
Mirosław Kutyłowski
Jaideep Vaidya (Eds.)

 123

LN
CS

 8
71

2

19th European Symposium
on Research in Computer Security
Wroclaw, Poland, September 7–11, 2014, Proceedings, Part I

Computer Security –
ESORICS 2014

Lecture Notes in Computer Science 8712
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Mirosław Kutyłowski Jaideep Vaidya (Eds.)

Computer Security –
ESORICS 2014

19th European Symposium
on Research in Computer Security
Wrocław, Poland, September 7-11, 2014
Proceedings, Part I

13

Volume Editors

Mirosław Kutyłowski
Wrocław University of Technology
Wrocław, Poland
E-mail: miroslaw.kutylowski@pwr.edu.pl

Jaideep Vaidya
Rutgers, The State University of New Jersey
Newark, NJ, USA
E-mail: jsvaidya@business.rutgers.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-11202-2 e-ISBN 978-3-319-11203-9
DOI 10.1007/978-3-319-11203-9
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014947642

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

These volumes contain the papers selected for presentation at the 19th European
Symposium on Research in Computer Security (ESORICS 2014), held during
September 7–11, 2014, in Wroc�law, Poland. ESORICS has a two-decade-old
tradition of bringing together the international research community in a top-
quality event that covers all the areas of computer security, ranging from theory
to applications.

In response to the symposium’s call for papers, 234 papers were submitted
to the conference from 38 countries. The papers went through a careful review
process and were evaluated on the basis of their significance, novelty, technical
quality, as well as on their practical impact and/or their level of advancement
of the field’s foundations. Each paper received at least three independent re-
views, followed by extensive discussion. We finally selected 58 papers for the fi-
nal program, resulting in an acceptance rate of 24.79%. The authors of accepted
papers were requested to revise their papers, based on the comments received.
The program was completed with invited talks by Moti Yung from Google Inc.
and Columbia University, Stefano Paraboschi from Università di Bergamo, and
Shlomi Dolev from Ben Gurion University of the Negev. A special talk on privacy
protection was given by Wojciech Wiewiórowski, Inspector General for Personal
Data Protection in Poland.

An event like ESORICS 2014 depends on the volunteering efforts of a host of
individuals and the support of numerous institutes. There is a long list of people
who volunteered their time and energy to put together and organize the con-
ference, and who deserve special thanks. We are indebted to Jacek Cichoń, the
general chair of this symposium, for his continuous support. Thanks to all the
members of the Program Committee and the external reviewers for all their hard
work in evaluating the papers. We are also very grateful to all the people whose
work ensured a smooth organization process: the ESORICS Steering Commit-
tee, and its chair Pierangela Samarati in particular, for their support; Giovanni
Livraga, for taking care of publicity; Ma�lgorzata Korzeniowska for management
of the local arrangements, Kamil Kluczniak for the technical work of putting
the proceedings together; and the local Organizing Committee, in particular
Przemys�law Kobylański, Maciej Gebala, and Wojciech Wodo, for helping with
organization and taking care of local arrangements. We would also like to ex-
press our appreciation to everyone who organized the workshops (BADGERS,
DPM, QASA, SETOP SloT, STM, Smart ConDev S&P, UaESMC) co-located
with ESORICS. A number of organizations also deserve special thanks, includ-
ing Wroc�law University of Technology for acting as host, National Cryptology
Centre as a partner institution, and the ESORICS sponsors.

Finally, we would like to thank the submitters, authors, presenters, and par-
ticipants who, all together, made ESORICS 2014 a great success. We hope that

VI Preface

the papers in these volumes help you with your research and professional activi-
ties and serve as a source of inspiration during the difficult but fascinating route
toward an on-line world with adequate security and privacy.

September 2014 Miros�law Kuty�lowski
Jaideep Vaidya

Organization

Program Committee

Masayuki Abe NTT Secure Platform Laboratories, Japan
Gail-Joon Ahn Arizona State University, USA
Mikhail Atallah Purdue University, USA
Vijay Atluri Rutgers University, USA
Michael Backes Saarland University, Germany
Kun Bai IBM T.J. Watson Research Center, USA
Giampaolo Bella Universitá di Catania, Italy
Marina Blanton University of Notre Dame, USA
Kevin Butler University of Oregon, USA
Zhenfu Cao Shanghai-Jiao Tong University, PR China
Srdjan Capkun ETH Zurich, Switzerland
Liqun Chen Hewlett-Packard Laboratories, UK
Xiaofeng Chen Xidian University, PR China
Sherman S.M. Chow Chinese University of Hong Kong, SAR China
Veronique Cortier CNRS, LORIA, France
Marco Cova University of Birmingham, UK
Laszlo Csirmaz Central European University, Budapest,

Hungary
Frederic Cuppens TELECOM Bretagne, France
Nora Cuppens-Boulahia TELECOM Bretagne, France
Reza Curtmola New Jersey Institute of Technology, USA
Ozgur Dagdelen Technische Universität Darmstadt, Germany
Sabrina De Capitani

Di Vimercati Università degli Studi di Milano, Italy
Roberto Di Pietro Università di Roma Tre, Italy
Claudia Diaz KU Leuven, Belgium
Josep Domingo-Ferrer Università Rovira i Virgili, Catalonia
Wenliang Du Syracuse University, USA
Simon Foley University College Cork, Ireland
Philip W.L. Fong University of Calgary, Canada
Sara Foresti Università degli Studi di Milano, Italy
Keith Frikken Miami University, Ohio, USA
Dieter Gollmann Hamburg University of Technology, Germany
Dimitris Gritzalis Athens University of Economics and Business,

Greece
Ehud Gudes Ben-Gurion University, Israel
Thorsten Holz Ruhr University Bochum, Germany

VIII Organization

Yuan Hong University at Albany, SUNY, USA
Xinyi Huang Fujian Normal University, PR China
Sushil Jajodia George Mason University, USA
Sokratis Katsikas University of Piraeus, Greece
Stefan Katzenbeisser Technische Universität Darmstadt, Germany
Florian Kerschbaum SAP, Germany
Kwangjo Kim KAIST, Korea
Marek Klonowski Wroc�law University of Technology, Poland
Wenke Lee Georgia Institute of Technology, USA
Adam J. Lee University of Pittsburgh, USA
Helger Lipmaa University of Tartu, Estonia
Peng Liu The Pennsylvania State University, USA
Javier Lopez University of Malaga, Spain
Haibing Lu Santa Clara University, USA
Emil Lupu Imperial College, UK
Mark Manulis University of Surrey, UK
Krystian Matusiewicz Intel Technology Poland
Christoph Meinel Hasso-Plattner-Institut, Germany
Refik Molva EURECOM, France
David Naccache Ecole Normale Suprieure, France
Stefano Paraboschi Università di Bergamo, Italy
Gunther Pernul Universität Regensburg, Germany
Indrakshi Ray Colorado State University, USA
Christian Rechberger Technical University of Denmark
Kui Ren University of Buffalo, SUNY, USA
Ahmad-Reza Sadeghi Technische Universität Darmstadt, Germany
Rei Safavi-Naini University of Calgary, Canada
Pierangela Samarati Università degli Studi di Milano, Italy
Andreas Schaad SAP, Germany
Basit Shafiq Lahore University of Management Sciences,

Pakistan
Radu Sion Stony Brook University, USA
Shamik Sural IIT, Kharagpur, India
Willy Susilo University of Wollongong, Australia
Krzysztof Szczypiorski Warsaw University of Technology, Poland

Mahesh Tripunitara The University of Waterloo, Canada
Michael Waidner Fraunhofer SIT, Germany
Lingyu Wang Concordia University, Canada
Yang Xiang Deakin University, Australia
Xun Yi Victoria University, Australia
Ting Yu Qatar Computing Research Institute, Qatar
Meng Yu Virginia Commonwealth University, USA
Rui Zhang Chinese Academy of Sciences, PR China
Jianying Zhou Institute for Infocomm Research, Singapore

Table of Contents – Part I

Detecting Malicious Domains via Graph Inference . 1
Pratyusa K. Manadhata, Sandeep Yadav, Prasad Rao, and
William Horne

Empirically Measuring WHOIS Misuse . 19
Nektarios Leontiadis and Nicolas Christin

EncDNS: A Lightweight Privacy-Preserving Name Resolution Service . . . 37
Dominik Herrmann, Karl-Peter Fuchs, Jens Lindemann, and
Hannes Federrath

Ubic: Bridging the Gap between Digital Cryptography and the Physical
World . 56

Mark Simkin, Dominique Schröder, Andreas Bulling, and Mario Fritz

Updaticator: Updating Billions of Devices by an Efficient, Scalable and
Secure Software Update Distribution over Untrusted Cache-enabled
Networks . 76

Moreno Ambrosin, Christoph Busold, Mauro Conti,
Ahmad-Reza Sadeghi, and Matthias Schunter

Local Password Validation Using Self-Organizing Maps 94
Diogo Mónica and Carlos Ribeiro

Verifiable Delegation of Computations with Storage-Verification
Trade-off . 112

Liang Feng Zhang and Reihaneh Safavi-Naini

Identity-Based Encryption with Post-Challenge Auxiliary Inputs for
Secure Cloud Applications and Sensor Networks . 130

Tsz Hon Yuen, Ye Zhang, Siu Ming Yiu, and Joseph K. Liu

Verifiable Computation over Large Database with Incremental
Updates . 148

Xiaofeng Chen, Jin Li, Jian Weng, Jianfeng Ma, and Wenjing Lou

DroidMiner: Automated Mining and Characterization of Fine-grained
Malicious Behaviors in Android Applications . 163

Chao Yang, Zhaoyan Xu, Guofei Gu, Vinod Yegneswaran, and
Phillip Porras

X Table of Contents – Part I

Detecting Targeted Smartphone Malware with Behavior-Triggering
Stochastic Models . 183

Guillermo Suarez-Tangil, Mauro Conti, Juan E. Tapiador, and
Pedro Peris-Lopez

TrustDump: Reliable Memory Acquisition on Smartphones 202
He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Sushil Jajodia

A Framework to Secure Peripherals at Runtime . 219
Fengwei Zhang, Haining Wang, Kevin Leach, and Angelos Stavrou

StealthGuard: Proofs of Retrievability with Hidden Watchdogs 239
Monir Azraoui, Kaoutar Elkhiyaoui, Refik Molva, and Melek Önen

An Efficient Cloud-Based Revocable Identity-Based Proxy
Re-encryption Scheme for Public Clouds Data Sharing 257

Kaitai Liang, Joseph K. Liu, Duncan S. Wong, and Willy Susilo

Verifiable Computation on Outsourced Encrypted Data 273
Junzuo Lai, Robert H. Deng, Hweehwa Pang, and Jian Weng

Verifiable Computation with Reduced Informational Costs and
Computational Costs . 292

Gang Xu, George T. Amariucai, and Yong Guan

Detangling Resource Management Functions from the TCB in
Privacy-Preserving Virtualization . 310

Min Li, Zili Zha, Wanyu Zang, Meng Yu, Peng Liu, and Kun Bai

Securely Outsourcing Exponentiations with Single Untrusted Program
for Cloud Storage . 326

Yujue Wang, Qianhong Wu, Duncan S. Wong, Bo Qin,
Sherman S.M. Chow, Zhen Liu, and Xiao Tan

Quantitative Workflow Resiliency . 344
John C. Mace, Charles Morisset, and Aad van Moorsel

Who Is Touching My Cloud . 362
Hua Deng, Qianhong Wu, Bo Qin, Jian Mao, Xiao Liu,
Lei Zhang, and Wenchang Shi

A Fast Single Server Private Information Retrieval Protocol with Low
Communication Cost . 380

Changyu Dong and Liqun Chen

Privacy-Preserving Complex Query Evaluation over Semantically
Secure Encrypted Data . 400

Bharath Kumar Samanthula, Wei Jiang, and Elisa Bertino

Table of Contents – Part I XI

Authorized Keyword Search on Encrypted Data . 419
Jie Shi, Junzuo Lai, Yingjiu Li, Robert H. Deng, and Jian Weng

Double-Authentication-Preventing Signatures . 436
Bertram Poettering and Douglas Stebila

Statistical Properties of Pseudo Random Sequences and Experiments
with PHP and Debian OpenSSL . 454

Yongge Wang and Tony Nicol

Efficient Hidden Vector Encryption with Constant-Size Ciphertext 472
Tran Viet Xuan Phuong, Guomin Yang, and Willy Susilo

Enabling Short Fragments for Uncoordinated Spread Spectrum
Communication . 488

Naveed Ahmed, Christina Pöpper, and Srdjan Capkun

Fingerprinting Far Proximity from Radio Emissions 508
Tao Wang, Yao Liu, and Jay Ligatti

A Cross-Layer Key Establishment Scheme in Wireless Mesh
Networks . 526

Yuexin Zhang, Yang Xiang, Xinyi Huang, and Li Xu

Author Index . 543

Table of Contents – Part II

Public-Key Revocation and Tracing Schemes with Subset Difference
Methods Revisited . 1

Kwangsu Lee, Woo Kwon Koo, Dong Hoon Lee, and Jong Hwan Park

NORX: Parallel and Scalable AEAD . 19
Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves

Even More Practical Secure Logging: Tree-Based Seekable Sequential
Key Generators . 37

Giorgia Azzurra Marson and Bertram Poettering

Large Universe Ciphertext-Policy Attribute-Based Encryption with
White-Box Traceability . 55

Jianting Ning, Zhenfu Cao, Xiaolei Dong, Lifei Wei, and
Xiaodong Lin

PPDCP-ABE: Privacy-Preserving Decentralized Ciphertext-Policy
Attribute-Based Encryption . 73

Jinguang Han, Willy Susilo, Yi Mu, Jianying Zhou, and Man Ho Au

Practical Direct Chosen Ciphertext Secure Key-Policy Attribute-Based
Encryption with Public Ciphertext Test . 91

Weiran Liu, Jianwei Liu, Qianhong Wu, Bo Qin, and Yunya Zhou

Privacy-Preserving Auditing for Attribute-Based Credentials 109
Jan Camenisch, Anja Lehmann, Gregory Neven, and Alfredo Rial

What’s the Gist? Privacy-Preserving Aggregation of User Profiles 128
Igor Bilogrevic, Julien Freudiger, Emiliano De Cristofaro, and
Ersin Uzun

Challenging Differential Privacy: The Case of Non-interactive
Mechanisms . 146

Raghavendran Balu, Teddy Furon, and Sébastien Gambs

Optimality and Complexity of Inference-Poof Data Filtering and
CQE . 165

Joachim Biskup, Piero A. Bonatti, Clemente Galdi, and Luigi Sauro

New Insight to Preserve Online Survey Accuracy and Privacy in Big
Data Era . 182

Joseph K. Liu, Man Ho Au, Xinyi Huang, Willy Susilo,
Jianying Zhou, and Yong Yu

XIV Table of Contents – Part II

Software Countermeasures for Control Flow Integrity of Smart Card C
Codes . 200

Jean-François Lalande, Karine Heydemann, and Pascal Berthomé

LeakWatch: Estimating Information Leakage from Java Programs 219
Tom Chothia, Yusuke Kawamoto, and Chris Novakovic

SigPath: A Memory Graph Based Approach for Program Data
Introspection and Modification . 237

David Urbina, Yufei Gu, Juan Caballero, and Zhiqiang Lin

ID-Based Two-Server Password-Authenticated Key Exchange 257
Xun Yi, Feng Hao, and Elisa Bertino

Modelling Time for Authenticated Key Exchange Protocols 277
Jörg Schwenk

Zero-Knowledge Password Policy Checks and Verifier-Based PAKE 295
Franziskus Kiefer and Mark Manulis

Bitcoin Transaction Malleability and MtGox . 313
Christian Decker and Roger Wattenhofer

Election Verifiability for Helios under Weaker Trust Assumptions 327
Véronique Cortier, David Galindo, Stéphane Glondu, and
Malika Izabachène

CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin 345
Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate

LESS Is More: Host-Agent Based Simulator for Large-Scale Evaluation
of Security Systems . 365

John Sonchack and Adam J. Aviv

Detecting Insider Information Theft Using Features from File Access
Logs . 383

Christopher Gates, Ninghui Li, Zenglin Xu, Suresh N. Chari,
Ian Molloy, and Youngja Park

SRID: State Relation Based Intrusion Detection for False Data
Injection Attacks in SCADA . 401

Yong Wang, Zhaoyan Xu, Jialong Zhang, Lei Xu,
Haopei Wang, and Guofei Gu

Click Fraud Detection on the Advertiser Side . 419
Haitao Xu, Daiping Liu, Aaron Koehl, Haining Wang, and
Angelos Stavrou

Botyacc: Unified P2P Botnet Detection Using Behavioural
Analysis and Graph Analysis . 439

Shishir Nagaraja

Table of Contents – Part II XV

Feature-Distributed Malware Attack: Risk and Defence 457
Byungho Min and Vijay Varadharajan

RootkitDet: Practical End-to-End Defense against Kernel Rootkits in
a Cloud Environment . 475

Lingchen Zhang, Sachin Shetty, Peng Liu, and Jiwu Jing

Modeling Network Diversity for Evaluating the Robustness of Networks
against Zero-Day Attacks . 494

Lingyu Wang, Mengyuan Zhang, Sushil Jajodia, Anoop Singhal, and
Massimiliano Albanese

Author Index . 513

Detecting Malicious Domains

via Graph Inference

Pratyusa K. Manadhata1, Sandeep Yadav2, Prasad Rao1, and William Horne1

1 Hewlett-Packard Laboratories
2 Damballa Inc.

{pratyusa.k.manadhata,prasad.rao,william.horne}@hp.com,
sandeepvaday@gmail.com

Abstract. Enterprises routinely collect terabytes of security relevant
data, e.g., network logs and application logs, for several reasons such as
cheaper storage, forensic analysis, and regulatory compliance. Analyzing
these big data sets to identify actionable security information and hence
to improve enterprise security, however, is a relatively unexplored area. In
this paper, we introduce a system to detect malicious domains accessed
by an enterprise’s hosts from the enterprise’s HTTP proxy logs. Specif-
ically, we model the detection problem as a graph inference problem-
we construct a host-domain graph from proxy logs, seed the graph with
minimal ground truth information, and then use belief propagation to
estimate the marginal probability of a domain being malicious. Our ex-
periments on data collected at a global enterprise show that our ap-
proach scales well, achieves high detection rates with low false positive
rates, and identifies previously unknown malicious domains when com-
pared with state-of-the-art systems. Since malware infections inside an
enterprise spread primarily via malware domain accesses, our approach
can be used to detect and prevent malware infections.

Keywords: belief propagation, big data analysis for security, graph in-
ference, malicious domain detection.

1 Introduction

This is the age of big data. Organizations collect and analyze large datasets
about their operations to find otherwise difficult or impossible to obtain infor-
mation and insight. Big data analysis has had an impact on online advertising,
recommender systems, search engines, and social networks in the last decade,
and has the potential to impact education, health care, scientific research, and
transportation [1]. Big data analysis for security, i.e., the collection, storage, and
analysis of large data sets to extract actionable security information, however,
is a relatively unexplored area.

Organizations, especially business enterprises, collect and store event logs gen-
erated by hardware devices and software applications in their networks. For ex-
ample, firewalls log information about suspicious network traffic; and hypertext

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 1–18, 2014.
c© Springer International Publishing Switzerland 2014

2 P.K. Manadhata et al.

transfer protocol (HTTP) proxy servers log websites (or domains) accessed by
hosts in an enterprise. Enterprises collect and store event logs primarily for two
reasons: need for regulatory compliance and post-hoc forensic analysis to detect
security breaches. Also, availability of cheap storage has facilitated large scale
log collection. Such logs generated by both security products and non-security
infrastructure elements are a treasure trove of security information. For example,
if hosts in an enterprise network are infected with bots, then the bots may con-
tact their command and control (C&C) server over domain name system (DNS)
and may exfiltrate sensitive data over HTTP. Hence both DNS logs and HTTP
proxy logs will contain information about bot activities. Developing scalable
and accurate techniques for detecting threats from logs, however, is a difficult
problem [2]; we review related work in Section 5. In this paper, we introduce a
big data analysis approach to detect malicious domains accessed by hosts in an
enterprise from the enterprise’s event logs.

1.1 Malicious Domain Detection

Malware infections spread via many vectors such as drive-by downloads, remov-
able drives, and social engineering. Malicious domain access, however, account
for majority of host infections [3]. Malware installed on hosts may be involved
in pilfering sensitive data, spreading infections, DDoS attacks, and spamming.
Legal issues and loss of intellectual property, money, and reputation due to mal-
ware activities make security a pressing issue for enterprises. Hence to contain
malware, enterprises must prevent their hosts from accessing malicious domains.

Reliable and scalable detection of malicious domains, however, is challenging.
Many enterprises use both commercial and freely available domain blacklists,
i.e., list of known malicious domains, to detect and prevent malicious domain
access; such lists, however, incur a significant delay in adding new domains as
they rely on many manual and automated sources. Moreover, the techniques
used to generate the lists are resource intensive. For example, malicious domain
inference using DNS and network properties such as a domain’s IP addresses
and BGP prefixes requires data collection from sources with specialized van-
tage points. Similarly, machine learning techniques, e.g., analyzing a domain’s
lexical features, or a related IP address’s structural properties, requires large
feature data sets and accurately labeled training sets; hence these techniques
are computationally expensive and may suffer from increased delay in detection.

In this paper, we present a scalable malicious domain detection approach that
uses event logs routinely collected by enterprises and requires no additional data
collection, and uses minimal training data. We model the detection problem as
an inference problem on very large graphs. Our graph inference approach utilizes
inherent malware communication structure, e.g., all bots in an enterprise contact
the same command and control server. We first construct a host-domain graph by
adding edges between each host in the enterprise and the domains visited by the
host. We seed the graph with ground truth information about a small fraction
of domains obtained from domain blacklists and whitelists, i.e., we label a small
fraction of domains as malicious and benign, and label the rest of the domains

Detecting Malicious Domains via Graph Inference 3

as unknown. We then adapt belief propagation to estimate an unknown domain’s
likelihood of being malicious [4,5]; if the likelihood is more than a threshold, we
identify the domain to be malicious. We chose belief propagation because it is a
fast and approximate estimation algorithm that scales well to large graphs, and
also takes structural advantage of malware communication (Please see Section 2
for details).

We applied our approach to 7 months of HTTP proxy data collected at a large
global enterprise. Our results show that with minimal ground truth information,
e.g., with only 1.45% nodes in the graph, we achieve high true positive rates
(TPR) of 95.2%, with low false positive rates (FPR), for 0.68%. A benign node
labeled as malicious by our approach is a false positive (FP) and a correctly
identified malicious node is a true positive (TP). Our approach takes the order
of minutes to analyze a large-sized enterprise’s day long data, and identifies
previously unknown malicious domains.

1.2 Contributions and Roadmap

We make the following contributions in this paper.

– We demonstrate that we can extract actionable security information from
enterprise event logs in a scalable and reliable manner.

– We model the malicious domain detection problem as a graph inference prob-
lem and adapt belief propagation to solve the problem. Our approach does
not require additional data beyond event logs, does not compute features,
and uses minimal data from existing blacklists and whitelists.

– We apply our approach to event logs collected at a global enterprise over 7
months and show that our approach scales well and identifies new malicious
domains not present in the blacklists.

The rest of the paper is organized as follows. We introduce our graph inference
approach in Section 2. We describe our data set and analysis setup in Section 3.
We present and discuss our experimental results in Section 4. We compare our
work with related work in Section 5 and conclude with a discussion of future
work in Section 6.

2 A Graph Inference Approach

In this section, we describe our approach to detect malicious domains. We as-
sume that we have an enterprise’s host-domain graph, i.e., we know the domains
accessed by the enterprise’s hosts. We construct the graph by adding a node
for each host in the enterprise and each domain accessed by the hosts and then
adding edges between a host and its accessed domains. We can construct the
graph from multiple enterprise event log datasets, e.g., HTTP proxy logs and
DNS request logs.

We also assume that we know a few nodes’ states, e.g., malicious or benign.
A domain present in a domain black list or a domain white list is known to be

4 P.K. Manadhata et al.

Host1

Host2

malicious.com

unknown.com

benign.com

Fig. 1. A host-domain graph containing a malicious domain, malicious.com, a benign
domain, benign.com, and an unknown domain, unknown.com

malicious or benign, respectively. Similarly, a malware infected host is known to
be malicious whereas an uninfected host is known to be benign. The known nodes
constitute our ground truth data set; the rest of the graph nodes are unknown
nodes. We note that a small fraction of the graph’s nodes are present in the
ground truth data set. We show an example host-domain graph in Figure 1. The
graph contains a malicious node, malicious.com, a benign node, benign.com, and
three unknown nodes, Host1, Host2, and unknown.com.

Given the host-domain graph and the ground truth information, our goal is
to infer the states of the unknown domains in the graph. For example, in Figure
1, we would like to infer the state of unknown.com. Formally, we would like to
compute a node’s marginal probability of being in a state, i.e., the probability
of the node being in a state given the states of other nodes in the graph. We
will then label the nodes with high marginal probability of being malicious as
malicious nodes and benign otherwise.

In principle, our approach can detect both malicious domains and infected
hosts in the enterprise. For example, in Figure 1, we can infer the states of Host1
and Host2. In this paper, however, we focus on malicious domain detection.

Marginal probability estimation in graphs is known to be NP-complete [5].
Belief propagation (BP), introduced in the next section, is a fast and approximate
technique to estimate marginal probabilities. BP’s time complexity and space
complexity are linear in the number of edges in a graph; hence BP scales well to
large graphs. A typical enterprise host-domain graph has millions of nodes and
tens of millions of edges. Hence we chose BP as our inference technique due to its
scalability and its successful application in diverse fields such as computer vision
[6], error correcting codes [7], fraud detection [8], and malware identification [9].

BP relies on ground truth information and statistical dependencies between
neighboring nodes to reliably estimate marginal probabilities. The dependencies
are derived from our domain knowledge. For example, user activities on benign
hosts result primarily in benign domain accesses and occasional unintended ma-
licious domain accesses, e.g., via phishing. Hence we may assume that benign
hosts are more likely to visit benign domains than malicious domains. Similarly,
a benign domain’s neighbor is more likely to be a benign host than a malicious
host. Malicious hosts may visit benign domains due to user activities; however,
they are more likely to visit malicious domains as malware tend to contact many
malicious domains. Intuitively, Host 1 in Figure 1 is more likely to be malicious

Detecting Malicious Domains via Graph Inference 5

as it has a malicious neighbor. Similarly, Host 2 is more likely to be benign, and
unknown.com is equally likely to be either.

2.1 Belief Propagation

In this section, we summarize the BP algorithm; please see Yedida et al. for
details [5]. Judea Pearl introduced the BP algorithm for trees [4]. BP is an
efficient technique to solve inference problems on graphical models. Given an
undirected graph, G = (V,E), where V is a set of n nodes and E is a set of
edges, we model every node i ∈ V as a random variable, xi, that can be in
one of a finite set, S, of states. A graphical model defines a joint probability
distribution, P (x1, x2, ..., xn), over G’s nodes. The inference process computes
the marginal probability distribution, P (xi), for each random variable, xi. A
node’s marginal probability is defined in terms of sums of the joint probabil-
ity distribution over all possible states of all other nodes in the graph, i.e.,
P (xi) =

∑
x1

..
∑
xi−1

∑
xi+1

..
∑
xn

P (x1, x2, ..., xn). The number of terms in the sum

is exponential in the number of nodes, n. BP, however, can approximate the
marginal probability distributions of all nodes in time linear in the number of
edges, which is at most O(n2).

BP estimates a node’s marginal probability from prior knowledge about the
graph’s nodes and their statistical dependencies. A node, i’s, belief, bi(xi), is i’s
marginal probability of being in the state xi. bi(xi)’s computation depends on
priors of the graph nodes. A node, i’s, prior, φi(xi), is i’s initial (or prior) prob-
ability of being in the state xi. In our model, a node’s priors indicate the node’s
initial likelihood of being in malicious and benign states. We estimate a node’s
priors using our ground truth information. bi(xi)’s computation also depends on
edge potential functions that model the statistical dependencies among neigh-
boring nodes. The edge potential, ψij(xi, xj), between two neighboring nodes, i
and j, is the probability of i being in the state xi and j being in the state xj .

BP achieves computational efficiency by organizing global marginal probabil-
ity computation in terms of smaller local computations at each node. This is
done via iterative message passing among neighboring nodes. Consider a node,
i, and its neighbors, N(i). In each iteration of the algorithm, i passes a message
vector, mij , to each of its neighbors, j ∈ N(i). Each component, mij(xj), of the
message vector is proportional to i’s perception of j’s likelihood of being in the
state xj . i’s outgoing message vector to its neighbor j depends on i’s incoming
message vectors from its other neighbors and is computed as follows.

mij(xj) =
∑
xi∈S

φi(xi)ψij(xi, xj)
∏

k∈N(i)\j
mki(xi) (1)

The order in which messages are passed is not important as long as all mes-
sages are passed in each iteration. Malware communication, e.g., bots commu-
nicating with C&C servers, provides a structural advantage in using BP as
messages can propagate over multiple hops. In a synchronous update order,
i’s outgoing messages in iteration t is computed from i’s incoming messages in

6 P.K. Manadhata et al.

iteration t − 1. In an asynchronous update order, incoming messages are used
as soon as they are available. We chose to use a synchronous update order for
its simplicity. The iterations stop when the messages converge within a small
threshold, i.e., messages don’t change significantly between iterations, or when
a threshold number of iterations is reached. We then compute a node, i’s, belief
values from i’s incoming messages in the converged or the last iteration.

bi(xi) = Cφ(xi)
∏

k∈N(i)

mki(xi) (2)

C is a normalization constant to ensure that i’s beliefs add up to 1, i.e.,∑
xi∈S bi(xi) = 1.
In the case of trees, BP always converges and the beliefs represent accurate

marginal probabilities. But if a graph has loops, then belief propagation on the
graph may not converge or may converge to inaccurate marginal probabilities
[10]. In practice, however, belief propagation has been successful on graphs with
loops: it converges quickly to reasonably accurate values [11].

3 HTTP Proxy Data Analysis

In this section, we describe our approach’s application on an enterprise HTTP
proxy data set. An HTTP proxy acts as an intermediary between an enter-
prise’s hosts and the domains accessed by the hosts. Hence we can determine
the domains visited by the hosts from proxy logs and construct an enterprise’s
host-domain graph.

3.1 Data Set and Graph Generation

We collected proxy logs over a 7 month period from August 2013 to February
2014 from 98 proxy servers in a global enterprise’s worldwide locations. Each
entry in the log represents an HTTP request and contains the requesting host’s
IP address, the domain requested, a time stamp, an HTTP header, and the
request status. If we see an HTTP request from an IP address, I, for a domain,
D, then we create two nodes, I and D, in the host-domain graph, and add an
edge between I and D.

We follow standard terminology and note that given a domain, www.hp.com
(or www.hp.co.uk), hp.com (or hp.co.uk) is the second-level domain (2LD) and
com (or co.uk) is the top-level domain (TLD). The TLD is also known as a
public suffix. We use only 2LDs in our graph– collapsing domain nodes in this
manner increases the number of paths in the graph, making paths between nodes
more likely and hence information propagation between nodes more likely. Such
a choice also reflects our assumption that usually 2LDs are responsible for their
domain’s and sub-domains’ security. If a proxy log contains an IP address instead
of a domain name as the destination, we add the IP address as a graph node.

We represent hosts by their IP addresses in our graph. Since IP addresses are
transient in nature, a single host may be represented by multiple graph nodes.

Detecting Malicious Domains via Graph Inference 7

Table 1. Data and graph description. Each row in the table represents a time period,
and the columns show the time period, the number of events in the time period, the
number of nodes and edges in the graph constructed from the events, the number of
known malicious nodes and benign nodes in the graph, and the number of known nodes
as a percentage of all graph nodes (B = billion, M = million, and K = thousand).

Time Period Events Nodes Edges Malicious Benign Ground truth
Nodes Nodes (%)

01-16-2014 1.29B 2.80M 27.8M 21.6K 19.7K 1.45

01-17-2014 1.19B 2.58M 25.3M 21.5K 19.8K 1.60

01-18-2014 0.40B 0.80M 5.33M 10.8K 9.41K 2.51

01-19-2014 0.36B 0.70M 4.17M 10.7K 9.45K 2.88

01-20-2014 1.02B 2.46M 22.0M 21.4K 19.7K 1.67

01-21-2014 1.26B 2.81M 27.9M 21.6K 19.8K 1.47

01-22-2014 1.00B 2.35M 23.2M 21.3K 19.7K 1.73

1 Week 6.52B 10.5M 85.2M 104K 103K 1.98

3 Hours-1 0.20B 0.78M 6.95M 5.62K 4.66K 1.32

3 Hours-2 0.22B 0.76M 7.27M 5.80K 4.65K 1.38

6 Hours-1 0.31B 1.08M 8.90M 8.76K 7.65K 1.52

6 Hours-2 0.41B 1.21M 12.1M 9.06K 7.59K 1.38

We, however, observe that IP address assignment in enterprise networks is stable
over periods of days and even months.

Table 1 shows the summary of one week’s data collected from January 16th,
2014 to January 22nd, 2014. For each day (column 1), we show the number of log
events (column 2, in billions), and the numbers of nodes (column 3, in millions)
and edges (column 4, in millions) in the graph constructed from the day’s logs.
The 7th row in the table shows the numbers for the graph constructed from the
week’s data. January 18th and 19th were weekend holidays; hence the numbers
of events collected on those days are much less than the numbers on weekdays.

3.2 BP Parameters

We obtained blacklists of known malicious domains and IP addresses from a
commercial blacklist and seventeen freely available lists including OpenBL.org
and malwaredomains.com projects. Since domain blacklists change frequently, we
obtained blacklists from the same time period as the logs. We use Alexa’s popular
domain list as our whitelist [12], where we chose top K entries to be benign
domains to maintain a balance between malicious and benign domains. Table 1
shows malicious nodes (column 5, in thousands) and benign nodes (column 6,
thousands) in each graph. These nodes represent our ground truth information;
column 7 shows ground truth as a percentage of all graph nodes. Since our focus
was on detecting malicious domains, we did not use any ground truth information
for the host nodes.

We assign priors to graph nodes according to our ground truth data. For
example, we assign a prior, P (malicious) = 0.99, to the nodes present in the

8 P.K. Manadhata et al.

Table 2. Priors assigned to a node according to the node’s state

Node P(malicious) P(benign)

Malicious 0.99 0.01

Benign 0.01 0.99

Unknown 0.5 0.5

blacklist. We do not assign a probability of 1 to account for possible errors in our
ground truth data. Table 2 shows the prior assignments according to whether
a node is known malicious, known benign, or unknown. We assume that an
unknown node is equally likely to be malicious or benign.

We introduce an edge potential matrix to reflect the statistical dependencies
among neighboring nodes. We assume a homophilic relationship, i.e., two neigh-
boring nodes are more likely to be of the same state than different states. For
example, a malicious host and a malicious domain are more likely to be neigh-
bors than a benign host and a malicious domain. The relationship is based on
our intuition that hosts that visit benign sites are likely to be benign and hosts
that visit malicious sites are likely to be infected. Table 3(a) shows our edge
potential matrix. We explore more parameter choices in Section 4.2.

Table 3. Edge potential matrices

(a)

�����xi

xj
Benign Malicious

Benign 0.51 0.49

Malicious 0.49 0.51

(b)

�����xi

xj
Benign Malicious

Benign 0.75 0.25

Malicious 0.49 0.51

3.3 Experimental Setup

We implemented the BP algorithm in Java and ran our experiments on a 12-
core 2.67 GHz desktop with 96GB of RAM. Since our graph has many high
degree nodes, e.g., degree > 100K, and the incoming messages are less than 1,
multiplying all incoming messages results in underflow, i.e., multiplication results
in 0. We handled underflow in two ways. First, we used Java’s BigDecimal data
type to perform arbitrary precision operations; we, however, pay a performance
penalty. Second, we normalize outgoing message vectors, i.e., we ensure that
a vector’s components add up to 1. For example, instead of sending a vector,
(0.0023, 0.0023), we normalize the vector to (0.5, 0.5). The larger normalized
numbers help avoid underflow.

We constructed our graphs off-line, i.e., we stored the logs in compressed
format on disk and then uncompressed them in memory to create the graphs.
Graph construction from a week day’s compressed data took an average of 5

Detecting Malicious Domains via Graph Inference 9

hours with peak memory usage of 9GB. In practice, however, graph construction
will be done online: as and when event logs are generated, new nodes and edges
will be added to the graph as needed. Hence at any point in time, the day’s
graph will be up-to-date. If we need to store historical data, we can store the
graphs and not the event logs. A weekday’s graph requires an average of 426MB
of disk space.

The peak memory usage during BP’s iteration phase was 53GB. The aver-
age iteration time was 7.8 minutes on a weekday’s data and 1.25 minutes on a
weekend day’s data. The BigDecimal data type’s use was a major contributor
to iteration time and memory usage.

We used message damping to speed up convergence [13]. If mt−1
ij is the out-

going message from a node, i, to its neighbor, j, in t − 1th iteration, then the
outgoing message in the tth iteration is mt

ij = αmt−1
ij + (1 − α)m̄t

ij , where m̄t
ij

is the outgoing message in the tth iteration as computed by Equation 1 and α is
a damping factor in the range [0,1]. We experimented with a range of values for
α and empirically determined that α = 0.7 produces the best performance.

We ran each experiment till either BP converged or 15 iterations were com-
pleted. We then computed the belief values as defined in Equation 2.

3.4 Result Computation

Following standard practice, we use K-fold cross validation to compute our ma-
licious domain detection performance, i.e., we divide the ground truth data into
K folds, mark one fold as test data and the remaining K-1 folds as training data.
We seed the host-domain graph with the training data, reset the priors of the
nodes in the test data to unknown priors, run belief propagation, and then com-
pute beliefs following the procedure described in the previous subsections. We
then compute our detection performance on the test fold. We repeat the process
for each of the K folds and report our average performance over the K folds. We
describe the process of selecting K in the next section.

We present our malicious domain detection results as Receiver Operating
Characteristics (ROC) plots, i.e., plots showing false positive rates and true pos-
itive rates. Since low FPRs are essential in enterprise settings, we chose ROC
plots instead of overall classification accuracy. We obtain an ROC plot by thresh-
olding a node’s malicious belief value. For example, given a threshold, t, if a node,
n’s, malicious belief, bn(malicious) > t, then we predict n as malicious; else, n
is benign. We then use n’s ground truth state and predicted state to label n as
false positive, true positive, false negative, or true negative. For example, given
a malicious node, n, in ground truth, if we predict n as malicious, then n is
a true positive; else n is a false negative. Similarly, given a benign node, n, in
ground truth, if we predict n as benign, then n is a true negative; else n is a false
positive. We then repeat the process for all nodes in the test fold to compute the
FPR and the TPR at threshold t. We then vary t uniformly in the range [0,1]
to obtain an ROC plot. Network administrators can pick an operating point on
the plot according to their risk profiles. For example, they may choose a high

10 P.K. Manadhata et al.

threshold to reduce FPs or a low threshold to increase detection at the risk of
increasing FPs.

4 Results and Discussion

In this section, we first present our experiments on BP’s parameter selection
and then present our malicious domain detection results. We also demonstrate
our ability to detect new malicious domains that are unlikely to be present in
externally sourced blacklists.

4.1 K-Fold Cross Validation

We conducted an experiment to compare our performance under 3 different val-
ues of K: 2, 3, and 10. We constructed a host-domain graph from January 16th’s
event logs, seeded the graph using the day’s blacklist and whitelist, used BP pa-
rameters described in Section 3.2, and then performed K-fold cross validation.
We show the ROC plots in Figure 2. The areas under the ROC curves (AUC)
are 98.53%, 98.72%, and 98.80% for K = 2, 3, and 10, respectively. The higher
the AUC, the better the classification result. Hence, K = 10 produces the best
classification result. Also, 10-fold cross validation is the standard practice in
classification tasks. Hence we use K = 10 in our subsequent experiments.

When K = 10, we use 9/10th of the ground truth data as training data whereas
we use only half the ground truth data as training data when K = 2. Hence the
result confirms our intuition that everything else being equal, more training data
leads to better detection results.

4.2 Parameter Sensitivity Analysis

We conducted parameter sensitivity analysis on January 16th’s graph to study
priors’ and edge potentials’ impact on our results. We experimented with dif-
ferent priors values, e.g., {0.95, 0.05} for malicious nodes, instead of the values
shown in Section 3.2 for known nodes; our performance did not change. We also
assigned priors to unknown nodes according to the nodes’ attributes. For un-
known domains, we assume that popular domains are likely to be benign. Hence
we assign a sigmoid function, 1/(1 + exp(−d)), of an unknown domain node’s
degree, d, as the benign prior. We also assume that malware infected hosts make
large number of HTTP requests, e.g., bots trying to contact their command and
control server. Hence we assign a sigmoid function of an unknown host node’s
HTTP request count as the malicious prior. The sigmoid prior’s ROC plot is
marginally inferior to Figure 2; hence we omit the plot due to space limitation.

We also experimented with the edge potential matrix shown in Table 3(b); we
assume the prevalence of beneficence and assign a lower probability to spread of
malware. Our FPR and TPR does not change from Figure 2. Hence our approach
is robust with respect to our parameter choices and we use the parameters shown
in Section 3.2 for our subsequent experiments.

Detecting Malicious Domains via Graph Inference 11

Fig. 2. ROC plots for different K-fold cross validations. For clarity, the X-axis ends at
FPR = 25%. K = 10 performs the best.

4.3 Malicious Domain Detection

We present our malicious domain detection results on data collected on 7 consec-
utive days in January 2014. For each day, we constructed a host-domain graph
from the day’s logs, seeded the graph from the day’s whitelist and blacklist, used
parameters described in Section 3.2, and then performed 10-fold cross validation.
We show the ROC plots in Figure 3.

The plots show that our approach can achieve high detection rates with low
false positive rates using minimal ground truth information. For example, on
January 16th, the host-domain graph has only 1.45% nodes in the ground truth
data; yet we achieve a 95.2% TPR with a 0.68% FPR.

The results obtained on weekdays’ data are similar to that of January 16th.
The results on weekends, however, are inferior. For example, on January 18th,
we achieve a 96.7% TPR at a high FPR of 5.6%. The AUC on January 16th is
98.80% compared to 96.12% on January 18th.

The number of events on the weekend days is smaller than the weekdays due
to less activity in the enterprise over the weekend; hence the graphs on weekend
days have fewer edges (Table 1). January 18th’s average domain degree is 8.47
compared to 11.45 on January 16th. Hence the weekend’s graphs do not include
complete node behavior and have fewer paths in the graphs for information
propagation. These two reasons may have caused the inferior performance.

12 P.K. Manadhata et al.

Fig. 3. ROC plots for 7 days in January 2014. Our approach performs better over
weekdays than weekend days.

4.4 More Event Logs

Given the discussion above, we naturally examined the question of whether more
event logs collected over a time period longer than a day, leads to better per-
formance. Intuitively, we believed that more event logs will capture more com-
plete node behavior. Hence we constructed a single host-domain graph from the
logs collected over the 7 days in January. We also combined the blacklists and
whitelists over the 7 days to a single whitelist and a single blacklist. Figure 4
shows the ROC plot for the graph and the combined whitelist and blacklist. The
results are counterintuitive.

Our performance on 7 days data is inferior to its performance on a single day’s
data. For example, we achieve a TPR of only 90.2% at the FPR of 3.09%. Two
key reasons contribute to the poor performance. First, the combined graph’s
average domain degree is less than those of the graphs constructed from single
days’ data. This is due to the fact that the enterprise’s hosts visited many new
domain nodes every day; these domains were not present in the previous days’
logs. Second, combining the blacklists and whitelists may have introduced errors
in the ground truth information. For example, a domain may have been mali-
cious the first day and might have been cleaned up later. But our approach will
consider the domain as malicious for the entire 7 day period.

Furthermore, the average iteration time on the combined graph was 31.0 min-
utes. Hence we do not recommend our approach over longer time scale data.

Detecting Malicious Domains via Graph Inference 13

Fig. 4. Our performance on a week’s data is inferior to a single day’s data

4.5 Detection Details

In this section, we examine our false positives and true positives. Most of our
FPs, i.e., benign domains identified as malicious by our approach, are of low
degree. Though these domains are in Alexa’s popular list and are globally pop-
ular, e.g., an Indian matrimonial site, very few hosts in the enterprise access
them. If an administrator blocks access to such domains, they will not impact
business activities. However, blocking access to popular domains such as shop-
ping.hp.com and google.com will be catastrophic. Our approach didn’t commit
any such mistake in our experiments.

We also examine new malicious domains identified by our approach. These are
not present in the blacklist and hence are unknown domains in the host-domain
graph. BP assigns high malicious beliefs to these domains and classifies them as
malicious. We show a few such domains in Table 4.

Table 4. Our approach identifies new malicious domains

luo41cxjsbxfrhtbxfubxaqawhxjshsjx.info
awhvkvkzk17fxa67e51pvp42ozmyiqhvfwp12.info
etn30aqjxf12e61d30hxkxhxgvktmqaqkqdu.info
f32pxntk37gxgxmqn30bzhqpqavovbqgtk67.ru

14 P.K. Manadhata et al.

These random looking domain names are likely to be algorithmically gener-
ated by malware resident on the enterprise’s hosts. For example, bots typically
generate new domains every day to contact their command and control server.
Externally sourced blacklists are unlikely to contain these domains for three rea-
sons. First, the list generation process may not be aware of the domains; even if
the process had access to malware, the malware may generate different domains
every time it runs. Second, the domains are active for a short time period, e.g., a
few hours, and might not exist by the time they are added to lists. Third, there
are many such domains and adding all of them will increase the list size without
much benefit.

Our results show that we can take advantage of the externally sourced black-
lists and identify previously unknown malicious domains not present in the lists.

4.6 Near Real Time Detection

Our system implementation’s average completion time for 15 iterations on a
day’s data was 115 minutes. Hence, we can construct the host-domain graph
online and run our approach every 115 minutes. In the best case, our approach
can detect a domain 115 minutes after the domain’s first access. This delay might
be unacceptable in some sensitive settings. Hence we experimented with smaller
data sets. We divided January 16th’s data into 3 hours and 6 hours blocks,
constructed a host-domain graph from each block, and then applied BP. Due to
space limitation, we show a few representative graphs in Table 1’s last 4 rows
and ROC plots in Figure 5. Our detection performance on smaller datasets is
marginally inferior to a day’s data. The time gain, however, is compelling. For
example, 15 iterations took 16.6 minutes for completion on 3 hours’ data and
37.5 minutes for 6 hours’ data. Hence in principle, our approach can run every
17 minutes and detect previously unknown domains.

4.7 Seven Months’ Data

Finally, we demonstrate that our detection results over 7 days in January 2014
are not due to extraneous reasons. We randomly chose 7 days from the 7 months,
one day from each month, and applied BP on the host-domain graphs obtained
from each day’s event logs. Figure 6 shows the ROC plots. The plots are similar
to the plots obtained from data collected in the days in January.

5 Related Work

In this section, we compare our work with related work in big data analysis for
security and malicious domain detection. Yen et al. analyze HTTP proxy logs
to identify suspicious host activities– they extract features from the logs and
then use clustering to find outlying suspicious activities [14]. Their approach,
though carried on smaller scale data, is complimentary to ours; they focus on
host activity detection and we focus on malicious domain detection. Giura et al.

Detecting Malicious Domains via Graph Inference 15

Fig. 5. Few ROC plots for 3 hours’ and 6 hours’ data. The results are marginally
inferior to a day’s data.

Fig. 6. ROC plots for 7 days’ data, one randomly chosen from each of the 7 months,
are similar to Figure 3

16 P.K. Manadhata et al.

propose an attack pyramid model to identify advanced persistent threats from
network events [15]. Bilge et al. analyze netflow data to identify botnet command
and control servers [16].

Multiple malicious domain detection approaches have been proposed. Yadav
et al. detect fast flux domains from DNS traffic by looking for patterns in al-
gorithmically generated domain names [17]. EXPOSURE [18], Kopis [19], and
Notos [20] use passive DNS analysis to detect malicious domains: they compute
multiple features for domains names, and then perform automated classification
and clustering using training data. For example, Notos uses network features,
zone features, features related to whether domain names were discovered by a
honeypot and whether domain names were present in black lists. EXPOSURE
uses features based on time of DNS queries, answers, time-to-live (TTL) values,
and domain name syntax. Failed DNS queries have also been analyzed to detect
malicious domains. Antonakakis et al. use a combination of clustering and classi-
fication of failed DNS queries to detect malware generated domains names [21].
Jiang et al. construct a DNS failure graph, extract dense subgraphs, and show
that the subgraphs represent anomalous activities such as bots [22]. Yadav et
al. use DNS failures’ temporal and entropy based features to detect C&C servers
[23]. Our work differs from these works in the following aspects: we use event
logs routinely collected by enterprises; we require no additional data collection,
whether passive data, e.g., zone information, or active data, e.g., honeypot in-
teraction data. Also, extensive feature computation may be prohibitive in large
enterprise settings. Hence our approach requires no feature computation and
uses minimal training data.

Multiple malicious URL identification approaches have also been proposed.
Anderson et al. use clustering by graphical similarity to detect spam URLs [24].
Lin et al. introduce a lightweight approach to filter malicious URLs by using lexi-
cal and descriptive features extracted from URL strings [25]. Ma et al. introduce
an URL classification system by using statistical methods to discover lexical and
host-based properties of malicious URLs [26]. Thomas et al. use logistic regres-
sion on extracted features to determine if an URL directs to spam content [27].
Zhang et al. use lexical features and term frequency/inverse document frequency
algorithm to detect phishing URLs [28]. These approaches classify individual
URLs, e.g., maldom.com/url1, as malicious whereas our approach identifies an
entire domain, e.g., maldom.com, as malicious and hence labels all associated
URLs with the domain, e.g., maldom.com/url*, as malicious.

6 Summary and Future Work

In this paper, we introduced a graph inference approach for detecting malicious
domains accessed by an enterprise’s hosts. Our experiments on seven months’ of
HTTP proxy data collected at a global enterprise show that belief propagation
is a reliable and scalable approach and can detect previously unknown malicious
domains. Our work is an example of big data analysis for security, i.e., analyzing
enterprise event data to extract actionable security information. In the future,

Detecting Malicious Domains via Graph Inference 17

we plan to extend our work to track the spread of malware infections inside
an enterprise network. We also plan to explore big data analysis approaches for
other types of enterprise event logs such as DNS logs and firewall logs.

Acknowledgments. The authors thank Marc Eisenbarth, Stuart Haber, and
A. L. Narasimha Reddy for helpful discussions and feedback at various stages of
the research.

References

1. CRA: Challenges and opportunities with big data (2012),
http://cra.org/ccc/docs/init/bigdatawhitepaper.pdf

2. Cardenas, A.A., Manadhata, P.K., Rajan, S.P.: Big data analytics for security.
IEEE Security & Privacy 11(6), 74–76 (2013)

3. Symantec internet security threat report (2011),
http://www.symantec.com/content/en/us/enterprise/

other resources/b-istr main report 2011 21239364.en-us.pdf

4. Pearl, J.: Reverend bayes on inference engines: a distributed hierarchical approach.
In: Proceedings of the National Conference on Artificial Intelligence (1982)

5. Yedida, J., Freeman, W., Weiss, Y.: Understanding Belief Propagation and its
Generalizations. Exploring Aritificial Intelligence in the New Millennium (2003)

6. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. Inter-
national Journal of Computer Vision 40(1), 25–47 (2000)

7. Mceliece, R., Mackay, D., Cheng, J.: Turbo decoding as an instance of pearl’s belief
propagation algorithm. IEEE Journal on Selected Areas in Communications (1998)

8. Pandit, S., Chau, D.H., Wang, S., Faloutsos, C.: Netprobe: a fast and scalable sys-
tem for fraud detection in online auction networks. In: World Wide Web Conference
(2007)

9. Chau, D., Nachenberg, C., Wilhelm, J., Wright, A., Faloutsos, C.: Polonium: Tera-
scale graph mining and inference for malware detection. In: SIAM International
Conference on Data Mining (2011)

10. Murphy, K., Weiss, Y., Jordan, M.: Loopy Belief Propagation for Approximate
Inference: An Empirical Study. Uncertainity in Artificial Intelligence (1999)

11. Frey, B.J., MacKay, D.J.C.: A revolution: Belief propagation in graphs with cycles.
In: Neural Information Processing Systems (NIPS) (1997)

12. Alexa: Top Sites, http://www.alexa.com/topsites
13. Pretti, M.: A message-passing algorithm with damping. Journal of Statistical Me-

chanics: Theory and Experiment 2005(11), P11008 (2005)
14. Yen, T.F., Oprea, A., Onarlioglu, K., Leetham, T., Robertson, W., Juels, A., Kirda,

E.: Beehive: Large-scale log analysis for detecting suspicious activity in enterprise
networks. In: Proceedings of the 29th Annual Computer Security Applications
Conference, ACSAC 2013, pp. 199–208. ACM, New York (2013)

15. Giura, P., Wang, W.: A context-based detection framework for advanced persistent
threats. In: International Conference on Cyber Security (2012)

16. Bilge, L., Balzarotti, D., Robertson, W., Kirda, E., Kruegel, C.: Disclosure: De-
tecting botnet command and control servers through large-scale netflow analysis.
In: Proceedings of the 28th Annual Computer Security Applications Conference,
ACSAC 2012, pp. 129–138. ACM, New York (2012)

http://cra.org/ccc/docs/init/bigdatawhitepaper.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_2011_21239364.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_2011_21239364.en-us.pdf
http://www.alexa.com/topsites

18 P.K. Manadhata et al.

17. Yadav, S., Reddy, A.K.K., Reddy, A.N., Ranjan, S.: Detecting algorithmically gen-
erated malicious domain names. In: Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, IMC 2010. ACM, New York (2010)

18. Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M.: EXPOSURE: Finding Malicious Do-
main Using Passive DNS Analysis. In: Proceedings of the Network and Distributed
System Security Symposium (NDSS) (2011)

19. Antonakakis, M., Perdisci, R., Lee, W., Vasiloglou II, N., Dagon, D.: Detecting mal-
ware domains at the upper dns hierarchy. In: 20th USENIX Security Symposium
(2011)

20. Antonakakis, M., Perdisci, R., Dagon, D., Lee, W., Feamster, N.: Building a Dy-
namic Reputation System for DNS. In: USENIX Security Symposium (2010)

21. Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou, N., Abu-Nimeh, S., Lee, W.,
Dagon, D.: From throw-away traffic to bots: Detecting the rise of dga-based mal-
ware. In: 21st USENIX Security Symposium (2012)

22. Jiang, N., Cao, J., Jin, Y., Li, L.E., Zhang, Z.L.: Identifying Suspicious Activities
Through DNS Failure Graph Analysis. In: IEEE Conference on Network Protocols
(2010)

23. Yadav, S., Reddy, A.L.N.: Winning with DNS failures: Strategies for faster botnet
detection. In: Rajarajan, M., Piper, F., Wang, H., Kesidis, G. (eds.) SecureComm
2011. LNICST, vol. 96, pp. 446–459. Springer, Heidelberg (2012)

24. Anderson, D.S., Fleizach, C., Savage, S., Voelker, G.M.: Spamscatter: Character-
izing internet scam hosting infrastructure. In: 16th USENIX Security Symposium
(2007)

25. Lin, M., Chiu, C., Lee, Y., Pao, H.: Malicious URL filtering- a big data application.
In: IEEE BigData (2013)

26. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond Blacklists: Learning to Detect
Malicious Web Sites from Suspicious URLs. In: Proceedings of the ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD) (June 2009)

27. Thomas, K., Grier, C., Ma, J., Paxson, V., Song, D.: Design and Evaluation of a
Real-Time URL Spam Filtering Service. IEEE Security and Privacy (2011)

28. Zhang, Y., Hong, J., Cranor, L.: Cantina: A content-based approach to detecting
phishing web sites. In: World Wide Web Conference (May 2007)

Empirically Measuring WHOIS Misuse�

Nektarios Leontiadis and Nicolas Christin

Carnegie Mellon University
{leontiadis,nicolasc}@cmu.edu

Abstract. WHOIS is a publicly-accessible online directory used to map domain
names to the contact information of the people who registered them (registrants).
Regrettably, registrants have anecdotally complained about their WHOIS infor-
mation being misused, e.g., for spam, while there is also concrete evidence that
maliciously registered domains often map to bogus or protected information. All
of this has brought into question whether WHOIS is still needed. In this study, we
empirically assess which factors, if any, lead to a measurable degree of misuse of
WHOIS data. We register 400 domains spread over the five most popular global
top level domains (gTLD), using unique artificial registrant identities linked to
email addresses, postal addresses, and phone numbers under our control. We col-
lect, over six months, instances of misuse targeting our artificial registrants, re-
vealing quantitative insights on both the extent and the factors (gTLD, domain
type, presence of anti-harvesting mechanisms) that appear to have statistically-
significant impact on WHOIS misuse.

Keywords: WHOIS, misuse, security, privacy.

1 Introduction

WHOIS is an online directory that primarily allows anyone to map domain names to the
registrants’ contact information. Based on their operational agreement with ICANN [2],
all global Top Level Domain (gTLD) registrars (entities that process individual domain
name registration requests) are required to collect this information during domain reg-
istration, and subsequently publish it into the WHOIS directory; how it is published
depends on the specific registry used (i.e., entities responsible for maintaining an au-
thoritative list of domain names registered in each gTLD). While the original purpose
of WHOIS was to provide the necessary information to contact a registrant for legit-
imate purposes (e.g. abuse notifications, or other operational reasons), there has been
increasing anecdotal evidence of misuse of the data made publicly available through the
WHOIS service. For instance, some registrants1 have reported that third-parties used
their publicly available WHOIS information to register domains similar to the reporting
registrants’, using contact details identical to the legitimate registrants’. The domains
registered with the fraudulently acquired registrant information were subsequently used
to impersonate the owners of the original domains.

� This paper is derived from a study we originally conducted for ICANN [1].
1 http://www.eweek.com/c/a/Security/
Whois-Abuse -Still-Out-of-Control

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 19–36, 2014.
c© Springer International Publishing Switzerland 2014

http://www.eweek.com/c/a/Security/Whois-Abuse -Still-Out-of-Control
http://www.eweek.com/c/a/Security/Whois-Abuse -Still-Out-of-Control

20 N. Leontiadis and N. Christin

While such examples indicate that legitimate registrants may suffer from misuse of
their WHOIS data, registrants of malicious domains often use bogus information, or
privacy or proxy registration services to mask their identities [3].

This sad state of affairs brings into question whether the existence of the WHOIS
service is even needed in its current form. One suggestion is to promote the use of a
structured channel for WHOIS information exchange, capable of authenticated access,
using already available web technologies [4, 5, 6]. An alternate avenue is to completely
abandon WHOIS, in favor of a new Registration Data Service. This service would allow
access to verified WHOIS-like information only to a set of authenticated users, and for
a specific set of permissible purposes [7].

The present paper attempts to illuminate this policy discussion by empirically char-
acterizing the extent to which WHOIS misuse occurs, and which factors are statisti-
cally correlated with WHOIS misuse incidents. This research responds to the decision
of ICANN’s Generic Names Supporting Organization (GNSO) to pursue WHOIS stud-
ies [8] to scientifically determine if there is substantial WHOIS misuse warranting fur-
ther action from ICANN.

We generalize previous work [9, 10] with a much more comprehensive study us-
ing 400 domains across the five largest global top level domains (.COM, .NET, .ORG,
.INFO and .BIZ) which, in aggregate, are home to more than 127 million domains [11].
In addition, we not only look at email spam but also at other forms of misuse (e.g., of
phone numbers or postal addresses).

We validate the hypothesis that public access to WHOIS leads to a measurable degree
of misuse, identify the major types of misuse, and, through regression analysis, discover
factors that have a statistically-significant impact on the occurrence of misuse.

The remainder of this paper is organized as follows. In Section 2 we provide an
overview of the related work. We discuss our methodology in Sections 3 and 4. We
present a breakdown of the measured misuse in Section 5, and the deployed WHOIS
anti-harvesting countermeasures in Section 6. We perform a regression analysis of the
characteristics affecting the misuse in Section 7, note the limitations of our work in
Section 8, and conclude in Section 9.

2 Related Work

Elliot in [12] provides an extensive overview of issues related to WHOIS. Researchers
use WHOIS to study the characteristics of various online criminal activities, like click
fraud [13, 14] and botnets [15], and have been able to gain key insights on malicious
web infrastructures [16,17]. From an operational perspective, the Federal Bureau of In-
vestigation (FBI) has noted the importance of WHOIS in identifying criminals, but the
presence of significant inaccuracies hinder such efforts [18]. Moreover, online criminals
often use privacy or proxy registration services to register malicious domains, compli-
cating further their identification through WHOIS [3].

ICANN has acknowledged the issue of inaccurate information in WHOIS [19], and
has funded research towards measuring the extent of the problem [20]. ICANN’s GNSO,
which is responsible for developing WHOIS-related policies, identified in [9] the possi-
bility of misuse of WHOIS for phishing and identity theft, among others. Nevertheless,
ICANN has been criticized [12, 21] for its inability to enforce related policies.

Empirically Measuring WHOIS Misuse 21

Table 1. Number of domains under each of the five global Top Level Domains within scope in
March 2011 [11]

gTLD .COM .NET .ORG .INFO .BIZ Total
of domains 95,185,529 14,078,829 9,021,350 7,486,088 2,127,857 127,694,306
Proportion in population 75.54% 11.03% 7.06% 5.86% 1.67% 100%

A separate three-month measurement study from ICANN’s Security and Stability
Advisory Committee (SSAC) [10] examined the potential of misuse of email addresses
posted exclusively in WHOIS. The authors registered a set of domain names composed
as random strings, and monitored the electronic mailboxes appearing in the domains’
WHOIS records for spam emails, finding WHOIS to be a contributing factor to re-
ceived spam. Our work adopts a similar but more systematic methodology, to measure a
broader range of misuse types and gTLDs, examining five categories of domain names,
over a period of six months.

3 Methodology

To whittle down the number of possible design parameters for our measurement exper-
iment, we first conducted a pilot survey of domain registrants to collect experiences of
WHOIS misuse. We then used the results from this survey to design our measurement
experiment.

3.1 Constructing a Microcosm Sample

In November of 2011 we received from ICANN, per our request, a sample set of 6,000
domains, collected randomly from gTLD zone files with equal probability of selec-
tion. Of those 6,000 domains, 83 were not within the five gTLDs we study, and were
discarded. Additionally, ICANN provided the WHOIS records associated with 98.7%
(5,921) of the domains, obtained over a period of 18 hours on the day following the
generation of the domain sample.

Out of these nearly 6,000 domains, we created a proportional probability microcosm
of 2,905 domains representative of the population of 127 million domains, using the
proportions in Table 1. In deciding the size of the microcosm we use as a baseline
the 2,400 domains used in previous work [20], and factor in the evolution in domain
population from 2009 to 2011.

Finally, we randomly sampled the domain microcosm to building a representative
sample of D = 1, 619 domains from 89 countries. (Country information is available
through WHOIS.)

3.2 Pilot Registrant Survey

We use the domains’ WHOIS information to identify and survey the 1,619 registrants
associated with domains in D, about their experiences on WHOIS misuse. Further de-
tails on the survey questions, methodology, and sample demographics are available in
the companion technical report [1].

22 N. Leontiadis and N. Christin

Despite providing incentives for response (participation in a random drawing to be
eligible for prizes such as iPads or iPods) we only collected a total of 57 responses,
representing 3.4% of contacted registrants. As a result, this survey could only be used to
understand some general trends, but the data was too coarse to obtain detailed insights.

With the actual margin of error at 12.7%, 43.9% of registrants claim to have experi-
enced some type of WHOIS misuse, indicating that the public availability of WHOIS
data leads to a measurable degree of misuse. The registrants reported that email, postal,
and phone spam were the major effects of misuse, with other types of misuse (e.g.
identity theft) occurring at insignificant rates.

These observations are based on limited, self-reported data, and respondents may
incorrectly attribute misuse to WHOIS. Nevertheless, the pilot survey tells us that ac-
curately measuring WHOIS misuse requires to primarily look at the potential for spam,
not limited to email spam, but also including phone and postal spam.

3.3 Experimental Measurements

We create a set of 400 domain names and register them at 16 registrars (25 domains
per registrar) across the five gTLDs, with artificial registrant identities. Each artificial
identity consists of (i) a full name (i.e. first and last name), (ii) an email address, (iii) a
postal address, and (iv) a phone number.

All registrants’ contact details are created solely for the purpose of this experiment,
ensuring that they are only published in WHOIS. Through this approach, we eliminated
confounding variables. From the moment we register each experimental domain, and
the artificial identity details become public through WHOIS, we monitor all channels
of communication associated with every registrant. We then classify all types of com-
munication and measure the extent of illicit or harmful activity attributed to WHOIS
misuse targeting these registrants.

Given the wide variety of registrars and the use of unique artificial identities, the reg-
istration process did not lend itself to automation and was primarily manual. We regis-
tered the experimental domains starting in the last week of June 2012, and completed
the registrations within four weeks. We then monitored all incoming communications
over a period of six months, until the last week of January 2013. All experimental do-
mains were registered using commercial services offered by the 16 registrars; we did
not use free solutions like DynDNS.

4 Experimental Domain Registrations

We associated the WHOIS records of each of the 400 domains with a unique registrant
identity. Whenever the registration process required the inclusion of an organization
as part of the registrant information, we used the name of the domain’s registrant. In
addition, within each domain, we used the registrant’s identity (i.e. name, postal/email
address, and phone numbers) for all types of WHOIS contacts (i.e., registrant, technical,
billing, and administrative contacts).

Figure 1 provides a graphical breakdown of the group of 25 domains we register
per registrar. Every group contains five subgroups of domains, one for each of the five

Empirically Measuring WHOIS Misuse 23

.COM

.NET

.ORG

.INFO

.BIZ

Registrar X

...

...

...

...

Random letters & numbers

Full name

2-word combination

Targeted professional categories

Control professional categories

5 gTLDs16 Registrars 5 domain name categories

Fig. 1. Graphical representation of the experimental domain name combinations we register with
each of the 16 registrars

gTLDs. Finally, each subgroup contains a set of five domains, one for each type of
domain name, as discussed later.

4.1 Registrar Selection

We selected the sixteen registrars used in our measurement study as follows. Using
the WHOIS information of the 1,619 domains in D, we first identify the set R of 107
registrars used by domains inD. Some registrars only allow domain registration through
“affiliates.” In these cases we attempt to identify the affiliates used by domains in D, by
examining the name server information in the WHOIS records.

We then sort the registrars (or affiliates, as the case may be) based on their popularity
in the registrant sample. More formally, ifDr ⊂ D is the set of domains in the registrant
sample associated with registrar r, we define r’s popularity as Sr = |Dr|. We sort the
107 registrars in descending order of Sr, and then select the 16 most popular registrars
as the set of our experimental registrars that allow:

– The registration of domain names in all five gTLDs. This restriction allows us to
perform comparative analysis of WHOIS misuse across the experimental registrars,
and gTLDs.

– Individuals to register domains. Registrars providing domain registration services
only to legal entities (e.g. companies) are excluded from consideration.

– The purchase of a single domain name, without requiring purchasing of other ser-
vices for that domain (e.g. hosting).

– The purchase of domains without requiring any proof of identity. Given our inten-
tion to use artificial registrant identities, a failure to hide our identity could com-
promise the validity of our findings.

4.2 Experimental Domain Name Categories

We study the relationship between the category of a domain name, and WHOIS misuse.
Specifically, we examine the following set of name categories:

24 N. Leontiadis and N. Christin

1. Completely random domain names, composed by 5 to 20 random letters and num-
bers (e.g. unvdazzihevqnky1das7.biz).

2. Synthetic domain names, representing person full names (e.g. randall-bilbo.com).
3. Synthetic domain names composed by two randomly selected words from the En-

glish vocabulary (e.g. neatlimbed.net).
4. Synthetic Domain names intended to look like businesses within specific profes-

sional categories (e.g. hiphotels.biz).

To construct the last category, we identify professional categories usually targeted
in cases of spear-phishing and spam, by consulting two sources. We primarily use the
“Phishing Activity Trend” report, periodically published by the Anti-Phishing Work-
ing Group (APWG) [22]. We identify the professional categories mostly targeted by
spam and phishing in the second quarter of 2010 with percentages of more than 4% in
total. These categories are: (i) Financial services, (ii) payment services, (iii) gaming,
(iv) auctions, and (v) social networking. We complement this list with the following
professional categories appearing in the subject and sender portions of spam emails
we had previously received: (i) medical services, (ii) medical equipment, (iii) hotels,
(iv) traveling, and (v) delivery and shipping services.

In addition, we define a control set of professional categories that are not known to be
explicitly targeted. We use the control set to measure the potential statistical significance
of misuse associated with any of the previous categories. The three categories in the
control set are : (i) technology, (ii) education, and (iii) weapons.

4.3 Registrant Identities

We create a set of 400 unique artificial registrant identities, one for each of the exper-
imental domains. Our ultimate goal is to be able to associate every instance of misuse
with a single domain, or a small set of domains.

A WHOIS record created during domain registration contains the following publicly
available pieces of registrant information: (i) full name, (ii) postal address, (iii) phone
number, and (iv) email address. In this section we provide the design details of each
portion of the artificial registrant identities.

Registrant Name. The registrant’s full name (i.e. first name-last name) serves as the
unique association between an experimental domain and an artificial registrant iden-
tity. Therefore we need to ensure that every full name associated with each of the 400
experimental domains is unique within this context.

We create the set of 400 unique full names, indistinguishable from names of real
persons, by assembling common first names (male and female) and last names with
Latin characters.

Email Address. We create a unique email address for each experimental domain in
the form contact@example.com. We use this email address in the domain’s WHOIS
records, and we therefore call it public email address.

Empirically Measuring WHOIS Misuse 25

However, any email sent to a recipient other than contact (e.g. foo@example.com),
is still collected for later analysis under a catchall account. We refer to these as unpub-
lished email addresses, as we do not publish them anywhere, including WHOIS.

Mail exchange (MX) records are a type of DNS record pointing to the email server(s)
responsible for handling incoming emails for a given domain name [23]. The MX
records for our experimental domains all point to a single IP address functioning as
a proxy server. The proxy server, in turn, aggregates and forwards all incoming SMTP
requests to an email server under our control. The use of a proxy allows us to conceal
where the “real” email server is located (i.e., at our university); our email server func-
tions as a spam trap (i.e., any potential spam mitigation at the network- or host-level is
explicitly disabled).

Postal Address. We examined the possibility of using a postal mail-forwarding service
to register residential addresses around the world. Unfortunately, and, given the scale
of this experiment, we were unable to identify a reasonably-priced and legal solution.

In most countries (the US included) such services often require proof of identifi-
cation prior to opening a mailbox,2 and limit the number of recipients that can receive
mail at one mailbox. Moreover, we were hesitant to trust mail-forwarding services from
privately owned service providers,3 because the entities providing such services may
themselves misuse the postal addresses, contaminating our measurements. For exam-
ple, merely requesting a quote from one service provider, resulted in our emails being
placed on marketing mailing lists without our explicit consent.

We eventually decided to use three Post Office (PO) boxes within the US; and, ran-
domly assigned to each registrant identity one of these addresses. Traditionally, the
address of a PO box with number 123 is of the following format: PO Box 123, City,
Zip code. However, we utilize the US Postal Service’s (USPS) street addressing service
to camouflage our PO boxes as residential addresses. Street addressing enables the use
of the post office’s street address to reach a PO box located at the specific post office.
Through this service, the PO box located at a post office with address 456 Imaginary
avenue, is addressable at 456 Imaginary avenue #123, City, Zip code.

In addition, PO boxes are typically bound to the name of the person who registered
them. However, each experimental domain is associated with a unique registrant name,
even when sharing the same postal address, different than the owner of the PO box.
We evaluated possible implications of this design in receiving postal mail to a PO box
addressee not listed as the PO box owner. We originally acquired five PO boxes across
two different US states, and sent one letter addressed to a random name to each of these
PO boxes. We successfully received letters at three of the PO boxes indicating that mail
addressed to any of the artificial registrant names would be delivered successfully. The
test failed at the other two PO boxes—we got back our original test letters marked as
undeliverable—making them unsuitable for the study.

Phone Number. Maintaining individual phone numbers for each of the 400 domains
over a period of six months would be prohibitively expensive. Instead, we group the 400

2 For example USPS form 1583: Application for Delivery of Mail Through Agent in the US.
3 Also known as “virtual office” services.

26 N. Leontiadis and N. Christin

domains into 80 sets of domains having the same gTLD and registrar, and we assign
one phone number per such group. For example all .COM domains registered with
GoDaddy share the same phone number.

We acquire 80 US-based phone numbers using Skype Manager4 with area codes
matching the physical locations of the three PO boxes. We further assign phone numbers
to registrant identities with area codes matching their associated PO box locations.

5 Breaking Down the Measured Misuse

In this section we present a breakdown of the empirical data revealing WHOIS-attributed
misuse. The types of misuse we identify fall within three categories: (1) postal address
misuse, measured as postal spam, (2) phone number misuse, measured as voice mail
spam, and (3) email address misuse, measured as email spam.

5.1 Postal Address Misuse

We monitor the contents of the three PO boxes biweekly, and categorize the collected
mail either as generic spam or targeted spam. Generic spam is mail not associated with
WHOIS misuse, while targeted spam can be directly attributed to the domain registra-
tion activity of the artificial registrant identities.

When postal mail does not explicitly mention the name of the recipient, we do not
associate it with WHOIS misuse, and we classify it as generic spam. Common examples
in this category are mail addressed to the “PO Box holder”, or to an addressee not in
the list of monitored identities.

In total, we collected 34 pieces of generic spam, with two out of the three PO boxes
receiving the first kind of generic spam frequently. Additionally, we collected four in-
stances of the second type of generic spam, received at a single PO box. A reasonable
explanation for the latter is that previous owners of the PO box still had mail sent to that
location.

Postal mail is placed in the targeted spam category when it is addressed to the name
and postal address of one the of the artificial registrant identities. We observed targeted
spam at a much lower scale compared to the generic spam, with a total of four instances.

Two instances of targeted postal spam, were sent to two different PO locations, but
were identical in terms of (i) their sender, (ii) the advertised services, (iii) the date of
collection from the PO boxes, and (iv) the posting date. The purpose of the letters, as
shown in Figure 2a, was to sell domain advertising services. This advertising scheme
works with the registrant issuing a one-time payment for $85 USD, in exchange for
the submission of the registrant’s domain to search engines in combination with search
engine optimization (SEO) on the domains. The two experimental domains subjected to
this postal misuse were registered using the same registrar, but under different registrant
identities, and gTLDs.

The purpose of the third piece of targeted postal spam (Figure 2b) was to enroll the
recipient in a membership program that provides postal and shipping services. Finally,

4 http://www.skype.com/en/features/skype-manager/

http://www.skype.com/en/features/skype-manager/

Empirically Measuring WHOIS Misuse 27

(a) Advertisement of search engine opti-
mization services.

(b) Advertisement of postal and shipping
services.

Fig. 2. Targeted postal spam attributed to WHOIS misuse

the fourth piece of postal mail spam was received very close to the end of the experiment
and offered a free product in exchange for signing up on a website.

Overall, the volume of targeted WHOIS postal spam is very low (10%), compared to
the portion classified as generic spam (90%). However, this is possibly due to the small
geographical diversity of the PO boxes.

5.2 Phone Number Misuse

We collected 674 voicemails throughout the experiment. We define the following five
types of content indicative of their association (or lack thereof) to WHOIS misuse, and
manually classify each voicemail into one of these five categories:
WHOIS-attributed spam. Unsolicited calls offering web-related services (e.g. website
advertising), or mentioning an experimental domain name or artificial registrant name.
Possible spam. Unsolicited phone calls advertising services that cannot be associated
with WHOIS misuse, given the previous criteria. (e.g. credit card enrollment based on
random number calling)
Interactive spam. Special case of possible spam with a fixed recorded message saying
“press one to accept”.
Blank. Voice mails having no content, or with incomprehensible content.
Not spam. Accidental calls, usually associated with misdialing, or with a caller having
wrong contact information (e.g. confirmation for dental appointment)

Two of these categories require further explanation. First, in the case of possible
spam, we cannot tell if the caller harvested the number from WHOIS, or if it was ob-
tained in some other way (e.g., exhaustive dialing of known families of phone numbers).
We therefore take the conservative approach of placing such calls in a category separate
from WHOIS-attributed spam. Second, calls marked as interactive spam did not con-
tain enough content to allow for proper characterization of the messages. However, the
large number of these calls—received several times a day, starting in the second month
of the experiment—suggests a malicious intent.

Of the 674 voicemails, we classify 5.8% as WHOIS-attributed spam, 4.2% as possi-
ble spam, 38% as interactive spam, and 15% as not spam. Finally, we classify 36.9% of
voicemails as blank due to their lack of intelligible content.

28 N. Leontiadis and N. Christin

Of the 39 pieces of WHOIS-attributed spam, 77% (30) originated from a single com-
pany promoting website advertising services. This caller placed two phone calls in each
of the numbers, one as an initial contact and one as a follow up. These calls targeted
.BIZ domains registered with 5 registrars, .COM domains registered with 4 registrars,
and .INFO domains registered with 6 Registrars. In total, the specific company con-
tacted the registrants of domains registered with 11 out of the 16 registrars.

The remaining spam calls targeted .BIZ domains registered with 4 registrars, .COM
domains registered with 4 registrars, and .INFO, .NET, and .ORG domains associated
with 1 registrar each. In one case we observed a particularly elaborate attempt to acquire
some of the registrant’s personally identifiable information.

5.3 Email Address Misuse

We classify incoming email either as solicited or spam, using the definition of spam
in [24]. In short, an email is classified as spam if (i) it is unsolicited, and (ii) the recipient
has not provided an explicit consent to receive such email. For this experiment, this
means that all incoming email is treated as spam, except when it originates from the
associated registrars (e.g., for billing).

The contract between registrar and registrant, established upon domain registration,
usually permits registrars to contact registrants for various reasons (e.g. account related,
promotions, etc.). We identify such email by examining the headers of the emails re-
ceived at the public addresses, and comparing the domain part of the sender’s email
address to the registrar’s domain.

However, under the Registrar Accreditation Agreement (RAA) [2]),
ICANN-accredited registrars are prohibited from allowing the use of registrant infor-
mation for marketing, or otherwise unsolicited purposes. Nevertheless, we acknowledge
the possibility that some registrars may share registrant information with third parties
that may initiate such unsolicited communication. We do not distinguish between reg-
istrars that engage in such practices and those that do not, and we classify all commu-
nications originating from a party other than the registrar as spam.

Throughout the experiment, published email addresses received 7,609 unsolicited
emails out of which 7,221 (95%) are classified as spam. Of the 400 experimental do-
mains, 95% received unsolicited emails in their published addresses with 71% of those
receiving spam email. Interestingly, 80% of spam emails targeted the 25 domains of a
single registrar.

In an effort to explain this outlier, we reviewed the terms of domain registration for
all 16 registrars. We discovered that four registrars (including the registrar that appears
as an outlier) mention in their registrant agreements the possibility of use of WHOIS
data for marketing purposes. Since this is only a hypothesis, we do not factor it into
the regression analysis we propose later. It is, however, a plausible explanation for the
outlier.

We classified all 1,872 emails received at the unpublished addresses as spam, target-
ing 15% of the experimental domains. Since the unpublished addresses are not shared
in any way, all emails received are unsolicited, and therefore counted as spam, including
some that may have been the result of the spammers attempting some known account
guessing techniques.

Empirically Measuring WHOIS Misuse 29

Table 2. Breakdown of measured WHOIS-attributed misuse, broken down by gTLD and type
of misuse. Per the experimental design (Section 4), each gTLD group contains 80 domains.

gTLD of affected experimental domains
Type of misuse .COM .NET .ORG .INFO .BIZ Total

Postal address misuse 1 domain 1 domain 1 domain 1 domain – 4 domains
Phone number misuse 5.0% 1.3% 1.3% 7.5% 10.0% 5.0%
Email address misuse 60.0% 65.0% 56.3% 77.5% 93.8% 70.5%

Two domains received a disproportionate amount of spam in their unpublished mail-
boxes. We ascribed this to the possibility that (i) these domains had been previously
registered, and (ii) the previous domain owners are the targets of the observed spam
activity. Historical WHOIS records confirm that both domains had been previously reg-
istered (12 years prior, and 5 years prior, respectively), which lends further credence to
our hypothesis.

We examine the difference in proportions of email spam between published and un-
published addresses. Using the χ2 test, we find that the difference is statistically sig-
nificant considering the gTLD (p < 0.05), and the registrar (p < 0.001), but not the
domain name category (p > 0.05).

Attempted Malware Delivery. We use VirusTotal [25] to detect malicious software
received as email file attachments during the first 4 months of the experiment. In total,
we analyze 496 emails containing attachments. Only 2% of emails with attachments (10
in total) targeted published email addresses, and they were all innocuous. The 15.6%
of emails (76 in total) containing malware, targeted exclusively unpublished addresses,
and VirusTotal classified them within 12 well-known malware families. As none of
the infected attachments targeted any published email address, we do not observe any
WHOIS-attributed malware delivery.

5.4 Overall Misuse per gTLD

In Table 2 we present the portion of domains affected by all three types of WHOIS
misuse, broken down by gTLD and type of misuse. We find that the most prominent
type of misuse is the one affecting the registrants’ email addresses, followed by phone
and postal misuse. Due to the small number of occurrences of postal misuse, we present
the absolute value of affected domains. For both phone and email misuse, we present
the misuse as the portion of affected domains, out of the 80 experimental domains per
gTLD. Clearly, email misuse is common; phone misuse is also not negligible (especially
for .BIZ domains).

The stated design limitations, especially the limited number of postal addresses we
use, potentially affect the rates of misuse we measure. We nevertheless find that misuse
of registrant information is measurable, and causally associated with the unrestricted
availability of the data through WHOIS. We acknowledge though that this causal link is

30 N. Leontiadis and N. Christin

only valid based on the assumption that all ICANN-accredited registrars comply with
the relevant RAA provisions (e.g., no resale of the registrant data for marketing pur-
poses), as discussed in Section 5.3.

6 WHOIS Anti-Harvesting

WHOIS “anti-harvesting” techniques are a proposed solution deployed at certain regis-
trars to prevent automatic collection of WHOIS information. We next present a set of
measurements characterizing WHOIS anti-harvesting implemented at the 16 registrars
and the three thick WHOIS registries.5 Later on we use this information to examine the
correlation between measures protecting WHOIS, and the occurrence of misuse.

More specifically, we test the rate-limiting availability on port 43, which is the well-
known network port used for the reception of WHOIS queries, by issuing sets of 1,000
WHOIS requests per registrar and registry, and analyzing the responses. Each set of
1,000 requests repeatedly queries information for a single domain from the set of 400
experimental domains. We use different domain names across request sets. We select
domains from the .COM and .NET pool when testing the registrars’ defenses, and from
the appropriate gTLD pool when testing thick WHOIS gTLD registries.

In addition, we examine the defenses of the remaining 89 registrars in the registrar
sample. In this case we query domains found in the registrant sample instead of exper-
imental domains. In three occasions, all domains associated with three out of the 89
registrars had expired at the time we ran this experiment. Therefore, we exclude these
registrars from this analysis.

The analysis of WHOIS responses reveals the following methods of data protection:

Method 1: Limit number of requests, then block further requests.
Method 2: Limit number of requests, then provide only registrant name and offer in-

structions to access complete the WHOIS record through a web form.
Method 3: Delay WHOIS responses, using a variable delay period of a few seconds.
Method 4: No defense.

In Table 3 we present in aggregate form the distribution of registrars and registries
using each one of the four defense methods. We find that one of the three registries does
not use any protection mechanism, while the remaining two take a strict rate-limiting
approach. For instance, one registry employs relatively strict measures by allowing only
four queries though port 43 before applying a temporary blacklist.

Only 41.6% of the experimental registrars employ rate-limiting, allowing, on aver-
age, 83 queries, before blocking additional requests. Just two registrars in this group
provide information (as part of the WHOIS response message) on the duration of the
block, which, in both cases, was 30 minutes. The remaining registrars either use a less
strict approach (Method 2, 18.8%), or no protection at all (Method 4, 37.5%)

5 Thick WHOIS registries maintain a central database of all WHOIS information associated
with registered domain names, and they respond directly to WHOIS queries with all available
WHOIS information. From the five gTLDs under consideration, the three registries maintain-
ing the .BIZ, .INFO, and .ORG zones are thick registries.

Empirically Measuring WHOIS Misuse 31

Table 3. Methods for protecting WHOIS information at 104 registrars and three registries

Tested entities Total # Type of WHOIS harvesting defense
Method 1 Method 2 Method 3 Method 4

Thick WHOIS registries 3 2 (66.6%) – – 1 (33.3%)
Experimental registrars 16 7 (43.7%) 2 (12.5%) 1 (6.3%) 6 (37.5%)
Remaining registrars 89 37 (41.6%) 1 (1.1%) 3 (3.4%) 48 (53.9%)

One registrar would not provide responses in a timely manner (method 3), causing
our testing script to identify the behavior as a temporary blacklisting. It is unclear if this
is an intended behavior to prevent automated queries, or if it was just a temporary glitch
with the registrar.

The remaining 89 registrars (not in the experimental set) follow more or less the same
pattern as our experimental set. The majority does not use any protection mechanism,
and a relatively large minority uses Method 1.

7 Misuse Estimators

We finally examine the correlation of a set of parameters (i.e. estimators) with the mea-
sured phone and email misuse, attributed to WHOIS. These estimators are descriptive
of the experimental domain names, and of the respective registrars and (thick) WHOIS
registries. We do not examine postal address misuse, as the number of observed inci-
dents in this case is very small and unlikely to yield any statistically-significant findings.

More specifically, we consider the following estimators:

– β1 : Domain gTLD.
– β2 : Price paid for domain name acquisition.
– β3 : Registrar used for domain registration.
– β4 : Existence of WHOIS anti-harvesting measures at the registrar level for .COM

and .NET domains (thin WHOIS gTLDs), and at the registry level for .ORG, .INFO,
and .BIZ domains (thick WHOIS gTLDs).

– β5 : Domain name category.

We disentangle the effect of these estimators on the prevalence of WHOIS misuse
through regression analysis. We use logistic regression [26], which is a generalized
linear model [27] extending linear regression. This approach allows for the response
variable to be modeled through a binomial distribution given that we examine WHOIS
misuse as a binary response (i.e. either the domain is a victim of misuse or not).

In addition, using a generalized linear model instead of the ordinary linear regres-
sion allows for more relaxed assumptions on the requirement for normally distributed
errors. In this analysis, we use the iteratively re-weighted least squares [28] method to fit
the independent variables into maximum likelihood estimates of the logistic regression
parameters.

Our multivariate logistic regression model takes the following form:

logit(pDomainEmailMisuse) = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 (1)

32 N. Leontiadis and N. Christin

logit(pDomainPhoneMisuse) = β0 + β1x1 + β2x2 + β3x3 + β4x4 (2)

Equation 2 does not consider β5 as an estimator, since the experimental design does
not permit the association between measured misuse and the composition of the domain
name.

We considered the use of multinomial logistic regression (MLR) for the analysis
of phone number misuse, given the five classes of voicemails we collected. Such re-
gression models require a large sample size (i.e. observations of misuse in this case)
to calculate statistically-significant correlations [29]. However, in the context of our
experiment, the occurrence of voicemail misuse is too small to analyze with MLR.

Therefore, we reverted to using a basic logistic regression by transforming the
multiple-response dependent variable into a dichotomous one. We did this by conser-
vatively transforming observations of possible spam into observations of not spam. In
addition, we did not consider the categories of interactive spam and blank, as they do
not present meaningful outcomes.

All estimators, except β2, represent categorical variables, and they are coded as such.
Specifically, we code estimators β1, β3, and β5 as 5-part, 16-part, and 5-part categorical
variables respectively, using deviation coding. Deviation coding allows us to measure
the statistical significance of the categorical variables’ deviation from the overall mean,
instead of deviations across categories.

We code WHOIS anti-harvesting (β4) as a dichotomous categorical variable denoting
the protection of domains by any anti-harvesting technique. While the 16 registrars, and
3 thick WHOIS registries employ a variety of such techniques (Section 6), the binary
coding enables easier statistical interpretation.

7.1 Estimators of Email Misuse

In Table 4 we report the statistically-significant regression coefficients, and associated
odds characterizing email misuse. Overall, we find that some gTLDs, the domain price,
WHOIS anti-harvesting, and domain names representing person names are good esti-
mators of email misuse.

Domain gTLD. The email misuse measured though the experimental domain names is
correlated with all gTLDs but .INFO. Specifically, the misuse at .BIZ domains is 21
times higher than the overall mean, while domains registered under the .COM, .NET,
and .ORG gTLDs experience less misuse.

Domain Price. The coefficient for β2 means that each $1 increase in the price of an
experimental domain corresponds to a 15% decrease in the odds of the registrants ex-
periencing misuse of their email addresses. In other words, the more expensive the
registered domain is, the lesser email address misuse the registrant experiences.

The reported correlation does not represent a correlation between domain prices and
differentiation in the registrars’ services. Even though we did not systematically record
the add-on services the 16 registrars offer, we did not observe any considerable dif-
ferentiation of services based on the domain price. Most importantly, we did not use

Empirically Measuring WHOIS Misuse 33

Table 4. Statistically-significant regression coefficients affecting email address misuse
(Equation 1)

Estimator coefficient odds Std. Err. Significance

Domain gTLD (β1)
.COM -1.214 0.296 0.327 p < 0.001
.NET -0.829 0.436 0.324 p = 0.01
.ORG -1.131 0.322 0.318 p < 0.001
.BIZ 3.049 21.094 0.566 p < 0.001

Domain price (β2) -0.166 0.846 1.376 p < 0.001

Lack of WHOIS anti-harvesting (β4) 0.846 2.332 0.356 p = 0.01

Domain name composition (β5)
Person name -0.638 0.528 0.308 p = 0.04

any such service for any of the experimental domains we registered, even when such
services were offered free of charge.

What this correlation may suggest is that higher domain prices may be associated
with other protective mechanisms, like the use of blacklists to prevent known harvesters
from unauthorized bulk access to WHOIS. However, such mechanisms are transpar-
ent to an outside observer, so we may only hypothesize on their existence and their
effectiveness.

WHOIS Anti-Harvesting. The analysis shows that the existence of WHOIS
anti-harvesting protection is statistically-significant in predicting the potential of email
misuse. The possibility of experiencing email misuse without the existence of any anti-
harvesting measure is 2.3 times higher than when such protection is in place.

Domain Name Category. We identify the category of domains denoting person names
(e.g. randall-bilbo.com) as having negative correlation to misuse. In this case, the pos-
sibility of experiencing email address misuse is slightly lower than the overall mean.

This appears to be an important result. However, we point out that all the domain
names in this category contain a hyphen (i.e. -), contrary to all other categories. There-
fore, it is unclear whether the reported correlation is due to the domain name category
itself, or due to the different name structure.

7.2 Estimators of Phone Number Misuse

The gTLD is the only variable with statistical significance in Equation 2. Table 5
presents the 3 gTLDs with a significant correlation to the measured WHOIS-attributed
phone number misuse. Domains under the .BIZ and .INFO gTLDs correlate with 7.4
and 5.1 times higher misuse compared to the overall mean, respectively. On the other
hand, .ORG domains correlate with lower misuse, being close to the mean.

34 N. Leontiadis and N. Christin

There is no verifiable explanation as to why gTLD is the sole statistically-significant
characteristic affecting this type of misuse. A possible conjecture is that domains usu-
ally registered under the .BIZ and .INFO gTLDs have features that make them better
targets.

Table 5. Statistically-significant regression coefficients in Equation 2

Estimator coefficient odds Std. Err. Significance

Domain gTLD (β1)
.INFO 1.634 5.124 0.554 p = 0.003
.ORG -2.235 0.106 0.902 p = 0.01
.BIZ 2.000 7.393 0.661 p = 0.002

8 Limitations

Specific characteristics of the experimental design (e.g., cost limits) result in some lim-
itations in the extent or type of insights we are able to provide.

In particular, we were not able to use postal addresses outside the United States, due
to mail regulations requiring proof of residency, in most countries. In addition, “virtual
office” solutions are prohibitively expensive at the scale of our experiment, and, as
discussed earlier, could introduce potential confounding factors. Therefore, we were
not able to gain major insights on how different regions, and countries other than the
US are affected by WHOIS-attributed postal address misuse.

Similarly, we were not able able assign a unique phone number to each of the 400
artificial registrant identities. Instead, every phone number was reused by five (very
similar) experimental domains. This design limits our ability to associate an incoming
voice call with a single domain name, especially if the caller does not identify a domain
name or a registrant name in the call. Nevertheless, we were able to associate every
spam call with a specific [registrar, gTLD] pair.

9 Conclusion

We examined and validated through a set of experimental measurements the hypothesis
that public access to WHOIS leads to a measurable degree of misuse in the context
of five largest global Top Level Domains. We identified email spam, phone spam, and
postal spam as the key types of WHOIS misuse. In addition, through our controlled
measurements, we found that the occurrence of WHOIS misuse can be empirically
predicted taking into account the cost of domain name acquisition, the domains’ gTLDs,
and whether registrars and registries employ WHOIS anti-harvesting mechanisms.

The last point is particularly important, as it evidences that anti-harvesting is, to date,
an effective deterrent with a straightforward implementation. This can be explained by
the economic incentives of the attacker: considering the type of misuse we observed, the
value of WHOIS records appears rather marginal. As such, raising the bar for collecting

Empirically Measuring WHOIS Misuse 35

this data ever so slightly might make it unprofitable to the attacker, which could in
turn lead to a considerable decrease in the misuse, at relatively low cost to registrars,
registries, and registrants.

