections. Specifically, TU

denotes the works that carried out by T by invoking U . The adversary A is
modelled by a pair of algorithms A = (E,U ′), where E represents the adver-
sarial environment, and generates adversarial inputs for Alg; we denote U ′ an
adversarial software. It is invoked in the same way as U and thus it is used to
mirror the view of U during the execution of TU .

330 Y. Wang et al.

Definition 1 (Algorithm with Outsource-IO). An outsourcing algorithm
Alg takes five inputs and produces three outputs, i.e., Alg(xhs, xhp, xhu, xap, xau)
→ (ys, yp, yu).

Inputs: All the inputs are classified by how they are generated and how much the
adversary A = (E,U ′) knows about them. The first three inputs are generated by
an honest party, while the last two are generated by the adversarial environment
E. Specifically, the honest, secret input xhs is unknown to both E and U ; the
honest, protected input xhp may be known to E, but is protected from U ; the
honest, unprotected input xhu may be known by both E and U ; the adversarial,
protected input xap is known by E, but protected from U ; and the adversarial,
unprotected input xau may be known by both E and U .

Outputs: Similarly, all the outputs are classified by how much the adversary
A = (E,U ′) knows about them. The first one ys is called the secret output and
unknown to both parties of A; the protected output yp may be known by E, but
unknown to U ; and yu is the unprotected output known by both E and U .

It is assumed that the adversary A consists of two parties E and U ′. Both can
only make direct communications before the execution of TU . In any other cases
if necessary, they should be communicated via T . An outsource-secure algorithm
(T, U) requires that neither party of A can learn anything interesting during the
execution of TU . This requirement is captured by the simulatability of (T, U). In
other words, for any probabilistic polynomial-time (PPT) adversaryA = (E,U ′),
the view of E on the execution of TU can be simulated in a computationally
indistinguishable way given the protected and unprotected inputs, and similarly,
the view of U ′ can also be simulated but only given the unprotected inputs.

Definition 2 (Correctness). Let Alg be an algorithm with outsource-IO. A
pair of algorithms (T, U) is said to be a correct implementation of Alg, if Alg =
TU for any honest, secret, or honest, protected, or adversarial, protected inputs.

Definition 3 (λ-security). Let Alg be an algorithm with outsource-IO. A pair
of algorithms (T, U) is said to be a λ-outsource-secure implementation of Alg if:
for any PPT adversary A = (E,U ′), both the views of E and U ′ can be simulated
on the execution of TU , i.e., there exist PPT algorithms (S1, S2) such that the
following two pairs of random variables are computationally indistinguishable
under the security parameter λ,

Pr[EV iewreal ∼ EV iewideal] ≥ 1− 2−λ,

and

Pr[UV iewreal ∼ UV iewideal] ≥ 1− 2−λ.

Pair One: EV iewreal ∼ EV iewideal, which means that E learns nothing during
the execution of TU . They are defined by the following processes that proceed in
rounds, where the notation “←” denotes the outputs of the procedure in the right
hand side.

Securely Outsourcing Exponentiations with Single Untrusted Program 331

– The i-th round of real process consists of the following steps, in which I is
an honest, stateful process that the environment E cannot access:
• (istatei, xihs, x

i
hp, x

i
hu)← I(1κ, istatei−1);

• (estatei, ji, xiap, x
i
au, stop

i)← E(1κ, EV iewi−1
real, x

i
hp, x

i
hu);

• (tstatei, ustatei, yis, y
i
p, y

i
u)

← TU ′(ustatei−1)(tstatei−1, xj
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au).

Thus, the view of E in the i-th round of the real process is EV iewi
real =

(estatei, yip, y
i
u) and the overall view is just its view in the last round, i.e.,

EV iewreal = EV iewi
real for some i such that stopi = True.

– The i-th round of ideal process consists of the following steps. In which, the
stateful algorithm S1 is given all the non-secret outputs which Alg generates
in i-th round, but knows nothing about the secret input xihs. Finally, S1

outputs (yip, y
i
u) or some other values (Y i

p , Y
i
u), which is captured by using a

boolean indicator indi.
• (istatei, xihs, x

i
hp, x

i
hu)← I(1κ, istatei−1);

• (estatei, ji, xiap, x
i
au, stop

i)← E(1κ, EV iewi−1
real, x

i
hp, x

i
hu);

• (astatei, yis, y
i
p, y

i
u)← Alg(astatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

• (sstatei, ustatei, Y i
p , Y

i
u, ind

i)

← S
U ′(ustatei−1)
1 (sstatei−1, xj

i

hp, x
ji

hu, x
i
ap, x

i
au, y

i
p, y

i
u);

• (zip, z
i
u) = indi(Y i

p , Y
i
u) + (1− indi)(yip, yiu).

Thus, the view of E in the i-th round of the ideal process is EV iewi
ideal =

(estatei, zip, z
i
u) and the overall view is just its view in the last round, i.e.,

EV iewideal = EV iewi
ideal for some i such that stopi = True.

Pair Two: UV iewreal ∼ UV iewideal, which means that the untrusted software
U ′ learns nothing during the execution of TU ′

.

– By the definition of Pair One, U ′’s view in the real process is UV iewreal =
ustatei for some i such that stopi = True.