Acknowledgments. This research was partially funded by ICANN. Input from the
anonymous reviewers, from the participants to the WHOIS Misuse Webinar, and from
several members of the ICANN community contributed significant improvements to
this manuscript. We are also grateful for numerous discussions with Lisa Phifer, Liz
Gasster, Barbara Roseman and Mary Wong, which led to considerable refinments in the
design of the experiments. Finally, Tim Vidas provided invaluable support in setting up
and maintaining our email infrastructure, Ashwini Rao assisted with some of the early
testing scripts and documentation, and Patrick Tague helped us with testing some of the
postal boxes.

References

1. Leontiadis, N., Christin, N.: WHOIS misuse study (March 2014),
http://whois.icann.org/sites/default/files/files/
misuse-study-final-13mar14-en.pdf (last accessed July 3, 2014)

2. ICANN: 2013 Registrar Accreditation Agreement (2013),
https://www.icann.org/resources/pages/
approved-with-specs-2013-09-17-en (last accessed July 3, 2014)

3. Clayton, R., Mansfield, T.: A study of Whois privacy and proxy service abuse. In: Proceed-
ings of the 13th Workshop on Economics of Information Security, State College, PA (June
2014)

4. Newton, A., Piscitello, D., Fiorelli, B., Sheng, S.: A restful web service for internet names
and address directory services, pp. 23–32. USENIX; login (2011)

5. Sullivan, A., Kucherawy, M.S.: Revisiting WHOIS: Coming to REST. IEEE Internet Com-
puting 16(3) (2012)

6. Hollenbeck, S., Ranjbar, K., Servin, A., Newton, A., Kong, N., Sheng, S., Ellacott, B.,
Obispo, F., Arias, F.: Using HTTP for RESTful Whois services by Internet registries (2012)

7. Expert Working Group on gTLD Directory Services: A next generation registration directory
service (2013), https://www.icann.org/en/groups/other/
gtld-directory-services/initial-report-24jun13-en.pdf
(last accessed July 3, 2014)

8. ICANN. Generic Names Supporting Organization: Motion to pursue WHOIS studies,
http://gnso.icann.org/en/council/resolutions#20100908-3 (2010)
(last accessed July 3, 2014)

9. ICANN. Security and Stability Advisory Committee: Advisory on registrar impersonation
phishing attacks (2008),
http://www.icann.org/en/committees/security/sac028.pdf
(last accessed July 3, 2014)

10. ICANN. Security and Stability Advisory Committee: Is the WHOIS service a source for
email addresses for spammers (2007),
http://www.icann.org/en/committees/security/sac023.pdf
(last accessed July 3, 2014)

http://whois.icann.org/sites/default/files/files/misuse-study-final-13mar14-en.pdf
http://whois.icann.org/sites/default/files/files/misuse-study-final-13mar14-en.pdf
https://www.icann.org/resources/pages/approved-with-specs-2013-09-17-en
https://www.icann.org/resources/pages/approved-with-specs-2013-09-17-en
https://www.icann.org/en/groups/other/gtld-directory-services/initial-report-24jun13-en.pdf
https://www.icann.org/en/groups/other/gtld-directory-services/initial-report-24jun13-en.pdf
http://gnso.icann.org/en/council/resolutions#20100908-3
http://www.icann.org/en/committees/security/sac028.pdf
http://www.icann.org/en/committees/security/sac023.pdf

36 N. Leontiadis and N. Christin

11. ICANN: gTLD–specific monthly registry reports (February 2011),
http://www.icann.org/sites/default/files/mrr/
[gTLD]/[gTLD]-transactions-201102-en.csv (last accessed July 3, 2014)

12. Elliott, K.: The who, what, where, when, and why of WHOIS: Privacy and accuracy concerns
of the WHOIS database. SMU Sci. & Tech. L. Rev. 12, 141 (2008)

13. Dave, V., Guha, S., Zhang, Y.: Measuring and fingerprinting click-spam in ad networks.
In: Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, pp. 175–186. ACM (2012)

14. Christin, N., Yanagihara, S., Kamataki, K.: Dissecting one click frauds. In: Proc. ACM CCS
2010, Chicago, IL, pp. 15–26 (October 2010)

15. Yarochkin, F., Kropotov, V., Huang, Y., Ni, G.K., Kuo, S.Y., Chen, I.Y.: Investigating dns
traffic anomalies for malicious activities. In: 2013 43rd Annual IEEE/IFIP Conference on
Dependable Systems and Networks Workshop (DSN-W), pp. 1–7. IEEE (2013)

16. Li, Z., Alrwais, S., Xie, Y., Yu, F., Valley, M.S., Wang, X.: Finding the linchpins of the dark
web: a study on topologically dedicated hosts on malicious web infrastructures. In: IEEE
Symposium on Security and Privacy, pp. 112–126. IEEE (2013)

17. Leontiadis, N., Moore, T., Christin, N.: Measuring and analyzing search-redirection attacks
in the illicit online prescription drug trade. In: Proceedings of the 20th USENIX Security
Symposium, San Francisco, CA, pp. 281–298 (August 2011)

18. United States Congress. House Committee on the Judiciary. Subcommittee on Courts, the
Internet, and Intellectual Property: Internet Domain Name Fraud: The U.S. Government’s
Role in Ensuring Public Access to Accurate WHOIS Data. H. hrg. U.S. Government Printing
Office (September 2003)

19. WHOIS Task Force 3: Improving accuracy of collected data (2003),
http://gnso.icann.org/en/issues/whois-privacy/tor3.shtml
(last accessed July 3, 2014)

20. NORC: Proposed design for a study of the accuracy of WHOIS registrant contact information
(2009), https://www.icann.org/en/system/files/files/
norc-whois-accuracy-study-design-04jun09-en.pdf
(last accessed July 3, 2014)

21. Watters, P.A., Herps, A., Layton, R., McCombie, S.: Icann or icant: Is whois an enabler of
cybercrime? In: 2013 Fourth Cybercrime and Trustworthy Computing Workshop (CTC), pp.
44–49. IEEE (2013)

22. Anti-Phishing Working Group: Phishing attack trends report - Q2 2010 (Janurary 2010)
23. Mockapetris, P.: Domain names – Implementation and specification (RFC 1035). Information

Sciences Institute (1987)
24. The Spamhaus Project: The definition of spam,

http://www.spamhaus.org/consumer/definition/
(last accessed July 3, 2014)

25. VirusTotal: Free online virus, malware and URL scanner,
https://www.virustotal.com/ (last accessed July 3, 2014)

26. Hosmer Jr., D.W., Lemeshow, S.: Applied logistic regression. John Wiley & Sons (2004)
27. Nelder, J.A., Wedderburn, R.W.M.: Generalized linear models. Journal of the Royal Statisti-

cal Society. Series A 135(3), 370–384 (1972)
28. Del Pino, G.: The unifying role of iterative generalized least squares in statistical algorithms.

Statistical Science 4(4), 394–403 (1989)
29. Ye, F., Lord, D.: Comparing three commonly used crash severity models on sample size

requirements: multinomial logit, ordered probit and mixed logit models. Analytic Methods
in Accident Research 1, 72–85 (2014)

http://www.icann.org/sites/default/files/mrr/[gTLD]/[gTLD]-transactions-201102-en.csv
http://www.icann.org/sites/default/files/mrr/[gTLD]/[gTLD]-transactions-201102-en.csv
http://gnso.icann.org/en/issues/whois-privacy/tor3.shtml
https://www.icann.org/en/system/files/files/norc-whois-accuracy-study-design-04jun09-en.pdf
https://www.icann.org/en/system/files/files/norc-whois-accuracy-study-design-04jun09-en.pdf
http://www.spamhaus.org/consumer/definition/
https://www.virustotal.com/

EncDNS: A Lightweight Privacy-Preserving

Name Resolution Service

Dominik Herrmann, Karl-Peter Fuchs, Jens Lindemann, and Hannes Federrath

University of Hamburg, Computer Science Department, Germany

Abstract. Users are increasingly switching to third party DNS resolvers
(e. g., Google Public DNS and OpenDNS). The resulting monitoring ca-
pabilities constitute an emerging threat to online privacy. In this paper
we present EncDNS, a novel lightweight privacy-preserving name res-
olution service as a replacement for conventional third-party resolvers.
The EncDNS protocol, which is based on DNSCurve, encapsulates en-
crypted messages in standards-compliant DNS messages. User privacy is
protected by exploiting the fact that a conventional DNS resolver pro-
vides sender anonymity against the EncDNS server. Unlike traditional
privacy-preserving techniques like mixes or onion routing, which intro-
duce considerable delays due to routing messages over multiple hops,
the EncDNS architecture introduces only one additional server in order
to achieve a sufficient level of protection against realistic adversaries.
EncDNS is open source software. An initial test deployment is available
for public use.

Keywords: anonymity, obfuscation, confidentiality, encapsulation,
DNSCurve, nameserver, DNS proxy, encryption, third-party DNS, open
source.

1 Introduction

The Domain Name System (DNS) is a globally distributed name resolution ser-
vice that is used to translate domain names like www.google.com to IP addresses.
Clients offload most of the work to so-called “DNS resolvers” that query the au-
thoritative name servers, which store the mapping information, on behalf of
users. Due to their central role, DNS resolvers are a preeminent entity for be-
havioral monitoring as well as for access control. Numerous nations and regimes
have made efforts to prevent access to websites that they deem inappropriate,
among them the United States (cf. the SOPA and PIPA bills [1]), Germany [2],
Pakistan [3], Turkey [4] and China [5].

In some cases users can circumvent the filtering by switching to a different re-
solver [5]. Apart from well-known offers like Google Public DNS and OpenDNS,
there is a huge number of name servers operated by NGOs and individuals (cf.
http://public-dns.tk), some of them claiming to offer high availability and confi-
dentiality as well as low latencies. Unfortunately, switching to a freely available
resolver inevitably discloses one’s online activities to the DNS provider. This

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 37–55, 2014.
© Springer International Publishing Switzerland 2014

http://public-dns.tk

38 D. Herrmann et al.

gives rise to privacy concerns [6]. Neither the DNS protocol nor the DNSSEC
security extensions account for privacy [7]. Therefore, the resolver can log the IP
addresses of its users and the domain names they are interested in. Some experts
believe that the discussions about limiting traditional tracking via cookies will
result in DNS queries becoming the next target for tracking and profiling [8].

Previous work on improving confidentiality of DNS, namely DNSCurve and
DNSCrypt (cf. Sect. 3), only provide link encryption, i. e., these proposals focus
on protecting messages while in transit. However, link encryption is not sufficient
for users who want to issue DNS queries without disclosing the desired domain
names to the DNS provider. If the DNS provider learns the desired domains,
privacy may be at risk even when the provider has good intentions and makes
sincere commitments. This is exemplified by the case of “Lavabit”, an e-mail
service that has been legally obliged to disclose personal information to the
authorities without being allowed to announce that breach in public [9].

This paper introduces a solution to protect confidentiality against attacks per-
petrated by both eavesdropping outsiders as well as the DNS provider. Previous
research efforts on such a privacy-enhanced DNS have not resulted in readily
available systems so far. We believe that this is due to compatibility issues, high
complexity as well as the penalty on latency (cf. Sect. 2). In contrast, we aim
for a lightweight solution that is compatible with existing infrastructure and
can be set up by a single party. Our approach is in line with a recent avenue
of research, studying privacy solutions that sacrifice the objective of providing
anonymity from strong adversaries in favor of low overhead and latencies [10,11].

The contribution of this paper is to propose EncDNS, a novel approach
to provide a low-latency, privacy-preserving DNS resolution service. We describe
the EncDNS architecture, the corresponding protocol as well as the message
format. We have implemented a prototype of EncDNS and demonstrate via
empirical evaluation that EncDNS offers low-latency name resolution. Initial
tests also indicate that EncDNS is compatible with the majority of the name
server implementations currently deployed on the Internet.

The paper is structured as follows. In Sect. 2 we review the Domain Name Sys-
tem, related work and outline the general requirements of a privacy-preserving
name resolution service. After that we describe the design of EncDNS, its ar-
chitecture, the name resolution process and the message format in Sect. 3. In
Sect. 4 we carry out a security analysis of the proposal before we provide results
from a performance evaluation in Sect. 5. Further, we assess the compatibil-
ity of EncDNS with the existing DNS infrastructure in Sect. 6. Limitations are
discussed in Sect. 7 before we conclude the paper in Sect. 8.

2 Fundamentals, Related Work and Requirements

2.1 Domain Name System

The Domain Name System (RFCs 1034 and 1035 [12,13]) is used by clients to re-
solve human-readable domain names into IP addresses. Applications on a client
computer use a stub resolver to send DNS queries to a recursive name server,

EncDNS: A Lightweight Privacy-Preserving Name Resolution Service 39

Alice

Bob

Clients

Conventional
Resolver (CR)

DNS Query

Root NS

google.com NS

.com NS

DNS
Infrastructure

Carol DNS Query

Fig. 1. Architecture of DNS

which is either operated by a user’s ISP or by a third party. For reasons of clar-
ity we will refer to the already existing recursive name servers as “Conventional
Resolvers” (CRs) in this paper (cf. Fig. 1). The conventional resolver looks up
incoming queries in its cache and, in case of a cache miss, retrieves the desired
DNS resource record on behalf of the stub resolver from the appropriate author-
itative name servers (Root NS, .com NS and google.com NS in Fig. 1). Once
it has obtained the desired resource record, the conventional resolver will send
a DNS reply to the stub resolver on the client. DNS messages are delivered via
UDP, i. e., each DNS transaction consists of a single query and reply datagram.

The authoritative name servers collectively make up the distributed DNS
infrastructure (cf. Fig. 1). An authoritative name server is responsible for a
dedicated part of the DNS namespace, which is called a zone. The zones form a
hierarchy with the so-called root zone at the top and the zones corresponding to
so-called top-level domains (e. g., “com”, “net”, and “org”) at the second level.
Authoritative name servers can delegate the responsibility for a subtree in the
namespace to other servers.

2.2 Related Work

In the following we will review existing proposals to provide privacy-preserving
name resolution. Previous work has followed two different approaches: query
obfuscation and sender anonymity.

The concept of “range queries” hides a query within a set of dummy queries.
Zhao et al. [14] propose a straightforward solution: n − 1 randomly generated
dummy queries qi are submitted together with the desired query qdesired to a
single conventional resolver. Depending on the choice of the security parameter
n, this scheme may significantly increase the load of the resolver. Zhao et al. also
present a more efficient scheme [15], which is inspired by private information
retrieval [16]. The principal idea consists in sending two sets of queries Q1 and
Q2 to two different servers with Q1 = q1, q2, . . . , qn and Q2 = Q1 ∪ qdesired. Each
of the two servers j collects all IP addresses, combines them using the XOR
operation and sends the result as a reply rj to the client. The client can then
obtain the desired IP address: r = r1 ⊕ r2. However, this scheme requires two
special resolvers, which must not collaborate. Moreover, a passive observer can
trivially determine qdesired, because the ranges are not encrypted.

40 D. Herrmann et al.

Castillo-Perez et al. [17,18] present a variation of the single-server scheme.
They propose clients should construct a single range consisting of the desired
query as well as (m·n)−1 dummy queries, then split the range into m shares and
send each share to a different DNS resolver in parallel. In contrast to the two-
server approach this scheme works with conventional resolvers. Moreover, query
privacy is preserved even if all resolvers collude. However, the general limitations
of range query schemes apply: the dummy queries increase the load on the name
servers and the client has to maintain a database of plausible dummy domains.

Lu and Tsudik propose PPDNS [19], a privacy-preserving DNS system, which
is built on top of CoDoNS [20], a next-generation DNS infrastructure based on
distributed hash tables (DHT) and peer-to-peer technologies. In PPDNS clients
issue a range query by retrieving all records whose hash value matches a hash pre-
fix, which is obtained by truncating the hash value of the desired domain. While
PPDNS is a promising approach, we do not expect that it will be widely adopted
in the near future due to the need for a completely different DNS infrastructure
and its high computational complexity, which requires special hardware.

More relevant for our work are proposals that aim for sender anonymity.
General-purpose anonymizers like Tor could be used to hide DNS queries, but
they introduce significant delays. Response times are reported to be 45 times
higher, if queries are resolved via Tor, with delays reaching up to 15 s [21].

In an earlier work we suggested to implement a special purpose mix cascade
that provides unlinkability between queried domain names and the identity of
the sender [22]. Although [22] is specifically tailored for DNS messages, relay-
ing messages over multiple mixes has a significant impact on performance. The
median response time was 171 ms when three mixes were used; name resolution
via mixes takes more than twice as long as without mixes. In order to reduce
the effect of high latencies we proposed to push the resource records of popular
domain names to clients. This allows clients to resolve queries for popular names
with zero latency. Keeping the records of the 10,000 most popular domain names
up-to-date on the client requires a bandwidth of 1.5 MB/h. A fundamental limi-
tation of [22], which may hinder deployment, is the fact that query privacy relies
on a number of additional servers that have to be run by non-colluding providers.

2.3 Requirements

In the following we briefly outline the properties a privacy-preserving name res-
olution service should exhibit. First of all, such a service has to ensure that the
conventional resolver cannot observe the domains contained in the queries of a
user. More generally, no single entity in the final design should be able to link
the identity of the sender with the contents of the queries or replies.

Secondly, the design of the service must not introduce significant delays into
the resolution process. Currently, DNS queries are resolved within 10–100ms
[23]. A privacy-preserving resolution service will have to achieve a comparable
performance in order to be accepted by users.

Thirdly, the name resolution service has to be compatible with the existing
DNS infrastructure. Fundamental changes to the DNS are deployed only very

EncDNS: A Lightweight Privacy-Preserving Name Resolution Service 41

Alice

Bob

Clients

Conventional
Resolver (CR)

Root NS

google.com NS

.com NS

DNS
Infrastructure

Carol

EncDNS
Server (Srv)

Anonymized encrypted EncDNS Query

Encrypted EncDNS Query

Anonymized decrypted EncDNS Query Anonymized DNS Query

Fig. 2. Architecture of EncDNS

slowly, as exemplified by DNSSEC, which has been standardized more than ten
years ago, but is still not widely available [24]. If the privacy-preserving name
resolution service required changes to the DNS, it would not see widespread
adoption in the near future. Moreover, the design should ensure that barriers for
providers that want to offer the service as well as for users who want to use it are
low. As a consequence, the service should offer a standards-compliant interface
that can be accessed transparently by existing applications.

Fourth, as name resolution is a commodity service on the Internet, relaying
and processing queries has to be efficient and scalable. Therefore, computational
complexity on servers should be low, the protocols should be stateless and mes-
sage sizes should be small.

None of the previous proposals meets all of these requirements. In the following
we will outline the design of EncDNS, which aims to fulfill these requirements.

3 The EncDNS Design

We propose EncDNS (short for Encapsulated DNS) as a novel lightweight ap-
proach to enable anonymous usage of the DNS. The main idea of the EncDNS
design is depicted in Fig. 2. Instead of using a conventional resolver (CR) for
name resolution directly, the CR is utilized as a simple proxy that forwards DNS
queries in encrypted form to an additional node, the EncDNS server. The en-
cryption of queries is performed by clients to prevent the CR from learning the
desired domain names.

Encrypted queries are standards-compliant DNS messages for a specially
crafted domain name that consists of two parts: prefix and suffix. The prefix
of this domain name contains the original query of the client, which is encrypted
and integrity-protected. The suffix of the domain name (EncDNS.com in Fig. 2)
is the domain name for which the EncDNS server is authoritative, i. e., it contains

42 D. Herrmann et al.

LL

CLIENT NONCE

CLIENT PUBLIC KEY

CRYPTOBOXLABEL LENGTH

IP UDP DNS

DNS HEADER

QNAME QTYPE, TXT CLASSQUESTION

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SL CLIENT NONCE

CRYPTOBOXSTRING LENGTH

IP UDP DNS

DNS HEADER

QNAME QTYPE, TXT CLASSQUESTION

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ANSWER SECTION, TXT

>

SERVER NONCE

EncDNS Query EncDNS Reply

MS

MAGIC STRING

Fig. 3. The EncDNS message format

the routing information for the CR. Replies from the EncDNS server are deliv-
ered within standards-compliant DNS messages that contain a TXT resource
record with the original DNS reply in encrypted and integrity-protected form.

The EncDNS server takes over the tasks carried out by CRs in conventional
DNS, i. e., the EncDNS server performs the actual name resolution. While it is
able to decrypt queries and thus learns the desired domain names, the EncDNS
server cannot learn the client’s IP address, since the queries are coming from the
IP address of the CR.

In essence, the EncDNS design avoids a single point of trust (i. e., CRs in
conventional DNS) by establishing a two-hop sender anonymous tunnel. How-
ever, only the second hop is introduced by EncDNS itself; existing conventional
DNS resolvers are utilized as first hops. Thus, in EncDNS we have to address
two challenges: Firstly, we have to design a message format that is compati-
ble with DNS, i. e., it must be encapsulated within standard DNS messages.
Secondly, EncDNS must not introduce significant overhead in terms of
message sizes, reply times, and computational complexity. In the remainder of
this section, we will describe how these challenges are addressed in EncDNS.

3.1 Encapsulation

Encapsulation of EncDNS messages in standard DNS messages is required for
compatibility with CRs, which are not aware of the EncDNS protocol, but are
supposed to forward EncDNS messages.

EncDNS encapsulates encrypted queries within the question name field
of a standard DNS query in binary form. The question name field is the only
suitable part of a DNS query for transmitting data to the EncDNS server. Binary
query names comply with the DNS protocol specification: While [12, pp. 7–8]
notes that “domain name comparisons [...] are done in a case-insensitive manner,
assuming an ASCII character set, and a high order zero bit”, it also states
that implementations “should preserve [the] case” of a received domain name,
because “full binary domain names for new services” may someday be needed.
More concretely, RFC 2181 specifies “any binary string whatever can be used

EncDNS: A Lightweight Privacy-Preserving Name Resolution Service 43

as the label of any resource record” [25, p. 13]. A limitation of using the query
name field is its maximum length of 255 octets [13, p. 10]. This restriction has
implications for the choice of the cryptographic primitives (cf. Sect. 3.2).

Encrypted replies are encapsulated within the data section of a TXT re-
source record. Although TXT records are designed to hold so-called “character-
strings”, their contents are not limited to the ASCII set of characters. According
to RFC 1035 character-strings are treated as binary information [13, p. 13]. While
the query name can only carry a limited amount of information, there are no
specific length restrictions for TXT records, apart from the general constraints
of DNS or EDNS(0) messages [26].

Although our encapsulation is standards-compliant, we cannot assume that all
implementations of CRs will be able to forward EncDNS messages. We evaluate
its compatibility with common implementations in Sect. 6.

3.2 Cryptography

As shown in the previous section EncDNS messages, especially queries, are sub-
ject to space restrictions due to encapsulation in standard DNS messages. Thus,
we have to design a message format that introduces low overhead in terms of
message sizes, while still providing confidentiality and integrity of messages.
Moreover, computational overhead for message processing should be kept to a
minimum, so that a single server can handle a sufficiently large number of clients.

These requirements are addressed by using a message format inspired by
DNSCurve [27]. DNSCurve employs a hybrid cryptosystem based on elliptic
curve cryptography (Curve25519), the Salsa20 stream cipher and the Poly1305
message authentication code [28,29,30]. The encrypted output of these three
cryptographic primitives is referred to as the cryptobox.

In the following we outline the construction of queries and replies in the
EncDNS protocol. A detailed overview of the cryptographic operations involved
in obtaining the cryptobox is given in [31,32].

Each EncDNS client and EncDNS server has a Curve25519 key pair. Whenever
an EncDNS client is about to send an encrypted query, it uses its private key
a and the public key of the EncDNS server B (which has been obtained out-
of-band) in order to calculate a message-independent shared secret key kaB .
The secret key is used in conjunction with a client nonce in order to create
the cryptobox from the original DNS query. The format of EncDNS queries is
depicted in Fig. 3. We focus on the part that is encapsulated in the question
name of a DNS query. An EncDNS query starts with a magic string (a constant
protocol identifier), the (current) public key of the client and the client nonce.
The next block is the cryptobox containing the original query. Finally, the client
appends the domain name of the EncDNS server, in order to allow the CR to
forward the message to its destination. Note that the EncDNS client includes
its public key in every query, i. e., the EncDNS server can process messages in a
stateless fashion, which is one of the central properties of DNS. This is affordable
because Curve25519 public keys consume only 32 octets.

44 D. Herrmann et al.

When the EncDNS server receives an encrypted query, it decrypts the cryp-
tobox. To this end, the server derives the secret key kAb from its private key b
and the public key of the client A, which is equivalent to the secret key obtained
by the client, i. e., k = kaB = kAb. Using k and the client nonce the EncDNS
server decrypts the cryptobox, obtains the plaintext DNS query of the client,
and resolves the desired domain name.

Once the EncDNS server has obtained the resource record from the author-
itative servers, it will construct an encrypted reply as follows: The EncDNS
server chooses a server nonce, which is used in conjunction with the client nonce
and the shared secret key k to create a cryptobox from the plaintext DNS reply.
The format of EncDNS replies is depicted in Fig. 3. The reply is encapsulated in
a TXT record and contains the client nonce, the server nonce and the cryptobox.

When the EncDNS client receives an EncDNS reply, it determines the cor-
responding query based on the value of the client nonce field, which serves as
transaction identifier. If there is no unanswered query, the reply will be dropped.
In order to decrypt the contents of the cryptobox the client uses the shared secret
key k, the client nonce and the server nonce.

Key Pair Re-use and Secret Key Caching. An EncDNS client can re-use its key
pair and the derived shared secret key k for multiple queries (see Sect. 4 for
security implications of key re-use). Thus, the EncDNS server will obtain the
same shared secret key every time it receives a query from this specific client.
A straightforward optimization consists in caching k in the EncDNS client as
well as in the EncDNS server. This spares client and server from repeatedly
performing the same asymmetric cryptographic operations, reducing the overall
computational effort. The practice of caching k effectively creates an anonymous
tunnel between EncDNS client and server.

3.3 Open Source Prototype and Test Installation

We have implemented an EncDNS client as well as an EncDNS server in the
gMix Framework [33] with the Java programming language. For cryptographic
operations the implementation uses a Java Native Interface (JNI) binding to
“libsodium”, which is a platform independent port of the NaCL library, providing
fast implementations of the Curve25519, Salsa20, and Poly1305 algorithms.1

We have released the EncDNS server and client implementation as open
source. Source code as well as pre-compiled binaries for Linux and Windows sys-
tems are available at https://svs.informatik.uni-hamburg.de/gmix/. Moreover,
for further field tests we have set up a publicly available open resolver, which
runs an EncDNS server. We have made this server authoritative for the domain
name enc1.us.to. It can be accessed by EncDNS clients to test compatibility with
various CRs on the Internet. Setup instructions and the public key of enc1.us.to
can be obtained from the mentioned website. We encourage readers to try out
the EncDNS client and server and report any issues observed.

1 Homepages: https://github.com/jedisct1/libsodium and
http://nacl.cr.yp.to

https://svs.informatik.uni-hamburg.de/gmix/
https://github.com/jedisct1/libsodium
http://nacl.cr.yp.to

EncDNS: A Lightweight Privacy-Preserving Name Resolution Service 45

4 Security Analysis

In the following we will analyze the security properties of EncDNS in terms of
query privacy, query integrity and availability.

4.1 Query Privacy and Attacker Model

Query privacy is protected if an adversary does not learn the IP address and the
desired domain name for a given query. EncDNS provides query privacy against
the CR as well as against the EncDNS server. It also provides query privacy
against observers eavesdropping either on the link between the EncDNS client
and the CR or on the link between the CR and the EncDNS server.

EncDNS does not offer query privacy if the provider of the CR colludes with
the provider of the EncDNS server. If these two servers share their knowledge
they can correlate the individual queries along the route, thus linking sender IP
addresses with the desired domain names. We point out that other low-latency
anonymization services, like Tor and AN.ON are subject to this limitation as
well: Entry and exit nodes can correlate incoming and outgoing messages by
timing and tagging attacks [34,35].

After a client has obtained an address record via EncDNS, it will usually
establish a TCP connection to the target host, exchanging packets that contain
the source IP address of the user as well as the destination IP address of the
target host. A quite obvious limitation of EncDNS is that the desired domain
names cannot be disguised from an adversary that operates the target host or
is able to observe the network link between the user and the target host, i. e., a
user cannot disguise the websites he visits from the operator of the web servers.

Furthermore, query privacy is not protected, if the CR is also authoritative
for a specific DNS zone. If the user issues a query for a domain name in that
zone, the provider of the CR will be able to link the plaintext DNS query of
the EncDNS server to the corresponding encrypted query of the EncDNS client
based on the timing of these two queries. In other words: if a user relays EncDNS
queries using the CR of his own organization, he should not expect to be able
to resolve domain names of his own organization privately using EncDNS.

Another privacy issue stems from the fact that encrypted messages can be
linked as long as the EncDNS client uses the same key pair. Therefore, the
EncDNS server can track the activities of a (anonymous) user, even if the user
is issuing queries using different IPs and different CRs. To achieve query unlink-
ability EncDNS clients can be configured to use ephemeral keypairs, i. e., at
runtime they create new key pairs in regular intervals. For maximum protection
clients can be configured to use each key pair for a single query only. However,
query unlinkability comes at a cost: it conflicts with key caching (cf. Sect. 3.2).

4.2 Message Integrity

The EncDNS protocol provides message integrity protection between the
EncDNS client and the EncDNS server, i. e., manipulation of messages by CRs

46 D. Herrmann et al.

can be detected. EncDNS does not offer end-to-end integrity, i. e., a malicious
EncDNS server could forge the IP addresses in its replies (DNS spoofing). This is
not a specific limitation of EncDNS; users of existing third-party DNS resolvers
have to trust the operators as well.

However, while “professional” operators may refrain from tampering with re-
sponses facing loss of reputation, the risk of poisonous replies may be higher for
voluntarily provided EncDNS servers (cf. the issues with malicious exit nodes
in Tor [36,37]). Once DNSSEC is deployed on a large scale, end-to-end integrity
protection will be available. A temporary solution would consist in extending
the implementation of the EncDNS client, so that it issues queries to multiple
EncDNS servers in parallel in order to detect forged replies. This approach re-
sembles CoDNS [38] and is also being investigated to detect faked web server
certificates used in man-in-the-middle attacks [39]. However, asking multiple
servers introduces new challenges: Content delivery networks reply with various
IP addresses, the choice of which depends on the location of the EncDNS server.

4.3 Availability

Finally, we analyze availability aspects. On the one hand there is the risk of
a denial of service attack against an EncDNS server. On the other hand, an
EncDNS server could be used to leverage an amplification attack.

We start out by considering denial-of-service attacks against EncDNS servers.
In contrast to DNSSEC, which uses offline signing of messages, EncDNS uses
online encryption, which means that an adversary may be able to induce a
significant load on the EncDNS server by sending EncDNS messages to it. In
the following we analyze the effectiveness of potential mitigation techniques.

First of all, EncDNS messages contain a magic string, which allows the
EncDNS server to identify EncDNS messages immediately upon receipt. Mes-
sages without the magic string, e. g., standard DNS queries, which are seen on
EncDNS servers due to bots that probe the Internet for open resolvers, are
dropped immediately. However, the magic string cannot protect against denial-
of-service attacks by dedicated adversaries, who create a valid EncDNS query
once and repeatedly send it to the EncDNS server. Identically replayed messages
could be detected by the EncDNS server due to the fact that they contain iden-
tical client nonces. However, the adversary could easily vary the client nonce (as
well as any other part of the query).

Denial-of-service attacks are a general problem of proxy services that do not
require authentication. In future work we plan to adapt the EncDNS protocol
so that EncDNS servers can demand that clients include a proof-of-work (client
puzzle) in their queries, which can be verified efficiently by the EncDNS server.

In an amplification attack the adversary exploits the fact that he can induce
a DNS resolver to send out a large reply with a comparatively small query
[40]. This traffic amplification effect can be used to carry out a reflected denial-
of-service attack against a victim. To this end the adversary will send a large
number of small DNS queries containing the IP address of the victim in the
source IP address field to (multiple) DNS resolvers, asking for a large resource

EncDNS: A Lightweight Privacy-Preserving Name Resolution Service 47

Table 1. Scalability evaluation of EncDNS server (Experiment 1, key caching enabled)

EncDNS Baseline

Queries/sec Failures [%] CPU load [%] Failures [%] CPU load [%]

2000 0.00 23.6 0.00 13.9
4000 0.00 47.9 0.00 22.3
6000 0.00 63.9 0.00 30.9
8000 11.82 75.4 0.00 41.6

record, which will effectively result in overloading the victim. EncDNS servers
are of little use for amplification attacks, because the amplification factor is
smaller than in conventional DNS due to larger size of encrypted queries.

5 Performance Evaluation

In this section we evaluate the performance of EncDNS. We consider two distinct
scenarios. The first scenario (Setup 1: Lab Environment) is used to assess the
scalability of the EncDNS components, i. e., we want to determine the number
of concurrent users that can be serviced by a single EncDNS server. In the
second scenario (Setup 2: Emulated Environment) we want to determine the
effective user-perceived latency for name resolution via EncDNS. To this end,
we extend Setup 1 by using the network emulator netem [41,42] that simulates
real-world latencies between the individual components. In both scenarios, the
evaluation environment consists of a local network (1 Gbps) with off-the-shelf
desktop machines (Intel Core i5-3100 quad cores, 8 GB RAM, CentOS 6).

5.1 Experiment 1: Scalability Assessment

In order to assess the scalability of EncDNS, we start out with experiments in the
lab environment (Setup 1). To this end, we deploy load generators on multiple
machines. Each load generator sends encrypted EncDNS queries towards a sin-
gle EncDNS server (bottleneck). The server decrypts the queries and constructs
encrypted replies that are sent back to the load generator. The load generator
tracks its queries and the corresponding replies. When the EncDNS server be-
comes overloaded, it will not be able to receive all incoming queries any more,
i. e., the load generators will not observe a reply for each query (resolution failure
due to overload). In order to determine the maximum achievable throughput,
we increased the query rate incrementally from 2000 to 8000 queries/sec.

The results of this set of experiments are shown in Table 1 (EncDNS columns).
For up to 6000 queries/sec, all queries are processed. The CPU loads, which are
denoted in the table, increase in a linear fashion with the query rate, because
due to the EncDNS design every query can be processed independently from all
other queries. At 8000 queries/sec, 11.82 % of queries remain unanswered due to

48 D. Herrmann et al.

Stub
Resolver

Client Computer

A

EncDNS
Proxy CR

EncDNS
Server

EncDNS.com

C D E

CR'

DNS
Infrastructure

B F G IH

Stub
Resolver CR

EncDNS:

DNS:

Fig. 4. Components and connections involved in (Enc)DNS name resolution

overload of the EncDNS server. At this point the average CPU load (averaged
over all four cores) is 75.4 %. Further analysis has shown that CPU loads cannot
approach 100 % due to context switches between the EncDNS server and resolver
components running on the machine under test. The baseline measurements
shown in Table 1 (same experiment without cryptographic operations) indicate
that the cryptographic operations account for roughly 50 % of the load.

5.2 Experiment 2: User-Perceived Latency

In the following we extend the setup of Experiment 1 to resemble a real-world
deployment of EncDNS. The goal is to assess the impact of EncDNS on query la-
tency from a user’s perspective. Figure 4 shows the components and connections
involved in the resolution process. The effective latency is the sum of individual
latencies introduced by network connections (labeled with C, E and H in Fig. 4)
and the components A, B, D, F, G and I. We focus on the delay introduced be-
tween A and G, because this part of the system replaces the conventional name
resolution process. We exclude the latency introduced by H and I, because this
part of the resolution process is not affected by the use of EncDNS and lookup
latencies vary heavily depending on the performance of the authoritative name
servers [43]. To this end CR’ (label G in Fig. 4) is configured to be authoritative
for all queries issued during the experiment.

We consider three configurations: (1) a baseline measurement, which routes
messages through EncDNS client, CR, and EncDNS server without any encryp-
tion, (2) EncDNS with key caching disabled, and (3) EncDNS with key caching
enabled. During all experiments the client uses a single key pair for all queries.

By comparing the results for configurations (1) and (2) we can observe the
impact of the asymmetric as well as the symmetric cryptographic operations.
The performance of configuration (2) is to be expected when clients use a new
ephemeral key pair for every single query (worst case; assuming that key pairs
are pre-generated by the client). Comparing configurations (2) and (3) allows us
to specifically observe the time needed for the asymmetric operations, i. e., we
can evaluate the utility of the key caching mechanism (best case).

In order to observe the computational delay without any bias we start out by
excluding network delays (connections C and E) from the measurements. Later
on we employ a network emulator to incrementally increase network delays,

EncDNS: A Lightweight Privacy-Preserving Name Resolution Service 49

Table 2. Response times in Experiment 2 for various emulated delays between CR
and EncDNS Server

Measurement Delay (ms) P25 P50 P75

(1.1) Baseline C + E = 0 1.36 1.39 1.41
(1.2) EncDNS 0 1.77 1.80 1.84
(1.3) EncDNS + cache 0 1.61 1.65 1.68

(2.1) Baseline 30+10 41.97 42.00 42.02
(2.2) EncDNS 30+10 42.50 42.53 42.56
(2.3) EncDNS + cache 30+10 42.13 42.17 42.19

(3.1) Baseline 30+50 81.98 82.00 82.03
(3.2) EncDNS 30+50 82.48 82.51 82.54
(3.3) EncDNS + cache 30+50 82.16 82.19 82.22

(4.1) Baseline 30+100 132.01 132.04 132.06
(4.2) EncDNS 30+100 132.45 132.49 132.52
(4.3) EncDNS + cache 30+100 132.13 132.16 132.19

which allows us to study the performance under more realistic conditions. We
measure the response time, which equals the duration of a DNS lookup from
a user’s perspective: To this end we issue queries via a single EncDNS client (A)
at a fixed rate (30 ms interval between queries). The response time consists of
the time span between issuing a query and receiving the corresponding reply. To
obtain significant results we issued 10,000 queries in each experiment. Based on
the observed response times we calculated the 25th (P25), 50th (P50, the median)
and 75th percentile (P75). The results are shown in Table 2.

In the baseline configuration (1.1), we observe a median latency of 1.39 ms,
which is caused by forwarding the query and reply between A and G. Enabling
cryptographic operations (1.2) increases median latency by 29 % to 1.80 ms.
When the key caching mechanism (1.3) is enabled, median latency decreases by
8 % to 1.65 ms, i. e., the median latency is only 19 % higher than in the baseline
measurement. The values for P25 and P75 are very close to the median value.

The remaining experiments take network latencies into account. For connec-
tion C we set the round-trip time to a fixed value of 30 ms (latency of 15 ms in
each direction), because we assume that the CR is operated by the ISP of the
user or the user has selected a CR, which is geographically close. As the effective
latency between the CR and the EncDNS server depends on the distance between
them in practice, we simulate various typical conditions found on the Internet
by varying round-trip times between 10 and 100 ms (cf. Table 2). The results
indicate that the overhead introduced by EncDNS is constant and independent
of the network delay. In practical deployments we expect that network delays
and lookup latency (labels H and I in Fig. 4) will dominate the user-perceived
latency. As anonymization services that rely on distributing trust need to for-
ward traffic over at least two hops, some additional network delay is inevitable.
The delay caused by message encryption is much smaller and is expected to be
negligible in practice.

50 D. Herrmann et al.

Table 3. Results of compatibility tests for popular CR implementations

Software Version Binary labels Binary TXT records

BIND 9.7.3 � �
MaraDNS 1.4.03 � �
Unbound 1.4.6 � �
PowerDNS 3.2 � �
dnscache 1.05 � �
Windows Server 2012 R2 × �

6 Compatibility Assessment

As explained in Sect. 3.1, encrypted EncDNS queries are encapsulated within
the query name field of standard DNS queries in binary form using octets in the
range from 0x00 to 0xff. Some CRs and intermediate DNS forwarders may not
expect binary domain names. They might mangle the query name or discard
the encrypted queries altogether. In order to assess the practicability of our
encapsulation scheme, we have relayed EncDNS queries over commonly used
recursive name server implementations in their default configuration.

The results of our compatibility tests are depicted in Table 3. The table indi-
cates whether the respective implementation can handle binary labels (needed
for transportation of encrypted queries) and binary data in TXT records (needed
for transportation of encrypted replies). According to the results almost all pop-
ular implementations forward EncDNS queries and replies without interference.
Only the name server of Windows Server 2012 R2 fails to relay EncDNS traffic:
While it forwards our encrypted queries, it fails to link the encrypted replies to
them; it reports a SERVFAIL error to the EncDNS client instead.

While this result look promising, we point out that all CRs that use the “0x20
encoding” security mechanism [44] will interfere with the encrypted query names.
When a CR is configured to employ the 0x20 encoding scheme, it performs a
random ad-hoc modification of the capitalization of each letter in the query name
before forwarding the query to the authoritative name server (i. e., the EncDNS
server). This measure is supposed to increase the entropy within DNS queries to
foil cache poisoning attacks. In a 2013 survey only 0.3 % of the evaluated DNS
resolvers used 0x20 encoding [45]. If its use becomes more widespread in the
future, the EncDNS message format will have to be adapted (cf. Sect. 7).

7 Discussion and Future Work

In the following we will discuss limitations and open questions regarding the
security analysis (Sect. 4), the performance evaluation (Sect. 5) and the compat-
ibility assessment (Sect. 6). Additionally, we will point out possible deployment
issues and how they can be overcome in future work.

EncDNS: A Lightweight Privacy-Preserving Name Resolution Service 51

We outlined the privacy properties of EncDNS in the security analysis.
EncDNS prevents the CR from learning the queried domains. However, the cur-
rent implementation does not incorporate message padding. This may allow the
CR to infer the queried domains from the size of the encrypted payload. As
the majority of the domain names is short, we conjecture that inference attacks
have only limited effectiveness. In future work we will study the utility of various
padding schemes and their impact on performance. Our preliminary tests indi-
cate that message sizes have only a negligible effect on user-perceived latencies.

The results from the performance evaluation indicate that EncDNS is
sufficiently scalable. Given the result of [22], who found that a user issues
0.05 DNS queries/second on average, the results of our scalability assessment
(Experiment 1) suggest that a single EncDNS server, which can handle 6000
queries/second according to our scalability assessment, would be able to serve
up to 120,000 concurrent users. However, this extrapolation is inadmissible, be-
cause DNS queries are neither evenly distributed among users, nor are they sent
at a constant rate. DNS traffic typically contains bursts of queries, which oc-
cur when a browser retrieves a website that contains content from multiple web
servers. In future work, we plan to assess the scalability of the EncDNS server
with trace-driven simulations in order to provide a more realistic account of
its scalability. The initial results presented in this paper indicate that a single
EncDNS server will be able to create a sufficiently large anonymity set.

In Experiment 2 we measured the user-perceived latency and found that the
overhead of the EncDNS components is almost constant and independent of
network latency. This is mainly due to our design decision to relay EncDNS
messages statelessly with UDP. Therefore, EncDNS is not subject to issues found
in TCP-based overlay networks such as head-of-line blocking [46,47,48] or cross-
circuit interference [49,48]. These effects result from the combination of TCP
congestion control with multiplexing and have been shown to have a significant
impact on the performance of systems like Tor.

According to the results of the compatibility assessment EncDNS queries
and replies are forwarded by common name server implementations. If it turns
out that implementations have difficulty with the binary message format, we
could switch to a more conservative encoding such as Base32 [50]. Additionally,
the message format could be extended to support message fragmentation in order
to handle large queries and replies.

Future work will also have to consider some deployment issues: Firstly, the
EncDNS design does not contain a directory service, i. e., techniques for server
discovery are out of the scope of our proposal. Initially, a central bulletin board
on a website may be sufficient for this purpose. Closely related to server discovery
is the matter of key distribution: EncDNS clients need an authenticated copy
of the public key of their EncDNS server. In the long run, DANE [51] could be
used for authenticated key storage and distribution.

Finally, we remark on a practical privacy issue: If users configure their oper-
ating system to use the EncDNS client as DNS resolver, this will relay all DNS
queries to the EncDNS server. This is undesirable in scenarios where users are

52 D. Herrmann et al.

in a local network with a split-horizon or hybrid DNS server that functions as
recursive name server, but is also authoritative for some internal domain names
(e. g., database-server.corp.local). Queries for internal domain names will be for-
warded to the EncDNS server, which will be unable to resolve them, because
they are not part of the public DNS namespace. As a result users may be unable
to reach internal services. Moreover, private information (internal hostnames, for
instance) may be disclosed to the EncDNS server. A straightforward counter-
measure consists in a blacklist within the EncDNS client that explicitly denotes
the domain names that should not be forwarded to the EncDNS server. Note
that other drop-in anonymization services that use a proxy on the user’s machine
are subject to this privacy issue as well.

8 Conclusion

In this paper we have presented EncDNS, a lightweight open source name res-
olution service that leverages existing DNS resolvers to protect the privacy of
its users. We have described the EncDNS architecture, the protocol and the
message format. DNS queries are encrypted by the EncDNS client software,
which runs on the machine of a user, and forwarded to the EncDNS server via
a conventional DNS resolver. The EncDNS server decrypts incoming queries,
obtains the desired resource records and responds with an encrypted reply. As
EncDNS relies on conventional resolvers, encrypted messages are encapsulated
in standards-compliant DNS queries and replies. According to our experiments
EncDNS provides low-latency DNS resolution and is compatible with almost
all popular DNS resolvers. We encourage researchers and users to evaluate the
EncDNS prototype and to report on any issues found in practice.

References

1. Lemley, M., Levine, D.S., Post, D.G.: Don’t Break the Internet. 64 Stan. L. Rev.
Online 34 (2011)

2. Kleinschmidt, B.: An International Comparison of ISP’s Liabilities for Unlawful
Third Party Content. I. J. Law and Information Technology 18(4), 332–355 (2010)

3. Nabi, Z.: The Anatomy of Web Censorship in Pakistan. CoRR abs/1307.1144
(2013)

4. Verkamp, J.P., Gupta, M.: Inferring Mechanics of Web Censorship Around the
World. In: 2nd USENIX Workshop on Free and Open Communications on the
Internet. USENIX Association (2012)

5. Zittrain, J., Edelman, B.: Internet Filtering in China. IEEE Internet Comput-
ing 7(2), 70–77 (2003)

6. Goodson, S.: If You’re Not Paying For It, You Become The Product. Forbes.com
(2012), http://onforb.es/wVrU4G

7. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: DNS Security Introduc-
tion and Requirements. RFC 4033 (2005)

8. Conrad, D.: Towards Improving DNS Security, Stability, and Resiliency (2012),
http://www.internetsociety.org/

towards-improving-dns-security-stability-and-resiliency-0

http://onforb.es/wVrU4G
http://www.internetsociety.org/towards-improving-dns-security-stability-and-resiliency-0
http://www.internetsociety.org/towards-improving-dns-security-stability-and-resiliency-0

EncDNS: A Lightweight Privacy-Preserving Name Resolution Service 53

9. Poulson, K.: Edward Snowden’s E-Mail Provider Defied FBI Demands to Turn
Over Crypto Keys, Documents Show. Wired,
http://www.wired.com/2013/10/lavabit_unsealed/

10. Hsiao, H.C., Kim, T.H.J., Perrig, A., Yamada, A., Nelson, S.C., Gruteser, M.,
Meng, W.: LAP: Lightweight Anonymity and Privacy. In: IEEE Symposium on
Security and Privacy (S&P 2012), pp. 506–520. IEEE (2012)

11. Jansen, R., Johnson, A., Syverson, P.F.: LIRA: Lightweight Incentivized Routing
for Anonymity. In: 20th Annual Network and Distributed System Security Sym-
posium (NDSS 2013). The Internet Society (2013)

12. Mockapetris, P.: Domain Names: Concepts and Facilities. RFC 1034 (1987)
13. Mockapetris, P.: Domain Names: Implementation and Specification. RFC 1035

(1987)
14. Zhao, F., Hori, Y., Sakurai, K.: Analysis of Privacy Disclosure in DNS Query. In:

International Conference on Multimedia and Ubiquitous Engineering (MUE 2007),
pp. 952–957. IEEE (2007)

15. Zhao, F., Hori, Y., Sakurai, K.: Two–Servers PIR Based DNS Query Scheme with
Privacy–Preserving. In: International Conference on Intelligent Pervasive Comput-
ing (IPC 2007), pp. 299–302. IEEE (2007)

16. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieval.
In: Proceedings of the 36th Annual Symposium on Foundations of Computer Sci-
ence, Milwaukee, Wisconsin, pp. 41–50. IEEE (1995)

17. Castillo-Perez, S., Garcia-Alfaro, J.: Anonymous Resolution of DNS Queries. In:
Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS, vol. 5332, pp. 987–1000.
Springer, Heidelberg (2008)

18. Castillo-Perez, S., Garćıa-Alfaro, J.: Evaluation of Two Privacy–Preserving Pro-
tocols for the DNS. In: 6th International Conference on Information Technology:
New Generations (ITNG 2009), pp. 411–416. IEEE (2009)

19. Lu, Y., Tsudik, G.: Towards Plugging Privacy Leaks in the Domain Name System.
In: IEEE 10th International Conference on Peer-to-Peer Computing (P2P 2010),
pp. 1–10. IEEE (2010)

20. Ramasubramanian, V., Sirer, E.G.: The Design and Implementation of a Next
Generation Name Service for the Internet. In: SIGCOMM 2004 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communi-
cation, pp. 331–342. ACM (2004)

21. Fabian, B., Goertz, F., Kunz, S., Müller, S., Nitzsche, M.: Privately Waiting –
A Usability Analysis of the Tor Anonymity Network. In: Santana, M., Luftman,
J.N., Vinze, A.S. (eds.) 16th Americas Conference on Information Systems (AMCIS
2010), p. 258. Association for Information Systems (2010)

22. Federrath, H., Fuchs, K.P., Herrmann, D., Piosecny, C.: Privacy-Preserving DNS:
Analysis of Broadcast, Range Queries and Mix-Based Protection Methods. In:
Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 665–683. Springer,
Heidelberg (2011)

23. Ager, B., Mühlbauer, W., Smaragdakis, G., Uhlig, S.: Comparing DNS Resolvers
in the Wild. In: Allman, M. (ed.) SIGCOMM Conference on Internet Measurement
2010 (IMC 2010), pp. 15–21. ACM (2010)

24. Wander, M., Weis, T.: Measuring Occurrence of DNSSEC Validation. In: [52], pp.
125–134

25. Elz, R., Bush, R.: Clarifications to the DNS Specification. RFC 2181 (1997)
26. Vixie, P.: Extension Mechanisms for DNS (EDNS0). RFC 2671 (1999)
27. Dempsky, M.: DNSCurve: Link-Level Security for the Domain Name System. In-

ternet Draft draft-dempsky-dnscurve-01, RFC Editor (2010)

http://www.wired.com/2013/10/lavabit_unsealed/

54 D. Herrmann et al.

28. Bernstein, D.J.: The Poly1305-AES Message-Authentication Code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg
(2005)

29. Bernstein, D.J.: Curve25519: New Diffie-Hellman Speed Records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–228.
Springer, Heidelberg (2006)

30. Bernstein, D.J.: The Salsa20 Family of Stream Ciphers. In: Robshaw, M., Billet,
O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Hei-
delberg (2008)

31. Bernstein, D.J., Lange, T., Schwabe, P.: The Security Impact of a New Cryp-
tographic Library. In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS,
vol. 7533, pp. 159–176. Springer, Heidelberg (2012)

32. Bernstein, D.J.: Cryptography in NaCl. Technical report, Department of Computer
Science (MC 152). The University of Illinois, Chicago, IL (March 2009),
http://cr.yp.to/highspeed/naclcrypto-20090310.pdf

33. Fuchs, K.P., Herrmann, D., Federrath, H.: Introducing the gMix Open Source
Framework for Mix Implementations. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 487–504. Springer, Heidelberg (2012)

34. Levine, B.N., Reiter, M.K., Wang, C.-X., Wright, M.: Timing attacks in low-latency
mix systems (extended abstract). In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp.
251–265. Springer, Heidelberg (2004)

35. Pries, R., Yu, W., Fu, X., Zhao, W.: A new replay attack against anonymous
communication networks. In: International Conference on Communications (ICC
2008), pp. 1578–1582. IEEE (2008)

36. McCoy, D., Bauer, K.S., Grunwald, D., Kohno, T., Sicker, D.C.: Shining Light in
Dark Places: Understanding the Tor Network. In: Borisov, N., Goldberg, I. (eds.)
PETS 2008. LNCS, vol. 5134, pp. 63–76. Springer, Heidelberg (2008)

37. Winter, P., Lindskog, S.: Spoiled Onions: Exposing Malicious Tor Exit Relays.
CoRR abs/1401.4917 (2014)

38. Park, K., Pai, V.S., Peterson, L.L., Wang, Z.: CoDNS: Improving DNS Performance
and Reliability via Cooperative Lookups. In: 6th Symposium on Operating System
Design and Implementation, pp. 199–214. USENIX Association (2004)

39. Wendlandt, D., Andersen, D.G., Perrig, A.: Perspectives: Improving SSH-style Host
Authentication with Multi-Path Probing. In: USENIX Annual Technical Confer-
ence, pp. 321–334. USENIX (2008)

40. Kambourakis, G., Moschos, T., Geneiatakis, D., Gritzalis, S.: Detecting DNS Am-
plification Attacks. In: Lopez, J., Hämmerli, B.M. (eds.) CRITIS 2007. LNCS,
vol. 5141, pp. 185–196. Springer, Heidelberg (2008)

41. Linux Foundation: Netem (2009),
http://www.linuxfoundation.org/collaborate/

workgroups/networking/netem

42. Nussbaum, L., Richard, O.: A Comparative Study of Network Link Emulators. In:
Wainer, G.A., Shaffer, C.A., McGraw, R.M., Chinni, M.J. (eds.) Proceedings of
the 2009 Spring Simulation Multiconference. SCS/ACM (2009)

43. Liang, J., Jiang, J., Duan, H.X., Li, K., Wu, J.: Measuring Query Latency of Top
Level DNS Servers. In: [52], pp. 145–154

44. Dagon, D., Antonakakis, M., Vixie, P., Jinmei, T., Lee, W.: Increased DNS Forgery
Resistance Through 0x20-bit Encoding: Security via Leet Queries. In: Ning, P.,
Syverson, P.F., Jha, S. (eds.) Conference on Computer and Communications Se-
curity (CCS 2008), pp. 211–222. ACM (2008)

http://cr.yp.to/highspeed/naclcrypto-20090310.pdf
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

EncDNS: A Lightweight Privacy-Preserving Name Resolution Service 55

45. Schomp, K., Callahan, T., Rabinovich, M., Allman, M.: Assessing DNS Vulnera-
bility to Record Injection. In: Faloutsos, M., Kuzmanovic, A. (eds.) PAM 2014.
LNCS, vol. 8362, pp. 214–223. Springer, Heidelberg (2014)

46. Karol, M., Hluchyj, M., Morgan, S.: Input versus output queueing on a space-
division packet switch. IEEE Trans. on Communications 35(12), 1347–1356 (1987)

47. Nowlan, M.F., Wolinsky, D., Ford, B.: Reducing Latency in Tor Circuits with
Unordered Delivery. In: 3rd USENIXWorkshop on Free and Open Communications
on the Internet. USENIX Association (2013)

48. Reardon, J., Goldberg, I.: Improving Tor using a TCP-over-DTLS Tunnel. In:
USENIX Security Symposium, pp. 119–134. USENIX Association (2009)

49. AlSabah, M., Goldberg, I.: PCTCP: per-circuit TCP-over-IPsec transport for
anonymous communication overlay networks. In: Sadeghi, A.R., Gligor, V.D.,
Yung, M. (eds.) Conference on Computer and Communications Security (CCS
2013), pp. 349–360. ACM (2013)

50. Josefsson, S.: The Base16, Base32, and Base64 Data Encodings. RFC 4648 (2006)
51. Barnes, R.: Use Cases and Requirements for DNS-Based Authentication of Named

Entities (DANE). RFC 6394 (2011)
52. Roughan, M., Chang, R. (eds.): PAM 2013. LNCS, vol. 7799. Springer, Heidelberg

(2013)

Ubic: Bridging the Gap between Digital

Cryptography and the Physical World

Mark Simkin1, Dominique Schröder1, Andreas Bulling2, and Mario Fritz2

1 Saarland University
Saarbrücken, Germany

2 Max Planck Institute for Informatics
Saarbrücken, Germany

Abstract. Advances in computing technology increasingly blur the
boundary between the digital domain and the physical world. Although
the research community has developed a large number of cryptographic
primitives and has demonstrated their usability in all-digital communi-
cation, many of them have not yet made their way into the real world due
to usability aspects. We aim to make another step towards a tighter inte-
gration of digital cryptography into real world interactions. We describe
Ubic, a framework that allows users to bridge the gap between digital
cryptography and the physical world. Ubic relies on head-mounted dis-
plays, like Google Glass, resource-friendly computer vision techniques as
well as mathematically sound cryptographic primitives to provide users
with better security and privacy guarantees. The framework covers key
cryptographic primitives, such as secure identification, document verifi-
cation using a novel secure physical document format, as well as content
hiding. To make a contribution of practical value, we focused on making
Ubic as simple, easily deployable, and user friendly as possible.

Keywords: Usable security, head-mounted displays, ubiquitous cryp-
tography, authentication, content verification, content hiding.

1 Introduction

Over the past years, the research community has developed a large number of
cryptographic primitives and has shown their utility in all-digital communica-
tion. Primitives like signatures, encryption schemes, and authentication proto-
cols have become commonplace nowadays and provide mathematically proven
security and privacy guarantees. In the physical world, however, we largely re-
frain from using these primitives due to usability reasons. Instead, we rely on
their physical counterparts, such as hand-written signatures, which do not pro-
vide the same level of security and privacy. Consider the following examples:

Authentication. In practice, most systems, such as ATMs or entrance doors,
rely on the two-factor authentication paradigm, where a user, who wants to
authenticate himself, needs to provide a possession and a knowledge factor. At

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 56–75, 2014.
c© Springer International Publishing Switzerland 2014

Bridging the Gap between Digital Cryptography and the Physical World 57

an ATM, for instance, the user needs to enter his bank card and a PIN in
order to gain access to his bank account. Practice has shown that this type of
authentication is vulnerable to various attacks [1,2,3], such as skimming, where
the attacker mounts a little camera that films the PIN pad and a fake card reader
on top of the actual card reader that copies the card’s content. Here, the fact
that users authenticate with fixed credentials is exploited to mount large scale
attacks by attacking the ATMs rather than specific users.

Hand-written signatures. Physical documents with hand-written signatures are
the most common form of making an agreement between two or more parties
legally binding. In contrast to digital signatures, hand-written signatures do not
provide any mathematically founded unforgeablility guarantees. Furthermore,
there is no well-defined process of verifying a hand-written signature. This would
require external professional help, which is expensive, time consuming, and there-
fore not practical.

Data privacy. Todays workplace is often not bound to specific offices or build-
ings any more. Mobile computing devices allow employees to work from ho-
tels, trains, airports, and other public places. Even inside office buildings, novel
working practices such as ’hot-desking’ [4] and ’bring your own device’ [5] are
employed more and more to increase the employee’s satisfaction, productivity,
and mobility. However, these new working practices also introduce new privacy
threats. In a mobile working environment, potentially sensitive data might be
leaked to unauthorized individuals, who can see the screen of the device the em-
ployee is working on. A recent survey [6] of IT professionals shows that this form
of information theft, known as shoulder surfing, constantly gains importance.
85% of those surveyed admitted that they have at least once seen sensitive infor-
mation that they were not supposed to see on somebody else’s screen in a public
place. 80% admitted that it might be possible that they have leaked sensitive
information at a public place.

In this work, we present Ubic, a framework and prototype implementation of a
system that allows users to bridge the gap between digital cryptography and the
physical world for a wide range of real world applications. Ubic relies on head-
mounted displays (HMDs), like Google Glass1, resource-friendly computer vision
techniques as well as mathematically sound cryptographic primitives to provide
users with better security and privacy guarantees in all of the scenarios described
above in a user-friendly way. Google Glass consists of a little screen mounted
in front of the user’s eye and a front-facing camera that films the users view.
It supports the user in an unobtrusive fashion by superimposing information on
top of the users view when needed.

1.1 Contributions

To make a contribution of practical importance, in this work we focus on pro-
viding a resource-friendly, easy-to-use system, that can be seamlessly integrated
into the current infrastructures. Ubic offers the following key functionalities:

1
https://www.google.com/glass/

https://www.google.com/glass/

58 M. Simkin et al.

Authentication. We use a HMD in combination with challenge-response proto-
cols to allow users to authenticate themselves in front of a device, such as an
ATM or a locked entrance door. In contrast to current solutions, the PIN is not
fixed but generated randomly each time. Neither does an attacker gain any in-
formation from observing an authentication process, nor does he gain any from
compromising the ATM or the bank, since they can only generate challenges,
but not solve them. Copying the card does not help the attacker, since it does
not contain any secret information, but merely a public identifier.

Content Verification. We enable the generation and verification of physical con-
tracts with mathematically proven unforgeability guarantees. For this purpose,
we propose a new document format, VeriDoc, that allows for robust document
tracking and optical character recognition, and contains a digital signature of its
content. Using the HMD, a user can conveniently and reliably verify the validity
of the document’s content.

Two-Step Verification. Based on the signature functionality described above,
we introduce two-step verification of content. During an online banking session,
for instance, a user might request his current account balance. This balance is
then returned along with a signature thereof. Using the HMD, we can verify the
signature, and therefore verify the returned account balance. In this scenario, an
attacker would need to corrupt the machine that is used for the banking session
and the HMD at the same time in order to successfully convince the user of a
false statement.

Content Hiding. We provide a solution for ensuring privacy in the mobile work-
place setting. Rather than printing documents in plain, we print them in an
encrypted format. Using the HMD, the user is able to decrypt the part of the
encrypted document that he is currently looking at. An unauthorized individual
is not able to read or decrypt the document without the corresponding secret
key. Companies commonly allow employees with certain security clearances to
read certain documents. We use predicate encryption to encrypt documents in
such a way that only employees with the requested security clearances can read
them.

1.2 Smartphones vs. Head-Mounted Displays

It might seem that all of the above scenarios could also be realized with a smart-
phone. This is not the case. In the content hiding scenario, we rely on the fact
that the decrypted information is displayed to the user right in front of his eye.
A smartphone is still vulnerable to shoulder-surfing and would therefore not
provide any additional privacy guarantees. Realizing the authentication scenario
with a smartphone is also problematic because a loss of possession is hard to
detect and therefore an attacker might gain access to all secret keys as soon as
he obtains the phone. Requiring the user to unlock the phone before each au-
thentication process does not solve the problem, since the attacker might simply
observe the secret that is used to unlock the phone.

Bridging the Gap between Digital Cryptography and the Physical World 59

Fig. 1. Overview of the Ubic processing and interaction pipeline for the different
operation modes: identification (a), content verification (b), and content hiding (c).
The user starts each interaction by scanning the header 2D-barcode (indicated in gray).
Ubic then guides the user through each process by providing constant visual feedback.

Ubic overcomes this problem by using the so-called on-head detection feature
of the Google Glass device2. The device is notified whenever it is taken off and
at this point, Ubic removes all keys from the memory and only stores them in an
encrypted format on internal memory. HMDs are considered to be companions
that are worn the whole day and only used when needed. When a user puts
on the device in a safe environment, he has to unlock it once through classical
password entry. Future versions might be equipped with an eye tracker, which
would allow gaze-based password entry [7].

2 The Ubic Framework

The key aim of Ubic is to provide a contribution of practical importance that
bridges the gap between digital cryptography and real world applications. We
put emphasis on making our solutions as simple as possible and only use well re-
searched and established cryptographic primitives in combination with resource
friendly computer vision techniques to allow for easy deployment and seamless
integration into existing infrastructures.

The general processing and interaction pipeline of Ubic is shown in Figure 1.
Each interaction is initialized by the user scanning the header 2D-barcode (in-
dicated in gray). The header code is composed of the framework header and an
application specific header. The former contains the framework version as well
as the mode of operation, e.g. identification, content verification, content hid-
ing; the latter is an application specific header, containing information that is
relevant for the given application.

Assumptions. The general setting we consider is a user who communicates
with a possibly corrupted physical token over an insecure physical channel. In

2
https://support.google.com/glass/answer/3079857

https://support.google.com/glass/answer/3079857

60 M. Simkin et al.

Table 1. Maximum storage capacity for alphanumeric characters of a version 40 QR
code in comparison to the error correction level and the maximum damage it can
sustain

EC level L M Q H

Max. damage (%) 7 15 25 30

Max. characters 4296 3391 2420 1852

this work, we concentrate on the visual channel in connection with HMDs, such
as Google Glass. However, our framework can be adapted and extended easily
to support other physical channels, such as the auditory channel, if needed.
The visual channel is very powerful and key to the vast majority of interactions
that humans perform in the real-world. HMDs are personal companions that,
in contrast to smartphones, sit right in front of the user’s eyes. Google Glass
comprises an egocentric camera that allows us to record the visual scene in
front of the user, as well as a display mounted in front of the user’s right eye.
While the developer version that we used could still allow an observer to infer
information about the content shown on the display by looking at it from the
front, we assume that this is not possible in our attack scenarios. We consider
this to be a design flaw of some of the first prototypes, which can be solved easily.
Since the display only occludes a small corner of the user’s field of view, it could
simply be made opaque. We further assume that HMDs are computationally
as powerful as smartphones. In practice, this can be achieved by establishing a
secure communication channel between the HMD and the user’s smartphone.

An encoder E = (Encode,Decode) is used to transform digital data from
and to a physical representation. We will not mention error-correcting codes ex-
plicitly, since we assume them to be a part of the encoder. In particular, our
framework uses two-dimensional barcodes, called QR codes [8]. These codes are
tailored for machine readability and use Reed-Solomon error correction [9]. De-
pending on the chosen error correction level, the barcode’s capacity differs. Table
1 provides a comparison of their storage capacity for alphanumeric characters
and their robustness.

3 Authentication

Our goal was to design an authentication mechanism that allows a user to au-
thenticate himself in front of a token, such as a locked door or an ATM, without
revealing his secret credentials to any bystanders who observe the whole authen-
tication process. In addition, even a malicious token should not be able to learn
the user’s secret credentials. We focused on providing a solution, which is easy to
deploy into the current infrastructures, i.e. merely a software update is required,
and is as simple and user-friendly as possible.

Bridging the Gap between Digital Cryptography and the Physical World 61

Fig. 2. Visualization of a identification
scheme using an optical input device

framework header

tid uid GPS

encrypted challenge

timestamp

signature

Fig. 3. The identification header
composed of the framework and
application header

3.1 Threat Model

We consider two different types of adversaries for the authentication scenario. An
active adversary is able to actively communicate with the user and impersonate
the token. He has access to all secrets of the token itself. His aim is to learn
a sufficient amount of information about the user’s credentials to impersonate
him at a later point in time. Note that security against active adversaries implies
security against passive adversaries, who are only able to observe the data that
the user passes to the token during the authentication process. Passive adver-
saries represent the most common real world adversaries, who can mount attacks
like shoulder surfing and skimming. A man-in-the-middle adversary is able to
misrepresent himself as the token. He is able to communicate with the user and
a different token and forward possibly altered messages between the two parties.
He does not have the token’s secret keys. His aim is to authenticate in front of
a different token, while communicating with the user.

Insecurity of current approaches. Clearly, the most common widely deployed so-
lutions, such as those used at ATMs, do not provide sufficient protection against
such adversaries. During an authentication process the user’s fixed PIN and
card information is simply leaked to the adversary, who can then impersonate
the user.

3.2 Our Scheme

Let Πpke = (Gen,Enc,Dec) be a CCA2 secure public-key encryption [10] and
DS = (KgSig, Sig,Vf) a digital signature scheme secure against existential forgery
under an adaptive chosen message attack (EU-CMA) [10], where KgSig is the
key generation algorithm, Sig is the signing algorithm, and Vf, the verification
algorithm. We assume that the token has knowledge of the user’s public key.
In the case of an ATM, the key could be given to the bank during registra-
tion. Our protocol is a challenge-and-response protocol that we explain with
the help of Figure 2. The entire communication between the user and the token
uses a visual encoder, which transforms digital information to and from a visual
representation. The user initiates the protocol by sending his identifier id to
the token. The challenger retrieves the corresponding public key from a trusted

62 M. Simkin et al.

database, checks the validity of the key, and encrypts a randomly generated chal-
lenge ch← {0, 1}n using the public-key encryption scheme Πpke. The application
header for the identification scenario can be seen in Figure 3. It contains a token
identifier (tid), a user identifier (uid), the encrypted challenge, a timestamp, and
the token’s GPS location. The application header is signed with DS by the token
and the signature is appended to the application header. It then generates a QR
code consisting of the framework, and the application header.

The resulting QR code is displayed to the user, who decodes the visual rep-
resentation with his HMD, parses the header information, checks the validity of
the signature, the date of the timestamp, whether his location matches the given
location, and decrypts the encrypted challenge to obtain ch. The user sends back
ch to the token to conclude the authentication process. In the case of an ATM
or a locked door, the last step can be done via a key pad. Choosing the length
of the challenge is a trade-off between security and usability.

Security Analysis. Due to page constraints, we only provide an informal rea-
soning, showing that none of our three adversaries can be successful. Note that
security against the active adversary already implies security against a passive ad-
versary. Since we assumed that Πpke = (Gen,Enc,Dec) is secure against chosen-
ciphertext attacks, an adversary is not able to infer any information about the
plaintext, i.e. the encrypted PIN, from the given ciphertext, even if he is able to
obtain encryptions and decryptions for messages of his choice. This ensures that
an (active) adversary can only guess the challenge, since he effectively plays the
CCA2 game. To prevent man-in-the-middle attacks, we use an idea called authen-
ticated GPS coordinates, recently introduced by Marforio, Karapanos, and Sori-
ente [11]. We assume that the man-in-the-middle attack is perfomed on two tokens
that are at different locations. Recall that each token signs its challenges along
with its own GPS location. An adversary is not able to simply forward these chal-
lenges between two tokens, since the user, upon receiving a challenge, verifies the
signature of the challenge and compares its own location to the signed location.
Hence, such an adversary would need to break the unforgeability of DS to be able
to forward challenges that will be accepted by the user.

4 Content Verification

Fig. 4. The VeriDoc document
format

The goal of our content verification function-
ality is to enable the generation and verifi-
cation of physical documents, such as receipts
or paychecks, with mathematically proven un-
forgeability guarantees. In particular, the va-
lidity of such documents should be verifiable
in a secure, user-friendly, and robust fashion.
The combination of physical documents with
digital signatures is a challenging task for sev-
eral reasons. Firstly, the document’s content

Bridging the Gap between Digital Cryptography and the Physical World 63

Algorithm 1: Signing

input : m, sid, sk, layout
output: Header token TokenH and ;

side tokens Token1, . . . ,Token�

Hf ← GenFrameworkHeader(Verification)
choose a random did ← {0, 1}n;
parse m = 1, . . . ,m�;
set hH ← H(Hf , sid, did, �, layout);
set σH ← Sig(sk, hH);
set TokenH ← Encode(Hf , sid, did, �, layout, σH);

Compute QR codes for each message block
for i = 1, . . . , � do

hi ← H(did,mi, i) ;
σi ← Sig(sk, hi) ;

Tokeni ← Encode(i, σi);

return TokenH ,Token1, . . . ,Token�

Fig. 5. The signing algorithm

Algorithm 2: Verify

input : Document D
output: Valid or Invalid

Verify the document header
(Hf , sid, did, �, layout)← Decode(TokenH);
set hH ← H(Hf , sid, did, �, layout);
set vk ← PKI(sid);
return 0 if Vf(vk, hH , σH) = 0;

Verify each message block
for i = 1, . . . , nb do

mi,Tokeni ← OCR(bi) //see Section 6;
hi ← H(did,mi, i) ;
i, σi ← Decode(Tokeni);
return 0 if Vf(vk, hi, σi) = 0 ;

return 1

Fig. 6. The verification algorithm

must be human-readable, which prevents us from using machine-readable visual
encodings like QR codes. Secondly, we must be able to transform the human
readable content into a digital representation such that we can verify the dig-
ital signature. Here, we apply techniques from computer vision such as optical
character recognition (OCR). However, OCR has to be performed without any
errors and from a practical point of view OCR is very unlikely to succeed without
any errors when reading a whole document with an unknown layout. Observe
that error-correction techniques cannot be applied, since a contract that says
“Alice gets $100” is very different from one that says “Alice gets $1.00”. Using
error-correction one could transform a wrong document into a correct one, which
would result in a discrepancy between what the user sees and what is verified.
To overcome the aforementioned problems and provide a practical and useable
solution, we developed a novel document format, called VeriDoc (see Figure 4).
This document facilitates robust document tracking and optical character recog-
nition by encoding additional layout information into it. The layout information
is encoded in a header QR code (a) and signatures for each block are encoded
into separate QR codes (b).

4.1 Threat Model

Based on the standard EU-CMA notion for digital signature schemes, we consider
the following adversary: In the first phase, the query phase, the adversary is able
to obtain a polynomial number of (signed) VeriDoc documents for documents of
his choice from some user Alice. In the second phase, the challenge phase, the
adversary outputs a VeriDoc document D and wins if D verifies under Alice’s
public key and was not signed by her in the first phase.

64 M. Simkin et al.

4.2 Our Scheme

Let DS = (KgSig, Sig,Vf) be a signature scheme secure against EU-CMA and H
a collision-resistant hash function.

Content Signing: A formal description of the signing algorithm is depicted
in Figure 5. It takes the signer’s private key sk, his identifier sid, the message
m = m1, . . . ,m� consisting of � blocks as input and the layout information layout.
First, the algorithm computes the document header TokenH , which comprises
of the framework header and the application header. The application header
contains the signer’s id sid, a randomly generated document id did, the number
of message blocks �, and layout. This header is signed and the signature σH is
appended to the header itself. In the second step, each message block mi is signed
along with did and it’s position i. All generated signatures are encoded into QR
codes and printed onto the document next to the corresponding message blocks
(see Figure 4).

Content Verification: The content verification algorithm, depicted
in Figure 6, is given a signed document D consisting of blocks bi and veri-
fies its validity. The extraction of a message block, the corresponding signa-
ture, as well as the underlying computer vision techniques that are used are
simplified to OCR(·) in this description. A description of OCR(·) will be pro-
vided in Section 6. In the first step, the document header TokenH is parsed
by the computer vision system. Using the signer’s id sid, the corresponding
public key vk is obtained from a PKI. Afterwards, the verification algorithm
checks the validity of each block. To do so, the algorithm first reads the mes-
sage block along with its signature (mi,Tokeni) ← OCR(bi), it computes the
hash value hi ← H(did,mi, i), extracts the signature from the corresponding QR
code, i.e. (i, σi) ← Decode(Tokeni) and outputs 0 if the signature is invalid,
i.e., if Vf(vk, hi, σi) = 1. If all checks are valid, then the verification algorithm
outputs 1.

Security Analysis. We assume that the underlying signature scheme DS =
(KgSig, Sig,Vf) that is used to generate the VeriDoc documents is secure against
EU-CMA. This means that an adversary is allowed to obtain signatures on mes-
sages of his choice adaptively and he is not able to generate a valid signature for a
new message that was not queried to the signing oracle before (except with neg-
ligible probability). Furthermore, we assume that the hash function is collision-
resistant, meaning that an efficient adversary finds two distinct messages m0,m1

that map to the same image H(m0) = H(m1) only with negligible probability. In
the query phase, the adversary obtains signed tokens for messages of his choice.
Note that for each signed token a new random document id did ∈ {0, 1}n is
generated and the header also contains the number of blocks �. This document
id prevents so called mix-and-match attacks, where a new valid document is
generated by mixing message blocks from other valid documents. Since the id is
n-bit long, where n is the security parameter and we consider poly-time adver-
saries, the probability of two documents having the same id is negligible in n.

Bridging the Gap between Digital Cryptography and the Physical World 65

Since the signed document header contains the number of message blocks and
all blocks are enumerated according to their ordering in the layout, an adver-
sary can neither rearrange, nor remove any message blocks without breaking the
unforgeability of the signature scheme. Thus, the resulting VeriDoc document is
also existentially unforgeable under chosen message attacks.

4.3 Two-Step Verification

Over the past years a constant increase in digital crime, such as identity theft,
has been observed. To counteract these developments, companies like Facebook,
Google, Yahoo, and many others allow users to use a technique known as two-
factor authentication [12], when using their services. During such an authentica-
tion process, an additional layer of security is introduced by requiring a second
authentication factor, e.g. a physical token, along with the password. In a similar
vein we introduce the two-step verification technique that introduces a second
step into the process of verifying retrieved content. Consider, for example, a
user, who requests his account balance during an online banking session. If the
machine that is used is untrusted and possibly even compromised, then the user
cannot verify the correctness of the returned balance. To overcome this problem,
we use our content verification technique described in Section 4, meaning that
in our banking example the account balance is returned together with a visually
encoded signature thereof. Using the HMD we parse the signature and the ac-
count balance and verify its correctness. An adversary, who wants to convince a
user of a false statement, would need to compromise the machine, that is used
by him, and the HMD simultaneously, which is considerably harder to achieve
in practice. Due to the simplicity of the two-step verification technique, it could
easily be integrated into many existing systems immediately.

5 Content Hiding

Motivated by the increasing existence of mobile workplaces, we introduce our
content hiding solution. Our goal was to allow users to read confidential docu-
ments in the presence of eavesdroppers. HMDs are situated right in front of the
user’s eye and only he is able to see the displayed content. Confidential docu-
ments are printed in an encrypted format and using the HMD an authorized user
decrypts the part he is looking at on-the-fly. Applications using this technique
are not limited to paper-based documents or tablet computers. Consider an un-
trusted machine through which a user might want to access some confidential
data. Using our content hiding technique, he could obtain the information with-
out leaking it to the untrusted machine. For the sake of clarity and brevity, we
describe our technique using public key encryption schemes. In Section 5.3 we
show how to realize more complex access structures, such as security clearance
hierarchies in office spaces, using predicate encryption schemes.

66 M. Simkin et al.

Algorithm 1: Encryption

input : m, ek
output: Header token TokenH and ;

ciphertext tokens Token1, . . . ,Token�

Hf ← GenFrameworkHeader(Hiding);

choose a random key k ← G(1λ);
compute key ← Enc(ek, k);
set TokenH ← Encode(Hf , key);

Compute encoded ciphertext blocks
m1, . . . ,m� ← split(m) ;
for i = 1, . . . , � do

ci ← E(k,mi);
Tokeni ← Encode(i, ci);

return TokenH ,Token1, . . . ,Token�

Fig. 7. The encryption algorithm

Algorithm 2: Decryption

input : TokenH ,Token1, . . . ,Token�, dk
output: message m

Decode the header
(Hf , key)← Decode(TokenH);

compute k ← Dec(dk, key);

Decrypt the ciphertext
for i = 1, . . . , � do

(i, ci)← Decode(Tokeni);
mi ← D(k,mi);

return m = m1, . . . ,m�

Fig. 8. The decryption algorithm

5.1 Threat Model

In this scenario we basically consider the adversary from the standard CCA2
security notion. The adversary is allowed to obtain a polynomial amount of
encryptions and decryptions for messages and ciphertexts of his choice from
some honest user Alice. At some point the adversary outputs two messages,
Alice picks one at random, and encrypts it. The adversary wins if he can guess
which message was encrypted with a probability of at least 1

2 + ε(n), where ε is
a non-negligible function and n is the security parameter.

5.2 Our Scheme

Let Πpke = (Gen,Enc,Dec) be a CCA2 secure public key, and Πpriv = (G, E ,D)
a CCA2 secure private key encryption scheme. To obtain public key encryption
scheme with short ciphertexts, we use a hybrid encryption scheme [13]. The basic
idea of such a scheme is to encrypt a randomly generated key k ← G(n) with the
public key encryption scheme and store it in the header. The actual plaintext is
encrypted using Πpriv with k.

Encryption: The encryption algorithm is depicted in Figure 7 and works as
follows: At first, a randomly chosen document key k is encrypted with a public-
key encryption scheme under the public key ek of the recipient. A header QR
code TokenH is created, which contains the framework header, the encrypted
document key. The actual body of the document m is split into message chunks
m1, . . . ,m� and each chunk is encrypted separately using the document key and
is then encoded, along with the block id, into a QR code Tokeni.

Decryption: The decryption algorithm is depicted in Figure 8. Upon receiving
a document, the receiver decodes the header QR code, obtains the encrypted
document key key. Using his secret key dk, the algorithm recovers the document
key k ← D(dk, key) and it uses the key to decrypt the document body.

Bridging the Gap between Digital Cryptography and the Physical World 67

The advantages of representing the document as a sequence of encrypted
blocks is twofold. Firstly, it allows the user to only decrypt the part of the
encrypted document body that he is currently looking at without the need to
scan the whole document first. Furthermore, the encrypted documents are robust
to damage, meaning that even if a part of it is broken or unreadable, we are
still able to decrypt the remaining undamaged ciphertext blocks as long as the
document header is readable. Choosing the size of the message blocks is a trade-
off between space and robustness. The bigger the message blocks are, the more
plaintext is lost once a single QR code is not readable anymore. The smaller
they are, the more QR codes are required, hence the more space is needed to
display them.

Security Analysis. It is well known that using the hybrid argument proof
technique [10] the CCA2 game, where the adversary outputs two distinct mes-
sages in the challenge phase, is equivalent to a CCA2 game where the adversary
outputs two message vectors of polynomial length. The security of our scheme
directly follows from this observation.

5.3 Extending Content Hiding to Support Fine-Grained Access
Control

Using public-key encryption in our content hiding scheme allows us to encrypt
documents for certain recipients. In companies or organizations, however, it is
more desirable to encrypt documents, such that only employees with certain
security clearances can read certain enrypted documents. Ubic allows to encrypt
documents, such that only users with certain security clearances can read them.
Therefore, we replace the public-key encryption scheme by a predicate encryption
scheme [14]. Loosely speaking, in a predicate encryption scheme, one can encrypt
a message M under a certain attribute I ∈ Σ using a master public key mpk
where Σ is the universe of all possible attributes. The encryption algorithm
outputs a ciphertext that can be decrypted with a secret key skf associated
with a predicate f ∈ F , if and only if I fulfills f , i.e., f(I) = 1, where F is the
universe of all predicates.

Next, we explain the security notion of predicate encryption, called attribute-
hiding, with the following toy example. Consider the scenario where professors,
students, and employees are working at a university and by Prof , Emp, and
Stud we denote the corresponding attributes. Every member of a group will be
equipped with a secret key sk f such that f is either the predicate mayAccProf,
mayAccEmp, or mayAccStud. We use the toy policy that professors may read
everything and employees and students may only read encryptions created using
Emp and Stud, respectively. Now, attribute-hiding states that a file file which is
encrypted using the attribute Prof , can not be decrypted by a student equipped
with skmayAccStud and the student also can not tell with which attribute file
was encrypted (except for the fact that it was not Stud). Furthermore, even a
professor does not learn under which attribute file was encrypted, she only learns
the content of the file and nothing more.

68 M. Simkin et al.

scanning
header

request block scan block feedback validation

Fig. 9. Interaction cycle with VeriDoc. The user initiates the interaction by scanning
the header QR code at the top of the document. After sequential scanning of each
content block, the user is informed if the document was verified or not. The black
screens are what the user sees on the Google Glass display. They cover the whole
screen but only a small part of the users view.

Extending Our Scheme. We extend our scheme to also support fine grained
access control by replacing the public-key encryption scheme with a predicate
encryption scheme. Thus, the user encrypting the message in addition chooses
an attribute I ∈ Σ that specifies which users can decrypt the message. Formally,
our encryption algorithm is almost the same as described in Figure 7, but the
public-key encryption step is replaced with c ← PrEnc(mpk , I, k), where mpk
is a master public key that works for all attributes. The only difference in the
decryption algorithm is that instead of using the public-key decryption algorithm
Dec, we are now running the decryption algorithm of the predicate encryption
scheme PrDec(sk f , c) and the user can only decrypt if f(I) = 1.

Efficient Implementation. Our implementation is based on the predicate en-
cryption scheme due to Katz, Sahai, and Waters [14] (see Section A for a formal
description of the scheme). However, for efficiency reasons, we did not implement
the scheme in composite order groups, but adapted the transformation to prime
order groups as suggested by Freeman [15].

6 The VeriDoc Interface

In the following, we describe our document format VeriDoc. A high-level overview
of the document scanning process is shown in Figure 9. Throughout this process
we provide visual feedback to make the scanning process transparent to the user.
As already described, the user initiates the document verification by scanning
the header code of the document. Amongs other information, the header code
contains the layout information. This information contains additional informa-
tion about the document that facilitates the scanning process. In particular, this
information contains the used font, the aspect ratio of each message block, and
the document language. After scanning the header code, the user is asked to
scan the message blocks. We display brackets on the HMD to help the user to
position the camera properly over the text block Accurate alignment and con-
tent extraction is further facilitated by a computer vision subsystem as described
below. After each scanned block, its content is extracted and verified against the

Bridging the Gap between Digital Cryptography and the Physical World 69

user input corner detection
unwarping

content
extraction

Fig. 10. Vision subsystem to assist the user in working with VeriDoc: The user points
the front-facing camera roughly at the VeriDoc document, the system detects the four
corners of the first content block and snaps the locations of the brackets to them, and
the system unwarps and extracts the content of that block.

signature encoded in the QR code. The user is informed about the validity of
each text block and once all blocks of a given document are scanned the system
informs the user if the document, as a whole, was successfully verified.

Alignment and Content Extraction: To assist the user in scanning Veri-
Doc document content we provide a refinement procedure that allows the user
to roughly indicate relevant text blocks, but still provide the required accuracy
for the computer vision processing pipeline (see Figure 10). On the very left, a
typical user interaction is depicted showing a coarse alignment of the brackets
with the first text block. We proceed by a corner detection algorithm and snap
the locations of the brackets provided by the user to the closest corners. We use
the Harris corner measure M to robustly detect corners [16]:

A = g(σI) ∗
(

I2
x(σD) IxIy(σD)

IxIy(σD) I2
y (σD)

)
(1)

M = det(A)− κ trace(A)2 (2)

where Ix and Iy are the spatial image derivatives in x and y direction, σD
smoothing of the image with the detection scale and σI smoothing the response
with the integration scale and κ = 0.04 according to best practice. Intuitively,
the pre-smoothing with σD eliminates noise and allows detection of corners at a
desired scale [17] while the smoothing σI suppresses local maxima in the response
function. In order to be robust to the choice of these scales, we employ the multi-
scale harris detector that finds corners across multiple scales [18].

The second image at the top shows a visualization of the closest corner and the
box spanned by them in green. Under the assumption of a pinhole camera model
as well as a planar target (documents in our case), we can compute a homography
H ∈ R3×3 in order to undo the perspective transformation under which the
content is viewed. The matrix H relates the points under the perspective project
p′ to the points under an orthogonal viewing angle p by

p′ = Hp (3)

70 M. Simkin et al.

where p, p′ ∈ R3 are given in homogeneous coordinates. As our interface has
determined the 4 corners that each specify a pair of p and p′, we have sufficient
information to estimate matrix H .

The third image from the left in Figure 10 shows the content after unwarping
and cropping. Using the information on the ratio between text and code con-
tained in the header, we now split the content area into text and the associated
QR code. In a last step, the QR code is decoded, the signature extracted, and
the text area is further processed using OCR in combination with the font and
language information from the header code.

7 Prototype Implementation

We provide a prototype implementation, written in Java, of our Ubic framework
on the Google Glass device. The device runs Android 4.0.4 as its underlying
operating system, features a 640×360 optical head-mounted display as well as an
egocentric camera with a resolution of 1280×720 pixels. Our current developer
version only features an embedded microcontroller with 1.2 GHz and 1GB of
memory.

We used the Bouncy Castle Crypto API 1.50 [19] and the Java Pairing-Based
Cryptography Library 2.0.0 (JPBC) [20] to implement all required cryptographic
primitives. In particular, we used SHA-1 as our collision-resistant hash function,
SHA1+RSA-PSS as our signature, AES-256 in CTR-Mode as our private-key
encryption, and RSA-OAEP with 2048 bit long keys as our public-key encryption
scheme. For our predicate encryption scheme, we use a MNT curve [21] with a
security parameter of 112 according to the NIST recommendations [22]. For
the computer vision part of our framework, we used the OpenCV 2.4.8 image
processing library [23], and QR codes are being processed with the barcode image
processing library zxing 1.7.6 [24]. For optical character recognition, we used the
Tesseract OCR engine [25].

8 Related Work

Head-mounted displays, such as Google Glass, have raised strong privacy con-
cerns in the past and recent publications [26,27,28] have tried to address these
issues. In [26], the authors suggest that operating systems should provide high-
level abstractions for accessing perceptual data. Following this line of work, [27]
proposes a system, which makes a first step towards providing privacy guarantees
for sensor feeds. There, applications access the camera through a new interface
rather than accessing the camera directly. Depending on the application’s per-
missions, the camera is pre-processed with different sets of image filters, which
aim to filter sensitive information. In [28], the notion of recognizers is intro-
duced. Rather than passing a filtered sensor feed to the requesting application,
they provide a set of recognizers that fulfil the most common tasks, such as
face detection or recognition. Applications obtain permissions for certain recog-
nizer and can request the output of certain computations on the sensor feed. In
contrast to our work, this line of research regards the device as a threat.

Bridging the Gap between Digital Cryptography and the Physical World 71

Another line of research concentrates on establishing trust between devices
based on the visual channel [29,30,31]. In [31], for instance, the visual channel
is used for demonstrative authentication, where two devices authenticate them-
selves towards each other by basing their trust on the visual channel between
them. One possible application for this authentication mechanism is access points
with QR codes printed onto them. The user scans the QR code to authenticate
the access point.

In [32], a survey of different techniques for scanning and analyzing documents
with the help of cameras, cell phones, and wearable computers is provided. The
survey shows that even though constant progress is made, current methods are
not robust enough for real world deployment. Ubic tackles this problem in a dif-
ferent way by facilitating the task of scanning documents by encoding additional
information into them.

9 Conclusion

We presented Ubic, a framework that makes an important step towards a tighter
integration of digital cryptography in real-world applications. Using HMDs in
combination with established cryptographic primitives and resource friendly
computer vision techniques, we provide users with more security and privacy
guarantees in a wide range of common real-world applications. We present user-
friendly, easy-to-use solutions for authentication, content verification, content
hiding, that can seamlessly be integrated into the current infrastructure. We
hope that our work will stimulate further research investigating the possibilities
of combining ubiquitous computing technologies with cryptographic primitives
in a user-friendly fashion.

Acknowledgements. Andreas Bulling and Mario Fritz are supported by a
Google Glass Research Award. Work of Dominique Schröder and Mark Simkin
was supported by the German Federal Ministry of Education and Research
(BMBF) through funding for the Center for IT-Security, Privacy, and Account-
ability (CISPA; see www.cispa-security.org). Dominique Schröder is also sup-
ported by an Intel Early Career Faculty Honor Program Award.

References

1. News, B.: Cash machines raided with infected usb sticks (2013)
2. Bankrate: Skimming the cash out of your account (2002)
3. Times, N.Y.: Target missed signs of a data breach (2014)
4. Telegraph, T.: Mind how you move that chair - it’s hot hot-desking is a growing
trend, bringing a new culture writes violet johnstone (2002)

5. House, T.W.: Bring your own device (2012)
6. for Visual Data Security, E.A.: Visual Security White Paper (2012)
7. Kumar, M., Garfinkel, T., Boneh, D., Winograd, T.: Reducing shoulder-surfing by
using gaze-based password entry. In: Proceedings of the 3rd Symposium on Usable
Privacy and Security, SOUPS 2007, pp. 13–19. ACM (2007)

72 M. Simkin et al.

8. International Organization for Standardization: Information technology — auto-
matic identification and data capture techniques — qr code 2005 bar code symbol-
ogy specification (2006)

9. Wicker, S.B.: Reed-Solomon Codes and Their Applications. IEEE Press, Piscat-
away (1994)

10. Katz, J., Lindell, Y.: Introduction to Modern Cryptography (Chapman & Hall/Crc
Cryptography and Network Security Series). Chapman & Hall/CRC (2007)

11. Marforio, C., Karapanos, N., Soriente, C., Kostiainen, K., Capkun, S.: Smartphones
as practical and secure location verification tokens for payments. In: Proceedings
of the Network and Distributed System Security Symposium, NDSS 2014 (2014)

12. Van Rijswijk, R.M., Van Dijk, J.: Tiqr: A novel take on two-factor authentication.
In: Proceedings of the 25th International Conference on Large Installation System
Administration, LISA 2011, p. 7. USENIX Association (2011)

13. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2004)

14. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

15. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

16. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of
the 4th Alvey Vision Conference, pp. 147–151 (1988)

17. Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer Academic Pub-
lishers, Norwell (1994)

18. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE
Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630
(2005)

19. The Legion of the Bouncy Castle: Lightweight Cryptography API (Release 1.50)
20. De Caro, A., Iovino, V.: jpbc: Java pairing based cryptography. In: Proceedings

of the 16th IEEE Symposium on Computers and Communications, ISCC 2011,
Kerkyra, Corfu, Greece, June 28-July 1, pp. 850–855 (2011)

21. Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve
traces for fr-reduction (2001)

22. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for Key
Management Part 1: General (Revision 3). Technical report (July 2012)

23. Bradski, G.: Open source computer vision library (opencv) (2000)
24. ZXing: ZXing Multi-format 1D/2D barcode image processing library (2012)
25. Smith, R.: An overview of the tesseract ocr engine. In: Proceedings of the Ninth

International Conference on Document Analysis and Recognition, ICDAR 2007,
vol. 2, pp. 629–633. IEEE Computer Society, Washington, DC (2007)

26. D’Antoni, L., Dunn, A., Jana, S., Kohno, T., Livshits, B., Molnar, D., Moshchuk,
A., Ofek, E., Roesner, F., Saponas, S., Veanes, M., Wang, H.J.: Operating system
support for augmented reality applications. In: Proceedings of the 14th USENIX
Conference on Hot Topics in Operating Systems, HotOS 2013, p. 21. USENIX
Association, Berkeley (2013)

27. Jana, S., Narayanan, A., Shmatikov, V.: A scanner darkly: Protecting user privacy
from perceptual applications. In: IEEE Symposium on Security and Privacy, pp.
349–363. IEEE Computer Society (2013)

Bridging the Gap between Digital Cryptography and the Physical World 73

28. Jana, S., Molnar, D., Moshchuk, A., Dunn, A., Livshits, B., Wang, H.J., Ofek, E.:
Enabling Fine-Grained Permissions for Augmented Reality Applications With Rec-
ognizers. In: 22nd USENIX Security Symposium (USENIX Security 2013), Wash-
ington DC (August 2013)

29. Starnberger, G., Froihofer, L., Goeschka, K.M.: Qr-tan: Secure mobile transaction
authentication. In: 2012 Seventh International Conference on Availability, Relia-
bility and Security, pp. 578–583 (2009)

30. Saxena, N., Ekberg, J.E., Kostiainen, K., Asokan, N.: Secure device pairing based
on a visual channel. In: 2006 IEEE Symposium on Security and Privacy, pp. 306–
313 (2006)

31. Mccune, J.M., Perrig, A., Reiter, M.K.: Seeing-is-believing: Using camera phones
for human-verifiable authentication. In: IEEE Symposium on Security and Privacy,
pp. 110–124 (2005)

32. Liang, J., Doermann, D., Li, H.: Camera-based analysis of text and documents: a
survey. International Journal on Document Analysis and Recognition 7, 84–104–
104 (2005)

A Predicate Encryption

For completeness, we recall the predicate encryption scheme due to Katz, Sahai,
and Waters [14].

Definition 1 (Predicate Encryption). A predicate encryption scheme for
the universe of predicates and attributes F and Σ, respectively, is a tuple of
efficient algorithms ΠPE = (PrGen,PrKGen,PrEnc,PrDec), where the generation
algorithm PrGen takes as input a security parameter 1λ and returns a master
public and a master secret key pair (mpk , psk); the key generation algorithm
PrKGen takes as input the master secret key psk and a predicate description
f ∈ F and returns a secret key skf associated with f ; the encryption algorithm
PrEnc takes as input the master public key mpk, an attribute I ∈ Σ, and a
message m and it returns a ciphertext c; and the decryption algorithm PrDec
takes as input a secret key skf associated with a predicate f and a ciphertext c
and outputs either a message m or ⊥.

A predicate encryption scheme ΠPE is correct if and only if, for all λ,
all key pairs (mpk , psk) ← PrGen(1λ), all predicates f ∈ F , all secret keys
skf ← PrKGen(psk , f), and all attributes I ∈ Σ we have that (i) if f(I) = 1
then PrDec(sk f ,PrEnc(mpk , I,m)) = m and (ii) if f(I) = 0 then PrDec(sk f ,
PrEnc(mpk , I, m)) = ⊥ except with negligible probability.

The KSW Predicate Encryption Scheme. The scheme is based on composite
order groups with a bilinear map. More precisely, let N = pqr be a composite
number where p, q, and r are large prime numbers. Let G be an order-N cyclic
group and e : G × G → GT be a bilinear map. Recall that e is bilinear, i.e.,
e(ga, gb) = e(g, g)ab, and non-degenerate, i.e., if 〈g〉 = G then e(g, g) �= 1. Then,
by the chinese remainder theorem, G = Gp×Gq×Gr where Gs with s ∈ {p, q, r}
are the s-order subgroups of G. Moreover, given a generator g for G, 〈gpq〉 = Gr,

74 M. Simkin et al.

〈gpr〉 = Gq, and 〈gqr〉 = Gp. Another insight is the following, given for instance
a ∈ Gp and b ∈ Gq, we have e(a, b) = e((gqr)c, (gpr)d) = e(grc, gd)pqr = 1, i.e.,
a pairing of elements from different subgroups cancels out. Finally, let G be an
algorithm that takes as input a security parameter 1λ and outputs a description
(p, q, r,G,GT , e). We describe the algorithms PrGen, PrKGen, PrEnc, and PrDec
in the sequel.

Algorithm PoGen(1λ, n) and PrGen(1λ, n). First, the algorithm runs G(1λ) to
obtain (p, q, r,G,GT , e) with G = Gp × Gq × Gr. Then, it computes gp, gq,
and gr as generators of Gp, Gq, and Gr, respectively. The algorithm selects
R0 ∈ Gr, R1.i, R2,i ∈ Gr and h1,i, h2,i ∈ Gp uniformly at random for 1 ≤ i ≤ n.
(N = pqr,G,GT , e) constitutes the public parameters. The public key for the
predicate-only encryption scheme is

opk = (gp, gr, Q = gq ·R0, {H1,i = h1,i ·R1,i, H2,i = h2,i ·R2,i}ni=1)

and the master secret key is osk = (p, q, r, gq, {h1,i, h2,i}ni=1). For the predicate
encryption with messages, the algorithm additionally chooses γ ∈ ZN and h ∈ Gp

at random. The public key is

mpk = (gp, gr, Q = gq · R0, P = e(gp, h)
γ , {H1,i = h1,i · R1,i, H2,i = h2,i · R2,i}ni=1)

and the master secret key is psk = (p, q, r, gq, h
−γ , {h1,i, h2,i}ni=1).

Algorithm PoKGen(osk , �v) and PrKGen(psk , �v). Parse �v as (v1, . . . , vn) where
vi ∈ ZN . The algorithm picks random r1,i, r2,i ∈ Zp for 1 ≤ i ≤ n, random
R5 ∈ Gr, random f1, f2 ∈ Zq, and random Q6 ∈ Gq. For the predicate-only
encryption scheme, it outputs a secret key

osk�v =

⎛
⎝ K0 = R5 ·Q6 ·

∏n
i=1 h

−r1,i
1,i · h−r2,i

2,i ,

{K1,i = g
r1,i
p · gf1·viq ,K2,i = g

r2,i
p · gf2·viq }ni=1

⎞
⎠ .

For the predicate encryption scheme with messages, the secret key sk�v is the
same as osk�v except for

K0 = R5 ·Q6 · h−γ ·
n∏

i=1

h
−r1,i
1,i · h−r2,i

2,i .

Algorithm PoEnc(opk , �x) and PrEnc(mpk , �x,m). Parse �x as (x1, . . . , xn) where
xi ∈ ZN . The algorithm picks random s, α, β ∈ ZN and random R3,i, R4,i ∈ Gr

for 1 ≤ i ≤ n. For the predicate-only encryption scheme, it outputs the ciphertext

C =

⎛
⎝C0 = gsp, {C1,i = Hs

1,i ·Qα·xi ·R3,i,

C2,i = Hs
2,i ·Qβ·xi · R4,i}ni=0

⎞
⎠ .

Bridging the Gap between Digital Cryptography and the Physical World 75

For the predicate encryption scheme with messages notice that m ∈ GT . The
ciphertext is

C =

⎛
⎜⎜⎜⎝

C′ = m · P s, C0 = gsp,

{C1,i = Hs
1,i ·Qα·xi ·R3,i,

C2,i = Hs
2,i ·Qβ·xi · R4,i}ni=0

⎞
⎟⎟⎟⎠ .

Algorithm PoDec(osk�v, C) and PrDec(sk�v, C). The predicate-only encryption
outputs whether the following equation is equal to 1

e(C0,K0) ·
n∏

i=1

e(C1,i,K1,i) · e(C2,i,K2,i).

The predicate encryption scheme with messages outputs the result of the follow-
ing equation

C′ · e(C0,K0) ·
n∏

i=1

e(C1,i,K1,i) · e(C2,i,K2,i).

Updaticator: Updating Billions of Devices

by an Efficient, Scalable and Secure
Software Update Distribution

over Untrusted Cache-enabled Networks

Moreno Ambrosin1,�, Christoph Busold2, Mauro Conti1,��,
Ahmad-Reza Sadeghi3, and Matthias Schunter4

1 University of Padua, Italy
{lastname}@math.unipd.it

2 Intel CRI-SC, TU Darmstadt, Germany
christoph.busold@trust.cased.de
3 CASED/TU Darmstadt, Germany
ahmad.sadeghi@trust.cased.de

4 Intel Labs, Darmstadt, Germany
schunter@acm.org

Abstract. Secure and fast distribution of software updates and patches
is essential for improving functionality and security of computer sys-
tems. Today, each device downloads updates individually from a software
provider distribution server. Unfortunately, this approach does not scale
to large systems with billions of devices where the network bandwidth
of the server and the local Internet gateway become bottlenecks. Cache-
enabled Network (CN) services (either proprietary, as Akamai, or open
Content-Distribution Networks) can reduce these bottlenecks. However,
they do not offer security guarantees against potentially untrusted CN
providers that try to threaten the confidentiality of the updates or the
privacy of the users. In this paper, we propose Updaticator, the first
protocol for software updates over Cache-enabled Networks that is scal-
able to billions of concurrent device updates while being secure against
malicious networks. We evaluate our proposal considering Named-Data
Networking, a novel instance of Cache-enabled overlay Networks. Our
analysis and experimental evaluation show that Updaticator removes
the bottlenecks of individual device-update distribution, by reducing the
network load at the distribution server: from linear in the number of
devices to a constant, even if billions of devices are requesting updates.
Furthermore, when compared to the state-of-the-art individual device-
update mechanisms, the download time with Updaticator is negligible,
due to local caching.

� Corresponding author.
�� Mauro Conti is supported by a Marie Curie Fellowship funded by the European
Commission under the agreement n. PCIG11-GA-2012-321980. This work has been
partially supported by the TENACE PRIN Project 20103P34XC funded by the
Italian MIUR. Part of this work has been performed while Mauro Conti was visiting
TU Darmstadt thanks to a German DAAD fellowship.

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 76–93, 2014.
c© Springer International Publishing Switzerland 2014

Updaticator: Updating Billions of Devices 77

Keywords: Software Updates, Secure Updates Distribution, Attribute-
based Encryption, Internet of Things, Cache-enabled Network.

1 Introduction

The growing diffusion of electronic devices creates new issues and challenges.
Consider billions of lighting devices [29], embedded controllers, or mobile and
wearable devices. More generally, the so-called Internet of Things is extending
the Internet to billions of devices that need to be connected and updated. One
of the resulting challenges is efficient and secure distribution of software updates
to these devices. According to the 2013 US-CERT Security Alerts [1], most of
the new software vulnerabilities can be resolved by applying software updates.
Hence, fast and secure delivery of software updates plays a key role in securing
software systems. In particular, once a vulnerability is published (e.g., see the
case of the recent SSL “Heartbleed” vulnerability [18]), the system becomes ex-
posed to a large base of potential adversaries. Here, a fast update is fundamental.

Most of the existing remote update protocols focus on ensuring integrity and
authenticity of the transmitted updates, i.e., they guarantee that only untam-
pered updates from a legitimate source will be installed on the device. However,
in many cases software updates are required to be confidential. Examples include
protection of embedded software against reverse-engineering or the distribution
of valuable map updates in automotive systems and portable devices. A simplis-
tic approach to achieve confidentiality for updates is securing the communication
between client and software provider server applying end-to-end encryption (e.g.,
using SSL [31]). Each client device then requests and downloads the latest avail-
able update directly from the software provider, encrypted and signed by the
software update source. Although this approach guarantees confidentiality and
authenticity of software updates, it is not suitable for large-scale systems, since
it would not scale due to the load on the software distribution servers, which is
increasing linearly in the number of devices.

To mitigate this efficiency problem, software providers usually rely on third-
party distribution infrastructures [5], e.g., Content Delivery Networks (CDNs)
such as Akamai [2] or Windows Azure CDN [33]. These infrastructures apply in-
network caching and replication strategies in order to speed-up content distribu-
tion. However, by using third-party distribution networks, software providers can
no longer apply end-to-end encryption. Instead, they must allow point-to-point
encryption between client devices and the distribution network, and between
the distribution network and the software provider [3]. This poses security and
privacy issues, since transferred updates are cached unencrypted by each distri-
bution network server, and the software provider or the distribution nodes know
which device (or user) is asking for what.

Our Contribution. In this paper, we propose a new solution for efficient distribu-
tion of confidential software updates that is scalable and optimized for untrusted
distribution media which support in-network caching. The contributions of this
paper are threefold:

78 M. Ambrosin et al.

i) We present Updaticator, a protocol for efficient distribution of confidential
software updates, optimized for untrusted cache-enabled distribution media.
The protocol reduces bandwidth consumption and server load, provides end-
to-end security, and is scalable to billions of devices. To enable caching, one
main goal is to encrypt each given update under a corresponding symmetric
key to ensure identical ciphertexts for all devices receiving this update. These
keys are then distributed using Attribute-based Encryption (ABE).

ii) We define a system model and security requirements for this class of protocols
and analyze the security of the proposed protocol.

iii) We describe a prototype implementation of our protocol on Named-Data
Networking [21] as broadcast medium for efficient and secure distribution of
updates, and evaluate its performance.

Organization. The remainder of the paper is organized as follows. In Sec. 2
we describe the system model and the security requirements for the design of
Updaticator. In Sec. 3 we introduce the primitives used in the description of
our protocol. In Sec. 4 we introduce the Updaticator protocol while in Sec. 5
we provide a security analysis, based on the security requirements introduced
in Sec. 2. In Sec. 6 we present an experimental evaluation, which demonstrates
the benefits of our solution. Finally, in Sec. 7 we analyze current state-of-the-
art approaches to updates delivery and differentiate our results. Eventually, we
conclude in Sec. 8 and describe possible future work.

2 System Model and Requirements

In this section we introduce the system model, on which we base our work, and
derive the security requirements for our software updates distribution protocol.

2.1 System Model

In our model, groups of clients request software updates from a specified update
source. As shown in Fig. 1, we assume the presence of an Update Server (US), as
introduced in [14]. Each client queries US to retrieve information about the latest
available update package. Furthermore, we assume the presence of a Distribution
Server (DS), which is responsible for efficient dissemination of updates. For the
sake of generality, we also assume the presence of a Policy Server (PS), that
generates keys, imports updates into the system, and defines the update policy,
i.e., which update should be provided to which device.

2.2 Security Requirements

We now define the desirable security requirements for Updaticator.

Confidentiality. Our solution for update distribution must be able to guaran-
tee the confidentiality of updates, since we assume the distributed updates to
be proprietary data. This means that each client should be able to decrypt a
software update if and only if it has been authorized by PS .

Updaticator: Updating Billions of Devices 79

Fig. 1. System model

Authenticity and Integrity. Our solution for update distribution must guaran-
tee the possibility for all the clients to verify the integrity and authenticity of
the downloaded software updates, in order to prevent attackers from replacing
legitimate software updates with malicious code.

Freshness. Network caches reduce network traffic and server load. However, it
is possible that device requests are satisfied by outdated updates still in cache.
Furthermore, attackers could intentionally mask the presence of new updates
in order to prevent devices from patching security issues. For this reason, our
solution should provide clients with the means to verify whether the answer to
its update request is fresh, i.e., corresponds to the most recent update released
by PS . We achieve this by introducing a freshness interval Δt that defines the
maximum age of the latest update information.

2.3 Adversary Model

Informally, we consider the following attack scenarios:

(1) Legitimate devices could try to obtain software updates which are not
intended for them.

(2) Network attackers could try to get access to confidential updates or compro-
mise devices by injecting unauthorized or modified updates.

More formally, the adversary model is defined as follows: the policy server PS
is an internal server that feeds information to the externally-facing servers US
and DS . We assume that the update infrastructure consisting of US and PS is
secure (including the internal communication between US and PS) and trusted
by all devices that are updated by these servers. For the confidentiality of a
given update, we assume that the client devices receiving this update neither

80 M. Ambrosin et al.

reveal the update packages nor their private keys. As a consequence, we cannot
guarantee confidentiality of updates that are targeted to compromised devices.

In order to allow our solution to scale to a huge number of devices, we do not
consider revocation of individual devices or keys. Revocation is important for
broadcast media, where cloned subscriber cards pose a high risk. For software
updates, in contrast, rebroadcasts of decrypted updates are more likely. This risk
cannot be mitigated by revocation alone, since it further requires traitor tracing
in order to identify the key that should be revoked. Traitor tracing techniques
such as watermarking, however, require individualized updates, which would
prevent caching and thereby compromise the scalability of our scheme.

The update distribution is carried out over an untrusted network, therefore
neither the update infrastructure nor individual devices trust DS . The consid-
ered attackers are Dolev-Yao [13] adversaries that have full control over the com-
munication channel and can eavesdrop, manipulate, inject and replay messages
between any device and the update infrastructure.

3 Background

We now provide some background knowledge, introducing Attribute-based
Encryption, and Named-Data Networking.

3.1 Attribute-Based Encryption

Attribute-based Encryption (ABE), first proposed by Sahai and Waters in
2005 [30], is a type of public-key encryption that allows fine-grained data access
control based on attributes. With ABE, the data owner defines an access policy
w, i.e., a combination of attributes that a legitimate user must own in order
to access the data. An access policy can be represented as a Boolean expres-
sion, specifying the attributes required to access the data. For example, suppose
we define three different attributes, Student,MSc, and Professor . If we want to
make some data accessible only to users that are professors or MSc students, a
possible access policy can be expressed as {{Student ∧MSc} ∨ Professor}.

In our work, we consider Ciphertext-Policy Attribute-based Encryption (CP-
ABE), an Identity-based Encryption scheme first introduced by Bethencourt et
al. [6], and then refined and extended in several other works [36], [35]. With CP-
ABE, the access policy is bound to the ciphertext, while users’ private keys are
generated based on the users’ attributes. CP-ABE allows the definition of high-
level policies, and therefore is particularly useful in scenarios where an entity
wants to restrict the access of a piece of information only to a subset of users
within the same broadcast domain [15]. Moreover, CP-ABE is resistant against
collusion attacks by design [6].

A generic CP-ABE scheme provides the following four basic algorithms:

– Setup(). This algorithm generates public key pkABE and master secret
mkABE .

Updaticator: Updating Billions of Devices 81

– KeyGen(mkABE , AttrC). This algorithm takes as input the master key
mkABE and the user attribute list AttrC , and outputs the user’s private key
skABE,C .

– ABEncpkABE ,w(m). The encryption algorithm takes the public key pkABE ,
the specified access policy w, and the message m as input. It outputs a
ciphertext that can only be decrypted by a user with an attribute list AttrC

such that AttrC satisfies the access policy w.
– ABDecskABE,C (c). The decryption algorithm takes as input the public key
pkABE , the private key skABE ,C of user C, and the ciphertext c. It returns
the plaintext m if and only if user attribute list AttrC satisfy the access
policy w.

3.2 Named-Data Networking

Named-Data Networking (NDN) [21] is a new Internet architecture optimized
for efficient content distribution. NDN is an instantiation of the Content-Centric
Networking (CCN) approach [19], in which data is accessed by name instead of
location, and the routing is based on content names. In NDN, each content is
bound to a unique hierarchically-structured name, formed by different compo-
nents separated by “/”. As an example, a possible name for the opinions web-
page of the CNN website is /cnn/politics/opinion, while /cnn/politics/ is
a name prefix for that name.

Communication in NDN is consumer-driven: each consumer requests data
by issuing interest packets, which are then satisfied by data packets provided
by content producers. When a consumer sends a request for a particular con-
tent, the corresponding interest is forwarded to the first-hop router. Each
NDN router maintains two lookup tables: Pending Interest Table (PIT) and
Forwarding Information Base (FIB). PIT is used to keep track of all the
pending requests for a given content name. Each entry of the PIT is in the
form < interest , arrival interfaces >, where arrival interface is the set of
the router’s interfaces to which the interest have been already forwarded. FIB
is populated by a name-based routing protocol, and used by routers to forward
outgoing interests to the right interface(s). When a router receives an interest,
it first checks its PIT to determine whether another interest for the same name
is currently outstanding. If the same name is already inside the PIT, then the
interest arrival interface is searched inside the corresponding arrival interfaces
set. If the router finds a match, the interest is discarded, otherwise, the new
interface is added to arrival interfaces set, but the interest is not forwarded.
If no matching entry was found in the PIT, a new PIT entry is created, and
the interest is forwarded based on the FIB table. Once received the interest, the
producer of the content injects a matching data packet into the network, thus
satisfying the interest. The data packet is then forwarded towards the consumer,
traversing, in reverse, the path of the corresponding interest.

An important feature of NDN is distributed caching, which is intended to
reduce traffic and load of the network. Once a data packet is received by a
router, it is stored inside its local cache, named Content Store (CS), according

82 M. Ambrosin et al.

to some cache policies. In this way, all subsequent interests matching the same
data packet previously stored inside the CS, will be immediately satisfied with
the local copy of the content, thus being no longer forwarded.

Most currently existing implementations of NDN are built as an overlay on
top of the TCP/UDP transport protocols, e.g., NDNx [23]. This allows easy
integration with the current Internet infrastructure.

4 Updaticator: Our Scalable Update Protocol with
End-to-End Security

We now describe Updaticator, our solution for scalable and secure software up-
dates distribution over Cache-enabled networks. Our protocol comprises three
different phases:

(1) Update publication. In this phase, a new available update is published. The
Policy Server (PS) generates and sends the access policy for the update
package, and a new random encryption key for this update, to the Update
Server (US). Then, PS sends the encrypted package to the Distribution
Server (DS), which takes care of its distribution.

(2) Update selection. In this phase, a client (C) checks for the presence of new
updates, issuing a request to US . The information is used to eventually
retrieve a new software update.

(3) Update retrieval. In this phase, C downloads the update package, issuing a
request to DS .

Without loss of generality, we now provide a detailed description of each phase
of our protocol on top of NDN.

Notation. In the remainder of this paper, we assume that both PS and US have
a key pair, (skPS , pkPS) and (skUS , pkUS), respectively, that they can use for
generating signatures. We refer to pkgu as the software update package, and to
idu as its identifier, calculated as Hash(pkgu), where Hash is a collision-resistant
hash function. Moreover, we suppose that each software update package pkgu
has an associated access policy wu, set by PS . Each client C has an attribute
list AttrC , which is represented by his private key skABE,C . We indicate with ku
the symmetric key used to encrypt pkgu, and with Encku and Decku symmetric
encryption and decryption functions, respectively. We also indicate with SignskX

the computation of a signature using secret key skX , and with VerifypkX the
verification of a signature.

On Scalability. In typical deployments, devices are connected to the Internet
via a gateway with limited bandwidth. Our main goal is to ensure scalability to
billions of devices, i.e., to ensure that the network load on the distribution server
as well as the network load on the gateway is constant in the number of devices
and only depends on the stable number of available updates. This is achieved
by ensuring that all the phases of our protocol, involving client devices, are

Updaticator: Updating Billions of Devices 83

non-interactive and cacheable. Regarding the complexity of CP-ABE policies,
each device class can be targeted with one instance of the CP-ABE scheme.
Furthermore, each device usually has a limited set of (licensing) options that
determine the set of updates (and corresponding keys) this device may receive.
Therefore the complexity does not increase with the number of devices.

4.1 Update Publication Phase

The update publication phase of Updaticator is presented in Fig. 2. When a new
software update package, pkgu, is released, PS computes its identifier idu as the
hash value of pkgu, and generates a new key ku, for symmetric encryption.

Policy Server (PS) Update Server (US) Distribution Server (DS)

Input : skPS , pkgu, wu

1. idu ← Hash(pkgu)

2. ku ← GenKey()

3. A ← {AttrCj , s.t. AttrCj satisfies wu}
4. idu, ku, wu, A �
5. Store(idu, ku, wu)

6. ku,enc ← ABEncpkABE,wu
(ku)

7. for all AttrCj ∈ A do

8. t ← TimeStamp()

9. Payload ← (ku,enc, idu, t,Δt)

10. σUS ← SignskUS (Payload)

11. Content ← CreateContent(Payload , σUS
)

12. Publish(/.../info/a
Cj
1 /a

Cj
2 /.../a

Cj

|Attr
Cj |

, Content)

13. end for

14. pkgu,enc ← Encku (pkgu)

15. idu, pkgu,enc �
16. Publish(/.../new/idu, pkgu,enc)

Fig. 2. Update Publication

Then, PS associates an access policy wu to pkgu, creates the set A of all
the existing attribute combinations that match with wu, and finally forwards
the tuple (idu, ku, wu, A) to US , where it is stored inside a database (Fig. 2,
lines 1-5). After that, US proceeds with the publication of the symmetric key
ku. Here, the idea is to allow scalable distribution of the encryption key ku, at
the same time taking advantage from in-network caching provided by the NDN
distribution network, and providing fine-grained access control to ku. We achieve
this with the aid of CP-ABE. In our solution, each client has an attribute-
specific decryption key skABE,C corresponding to its set of attributes AttrC ,
while US has the public key pkABE that is used for encryption. US encrypts the
key ku with the public key pkABE , together with the access policy wu (Fig. 2,
line 6). Then, US records the current timestamp t and determines the time

84 M. Ambrosin et al.

interval Δt within which the update information should be considered fresh by
clients. This will allow clients to verify the freshness of the retrieved information
(Fig. 2, lines 8-9). Finally, US produces a signature σUS of idu, ku, t and Δt
(Fig. 2, line 10), and publishes the NDN content data = (idu, ku,enc, t,Δt, σ

US),
according to a specific naming scheme (Fig. 2, line 12). A possible example is the
following. Suppose AttrC = [aC1 , a

C
2 , ..., a

C
n] being the list of attributes of client

C. US distributes data under the NDN name /.../info/aC1 /a
C
2 /.../a

C
n , for

each AttrC that satisfies the access policy wu. Let A be the set of all m different
possible combinations of client attributes that satisfies the access policy wu.
US will publish the content data under m different names, thus treated by NDN
as m different contents. Let size(data) be the size of the packet data. In the worst
case, the same content will be cached m times by the distribution network, with
a theoretical maximum cost for the entire caching network, in term of space, of
m·size(data). However, optimized caching policies could reduce the space needed
to cache contents. For example, a possible improvement is the adoption of the
following caching policy: each data packet is decomposed into payload pdata ,
header hdata and packet signature sigdata . Then, the data packet payload pdata
is cached if and only if pdata is not already present in router cache, while header
and signature are always stored. This caching policy could reduce the required
caching space for contents with the same payload that are distributed under
different names, to a maximum of m · [size(hdata) + size(sigdata)] + size(pdata).

The update package pkgu is finally encrypted by PS with the symmetric key
ku (Fig. 2, line 14), and published by DS under the NDN name /.../new/idu

(Fig. 2, line 16). In this way, each interest issued by the client, for the software
update package identified by idu, will be satisfied either by DS directly or by
a NDN router within the distribution network, with a cached copy of pkgu,enc.
Note that the communication between PS , US and DS does not impose a specific
communication protocol to be used. We only assume that this communication
is secure (e.g., via the SSL/TLS protocol).

4.2 Update Selection Phase

The update selection phase of Updaticator is presented in Fig. 3. In order to ob-
tain information on the latest available update, a client C sends a request speci-
fying its attributes AttrC , i.e., issuing an interest for /.../info/aC1 /a

C
2 /.../a

C
n

(Fig. 3, line 1). The interest is forwarded to the NDN distribution network, which
either satisfies it with a matching copy of the required content, or forwards the
interest up to US , if no matching contents are available. In the latter case, the
information is then stored by the routers on its path back to the client (Fig. 3,
lines 2-5).

Upon receiving the response, the client first verifies the freshness of the re-
ceived content, i.e., if the software update information is outdated (Fig. 3, line
6). This is done checking if the value t + Δt is greater than the current time. If
the information is fresh, C proceeds by verifying the signature σUS and checking
if idu is already contained in UpdatesList, the list of all the updates previously

Updaticator: Updating Billions of Devices 85

Client (C) NDN Distribution Update Server (US)

Input : AttrC , skABE ,C , Network Input : skUS , pkABE ,

pkABE , pkUS

1. I: /.../info/aC
1 /aC

2 /.../aC
n �

2. if not CacheHit(I)

3. I: /.../info/aC
1 /aC

2 /.../aC
n �

4. C: (ku,enc, idu, t,Δt, σUS)�

5. C: (ku,enc, idu, t,Δt, σUS)�

6. if Fresh(t,Δt)

7. Verify
pkUS (σUS : (ku,enc, idu, t, Δt))

8. Verify(idu �∈ UpdatesList)

9. ku ← ABDec
pkABE ,skABE,C (ku,enc)

10. Add(idu, UpdatesList)

Fig. 3. Update Selection

installed by C (Fig. 3, lines 7-8). If all these tests pass, C decrypts ku,enc with
its secret key skABE,C and finally adds idu to UpdatesList (Fig. 3, lines 9-10).

In case either the authentication or the freshness verification fails, C will
repeat the update selection procedure, this time requesting the update in-
formation directly from US . In NDN, this can be achieved by setting the
AnswerOriginKind parameter of the interest packet to 0 [22]. In this way, NDN
routers will never satisfy the interest with cached content, but route it up to
US instead. It should be noted that in this case, the newly received message is
expected to be fresh, since it should originate directly from US . Otherwise the
client will conclude that it is under a DoS attack. Similarly, if the response is not
authentic, the client can detect the presence of a possible DoS attack, which pre-
vents the client from downloading new updates. Finally, only in the case in which
the newly received response is authentic and fresh, and idu ∈ UpdatesList, the
client will conclude that there are no available updates. Since any client whose
attributes match the access policy wu, can decrypt the response data, the same
content can be cached by the network and served to all the clients with the same
attributes.

4.3 Update Retrieval Phase

Fig. 4 shows the Updaticator update retrieval phase. After obtaining a valid
update identifier idu and the corresponding symmetric key ku, the client can
download the encrypted update package pkgu,enc from DS , specifying only the
update identifier idu, i.e., issuing an interest for /.../new/idu (Fig. 4, line 1).
Similar to the update selection phase, the interest is forwarded to the NDN

86 M. Ambrosin et al.

Client (C) NDN Distribution Distribution Server (DS)

Input : idu, ku Network

1. I: /.../new/idu �
2. if not CacheHit(I)

3. I: /.../new/idu �
4. C: pkgu,enc�

5. C: pkgu,enc�
6. pkgu ← Decku (pkgu,enc)

7. Verify(Hash(pkgu) = idu)

Fig. 4. Update Retrieval

distribution network, which either satisfies it with cached content matching the
interest, or forwards it up to DS (Fig. 4, lines 2-5). After receiving the encrypted
software update package, the client can decrypt it and verify its integrity by
comparing Hash(pkgu) with idu (Fig. 4, lines 6-7).

It should be noted that the probability of the request hitting a cache closer
to the client increases with the number of clients downloading the same soft-
ware update. Finally, for low-memory devices the encryption of the distributed
software updates can be performed with the encryption technique proposed by
Nilsson et al. in [25]. This technique splits the update in fragments. In reverse
order, for each fragment a hash is computed and the hash of each fragment is
stored together with the following fragment, i.e., forming a hash chain. Only the
fragment containing the information about the update, together with the hash
of the first fragment, is signed. In this way, a client can verify the authenticity
and integrity of the first fragment, and of all the other fragments verifying the
hash chain, thus allowing “load-and-install” of the update.

5 Security Analysis

We now provide a security analysis regarding the requirements from Sec. 2.2.

Confidentiality. Updaticator provides software update confidentiality through
the use of symmetric encryption. During the update publication phase of our
protocol, PS generates a key ku and associates it with the new software up-
date package pkgu. Since each key ku is randomly chosen, we can assume that
it is unique for each pkgu. Following the assumption that the publication in-
frastructure is secure, during this phase an attacker can neither extract ku from
PS or US , nor access the unencrypted update package. Furthermore, only the
encrypted package pkgu,enc and the hash of pkgu, i.e., idu, are transmitted or
published during each phase. As a consequence, since the cryptographic prim-
itives are assumed to be secure, both values do not allow the attacker to gain

Updaticator: Updating Billions of Devices 87

information on the unencrypted update package or key ku. The confidentiality
of the update package can therefore be reduced to the confidentiality of ku, i.e.,
an attacker can obtain the update package if and only if she is in possession
of ku, which she only can obtain through the update selection protocol. The
update selection phase uses CP-ABE in order to distribute ku. Each client has a
decryption key skABE , which matches exactly its set of attributes. Only clients
with a matching list of attributes will be able to decrypt it. We can conclude
that the confidentiality of each software update is assured.

Authenticity and Integrity. During update publication phase, the update identi-
fier idu is computed as the hash value of pkgu. Then, during the update selection
phase idu is provided by US in response to each device request inside a signed
message. Hence, the client can verify the authenticity of idu. As the client ver-
ifies the hash of the package against idu during the update retrieval phase of
Updaticator, and the hash function is collision-resistant, the authenticity and
integrity of the update package depends solely on the authenticity and integrity
of idu. Since US is trusted and the signature scheme is assumed to be secure, idu
is authentic and the client can conclude that the package is authentic as well.

Freshness of the Interactive Update Selection Protocol. During update selection
phase, the information about the latest software update available is distributed
in a cacheable form, i.e., it is intended for offline updates and is identical for a
class of clients. Consequently, such a response can also be provided by caches
or by offline media. When US first publishes a new available update package
pkgu, it also specifies the publication timestamp t and a time interval Δt, that
indicates the time interval in which a client should consider the information
fresh. A client can verify information freshness by checking its current timestamp
against t+Δt. If the content is not fresh, i.e., not received before t+Δt, the client,
once verified data authenticity, requests the same information directly from US .
For this reason, we conclude that Updaticator guarantees content freshness.

6 Prototype and Evaluation

We now present an evaluation of the proposed updates distribution scheme.
While arbitrary Cache-enabled Networks can be used, we benchmarked our
scheme using a distribution network built with Named-Data Networking as an
overlay network on top of TCP/IP. In this scenario, NDN nodes can be dis-
tributed over the Internet and can be used for cached distribution of arbitrary
content including updates.

6.1 Evaluation Setup

In order to provide a large-scale evaluation of the use of Named-Data Networking
(NDN) to build a network for efficient software update distribution, we carried
out our tests on the ns-3 simulator [24]. We focused on update requests generated

88 M. Ambrosin et al.

by always-on-line devices, which check for updates periodically. We assumed that
update requests are generated in bursts, i.e., n devices check for updates and/or
download an update within a time window interval tw = [tu, tu + Δt].

We compared content download via the HTTP protocol and a distribution
network built with NDN as a TCP/IP overlay. In the former case, we published
the content through an thttpd Web Server [32], while in the latter case, we
published the content on an NDN repository built using the NDNx protocol [23].
The integration of such an application with the ns-3 simulator has been achieved
by leveraging the DCE module [12] of ns-3. Our experiments were carried out
on a DFN-like topology [11], depicted in Fig. 5.

Fig. 5. DFN-like network topology

In our simulated topology, we introduced three different types of nodes. Core
nodes represent the main part of the topology and are connected through 1 Gbps
point-to-point links. We introduced two types of core nodes: NDN-capable core
nodes (triangles in Fig. 5), which can communicate via the NDN protocol, and
simple TCP/IP core nodes (white circles in Fig. 5). Edge nodes (dark circles
in Fig. 5) are used to access the network. In our simulation, edge nodes are
connected to core nodes through 100 Mpbs links. Entry nodes (rhombus in Fig. 5)
are nodes to which all clients are connected. Each client can perform both HTTP
and NDN requests.

We considered an increasing number of clients, from 100 to 900, connected
on the entry point nodes. Each device requested a content of 1 MB, starting
the download at a uniformly chosen time t in tw = [tu, tu + 30] seconds. We
then measured the average Content Retrieval Time (CRT) for the devices and
the total amount of traffic at the server side. Moreover, in order to provide a
complete vision of the advantages in adopting a Cache-enabled Network, we
analyzed the bandwidth utilization.

6.2 Network Load on the Update Server

The first result of our analysis was that our approach indeed reduces the network
load on the update server from linear (or worse) to just a constant level (Fig. 6).

Updaticator: Updating Billions of Devices 89

This is achieved by the caching of updates over the NDN distribution network
so that the server only needs to deliver a small number of original copies of
each update to populate the caches. Fig. 6a and Fig. 6b depict average data
traffic sent and received by the server. Results are shown for a time window of
30 seconds. The results show that the use of a Cache-enabled Network as NDN
highly reduces the load at the server side from linear (please note that graphs
in Fig. 6a and Fig. 6b are represented in log-scale) to constant, thus allowing
system scalability and preventing DDoS attacks against DS .

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900

T
ra

ns
m

itt
ed

 D
at

a
(M

B
)

Number of clients

HTTP
NDN

(a) Sent data

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900

R
ec

ei
ve

d
D

at
a

(M
B

)

Number of clients

HTTP
NDN

(b) Received data

Fig. 6. Sent and received data by the server, NDN vs. direct download (content size
1 MB; time window of 30 s; log-scale transforms linear growth into a log curve)

6.3 Time Required to Retrieve an Update

The introduction of a Cache-enabled Network also reduces the average Content
Retrieval Time (CRT) (Fig. 7) to a constant even for large numbers of devices.
The traditional scheme without caching only performs for a small number of
devices. For larger numbers the performance drops dramatically. Furthermore,
under load the individual times vary within in a wide range. This makes the
individual update times largely unpredictable.

Crypto Performance. For performance testing purposes, we adopted the cpabe

library [9], which provides an implementation of the CP-ABE scheme proposed
by Walters et al. [6], and the openssl library [27]. We selected AES-CBC, with
key size of 256 bits for the symmetric encryption of the software update package
and the symmetric key ku, and adopted the RSA algorithm with a 4096 bits key
for content signing. Moreover, we considered SHA256 and SHA384 for hashing.
Our tests have been conducted on a system equipped with two 2.4 GHz Intel
CoreTM 2 Duo CPUs and 4 GB RAM and a 256 bit key ku for AES-CBC. Results
are reported in Table 1.

90 M. Ambrosin et al.

 0

 10

 20

 30

 40

 50

 60

 70

 100 200 300 400 500 600 700 800 900

C
R

T
 (

s)

Number of clients

NDN
HTTP

Fig. 7. Average time needed to retrieve a content of size 1 MB via NDN vs. direct
download via HTTP for 900 clients and 1 MB content download; time window tMAX =
30

Table 1. Evaluation of the cryptographic primitives used in our simulation (AES,
SHA256 and SHA384 with 1 MB input; CP-ABE with 65 bytes input and 5 attributes;
signatures with 438 bytes input; average numbers over 10,000 runs

Function Time Function Time

CP-ABE encrypt 77.47 ms CP-ABE decrypt 32.62 ms

AES-256-CBC encrypt 28.77 ms AES-256-CBC decrypt 26.61 ms

RSA signature create 31.64 ms RSA signature verify 5.20 ms

SHA256 13.3 ms SHA384 10.99 ms

6.4 Power Consumption of the Client Devices

Reducing the network load and required computation is essential in order to limit
power consumption. This is particularly true for resource-constrained devices.
The introduction of the freshness interval “Δt” allows each device to remain
off-line most of the time (only checking for updates once in each time interval),
and also provides the possibility for software distributors to determine the best
tradeoff between client device power consumption and software update freshness.

7 Related Work

In this section we provide an overview of previous work related to secure software
update distribution. Bellissimo et al. [5] provide a security analysis of existing
update systems, which reveals several weaknesses such as vulnerabilities against
man-in-the-middle attacks. This emphasizes the importance of secure software
update distribution mechanisms.

We focus on encrypted updates that can be cached. Due to space limitations,
we do not survey non-cacheable updates distribution protocols such as the one

Updaticator: Updating Billions of Devices 91

proposed in [14], or mechanisms that do not provide encryption such as the one
in [8]. Instead, we contrast our work to related work on updates using broadcast
encryption as the underlying key management mechanism. Adelsbach et al. [4]
propose to use broadcast encryption to distribute confidential software updates
to embedded controllers inside an automotive system. Therefore their solution
provides confidentiality and at the same time enables caching of updates, since
the encrypted update is identical for all devices. Misra et al. [20] propose to use
broadcast encryption to ensure confidentiality of a Content-Distribution Network
built on top of NDN. Unfortunately, in this work the authors do not provide a
cacheable “content selection” mechanism.

Similarly to OMA DRM [26], our scheme allows cacheable distribution of
content (by separating the encrypted object from the associated decryption key).
However, in order to retrieve the decryption key and the associated access policy,
OMA DRM requires each client to establish an interactive session with the Policy
Server. By using CP-ABE, our protocol does not require this interaction hence
allowing a cacheable and scalable distribution of the decryption key.

We believe that broadcast encryption schemes (such as the ones in [7] and [17])
are not suitable for our system model. Indeed, adopting a broadcast encryption
scheme, the Policy Server would need to define a cryptographic broadcast system
for each group of devices, hence complicating the key management for both
the Policy Server and the devices. Moreover, public-key broadcast encryption
schemes do not provide constant size encryption keys, and therefore do not scale
to billions of devices. Finally, while the broadcast encryption scheme proposed
in [10] achieves constant size keys, the group management and the encryption
must be carried out by the same entity. This is a limitation in our system model,
since the creation and management of the device group (usually done by the
device vendor) and the encryption of a targeted update (usually done by software
vendor) could no longer be separated. In contrast, CP-ABE provides constant
size keys, while allowing encryption using public parameters [16].

8 Conclusions and Future Work

Fast and secure software update distribution is a key issue in modern IT sys-
tems, particularly when the updates concern the fix of security vulnerabilities
or are essential for business. As shown by our analysis, our approach is the first
solution that makes large-scale updates practical for billions of devices. Future
work in this area will focus on the optimization of software update distribution
for local networks and resource-constrained devices. Specific constraints coming
from these environments call for novel solutions for these devices. In particular,
those solutions should be able to coordinate different devices to maintain the
compatibility among them (e.g., specifying constraints via policies), and being
resilient to malicious devices that might hinder the success of the proposal.

Finally, we plan to provide revocation of individual devices. This aspect be-
comes an essential requirement in a stronger adversary model, where we consider
compromised clients as possible attackers. Ostrovsky et al. [28] propose a CP-
ABE scheme to specify revoked users directly inside the access policy of the

92 M. Ambrosin et al.

ciphertext. However, the size of their policy grows linearly with the number of
revoked clients. Therefore we are also looking into other possible solutions, e.g.,
hybrid schemes such as [35] and [34]. Furthermore, this requires a way to identify
the source of a leaked update (traitor tracing), which is particularly challenging
in our system model, since existing solutions prevent the cacheability of updates.

References

1. 2013 US-CERT Techical Security Alerts,
http://www.us-cert.gov/ncas/alerts/2013

2. Akamai Content Delivery Network, http://www.akamai.com
3. Akamai Secure Content Delivery, http://www.akamai.com/dl/

feature sheets/fs edgesuite securecontentdelivery.pdf

4. Adelsbach, A., Huber, U., Sadeghi, A.-R.: Secure Software Delivery and Installation
in Embedded Systems. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.) ISPEC
2005. LNCS, vol. 3439, pp. 255–267. Springer, Heidelberg (2005)

5. Bellissimo, A., Burgess, J., Fu, K.: Secure Software Updates: Disappointments and
New Challenges. In: 1st USENIX Workshop on Hot Topics in Security, pp. 37–43.
USENIX Association, Berkeley (2006)

6. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-Policy Attribute-Based Encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Com-
puter Society, Washington (2007)

7. Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with
Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

8. Cameron, D., Liu, J.: apt-p2p: A Peer-to-Peer Distribution System for Software
Package Releases and Updates. In: 28th IEEE Conference on Computer Commu-
nications, pp. 864–872. IEEE, New York (2009)

9. Cpabe toolkit, http://hms.isi.jhu.edu/acsc/cpabe/#documentation
10. Delerablée, C., Paillier, P., Pointcheval, D.: Fully Collusion Secure Dynamic Broad-

cast Encryption with Constant-Size Ciphertexts or Decryption Keys. In: Takagi,
T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575,
pp. 39–59. Springer, Heidelberg (2007)

11. Deutsches forschungsnetz (DFN), https://www.dfn.de/en/
12. Direct Code Execution (DCE),

https://www.nsnam.org/overview/projects/direct-code-execution/

13. Dolev, D., Yao, A.C.: On the Security of Public Key Protocols. IEEE Transactions
on Information Theory 29(2), 198–208 (1983)

14. Gkantsidis, C., Karagiannis, T., Vojnovic, M.: Planet Scale Software Updates. In:
2006 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, pp. 423–434. ACM, New York (2006)

15. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based Encryption for Fine-
grained Access Control of Encrypted Data. In: 13th ACM Conference on Computer
and Communications Security, pp. 89–98. ACM, New York (2006)

16. Guo, F., Mu, Y., Susilo, W., Wong, D.S., Varadharajan, V.: CP-ABE With
Constant-Size Keys for Lightweight Devices. IEEE Transactions on Information
Forensics and Security 9(5), 763–771 (2014)

17. Halevy, D., Shamir, A.: The LSD Broadcast Encryption Scheme. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)

http://www.us-cert.gov/ncas/alerts/2013
http://www.akamai.com
http://www.akamai.com/dl/feature_sheets/fs_edgesuite_securecontentdelivery.pdf
http://www.akamai.com/dl/feature_sheets/fs_edgesuite_securecontentdelivery.pdf
http://hms.isi.jhu.edu/acsc/cpabe/#documentation
https://www.dfn.de/en/
https://www.nsnam.org/overview/projects/direct-code-execution/

Updaticator: Updating Billions of Devices 93

18. Heartbleed SSL protocol vulnerability,
https://www.schneier.com/blog/archives/2014/04/heartbleed.html

19. Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard,
R.L.: Networking Named Content. In: 5th International Conference on Emerging
Networking Experiments and Technologies, pp. 1–12. ACM, New York (2009)

20. Misra, S., Tourani, R., Majd, N.E.: Secure Content Delivery in Information-centric
Networks: Design, Implementation, and Analyses. In: 3rd ACM SIGCOMM Work-
shop on Information-centric Networking, pp. 73–78. ACM, New York (2013)

21. Named-Data Networking Project (NDN), http://named-data.org
22. NDNx Documentation - Interest Message,

http://named-data.net/doc/0.1/technical/InterestMessage.html

23. NDNx – NDN protocol implementation,
http://named-data.net/codebase/platform/moving-to-ndnx/

24. NS-3 Simulator, https://www.nsnam.org/
25. Nilsson, D.K., Roosta, T., Lindqvist, U., Valdes, A.: Key Management and Se-

cure Software Updates in Wireless Process Control Environments. In: 1st ACM
Conference on Wireless Network Security, pp. 100–108. ACM, New York (2008)

26. Open Mobile Alliance. DRM Specification ver. 2.2, Technical Report (2011)
27. OpneSSL project, https://www.openssl.org/
28. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based Encryption with Non-

monotonic Access Structures. In: 14th ACM Conference on Computer and Com-
munications Security, pp. 195–203. ACM, New York (2007)

29. Philips Hue, http://meethue.com/
30. Sahai, A., Waters, B.: Fuzzy Identity-based Encryption. In: Cramer, R. (ed.) EU-

ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)
31. Samuel, J., Mathewson, N., Cappos, J., Dingledine, R.: Survivable Key Compro-

mise in Software Update Systems. In: 17th ACM Conference on Computer and
Communications Security, pp. 61–72. ACM, New York (2010)

32. thttpd web server, http://www.acme.com/software/thttpd
33. Windows Azure, http://www.windowsazure.com/en-us/
34. Yu, S., Wang, C., Ren, K., Lou, W.: Attribute Based Data Sharing with Attribute

Revocation. In: 5th ACM Symposium on Information, Computer and Communi-
cations Security, pp. 261–270. ACM, New York (2010)

35. Zhiqian, X., Martin, K.M.: Dynamic User Revocation and Key Refreshing for
Attribute-Based Encryption in Cloud Storage. In: 11th IEEE International Con-
ference on Trust, Security and Privacy in Computing and Communications, pp.
844–849. IEEE, New York (2012)

36. Zhou, Z., Huang, D., Wang, Z.: Efficient Privacy-Preserving Ciphertext-Policy At-
tribute Based Encryption and Broadcast Encryption. IEEE Transactions on Com-
puters PP(99) (2013)

https://www.schneier.com/blog/archives/2014/04/heartbleed.html
http://named-data.org
http://named-data.net/doc/0.1/technical/InterestMessage.html
http://named-data.net/codebase/platform/moving-to-ndnx/
https://www.nsnam.org/
https://www.openssl.org/
http://meethue.com/
http://www.acme.com/software/thttpd
http://www.windowsazure.com/en-us/

Local Password Validation Using Self-Organizing Maps

Diogo Mónica and Carlos Ribeiro

INESC-ID, Instituto Superior Técnico,
Universidade de Lisboa

Rua Alves Redol 9, 1000-029, Lisboa
{diogo.monica,carlos.ribeiro}@ist.utl.pt

http://www.gsd.inesc-id.pt

Abstract. The commonly used heuristics to promote password strength (e.g.
minimum length, forceful use of alphanumeric characters, etc) have been found
considerably ineffective and, what is worst, often counterproductive. When cou-
pled with the predominancy of dictionary based attacks and leaks of large pass-
word data sets, this situation has led, in later years, to the idea that the most
useful criterion on which to classify the strength of a candidate password, is the
frequency with which it has appeared in the past.

Maintaining an updated and representative record of past password choices
does, however, require the processing and storage of high volumes of data, mak-
ing the schemes thus far proposed centralized. Unfortunately, requiring that users
submit their chosen candidate passwords to a central engine for validation may
have security implications and does not allow offline password generation. An-
other major limitation of the currently proposed systems is the lack of generalisa-
tion capability: a password similar to a common password is usually considered
safe.

In this article, we propose an algorithm which addresses both limitations. It is
designed for local operation, avoiding the need to disclose candidate passwords,
and is focused on generalisation, recognizing as dangerous not only frequently
occurring passwords, but also candidates similar to them. An implementation of
this algorithm is released in the form of a Google Chrome browser extension.

Keywords: password validation, dictionary attacks, self-organizing maps.

1 Introduction

The need to promote the use of strong passwords has led to the widespread use of pass-
word validation heuristic rules, (e.g. minimum length, forceful use of alphanumeric
characters, etc). However, these rules are largely ineffective (e.g. ”p@ssw0rd” will typ-
ically be considered a sufficiently strong password) and are often counterproductive.
Minimum size requirements, for example, will typically favor the choice of plain text
phrases or other low entropy sequences [1], since users want to be able to remember
the chosen long password strings. Even though possibly strong in terms of brute force
attacks, this undesirable side-effect leaves the chosen passwords highly vulnerable to
dictionary attacks. Also, these heuristics are inadvertently leading users to the repeated
use of very common solutions, which can be easily remembered, while still obeying

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 94–111, 2014.
c© Springer International Publishing Switzerland 2014

http://www.gsd.inesc-id.pt

Local Password Validation Using Self-Organizing Maps 95

the requirements. In fact, users typically circumvent the imposed pseudo-randomness,
low-memorability, by using a few common tricks (”p@ssw0rd” being again a typical
example), which are then used repeatedly. This leads to the reiterated use of what are,
in fact, very weak passwords, highly vulnerable to statistical guessing attacks (a dic-
tionary based attack ordered by decreasing probability of occurrence). When coupled
with the predominancy of dictionary based attacks, these password validation rules may
therefore be decreasing overall security levels, instead of promoting them.

This situation has led, in later years, to the idea that the most useful criterion on
which to classify the strength of a given password, is the frequency with which it has
appeared in the past (e.g. [2], [3], [4]). In fact, some organizations, like Twitter, are
already prohibiting further use of their most common passwords, to hamper the effec-
tiveness of statistical dictionary based attacks.

Maintaining an Internet-wide updated and representative record of past password
choices does, however, require access to the passwords of at least some representative
internet-scale systems (with a high number of users) and the processing of high vol-
umes of data. The schemes thus far proposed are, therefore, centralized. When users
want to verify the adequacy of a given password, they will typically submit the pass-
word to this centralized engine for validation. While such centralized validation may
be acceptable when effected within the scope of the organization under which the pass-
word is to be used, it creates some security concerns if users want to validate passwords
in a generic engine, since it implies the disclosure of the candidate password. Also, it
requires connectivity whenever password choices are to be made.

Alternatively, a compressed version of the observed password database may be down-
loaded, to enable local validation. This shift towards local validation avoids the need
to disclose candidate passwords but, due to the huge amount of passwords (tens to
hundreds of millions) in any representative snapshot of past history, requires rates of
compression which lossless compression cannot achieve. Another fundamental con-
cern with the local validation approach is the need to guarantee that diffusion of the
validation database does not compromise existing passwords, by publicly distributing
information capable of supporting dictionary based attacks.

A viable (lossy) compression mechanism was proposed in [4], where the authors pro-
pose the creation of an oracle to identify undesirably popular passwords. Their scheme
is based on an existing data structure known as a count-min sketch (CM-sketch), which
the authors populate with existing users’ passwords and use to efficiently track pass-
word popularity within the user base. The solution proposed addresses both the com-
pression and the password compromise concerns but does so in a centralized fashion.

However, independently of the underlying implementation details of such a
popularity-based password validation scheme (local or centralized, compression rates,
etc), the overall concept has an underlying weakness, which stems from the way hu-
mans tend to make their password choices: when faced with the rejection of their chosen
password, users will, with high probability, search for minor variations ”close” to the
desired candidate password, by introducing or replacing non-defacing elements (and
thereby maintaining its memorability) until an acceptable instance is obtained. This
behavior is the reason passwords such as ”p@ssword”, ”ashley123”, or ”il0veu” have
become so common.

96 D. Mónica and C. Ribeiro

Since attackers are well aware of this type of behavior, smarter dictionary attacks
already explore the ”neighborhood” of the historically more frequent passwords before
moving to the next one. In fact, many publicly available password recovery tools are al-
ready using several different sets of rules to produce variations of the known dictionary
entries (e.g. Hashcat’s [5] ”best64.rules”). For password validation, this means that if,
for example, ”password1” is historically a very frequent choice, then ”close-by” varia-
tions such as ”password2”, or ”p@ssw0rd1” should also be classified as weak, even if
historically their frequency would not classify them as such.

The goal of this paper is therefore to design a popularity based classification scheme,
which is not only capable of classifying a password as weak because it is historically a
frequent choice, but also because it is ”too close” to a frequent password and, hence, is
likely to be guessed by a modern statistical attack. Another important side effect of this
generalisation capability is the fact that it allows local validation without the need for
frequent updates of the validation database, since this intrinsic generalisation capabil-
ity will protect users from the evolutionary changes of the database between updates.
The proposed scheme is envisaged for local operation and, as such, addresses all the
above discussed issues concerning size, connectivity, and non-disclosure of historical
passwords. As a proof-of-concept we released an implementation of this scheme in the
form of a Google Chrome browser extension that anyone can obtain for free on the
chrome web store.

The rest of this paper is organized as follows: Section 2 describes the proposed ap-
proach, and discusses individually its constituting steps. Section 3 evaluates the perfor-
mance of the proposed scheme. Section 4 details our proof-of-concept implementation.
Finally, Section 5 concludes the paper, and discusses directions for future work.

2 Our Approach

There are three conceptual steps in our classification engine: compression, generalisa-
tion and hashing. When validating a password, users will execute the fourth and final
conceptual step of the overall scheme: classification. This last step is the only that the
final user is required to do; it is also the only step where algorithm execution speed is
critical. The overall proposed algorithm is depicted in Figure 1, and is best addressed
by discussing the compression step first.

2.1 Compression

Let us discuss the compression step as applied directly to the raw passwords. The pos-
sibility of pre-processing prior to compression (e.g. feature extraction) will not be ad-
dressed in this paper.

Since the overall algorithm must recognize the concept of closeness between pass-
words, the compression step must preserve the topological proximity of the input pass-
words. That is: passwords which are close in the input (non-compressed) space should
be also close in the output (compressed) space. This precludes the use of algorithms
such as the CM-sketch presented in [4]. In this article, we will be using Self-Organizing
Maps (SOM) to achieve the intended similarity preserving compression. SOM are a

Local Password Validation Using Self-Organizing Maps 97

password
1111111
aaaa
123456

Password
List

Generalization

Classification
Database

Compression

Hashing

User-sideServer-side

download

Classification

Candidate
Passwords

password
1111111
aaaa
123456

Fig. 1. Overall architecture

simple, well known clustering tool, capable of providing very synthetic summaries of
the input data. They are a type of unsupervised neural network, capable of reflecting in
the output space the topological proximity relations present in the input space. As will
be seen, using a SOM for the compression step of our overall algorithm also provides
an easy way to achieve the desired generalisation capability.

Self-Organizing Maps (SOM). A SOM is a lattice of nodes (a 2D rectangular lattice
is used in this article). Each node has both a topological position within the lattice
(x, y coordinates, in our case), and a vector of weights (the model, m) of the same
dimension of the input vectors. Typically, the model vectors are randomly initialized.
Training occurs over many iterations; at each iteration, the input vectors (previously
used passwords, in our case) are presented to the network, one at a time, in random
order (training can also be done in batch, but that is merely an implementation issue).
For each input password, the following steps are executed:

– Determine which node has a model closer to the input password (according to the
similarity measure chosen for the input space). This node is commonly called the
BMU (Best Matching Unit);

iBMU = min
i
{similarity(nodei, password)}

– Find the setN of all nodes in the lattice neighborhood of the BMU. The radius r of
this neighborhood is typically monotonically decreasing; in the first iterations, large

98 D. Mónica and C. Ribeiro

radii are used for the definition of the neighborhood, but the radius will decrease
for later iterations;

N = {nodei :
√

(xi − xBMU)2 + (yi − yBMU)2 ≤ r}

– Update the models of all nodes in the lattice neighborhood of the BMU, to make
them approximate the input password. Typically, the closer a node is to the BMU
in the lattice, the more its model is changed towards the input password, accord-
ing to some monotonically decreasing function h(δxi, δyi), δxi and δyi being the
difference in lattice coordinates between node i and the BMU:

mi(t + 1) = mi(t) + h(δxi, δyi)α(passwordt −mi(t)).

In this equation, α, the learning factor (0 < α < 1), determines how heavily the
models should be puled towards the input password at each iteration (α is, typically,
a decreasing function of the iteration number).

Even though several minor variations have been proposed and analysed in the liter-
ature, particularly in what concerns the shape and behavior of r, α and h(δx, δy) as
training proceeds (these details will not be discussed here, since they are essentially not
relevant for our results), the intended result of the training step is always the same: to
have the nodes of the latticed pulled towards the input vectors, but preserving the de-
sired degree of neighborhood cohesion. Since the number of nodes in the lattice is much
smaller than the number of input passwords, the resulting map is a summary replica of
the input space, with a much lower number of elements, but maintaining its topological
relations. The literature on SOM is abundant. For further details, see, for example, [6]
and [7].

Compression Ratio. The compression ratio is N
M , N being the number of input pass-

words, and M the number of nodes in the SOM. As will be shown later, with the pro-
posed implementation, pmiss = 0, for all compression ratios. That is: for any chosen
compression ratio, there will be a null probability of failing to flag as dangerous a
password whose historical frequency of appearance is higher than the defined thresh-
old. This means that one may choose any desired rate of compression without fearing
that excessive compression may provoke an incorrect password validation. However,
if the compression ratio is chosen too high, there will be a loss in the discriminating
capability of the network, since too many input passwords will be mapped into each
node/neighborhood, resulting in a high false alarm rate when validating prospective
candidates. As will be seen in Section 3, good results have been obtained for maps
of a few thousand nodes (e.g. 6000 nodes), even when summarising lists with tens of
millions of passwords.

Similarity Measures. The concept of similarity is central to SOM operation, since it
defines the topological characteristics of the input space to be preserved in the output
space. In this particular application, we are therefore faced with the issue of defining
an appropriate measure of similarity between passwords. This is, in fact, a two-pronged

Local Password Validation Using Self-Organizing Maps 99

problem. Firstly, the similarity measure to be used must reflect in some appropriate
manner the user perception of ”closeness” between passwords, something which is
clearly not uniquely defined. Many distances and/or similarity measures for categor-
ical data have been proposed (e.g. [8], [9]), but their resulting notion of similarity is
not always compatible with the type of minor variations that a user is likely to use
when forced to modify a chosen (and rejected) password. Secondly, the chosen mea-
sure of similarity must allow the concept of ”fractional approximation”. When training
the SOM, we will need to change the node models, to make them approximate the input
password, and there are no unique solutions to the problem of approximating categori-
cal data; also, we will want to use diminishing degrees of approximation as the distance
to the BMU increases, as determined by h(δx, δy); this implies the use of a similarity
measure for which an increase in similarity can be defined in a quasi-continuous way.
In this article, we will be using a mixed, non-pure, measure of similarity, capable of ad-
dressing both problems. Designating by d(p1, p2) the dissimilarity between passwords
p1 and p2, we define.

d(′password′,′ p@ssw0rd′) =
√

(97− 64)2 + (111− 48)2 · 22 = 284.48, (1)

d(p1, p2) =

√√√√ n∑
j=1

(p1(j)− p2(j))2 · hamm(p1, p2)β , (2)

where n is the maximum number of characters of the input passwords, p1(j) is the
ASCII code of the jth character of p1 (same for p2(j)), and hamm(p1, p2) is the
character-wise Hamming distance between the two passwords (that is, the number of
characters in which they differ), often referred to as the ”overlap measure” (e.g. [8]).
For example, for β = 2, the dissimilarity between ”password” and ”p@ssw0rd”, ac-
cording to this measure, will be 284.48, as given by the product of 71.12 (euclidean
distance between ASCII codes) and 4 (square of the character-wise Hamming distance:
2). Two comments should be made concerning this dissimilarity measure:

– Firstly, we note that the first factor allows for a quasi-continuous solution to the
approximation problem: approximating a model from the input password will be
made by simply approximating the corresponding ASCII codes. The jth character
of the ith model will be updated as:

∀j : mi,j(t + 1) = mi,j(t) + Δ, (3)

where
Δ = round(h(δxi, δyi)α(pt(j)−mi,j(t))).

The approximation of the ASCII codes will also generate, at discrete steps, a de-
crease in the Hamming distance between the model and the input password and,
thus, a decrease in the second factor;

– Secondly, we should note the role of the β parameter. Since the Hamming dis-
tance bears a stronger correlation with the human concept of closeness between

100 D. Mónica and C. Ribeiro

passwords, an increase in β will pull the overall measure of dissimilarity towards
a simple human-related overlap distance, desensitizing the dissimilarity measures
relative to the numerical distance between the ASCII codes. In this article, we will
use β = 2.

Procedure. The SOM models are typically initialized with random values between 0
and 128. Training is done with as few as 30/40 iterations, with monotonically decreasing
values of the learning factor α and neighborhood radii. The SOM models are updated
as presented in Section 2.1. Once training is completed, the full list of passwords is
again presented to the network, and nodes are labeled with the (absolute) frequency
of appearance of the passwords for which that node is the BMU. If more than one
password maps to the same node, the node’s label is the frequency of appearance of the
most frequent one. The label on each node is, therefore, a measure of the popularity of
the most frequent password on the training set for which that node is the BMU.

2.2 Generalisation

Once the compression phase completes, we are left with a map which could be directly
used for password classification, as follows: i) a popularity threshold is chosen; ii) each
new candidate password is presented to the network, and the corresponding BMU de-
termined; iii) if the popularity level of the resulting BMU is above the chosen threshold,
the candidate password is rejected, due to similarity with existing popular passwords;
otherwise, it is accepted as a valid password.

Note that, by design, any password in the training set more popular than the chosen
threshold will map to a BMU with a popularity label greater or equal to the chosen
threshold. Denoting by L(i) the popularity label of the ith node, byBMU(p) the BMU
corresponding to password p, and by f(p) its frequency of appearance, we thus have
that:

∀τ : f(p) ≥ τ ⇒ L(BMU(p)) ≥ τ. (4)

This means that the probability of wrongly classifying a password whose occurrence is
higher than the threshold as safe (pmiss) is 0, as intended.

At this point, the generalisation capabilities of the scheme may be smaller than de-
sired. At the output of the compression phase, it is possible to have nodes with very
low popularity adjacent to nodes of high popularity. However, the topological preserva-
tion property of the SOM implies that, with high probability, their models are close to
one another. Hence, if one of them is very popular as a BMU within the training data,
the desired generalisation capability would dictate that nearby models should also be
avoided, even if they were not popular within the password list used to train the SOM.

The generalisation capability of the network may thus be increased by imposing
some popularity leakage from local maxima to neighboring nodes. This can be achieved
by simple spacial low-pass filtering of the popularity levels across the map. Let us
designate by φ(x, y) the popularity label of the node with lattice coordinates (x, y).
The smoothed version of the SOM (and the desired level of generalisation capability)
can be obtained as in (5):

φ(x, y) ∗K(x, y), (5)

Local Password Validation Using Self-Organizing Maps 101

where the ∗ operator stands for 2D convolution, and K(x, y) is any chosen low pass
kernel. Since φ(x, y) ≥ 0, to preserve the pmiss = 0 property, we need to condition
the chosen kernel to K(0, 0) ≥ 1. In this article, no attempt to optimize the choice of
the kernel was made. Smoothing was performed with a simple non-linear 2D lowpass
mask, designed to preserve local maxima and their popularity levels:

K(x, y) = max(k1(x, y), k2(x, y)), (6)

k1(x, y), k2(x, y) being the 2D kernels in Figure 2.

Fig. 2. Smoothing kernel

Decreasing the bandwidth of the used kernel will increase the generalisation capabil-
ity. However, it will concurrently decrease the resolution of the classification scheme,
since the resulting popularity leakage may force bigger subsets of the password space
to be flagged as ”too popular” and, thus, become unusable.

2.3 Hashing

At the end of the generalisation phase, the SOM map is finalized, and ready to classify
candidate passwords as ”acceptable” or ”not acceptable”, depending on the popularity
label of the corresponding BMU. However, at this point, the models in the SOM are a
compressed summary of the training passwords. As such, the SOM presents a security
risk, since it carries too much information concerning these passwords. In fact, given
a strong enough preponderance of the most common training passwords, some models
may constitute pure copies of those passwords. This potential security problem becomes
even more severe in our case, where a distribution of the SOM is envisaged, to allow
client-side offline operation.

To address this problem, the SOM resulting from the generalisation step is hashed,
prior to storage and/or disclosure. On the user side, classification will therefore be made
on hashed space. As in the compression step, the hash function must not, however, de-
stroy the topological proximity relation between the input and output spaces. If a candi-
date password is similar to a popular one, their hashes must also be similar. Otherwise,

102 D. Mónica and C. Ribeiro

they would not deterministically map to neighboring BMUs, and the intended general-
isation capability would be lost.

There is a considerable body of work on similarity preserving hash functions (e.g.
[10] to [11]). However, in this particular application, two additional constraints must be
met by the hash functions:

– Computing the hash for a single password must not require knowledge of all other
passwords. Otherwise, users will not be capable of hashing their candidate pass-
words;

– The hash function must not be invertible. Otherwise, possession of the hashed SOM
would still constitute an attack vector for password estimation.

These two conditions imply that previously proposed similarity preserving hashing
methods cannot be used.

The first condition implies that alternatives relying on computation of the adjacency
matrices between all passwords (such as in e.g [11]) cannot be used, since the set of
known passwords will not be available to the user when hashing candidate passwords.

The second condition poses a more general difficulty. Cryptographic hashes clearly
comply with this condition, but are meant, by design and definition, to destroy any
topological proximity relations existing in the input data; they cannot, therefore, be
directly used in this context. Similarity preserving hashes such as e.g. [10] or [12],
on the other hand, are capable of maintaining proximity relations (up to a point), but
were never designed to be non-invertible. The hash functions used in the frequently used
Locality Preserving Hashing methods ([10], [13] and related work) are deterministically
invertible; all methods based on projection on random-spaces such as, for example, the
one found in [12], are prone to inversion attacks if the projection matrix and shift vector
are known (and they must be known to users, since they must be capable of hashing
their candidate passwords). As pointed out in [12], if these quantities are unknown,
the method would be secure, from an informational point of view, but that is not the
case here. Forcing the non-invertibility of the projection matrix used on these methods
does also not provide enough security. Reconstruction can still be attempted and attack
vectors obtained algebraically (i.e. by careful use of the Moore-Penrose pseudo inverse,
or similar techniques).

In this paper, hashing will still be made by linear vector projection, to maintain prox-
imity relations. The possibility of reconstruction is avoided by suppressing some of the
information concerning the resulting vectors. More precisely, passwords are projected
into the Fourier harmonic space, and the resulting phase information is discarded. That
is:

hash(p) = |FFT (p)| (7)

The classification database to be sent to users is, therefore, not the trained SOM, but
a map of the magnitude of the Fourier transform of the nodes’ models. The absence of
phase information means that the models cannot be reconstructed, and, therefore, the set
of training passwords is not compromised by diffusion of the classification database. In
fact, the absolute values of the Fourier transform of the models only contain information
concerning their second moments (as directly results from the Wiener-Kintchin theo-
rem). Passwords cannot thus be inferred from the classification database (even though
their autocorrelation function can).

Local Password Validation Using Self-Organizing Maps 103

One consequence of the informational loss in the hashing step is that, when classify-
ing a candidate password, users will not be evaluating its direct proximity to the nodes
of the trained SOM, but will, instead, be evaluating their spectral similarity. This does
not affect the pmiss = 0 perfect performance (the power spectrum of a password will
always be closer to itself than to the power spectrum of a different password), but will
introduce a slightly different measure of similarity in the classification phase. Namely,
the Hamming distance between the candidate password and the nodes of the SOM can-
not be considered at this point, since there simply is not enough information to compute
such a distance. This also means that, after the hashing step, the popularity levels of the
nodes must be recomputed, since some of the mapping of passwords to nodes in the
spectral domain may differ from the corresponding mappings before transformation.

Two further notes must still be made, before addressing the final step of the algo-
rithm. Firstly, we note that, since all models are real valued, their Fourier transforms
are symmetric around the origin and, hence, the magnitude of the negative frequency
bins can be discarded, thus reducing the size of the classification database by almost a
factor of 2. Also, to further restrict the amount of information present in the distributed
classification database, the nodes’ popularity labels can be recoded at this point with
a single bit, to simply label nodes as being ”on or above danger threshold” (e.g. ”1”)
or ”below danger threshold” (e.g. ”0”), since that is all the information needed for the
intended binary classification. However, sometimes, the user may want to have some
control on the classification threshold being used. A more stringent threshold may be
desired in critical contexts (e.g. bank accounts’ passwords) than in more relaxed situa-
tions (e.g. temporary accounts). Therefore, the popularity levels of the models may be
coded with more bits, corresponding to any desired number of discrete levels. The user
will then be capable of selecting the desired ”password strength” level, with passwords
being classified as ”dangerous” only if their corresponding BMU has a popularity label
higher than the level selected by the user as threshold.

An example of a map of 6000 nodes trained with the Rockyou password set is shown
in Figure 3. Forbidden nodes (above threshold) are represented in black and acceptable
nodes in white. We also represent the same map after smoothing (with the smoothing
kernel of Figure 2) in grey color.

2.4 Classification

The classification step is now trivial. The classifying tool made available to users sim-
ply:

1. Computes the power spectrum of the candidate password;
2. Using the local copy of the classification database, determines the BMU (node with

the lower Euclidean distance to the power spectrum of the candidate password);
3. Rejects the candidate if the label of the BMU is ”1”, and validates it as an acceptable

password if the BMU’s label is ”0”

We note that this classification step is very fast. All the computational effort of the
overall method lies in the training phase, which is centrally made by the classification
database provider, making this method ideal for password validation even in resource
constrained devices (e.g. mobile devices).

104 D. Mónica and C. Ribeiro

Fig. 3. SOM Map with 6000 nodes

3 Performance

To evaluate the performance of the proposed scheme, we will need to consider its i)
compression rate, ii) statistical performance, and iii) generalisation capability and
consistency. As expected, these three indicators are highly interdependent (e.g. higher
compression rates will typically imply inferior statistical performance). For the first two
indicators (compression rate and statistical performance), we will be able to compare
the proposed scheme with the CM-sketch [4]. The third parameter must, however, be
evaluated without the benefit of comparison since, to our knowledge, there is no other
proposed scheme for password validation which, while operating based on the popu-
larity levels of previously seen passwords, is capable of generalizing and flagging as
dangerous passwords which, even though not previously seen, are too close to popular
choices. A final relevant parameter to be discussed is iv) classification speed.

3.1 Compression Rate and Statistical Performance

Since the intended use of the proposed scheme involves a user downloading the classi-
fication database, it is important to evaluate the achievable compression rates, and the
decrease in performance with increasing compression rate. Let us compare the perfor-
mance of the SOM approach with CM-sketch[4] by looking at the passwords in the
Rockyou set [14] (32602348 passwords of that list were used; the maximum password
size is 30 bytes).

Firstly, we must note that both approaches will have pmiss = 0, for any given com-
pression rate. That is: any password belonging to the training set with a popularity level
above the defined threshold will be flagged as dangerous with unit probability, indepen-
dently of the size of the sketch or the SOM map and, hence, the obtained compression
rate. Hence, comparison will be made from the point of view of pFA, the probability

Local Password Validation Using Self-Organizing Maps 105

of false alarm. The theoretical bounds for the CM-sketch are given in [15]: for a (d, w)
CM-sketch, the required number of lines d (each line corresponds to a different hash
function) and columns w can be obtained as follows:

w =

⌈
e

ε

⌉
, d =

⌈
ln

1

δ

⌉
, (8)

where e is Napier’s constant, and (1 − δ) is the probability that the estimated number
of occurrences of any given password (n̂i) will be within a semi-interval of εN of the
real number of occurrences (ni):

n̂i ≤ ni + εN, (9)

N being the total number of passwords. However, the typical performance of the CM-
sketch will typically be well within the theoretical bounds. As such, using these bounds
would present the CM-sketch case in an unduly unfavorable light. Furthermore, no
equivalent analytic bounds exist for the SOM case. As such, the comparison will be
made by Monte Carlo simulation. The SOM models were initialized with random values
between 0 and 128. Training was done with a few tens of iterations (typically 30/40
iterations), with monotonically decreasing values of the learning factor α:

α = 0.9 · e−
(i−1)·ln(9)

(I−1) , (10)

where i is the iteration number (1 ≤ i ≤ I). At each iteration, training was done using a
batch approach (see e.g. [16], [17]), since sequential training would be computationally
prohibitive for the millions of passwords in the training set.

In Figure 4, we can see the False Alarm probability (pFA) given by a (140, 200)
SOM, and different sized CM-sketches, when applied to the mentioned list of pass-
words, with classification thresholds corresponding to the popularity level of each one
of the 100000 more popular passwords of the Rockyou set. For each threshold, all
32602348 passwords on the password list were classified as being dangerous (popu-
larity above threshold) or not (popularity below threshold); the presented pFA is the
observed ratio of false positives. The x-axis in this figure corresponds to the ordinal
position (in decreasing popularity level sort order) of the password whose popularity
level is being used as threshold.

Two notes should be made, concerning this Figure. Firstly, we should consider the
very different natures of a CM-sketch’s false positive, and what we are calling a SOM’s
false positive. In the CM-sketch case, due to the uniformly distributed randomizing
effect of the hash functions, false positives are purely stochastic events, occurring on
uniform, flat spaces; in the SOM case, however, a false positive is not a purely stochastic
event, since it typically will occur as a (non-stochastic) result of the closeness between
the candidate password and an existing popular password. Hence, while a CM-Sketch
false positive is a pure statistical classification error, a SOM false positive may not be an
error at all, but a manifestation of the desirable generalisation properties that this con-
struct possesses by design. Since any list with real world passwords will, in fact, pos-
sess many passwords bearing close proximity relations with popular passwords (e.g. the

106 D. Mónica and C. Ribeiro

popular choices ”password” or ”password1”, and the much less popular ”password8” or
”password9”), a much bigger rate of false positives was expected from the SOM, when
compared with the CM-sketch. However, as can be seen in Figure 4, the false alarm rate
of the SOM is comparable with the false alarm rate of CM-sketches of an equivalent
number of cells. In fact, the SOM even presents mostly lower false positives rates than,
for example, the (3, 28000) CM-sketch, which has three times more cells than the SOM.

Secondly, we should point out that, since each output cell of a CM-Sketch is a single
scalar, and each node in the SOM is a vector, the number of cells does not directly
map the physical size of the compressed password list. For example, the (3, 56000)
CM-sketch used in Figure 4 will typically require 672 kbytes, while the (140, 200)
SOM, even though with only one sixth of the cells, did require 843.5 kbytes (each node
requires 30 bytes for the model, plus one bit for its label).

The most noticeable feature to be appreciated in this comparison is, therefore, the
considerably different behavior of the SOM and CM-sketch pFA when the popularity
threshold decreases, reflecting the different nature of the classification ”errors” in each
case. Insofar as compression rates go, both schemes can be considered roughly equiv-
alent (even though with a clear advantage of the CM-sketch in the region of higher
popularity thresholds)

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SOM vs CM Sketch

Popularity ranking order of chosen threshold

p
F

A

SOM (140,200)

CMSkectch(3,28000)

CMSkectch(3,56000)

CMSkectch(3,84000)

CMSkectch(3,112000)

Fig. 4. Size requirements comparison

3.2 Generalisation Capability and Consistency

The fundamental difference between the proposed SOM based scheme and the previ-
ously existing CM-Sketch approach is the design objective of having the capability to

Local Password Validation Using Self-Organizing Maps 107

generalize, and flag as dangerous password choices similar to previously used popu-
lar ones. Hence, the evaluation of the achieved generalisation capability of the overall
scheme is paramount.

Clearly, generalisation increases with increasing compression rate: smaller SOM will
possess fewer nodes and, hence, each node will be chosen as the BMU for an increas-
ing larger number of different entries in the training set. This means that they will be-
come less and less specialized, and its model will, therefore, reflect an increasing larger
neighborhood of passwords. On the other hand, a SOM with a large number of nodes,
as compared to the size of the training set, will acquire a high degree of specialisation
of its models. Each node will therefore be more narrowly tuned to smaller password
neighborhoods. To increase specialisation (thus reducing generalisation), one must in-
crease the size of the SOM; to increase generalisation (thus reducing specialisation),
one must decrease the SOM size, or apply a smoothing window to the obtained SOM,
such as the one presented in Section 2.2. This later alternative (the use of a smoothing
window) tends to produce more consistent generalisation behaviour.

As is also clear, evaluating the consistency of the generalisation achieved by the
SOM approach, implies answering the following two questions:

– Is the SOM generalising in a useful way? That is: is it flagging as dangerous, not
only the previously popular passwords, but also the corresponding mutations of
weak passwords that people are prone to use in their defacing attempts?

– Is the SOM generalising too much? That is: is it flagging as dangerous passwords
which do not present any real danger and, thus, unduly limiting the space of avail-
able choices?

To answer to the first question, one needs to estimate the password mutations that
people are prone to use, in their effort to deface their chosen passwords, without losing
memorability. Such exercises have previously been done in several fora, though each
choice of the set of mutation rules has a high level of subjectivity. A well known set
of mutation rules is the one used by John-the-Ripper [18] , a widely known and used
password cracking software tool. To evaluate how the proposed scheme deals with the
John the Ripper mutations, a (60,100) SOM was trained with the 32 million Rockyou
passwords used earlier in this paper; the classification threshold was chosen as 1000
(the popularity level of the 1438th most popular password). The first 500 most popular
passwords were then presented to John the Ripper, to produce all possible mutations.
Lastly, these 500 passwords and all their mutations were classified by our SOM based
scheme. Naturally, one would expect that i) all 500 passwords were flagged as danger-
ous (since pmiss = 0), and ii) most of their mutations are also flagged as dangerous
(since the John-the-Ripper mutation rules are supposed to reasonably emulate user’s
password defacing choices). The obtained results can be seen in Table 1.

As can be seen in this table, not only were all previously known popular choices
recognised as dangerous, but also the vast majority of their John-the-Ripper mutations
were recognised as also being dangerous (not because they were historically popular,
but simply by being similar to historically popular choices).

To address the second identified question, and determine if the SOM generalising
too much, and, thus, unduly limiting the space of available choices, a set of 1 million

108 D. Mónica and C. Ribeiro

Table 1. Passwords flagged as dangerous

Passwords Flagged as dangerous

500 most probable 100%

All mutations 84%

random passwords was generated. Each password was constituted by a string of random
characters (ASCII codes comprised between 32 and 127), and with random lengths be-
tween 1 and 21: uniform distributions were used in both cases. Being random, the level
of similarity with previously used popular passwords should be small and, hence, on
would expect their vast majority to be approved as valid passwords. In fact, only 11.3%
were considered dangerous by the (60,100) SOM trained with the Rockyou password
list.

The previous results indicate, therefore, that the intended generalisation capability is
operating properly: known popular passwords are forbidden; passwords which are sim-
ilar to known popular passwords are mostly forbidden; random, non-structured pass-
words are mostly allowed.

As a last example of performance, and still using the same SOM, we classified
wordlists of several languages, broadly covering the range from germanic to romanic
Indo-European languages, with a total of 1.64 million words, from [19]. Since the SOM
was trained with the Rockyou list, where english and spanish derived words are dom-
inant, one would expect a higher percentage of forbidden passwords in the English an
Spanish files, not only due to the eventual appearance, in those files, of passwords pop-
ular in the training set, but mainly due to syntactic similarities within the languages.
The results can be seen in Figure 5. As expected, English and Spanish will provide the
higher percentage of words considered dangerous, due to similarities with passwords on
the training set. Also, we can see, from this picture, that the classifier seems to be more
sensitive to words of romanic structure (right side of the picture), than to languages of
germanic origin (left side of the picture). This tendency is not unexpected, since the
training set is densely populated with words from english and spanish; what might be
unexpected is the capability of the classifier to tune to the syntactic structure of the
training set and, thus, display this type of selectivity. As a final note, we may note that,
independently of the language, dictionary words tend to be more susceptible to be con-
sidered dangerous than random passwords, even if they are new to the classifier. This
is, again, an expected result, since dictionary words will possess an underlying similar
syntactic structure to dictionary words of similar languages appearing in the training
set.

3.3 Classification Speed

Even though training of the classification database (SOM) is a lengthy, computationally
heavy process, this step is centralised, and has no stringent timing requisites associated
with it. The one step that must be light and fast is the final classification step, since users
will locally execute it each time a password is tested. In the proposed scheme, however,
the classification of a password as ”allowable” or ”not allowed” is extremely fast, and

Local Password Validation Using Self-Organizing Maps 109

German Dane Dutch English Spanish Italian Latin
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Language

D
an

g
er

o
u

s
p

as
sw

o
rd

s
(f

ra
ct

io
n

 o
f

to
ta

l)

Fig. 5. Flagging in several languages

independent of the size of both the set of previously known passwords. The user sided
operations are a simple DFT transform of a very short sequence (whose length is the
size of the proposed password), and a search for the BMU in the classification database
(whose size is in the order of a few thousand models). As such, classification speed
is not an issue in this scheme, which can be used even by devices with very limited
computing power or low latency requirements.

4 Proof of Concept Implementation

To empirically test the use of this password validation scheme, we created an indepen-
dent implementation in the form of a Google Chrome browser extension. This imple-
mentation is available on the chrome webstore with the name: SOM Password
Validator1.

There were mainly three things that we wanted to show with this implementation: i)
the scheme can be easily implemented; ii) local validation of passwords is fast; iii) and
that the final size of the application database distributed to users is small.

The implementation is in javascript, and the final product has less than 500 lines
of code. The time taken to validate each individual password is effectively negligible,
taking less than one second to validate 1000 different passwords. The database shipped
with the application has a total size of 1MB, bringing the total size of the application
(with images included) to short of 2MB. A screenshot of the extension can be seen in
Figure 6.

1 The extension can be obtained here: http://goo.gl/xjcGW8

http://goo.gl/xjcGW8

110 D. Mónica and C. Ribeiro

Fig. 6. Google Chrome browser extension implementation

5 Conclusions and Future Work

A scheme for password validation was presented. As in previous approaches to the
problem, the proposed solution builds on the notion that frequent, common passwords
constitute bad choices, and that rarely (or never) seen passwords should be favored,
since they are more prone to resist to statistical dictionary attacks. However, our ap-
proach differs from existing proposals in that: i) it is envisaged for local, decentralized
operation, and ii) it has generalisation capabilities. This generalisation capability not
only allows detection of dangerous passwords by proximity to popular ones, but also
avoids the need for frequent updates of the validation database, since it protects users
from the evolutionary changes of the database between updates.

These goals, even though conceptually simple, imply the recourse to several concepts
which are amenable to very different implementations and choices. The base tool used
in this article (SOM) can be replaced by other clustering/mapping alternatives; the used
similarity measure for non-categorical data is arbitrary in a large degree, and different
alternatives could have been pursued; the advantages and implications of a preliminary
feature-extraction step prior to SOM training can be discussed and argued; the hashing
functions used in the masking step are also nothing else than arbitrary, even though
effective; all in all, in almost all steps of the method, many and widely different options
could have been made. As such, there is no claim of optimality in this article. In fact,
if any claim is made, it is one of almost certainty of non-optimality, and of the need to
further pursue potential gains in performance by further work concerning the choices
to be made at each individual step. However, the approach has proved feasible. It is
possible to build a password classification tool amenable to local operation, and capable
of effectively facing the challenges imposed by the ”mutation-capable” last generation
of statistical dictionary based attacks.

References

1. Clair, L.S., Johansen, L., Enck, W., Pirretti, M., Traynor, P., McDaniel, P., Jaeger, T.: Pass-
word exhaustion: Predicting the end of password usefulness. In: Bagchi, A., Atluri, V. (eds.)
ICISS 2006. LNCS, vol. 4332, pp. 37–55. Springer, Heidelberg (2006)

Local Password Validation Using Self-Organizing Maps 111

2. Castelluccia, C., Durmuth, M., Perito, D.: Adaptive password-strength meters from markov
models. In: NDSS. The Internet Society (2012)

3. Spafford, E.H.: Opus: Preventing weak password choices. Computers & Security (1992)
4. Schechter, S., Herley, C., Mitzenmacher, M.: Popularity is everything: A new approach to

protecting passwords from statistical-guessing attacks. In: Proceedings of the 5th USENIX
Conference on Hot Topics in Security, HotSec 2010. USENIX Association, Berkeley (2010)

5. Hashcat password recovery tool (2013), http://hashcat.net/hashcat/
6. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall PTR,

Upper Saddle River (1998)
7. Kohonen, T.: Neurocomputing: Foundations of research. MIT Press, Cambridge (1988)
8. Boriah, S., Chandola, V., Kumar, V.: Similarity measures for categorical data: A comparative

evaluation. In: Proceedings of the Eighth SIAM International Conference on Data Mining
9. Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categorical

values (1998)
10. Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing the curse of di-

mensionality. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Com-
puting, STOC 1998. ACM, New York (1998)

11. He, K., Wen, F., Sun, J.: K-means hashing: An affinity-preserving quantization method for
learning binary compact codes. In: Proceedings of the 2013 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE Computer Society, Washington, DC (2013)

12. Boufounos, P., Rane, S.: Secure binary embeddings for privacy preserving nearest neighbors.
In: Proceedings of the 2011 IEEE International Workshop on Information Forensics and
Security, WIFS 2011. IEEE Computer Society, Washington, DC (2011)

13. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme based
on p-stable distributions. In: Proceedings of the Twentieth Annual Symposium on Computa-
tional Geometry, SCG 2004. ACM, New York (2004)

14. Rockyou list of leaked passwords (2013),
https://wiki.skullsecurity.org/Passwords

15. Cormode, G., Muthukrishnan, S.: An improved data stream summary: The count-min sketch
and its applications. J. Algorithms (April 2005)

16. Kohonen, T.: Fast evolutionary learning with batch-type self-organizing maps. Neural Pro-
cess (April 1999)

17. Fort, J.C., Letremy, P., Cottrell, M.: Advantages and drawbacks of the batch kohonen algo-
rithm. In: Verleysen, M. (ed.) ESANN (2002)

18. John the ripper password cracking tool, http://www.openwall.com/john/
19. Openwall wordlist collection, http://www.openwall.com/wordlists/

http://hashcat.net/hashcat/
https://wiki.skullsecurity.org/Passwords
http://www.openwall.com/john/
http://www.openwall.com/wordlists/

Verifiable Delegation of Computations

with Storage-Verification Trade-off�

Liang Feng Zhang and Reihaneh Safavi-Naini

Institute for Security, Privacy and Information Assurance
Department of Computer Science

University of Calgary, Calgary, Canada

Abstract. Outsourcing computations has attracted much attention in
recent years. An important security challenge is ensuring the correct-
ness of the computed results. In the verifiable computation (VC) model
of Gennaro, Gentry and Parno (CRYPTO 2010), a client can delegate
the computation of its function to a cloud server, and efficiently verify
the correctness of any computed results. In the existing VC schemes, the
server must store an encoding of the function that doubles the required
cloud storage, compared with storing the function itself. In this paper,
we introduce a parameter that measures the trade-off between the re-
quired cloud storage and the client’s verification time. We construct four
(privately or publicly) VC schemes for delegating polynomials and matri-
ces. These schemes allow the client to significantly reduce the consumed
cloud storage by slightly increasing its verification time.

Keywords: verifiable computation, storage, verification, trade-off.

1 Introduction

Cloud computing allows resource-restricted clients to outsource (delegate) the
storage of their data, and/or computations on the data, to cloud servers. The
clients can access their data and request for computations on the outsourced
data at their will. Outsourcing however, raises many security concerns such as
the integrity of the stored data, and the delegated computations on the data. In
this paper we are concerned with the latter.

The problem of verifiably outsourcing computation has been extensively stud-
ied in recent years, resulting in a number of models motivated by different appli-
cation scenarios. In the verifiable computation (VC) model of Gennaro, Gentry
and Parno [8], the client invests a one-time expensive computational effort to
compute and store an encoding of its function with a cloud server, such that
any evaluation of the function by the server, can be efficiently verified (using
substantially less time than doing the evaluation). The one-time effort spent on
encoding can be amortized over many evaluations of the function. Following [8],
there has been a long list of papers on verifiable computation, both for generic
functions [8,6,1,17,5] and for specific functions [2,7,16].

� This research is in part supported by Alberta Innovates Technology Futures.

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 112–129, 2014.
c© Springer International Publishing Switzerland 2014

VC with Storage-Verification Trade-off 113

A VC scheme is called privately verifiable, if verification of the computed re-
sult can only be done by the client who has delegated the function; and publicly
verifiable, if anyone with access to the computed result and possibly some public
information can perform verification. To provide verifiability in a VC scheme,
the encoding of the delegated function may include the delegated function itself,
as well as some authentication information that will be used by the server to gen-
erate proofs. A common drawback of the existing VC schemes [8,6,1,17,5,2,7,16]
is that, the encoding requires at least twice more cloud storage, compared with
the delegated function. We define the storage overhead of a VC scheme as the
ratio of the total cloud storage used by the encoding, to the cloud storage re-
quired for the delegated function itself. Less overhead is desirable because it
means more efficient schemes. Under this definition, the existing VC schemes
[8,6,1,17,5,2,7,16] have storage overhead ≥ 2.

1.1 Our Work

The emphasis of all existing VC schemes has been on efficient verification, and
little attention has been paid to reducing the storage overhead. In practice a
client may be willing to spend a bit more time on verification, if it can substan-
tially reduce the consumed cloud storage. Note that the delegated function can
be of tera byte size and so reducing the storage overhead can lead to substantial
cost saving. This would be particularly attractive if the client does not need to
compute the function very frequently and remains idle in between. In this paper,
we investigate the trade-off between the consumed cloud storage and the client’s
verification time. We focus on the VC schemes of [2,7] for delegating polynomi-
als and matrices (any matrix can define a function that takes a vector as input
and outputs the vector-matrix multiplication). Both functions have important
applications such as in verifiable keyword search, discrete Fourier transform, and
linear transformations.

We introduce a trade-off parameter s, that measures the trade-off between the
required cloud storage and the client’s verification time. We break the delegated
computation into s sub-computations, from which the result of the delegated
computation can be reconstructed. In our setting, the cloud provides the s sub-
computation results, along with one proof; the client verifies the correctness of
the s results, and then computes the result of the delegated computation. The
s subcomputations are the inner products of a common vector, with s vectors
which are obtained from the delegated function. We authenticate the s vectors
with a single tag vector, and thus obtain a saving of cloud storage (for tags).

We construct two VC schemes for delegating m-variate polynomials of degree
≤ d in each variable, a privately verifiable scheme, Π1, and a publicly verifiable
scheme, Π2; and two VC schemes for delegating m × d matrices, a privately
verifiable scheme, Π3, and a publicly verifiable scheme, Π4.

Compared with [2,7], our schemes have storage overhead 1 + 1/s < 2. To
achieve such a smaller storage overhead, the client’s verification time in Π1 and
Π2 is only slightly increased compared with [2] and [7], respectively. The scheme
Π3 is the first private VC scheme for delegating matrices. The scheme Π4 is

114 L.F. Zhang and R. Safavi-Naini

more efficient than [7] not only in terms of storage overhead but also in terms
of the client’s verification time.

1.2 Background and Our Technique

For any finite set X , the notation “x← X” means choosing an element x from
X uniformly at random. Benabbas et al. [2] (Lemma 5.4) proposed a technique
that allows a client to securely delegate the inner product computation of a fixed
vector f = (fi)i∈I ∈ ZN

p with any vector y = (yi)i∈I ∈ ZN
p , where p is a λ-bit

prime and I is a finite ordered set of cardinality N . The client picks α← Zp, r =
(ri)i∈I ← ZN

p , and stores fi and ti = αfi + ri with the server for every i ∈ I.
In order for the client to learn the inner product ρ = f · y, the server returns ρ
and a proof π = t · y. The client accepts ρ only if π = αρ + r · y. A malicious
server may try to deceive the client into accepting ρ̄ �= ρ, using a forged proof
π̄ such that π̄ = αρ̄ + r · y. A successful “try” implies (requires) the knowledge
of α = (ρ̄ − ρ)−1(π̄ − π), which is unknown to the server. Thus, the security
is guaranteed. Inner product captures numerous widely used computations. For
example, one can take I ⊆ {0, 1, . . .}m, and consider f as the coefficients of a
polynomial f(x) =

�
i∈I

fi ·xi, where xi = xi11 · · ·ximm for x = (x1, . . . , xm), and

every i = (i1, . . . , im) ∈ I. Let y = (xi)i∈I. Then the inner product f · y exactly
represents the polynomial evaluation f(x).