– The i-th round of ideal process consists of the following steps, in which
the stateful algorithm S2 is just given the unprotected outputs which Alg
generates in i-th round:
• (istatei, xihs, x

i
hp, x

i
hu)← I(1κ, istatei−1);

• (estatei, ji, xiap, x
i
au, stop

i)← E(1κ, EV iewi−1
real, x

i
hp, x

i
hu);

• (astatei, yis, y
i
p, y

i
u)← Alg(astatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

• (sstatei, ustatei)← S
U ′(ustatei−1)
2 (sstatei−1, xj

i

hu, x
i
au) .

Thus, U ′’s view in i-th round of ideal process is UV iewi
ideal = (ustatei),

and the overall view is just its view in the last round, i.e., UV iewideal =
UV iewi

ideal for some i such that stopi = True.

As we discussed, by employing the outsource-secure techniques, the clients
can relieve from carrying out resource-intensive computations locally. Thus, it is
reasonable to measure the efficiency of an outsource-secure algorithm (T, U) by
comparing the works that T undertakes to those for the state-of-the-art execution
of Alg.

332 Y. Wang et al.

Definition 4 (α-efficient, λ-secure outsourcing). For a pair of λ-outsource-
secure algorithms (T, U) which implement an algorithm Alg, they are α-efficient
if for any inputs x, the running time of T is less than an α-multiplicative factor
of that of Alg(x).

Definition 5 (β-checkable, λ-secure outsourcing). For a pair (T, U) of
λ-outsource-secure algorithms which implement an algorithm Alg, they are β-
checkable if for any inputs x, T can detect any deviations of U ′ from its adver-
tised functionality during the execution of TU ′(x) with probability at least β.

In practice, the cloud server can only misbehave with very small probability.
Otherwise, it will be caught after outsourcing invocations.

Definition 6 ((α, β, λ)-outsource-security). A pair of algorithms (T, U) are
an (α, β, λ)-outsource-secure implementation of an algorithm Alg if they are both
α-efficient and β-checkable, λ-secure outsourcing.

3 Secure Modular Exponentiation Outsourcing

3.1 Preprocessing

In [13, 12], a subroutine Rand is used to generate random pairs. On each in-
vocation, Rand takes a prime p, a base g ∈ Z

∗
p and possibly some other val-

ues as inputs, and outputs a random, independent pair (a, ga mod p) for some
a ∈R Z

∗
p. For security, the distribution of Rand outputs should be computation-

ally indistinguishable from truly random ones. There are two ways to realize this
subroutine. One is to use a trusted server to generate a number of random and
independent pairs for T , and the other is let T generate those random pairs by
using EBPV generator [29].

In this paper, we provide two preprocessing subroutines for generating random
pairs. Both of them take a cyclic group G = 〈g〉 of prime order p and possibly
some other values as inputs, and output a random, independent pair (a, ga) for
some a ∈R Z

∗
p. Besides, those subroutines maintain two tables, i.e., a static table

ST and a dynamic table DT .

BPV+: The first one is called BPV+ which is derived from the BPV genera-
tor [30], i.e., by running BPV or EBPV generator totally offline. In detail, BPV+

is described as follows.

– ST: T chooses n random numbers β1, · · · , βn ∈ Z
∗
p, and computes νi = gβi

for each i ∈ [1, n]. T stores these n pairs (βi, νi) in the static table ST .
– DT: T maintains a dynamic table DT, of which each element (αj , μj) can

be produced as follows. T chooses a random subset S ⊆ {1, · · · , n} such
that |S| = k and computes αj =

∑
i∈S

βi mod p. If αj
= 0 mod p, then
compute μj =

∏
i∈S

νi; otherwise, discard αj and repeat this procedure. On
each invocation of BPV+, T just picks a pair (α, μ) and removes it from DT ,
and then replenishes some fresh random pairs in its idle time.

Securely Outsourcing Exponentiations with Single Untrusted Program 333

SMBL: Another preprocessing algorithm is called standard multiplication base
list (SMBL), which produces truly random pairs.

– ST: T computes νi = g2i

for every i ∈ {0, · · · , �log p�} and stores these
pairs (i, νi) in the static table ST . In fact, νi = νi−1 · νi−1 for every i ∈
{1, · · · , �log p�}.

– DT: T maintains a dynamic table DT , of which each element (αj , μj) can
be produced as follows. T chooses a random value αj ∈ Z

∗
p and denotes its

i-th bit by αi,j . Let A ⊆ {0, · · · , �log p�} be the set of i such that αi,j = 1.
Computes μj =

∏
i∈A

νi. On each invocation of SMBL, T just picks a pair
(α, μ) and removes it from DT , and then replenishes some fresh random
pairs afterwards.

Note that, the preprocessing algorithms, i.e., Rand, BPV+ and SMBL just
deal with exponentiations with some fixed-base g. The comparison between the
proposed subroutines is shown in Table 1 in terms of computation and storage
costs and randomness of the generated pairs. Here, |DT | and ESG denote the
cardinality of table DT and the element size of group G, respectively. It is easy
to see that BPV+ produces statistically indistinguishable random pairs, while
SMBL generates truly random ones. Both the computations and the storage
of BPV+ with regard to ST are more costly than its counterpart in SMBL.
However, if p is large, then the computations of DT in BPV+ are more efficient
than that in SMBL, since the parameter k is relatively small compared with p.
Thus, BPV+ will be more effective when used in preprocessing or outsourcing
schemes that are designed over cyclic groups of large prime orders, such as DSA
scheme, El Gamal scheme as well as RSA-type schemes, etc. While SMBL is well-
suited for other cases, e.g., in the applications over ECC such as that discussed
in Section 4, where a relatively small p is secure enough.

Table 1. Comparison of preprocessing subroutines BPV+ and SMBL

Subroutines Computation costs Storage costs Randomness

BPV+
ST nE n log p+ nESG -

DT |DT |(k − 1)A+ |DT |(k − 1)M |DT | log p+ |DT |ESG

Statistically
indistinguishable

SMBL
ST �log p�M (�log p�+ 1) log log p

-
+(�log p�+ 1)ESG

DT |DT |�log p�/2M |DT | log p+ |DT |ESG Truly random

(A, M, and E denote addition, multiplication, and exponentiation, respectively.)

3.2 Generic Algorithm for Outsourcing Exponentiations

Let G be a cyclic group of prime order p and g be a generator. Takes ai,j ∈R Zp

and ui,j ∈R G (1 ≤ i ≤ r, 1 ≤ j ≤ s) as inputs, the algorithm GExp outputs
(
∏s

j=1 u
a1,j

1,j , · · · ,
∏s

j=1 u
ar,j

r,j), i.e.,

334 Y. Wang et al.

GExp((a1,1, · · · , a1,s;u1,1, · · · , u1,s), · · · , (ar,1, · · · , ar,s;ur,1, · · · , ur,s))

→ (

s∏

j=1

u
a1,j

1,j , · · · ,
s∏

j=1

u
ar,j

r,j),

where {ai,j : 1 ≤ i ≤ r, 1 ≤ j ≤ s} may be secret or (honest/adversarial) pro-
tected, {ui,j : 1 ≤ i ≤ r, 1 ≤ j ≤ s} are distinct and may be (honest/adversarial)
protected, and {∏s

j=1 u
a1,j

1,j : 1 ≤ i ≤ r} may be secret or protected.

Step 1: T invokes the algorithm BPV+ or SMBL to generate four pairs
(α1, μ1), · · · , (α4, μ4) where μi = gαi . Pick a random value χ such that χ ≥ 2λ

where λ is a security parameter, e.g. λ = 64. For every pair (i, j) such that
1 ≤ i ≤ r and 1 ≤ j ≤ s, pick a random number bi,j ∈R Z

∗
p and compute the

following values

– ci,j = ai,j − bi,jχ mod p;
– wi,j = ui,j/μ1;
– hi,j = ui,j/μ3;

– θi =
(
α1

∑s
j=1 bi,j − α2

)
χ+

(
α3

∑s
j=1 ci,j − α4

)
mod p.

Step 2: T invokes BPV+ or SMBL to obtain (t1, g
t1), · · · , (tr+2, g

tr+2) and
queries the server U in random order as:
U(θi/ti, g

ti)→ Bi, for every i (1 ≤ i ≤ r);
U(θ/tr+1, g

tr+1)→ A, where θ = tr+2 −
∑r

i=1 θi mod p;
U(bi,j , wi,j)→ Ci,j , for every i, j (1 ≤ i ≤ r, 1 ≤ j ≤ s);
U(ci,j , hi,j)→ Di,j , for every i, j (1 ≤ i ≤ r, 1 ≤ j ≤ s).
Step 3: T checks whether A ·∏r

i=1 Bi
?
= gtr+2 . If it holds, then compute the

results as follows, for 1 ≤ i ≤ r,
s∏

j=1

u
ai,j

i,j =

⎛

⎝μ2

s∏

j=1

Ci,j

⎞

⎠

χ

Biμ4

s∏

j=1

Di,j ;

otherwise it indicates that U has produced wrong responses, and thus T outputs
“error”.

3.3 Security Analysis

Lemma 1 (Correctness). In single untrusted program model, the above algo-
rithms (T, U) are a correct implementation of GExp, where the inputs {(ai,1,
· · · , ai,s;ui,1, · · · , ui,s) : 1 ≤ i ≤ r} may be honest, secret; or honest, protected;
or adversarial, protected.

Proof. If U performs honestly, we have

A ·
r∏

i=1

Bi = gθ ·
r∏

i=1

gθi = gtr+2−
∑r

i=1 θi ·
r∏

i=1

gθi = gtr+2 ,

Securely Outsourcing Exponentiations with Single Untrusted Program 335

and for every 1 ≤ i ≤ r, we have
⎛

⎝μ2

s∏

j=1

Ci,j

⎞

⎠

χ

Biμ4

s∏

j=1

Di,j

=

⎛

⎝gα2

s∏

j=1

w
bi,j
i,j

⎞

⎠

χ

g(α1
∑s

j=1 bi,j−α2)χ+(α3
∑s

j=1 ci,j−α4)gα4

s∏

j=1

h
ci,j
i,j

=

⎛

⎝
s∏

j=1

w
bi,j
i,j g

α1

∑s
j=1 bi,j

⎞

⎠

χ

gα3

∑s
j=1 ci,j

s∏

j=1

h
ci,j
i,j

=

⎛

⎝
s∏

j=1

w
bi,j
i,j

s∏

j=1

μ
bi,j
1

⎞

⎠

χ
s∏

j=1

μ
ci,j
3

s∏

j=1

h
ci,j
i,j

=

⎛

⎝
s∏

j=1

(μ1wi,j)
bi,j

⎞

⎠

χ
s∏

j=1

(μ3hi,j)
ci,j

=

⎛

⎝
s∏

j=1

u
bi,j
i,j

⎞

⎠

χ
s∏

j=1

u
ci,j
i,j =

s∏

j=1

u
bi,jχ+ci,j
i,j =

s∏

j=1

u
ai,j

i,j .