The technique however, has two drawbacks: (a1) The client must keep a secret
key (α, r) which consumes more storage than f ; (a2) The verification requires
the client to compute r · y which is as heavy as the delegated computation (i.e.,
f ·y). Benabbas et al. [2] constructed a VC scheme for delegating the polynomial
f(x), based on an adaption of this technique. Let G be a cyclic group of prime
order p ≈ 2λ, generated by g. In their scheme, the client picks α ← Zp and a
PRF Fk : I → G; it stores fi and ti = gαfi · Fk(i) with the server for every

i ∈ I. Given x, the server returns ρ = f(x) and a proof π = Πi∈I(ti)
xi

. The

client believes that “ρ = f(x)” only if π = gαρ · τ , where τ =
�

i∈I
Fk(i)x

i

. If we
denote Fk(i) = gri for every i, then [2] actually uses their proposed technique,
on the exponent of g. The client can keep (α, k) for verification and therefore
avoid (a1). On the other hand, a critical observation of [2] is that one can choose
Fk (with closed-form efficiency) such that computing τ requires substantially
less time than computing ρ. This efficiency property of Fk removes (a2). The
scheme of [2] has been extended to construct public VC schemes for delegating
polynomials and matrices [7].

Our Technique. We propose a technique for securely delegating the inner prod-
uct computations of s given vectors, F1 = (F1,i)i∈I, . . . ,Fs = (Fs,i)i∈I ∈ ZN

p ,

with any vector y = (yi)i∈I ∈ ZN
p , where p is a λ-bit prime and, I is an ordered

set of cardinality N . Note that the technique of [2] can delegate the s given
vectors separately but require the server to store a separate vector of N tags for
each of the s vectors. Our main observation is that the s inner product compu-
tations involve a common vector y, and we can authenticate the s given vectors
with a single vector of N tags such that the server can generate a single proof for

VC with Storage-Verification Trade-off 115

the s inner product computations. The details of our technique are as follows.
The client picks α = (α1, . . . , αs) ∈ Zs

p and r = (ri)i∈I ← ZN
p , and computes

the tag ti = α1F1,i + · · · + αsFs,i + ri of the data blocks (F1,i, F2,i, . . . , Fs,i)
for every i ∈ I. It then stores F1, . . . ,Fs, and a tag vector t = (ti)i∈I, with the
server. In order for the client to learn ρ1 = y · F1, . . . , ρs = y · Fs, the server
returns ρ = (ρ1, . . . , ρs) and a single proof π = t · y; the client accepts ρ only
if π = α · ρ + r · y. As expected, the s vectors are authenticated using one tag
vector t of size N . A malicious server may try to deceive the client into accepting
ρ̄ �= ρ with a forged proof π̄ such that π̄ = α · ρ̄+r ·y. A successful “try” implies
(requires) the knowledge of a nonzero vector u = (π − π̄, ρ̄ − ρ) ∈ ZN+1

p such

that u · v = 0, where v = (1,α) ∈ ZN+1
p . As α is hidden from the server, it is

intuitively hard for the malicious server to find u. Our technical lemma (Lemma
1) in Section 2.2 shows that this intuition is true, even if the malicious server is
allowed to make a polynomial (in λ) number of “tries”, say u1, . . . ,uq, and is
told whether uj ·v = 0 or not for every “try” uj . Our client can choose α in two
ways: (b1) pick α← Zs

p; (b2) pick α← Zp, and set α = (α, α2, . . . , αs). In this
paper we use our technique, together with the PRFs with closed-form efficiency,
to delegate functions whose computations can be captured by the inner prod-
uct computations of s given vectors, with a common (for all s vectors) vector.
The s given vectors represent the delegated function, and the common vector is
computed from an input to the delegated function. The functions we consider
include polynomials and matrices.

1.3 Verifiable Delegation of Polynomials

Let f(x) =
�

i∈{0,1,...,d}m fi · xi ∈ Zp[x] be an m-variate polynomial of degree

≤ d in each variable. Let s be the trade-off parameter, n = (d + 1)/s and
I = {0, 1, . . . , n− 1} × {0, 1, . . . , d}m−1. Then

f(x) =
s�

�=1

x
(�−1)n
1

��
i∈I

f(�−1)n+i1,i2,...,im · xi
�
. (1)

For every � ∈ [s], let F� = (F�,i)i∈I ∈ Z
|I|
p , be a vector such that F�,i =

f(�−1)n+i1,i2,...,im for every i = (i1, . . . , im) ∈ I. Let y = (xi)i∈I. The equa-
tion (1) reduces the computation f(x) to s inner product computations ρ1 =

y · F1, . . . , ρs = y · Fs since f(x) =
�s

�=1 ρ� · x
(�−1)n
1 . Thus, the verifiable dele-

gation of f(x) can be captured by our technique.
In this paper, we construct two schemes Π1 and Π2 for verifiably computing

the s inner products and thus give two VC schemes for delegating f . In both
schemes, the client stores (F1,i, . . . , Fs,i) and a corresponding tag ti with the
server for every i ∈ I. Given x = (x1, . . . , xm) ∈ Zm

p , the server returns ρ =

(ρ1, . . . , ρs) and a proof π = Πi∈I(ti)
xi

. Let G = 〈g〉 be a group of prime order
p, and let Fk : I → G be a PRF. In Π1, the client picks α ← Zp and computes
ti = gαF1,i+···+αsFs,i · Fk(i), for every i ∈ I; it accepts ρ only if π = gα·ρ · τ ,

where α = (α, . . . , αs) and τ =
�

i∈I
Fk(i)x

i

. The scheme Π2 uses a group G

116 L.F. Zhang and R. Safavi-Naini

that admits a bilinear map e (see Section 2.3 for bilinear maps). The client picks
α = (α1, . . . , αs) ← Zs

p and computes ti = gα1F1,i+···+αsFs,i · Fk(i), for every

i ∈ I. It accepts ρ only if e(π, g) = e(g, g)α·ρ · τ , where τ = e(
�

i∈I
Fk(i)x

i

, g).
The scheme is publicly verifiable: e(g, g)α1 , . . . , e(g, g)αs and τ are safely made
public such that the verification can be done publicly. The Fk in both schemes
is chosen such that computing τ requires substantially less time than computing
f(x). The security of Π1 is based on the SDDH or DDH assumption for G; the
security of Π2 is based on the DLIN assumption for G.

1.4 Verifiable Delegation of Matrices

Let E = (Ei,j) be an m × d matrix over Zp. Let s be the trade-off parameter,
n = d/s and I = [m] × [n]. We consider E as a block matrix E = (F1, . . . ,Fs)
where the block F� consists of n columns of E numbered from (� − 1)n + 1 to
�n for every � ∈ [s]. It is easy to see that F� = (F�,i) is an m × n matrix such
that F�,i = Ei,(�−1)n+j for every i = (i, j) ∈ I. Let x = (x1, . . . , xm) ∈ Zm

p . For
every j ∈ [n], we have s inner product computations of x with the j-th columns
of the block matrices F1, . . . ,Fs.

In this paper, we construct two schemes Π3 and Π4 for verifiably computing
the s inner products for all j ∈ [n] and thus give two VC schemes for delegating
E. In both schemes, the client stores (F1,i, . . . , Fs,i) and a corresponding tag
ti with the server for every i = (i, j) ∈ I. Given x = (x1, . . . , xm) ∈ Zm

p , the
server returns ρ = (ρ1, . . . , ρd) = x · E and n proofs {πj = Πm

i=1(ti,j)
xi}nj=1,

one for each set of s inner products. Let G = 〈g〉 be a group of prime order
p and let Fk : I → G be a PRF. In Π3, the client picks α ← Zp and defines

ti = gαF1,i+α2F2,i+···+αsFs,i · Fk(i) for every i = (i, j) ∈ I. The client accepts ρ

only if πj = g
�s

�=1
ρj+(�−1)n ·α�

· τj for every j ∈ [n], where τj =
�m

i=1 Fk(i, j)xi .
The Fk is chosen such that computing {τj}nj=1 requires substantially less time
than computing x ·E. The scheme Π4 is a public version of Π3 using a group G

that admits bilinear map. The security of Π3 is based on the DDH assumption
for G; the security of Π4 is based on the DLIN assumption for G.

1.5 Performance Analysis and Extensions

We do performance analysis of the constructed schemes. Our analysis focuses
on the trade-off between the required cloud storage, and the client’s verifica-
tion time. The storage overheads of our schemes are all equal to 1 + 1/s, which
is smaller than [2,7]. The clients in Π1 and the scheme in [2], require around
((m + 2)λ + 4s)λ2 and (m + 1)λ3 bit operations for each verification, respec-
tively. Thus, Π1 achieves significant saving of the cloud storage at the price of
slightly increasing the client’s verification time. The scheme Π4 uses a bilinear
map instance (p,G,GT , e, g) (see Section 2.3). The client’s verification time is
dominated by (m + n) exponentiations in G, sn exponentiations in GT and 2n
pairing computations. Compared with Π4, the client’s verification time of [7] is
dominated by (m+sn) exponentiations in G, sn exponentiations in GT , and 2sn

VC with Storage-Verification Trade-off 117

pairing computations. Thus, our scheme Π4 is more efficient not only in terms of
storage overhead but also in terms of client’s verification time. The performance
analysis of Π2 and Π3 can be done similarly.

Our schemes for delegating f(x) reduce f(x) to the computations of s shorter
polynomials, each taking one of the vectors F1, . . . ,Fs as coefficients, and having
degree ≤ n − 1 in x1, and degree ≤ d in any other variable. We can repeat
this degree reduction on x2, . . . , xm and thus reduce f(x) to the computations
of sm shorter polynomials, each having degree ≤ n − 1, in any variable. Our
technique can also be used to delegate multiple distinct functions, resulting in
batch verification, which is more efficient than delegating the functions separately
using the schemes of [2,7]. For example, when m = 1 we can treat the vectors
F1, . . . ,Fs in Π1 as coefficients of s univariate polynomials; Π1 allows us to
efficiently verify the evaluations of the s polynomials at the same point, with a
single proof from the server.

1.6 Related Work

The problem of verifiably outsourcing computation has a long history. We refer
readers to [8,2] for a more detailed treatment of solutions that use strong as-
sumptions on the adversary, and more theoretical solutions that use interaction.
Here we are interested in non-interactive solutions in the standard model.

Verifiable Computation. The verifiable computation (VC) of Gennaro et al.
[8] gave a non-interactive solution for verifiably outsourcing computation in the
standard model. The VC schemes of [8,6,1] can delegate a function that is repre-
sented by a boolean circuit. They stay as mainly theoretical solutions because of
using fully homomorphic encryption (FHE). The memory delegation of [5] can
delegate computations on an arbitrary portion of the outsourced data. However,
the client must be stateful and the solution suffer from the impracticality of
PCP techniques. Benabbas et al. [2] initiated the study of practical (private)
VC schemes for delegating specific functions such as polynomials. Parno et al.
[17] initiated the study of public VC schemes. Fiore et al. [7] extended the con-
structions of [2] and obtained public VC schemes for delegating polynomials and
matrices. Papamanthou et al. [16] constructed a public VC scheme for delegat-
ing polynomials that allows efficient update. The storage overhead of all these
schemes is ≥ 2.

Homomorphic MACs and Signatures. A homomorphic MAC or signature
scheme [10,4] allows one to freely authenticate data and then verify computa-
tions on the authenticated data. Such schemes result in VC: the client stores
data blocks and their MAC tags (or signatures) with a server; the server com-
putes some admissible functions on an arbitrary subset of the data blocks; the
server provides both the result and a MAC tag (or signature) vouching for the
correctness of the result. The storage overhead of the resulting VC is ≥ 2.

Non-interactive Proofs. Goldwasser et al. [12] gave a non-interactive scheme
for delegating NC computations. However, for any circuit of size n, the server’s
running time is a high degree polynomial in n, and so not practical. The SNARGs

118 L.F. Zhang and R. Safavi-Naini

or SNARKs [3,9], gives a non-interactive scheme for delegating computation.
However, they rely on non-falsifiable assumptions [11] which are much stronger
than the common assumptions (such as DDH), used in this paper.

Proofs of Retrievability. PoR [13,18] allows a client to store a file with a
server, and then efficiently check the file’s integrity. Homomorphic linear au-
thenticators that are similar to our authenticators, have been used in [18] but
not formally proved as an authentication system. We give a formal proof here.
Other differences with [18] are as follows: firstly, the α in [18] was chosen using
(b1); we can use (b2) and thus have a much shorter secret key; secondly, they
cannot use PRFs with closed-form efficiency while we can combine such PRFs
with our technique to give VC schemes.

Organization. In Section 2 we recall the notions of VC and PRFs with closed-
form efficiency; In Section 3 we present the schemes Π1-Π4; Section 4 contains
some concluding remarks.

2 Preliminaries

Let λ be a security parameter. We denote by “poly(λ)” and “neg(λ)” the classes
of polynomial functions and negligible functions in λ, respectively. Let A(·) be
a probabilistic polynomial time (PPT) algorithm. The notation “y ← A(x)”
means that y is the output of A on input x.

2.1 Verifiable Computation

A verifiable computation (VC) scheme is a tuple Π = (KeyGen,ProbGen,
Compute,Verify) of four algorithms, where

– (ek, dk, vk) ← KeyGen(1λ, f) is a key generation algorithm that takes as
input the security parameter λ and a function f and outputs an evaluation
key ek, a delegation key dk and a verification key vk;

– (σ, τ) ← ProbGen(dk, x) is a problem generation algorithm that takes as
input dk and any input x in the domain of f and outputs an encoding σ of
x and some auxiliary information τ for verification;

– (ρ, π) ← Compute(ek, σ) is a computation algorithm that takes as input ek
and σ and outputs an answer ρ and a proof π; and

– {f(x),⊥} ← Verify(vk, τ, ρ, π) is a verification algorithm that verifies ρ with
(vk, τ, π); it outputs f(x) or ⊥ (to indicate failure).

Model. The VC model involves a client C and a server S, where C has a function
f . The client C picks (ek, dk, vk) ← KeyGen(1λ, f) and gives ek to the server.
In order to learn f(x), the client computes (σ, τ) ← ProbGen(dk, x) and gives
σ to the server. Given (ek, σ), the server computes and replies with (ρ, π) ←
Compute(ek, σ). At last, the client runs Verify(vk, τ, ρ, π) to verify ρ and recover
f(x). The verification of ρ requires vk, τ and π. The scheme Π is called privately
verifiable if (vk, τ) must be kept private by C, and publicly verifiable if (vk, τ)
can be made public (in particular, it can be known to S).

VC with Storage-Verification Trade-off 119

Correctness. This property requires that the client can always learn the cor-
rect result of the delegated computation when the server is honest. Formally,
the scheme Π is correct if for any function f , any (ek, dk, vk)← KeyGen(1λ, f),
any x in the domain of f , any (σ, τ) ← ProbGen(dk, x) and any (ρ, π) ←
Compute(ek, σ), it holds that Verify(vk, τ, ρ, π) = f(x).

Security. This property requires that no malicious server can cause the client to
compute an incorrect result of the delegated computation. Formally, the scheme
Π is said to be secure if any PPT adversary A wins with probability < neg(λ)
in the security game of Fig. 1.

– Setup. Given f , the challenger picks (ek, dk, vk) ← KeyGen(1λ, f). If Π is pri-
vately verifiable, it gives ek to A and keeps (dk, vk); if Π is publicly verifiable,
it gives (ek, vk) to A and keeps dk.

– Queries. The adversary A adaptively makes a polynomial number of queries:
for every j = 1 to q = poly(λ),
• A picks xj from the domain of f and gives it to the challenger;
• The challenger computes (σj , τj) ← ProbGen(dk, xj). If Π is privately veri-
fiable, it gives σj to A; if Π is publicly verifiable, it gives (σj , τj) to A.

• A picks a response (ρ̄j , π̄j) to the challenger;
• The challenger gives the output of Verify(vk, τj , ρ̄j , π̄j) to A.

– Forgery. A picks x∗ from the domain of f . The challenger computes (σ∗, τ∗)←
ProbGen(dk, x∗). If Π is privately verifiable, the challenger gives σ∗ to A; if Π is
publicly verifiable, the challenger gives (σ∗, τ∗) to A. At last, A picks (ρ̄∗, π̄∗).

– Output. The adversary wins if Verify(sk, τ∗, ρ̄∗, π̄∗) /∈ {f(x∗),⊥}.

Fig. 1. Security game

Remark. In Forgery A behaves just like it has done in any one of the q
queries. Without loss of generality, we can suppose (x∗, ρ̄∗, π̄∗) = (xc, ρ̄c, π̄c) for
some c ∈ [q], i.e., A picks one of its q queries as forgery.

2.2 A Technical Lemma

In this section we study a problem that underlies the security of our technique
in Section 1.1 (and the security proofs of the privately verifiable schemes Π1 and
Π3). Let λ be a security parameter. Let p be a λ-bit prime and let Fp be the finite
field of p elements. Let s > 0. We define an equivalence relation ∼ over Fs

p \ {0}
as below: two vectors u,v ∈ Fs

p \ {0} are equivalent if there exists ξ ∈ Fp \ {0}
such that u = ξ · v. Let Ωp,s = (Fs

p \ {0})/ ∼ be the set of all equivalent classes.
We represent each equivalent class with a vector in that class. Without loss of
generality, we agree that the representative of each class in Ωp,s is chosen such
that its first non-zero element is 1. For example, when p = 3 and s = 2, we have
that Ωp,s = {(0, 1), (1, 0), (1, 1), (1, 2)}. For any u,v ∈ Ωp,s, we define u� v = 0
if the inner product of u and v is 0 and define u�v = 1 otherwise. For example,
when p = 3 and s = 2, we have that (1, 1) � (1, 2) = 0 and (1, 1) � (1, 1) = 1.
The following problem models the malicious server’s attack in our technique.

120 L.F. Zhang and R. Safavi-Naini

Problem 1. Let A be any algorithm. Let U, V ⊆ Ωp,s+1 and let q = poly(λ). In
this problem, a vector v∗ ← V is chosen and hidden from A; for i = 1 to q, A
adaptively picks a query ui ∈ U and learns bi = ui � v∗ ∈ {0, 1}; A wins only
if there exists an i∗ ∈ [q] such that bi∗ = 0.

Lemma 1. Suppose that 0 < ε < 1. If |{v ∈ V : u� v = 0}| ≤ ε · |V | for every
u ∈ U , then A wins in Problem 1 with probability ≤ εq.

Proof. For every i ∈ [q], let Si be the event that bi = 0 and let ¬Si be the
event that bi = 1. We denote Fi = ¬Si ∧ · · · ∧ ¬S1 for every i ∈ [q]. Clearly,
the probabilities of Si,¬Si and Fi are all taken over the uniform choice of v∗

and the adversarial choices of u1, . . . ,ui by A. The probability that A wins in
Problem 1 is bounded by

ε∗ = Pr[S1] +

q�
i=2

Pr[Si ∧ Fi−1]. (2)

Note that |{v ∈ V : u1 � v = 0}| ≤ ε|V | for any u1 ∈ U , we must have that

Pr[S1] = Pr[u1 � v∗ = 0] = |{v∈V :u1�v=0}|
|V | ≤ ε. If F1 occurs, then A learns

that v∗ /∈ {v ∈ V : u1 � v = 0}, which allows A to rule out at most ε · |V |
possibilities of v∗. Conditioned on F1, the v∗ will be uniformly distributed over
the set V1 = {v ∈ V : u1 � v = 1}. Note that |{v ∈ V1 : u2 � v = 0}| ≤ |{v ∈
V : u2 � v = 0}| ≤ ε|V | for any u2 ∈ U . Thus, Pr[S2 ∧ F1] = Pr[u2 � v∗ =

0|F1] · Pr[F1] = |{v∈V1:u2�v=0}|
|V1|

|V1|
|V | ≤ ε, where the second equality follows from

the fact that v∗ is uniformly distributed over V1 (conditioned on F1). In general,
for any i ∈ [q] we can bound the probability εi = Pr[Si∧Fi−1] that ui is the first
query such that ui�v∗ = 0. Let Vi−1 = {v ∈ V : u1�v = 1, · · · ,ui−1�v = 1}.
Conditioned on Fi−1, v∗ must be uniformly distributed over Vi−1. Note that
|{v ∈ Vi−1 : ui � v = 0}| ≤ ε|V | for any ui ∈ U . We have

εi = Pr[Si|Fi−1] Pr[Fi−1] = Pr[ui � v∗ = 0|Fi−1]
i−1�
h=2

Pr[¬Sh|Fh−1] Pr[F1]

=
|{v ∈ Vi−1 : ui � v = 0}|

|Vi−1|
|Vi−1|
|Vi−2|

· · · |V2|
|V1|
|V1|
|V | ≤ ε,

where Pr[¬Sh|Fh−1] is the probability that the uniform random variable v∗ (over
Vh−1) falls into Vh ⊆ Vh−1 for every h ∈ [i− 1]. Hence, we have ε∗ ≤ εq as each
summand on the right hand side of (2) is ≤ ε. �

Example 1. Let Vlin = {(1,w) : w ∈ Fs
p} ⊆ Ωp,s+1 and U ⊆ Ωp,s+1. It is easy

to see that |Vlin| = ps. For any u ∈ U , there are ≤ N = (ps−1)/(p−1) elements
v ∈ Vlin such that u� v = 0. Thus, ε ≤ N/|Vlin| < 1/(p− 1).

Example 2. Let Vpol = {(1, α, . . . , αs) : α ∈ Fp} ⊆ Ωp,s+1 and U ⊆ Ωp,s+1. Let
u = (u0, u1, . . . , us) ∈ U and v = (1, α, . . . , αs) ∈ Vpol. Then u� v = 0 only if α
is a root of u0 +u1x+ · · ·+usx

s. For any u ∈ U , there are ≤ s elements v ∈ Vpol

VC with Storage-Verification Trade-off 121

such that u � v = 0 because a univariate polynomial of degree s has ≤ s roots
in Fp. Thus, ε ≤ s/p in this case.

The two examples provide us with two ways of choosing the α in our technique:
(b1) pick α← Fs

p; and (b2) pick α← Fp and define α = (α, α2, . . . , αs). We use
(b2) in Π1 and Π3 such that a short secret key suffices to do verification.

2.3 Cryptographic Assumptions

We assume a group scheme G(1λ, �) that takes as input the security parameter λ
and an integer � ∈ {1, 2} and outputs a random group instance Λ. When � = 1, Λ
is a triple (p,G, g), where G = 〈g〉 is a group of prime order p ≈ 2λ; when � = 2,
Λ is a quintuple (p,G,GT , e, g), where G = 〈g〉 and GT are groups of prime
order p ≈ 2λ, and e : G×G→ GT is an efficiently computable non-degenerated
bilinear map. In Section 2.4 we present five PRFs. The security of each PRF is
based on one of the following assumptions for G: the d-strong decision Diffie-
Hellman assumption (d-SDDH); the decision Diffie-Hellman assumption (DDH);
and the decision linear assumption (DLIN). We refer the readers to [2,7] for
their definitions. There is also a much weaker assumption for G: the hardness of
computational Diffie-Hellman (CDH) problem. In CDH, one is given (g, gα, h)
and must output hα, where α← Zp and h← G. The hardness of CDH says that
no PPT algorithm can output hα except with probability < neg(λ).

2.4 PRFs with Closed-Form Efficiency

In this section, we review the notion of PRFs with closed-form efficiency and
present several such PRFs for our VC schemes. A PRF is a pair Σ = (Kg,F)
of algorithms. The key generation algorithm Kg(1λ, params) takes as input a
security parameter λ and some additional parameters params and outputs a
secret key k and a public parameter pp, where pp specifies the domain I and range
Y of Fk. Given any i ∈ I, Fk(i) outputs a value y ∈ Y. Σ is called pseudorandom
if for any PPT algorithm A, we have |Pr[AFk(·)(1λ, pp) = 1]−Pr[AΦ(·)(1λ, pp) =
1]| < neg(λ), where the probabilities are taken over (pp, k)← Kg(1λ, params), the
choice of a random function Φ : I→ Y and A’s random coins. Let C(y,x) be any
computation that takes y = {yi}i∈I ∈ Y|I| and some x as input. Suppose that
computing C(y,x) for general (y,x) requires time t. We say that Σ has closed-
form efficiency for C if there is an algorithm Σ.CFE such that Σ.CFE(k, I,x) =
C({Fk(i)}i∈I,x) but only requires time o(t).

Construction 1. Let m > 0 and d + 1 = sn. Our first PRF Σ1 = (Kg,F)
is tailored from the PRF2,d in [2]. The algorithm Kg(1λ, (m, s, n)) picks Λ =
(p,G, g) ← G(1λ, 1), k = (k0, k1, . . . , km) ← Zm+1

p and outputs k and pp =
(Λ,m, s, n). The domain of Fk is I = {0, 1, . . . , n − 1} × {0, 1, . . . , d}m−1; the

range of Fk is G. For any i = (i1, . . . , im) ∈ I, Fk(i) = gk0k
i1
1 ···kim

m . In fact, Σ1

is the restriction of PRF2,d on I. Theorem 1 of [2] shows that Σ1 is a PRF
under the d-SDDH assumption. For x = (x1, . . . , xm) ∈ Zm

p and y = {yi}i∈I ∈
G|I|, let C′(y,x) =

�
i∈I

(yi)
xi

. Then we have C′({Fk(i)}i∈I,x) = gξ, where

122 L.F. Zhang and R. Safavi-Naini

ξ = k0(1 − (k1x1)n)/(1 − k1x1) ·
�m

j=2(1 − (kjxj)
d+1)/(1 − kjxj). Without k,

computing C′({Fk(i)}i∈I,x) requires O(|I|) operations. Given k, the Σ1.CFE can
compute ξ and then gξ using O(m) = o(|I|) operations. Thus, Σ1 has closed-form
efficiency for C′.

Construction 2. Let m > 0 and d + 1 = 2a = sn = s · 2b. Below is our
instantiation Σ2 = (Kg,F) of the Naor-Reingold PRF (Section 4.1, [15]).

Kg(1λ, (m,a, b)): Picks Λ = (p,G, g)← G(1λ, 1). Picks k0 ← Zp, k1,w ← Zp for every
w ∈ [b] and ku,v ← Zp for every (u, v) ∈ {2, . . . ,m}× [a]. Outputs k = {k0}∪ {k1,w :
w ∈ [b]} ∪ {ku,v : (u, v) ∈ {2, . . . ,m} × [a]} and pp = (Λ,m, a, b). The domain of Fk

is I = {0, 1, . . . , n− 1} × {0, 1, . . . , d}m−1. The range of Fk is G.

Fk(·): Given i = (i1, . . . , im) ∈ I, computes the binary representations of i1, . . . , im,
say i1 = (i1,1, . . . , i1,b) and iu = (iu,1, . . . , iu,a) for every 2 ≤ u ≤ m. It outputs

Fk(i) = gξi , where ξi = k0 ·
�b

w=1
k
i1,w
1,w ·�m

u=2

�a

v=1
k
iu,v
u,v .

As a Naor-Reingold PRF defined over {0, 1}b+(m−1)a, Σ2 is pseudorandom under

DDH. Note that C′({Fk(i)}i∈I,x) =
�

i∈I
Fk(i)x

i

= gξ, where

ξ =
�
i∈I

ξi · xi =
2b−1�
i1=0

2a−1�
i2=0

· · ·
2a−1�
im=0

k0 ·
b�

w=1

k
i1,w
1,w x

i1,w ·2w−1

1 ·
m�

u=2

a�
v=1

kiu,v
u,v · xiu,v ·2v−1

u

= k0 ·
b�

w=1

�
1 + k1,wx

2w−1

1

�
·

m�
u=2

a�
v=1

�
1 + ku,vx

2v−1

u

�
.

Computing C′({Fk(i)}i∈I,x) without k requires O(|I|) operations. Given k, the
Σ2.CFE can compute ξ and then gξ using O(ma) = o(|I|) operations. Thus, Σ2

has the closed form efficiency for C′.

Construction 3. Let m > 0 and d + 1 = 2a = sn = s · 2b. Below is an
instantiation Σ3 = (Kg,F) of the Lewko-Waters PRF (Section 3.1, [14]).

Kg(1λ, (m,a, b)): Picks Λ = (p,G,GT , g) ← G(1λ, 2), k0, l0 ← Zp, a 2 × 2 matrix
K1,w ← Z2×2

p for every w ∈ [b], and a 2 × 2 matrix Ku,v ← Z2×2
p for every (u, v) ∈

{2, . . . ,m}×[a]. Outputs k = {k0, l0}∪{K1,w : w ∈ [b]}∪{Ku,v : (u, v) ∈ {2, . . . ,m}×
[a]} and pp = (Λ,m, a, b). The domain of Fk is I = {0, 1, . . . , n−1}×{0, 1, . . . , d}m−1;
the range of Fk is G.

Fk(·): Given i = (i1, . . . , im) ∈ I, computes the binary representations of i1, . . . , im,
say i1 = (i1,1, . . . , i1,b) and iu = (iu,1, . . . , iu,a) for every 2 ≤ u ≤ m. It outputs

Fk(i) = gξi , where (ξi, ηi) = (k0, l0)
�b

w=1
K

i1,w
1,w

�m

u=2

�a

v=1
K

iu,v
u,v .

As a Lewko-Waters PRF defined over {0, 1}b+(m−1)a, Σ3 is pseudorandom under
DLIN. Note that C′({Fk(i)}i∈I,x) = gξ with ξ =

�
i∈I

ξi ·xi. As in construction
2, we can similarly show that Σ3 has the closed form efficiency for C′.

Construction 4. Let m,n > 0. Below is a DDH based PRF Σ4 = (Kg,F).

Kg(1λ, (m,n)): Picks Λ = (p,G, g) ← G(1λ, 1), ui ← G for every i ∈ [m], kj ← Zp

for every j ∈ [n]; outputs k = {ui}mi=1 ∪ {kj}nj=1 and pp = (Λ,m, n). The domain of
Fk is I = [m]× [n]; the range of Fk is G.

Fk(·): Given (i, j) ∈ [m]× [n], it outputs Fk(i, j) = u
kj

i .

VC with Storage-Verification Trade-off 123

In the full version, we show Σ4 is a DDH-based PRF. Let x = (x1, . . . , xm) ∈ Zm
p

and y = {yi,j} ∈ Gm×n. Let C′′(y,x) = {
�m

i=1(yi,j)
xi}nj=1. Then

�m
i=1 Fk(i, j)xi

=
�m

i=1(u
kj

i)xi = (
�m

i=1 u
xi

i)kj for every j ∈ [n]. Computing C′′({Fk(i, j)},x)
without k requires O(mn) operations. Given k, the Σ4.CFE can compute U =�m

i=1 u
xi

i and then Ukj for all j ∈ [n] using O(m + n) operations. Thus, Σ4 has
closed-form efficiency for C′′.

Construction 5. Fiore et al. (Section 3.1.3, [7]) constructed a PRF Σ5 =
(Kg,F). The Kg(1λ, (m,n)) picks Λ = (p,G,GT , e, g) ← G(1λ, 2), ui, vi ← G

for every i ∈ [m], kj , lj ← Zp for every j ∈ [n] and outputs k = {(ui, vi) : i ∈
[m]} ∪ {(kj , lj) : j ∈ [n]} and pp = (Λ,m, n). The domain and range of Fk are

I = [m] × [n] and G, respectively. For any (i, j) ∈ I, Fk(i, j) = u
kj

i v
lj
i . They

showed that Σ5 is a DLIN-based PRF and has closed-form efficiency for C′′.

3 Our Schemes

3.1 Verifiable Delegation of Polynomials

In this section, we present two VC schemes Π1 and Π2 for delegating the polyno-
mial f in Section 1.3. We use all notations from there. Furthermore, we suppose
that d+ 1 = 2a = sn = s ·2b for some integers a, b > 0. Equation (1) reduces the
computation of f(x) to the s inner products ρ1 = y · F1, . . . , ρs = y · Fs. In Π1

and Π2 the server must return ρ1, . . . , ρs and a proof such that the client can
verify and then compute f(x).

A Privately Verifiable Scheme: Fig. 2 shows our private VC scheme Π1 for
delegating f(x). The PRF Σ is Σ1 or Σ2. The params is equal to (m, s, n) when
Σ = Σ1 and equal to (m, a, b) when Σ = Σ2. The τ in Π1 is computed using
Σ.CFE. It is easy to see that Π1 is correct.

KeyGen(1λ, f): picks (pp, k) ← Σ.Kg(1λ, params), where pp = (Λ, params) and Λ =

(p,G, g); picks α ← Zp; computes ti = gαF1,i+α2F2,i+···+αsFs,i · Fk(i) for every i ∈ I;
then outputs ek = (f, {ti}i∈I), dk = k and vk = α.

ProbGen(dk,x): given x ∈ Zm
p , outputs σ = x and τ =

�
i∈I

Fk(i)
xi

.

Compute(ek, σ): computes ρ� =
�

i∈I
F�,i · xi for every � ∈ [s] and π =

�
i∈I
(ti)

xi

;
then outputs ρ = (ρ1, . . . , ρs) and π.

Verify(vk, τ,ρ, π): verifies if π = gρ1·α+ρ2·α2+···+ρs·αs ·τ . Outputs y =�s

�=1
ρ�·x(�−1)n

1

if the equality holds; otherwise, outputs ⊥.

Fig. 2. The scheme Π1

Theorem 1. Π1 is secure under the d-SDDH assumption for G when Σ = Σ1

and secure under the DDH assumption for G when Σ = Σ2.

124 L.F. Zhang and R. Safavi-Naini

Proof. Let G0 be the standard security game for Π1 (Fig. 1). Let G1 be a
security game which makes no difference with G0 except that the function Fk

is replaced with a random function Φ : I → G. Let A be any PPT adversary.
Let εi be the probability that A wins in Gi for every i ∈ {0, 1}. We need to
show ε0 < neg(λ). Firstly, we have |ε0 − ε1| < neg(λ) because otherwise one can
use A to break the security of Σ which however is secure under the respective
assumptions. Thus, it suffices to show ε1 < neg(λ). We show ε1 < neg(λ) even if
A is computationally unbounded.

Consider G1. We use the notations f,m, d, s, n, a, b and I from the beginning
of this section. Let ek = (f, {ti}i∈I), dk = k and vk = α be the keys generated
by KeyGen(1λ, f). Note that the function Fk is replaced with Φ and therefore

ti = gαF1,i+α2F2,i+···+αsFs,i · Φ(i) for every i ∈ I. The adversary A is given ek.
For any choice of α ∈ Zp, there is a unique choice of Φ(i) ∈ G for every i ∈ I

such that ti is consistent with A’s view. As Φ is truly random, A learns no
information about α from ek even if it is computationally unbounded (such that
computing discrete logarithms is easy). Thus, from A’s view, α = (1, α, . . . , αs)
is uniformly chosen from Vpol. Given ek, the adversary A adaptively makes a
polynomial number of queries {xj}qj=1 to ProbGen(dk, ·) and {(ρ̄j, π̄j)}qj=1 to
Verify(vk, τj , ·, ·):

for j = 1 to q, the challenger and A proceeds as below.
– A gives an input xj = (xj,1, . . . , xj,m) ∈ Zm

p to the challenger;

– the challenger gives σj = xj to A and keeps τj =
�

i∈I
Φ(i)x

i
j ;

– A gives ρ̄j = (ρ̄j,1, . . . , ρ̄j,s) ∈ Zs
p and π̄j ∈ G to the challenger;

– the challenger gives the output of Verify(vk, τj , ρ̄j , π̄j) to A.

After the queries, A needs to produce a forgery. As remarked in Section 2.1,
we can suppose that A’s forgery is (xc, ρ̄c, π̄c) for some c ∈ [q]. Let (ρc, πc) ←
Compute(ek, σc) be the response that could be computed by an honest server,
where ρc = (ρc,1, . . . , ρc,s) ∈ Zs

p and πc ∈ G. Due to the correctness of Π1,

we must have that πc = g
�

s

�=1
ρc,�·α�

· τc. The adversary A wins in G1 only if

ρ̄c �= ρc and π̄c = g
�

s

�=1
ρ̄c,�·α�

· τc. It follows that A wins only if ρ̄c �= ρc and

π̄c/πc = g
�s

�=1
(ρ̄c,�−ρc,�)·α�

. (3)

Suppose that π̄c/πc = gβc . Then (3) holds only if uc = (−βc, ρ̄c,1−ρc,1, . . . , ρ̄c,s−
ρc,s) ∈ Zs+1

p is a nonzero vector such that uc · α = 0. Recall that α ← Vpol.
Without loss of generality, we can suppose that the first nonzero component of
uc is 1 such that uc ∈ Ωp,s+1. This does not matter because if the first nonzero
component of uc is γ �= 0 then γ−1 · uc will belong to Ωp,s+1 and A could have
made the query γ−1 ·uc instead of uc with the same consequence (i.e., success or
failure). In general, for every j ∈ [q] and the j-th queries xj and (ρ̄j , π̄j), we can
follow the analysis for j = c and learn a vector uj ∈ Ωp,s+1. The j-th queries
cause A to win only if uj · α = 0. Thus, the query part of G1 turns out to be
Problem 1 with U ⊆ Ωp,s+1 and V = Vpol. Lemma 1 and Example 2 show that
A wins with probability ≤ sq/p, which is negligible, i.e., ε1 < neg(λ). �

VC with Storage-Verification Trade-off 125

A Publicly Verifiable Scheme: Fig. 3 shows our public VC scheme Π2 for
delegating f(x). The τ in Π2 is computed using Σ3.CFE. It is easy to see that
Π2 is correct.

KeyGen(1λ, f): picks (pp, k)← Σ3.Kg(1
λ, (m,a, b)), where pp = (Λ,m, a, b) and Λ =

(p,G,GT , e, g); picks α = (α1, . . . , αs)← Zs
p; computes ti = gα1F1,i+···+αsFs,i · Fk(i)

for every i ∈ I; then outputs ek = (f, {ti}i∈I), dk = k and vk = (h1, . . . , hs) =
(e(g, g)α1 , . . . , e(g, g)αs);

ProbGen(dk,x): given x ∈ Zm
p , outputs σ = x and τ = e

��
i∈I

Fk(i)
xi

, g
�
.

Compute(ek, σ): computes ρ� =
�

i∈I
F�,i · xi for every � ∈ [s] and π =

�
i∈I
(ti)

xi

;
then outputs ρ = (ρ1, . . . , ρs) and π.

Verify(vk, τ,ρ, π): verifies if e(π, g) =
�s

�=1
h
ρ�
� · τ . outputs y =�s

�=1
ρ� · x(�−1)n

1 if
the equality holds; otherwise, outputs ⊥.

Fig. 3. The scheme Π2

Theorem 2. Π2 is secure under the DLIN assumption for G.

Proof. Let G0 be the standard security game for Π2 (see Fig. 1). Let G1 be a
security game which makes no difference with G0 except that the function Fk is
replaced with a random function Φ : I → G. Let A be any PPT adversary. Let
εi be the probability that A wins in Gi for every i ∈ {0, 1}. As in Theorem 1, it
suffices to show that ε1 < neg(λ).

Consider G1. We use the notations f,m, d, s, n, a, b and I from the begin-
ning of Section 3.1. Suppose that ε1 is non-negligible. We show that there is
a challenger B that can simulate A to solve the CDH problem, which however
should be hard under DLIN. Given a CDH problem (g, gα, h), B must output
hα. Fig. 4 shows how B plays with the adversary A in G1. Let (ρc, πc) ←
Compute(ek, σc) be the response that could be computed by an honest server,

Setup. The challenger B picks ti ← G for every i ∈ I; picks r ← [s] and computes
hr = e(gα, h); picks α� ← Zp and computes h� = e(g, g)α� for every � ∈ [s] \ {r};
then it defines ek = (f, {ti}i∈I), dk =⊥, vk = (h1, . . . , hs); B gives (ek, vk) to A.
Queries. The adversary A adaptively makes a polynomial number of queries {xj}qj=1

to ProbGen(dk, ·) and {(ρ̄j , π̄j)}qj=1 to Verify(vk, τj , ·, ·):
for j = 1 to q, B and A proceed as below

1. A picks xj = (xj,1, . . . , xj,m) ∈ Zm
p and give it to B;

2. B gives σj = xj and τj = e
��

i∈I
(ti)

xi
j , g
�
/
�s

�=1
h

�
i∈I

F�,i·xi
j

� to A;
3. A picks ρ̄j = (ρ̄j,1, . . . , ρ̄j,s) ∈ Zs

p and π̄j ∈ G and gives them to B;
4. B gives the output of Verify(vk, τj , ρ̄j , π̄j) to A.

Forgery. As remarked in Section 2.1, A outputs (xc, ρ̄c, π̄c) as its forgery (c ∈ [q]).

Fig. 4. B’s simulation in the game G1

126 L.F. Zhang and R. Safavi-Naini

where ρc = (ρc,1, . . . , ρc,s) ∈ Zs
p and πc ∈ G. Due to the correctness of Π2, we

have that e(πc, g) =
�s

�=1 h
ρc,�

� · τc. The adversary A wins the game G1 only if

ρ̄c �= ρc and e(π̄c, g) =
�s

�=1 h
ρ̄c,�

� · τc. It follows that A wins only if ρ̄c �= ρc and

e(π̄c/πc, g) =
s�

�=1

h
ρ̄c,�−ρc,�

� (4)

It is not hard to see that the (ek, vk) and {(σj , τj)}qj=1 generated by B strictly
follow the respective distributions in G1, although they are not obtained by
directly running the algorithms KeyGen and ProbGen. Due to our assumption, A
should win with probability ε1, i.e., the probability that ρ̄c �= ρc and (4) holds
is ε1. As ρ̄c �= ρc, there is a nonempty set R ⊆ [s] such that ρ̄c,r∗ �= ρc,r∗ for any
r∗ ∈ R. The r in Fig. 4 was uniformly chosen and independent of everything else.
Therefore, the probability that r falls into R is ≥ |R|/s ≥ 1/s. The challenger B
as a CDH-solver outputs ⊥ (to indicate failure) if r /∈ R. Otherwise, (4) implies

that e(π̄c · π−1
c , g) ·

�
�∈[s]\{r} h

−(ρ̄c,�−ρc,�)
� = h

ρ̄c,r−ρc,r
r = e(gα, h)ρ̄c,r−ρc,r =

e(hα(ρ̄c,r−ρc,r), g). It follows that the challenger B can compute hα = (π̄c · π−1
c ·�

�∈[s]\{r} g
−α�(ρ̄c,�−ρc,�))

1
ρ̄c,r−ρc,r . The probability that B learns hα is exactly

equal to the probability that A wins in G1 and r ∈ R, which is ≥ ε1/s and
thus non-negligible. This contradicts the hardness of CDH and thus the DLIN
assumption. Hence, ε1 must be negligible.

3.2 Verifiable Delegation of Matrices

In this section, we present two VC schemes Π3 and Π4 for delegating the matrix
E in Section 1.4. We use all notations from there. Recall that x · E can be
reduced to n sets of inner product computations. In Π3 and Π4 the server must
return x ·E and n proofs, one for each set of s inner product computations.

A Privately Verifiable Scheme: Fig. 5 shows our private VC scheme Π3 for
delegating E. The τ in Π3 is computed using Σ4.CFE. It is easy to see that
Π3 is correct. Due to lack of space, we show that Π3 is secure under the DDH
assumption for G in the full version.

KeyGen(1λ,E): picks (pp, k) ← Σ4.Kg(1
λ, (m,n)), where pp = (Λ,m, n) and Λ =

(p,G, g); picks α ← Zp; computes ti,j = ti = gαF1,i+α2F2,i+···+αsFs,i · Fk(i) for every
i = (i, j) ∈ [m]× [n]; then outputs ek = (E, {ti}), dk = k and vk = α.

ProbGen(dk,x): given x ∈ Zm
p , computes τj =

�m

i=1
Fk(i, j)

xi for every j ∈ [n]; then
outputs σ = x and τ = (τ1, . . . , τn).

Compute(ek, σ): computes ρ = (ρ1, . . . , ρd) = x ·E and πj =
�m

i=1
(ti,j)

xi for every
j ∈ [n]; then outputs ρ and π = (π1, . . . , πn).

Verify(vk, τ ,ρ,π): verifies if πj = g

�s

�=1
ρj+(�−1)n·α� · τj for every j ∈ [n]; if all

equalities hold, outputs ρ; otherwise, outputs ⊥.

Fig. 5. The scheme Π3

VC with Storage-Verification Trade-off 127

A Publicly Verifiable Scheme: Fig. 6 shows our public VC scheme Π4 for
delegating E. The τ is in Π4 is computed using Σ5.CFE. It is easy to see that
Π4 is correct. Due to lack of space, we show that Π4 is secure under the DLIN
assumption for G in the full version.

KeyGen(1λ,E): picks (pp, k)← Σ5.Kg(1
λ, (m,n)), where pp = (Λ,m, n) and Λ = (p,

G,GT , e, g); picks α = (α1, . . . , αs) ← Zs
p; computes ti = ti,j = gα1F1,i+···+αsFs,i ·

Fk(i) for every i = (i, j) ∈ [m] × [n]; then outputs ek = (E, {ti}), dk = k and
vk = (h1, . . . , hs) = (e(g, g)

α1 , . . . , e(g, g)αs);

ProbGen(dk,x): given x ∈ Zm
p , computes τj = e

��m

i=1
Fk(i, j)

xi , g
�
for every j ∈ [n];

then outputs σ = x and τ = (τ1, . . . , τn).

Compute(ek, σ): computes ρ = (ρ1, . . . , ρd) = x ·E and πj =
�m

i=1
(ti,j)

xi for every
j ∈ [n]; then outputs ρ and π = (π1, . . . , πn).

Verify(vk, τ ,ρ,π): verifies if e(πj , g) =
�s

�=1
h
ρj+(�−1)n

� · τj for every j ∈ [n]; if all
equalities hold, outputs ρ; otherwise, outputs ⊥.

Fig. 6. The scheme Π4

3.3 Performance Analysis and Extensions

In this section we analyze our schemes. We take Π1 and Π4 as example. The
analysis of Π2 and Π3 can be done similarly.

Analysis of Π1. Storage: In Π1, the client stores ek = (f, {ti}i∈I) with the
server, where f can be represented by (d+ 1)m elements of Zp and ti belongs to
a group G of order p for every i ∈ I. The storage overhead of Π1 is ((d+ 1)m +
|I|)/(d + 1)m = 1 + 1/s. Let λ = 1024, |p| = λ,m = 1, d + 1 = 230, s = λ and
n = 220. Let the G in Π1 be an order p subgroup of Z∗

p′ , where p′ is a prime.

To delegate f , the client stores |I| = 220 tags in G with the server. Thus, to
delegate (d + 1)m × |p|/23B = 128GB data, Π1 requires |I| · λ/23B = 128MB
cloud storage for tags. This is only 1/1024 times the 128GB tags used by [2].
Verification: Let Ep,Mp and Ap be the number of bit operations required
by each exponentiation, multiplication, and addition in Zp, respectively. Let
EG and MG be the number of bit operations required by each exponentiation
and multiplication in G, respectively. Let CG be the number of bit operations
required for comparing two elements of G. In Π1.ProbGen, the client requires
mEp+3mMp+2mAp bit operations to compute the τ using Σ1.CFE. In Π1.Verify,
the client requires (2s−1)Mp+(s−1)Ap bit operations to compute η = ρ1α+· · ·+
ρsα

s, EG bit operations to compute gη, MG bit operations to compute gη · τ and
then CG bit operations to compare π with gη ·τ ; it also requires Ep bit operations

to compute xn1 , (s− 2)Mp bit operations to compute x2n
1 ,, x

(s−1)n
1 , and then

sMp + (s− 1)Ap bit operations to compute f(x). Thus, the client’s verification
totally requires (m+1)Ep+(3m+4s−3)Mp+(2m+2s−2)Ap+EG+MG+CG bit
operations. The scheme of [2] requires mEp+(3m+1)Mp+2mAp+EG+MG+CG

bit operations to do verification. Note that Ep,EG ≈ λ3,Mp,MG ≈ λ2, and
Ap,CG ≈ λ. The client in Π1 requires ≈ ((m + 2)λ + 4s)λ2 bit operations and

128 L.F. Zhang and R. Safavi-Naini

the client in [2] requires ≈ (m + 1)λ3 bit operations. Therefore, our client is
roughly δ = 1 + λ+4s

(m+1)λ times slower than the client of [2]. When m = 1 and

s = λ, we have that δ = 3.5. Our parameter s provides a meaningful trade-off
between the size of tags and the client’s verification time. The larger the s is,
the smaller the storage overhead is and the slower the client of Π1 is. The δ
shows that our client can significantly reduce the consumption of cloud storage
by slightly increasing the verification time.

Analysis of Π4. Our scheme Π4 uses a random bilinear map instance (p,G,GT ,
e, g). In Π4.ProbGen, the client requires m + n exponentiations in G and n
pairing computations to compute τ = (τ1, . . . , τn) using Σ5.CFE. In Π4.Verify,
the client requires s exponentiations in GT , s multiplications in GT , one pairing
computation and one comparision of the elements of GT to check the equality
e(πj , g) =

�s
�=1 h

ρj+(�−1)n

� ·τj for every j ∈ [n]. Thus, the client’s verification time
is dominated by m+ n exponentiations in G, sn exponentiations in GT , and 2n
pairing computations. The scheme of [7] is a special case of Π4 with s = 1. In
their scheme, the client requires m + sn exponentiations in G and sn pairing
computations to compute d = sn elements τ1, . . . , τd for future verification. The
client also requires one exponentiation in GT , one multiplication in GT , one
pairing computation and one comparision of the elements of GT to check an
equality for each of the sn components of x ·E. Therefore, the verification time
of their client is dominated by (m+sn) exponentiations in G, sn exponentiations
in GT , and 2sn pairing computations. Hence, our publicly verifiable scheme Π4

for delegating matrices is much more efficient than [7] not only in terms of storage
overhead (1 + 1/s vs. 2) but also in terms of the client’s verification time.

Extensions. The coefficients of f are considered as s vectors in Π1 and the com-
putation of f(x) is reduced to computing inner products with them. Each inner
product is an evaluation of an m-variate polynomial of degree ≤ n− 1 in x1 and
degree ≤ d in any other variables. We can repeatedly apply our technique on these
shorter polynomials to further reduce the degrees of x2, . . . , xm such that the com-
putation of f(x) is reduced to evaluating sm different m-variate polynomials of
degree ≤ n − 1 in each variable. This is particularly useful when d = O(1) but
m = O(log λ). Our schemes also provide batch verifications of multiple functions.
For example, if we set m = 1, then Π1 allows the client to verify the evaluations
of s univariate polynomials of degree ≤ n− 1 using substantially less time (≈ 7λ3

bit operations when s = λ) than delegating the s polynomials separately using [2]
(which requires ≈ 2sλ3 bit operations for verification).

4 Conclusions

In this paper, we construct VC schemes for delegating polynomials and matrices
that provide trade-offs between the consumed cloud storage and the client’s
verification time. As [2,7], our polynomial f must have special form. For example,
in Π1 we require that d+1 = 2a = sn = s2b. This is necessary to use PRFs with
closed-form efficiency. For a general polynomial, one may add redundant terms
to meet the requirement. It is interesting to extend our results to more general
functions such as the m-variate polynomials of total degree ≤ d.

VC with Storage-Verification Trade-off 129

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: From Secrecy to Soundness: Efficient
Verification via Secure Computation. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp.
152–163. Springer, Heidelberg (2010)

2. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable Delegation of Computation over
Large Datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–
131. Springer, Heidelberg (2011)

3. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From Extractable Collision Re-
sistance to Succinct Non-Interactive Arguments of Knowledge, and Back Again.
In: ITCS, pp. 326–349 (2012)

4. Boneh, D., Freeman, D.M.: Homomorphic Signatures for Polynomial Functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011)

5. Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory Delegation. In: Rogaway,
P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer, Heidelberg (2011)

6. Chung, K.-M., Kalai, Y., Vadhan, S.P.: Improved Delegation of Computation Us-
ing Fully Homomorphic Encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 483–501. Springer, Heidelberg (2010)

7. Fiore, D., Gennaro, R.: Publicly Verifiable Delegation of Large Polynomials and
Matrix Computations, with Applications. In: CCS, pp. 501–512 (2012)

8. Gennaro, R., Gentry, C., Parno, B.: Non-Interactive Verifiable Computing: Out-
sourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

9. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic Span Programs and
Succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)

10. Gennaro, R., Wichs, D.: Fully Homomorphic Message Authenticators. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 301–320.
Springer, Heidelberg (2013)

11. Gentry, C., Wichs, D.: Separating Succinct Non-Interactive Arguments from All
Falsfiable Assumptions. In: STOC, pp. 99–108 (2011)

12. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating Computation: Interactive
Proofs for Muggles. In: STOC, pp. 113–122 (2008)

13. Juels, A., Kaliski, B.: PORs: Proofs of Retrievability for Large Files. In: CCS, pp.
584–597 (2007)

14. Lewko, A.B., Waters, B.: Efficient Pseudorandom Functions from the Decisional
Linear Assumption and Weaker Variants. In: CCS, pp. 112–120 (2009)

15. Naor, M., Reingold, O.: Number-Theoretic Constructions of Efficient Pseudo-
Random Functions. J. ACM 51(2), 231–262 (2004)

16. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of Correct Computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg
(2013)

17. Parno, B., Raykova, M., Vaikuntanathan, V.: How to Delegate and Verify in Public:
Verifiable Computation from Attribute-Based Encryption. In: Cramer, R. (ed.)
TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)

18. Shacham, H., Waters, B.: Compact Proofs of Retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

Identity-Based Encryption with Post-Challenge

Auxiliary Inputs for Secure Cloud Applications
and Sensor Networks

Tsz Hon Yuen1,�, Ye Zhang3, Siu Ming Yiu2, and Joseph K. Liu4

1 Huawei, Singapore
yuen.tsz.hon@huawei.com

2 The University of Hong Kong, Hong Kong
smyiu@cs.hku.hk

3 Pennsylvania State University, USA
yxz169@cse.psu.edu

4 Infocomm Security Department, Institute for Infocomm Research, Singapore
ksliu@i2r.a-star.edu.sg

Abstract. Identity-based encryption (IBE) is useful for providing end-
to-end access control and data protection in many scenarios such as
cloud applications and wireless sensor networks However, there are some
practical threats for the data owner or the sensor, who encrypts raw data;
and the data user or the control centre, who decrypts the ciphertext and
recovers the raw data.
In this paper, we tackle the open problem of proposing a leakage-

resilience encryption model that can capture leakage from both the secret
key owner (the data user or control centre) and the encryptor (the data
owner or sensor), in the auxiliary input model. Existing models only allow
the leakage of the secret key and do not allow adversaries to query more
leakage information after seeing the challenge ciphertext of the security
games. We solve this problem by defining the post-challenge auxiliary
input model in which the family of leakage functions must be defined
before the adversary is given the public key. The post-challenge query will
return the leakage of the encryption randomness used by the encryptor.
This model is able to capture a wider class of real-world attacks.
To realize our model, we propose a generic transformation from the

auxiliary input model to our new post-challenge auxiliary input model
for both public key encryption (PKE) and IBE. Furthermore, we extend
Canetti et al.’s technique, that converts CPA-secure IBE to CCA-secure
PKE, into the leakage-resilient setting.

Keywords: IBE, leakage-resilient, auxiliary inputs, randomness.

1 Introduction

In autonomic provisioning of applications hosted in cloud server, all customer
requirements and constraints must be fulfilled, as specified in Service Level

� The research was mainly conducted when the first author was affiliated with the
University of Hong Kong.

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 130–147, 2014.
c© Springer International Publishing Switzerland 2014

Identity-Based Encryption with Post-Challenge Auxiliary Inputs 131

Agreement. Confidentiality, integrity and access control are important issues for
security and privacy of such open infrastructure [1]. Access control is classified as
one to the top 10 challenges in big data security by the Cloud Security Alliance
(CSA) [2]. Sensitive data must be protected by using cryptographically secure
algorithm and suitable access control. It is challenging to adapt unpredictable
changes of access control policy in autonomic computing.

It was reported that a Google employee monitored some teenagers’ commu-
nication records in Google Voice, stalked them by recovering their names and
phone numbers [3]. Therefore, end-to-end access control is more resilient to at-
tacks from the system administrator of the cloud server. Moreover, the data
owner has more control on who is allowed to access by using end-to-end access
control. The CSA suggested the use of identity-based encryption (IBE) as one of
the possible cryptographic approach to enforce access control in big data applica-
tions [2]. In IBE, the data owner (encryptor) can encrypt a message by using the
recipient’s (decryptor) identity as his public key. The decryptor has to request
a third party called Private Key Generator (PKG) to issue an identity-based
secret key to him. By using this secret key, the decryptor recovers the original
message. Access control is enforced by the data owner since he can choose the
identity of the recipient of his choice.

The case of sensor networks is similar. After getting raw data by the sensor,
it encrypts these sensitive information by using the identity of the control centre
and sends the ciphertext back to it for further analysis. IBE eliminates the costly
certificate verification process and thus it is preferred in sensor networks.

1.1 Practical Threats of Using IBE for Access Control

Although IBE can protect the users from malicious cloud server administrator,
there are still a number of practical threats for both the encryptor and the
decryptor.

Side Channel Attacks to the Decryptor. Real world attackers can obtain
partial information about the secret key of the decryptor. Side-channel attacks
explore the physical weakness of the implementation of cryptosystems. For ex-
ample, the hamming weight of the secret key can be leaked by observing the
running time of the decryption process, or the power consumption used.

Weak Randomness Used by the Encryptor. The randomness used in the
encryption process may be leaked by poor implementation of pseudorandom
number generator (PRNG). Argyros and Kiayias [4] outlined the flaws of PRNG
in PHP. Lenstra et al. [5] inspected millions of public keys and found that some
of the weak keys could be a result of poorly seeded PRNGs. Michaelis et al. [6]
uncovered significant weaknesses of PRNG of some java runtime libraries, in-
cluding Android. The NIST standard for pseudorandom number generation has
fallen into dispute after the discovery of back door algorithm in [7] and received
great attention through the Snowden disclosures [8]. These practical attacks
demonstrate the potential weakness of the encryption randomness when using
PRNG in practice. In big data applications, data are usually generated by some

132 T.H. Yuen et al.

devices with limited computational power. It is possible that the data are en-
crypted using such weak randomness from java runtime libraries. This situation
is particular serious in the case of wireless sensors as they are usually exposed in
the open air but contain only very limited computation power. Attackers may
easily guess the randomness they are using for generating the ciphertext.

1.2 Motivation for Post-Challenge Auxiliary Inputs

We need to provide leakage-resilient protection for users of the cloud appli-
cations, including the encryptor and the decryptor. It motivates the new Post-
Challenge Auxiliary Inputs model for IBE setting. We first review the
background of leakage-resilient cryptography.

Protecting the Decryptor: Leakage-Resilient Cryptography. In modern
cryptography, we use a security model to capture the abilities of a potential
attacker (the adversary). For example, in the chosen-ciphertext attack (CCA)
model for public key encryption (PKE), the adversary is allowed to ask for the
decryption of arbitrary ciphertexts, except for the one that he intends to attack.
This models the real-world scenario that the adversary may obtain some pairs
of messages and ciphertexts from the secret key owner. Under a given model,
a cryptographic scheme is said to be proven secure if the scheme is capable
of withstanding the attacks from adversaries with the abilities captured by the
model. But if the adversary has some extra abilities, the security of the scheme is
no longer guaranteed. In most traditional security models, it is assumed that the
adversary does not have the ability to obtain any information (even one single
bit) about the secret key. However, due to the advancement of a large class of
side-channel attacks on the physical implementation of cryptographic schemes,
obtaining partial information of the secret key becomes feasible and relatively
easier. Thus, the assumption for absolute secrecy of the secret key may not
hold. In recent years, a number of works have been done in leakage-resilient
cryptography to formalize these attacks in the security model.

Leakage-resilient cryptography models various side-channel attacks by allow-
ing the adversary to specify an arbitrary, efficiently computable function f and
to obtain the output of f (representing the information leaked) applied to the
secret key sk. Clearly, we must have some restrictions on f such that the adver-
sary should not be able to recover sk completely and to win the security game
trivially. One approach is to restrict the output size of f to be at most � bits
such that � must be less than |sk| [9]. Naor and Segev [10] considered the entropy
of sk and required that the decrease in entropy of the sk is at most � bits upon
observing f(sk). Dodis et al. [11] further generalized the leakage functions and
proposed the model of auxiliary input which only requires the leakage functions
to be computationally hard to compute sk given f(sk).

Restriction of the Auxiliary Input Model. The auxiliary input model is
general enough to capture a large class of side-channel leakages. However, there
are still shortcomings. For example, in the CCA security model for PKE and IBE,
the adversary A is allowed to ask for the decryption of arbitrary ciphertexts

Identity-Based Encryption with Post-Challenge Auxiliary Inputs 133

before and after receiving the challenge ciphertext C∗, in order to maximize
the ability of A1. But for most leakage-resilient PKE or IBE, the adversary
A can only specify and query the leakage function f(sk) before getting C∗. In
real situations, this is not true. The adversary should be able to obtain more
information even after the attack target is known. The main reason for not
being able to have post-challenge leakage queries (queries from the adversary
after the challenge ciphertext is given) is as follows. If we allow A to specify
the leakage function after getting C∗, he can easily embed the decryption of C∗

as the leakage function, which will lead to a trivial break to the security game.
So, the issue is to come up with a model with minimal restriction needed to
allow post-challenge leakage query after getting the challenge ciphertext, while
avoiding the above trivial attack. Comparing with the existing leakage-resilient
PKE and IBE, the objective is to increase the ability of the adversary to make
the model more realistic and capture a larger class of side-channel attacks.

Protecting the Encryptor: Leakage-Resilient from the Encryptor’s
Randomness. Another direction for considering post-challenge leakage query
is to model the leakage of encryptor (data owner). In the previous section, we
showed the practical threats of using weak PRNG as the source of encryption
randomness. This random value is critical. If the adversary A can obtain the
entire r, it can encrypt the two challenge messages m0 and m1 by itself using r
and compare if they are equal to the challenge ciphertext, thus wins the game
easily. Therefore, the leakage of this randomness should not be overlooked. We
demonstrate the impact of leaking encryption randomness in the following ar-
tificial encryption scheme. We use (Enc, Dec) a leakage-resilient PKE scheme in
the auxiliary input model and one-time pad to form a new encryption scheme:

– Enc′: On input a message M and a public key pk, pick a random one-time
pad P for M and calculate C1 = Enc(pk, P), C2 = P ⊕M , where ⊕ is the
bit-wise XOR. Return the ciphertext C = (C1, C2).

– Dec′: On input a secret key sk and a ciphertext C = (C1, C2), calculate
P ′ = Dec(sk, C1) and output M = C2 ⊕ P ′.

The randomness used in Enc′ by the encryptor is P and the randomness in Enc.
However, leaking the first bit of P will lead to the leakage of the first bit in
M . Therefore, leakage from the encryptor helps the adversary to recover the
message. Without post-challenge leakage query, the side-channel attacks to the
encryption randomness cannot be modeled easily.

In both scenarios, we should avoid the adversary A submitting a leakage
function as the decryption of C∗ in the security game (in case of leakage from
secret key owner) or to submit a leakage function to reveal the information for the
encryption randomness r for a trivial attack (in case of leakage from encryptor).
A possible direction is to ask A to submit a set of functions F0 before seeing the
public key or C∗. After seeing the challenge ciphertext, A can only ask for the

1 Sometimes this is known as the CCA2 security, in contrast with the CCA1 security,
where the adversary is only allowed to ask the decryption oracle before getting the
challenge ciphertext.

134 T.H. Yuen et al.

leakage of arbitrary function f ′ ∈ F0. Therefore, f ′ cannot be the decryption of
C∗ and cannot lead to a trivial attack for the case of encryption randomness.
This restriction is reasonable in the real world since most side-channel attacks
apply to the physical implementation rather than the algorithm used (e.g. the
leakage method of the power or timing attacks are the same, no matter RSA
or ElGamal encryption are applied; 512-bit or 1024-bit keys are used.). Similar
restriction was proposed by Yuen et al. [12] for leakage-resilient signatures in the
auxiliary input model2. However, directly applying this idea to PKE, by simply
allowing both pre-challenge and post-challenge leakages on sk, is not meaningful.
Specifically, as the possible choice of leakage function f ′ is chosen before seeing
the challenge ciphertext C∗, the post-challenge leakage f ′(sk) can simply be
asked before seeing C∗, as a pre-challenge leakage. Therefore this kind of post-
challenge leakage can be captured by slightly modifying the original auxiliary
input model and does not strengthen our security model for PKE and IBE.
Hence, we propose the leakage f ′(r) on the encryption randomness of C∗ as
the post-challenge leakage query. This kind of post-challenge leakage cannot be
captured by the existing models. Since we focus on the auxiliary input model in
this paper, we call our new model as the post-challenge auxiliary input model.

1.3 Our Contributions

In this paper, we propose the post-challenge auxiliary input model for public key
and identity-based encryption. The significance of our post-challenge auxiliary
input model is twofold. Firstly, it allows the leakage after seeing the challenge
ciphertext. Secondly, it considers the leakage of two different parties: the secret
key owner and the encryptor. In most leakage-resilient PKE and IBE schemes,
they only consider the leakage of the secret key. However, the randomness used
by the encryptor may also suffer from side-channel attacks. There are some
encryption schemes which only consider the leakage on randomness, but not the
secret key. Bellare et al. [13] only allows randomness leakage before receiving the
public key. Namiki et al. [14] only allows randomness leakage before the challenge
phase. Therefore our post-challenge auxiliary input model also improves this line
of research on randomness leakage. To the best of the authors’ knowledge, no
existing leakage-resilient PKE or IBE schemes consider the leakage of secret key
and randomness at the same time. Therefore, our post-challenge auxiliary input
model is the first model to consider the leakage from both the secret key owner
and the encryptor. This model captures a wider class of side-channel attacks
than the previous models in the literature. We allow for leakage on the values
being computed on, which will be a function of both the encryption random
r and the public key pk. Specifically, we allows for g(pk, f(r)) where g is any
polynomial-time function and f is any computationally hard-to-invert function.
We put the restriction on f(r) to avoid trivial attacks on our security model.

To illustrate the feasibility of the model, we propose a generic construction
of CPA-secure PKE in our new post-challenge auxiliary input model (pAI-CPA

2 Yuen et al. [12] named their model as the selective auxiliary input model, due to
similarity to the selective-ID model in identity-based encryption.

Identity-Based Encryption with Post-Challenge Auxiliary Inputs 135

PKE). It is a generic transformation from the CPA-secure PKE in the auxil-
iary input model (AI-CPA PKE, e.g. [15]) and a new primitive called the strong
extractor with hard-to-invert auxiliary inputs. The strong extractor is used to
ensure that given the partial leakage of the encryption randomness, the cipher-
text is indistinguishable from uniform distribution. As an independent technical
contribution, we instantiate the strong extractor using the extended Goldreich-
Levin theorem. Similar transformation can also be applied to identity-based
encryption (IBE). Therefore we are able to construct pAI-ID-CPA IBE from
AI-ID-CPA IBE (e.g. [16]).

Furthermore, we extend the generic transformation for CPA-secure IBE to
CCA-secure PKE by Canetti et al. [17] into the leakage-resilient setting. The
original transformation by Canetti et al. [17] only requires the use of strong one-
time signatures. However, the encryption randomness of the PKE now includes
both the encryption randomness used in IBE and the randomness used in the
strong one-time signatures. Leaking either one of them will not violate our post-
challenge auxiliary input model, but will lead to a trivial attack (details are
explained in §5.1). Therefore, we have to link the randomness used in the IBE and
the strong one-time signatures. We propose to use strong extractor with hard-
to-invert auxiliary inputs as the linkage. It is because the strong extractor allows
us to compute the randomness of IBE and the strong one-time signature from
the same source, and yet remains indistinguishable from uniform distribution.
It helps to simulate the leakage of the randomness in the security proof. Our
contributions on encryption can be summarized in Fig. 1.

Fig. 1. Our Contributions on Encryption

Related Work. Dodis et al. [11] introduced the model of auxiliary inputs leak-
age functions. PKE secure in the auxiliary input model was proposed in [15].
Signature schemes secure in the auxiliary input model were independently pro-
posed by Yuen et al. [12] and Faust et al. [18], under different restrictions to the
security model. All of these works only consider the leakage from the owner of
the secret key.

136 T.H. Yuen et al.

For leakage-resilient PKE, Naor and Segev wrote in [10] that

“It will be very interesting to find an appropriate framework that
allows a certain form of challenge-dependent leakage.”

Halevi and Lin [19] proposed the model for after-the-fact leakage which also
considered leakage that occurs after the challenge ciphertext is generated. In
their entropic leakage-resilient PKE, even if the adversary designs its leakage
function according to the challenge ciphertext, if it only leaks k bits then it
cannot amplify them to learn more than k bits about the plaintext. Halevi and
Lin [19] mentioned that

“Our notion only captures leakage at the receiver side (i.e., from
the secret key) and not at the sender side (i.e., from the encryption
randomness). It is interesting to find ways of simultaneously addressing
leakage at both ends.”

Recently, Bitansky et al. [20] showed that any non-committing encryption
scheme is tolerant to leakage on both the secret key sk and encryption random-
ness r (together), such that leaking L bits on (sk, r) reveals no more than L bits
on the underlying encrypted message.

We solve the open problem of allowing simultaneous leakage from sender and
encryptor by our post-challenge auxiliary input model, which allows hard-to-
invert leakage and does not reveals any bit on the underlying encrypted message.

2 Security Model of Post-Challenge Auxiliary Inputs

We denote the security parameter by λ. We use the notation neg(λ) to refer to
some negligible function of λ, and poly(λ) to refer to some polynomial function
of λ.

We give the new post-challenge auxiliary input model for (probabilistic) public
key encryption. Denote the message space asM. A public-key encryption scheme
Π consists of three Probabilistic Polynomial Time (PPT) algorithms:

– Gen(1λ): On input the security parameter λ, output a public key pk and a
secret key sk.

– Enc(pk,M): Denote the message space as M. On input a message M ∈ M
and pk, output a ciphertext C.

– Dec(sk, C): On input sk and C, output the message M or ⊥ for invalid
ciphertext.

For correctness, we require Dec(sk, Enc(pk,M)) = M for all M ∈ M and
(pk, sk)← Gen(1λ).

As introduced in §1.2, the basic setting of our new security model is similar
to the classic IND-CCA model and the auxiliary input model for public key
encryption. Our improvement is to require the adversary A to submit a set of
possible leakages F0 that may be asked later in the security game, in order to

Identity-Based Encryption with Post-Challenge Auxiliary Inputs 137

avoid the trivial attacks mentioned in §1.2. Since A is a PPT algorithm, we
consider that m := |F0| is polynomial in the security parameter λ.

During the security game, A is only allowed to ask for at most q queries
f ′

1, . . . f
′
q ∈ F0 to the post-challenge leakage oracle and obtains f ′

1(r′), . . . f ′
q(r

′),
where r′ is the encryption randomness of the challenge ciphertext, but A cannot
recover r′ with probability better than εr. A can make these choices adaptively
after seeing the challenge ciphertext. Hence, the post-challenge leakage query is
meaningful. Denote the number of pre-challenge leakage oracle queries as q′.

We are now ready to give the formal definition of the model below. Let Π =
(Gen, Enc, Dec) be a public-key encryption scheme. The security against post-
challenge auxiliary inputs and adaptive chosen-ciphertext attacks is defined as
the following game pAI-CCA, with respect to the security parameter λ.

1. The adversary A submits a set of leakage functions F0 to the challenger C
with m := |F0| is polynomial in λ.

2. C runs (pk, sk)← Gen(1λ) and outputs pk to A.
3. A may adaptively query the (pre-challenge) leakage oracle:

– LOs(fi) with fi. LOs(fi) returns fi(sk, pk) to A.
4. A submits two messages m0,m1 ∈ M of the same length to C. C samples

b← {0, 1} and the randomness of encryption r′ ← {0, 1}∗. It returns C∗ ←
Enc(pk,mb; r

′) to A.
5. A may adaptively query the (post-challenge) leakage oracle and the decryp-

tion oracle:
– LOr(f ′

i) with f ′
i ∈ F0. It returns f ′

i(r
′) to A.

– DEC(C) with C �= C∗. It returns Dec(sk, C) to A.

6. A outputs its guess b′ ∈ {0, 1}. The advantage of A is AdvpAI−CCA
A (Π) =

|Pr[b = b′]− 1
2 |.

Note that in the pre-challenge leakage stage,Amay choose fi(sk, pk) to encode
Dec(sk, ·) to query the pre-challenge leakage oracle LOs. Recall that we do not
restrict fi to be in F0. Therefore to provide an explicit decryption oracle is
superfluous.

Furthermore, our model implicitly allows the adversary to obtain some leak-
age g on intermediate values during the encryption process, in the form of
g(pk,m0, f(r∗)) and g(pk,m1, f(r∗)), where f is any hard-to-invert function.
Since the adversary knows pk, m0 and m1, it can compute this kind of leakage
for any polynomial time function g given the knowledge of f(r∗).

Denote the set of functions asked in the pre-challenge leakage oracle LOs as
Fs. We have to define the families (Fs,F0) for the leakage functions asked in
the oracles. We can define the family of length-bounded function by restricting
the size of the function output as in [11] (Refer to [11] for the definition of such
family). In this paper, we consider the families of one-way function for auxiliary
input model. We usually consider F0 as a family of one-way function How, which
is extended from the definition in [11]:

– Let How(εr) be the class of all polynomial-time computable functions h :
{0, 1}|r′| → {0, 1}∗, such that given h(r′) (for a randomly generated r′),

138 T.H. Yuen et al.

no PPT algorithm can find r′ with probability greater than εr
3. The func-

tion h(r′) can be viewed as a composition of q ∈ N+ functions: h(r′) =
(h1(r′), . . . , hq(r

′)). Therefore {h1, . . . , hq} ∈ How(εr).

Also, we consider Fs as a family of one-way function Hpk−ow:

– Let Hpk−ow(εs) be the class of all polynomial-time computable functions h :
{0, 1}|sk|+|pk| → {0, 1}∗, such that given (pk, h(sk, pk)) (for a randomly gen-
erated (sk, pk)), no PPT algorithm can find sk with probability greater than
εs

4. The function h(sk, pk) can be viewed as a composition of q′ functions:
h(sk, pk) = (h1(sk, pk), . . . , hq′(sk, pk)). Therefore {h1, . . . , hq′} ∈ Hpk−ow(εs).

Definition 1. We say that Π is pAI-CCA secure with respect to the families
(Hpk−ow(εs), How(εr)) if the advantage of any PPT adversary A in the above
game is negligible.

We can also define the security for chosen plaintext attack (CPA) similarly.
By forbidding the decryption oracle query, we have the security model for pAI-
CPA. If we further forbid the leakage of the encryption randomness, we get the
original AI-CPA model in [11].

We also define the security model for identity-based encryption in the full
version of the paper [21].

3 Strong Extractor with Hard-to-Invert Auxiliary Inputs

Definition 2 ((ε, δ)-Strong extractor with auxiliary inputs). Let Ext :
{0, 1}l1×{0, 1}l2 → {0, 1}m′

, where l1, l2 and m′ are polynomial in λ. Ext is said
to be a (ε, δ)-strong extractor with auxiliary inputs, if for every PPT adversary
A, and for all pairs (x, f) such that x ∈ {0, 1}l2 and f ∈ How(ε), we have:

|Pr[A(r, f(x),Ext(r, x)) = 1]− Pr[A(r, f(x), u) = 1]| < δ.

where r ∈ {0, 1}l1, u ∈ {0, 1}m′
are chosen uniformly random.

An interesting property of the above definition is that such a strong extrac-
tor itself is 2δ-hard-to-invert. This property is useful when we prove pAI-CCA
encryption security.

Lemma 1. Let r ∈ {0, 1}l1 be chosen uniformly random. For any pair (x, f)
where x ∈ {0, 1}l2 and f ∈ How(ε), given (r, f(x)) and Ext(r, x), no PPT ad-
versary can find x with probability ≥ 2δ, provided that Ext(r, x) is a (ε, δ)-strong
extractor with auxiliary inputs.

3 Otherwise, for example, A can choose an identity mapping f . Then, A can learn
r′ = f(r′) and test if C∗ = Enc(pk,m∗

0; r
′) to determine b and win the game.

4 Note that we consider the probability of hard-to-invert function given the public key,
the public parameters and other related parameters in the security game. Similar to
the weak-AI-CPA model in [11], no PPT algorithm will output sk with εs probability
given fi, pk, as pk leaks some information about sk. Therefore, we also define that no
PPT algorithm will output r′ with εr probability given f ′

i , C
∗, pk,m∗

0,m
∗
1. We omit

these extra input parameters for simplicity in the rest of the paper.

Identity-Based Encryption with Post-Challenge Auxiliary Inputs 139

Proof. Suppose on the contrary, x can be recovered with probability 2δ when
knowing r, f(x) and Ext(r, x). However by the definition of strong extractor, fix
any auxiliary-input function f ∈ How(ε), 〈r, f(x),Ext(r, x)〉 is δ-indistinguishable
with 〈r, f(x), u〉. It leads to a contradiction, since if x can be recovered with
probability 2δ, the attacker of Ext can compare that: (1) if f(x) value is correct,
then it receives Ext(r, x); (2) else it receives u instead. It breaks the strong
extractor with probability δ, which is a contradiction. ��

Interestingly, we find that a (ε, δ)-strong extractor with auxiliary inputs can
be constructed from the modified Goldreich-Levin theorem from [15]. Denote

〈r, x〉 =
∑l

i=1 rixi as the inner product of x = (x1, . . . xl) and r = (r1, . . . , rl).

Theorem 1 ([15]). Let q be a prime, and let H̄ be an arbitrary subset of GF (q).
Let f : H̄ n̄ → {0, 1}∗ be any (possibly randomized) function. s is chosen ran-
domly from H̄ n̄, r is chosen randomly from GF (q)n̄ and u is chosen randomly
from GF (q). We also have y = f(s). If there is a distinguisher D that runs in
time t such that

|Pr[D(r, y, 〈r, s〉) = 1]− Pr[D(r, y, u)] = 1| = δ,

then there is an inverter A that runs in time t′ = t · poly(n̄, |H̄ |, 1
δ) such that

Pr[A(y) = s] ≥ δ3

512n̄q2 .

Now we are ready to show that strong extractor with ε-hard-to-invert auxiliary
inputs can be instantiated using inner product.

Theorem 2. Let λ be the security parameter. Let x be chosen uniformly random
from {0, 1}l(λ) where l(λ) = poly(λ). Similarly, we choose r uniformly random
from GF (q)l(λ) and u uniformly random from GF (q). Then, given f ∈ How(ε),
no PPT algorithm A′ can distinguish (r, f(x), 〈r, x〉) from (r, f(x), u) with prob-
ability ε′ ≥ (512l(λ)q2ε)1/3.

Proof. Now, we let H̄ = {0, 1} ⊂ GF (q), n̄ = l(λ). Suppose there is an algorithm
that can distinguish (r, f(x), 〈r, x〉) and (r, f(x), u) in time t = poly1(λ) with
probability ε′. Then, there exists an inverterA that runs in time t·poly(l(λ), 2, 1

ε)

= poly′(λ) such that Pr[A(f(x)) = x] ≥ ε′3

512l(λ)q2 ≥ ε if ε′ ≥ (512l(λ)q2ε)1/3. It

contradicts that f ∈ How(ε). ��

4 CPA Secure PKE Construction against Post-Challenge
Auxiliary Inputs

In this section, we give the construction of a public key encryption which is
pAI-CPA secure. We show that it can be constructed from an AI-CPA secure
encryption (e.g., [15]) and a strong extractor with ε-hard-to-invert auxiliary in-
puts leakage.

140 T.H. Yuen et al.

4.1 Construction of pAI-CPA Secure PKE

Let Π ′ = (Gen′, Enc′, Dec′) be an AI-CPA secure encryption (with respect to fam-
ily Hpk−ow(εs)) where the encryption randomness is in {0, 1}m′

, Ext : {0, 1}l1 ×
{0, 1}l2 → {0, 1}m′

is a (εr, neg(λ))-strong extractor with auxiliary inputs, then
a pAI-CPA secure (with respect to families (Hpk−ow(εs),How(εr))) encryption
scheme Π can be constructed as follows.

1. Gen(1λ): It runs (pk, sk) ← Gen′(1λ) and chooses r uniformly random from
{0, 1}l1. Then, we set the public key PK = (pk, r) and the secret key SK = sk.

2. Enc(PK,M): It picks x uniformly random from {0, 1}l2. Then, it computes
y = Ext(r, x). The ciphertext is c = Enc′(pk,M ; y).

3. Dec(SK, c): It returns Dec′(sk, c).

Theorem 3. If Π ′ is an AI-CPA secure encryption with respect to family
Hpk−ow(εs) and Ext is a (εr, neg(λ))-strong extractor with auxiliary inputs, then
Π is pAI-CPA secure with respect to families (Hpk−ow(εs),How(εr)).

Proof. Denote the randomness used in the challenge ciphertext as x∗. Let Game0

be the pAI-CPA security game with Π scheme. Game1 is the same as Game0

except that when encrypting the challenge ciphertext c = Enc′(pk,mb; y), we
replace y = Ext(r, x∗) with y′ which is chosen uniformly at random in {0, 1}m′

.
The leakage oracle outputs fi(x

∗) for both games.
Let AdvGamei

A (Π) be the advantage that the adversary A wins in Gamei with
Π scheme. Now, we need to show for any PPT adversary A:

|AdvGame0
A (Π)−AdvGame1

A (Π)| ≤ neg(λ).

Assume that there exists an adversary A such that |AdvGame0
A (Π) −

AdvGame1
A (Π)| ≥ εA which is non-negligible.

The simulator S is given (r, f1(x∗), f2(x∗), . . . , fq(x
∗), T) where T is either

T0 = 〈r, x∗〉 or T1 = u which is a random number as in Definition 2. Given
f1(x∗), . . . , fq(x

∗), no PPT adversary can recover x∗ with probability greater
than εr by the definition of How(εr). Then, the simulator generates (pk, sk) ←
Gen′(1λ). It sets SK = sk and gives the adversary PK = (pk, r). The simulator
can answer pre-challenge leakage oracle as it has PK and SK. The adversary
submits two message m0 and m1 to the simulator where the simulator flips a
coin b. It encrypts the challenge ciphertext C∗ = Enc(pk,mb;T) and gives it to
A. A can ask fi(x) as the post-challenge leakage queries. A outputs its guess bit
b′ to the simulator. If b = b′, the simulator outputs 1; otherwise, it outputs 0.

Since the difference of advantage of A between Game0 and Game1 is εA, then

AdvS =

∣∣∣∣12 Pr[S outputs 1|T1] +
1

2
Pr[S outputs 0|T0]− 1

2

∣∣∣∣
=

∣∣∣∣12 Pr[S outputs 1|T1] +
1

2
(1 − Pr[S outputs 1|T0])− 1

2

∣∣∣∣
=

1

2
(|Pr[b = b′|T1]− Pr[b = b′|T0]|) ≥ εA

2
.

Identity-Based Encryption with Post-Challenge Auxiliary Inputs 141

which is non-negligible if εA is non-negligible. It contradicts the definition of
strong extractor in Definition 2. Therefore, no PPT adversary can distinguish
Game0 from Game1 with non-negligible probability.

Next, we want to show that

AdvGame1
A (Π) = neg(λ).

Note that the challenge ciphertext now is c = Enc′(pk,M ; y′) where y′ is chosen
uniformly at random in {0, 1}m′

. Therefore the output of the leakage oracle
fi(x

∗) will not reveal any information related to c. Then Game1 is the same as
the AI-CPA game with Π ′. As Π is based on Π ′ which is AI-CPA secure, we
have that AdvGame1

A (Π) is negligible. ��

Extension to IBE. We can use the same technique to construct pAI-ID-
CPA secure IBE. Let Σ′ = (Setup′,Extract′, Enc′, Dec′) be an AI-ID-CPA secure
IBE (e.g. [16]) where the encryption randomness is in {0, 1}m′

, Ext : {0, 1}l1 ×
{0, 1}l2 → {0, 1}m′

is a (εr, neg(λ))-strong extractor with auxiliary inputs, then
construct a pAI-ID-CPA secure IBE scheme Σ as follows.

1. Setup(1λ): It runs (mpk,msk)← Setup′(1λ) and chooses r uniformly random
from {0, 1}l1. Then, we set the master public key MPK = (mpk, r) and the
master secret key MSK = msk.

2. Extract(MSK, ID): It returns skID ← Extract(MSK, ID).
3. Enc(MPK, ID,M): It chooses x uniformly random from {0, 1}l2. Then, it

computes y = Ext(r, x). The ciphertext is c = Enc′(mpk, ID,M ; y).
4. Dec(skID, c): It returns Dec′(skID, c).

Theorem 4. If Σ′ is an AI-ID-CPA secure IBE with respect to familyHpk−ow(εs)
and Ext is a (εr, neg(λ))-strong extractor with auxiliary inputs, then Σ is pAI-ID-
CPA secure with respect to families (Hpk−ow(εs),How(εr)).

The proof is similar to the proof of Theorem 3 and hence is omitted.

Corollary 1. Instantiating with the strong extractor construction in §3 and the
identity-based encryption scheme in [16], the identity-based encryption construc-
tion Σ′ is pAI-ID-CPA secure.

5 CCA Public Key Encryption from CPA Identity-Based
Encryption

In this section, we show that auxiliary-inputs (selective-ID) CPA secure IBE
and strong one-time signatures imply post-challenge auxiliary-inputs CCA secure
PKE. Canetti et al. [17] showed that a CCA secure encryption can be constructed
from a (selective-ID) CPA secure IBE and a strong one-time signatures. We
would like to show that this transformation can also be applied to the auxiliary
input model after some modifications. As in [17], we use the strong one-time
signature to prevent the PKE adversaries asking for decrypting ciphertexts of
ID∗ in the post stage as the IBE adversaries are not allowed to ask Extract(ID∗).
However, we cannot apply the technique in [17] directly.

142 T.H. Yuen et al.

5.1 Intuition

Let (Gens, Sign, Verify) be a strong one-time signature scheme. Let (Setup′,
Extract′, Enc′, Dec′) be an auxiliary-inputs CPA secure IBE scheme (refer to the
definition in the full version of the paper [21], by dropping the post-challenge
query). The construction directly following Canetti et al.’s transformation [17]
is as follows.

1. Gen(1λ): Run (mpk,msk) ← Setup′(1λ). Set the public key pk = mpk and
the secret key sk = msk.

2. Enc(pk,M): Run (vk, sks) ← Gens(1
λ). Calculate c ← Enc′(pk, vk,M) and

σ ← Sign(sks, c). Then, the ciphertext is C = (c, σ, vk).

3. Dec(sk, C): First, test Verify(vk, c, σ)
?
= 1. If it is “1”, compute skvk =

Extract′(sk, vk) and return Dec′(skvk, c). Otherwise, return ⊥.

Problems in the Post-Challenge Auxiliary Input Model. At first glance
it seems that Canetti et al.’s transformation [17] also works in our pAI-CCA
model for PKE, if we simply change the underlying IBE to be secure in the
corresponding post-challenge auxiliary input model. However, we find that this
is not true. The main challenge of pAI-CCA secure PKE is how to handle the
leakage of the randomness used in the challenge ciphertext. It includes the ran-
domness used in Gens, Sign and Enc′, denoted as rsig1 , rsig2 and renc respec-
tively. Specifically, we have (vk, sks) ← Gens(1

λ; rsig1), σ ← Sign(sks, c; rsig2)
and c← Enc′(mpk, vk,mb; renc).

Let A be a pAI-CCA adversary of the PKE. Let f be (one of) the post-
challenge leakage function submitted by A before seeing the public key. Then,
after receiving the challenge ciphertext C∗ = (c∗, σ∗, vk∗), A can ask the leakage
f(r′) where r′ = (renc, rsig1 , rsig2) is the randomness used to produce C∗. To some
extreme, A may ask:

– f1(r′) = renc, such that f1 is still hard-to-invert upon r′. In this case, A can

test c∗
?
= Enc′(mpk, vk, m0; renc) to win the pAI-CCA game; or

– f2(r′) = (rsig1 , rsig2), such that f2 is still hard-to-invert upon r′. In this case,
given rsig1 , A can generate (vk, sks) = Gens(1

λ; rsig1) which causes Pr[Forge]
defined in [17] to be non-negligible (“Forge” is the event that A wins the
game by outputting a forged strong one-time signature).

Therefore, leaking part of the randomness in r′ will make the proof of [17] fail
in our model.

Our Solution: We set both rsig1 , rsig2 and renc are generated from the same
source of randomness x ∈ {0, 1}l2. Suppose rsig1 ||rsig2 and renc are bit-strings

of length n′. Suppose Ext : {0, 1}l1 × {0, 1}l2 → {0, 1}n′
is a strong extractor

with εr-hard-to-invert auxiliary inputs; r1 and r2 are independent and uniformly
chosen from {0, 1}l1 which are also included in the public key pk. Then the
randomness used in the IBE and the one-time signature can be calculated by

Identity-Based Encryption with Post-Challenge Auxiliary Inputs 143

renc = Ext(r1, x) and (rsig1 ||rsig2) = Ext(r2, x) respectively. In the security proof,
the pAI-CCA adversary A can ask for the leakage of f(x), where f is any hard-
to-invert function.

The main part of the security proof is to use the pAI-CCA adversary A to
break the AI-ID-CPA security of the underlying IBE scheme Π ′. The simulator
of the pAI-CCA game has to simulate the post-challenge leakage oracle without
knowing the encryption randomness x of the challenge ciphertext, which was
produced by the challenger of Π ′. We solve this problem by proving that it is
indistinguishable by replacing r∗enc = Ext(r1, x

∗) and r∗sig1 ||r
∗
sig2

= Ext(r2, x
∗)

with random numbers. Therefore, the post-challenge leakages on x∗ will be in-
dependent with r∗enc and r∗sig1 ||r∗sig2 which are used to produce the real challenge
ciphertext. Then, the simulator can randomly choose x∗ and simulate the post-
challenge oracles by it own. However, when we show to replace r∗sig1 ||r

∗
sig2

with
a random number, the simulator needs to compute renc∗ = Ext(r1, x

∗). One way
to solve it is to include Ext(r1, x

∗) as a post-challenge leakage query in the pAI-
CCA game. As we will see later (by Lemma 1), including Ext(r1, x

∗) in leakage
queries is still neg(λ)-hard-to-invert.

Following [17], the transformation also works for the weaker selective identity
(sID) model. As a result, we only need a AI-sID-CPA secure IBE. To sum up,
we need three primitives to construct a pAI-CCA secure PKE: strong extractor
with auxiliary inputs, strong one-time signatures and AI-sID-CPA secure IBE.

5.2 Post-Challenge Auxiliary Inputs CCA Secure PKE

We are now ready to describe our post-challenge auxiliary inputs CCA secure
PKE. Denote a AI-sID-CPA secure IBE schemeΠ ′=(Setup′,Extract′, Enc′, Dec′),
a strong one-time signature scheme Πs = (Gens, Sign, Verify) and a strong ex-
tractor with εr-hard-to-invert auxiliary input Ext : {0, 1}l1 ×{0, 1}l2 → {0, 1}n′

,
where the size of renc and rsig1 ||rsig2 are both {0, 1}n′

; and the verification key
space of Πs is the same as the identity space of Π ′. We construct a PKE scheme
Π = (Gen, Enc, Dec) as follows.

1. Gen(1λ): Run (mpk,msk) ← Setup′(1λ). Choose r1, r2 uniformly random
from {0, 1}l1. Set the public key pk = (mpk, r1, r2) and the secret key
sk = msk.

2. Enc(pk,m): Randomly sample x ∈ {0, 1}l2, calculate renc = Ext1(r1, x) and
rsig1 ||rsig2 = Ext2(r2, x). Run (vk, sks) = Gens(1

λ; rsig1). Let c=Enc′(pk, vk,m;
renc); σ = Sign(sks, c; rsig2). Then, the ciphertext is C = (c, σ, vk).

3. Dec(sk, C): First, test Verify(vk, c, σ)
?
= 1. If it is “1”, compute skvk =

Extract(sk, vk) and return Dec′(skvk, c). Otherwise, return ⊥.

Theorem 5. Assuming that Π ′ is a AI-sID-CPA secure IBE scheme with re-
spect to family Hpk−ow(εs), Πs is a strong one-time signature, and Ext1 is
(εr, neg1)-strong extractor with auxiliary inputs and Ext2 is (2neg1, neg2)-strong
extractor with auxiliary inputs, then there exists a PKE scheme Π which is pAI-
CCA secure with respect to families (Hpk−ow(εs),How(εr)).

144 T.H. Yuen et al.

Proof. We prove the security by a number of security games. Let Game0 be the
original pAI-CCA game for the PKE scheme Π . Specifically for the challenge ci-
phertext, the simulator picks a random number x∗ to compute r∗enc = Ext1(r1, x

∗)
and r∗sig1 ||r

∗
sig2

= Ext2(r2, x
∗). Let Game1 be the same as Game0, except that

r∗sig1 ||r
∗
sig2

is randomly chosen from {0, 1}n′
. Let Game2 be the same as Game1,

except that r∗enc is randomly chosen from {0, 1}n′
.

Lemma 2. For any PPT adversary A, Game0 is indistinguishable from Game1 if
Ext1 is (εr, neg1)-strong extractor with auxiliary inputs and Ext2 is (2neg1, neg2)-
strong extractor with auxiliary inputs.

Lemma 3. For any PPT adversary A, Game1 is indistinguishable from Game2

if Ext1 is (εr, neg1)-strong extractor with auxiliary inputs.

Lemma 4. For any PPT adversary A, the advantage in Game2 is negligible if
Π ′ is a AI-sID-CPA secure IBE scheme with respect to family Hpk−ow(εs) and
Πs is a strong one-time signature.