Thus, the correctness follows. ��
Theorem 1 (λ-security). In single untrusted program model, the above algo-
rithms (T, U) are a λ-outsource-secure implementation of GExp, where the in-
puts {(ai,1, · · · , ai,s;ui,1, · · · , ui,s) : 1 ≤ i ≤ r} may be honest, secret; or honest,
protected; or adversarial, protected, and all the bases are distinct.

The proof of Theorem 1 is given in the full version of this paper.

Theorem 2. In single untrusted program model, the above algorithms (T, U)
are an

(
O
(
rs+r log χ+r

rs�

)
, r+1

2rs+r+1 , λ
)
-outsource-secure implementation of GExp.

Proof. On one hand, the well-known square-and-multiply method to calculate
one exponentiation ua takes roughly 1.5� multiplications, where � denotes the
bit-length of a. Accordingly, by using this method, it requires roughly 1.5rs�mul-
tiplications for calculating r multi-exponentiations (

∏s
j=1 u

a1,j

1,j , · · · ,
∏s

j=1 u
ar,j

r,j).
On the other hand, GExp makes (r+3) inversions and (5rs+6r+1.5r logχ+1)
multiplications for calculating the same exponentiations. Thus, the algorithms
(T, U) are an O

(
rs+r logχ+r

rs�

)
-efficient implementation of GExp.

Since U cannot distinguish the test queries from the other real queries that T
makes, if it deviates the execution of GExp, the deviations of U will be detected
with probability r+1

2rs+r+1 . ��

3.4 Comparisons

We conduct thorough comparisons between our scheme GExp and the
up-to-date schemes [13, 14, 12] on outsourcing variable-exponent variable-base

336 Y. Wang et al.

exponentiations, in terms of computation and communication costs at the client
side, and security properties.

The schemes with regard to computing just one exponentiation are summa-
rized in Table 2, in which ESG denotes the element size of G. All of those schemes
enjoy results checkability of certain levels. Both schemes [12, 13] implemented
in two untrusted program model make several invocations to subroutine Rand.
For each invocation of Rand, the online phase will take roughly (2k + h − 4)
multiplications by using their suggested EBPV generator, where k is the same
parameter as that in BPV+ and h ≥ 1. Dijk et al.’s scheme [14] takes about
(3(3 log s + 2 logws)/2 + 5) multiplications where ws is determined by the se-
curity parameter s. In their scheme, one may note that T makes two rounds of
interactions with just one untrusted server U for querying 4 powers. Although
Dijk et al.’s scheme [14] is presented in single untrusted program model, the base
g is known to the server U .

Table 2. Comparison of securely outsourcing single exponentiation ua

Scheme [12] Scheme [13] Scheme [14] Ours

Multiplications 6O(Rand) + 9 5O(Rand) + 7
4.5 log s

12 + 1.5 log χ
+3 logws + 5

Inversions 5 3 1 4

Queries to U 8 6 4 4

Communications 8 log p+ 16ESG 6 log p+ 12ESG 2 log n+ 7ESG 4 log p+ 8ESG

Privacy � � × �
Checkability 1/2 2/3 1 1/2

Security Model Two UP Two UP Single UP Single UP

(“Two/Single UP” denotes Two / Single Untrusted Program Model respectively)

Chen et al. [13] also presented an algorithm for outsourcing simultaneous
exponentiations in two untrusted program model. A comparison between their
scheme [13] and ours is shown in Table 3.

Table 3. Comparison of securely outsourcing simultaneous exponentiation ua1
1 ua2

2

Scheme [13] Ours

Multiplications 5O(Rand) + 10 17 + 1.5 log χ

Inversions 3 4

Queries to U 8 6

Communications 8 log p+ 16ESG 6 log p+ 12ESG

Privacy � �
Checkability 1/2 1/3

Security Model Two UP Single UP

Securely Outsourcing Exponentiations with Single Untrusted Program 337

4 Securely Offloading PDP

We first review the definition of PDP (e.g., [6, 8]).

Definition 7 (PDP). A Provable Data Possession scheme consists of five poly-
nomial time computable algorithms, i.e., KeyGen, ProFile, Chall, PrfGen and Vrfy.

– KeyGen(1κ) → (pk, sk): on input 1κ where κ ∈ N is a security parameter,
the (randomized) key generation algorithm, which is carried out by the cloud
clients, generates a pair of public and secret key (pk, sk).

– ProFile(sk,M) → (t,M∗): on input a file M and the secret key sk, the pro-
cessing file algorithm, which is carried out by the file owner, generates a file
tag t and a processed file M∗ for M .

– Chall(pk, t) → Q: on input the public key pk and a file tag t, the challenge
generation algorithm, which is carried out by the verifier, produces a chal-
lenge Q.

– PrfGen(pk, t,M∗, Q)→ R: on input the public key pk, a file tag t, a processed
file M∗ and a challenge Q, the proof generation algorithm, which is carried
out by the cloud storage server, produces a response R.

– Vrfy(pk, sk, t, Q,R) → {0, 1}: on the public key pk, the secret key sk, a file
tag t and a challenge-response pair (Q,R), the deterministic verification al-
gorithm outputs “1” if R is a valid response for Q, or “0” otherwise.

Our schemes are built from bilinear pairings reviewed below. Suppose G = 〈g〉
be a cyclic group of prime order p. The group G is said to be bilinear if there
exists a cyclic group GT and a bilinear map ê : G × G → GT such that: (1)
Bilinearity: ∀μ, ν ∈ G, and ∀a, b ∈ Zp, ê(μ

a, νb) = ê(μ, ν)ab; (2) Non-degeneracy:
ê(g, g)
= 1 is a generator of GT .

4.1 Securely Offloading Shacham-Waters PDP

Let H : {0, 1}∗ → G be the collusion-resistant map-to-point hash function (to
be modelled as a random oracle) and Σ = (SKG, SSig, SVer) be the Boneh-Lynn-
Shacham signature scheme [31]. We are ready to describe how to securely offload
the Shacham-Waters PDP scheme.

KenGen(1κ)→ (pk, sk): First generate a random signing key pair (spk, ssk) ←
Σ.SKG(1κ). Then random pick α ←R Z

∗
p and compute v = gα. Thus, the

public key and secret key are pk = (v, spk) and sk = (α, ssk), respectively.
ProFile(sk,M)→ (t,M∗): Given a file M , split it into blocks such that each

block has s sectors, i.e., M = {Mi = (mi,1, · · · ,mi,s) : 1 ≤ i ≤ n}. Parse sk
to get (α, ssk). Then, choose a random file name name ∈R Z

∗
p and s random

elements u1, · · · , us ∈R G. Let t0 = name ‖ n ‖ u1 ‖ · · · ‖ us. Compute
the file tag as t ← t0 ‖ Σ.SSigssk(t0) = t0 ‖ GExp(ssk;H(t0)). For each
file block Mi (1 ≤ i ≤ n), compute hi = H(name ‖ i) and invoke GExp to
generate metadata σi as

σi ← GExp(α, αmi,1, · · · , αmi,s;hi, u1, · · · , us).

338 Y. Wang et al.

Then, send the processed file M∗ = {mi,j}1≤i≤n,1≤j≤s ∪ {σi}1≤i≤n to the
cloud storage server.

Chall(pk, t)→ Q: Parse pk as (v, spk) and use spk to validate t. If it is invalid,
output 0 and terminate; otherwise, parse t to obtain (name, n, u1, · · · , us).
Pick a random subset I ⊆ [1, n] and a random value vi ∈R Z

∗
p for each i ∈ I.

Send Q = {(i, vi) : i ∈ I} to the cloud storage server.
PrfGen(pk, t,M∗, Q)→ R: Parse the processed file M∗ as {mi,j}1≤i≤n,1≤j≤s ∪
{σi}1≤i≤n, and the challenge Q to obtain {(i, vi) : i ∈ I}. Compute

μj =
∑

(i,vi)∈Q

vimi,j ∈ Zp, and σ =
∏

(i,vi)∈Q

σvi
i ∈ G.

Then send R = (μ1, · · · , μs, σ) to the verifier.
Vrfy(pk, sk, t, Q,R)→ {0, 1}: Parse R to obtain (μ1, · · · , μs) ∈ (Zp)

s and σ ∈ G.
If parsing fails, output 0 and terminate. Otherwise, compute hi = H(name ‖
i) for each i ∈ I and

ρ = GExp
(
(vi)(i,vi)∈Q, μ1, · · · , μs; (hi)(i,vi)∈Q, u1, · · · , us

)
.

Check whether ê(σ, g)
?
= ê (ρ, v) holds; if so, output 1; otherwise, output 0.

Correctness. If the computation server performs honestly, we have

σi = GExp(α, αmi,1, · · · , αmi,s;hi, u1, · · · , us)

= hαi ·
s∏

j=1

u
αmi,j

j =

(

H(name ‖ i) ·
s∏

j=1

u
mi,j

j

)α

.

ρ = GExp
(
(vi)(i,vi)∈Q, μ1, · · · , μs; (hi)(i,vi)∈Q, u1, · · · , us

)

=
∏

(i,vi)∈Q

hvii ·
s∏

j=1

u
μj

j =
∏

(i,vi)∈Q

H(name ‖ i)vi ·
s∏

j=1

u
μj

j .

The correctness of the file tag generation is straightforward.

4.2 Securely Offloading a Variant of Yuan-Yu PDP

In the following, for a given vector c = (c0, · · · , cs−1) for ci ∈ Zp, we use fc(x)

to denote the polynomial defined as fc(x) =
∑s−1

i=0 cix
i over Zp.

KenGen(1κ)→ (pk, sk): First generate a random signing key pair (spk, ssk) ←
Σ.SKG(1κ). Then pick two random values α, β ←R Z

∗
p, and compute γ = gβ ,

λ = gαβ and {gαj

: j ∈ [0, s − 1]}. Thus, the public key and secret key are

pk = (γ, λ, spk, g, gα, · · · , gαs−1

) and sk = (α, β, ssk), respectively.
ProFile(sk,M)→ (t,M∗): Given a file M , split it into blocks such that each

block has s sectors, i.e., M = {Mi = (mi,0, · · · ,mi,s−1) : 1 ≤ i ≤ n}. Choose
a random file name name ∈R Z

∗
p and set t0 = name ‖ n. Compute the file

tag as t ← t0 ‖ Σ.SSigssk(t0) = t0 ‖ GExp(ssk;H(t0)). For each file block
Mi (1 ≤ i ≤ n):

Securely Outsourcing Exponentiations with Single Untrusted Program 339

– compute hi = H(name ‖ i) and fi = β ·fπi
(α) = β

∑s−1
j=0 mi,jα

j mod p;

– invoke GExp to generate metadata, i.e., σi ← GExp(β, fi;hi, g).