��

Proof (Lemma 2). Let AdvGamei
A (Π) be the advantage that the adversaryA wins

in Gamei with Π scheme. Now, we need to show for any PPT adversary A:

|AdvGame0
A (Π)−AdvGame1

A (Π)| ≤ neg(λ).

Assume that there exists an adversary A such that |AdvGame0
A (Π) −

AdvGame1
A (Π)| ≥ εA which is non-negligible.

The simulator S picks a random r1, r2 ∈ {0, 1}l1. The simulator is given
(r2, f1(x∗), . . . , fq(x

∗), fq+1(x∗), T) where f1, . . . , fq ∈ F0, fq+1(x∗) =
Ext1(r1, x

∗), and T is either T0 = 〈r2, x
∗〉 or T1 = u (a random number as in

Definition 2). Given f1(x∗), . . . , fq(x
∗), no PPT adversary can recover x∗ with

probability greater than εr by the definition of How(εr) (We will later show that
including Ext(r1, ·) is also 2neg1-hard-to-invert).

Then, the simulator generates (mpk,msk) ← Setup′(1λ). It sets sk = msk
and gives the adversary pk = (mpk, r1, r2). The simulator can answer pre-
challenge leakage oracle as it has pk and sk. The adversary submits two mes-
sages m0 and m1 to the simulator where the simulator flips a coin b. It sets
rsig1 ||rsig2 = T , runs (vk, sks) ← Gens(1

λ; rsig1), c = Enc′(pk, vk,mb; fq+1(x∗))
and σ = Sign(sks, c; rsig2). It returns the challenge ciphertext C∗ = (c, σ, vk)
to A. A can ask fi(x

∗) as the post-challenge leakage queries. A outputs its
guess bit b′ to the simulator. If b = b′, the simulator outputs 1; otherwise, it
outputs 0.

Since the difference of advantage of A between Game0 and Game1 is εA, then

AdvS =
1

2
(|Pr[b = b′|T1]− Pr[b = b′|T0]|) ≥ εA

2
.

which is non-negligible if εA is non-negligible. It contradicts the fact that Ext2 is
(2neg1, neg2)-strong extractor with auxiliary inputs. Therefore, no PPT adver-
sary can distinguish Game0 from Game1 with non-negligible probability.

Identity-Based Encryption with Post-Challenge Auxiliary Inputs 145

Finally, we need to show that including Ext1(r1, ·) is also 2neg1(λ)-hard-to-
invert, provided that Ext1 is a (εr, neg1)-strong extractor with auxiliary inputs.
This follows directly from Lemma 1 if we set f = (f1(x∗), . . . , fq(x

∗)) ∈ How(εr).
��

Proof (Lemma 3). The post-challenge query functions (f1, . . . , fq) ∈ F0 are
εr-hard-to-invert by definition. Fix any auxiliary-input function f1, . . . , fq, 〈r1,
f1(x∗), . . . , fq(x

∗),Ext(r1, x
∗)〉 is indistinguishable with 〈r1, f1(x∗), . . . , fq(x

∗), u〉
where u is randomly chosen from {0, 1}n′

, by the definition of strong extractor.
Hence Game1 is indistinguishable from Game2. The reduction is similar to the
previous proof. ��
Proof (Lemma 4). Let A be an adversary to Π on Game2 and we construct an
AI-sID-CPA adversary A′ to Π ′ that runs A as a subroutine. Initially, A sub-
mits a set of leakage functions F0 that he would like to ask in the Game2 to A′.
A′ picks rsig1 ||rsig2 uniformly random from {0, 1}n′

and computes (vk∗, sk∗s) =
Gens(1

λ; rsig1). A′ submits the challenge identity vk∗ to the AI-sID-CPA chal-
lenger C, and C returns mpk toA′. ThenA′ picks r1 and r2 which are independent
and uniformly chosen from {0, 1}l1. A′ gives pk = (mpk, r1, r2) to A.

In the pre-challenge query phase, A can adaptively query fi(pk,msk). A′

records and forwards all the queries to C; and uses the output by C to answer A.
In the challenge phase, A submits m0,m1 to A′, and A′ forwards m0,m1 as

the challenge message to C. C returns c∗ = Enc′(mpk, vk∗,mb; renc) to A′ for some
random bit b and randomness renc. Then A′ computes σ∗ = Sign(sk∗s, c

∗; rsig2).
A′ sends C∗ = (c∗, σ∗, vk∗) to A as its challenge ciphertext. A′ picks a random
x∗ ∈ {0, 1}l2.

In the post-challenge query phase, A′ can answer the adaptive query f ′
i on the

randomness x∗ asked byA.Amay also adaptively queryDEC(c, σ, vk).A′ returns
⊥ if Verify(vk, c, σ) �= 1. Otherwise, there are two cases. If vk = vk∗, it means
(c, σ) �= (c∗, σ∗). However, it implies that A forges the one-time signature. This
happens with only a negligible probability. Else, vk �= vk∗, A′ asks the extraction
oracle EO(vk) to C and uses skvk to decrypt c.

Finally A outputs its guess b′ and A′ forwards it to C as its guess bit. There-
fore, if A wins the Game2 with a non-negligible probability, then A′ will win the
AI-sID-CPA game also with a non-negligible probability, which contradicts that
Π ′ is AI-sID-CPA secure.

To show that the probability that A asks for the decryption of a valid cipher-
text with identity vk∗ is negligible, let C′ be the challenger of the strong one-time
signature scheme. We construct an algorithm B to break the strong one-time
signature scheme by running A as a subroutine. Initially, A submits its post-
challenge leakage class F0 to B. C′ gives vk∗ to B. B runs (mpk,msk)← Setup′(1λ)
and picks r1 and r2 which are independent and uniformly chosen from {0, 1}l1.
B returns pk = (mpk, r1, r2) to A.

In the pre-challenge query phase, A can adaptively query fi(pk,msk) and B
can answer them by itself.

In the challenge phase, A submits m0,m1 to B. B picks renc uniformly random
from {0, 1}n′

. B picks a random bit b and calculates c∗ = Enc′(mpk, vk∗,mb; renc).

146 T.H. Yuen et al.

Then B asks C′ to sign on c∗ and obtains the signature σ∗. B gives the challenge
ciphertext C∗ = (c∗, σ∗, vk∗) to A. B picks a random x∗ ∈ {0, 1}l2.

In the post query phase, A can adaptively ask the post-challenge leakage
f ′
i ∈ F0 to B and B can answer it with x∗. A may also ask for the decryption

oracle. Decryption of ciphertext involving vk �= vk∗ can be answered by using
msk. However, if A asks for the decryption of a valid ciphertext (c, σ, vk∗) that
is not identical to (c∗, σ∗, vk∗), B returns (c, σ) to C′. Therefore, the probability
that A can output a forged signature is negligible provided that Πs is a strong
one-time signature, which completes the proof. ��

Acknowledgements. We thank anonymous reviewers for their helpful com-
ments. Ye Zhang was supported by NSF award #0747294. Siu Ming Yiu was
partially supported by an NSFC/RGC Joint Research Scheme N HKU 729/13.
Joseph K. Liu was supported by A*STAR project SPARK-1224104047.

References

1. Franke, C., Robinson, P.: Autonomic provisioning of hosted applications with level
of isolation terms. In: 2010 Seventh IEEE International Conference and Workshops
on Engineering of Autonomic and Autonomous Systems, pp. 131–142 (2008)

2. Cloud Security Alliance: Expanded top ten big data security and privacy challenges
(2013)

3. Hough, A.: Google engineer fired for privacy breach after “staking and harassing
teenagers”. The Telegraph (September 15, 2010)

4. Argyros, G., Kiayias, A.: I forgot your password: randomness attacks against php
applications. In: USENIX Security 2012, p. 6. USENIX Association (2012)

5. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter,
C.: Public keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 626–642. Springer, Heidelberg (2012)

6. Michaelis, K., Meyer, C., Schwenk, J.: Randomly failed! the state of randomness in
current java implementations. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779,
pp. 129–144. Springer, Heidelberg (2013)

7. Shumow, D., Ferguson, N.: On the possiblity of a back door in the NIST SP800-90
dual ec prng, http://rump2007.cr.yp.to/15-shumow.pdf

8. Perlroth, N., Larson, J., Shane, S.: N.S.A. able to foil basic safeguards of privacy
on web New York Times (September 5, 2013),
http://www.nytimes.com/2013/09/06/us/

nsa-foils-much-internet-encryption.html

9. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

10. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

11. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In:
Mitzenmacher, M. (ed.) STOC 2009, pp. 621–630. ACM (2009)

12. Yuen, T.H., Yiu, S.M., Hui, L.C.K.: Fully leakage-resilient signatures with auxiliary
inputs. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372,
pp. 294–307. Springer, Heidelberg (2012)

http://rump2007.cr.yp.to/15-shumow.pdf
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html

Identity-Based Encryption with Post-Challenge Auxiliary Inputs 147

13. Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek,
S.: Hedged public-key encryption: How to protect against bad randomness. In:
Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer, Hei-
delberg (2009)

14. Namiki, H., Tanaka, K., Yasunaga, K.: Randomness leakage in the kem/dem frame-
work. In: Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 309–323.
Springer, Heidelberg (2011)

15. Dodis, Y., Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Public-
key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC 2010.
LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)

16. Yuen, T.H., Chow, S.S.M., Zhang, Y., Yiu, S.M.: Identity-based encryption re-
silient to continual auxiliary leakage. In: Pointcheval, D., Johansson, T. (eds.) EU-
ROCRYPT 2012. LNCS, vol. 7237, pp. 117–134. Springer, Heidelberg (2012)

17. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

18. Faust, S., Hazay, C., Nielsen, J.B., Nordholt, P.S., Zottarel, A.: Signature schemes
secure against hard-to-invert leakage. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 98–115. Springer, Heidelberg (2012)

19. Halevi, S., Lin, H.: After-the-fact leakage in public-key encryption. In: Ishai, Y.
(ed.) TCC 2011. LNCS, vol. 6597, pp. 107–124. Springer, Heidelberg (2011)

20. Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 266–284. Springer, Heidelberg
(2012)

21. Yuen, T.H., Zhang, Y., Yiu, S.M., Liu, J.K.: Encryption schemes with post-
challenge auxiliary inputs. Cryptology ePrint Archive, Report 2013/323 (2013),
http://eprint.iacr.org/

http://eprint.iacr.org/

Verifiable Computation over Large Database

with Incremental Updates

Xiaofeng Chen1,4, Jin Li2,4, Jian Weng3, Jianfeng Ma1, and Wenjing Lou4

1 State Key Laboratory of Integrated Service Networks (ISN),
Xidian University, Xi’an 710071, P.R. China

xfchen@xidian.edu.cn, jfma@mail.xidian.edu.cn
2 School of Computer Science and Educational Software,
Guangzhou University, Guangzhou 510006, P.R. China

jinli71@gmail.com
3 Department of Computer Science,

Jinan University, Guangzhou 510632, P.R. China
cryptjweng@gmail.com

4 Department of Computer Science,
Virginia Polytechnic Institute and State University, USA

wjlou@vt.edu

Abstract. The notion of verifiable database (VDB) enables a resource-
constrained client to securely outsource a very large database to an
untrusted server so that it could later retrieve a database record and
update a record by assigning a new value. Also, any attempt by the
server to tamper with the data will be detected by the client. When
the database undergoes frequent while small modifications, the client
must re-compute and update the encrypted version (ciphertext) on the
server at all times. For very large data, it is extremely expensive for the
resources-constrained client to perform both operations from scratch.
In this paper, we formalize the notion of verifiable database with in-
cremental updates (Inc-VDB). Besides, we propose a general Inc-VDB
framework by incorporating the primitive of vector commitment and the
encrypt-then-incremental MAC mode of encryption. We also present a
concrete Inc-VDB scheme based on the computational Diffie-Hellman
(CDH) assumption. Furthermore, we prove that our construction can
achieve the desired security properties.

Keywords: Verifiable Database, Incremental Cryptography, Outsourc-
ing Computations, Vector Commitment.

1 Introduction

With the availability of cloud services, the techniques for securely outsourcing the
prohibitively expensive computations are getting widespread attentions in the
scientific community [1–3, 18, 19]. That is, the clients with resource-constraint
devices can outsource the heavy computation workloads into the untrusted cloud
servers and enjoy the unlimited computing resources in a pay-per-use manner.

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 148–162, 2014.
c© Springer International Publishing Switzerland 2014

Verifiable Computation over Large Database with Incremental Updates 149

Since the cloud servers may return an invalid result in some cases (e.g., the
servers might contain a software bug that will fail on a constant number of
invocation), one crucial requirement of outsourcing computation is that the client
has the ability to verify the validity of computation result efficiently.

The primitive of verifiable computation has been well studied by plenty of
researchers in the past decades [4, 8, 9, 20, 21, 23–25]. Most of the prior work fo-
cused on generic solutions for arbitrary function (encoded as a Boolean circuit).
Though in general the problem of verifiable computation has been theoretically
solved, the proposed solutions are still much inefficient for real-world applica-
tions. Therefore, it is still meaningful to seek for efficient protocols for verifiable
computation of specific functions.

Benabbas, Gennaro and Vahlis [12] first proposed the notion of verifiable
database (VDB), which is extremely useful to solve the problem in the context
of verifiable outsourcing storage. Assume that a resource constrained client would
like to store a very large database on a server so that it could later retrieve a
database record and update a record by assigning a new value. If the server
attempts to tamper with the database, it will be detected by the client with
an overwhelming probability. Besides, the computation and storage resources
invested by the client must not depend on the size of the database (except for
an initial setup phase).

For the case of static database, we can construct VDB based on simple so-
lutions using message authentication codes or digital signatures. That is, the
client signs each database record before sending it to the server, and the server
is requested to output the record together with its valid signature. The solu-
tion does not work if the client performs updates on the database. As noted in
[12], the main technical difficulty is that the client must have a mechanism to
revoke the signatures given to the server for the previous values. Otherwise, the
malicious server can utilize the previous (while valid) database records and cor-
responding signatures to responde the current query of the client. This is called
the Backward Substitution updates (BSU) attack on VDB. In order to solve this
issue, the client should keep track of every change locally. However, this totally
contradicts the goal of outsourcing, i.e., the client should use much less resources
than those needed to store the database locally.

This problem has been addressed by works on accumulators [15, 16, 29] and
authentication data structures [27, 28, 30, 31]. However, it seems that the pre-
vious solutions based on the two techniques either rely on non-constant size
assumptions (such as q-Strong Diffie-Hellman assumption), or require expensive
operations such as generation of primes and expensive “re-shuffling” procedures.
Benabbas, Gennaro and Vahlis [12] presented the first practical verifiable com-
putation scheme for high degree polynomial functions and used it to design an
efficient VDB scheme. The construction relies on a constant size assumption in
bilinear groups of composite order, while does not support public verifiability
(i.e., only the owner of the database can verify the correctness of the proofs).
Very recently, Catalano and Fiore [13] proposed an elegant solution to build

150 X. Chen et al.

VDB from a primitive named vector commitment. The concrete construction
relies on standard constant-size assumption and supports public verifiability.

The data records often contain some sensitive information that should not be
exposed to the cloud server. Therefore, the client should encrypt the database
and store the encrypted version on the server. In some scenarios, the data (plain-
text) of client undergoes frequent while small modifications and the client must
re-compute and update the encrypted version (ciphertext) on the server at all
times [5, 6]. For very large data, it is extremely expensive for the resources-
constrained client to re-compute and update the ciphertext from scratch each
time. Therefore, it is meaningful to seek for efficient constructions for VDB with
incremental updates (Inc-VDB, for short). Loosely speaking, Inc-VDB means
that re-computing and updating the ciphertext in VDB are both incremental
algorithms, i.e., the client can efficiently perform both operations with previous
values, rather than from scratch.

Bellare, Goldreich, and Goldwasser [5, 6] introduced the notion of incremental
cryptography to design cryptographic algorithms whose output can be updated
very efficiently when the underlying input changes. For example, if a single block
of the data is modified (we can view the data as a sequence of blocks), the client
only needs to re-compute the ciphertext on this certain block and the ciphter-
text of other blocks remains identical [7, 26]. Nevertheless, we argue that the
incremental encryption does not provide a full solution for constructing efficient
Inc-VDB schemes. The reasons are two folds: Firstly, previous incremental en-
cryption schemes cannot solve the case of distributed updates on the data. That
is, multiple blocks of the plaintext are modified while the modification on each
single block is very small. The worst case is that every block of the plaintext
is updated while only one bit for each single block is changed. If this case hap-
pens, the client must re-compute the whole ciphertext from scratch. Secondly,
previous incremental encryption schemes cannot necessarily lead to incremen-
tal updates on VDB. That is, the update algorithm of VDB is not incremental
and the client still needs to re-compute new updated token from scratch each
time. To the best of our knowledge, it seems that there is no research work on
constructing efficient Inc-VDB schemes.

1.1 Our Contribution

In this paper, we further study the problem of constructing verifiable database
with efficient updates. Our contributions are three folds:

– We first introduce the notion of verifiable database with incremental updates
(Inc-VDB). The update algorithm in Inc-VDB is an incremental one, i.e.,
the client can efficiently compute the new ciphertext and the updated tokens
with previous values, rather than from scratch. Thus, Inc-VDB schemes can
lead to huge efficiency gain when the database undergoes frequent while
small modifications.

– We propose a general Inc-VDB framework by incorporating the primitive
of vector commitment [13] and the encrypt-then-incremental MAC mode

Verifiable Computation over Large Database with Incremental Updates 151

of encryption [7]. We also present a concrete Inc-VDB scheme based on
the computational Diffie-Hellman (CDH) assumption. Besides, the proposed
Inc-VDB scheme supports the public verifiability.

– We first introduce a new property called accountability for VDB schemes.
That is, after the client detected the tampering of the server, the client should
be able to provide a proof to convince the judge of the facts. All of the existing
VDB schemes does not satisfy the property of accountability. We prove that
the proposed Inc-VDB scheme satisfies the property of accountability.

1.2 Organization

This paper is organized as follows. Some preliminaries are presented in Section
2. We present the formal definition and security requirements of Inc-VDB in
Section 3. We propose a new efficient Inc-VDB framework and a concrete Inc-
VDB scheme in Section 4. The security and efficiency analysis of the proposed
Inc-VDB scheme are given in Section 5. Finally, concluding remarks will be made
in Section 6.

2 Preliminaries

In this section, we first introduce the basic definition and properties of bilinear
pairings. We then present the formal definition of VDB.

2.1 Bilinear Pairings

Let G1 and G2 be two cyclic multiplicative groups of prime order p. Let g be a
generator of G1. A bilinear pairing is a map e : G1×G1 → G2 with the following
properties:

1. Bilinear: e(ua, vb) = e(u, v)ab for all u, v ∈ G1, and a, b ∈ Z∗
p.

2. Non-degenerate: e(g, g) �= 1.
3. Computable: There is an efficient algorithm to compute e(u, v) for all u, v ∈

G1.

The examples of such groups can be found in supersingular elliptic curves
or hyperelliptic curves over finite fields, and the bilinear pairings can be derived
from the Weil or Tate pairings. In the following, we introduce the Computational
Diffie-Hellman (CDH) problem in G1.

Definition 1. The Computational Diffie-Hellman (CDH) problem in G1 is de-
fined as follows: given a triple (g, gx, gy) for any x, y ∈R Zp as inputs, output
gxy. We say that the CDH assumption holds in G1 if for every probabilistic
polynomial time algorithm A, there exists a negligible function negl(·) such that
Pr[A(1k, g, gx, gy) = gxy] ≤ negl(k) for all security parameter k.

A variant of CDH problem is the Square Computational Diffie-Hellman (Squ-

CDH) problem. That is, given (g, gx) for x ∈R Zp as inputs, output gx
2

. It has
been proved that the Squ-CDH assumption is equivalent to the classical CDH
assumption.

152 X. Chen et al.

2.2 Verifiable Database

Informally, a VDB scheme allows a resource-constraint client to outsource the
storage of a very large database to a server in such a way that the client can later
retrieve and update the data records from the server. Besides, any attempts to
tamper with the data by the dishonest server will be detected when the client
queries the database. The formal definition for VDB is given as follows [12, 13]:

Definition 2. A verifiable database scheme VDB=(Setup,Query,Verify,Update)
consists of four algorithms defined below.

– Setup(1k, DB): On input the security parameter k, the setup algorithm is run
by the client to generate a secret key SK to be secretly stored by the client,
and a public key PK that is distributed to all users (including the client itself)
for verifying the proofs.

– Query(PK, x): On input an index x, the query algorithm is run by the server,
and returns a pair τ = (v, π).

– Verify(PK/SK, x, τ): The public/private verification algorithm outputs a value
v if τ is correct with respect to x, and an error ⊥ otherwise.

– Update(SK, x, v′): In the update algorithm, the client firstly generates a token
t′x with the secret key SK and then sends the pair (t′x, v

′) to the server. Then,
the server uses v′ to update the database record in index x, and t′x to update
the public key PK.

Remark 1. There are two different kinds of verifiability for the outputs of the
query algorithm, i.e., τ = (v, π). In the Catalano-Fiore’s scheme [13], anyone can
verify the validity of τ with the public key PK. Therefore, it satisfies the property
of public verifiability. However, in some applications, only the client can verify
the proofs generated by the server since the secret key of the client is involved in
the verification. This is called the private verifiability [12]. Trivially, a verifiable
database scheme should support both verifiability for various applications.

3 Verifiable Database with Incremental Updates

3.1 Formal Definition

Without loss of generality, we consider the database DB as a set of tuples (x,mx)
in some appropriate domain, where x is an index and mx is the corresponding
value which can be arbitrary payload sizes. In order to achieve the confidential-
ity of the data record mx, the client can use an arbitrary semantically-secure
encryption scheme ENC (the key is implicit in the notaton) to encrypt each mx.
Trivially, given the ciphertext vx = ENC(mx), only the client can compute the
record mx. Therefore, we only consider the case of encrypted database (x, vx).
This is also implicitly assumed in the existing academic research.

Informally, verifiable database with incremental updates (Inc-VDB) can be
viewed a special case of VDB in which the updated record m′

x is only slightly

Verifiable Computation over Large Database with Incremental Updates 153

different from the previous one mx (note that the corresponding ciphertexts
v′x and vx may be totally different). The distinct feature of Inc-VDB is that
the update algorithm is an incremental one. That is, the client can efficiently
compute a new token t′x from the previous one, rather than re-computing it from
scratch (similarly, the server can efficiently update the public key rather than
re-computing it from scratch). Trivially, Inc-VDB can lead to huge efficiency
gains, especially in the scenario when the database is subject to frequent, small
modification. In the following, we present a formal definition for Inc-VDB.

Definition 3. A verifiable database scheme with incremental updates Inc-VDB =
(Setup,Query,Verify, Inc-Update) consists of four algorithms defined below.

– Setup(1k, DB): On input the security parameter k, the setup algorithm is run
by the client to generate a secret key SK to be secretly stored by the client,
and a public key PK that is distributed to all users (including the client itself)
for verifying the proofs.

– Query(PK, x): On input an index x, the query algorithm is run by the server,
and returns a pair τ = (v, π).

– Verify(PK/SK, x, τ): The public/private verification algorithm outputs a value
v if τ is correct with respect to x, and an error ⊥ otherwise.

– Inc-Update(SK, x, v′): In the update algorithm, the client utilizes the secret
key SK to compute a new token t′x from the previous one in an incremental
manner rather than computing it from scratch. Then, the client sends the pair
(t′x, v

′) to the server. If the token t′x is valid, the server uses v′ to update the
database record in index x, and t′x to incrementally update the public key PK.

3.2 Security Requirements

In the following, we introduce some security requirements for Inc-VDB. Obvi-
ously, Inc-VDB should inherently satisfy three security properties of VDB [12],
i.e., security, correctness, and efficiency. Besides, we also introduce a new prop-
erty named accountability for Inc-VDB.

The first requirement is the security of Inc-VDB scheme. Intuitively, an Inc-
VDB scheme is secure if a malicious server cannot convince a verifier to accept
an invalid output, i.e., v �= vx where vx is the value of database record in the
index x. Note that vx can be either the initial value given by the client in the
setup stage or the latest value assigned by the client in the update procedure.

Definition 4. (Security) An Inc-VDB scheme is secure if for any database
DB ∈ [q]×{0, 1}∗, where q = poly(k), and for any probabilistic polynomial time
(PPT) adversary A, we have

AdvA(Inc-VDB, DB, k) ≤ negl(k),

where AdvA(Inc-VDB, DB, k) = Pr[ExpInc-VDB
A (DB, k) = 1] is defined as the

advantage of A in the experiment as follows:

154 X. Chen et al.

ExperimentExpInc-VDB
A [DB, k]

(PK, SK)← Setup(DB, k);

For i = 1, . . . , l = poly(k);

Verify query :

(xi, τi)← A(PK, t′1, . . . , t
′
i−1);

vi ← Verify(PK/SK, xi, τi);

Inc-Update query :

(xi, v
(i)
xi

)← A(PK, t′1, . . . , t
′
i−1);

t′i ← Inc-Update(SK, xi, v
(i)
xi

);

(x̂, τ̂)←A(PK, t′1, . . . , t
′
l);

v̂ ← Verify(PK/SK, x̂, τ̂)

If v̂ �=⊥ and v̂ �= v
(l)
x̂ , output 1; else output 0.

In the above experiment, we implicitly assign PK ← PKi after every update
query.

The second requirement is the correctness of Inc-VDB scheme. That is, the
value and proof generated by the honest server can be always verified successfully
and accepted by the client.

Definition 5. (Correctness) An Inc-VDB scheme is correct if for any database
DB ∈ [q]×{0, 1}∗, where q = poly(k), and for any valid pair τ = (v, π) generated
by an honest server, the output of verification algorithm is always the value v.

The third requirement is the efficiency of Inc-VDB scheme. That is, the client
in the verifiable database scheme should not be involved in plenty of expensive
computation and storage (except for an initial pre-processing phase)1.

Definition 6. (Efficiency) An Inc-VDB scheme is efficient if for any database
DB ∈ [q]×{0, 1}∗, where q = poly(k), the computation and storage resources in-
vested by the client must be independent of the size of the database DB. Besides,
the cryptographic operations performed by the client should be incremental.

Finally, we introduce a new requirement named accountability for Inc-VDB
scheme. That is, after the client has detected the tampering of dishonest server,
he should provide some evidence to convince a judge of the facts.

Definition 7. (Accountability) An Inc-VDB scheme is account if for any
database DB ∈ [q] × {0, 1}∗, where q = poly(k), the client can provide a proof
for this misbehavior if the dishonest server has tampered with the database.

1 In some scenarios, the client is allowed to invest a one-time expensive computational
effort. This is known as the amortized model of outsourcing computations [22].

Verifiable Computation over Large Database with Incremental Updates 155

4 Inc-VDB Framework from Vector Commitment

In this section, we present an efficient Inc-VDB framework from vector commit-
ment and the incremental encrypt-then-MAC mode of encryption. Besides, we
propose a concrete Inc-VDB scheme based on the CDH assumption.

4.1 High Description

Catalano and Fiore presented an elegant construction for building a general
VDB framework from vector commitment [13]. The main idea is as follows: Let
C be the vector commitment on the database. Given a query on index x by
the client, the server provide the value vx and the opening of commitment as
a proof that vx has not been tampered with. During the update phase, the
client computes a new ciphertext v′x and a token t′x and then sends them to the
server. Finally, the server updates the database and the corresponding public
key with the pair (t′x, v

′
x). We also use the vector commitment to construct

incremental VDB schemes. However, the main difference is that the client in our
construction does not compute the updated ciphertext v′x and the corresponding
(updated) commitment C′ in the token t′x. The main trick is that we use a special
incremental encryption to generate the ciphertext v′x. More precisely, we define
v′x = (vx, Px), where Px = (p1, p2, · · · , pω) denotes the bit positions where m′

x

and mx have different values, i.e, m′
x[pi] �= mx[pi] for 1 ≤ i ≤ ω. Trivially, given

v′x = (vx, Px), the client firstly decrypts vx to obtain mx, and then perform
the bit flipping operation on the positions of Px to obtain m′

x. Since the bit
flipping operation is extremely fast, the computation overhead of decrypting v′x
is almost the same as that of decrypting vx. Moreover, it requires much less
storage since |Px| << |v′x| (note that we only consider the case of incremental
updates). Besides, we argue that the incremental encryption scheme (ENC, P)
is more suitable for discrete and uniform update on the data record (note that
previous incremental encryption schemes mainly focus on local updates, e.g.,
updates on a single block of the data).

Note that the secret key of the client should be involved in the update algo-
rithm. That is, only the client is allowed to update the database. In order to
achieve this goal, we utilize the encrypt-then-incremental MAC mode of encryp-
tion [7], i.e., an incremental encryption together with an incremental MAC of the
ciphertext (the encrypt-then-MAC approach [11]). Trivially, we could use an in-
cremental signature scheme to substitute the incremental MAC. In our concrete
construction, we adopt the (incremental) BLS signature scheme [10]. For every
update, the client first verify the current BLS signature on the commitment CR

and all the current modifications (P
(1)
x , · · · , P (T)

x) of the data record vx, where

P
(i)
x denotes the modification in the i-th update for 1 ≤ i ≤ T . This ensures

that the current database is not tampered with by the server. If the verification

holds, the client then sends a new modification P
(T+1)
x and the corresponding

(incremental) BLS signature to the server.
Since we also use the signature to achieve the integrity of the database, it is

essential to invoke the previous signatures given to the server. Our trick is that

156 X. Chen et al.

we introduce a counter Tx to denote the update times of each index x. Also,
the server computes a BLS signature σ on all counters Tx for 1 ≤ x ≤ q. After
an update on the record vx is accomplished, let Tx ← Tx + 1. Then, the server
computes an incremental BLS signature on the updated counters (note that only
the value of Tx is slightly modified). Given a previous signature σ on the count
Tx, the client can reject it by providing a new signature σ′ on the latest counter
T ′
x since Tx < T ′

x. Note that the server cannot deny his signature, therefore this
is a proof that the server is dishonest when a dispute occurred.

4.2 A Concrete Inc-VDB Scheme

In this section, we propose a concrete Inc-VDB scheme based on the CDH as-
sumption.

– Setup(1k, DB): Let k be a security parameter. Let the database be DB =
(x, vx) for 1 ≤ x ≤ q. Let G1 and G2 be two cyclic multiplicative groups
of prime order p equipped with a bilinear pairing e : G1 × G1 → G2.
Let g be a generator of G1. Let H : G1 × {0, 1}∗ → G1 be a crypto-
graphic hash function. Randomly choose q elements zi ∈R Zp and com-
pute hi = gzi , hi,j = gzizj , where 1 ≤ i, j ≤ q and i �= j. Set PP =
(p, q,G1,G2,H, e, g, {hi}1≤i≤q, {hi,j}1≤i,j≤q,i�=j), and the message space
M = Zp.
Let (α, Y = gα) be the secret/public key pair of the client. Let (β, S = gβ)
be the secret/public key pair of the server. Trivially, the validity of Y and
S are ensured by the corresponding certificate of a trusted third party, i.e,
certificate authority. Let CR =

∏q
i=1 h

vi
i be the root commitment on the

database record vector (v1, v2, · · · , vq). For 1 ≤ x ≤ q, let Tx be a counter

for index x with the initial value 0 and H
(0)
x = H(CR, x, 0)α. The server

can use the batch verification technique of BLS signatures [14] to ensure the

validity of H
(0)
x for 1 ≤ x ≤ q, which requires only the workload of two

pairings. Then, the server computes a signature σ = H(CR, 0, 0, · · · , 0)β on
CR and all initial counters (0, 0, · · · , 0) (note that all Tx has an initial value

0). Also, set aux = {aux1, · · · , auxq}, where auxx = (H
(0)
x , 0) for 1 ≤ x ≤ q.

Define PK = (PP, CR, aux, DB) and SK = α.

– Query(PK, x): Assume that the current public key PK = (PP, CR, aux, DB).
Given a query index x, the server computes πx =

∏
1≤j≤q,j �=x h

vj
x,j and re-

turns the proofs

τ = (vx, πx, H
(Tx)
x , P (1)

x , · · · , P (Tx)
x , Tx).

– Verify(PK, x, τ): Parse the proofs τ = (vx, πx, H
(Tx)
x , P

(1)
x , · · · , P (Tx)

x , Tx). If
the counter Tx in τ is less than the one in σ that the client stored locally,
the client rejects the proofs τ . Otherwise, the client can verify the validity of
τ by checking whether the following two equations e(CR/h

vx
x , hx) = e(πx, g)

and e(H
(Tx)
x , g) = e(H(CR, x, P

(1)
x , · · · , P (Tx)

x , Tx), Y) hold. If the proofs τ

Verifiable Computation over Large Database with Incremental Updates 157

is valid, the verifier accepts it and outputs v
(Tx)
x = (vx, P

(1)
x , · · · , P (Tx)

x).
Otherwise, outputs an error ⊥.

– Inc-Update(SK, x, P
(Tx+1)
x): To update the record of index x, the client firstly

retrieves the current record v
(Tx)
x from the server. That is, the client ob-

tains τ ← Query(PK, S, x) from the server and checks that Verify(PK, x, τ) =

v
(Tx)
x �=⊥. Then, the client computes the incremental signature

t′x = H(Tx+1)
x = H(CR, x, P

(1)
x , · · · , P (Tx+1)

x , Tx + 1)α

and then sends (t′x, P
(Tx+1)
x) to the server. If t′x is valid, then the server

adds P
(Tx+1)
x to the record of index x, and updates auxx in PK, i.e., auxx ←

(t′x, P
(1)
x , · · · , P (Tx+1)

x , Tx + 1). Also, the server computes an updated incre-
mental signature σ = H(CR, T1, T2, · · · , Tx + 1, · · · , Tq)β and sends it to the
client. If σ is valid, the client updates it together with Tx +1 locally. Finally,
set Tx ← Tx + 1.

Remark 2. As pointed out in [6], incremental encryption leaks some infor-
mation that is kept secret when using a traditional encryption scheme. In the
resulting incremental encryption scheme (ENC, P) in our construction, an adver-
sary can determine where a modification takes place, but still cannot determine
the symbol being modified (i.e., hide details about the data record and its modi-
fications). This is similar to previous incremental encryptions [6, 7, 26]. Actually,
we can prove that the incremental encryption (ENC, P) is semantically-secure if
and only if the original one ENC is semantically-secure (the formal proof will be
given in the full version of this paper). On the other hand, though we only focus
on the bit flipping operation in the our construction, it can be extended to other
operations such as insert, delete, etc.

Remark 3. The storage overhead of client in our construction is all counters Tx
and the latest BLS signature σ. Note that the number of Tx is dependent of q,
it is highly undesirable when q becomes very large. Trivially, we can still use the
vector commitment to solve this issue. The server computes the signature σ =
H(CR, CT)β , where CT is the vector commitment on all counters (T1, T2, · · · , Tq).
Therefore, the client only requires to store σ and CT and the storage overhead is
independent of q. Trivially, the server should provide a valid opening of CT as a
proof during the verification phase. Due to the property of vector commitment,
the update of CT is still incremental.

5 Analysis of Our Proposed Inc-VDB Scheme

5.1 Security Analysis

Theorem 1. The proposed Inc-VDB scheme is secure.

Proof. Similar to [13], we prove the theorem by contradiction. Assume there
exists a polynomial-time adversary A that has a non-negligible advantage ε in

158 X. Chen et al.

the experiment ExpInc-VDB
A [DB, k] for some initial database DB, then we can

use A to build an efficient algorithm B to break the Squ-CDH assumption. That
is, B takes as input a tuple (g, ga) and outputs ga

2

.
Without loss of generality, we assume that the secret/public key pairs of

B and A are (α, Y = gα) and (β, S = gβ), respectively. First, B randomly
chooses an element x∗ ∈R Zq as a guess for the index x∗ on which A succeeds

in the experiment ExpInc-VDB
A [DB, k]. Then, B randomly chooses zi ∈R Zp and

computes hi = gzi all 1 ≤ i �= x∗ ≤ q. Let hx∗ = ga. Besides, B computes:

hi,j = gzizj for all 1 ≤ i �= j ≤ q and i, j �= x∗;
hi,x∗ = hx∗,i = (ga)zi for all 1 ≤ i ≤ q and i �= x∗.

Set PP = (p, q,G1,G2,H, e, g, {hi}, {hi,j}), where 1 ≤ i �= j ≤ q. Given a
database DB, B computes the commitment CR =

∏q
i=1 h

vi
i . Also, B computes

H
(0)
x = H(CR, x, 0)α for 1 ≤ x ≤ q. Set aux = {aux1, · · · , auxq}, where auxx =

(H
(0)
x , 0) for 1 ≤ x ≤ q.
Define PK = (PP, CR, aux, DB) and SK = α. Note that PK is perfectly

distributed as the real ones. B sends PK to A and A responds with σ =
H(CR, 0, 0, · · · , 0)β .

To answer the verify and update queries of A in the experiment, B just

simply runs the real Query(PK, x) and Inc-Update(SK, x, P
(Tx+1)
x) algorithms

and responds with the same value. Note that the Inc-Update(SK, x, P
(Tx+1)
x)

algorithm requires the secret key α of B, and A cannot perform this algo-
rithm without the help of B. After every update query, A responds with σ =
H(CR, T1, T2, · · · , Tx + 1, · · · , Tq)β .

Suppose that (x̂, τ̂) be the tuple returned by A at the end of the experiment,

where τ̂ = (v̂, π̂x̂, H
(Tx̂)
x̂) and v̂ = (v̂x̂, P̂

(1)
x̂ , · · · , P̂ (Tx̂)

x̂ , Tx̂). Besides, note that if
A wins with a non-negligible advantage ε in the experiment, then we have v̂ �=⊥,

v̂ �= v
(Tx̂)
x̂ . Since H

(Tx̂)
x̂ is a valid BLS signature generated with the secret key α

of B, we have P̂
(i)
x̂ = P

(i)
x̂ for all 1 ≤ i ≤ Tx̂. Otherwise, A successfully forged a

new BLS signature. Therefore, we have v̂x̂ �= vx̂.
If x̂ �= x∗, B aborts the simulation and fails. Otherwise, note that hx̂ = ga

and e(CR, hx̂) = e(hvx̂x̂ , hx̂)e(πx̂, g) = e(hv̂x̂x̂ , hx̂)e(π̂x̂, g), B can compute

ga
2

= (π̂x̂/πx̂)(vx̂−v̂x̂)−1

.

The success probability of B is ε/q.

Theorem 2. The proposed Inc-VDB scheme is correct.

Proof. If the server is assumed to be honest, then the proofs

τ = (vx, πx, H
(Tx)
x , P (1)

x , · · · , P (Tx)
x , Tx).

Firstly, note that CR/h
vx
x =

∏
1≤j≤q,j �=x h

vj
j and πx =

∏
1≤j≤q,j �=x h

vj
x,j, we have

e(CR/h
vx
x , hx) = e(πx, g). Secondly, since H

(Tx)
x = H(CR, x, P

(1)
x , · · · , P (Tx)

x , Tx)α,

Verifiable Computation over Large Database with Incremental Updates 159

we have e(H
(Tx)
x , g) = e(H(CR, x, P

(1)
x , · · · , P (Tx)

x , Tx), Y). Hence, the output of

the verification algorithm is always the value v
(Tx)
x .

Theorem 3. The proposed Inc-VDB scheme is efficient.

Proof. It is trivial that the computational and storage resources invested by the
client in our scheme is independent of the size of the database (except for a one-
time Setup phase). More precisely, in the Verify algorithm, the client requires
the workload of four pairings and an exponentiation in G1 (note that it can
be reduced to two pairings and two exponentiations in G1). Besides, in the
Inc-Update algorithm, the client only requires the workload of computing an
incremental BLS signature. On the other hand, the storage of client is only two
elements in G1 (please refer to Remark 3 for more discussions).

Theorem 4. The proposed Inc-VDB scheme is account.

Proof. Given the proofs τ with the counter Tx for index x, the client firstly
compare it with the latest counter Tc for same index x that he stored locally. If
Tx < Tc, then the client sends the corresponding signature σ on Tc to the judge
as a proof. Otherwise, he sends τ to the judge as a proof since the verification

of τ will fail if the server has tampered with the database (i.e., either vx or P
(i)
x

for 1 ≤ i ≤ Tx).

5.2 Efficiency Analysis

In this section, we present the efficacy analysis of the proposed scheme and give
a comparison with schemes [12, 13]. We compare our scheme with Benabbas-
Gennaro-Vahlis’s scheme and Catalano-Fiore’s scheme.

Firstly, all of the three schemes require a one-time expensive computational
effort in the Setup phase. Secondly, our proposed scheme simultaneously satisfies
the properties of public verifiability and accountability. Besides, our scheme is
efficient since the computational resources invested by the client is independent
on the size of the database. Finally, the server invests almost all of the stor-
age resources in order to store and update the database. Trivially, as shown in
Remark 3, the storage overhead of client is only two elements in G1.

Table 1 presents the comparison among the three schemes. We denote by M
a multiplication in G1 (or G2), by E an exponentiation in G1, by I an inverse
in G1, by P a computation of the pairing2, by F an operation on a pseudo-
random function, by H a regular hashing operation3, by En a regular encryption
operation, and byH an incremental hashing operation. We omit other operations
such as addition in G1 for all three schemes.

2 We argue that the groups G1 and G2 in Benabbas-Gennaro-Vahlis’s scheme are dif-
ferent from those in our scheme since their scheme uses bilinear groups of composite
order. Thus, the operations in the groups require different computational overload
though we use the same notions for both schemes.

3 Note that regular means the output of operation should be computed from scratch.

160 X. Chen et al.

In the query algorithm of our scheme, the server does not need to compute
the proof each time. Betises, in the the verify and update algorithms, the client
in our scheme requires less computational overhead since it does not require to
perform the operations of encryption and hashing from scratch. Therefore, our
scheme is much more efficient than schemes [12, 13] in these three algorithms.
On the other hand, the server in update algorithm of our scheme requires a
little more computational overhead, i.e., an incremental BLS signature, in order
to achieve accountability. If we use the incremental hash-then-sign paradigm,
the server only performs the operations of an an exponentiation in G1 and an
incremental hashing.

Table 1. Efficiency Comparison

Scheme Scheme [12] Scheme [13] Our Scheme

Computational Model Amortized Amortized Amortized

ComputationalAssumption Subgroup Member CDH CDH

Public Verifiability No Yes Yes

Accountability No No Yes

Server Computation (q − 1)M + 2P (q − 1)(M + E) /
(Query)

Verifier Computation 4M + 3E + 2F 1M + 1E + 1I 1M + 1E + 1I
(Verify) +1P + 1H +2P + 1H +4P + 1H

Client Computation 2M + 3E + 2F 1M + 1E 1E + 1H
(Update) +1P + 1En+ 1H +1En+ 2H

Server Computation 1M / 1E + 1H
(Update)

6 Conclusion

The primitive of verifiable database with efficient updates is useful to solve the
problem of verifiable outsourcing of storage. However, the existing schemes can-
not satisfy the property of incremental update, i.e., the client must re-compute
the new ciphertext and the updated tokens from scratch each time. In this
paper, we first introduce the notion of verifiable database with incremental
updates (Inc-VDB) that can lead to huge efficiency gain when the database
undergoes frequent while small modifications. Besides, we propose a general Inc-
VDB framework by incorporating the primitive of vector commitment and the
encrypt-then-incremental MAC mode of encryption. We also present a concrete
Inc-VDB scheme based on the computational Diffie-Hellman (CDH) assumption.

Acknowledgement. This work is supported by the National Natural
Science Foundation of China (Nos. 61272455 and 61100224), China 111
Project (No. B08038), Doctoral Fund of Ministry of Education of China (No.
20130203110004), Program for New Century Excellent Talents in University

Verifiable Computation over Large Database with Incremental Updates 161

(No. NCET-13-0946), and the Fundamental Research Funds for the Central Uni-
versities (No. BDY151402). Besides, Lou’s work is supported by US National
Science Foundation under grant (CNS-1217889).

References

1. Atallah, M.J., Frikken, K.B.: Securely outsourcing linear algebra computations. In:
Proceedings of the 5th ACM Symposium on Information, Computer and Commu-
nications Security (AsiaCCS), pp. 48–59 (2010)

2. Atallah, M.J., Pantazopoulos, K.N., Rice, J.R., Spafford, E.H.: Secure outsourcing
of scientific computations. Advances in Computers 54, 216–272 (2001)

3. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable Delegation of Computation on
Outsourced Data. In: Proceedings of the ACM conference on Computer and Com-
munications Security (CCS), pp. 863–874 (2013)

4. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive
proofs: How to remove intractability assumptions. In: Proceedings of the ACM
Symposium on Theory of Computing (STOC), pp. 113–131 (1988)

5. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: The case of
hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
216–233. Springer, Heidelberg (1994)

6. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental Cryptography and Appli-
cation to Virus Protection. In: Proceedings of the 27th ACM Symposium on the
Theory of Computing (STOC), pp. 45–56 (1995)

7. Buonanno, E., Katz, J., Yung, M.: Incremental Unforgeable Encryption. In: Matsui,
M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 109–124. Springer, Heidelberg (2002)

8. Blum, M., Luby, M., Rubinfeld, R.: Program result checking against adaptive pro-
grams and in cryptographic settings. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pp. 107–118 (1991)

9. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to
numerical problems. Journal of Computer and System Science, 549–595 (1993)

10. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairings. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

11. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations Among No-
tions and Analysis of the Generic Composition Paradigm. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

12. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011)

13. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(2013)

14. Camenisch, J., Hohenberger, S., Pedersen, M.: Batch Verification of Short Sig-
natures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 246–263.
Springer, Heidelberg (2007)

15. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)

162 X. Chen et al.

16. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

17. Canetti, R., Riva, B., Rothblum, G.: Practical delegation of computation using
multiple servers. In: Proceedings of the 18th ACM Conference on Computer and
Communications Security (CCS), pp. 445–454 (2011)

18. Chen, X., Li, J., Susilo, W.: Efficient Fair Conditional Payments for Outsourcing
Computations. IEEE Transactions on Information Forensics and Security 7(6),
1687–1694 (2012)

19. Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New algorithms for secure outsourc-
ing of modular exponentiations. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 541–556. Springer, Heidelberg (2012)

20. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Proceedings of the ACM Symposium on the Theory of
Computing (STOC), pp. 113–122 (2008)

21. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. SIAM Journal on Computing 18(1), 186–208 (1989)

22. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

23. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings
of the ACM Symposium on Theory of Computing (STOC), pp. 723–732 (1992)

24. Kilian, J.: Improved efficient arguments. In: Coppersmith, D. (ed.) CRYPTO 1995.
LNCS, vol. 963, pp. 311–324. Springer, Heidelberg (1995)

25. Micali, S.: CS proofs. In: Proceedings of the 35th Annual Symposium on Founda-
tions of Computer Science (FOCS), pp. 436–453 (1994)

26. Mironov, I., Pandey, O., Reingold, O., Segev, G.: Incremental Deterministic Public-
Key Encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 628–644. Springer, Heidelberg (2012)

27. Martel, C.U., Nuckolls, G., Devanbu, P.T., Gertz, M., Kwong, A., Stubblebine,
S.G.: A general model for authenticated data structures. Algorithmica 39(1), 21–
41 (2004)

28. Naor, M., Nissim, K.: Certificate revocation and certificate update. In: Proceedings
of the 7th conference on USENIX Security Symposium, vol. 7, p. 17 (1998)

29. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

30. Papamanthou, C., Tamassia, R.: Time and space efficient algorithms for two-party
authenticated data structures. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007.
LNCS, vol. 4861, pp. 1–15. Springer, Heidelberg (2007)

31. Tamassia, R., Triandopoulos, N.: Certification and authentication of data struc-
tures. In: Alberto Mendelzon Workshop on Foundations of Data Management
(2010), http://www.cs.bu.edu/~nikos/papers/cads.pdf

http://www.cs.bu.edu/~nikos/papers/cads.pdf

DroidMiner: Automated Mining and Characterization
of Fine-grained Malicious Behaviors in Android

Applications

Chao Yang1, Zhaoyan Xu1, Guofei Gu1, Vinod Yegneswaran2, and Phillip Porras2

1 Texas A&M University, College Station, TX, USA
{yangchao,z0x0427,guofei}@cse.tamu.edu

2 SRI International, Menlo Park, CA, USA
{vinod,porras}@csl.sri.com

Abstract. Most existing malicious Android app detection approaches rely on
manually selected detection heuristics, features, and models. In this paper, we
describe a new, complementary system, called DroidMiner, which uses static
analysis to automatically mine malicious program logic from known Android
malware, abstracts this logic into a sequence of threat modalities, and then seeks
out these threat modality patterns in other unknown (or newly published) An-
droid apps. We formalize a two-level behavioral graph representation used to
capture Android app program logic, and design new techniques to identify and
label elements of the graph that capture malicious behavioral patterns (or ma-
licious modalities). After the automatic learning of these malicious behavioral
models, DroidMiner can scan a new Android app to (i) determine whether it con-
tains malicious modalities, (ii) diagnose the malware family to which it is most
closely associated, (iii) and provide further evidence as to why the app is con-
sidered to be malicious by including a concise description of identified malicious
behaviors. We evaluate DroidMiner using 2,466 malicious apps, identified from a
corpus of over 67,000 third-party market Android apps, plus an additional set of
over 10,000 official market Android apps. Using this set of real-world apps, we
demonstrate that DroidMiner achieves a 95.3% detection rate, with only a 0.4%
false positive rate. We further evaluate DroidMiner’s ability to classify malicious
apps under their proper family labels, and measure its label accuracy at 92%.

Keywords: Mobile Security, Android Malware Analysis and Detection.

1 Introduction

Analysis of Android applications (apps) is complicated by the nature of the interaction
between the various entities in its component-based framework. Existing static analysis
approaches for detecting Android malware rely on either matching against manually-
selected heuristics and pre-defined programming patterns [1,2] or designing detection
models that use coarse-grained features such as permissions registered in the apps [3].
Some studies [4,5] design detection models by calculating the frequencies of isolated
framework API calls, which still miss capturing the important programming logic of
Android malware.

In this work, we introduce DroidMiner, a new approach to detect and charac-
terize Android malware through robust and automated learning of fine-grained

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 163–182, 2014.
c© Springer International Publishing Switzerland 2014

164 C. Yang et al.

programming logic and patterns in known malware. Specifically, DroidMiner extends
traditional static analysis techniques to map the functionalities of an Android app into a
two-tiered behavior graph. This two-tiered behavior graph is specialized for modeling
the complex, multi-entity interactions that are typical for Android applications. Within
this behavior graph, DroidMiner automatically identifies modalities, i.e., programming
logic segments in the graph that correspond to known suspicious behavior. The set of
identified modalities is then used to define a modality vector. DroidMiner then uses
common modality vectors to offer a more robust classification scheme, in which variant
applications can be grouped together based on their shared patterns of suspicious logic.
While DroidMiner also relies on analyzing Framework API calls, different from exist-
ing approaches that merely analyze the isolated usage of Framework APIs, DroidMiner
relies on the modalities that robustly capture the semantic relationships across multiple
APIs and proposes new techniques to automatically extract them. Rather than simply
examining whether or not the target app is malicious (a binary answer), DroidMiner
also provides specific app behavior traits (modalities) to support detection decisions.

We present DroidMiner’s algorithm for discovering and automatically extracting
malware modalities. We evaluate DroidMiner using 2,466 malicious apps, identified
from a corpus of over 67,000 third-party market apps, plus an additional set of over
10,000 official market apps from GooglePlay. We measure the utility of DroidMiner
modalities with respect to three specific use cases: (i) malware detection, (ii) malware
family classification, and (iii) malware behavioral characterization. Our results valid-
ate that DroidMiner modalities are useful for classification and capable of isolating a
wide range of suspicious behavioral traits embedded within parasitic Android applic-
ations. Furthermore, the composite of these traits enables a unique means by which
Android malware can be identified with a high degree of accuracy. We anticipate that
programs identified as sharing common modalities with known malicious apps would
then be subject to more in-depth scrutiny through, potentially more expensive, dynamic
analysis tools.

The contributions of our paper include the following:

– A description of our new two-tiered behavioral graph model for characterizing An-
droid application behavior, and labeling its logical paths within known malicious
apps as malicious modalities.

– The design and implementation of DroidMiner, a novel system for automated ex-
traction of robust and fine-grained Android app program behaviors into modalities,
as well as automated characterization of such behaviors to support detection de-
cisions.

– An in-depth evaluation of DroidMiner including its run-time performance and ef-
ficacy in malware detection, family classification, and behavioral characterization.

2 Motivation and System Goals

2.1 Motivations

We motivate our system design by introducing the inner working of a real-world An-
droid malware (MD5: c05c25b 769919fd7f1b12b4800e374b5). It attempts to perform

DroidMiner 165

the following malicious behaviors in the background after the phone is booted: stealing
users’ personal sensitive information (e.g., IMEI and IMSI) and sending them to remote
servers, sending and deleting SMS messages, downloading unsolicited apps, and issu-
ing HTTP search requests to increase websites’ search rankings on the search engine.

As illustrated in Figure 1, once the phone is booted, the receiver will send out an
alarm every two minutes and trigger another receiver (named “MyAlarmReceiver”)
by using three API calls: AlarmManager(), getServiceSystem(), and getBroadcast().
Then, MyAlarmReceiver starts a background service (named “MyService”) by calling
startService() in its lifecycle call onReceive(). Once the service is triggered, it will read
the device ID (getDeviceId()) and subscriber ID (getSubscriberId()) in the phone, and
register an object handler to access the short message database (content://sms/). Mean-
while, the service monitors changes to the SMS Inbox database (content://sms/inbox/)
by calling ContentObserver.onChange() and deleting particular messages using delete(),
and also attempts to download unsolicited APK files (e.g., “myupdate.apk”). More de-
tails can be found in our extended technical report [6].

Intent: android.intend.action.Boot_Complete

onReceive()

Receiver:MyBoolService AlarmManager()

Receiver:MyAlarmReceiver()

DefaultHttpClient.execute()

Cipher.getInstace()

startService()Service:MyService

onCreate()

content://***/preferapn

onDestroy()No Actions

Get
IMEI

Create
Service

Generate
Alarm

Start
Service

getDeviceId()

Get
IMSI

getSubscriberId()

content://sms/

Get
SMS

Get
Network Info

getActiveNetworkInfo()

ConnectivityManager()

Encrypt
Data

Send
SMS

Send
Data

SmsManager.getDefault()

onReceive()

Download
APK

sendTextMessage()

DefaultHttpClient.execute()

onStart()

Delete
SMS

ContentObserver.onChange()

ContentResolver.delete()

Content://sms/inbox

C&C
Commands

Search
Websites

Fig. 1. Capabilities embedded in malware from the ADRD family. The sample achieves its mali-
cious functionalities by mainly invoking a series of framework APIs in order.

The above description motivates an important design premise that when malware
authors design malicious apps to achieve specific malicious behaviors, they typically
require the use of sets of framework API calls and specific resources (e.g., content
providers). More specifically, although attackers may attempt to launch malicious be-
haviors in a more surreptitious way, they would still have to use those framework APIs
or access those important resources.

2.2 Goals and Assumptions

The goal of DroidMiner is to automatically, effectively and efficiently mine Android
apps and interrogate them for potentially malicious behaviors. Given an unknown app,
DroidMiner should be able to determine whether or not it is malicious. Going beyond
just providing a yes or no answer, our system should be able to provide further evid-
ence as to why the app is considered as malicious by including a concise description
of identified malicious behaviors. This kind of information is typically considered the
hallmark of a good malware detection system. For example, DroidMiner can inform

166 C. Yang et al.

us that a given app is malicious, and that it contains behaviors such as sending SMS
messages and blocking certain incoming SMS messages.

Currently, we do not analyze native Android apps implemented using the Android
Native Develop Kit (Android NDK). According to our observations, an overwhelming
majority of Android apps today are developed using the Android SDK. Furthermore,
the vast majority of malicious behaviors in Android apps are achieved by using An-
droid SDK rather than Android NDK. Even for those malicious apps that use the NDK
to achieve some malicious behaviors, they typically also use certain Android Frame-
work APIs to obtain some auxiliary information. For example, “rooting” malware (e.g.,
samples in the family of DroidKungFu), which utilizes native code to achieve privilege
escalation, still needs to use specific Framework APIs to obtain auxiliary information
(e.g., the version of the operating system) to successfully root the phone. Hence, the
presence of such APIs in the Dalvik bytecode could still provide hints for detecting
such malware. Extending our system to include complete analysis of native code in
Android apps is future work and outside the scope of this paper.

3 System Design

DroidMiner contains two phases: Mining and Identification. As illustrated in Figure
2, in the mining phase, DroidMiner takes both benign and malicious Android apps as
input data and automatically mines malicious behavior patterns or models, which we
call modalities. In the identification phase, our system takes an unknown app as input,
extracts a Modality Vector (MV) based on our trained modalities, and outputs whether
or not it is malicious, and which family it belongs to. In addition to a simple yes/no
answer, our system can also characterize the behaviors of the app given the Modality
Vector representation.

Fig. 2. DroidMiner System Architecture

An important component in our system is the Behavior Graph Generator, which takes
an app as input and outputs a behavior graph representation. As illustrated in Figure 1,
although Android malware authors have significant flexibility in constructing malicious
code, they must obey certain specific rules, pre-defined by the Android platform, to

DroidMiner 167

realize malware functionality (e.g., using particular Android/Java framework APIs and
accessing particular content providers). These framework APIs and content providers
capture the interactions of Android apps with Android framework software or phone
hardware, which could be used to model Android apps’ behaviors. With this intuition,
DroidMiner builds a behavior graph based on the analysis of Android framework APIs
and content providers used in apps’ bytecode.

In the Mining phase, DroidMiner will attempt to automatically learn the malicious
behaviors/patterns from a training set of malicious applications. The basic intuition
is that malicious apps in the same family will typically share similar functionalities
and behaviors. DroidMiner will examine the similarities from the behavior graphs of
these malicious apps and automatically extract common subsets of suspicious behavior
specifications, which we call modalities. From an intrusion detection perspective, these
modalities are essentially micro detection models that characterize various suspicious
behaviors found in malicious apps (in Section 3.1).

In the Identification phase, DroidMiner transforms an unknown malicious app into
its behavior graph representation (using Behavior Graph Extractor) and extract a
Modality Vector (based on all trained modalities), described in Section 3.3. Then, Droid-
Miner applies machine-learning techniques to detect whether or not the app is mali-
cious. DroidMiner also has a data-mining module that implements Association Rule
Mining to automatically learn the behavior characterization (in Section 3.4).

3.1 Behavior Graph and Modalities

Behavior Graph. DroidMiner detects malware by analyzing the program logic of sens-
itive Android and Java framework API functions and sensitive Android resources. To
represent such logic, we use a two-tiered graphical model. As shown in Figure 3, at
upper tier, the behaviors (functionalities) of each Android app could be viewed as the
interaction among four types of components (Activities, Services, Broadcast Receiv-
ers, and Content Observers). We represent this tier using a Component Dependency
Graph (CDG). At the lower tier, each component has its own semantic functionalities
and a relatively independent behavior logic during its lifetime. Here, we represent this
independent logic using Component Behavior Graphs (CBG).

Component Dependency Graph (CDG) (upper tier of Figure 3) represents the in-
teraction relationships among all components in an app. Each node in the CDG is a
component (Activity, Service, or Broadcast Receiver). (Note that multiple nodes could
belong to the same type of component.) There is an edge from one node vi to another
node vj , if the component vi could activate the start of component vj ’s lifecycle.

The Component Behavior Graphs (CBG) (lower tier of Figure 3) represents each
component’s lifetime1 behavior logic (functionalities), i.e., each CBG represents the
control-flow logic of those permission-related Android and Java API functions, and
actions performed on particular resources of each component. Specifically, as illustrated
in Figure 3, a CBG contains four types of node:

1 Lifetime, as defined by Android, is time between the moment when the OS considers a com-
ponent to be constructed and the moment when the it considers the component to be destroyed.

168 C. Yang et al.

Fig. 3. Two-tier behavior graph

– A root note (vroot), denoting the component itself (e.g., an Activity).
– Lifecycle functions (Vlcf), used to achieve the runtime programming logic (e.g.,

onCreate() in activities, onReceive() in receivers, and onStart() in services).
– Permission-related API functions (Vpf), representing those permission-related (An-

droid SDK or Java SDK) API functions (e.g., Java API Runtime.execute() or An-
droid API sendTextMessage()). For simplicity, in the rest of paper, we refer both
lifecycle functions and API functions as framework API functions.

– Sensitive resource (Vres), i.e., sensitive data (files or databases) that are accessed
by the component. In this work, we consider resources as content providers (e.g.,
content://sms/inbox/), which could be extended to any other type of sensitive data.
The usage of framework API functions and sensitive resources in an app essentially
captures the interactions of an app with the Android platform hardware and sensit-
ive data. Hence, the control-flow logic of framework API functions and the actions
performed on those sensitive resources reflect an application’s range of capabilities.

The edges in CBG represent the control-flow logic of framework API functions and
sensitive resources. In terms of framework API functions, we consider that there is a
direct edge from function node vi to vj in the CBG, if (1) when vi and vj are in the
same control-flow block, vj is executed just after vi with no other functions executed
between them; or (2) when vi and vj are in two continuous control-flow blocks Bi and
Bj respectively (i.e., Bj follows Bi), vi is the last function node in Bi and vj is the
first node in Bj . Then, we call vj “is a successor of” vi. For example, in terms of the
malware sample illustrated in Figure 1, there is an edge from smsManager.getDefault()
to sendTextMessage(). In terms of sensitive resources, since our work mainly focuses
on analyzing the control-flow of sensitive functions rather than the data flow of sensitive
data, we simply consider that there is an edge from the root to the resource vr, if the
component uses that sensitive resource2.

Modality. We use the term, modalities to refer to malicious behavior patterns that are
mined from behavior graphs of Android malware. More specifically, each modality is
an ordered sequence (reserving the control-flow order) of framework API functions
(function modality) or a set of sensitive resources (resource modality) in commonly

2 We could also choose to build an edge from a framework API function (that uses that resource)
to the resource, which relies on the data flow analysis.

DroidMiner 169

shared in malicious apps’ behavior graphs3, which could be used to implement sus-
picious activities (e.g., sending SMS messages to premium-rate numbers or stealing
sensitive information). As an example, the malware sample illustrated in Figure 1 re-
lies on a function modality with an ordered sequence of two framework functions (on-
Change()→ ContentResolver.delete()), and a resource modality (content://sms/inbox/)
to partially achieve the malicious behavior of deleting messages in the SMS inbox.

3.2 Mining Modalities

Based on previous concepts, DroidMiner’s approach to efficient mining of modalities
from large malware corpora involves the following three steps: Behavior Graph Gener-
ation, Sensitive Node Extraction, and Modality Generation.

Behavior Graph Generation. The generation of the behavior graph of an app con-
tains two phases: generating CDG and generating CBG. Due to the page limitation,
we mainly introduce the details of generating CBG (Details of generating CDG can
refer [6].) Since Android is component driven, and each component has its own life-
time execution logic, the extraction of control-flow logic of framework API functions
is more complex than traditional program analysis. DroidMiner generates the behavior
graph by using the following three steps.

(a) MCG (b) CFG

(c) Transformed CFG (d) CBG with API functions

Fig. 4. Illustration of generating a CBG with framework API functions

Step 1: Generate Method Call Graph. For each component, our system generates a
method call graph (MCG) containing two types of nodes: Android lifecycle functions
and user-defined methods. Since each type of component has fixed lifecycle functions
(e.g., onCreate() in an Activity), DroidMiner extracts lifecycle functions by analyzing
method names in the component. Those user-defined methods are identified by using a
static analysis tool. As illustrated in Figure 4(a), the directed edge from method M0 to
M1 implies that M0 calls M1.

3 Although modalities described in this paper are localized within a CBG, our work could be
extended to include cross CBG modalities with the usage of CDG.

170 C. Yang et al.

Step 2: Generate Control-Flow Graph. To extract the program logic corresponding
to the usage of framework APIs, DroidMiner extracts each method’s control-flow graph
(CFG) by identifying branch-jump instructions in the method’s bytecode (e.g., if-nez
or packed-switch). Each node is a block of Dalvik bytecode without any jump-branch
instructions. For example,M0 with five blocks is illustrated in Figure 4(b). The directed
edge from block B0 to B1 implies that B1 is a successor block of B0. Then, each block
is represented as an ordered sequence of framework API functions and user-defined
methods, which are extracted from the Dalvik bytecode with function call instructions
(e.g., invoke-direct). We label a block as “null”, if it does not contain any function call
instructions . For example, in the methodM0, if (1) B0 contains two API functions and
user-defined method M1, with the execution order of f01, M1 and f02; (2) B1 and B3

do not contain any function calls; (3)B2 contains methodM2 and one API function f21;
(4) B3 contains one API function f41, then the control-flow graph of M0 is formed as
Figure 4(c).

Step 3: Replace User-Defined Methods. As illustrated in Figure 4(c), since each leaf
in the method-call graph does not call any other user-defined method, the leaf either
contains a subgraph of framework API functions or is “null”. Then, our approach re-
places its position in its parents’ control-flow graphs with that subgraph. This process
is recursively performed, until all user-defined methods are replaced with framework
API functions. For example, if (1) M1 contains three framework API functions (fm1,
fm3, and fm4) and one “null” node after replacing its children methods M3 and M4 as
illustrated in the middle of Figure 4(d), and M2 does not contain any function nodes,
then after replacing its children methods M5 and M6, the graph will be transformed
to Figure 4(d). Finally, the CBG will be generated by removing those leaves that are
“null”. After the above three steps, each app’s CBG could be generated that represents
the control flow of its framework API calls.

Sensitive Node Extraction. A modality is an ordered sequence of framework API
functions and a set of sensitive resources that are commonly observed in malware’s
behavioral graphs. We denote those framework API functions and sensitive resources
as sensitive nodes (the former are called sensitive function nodes, and the latter are
called sensitive resource nodes).

We use two strategies to automatically extract sensitive nodes. The first strategy
is based on the observation that malware samples belonging to the same family tend
to share similar malicious logic. Such an observation has been validated by a recent
study, which reports that Android malware in the same family tends to hide in multiple
categories of fake versions of popular apps [7]. Based on this intuition, we group known
malware samples according to their families. Then, for each malware family, we extract
function nodes and resource nodes that are commonly shared by at least θ% members
in this family. Our second strategy is based on the observation that malware samples
hosted on third-party market websites tend to be parasitic, i.e., they masquerade as
popular benign apps by injecting malicious payloads into original benign apps. Based
on this intuition, we automatically extract sensitive nodes by calculating the additional
bytecode between the known malicious app and official Android apps sharing similar
app names. More details/discussions of the two strategies are in our technical report [6].

DroidMiner 171

Modality Generation. Intuitively, our system generates function modalities by mining
an ordered sequence (path) of sensitive function nodes from known malware samples’
behavior graphs, as illustrated in Figure 2. In particular, for each path of each known
malware’s CBG, we denote a subpath of it as a sensitive path, if it starts from one sens-
itive function node and ends with another sensitive function node. Then, after removing
those non-sensitive nodes sitting in the middle of the sensitive path, we generate func-
tion modalities from the transformed sensitive path by extracting all of its subsequences.
Generating function modalities involves the two steps: Extract Sensitive Path and Ex-
tract All Subsequences. (Due to the page limit, we leave the detailed algorithm in [6].)

Step 1: Extract Sensitive Path. For each pair of sensitive nodes Si and Sj , we ex-
tract sensitive paths Pij of framework API functions from all known malware samples’
CBGs, if Pij starts from Si and ends with Sj . In particular, for each path in the mal-
ware’s CBG, we generate modalities from the longest sensitive path, which will cover
the results extracted from those shorter sensitive paths. As an illustrative example in
Figure 4(d), if f01, fm4 and f02 are sensitive nodes, the longest sensitive path could
be illustrated as Figure 5(a). Then, we could generate a transformed path of function
nodes, through removing non-sensitive nodes in the middle. In the previous example,
a transformed sensitive path f01 → fm4 → f02 can be extracted by removing two
non-sensitive nodes fm1 and “null” in the middle.

Step 2: Extract All Subsequences. We generate function modalities by extracting all
order-preserving4 subsequences of the transformed path of sensitive function nodes.
Accordingly, we could mine four function modalities from the previous example (see
Figure 5(b)). Since DroidMiner utilizes all subsequences to generate the modalities
instead of using the original single long sequence/path, DroidMiner is resilient to many
evasion attempts by malware, e.g., insertion of loop framework API calls in the middle
that serve no purpose other than adding noise. Hence, our modalities are a more robust
representation of specific malware programming logic than using simple call sequences
or frequencies.

(a) Extract Sensitive Path

(1) Modality 1 (2) Modality 2

(3) Modality 3 (4) Modality 4
(b) Extract All Subsequences

Fig. 5. An illustration of function modality generation

4 This implies that the order of two function nodes in the subsequece remains the same as in the
original path.

172 C. Yang et al.

3.3 Identification of Modalities

After mining modalities, the second phase of DroidMiner involves the identification of
modalities in unknown apps (i.e., determine which modalities are contained in unknown
apps). As illustrated in Figure 2, for each unknown app, DroidMiner identifies its mod-
alities by extracting its behavior graph and generating a Modality Vector, specifying the
presence of mined modalities.

More specifically, for each unknown app, DroidMiner generates its behavior graph
and extracts sensitive paths from the graph. Then, DroidMiner obtains all potential sub-
paths by generalizing those sensitive paths. For each sub-path, if it is a modality (be-
longing to the mined modality set), we consider this app to contain this modality. This
process of modality extraction is highly efficient due to the limited number of sens-
itive nodes present in each app. In this way, once M different modalities are mined
from known malware samples, each app could be transformed into a boolean vector
(X1, X2, . . . , XM), denoted as a “Modality Vector”: Xi = 1, if the app contains the
modality Mi; otherwise, Xi = 0. In this way, an app’s Modality Vector could represent
its spectrum of potentially malicious behaviors.

3.4 Modality Use Cases

We introduce how to use an Android app’s Modality Vector to address the following
three use-case scenarios: Malware Detection, Malware Family Classification, and Ma-
licious Behavior Characterization.

Malware Detection. The first use case involves simply determining whether or not an
Android app is malicious. In fact, it is challenging to make a confirmative decision.
For example, although some sensitive behaviors (e.g., sending network packets or SMS
messages to remote identities) are commonly seen in malware, without a deep analysis
about such behaviors (e.g., the analysis of the reputation of those remote identities),
we cannot blindly declare all apps with such behaviors to be malware. However, An-
droid malware typically needs to use multiple sensitive functions (or modalities) to
achieve its objectives: e.g., (i) sending SMS AND blocking notifications or (ii) rooting
the phone AND installing new apps. According to this observation, DroidMiner con-
siders an app to be malicious only if the cumulative malware indication from all of its
modalities exceed a sufficient threshold. That is, the single usage of one modality in a
benign app will not cause it to be labeled as malware. We use machine learning tech-
niques to learn the indication of each modality used in the cumulative scoring process.
More specifically, we consider each of mined modalities as one detection feature in the
machine-learning model. Thus, the number of detection features is equal to the dimen-
sionality of the Modality Vector. By feeding modality vectors extracted from known
malware and benign apps into the applied machine-learning classifier, the indication
of those modalities that are highly correlated with malicious apps are up-weighted in
judging an app to be malicious; those modalities that are also commonly used in benign
apps are down-weighted.

DroidMiner could also be designed to detect malware using pre-defined (strict) de-
tection rules, like policy-based detection systems discussed in Section 5, which may
lead to a lower false positive rate. However, such a policy-based design requires con-
siderable domain knowledge and comprehensive manual investigations of malware

DroidMiner 173

samples, which can limit overall scalability and thus is more suitable to be applied
to detect specific attacks. Our goal of designing a fully automated approach motivated
us to use the learning-based approach instead of policy-based ones.

Malware Family Classification. Besides detecting malware from a corpus of apps, an-
other use case is automatically determining the family that an identified malware sample
may belong to, given sufficient knowledge from existing known malware families. This
problem is also important for understanding and analyzing malware families. In fact,
many antivirus vendors still rely on common code extraction techniques, which typic-
ally manually extract signatures after gathering a large collection of malware samples
belonging to the same malware family.

Different malware samples in the same family tend to share similar malicious be-
haviors, which could be depicted by Modality Vectors. Thus, the degree of similar-
ity between the Modality Vectors of two malware samples provides an indication of
whether they belong to the same family. Hence, with the knowledge of Modality Vec-
tors mined from malware samples belonging to existing malware families, we could
also build a malware family classifier for unknown malicious apps.

Malicious Behavior Characterization. The final use case involves characterizing the
specific malicious functionality embedded within a candidate app. To solve this prob-
lem, we essentially need to know which modalities could be used to achieve specific
malicious behaviors. Then, if an app contains those modalities, we could claim with
high confidence that the app is malicious. To realize this goal, we use a data mining
technique, called “Association Rule Mining [8]”. Due to the page limit, we only intro-
duce the basic intuition here, and recommend interested readers to read our extended
version [6]. Intuitively, we mine relationships (association rules) from modalities to ma-
licious behaviors. More specifically, DroidMiner derives association rules by analyzing
the relationship between the modality usage in existing known malware families and
their corresponding malicious behaviors. For example, Zsone has two known malicious
behaviors: (i) sending SMS and (ii) blocking SMS. DroidMiner associates modalities
generated from this family to these two behaviors.

4 Evaluation

We present our evaluation results by implementing a prototype of DroidMiner and ap-
plying it to apps collected from existing third-party Android markets and from the offi-
cial Android market (GooglePlay).

4.1 Prototype Implementation

We implement a prototype of DroidMiner on top of a popular static analysis tool
(Androguard [9]). In our experience, comparing with other public Android app decom-
pilers (e.g., Dex2Jar [10] or Smali [11]), Androguard produces more accurate decom-
pilation results, especially in terms of handling exceptions. The prototype decompiles
an Android app into Dalvik bytecode, further builds its behavior graph and mines its
modalities based on the bytecode.

174 C. Yang et al.

The method call graph in an app is built by analyzing the caller-callee relationships
of all methods used in the app. For each method, DroidMiner extracts its callee methods
by analyzing the invoke-kind instructions (e.g., invoke-virtual and invoke-direct) used in
the method. Since Android is event-driven, the entrance of an app could also be UI event
methods (e.g., onClick). However, such UI event methods could only be executed after
the corresponding UI event listeners are registered (e,g., setOnClickListener). Thus, to
make the program logic more complete, DroidMiner adds an edge from UI events listen-
ers to corresponding UI event methods, although there is no such caller-callee relation-
ships in the bytecode. We use a similar strategy to address registered event handlers
and threads. DroidMiner generate the control-flow graph in each method by analyzing
branch jump instructions (e.g., if-eq). In our implementation, all behavior graphs are
stored in XGMML [12] format, a highly efficient format for graph representation and
matching.

4.2 Data Collection

We crawled four representative marketplaces, including GooglePlay, and three altern-
ative markets (SlideMe [13], AppDH [14], and Anzhi [15]). The collection from the
alternative markets occurred during a 13-day period. GooglePlay collection was harves-
ted during a two-months period. As described in Table 1, in total, we collected 67,797
free apps, where 17% of the apps (11,529) were collected from GooglePlay, and the
remaining 83% (56,268) were harvested from the alternative markets.

Table 1. Summary of Android App Collection

Official Market SlideMe AppDH Anzhi

Location U.S.A U.S.A China China

Number of Apps 11,529 15,129 2,349 38,790

Total Apps
11,529 (17%) 56,268 (83%)

67,797

Next, we isolate the set of malicious apps from our corpus by submitting the set of
apps from the alternative markets to “VirusTotal.com”, which is a free antivirus (AV)
service that scans each uploaded Android app using over 40 different AV products [16].
For each app, if it has been scanned earlier by an AV tool, we can obtain the full Virus-
Total report, which includes the first and last time the app was seen, as well as the
results from the individual AV scans. For example, BitDefender has a report for a ma-
licious app (MD5: 7acb7c624d7a19ad4fa92cacfddd9257) as Droid.Trojan.KungFu.C.
Thus, we obtained 1,247 malicious apps identified by at least one AV product. For each
malicious app, we extract its associated malware family name, and when AV reports
disagree, we derive a consensus label using the label that dominates the responses from
the AV tools. In addition, we obtain another set of malware samples from Genome
Project [17,18]. This dataset contains the family label for each malware sample. After
excluding those already appeared in our crawled malware set, there are 1,219 differ-
ent malware apps. Thus, in total, our malware dataset consists of 2,466 (1,247+1,219)
unique malicious apps that belong to 68 malware families.

DroidMiner 175

We construct a benign dataset using popular apps collected from GooglePlay. To
further clean this dataset, we submit our candidate set of 11,529 free GooglePlay apps
to VirusTotal, of which 1,126 apps were labeled as malicious by one AV product. We
discarded those apps and constructed our benign dataset using the remaining 10,403
free GooglePlay Android apps. Clearly, the benign app dataset may still contain some
malicious apps, but this set has at least been vetted by the GooglePlay anti-malware
analysis and by more than 40 AV products from VirusTotal. The problem of producing a
perfect benign app corpus remains a hard challenge, and we note that a similar approach
to construct a benign app dataset has been used in prior related work [3].

4.3 Evaluation Result

Below, we summarize our system evaluation results for malware detection, malware
family classification, behavior characterization, and efficiency.

Malware Detection. As introduced in Section 3.4, we utilize machine learning tech-
niques to conduct malicious app detection. To better evaluate the effectiveness of
DroidMiner, we utilize four widely used machine learning (ML) classifiers: Naive-
Bayes, Support Vector Machine (SVM), DecisionTree and Random Forest.

For each classifier, we conduct a series of experiments using a ten-fold cross valid-
ation to compute three performance metrics: False Positive Rate, Detection Rate, and
Accuracy. Specifically, we divide both malicious and benign datasets randomly into 10
groups, respectively. In each of the 10 rounds, we choose the combination of one group
of benign apps and malicious apps as the testing dataset, and the remaining 9 groups as
the training dataset. We further compare the performance of DroidMiner with another
classifier (used in [3]), which uses registered permissions as major detection features,
based on our collected dataset.5

Table 2 shows the results of using permission versus DroidMiner based on different
classifiers. We see that for all four classifiers, the usage of modalities as the input fea-
ture set (DroidMiner) produces a higher detection rate and lower false positive rate than
the approach of using permission features [3]. Particularly, using Random Forest Droid-
Miner achieved a detection rate of 95.3%, roughly 10% higher than the that of using
permission. Furthermore, DroidMiner produced a lower false positive rate of (0.4%), or
around 1/5th of the compared approach. Also, DroidMiner could maintain the detection
rate higher than 86% for all four classifiers. Due to space limit, we leave a more detailed
analysis of false positives and negatives in [6].

Table 2. Detection Results (DR denotes detection rate, FP denotes false positive)

Classifier NaiveBayes SVM Decision Tree Random Forest

Method Permission DroidMiner Permission[3] DroidMiner Permission[3] DroidMiner Permission[3] DroidMiner

DR 75.1% 82.2% 78.8% 86.7% 85.7% 92.4% 87.0% 95.3

FP Rate 7.2% 4.4% 3.5% 1.1% 2.2% 1.0% 2.0% 0.4%

5 We are unable to provide a direct corpus comparative evaluation with other detection systems
discussed in related work [1,2], because they are not publicly available and it is generally
difficult to completely reproduce similar systems and parameter selections.

176 C. Yang et al.

Family Classification. The purpose of this experiment is to measure the accuracy of
using Modality Vectors to correctly assign apps that are classified as malicious to their
correct corresponding malware family. To conduct the malware family classification, we
use samples from 12 families, each of which has more than 50 samples. The number of
samples of each family is shown in Table 3.

Table 3. Malware samples used for classification

Ind Family Num Ind Family Num Ind Family Num Ind Family Num

1 GingerMaster 166 4 AnserverBot 187 7 KMin 52 10 DroidKungFu3 327

2 GoldDream 57 5 DroidKungFu 70 8 BaseBridge 122 11 DroidKungFu4 10

3 Airpush 568 6 Leadbolt 52 9 Geinimi 69 12 Plankton 194

For each family, we use half of the samples as training dataset, and the other half
as the testing dataset. In this case, the classification accuracy represents the ratio of the
number of correctly classified samples to the total number of samples in the test dataset.
Here, we use Random Forest for classifying both the training and testing datasets. The
classifier produces a relatively high classification accuracy of 92.07%.

Fig. 6. The confusion matrix of malware classification for multiple malware families

Figure 6 shows the confusion matrix produced from our classification of the dataset
into the malware family label set. The value of the cell (i, j) in the matrix shows the
number of samples in family i, which are classified as being family j. Thus, the central
diagonal in the matrix shows the number of correctly predicted samples per malware
family. The darker the cell color is, the higher the classification accuracy is. With the
exception of Leadbolt (index is 6), most of the other families achieve an accuracy higher
than 90%. Leadbolt is an adware family, and thus its implementation may be influenced
by the campaign it is serving, and thus producing a behavior that has a wide variability,
leading its samples to appear to match a wider range of potential families.

Behavior Characterization. As described in Section 3.4, to characterize malicious be-
haviors, we construct a behavior matrix based on malicious behaviors observed within
an existing training set of known malware apps. To decrease sampling bias, we produce
our training dataset using malware samples from families which have a minimum of 5
members. Next, for each family, we manually extract a malicious behavior description

DroidMiner 177

for this family using documentation describing the malware family from sites that con-
tain malware analysis reports, such as threat reports from various AV companies (e.g.,
Symantec.com). There are many detailed public sources of information regarding mali-
cious behavior description for many existing Android malware families. For this exper-
iment, we focus on the following six malicious behaviors commonly observed within
many malware families: stealing phone information (GetPho), Sending SMS (SdSMS),
blocking SMS (BkSMS), communicating with a C&C (C&C), escalating root privilege
(Root) and accessing geographical information (GetGeo). We refer interested readers
to [6] for more details.

Table 4. Characterizations on 10 malware samples

MD5 Family Behavior

917a1aa8fafb97cdb91475709ca15cdb MobileTX SdSMS, C&C

49ea90de2336dccee188c3078ea64656 Gappusin SdSMS, BKSMS, C&C, GetGeo

d6aea5963681cf6415cc3f221e4e403b Cosha SdSMS, C&C, GetGeo

8ef081ff9fb2dd866bfc6af6749abdcf Fakeflash C&C

a835b82de9e15330893ddf2da67a6a49 HippoSMS SdSMS, BkSMS

bbb6f9a1aad8cc8c38d4441bac4852c0 DroidDeluxe Root

9b0d331aa9019bfb550f4753aba45d27 RogueLemon SdSMS, BKSMS, C&C

cfa9edb8c9648ae2757a85e6066f6515 Spitmo GetPho, SdSMS, BKSMS, C&C

ee0f74897785eb3f7af84a293263c6c5 Gamex Root

c00e43c563ecadf1e22097124538c24a Tapsnake C&C, GetGeo

Efficiency. We now consider the performance overhead of DroidMiner in identifying
modalities. As described in Section 3.3, modality identification involves three steps: 1)
decompilation, 2) behavior graph generation and 3) modality vector generation. Table
5 shows the mean and median value of time spent on each step and the overall time
required to identify modalities for all collected apps. Table 5 illustrates that DroidMiner
expended an average of 19.8 seconds and a median of 5.4 seconds to identify modalities
in an app. We provide a fine-grained analysis of the time used for generating behavior
graphs in our extended version [6].

Table 5. Time for identifying modalities.

Step Decompile Behavior Graph Modality Vector Overall

Mean 3.87 15.19 1.10 19.83

Median 1.65 3.08 0.56 5.35

5 Related Work

5.1 Mobile Malware Detection

System Call Monitoring. Systems such as [19,20,21] detect malware by monitoring
and analysis of system calls. A fundamental shortcoming of such approaches is the

178 C. Yang et al.

semantic gap between the system calls and specific behaviors. DroidScope [22] is de-
signed to reconstruct both OS-level and Java-level semantics. Their dynamic analysis
approach is limited by path exploration challenges.

Android Permission Monitoring. Enck et al. studied the security of Android apps by
analyzing the permissions registered in the top official Market apps [23]. Stowaway [24]
and COPES [25] are designed to find those apps that request more permissions than they
need. PScout [26] analyzes the usage trend of permissions in Android apps. Kirin [27]
detected malicious Android apps by finding permissions declared in Android apps that
break “pre-defined” security rules. More recent work also detected malicious Android
apps by designing several classifiers, whose features were built primarily on the applic-
ation categories and permissions [3]. A concern with these approaches is false positives
stemming from the coarse-grained nature of permissions and the highly common nature
of benign apps to over-claim their set of required permissions. Mario et al. [28] presen-
ted their studies of permission request patterns of Android and Facebook applications.

Framework API Monitoring. DroidRanger [1] and Pegasus [2] detect malicious An-
droid apps by statically matching against “pre-defined” signatures (permissions and An-
droid Framework API calls) of well-known malware families. Such approaches requires
semi-manual analysis of suspicious system calls and manual selection of heuristics (or
detection patterns). Thus, they are not systematic and not robust to the evolution of mal-
ware. In [4,5], the frequencies of API calls were used as detection features, and more
recently in [29], the names and parameters of APIs and packages were used as detec-
tion features. Such studies differ fundamentally from DroidMiner in that our modalities
capture the connections of multiple sensitive API functions, not just the frequency or
names of APIs.

Online Malware Detection Service. We intend to make DroidMiner available as a
public webservice for Android malware analysis and detection. Similar public services
include AndroTotal [30] which allows users to submit applications and have them sim-
ultaneously analyzed by various mobile antivirus systems and CopperDroid [31] which
performs system-call centric dynamic analysis.

Due to space limit, we leave more detailed comparisons and discussions in [6].

5.2 Android Platform Security Defense and Analysis

Existing studies have also developed several security extensions to defend against spe-
cific types of attacks. TaintDroid [32] detects those apps that may leak users’ privacy
information. However, it is not designed to detect other types of malicious behaviors
such as stealthily sending of SMS. RiskRanker [33] detects malicious apps based on
the knowledge of known Android system vulnerabilities, which could be utilized by
malicious apps, and several heuristics. Dendroid [34] is a static analysis tool which spe-
cializes in text mining of android malware code. Quire [35] prevents confused deputy at-
tacks. Bugiel et al. [36] proposed a security framework to prevent both confused deputy
attacks and collusion attacks. AppFence [37] protects sensitive data by either feeding
fake data or blocking the leakage path. Apex [38] allows for the selection of granted
permissions, and Kirin [27] performs lightweight certification of applications. Paranoid
Android [19], L4Android [39] and Cells [40] utilize the virtual environment to secure

DroidMiner 179

smartphone OS. SmartDroid [41] automatically finds UI triggers that result in sensitive
information leakage.

6 Discussion

DroidMiner against Zero-Day Attacks. Emerging malware generally falls into two
classes: fundamentally new strain with entirely novel code bases, and malware that
improves (evolves) from an existing code base. The latter form arguably represents the
dominant case. We believe DroidMiner is well designed to adapt to evolutionary change
in existing code bases, and thus useful in detecting most emerging variant strains. As
long as new malware launches malicious behaviors through utilizing modalities ob-
served in known malware families, DroidMiner should detect it. For entirely novel mal-
ware strains, an additional strength of DroidMinder is that unlike traditional systems
that require human expertise, DroidMiner’s features (modalities) can be automatically
learned and updated by feeding new malware samples.

DroidMiner against Common Evasion Techniques. We can envision that Android
malware may evolve to be more evasive. As observed by DroidChameleon [42], com-
mon malware transformation techniques (e.g., repackaging, changing field names, and
changing control-flow logic) could evade many existing commercial anti-malware tools.
However, DroidMiner is resilient to these common evasion techniques studied in [42].
Specifically, DroidMiner does not rely on specific signing signatures or class/method-
/field names to detect malware. The simple program transformation (resigning, repack-
aging, changing names) will not affect the detection model used in DroidMiner. Another
type of evasion technique is to insert noisy code and spurious calls in between malicious
sequences, or to change specific control-flow logic. However, DroidMiner is designed
to extract all subsequences of suspicious control-flow logic commonly seen in malware
(instead of relying on the exact matching of one full/long execution path). As long as
the malware follows a known programming paradigm to achieve malicious goals (e.g.,
intercepting short text messages after receiving them, and obtaining the phone number
before sending it), DroidMiner could still capture such suspicious logic regardless of
the noisy/spurious API injections in the middle of execution paths. Last but not least,
malicious apps may include a large number of benign patterns to confuse DroidMiner.
As mentioned earlier, our learning procedure typically down-weights modalities com-
monly used in benign apps and up-weights truly malicious modalities learned before.
Thus, DroidMiner still has a good tolerance of such evasion.

Limitations and Future Work. Like any learning-based approach, DroidMiner re-
quires an accurate training dataset to mine its malicious behaviors into modalities. The
effectiveness of our approach depends on the quality of the given training data, e.g.,
labeled malicious Android apps and their families. Fortunately, it was easy for us to ob-
tain such data (thanks to prior research efforts from academia and industry). In fact, one
may also recognize DroidMiner’s automatic learning approach as a feature rather than
a strict liability. Whereas most existing approaches require significant manual labor to
generate signature, specifications, and models for detection, DroidMiner offers far more
automated model generation.

180 C. Yang et al.

DroidMiner currently employs static analysis, which is a reasonable choice given
that current Android apps are relatively easy to reverse engineer statically, unlike no-
torious PC-based malware. Like other Java static analysis studies, DroidMiner may fail
to identify certain usages of instances/methods, which are encrypted or made by using
Java Reflection and native code. This serves as another motivation for us to incorporate
dynamic analysis in our future work.

7 Conclusion

DroidMiner is a new static analysis system that automatically mines malicious para-
sitic code segments from a corpus of malicious mobile applications, and then detects
the presence of these code segments within other, previously unlabeled, mobile apps.
We present our DroidMiner prototype and an extensive evaluation of this algorithm on
a corpus of over 2,400 malicious apps. From these 2,400 malware apps DroidMiner
achieves a 95% accuracy rate in processing over 77,000 samples from real-world app
stores. Further, we show that DroidMiner achieves a 92% accuracy in assigning mali-
cious labels to blind test suites.

Acknowledgments. This material is based upon work supported in part by the Na-
tional Science Foundation under Grant CNS-0954096, IIS-0905518 and the Air Force
Office of Scientific Research under Grant FA9550-13-1-0077. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of NSF and AFOSR.