Then, send the processed file M∗ = {mi,j}1≤i≤n,0≤j≤s−1 ∪ {σi}1≤i≤n to the
cloud storage server.

Chall(pk, t)→ Q: Parse pk to obtain spk and use it to validate the signature on t.
If it is invalid, output 0 and terminate; otherwise, parse t to obtain (name, n).
Pick a random subset I ⊆ [1, n] and a random value vi ∈R Z

∗
p for each i ∈ I.

Choose another random value r ∈R Z
∗
p and send Q = {r, (i, vi) : i ∈ I} to

the cloud storage server.

PrfGen(pk, t,M∗, Q)→ R: Parse the processed file M∗ as {mi,j}1≤i≤n,1≤j≤s ∪
{σi}1≤i≤n, and the challenge Q to obtain {r, (i, vi) : i ∈ I}. Compute

μj =
∑

(i,vi)∈Q

vimi,j ∈ Zp, and σ =
∏

(i,vi)∈Q

σvi
i ∈ G.

Define a polynomial fμ(x) =
∑s−1

j=0 μjx
j mod p and calculate y = fμ(r).

Then compute the polynomial fω(x) =
fμ(x)−fμ(r)

x−r using polynomial long
division, and denote its coefficient vector as ω = (ω0, · · · , ωs−2). Compute

ψ = gfω(α) =
∏s−2

j=0(g
αj

)ωj and send R = (ψ, y, σ) to the verifier.

Vrfy(pk, sk, t, Q,R)→ {0, 1}: After receiving the proof response R, the verifier
parses it to obtain (ψ, y, σ) and parses t to obtain (name, n). If parsing fails,
output 0 and halting. Otherwise, compute hi = H(name ‖ i) for each i ∈ I,
and invoke GExp to compute

ρ = GExp
(
y,−r, (vi)(i,vi)∈Q; g, ψ, (hi)(i,vi)∈Q

)
.

If ê(σ, g) = ê(ψ, λ)ê(ρ, γ) holds, then output 1; otherwise, output 0.

Correctness. It is easy to see that, if both the computation server and the
storage server perform honestly, we have

σi = GExp(β, fi;hi, g) = hβi · gβfπi
(α) = H(name ‖ i)β · gβ

∑s−1
j=0 mi,jα

j

=
(
H(name ‖ i) · g

∑s−1
j=0 mi,jα

j
)β

=
(
H(name ‖ i) ·

s−1∏

j=0

gmi,jα
j
)β
.

ρ = GExp
(
y,−r, (vi)(i,vi)∈Q; g, ψ, (hi)(i,vi)∈Q

)

= gyψ−r
∏

(i,vi)∈Q

hvii = gyψ−r
∏

(i,vi)∈Q

H(name ‖ i)vi .

340 Y. Wang et al.

The correctness of file tag generation is straightforward. Specifically,

ê(σ, g) = ê
(∏

(i,vi)∈Q

σvi
i , g

)

= ê

(
∏

(i,vi)∈Q

(
H(name ‖ i) · gfπi

(α)
)viβ

, g

)

= ê
(∏

(i,vi)∈Q

H(name ‖ i)vi , gβ
)
ê
(
gβ

∑
(i,vi)∈Q vifπi

(α), g
)

= ê
(∏

(i,vi)∈Q

H(name ‖ i)vi , gβ
)
ê
(
gfμ(α), gβ

)
.

ê(ψ, λ)ê(ρ, γ) = ê
(
gfω(α), gαβ

)
ê
(
gyψ−r

∏

(i,vi)∈Q

H(name ‖ i)vi , gβ
)

= ê
(
gαfω(α), gβ

)
ê
(
gfμ(r)g−rfω(α)

∏

(i,vi)∈Q

H(name ‖ i)vi , gβ
)

= ê
(
g(α−r)fω(α)+fμ(r), gβ

)
ê
(∏

(i,vi)∈Q

H(name ‖ i)vi , gβ
)

= ê
(
gfμ(α)−fμ(r)+fμ(r), gβ

)
ê
(∏

(i,vi)∈Q

H(name ‖ i)vi , gβ
)

= ê
(
gfμ(α), gβ

)
ê
(∏

(i,vi)∈Q

H(name ‖ i)vi , gβ
)
.

4.3 Efficiency Analysis

The original Shacham-Waters PDP [8] takes many exponentiations in algorithm
ProFile and algorithm Vrfy. For processing a fileM = {Mi = (mi,0, · · · ,mi,s−1) :
1 ≤ i ≤ n}, the file owner takes 1 exponentiation and (s + 1) exponentiations
for producing the file tag and one metadata, respectively. While the verifier
takes (|I| + s) exponentiations during the verification phase. In our variant of
the Yuan-Yu PDP [11], since α is a secret key, we assume α2, · · · , αs−1 have
been pre-calculated by the file owner. Thus, the algorithm ProFile and algorithm
Vrfy take (2n + 1) and (|I| + 2) exponentiations, respectively. We compare the
computation costs as well as the communication overheads between the client
and the untrusted computation server of the schemes with/without outsourcing
exponentiations in Table 4. It can be seen that offloading makes both schemes
much more efficient.