References

1. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: Detecting malicious
apps in official and alternative android markets. In: Proc. of the 19th NDSS (2012)

2. Chen, K., Johnson, N., Silva, V., Dai, S., MacNamara, K., Magrino, T., Wu, E., Rinard,
M., Song, D.: Contextual policy enforcement in android applications with permission event
graphs. In: Proc. of the 20th NDSS (2013)

3. Peng, H., Gates, C., Sarm, B., Li, N., Qi, Y., Potharaju, R., Nita-Rotaru, C., Molloy, I.: Using
probabilistic generative models for ranking risks of android apps. In: Proc. of the 19th CCS

4. Wu, D., Mao, C., Wei, T., Lee, H., Wu., K.: Droidmat: Android malware detection through
manifest and api calls tracing. In: Proc. of the 7th Asia JCIS (2012)

5. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: Drebin: Effective and ex-
plainable detection of android malware in your pocket. In: Proc. of NDSS (2014)

6. Yang, C., Xu, Z., Gu, G., Yegneswaran, V., Porras, P.: Droidminer: Automated mining and
characterization of fine-grained malicious behaviors in android applications. Technical re-
port, Texas A&M University (2014),
http://faculty.cse.tamu.edu/guofei/paper/
DroidMiner TechReport 2014.pdf

7. 60 percentage of android malware hide in fake versions of popular apps,
http://thenextweb.com/google/2012/10/05/
over-60-percent-of-android-malware-comes-from-one-family-
hides-in-fake-versions-of-popular-apps/

http://faculty.cse.tamu.edu/guofei/paper/DroidMiner_TechReport_2014.pdf
http://faculty.cse.tamu.edu/guofei/paper/DroidMiner_TechReport_2014.pdf
http://thenextweb.com/google/2012/10/05/over-60-percent-of-android-malware-comes-from-one-family-hides-in-fake-versions-of-popular-apps/
http://thenextweb.com/google/2012/10/05/over-60-percent-of-android-malware-comes-from-one-family-hides-in-fake-versions-of-popular-apps/
http://thenextweb.com/google/2012/10/05/over-60-percent-of-android-malware-comes-from-one-family-hides-in-fake-versions-of-popular-apps/

DroidMiner 181

8. Association mining rule,
http://en.wikipedia.org/wiki/Association_rule_learning

9. Androguard, http://code.google.com/p/androguard/
10. Dex2jar, https://code.google.com/p/dex2jar/
11. Smali, https://code.google.com/p/smali/
12. extensible graph markup and modeling language,

http://www.cs.rpi.edu/research/groups/pb/punin/public html/
XGMML/draft-xgmml-20001006.html

13. Slideme android market, http://slideme.org/
14. App dh android market, http://www.appdh.com/
15. Anzhi android market, http://www.anzhi.com/
16. Virustotal, https://www.virustotal.com/
17. Android malware genome project, http://www.malgenomeproject.org/
18. Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution. In: Proc. of

the 33th IEEE Security and Privacy (2012)
19. Portokalidis, G., Homburg, P., Anagnostakis, K., Bos, H.: Paranoid android: versatile protec-

tion for smartphones. In: Proc. of the 26th ACSAC (2010)
20. Schmidt, A., Bye, R., Schmidt, H., Clausen, J., Kiraz, O., Yxksel, K., Camtepe, S., Sahin,

A.: Static analysis of executables for collaborative malware detection on android. In: ICC
Communication and Information Systems Security Symposium (2009)

21. Schmidt, A., Schmidt, H., Clausen, J., Yuksel, K., Kiraz, O., Sahin, A., Camtepe, S.: Enhan-
cing security of linux-based android devices. In: Proc. of 15th International Linux Kongress

22. Yan, L., Yin, H.: Droidscope: Seamlessly reconstructing the os and dalvik semantic views
for dynamic android malware analysis. In: Proc. of the 21st USENIX Security (2012)

23. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application security.
In: Proc. of the 20th USENIX (2011)

24. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demystied. In:
Proc. of the 18th CCS (2011)

25. Bartel, A., Klein, J., Monperrus, M., Traon, Y.L.: Automatically securing permission-based
software by reducing the attack surface: An application to android. In: Proc. of the 27th
IEEE/ACM International Conference on Automated Software Engineering (2012)

26. Au, K., Zhou, Y., Huang, Z., Lie, D., Gong, X., Han, X., Zhou, W.: Pscout: Analyzing the
android permission specification. In: Proc. of the 19th CCS (2012)

27. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application certification.
In: Proc. of the 16th CCS (2009)

28. Frank, M., Dong, B., Felt, A.P., Song, D.: Mining permission request patterns from android
and facebook applications. In: Proc. of ICDM 2012 (2012)

29. Aafer, Y., Du, W., Yin, H.: DroidAPIMiner: Mining API-level features for robust malware
detection in android. In: Zia, T., Zomaya, A., Varadharajan, V., Mao, M. (eds.) SecureComm
2013. LNICST, vol. 127, pp. 86–103. Springer, Heidelberg (2013)

30. Maggi, F., Valdi, A., Zanero, S.: AndroTotal: a flexible, scalable toolbox and service for
testing mobile malware detectors. In: Proc. of SPSM 2013 (2013)

31. Reina, A., Fattori, A., Cavallaro, L.: A system call-centric analysis and stimulation technique
to automatically reconstruct android malware behaviors. In: Proc. of EUROSEC 2013 (2013)

32. Enck, W., Gilbert, P., Chun, B., Cox, L.P., Jung, J., Mc-Daniel, P., Sheth, A.N.: Taintdroid:
An information-flow tracking system for realtime privacy monitoring on smartphones. In:
Proc. of the 9th OSDI (2010)

33. Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: Riskranker: scalable and accurate zero-day android
malware detection. In: Proc. of the 10th MobiSys (2012)

34. Suarez-Tangil, G., Tapiador, J.E., Peris-Lopez, P., Alis, J.B.: Dendroid: A text mining ap-
proach to analyzing and classifying code structures in android malware families (2012)

http://en.wikipedia.org/wiki/Association_rule_learning
http://code.google.com/p/androguard/
https://code.google.com/p/dex2jar/
https://code.google.com/p/smali/
http://www.cs.rpi.edu/research/groups/pb/punin/public_html/XGMML/draft-xgmml-20001006.html
http://www.cs.rpi.edu/research/groups/pb/punin/public_html/XGMML/draft-xgmml-20001006.html
http://slideme.org/
http://www.appdh.com/
http://www.anzhi.com/
https://www.virustotal.com/
http://www.malgenomeproject.org/

182 C. Yang et al.

35. Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S.: Quire: lightweight provenance
for smart phone operating systems. In: Proc. of the 20th USENIX Security (2011)

36. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R., Shastry, B.: Towards taming
privilege-escalation attacks on android. In: Proc. of the 19th NDSS (2012)

37. Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: These aren’t the droids you’re
looking for: Retrofitting android to protect data from imperious applications. In: Proc. of the
18th CCS (2011)

38. Nauman, M., Khan, S., Zhang, X.: Apex: extending android permission model and enforce-
ment with user-defined runtime constraints. In: Proc. of the 5th ICCS (2010)

39. Lange, M., Liebergeld, S., Lackorzynski, A., Warg, A., Peter, M.: L4android: A generic
operating system frame- work for secure smartphones. In: Proc. of the 1st Workshop on
Security and Privacy in Smartphones and Mobile Devices (2011)

40. Andrus, J., Dall, C., Hof, A.V., Laadan, O., Nieh, J.: Cells: A virtual mobile smartphone
architecture. In: Proc. of the 23rd SOSP (2011)

41. Zheng, C., Zhu, S., Dai, S., Gu, G., Gong, X., Han, X., Zhou, W.: Smartdroid: an automatic
system for revealing ui-based trigger conditions in android applications. In: Proc. of the 2nd
Workshop on Security and Privacy in Smartphones and Mobile Devices (2012)

42. Rastogi, V., Chen, Y., Jiang, X.: Droidchameleon: evaluating android anti-malware against
transformation attacks. In: Proc. of the 8th ICCS (2013)

Detecting Targeted Smartphone Malware

with Behavior-Triggering Stochastic Models

Guillermo Suarez-Tangil1, Mauro Conti2,
Juan E. Tapiador1, and Pedro Peris-Lopez1

1 Department of Computer Science, Universidad Carlos III de Madrid, Spain
guillermo.suarez.tangil@uc3m.es, {jestevez,pperis}@inf.uc3m.es

2 Department of Mathematics, University of Padova, Italy
conti@math.unipd.it

Abstract. Malware for current smartphone platforms is becoming in-
creasingly sophisticated. The presence of advanced networking and sens-
ing functions in the device is giving rise to a new generation of targeted
malware characterized by a more situational awareness, in which deci-
sions are made on the basis of factors such as the device location, the
user profile, or the presence of other apps. This complicates behavioral
detection, as the analyst must reproduce very specific activation condi-
tions in order to trigger malicious payloads. In this paper, we propose
a system that addresses this problem by relying on stochastic models of
usage and context events derived from real user traces. By incorporat-
ing the behavioral particularities of a given user, our scheme provides a
solution for detecting malware targeting such a specific user. Our results
show that the properties of these models follow a power-law distribu-
tion: a fact that facilitates an efficient generation of automatic testing
patterns tailored for individual users, when done in conjunction with a
cloud infrastructure supporting device cloning and parallel testing. We
report empirical results with various representative case studies, demon-
strating the effectiveness of this approach to detect complex activation
patterns.

Keywords: Smartphone security, targeted malware, cloud analysis.

1 Introduction

Malware for smartphones is a problem that has rocketed in the last few years [1].
The presence of increasingly powerful computing, networking, and sensing func-
tions in smartphones has empowered malicious apps with a variety of advanced
capabilities [2], including the possibility to determine the physical location of
the smartphone, spy on the user’s behavioral patterns, or compromise the data
and services accessed through the device. These capabilities are rapidly giving
rise to a new generation of targeted malware that makes decisions on the basis
of factors such as the device location, the user’s profile, or the presence of other
apps (e.g., see [3–6]).

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 183–201, 2014.
c© Springer International Publishing Switzerland 2014

184 G. Suarez-Tangil et al.

The idea of behaving differently under certain circumstances was also suc-
cessfully applied in the past. For instance, Stuxnet [7] remained dormant until
a particular app was installed and used at certain location, having as a target
Iranian nuclear plants. Other malware has targeted governments and private
corporations—mostly in the financial and pharmaceutical sectors [8]. Another
representative example of targeted malware is Eurograbber [9], a “smart” Trojan
targeting online banking users. The situational awareness provided by smart-
phone platforms makes this type of attacks substantially easier and potentially
more dangerous. More recently, other examples of targeted malware include Fin-
Spy Mobile [10], a general surveillance software for mobile devices, and Dendroid
Remote Access Toolkit (RAT) [11], which offers capabilities to target specific
users.

A similar problem is the emergence of the so-called grayware [3], i.e., apps
that cannot be completely considered malicious but whose behavior may entail
security and/or privacy risks of which the user is not fully aware. For exam-
ple, many apps using targeted advertisements are particularly aggressive in the
amount of personal data they gather, including sensitive contextual information
acquired through the device sensors. The purpose of such data gathering activ-
ities is in many cases questionable, and many users might well disapprove of it,
either entirely or in certain contexts1.

Both targeted malware and grayware share a common feature that complicates
their identification: the behavior and the potential repercussions of executing an
app might depend quite strongly on the context where it takes place [12] and
the way the user interacts with the app and the device [13]. We stress that this
problem is not addressed by current detection mechanisms implemented in app
markets, as operators are overwhelmed by the number of apps submitted for re-
vision every day and cannot afford an exhaustive analysis over each one of them
[14]. A possible solution to tackle this problem could be to implement detec-
tion techniques based on dynamic analysis (e.g., Taintdroid [15]) directly in the
device. However, this is simply too demanding for battery-powered platforms.
Several recent works [16–19] have proposed to keep a synchronized replica (clone)
of the device virtualized in the cloud. This would facilitate offloading resource-
intensive security analysis to the cloud, but still does not solve one fundamental
problem: grayware and targeted malware instances must be provided with the
user’s particular context and behavior, so the only option left would be to install
the app, use it, and expect that the analysis conducted over the clone—hopefully
in real time—detects undesirable behaviors. This is a serious limitation that pre-
vents users from learning in advance what an app would do in certain situations,
without the need of actually reproducing such a situation.

Related Work. Recent works such as PyTrigger [20] have approached the prob-
lem of detecting targeted malware in Personal Computers (PC). To do so, it

1 Classical examples include two popular games, Aurora Feint and Storm8, which
were removed from the Apple Store for harvesting data and phone numbers from
the user’s contact list and sending them to unknown destinations [2].

Detecting Targeted Smartphone Malware with Behavior-Triggering Models 185

is sought to trigger specific malware behaviors by injecting activities collected
from users (e.g., mouse clicks and keyword inputs) and their context. This ap-
proach cannot be adopted to platforms such as smartphones because the notion
of sensed context is radically different here. Other schemes, including the work
presented in [13, 21–23], do focus on smartphones but concentrate exclusively
on interactions with the Graphical User Interface (GUI) and are vulnerable to
context-based targeted attacks. Two works closer to our proposal are Context
Virtualizer [24] and Dynodroid [25], where a technique called context fuzzing
is introduced in the former and used in the latter. The main aim in [24, 25] is
to automatically test apps with real-world conditions, including user-based con-
texts. These tools, however, are intended for developers who want to learn how
their apps will behave when used in a real setting. Contrarily, our focus is on
final users who want to find out if they will be targeted by malicious or privacy-
compromising behaviors. Finally, other works such as CopperDroid [26] focus on
malware detection as we do, but with a static approach based on information
extracted from the manifest that, besides, does not consider the user context.

Contribution. In this paper, we address the problem of identifying targeted
grayware and malware and propose a more flexible approach compared to other
proposals to determining whether the behavior of an app is compliant with a
particular set of security and privacy preferences associated with a user. Our
solution is based on the idea of obtaining an actionable model of user behavior
that can be leveraged to test how an app would behave should the user execute it
in some context. Such a testing takes place over a clone of the device kept in the
cloud. This approach removes the need of actually exposing the device (e.g., we
let the device access only to fake data and not real one). More importantly, the
analysis is tailored to a given user, either generally or for a particular situation.
For example, a user might want to explore the consequences of using an app in
the locations visited during working days from 9 to 5, or during a planned trip.

Organization. Section 2 introduces the theoretical framework used to model
triggering patterns and app behavior. In Section 3, we describe the architecture
of our proposal and a proof-of-concept prototype, and discuss the experimen-
tal results obtained in terms of testing coverage and efficiency. In Section 4, we
discuss the detection performance with two representative case studies of gray-
ware and targeted malware instances. Finally, Section 5 concludes the paper by
summarizing our main contributions and describing future research directions.

2 Behavioral Models

This section introduces the theoretical framework used in our proposal (pre-
sented later in Section 4) to trigger particular app behaviors and determining
whether they entail security risks to the user. More precisely, we next present
models for the user-provided inputs, the resulting app behavior, and the mech-
anism used to assess potential risks.

186 G. Suarez-Tangil et al.

2.1 Triggering Patterns

Inputs provided by the user to his device constitute a major source of stimuli for
triggering certain app behaviors. We group such inputs into two broad classes
of patterns, depending on whether they refer to inputs resulting from the user
directly interacting with the app and/or the device (e.g., through the touch-
screen), or else indirectly by the context (e.g., location, time, presence of other
devices in the surroundings, etc.).

Usage Patterns. Usage patterns model sequences of events resulting from the
actions of the user during his interaction with an app. Such events are internal
messages passed on to the app by the device, such as starting an activity or
clicking a button. We stress that our focus is on the events and not on the
actions that generate them, as the same event can be triggered through different
input interfaces (e.g., touchscreen and voice).

Let the following be a set of all possible events for all apps:

E = {e1, e2, . . . , en}. (1)

Thus, the interaction of a user with an app can be represented as an ordered
sequence:

u = 〈ε1, ε2, . . . , εk〉, εi ∈ E . (2)

We will refer to such sequences as usage traces. Interactions with an app at
different times and/or with different apps will result in different usage traces.

Context Patterns. Apps may behave differently depending on conditions not
directly provided by the user, such as the device location, the time and date,
the presence of other apps or devices, etc. We model this using the widely ac-
cepted notion of context [27]. Assume that v1, . . . , vm are variables representing
contextual elements of interest, with vi ∈ Vi. Let the following be the set of all
possible contexts:

C = V1 × · · · × Vm. (3)

As above, monitoring a user during some time interval will result in a sequence:

t = 〈c1, c2, . . . , cl〉, ci ∈ C. (4)

We will refer to such sequences as context traces.

2.2 Stochastic Triggering Model

Usage and context traces are used to derive a model that captures how the user
interacts with an app or a set of apps. For this purpose, we rely on a discrete-time
first-order Markov process (i.e., a Markov chain [28]) M = (S,A,Π) where:

– The set of states S is given by:

S = E × C = {s1, . . . , sN}. (5)

We will denote by q(t) ∈ S the state of the model at time t = 1, 2, . . . ,
representing one particular input event executed in a given context.

Detecting Targeted Smartphone Malware with Behavior-Triggering Models 187

– The transition matrix is given by:

A = [aij] = P [q(t + 1) = sj |q(t) = si], (6)

where aij ∈ [0, 1] and
∑N

j=1 aij = 1.
– The vector of initial probabilities is given by:

Π = (πi) = P [q(1) = si], (7)

with πi ∈ [0, 1] and
∑N

i=1 πi = 1.

The model above is simple yet powerful enough to model user-dependant
behavioral patterns when interacting with an app. The model parameters can
be easily estimated from a number of usage and context traces. Assume that
O = {o1, o2, . . . , oT } is a sequence of observed states (i.e., event-context pairs)
obtained by monitoring the user during a representative amount of time. The
transition matrix can be estimated as:

aij =

∑T
t=2 P [q(t) = sj |q(t− 1) = si]∑T

t=2 P [q(t− 1) = sj]
=

∑T
t=2 P [ot = sj |ot−1 = si]∑T

t=2 P [ot−1 = sj]
, (8)

where both probability terms are obtained by simply counting occurrences from
O. The process can be trivially extended when several traces are available.

The model above should be viewed as a general modeling technique that
can be applied at different levels. Therefore, if one is interested in modeling
input events irrespective of their context, the set of states—and, therefore, the
chain—can be reduced to E . The same applies to the context, i.e., states could
be composed exclusively of time-location pairs.

Markov chains are often represented as a directed graph where vertices rep-
resent states and edges between them are labeled with the associated transition
probability. We will call the degree of a state, denoted by deg(si), to the number
of states reachable from s in just one transition with non-null probability:

deg(si) = #{pij |pij > 0}. (9)

The degree distribution of a chain is given by

P(k) = P [deg(s) = k]. (10)

2.3 App Behavior and Risk Assessment

An app interacts with the device by requesting services through a number of
available system calls. These define an interface for apps that need to read/write
files, send/receive data through the network, make a phone call, etc. Rather
than focusing on low-level system calls, in this paper we will describe an app
behavior through the sequence of activities it executes (see also [29]). Activities
represent high-level behaviors, such as for example reading from or writing into
a file, opening a network connection, sending/receiving data, etc. In some cases,

188 G. Suarez-Tangil et al.

there will be a one-to-one correspondence between an activity and a system call,
while in others an activity may encompass a sequence of system calls executed
in a given order. In what follows, we assume that:

A = {a1, a2, . . . , ar} (11)

is the set of all relevant activities observable from an app execution.
The execution flow of an app may follow different paths depending on the

input events provided by the user and the context. Let σ = 〈σ1, . . . , σk〉 be a
sequence of states as defined above. We model the behavior of an app when
executed with σ as input as the sequence:

β(σ) = 〈αi, . . . , α〉, αi ∈ A, (12)

which we will refer to as the behavioral signature induced by σ.
Behavioral signatures constitute dynamic execution traces generated with us-

age and context patterns specific to one particular user. Analysis of such traces
will be instrumental in determining whether there is evidence of security and/or
privacy risks for that particular user. The specific mechanism used for that anal-
ysis is beyond the scope of our current work. In general, we assume the existence
of a Risk Assessment Function (RAF) implementing such an analysis. For ex-
ample, general malware detection tools based on dynamic analysis could be a
natural option here. The case of grayware is considerably more challenging, as
the user’s privacy preferences must be factored in to resolve whether a behavior
is safe or not.

3 Targeted Testing in the Cloud

In this section, we first describe the architecture and the prototype implemen-
tation of a cloud-based testing system for targeted malware and grayware based
on the models discussed in the previous section. We then provide a detailed de-
scription of various experimental results obtained in two key tasks in our system:
obtaining triggering models and using them to test a cloned device.

3.1 Architecture and Prototype Implementation

A high level architectural view of our system is shown in Fig. 1. There are two
differentiated major blocks: (i) the evidence generation subsystem, and (ii) the
behavioral modeling and risk assessment subsystem. The first one extracts us-
age and context traces from the device and generates the stochastic triggering
model. This process is carried out by first cloning the user device in the cloud
and then injecting the triggering patterns over the clone. The second block ex-
tracts the behavioral signatures from the clone(s) and applies the RAF over
the evidences collected. We next provide a detailed description of our current
prototype implementation.

Detecting Targeted Smartphone Malware with Behavior-Triggering Models 189

Fig. 1. System architecture and main building blocks

The experiments have been conducted using a smartphone and a virtual mo-
bile device in the cloud, both running Android OS 2.3. In particular, a Google
Nexus One is used for the physical device and an Android emulator [30] for the
clones. The device is instrumented with various monitoring tools that collect
user events, the context, and the device configuration and transmits them to the
cloud. For this purpose, we used a combination of logcat and getevent tools
from the Android Debug Bridge (ADB) [30].

Our proof-of-concept implementation builds on a number of previous works
for cloud cloning smartphone platforms [16–19] and for performing behavioral
analysis [15, 31]. In the cloud end, a middleware implemented in Python processes
all inputs received, generates the associated models, and runs the simulation. We
inject events and contexts into apps with a combination of a testing tool called
Monkeyrunner [30] and the Android emulator console [30].

As for the behavioral signatures obtained in the virtual device, we have used
an open source dynamic analysis tool called Droidbox [31] to monitor vari-
ous activities that can be used to characterize app behavior and tell apart
benign from suspicious behavior [2]. Droidbox is based on TaintDroid [15]
and provides a variety of data about how an app is behaving. We chose 20
relevant activities to characterize app behavior (see Table 1), which include
information about calls to the crypto API (cryptousage), I/O network and
file activity (opennet, sendnet, accessedfiles, etc.), phone and SMS activity
(phonecalls, sendsms), data exfiltration through the network (dataleak), and
dynamic code injection (dexclass), among others.

Finally, we implemented a simple yet powerful RAF (Risk Assessment Func-
tion) for analyzing behavioral signatures. Due to space reasons, we only provide
a high-level description of this mechanism. In essence, the scheme is based on
a pattern-matching process driven by a user-specified set of rules that identify
behaviors of interest according to his security and privacy preferences. Such rules
are first-order predicates over the set of activities A, allowing the user to specify

190 G. Suarez-Tangil et al.

Table 1. Set of activities (A) monitored from an app execution and used to characterize
its behavior

Activities

• sendsms • servicestart • phonecalls • udpConn • cryptousage

• permissions • netbuffer • activities • dexclass • activityaction

• dataleak • enfperm • opennet • packageNames • sendnet

• recvs • recvnet • recvsaction • fdaccess • accessedfiles

relatively complex patterns relating possible activities in a signature through
logical connectives. Regardless of this particular RAF, our prototype supports
the inclusion of standard security tools such as antivirus packages or other secu-
rity monitoring components. These can be easily uploaded to the clone and run
while the testing carries on.

3.2 Experiment I: The Structure of a Triggering Model

In this first experiment, we monitored all events triggered by a user executing
several apps on his device during a representative amount of time. More precisely,
we collected traces from the user while interacting with the OS and several apps
such as Facebook, YouTube, and Google Maps. We assumed that the events col-
lected were representative enough, as user behavior is generally very redundant.
The resulting event set contained about |S| =8K states, distributed over various
observations traces of around |O| = 37K states. We then used such traces to
estimate the transition matrix using Eq. (8). The obtained Markov chain turned
out to have various interesting features. For example, its degree distribution fol-
lows a power-law of the form P(k) = k−α (see Fig. 2) with α = 2.28 for k ≥ 2.
This suggests that events and contexts follow a scale-free network [32], which is
not surprising. Recall that an edge between two nodes (events) indicates that
the destination event occurs after the source event.

A power-law distribution such as the one shown in Fig. 2 reveals that most
events have an extremely low number of “neighbors”; i.e., once an event has
happened, the most likely ones coming next reduce to about 100 out of the 8K
possible. Only a small fraction of all events are highly connected, meaning that
almost any other event is possible to occur after them. For instance, in our traces
we found that over half of the states were only connected to just one state. In
contrast, one state was found to be connected to more than 4K other states.

These results make sense due to a simple reason: input and context events
do depend quite strongly on those issued immediately before. For example, the
probability of moving from one place to another nearby is much higher than to
a remote place. The same applies to sequences of events, where the probability
distribution of the next likely event reflects the way we interact with the app.
As we will next see, this structure makes testing extremely efficient.

Detecting Targeted Smartphone Malware with Behavior-Triggering Models 191

Degree

D
is
tri
bu
tio
n

101 102 103100 103.810
−4

10
−3

10
−2

10
−1

10
0

(a) (b)

Fig. 2. (a) Markov model representing contextual and kernel input events for a user
interacting with an Android platform; (b) Degree distribution, in log-log scale, of the
model in (a) as defined in Section 2.2

Table 2. Event injection rates for different types of events over a virtualized Android
device (top), and rates generated by real users based on profiling 67 apps [33] (bottom)

Automatic Injection

Injected Event Emulator Layer App Layer

Sensor event 7407.66 events/s 1.26 events/s

Power event 361.77 events/s 19.16 events/s

Geolocation event 2810.15 events/s 111.87 events/s

SMS event 451.27 events/s 0.35 events/s

GSM call/cancel event 1726.91 events/s 0.71 events/s

Human Generated

Event Type Average Peak

Usage patterns 5 events/s 10 events/s

Context patterns 10 events/s 25 events/s

3.3 Experiment II: Speed of Testing

We performed a number of experiments to measure how fast input events can
be injected into an Android application sandbox. Such events include not only
input events, but also a variety of context traces comprising phone calls, SMS
messages, and GPS locations. We recorded and analyzed the time taken by both
the sandbox and the operating system to process each injected event. Our results
suggest that the time required to process injected states (input or context events)
varies quite strongly depending on the type of state (see Table 2). For instance,
it takes around 0.35 seconds, on average, to inject an SMS and process it trough

192 G. Suarez-Tangil et al.

the operating system. In contrast, geolocation events can be injected almost 100
times faster. We also observed a significant difference between the capabilities of
the sandbox and the OS running on top of it. For instance, while the sandbox is
able to process about 2800 geolocation states per second, the OS can only absorb
around 100 each second. We suspect that this throughput might be improved by
using more efficient virtual frameworks, such as for example Qemu for Android
x862 or ARM-based hardware for the cloud3.

For comparison purposes, the lower rows in Table 2 show the average and
peak number of events generated by human users, both for usage (e.g., touch
events) and context events, as reported in previous works [33].

3.4 Experiment III: Coverage and Efficiency

We finally carried out various experiments to evaluate the performance of our
proposal. Our main aim here was measuring the time required to reach an accu-
rate decision by means of simulation. More precisely, we simulated an injection
system configured with randomly generated u and t patterns and with different
number of states: |S| = 100, 1000, and 4000.

The configuration of each experiment was based on the findings discussed in
previous sections, as detailed bellow. First, we generated two types of Markov
model chains: (i) one random scale-free network of events using a preferential
attachment mechanism as defined by Barabási-Albert (BA) [34], and (ii) another
random network following the well-known Erdős-Rényi (ER) model [35]. Then,
we simulated a user providing inputs to a device together with its context at a
rate of 10 events per second. We chose this throughput as it is a realistic injection
rate (see Table 2).

In each experiment, we generated a number of random Markov chains and
calculated the cumulative transition probability covered when traversing from
one state to another of the chain for the first time. Formally, let:

w = 〈si1 , si2 , . . . , sin〉, sij ∈ S, (13)

be a random walk over the chain, with aij ij+1 > 0 ∀ij , and let:

T (w) = {(sij , sij+1) | sij ∈ S \ {sin}}, (14)

be the set of all transitions made during the random walk. We define the cov-
erage of w as the amount of transitions seen by w, weighted by their respective
probabilities and normalized to add up to one, i.e.:

Coverage(w) =
1

N

∑
(p,q)∈T (w)

apq. (15)

The coverage is used to evaluate both the efficiency and the accuracy of our
system. On the one hand, it can be used to measure the amount of a user’s

2
www.android-x86.org/

3
http://armservers.com/

www.android-x86.org/
http://armservers.com/

Detecting Targeted Smartphone Malware with Behavior-Triggering Models 193

Fig. 3. Efficiency and accuracy of the decision for a Barabási-Albert and Erdős-Rényi
network model

common actions triggered given a limited period of testing time. Additionally,
it also shows how fast the system tests the most common actions. Results for
sets of events of various sizes are shown in Fig. 3, where the curves have been
averaged over 10 simulations. The results show that the coverage reached when
testing networks of sizes |S| = 100, 1000, and 4000 states is very satisfactory.
Such a good performance is related to the scale-free distribution of states through
time, since this property allows to test the most common actions performed by
the user very rapidly. Thus, a coverage above 80% is reached in less than two
minutes for 100 states, and in approximately 1 hour for 4000 states.

It is important to emphasize that the coverage reported in Fig. 3 corresponds
to one test sequence randomly drawn according to the user behavioral model.
If the process is repeated or carried out in parallel over various clones, other
test sequences may well explore behaviors not covered by the first one. This is
illustrated in Table 3, where we show the total testing coverage as a function
of the number of clones tested in parallel, each one provided with a different
input sequence. Thus, two hours of testing just one clone results in a coverage
slightly above 84%. However, if five clones are independently tested in parallel,
the overall result is a coverage of around 93% of the total user behavior. This
time-memory trade-off is a nice property, allowing to increase the coverage by
just testing multiple clones simultaneously rather than by performing multiple
test over the same clone.

Reaching a 100% coverage is, in general, difficult due to the stochastic nature
of the models. This is not critical, as those behavioral patterns that are left
unexplored correspond to actions extremely unlikely to be executed by the user.
In practical terms this is certainly a risk, but one relatively unimportant as the

194 G. Suarez-Tangil et al.

Table 3. Testing coverage when running multiple parallel clones given a limited testing
time for a network of |S| = 4000 states

Number of parallel clones
1 2 3 4 5 6 7 8 9 10

10 min. 42.2% 60.6% 68.8% 73.8% 76.9% 79.2% 81.9% 81.8% 82.5% 83.4%

60 min. 79.3% 86.6% 89.1% 90.2% 90.5% 91.1% 91.3% 91.5% 91.7% 95.0%

120 min. 84.3% 87.2% 88.1% 88.5% 93.3% 93.4% 93.6% 93.8% 93.8% 93.9%

presumably uncovered malware instance would not activate for this user except
with very low probability.

4 Case Studies

In this section, we present two case studies illustrating how the injection of user-
specific behavioral patterns can contribute to revealing malware with targeted
activation mechanisms. We cover dormant and anti-analysis malware, as these
scenarios constitute representative cases of targeted behaviors in current smart
devices [2]. For each case, we first provide a brief description of the rationale
behind the malware activation condition and then discuss the results obtained
after applying the injection strategy presented in this paper. In all cases, the
evaluation has been conducted by adapting an open source malware called An-
drorat (Android Remote Access Tool, or RAT) [36] and incorporating the specific
triggering conditions.

4.1 Case 1: Dormant Malware/Grayware

Piggybacked malware [37] is sometimes programmed to remain dormant until a
specific situation of interest presents itself [38]. This type of malware is eventually
activated to sense if the user context is relevant for the malware. If so, then some
other malicious actions are executed. For instance, a malware aiming at spying a
very specific industrial system, such as the case of Stuxnet, will remain dormant
until the malware hits the target system. Similarly, in a Bring-Your-Own-Device
(BYOD) context, malware targeting a specific office building can remain dormant
until the device is near a certain location.

Typically, malicious apps are activated when the BOOT COMPLETED event is
triggered regardless of the context of the infected device. A recent study on
Android malware [38] suggests that the tendency is shifting towards more so-
phisticated activation triggers so as to better align with the malware incentives
and the pursued goals. This results in a variety of more complex activation con-
ditions, such as those shown in Table 4.

We instrumented Androrat to activate the RAT component only when the
device is in a certain location. We use a mock location near the Bushehr nuclear

Detecting Targeted Smartphone Malware with Behavior-Triggering Models 195

Table 4. Typical wake-up conditions for malware activation

Wake-up conditions

User presence USB connected, screen-on action, accelerator changed, etc.

Location Location change event, near an address, leaving an area, etc.

Time A given day and time, after a certain period of time, etc.

Hardware Power and LED status, KEY action, LOCK event, etc.

Configuration Apps installed, a given contact/phone number in the agenda, etc.

plant, simulating a possible behavior for a Stuxnet-like malware. Specifically, the
RAT is only activated when the device is near the location: 28.82781 ◦ (latitude)
and 50.89114 ◦ (longitude). Once the RAT is activated, we send the appropri-
ate commands to exfiltrate ambient and call recordings captured through the
microphone, the camera, and the camcorder.

For testing purposes, we built a symbolic model representing the abstract
geographic areas of a given user working at the Bushehr plant. Fig. 4 represents
the Markov Model chain for the different areas and the transitions between them.
For instance, the model represents a user traveling from HOME (cH) to WORK
(cW) with a probability of P (cH |cW) = 0.7.

Given the above model, we then injected testing traces drawn from the chain
into the sandbox instrumented with Androrat. The sandbox was configured with
a generic RAF aiming at identifying when operations involving personal infor-
mation occur together with network activity. The results show how the malware
is not activated until we start injecting mock locations. A few seconds after the
first injection, the behavioral signature collected reported, as expected, both
data leakage (dataleak) and network activity (sendnet).

We next defined an alternative scenario in which an app accesses the user
location and sends an SMS to one of his contacts whenever he is leaving a certain
region, such as for instance WORK (cW). To this end, we implemented an app
and tested it against three users with different contexts and concerns about their
privacy. The first user has strict privacy policies and visits very frequently the
location cW . The second user has the same policy as the first one but has never
visited such a location. Finally, the last user visits cW as well but has a more
flexible privacy policy. For the sake of simplicity, we used the same triggering
model described in the previous example for users one and three (see Fig. 4),
while the second user has a different Markov chain. Results show that:

– For the first user, the behavioral signature reported data leakage activity
(dataleak) as well as SMS activity (sendsms). As both are in conflict with
this user’s privacy preferences, this is marked as undesirable behavior.

– In the case of the second user, the model injects locations other than those
triggering the grayware component. Consequently, no significant behavioral
signature is produced.

196 G. Suarez-Tangil et al.

Fig. 4. Markov chain for the location

Table 5. Default hardware configuration for Android emulator

HW feature Default value

IMEI 000000000000000

IMSI 012345678912345

SIM 012345678912345

Phone Number 1-555-521-PORT (5554)

Model Number sdk

Network Android

Battery Status AC on Charging 50%

IP Address 10.0.2.X

– Finally, the events injected for the third user do trigger the grayware com-
ponent, resulting in data leakage and SMS activity. However, as these are
not in conflict with his privacy preferences, no alert is issued.

This example reinforces the view that not only malware activation can be user
specific, but that the consequences of such a malware may also be perceived very
differently by each user.

4.2 Case 2: Anti-analysis Malware

Malware analysis is typically performed in a virtual sandbox rather than in a
physical device due to economic and efficiency factors [2]. These sandboxes of-
ten have a particular hardware configuration that can be leveraged by malware
instances to detect that they are being analyzed and deploy evasion counter-
measures [11], for example by simply not executing the malicious payload if
the environment matches a particular configuration. Sandboxes for smartphone
platforms have such artifacts. For instance, the IMEI, the phone number, or
the IP address are generally configured by default. Furthermore, other hardware
features such as the battery level are typically emulated and kept indefinitely at
the same status: e.g., AC on and Charging 50%. Table 5 summarizes some of
these features in most Android emulators along with their default value.

Detecting Targeted Smartphone Malware with Behavior-Triggering Models 197

Table 6. Different hardware states for power status of the device

status health present AC capacity

unknown
charging
discharging
not-charging
full

unknown

0− 100%
good
overheat false off
dead true on
overvoltage
failure

Fig. 5. Markov chain for the battery status

Hardware features such as those described above can be set prior to launch-
ing the sandbox. This will prevent basic fingerprinting analysis, for example by
setting random values for each execution. However, smarter malware instances
might implement more sophisticated approaches, such as waiting for a trigger-
ing condition based on a combination of hardware changes. Motivated by this,
we modified Androrat to activate the RAT component only after AC is off and
the battery status is different from 50%. Once the RAT is activated, we send
appropriate commands to exfiltrate some personal information from the device
such as SMSs, call history, etc.

In principle, there are as many triggering conditions as combinations of pos-
sible hardware events. Although our framework support injection of all possible
hardware events via the Android emulator console [30], for simplicity we re-
stricted our experimentation to the subset of power-related events described in
Table 6.

Based on the different power states, we built a model of the battery usage
extracted from an actual device when used by a real user. The resulting model
is shown in Fig. 5. We then tested Androrat against this model generated using
the same RAF configuration used in previous cases. The results show that the

198 G. Suarez-Tangil et al.

behavioral signature not only reported dataleak and sendnet, but also file
activity (accessedfiles), thus confirming that the malware activated as it failed
to recognize its presence in a sandbox.

5 Conclusions

The problem of detecting targeted malware via behavioral analysis requires the
ability to reproduce an appropriate set of conditions that will trigger the mali-
cious behavior. Determining those triggering conditions by exhaustively search-
ing through all possible states is a hard problem. In this paper, we have proposed
a novel system for mining the behavior of apps in different user-specific contexts
and usage scenarios. One of our system’s main aims is providing the testing en-
vironment (replicas in the cloud) with the same conditions than those the actual
device is exposed to. Our experimental results show that modeling such con-
ditions as Markov chains reduces the complexity of the search space while still
offering an effective representation of the usage and context patterns. In essence,
our system is able to trigger a targeted malware as long as: (i) it also activates
in the device; and (ii) the user behavior is appropriately modeled. However, we
also anticipate that a more sophisticated adversary could exploit some features
of our model to evade detection. This weakness will be further explored and
addressed in future work.

Our approach represents a robust building block for thwarting targeted mal-
ware, as it allows the analyst to automatically generate patterns of input events
to stimulate apps. As the focus of this paper has been on the design of such a
component, we have relied on ad hoc replication and risk assessment components
to discuss the quality of our proposal. We are currently extending our system to
support: (a) a replication system to automatically generate and test clones of the
device under inspection; and (b) a general framework to specify risk assessment
functions and analyze behavioral signatures obtained in each clone. Finally, in
this paper we have not discussed the potential privacy implications associated
with obtaining user behavioral models. Even if such profiles are just used for
testing purposes, they do contain sensitive information and must be handled
with caution. This and other related privacy aspects of targeted testing will be
tackled in future work.

Acknowledgment. We are very grateful to the anonymous reviewers for con-
structive feedback and insightful suggestions that helped to improve the quality
of the original manuscript.

The work of G. Suarez-Tangil, J.E. Tapiador, and P. Peris-Lopez was sup-
ported by the MINECO grant TIN2013-46469-R (SPINY: Security and Privacy
in the Internet of You). Mauro Conti is supported by a Marie Curie Fellow-
ship funded by the European Commission under the agreement No. PCIG11-
GA-2012-321980. This work is also partially supported by the TENACE PRIN
Project 20103P34XC funded by the Italian MIUR, and by the Project “Tackling
Mobile Malware with Innovative Machine Learning Techniques” funded by the
University of Padua.

Detecting Targeted Smartphone Malware with Behavior-Triggering Models 199

References

1. Juniper: 2013 mobile threats report. Technical report, Juniper Networks (2013)
2. Suarez-Tangil, G., Tapiador, J.E., Peris, P., Ribagorda, A.: Evolution, detection
and analysis of malware for smart devices. IEEE Communications Surveys & Tu-
torials PP(99), 1–27 (2013)

3. Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A survey of mobile
malware in the wild. In: Proceedings of the 1st ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, SPSM 2011, pp. 3–14. ACM, New
York (2011)

4. Zawoad, S., Hasan, R., Haque, M.: Poster: Stuxmob: A situational-aware malware
for targeted attack on smart mobile devices (2013)

5. Hasan, R., Saxena, N., Haleviz, T., Zawoad, S., Rinehart, D.: Sensing-enabled chan-
nels for hard-to-detect command and control of mobile devices. In: Proceedings of
the 8th ACM SIGSAC Symposium on Information, Computer and Communica-
tions Security, pp. 469–480. ACM (2013)

6. Raiu, C., Emm, D.: Kaspersky security bulletin. Technical report, Kaspersky
(2013), http://media.kaspersky.com/pdf/KSB_2013_EN.pdf

7. Langner, R.: Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security & Pri-
vacy 9(3), 49–51 (2011)

8. Corporation, S.: Internet security threat report. Technical report, Symantex (2013),
http://www.symantec.com/content/en/us/enterprise/

other resources/b-istr main report v18 2012 21291018.en-us.pdf

9. Kalige, E., Burkey, D.: A case study of eurograbber: How 36 million euros was
stolen via malware. Technical report, Versafe (December 2012)

10. Marquis-Boire, M., Marczak, B., Guarnieri, C., Scott-Railton, J.: You only click
twice: Finfishers global proliferation. Research Brief (March 2013),
https://citizenlab.org/wp-content/uploads/2013/07/

15-2013-youonlyclicktwice.pdf

11. Rogers, M.: Dendroid malware can take over your camera, record audio, and sneak
into google play (March 2014),
https://blog.lookout.com/blog/2014/03/06/dendroid/

12. Capilla, R., Ortiz, O., Hinchey, M.: Context variability for context-aware systems.
Computer 47(2), 85–87 (2014)

13. Gianazza, A., Maggi, F., Fattori, A., Cavallaro, L., Zanero, S.: Puppetdroid: A user-
centric ui exerciser for automatic dynamic analysis of similar android applications.
arXiv preprint arXiv:1402.4826 (2014)

14. Chakradeo, S., Reaves, B., Traynor, P., Enck, W.: Mast: Triage for market-scale
mobile malware analysis. In: Proceedings of the Sixth ACM Conference on Security
and Privacy in Wireless and Mobile Networks, WiSec 2013, pp. 13–24. ACM, New
York (2013)

15. Enck, W., Gilbert, P., Chun, B., Cox, L., Jung, J., McDaniel, P., Sheth, A.:
Taintdroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. In: Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation, pp. 1–6. USENIX Association (2010)

16. Portokalidis, G., Homburg, P., Anagnostakis, K., Bos, H.: Paranoid android: ver-
satile protection for smartphones. In: Proceedings of the 26th Annual Computer
Security Applications Conference, pp. 347–356 (2010)

17. Chun, B.G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: elastic execu-
tion between mobile device and cloud. In: Proceedings of the Sixth Conference on
Computer Systems, pp. 301–314 (2011)

http://media.kaspersky.com/pdf/KSB_2013_EN.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v18_2012_21291018.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v18_2012_21291018.en-us.pdf
https://citizenlab.org/wp-content/uploads/2013/07/15-2013-youonlyclicktwice.pdf
https://citizenlab.org/wp-content/uploads/2013/07/15-2013-youonlyclicktwice.pdf
https://blog.lookout.com/blog/2014/03/06/dendroid/

200 G. Suarez-Tangil et al.

18. Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.: Thinkair: Dynamic resource
allocation and parallel execution in the cloud for mobile code offloading. In: 2012
Proceedings IEEE INFOCOM, pp. 945–953. IEEE (2012)

19. Zonouz, S., Houmansadr, A., Berthier, R., Borisov, N., Sanders, W.: Secloud:
A cloud-based comprehensive and lightweight security solution for smartphones.
Computers & Security (2013)

20. Fleck, D., Tokhtabayev, A., Alarif, A., Stavrou, A., Nykodym, T.: Pytrigger: A
system to trigger & extract user-activated malware behavior. In: 2013 Eighth
International Conference on Availability, Reliability and Security (ARES), pp. 92–
101. IEEE (2013)

21. Zheng, C., Zhu, S., Dai, S., Gu, G., Gong, X., Han, X., Zou, W.: Smartdroid:
an automatic system for revealing UI-based trigger conditions in Android appli-
cations. In: Proceedings of the Second ACM Workshop on Security and Privacy
in Smartphones and Mobile Devices, SPSM 2012, pp. 93–104. ACM, New York
(2012)

22. Rastogi, V., Chen, Y., Enck, W.: Appsplayground: automatic security analysis of
smartphone applications. In: Proceedings of the Third ACM Conference on Data
and Application Security and Privacy, CODASPY 2013, pp. 209–220. ACM, New
York (2013)

23. Jensen, C.S., Prasad, M.R., Møller, A.: Automated testing with targeted event se-
quence generation. In: Proceedings of the 2013 International Symposium on Soft-
ware Testing and Analysis, pp. 67–77. ACM (2013)

24. Liang, C.J.M., Lane, N.D., Brouwers, N., Zhang, L., Karlsson, B., Liu, H., Liu,
Y., Tang, J., Shan, X., Chandra, R., et al.: Context virtualizer: A cloud service for
automated large-scale mobile app testing under real-world conditions

25. Machiry, A., Tahiliani, R., Naik, M.: Dynodroid: An input generation system for
android apps. In: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, pp. 224–234. ACM, New York (2013)

26. Reina, A., Fattori, A., Cavallaro, L.: A system call-centric analysis and stimulation
technique to automatically reconstruct android malware behaviors. In: Proceedings
of the 6th European Workshop on System Security (EUROSEC), Prague, Czech
Republic (April 2013)

27. Conti, M., Crispo, B., Fernandes, E., Zhauniarovich, Y.: Crepe: A system for en-
forcing fine-grained context-related policies on android. IEEE Transactions on In-
formation Forensics and Security 7(5), 1426–1438 (2012)

28. Norris, J.R.: Markov chains. Number 2008. Cambridge University Press (1998)
29. Suarez-Tangil, G., Lobardi, F., Tapiador, J.E., Pietro, R.D.: Thwarting obfuscated

malware via differential fault analysis. IEEE Computer (June 2014)
30. Android: Android developers (visited December 2013),

http://developer.android.com/

31. Lantz, P.: Android application sandbox (visited December 2013),
https://code.google.com/p/droidbox/

32. Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical
data. SIAM Review 51(4), 661–703 (2009)

33. Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M.: Profiledroid: Multi-layer profiling of
android applications. In: Proceedings of the 18th Annual International Conference
on Mobile Computing and Networking, Mobicom 2012, pp. 137–148. ACM, New
York (2012)

34. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of
Modern Physics 74(1), 47 (2002)

http://developer.android.com/
https://code.google.com/p/droidbox/

Detecting Targeted Smartphone Malware with Behavior-Triggering Models 201

35. Erdős, P., Rényi, A.: On the evolution of random graphs. Magyar Tud. Akad. Mat.
Kutató Int. Közl 5, 17–61 (1960)

36. Bertrand, A., David, R., Akimov, A., Junk, P.: Remote administration tool for
android devices (visited December 2013),
https://github.com/DesignativeDave/androrat

37. Zhou, W., Zhou, Y., Grace, M., Jiang, X., Zou, S.: Fast, scalable detection of
piggybacked mobile applications. In: Proceedings of the Third ACM Conference
on Data and Application Security and Privacy, pp. 185–196. ACM (2013)

38. Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution.
In: Proceedings of the 33rd IEEE Symposium on Security and Privacy (Oakland
2012) (May 2012)

https://github.com/DesignativeDave/androrat

TrustDump: Reliable Memory Acquisition
on Smartphones

He Sun1,2,3,4, Kun Sun4, Yuewu Wang1,2,�, Jiwu Jing1,2, and Sushil Jajodia4

1 State Key Laboratory of Information Security, Institute of Information Engineering, CAS,
Beijing, P.R. China

2 Data Assurance and Communication Security Research Center, CAS, Beijing, P.R. China
3 University of Chinese Academy of Sciences, Beijing, P.R. China

4 George Mason University, Fairfax, VA, USA

Abstract. With the wide usage of smartphones in our daily life, new malware is
emerging to compromise the mobile OS and steal the sensitive data from the mo-
bile applications. Anti-malware tools should be continuously updated via static
and dynamic malware analysis to detect and prevent the newest malware. Dy-
namic malware analysis depends on a reliable memory acquisition of the OS
and the applications running on the smartphones. In this paper, we develop a
TrustZone-based memory acquisition mechanism called TrustDump that is capa-
ble of reliably obtaining the RAM memory and CPU registers of the mobile OS
even if the OS has crashed or has been compromised. The mobile OS is running
in the TrustZone’s normal domain, and the memory acquisition tool is running in
the TrustZone’s secure domain, which has the access privilege to the memory in
the normal domain. Instead of using a hypervisor to ensure an isolation between
the OS and the memory acquisition tool, we rely on ARM TrustZone to achieve a
hardware-assisted isolation with a small trusted computing base (TCB) of about
450 lines of code. We build a TrustDump prototype on Freescale i.MX53 QSB.

Keywords: TrustZone, Non-Maskable Interrupt, Memory Acquisition.

1 Introduction

Smartphones have been widely used to perform both personal and business transactions
and process sensitive data with various OEM or third-party mobile applications. How-
ever, due to the large code size and complexity of the mobile OS kernel, a malicious
code can exploit known and unknown kernel vulnerabilities to compromise the mobile
OS and steal sensitive data from the system. It is critical to perform malware analysis
on the newest emerging malware and immediately update anti-malware tools on the
smartphones

There are two generic types of dynamic malware analysis methods: in-the-box ap-
proach and out-of-the-box approach. For the in-the-box approach, all the anti-malware
and debugging tools are installed in the same OS as the malware. This approach is ef-
ficient since it can use abundant OS context information and directly call the kernel
functions to study malware’s behaviors. However, it is vulnerable to armored malware
such as rootkits that modify kernel structures and functions to defeat the analysis. For

� Corresponding author.

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 202–218, 2014.
c© Springer International Publishing Switzerland 2014

TrustDump: Reliable Memory Acquisition on Smartphones 203

the out-of-the-box approach, the malware analysis tools are installed in an isolated ex-
ecution environment, which is securely separated from the targeted OS environment.
For instance, Virtual Machine Introspection (VMI) [1–6] runs a suspicious OS in one
VM and the analysis tools in another VM. This method needs to reconstruct the inter-
nal structures of OS kernel to fill the semantic gaps. Recently, Yan et al. [7] extend the
out-of-the-box malware analysis approach to Android smartphones using a customized
QEMU emulator.

All VMI based malware analysis solutions rely on a trusted hypervisor, which should
not easily crash or be compromised. However, due to the large size of the hypervisor, it
may contain a number of bugs and vulnerabilities that may be exploited by malware to
compromise the hypervisor and then the malware analysis VM. VT-x/SVM [8–10] and
System Management Mode (SMM) [11–14] on x86 architecture can be used to create an
isolated instruction level execution environment for out-of-the-box malware analysis;
however, they are not available on mobile processors. Fortunately, the ARM processors,
which have been widely used on smartphones, provide a system level isolation solution
with a hardware security support called TrustZone [15, 16], which divides the mobile
platform into two isolated execution environments, normal domain and secure domain.
The OS running in the normal domain is usually called Rich OS, and the one running in
the secure domain is called Secure OS.

In this paper, we develop a TrustZone-based reliable memory acquisition mechanism
called TrustDump, which is capable of obtaining the RAM memory and CPU registers
of the Rich OS even if the Rich OS has crashed or has been compromised. A memory
acquisition module called TrustDumper is installed in the secure domain to perform
memory dump and malware analysis of the Rich OS. TrustZone can ensure the Trust-
Dumper is securely isolated from the Rich OS, so that a compromised Rich OS cannot
compromise the memory acquisition module.

When the Rich OS has crashed or some suspicious behaviors have been detected in
the Rich OS, TrustDump ensures a reliable system switch from the normal domain to
the secure domain by pressing a hardware button on the smartphone to trigger a non-
maskable interrupt (NMI) to the ARM processor. The NMI guarantees that a malicious
Rich OS cannot launch attacks to block or intercept the switching process. Since the
secure domain has the access privilege to the memory and registers in the normal do-
main, TrustDumper can freely access the physical RAM memory and the CPU states
of the Rich OS. When the system switches into the secure domain, the Rich OS is
frozen, so the malware has no time to clean its attacking traces. Besides checking the
OS kernel integrity and perform online malware analysis, TrustDumper can send the
memory dump and CPU states to a remote machine for further analysis. A hash value
of the memory dump is also calculated and sent to verify a correct data transmission.
The remote machine can use various powerful memory forensics tools to uncover the
malicious behaviors recorded in the memory dump.

Instead of using a hypervisor to ensure an isolation between the OS and the memory
acquisition tool, we rely on ARM TrustZone to achieve a hardware-assisted isolation
with a small trusted computing base (TCB) of about 450 lines of code. Since Trust-
Dumper is self-contained, a full-featured OS is not required to be installed in the secure
domain. Moreover, TrustDump is OS agnostic and we do not need any changes to the

204 H. Sun et al.

Rich OS, which satisfies the smartphone forensic principle of extracting the digital evi-
dence without altering the data contents. We build a TrustDump prototype on Freescale
i.MX53 QSB.

In summary, we make the following contributions in this paper.

– We design a hardware-assisted memory acquisition mechanism named TrustDump
to reliably acquire the RAM memory and CPU registers of the OS on smartphones,
even if the OS has crashed or has been compromised.

– The trusted computing base (TCB) of TrustDump is small, only consisting of a
small memory acquisition module in the secure domain. We do not need to install
a hypervisor or root the OS in the normal domain.

– We implement a TrustDump prototype on Freescale i.MX53 QSB. A non-maskable
interrupt (NMI) is constructed for ensuring a reliable switching from the normal
domain to the secure domain in 1.7 us.

The remainder of the paper is organized as follows. Section 2 introduces back-
ground knowledge. Section 3 describes the threat model and assumptions. We present
the framework in Section 4. A prototype implementation is detailed in Section 5. Sec-
tion 6 discusses the experimental results. We describe related works in Section 7 and
conclude the paper in Section 8.

2 Background

2.1 TrustZone Overview

TrustZone [15, 16] is a system-wide approach to provide hardware-level isolation on
ARM platforms. It’s supported by a wide range of processors including Cortex-A8 [17],
Cortex-A9 [18] and Cortex-A15 [19]. It creates two isolated execution domains: secure
domain and normal domain. The secure domain has a higher access privilege than the
normal domain, so it can access the resources of the normal domain such as memory,
CPU registers and peripherals, but not vice versa. There’s an NS bit in the CPU proces-
sor to control and indicate the state of the CPU - 0 means the secure state and 1 means
the normal state. There’s an additional CPU mode, monitor mode, which only runs in
the secure domain regardless of the value of the NS bit. The monitor mode serves as a
gatekeeper between the normal domain and the secure domain. If the normal domain
requests to switch to the secure domain, the CPU must first enter the monitor mode. The
system bus also contains a bit to indicate the state of the bus transaction. Thus, normal
peripherals can only perform normal transactions, but not the secure transactions.

2.2 TrustZone Aware Interrupt Controller (TZIC)

The TZIC is a TrustZone enabled interrupt controller, which allows complete and in-
dependent control over every interrupt connected to the controller. It receives interrupts
from peripheral devices and routes them to the ARM processor. The TZIC provides se-
cure and non-secure transaction access to those interrupts, restricting non-secure read-
/write transactions to only interrupts configured as non-secure and allowing secure

TrustDump: Reliable Memory Acquisition on Smartphones 205

transactions to all interrupts regardless of security configurations. By default, the TZIC
uses Fast Interrupt FIQ as secure interrupt and uses Regular Interrupt IRQ as non-secure
interrupt. There are three exception vector tables associated with the normal domain, the
secure domain, and the monitor mode, respectively.

2.3 General Purpose Input/Output (GPIO)

The GPIO provides general-purpose pins that can be configured as either input or out-
put. It can be connected to the physical buttons, LED lights, and other signals through
an I/O multiplexer. The signal can be either 0 or 1, and each pin of GPIO contributes a
bit in the GPIO block. The GPIO can be used to trigger interrupts to the TZIC; however,
if the source is masked off in the GPIO, the corresponding interrupt request cannot be
forwarded.

3 Threat Model and Assumptions

On a TrustZone-enabled ARM platform, when the Rich OS crashes due to system fail-
ure, the Rich OS may not be able to send a secure interrupt to switch the system into
the secure domain. When the Rich OS has been compromised, an armored malware can
intercept the switch request and fake a memory acquisition process with a “Man in the
Middle” attack. It is critical to ensure that TrustDump is securely activated to perform
reliable memory dump. Since a malicious Rich OS may target at compromising the
memory acquisition module to defeat the memory acquisition process, we must protect
the integrity of the TrustDump.

We assume the attacker has no physical access to the smartphone. The ROM code
is secure and cannot be flashed. The smartphone has the TrustZone hardware support,
which is used to protect the memory acquisition module in the secure domain.

4 TrustDump Framework

Figure 1 shows the TrustDump framework using ARM TrustZone hardware security
support. The Rich OS running in the normal domain is the target for memory acquisi-
tion, while a self-contained software module called TrustDumper in the secure domain
is responsible for data acquisition, data analysis, and data transmission of the Rich OS’s
memory and CPU registers. After a reliable switching from the normal domain to the
secure domain, a data acquisition module is responsible for reading the RAM memory
and CPU registers of the Rich OS without any support from the Rich OS. TrustDump is
capable of performing online analysis such as OS integrity checking and Rootkit detec-
tion after filling the semantics gap. Also, the acquired memory and CPU registers can
be transmitted to a remote computer for logging and further analysis.

4.1 TrustDumper Deployment

When there is only one OS running on the ARM platform, it is usually running in the
secure domain. In our system, since the Rich OS is running in the normal domain, we

206 H. Sun et al.

Rich OS

Normal Domain Secure Domain

Reliable
Switch Data

Acquisition

Exporting

Analysis

Monitor

Remote Monitor

TrustDumper

Fig. 1. The System Framework of TrustDump

need to port the Rich OS to the normal domain and then install the TrustDumper in the
secure domain. The work of porting Rich OS to the normal domain seems simple, but
the source code customized to run in the secure domain cannot be directly executed in
the normal domain. Since there is no open source Linux kernel available for running
in the normal domain on real platform, we have to port Android OS from the secure
domain to the normal domain by ourselves. We allocate a sealed memory region for the
secure domain to run the TrustDumper. TrustZone guarantees that the normal domain
cannot access the sealed memory. Since TrustDumper is self-contained, we do not need
to install a full-featured OS in the secure domain, which dramatically reduces the TCB
of the system.

4.2 Reliable Switching

A reliable switching into the secure domain is the prerequisite for a reliable memory
acquisition. We must ensure the switching will happen per the user’s requests even if
the Rich OS is compromised or simply crashes. First, the system can be safely switched
into the secure domain when the Rich OS crashes. In other words, we cannot rely on the
Rich OS to initiate the switching process even if the Rich OS is secure and trusted. Sec-
ond, our system should prevent a malicious Rich OS from launching Denial of Service
attacks to block or intercept the switching request.

TrustZone provides two ways to enter the secure domain from the normal domain:
SMC instruction and Secure Interrupt. The SMC instruction is a privileged instruction
that can only be invoked in the Rich OS’s kernel mode. However, when the Rich OS is
malicious, it can block or intercept the secure monitor call that uses the SMC instruc-
tion. Moreover, when the Rich OS crashes, the SMC instruction may not be called after
the crash happens. Alternatively, secure interrupts of TrustZone can be called to switch
from the normal domain to the secure domain. TrustZone uses the fast interrupt FIQ as
the secure interrupt and uses the normal IRQ interrupt as the normal interrupt.

Non-maskable interrupt (NMI) has been widely used and deployed on mobile plat-
forms [20, 21], which can trigger one NMI by pressing a button or a combination of

TrustDump: Reliable Memory Acquisition on Smartphones 207

several buttons. Since the Rich OS cannot block or intercept NMI, we can use one NMI
to enforce the system switching. However, for mobile platforms that do not have ded-
icated NMI (e.g., Freescale i.MX53 QSB [22]), we solve this problem by configuring
one secure interrupt as the NMI.

4.3 Data Acquisition and Transmission

The software module in the secure domain has access privileges to the entire physical
memory of the normal domain. Moreover, it can access all the banked CPU registers,
which are critical to fill the semantic gaps for malware analysis. When the system enters
the secure domain, the Rich OS in the normal domain is frozen.

Our system supports both online malware detection and offline malware analysis.
For online malware detection, since the analysis module runs outside the Rich OS, it
has to fill the semantic gaps. Based on the knowledge of the kernel data structures, the
analysis module can reconstruct the context of the Rich OS and then perform malware
analysis tasks in the secure domain, such as verifying the integrity of the Rich OS and
detecting rootkits. For offline analysis, since we need to transmit a large amount of
acquired RAM memory (e.g., 1GB in Freescale i.MX53 QSB) to a remote computer,
DMA is used to transfer data from RAM memory to communication peripherals such as
a serial port or a network card. A hash value of the acquired memory is also transmitted
to verify the data transmission process. Since the DMA and the peripherals may be used
by the Rich OS when the switching happens, their states should be saved and restored
afterward.

4.4 System Security

With the NMI triggered by a physical button, TrustDump can safely switch the system
from the normal domain to the secure domain no matter what state the Rich OS is
staying. Thus, a malicious Rich OS cannot launch Denial of Service attacks to block or
intercept the switching. After the NMI being triggered, TrustDump will freeze the Rich
OS, so the malware in the Rich OS has no chance to clean its traces.

The TrustDumper has the privilege to access all the memory and CPU registers of
the Rich OS, so it may check the integrity of the Rich OS and detect various malware
such as rootkits in the Rich OS. Since the TrustDumper in the secure domain is securely
isolated from the Rich OS by TrustZone, a compromised Rich OS cannot compromise
the memory acquisition modules.

5 Implementation

We implement a prototype using Freescale i.MX53 QSB, a TrustZone-enabled mobile
System on Chip (SoC) [22]. i.MX53 QSB has an ARM Cortex-A8 1 GHz application
processor with 1 GB DDR3 RAM memory and a 4GB MicroSD card. We deploy An-
droid 2.3.4 in the normal domain. The development board is connected through the
serial port to a Thinkpad-T430 laptop that runs Ubuntu 12.04 LTS. Our TrustDump
prototype contains only 450 lines of code.

208 H. Sun et al.

5.1 Deployment of TrustDump

Since we cannot find any open source OS working in the normal domain, we have to
port an Android OS from the secure domain to the normal domain based on the Board
Support Package (BSP) published by Adeneo Embedded [23]. Next, we deploy the
TrustDumper in the secure domain.

The OS code running in the secure domain cannot execute in the normal domain
without proper modification. Since the normal domain has a lower privilege than the
secure domain, there are some peripherals that cannot be accessed from the normal
domain. For instance, the Deep Sleep Mode Interrupt Holdoff Register (DSMINT) can
only be accessed in the secure domain. However, the Rich OS needs DSMINT to hold
off the interrupts before entering the low power mode. To run Android in the normal
domain, we develop a pair of secure I/O functions, secure write and secure read, to
enable the normal domain to access the peripherals in the secure domain.

The function definitions are shown in Listing 1. secure write writes 32-bit data
to the physical address pa. Similarly, secure read reads from the physical address pa
and returns the result. Each peripheral on the i.MX53 QSB has certain configuration
registers, which are usually accessed as physical addresses on the board. A Whitelist is
maintained in the secure domain to store all the registers that the normal domain can
access through these two secure I/O functions.

Listing 1. Definition of secure write and secure read

void secure_write(unsigned int data, unsigned int pa);
unsigned int secure_read(unsigned int pa);

5.2 Reliable Switching

To ensure the reliable switching, we reserve a secure interrupt (FIQ) of TrustZone to
serve as the non-maskable interrupt (NMI). Figure 2 shows the four steps of the switch-
ing process, which involves three components, namely, peripheral device, TZIC, and
the ARM processor. First, a peripheral device as the source of the interrupt makes the
interrupt request. Second, the interrupt request will be sent to the TZIC. Third, based
on the type of the interrupt (FIQ or IRQ), the TZIC asserts the corresponding exception
to the ARM processor. To trigger a reliable switching, the interrupt request must be an
FIQ. Finally, after receiving an FIQ, the ARM processor switches to the secure domain
according to the setting of the Secure Configuration Register (SCR) and the Current
Program Status Register (CPSR).

Note all the three components are critical to the reliable switching. The compromise
of any of the three components will result in an unreliable switching. If the source of the
interrupt can be masked by the Rich OS or the Rich OS just blocks all the FIQs to the
ARM processor, then the switching to the secure domain will be blocked. To prevent
those attacks, we construct an NMI using GPIO-2 interrupt. We first set the GPIO-
2 interrupt as a secure interrupt in TZIC. Then we use the peripheral access privilege
control in Central Security Unit (CSU) to isolate the peripheral from the normal domain.
It guarantees the normal domain cannot configure the peripheral. Moreover, through

TrustDump: Reliable Memory Acquisition on Smartphones 209

configuring the registers of ARM processor, we set the FIQ requests to be handled in
the secure domain.

To minimize the impacts on the access of the Rich OS to other peripherals that share
the same access privilege with GPIO-2, we propose a method to enable Fine-grained
Access Control. Also, to minimize the impacts on the functionalities of other peripher-
als, we propose a method to enable Fine-grained Interrupt Control. It can differentiate
the interrupts that share the same interrupt number and distribute them to dedicated
handlers in different domains.

A
X

I
an

d
A

H
B

 B
us

es
FIQ

FIQ

Interrupt
Request

Interrupt
Request

Peripheral

Interrupt
Control Unit

Interrupt
Engine

TZIC

ARM
Processor

Secure Configuration
Register
(SCR)

Current Program
Status Register

(CPSR)

IRQ IRQ

�

�

�

�

Fig. 2. The Control Flow of Reliable Switching

Non-maskable GPIO-2 Secure Interrupt. In our prototype, we use the user-defined
button 1 on the board to trigger reliable switching to the secure domain. There are seven
GPIOs from GPIO-1 to GPIO-7 on our board. The user-defined button 1 is attached to
the fifteenth pin of the second GPIO: GPIO-2.

First, the interrupt type of GPIO-2 is set as secure in Interrupt Security Registers
(TZIC INTSEC). This prevents the normal domain from accessing the GPIO-2 inter-
rupt configuration in the TZIC. Second, we set the F bit in CPSR to 0 to enable FIQ
exception. We also set the FW bit in SCR to 0 to ensure the FIQ enable (F) bit in CPSR
cannot be modified by the normal domain. After the configuration of these two bits, the
normal domain cannot block the FIQ request to the ARM processor. Third, we set the
FIQ bit in SCR to 1 to enforce the ARM processor to branch to the monitor mode on
an FIQ exception. This step ensures that the FIQ request to secure domain cannot be
intercepted or blocked by the normal domain. Finally, we disable the non-secure access
to GPIO-2 in CSU so that the interrupt unit of GPIO-2 cannot be configured by the
normal domain.

When the ARM processor branches to the monitor mode in the secure domain after
the secure interrupt happens, the CPU executes the instruction located in the vector table
of the monitor mode at the offset of 0x1C. After the memory acquisition finishes, the
CPU executes the instruction: subs pc, lr, #4 to return to the normal domain.

210 H. Sun et al.

Fine-Grained Access Control. The secure domain and the normal domain have dif-
ferent access control policies over the peripherals. The secure domain can access the
peripherals belonging to the normal domain, but not vice versa. CSU determines which
domain a peripheral belongs to, so we can set access control policies of peripherals by
setting the corresponding registers in CSU. We configure GPIO-2 as secure peripheral
to prevent the normal domain from accessing it.

However, this simple access control management forces several peripherals to share
the same access control policy. For instance, in our prototype, user-defined button 1 and
2 are two pins of GPIO-2 and share the same access policy. We use them in different
domains: button 1 is the source of NMI and button 2 is used as the Home Key for the
Rich OS. If we disable the non-secure access to user-defined button 1, the non-secure
access to button 2 will be denied too, which disables the Home Key in the normal
domain.

To solve this problem, we develop a fine-grained access control that sets the pe-
ripherals sharing the same policy as secure and releases those peripherals needed in
the normal domain by adding them into a Whitelist. The Rich OS uses the secure I/O
functions described in Listing 1 to access the released peripherals. In this way we can
protect the source of NMI from the normal domain without constraining the access of
the normal domain to other devices.

Fine-grained Interrupt Control. There is only one interrupt number for all the 32 pins
of GPIO-2; however, each pin will generate the same interrupt number 52. Therefore,
after we construct the NMI, button 2 will generate the same FIQ request as button 1
does. When the user-defined button 1 is dedicated to trigger an NMI, button 2 will
trigger the same NMI, instead of serving as the Home Key as designed in the Rich OS.
We solve this problem by developing a fine-grained interrupt control to distribute the
interrupts generated by these two buttons to different handlers.

No matter which button is pressed, CPU goes into the secure domain first. Because
the functions of the Rich OS cannot be called in the secure domain, the request of button
2 will be forwarded to the normal domain to call the functions of the Rich OS instead
of being processed locally as button 1 does. The FIQ exception handler of the Rich OS
receives the request and calls the corresponding operation codes in the Rich OS. The
entry of FIQ exception is at a static address 0xFFFF01C. The FIQ mode is not used
by the Rich OS, so we can freely use the FIQ exception handlers.

The program flow of hardware interrupts in TrustDump is depicted in Figure 3. The
IRQ exception asserted by non-secure interrupt is handled in the Rich OS. The IRQ
exception handler gets the number of the pending interrupt from TZIC and gives it to
the operation codes.

Upon FIQ request asserted by a secure interrupt, the system will switch to the FIQ
exception entry of the secure domain according to the configuration of the TZIC. The
FIQ exception handler of the secure domain figures out the source of interrupt through
the interrupt control unit of GPIO-2. If the interrupt is an NMI, the handler clears the in-
terrupt status in the TZIC to prevent re-entry. Next, it goes into TrustDumper to perform
memory acquisition and analysis. At last, the system returns to the Rich OS.

TrustDump: Reliable Memory Acquisition on Smartphones 211

Monitor

NMI
For

Rich OSIRQ
Exception
Handler

Operation
Codes

FIQ
Exception
Handler

FIQ
Exception
Handler

TrustDumper

Rich OS

Interrupt Number Interrupt Number

Hardware Interrupt
IRQ FIQ

Normal Domain Secure Domain

Fig. 3. Program Flow of Interrupt

If the source of the FIQ exception is for the Rich OS, the handler masks the interrupt
by setting the interrupt mask register (IMR) in GPIO-2. It stops the interrupt request to
TZIC and thus clears the interrupt status in TZIC to prevent re-entry after entering the
Rich OS. Besides, masking the interrupt in the handler keeps the interrupt status in the
interrupt control unit of GPIO-2, which is used to distinguish different pins of GPIO-2
by the Rich OS. Since the Rich OS can access the interrupt control unit of GPIO-2 to
determine which pin generates the interrupt, it can locate the source after receiving an
interrupt number 52.

Because the secure domain will not be re-entered, the context of the normal domain
stored in the secure domain must be restored before the system jumps to the FIQ han-
dler of the Rich OS. The handler is entered by changing CPU mode to FIQ mode and
jumping to the entry of FIQ exception in the normal domain.

In case of return, the FIQ exception handler saves the CPU context first. Then it calls
the operation codes in the Rich OS with the interrupt number 52. The operation codes
find the source of the interrupt and take the corresponding actions according to the
interrupt number. In our prototype, the action function is mx3 gpio irq handler,
which further checks which pin of GPIO generates the interrupt.

As we have masked off the source bit, the function ignores the interrupt and returns
directly without doing anything due to failure to pass the mask status judgment.

We enforce the function to bypass the mask status judgment when button 2 is trig-
gered by or-ing the corresponding bit with 1 in the judgment statement. With the mask
status judgment passed, the action of the user-defined button 2 is taken in the normal
domain. After the codes finish running, system returns to the handler. The handler then
recovers the stored context and starts exception return by executing the instruction:
subs pc, lr, #4.

212 H. Sun et al.

5.3 TrustDumper

The TrustDumper is responsible for acquiring the physical memory and the CPU reg-
isters of the Rich OS, performing simple online analysis, and then transmitting the
acquired data to a remote machine for further analysis.

Data Acquisition and Transmission. ARM processors have banked registers: one
copy for the normal domain and the other copy for the secure domain. In the monitor
mode, the processor uses the copy for the secure domain but can also access the copy
for the normal domain.

Since the secure domain can access the physical memory of the normal domain, the
TrustDumper can directly access the Rich OS’s physical address. However, to access
the virtual addresses in the Rich OS, the TrustDumper must walk the page tables of the
Rich OS to get the corresponding physical addresses. The physical base address of the
page table is saved in the Translation Table Base Register (TTBR).

Memory dumping involves transmitting RAM memory to the peripherals. Because
this data transmission is time-consuming, we take advantage of the DMA on the board.
Since DMA has its own processing core and internal memory, the application processor
can continue working on other tasks while the memory is being dumped. The DMA
core executes routines that are stored in the internal RAM to perform DMA operations.
Before transmitting, the TrustDumper saves the current state of the DMA, exporting
the state of the processing core and the routines from the internal RAM to an unused
system RAM on the board. Then it downloads the memory dumping code and the cor-
responding context to the internal RAM. After that, the TrustDumper triggers the DMA
and starts to dump memory to the peripherals. When the data transmission is done, an
interrupt will be generated for the TrustDumper to restore the core state and DMA in-
ternal RAM from the system RAM on the board. In our prototype, we use the serial port
as the peripheral to transmit the RAM memory to a remote laptop. In our future work,
we will add other peripherals such as network card in our system.

Integrity Checking and Rootkit Detection. In our prototype, the analysis module
is capable of checking the integrity of kernel code and detecting rootkits. We provide
two implementations, one hardware-based solution and one software-based solution, of
SHA-1 algorithm to check the integrity of Android kernel.

We leverage the Symmetric/Asymmetric Hashing and Random Accelerator (SA-
HARA) of i.MX53 QSB, a security co-processor that implements block encryption
algorithms (AES, DES, and 3DES), hashing algorithms (MD5, SHA-1, SHA-224, and
SHA-256), a stream cipher algorithm (ARC4) and a hardware random number gener-
ator, to perform hardware-based hash. Since not all ARM platforms have a hardware
security accelerator, we also provide a software-based SHA-1 implementation by port-
ing the open source project PolarSSL [24] to i.MX53 QSB. The memory operations
and output functions of SHA-1 algorithm in PolarSSL are modified to accommodate
the bare-metal environment of the secure domain. Since the performance of hardware
hash is better than software hash, we use the hardware to check the kernel integrity.

To calculate a hash value, the start address and length of the target code is re-
quired. Theres a static offset between the physical address and the virtual address of the

TrustDump: Reliable Memory Acquisition on Smartphones 213

continuous kernel code. In our prototype, the virtual start address of kernel is
0x80004000 and the offset is 0x10000000, so the physical start address is
0x70004000. The length of the kernel is case-sensitive, varying from different ver-
sions of kernel. Yet after the kernel has been compiled, the length is fixed. In Trust-
Dump, the length is 9080836 bytes.

Our prototype can also detect rootkits that hide malicious processes. Figure 4 il-
lustrates the list of process in linux kernel 2.6.35. In linux, a process is represented
by the struct named task struct, which includes the process number (pid) and
the memory descriptor of the process (mm). All the processes are linked by the struct
list head, a doubly linked list in task struct. Becasue task struct is a com-
ponent of the struct thread info, the address of the task struct corresponding
to the current running process can be located through the thread info, which is lo-
cated at (stack pointer &(0x1FFF)). Therefore, through retrieving the doubly
linked list, all the information of the processes are listed and can be checked to discover
the hidden malicious processes.

struct thread_info{
unsigned long flags;
int preempt_count;

mm_segment_t addr_limit;
struct task_struct *task;

��

��}

struct task_struct{
��

struct list_head tasks;
��

pid_t pid;
��

struct mm_struct *mm;
 ��}

current
thread_info

struct task_struct{
��

struct list_head tasks;
��

pid_t pid;
��

struct mm_struct *mm;
 ��}

current task next task

previous task

struct task_struct{
��

struct list_head tasks;
��

pid_t pid;
��

struct mm_struct *mm;
 ��}

struct task_struct{
��

struct list_head tasks;
��

pid_t pid;
��

struct mm_struct *mm;
 ��}

tasks

Fig. 4. Process List

6 Performance Evaluation

We evaluate the performance of TrustDump in three aspects: NMI switching time, mem-
ory dumping time, and analysis time. We use the performance monitor in the Cortex-A8
core processor to count the CPU cycles and then convert the cycle to time by multiply-
ing 1 ns / cycle. We conduct each experiment 50 times and report the average.

6.1 NMI Switching Time

We measure the time of entering TrustDump with NMI and SMC instruction for com-
parison. For NMI measurement, since the performance monitor can only be started by

214 H. Sun et al.

software, there is no way to start the performance monitor at the exact time when the
button is pressed. It cannot be done to directly measure the time from triggering of the
interrupt to handling it in the secure domain. To start the performance monitor right be-
fore the NMI is triggered, we assert the NMI in the software-based way. On our board,
software can trigger the NMI by writing the NMI interrupt number into the Software
Interrupt Trigger Register (TZIC SWINT) of TZIC. Therefore, we measure the time
from writing to the register to receiving the request in the secure domain to evaluate the
NMI performance. The result shows that switching time using NMI is 1.7 us, which is
neglectable. We also measure the switching time using the SMC instruction by measur-
ing the time from invoking the SMC instruction to receiving the request in the secure
domain. The average switching time using SMC instruction is 0.3 us. This is shorter
than the time of using NMI because it takes more time for the request of NMI to be
transferred to the processor. However, the switching time using NMI is still very small
and almost imperceptible. Moreover, using NMI is more reliable than using the SMC
instruction to enforce a domain switch.

6.2 Memory Dumping Time

There are two ways to read and send RAM memory content to peripherals: CPU and
DMA. In TrustDump, we choose DMA to free the burden of dumping memory from
CPU. However, our experimental results show that the memory dumping time using
DMA is almost as fast as that of using CPU.

To make the result more convincing, we pick four scales of memory content size:
10 B, 100 B, 1 KB, and 10 KB. For each scale, we conduct the experiments 50 times
for DMA and CPU, respectively. We take the average value and divide the result with
the scale to get the dumping speed: bit rates. The bit rates of each scale are shown in
Table 1. We can see that DMA performs as fast as CPU. Based on the result, it will take
approximately 13.14 minutes in average to dump Android Kernel of 9080836 bytes
to a laptop through the serial port. The bottleneck of the speed is the limited baud rate,
which is 115200, of the serial port. The performance can be improved by using other
faster peripherals, such as the Ethernet and wireless device. Since it requires to develop
new device drivers in the secure domain, we put them into our future work.

Table 1. Memory Dumping Performance

Scale (Byte)
Bit Rate (bit/s)
DMA CPU

10 92178.12 92178.49
100 92163.38 92165.45
1K 92163.01 92163.43
10K 92163.09 92163.11

TrustDump: Reliable Memory Acquisition on Smartphones 215

6.3 Analysis Performance

We conduct experiments on both the software-based and hardware-based implementa-
tions. The result shows that the time to calculate the kernel hash is 1.56ms by hardware,
and 578.6 ms by software. The performance of hardware hash guarantees that Trust-
Dumper can be invoked frequently to perform kernel integrity checking when using
the hardware-based solution. Though the software-based solution may be too slow for
frequent OS integrity checking, it can be used when the Rich OS crashes or is compro-
mised.

Besides kernel integrity checking, TrustDumper can detect hidden processes. We
deploy a real rootkit Suterusu [25] that can hide processes in the Rich OS for evaluation.
Suterusu performs system call inline hooking on arm platform to hide user-specified
processes. Whenever the ls or top command is called in linux terminal, Suterusu hooks
the functions and deletes the information of the hidden malicious processes from the
result. TrustDump can successfully detect the rootkit by traversing all the processes of
the Rich OS in 2.13 ms. According to the implementation in 5.3, TrustDumper running
in the monitor mode needs to access the stack pointer of the user mode to obtain the
pointer of the current thread info in Rich OS. Because the user mode and the system
mode of the CPU share the same stack pointer, and changing between the monitor mode
and the system mode can be easily done by modifying the Current Program Status
Register (CPSR), we access the stack pointer of the system mode instead. With the
stack pointer, we can traverse all the processes listed in Figure 4 as described in 5.3.
By comparing the result with what we get using command ls or top, we can find the
processes hidden by the Suterusu.

7 Related Work

Memory acquisition techniques on smartphones can be classified into two categories:
the software-based solutions and the hardware-based solutions. A software-based mem-
ory acquisition solution typically relies on either an OS running on the bare metal to
acquire its own memory or a hypervisor to acquire the memory of one VM. Without
/dev/mem support in the Android kernel, Linux Memory Extractor (LiME) has been
developed as a loadable kernel module in Android to directly dump the memory to the
SD card or over the network [26]. It requires rooted devices to insert the module into the
kernel. Based on LiME, another work called DMD [27] can acquire the volatile mem-
ory of Android. Moreover, DDMS [28] provided by Android SDK can also be used to
get memory information. On smartphones, the Android Recovery Mode [29] can give
the user a root privilege and bypass the passcodes to acquire the OS memory; however,
it requires a reboot before the memory acquisition.

In recent years, Hypervisors have been developed and enabled on ARM plat-
forms [30, 31] with hardware support. Thus, the virtual machine inspection tech-
niques [1] can also be implemented on the smartphones to protect the memory
acquisition module from being tampered by the malicious OS. All above software-
based solutions are efficient and easy to use. However, since they rely on the Android
OS or a hypervisor to acquire the RAM memory, they cannot ensure a reliable memory
acquisition when the OS/hypervisor has been compromised.

216 H. Sun et al.

Hardware-based techniques usually utilize dedicated hardware components to di-
rectly access the memory through physical addresses [32], where the OS has been to-
tally bypassed. JTAG [33] and chip-off technique [34] can be used to achieve memory
acquisition; however, it works only if a JTAG debug port is identified on the smart-
phones. Moreover, most deployed OSes deny the debugging requests from JTAG to
protect its own security. The cost of the equipment and the destructive nature of chip-off
technique make it difficult to be used widely. Gianluigi Me et al. [35] propose a remov-
able memory card based solution to overcome the heterogeneity of the tools adopted
to retrieve smartphone contents. The existing hardware-based solution is more secure
and reliable. However, it usually demands certain dedicated extra hardware components
that may not be available on all smartphone platforms. Fortunately, the ARM proces-
sors, which have been widely used on smartphones, now provide a system level isola-
tion solution with a hardware security support called TrustZone [15, 16]. TrustZone can
ensure a trusted execution environment to protect the memory acquisition module and
provide enough access privileges to access the Rich OS memory. Our work is based on
TrustZone.

8 Conclusions

Based on ARM TrustZone technology, we propose a reliable memory acquisition mech-
anism named TrustDump on Smartphone to perform forensic analysis and facilitate
malware analysis. TrustDump installs an Android OS in the normal domain and the
memory acquisition module in the secure domain, and it relies on TrustZone to en-
sure a hardware-assisted isolation between the two domains. TrustDump ensures the
reliability of the memory acquisition with a non-maskable interrupt, which prevents
user’s request from being intercepted or blocked by a malicious Rich OS. We propose
fine-grained access control and fine-grained interrupt control techniques to minimize
the impacts on the Rich OS. Our prototype on i.MX53 QSB can enter TrustDump and
begin memory dumping in 1.7 us and calculate a hash value of the Android kernel in
1.56 ms.

Acknowledgment. This work is partially supported by National 973 Program of China
under award No. 2014CB340603. Dr. Kun Sun’s work is supported by U.S. Army Re-
search Office under Grant W911NF-12-1-0060.

References

1. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture for intru-
sion detection. In: NDSS (2003)

2. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through vmm-based “out-of-the-
box” semantic view reconstruction. In: ACM Conference on Computer and Communications
Security, pp. 128–138 (2007)

3. Fu, Y., Lin, Z.: Space traveling across vm: Automatically bridging the semantic gap in virtual
machine introspection via online kernel data redirection. In: IEEE Symposium on Security
and Privacy, pp. 586–600 (2012)

TrustDump: Reliable Memory Acquisition on Smartphones 217

4. Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J.T., Lee, W.: Virtuoso: Narrowing the se-
mantic gap in virtual machine introspection. In: IEEE Symposium on Security and Privacy,
pp. 297–312 (2011)

5. Dinaburg, A., Royal, P., Sharif, M.I., Lee, W.: Ether: malware analysis via hardware virtu-
alization extensions. In: ACM Conference on Computer and Communications Security, pp.
51–62 (2008)

6. Deng, Z., Zhang, X., Xu, D.: Spider: stealthy binary program instrumentation and debugging
via hardware virtualization. In: ACSAC, pp. 289–298 (2013)

7. Yan, L.K., Yin, H.: Droidscope: Seamlessly reconstructing the os and dalvik semantic views
for dynamic android malware analysis. In: Proceedings of the 21st USENIX Conference on
Security Symposium, Security 2012, p. 29. USENIX Association (2012)

8. McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: an execution infras-
tructure for tcb minimization. In: EuroSys, pp. 315–328 (2008)

9. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V.D., Perrig, A.: Trustvisor: Effi-
cient tcb reduction and attestation. In: IEEE Symposium on Security and Privacy, pp. 143–
158 (2010)

10. Martignoni, L., Poosankam, P., Zaharia, M., Han, J., McCamant, S., Song, D., Paxson, V.,
Perrig, A., Shenker, S., Stoica, I.: Cloud terminal: secure access to sensitive applications from
untrusted systems. In: Proceedings of the 2012 USENIX Conference on Annual Technical
Conference, p. 14. USENIX Association (2012)

11. Zhang, F., Leach, K., Sun, K., Stavrou, A.: Spectre: A dependable introspection framework
via system management mode. In: DSN, pp. 1–12 (2013)

12. Azab, A.M., Ning, P., Wang, Z., Jiang, X., Zhang, X., Skalsky, N.C.: Hypersentry: enabling
stealthy in-context measurement of hypervisor integrity. In: ACM Conference on Computer
and Communications Security, pp. 38–49 (2010)

13. Wang, J., Stavrou, A., Ghosh, A.: Hypercheck: A hardware-assisted integrity monitor. In:
Jha, S., Sommer, R., Kreibich, C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 158–177.
Springer, Heidelberg (2010)

14. Azab, A.M., Ning, P., Zhang, X.: Sice: a hardware-level strongly isolated computing environ-
ment for x86 multi-core platforms. In: ACM Conference on Computer and Communications
Security, pp. 375–388 (2011)

15. ARM: TrustZone Introduction, http://www.arm.com/products/processors/
technologies/trustzone/index.php

16. Alves, T., Felton, D.: Trustzone: Integrated hardware and software security. ARM White
Paper 3(4) (2004)

17. ARM: Cortex-A8 Technical Reference Manual, http://infocenter.arm.com/
help/topic/com.arm.doc.ddi0344k/DDI0344K cortex a8 r3p2 trm.pdf

18. ARM: Cortex-A9 Technical Reference Manual, http://infocenter.arm.com/
help/topic/com.arm.doc.ddi0388f/DDI0388F cortex a9 r2p2 trm.pdf

19. ARM: ARM Cortex-A15 MPCore Processor Technical Reference Manual,
http://infocenter.arm.com/help/index.jsp?topic=/
com.arm.doc.ddi0438i/index.html

20. ARM: Interrupt Behavior of Cortex-M1, http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.dai0211a/index.html

21. ARM: Cortex-M4 Devices Generic User Guide, http://infocenter.arm.com/
help/index.jsp?topic=/com.arm.doc.dui0553a/Cihfaaha.html

22. Freescale: Imx53qsb: i.mx53 quick start board, http://www.freescale.com/
webapp/sps/site/prod summary.jsp?code=IMX53QSB&tid=
vanIMXQUICKSTART

http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344k/DDI0344K_cortex_a8_r3p2_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344k/DDI0344K_cortex_a8_r3p2_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0388f/DDI0388F_cortex_a9_r2p2_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0388f/DDI0388F_cortex_a9_r2p2_trm.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438i/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438i/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0211a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0211a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0553a/Cihfaaha.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0553a/Cihfaaha.html
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=IMX53QSB&tid=vanIMXQUICKSTART
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=IMX53QSB&tid=vanIMXQUICKSTART
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=IMX53QSB&tid=vanIMXQUICKSTART

218 H. Sun et al.

23. Adeneo Embedded: Reference BSPs for Freescale i.MX53 Quick Start Board,
http://www.adeneo-embedded.com/en/Products/
Board-Support-Packages/Freescale-i.MX53-QSB

24. Paul Bakker: PolarSSL, https://polarssl.org/
25. Michael Coppola: Suterusu Rootkit: Inline Kernel Function Hooking on x86 and ARM,

http://poppopret.org/2013/01/07/suterusu-rootkit-inline-
kernel-function-hooking-on-x86-and-arm/

26. Heriyanto, A.P.: Procedures and tools for acquisition and analysis of volatile memory on
android smartphones. In: Proceedings of The 11th Australian Digital Forensics Conference.
SRI Security Research Institute, Edith Cowan University, Perth, Western Australia (2013)

27. Sylve, J., Case, A., Marziale, L., Richard III, G.G.: Acquisition and analysis of volatile mem-
ory from android devices. Digital Investigation 8(3-4), 175–184 (2012)

28. Google: Using ddms for debugging,
http://developer.android.com/tools/debugging/ddms.html

29. Stevenson, A.: Boot into Recovery Mode for Rooted and Un-rooted Android devices,
http://androidflagship.com/
605-enter-recovery-mode-rooted-un-rooted-android

30. Dall, C., Nieh, J.: Kvm for arm. In: Proceedings of the 12th Annual Linux Symposium (2010)
31. Dall, C., Nieh, J.: Kvm/arm: The design and implementation of the linux arm hypervisor. In:

Proceedings of the 19th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2014 (2014)

32. Carrier, B.D., Grand, J.: A hardware-based memory acquisition procedure for digital inves-
tigations. Digital Investigation 1(1), 50–60 (2004)

33. Breeuwsma, I.M.F.: Forensic Imaging of Embedded Systems Using JTAG (Boundary-scan).
Digit. Investig. 3(1) (March 2006)

34. Jovanovic, Z., Redd, I.D.D.: Android forensics techniques. International Academy of Design
and Technology (2012)

35. Me, G., Rossi, M.: Internal forensic acquisition for mobile equipments. In: IPDPS, pp. 1–7
(2008)

http://www.adeneo-embedded.com/en/Products/Board-Support-Packages/Freescale-i.MX53-QSB
http://www.adeneo-embedded.com/en/Products/Board-Support-Packages/Freescale-i.MX53-QSB
https://polarssl.org/
http://poppopret.org/2013/01/07/suterusu-rootkit-inline-kernel-function-hooking-on-x86-and-arm/
http://poppopret.org/2013/01/07/suterusu-rootkit-inline-kernel-function-hooking-on-x86-and-arm/
http://developer.android.com/tools/debugging/ddms.html
http://androidflagship.com/605-enter-recovery-mode-rooted-un-rooted-android
http://androidflagship.com/605-enter-recovery-mode-rooted-un-rooted-android

A Framework to Secure Peripherals at Runtime

Fengwei Zhang1, Haining Wang2, Kevin Leach3, and Angelos Stavrou1

1 George Mason University, Fairfax, VA, USA
2 College of William and Mary, Williamsburg, VA, USA

3 University of Virginia, Charlottesville, VA, USA

Abstract. Secure hardware forms the foundation of a secure system.
However, securing hardware devices remains an open research problem.
In this paper, we present IOCheck, a framework to enhance the secu-
rity of I/O devices at runtime. It leverages System Management Mode
(SMM) to quickly check the integrity of I/O configurations and firmware.
IOCheck is agnostic to the operating system. We use random-polling and
event-driven approaches to switch into SMM. We implement a prototype
of IOCheck and conduct extensive experiments on physical machines.
Our experimental results show that IOCheck takes 10 milliseconds to
check the integrity of a network card and a video card. Also, IOCheck
introduces a low overhead on Windows and Linux platforms. We show
that IOCheck achieves a faster switching time than the Dynamic Root
of Trust Measurement approach.

Keywords: Integrity, Firmware, I/O Configurations, SMM.

1 Introduction

As hardware devices have become more complex, firmware functionality has ex-
panded, exposing new vulnerabilities to attackers. The National Vulnerabilities
Database (NVD [1]) shows that 183 firmware vulnerabilities have been found
since 2011. The Common Vulnerabilities and Exposures (CVE) list from Mitre
shows 537 entries that match the keyword ‘firmware,’ and 94 new firmware vul-
nerabilities were found in 2013 [2]. A recent study shows that 40,000 servers are
remotely exploitable due to vulnerable management firmware [3]. Attackers can
exploit these vulnerabilities in firmware [4] or tools for updating firmware [5].

After compromising the firmware of an I/O device (e.g., NIC card), attackers
alter memory via DMA [4, 6, 7] or compromise surrounding I/O devices [8, 9].
Fortunately, the Input Output Memory Management Unit (IOMMU) mechanism
can protect the host memory from DMA attacks. It maps each I/O device to a
specific area in the host memory so that any invalid access fails. Intel Virtualiza-
tion Technology for Directed I/O (VT-d) is one example of IOMMU. AMD also
has its own I/O virtualization technology called AMD-Vi. However, IOMMU
cannot always be trusted as a countermeasure against DMA attacks, as it relies
on a flawless configuration to operate correctly [10]. In particular, researchers
have demonstrated several attacks against IOMMU [11–13].

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 219–238, 2014.
c© Springer International Publishing Switzerland 2014

220 F. Zhang et al.

Static Root of Trust for Measurement (SRTM) [14] with help from the Trust
Platform Module (TPM) [15] can check the integrity of the firmware and I/O
configurations while booting. It uses a fixed or immutable piece of trusted code,
called the Core Root of Trust for Measurement (CRTM), contained in the BIOS
at the start of the entire booting chain, and every piece of code in the chain
is measured by the predecessor code before it is executed, including firmware.
However, SRTM only secures the booting process and cannot provide runtime
integrity checking.

Trust Computing Group introduced Dynamic Root of Trust for Measurement
(DRTM) [16]. To implement this technology, Intel developed Trusted eXecution
Technology (TXT) [17], providing a trusted way to load and execute system
software (e.g., OS or VMM). TXT uses a new CPU instruction, SENTER, to
control the secure environment. Intel TXT does not make any assumptions about
the system state, and it provides a dynamic root of trust for Late Launch.
Thus, TXT can be used to check the runtime integrity of I/O configurations and
firmware. AMD has a similar technology called Secure Virtual Machine, and
it uses the SKINIT instruction to enter the secure environment. However, both
TXT and SVM introduce a significant overhead on the late Launch Operation
(e.g., the SKINIT instruction in [18]).

In this paper, we present IOCheck, a framework to enhance the security of
I/O devices at runtime. It leverages System Management Mode (SMM), a CPU
mode in the x86 architecture, to quickly check the integrity of I/O configurations
and firmware. IOCheck identifies the target I/O devices on the motherboard
and checks the integrity of their corresponding configurations and firmware. In
contrast to existing firmware integrity checking systems [19, 20], our approach is
based on SMM instead of Protected Mode (PM). While PM-based approaches
assume the booting process is secure and the OS is trusted, our approach only
assumes a secure BIOS boot to set up SMM, which is easily achieved via SRTM.

The superiority of SMM over PM is two-fold. First, we can reduce the Trusted
Computing Base (TCB) of the analysis platform. Similar to Viper [20] and
NAVIS [19], IOCheck is a runtime integrity checking system. Viper and NAVIS
assume the OS is trusted and use software in PM to check the integrity, while
IOCheck uses SMM without relying on the OS, resulting in a much smaller TCB.
IOCheck is also immune to attacks against the OS, facilitating a stronger threat
model than the checking systems running in the OS. Second, we achieve a much
higher performance compared to the DRTM approaches [18] running in PM.
DRTM does not rely on any system code; it can provide a dynamic root of trust
for integrity checking. IOCheck can achieve the same security goal because SMM
is a trusted and isolated execution environment. However, IOCheck is able to
achieve a much higher performance over Intel TXT or AMD SVM approaches.
Based upon experimental results, SMM switching time takes microseconds, while
the switching operation of the DRTM approach [18] takes milliseconds.

We implement a prototype of our system using different methods to enter
SMM. First, we develop a random polling-based integrity checking system that
checks the integrity of I/O devices, which can mitigate transient attacks [21, 22].

A Framework to Secure Peripherals at Runtime 221

To further defend against transient attacks, we also implement an event-driven
system that checks the integrity of a network card’s management firmware.

We conduct extensive experiments to evaluate IOCheck on both Microsoft
Windows and Linux systems. The experimental results show that the SMM
code takes about 10 milliseconds to check PCI configuration space and firmware
of NIC and VGA. Through testing IOCheck with popular benchmarks, IOCheck
incurs about a 2% overhead when we set the random polling instruction interval
between [1,0xffffffff]1. We also compare IOCheck with the DRTM approach; our
results indicate that our system’s switching time is three orders of magnitude
faster than DRTM. Furthermore, the switching time of IOCheck is constant
while the switching operation in DRTM depends on the size of the loaded secure
code.

Contributions. This work makes the following contributions:

– We provide a framework that checks the integrity of I/O devices at runtime.
– IOCheck is OS-agnostic and is implemented in SMM.
– We implement a prototype that uses random-polling and event-driven ap-

proaches to mitigate transient attacks.
– We demonstrate the effectiveness of our system by checking the integrity

of a popular network card and video card, and we show that our system
introduces a low operating overhead on both Windows and Linux platforms.

2 Background

2.1 Computer Hardware Architecture

The Central Processing Unit (CPU) connects to the Northbridge via the Front-
Side Bus. The Northbridge contains the Memory Management Unit (MMU) and
IOMMU, collectively called the Memory Controller Hub (MCH). The North-
bridge also connects to the memory, graphics card, and Southbridge. The South-
bridge connects a variety of I/O devices including USB, SATA, and Super I/O,
among others. The BIOS is also connected to the Southbridge. Figure 2 in Ap-
pendix shows the hardware architecture of a typical computer.

2.2 Firmware Rootkits

A firmware rootkit creates a persistent malware image in hardware devices such
as network cards, disks, and the BIOS. The capabilities of firmware rootkits can
be summarized thusly. First, firmware rootkits can modify the host memory via
DMA if a system does not have an IOMMU or if it is incorrectly configured.
Second, a compromised device can access sensitive data that passes through
it [23]. For instance, a NIC rootkit can eavesdrop network packets containing
passwords. Third, a hardware device with malicious firmware may be able to
compromise surrounding devices via peer-to-peer communication. For example, a
compromised NIC may access GPU memory [24]. Last but not least, an advanced
firmware rootkit can even survive a firmware update [25].

1 It takes about .5s to run 0xffffffff instructions. Table 2 explains this further.

222 F. Zhang et al.

2.3 System Management Mode and Coreboot

System Management Mode (SMM) is a CPU mode in the x86 architecture. It
is similar to Real and Protected Modes. It provides an isolated execution envi-
ronment for implementing system control functions such as power management.
SMM is initialized by the BIOS. Before the system boots up, the BIOS loads the
SMM code into System Management RAM (SMRAM), a special memory region
that is inaccessible from other CPU modes. SMM is triggered by asserting the
System Management Interrupt (SMI) pin on the motherboard. Both hardware
and software are able to assert this pin, although the specific method depends
on the chipset. After assertion, the system automatically saves its CPU states
into SMRAM and then executes the SMI handler code. An RSM instruction is
executed at the end of the SMI hander to switch back to Protected Mode.

Coreboot [26] aims to replace legacy BIOS in most computers. It performs
some hardware initialization and then executes additional boot logic, called a
payload. With the separation of hardware initialization and later boot logic,
Coreboot provides flexibility to run custom bootloaders or a Unified Extensible
Firmware Interface (UEFI). It switches to Protected Mode early in the booting
process and is written mostly in C language. Google Chromebooks are manufac-
tured and shipped with Coreboot.

3 Threat Model and Assumptions

3.1 Threat Model

We consider two attack scenarios. First, we consider an attacker who gains con-
trol of a host through a software vulnerability and then attempts to remain resi-
dent in a stealthy manner. We assume such an attacker installs firmware rootkits
(specifically, a backdoor [23]) after infecting the OS so that the malicious code
remains even if the user reinstalls the OS.

In the second scenario, we assume the firmware itself can be remotely exploited
due to vulnerabilities. For instance, Duflot et al. [4] demonstrate an attack that
remotely compromises a Broadcom NIC with crafted UDP packets. Additionally,
Bonkoski et al. [3] show a buffer overflow vulnerability in management firmware
that affected thousands of servers.

3.2 Assumptions

An attacker is able to tamper with the firmware by exploiting zero-day vulner-
abilities. Since IOCheck does not rely on the operating system, we assume the
attacker has ring 0 privilege. Thus, attackers are granted more capabilities in our
work than those OS-based systems [19, 20]. We assume the system is equipped
with SRTM, in which CRTM is trusted so that it can perform a self-measurement
of the BIOS. Once the SMM code is securely loaded into the SMRAM, we lock
the SMRAM in the BIOS. We assume the SMM is secure after locking SMRAM,
and we will discuss attacks against SMM in Section 7. Moreover, we assume the
attacker does not have physical access to our system.

A Framework to Secure Peripherals at Runtime 223

System
Management

Mode

Network Card

Graphics Card

Disk Controller

Other I/O Device

.

.

.

2) Check Firmware

I/O Configurations

3) Found Attack

Audible Tone

1) Random Poling-based
or Event-driven Triggering Enter SMM

4) Execute RSM Exit SMM

Target Machine

External
Machine

Serial Cable

Fig. 1. Architecture of IOCheck

4 System Framework

Figure 1 shows the architecture of IOCheck. The target machine connects to the
external machine via a serial cable. In the target machine, the box on the left
lists all of the I/O devices on a motherboard; the box on the right represents the
System Management Mode code that checks the integrity of I/O configurations
and firmware. The framework performs four steps for each check: 1) the target
machine switches into SMM; 2) the SMI handler checks the integrity of target
I/O devices; 3) if a potential attack has been found, the target machine plays an
audible tone and SMM sends a message to the external machine via the serial
cable; and 4) the target machine executes the RSM instruction to exit SMM.
These steps are further described below.

4.1 Triggering an SMI

In general, there are software- and hardware-based methods to trigger an SMI.
In software, we can write to an ACPI port to raise an SMI. For example, Intel
chipsets use port 0x2b as specified by the Southbridge datasheet. Our testbed
with a VIA VT8237r Southbridge uses 0x52f as the SMI trigger port [27]. In
terms of hardware-based methods, there are many hardware devices that can be
used to raise an SMI, including keyboards, network cards, and hardware timers.

The algorithm for triggering SMIs plays an important role in the system
design. In general, there are polling-based and event-driven approaches used to
generate SMIs. The polling-based approach polls the state of a target system at
regular intervals. When we use this approach to check the integrity of a target
system, it compares the newly retrieved state with a known pristine state to see
if any malicious changes have occurred. However, polling at regular intervals in
the system is susceptible to transient [21] or evasion attacks [22].

Transient attacks are a class of attacks that do not produce persistent changes
within a victim’s system. Polling-based systems suffer from transient attacks
because they infer intrusions based upon the presence of an inconsistent state.
Transient attacks can thus avoid detection by remove any evidence before a
polling event and resuming malicious activity between polls. Mitigating these

224 F. Zhang et al.

attacks requires either 1) minimizing the polling window so that there is less of
a chance for the malware to clean its evidence, or 2) randomizing the polling
window so that malware cannot learn a pattern for cleaning its evidence. We
implement these methods in IOCheck via performance counters to trigger SMIs.

Moreover, we can use an event-driven triggering method to further mitigate
transient attacks. Polling-based systems are likely to miss events between two
checks that an event-driven approach would not. For instance, we can trigger
SMIs when a region of memory changes, allowing us to monitor the state, in-
cluding malicious changes.

4.2 Checking I/O Configurations and Firmware

Configurations of I/O Devices. Before the system boots up, the BIOS
initializes all of the hardware devices on the motherboard and populates cor-
responding configuration spaces for each one. These devices rely on the con-
figurations to operate correctly. Here we use the PCI configuration space and
IOMMU configuration as examples.
PCI Configuration Space: Each PCI or PCIe controller has a configuration
space. Device drivers read these configurations to determine what resources (e.g.,
memory-mapped location) have been assigned by the BIOS to the devices. Note
that the PCI configurations should be static after the BIOS initialization. How-
ever, an attacker with ring 0 privilege can modify the PCI configuration space.
For example, the attacker can relocate the device memory by changing the Base
Address Register in the PCI configuration space. Additionally, PCI/PCIe de-
vices that support Message Signaled Interrupts (MSI) contain registers in the
PCI configuration space to configure MSI delivery. Wojtczuk and Rutkowska
demonstrate that the attacker in the driver domain of a VM can generate ma-
licious MSIs to compromise a Xen hypervisor [13]. Note that IOCheck assumes
the PCI configuration remains the same after the BIOS initialization and does
not consider “Plug-and-Play” PCI/PCIe devices.
IOMMU Configurations : IOMMU restricts memory access from I/O devices. For
example, it can prevent a DMA attack from a compromised I/O device. IOMMU
is comprised of a set of DMA Remapping Hardware Units (DRHU). They are
responsible for translating addresses from I/O devices to physical addresses in
the host memory. The DRHU first identifies a DMA request by BDF-ID (Bus,
Device, Function number). Then, it uses BDF-ID to locate the page tables asso-
ciated with the requested I/O controller. Finally, it translates the DMA Virtual
Address (DVA) to a Host Physical Address (HPA), much like MMU translation.
Although IOMMU gives us effective protection from DMA attacks, it relies on
proper configurations to operate correctly. Several techniques have been demon-
strated to bypass IOMMU [11, 13]. We can mitigate these attacks by checking
the integrity of the critical configurations of IOMMU at runtime. Table 4 in
Appendix shows the static configuration of IOMMU.

A Framework to Secure Peripherals at Runtime 225

Firmware Integrity. We aim to check the firmware of I/O devices including the
network card, graphics card, disk controller, keyboard, and mouse. We describe
the process of checking a NIC, VGA, and the BIOS as examples.
Network Interface Controller : Modern network cards continue to increase in
complexity. NICs usually include a separate on-chip processor and memory to
support various functions. Typically, a NIC loads its firmware from Electric
Erasable Programmable Read-Only Memory (EEPROM) to flash memory, and
it then executes the code on the on-chip processor. IOCheck stores a hash value
of the original firmware image and checks the integrity of the NIC’s firmware at
runtime. For some network cards [28], we can monitor the instruction pointer of
the on-chip CPU through the NIC’s debugging registers. This can restrict the
instruction pointer to the code section of the memory region. If the instruction
pointer points to a memory region that stores heap or stack data, then a code
injection or control flow hijacking may have occurred.

Monitoring the integrity of the static code and instruction pointer can prevent
an attacker from injecting malicious code into the firmware; however, it cannot
detect advanced attacks, such as Return Oriented Programming attacks, since
they technically do not inject any code. To detect these attacks, we can imple-
ment a shadow stack to protect the control flow integrity of the NIC firmware.
Duflot et al. implemented a similar concept in NAVIS [19]. We will study the
control flow integrity of the firmware in future work.
Video Graphics Adapter : The Video Graphics Adapter (VGA) normally re-
quires device-specific initialization, and the motherboard BIOS does not have
the knowledge of all possible vendor-specific initialization procedures. Fortu-
nately, the PCI expansion ROM (i.e., option ROM) can be executed to initialize
the VGA device. The VGA expansion ROM code is stored on the device, and
this mechanism allows ROM to contain multiple images that support different
processor architectures (e.g, x86, HP RISC). However, the ROM code on the de-
vice can be flashed with a customized image [29] or malicious code [30]. IOCheck
uses SMM to ensure the integrity of the VGA option ROM at runtime.
Basic Input Output System: As mentioned before, SRTM can check the integrity
of the BIOS at the booting time, which helps us to securely load the SMM
code from the BIOS to the SMRAM. After the system boots up, attackers with
ring 0 privilege might modify the BIOS using various tools (e.g., flashrom [31]).
However, they are not able to access locked SMRAM. Thus, we can use the SMM
code to check the runtime integrity of the BIOS. Although the modified BIOS
with malicious code cannot be executed until the system resets and SRTM will
detect this BIOS attack before booting, we can detect this attack earlier than
SRTM, which provides runtime detection and serves as a complementary defense.
Earlier detection of such attacks can also limit the damage they wreak against
the system. Note that we assume CRTM in the BIOS is immutable and trusted,
but attackers can modify any other BIOS code (e.g., ACPI tables). Otherwise,
we cannot perform SRTM correctly.

226 F. Zhang et al.

4.3 Reporting an Alert and Exiting SMM

The last stage of IOCheck is to report any alerts to a human operator. We
accomplish this task by playing an audible tone to notify a user that a potential
attack may happen. To distinguish the type of attack, we use different tone
frequency for a variety of I/O attacks. In addition, we use a serial cable to
connect the target machine to the external machine. IOCheck assumes attackers
with ring 0 privilege, which means they are able to modify hardware registers
to block SMI assertions and launch a Denial-of-Service (DoS) attack against our
system. We use the external machine to detect the DoS attack. For example, the
random polling-based triggering in IOCheck must generate SMIs at least every
maximum time interval, whereupon the external machine expects a message
from SMM via the serial cable. If the external machine does not receive a log
message in the interval, we conclude that a DoS attack has occurred. We also use
a secret key to authenticate the log messages to avoid fake messages. Specifically,
the target machine establishes a shared secret key with the external machine in
the BIOS while booting. Since we trust the BIOS at startup, we can store the
secret in the trusted SMRAM. Later, only the SMI handler can access it, which
prevents attackers from spoofing messages.

Note that the reporting stage executes within SMM. Even if an attack disables
the PC speaker or serial console in PM, we can enable it in SMM and guarantee
that an audible tone and a serial message is delivered. After the reporting stage,
the SMI handler simply executes the RSM instruction to exit from SMM.

5 System Implementation

We implement a prototype of IOCheck system using two physical machines.
The target machine uses an ASUS M2V-MX SE motherboard with an AMD
K8 Northbridge and a VIA VT8237r Southbridge. It has a 2.2 GHz AMD LE-
1250 CPU and 2GB Kingston DDR2 RAM. We use a PCIe-based Intel 82574L
Gigabit Ethernet Controller and a PCI-based Jaton VIDEO-498PCI-DLP Nvidia
GeForce 9500GT as the testing devices. To program SMM, we use open-source
BIOS, Coreboot. Since IOCheck is OS-agnostic, we install Microsoft Windows 7
and CentOS 5.5 on the target machine. The external machine is a Dell Inspiron
15R laptop with Ubuntu 12.04 LTS. It uses a 2.4GHz Intel Core i5-2430M CPU
and 6 GB DDR3 RAM.

5.1 Triggering an SMI

We implement a random polling-based triggering algorithm to check integrity
of I/O configurations and firmware by using performance counters to generate
SMIs. The performance monitoring registers count hardware events such as in-
struction retirement, L1 cache miss, or branch misprediction. The x86 machines
provide four of these counters from which we can select a specific hardware event
to count [32]. To generate an SMI, we first configure one of the performance coun-
ters to store its maximum value. Next, we select a desired event (e.g., a retired

A Framework to Secure Peripherals at Runtime 227

instruction or cache miss) to count so that the next occurrence of that event will
overflow the counter. Finally, we configure the Local Advanced Programmable
Interrupt Controller (APIC) to deliver an SMI when an overflow occurs. Thus,
we are able to trigger an SMI for the desired event. The performance counting
event is configured by the PerfEvtSel register, and the performance counter is
set by the PerfCtr register [32].

To randomly generate SMIs, we first generate a pseudo-random number, r,
ranging from 1 to m, where m is a user-configurable maximum value. For ex-
ample, a user could set m as 0xffff (216 − 1), so the random number resides in
the set [1,0xffff]. Next, we set the performance counter to its maximum value
(0xffffffffffff) minus this random number (248 − 1 − r). We also set the desired
event in PerfEvtSel and start to count the event. Thus, an SMI will be raised
after r occurrences of the desired event. We use a linear-congruential algorithm
to generate the pseudo-random number, r, in SMM. We use the parameters of
the linear-congruential algorithm from Numerical Recipes [33]. We use the TSC
value as the initial seed and save the current random number in SMRAM as the
next round’s seed.

To further mitigate transient attacks, we consider event-driven-based trigger-
ing approaches. We implement an event-driven-based version of IOCheck for
checking the integrity of a NIC’s management firmware, and the detailed im-
plementation is described as follows. When a management packet arrives at the
PHY interface of the NIC, the manageability firmware starts to execute. We
use Message Signalled Interrupts (MSI) to trigger an SMI when a manageability
packet arrives at the network card. First, we configure the network card to de-
liver an MSI to the I/O APIC with the delivery mode specified as SMI. When
the I/O APIC receives this interrupt, it automatically asserts the SMI pin, and
an SMI is generated. Next, we use the SMM code to check the integrity of the
management firmware. Note that the act of this triggering is generated via a
hardware interrupt in the NIC, and the management firmware code is decoupled
from this. Thus, we trigger an SMI for every manageability packet before the
firmware has an opportunity to process it.

5.2 Checking I/O Configurations and Firmware

Network Interface Controller. We use a popular commercial network card,
an Intel 82574L Gigabit PCIe Ethernet Controller, as our target I/O device.
First, we check the PCIe configuration space of the network card. The NIC
on our testbed is at bus 3, device 0, and function 0. To read the configuration
space, we use standard PCI reads to dump the contents. We use a standard hash
function MD5 [34] to hash these 256 bytes of the configuration and compare the
hash value with the original one generated during booting.

Network management is an increasingly important requirement in today’s net-
worked computer environments, especially on servers. It routes manageability
network traffic to a Management Controller (MC). One example of MC is the
Baseboard Management Controller (BMC) in Intelligent Platform Management
Interface (IPMI). The management firmware inevitably contains vulnerabilities

228 F. Zhang et al.

that could be easily exploited by attackers. Bonkoski et al. [3] identified more than
400 thousand IPMI-enabled servers running on publicly accessible IP addresses
that are remotely exploitable due to textbook vulnerabilities in the management
firmware. The 82574L NIC [35] provides two different and mutually exclusive bus
interfaces for manageability traffic. One is the Intel proprietary System Manage-
ment Bus (SMBus) interface, and the other is the Network Controller - Sideband
Interface (NC-SI). For each manageability interface, it has its own firmware code
that implements the functions. Figure 3 in Appendix shows a high-level architec-
tural block diagram of the 82574L NIC.

The management firmware of these two interfaces is stored in a Non-Volatile
Memory (NVM). The NVM is I/O mapped memory in the NIC, and we use the
EEPROM Read Register (EERD 0x14) to read it. EERD is a 32-bit register used
to cause the NIC to read individual words in the EEPROM. To read a word, we
write a 1b to the Start Read field. The NIC reads the word from the EEPROM
and places it in the Read Data field and then sets the Read Done field to 1b. We
poll the Read Done bit to make sure that the data has been stored in the Read
Data field. All of the configuration and status registers of 82574L NIC, including
EERD, are memory-mapped when the system boots up. To access EERD, we
use normal memory read-and-write operations. The memory address of EERD
is INTEL 82574L BASE plus EERD offset.

Video Graphics Adapter. Jaton VIDEO-498PCI-DLP GeForce 9500GT is a
PCI-based video card. It is at bus 7, device 0, and function 0 on our testbed.
Similar to the checking approach of NIC, we first check the PCI configuration
space of the VGA device. Then, we check the integrity of the VGA expansion
ROM. The VGA expansion ROM is memory-mapped, and the four-byte register
at offset 0x30 in the PCI configuration space specifies the base address of the
expansion ROM. Note that bit 0 in the register enables the accesses to the
expansion ROM. PCI expansion ROMs may contain multiple images for different
architectures. Each image must contain a ROM header and PCI data structure,
which specify image information such as code type and size. Table 5 in Appendix
shows the formats of ROM header and PCI data structure. Note that we only
check the image for x86 architecture since our testbed is on Intel x86.

We first use the base address of expansion ROM to locate the header of the
first image. Next, we read the pointer to PCI data structure at offset 0x18 to
0x19. Then, we identify the code type at offset 0x14 in the PCI data structure.
If this image is for Intel x86 architecture, we check the integrity of this image by
comparing the hash values. Otherwise, we repeat the steps above for the next
image.

5.3 Reporting an Alert and Exiting SMM

To play a tone, we program the Intel 8253 Programmable Interval Timer (PIT) in
the SMI handler to generate tones. The 8253 PIT performs timing and counting
functions, and it exists in all x86 machines. In modern machines, it is included as

A Framework to Secure Peripherals at Runtime 229

part of the motherboard’s Southbridge. This timer has three counters (Counters
0, 1, and 2), and we use the third counter (Counter 2) to generate tones via the
PC speaker. In addition, we can generate different kinds of tones by adjusting
the output frequency. In the prototype of IOCheck, a continuous tone would be
played by the PC speaker if a attack against NIC has been found. If an attack
against VGA has been found, an intermittent tone would be played.

We use a serial cable to print status messages and debug corresponding I/O
devices in SMM. The printk function in Coreboot prints the status messages
to the serial port on the target machine. When the target machine executes the
BIOS code during booting, the external machine sends a 16-byte random number
to the target machine through the serial cable. Then, the BIOS will store the
random number as a secret in the SMRAM. Later, the status messages are sent
with the secret for authentication. We run a minicom instance on the external
machine and verify if the secret is correct. If a status message is not received in
an expected time window or the secret is wrong, we conclude that an attack has
occurred.

6 Evaluation and Experimental Results

6.1 Code Size

In total, there are 310 lines of new C code in the SMI handler. The MD5 hash
function has 140 lines of C code [34], and the rest of the code implements the
firmware and PCI configuration space checking. After compiling the Coreboot,
the binary size of the SMI handler is only 1,409 bytes, which introduces a min-
imal TCB to our system. The 1,409-byte code encompasses all functions and
instructions required to check the integrity of the NIC and VGA firmware and
their PCI configuration spaces. The code size will increase if we check more I/O
devices. Additionally, other static code exists in Coreboot related to enabling
SMM to run on a particular chipset. For example, a printk function is built
into the SMM code to enable raw communication over a serial port.

6.2 Attack Detection

We conduct four attacks against our system on both Windows and Linux plat-
forms. Two of them are I/O configuration attacks, which relocate the device
memory by manipulating the PCI configuration space of NIC and VGA. The
other two attacks modify the management firmware of the NIC and VGA option
ROM. The Base Address Registers (BARs) in the PCI configuration space are
used to map the device’s register space. They reside from offset 0x10 to 0x27 in
the PCI configuration space. For example, the memory location BAR0 specifies
the base address of the internal NIC registers. An attacker can relocate these
memory-mapped registers for malicious purposes by manipulating the BAR0
register. To conduct the experiments, we first enable IOCheck to check the PCI
configuration space. Next, we modify the memory location specified by the BAR0

230 F. Zhang et al.

register on Windows and Linux platforms. We write a kernel module to modify
the BAR0 register in Linux and use the RWEverything [36] tool to configure it
in Windows. We also modify the management firmware of NIC and the VGA op-
tion ROM. The management firmware is stored as a Non-Volatile memory, and
it is I/O mapped memory; the VGA option ROM is memory-mapped. These
attacks are also conducted on both Windows and Linux platforms.

After we modify NIC’s PCIe configuration or the firmware, IOCheck auto-
matically plays a continuous tone to alert users and, the minicom instance on
the external machine shows an attack against NIC has been found. After the
modification of VGA’s PCI configuration or option ROM, an intermittent tone
is played by the PC speaker.

6.3 Breakdown of SMI Handler Runtime

To quantify how much time each individual step is required to run, we break
down the SMI handler into eight operations. They are 1) switch into the SMM;
2) check the PCIe configuration of NIC; 3) check the firmware of NIC; 4) check
the PCI configuration of VGA; 5) check the option ROM of VGA; 6) send a
status message; 7) configure the next SMI; and 8) resume Protected Mode. For
each operation, we measure the average time taken in SMM. We use the Time
Stamp Counter (TSC) register to calculate the time. The TSC register stores
the number of CPU cycles elapsed since powering on. First, we record the TSC
values at the beginning and end of each operation, respectively. Next, we use
the CPU frequency to divide the difference in the TSC register to calculate how
much time this operation.

We repeat this experiment 40 times. Table 1 shows the average times taken
for each operation. We can see that the SMM switching and resuming take
only 4 and 5 microseconds, respectively. Checking 256 bytes of the PCIe/PCI
configuration space register takes about 1 millisecond. The 82574L NIC has 70
bytes of SMBus Advanced Pass Through (APT) management firmware and 138
bytes of NC-SI management firmware. The size of x86 expansion ROM image is
1 KB in the testing VGA. Checking NIC’s firmware takes about 1 millisecond,
while checking VGA’s option ROM takes about 5 milliseconds. Naturally, the

Table 1. Breakdown of SMI Handler Runtime (Time: μs)

Operations Mean STD 95% CI

SMM switching 3.92 0.08 [3.27,3.32]
Check NIC’s PCIe configuration 1169.39 2.01 [1168.81,1169.98]
Check NIC’s firmware 1268.12 5.12 [1266.63,1269.60]
Check VGA’s PCI configuration 1243.60 2.61 [1242.51,1244.66]
Check VGA’s expansion ROM 4609.30 1.30 [4608.92,4609.68]
Send a message 2082.95 3.00 [2082.08,2083.82]
Configure the next SMI 1.22 0.06 [1.20,1.24]
SMM resume 4.58 0.10 [4.55,4,61]

Total 10,383.07

A Framework to Secure Peripherals at Runtime 231

size of the firmware affects the time of the checking operation. We send a status
message (e.g., I/O devices are OK) in each run of the SMI handler, which is about
2 milliseconds. The time is takes to generate a random number and configure
performance counters for the next SMI is only 1.22 microseconds. Thus, the
total time spent in SMM is about 10 milliseconds. Additionally, we calculate the
standard deviation and 95% confidence interval for the runtime of each operation.

6.4 System Overhead

To measure system overhead introduced by this approach, we use the SuperPI [37]
program to benchmark our system on Windows and Linux. We first run the
benchmark without IOCheck enabled. Then, we run it with different random-
polling intervals. Table 2 shows the experimental results. The first column shows
the random polling intervals used in the experiment. For example, (0,0xfffff]
means a random number, r, is generated in that interval. We use retired instruc-
tions as the counting event in the performance counter. Thus, after running r
sequential instructions, an SMI will be asserted. The second column also in-
dicates the time elapsed. Since the CPU (AMD K8) on our testbed is 3-way
superscalar [38], we assume an average number of instructions-per-cycle (IPC)
is 3, and the equation for this transformation is T = I

(C∗IPC) , where T is the

real time, I is the number of instructions, and C is the clock speed on the CPU.

Table 2. Random Polling Overhead Introduced on Microsoft Windows and Linux

Random Polling Intervals Benchmark Runtime(s) System Slowdown

Instructions Time (μs) Windows Linux Windows Linux
1 [1,0xffffffff] (0,∼650,752] 0.285 0.393 0.014 0.011
2 [1,0xfffffff] (0,∼40,672] 0.297 0.398 0.057 0.023
3 [1,0xffffff] (0,∼2,542] 0.609 0.463 1.167 0.190
4 [1,0xfffff] (0,∼158] 4.359 1.480 14.512 2.805
5 [1,0xffff] (0,∼10] 91.984 18.382 ∼326 ∼46

We can see from Table 2 that the overhead will increase if we reduce the
random-polling interval, while small intervals have a higher probability of quickly
detecting attacks. Intervals in rows 1 and 2 introduce less than 6% overhead, so
intervals similar to or between them are suitable for normal users in practice.
Other intervals in the table have large overhead making them unsuitable in prac-
tice. These results demonstrate the feasibility and scalability of our approach.

6.5 Comparison with the DRTM Approach

IOCheck provides a new framework for checking firmware and I/O devices at
runtime. Compared to the well-known DRTM approach (e.g., Flicker [18]), SMM
in IOCheck serves a similar role as the trusted execution environment in DRTM.
However, IOCheck achieves a better performance in comparison. AMD uses the
SKINIT instruction to perform DRTM, and Intel implements DRTM using a CPU

232 F. Zhang et al.

Table 3. Comparison between SMM-based and DRTM-based Approaches

IOCheck Flicker [18]

Operation SMM switching SKINIT instruction
Size of secure code Any 4 KB
Time 3.92 μs 12 ms
Trust BIOS boot Yes No

instruction called SENTER. The SMM switching operation in IOCheck plays the
same role as SKINIT or SENTER instructions in the DRTM approach. As stated in
the Table II of Flicker [18], the time required to execute the SKINIT instruction
depends on the size of the Secure Loader Block (SLB). It shows a linear growth
in runtime as the size of the SLB increases. From Table 3, we can see that
the SKINIT instruction takes about 12 milliseconds for 4KB of SLB. However,
SMM switching only takes about 4 microseconds, which is about three orders
of magnitude faster than the SKINIT instruction. Furthermore, SMM switching
time is independent from the size of the SMI handler. This is because IOCheck
does not need to measure the secure code every time before executing it, and we
lock the secure code in SMRAM.

Note that IOCheck trusts the BIOS boot while Flicker does not. IOCheck
requires a secure BIOS boot to ensure the SMM code is securely loaded into
SMRAM. However, the DRTM approach (e.g., Intel TXT) also requires that the
SMM code is trusted. Wojtczuk and Rutkowska demonstrate several attacks [12,
39, 40] against Intel TXT by using SMM if the SMM-Transfer Monitor is not
present. From this point of view, both systems must trust the SMM code.

7 Limitations and Discussions

IOCheck is a runtime firmware and configuration integrity checking framework.
We also demonstrate the feasibility of this approach using a commercial network
card. However, the current prototype of IOCheck is specific to the target system,
which uses an Intel 82574L network card and JATON VIDEO-498PCI-DLP
Nvidia video card. Human effort is required to expand the functionality (e.g.,
checking BMC or Disk Controller).

SMM uses isolated memory (SMRAM) for execution. The initial size of SM-
RAM is 64 KB, ranging from SMM BASE to SMM BASE + 0xFFFF. The default
value of SMM BASE is 0x30000, and Coreboot relocates it to 0xA0000. As the
size of our SMI handler code is only 1,409 bytes, the small capacity of SMRAM
may limit the scalability of IOCheck. However, the chipset in our testbed allows
for an additional 4MB memory in a region called TSeg within SMRAM. Fur-
thermore, SICE [41] demonstrates that SMM can support up to 4GB of isolated
memory that can be used for memory-intensive operations such as virtualization.

Wojtczuk and Rutkowska [42] use cache poisoning to bypass the SMM lock
by configuring the Memory Type Range Registers (MTRR) to force the CPU to
execute code from the cache (which they injected) instead of SMRAM. Duflot
also independently found the same vulnerability [43]. This vulnerability was fixed

A Framework to Secure Peripherals at Runtime 233

with Intel’s addition of the System Management Range Register (SMRR). More
recently, Butterworth et al. [25] used a buffer overflow vulnerability during the
BIOS update process in SMM, although this was a bug in the particular BIOS
version. Our SMM code in Coreboot does not have the same vulnerable code
that facilitates this attack. To the best of our knowledge, there is no general
attack that can bypass the SMM lock and compromise SMM.

The implementation of IOCheck contains 310 lines of C code. This part of the
code may contain vulnerabilities that could be exploited by attackers. To reduce
the possibility of vulnerable code, we sanitize the input of the SMI handler to
reduce the attack surface. For instance, we do not accept any data input to the
SMI handler except for the target firmware and configurations. We also carefully
check the size of the input data to avoid overflow attacks [25].

SMM was not originally designed for security purposes. Researchers may ar-
gue that this makes it unsuitable for security operations. Additionally, some re-
searchers feel that SMM is not essential to x86. However, there is no indication
that Intel will remove SMM. Moreover, Intel introduced the SMM-Transfer Mon-
itor [44] that virtualizes SMM code in order to defeat attacks [40] against TXT.
In our case, SMM can be thought of as a mechanism to provide an isolated com-
puting environment and hardware support to meet the system’s requirements.

8 Related Work

To identify malware running in I/O devices, Li et al. propose VIPER [20], a
software-based attestation method to verify the integrity of peripherals’ firmware.
VIPER runs a verifier program on the host machine, and it trusts the operat-
ing system. NAVIS [19] is an anomaly-detection system checking the memory
accesses performed by the NIC’s on-chip processor. It builds a memory layout
profile of the NIC and raises an alert if any unexpected memory access is de-
tected. The NAVIS program runs inside of the operating system and assumes
the OS is trusted. Compared to VIPER and NAVIS, IOCheck is not running in
the normal Protected Mode. It uses SMM to check the integrity of the firmware,
which significantly reduces the TCB. In addition, IOCheck checks the configu-
rations of I/O devices, which further protects them.

Compromised firmware normally performs DMA attacks against the main
memory, and IOMMU (e.g., Intel VT-d or AMD-Vi) is an efficient defense. How-
ever, Sang et al. [11] identify an array of vulnerabilities on Intel VT-d. Wojtczuk
et al. [12] use a bug in the SINIT module of the SENTER instruction to mis-
configure VT-d, and then attackers are able to compromise the securely loaded
hypervisor using a classic DMA attack so it can bypass Intel TXT. Although the
main goal of this attack is to circumvent Intel TXT, we can learn that VT-d is
easy to misconfigure and then an attacker can launch a DMA attack. Moreover,
Stewin [10] explains several reasons that we cannot trust IOMMU as a counter-
measure against DMA attacks. However, IOCheck is a generic framework that
can check IOMMU configurations and provide further protection for I/O devices.

BARM [10] aims to detect and prevent DMA-based attacks. It is based on
modeling the expected memory bus activity and comparing it to the actual

234 F. Zhang et al.

activity. BARM relies on the OS and software applications to record all I/O bus
activity in the form of I/O statistics, while IOCheck uses SMM without trusting
any code in PM. IronHide [45] is a tool to analyze potential I/O attacks against
PCs. It can be used either as an offensive or defensive tool. On the offensive
side, it can be used to sniff out the I/O buses, spoof the bus address used by
other I/O controller, and log/inject keystrokes. On the defensive side, it injects
faults over the I/O buses to simulate various I/O attacks and to identify various
possible vulnerabilities. However, IronHide requires a specialized PCI-Express
device, while IOCheck uses existing technology in chipsets.

Recently, SMM-based systems have been brewing in the security area
[46–50]. HyperCheck [46] checks the integrity of hypervisors and uses a net-
work card to transmit the registers and memory contents to a remote server for
verification. Therefore, a compromised network card would be problematic in
HyperCheck. HyperSentry [47] also uses SMM for hypervisor integrity checking,
and it uses Intelligent Platform Management Interface (IPMI) to stealthily trig-
ger an SMI. IPMI relies on BMC and its firmware to operate, while IOCheck can
mitigate those attacks against firmware. Spectre [49] is a periodically polling-
based system that introspects the host memory for malware detection. It uses
SMM to periodically check the host memory for heap overflow, heap spray, and
rootkit attacks. However, IOCheck aims to enhance the security of I/O devices,
and we use random-polling and event-driven approaches to mitigate transient
attacks against the periodic polling-based systems. In addition, researchers use
SMM to implement stealthy rootkits [51], which requires an unlocked SMRAM
to load the rootkit. As explained in [51], all post-2006 machines have locked
SMRAM in the BIOS. IOCheck locks the SMM in Coreboot so that SMRAM is
inaccessible after booting.

9 Conclusions

In this paper, we present IOCheck, a framework to enhance the security of I/O
devices at runtime. It checks the firmware and configurations of I/O devices and
does not require the trust on the OS. We implement a prototype of IOCheck us-
ing random-polling-based and event-driven approaches, and it is robust against
transient attacks. We demonstrate the effectiveness of IOCheck by checking the
integrity of Intel 82574L NIC and Jaton VIDEO-498PCI-DLP VGA. The exper-
imental results show that IOCheck is able to successfully detect firmware and
I/O configuration attacks. IOCheck only takes about 10 milliseconds to check
the firmware and configurations, and it introduces a low overhead on both Mi-
crosoft Windows and Linux platforms. Furthermore, we compare IOCheck with
the DRTM approach and show that the switching time of IOCheck is three orders
of magnitude faster than that of the DRTM approach.

Acknowledgement. The authors would like to thank all of the reviewers for
their valuable comments and suggestions. This work is supported by the United
States Air Force Research Laboratory (AFRL) through Contract FA8650-10-C-
7024, National Science Foundation CRI Equipment Grant No. CNS-1205453, and

A Framework to Secure Peripherals at Runtime 235

ONR Grant N00014-13-1-0088. Opinions, findings, conclusions and recommen-
dations expressed in this material are those of the authors and do not necessarily
reflect the views of the U.S. Government, Air Force, or Navy.

References

1. National Institute of Standards, NIST: National Vulnerability Database,
http://nvd.nist.gov (access time March 4, 2014)

2. Mitre: Vulnerability list, http://cve.mitre.org/cve/cve.html
3. Bonkoski, A.J., Bielawski, R., Halderman, J.A.: Illuminating the Security Issues
Surrounding Lights-out Server Management. In: Proceedings of the 7th USENIX
Conference on Offensive Technologies (WOOT 2013) (2013)

4. Duflot, L., Perez, Y.A.: Can You Still Trust Your Network Card? In: Proceedings
of the 13th CanSecWest Conference (CanSecWest 2010) (2010)

5. Chen, K.: Reversing and Exploiting an Apple Firmware Update. Black Hat (2009)
6. Stewin, P., Bystrov, I.: Understanding DMA Malware. In: Flegel, U., Markatos,
E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 21–41. Springer,
Heidelberg (2013)

7. Aumaitre, D., Devine, C.: Subverting Windows 7 x64 Kernel With DMA Attacks.
In: HITBSecConf Amsterdam (2010)

8. Triulzi, A.: Project Maux Mk.II. In: CanSecWest (2008)
9. Sang, F., Nicomette, V., Deswarte, Y.: I/O Attacks in Intel PC-based Architectures
and Countermeasures. In: SysSec Workshop (SysSec 2011) (2011)

10. Stewin, P.: A Primitive for Revealing Stealthy Peripheral-Based Attacks on the
Computing Platform’s Main Memory. In: Stolfo, S.J., Stavrou, A., Wright, C.V.
(eds.) RAID 2013. LNCS, vol. 8145, pp. 1–20. Springer, Heidelberg (2013)

11. Sang, F., Lacombe, E., Nicomette, V., Deswarte, Y.: Exploiting an I/OMMU vul-
nerability. In: 5th International Conference on Malicious and Unwanted Software
(MALWARE 2010), pp. 7–14 (2010)

12. Wojtczuk, R., Rutkowska, J.: Another Way to Circumvent Intel� Trusted Execu-
tion Technology (2009),
http://invisiblethingslab.com/resources/misc09/Another

13. Wojtczuk, R., Rutkowska, J.: Following the White Rabbit: Software Attacks
against Intel R© VT-d (2011)

14. Trusted Computing Group: TCG PC Client Specific Implementation Specification
for Conventional BIOS (February 2012),
http://www.trustedcomputinggroup.org/files/resource files/

CB0B2BFA-1A4B-B294-D0C3B9075B5AFF17/

TCG PCClientImplementation 1-21 1 00.pdf

15. Trusted Computing Group: TPM Main Specification Level 2 Version 1.2, Revision
116 (2011),
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

16. Trusted Computing Group: TCG D-RTM Architecture Document Version 1.0.0
(June 2013), http://www.trustedcomputinggroup.org/
resources/drtm architecture specification

17. Intel: Trusted Execution Technology, http://www.intel.com/content/www/us/en/
trusted-execution-technology/trusted-execution-technology-

security-paper.html

18. McCune, J., Parno, B., Perrig, A., Reiter, M., Isozaki, H.: Flicker: An Exe-
cution Infrastructure for TCB Minimization. In: Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems (2008)

http://nvd.nist.gov
http://cve.mitre.org/cve/cve.html
http://invisiblethingslab.com/resources/misc09/Another
http://www.trustedcomputinggroup.org/files/resource_files/CB0B2BFA-1A4B-B294-D0C3B9075B5AFF17/TCG_PCClientImplementation_1-21_1_00.pdf
http://www.trustedcomputinggroup.org/files/resource_files/CB0B2BFA-1A4B-B294-D0C3B9075B5AFF17/TCG_PCClientImplementation_1-21_1_00.pdf
http://www.trustedcomputinggroup.org/files/resource_files/CB0B2BFA-1A4B-B294-D0C3B9075B5AFF17/TCG_PCClientImplementation_1-21_1_00.pdf
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/drtm_architecture_specification
http://www.trustedcomputinggroup.org/resources/drtm_architecture_specification
http://www.intel.com/content/www/us/en/trusted-execution-technology/trusted-execution-technology-security-paper.html
http://www.intel.com/content/www/us/en/trusted-execution-technology/trusted-execution-technology-security-paper.html
http://www.intel.com/content/www/us/en/trusted-execution-technology/trusted-execution-technology-security-paper.html

236 F. Zhang et al.

19. Duflot, L., Perez, Y.-A., Morin, B.: What If You Can’t Trust Your Network Card?
In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol. 6961, pp.
378–397. Springer, Heidelberg (2011)

20. Li, Y., McCune, J., Perrig, A.: VIPER: Verifying the Integrity of PERipherals’
Firmware. In: Proceedings of the 18th ACM Conference on Computer and Com-
munications Security (CCS 2011) (2011)

21. Moon, H., Lee, H., Lee, J., Kim, K., Paek, Y., Kang, B.: Vigilare: Toward Snoop-
based Kernel Integrity Monitor. In: Proceedings of the 19th ACM Conference on
Computer and Communications Security (CCS 2012) (2012)

22. Wang, J., Sun, K., Stavrou, A.: A Dependability Analysis of Hardware-Assisted
Polling Integrity Checking Systems. In: Proceedings of the 42nd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN 2012) (2012)

23. Zaddach, J., Kurmus, A., Balzarotti, D., Blass, E.O., Francillon, A., Goodspeed, T.,
Gupta, M., Koltsidas, I.: Implementation and Implications of a Stealth Hard-Drive
Backdoor. In: Proceedings of the 29th Annual Computer Security Applications
Conference (ACSAC 2013) (2013)

24. Triulzi, A.: The Jedi Packet Trick Takes Over the Deathstar: Taking NIC Back-
doors to the Next Level. In: The 12th Annual CanSecWest Conference (2010)

25. Butterworth, J., Kallenberg, C., Kovah, X.: BIOS Chronomancy: Fixing the Core
Root of Trust for Measurement. In: Proceedings of the 20th ACM Conference on
Computer and Communications Security (CCS 2013) (2013)

26. Coreboot: Open-Source BIOS, http://www.coreboot.org/
27. VIA: VT8237R Southbridge, http://www.via.com.tw/
28. Broadcom Corporation: Broadcom NetXtreme Gigabit Ethernet Controller,

http://www.broadcom.com/products/BCM5751

29. Salihun, D.: BIOS Disassembly Ninjutsu Uncovered,
http://bioshacking.blogspot.com/2012/02/

bios-disassembly-ninjutsu-uncovered-1st.html

30. Salihun, D.: Malicious Code Execution in PCI Expansion ROM (June 2012),
http://resources.infosecinstitute.com/pci-expansion-rom/

31. Flashrom: Firmware flash utility, http://www.flashrom.org/
32. Advanced Micro Devices, Inc.: BIOS and Kernel Developer’s Guide for AMD

Athlon 64 and AMD Opteron Processors
33. William, H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes:

The Art of Scientific Computing. Cambridge University Press, New York (2007)
34. MD5 Hash Functions, http://en.wikipedia.org/wiki/MD5
35. Intel: 82574 Gigabit Ethernet Controller Family: Datasheet,

http://www.intel.com/content/www/us/en/ethernet-controllers/

82574l-gbe-controller-datasheet.html

36. Jeff: RWEverything Tool, http://rweverything.com/
37. SuperPI, http://www.superpi.net/
38. Advanced Micro Devices, Inc.: AMD K8 Architecture,

http://commons.wikimedia.org/wiki/File:AMD_K8.PNG

39. Wojtczuk, R., Rutkowska, J.: Attacking Intel Trust Execution Technologies (2009),
http://invisiblethingslab.com/resources/bh09dc/Attacking

40. Wojtczuk, R., Rutkowska, J.: Attacking Intel TXT via SINIT Code Execution
Hijacking (November 2011),
http://www.invisiblethingslab.com/resources/2011/

Attacking Intel TXT via SINIT hijacking.pdf

41. Azab, A.M., Ning, P., Zhang, X.: SICE: A Hardware-level Strongly Isolated Com-
puting Environment for x86 Multi-core Platforms. In: Proceedings of the 18th
ACM Conference on Computer and Communications Security (CCS 2011) (2011)

http://www.coreboot.org/
http://www.via.com.tw/
http://www.broadcom.com/products/BCM5751
http://bioshacking.blogspot.com/2012/02/bios-disassembly-ninjutsu-uncovered-1st.html
http://bioshacking.blogspot.com/2012/02/bios-disassembly-ninjutsu-uncovered-1st.html
http://resources.infosecinstitute.com/pci-expansion-rom/
http://www.flashrom.org/
http://en.wikipedia.org/wiki/MD5
http://www.intel.com/content/www/us/en/ethernet-controllers/82574l-gbe-controller-datasheet.html
http://www.intel.com/content/www/us/en/ethernet-controllers/82574l-gbe-controller-datasheet.html
http://rweverything.com/
http://www.superpi.net/
http://commons.wikimedia.org/wiki/File:AMD_K8.PNG
http://invisiblethingslab.com/resources/bh09dc/Attacking
http://www.invisiblethingslab.com/resources/2011/Attacking_Intel_TXT_via_SINIT_hijacking.pdf
http://www.invisiblethingslab.com/resources/2011/Attacking_Intel_TXT_via_SINIT_hijacking.pdf

A Framework to Secure Peripherals at Runtime 237

42. Wojtczuk, R., Rutkowska, J.: Attacking SMM Memory via Intel CPU Cache Poi-
soning (2009)

43. Duflot, L., Levillain, O., Morin, B., Grumelard, O.: Getting into the SMRAM:
SMM Reloaded. In: Proceedings of the 12th CanSecWest Conference (CanSecWest
2009) (2009)

44. Intel: Intel R© 64 and IA-32 Architectures Software Developer’s Manual
45. Sang, F.L., Nicomette, V., Deswarte, Y.: A Tool to Analyze Potential I/O Attacks

Against PCs. IEEE Security & Privacy (2013)
46. Zhang, F., Wang, J., Sun, K., Stavrou, A.: HyperCheck: A Hardware-assisted In-

tegrity Monitor. IEEE Transactions on Dependable and Secure Computing (2013)
47. Azab, A.M., Ning, P., Wang, Z., Jiang, X., Zhang, X., Skalsky, N.C.: HyperSentry:

Enabling Stealthy In-Context Measurement of Hypervisor Integrity. In: Proceed-
ings of the 17th ACM Conference on Computer and Communications Security
(CCS 2010) (2010)

48. Reina, A., Fattori, A., Pagani, A., Cavallaro, L., Bruschi, D.: When Hardware
Meets Software: A Bulletproof Solution to Forensic Memory Acquisition. In: Pro-
ceedings of the Annual Computer Security Applications Conference (ACSAC 2012)
(2012)

49. Zhang, F., Leach, K., Sun, K., Stavrou, A.: SPECTRE: A Dependable Introspec-
tion Framework via System Management Mode. In: Proceedings of the 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN
2013) (2013)

50. Zhang, Y., Pan, W., Wang, Q., Bai, K., Yu, M.: HypeBIOS: Enforcing VM Iso-
lation with Minimized and Decomposed Cloud TCB. Technical report, Virginia
Commonwealth University (2012)

51. Embleton, S., Sparks, S., Zou, C.: SMM rootkits: A New Breed of OS Independent
Malware. In: Proceedings of the 4th International Conference on Security and
Privacy in Communication Networks (SecureComm 2008) (2008)

52. PCI-SIG: PCI Local Bus Specification Revision 3.0,
http://www.pcisig.com/specifications/

Appendix

Table 4. IOMMU Configurations

Register/Table Name Description
Root-entry table address Defines the base address of the root-entry table (first-level

table identified by bus number)
Domain mapping tables Includes root-entry table and context-entry tables

(second-level tables identified by device and function num-
bers)

Page tables Defines memory regions and access permissions of I/O
controllers (third-level tables)

DMA remapping ACPI table Defines the number of DRHUs present in the system and
I/O controllers associated with each of them

http://www.pcisig.com/specifications/

238 F. Zhang et al.

CPU
Northbridge

(memory controller hub)
MMU and IOMMU

Graphic card slot

Memory bus

Memory slots

Southbridge
(I/O controller hub)

PCI bus

PCI slots

BIOS Super I/O

LPC bus

Keyboard

Mouse

Serial port

IDE

SATA

Audio

USB

CMOS

Front-side bus

PCIe bus

Internal bus

Fig. 2. Typical Hardware Layout of a Computer

PHY

MAC

Transmit Switch, Filter

Rx/Tx FIFO

NC-SI

RMII I/F SMBus

I/F

Rx/Tx FIFO

Rx/Tx DMA

PCIe I/F

Link

Management

Controller
Operating System

RMII SMBus PCIe

Fig. 3. Architecture Block Diagram of Intel 82574L [35]

Table 5. PCI Expansion ROM Format [52]

(a) PCI Expansion ROM Header Format for x86

Offset Length Value Description
0h 1 55h ROM signature, byte 1
1h 1 AAH ROM signature, byte 2
2h 1 xx Initialization size
3h 3 xx Entry point for INIT function
6h-17h 12h xx Reserved
18h-19h 2 xx Pointer to PCI data structure

(b) PCI Data Structure Format

Offset Length Description
0h 4 Signature, the string ”PCIR”
4h 2 Vendor identification
6h 2 Device identification
8h 2 Reserved
Ah 2 PCI data structure length
Ch 1 PCI data structure revision
Dh 3 Class code
10h 2 Image length
12h 2 Revision level of code/data
14h 1 Code type
15h 1 Indicator
16 2 Reserved

StealthGuard: Proofs of Retrievability
with Hidden Watchdogs

Monir Azraoui, Kaoutar Elkhiyaoui, Refik Molva, and Melek Önen

EURECOM, Sophia Antipolis, France
{azraoui,elkhiyao,molva,onen}@eurecom.fr

Abstract. This paper presents StealthGuard, an efficient and provably secure
proof of retrievabillity (POR) scheme. StealthGuard makes use of a privacy-
preserving word search (WS) algorithm to search, as part of a POR query, for
randomly-valued blocks called watchdogs that are inserted in the file before out-
sourcing. Thanks to the privacy-preserving features of the WS, neither the cloud
provider nor a third party intruder can guess which watchdog is queried in each
POR query. Similarly, the responses to POR queries are also obfuscated. Hence
to answer correctly to every new set of POR queries, the cloud provider has to
retain the file in its entirety. StealthGuard stands out from the earlier sentinel-
based POR scheme proposed by Juels and Kaliski (JK), due to the use of WS and
the support for an unlimited number of queries by StealthGuard. The paper also
presents a formal security analysis of the protocol.

Keywords: Cloud storage, Proofs of Retrievability, Privacy-preserving word
search.

1 Introduction

Nowadays outsourcing, that is, delegating one’s computing to external parties, is a well
established trend in cloud computing. Along with unprecedented advantages such as
lower cost of ownership, adaptivity, and increased capacity, outsourcing also raises new
security and privacy concerns in that critical data processing and storage operations
are performed remotely by potentially untrusted parties. In this paper we focus on data
retrievability, a security requirement akin to outsourced data storage services like Drop-
box1 and Amazon Simple Storage Service2. Data retrievability provides the customer of
a storage service with the assurance that a data segment is actually present in the remote
storage. Data retrievability is a new form of integrity requirement in that the customer
of the storage or the data owner does not need to keep or get a copy of the data segment
in order to get the assurance of retrievability thereof. A cryptographic building block
called Proof of Retrievability (POR) was first developed by Juels and Kaliski [1] (JK)
to meet this requirement. In the definition of [1], a successful execution of the POR
scheme assures a verifier that it can retrieve F in its entirety. Classical integrity tech-
niques such as transferring F with some integrity check value are not practical since

1 Dropbox - https://www.dropbox.com/
2 Amazon Simple Storage Service - http://aws.amazon.com/fr/s3/

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 239–256, 2014.
c© Springer International Publishing Switzerland 2014

https://www.dropbox.com/
http://aws.amazon.com/fr/s3/

240 M. Azraoui et al.

they incur very high communication or computational costs that are linear with the size
of F . POR schemes aim at much lower cost both in terms of communications and pro-
cessing by avoiding transmission or handling of F in its entirety. To that effect, POR
schemes require the prover to perform some operations on some randomly selected
parts of F and the verifier is able to check the result returned by the prover with the
knowledge of very brief reference about the data like a secret key. Most POR schemes
thus are probabilistic and their performance is measured in the trade-off between the
bandwidth and processing overhead and the rate of retrievability assurance.

In this paper we develop StealthGuard, a new POR scheme that achieves good re-
trievability assurance with acceptable costs. The main idea behind the new scheme is a
combination of a privacy-preserving word search (WS) algorithm suited to large data-
stores with the insertion in data segments of randomly generated short bit sequences
called watchdogs. In StealthGuard, the user inserts these watchdogs in randomly cho-
sen locations of the file F and stores the resulting file in the cloud. In order to check
the retrievability of F the user issues lookup queries for selected values of watchdogs
using the WS scheme. The user decrypts the WS replies from the cloud server in order
to get the proof of retrievability for each segment targeted by the WS queries. Each pos-
itive result is the proof of presence for the corresponding data segment. Thanks to the
features of the WS, neither the cloud server nor a third party intruder can guess which
watchdogs are targeted by each WS query or response.

Even though there is an analogy between the watchdogs used in StealthGuard and
the sentinels akin to the JK scheme [1], there is a major difference between the two
schemes due to the use of WS by StealthGuard: the number of POR queries that can
be issued in StealthGuard without requiring any update of the watchdogs is unbounded
whereas in the JK scheme a given set of sentinels can be used for a finite number of POR
queries only. StealthGuard only requires the transfer of some additional data that is a
small percentage of F in size and a good POR rate can be achieved by only processing
a fraction of F . In addition to the description of our proposal, we give a new security
model that enhances existing security definitions of POR schemes [1, 2]. We state a
generic definition of the soundness property that applies to any POR scheme.

Contributions. To summarize, this paper offers two main contributions:

−We present StealthGuard, a new POR scheme based on the insertion of watchdogs
that requires a light file preprocessing and on a privacy-preserving WS that allows a
user to issue an unbounded number of POR queries. Besides, the user is stateless since
it only needs to keep a secret key to be able to run the POR protocol.
−We propose a new security model which improves existing security definitions [1, 2].
We also provide a formal proof of our proposal under this new security model.
The rest of the paper is organized as follows. Section 2 defines the entities and the
algorithms involved in a POR scheme. Section 3 describes the adversary models that are
considered in this paper. Section 4 provides an overview of StealthGuard and Section
5 gives details of the protocol. Section 6 analyses its security properties. Section 7
evaluates its security and its efficiency. We review the state of the art in Section 8.

StealthGuard: Proofs of Retrievability with Hidden Watchdogs 241

2 Background

Before presenting the formal definition of PORs and the related security definitions, we
introduce the entities that we will refer to in the remainder of this paper.

2.1 Entities

A POR scheme comprises the following entities:

– Client C: It possesses a set of files F that it outsources to the cloud server S. With-
out loss of generality, we assume that each file F ∈ F is composed of n splits
{S1, S2, ..., Sn} of equal size L bits. In practice, if the size of F is not a multi-
ple of L, then padding bits will be added to F . We also suppose that each split Si

comprises m blocks of l bits {bi,1, bi,2, ..., bi,m}, i.e., L = m · l.
– Cloud Server S (a potentially malicious prover): For each file F ∈ F , the cloud

server S stores an “enlarged” verifiable version F̂ of that file, that enables it to
prove to a verifier V that the client C can still retrieve its original file F .

– Verifier V : It is an entity which via an interactive protocol can check whether the
cloud server S (i.e., the prover) is still storing some file F ∈ F or not. The verifier
can be either the client itself or any other authorized entity, such as an auditor.

2.2 POR

A POR scheme consists of five polynomial-time algorithms (cf. [1, 2]):

– KeyGen(1τ) → K: This probabilistic key generation algorithm is executed by
client C. It takes as input a security parameter τ , and outputs a secret key K for C.

– Encode(K,F) → (fid, F̂): It takes the key K and the file F = {S1, S2, ..., Sn}
as inputs, and returns the file F̂ = {Ŝ1, Ŝ2, ..., Ŝn} and F ’s unique identifier fid.
Cloud server S is required to store F̂ together with fid. F̂ is obtained by first apply-
ing to F an error-correcting code (ECC) which allows client C to recover the file
from minor corruptions that may go undetected by the POR scheme, and further
by adding some verifiable redundancy that enables client C to check whether cloud
server S still stores a retrievable version of F or not.
Note that the Encode algorithm is invertible. Namely, there exists an algorithm
Decode that allows the client C to recover its original file F from the file F̂ .

– Challenge(K, fid) → chal: The verifier V calls this probabilistic algorithm to gen-
erate a challenge chal for an execution of the POR protocol for some file F . This
algorithm takes as inputs the secret key K and the file identifier fid, and returns the
challenge chal that will be sent to cloud server S.

– ProofGen(fid, chal) → P : On receiving the challenge chal and the file identifier
fid, cloud server S executes ProofGen to generate a proof of retrievability P for the
file F̂ whose identifier is fid. The proof P is then transmitted to verifier V .

– ProofVerif(K, fid, chal,P) → b ∈ {0, 1}: Verifier V runs this algorithm to check
the validity of the proofs of retrievability sent by cloud server S. On input of the
key K , the file identifier fid, the challenge chal, and the proof P , the ProofVerif
algorithm outputs bit b = 1 if the proof P is a valid proof, and b = 0 otherwise.

242 M. Azraoui et al.

3 Adversary Models

A POR scheme should ensure that if cloud server S is storing the outsourced files, then
the ProofVerif algorithm should always output 1, meaning that ProofVerif does not
yield any false negatives. This corresponds to the completeness property of the POR
scheme. PORs should also guarantee that if S provides a number (to be determined) of
valid proofs of retrievability for some file F , then verifier V can deduce that server S is
storing a retrievable version of F . This matches the soundness property of POR. These
two properties are formally defined in the following sections.

3.1 Completeness

If cloud server S and verifier V are both honest, then on input of a challenge chal and
some file identifier fid sent by verifier V , the ProofGen algorithm generates a proof of
retrievability P that will be accepted by verifier V with probability 1.

Definition 1 (Completeness). A POR scheme is complete if for any honest pair of
cloud server S and verifier V , and for any challenge chal← Challenge(K, fid):

Pr(ProofVerif(K, fid, chal,P)→ 1 | P ← ProofGen(fid, chal)) = 1

3.2 Soundness

A proof of retrievability is deemed sound, if for any malicious cloud server S, the only
way to convince verifier V that it is storing a file F is by actually keeping a retrievable
version of that file. This implies that any cloud server S that generates (a polynomial
number of) valid proofs of retrievability for some file F , must possess a version of that
file that can be used later by client C to recover F . To reflect the intuition behind this
definition of soundness, Juels and Kaliski [1] suggested the use of a file extractor algo-
rithm E that is able to retrieve the file F by interacting with cloud server S using the
sound POR protocol. Along these lines, we present a new and a more generic soundness
definition that refines the formalization of Shacham and Waters [2] which in turn builds
upon the work of Juels and Kaliski [1]. Although the definition of Shacham and Waters
[2] captures the soundness of POR schemes that empower the verifier with unlimited
(i.e. exponential) number of “possible” POR challenges [2–4], it does not define prop-
erly the soundness of POR schemes with limited number of “possible” POR challenges
such as in [1, 5] and in StealthGuard3. We recall that the formalization in [2] consid-
ers a POR to be sound, if a file can be recovered whenever the cloud server generates a
valid POR response for that file with a non-negligible probability. While this definition
is accurate in the case where the verifier is endowed with unlimited number of POR
challenges, it cannot be employed to evaluate the soundness of the mechanisms intro-
duced in [1, 5] or the solution we will present in this paper. For example, if we take
the POR scheme in [5] and if we consider a scenario where the cloud server corrupts

3 Note that having a bounded number of POR challenges does not negate the fact that the verifier
can perform unlimited number of POR queries with these same challenges, cf. [5].

StealthGuard: Proofs of Retrievability with Hidden Watchdogs 243

randomly half of the outsourced files, then the cloud server will be able to correctly
answer half (which is non-negligible) of the POR challenges that the verifier issues, yet
the files are irretrievable. This implies that this POR mechanism is not secure in the
model of Shacham and Waters [2], still it is arguably sound.

The discrepancy between the soundness definition in [2] and the work of [1, 5]
springs from the fact that in practice to check whether a file is correctly stored at the
cloud server, the verifier issues a polynomial number of POR queries to which the server
has to respond correctly; otherwise, the verifier detects a corruption attack (the corrup-
tion attack could either be malicious or accidental) and flags the server as malicious.
This is actually what the PORs of [1, 5] and StealthGuard aim to capture. In order to
remedy this shortcoming, we propose augmenting the definition of Shacham and Waters
[2] (as will be shown in Algorithm 2) with an additional parameter γ that quantifies the
number of POR queries that verifier should issue to either be sure that a file is retrievable
or to detect a corruption attack on that file.

Now in accordance with [2], we first formalize soundness using a game that describes
the capabilities of an adversaryA (i.e., malicious cloud server) which can deviate arbi-
trarily from the POR protocol, and then we define the extractor algorithm E .

To formally capture the capabilities of adversary A, we assume that it has access to
the following oracles:

– OEncode: This oracle takes as inputs a file F and the client’s key K , and returns a
file identifier fid and a verifiable version F̂ of F that will be outsourced to A.
Note that adversary A can corrupt the outsourced file F̂ either by modifying or
deleting F̂ ’s blocks.

– OChallenge: On input of a file identifier fid and client’s key K , the oracle OChallenge

returns a POR challenge chal to adversaryA.
– OVerify: When queried with client’s key K , a file identifier fid, a challenge chal and

a proof of retrievability P , the oracle OVerify returns bit b such that: b = 1 if P is a
valid proof of retrievability, and b = 0 otherwise.

AdversaryA accesses the aforementioned oracles in two phases: a learning phase and a
challenge phase. In the learning phase, adversaryA can call oraclesOEncode,OChallenge,
and OVerify for a polynomial number of times in any interleaved order as depicted in
Algorithm 1. Then, at the end of the learning phase, the adversary A specifies a file
identifier fid∗ that was already output by oracleOEncode.

We note that the goal of adversary A in the challenge phase (cf. Algorithm 2) is to
generate γ valid proofs of retrievability P〉

∗ for file F ∗ associated with file identifier
fid∗. To this end, adversary A first calls the oracle OChallenge that supplies A with γ
challenges chal∗i , then it responds to these challenges by outputting γ proofs P∗

i . Now,
on input of client’s key K , file identifier fid∗challenges chal∗i and proofs P∗

i , oracle

OVerify outputs γ bits b∗i . AdversaryA is said to be successful if b∗ =
γ∧

i=1

b∗i = 1. That

is, if A is able to generate γ proofs of retrievability P∗ for file F ∗ that are accepted by
oracleOVerify .

Given the game described above and in line with [1, 2], we formalize the soundness
of POR schemes through the definition of an extractor algorithm E that uses adversary
A to recover/retrieve the file F ∗ by processing as follows:

244 M. Azraoui et al.

– E takes as inputs the client’s key K and the file identifier fid∗;
– E is allowed to initiate a polynomial number of POR executions with adversary A

for the file F ∗;
– E is also allowed to rewind adversary A. This suggests in particular that extractor
E can execute the challenge phase of the soundness game a polynomial number of
times, while the state of adversaryA remains unchanged.

Intuitively, a POR scheme is sound, if for any adversary A that wins the sound-
ness game with a non-negligible probability δ, there exists an extractor algorithm E
that succeeds in retrieving the challenge file F ∗ with an overwhelming probability. A
probability is overwhelming if it is equal to 1− ε, where ε is negligible.

Algorithm 1. Learning phase of the sound-
ness game

//A executes the following in any interleaved
// order for a polynomial number of times
(fid, F̂)← OEncode(F,K);
chal ← OChallenge(K, fid);
P ← A;
b ← OVerify(K, fid, chal,P);
// A outputs a file identifier fid∗

fid∗ ←A;

Algorithm 2. Challenge phase of the
soundness game

for i = 1 to γ do
chal∗i ← OChallenge(K, fid∗);
P∗

i ← A;
b∗i ←
OVerify(K, fid∗i , chal

∗
i ,P∗

i);
end

b∗ =
γ∧

i=1

b∗i

Definition 2 (Soundness). A POR scheme is said to be (δ, γ)-sound, if for every ad-
versary A that provides γ valid proofs of retrievability in a row (i.e., succeeds in the
soundness game described above) with a non-negligible probability δ, there exists an
extractor algorithm E such that:

Pr(E(K, fid∗)→ F ∗ | E(K, fid∗)
interact←→ A) ≥ 1− ε

Where ε is a negligible function in the security parameter τ .

The definition above could be interpreted as follows: if verifier V issues a sufficient
number of queries (≥ γ) to which cloud server S responds correctly, then V can as-
certain that S is still storing a retrievable version of file F ∗ with high probability. It
should be noted that while γ characterizes the number of valid proofs of retrievability
that E has to receive (successfully or in a row) to assert that file F ∗ is still retrievable, δ
quantifies the number of operations that the extractor E has to execute and the amount
of data that it has to download to first declare F ∗ as retrievable and then to extract it.
Actually, the computation and the communication complexity of extractor E will be of
order O(γδ).

4 Overview

4.1 Idea

In StealthGuard, client C first injects some pseudo-randomly generated watchdogs into
random positions in the encrypted data. Once data is outsourced, C launches lookup

StealthGuard: Proofs of Retrievability with Hidden Watchdogs 245

queries to check whether the watchdogs are stored as expected by the cloud. By relying
on a privacy-preserving word search (WS), we ensure that neither the cloud server S nor
eavesdropping intruders can discover which watchdog was targeted by search queries.
As a result, C can launch an unbounded number of POR queries (even for the same
watchdog) without the need of updating the data with new watchdogs in the future. The
responses are also obfuscated thanks to the underlying WS scheme. This ensures that
the only case in which S returns a valid set of responses for the POR scheme is when it
stores the entire file and executes the WS algorithm correctly (soundness property).

Besides, as in [1], in order to protect the data from small corruptions, StealthGuard
applies an ECC that enables the recovery of the corrupted data. Substantial damage to
the data is detected via the watchdog search.

4.2 StealthGuard Phases

A client C uploads to the cloud server S a file F which consists of n splits {S1, ..., Sn}.
Thereafter a verifier V checks the retrievability of F using StealthGuard.

The protocol is divided into three phases:

– Setup: During this phase, client C performs some transformations over the file and
inserts a certain number of watchdogs in each split. The resulting file is sent to
cloud server S.

– WDSearch: This phase consists in searching for some watchdog w in a privacy-
preserving manner. Hence, verifier V prepares and sends a lookup query for w; the
cloud S in turn processes the relevant split to generate a correct response to the
search and returns the output to V .

– Verification: Verifier V checks the validity of the received response and makes the
decision about the existence of the watchdog in the outsourced file.
We note that if V receives at least γ (γ is a threshold determined in Section 6.2)
correct responses from the cloud, then it can for sure decide that F is retrievable.
On the other hand, if V receives one response that is not valid, then it is convinced
either the file is corrupted or even lost.

5 StealthGuard

This section details the phases of the protocol. Table 1 sums up the notation used in the
description. We also designed a dynamic version of StealthGuard that allows efficient
POR even when data is updated. Due to space limitations, we only present in Section
5.4 an overview of dynamic StealthGuard.

5.1 Setup

This phase prepares a verifiable version F̂ of file F = {S1, S2, ..., Sn}. Client C first
runs the KeyGen algorithm to generate the master secret key K . It derives n + 3 addi-
tional keys, used for further operations in the protocol: Kenc = Henc(K), Kwdog =
Hwdog(K), KpermF = HpermF (K) and for i ∈ [[1, n]],KpermS,i = HpermS(K, i)

246 M. Azraoui et al.

Table 1. Notation used in the description of StealthGuard

Index Description
n number of splits Si in F

m number of blocks in a split Si

D number of blocks in an encoded split S̃i

v number of watchdogs in one split
C number of blocks in a split Ŝi with watchdogs
i index of a split ∈ [[1, n]]
k index of a block in Ŝi ∈ [[1, C]]
j index of a watchdog ∈ [[1, v]]
l size of a block
p index of a block in F̃ ∈ [[1, n ·D]]
q number of cloud’s matrices
κ index of a cloud’s matrix ∈ [[1, q]]
(s, t) size of cloud’s matrices
(x, y) coordinates in a cloud’s matrix ∈ [[1, s]]× [[1, t]]

with Henc, Hwdog, HpermF and HpermS being four cryptographic hash functions. K
is the single information stored at the client.

Once all keying material is generated, C runs the Encode algorithm which first gen-
erates a pseudo-random and unique file identifier fid for file F , and then processes F as
depicted in Figure 1.

1. Error correcting: The error-correcting code (ECC) assures the protection of the
file against small corruptions. This step applies to each split Si an ECC that operates
over l-bit symbols. It uses an efficient [m+d−1,m, d]-ECC, such as Reed-Solomon
codes [6], that has the ability to correct up to d

2 errors4. Each split is expanded with
d − 1 blocks of redundancy. Thus, the new splits are made of D = m + d − 1
blocks.

2. File block permutation: StealthGuard applies a pseudo-random permutation to
permute all the blocks in the file. This operation conceals the dependencies between
the original data blocks and the corresponding redundancy blocks within a split.
Without this permutation, the corresponding redundancy blocks are just appended
to this split. An attacker could for instance delete all the redundancy blocks and
a single data block from this split and thus render the file irretrievable. Such an
attack would not easily be detected since the malicious server could still be able
to respond with valid proofs to a given POR query targeting other splits in the file.
The permutation prevents this attack since data blocks and redundancy blocks are
mixed up among all splits. Let ΠF : {0, 1}τ × [[1, n ·D]]→ [[1, n ·D]] be a pseudo-
random permutation: for each p ∈ [[1, n · D]], the block at current position p will
be at position ΠF (KpermF , p) in the permuted file that we denote F̃ . F̃ is then
divided into n splits {S̃1, S̃2, ..., S̃n} of equal size D.

4 d is even.

StealthGuard: Proofs of Retrievability with Hidden Watchdogs 247

Fig. 1. Setup phase in StealthGuard

3. Encryption: StealthGuard uses a semantically secure encryption E that operates
over l-bit blocks5 to encrypt the data. An encryption scheme like AES in counter
mode [7] can be used. The encryptionE is applied to each block of F̃ using Kenc.

4. Watchdog creation: For each encrypted split, v l-bit watchdogs are generated us-
ing a pseudo-random function Φ : {0, 1}τ × [[1, n]] × [[1, v]] × {0, 1}∗ → {0, 1}l.
Hence, for j ∈ [[1, v]], wi,j = Φ(Kwdog, i, j, fid). The use of fid guarantees that
two different files belonging to the same client have different watchdogs. Since the
watchdogs are pseudo-randomly generated and the blocks in the split are encrypted,
a malicious cloud cannot distinguish watchdogs from data blocks.

5. Watchdog insertion: The v watchdogs are appended to each split. Let C = D +
v be the size of the new splits. A split-level pseudo-random permutation ΠS :
{0, 1}τ × [[1, C]] → [[1, C]] is then applied to the blocks within the same split
in order to randomize the location of the watchdogs: for i ∈ [[1, n]], the block at
current position k will be at position ΠS(KpermS,i, k) in the permuted split. Note
that in practice, the permutation is only applied to the last v blocks: for k ∈ [[D,C]],
this step swaps block at current position k for block at position ΠS(KpermS,i, k).
We denote Ŝi, i ∈ [[1, n]], the permuted split and b̂i,k, k ∈ [[1, C]] its blocks.

These operations yield file F̂ . The client uploads the splits {Ŝi}ni=1 and fid to the cloud.

5.2 WDSearch

Verifier V wants to check the retrievability of F . Hence, it issues lookup queries for
randomly selected watchdog, one watchdog for one split in one query. Cloud server
S processes these queries without knowing what the values of the watchdogs are and
where they are located in the splits. We propose WDSearch, a privacy-preserving WS
solution derived from PRISM in [8]. Our proposal is a simpler version of PRISM and

5 Practically, l will be 128 or 256 bits.

248 M. Azraoui et al.

improves its performance in the particular context of StealthGuard. Note that this
proposed building block is only an example and any existing privacy-preserving WS
mechanism assuring the confidentiality of both the query and the result can be used in
StealthGuard. PRISM and thus WDSearch are based on Private Information Retrieval
(PIR). To process a query, S constructs q (s, t)-binary matrices such that s · t = C.
Each element in the matrices is filled with the witness (a very short information) of the
corresponding block in the split. Based on the PIR query sent by the verifier, the server
retrieves in the matrices the witnesses corresponding to the requested watchdogs. We
insist on the fact that WDSearch is not a PIR solution: the server does not retrieve the
watchdog itself but only the witness.

WDSearch consists of two steps:

– WDQuery: Verifier V executes the Challenge algorithm to generate a challenge
chal that is transmitted to cloud serverS. Challenge takes as input master keyK and
file identifier fid and it is executed in three phases. In the first phase, Challenge ran-
domly selects a split index i and a watchdog index j (i ∈ [[1, n]] and j ∈ [[1, v]]), and
computes the position posj of the watchdogwi,j in the split Ŝi by applying the per-
mutation performed during the watchdog insertion step: posj = ΠS(KpermS,i, D+
j). Then, Challenge maps the position posj to a unique position (xj , yj) in an (s, t)-
matrix:

xj = �posj
t
� yj = posj − �

posj
t
� × t+ t

In the second phase, given (xj , yj) and using any efficient PIR algorithm,Challenge
computes a PIR query, denoted WitnessQuery, to retrieve the witness (and not the
watchdog) at position (xj , yj) in the matrix. In the last phase, Challenge gen-
erates a random number r (this nonce will be used by the cloud when filling
the binary matrices to guarantee freshness), and outputs the challenge chal =
(WitnessQuery, r, i). Eventually, verifier V sends the challenge chal and file iden-
tifier fid to cloud server S.

– WDResponse: Upon receiving the challenge chal = (WitnessQuery, r, i) and
file identifier fid, cloud server S runs ProofGen to process the query. The cloud
creates q binary matrices of size (s, t). For each block b̂i,k in Ŝi, the cloud com-
putes hi,k = H(b̂i,k, r), where k ∈ [[1, C]]. Here, H denotes a cryptographic hash
function. The use of r forces the cloud to store the actual data block. Otherwise it
could drop the block, only store the hash and respond to the query using that hash.
Let hi,k|q be the first q bits of hi,k. For κ ∈ [[1, q]], letMκ be one of the matrices
created by the cloud. It fills the κth matrix with the κth bit of hi,k|q as Algorithm 3
shows. It should be noted that according to the assignment process described in
Algorithm 3, the witness at position (xj , yj) in Mκ is associated with watchdog
wi,j : it is the κth bit of H(wi,j , r).
Once all the q binary matrices are filled, the cloud processes WitnessQuery by
executing a PIR operation that retrieves one bit from each matrixMκ, κ ∈ [[1, q]].
We denote WitnessResponseκ the result of the PIR on matrixMκ. The ProofGen
algorithm outputs P , i.e. the proof of retrievability that consists in the set P =
{WitnessResponse1, ...,WitnessResponseq}. Cloud server S sends the proof P to
verifier V .

StealthGuard: Proofs of Retrievability with Hidden Watchdogs 249

Algorithm 3. Filling the cloud matrices

// For a given (s, t)-matrix Mκ, a given split Ŝi and a given random number r
// k is the index of a block in split Ŝi

k = 1;
for x = 1 to s do

for y = 1 to t do
Mκ[x, y]← κth bit of H(b̂i,k, r);
k = k + 1;

end
end

5.3 Verification

Verifier V runs ProofVerif to analyze the received proof P . This algorithm takes as
input master key K , proof P , split index i, watchdog index j, and file identifier fid.
ProofVerif outputs a bit equal to 1 if the proof is valid or 0 otherwise.
V processes the q WitnessResponseκ in order to retrieve the q bits εκ at position

(xj , yj) in the matrixMκ, for κ ∈ [[1, q]] . Let h denote ε1ε2...εq.
We recall that verifier V queried watchdogwi,j for split Ŝi and that by having access

to the master key K , V can recompute the value of wi,j = Φ(Kwdog, i, j, fid) and its
position in the split Ŝi, posj = ΠS(KpermS,i, D+ j). Thereafter, V computes the hash
of the watchdog hi,posj = H(wi,j , r), with the same r chosen during the challenge and
considers the q first bits of hi,posj . Based on the value of h = ε1ε2...εq and hi,posj , V
checks whether h = hi,posj |q. If it is the case, then V judges the proof valid and returns
1, otherwise it interprets the invalid proof as the occurrence of an attack and outputs 0.

As mentioned in section 4.2, in order to acknowledge the retrievability of F , verifier
V needs to initiate at least γ POR queries6 from randomly selected splits in order to
either ascertain that F is retrievable or detect a corruption attack: if V receives γ valid
POR responses, then it can conclude that cloud server S stores a retrievable version of
F , otherwise, it concludes that S has corrupted part of the file.

5.4 Dynamic StealthGuard

The previously described protocol does not consider update operations that the client
can perform over its data. Similarly to the work in [5, 9–17], we propose a scheme that
handles these updates. Due to space limitations we present only an idea of how dynamic
StealthGuard operates. Any update in the data impacts the security of our protocol. For
example, if the client modifies the same block several times then the cloud can discover
that this particular block is not a watchdog. Therefore, dynamic StealthGuard updates
the watchdogs in a split each time an update occurs on that split. Besides, the verifier
must be ensured that the file stored at the server is actually the latest version. Dynamic
StealthGuard offers a versioning solution to assure that the cloud always correctly ap-
plies the required update operations and that it always stores the latest version of the

6 The value of γ will be determined in Section 6.2.

250 M. Azraoui et al.

file. Our proposal uses Counting Bloom Filters [18] and Message Authentication Codes
(MAC) [19]. Each time a split is updated, some information regarding the split number
and the version number is added into the counting Bloom filter which is authenticated
using a MAC that can only be computed by the client and the verifier. Additionally,
to guarantee the freshness of the response at each update query, a new MAC key is
generated. This protocol does not imply any additional cost at the verifier except of
storing an additional MAC symmetric key.

Another challenging issue is that updating a data block requires to update the cor-
responding redundancy blocks, resulting in the disclosure to the cloud server of the
dependencies between the data blocks and the redundancy blocks. Therefore, the file
permutation in the Setup phase becomes ineffective. Some techniques are available to
conceal these dependencies such as batch updates [5] or oblivious RAM [16]. How-
ever, these approaches are expensive in terms of computation and communication costs.
Hence, we choose to trade off between POR security and update efficiency by omitting
the file permutation.

6 Security Analysis

In this section, we state the security theorems of StealthGuard.

6.1 Completeness

Theorem 1. StealthGuard is complete.

Proof. Without loss of generality, we assume that the honest verifier V runs a POR
for a file F . To this end, verifier V sends a challenge chal = (WitnessQuery, r, i) for
watchdog wi,j , and the file identifier fid of F . Upon receiving challenge chal and file
identifier fid, the cloud server generates a proof of retrievability P for F .

According to StealthGuard, the verification of POR consists of first retrieving the
first q bits of a hash hi,posj , then verifying whether hi,posj |q corresponds to the first
q-bits of the hash H(wi,j , r). Since the cloud server S is honest, then this entails that it
stores wi,j , and therewith, can always compute hi,posj = H(wi,j , r).

Consequently, ProofVerif(K, fid, chal,P) = 1.

6.2 Soundness

As in Section 5, we assume that each split Si in a file F is composed of m blocks,
and that the Encode algorithm employs a [D,m, d]-ECC that corrects up to d

2 errors
per split (i.e., D = m + d − 1). We also assume that at the end of its execution, the
Encode algorithm outputs the encoded file F̂ which consists of a set of splits Ŝi each
comprisingC = (D+v) blocks (we recall that v is the number of watchdogs per split).

In the following, we state the main security theorem for StealthGuard.

Theorem 2. Let τ be the security parameter of StealthGuard and let ρ denote d
2D .

StealthGuard: Proofs of Retrievability with Hidden Watchdogs 251

StealthGuard is (δ, γ)-sound in the random oracle model, for any δ > δneg and
γ ≥ γneg, where

δneg =
1

2τ

γneg = � ln(2)τ

ρneg
�

(1− ρ

ρneg
)2ρneg =

3ln(2)τ

D
and ρneg ≤ ρ

Actually if γ ≥ γneg, then there exists an extractor E that recovers a file F with a proba-
bility 1− n

2τ , such that n is the number of splits in F , by interacting with an adversaryA
against StealthGuard who succeeds in the soundness game with a probability δ > 1

2τ .

Due to space limitations, a proof sketch of this theorem is provided in our long report
[20]. We note that the results derived above can be interpreted as follows: if verifier
V issues γ ≥ γneg POR queries for some file F to which the cloud server S responds
correctly, then V can declare F as retrievable with probability 1 − n

2τ . Also, we recall
that a POR execution for a file F in StealthGuard consists of fetching (obliviously)
a witness of a watchdog from the encoding F̂ of that file. Consequently, to ensure a
security level of 1

2τ , the client C must insert at least γneg watchdogs in F . That is, if file
F comprises n splits, then nv ≥ γneg (v is the number of watchdogs per split).

7 Discussion

StealthGuard requires the client to generate v > γneg

n watchdogs per split where n is
the number of splits and γneg is the threshold of the number of queries that verifier V
should issue to check the retrievability of the outsourced data. As shown in Theorem
2, this threshold does not depend on the size of data (in bytes). Instead, γneg is defined
solely by the security parameter τ , the number D = m + d − 1 of data blocks and
redundancy block per split and the rate ρ = d

2D of errors that the underlying ECC
can correct. Namely, γneg is inversely proportional to both D and ρ. This means that
by increasing the number of blocks D per split or the correctable error rate ρ, the
number of queries that the client should issue decreases. However, having a large ρ
would increase the size of data that client C has to outsource to cloud server S, which
can be inconvenient for the client. Besides, increasing D leads to an increase of the
number of blocksC = s · t per split Ŝi which has a direct impact on the communication
cost and the computation load per query at both the verifier V and the cloud server S.
It follows that when defining the parameters of StealthGuard, one should consider the
tradeoff between the affordable storage cost and the computation and communication
complexity per POR query.

To enhance the computation performances of StealthGuard, we suggest to use the
Trapdoor Group Private Information Retrieval which was proposed in [21] to im-
plement the PIR instance in WDSearch. This PIR enables the verifier in StealthGuard
to fetch a row from an (s, t) matrix (representing a split) without revealing to the cloud

252 M. Azraoui et al.

which row the verifier is querying. One important feature of this PIR is that it only
involves random number generations, additions and multiplications in Zp (where p is
a prime of size |p| = 200 bits) which are not computationally intensive and could be
performed by a lightweight verifier. In addition, we emphasize that PIR in Stealth-
Guard is not employed to retrieve a watchdog, but rather to retrieve a q-bit hash of the
watchdog (typically q = 80), and that it is not performed on the entire file, but it is in-
stead executed over a split. Finally, we indicate that when employing Trapdoor Group
Private Information Retrieval, the communication cost of StealthGuard is minimal

when s �
√
Cq and t �

√
C
q . This results in a computation and a communication com-

plexity (per query) at the verifier of O(
√
Cq) and a computation and communication

complexity at the server of O(C) and O(
√
Cq) respectively.

Example. A file F of 4GB is divided into n = 32768 splits F = {S1, S2, ..., Sn},
and each split Si is composed of 4096 blocks of size 256 bits. StealthGuard inserts 8
watchdogs per split and applies an ECC that corrects up to 228 corrupted blocks (i.e.,
ρ = 5%). We obtain thus F̂ = {Ŝ1, Ŝ2, ..., Ŝn}, where Ŝi is composed of 4560 blocks
of size 256 bits. This results in a redundancy of � 11.3%, where 11.1% redundancy is
due to the use of ECC, and 0.20% redundancy is caused by the use of watchdogs.

If (s, t) = (570, 8), q = 80 and StealthGuard implements the Trapdoor Group PIR
[21] where |p| = 200 bits, then the verifier’s query will be of size � 13.9 KB, whereas
the cloud server’s response will be of size � 15.6KB. In addition, if the cloud server
still stores the file F̂ , then the verifier will declare the file as retrievable with probability
1− n

260 � 1− 1
245 by executing the POR protocol 1719 times. That is, by downloading

26.2MB which corresponds to 0.64% of the size of the original file F .

8 Related Work

The approach that is the closest to StealthGuard is the sentinel-based POR introduced
by Juels and Kaliski [1]. As in StealthGuard, before outsourcing the file to the server,
the client applies an ECC and inserts in the encrypted file special blocks, sentinels, that
are indistinguishable from encrypted blocks. However, during the challenge, the verifier
asks the prover for randomly-chosen sentinels, disclosing their positions and values to
the prover. Thus, this scheme suggests a limited number of POR queries. Therefore,
the client may need to download the file in order to insert new sentinels and upload it
again to the cloud. [1] mentions, without giving any further details, a PIR-based POR
scheme that would allow an unlimited number of challenges by keeping the positions
of sentinels private, at the price of high computational cost equivalent in practice to
downloading the entire file. In comparison, StealthGuard uses a PIR within the WS
technique to retrieve a witness of the watchdog (a certain number of bits instead of the
entire watchdog), and does not limit the number of POR verifications.

Ateniese et al. [22] define the concept of Provable Data Possession (PDP), which
is weaker than POR in that it assures that the server possesses parts of the file but
does not guarantee its full recovery. PDP uses RSA-based homomorphic tags as check-
values for each file block. To verify possession, the verifier asks the server for tags for
randomly chosen blocks. The server generates a proof based on the selected blocks and

StealthGuard: Proofs of Retrievability with Hidden Watchdogs 253

their respective tags. This scheme provides public verifiability meaning that any third
party can verify the retrievability of a client’s file. However, this proposal suffers from
an initial expensive tag generation leading to high computational cost at the client. The
same authors later propose in [3] a robust auditing protocol by incorporating erasure
codes in their initial PDP scheme [22] to recover from small data corruption. To prevent
an adversary from distinguishing redundancy blocks from original blocks, the latter are
further permuted and encrypted. Another permutation and encryption are performed
on the redundancy blocks only which are then concatenated to the file. This solution
suffers from the fact that a malicious cloud can selectively delete redundant blocks and
still generate valid proofs. Even though these proofs are valid, they do not guarantee
that the file is retrievable.

Shacham and Waters in [2] introduce the concept of Compact POR. The client ap-
plies an erasure code and for each file block, it generates authenticators (similar to tags
in [22]), with BLS signatures [23], for public verifiability, or with Message Authenti-
cation Codes (MAC) [19], for private verifiability. The generation of these values are
computationally expensive. Moreover, the number of authenticators stored at the server
is linear to the number of data blocks, leading to an important storage overhead. Xu
and Chang [4] propose to enhance the scheme in [2] using the technique of polynomial
commitment [24] which leads to light communication costs. These two schemes em-
ploy erasure codes in conjunction with authentication tags, which induces high costs at
the time of retrieving the file. Indeed, erasure coding does not inform the verifier about
the position of the corrupted blocks. Thus, the verifier has to check each tag individu-
ally to determine whether it is correct or not. When a tag is detected as invalid, meaning
that the corresponding block is corrupted, the verifier applies the decoding to recover
the original data block.

A recent work of Stefanov et al. [5], Iris, proposes a POR protocol over authenticated
file systems subject to frequent changes. Each block of a file is authenticated using a
MAC to provide file-block integrity which makes the tag generation very expensive.

Compared to all these schemes, StealthGuard performs computationally lightweight
operations at the client, since the generation of watchdogs is less expensive than the gen-
eration of tags like in [2, 22]. In addition, the storage overhead induced by the storage
of watchdogs is less important than in the previous work. At the cost of more bits trans-
mitted during the POR challenge-response, StealthGuard ensures a better probability
of detecting adversarial corruption.

Table 2 depicts the performance results of StealthGuard and compares it with previ-
ous work. We analyze our proposal compared to other schemes [1–4] with respect to a file
of size 4 GB. The comparison is made on the basis of the POR assurance of 1− 1

245 com-
puted in Section 7. We assume that all the compared schemes have three initial operations
in the Setup phase: the application of an ECC, the encryption and the file-level permuta-
tion of data and redundancy blocks. Since these three initial operations have comparable
costs for all the schemes, we omit them in the table. Computation costs are represented
with exp for exponentiation, mul for multiplication, PRF for pseudo-random function
or PRP for pseudo-random permutation. For StealthGuard, we compute the different
costs according to the values provided in Section 7. For the other schemes, all initial

254 M. Azraoui et al.

Table 2. Comparison of relevant related work with StealthGuard

Scheme Parameter Setup cost Storage
overhead

Server cost Verifier cost Communication
cost

Robust PDP [3] block size:
2 KB
tag size:
128 B

4.4 × 106 exp
2.2 × 106 mul

tags:
267 MB

764 PRP
764 PRF
765 exp
1528 mul

challenge: 1 exp
verif: 766 exp
764 PRP

challenge: 168 B
response: 148 B

JK POR [1] block size:
128 bits
number of sen-
tinels: 2×106

2 × 106 PRF sentinels:
30.6 MB

⊥ challenge:
1719 PRP
verif: ⊥

challenge: 6 KB
response:26.9 MB

Compact POR
[2]

block size:
80 bits
number of
blocks in one
split: 160
tag size:
80 bits

1 enc
5.4 × 106 PRF
1.1 × 109 mul

tags:
51 MB

7245 mul challenge:
1 enc, 1 MAC
verif: 45 PRF,
160 + 205 mul

challenge: 1.9 KB
response: 1.6 KB

Efficient POR
[4]

block size:
160 bits
number of
blocks in one
split: 160

2.2 × 108 mul
1.4 × 106 PRF

tags:
26 MB

160 exp
2.6 ∗ 105 mul

challenge:⊥
verif: 2 exp, 1639
PRF, 1639 mul

challenge: 36 KB
response: 60 B

StealthGuard block size:
256 bits
number of
blocks in one
split: 4096

2.6 × 105 PRF
2.6 × 105 PRP

watchdogs:
8 MB

6.2 × 108 mul challenge:
2.0 × 106 mul
verif:
1.4 × 105 mul

challenge: 23.3
MB
response: 26.2 MB

parameters derive from the respective papers. In [2] since the information on the num-
ber of blocks in a split is missing, we choose the same one as in [4].

Setup. In our scheme, the client computes 32768 × 8 ≈ 2.6 × 105 PRF and 2.6 ×
105 PRP for the generation and the insertion of watchdogs. One of the advantages of
StealthGuard is having a more lightweight setup phase when the client preprocesses
large files. Indeed, the setup phase in most of previous work [2–5] requires the client to
compute an authentication tag for each block of data in the file which is computationally
demanding in the case of large files.

Storage Overhead. The insertion of watchdogs in StealthGuard induces a smaller
storage overhead compared to other schemes that employ authentication tags.

Proof Generation and Verification. For StealthGuard, we consider the PIR opera-
tions as multiplications of elements in Zp where |p| = 200 bits. To get the server and
verifier computational costs of existing work, based on the parameters and the bounds
given in their respective papers, we compute the number of requested blocks in one chal-
lenge to obtain a probability of 1 − 1

245 to declare the file as irretrievable: 764 blocks
in [3], 1719 sentinels in [1], 45 blocks in [2] and 1639 blocks in [4]. StealthGuard
induces high cost compared to existing work but is still acceptable.

Communication. Even if its communication cost is relatively low compared to Stealth-
Guard, JK POR [1] suffers from the limited number of challenges, that causes the
client to download the whole file to regenerate new sentinels. Although we realize that

StealthGuard: Proofs of Retrievability with Hidden Watchdogs 255

StealthGuard’s communication cost is much higher than [2–4], such schemes would
induce additional cost at the file retrieval step, as mentioned earlier.

To summarize, StealthGuard trades off between light computation at the client,
small storage overhead at the cloud and significant but still acceptable communication
cost. Nevertheless, we believe that StealthGuard’s advantages pay off when processing
large files. The difference between the costs induced by existing schemes and those
induced by StealthGuard may become negligible if the size of the outsourced file
increases.

9 Conclusion

StealthGuard is a new POR scheme which combines the use of randomly generated
watchdogs with a lightweight privacy-preserving word search mechanism to achieve
high retrievability assurance. As a result, a verifier can generate an unbounded number
of queries without decreasing the security of the protocol and thus without the need for
updating the watchdogs. StealthGuard has been proved to be complete and sound.

As future work, we plan to implement StealthGuard in order to not only evaluate
its efficiency in a real-world cloud computing environment but also to define optimal
values for system parameters.

Acknowledgment. This work was partially funded by the Cloud Accountability project
- A4Cloud (grant EC 317550).