Securely Outsourcing Exponentiations with Single Untrusted Program 341

Table 4. Comparison of Two PDP Schemes with and without Outsourcing

Original scheme Outsourced scheme
Computation costs Communication costs

Shacham-Waters PDP

File tag
1h+ 1E 1h+ (12 + 1.5 log χ)M+ 4I 4 log p+ 8ESGgeneration

Each metadata
1h+ sM+ (s+ 1)E

1h+ 4I (2s + 4) log p
generation +(6s+ 1.5 log χ+ 12)M +(4s+ 8)ESG

Verification
|I |h+ (|I |+ s− 1)M (5|I |+ 5s+ 1.5 log χ+ 7)M (2|I |+ 2s+ 2) log p
+(|I |+ s)E+ 2P +|I |h+ 4I+ 2P +(4|I |+ 4s+ 4)ESG

Our Variant of Yuan-Yu PDP

File tag
1h+ 1E 1h+ (12 + 1.5 log χ)M+ 4I 4 log p+ 8ESGgeneration

Each metadata
1h+ sM+ 2E

1h+ 4I
6 log p+ 12ESGgeneration +(s+ 1.5 log χ+ 17)M

Verification
|I |h+ (|I |+ 2)M |I |h+ 4I+ 3P (2|I |+ 6) log p
+(|I |+ 2)E+ 3P +(5|I |+ 1.5 log χ+ 18)M +(4|I |+ 12)ESG

Notations: h denotes hash evaluation; M, I and E denote one multiplication, one inversion
and one exponentiation, respectively; P denotes one bilinear pairing evaluation.

5 Concluding Remark

Outsourcing storage can save the cost of a client in maintaining the storage
locally. Cryptographic approaches like provable data possession ensures the in-
tegrity of the outsourced file can still be verified, yet these often require modular
exponentiations expensive to computationally bounded devices. We filled this
gap with offloaded PDP by securely and efficiently outsourcing the most generic
variable-exponent variable-base exponentiations to one untrusted computation
server. Compared with the known schemes, our scheme is not only superior in
its security model, but also its efficiency, interactions and privacy. Our protocol
may find applications in many other cryptographic solutions which use number-
theoretic cryptographic techniques.

Acknowledgements and Disclaimer. We appreciate the anonymous review-
ers for their valuable suggestions. Qianhong Wu is the corresponding author.
This work is supported by the National Key Basic Research Program (973 pro-
gram) through project 2012CB315905, by the National Nature Science Founda-
tion of China through projects 61272501, 61173154, 61370190 and 61003214, by
a grant from the RGC of the HKSAR, China, under Project CityU 123913, by
the Beijing Natural Science Foundation through project 4132056, by the Fun-
damental Research Funds for the Central Universities, and the Research Funds
(No. 14XNLF02) of Renmin University of China and by the Open Research Fund
of Beijing Key Laboratory of Trusted Computing. Sherman Chow is supported
by the Early Career Scheme and the Early Career Award of the Research Grants

342 Y. Wang et al.

Council, Hong Kong SAR (CUHK 439713), and grants (4055018, 4930034) from
Chinese University of Hong Kong.

References

1. Deng, H., Wu, Q., Qin, B., Chow, S.S.M., Domingo-Ferrer, J., Shi, W.: Tracing
and Revoking Leaked Credentials: Accountability in Leaking Sensitive Outsourced
Data. In: 9th ACM Symposium on Information, Computer and Communications
Security (ASIACCS), pp. 425–443. ACM, New York (2014)

2. Deng, H., Wu, Q., Qin, B., Domingo-Ferrer, J., Zhang, L., Liu, J., Shi, W.:
Ciphertext-Policy Hierarchical Attribute-Based Encryption with Short Cipher-
texts. Information Sciences 275, 370–384 (2014)

3. Deng, H., Wu, Q., Qin, B., Mao, J., Liu, X., Zhang, L., Shi, W.: Who is touching
my cloud. In: Kutylowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712,
pp. 362–379. Springer, Heidelberg (2014)

4. Chow, S.S.M., Yiu, S.M., Hui, L.C.K., Chow, K.P.: Efficient Forward and Provably
Secure ID-Based Signcryption Scheme with Public Verifiability and Public Cipher-
text Authenticity. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971,
pp. 352–369. Springer, Heidelberg (2004)

5. Qin, B., Wang, H., Wu, Q., Liu, J., Domingo-Ferrer, J.: Simultaneous Authentica-
tion and Secrecy in Identity-Based Data Upload to Cloud. Cluster Computing 16,
845–859 (2013)

6. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable Data Possession at Untrusted Stores. In: 14th ACM Conference on
Computer and Communications Security (CCS), pp. 598–609. ACM, New York
(2007)

7. Juels, A., Kaliski Jr., B.S.: PoRs: Proofs of Retrievability for Large Files. In: 14th
ACM Conference on Computer and Communications Security (CCS), pp. 584–597.
ACM, New York (2007)

8. Shacham, H., Waters, B.: Compact Proofs of Retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

9. Wang, B., Chow, S.S.M., Li, M., Li, H.: Storing Shared Data on the Cloud via
Security-Mediator. In: 33rd IEEE International Conference on Distributed Com-
puting Systems (ICDCS), pp. 124–133 (2013)

10. Wang, C., Chow, S.S.M., Wang, Q., Ren, K., Lou, W.: Privacy-Preserving Public
Auditing for Secure Cloud Storage. IEEE Transactions on Computers 62(2), 362–
375 (2013)

11. Yuan, J., Yu, S.: Proofs of Retrievability with Public Verifiability and Constant
Communication Cost in Cloud. In: International Workshop on Security in Cloud
Computing, pp. 19–26. ACM, New York (2013)

12. Hohenberger, S., Lysyanskaya, A.: How to Securely Outsource Cryptographic Com-
putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,
Heidelberg (2005)

13. Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New Algorithms for Secure Outsourc-
ing of Modular Exponentiations. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 541–556. Springer, Heidelberg (2012)

14. Dijk, M., Clarke, D., Gassend, B., Suh, G., Devadas, S.: Speeding up Exponentia-
tion using an Untrusted Computational Resource. Designs, Codes and Cryptogra-
phy 39(2), 253–273 (2006)

Securely Outsourcing Exponentiations with Single Untrusted Program 343

15. Wang, H., Wu, Q., Qin, B., Domingo-Ferrer, J.: Identity-Based Remote Data Pos-
session Checking in Public Clouds. Information Security, IET 8(2), 114–121 (2014)

16. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-Size Commitments to Poly-
nomials and Their Applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 177–194. Springer, Heidelberg (2010)

17. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable Delegation of Computation over
Large Datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–
131. Springer, Heidelberg (2011)

18. Li, J., Tan, X., Chen, X., Wong, D.S.: An Efficient Proof of Retrievability with
Public Auditing in Cloud Computing. In: 5th International Conference on Intelli-
gent Networking and Collaborative Systems (INCoS), pp. 93–98 (2013)

19. Ma, X., Li, J., Zhang, F.: Outsourcing Computation of Modular Exponentiations
in Cloud Computing. Cluster Computing 16(4), 787–796 (2013)

20. Tsang, P.P., Chow, S.S.M., Smith, S.W.: Batch Pairing Delegation. In: Miyaji,
A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 74–90.
Springer, Heidelberg (2007)

21. Canard, S., Devigne, J., Sanders, O.: Delegating a Pairing Can Be Both Secure and
Efficient. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS,
vol. 8479, pp. 549–565. Springer, Heidelberg (2014)

22. Xu, G., Amariucai, G., Guan, Y.: Delegation of Computation with Verification
Outsourcing: Curious Verifiers. In: ACM Symposium on Principles of Distributed
Computing (PODC), pp. 393–402. ACM, New York (2013)

23. Gennaro, R., Gentry, C., Parno, B.: Non-interactive Verifiable Computing: Out-
sourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

24. Carter, H., Mood, B., Traynor, P., Butler, K.: Secure Outsourced Garbled Circuit
Evaluation for Mobile Devices. In: 22nd USENIX Conference on Security, pp. 289–
304. USENIX Association, Berkeley (2013)

25. Zhang, L.F., Safavi-Naini, R.: Private Outsourcing of Polynomial Evaluation and
Matrix Multiplication Using Multilinear Maps. In: Abdalla, M., Nita-Rotaru, C.,
Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 329–348. Springer, Heidelberg
(2013)

26. Wang, B., Li, M., Chow, S.S.M., Li, H.: Computing Encrypted Cloud Data Effi-
ciently Under Multiple Keys. In: 4th IEEE Security and Privacy in Cloud Comput-
ing, co-located with IEEE Conference on Communications and Network Security
(CNS), pp. 504–513 (2013)

27. Wang, B., Li, M., Chow, S.S.M., Li, H.: A Tale of Two Servers: Efficient Privacy-
Preserving Computation over Cloud Data under Multiple Keys. In: 2nd IEEE
Conference on Communications and Network Security, CNS (2014)

28. Chow, S.S.M., Lee, J.H., Subramanian, L.: Two-Party Computation Model for
Privacy-Preserving Queries over Distributed Databases. In: Network and Dis-
tributed System Security Symposium, NDSS (2009)

29. Nguyen, P., Shparlinski, I.E., Stern, J.: Distribution of Modular Sums and the
Security of the Server Aided Exponentiation. In: Cryptography and Computational
Number Theory. Progress in Computer Science and Applied Logic, vol. 20, pp.
331–342. Birkhäuser, Basel (2001)

30. Boyko, V., Peinado, M., Venkatesan, R.: Speeding up Discrete Log and Factoring
Based Schemes via Precomputations. In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 221–235. Springer, Heidelberg (1998)

31. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. Journal
of Cryptology 17(4), 297–319 (2004)

	Securely Outsourcing Exponentiations with
Single Untrusted Program for Cloud Storage

	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Definitions and Security Requirements
	3 Secure Modular Exponentiation Outsourcing
	3.1 Preprocessing
	3.2 Generic Algorithm for Outsourcing Exponentiations
	3.3 Security Analysis
	3.4 Comparisons

	4 Securely Offloading PDP
	4.1 Securely Offloading Shacham-Waters PDP
	4.2 Securely Offloading a Variant of Yuan-Yu PDP
	4.3 Efficiency Analysis

	5 Concluding Remark
	References