References

[1] Juels, A., Kaliski Jr., B.S.: Pors: proofs of retrievability for large files. In: Ning, P., di Vimer-
cati, S.D.C., Syverson, P.F. (eds.) ACM Conference on Computer and Communications Se-
curity, pp. 584–597. ACM (2007)

[2] Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.) ASI-
ACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

[3] Ateniese, G., Burns, R.C., Curtmola, R., Herring, J., Khan, O., Kissner, L., Peterson, Z.N.J.,
Song, D.: Remote data checking using provable data possession. ACM Trans. Inf. Syst.
Secur. 14(1), 12 (2011)

[4] Xu, J., Chang, E.C.: Towards efficient proofs of retrievability. In: ASIACCS, pp. 79–80
(2012)

[5] Stefanov, E., van Dijk, M., Juels, A., Oprea, A.: Iris: a scalable cloud file system with
efficient integrity checks. In: ACSAC, pp. 229–238 (2012)

[6] Reed, I.S., Solomon, G.: Polynomial Codes Over Certain Finite Fields. Journal of the Soci-
ety of Industrial and Applied Mathematics 8(2), 300–304 (1960)

[7] Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Methods and Tech-
niques. National Institute of Standards and Technology. Special Publication 800-38A (2001)

[8] Blass, E.-O., Di Pietro, R., Molva, R., Önen, M.: PRISM – Privacy-Preserving Search in
MapReduce. In: Fischer-Hübner, S., Wright, M. (eds.) PETS 2012. LNCS, vol. 7384, pp.
180–200. Springer, Heidelberg (2012)

[9] Ateniese, G., Pietro, R.D., Mancini, L.V., Tsudik, G.: Scalable and efficient provable data
possession. In: Proceedings of the 4th International Conference on Security and Privacy in
Communication Networks, SecureComm 2008, pp. 9:1–9:10. ACM, New York (2008)

256 M. Azraoui et al.

[10] Erway, C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data possession.
In: Proceedings of the 16th ACM Conference on Computer and Communications Security,
CCS 2009, pp. 213–222. ACM, New York (2009)

[11] Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public verifiability and data dynam-
ics for storage security in cloud computing. In: Backes, M., Ning, P. (eds.) ESORICS 2009.
LNCS, vol. 5789, pp. 355–370. Springer, Heidelberg (2009)

[12] Zheng, Q., Xu, S.: Fair and dynamic proofs of retrievability. In: CODASPY, pp. 237–248
(2011)

[13] Wang, Q., Wang, C., Ren, K., Lou, W., Li, J.: Enabling public auditability and data dynamics
for storage security in cloud computing. IEEE Trans. Parallel Distrib. Syst. 22(5), 847–859
(2011)

[14] Mo, Z., Zhou, Y., Chen, S.: A dynamic proof of retrievability (por) scheme with o(logn)
complexity. In: ICC, pp. 912–916 (2012)

[15] Chen, B., Curtmola, R.: Robust dynamic provable data possession. In: ICDCS Workshops,
pp. 515–525 (2012)

[16] Cash, D., Küpçü, A., Wichs, D.: Dynamic proofs of retrievability via oblivious RAM. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 279–295.
Springer, Heidelberg (2013)

[17] Shi, E., Stefanov, E., Papamanthou, C.: Practical dynamic proofs of retrievability. In: ACM
Conference on Computer and Communications Security, pp. 325–336 (2013)

[18] Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary Cache: a Scalable Wide-Area Web
Cache Sharing Protocol. IEEE/ACM Trans. Netw. 8(3), 281–293 (2000)

[19] Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Authentica-
tion. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg
(1996)

[20] Azraoui, M., Elkhiyaoui, K., Molva, R., Önen, M.: Stealthguard: Proofs of retrievability
with hidden watchdogs. Technical report, EURECOM (June 2014)

[21] Trostle, J., Parrish, A.: Efficient Computationally Private Information Retrieval from
Anonymity or Trapdoor Groups. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.)
ISC 2010. LNCS, vol. 6531, pp. 114–128. Springer, Heidelberg (2011)

[22] Ateniese, G., Burns, R.C., Curtmola, R., Herring, J., Kissner, L., Peterson, Z.N.J., Song,
D.: Provable data possession at untrusted stores. In: Ning, P., di Vimercati, S.D.C., Syver-
son, P.F. (eds.) ACM Conference on Computer and Communications Security, pp. 598–609.
ACM (2007)

[23] Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. J. Cryptol-
ogy 17(4), 297–319 (2004)

[24] Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and
their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194.
Springer, Heidelberg (2010)

An Efficient Cloud-Based Revocable

Identity-Based Proxy Re-encryption Scheme
for Public Clouds Data Sharing

Kaitai Liang1, Joseph K. Liu2, Duncan S. Wong1, and Willy Susilo3

1 Department of Computer Science, City University of Hong Kong
2 Infocomm Security Department, Institute for Infocomm Research, Singapore

3 School of Computer Science and Software Engineering, University of Wollongong
kliang4-c@my.cityu.edu.hk, ksliu@i2r.a-star.edu.sg, duncan@cityu.edu.hk,

wsusilo@uow.edu.au

Abstract. Identity-based encryption (IBE) eliminates the necessity of
having a costly certificate verification process. However, revocation re-
mains as a daunting task in terms of ciphertext update and key update
phases. In this paper, we provide an affirmative solution to solve the effi-
ciency problem incurred by revocation. We propose the first cloud-based
revocable identity-based proxy re-encryption (CR-IB-PRE) scheme that
supports user revocation but also delegation of decryption rights. No
matter a user is revoked or not, at the end of a given time period the
cloud acting as a proxy will re-encrypt all ciphertexts of the user under
the current time period to the next time period. If the user is revoked
in the forthcoming time period, he cannot decrypt the ciphertexts by
using the expired private key anymore. Comparing to some naive so-
lutions which require a private key generator (PKG) to interact with
non-revoked users in each time period, the new scheme provides definite
advantages in terms of communication and computation efficiency.

Keywords: Revocable identity-based encryption, cloud-based revoca-
ble identity-based proxy re-encryption, standard model.

1 Introduction

In a traditional public-key infrastructure (PKI), user revocation can be con-
ducted via a certificate mechanism. If a user is revoked, his/her certificate will
be added to a certificate revocation list (CRL) by certificate authority. Anyone
who wants to encrypt a message for this user has to check the certificate of the
user against the CRL. If the certificate is on the list, the sender knows that this
user has been revoked and therefore, will not further share any sensitive informa-
tion with him/her. Different from PKI, there is no certificate in identity-based
encryption (IBE) cryptosystem. Therefore user revocation remains an elusive
open problem in this paradigm.

To solve this problem, Boneh and Franklin [1] proposed a naive but ineffi-
cient solution (the first revocable IBE scheme) such that the computation and

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 257–272, 2014.
c© Springer International Publishing Switzerland 2014

258 K. Liang et al.

communication complexity of private key generator (PKG) are both linearly in
the total number N of non-revocable system users, i.e. O(N). Although their
work is further studied by different scholars in the following decade, most of the
existing revocable IBE systems (e.g. [2]) have not considered how to relieve the
cost spent on key and ciphertext updated processes. Therefore, this motivates
our work.

1.1 Motivation

Ciphertexts Update. To date cloud-based technology gives birth to the next
generation of computing system. With the assistance of cloud server, many costly
computations can be performed with ease. For example, in a revocable IBE
system, a data sender can encrypt the data under an identity and a time period
for a specified receiver such that the receiver can gain access to the data by using
his decryption key corresponding to the time period. When the key is expired
and the receiver is not on the revocation list, a PKG will issue a new key/token
for the next time period to the receiver and the corresponding ciphertext will
be updated to the next period as well. Suppose the ciphertext of the data is
stored in a public cloud, then for each ciphertext update process the sender
has to deal with the download-decrypt-then-re-encrypt process. Although the
ciphertext might be stored locally (without loss of confidentiality), the sender
should execute decrypt-then-re-encrypt mode. This may consume a great amount
of computational resources while there is a great amount of data to be dealt
with. Therefore, the sender might not afford the consumption upon using some
resource-limited devices.

To off-load the computational workload to the cloud, we might allow the cloud
server to handle ciphertext update process. A naive solution is to enable the cloud
to gain access to the data. This, nevertheless, violates the confidentiality of data.
A better solution is to enable the cloud to re-encrypt an original ciphertext under
an old time period to another ciphertext under a new time period without leaking
knowledge of either the decryption key or the underlying plaintext. In CRYPTO
2012 Sahai, Seyalioglu and Waters [3] proposed a non-re-encryption methodology
to enable a server, given some public information, to fulfill ciphertext update
process in the attribute-based encryption setting. In this paper we leverage the
technology of proxy re-encryption (PRE) into ciphertext update process to tackle
the same problem in the context of revocable IBE. Later, we will show that our
system enjoys better efficiency compared to [3]. Using PRE, a ciphertext stored
in the cloud can be re-encrypted to another ciphertext by the cloud server acting
as a semi-trusted proxy. No information related to the data, however, leaks to the
proxy. Accordingly, the update process can be executed effectively and efficiently
on the side of cloud server such that the workload of data sender is lessen.

Key Update. Using the technology of identity-based PRE (IB-PRE), ciphertext
update for user revocation can be somehow offloaded to the cloud as well. If a
user is revoked, all ciphertexts stored in the cloud server will be re-encrypted
to another “identity”. For instance, ciphertexts for a user with identity Alice

An Efficient CR-IB-PRE Scheme for Public Clouds Data Sharing 259

are re-encrypted to ciphertexts for another “identity” Alice-1 such that the
decryption key associated with Alice is not applicable to the decryption of
the newly ciphertexts. Nonetheless, there is an undesirable trade-off by simply
leveraging IB-PRE. The user needs to update a new identity upon entering to
the new time period (corresponding to Alice-1). A change in identity (e.g. from
Alice to Alice-1) might bring inconvenience to the user who needs to tell all
data senders to use the new identity for the further encryption. That already
violates the original idea of using identity-based encryption in which the sender
only needs to know some simple information, e.g., name, email address of the
user, but not other frequently changeable (or periodical updated) information.

In the ideal case, it is desirable to have a cloud-based encryption scheme with
the following features:

1. Efficient Revocation: It should support both user and decryption key
revocation. User revocation guarantees that if a user has left the organiza-
tion, he/she will be withdrawn from the right of accessing the information
(with respect to his/her identity) in clouds. Decryption key revocation en-
sures that when the decryption key of a user is stolen or compromised by
an adversary, the user may have an opportunity to update the key so as to
decrypt updated ciphertexts. With these properties, only a legitimate user
is allowed to continually access the data under the encryption (e.g. being is-
sued a new private key by PKG) but not the adversary with a compromised
key. More importantly, the complexity of revocation should not be linearly
in the number of non-revocable system users (i.e. O(N)).

2. Efficient Ciphertext Update: Ciphertext update process can be off-loaded
to cloud server such that a data sender enjoys less computational cost while
there is a great deal of ciphertexts to be updated.

3. Consistency of Identity after Revocation: If the decryption key of a
user is compromised (that is the case of decryption key revocation), the user
should retain his/her original identity (i.e. keeping identity consistent). No
additional information will be added to the identity or identification string.

1.2 A Naive Solution

Using any existing IB-PRE system (e.g. [4]), a naive solution can be achieved
with the above features. We denote by “Name | Time Period” the “identity” of
a system user. That is, the time period is concatenated to the original identity
of the user. For example, the identity of Alice at January 2014 is represented as
Alice | JAN 2014. Any data sender can use this string as public key to encrypt
the data for Alice in January 2014. In the upcoming month, the identity will
be changed to Alice | FEB 2014. Before the beginning of March, the server
will re-encrypt all ciphertexts of Alice stored in the cloud to Alice | Mar 2014

such that Alice cannot access the data unless she is granted a new key for March
2014. On the other side, if the key (for February 2014) is stolen by adversary,
the same action can be taken. However, in this case the user is required to be
given the decryption key for the next time period (i.e. March 2014) in advance.

260 K. Liang et al.

However, this solution leads to an undesirable trade-off where it brings unnec-
essary workload for PKG. The solution requires the PKG to issue a decryption
key to every user at the beginning of each time period. Most of key genera-
tion/update algorithms of revocable IBE systems fulfill the issue of updated
decryption key (resp. corresponding updated information) by establishing a se-
cure channel from the PKG to a user. The cost brought by building up the secure
channel for each user is acceptable for a new user joining the system at the first
time. But if the PKG and the user need to repeat this at every time period, it
might not be practical. It not only brings inconvenience to (non-revocable) sys-
tem users, but also incurs undesirable workload for the PKG as the complexity
grows linearly with the number of (non-revocable) users at each time period.
Thus this naive solution is not scalable and not practical at all.

1.3 Our Contributions

In this paper we present the following contributions.

• We define the notion of cloud-based revocable identity-based proxy re-
encryption (CR-IB-PRE) and its corresponding security model.
• We propose an efficient and concrete system achieving the notion we propose

above. It is worth mentioning that the present system is the first to support
user revocation but also delegation of decryption rights in the identity-based
cryptographic setting.
• Our scheme achieving the features mentioned in the previous section only

requires the PKG to publish a constant-size public string at the beginning
of each time period. The PKG does not need to interact with each user by
establishing an individual secure channel such that the complexity of the
PKG is reduced to O(1). This public string only allows non-revoked users
(but not the revoked users) to fulfill the key update phase. Without this key
updating process, the revoked users cannot decrypt the ciphertexts stored
in the cloud any more as the original ciphertexts are already re-encrypted
to the next time period when the users are revoked.
• We prove our new scheme to be secure against chosen-plaintext attack (CPA)

and collusion resistant in the standard model.

1.4 System Architecture

We describe the system architecture of a CR-IB-PRE as follows. Like a revocable
IBE system, a PKG first issues a private key skAlice associated with an identity,
say Alice, to the user Alice. When a time period, say T 5, has come, the PKG
delivers a token τT5 to Alice such that Alice can update her private key to a new
decryption key skAlice|T5 to decrypt any ciphertext encrypted under Alice and
time period T 5. When a new time period is approaching, Alice may construct a
re-encryption key rkAlice|T5→T6 under her identity from T 5 to T 6, and then send
the key to a cloud server whom will update a ciphertext under Alice and T 5 to
a new ciphertext under Alice and T 6. However, Alice here cannot immediately

An Efficient CR-IB-PRE Scheme for Public Clouds Data Sharing 261

decrypt the new ciphertext as a token τT6 is not issued by PKG yet. After the
token is issued, Alice can update her decryption key to skAlice|T6 accordingly so
as to recover the underlying plaintext. In the key update phase, the PKG only
publishes a public token associated with T 6 such that any user excluded in the
revocation list can leverage this token to update his/her decryption key. This
makes key update (for N non-revocable users) reduce to constant cost.

One might doubt that the system cannot be seen as a type of IB-PRE be-
cause an IB-PRE scheme usually re-encrypts a ciphertext under an identity to
another ciphertext under a new identity. Actually, our system does not contradict
the notion of IB-PRE by regarding (Alice, T 5) and (Alice, T 6) as two different
identities. One might further question that ciphertext update process may be
suspended by a dishonest user if the user refuses to deliver the corresponding
re-encryption key to the server. To address this problem, we propose a solution
right after our basic construction in Section 4.2.

1.5 Related Work

The first revocable IBE is proposed by Boneh and Franklin [1], in which a cipher-
text is encrypted under an identity id and a time period T , and a non-revoked
user is issued a private key skid,T by a PKG such that the user can access the
data in T . However, this does not scale well as the complexity of the PKG is
linearly in the number N of non-revocable users. Subsequently, Boldyreva, Goyal
and Kumar [2] proposed the security notion for revocable IBE, and constructed
an efficient revocable IBE scheme from a fuzzy IBE scheme [5] with binary tree
structure. To achieve adaptive security, Libert and Vergnaud [6] proposed a re-
vocable IBE scheme based on the variant of Waters IBE [7] and Gentry IBE [8].
Recently, Seo and Emura [9] formalized a revised notion for revocable IBE, and
proposed a concrete scheme based on [6]. Since its introduction, there are many
variants of revocable IBE. For example, several revocable IBE schemes [10,11,12]
leverage a semi-trusted authority to enable users to fulfill valid decryption. There
are also some functional encryption schemes [13,14,15,3] considering the prop-
erty of revocation. Inspired by [9] we will build the first CR-IB-PRE scheme in
the standard model.

Decryption rights delegation is introduced in [16]. Blaze, Bleumer and Strauss
[17] formally defined the notion of PRE. PRE can be classified as: unidirectional
and bidirectional PRE, and single-hop and multi-hop PRE, where the definitions
are given in [18]. This present work deals with the multi-hop unidirectional case.
Many PRE systems have been proposed in the literature, such as [18,19,20,21,22].

To employ PRE in the IBE setting, Green and Ateniese [4] defined the no-
tion of identity-based PRE (IB-PRE), and proposed two constructions in the
random oracle model. Later on, Tang, Hartel and Jonker [23] proposed a CPA-
secure IB-PRE scheme in the random oracle model, in which delegator and
delegatee can belong to different domains. Chu and Tzeng [24] proposed an
IB-PRE scheme without random oracles against replayable chosen-ciphertext
attacks (RCCA) [25]. The aforementioned schemes, however, enable proxy to
compromise the entire private key of delegator by colluding with delegatee. To

262 K. Liang et al.

tackle the problem, the following systems are proposed. Two CPA-secure IB-
PRE schemes without random oracles were proposed by Matsuo [26]. Wang et
al. [27,28] proposed two IB-PRE schemes in the random oracle model. Minzuno
and Doi [29] constructed an IB-PRE scheme in the standard model with CPA
security. Two CPA-secure IB-PRE schemes without random oracles were pro-
posed in [30]. Shao and Cao [31] proposed a generic construction for CCA-secure
IB-PRE in the standard model. Recently, Liang et al. [32] proposed the first
CCA-secure unidirectional single-hop IB-PRE in the standard model support-
ing conditional re-encryption.

2 Definitions

Below we define the notion of CR-IB-PRE. Unless stated otherwise, by a CR-
IB-PRE we mean a CR-IB-PRE with unidirectional and multi-hop properties.
Note please refer to [18] for more details of these properties.

2.1 Definition of CR-IB-PRE

Definition 1. A Cloud-Based Revocable Identity-Based Proxy Re-Encry-ption
(CR-IB-PRE) scheme consists of the following algorithms. Below we let I, T ,M
be identity space, time space and message space, respectively.

1. Setup: the setup algorithm intakes a security parameter k and a maximal
number of users N , and outputs the public parameters mpk, the master secret
key msk, the initial state st and an empty revocation list RL. For simplicity,
we assume the following algorithms include mpk implicitly.

2. KeyGen: the private key generation algorithm intakes msk, and a user’s
identity id ∈ I, and outputs a private key skid for the user id and an updated
state st.

3. TokenUp: the token update algorithm intakes msk, an identity id, a token
update time period Ti ∈ T , the current revocation list RL and st, and outputs
a token τi, where i ∈ [1, poly(1k)].

4. DeKeyGen: the decryption key generation algorithm intakes skid, τi, and
outputs a decryption key skid|i for the user id under the time period Ti or ⊥
if id has been revoked, where i ∈ [1, poly(1k)].

5. ReKeyGen: the re-encryption key generation algorithm intakes skid|i, msk,
Ti and Ti′ , and generates the re-encryption key as follows, where 1 ≤ i < i′.
(a) ReKeyToken: the re-encryption key token generation algorithm intakes

msk, Ti and Ti′ , outputs a re-encryption key token ϕi→i′ .
(b) ReKey: the re-encryption key algorithm intakes skid|i and ϕi→i′ , outputs

a re-encryption key rkid|i→i′ which can be used to transform a ciphertext
under (id, Ti) to another ciphertext under (id, Ti′).

6. Enc: the encryption algorithm intakes id, Ti, and a message m ∈ M, and
outputs an original ciphertext C under (id, Ti) which can be further re-
encrypted.

An Efficient CR-IB-PRE Scheme for Public Clouds Data Sharing 263

7. ReEnc: the re-encryption algorithm intakes rkid|i→i′ , and a ciphertext C
under (id, Ti), and outputs either a re-encrypted ciphertext C under (id, Ti′)
or a symbol ⊥ indicating C is invalid, where 1 ≤ i < i′.

8. Dec: the decryption algorithm intakes skid|i, and a ciphertext C under (id, Ti),
and outputs either a message m or a symbol ⊥ indicating C is invalid.

9. Revoke: the revocation algorithm intakes an identity to be revoked id, a re-
vocation time period Ti, the current revocation list RL, and a state st, and
outputs an updated RL.

Remarks. Definition 1 is for our basic construction. In this paper we also present
extensions for the basic construction. For the extended system, we reuse the
above definition except that TokenUp takes msk, ID, Ti, RL and st as input,
and outputs a token τi for a set ID of non-revocable users.

Correctness: For any (mpk,msk) output by Setup, any time period Ti ∈ T
(where i ∈ [1, poly(1k)]), any message m ∈ M, and all possible states st and
revocation list RL, if skid is output by KeyGen(msk, id), τi ← TokenUp(msk,
id, Ti, RL, st), skid|i ← DeKeyGen(skid, τi), rkid|i→j ← ReKeyGen(skid|i,
msk, Ti, Tj) (note for simplicity we set j = i+ 1 here), we have

if id is not revoked by T1 : Dec(skid|1, Enc(id, T1,m)) = m;

if id is not revoked by Ti :

Dec(skid|i, ReEnc(rkid|i−1→i, ..., ReEnc(rkid|1→2, Enc(id, T1,m)))...) = m.

2.2 Revocation Procedure

The revocation procedure is described based on different cases as follows.

1. Decryption Key Compromised. When the decryption key skid|i of a user
id for time period Ti is compromised by an adversary, the user id reports
this issue to a PKG. The PKG then immediately returns a re-encryption
key token ϕi→j to the user, where j �= i such that the user can generate a
re-encryption key rkid|i→j . The user id further sends the re-encryption key
to the proxy, and next requests it to re-encrypt all ciphertexts under (id, Ti)
to the ones under (id, Tj). Besides, the PKG issues a token τj related to
a new time period Tj to the user id. After receiving the token, the user id
updates his/her decryption key from skid|i to skid|j , and then uses the newly
key to access the data. Note Tj is the time period satisfying i < j such that
the user id will update his key for decryption.

2. Identity Expired. When the identity of a user is expired (e.g. the resignation
of a registered user) at time period Ti, our system notifies the corresponding
identity and time period to a PKG. The PKG then generates a re-encryption
key rkid|i→j , and requests the proxy to re-encrypt all ciphertexts under (id, Ti)
to the ciphertexts under (id, Tj). Here j must satisfy i < j such that the user
id cannot reuse his/her decryption keys skid|z (where z ≤ i) to decrypt the re-
encrypted ciphertexts. The PKG finally adds this user to the revocation list,
that is, a re-encryption token and a token related to a new time period will
not be issued to this user (after time period i).

264 K. Liang et al.

3 A New CPA-Secure CR-IB-PRE

3.1 A Basic Construction

To clearly show the technical roadmap of our scheme, we only propose our basic
construction for CR-IB-PRE systems in this section. In this construction, a PKG
will suffer from O(N) computational complexity for key update phase. But we
will present performance improvements for this basic construction in Section 4
such that the complexity of the PKG will reduce to O(1). Below we assume any
identity id ∈ {0, 1}n and any time period Ti ∈ Z∗

q . Some revocable IBE systems,
such as [6], leverage KUNode algorithm [2] for efficient revocation whereby a
data structure (e.g. a binary tree) is used to represent revocation list. However,
we here try to present a general solution such that we do not focus on which
data structure we choose to denote the revocation list. In our construction we let
state st be an unspecified data structure DS, and it depends on which structure
we use, e.g., st can be a binary tree. By a tuple (RL, st) we mean a revocation
list and its corresponding data structure.

1. Setup(1k, N). The setup algorithm runs (q, g,G,GT , e)← G(1k), where q is
the order of group G. It chooses α, β ∈R Z∗

q , group elements g2, g3, v1, v2 ∈R
G, a random n-length set U = {uj|0 ≤ j ≤ n}, and a target collision
resistant (TCR) hash function TCR1 : G→ Z∗

q , where uj ∈R G. The public
parameter is mpk = (g, g1, g2, g3, v1, v2, U, TCR1), the master secret key is

msk = (gα2 , g
β
3), RL = ∅ and st = DB, where g1 = gα.

2. KeyGen(msk, id). PKG chooses rid ∈R Z∗
q , sets the partial private key skid

as skid1 = gβ3 · (u0

∏
j∈Vid

uj)
rid , skid2 = grid , where Vid is the set of all j for

which the j-th bit (of id) is equal to 1.
3. TokenUp(msk, id, Ti, RL, st). PKG will check RL first so as to see whether

id is revoked or not. If it is revoked, output ⊥; else proceed. Choose rTi ∈R
Z∗
q , and set the token τi as τi,1 = (gα2 /g

β
3) · (v1 · vTi

2)rTi , τi,2 = grTi , where i
is the index for the time period.

4. DeKeyGen(skid, τi). A user id runs the algorithm as follows.
(a) Choose r̃ ∈R Z∗

q , and randomize the token as τi,1 = τi,1 · (v1 · vTi
2)r̃,

τi,2 = τi,2 · gr̃.
(b) Choose r1, r2 ∈R Z∗

q , and set the updated secret key skid|i for identity
id and time period Ti as

skid|i,1 = skid1 · τi,1 · (u0

∏
j∈Vid

uj)
r1 · (v1 · vTi

2)r2

= gα2 · (u0

∏
j∈Vid

uj)
r̂1 · (v1 · vTi

2)r̂2 ,

skid|i,2 = skid2 · gr1 = gr̂1 , skid|i,3 = τi,2 · gr2 = gr̂2 ,

where r̂1 = rid + r1, r̂2 = rTi + r̃ + r2. Note the user will share r1, r2, r̃
with the PKG (suppose it is fully trusted) such that the PKG can store
(id|i, r̂1, r̂2) in a list Listskid|i for further use.

An Efficient CR-IB-PRE Scheme for Public Clouds Data Sharing 265

5. ReKeyGen(skid|i,msk, Ti, Ti′). The re-encryption key rkid|i→i′ is generated
as follows.

(a) ReKeyToken(msk, Ti, Ti′): If a user id holding skid|i is allowed to up-
date his key to another time period Ti′ , PKG generates the re-encryption

key token ϕi→i′ as ϕ
(1)
i→i′ = (v1 · vTi′

2)TCR1(ξ)/(v1 · vTi
2)r̂2 , ϕ

(2)
i→i′ =

(Ĉ0, Ĉ1, Ĉ2, Ĉ3) ← Enc(id, Ti′ , ξ), where ξ ∈R GT , r̂2 is recovered from
(id|i′, r̂1, r̂2) which is stored the Listskid|i .

(b) ReKey(skid|i, ϕi→i′): After receiving ϕi→i′ from PKG, the user id gen-
erates the re-encryption key as follows.

i. Choose ρ ∈R Z∗
q , and set rk1 = skid|i,1 · ϕ(1)

i→i′ · (u0

∏
j∈Vid

uj)
ρ,

rk2 = skid|i,2 · gρ, and rk3 = ϕ
(2)
i→i′ .

ii. Output the re-encryption key rkid|i→i′ = (rk1, rk2, rk3).

6. Enc(id, Ti,m). Given an identity id, a time period Ti, and a message
m ∈ GT , the encryption algorithm chooses t ∈R Z∗

q , and sets the origi-
nal ciphertext C as C0 = m · e(g1, g2)t, C1 = gt, C2 = (u0

∏
j∈Vid

uj)
t,

C3 = (v1 · vTi
2)t. We assume that the identity id and the time period Ti are

implicitly included in the ciphertext.

7. ReEnc(rkid|i→i′ , C). Parse the ciphertext C under (id, Ti) as (C0, C1, C2,
C3), and the re-encryption key rkid|i→i′ as (rk1, rk2, rk3). The re-encryption

algorithm computes C4 = e(C1,rk1)
e(C2,rk2) = e(gt, gα2 · (v1 · vTi′

2)TCR1(ξ)), and next

sets the re-encrypted ciphertext C under (id, Ti′) as (C0, C1, C4, rk3). Note
if C under (id, Ti′) needs to be further re-encrypted to the time period Ti′′ ,
then the proxy parses rk3 as (Ĉ0, Ĉ1, Ĉ2, Ĉ3). Given a re-encryption key

rkid|i′→i′′ = (rk′1, rk′2, rk′3), the proxy computes C′
4 =

e(Ĉ1,rk
′
1)

e(Ĉ2,rk′
2)

, and sets the

ciphertext C under (id, Ti′′) as (C0, C1, C4, Ĉ0, Ĉ1, C′
4, rk′3).

8. Dec(skid|i, C). Given a ciphertext C under (id, Ti), the decryption algorithm
works as follows.

(a) For the original ciphertext C = (C0, C1, C2, C3), the decryptor com-

putes
e(C1,skid|i,1)

e(C2,skid|i,2)e(C3,skid|i,3) = e(g1, g2)t, and outputs the message

C0/e(g1, g2)t = m · e(g1, g2)t/e(g1, g2)t = m.

(b) For the re-encrypted ciphertext C:

i. If the re-encrypted ciphertext is re-encrypted only once, i.e. C=(C0,
C1, C4, rk3 = (Ĉ0, Ĉ1, Ĉ2, Ĉ3)), then the decryptor computes
Ĉ0e(Ĉ2,skid|i,2)e(Ĉ3,skid|i,3)

e(Ĉ1,skid|i,1)
= ξ. Accordingly, the decryptor can finally

computer C0
e(C1,(v1v

Ti
2)TCR1(ξ))
C4

= m.
ii. If the ciphertext under id is re-encrypted l times from time period

T1 to Tl+1, we denote the re-encrypted ciphertext as C(l+1)=(C
(1)
0 ,

C
(1)
1 , C

(1)
4 , ..., C

(l)
0 , C

(l)
1 , C

(l)
4 , rk

(l+1)
3), where C

(1)
0 and C

(1)
1 are

the components of original ciphertext under (id, T1), and rk
(i+1)
3 =

(C
(i+1)
0 , C

(i+1)
1 , C

(i+1)
2 , C

(i+1)
3) is the ciphertext under (id, Ti+1),

266 K. Liang et al.

i ∈ [1, l]. We recover the message m as follows.

First set:
C

(l+1)
0 e(C

(l+1)
2 , skid|l+1,2)e(C

(l+1)
3 , skid|l+1,3)

e(C
(l+1)
1 , skid|l+1,1)

= ξ(l),

from i = l to 2 set : C
(i)
0

e(C
(i)
1 , (v1v

Ti+1

2)TCR1(ξ(i)))

C
(i)
4

= ξ(i−1),

finally compute : C
(1)
0

e(C
(1)
1 , (v1v

T2
2)TCR1(ξ(1)))

C
(1)
4

= m.

9. Revoke(id, Ti, RL, st). Update the revocation list by RL ← RL ∪ {id, Ti}
and return the updated revocation list.

3.2 Security Analysis

Theorem 1. Suppose the underlying Waters IBE scheme is IND-CPA secure,
TCR1 is the TCR hash function, our CR-IB-PRE scheme is IND-CPA secure
in the standard model.

Theorem 2. Suppose the CDH assumption holds, our CR-IB-PRE scheme is
collusion resistant.

Due to limited space, we provide the proof of Theorem 1 and 2 in the full version
of the paper [33].

4 Performance Improvement

4.1 Reduce the Complexity of Key Update

In our basic construction the complexity of the key update phase (in terms of
communication and computation) is linearly in the number (say N) of users
whom are excluded in the revocation list, i.e. O(N). We here reduce the com-
plexity O(N) to O(1). In the algorithm TokenUp, the identity id is not taken
into the generation of the token τi. This gives us a possibility to broadcast the
token for time period Ti to all non-revocable users. Below we employ a broadcast
encryption in our basic construction. We choose Phan et al. broadcast encryp-
tion system [34] as a building block. Note system implementors may choose
an appropriate broadcast encryption for different purposes, e.g., security. We
let SYM = (SYM.Enc, SYM.Dec) denote a one-time symmetric encryption
system in which encryption algorithm SYM.Enc intakes a message and a sym-

metric key K ∈ {0, 1}poly(1k) and outputs a ciphertext, and decryption algorithm
SYM.Dec intakes a ciphertext and a symmetric key K and outputs a message.
We only show the modification for our basic system as follows.

1. Setup(1k, N). The setup algorithm additionally chooses γ, α̂ ∈R Z∗
q , a TCR

hash function TCR2 : GT → {0, 1}poly(1k), and adds v0 = gγ and TCR2 to
mpk, and (γ, α̂) to msk.

An Efficient CR-IB-PRE Scheme for Public Clouds Data Sharing 267

2. KeyGen(msk, id). PKG generates a new key component skid3 = gγz , and

sets additional public parameters gz = gα̂
z

, gz+1 = gα̂
z+1

, gλ+1−z = gα̂
λ+1−z

,

gλ+1+z = gα̂
λ+1+z

for user id, where z is the index for identity id, and
λ− 1 = N .

3. TokenUp(msk, ID, Ti, RL, st). Note ID now is a set of identities. After
constructing (τi,1, τi,2), PKG works as follows.

(a) Choose t̂ ∈R Z∗
q , K ∈R GT , and set an encryption E

(1)
τi as T1 = K ·

e(gλ+1, g)t̂, T2 = gt̂, T3 = (v0 ·
∏

w∈ID gλ+1−w)t̂, where ID is implicitly
included in the ciphertext.

(b) Run E
(2)
τi ← SYM.Enc(TCR2(K), τi,1||τi,2), and next upload the token

τi = (E
(1)
τi , E

(2)
τi) for a set ID of identities to the cloud server.

4. DeKeyGen(skid, τi). Before constructing a decryption key as in the al-
gorithm DeKeyGen of our basic scheme, a user id (where id ∈ ID) first
recovers τi,1 and τi,2 as follows. The user computes

K = T1/(e(T3, gz)/e(skid3

∏
w∈ID\{z}

gλ+1−w+z, T2))

and runs σi = τi,1||τi,2 ← SYM.Dec(TCR2(K), E
(2)
τi).

Note the rest of the algorithms are the same as that of our basic scheme.

4.2 Reduce Size of Re-encrypted Ciphertext and Decryption
Complexity

Our basic construction suffers from a drawback that the size of re-encrypted
ciphertext and the complexity of decryption expand linearly in the number of
time periods. To reduce the complexity to constant, we leverage the following
idea.

We can delegate the generation of re-encryption key to PKG as PKG has
knowledge of private keys of all system users and tokens of all time periods.
Here users can only focus on decryption key generation, message encryption and
decryption, i.e. the common actions of using a revocable IBE system, such that
the re-encryption functionality and its corresponding workload are transparent
in the view of the users.

Being granted the rights of re-encryption key generation, PKG works as fol-
lows. Suppose the decryption keys of a user id associated with time periods Ti
and Tj are skid|i =(skid|i,1, skid|i,2, skid|i,3) and skid|j = (skid|j,1, skid|j,2, skid|j,3),

and the corresponding tuples stored in the list Listskid|z are (id|i, r̂i,1, r̂i,2) and
(id|j, r̂j,1, r̂j,2), where i < j (for simplicity we may set j = i + 1). PKG then

constructs the re-encryption key rkid|i→j as rk1 = (v1 · vTj

2)−r̂j,2 · (v1 · vTi
2)r̂i,2 ·

(v1 · vT1
2)θ, rk2 = sk−1

id|j,3 · skid|i,3 = gr̂i,2−r̂j,2 · gθ, where θ ∈R Z∗
q .

268 K. Liang et al.

For simplicity, we suppose a user id has l available time periods (in which T1 is
the first time period, and Tl is the last one). Given rkid|1→2 = (rk1→2,1, rk1→2,2),
the re-encryption algorithm ReEnc computes

C
(1)
4 =

e(C3, rk1→2,2)

e(C1, rk1→2,1)
=
e((v1v

T1
2)t, g−r̂2,2)

e(gt, (v1v
T2
2)−r̂2,2)

,

and next sets the re-encrypted ciphertext C under (id, T2) as (C0, C1, C2, C3,

C
(1)
4), where an original ciphertext C under (id, T1) is C0 = m·e(g1, g2)t, C1 = gt,

C2 = (u0

∏
j∈Vid

uj)
t, C3 = (v1 · vT1

2)t. At the time period Tl, the re-encrypted

ciphertext C under (id, Tl) is (C0, C1, C2, C3, C
(l−1)
4), in which C

(l−1)
4 = C

(l−2)
4 ·

e(C3,rkl−1→l,2)
e(C1,rkl−1→l,1) =

e((v1·vT1
2)t,g−r̂l,2)

e(gt,(v1·v
Tl
2)−r̂l,2)

, and C
(l−2)
4 is a component of ciphertext C

under (id, Tl−1).
The decryption algorithm Dec works as follows. Given skid|i = (skid|i,1,

skid|i,2, skid|i,3) and a re-encrypted ciphertext (C0, C1, C2, C3, C
(i−1)
4) under

(id, Ti), set C0 · C(i−1)
4 · e(skid|i,3,C3)·e(C2,skid|i,2)

e(skid|i,1,C1) = m·e(g1,g2)t

e(gα
2 ,gt) = m.

5 Comparison

In this section we compare our improved version with an ABE system support-
ing revocability [3] and the most efficient revocable IBE scheme [9] in terms of
security, functionality and efficiency. Table 1 illustrates the comparison of se-
curity and functionality, Table 2 depicts the comparison of computation cost,
and Table 3 shows the comparison of communication complexity. Note we do
not compare our scheme with the existing IB-PRE schemes here as we pay more
attention in the functionality of revocability.

To define the notations and parameters used in the Tables, we let |G| denote
the bit-length of an element in G, and |GT | denote the bit-length of an element
in GT , |U | denote the number of attributes used in the system, |f | denote the
size of an access formula, |S| denote the size of an attribute set, n denote the
bit-length of an identity, cp, ce, c

T
e denote the computation cost of a bilinear

pairing, an exponentiation in G and in GT , respectively. Suppose [3], [9] and
our scheme share the same number (N) of non-revocable system users in each
time period. It can be seen that [3] only presents generic constructions for the
revocable ABE systems. To bring convenience for the comparison, we use Wa-
ters ABE scheme [35] to implement one of the generic constructions of [3]. The
implementation yields a revocable CP-ABE system.

From Table 1, we see that our scheme supports not only revocability but
also re-encryption functionality with CPA security and collusion resistance un-
der the decisional bilinear Diffie-Hellman (BDH) assumption and computational
Diffie-Hellman (CDH) assumption, respectively. [3] is CPA secure under the deci-
sional q-parallel bilinear Diffie-Hellman exponent (BDHE) assumption (suppose
it is built on Waters ABE) but only supporting revocability, whereas ours addi-
tionally enjoys the delegation of decryption rights. Compared to [9], supporting

An Efficient CR-IB-PRE Scheme for Public Clouds Data Sharing 269

Table 1. Security and Functionality Comparison

Schemes Security Complexity Delegation of
Assumption Decryption Rights

[3] CPA decisional q-parallel-BDHE �

[9] CPA decisional BDH �

Ours CPA decisional BDH and CDH �
Collusion Resistance

revocability with CPA security under the decisional BDH assumption, ours offers
additional property without degrading security level. Note [9] and our scheme
are secure under simple complexity assumptions, while [3] relies on a complex
one. Although our system achieves more flexible functionality, it is only CPA
secure. The problem of proposing a CR-IB-PRE scheme with CCA security in
the standard model remains open.

Table 2. Computation Cost Comparison

Schemes
Computation Cost

Encryption Decryption Key Update Info. (including
Gen. key update token and rk)

[3]O(|f |)ce +O(1)cTe O(|S|)(cp + cTe) O(|S|)ce ε1 = O(N · |S|)ce
[9] O(1)ce +O(1)cTe O(1)cp O(1)ce ε2 = O(N)ce

Ours O(1)ce +O(1)cTe O(1)cp O(1)ce ε3 = O(1)ce +O(1)cTe

From Table 2, we see that [3] suffers from the largest complexity in each
merit, and the PKG of [9] suffers from O(N) computational complexity in up-
dating key information for each time period. Besides, both [3] and [9] require
a secure communication channel from the PKG to each non-revocable user (for
issuing key update information), while our system can eliminate this cost. Com-
pared with [3,9], ours enjoys constant complexity in each merit. To achieve re-
encryption property, we need O(1)ce and O(1)cp in constructing re-encryption
key and re-encrypted ciphertext, respectively. However, when comparing with
the linear complexity of [3], the above additional cost is acceptable.

Table 3 shows that [9] and our scheme achieve the least complexity, while [3]
suffers from linear cost in each merit. Although our scheme requires additional
cost O(1)|G| in delivering re-encryption key, it enjoys constant communication
cost in key update information for each time period but [3,9] suffer from O(N)
complexity. As N increases, our scheme has better efficiency in communication.

270 K. Liang et al.

Table 3. Communication Cost Comparison

Schemes
Communication Cost

Private Key Size Ciphertext Size Update Info. Size (including size
of key update token and rk)

[3] O(|S|)|G| O(|f |)|G| +O(1)|GT | O(N · |S|)|G|
[9] O(1)|G| O(1)|G| +O(1)|GT | O(N)|G|

Ours O(1)|G| O(1)|G| +O(1)|GT | O(1)|G|+O(1)|GT |

Acknowledgements. This work was supported by a grant from the RGC of the
HKSAR, China, under Project CityU 123913, and it was done when Kaitai Liang
was an intern with Institute for Infocomm Research. This work is also partially
supported by the Australian Research Council Linkage Project (LP120200052).
Joseph K. Liu is supported by A*STAR funded project SecDC-112172014.

References

1. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

2. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revo-
cation. In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM Conference on Computer
and Communications Security, pp. 417–426. ACM (2008)

3. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext del-
egation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012)

4. Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007)

5. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

6. Libert, B., Vergnaud, D.: Adaptive-id secure revocable identity-based encryption.
In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 1–15. Springer, Heidel-
berg (2009)

7. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

8. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

9. Seo, J.H., Emura, K.: Revocable identity-based encryption revisited: Security
model and construction. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS,
vol. 7778, pp. 216–234. Springer, Heidelberg (2013)

10. Baek, J., Zheng, Y.: Identity-based threshold decryption. In: Bao, F., Deng, R.,
Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 262–276. Springer, Heidelberg
(2004)

11. Ding, X., Tsudik, G.: Simple identity-based cryptography with mediated rsa. In:
Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 193–210. Springer, Heidelberg
(2003)

An Efficient CR-IB-PRE Scheme for Public Clouds Data Sharing 271

12. Libert, B., Quisquater, J.J.: Efficient revocation and threshold pairing based cryp-
tosystems. In: Borowsky, E., Rajsbaum, S. (eds.) PODC, pp. 163–171. ACM (2003)

13. Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect
revocation modes. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS,
vol. 5921, pp. 278–300. Springer, Heidelberg (2009)

14. Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryption.
In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 248–265.
Springer, Heidelberg (2009)

15. Nieto, J.M.G., Manulis, M., Sun, D.: Fully private revocable predicate encryption.
In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 350–
363. Springer, Heidelberg (2012)

16. Mambo, M., Okamoto, E.: Proxy cryptosystems: Delegation of the power to decrypt
ciphertexts. IEICE Transactions E80-A(1), 54–63 (1997)

17. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

18. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

19. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM Conference on Computer
and Communications Security, pp. 185–194. ACM (2007)

20. Isshiki, T., Nguyen, M.H., Tanaka, K.: Proxy re-encryption in a stronger secu-
rity model extended from ct-rsa2012. In: Dawson, E. (ed.) CT-RSA 2013. LNCS,
vol. 7779, pp. 277–292. Springer, Heidelberg (2013)

21. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer,
Heidelberg (2008)

22. Hanaoka, G., Kawai, Y., Kunihiro, N., Matsuda, T., Weng, J., Zhang, R., Zhao, Y.:
Generic construction of chosen ciphertext secure proxy re-encryption. In: Dunkel-
man, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 349–364. Springer, Heidelberg
(2012)

23. Tang, Q., Hartel, P.H., Jonker, W.: Inter-domain identity-based proxy re-
encryption. In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487,
pp. 332–347. Springer, Heidelberg (2009)

24. Chu, C.-K., Tzeng, W.-G.: Identity-based proxy re-encryption without random
oracles. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007.
LNCS, vol. 4779, pp. 189–202. Springer, Heidelberg (2007)

25. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg
(2003)

26. Matsuo, T.: Proxy re-encryption systems for identity-based encryption. In: Takagi,
T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575,
pp. 247–267. Springer, Heidelberg (2007)

27. Wang, L., Wang, L., Mambo, M., Okamoto, E.: Identity-based proxy cryptosystems
with revocability and hierarchical confidentialities. IEICE Transactions 95-A(1),
70–88 (2012)

28. Wang, L., Wang, L., Mambo, M., Okamoto, E.: New identity-based proxy re-
encryption schemes to prevent collusion attacks. In: Joye, M., Miyaji, A., Otsuka,
A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 327–346. Springer, Heidelberg (2010)

272 K. Liang et al.

29. Mizuno, T., Doi, H.: Secure and efficient IBE-PKE proxy re-encryption. IEICE
Transactions E94-A(1), 36–44 (2011)

30. Luo, S., Shen, Q., Chen, Z.: Fully secure unidirectional identity-based proxy re-
encryption. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 109–126. Springer,
Heidelberg (2012)

31. Shao, J., Cao, Z.: Multi-use unidirectional identity-based proxy re-encryption from
hierarchical identity-based encryption. Information Sciences 206, 83–95 (2012)

32. Liang, K., Liu, Z., Tan, X., Wong, D.S., Tang, C.: A CCA-secure identity-based
conditional proxy re-encryption without random oracles. In: Kwon, T., Lee, M.-K.,
Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 231–246. Springer, Heidelberg
(2013)

33. Liang, K., Liu, J.K., Wong, D.S., Susilo, W.: An efficient cloud-based revocable
identity-based proxy re-encryption scheme for public clouds data sharing. Cryptol-
ogy ePrint Archive, Report 2014/473 (2014), http://eprint.iacr.org/

34. Phan, D.H., Pointcheval, D., Shahandashti, S.F., Strefler, M.: Adaptive CCA
broadcast encryption with constant-size secret keys and ciphertexts. Int. J. Inf.
Sec. 12(4), 251–265 (2013)

35. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

http://eprint.iacr.org/

Verifiable Computation on Outsourced

Encrypted Data

Junzuo Lai1,2, Robert H. Deng3, Hweehwa Pang3, and Jian Weng1,�

1 Department of Computer Science, Jinan University, China
{laijunzuo,cryptjweng}@gmail.com

2 The State Key Laboratory of Integrated Services Networks,
Xidian University, China

3 School of Information Systems,
Singapore Management University, Singapore 178902

{robertdeng,hhpang}@smu.edu.sg

Abstract. On one hand, homomorphic encryption allows a cloud server
to perform computation on outsourced encrypted data but provides no
verifiability that the computation is correct. On the other hand, homo-
morphic authenticator, such as homomorphic signature with public ver-
ifiability and homomorphic MAC with private verifiability, guarantees
authenticity of computation over outsourced data but does not provide
data confidentiality. Since cloud servers are usually operated by third-
party providers which are almost certain to be outside the trust domain
of cloud users, neither homomorphic encryption nor homomorphic au-
thenticator suffices for verifiable computation on outsourced encrypted
data in the cloud. In this paper, we propose verifiable homomorphic
encryption (VHE), which enables verifiable computation on outsourced
encrypted data.

We first introduce a new cryptographic primitive called homomorphic
encrypted authenticator (HEA), which may be of independent interest.
Informally, HEA can be viewed as a homomorphic authenticator in which
the authenticator itself does not leak any information about the mes-
sage it authenticates. Next, we show that the fully homomorphic MAC
scheme, proposed by Gennaro and Wichs recently, is a fully HEA with
weak unforgeability in the sense that an adversary is not allowed to make
verification queries. We then propose a linearly HEA which can tolerate
any number of malicious verification queries, i.e., it achieves (strong) un-
forgeability. Finally, we define VHE formally, and give a generic construc-
tion of VHE based on homomorphic encryption and HEA. Instantiating
the generic construction, we derive a fully VHE with weak verifiability
as well as a linearly VHE with (strong) verifiability.

Keywords: Cloud Computing, Outsourced Encrypted Data, Verifiable
Homomorphic Encryption.

� Corresponding author.

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 273–291, 2014.
c© Springer International Publishing Switzerland 2014

274 J. Lai et al.

1 Introduction

Cloud computing has become increasingly popular because it offers users the
illusion of having infinite computing resources, of which they can use as much
as they need, without having to worry about how those resources are provided
and managed. Since cloud servers are usually operated by third-party providers
which are almost certain to be outside the trust domain of cloud users, the cloud
computing paradigm raises many security and privacy concerns. One problem is
how can users securely outsource their data to the cloud, and later entrust it to
perform computation over the data. In a nutshell, this problem can be described
in the following scenario. A user Alice has a large collection of data m1, . . . ,mn

and intends to outsource her data to the cloud. In order to prevent leakage of
sensitive information to the cloud service provider, Alice first encrypts the data
to produce ciphertexts c1, . . . , cn, where ci is the encryption of mi. She then
uploads the ciphertexts to the cloud, without having to keep a copy of the data
due to her limited local storage capacity. At some later point, Alice wishes to
derive some information from her data, such as the sum or mean of m1, . . . ,mn.
For this purpose, Alice sends an instruction to the cloud server, specifying a
program P to be executed on her data. The cloud server executes P over the
ciphertexts and returns the result of the execution, c, to Alice. Alice then re-
trieves P(m1, . . . ,mn) from c. This problem has been addressed by the recent
ground-breaking development of fully homomorphic encryption [1], which allows
a cloud server to perform any computation over outsourced encrypted data.
Unfortunately, existing fully homomorphic encryption schemes provide no guar-
antee that the cloud server performed the computation correctly. In the cloud
computing setting, there may be incentives for a cloud server to try to cheat
and return an incorrect result to the client. This may be related to the nature of
the computation being performed, e.g., if the cloud server wants to convince the
client of a particular result because it will have beneficial consequences for the
server or the server may simply be minimizing the use of its own computational
overhead. Errors can also occur due to faulty algorithm implementation or sys-
tem failure. Thus, the client needs some guarantee that the result returned from
the server is correct. In particular, the cloud server needs to convince Alice that
c is the correct result of the computation P over ciphertexts c1, . . . , cn, i.e., the
ciphertext of P(m1, . . . ,mn).

Consider another scenario in cloud computing. Alice outsources her data
m1, . . . ,mn in plaintext to a cloud server, and later asks the server to run a pro-
gram P over the outsourced data (m1, . . . ,mn). The server computes P(m1, . . .,
mn) and sends the result m to Alice. The problem now is that Alice wants to
be sure that m = P(m1, . . . ,mn). Homomorphic authenticator, including ho-
momorphic signature [2–12] (for public verification) and homomorphic MAC
[13, 14] (for private verification), is the cryptographic primitive that addresses
this problem. Roughly speaking, a homomorphic authenticator scheme enables
Alice using her secret key to produce an authenticator (called signature in
homomorphic signature, or tag in homomorphic MAC) which authenticates a
data item so that later, given a set of data m1, . . . ,mn and the corresponding

Verifiable Computation on Outsourced Encrypted Data 275

authenticators σ1, . . . , σn, anyone can perform a computation P over (σ1, . . . , σn)
to generate an authenticator σ that authenticates P(m1, . . . ,mn). However, ho-
momorphic authenticator does not maintain confidentiality of outsourced data.
That is, the cloud server has total access to user’s data since they are not
encrypted.

The above observations motivate us to consider verifiable homomorphic en-
cryption (VHE), which enables verifiable computation on outsourced encrypted
data. Informally, a VHE scheme allows a user using her secret key to encrypt
data m1, . . . ,mn and obtain independent ciphertexts c1, . . . , cn so that later,
given ciphertexts c1, . . . , cn, anyone can execute a program P over (c1, . . . , cn)
to generate a ciphertext c. The user using her secret key can then decrypt ci-
phertext c to obtain plaintext m and check whether m = P(m1, . . . ,mn). There
is a trivial solution to construct VHE in which the user authenticates the out-
put of a computation P over (c1, . . . , cn) by accessing all the ciphertexts, i.e.,
c1, . . . , cn. Thus, VHE is only interesting if authenticity of the output of P over
the ciphertexts c1, . . . , cn can be verified with significantly lower communication
cost than that of simply transmitting c1, . . . , cn to the user. This is particularly
important where the outsourced data are large in size.

A naive approach to construct VHE is to combine homomorphic encryption
and homomorphic authenticator directly. In the above cloud computing scenario,
before outsourcing her data m1, . . . ,mn to a cloud server, Alice first runs the
encryption algorithm of a homomorphic encryption scheme and the authentica-
tion algorithm of a homomorphic authenticator scheme on mi, i = 1, . . . , n, then
she uploads the ciphertext of mi, ci = (c̃i, σi), to the server, where c̃i and σi are
the outputs of the encryption and authentication algorithms, respectively. Later,
when the server is asked to execute a program P on the ciphertexts, it runs the
evaluation algorithms of the homomorphic encryption scheme and homomorphic
authenticator scheme on ((c̃1, . . . , c̃n),P) and ((σ1, . . . , σn),P), respectively, and
returns the result c = (c̃, σ) to Alice, where c̃ and σ are the outputs from the
evaluation algorithms of the homomorphic encryption scheme and homomorphic
authenticator scheme, respectively. The client decrypts c̃ to obtain message m
and checks that the server correctly applied P to the ciphertexts by verifying
that the authenticator σ authenticates the message m = P(m1, . . . ,mn). Un-
fortunately, homomorphic authenticator schemes provide no guarantee that the
authenticator σi on mi does not leak information about mi. Indeed, with a
homomorphic signature scheme, the signature σi on message mi always leaks
information about mi since, given a message m, anyone can check whether σi
is a valid signature on m. Thus, the above naive construction of VHE does not
guarantee that the outsourced data m1, . . . ,mn is semantically secure.
Our Contributions. We first introduce a new cryptographic primitive called
homomorphic encrypted authenticator (HEA), which may be of independent in-
terest, and formally define its semantic security and unforgeability. Informally, a
HEA can be viewed as a homomorphic authenticator in which the authenticator
does not leak any information about the message that it authenticates. Then,
we show that the fully homomorphic MAC scheme, proposed by Gennaro and

276 J. Lai et al.

Wichs [13] recently, is a fully HEA scheme with weak unforgeability, where the
adversary is not allowed to make verification queries. We emphasize that a ho-
momorphic MAC scheme is not necessarily a HEA scheme, since the tag in a
homomorphic MAC scheme may leak information about the message it authen-
ticates. For example, the homomorphic MAC schemes tolerating any number of
malicious verification queries, proposed by Catalano and Fiore [14] recently, are
not HEA schemes because anyone can retrieve the message from its tag in these
schemes. While a fully HEA scheme with weak unforgeability allows anyone to
perform any authenticated computation on authenticated data, it is only secure
in the setting where the adversary cannot make verification queries to test if a
maliciously constructed authenticator verifies correctly. In practice, this means
that the user needs to abort and completely stop using the scheme whenever she
gets the first authenticator that doesn’t verify correctly, and this motivates us
to seek HEA schemes with (strong) unforgeability which allows an adversary to
make arbitrarily many verification queries.

We observe that, in a homomorphic signature scheme, an adversary cannot
obtain any additional information by making verification queries since, given a
signature, anyone (including the adversary) can check whether it is a valid sig-
nature on a message. Thus, we resort to homomorphic signature for constructing
HEA schemes with (strong) unforgeability. As mentioned above, a homomorphic
signature scheme may not be a HEA scheme; so we have to adopt some tech-
niques to convert the former into the latter. Drawing on a linearly homomorphic
signature scheme proposed by Freeman [8], we propose a linearly HEA which can
tolerate any number of malicious verification queries, i.e., it achieves (strong)
unforgeability.

Finally, we formally introduce the notion and security requirements of VHE,
and provide a generic construction of VHE from homomorphic encryption and
HEA. Instantiating the generic construction, we obtain a fully VHE with weak
verifiability, which allows anyone to perform any verifiable computation on out-
sourced encrypted data but does not tolerate malicious verification queries, as
well as a linearly VHE with (strong) verifiability, which allows anyone to perform
linear verifiable computations on outsourced encrypted data and can tolerate any
number of malicious verification queries.
Organization. The rest of this paper is organized as follows. Section 2 reviews
related work. Section 3 provides some preliminaries. Section 4 introduces the new
cryptographic primitive HEA, shows that the fully homomorphic MAC scheme
proposed by Gennaro and Wichs [13] is a fully HEA in a weaker security model,
and proposes a linearly HEA scheme in a full security model. The formal defini-
tion of VHE and the generic construction of VHE from homomorphic encryption
and HEA are given in Section 5. Section 6 concludes the paper.

2 Related Work

We review related literature including non-interactive verifiable computation, fully
homomorphic encryption, homomorphic signature/MAC, linearly homomorphic

Verifiable Computation on Outsourced Encrypted Data 277

structure-preserving signature and homomorphic authenticator-encryption. We
refer the reader to [15] for discussions on other related effort, such as succinct non-
interactive arguments of knowledge [16].

Non-Interactive Verifiable Computation. The notion of non-interactive verifiable
computation was introduced by Gennaro et al. [17]. Non-interactive verifiable
computation enables a computationally weak client to outsource the computa-
tion of a function to a server, which returns the result of the function evaluation
as well as a non-interactive proof that the computation was carried out correctly,
with the crucial requirement that verification of the proof needs substantially
less computational effort than computing the function by the client from scratch.
The existing non-interactive verifiable computation schemes [17–22] focus on
delegating general functions. In order to achieve higher efficiency, there exist
non-interactive verifiable computation schemes which permit only a very limited
class of functions, such as polynomials [23–26, 15, 22] and set operations [27].
Non-interactive verifiable computation schemes either do not protect privacy of
outsourced data from a malicious server, or the functions to be evaluated must
be known at system setup, or the outsourced data must be fixed a-priori (i.e., a
client cannot outsource her data incrementally). VHE does not suffer from any
of the limitations of non-interactive verifiable computation mentioned above.

Our goals are very different from non-interactive verifiable computation. We
seek to save the clients from storing large amount of data as well as to save
on communication cost. The key requirement that makes our definition of VHE
interesting is that the output of the program P over the ciphertexts c1, . . . , cn
be succinct ; otherwise, there is a trivial solution in which a client can verify
the output of a computation P by simply being provided with the ciphertexts
c1, . . . , cn. The succinctness requirement ensures that the client can verify the
output of a computation P over encrypted data with much smaller communi-
cation overhead than that of simply transmitting the encrypted data from the
server to the client. VHE is especially useful when verifying computations that
require a large amount of encrypted data as input but have a short output (e.g.,
computing the median in a large database).

Fully Homomorphic Encryption. The notion of fully homomorphic encryption
(FHE) was first put forward by Rivest et al. [28]. However, only in the past few
years have candidate FHE schemes been proposed. The first such scheme was
constructed by Gentry [1]; his work inspired a tremendous amount of research
effort on improving the efficiency of his scheme [29–35], realizations of FHE based
on different assumptions [36–39], and so on.

Homomorphic Signature and MAC. Homomorphic authenticator in both the
asymmetric setting (i.e., homomorphic signature) and the symmetric setting
(i.e., homomorphic MAC) has been considered in many prior works. The notion
of homomorphic signature was introduced by Johnson et al. [40]. Since then,
many homomorphic signature schemes [2–8] for linear functions have been pro-
posed, mainly because of the important application to network coding [41, 42].
Linearly homomorphic authenticator has also been considered in the context of

278 J. Lai et al.

proofs of data possession and retrievability [43–45]. The work of Ahn et al. [10]
and Attrapadung et al. [11, 12] considered a new security requirement of homo-
morphic signature, i.e., context hiding, which requires that a derived signature
be indistinguishable from a fresh signature on the same message. In a recent
breakthrough, Boneh and Freeman [9] showed how to use ideal lattices to con-
struct homomorphic signature for bounded degree polynomials; this scheme is
currently the only one that goes beyond linear functions.

Gennaro and Wichs [13] introduced fully homomorphic MAC (i.e., homo-
morphic MAC for any computation) and gave a concrete construction which is
only proven secure in a weaker model where an adversary cannot ask verifica-
tion queries. We will show later in the paper that the fully homomorphic MAC
scheme in [13] is in fact a fully HEA scheme. Catalano and Fiore [14] presented
efficient realizations of homomorphic MAC that tolerate verification queries, for
a restricted class of computations (i.e., arithmetic circuits with polynomially-
bounded degree). The homomorphic MAC schemes proposed in [14] are not
HEA schemes, and how to convert these schemes into HEA is an interesting
open problem.

Linearly Homomorphic Structure-Preserving Signatures. Structure-preserving
signatures (SPS) [46, 47] are signature schemes where public keys, messages
and signatures all consist of elements of a group over which a bilinear map is
efficiently computable. Recently, Libert et al. [48] introduced and realized the
notion of linearly homomorphic structure-preserving signature (LHSPS), which
is similar to SPS but equipped with a linearly homomorphic property. Catalano
et al. [49] followed their work and proposed some new methodologies. Libert
et al. [48] showed that LHSPS enables linear verifiable computations on out-
sourced encrypted data (i.e., linearly VHE), but their treatment is informal and
decryption in their system takes polynomial time in the size of the message space
(i.e., their system can only be used to encrypt short messages). In this paper,
we present the notion and security models of VHE formally, give a generic con-
struction for VHE, and derive a fully VHE scheme which is proven secure in a
weaker security model and a linearly VHE scheme which is proven secure in a
full security model.

Homomorphic Authenticator-Encryption. Gennaro and Wichs [13] showed
that their proposed homomorphic MAC can be extended to homomorphic
authenticator-encryption, also called homomorphic authenticated encryption in
[50]. A homomorphic authenticator-encryption scheme is a homomorphic au-
thenticator scheme with an additional decrypt algorithm, which allows a user
with a secret key to retrieve the authenticated message from an authenticator.
Our notion of HEA is different from homomorphic authenticator-encryption. A
HEA scheme only requires that an authenticator not leak information about
the authenticated message; thus HEA is a weaker cryptographic primitive than
homomorphic authenticator-encryption. In fact, homomorphic authenticator-
encryption, which also enables verifiable computation on outsourced encrypted
data, is similar to our notion of VHE. However, the schemes proposed in [13, 50]

Verifiable Computation on Outsourced Encrypted Data 279

cannot tolerate malicious verification queries. Compared with their work, we
investigate the relationships among homomorphic encryption, homomorphic sig-
nature/MAC and VHE, and provide a general method to construct VHE. We
also propose a linearly VHE scheme which can tolerate any number of malicious
verification queries.

3 Preliminaries

If S is a set, then s
$← S denotes the operation of picking an element s uniformly

at random from S. Let N denote the set of natural numbers. If n ∈ N then [n]
denotes the set {1, . . . , n}. If λ ∈ N then 1λ denotes the string of λ ones. Let
z ← A(x, y, . . .) denote the operation of running an algorithm A with inputs
(x, y, . . .) and output z. A function f(λ) is negligible if for every c > 0 there
exists a λc such that f(λ) < 1/λc for all λ > λc.

3.1 Bilinear Groups

Let G be an algorithm that takes as input a security parameter λ and outputs
a tuple (p,G,GT , e), where G and GT are multiplicative cyclic groups of prime
order p, and e : G×G→ GT is a map that possesses the following properties:

1. Bilinearity: e(ga, hb) = e(g, h)ab for all g, h ∈ G and a, b ∈ Z∗
p.

2. Non-degeneracy: e(g, h) �= 1 whenever g, h �= 1G.
3. Computable: efficient computability for any input pair.

We refer to the tuple (p,G,GT , e) as a bilinear group. We consider the following
problems in bilinear groups.
q-Strong Diffie-Hellman (q-SDH) Problem. The q-SDH problem in G is
defined as follows: Given a tuple (ḡ, ḡα, . . ., ḡα

q

) as input for randomly chosen

ḡ
$← G and α

$← Z∗
p, output a pair (ḡ1/(α+ϑ), ϑ) where ϑ ∈ Z∗

p. The advantage of

an algorithm A in solving q-SDH problem is defined as |Pr[A(ḡ, ḡα, . . . , ḡα
q

) =
(ḡ1/(α+ϑ), ϑ)]|, where the probability is over the random choices of ḡ ∈ G, α ∈ Z∗

p,
and the random bits of A.

Definition 1. We say that the q-SDH assumption holds in G if all probabilistic
polynomial time algorithms have at most a negligible advantage in solving the
q-SDH problem in G.

Decision Linear (DLN) Problem [51]. The DLN problem in G is defined
as follows: Given a tuple (ḡ, g̃, ĝ, ḡx, g̃y, ĝz) as input, output 1 if x + y = z
and 0 otherwise. The advantage of an algorithm A in solving the DLN prob-

lem is defined as |Pr[A(ḡ, g̃, ĝ, ḡx, g̃y, ĝz) = 1 : ḡ, g̃, ĝ
$← G, x, y, z

$← Z∗
p] −

Pr[A(ḡ, g̃, ĝ, ḡx, g̃y, ĝx+y) = 1 : ḡ, g̃, ĝ
$← G, x, y

$← Z∗
p]|, where the probability

is over the random choices of ḡ, g̃, ĝ ∈ G and x, y, z ∈ Z∗
p, and the random bits

of A.

Definition 2. We say that the DLN assumption holds in G if all probabilistic
polynomial time algorithms have at most a negligible advantage in solving the
DLN problem in G.

280 J. Lai et al.

4 Homomorphic Encrypted Authenticator

Informally, a homomorphic encrypted authenticator (HEA) can be viewed as
a homomorphic authenticator, where the authenticator on a message does not
leak any information about the message. Before presenting the definition of HEA
formally, we need to establish some syntax for specifying which data is being
authenticated and over which data a program P should be evaluated. We recall
the notion of labeled data and programs introduced by Gennaro and Wichs in
[13].

Labeled Data and Programs. Whenever a user wants to authenticate some data
item, she chooses a label τ ∈ {0, 1}∗ for it, and the authentication algorithm
authenticates the data with respect to the label τ . A labeled program P consists
of a tuple (f, τ1, . . . , τk) where f : Fk → F is a circuit/function, and τ1, . . . , τk are
the labels of the input nodes of f . Given some labeled programs P1, . . . ,Pt and
a function g : Fk → F, the composed program, denoted by P∗ = g(P1, . . . ,Pk),
corresponds to evaluating g on the outputs of P1, . . . ,Pk. The labeled inputs of
P∗ are all the distinct labeled inputs of P1, . . . ,Pk. We denote by Iτ = (gid, τ)
the identity program with label τ where gid is the canonical identity function and
τ is some label. Notice that any program P = (f, τ1, . . . , τk) can be expressed as
the composition of identity programs P = f(Iτ1 , . . . , Iτk).

Homomorphic Encrypted Authenticator. A homomorphic encrypted authentica-
tor scheme consists of the following four algorithms:

Setup(1λ) takes as input a security parameter λ. It outputs a pair of public key
PK and secret key SK. The public key PK defines a message spaceM and a
set F of “admissible” functions f :Mk →M.

Auth(SK, τ,m) takes as input secret key SK, a label τ ∈ {0, 1}∗ and a message
m ∈M. It outputs an authenticator σ.

Ver(SK,m,P , σ) takes as input secret key SK, a message m ∈ M, a labeled
program P and an authenticator σ. It outputs either 0 (reject) or 1 (accept).

Eval(PK, f,σ) takes as input public key PK, a function f ∈ F and a vector of
authenticators σ = (σ1, . . . , σk). It outputs a new authenticator σ.

For correctness, we require that for each (PK, SK) output by Setup(1λ), the
following properties hold:

1. For all labels τ ∈ {0, 1}∗ and all m ∈ M, if σ ← Auth(SK, τ,m), then
Ver(SK,m, Iτ , σ) = 1.

2. Given an admissible function g :Mk ←M and any set of message/program/
authenticator triples {(mi,Pi, σi)}ki=1 such that Ver(SK,mi,Pi, σi) = 1, if
m = g(m1, . . . ,mk), P = g(P1, . . . ,Pk) and σ = Eval(PK, g, (σ1, . . . , σk)),
then Ver(SK,m,P , σ) = 1.

The above requirements capture the basic correctness of computing over freshly
authenticated data, as well as the composability of computing over the authen-
ticated outputs of prior computations. If the set of admissible functions F of a
HEA scheme consists of linear functions (resp. any functions) from Mk to M,
then we say that the HEA scheme is a linearly (resp. fully) HEA scheme.

Verifiable Computation on Outsourced Encrypted Data 281

4.1 Security Model for Homomorphic Encrypted Authenticator

We now introduce the security requirements of HEA, including semantic security
and unforgeability. Informally, semantic security requires that an authenticator
σ of a message m with label τ should not leak any information about m. Let σi
be an authenticator on message mi with label τi for i = 1, . . . , k. Unforgeability
requires that given (σ1, . . . , σk), it should be impossible to output an authenti-
cator σ and an admissible function f such that σ is a valid authenticator on a
message-program pair (m,P = (f, τ1, . . . , τk)) and m �= f(m1, . . . ,mk).

The semantic security of HEA is defined in terms of the following game, played
between a challenger and an adversary A:

Setup. The challenger runs Setup(1λ) to obtain a pair of public key PK and
secret key SK. It gives the public key PK to adversary A and keeps SK to
itself. It also initializes a list T = ∅.

Authentication queries. The adversary A adaptively queries the challenger
for authenticators.A submits a messagem ∈M. If there exists a tuple (τ,m)
in T , the challenger computes σ ← Auth(SK, τ,m); otherwise, the challenger
chooses a fresh label τ ∈ {0, 1}∗, updates the list T = T∪(τ,m) and computes
σ ← Auth(SK, τ,m). Then, the challenger gives the authenticator σ to A.

Challenge. Adversary A submits a label τ∗ ∈ {0, 1}∗ and two messages
m0,m1 ∈ M. The challenger selects a random bit β ∈ {0, 1}, computes
σ∗ ← Auth(SK, τ∗, mβ) and sends σ∗ to the adversary.

Guess. Adversary A outputs its guess β′ ∈ {0, 1} for β and wins the game if
β = β′.

The advantage of the adversary in this game is defined as |Pr[β = β′]− 1
2 | where

the probability is taken over the random bits used by the challenger and the
adversary.

Definition 3. A HEA scheme is semantically secure if all probabilistic polyno-
mial time adversaries have at most a negligible advantage in this security game.

The unforgeability of HEA is defined in terms of the following game, played
between a challenger and an adversary A:

Setup. The challenger runs Setup(1λ) to obtain a pair of public key PK and
secret key SK. It gives the public key PK to adversary A and keeps SK to
itself. It also initializes a list T = ∅.

Queries. Adversary A adaptively issues the following queries:

– Authentication queries. Adversary A submits a message m ∈ M. If there
exists a tuple (τ,m) in T , the challenger computes σ ← Auth(SK, τ,m);
otherwise, the challenger chooses a fresh label τ ∈ {0, 1}∗, updates the
list T = T ∪ (τ,m) and computes σ ← Auth(SK, τ,m). Then, the chal-
lenger gives the authenticator σ to A.

– Verification queries. Adversary A submits (m,P , σ) and the challenger
replies with the output of Ver(SK,m,P , σ).

282 J. Lai et al.

Output. Adversary A outputs a message m∗, a labeled program P∗ = (f∗, τ∗1 ,
. . . , τ∗k) and an authenticator σ∗.
The adversary wins if Ver(SK,m∗,P∗, σ∗) = 1 and one of the following
conditions hold:
1. there exists i ∈ {1, . . . , k} such that (τ∗i , ·) /∈ T (a Type 1 forgery),
2. T contains tuples (τ∗1 ,m1), . . . , (τ∗k ,mk), for some message m1, . . . ,mk,

and m∗ �= f∗(m1, . . ., mk) (a Type 2 forgery).

Informally, in a Type 1 forgery the adversary produces a valid authenticator σ
on a message-program pair (m∗,P∗ = (f∗, τ∗1 , . . . , τ

∗
k)) where no message was

ever authenticated under the label τ∗i involved in the forgery, whereas in a Type
2 forgery the adversary produces a valid authenticator σ on a message-program
pair (m∗,P∗ = (f∗, τ∗1 , . . . , τ

∗
k)) where m∗ is not the correct output of the labeled

program P∗ when executed on previously authenticated message (m1, . . . ,mk).
The advantage of the adversary in this game is defined as |Pr[A wins]| where

the probability is taken over the random bits used by the challenger and the
adversary.

Definition 4. A HEA scheme is (strongly) unforgeable, or simply unforgeable,
if all probabilistic polynomial time adversaries have at most a negligible advan-
tage in this security game.

We say that a HEA scheme is weakly unforgeable (or unforgeable without veri-
fication queries) if in the above security game the adversary cannot make veri-
fication queries.

4.2 Proposed HEA Constructions

In this subsection, we first show that the fully homomorphic authenticator
scheme proposed by Gennaro and Wichs [13] recently, is a secure fully HEA with
weak unforgeability. Drawing on the linearly homomorphic signature scheme pro-
posed by Freeman [8], we then present a secure linearly HEA scheme which can
tolerate any number of malicious verification queries, i.e., it achieves (strong)
unforgeability.

A Secure Fully HEA with Weak Unforgeability. In [13], Gennaro and
Wichs proposed a fully homomorphic authenticator scheme and proved that
it is unforgeable without verification queries. Observe that in an authenticator
σ = (c1, . . . , cλ, ν) on a message m with label τ , ν = FK(τ) is a value inde-
pendent of the message m and ci, i ∈ [λ], is a ciphertext of a homomorphic
encryption scheme HE. If the underlying fully homomorphic encryption scheme
HE is semantically secure, then for each i ∈ [λ], ci does not leak any informa-
tion about m, thus σ will not leak any information about m. That is, the fully
homomorphic authenticator proposed in [13] is also semantically secure. To sum
up, the fully homomorphic authenticator proposed by Gennaro and Wichs [13],
is a secure fully HEA with weak unforgeability.

As shown in [13], there is an efficient attack against the scheme in the setting
of security with verification queries. That is, the fully HEA scheme with weak

Verifiable Computation on Outsourced Encrypted Data 283

unforgeability is only secure in the setting where the adversary cannot make
verification queries to test if a maliciously constructed authenticator verifies
correctly. In practice, this means that the user needs to abort and completely stop
using the scheme whenever she gets the first authenticator that doesn’t verify
correctly. This motivates the need for HEA schemes with (strong) unforgeability
that allow the adversary to make arbitrarily many verification queries.

A Secure Linearly HEA with (Strong) Unforgeability. Drawing on the
linearly homomorphic signature scheme proposed by Freeman [8], which is based
on the Boneh-Boyen (BB) signature scheme [52], we now show how to construct
a linearly HEA scheme which can tolerate any number of malicious verification
queries, i.e., it achieves (strong) unforgeability. We emphasize that a linearly
homomorphic signature scheme is not necessarily a linearly HEA scheme; so we
have to adopt some techniques to convert the former into the latter.

In the proposed linearly HEA construction, we also use the notion of “data
set” introduced in [8]. That is, each set of messages is grouped together into
a “data set” or ”file”, and each file is associated with a label τ that serves to
bind the messages together in that file. Therefore, in our proposed construction,
the algorithm Setup includes an additional input parameter, k, which indicates
the maximum data size of a file; and the algorithm Auth includes an additional
input parameter, an index i, which indicates that the authenticated message is
the ith message in the file. Verifiable homomorphic operations in our scheme
only apply to the data associated with the same label. That is, for an admissible
labeled program P = (f, τ1, . . . , τk), we require that τ1 = · · · = τk; thus, for
simplicity, we denote by (f, τ) a labeled program P . Since the client can group
as many related messages as possible into a file (i.e., associated with an identical
label), the requirement of the admissible labeled program should not constrain
the usability of a general storage service overly.

Concretely, the proposed linearly HEA scheme consists of the following algo-
rithms:

Setup(1λ, k) Given a security parameter λ and a maximum data size k, the
setup algorithm runs G(1λ) to obtain a bilinear group (p,G,GT , e). Next,
it chooses g, u, v1, . . . , vk, h, h0 ∈ G and α, a, b ∈ Z∗

p uniformly at random.

Then, it sets g1 = gα, h1 = h
1/a
0 , h2 = h

1/b
0 (note that ha1 = hb2 = h0), and

chooses a collision-resistant hash function H : {0, 1}∗ → Z∗
p. The public key

is published as PK = (g, g1, u, v1, . . . , vk, h, h0, h1, h2, H) and the secret key
is SK = (α, a, b).
The message space of our proposed scheme is Fp and the set of admissible
functions F is all Fp-linear functions from Fk

p to Fp. We represent a function

f ∈ F as the vector (c1, . . . , ck) ∈ Fk
p, i.e., f(m1, . . . ,mk) =

∑k
i=1 cimi.

Auth(SK, τ,m, i) Given secret key SK, a label τ ∈ {0, 1}∗, a message m ∈ Fp

and an index i ∈ {1, . . . , k}, it chooses r1, r2, s ∈ Z∗
p uniformly at random.

Then, it outputs the authenticator σ = (C̃, C0, C1, C2, s), where

C̃ = g1/(α+H(τ)), C0 = hr1+r2
0 (hmusvi)

1/(α+H(τ)), C1 = hr11 , C2 = hr22 .

284 J. Lai et al.

Note that the index i indicates that m is the ith message in the file associated
with label τ .

Ver(SK,m,P = (f, τ), σ) Given secret key SK, a message m ∈ Fp, a label τ , a

function f = (c1, . . . , ck) ∈ Fk
p and an authenticator σ = (C̃, C0, C1, C2, s), it

checks whether e(g1g
H(τ), C̃) = e(g, g) and e(C0/(Ca

1C
b
2), g) = e(C̃, hmus ·

(
∏k

i=1 v
ci
i)). If so, it outputs 1 (accept); otherwise it outputs 0 (reject).

Eval(PK, f,σ) Given public key PK, a function f = (c1, . . . , ck) ∈ Fk
p and a vec-

tor of authenticators σ = (σ1, . . . , σk) where σi = (C̃(i), C
(i)
0 , C

(i)
1 , C

(i)
2 , s(i))

for i = 1, . . . , k, it outputs a new authenticator σ = (C̃, C0, C1, C2, s) where

C̃= C̃(1), C0 =

k∏
i=1

(C
(i)
0)ci , C1 =

k∏
i=1

(C
(i)
1)ci , C2 =

k∏
i=1

(C
(i)
2)ci , s=

k∑
i=1

cis
(i).

Correctness. We show that the proposed homomorphic encrypted authenticator
scheme satisfies the correctness properties of HEA.

1. Let τ ∈ {0, 1}∗ be a label, m ∈ Fp be a message and i ∈ {1, . . . , k} be

an index. Suppose σ = (C̃, C0, C1, C2, s) ← Auth(SK, τ,m, i). We now show
that Ver(SK,m, Iτ , σ) = 1. Observe that C̃ = g1/(α+H(τ)), C0/(Ca

1C
b
2) =

hr1+r2
0 (hmusvi)

1/(α+H(τ))/(har11 hbr22) = (hmusvi)
1/(α+H(τ)).

Thus, we have e(g1g
H(τ), C̃) = e(g1g

H(τ), g1/(α+H(τ))) = e(g, g),

e(C0/(Ca
1C

b
2), g) = e((hmusvi)

1/(α+H(τ)), g) = e(hmusvi, g
1/(α+H(τ)))

= e(C̃, hmusvi).

It follows that Ver(SK,m, Iτ , σ) = 1.
2. Let τ ∈ {0, 1}∗ be a label, and f ′, f1, . . . , fk be linear functions repre-

sented as vectors in Fk
p, with f ′ = (c1, . . . , ck) and fi = (di1, . . . , dik) for

i = 1, . . . , k. Suppose σ = (σ1, . . . , σk) is a vector of authenticators with

σi = (C̃(i), C
(i)
0 , C

(i)
1 , C

(i)
2 , s(i)) for i = 1, . . . , k, such that Ver(SK,mi,Pi =

(fi, τ), σi) = 1 for some mi ∈ Fp. We show that Ver(SK, f ′(m1, . . . ,mk),P =
(f ′ ◦ f , τ),Eval(PK, f ′,σ)) = 1, where f ′ ◦f denotes the function that sends
x = (x1, . . . , xk) to f ′(f1(x), . . . , fk(x)). Note that f ′ ◦f can be represented

as a vector (d1, . . . , dk) ∈ Fk
p where di =

∑k
j=1 cjdji for i = 1, . . . , k.

Since Ver(SK,mi,Pi = (fi, τ), σi) = 1 for i = 1, . . . , k, we have

C̃(i) = g1/(α+H(τ)), C
(i)
0 = hri1+ri2

0 (hmius
(i) ·
∏k

j=1 v
dij

j)1/(α+H(τ)),

C
(i)
1 = hri11 , C

(i)
2 = hri22 ,

for some random ri1, ri2 ∈ Z∗
p. Let Eval(PK, f ′,σ) = σ = (C̃, C0, C1, C2, s).

We have C̃ = g1/(α+H(τ)), C1 = hr11 , C
(i)
2 = hr22 , C0 = hr1+r2

0 (hmus ·∏k
i=1 v

∑k
j=1 cjdji

i)1/(α+H(τ)) = hr1+r2
0 (hmus ·

∏k
i=1 v

di

i)1/(α+H(τ)), where

m =
∑k

i=1 cimi, r1 =
∑k

i=1 ciri1, r2 =
∑k

i=1 ciri2 and s =∑k
i=1 cis

(i). Observe that C0/(Ca
1C

b
2) = (hmus ·

∏k
i=1 v

di

i)1/(α+H(τ)). Thus,

Verifiable Computation on Outsourced Encrypted Data 285

e(g1g
H(τ), C̃) = e(g1g

H(τ), g1/(α+H(τ))) = e(g, g), and e(C0/(Ca
1C

b
2), g) =

e((hmus
∏k

i=1 v
di

i)1/(α+H(τ)), g) = e(C̃, hmus
∏k

i=1 v
di

i). It follows that

Ver(SK,m,P = (f ′ ◦ f , τ), σ) = 1, where m =
∑k

i=1 cimi = f ′(m1, . . . ,mk)
and σ = Eval(PK, f ′,σ).

Security. We state the security theorems of our proposed scheme, including se-
mantic security and unforgeability. The proofs of the security theorems are given
in the full version of this paper.

Theorem 1. If the DLN assumption holds in G, then the proposed HEA scheme
is semantically secure.

Theorem 2. If the q-SDH assumption holds in G, the BB signature scheme is
strongly unforgeable against a weak chosen message attack and the hash function
H is collision-resistant, then the proposed HEA scheme is unforgeable.

5 Verifiable Homomorphic Encryption

Informally, a verifiable homomorphic encryption (VHE) is a symmetric-key ho-
momorphic encryption which enables verifiable computation on outsourced en-
crypted data. In a VHE scheme, a user with secret key SK can encrypt messages
m1, . . . ,mk to obtain k independent ciphertexts c1, . . . , ck. Given ciphertexts
c1, . . . , ck and an admissible function f , anyone can compute a ciphertext c on
the value f(m1, . . . ,mk). The user can then decrypt ciphertext c to obtain mes-
sage m with secret key SK, and check whether m = f(m1, . . . ,mk).

We also use the syntax of labeled data and programs for specifying which
data is being encrypted and which data a program P should be evaluated on.
Formally, a VHE scheme consists of the following four algorithms:

Setup(1λ) takes as input a security parameter λ. It outputs the public param-
eters PP and a secret key SK. The public parameters PP defines a message
space M and a set F of “admissible” functions f :Mk →M.

Enc(SK, τ,m) takes as input a secret key SK, a label τ ∈ {0, 1}∗ and a message
m ∈M. It outputs a ciphertext c.

Dec(SK,P , c) takes as input a secret key SK, a labeled program P and a ci-
phertext c. It outputs a message m ∈ M or an error symbol ⊥.

Eval(PP, f, c) takes as input the public parameters PP, a function f ∈ F and a
vector of ciphertexts c = (c1, . . . , ck). It outputs a new ciphertext c.

For correctness, we require that for each (PP, SK) output by Setup(1λ), the
following properties hold:

1. For all labels τ ∈ {0, 1}∗ and all m ∈ M, if c ← Enc(SK, τ,m) then
Dec(SK, Iτ , c) = m.

2. Given an admissible function g :Mk ←M and any set of message/program/
ciphertext triples {(mi,Pi, ci)}ki=1 such that Dec(SK,Pi, ci) = mi, if P =
g(P1, . . . ,Pk) and c = Eval(PP, g, (c1, . . ., ck)), then Dec(SK,P , c) = g(m1,
. . . ,mk).

286 J. Lai et al.

The above requirements capture the basic correctness of decrypting over freshly
encrypted data, as well as the composability of decrypting over the outputs of
prior computations. If the set of admissible functions F of a VHE scheme consists
of linear functions (resp. any functions) from Mk to M, then we say that the
VHE scheme is a linearly (resp. fully) VHE scheme.

The security requirements of VHE, including semantic security and verifiabil-
ity. Informally, semantic security requires that a ciphertext c of a messagem with
label τ should not leak any information about m. Let ci be a ciphertext on a mes-
sage mi with label τi for i = 1, . . . , k. Verifiability requires that given (c1, . . . , ck),
it should be impossible to output a ciphertext c and an admissible function f
such that m′ ← Dec(SK,P = (f, τ1, . . . , τk), c) and m′ �= {⊥, f(m1, . . . ,mk)}.
The formal definitions of the security requirements of VHE are given in the full
version of this paper.

5.1 Generic Construction of VHE from HE and HEA

Given a homomorphic encryption scheme HE = (HE.Setup,HE.Enc,HE.Dec,
HE.Eval) and a homomorphic encrypted authenticator scheme HEA =
(HEA.Setup,HEA.Auth, HEA.Ver,HEA.Eval), we define the 4-tuple algorithms of
a VHE scheme (Setup, Enc, Dec, Eval) as follows. (Notice that, both public-key
homomorphic encryption and secret-key homomorphic encryption can be used
in the following generic construction, although the description uses a public-key
homomorphic encryption scheme.)

Setup(1λ) Given a security parameter λ, the setup algorithm performs (PKHE,
SKHE) ← HE.Setup(1λ), (PKHEA, SKHEA) ← HEA.Setup(1λ). Then, it sets
the public parameters PP = (PKHE,PKHEA) and the secret key SK =
(SKHE, SKHEA). We assume that PKHE and PKHEA are defined over the same
message space M and the same set of admissible functions F .

Enc(SK, τ,m) Given the secret key, a label τ ∈ {0, 1}∗ and a message m ∈ M,
it runs cHE ← HE.Enc(PKHE,m), σHEA ← HEA.Auth(SKHEA, τ,m). Then, it
outputs the ciphertext c = (cHE, σHEA).

Dec(SK,P , c) Given the secret key, a labeled program P and a ciphertext
c = (cHE, σHEA), it runs m ← HE.Dec(SKHE, cHE). Then, it checks whether
HEA.Ver(SKHEA,m,P , σHEA) = 1. If so, it outputs the message m; otherwise,
it outputs ⊥.

Eval(PP, f, c) With the public parameters PP = (PKHE, PKHEA), a func-
tion f ∈ F and a vector of ciphertexts c = (c1, . . . , ck) where ci =
(cHEi , σ

HEA
i) for i = 1, . . . , k, it runs cHE ← HE.Eval(PKHE, f, cHE), σHEA ←

HEA.Eval(PKHEA, f,σHEA), where cHE = (cHE1 , . . . , c
HE
k) and σHEA =

(σHEA1 , . . . , σHEAk). Then, it outputs a ciphertext c = (cHE, cHEA).

Obviously, the above scheme satisfies the correctness of VHE if the underly-
ing homomorphic encryption scheme and homomorphic encrypted authenticator
scheme are correct. Now, we state the security theorems of our proposed VHE
scheme.

Verifiable Computation on Outsourced Encrypted Data 287

Theorem 3. If the homomorphic encryption scheme HE and homomorphic en-
crypted authenticator scheme HEA are semantically secure, then the proposed
VHE scheme is semantically secure.

Proof. Let c = (cHE, σHEA) be a ciphertext of message m. Since the underlying
homomorphic encryption scheme and homomorphic encrypted authenticator are
semantically secure, cHE and σHEA do not leak any information about m. Thus,
the proposed VHE scheme is also semantically secure.

Theorem 4. If the homomorphic encrypted authenticator scheme HEA is (resp.
weakly) unforgeable, then the proposed VHE scheme is (resp. weakly) verifiable.

Proof. Suppose there exists an adversary A that breaks the verifiability of the
proposed VHE scheme. We can build an algorithm B that breaks the unforgeabil-
ity of the underlying homomorphic encrypted authenticator scheme as follows.

Let C be the challenger corresponding to B in the unforgeability game of the
underlying HEA scheme. B is given the public key PKHEA of the underlying HEA
scheme and runs A executing the following steps.

Setup. B first runs (PKHE, SKHE) ← HE.Setup(1λ). Then, it sends the public
parameters PP = (PKHE,PKHEA) to adversary A.

Queries. Since B knows the secret key SKHE, with the help of the authentication
and verification oracles of HEA provided by C, it can answer A’s ciphertext and
verification queries.

Output. Finally, A outputs a labeled program P∗ and a ciphertext c∗ = (c∗HE,
σ∗HEA). B runs m∗ ← HE.Dec(SKHE, c∗HE) and outputs (m∗,P∗, σ∗HEA).

Obviously, if A breaks the verifiability of the proposed VHE scheme with non-
negligible advantage, B will win the unforgeable game of the underlying HEA
scheme with non-negligible advantage. This completes the proof of Theorem 4.

Instantiating the above generic construction with existing fully homomorphic
encryption (resp. linearly homomorphic encryption) and our proposed fully HEA
with weak unforgeability (resp. linearly HEA with unforgeability), it is straight-
forward to derive a fully VHE with weak verifiability (reps. linearly VHE with
verifiability); we omit the details of the constructions here in order to keep the
paper compact.

6 Conclusion

In this paper, we study verifiable homomorphic encryption (VHE) which enables
verifiable computation on outsourced encrypted data. In order to construct VHE
schemes, we introduce a new cryptographic primitive called homomorphic en-
crypted authenticator (HEA), and show that a VHE scheme can be built upon a
homomorphic encryption scheme and a HEA scheme. We observe that the fully
homomorphic MAC scheme, proposed by Gennaro and Wichs [13] recently, is a
fully HEA scheme in a weaker security model. Then, we present a linearly HEA
scheme which is proven secure in a full security model. Instantiating the generic

288 J. Lai et al.

construction of VHE, we can derive a fully VHE scheme which is secure in a
weaker security model, and a linearly VHE scheme which is secure in a full secu-
rity model. An open research problem is to find fully VHE constructions which
is secure in a full security model, i.e., it allows any verifiable computation over
outsourced encrypted data and tolerates any number of malicious verification
queries.

Acknowledgement. We are grateful to the anonymous reviewers for their help-
ful comments. The work of Junzuo Lai was supported by the National Natural
Science Foundation of China (Nos. 61300226, 61272534), the Research Fund
for the Doctoral Program of Higher Education of China (No. 20134401120017),
the Guangdong Provincial Natural Science Foundation (No. S2013040014826),
and the Fundamental Research Funds for the Central Universities. The work of
Jian Weng was supported by the National Science Foundation of China (Nos.
61272413, 61133014), the Fok Ying Tung Education Foundation (No. 131066),
the Program for New Century Excellent Talents in University (No. NCET-12-
0680), the Research Fund for the Doctoral Program of Higher Education of China
(No. 20134401110011), and the Foundation for Distinguished Young Talents in
Higher Education of Guangdong (No. 2012LYM 0027).

References

1. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178 (2009)

2. Boneh, D., Freeman, D.M., Katz, J., Waters, B.: Signing a linear subspace: Sig-
nature schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009.
LNCS, vol. 5443, pp. 68–87. Springer, Heidelberg (2009)

3. Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the
integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
142–160. Springer, Heidelberg (2010)

4. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg
(2011)

5. Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the stan-
dard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011.
LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011)

6. Catalano, D., Fiore, D., Warinschi, B.: Adaptive pseudo-free groups and applica-
tions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 207–223.
Springer, Heidelberg (2011)

7. Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the
standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 680–696. Springer, Heidelberg (2012)

8. Freeman, D.M.: Improved security for linearly homomorphic signatures: A generic
framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 697–714. Springer, Heidelberg (2012)

Verifiable Computation on Outsourced Encrypted Data 289

9. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011)

10. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Com-
puting on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 1–20. Springer, Heidelberg (2012)

11. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: New
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)

12. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding
quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013)

13. Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 301–320.
Springer, Heidelberg (2013)

14. Catalano, D., Fiore, D.: Practical homomorphic MACs for arithmetic circuits. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
336–352. Springer, Heidelberg (2013)

15. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on
outsourced data. In: ACM Conference on Computer and Communications Security,
pp. 863–874 (2013)

16. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision re-
sistance to succinct non-interactive arguments of knowledge, and back again. In:
ITCS, pp. 326–349 (2012)

17. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

18. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation us-
ing fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 483–501. Springer, Heidelberg (2010)

19. Barbosa, M., Farshim, P.: Delegatable homomorphic encryption with applications
to secure outsourcing of computation. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 296–312. Springer, Heidelberg (2012)

20. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:
Verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)

21. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Suc-
cinct functional encryption and applications: Reusable garbled circuits and beyond.
IACR Cryptology ePrint Archive 2012, 733 (2012)

22. Gennaro, R., Pastro, V.: Verifiable computation over encrypted data in the pres-
ence of verification queries. Cryptology ePrint Archive, Report 2014/202 (2014),
http://eprint.iacr.org/

23. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011)

24. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In: ACM Conference on Computer and
Communications Security, pp. 501–512 (2012)

25. Catalano, D., Fiore, D., Gennaro, R., Vamvourellis, K.: Algebraic (trapdoor) one
way functions and their applications. IACR Cryptology ePrint Archive 2012, 434
(2012)

http://eprint.iacr.org/

290 J. Lai et al.

26. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg
(2013)

27. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of opera-
tions on dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
91–110. Springer, Heidelberg (2011)

28. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. Foundations of Secure Computation 32(4), 169–178 (1978)

29. Stehlé, D., Steinfeld, R.: Faster fully homomorphic encryption. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010)

30. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

31. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

32. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012)

33. Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomor-
phic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778,
pp. 1–13. Springer, Heidelberg (2013)

34. Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.:
Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer, Heidel-
berg (2013)

35. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013)

36. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

37. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) lwe. In: FOCS, pp. 97–106 (2011)

38. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

39. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-
cryption without bootstrapping. In: ITCS, pp. 309–325 (2012)

40. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002)

41. Ahlswede, R., Cai, N., Li, S.Y.R., Yeung, R.W.: Network information flow. IEEE
Transactions on Information Theory 46(4), 1204–1216 (2000)

42. Li, S.Y.R., Yeung, R.W., Cai, N.: Linear network coding. IEEE Transactions on
Information Theory 49(2), 371–381 (2003)

43. Ateniese, G., Burns, R.C., Curtmola, R., Herring, J., Kissner, L., Peterson, Z.N.J.,
Song, D.X.: Provable data possession at untrusted stores. In: ACM Conference on
Computer and Communications Security, pp. 598–609 (2007)

Verifiable Computation on Outsourced Encrypted Data 291

44. Juels, A., Kaliski Jr., B.S.: Pors: proofs of retrievability for large files. In: ACM
Conference on Computer and Communications Security, pp. 584–597 (2007)

45. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

46. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006)

47. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

48. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013)

49. Catalano, D., Marcedone, A., Puglisi, O.: Linearly homomorphic structure pre-
serving signatures: New methodologies and applications. IACR Cryptology ePrint
Archive 2013, 801 (2013)

50. Joo, C., Yun, A.: Homomorphic authenticated encryption secure against chosen-
ciphertext attack. IACR Cryptology ePrint Archive 2013, 726 (2013)

51. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

52. Boneh, D., Boyen, X.: Short signatures without random oracles and the sdh as-
sumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

Verifiable Computation with Reduced

Informational Costs and Computational Costs

Gang Xu, George T. Amariucai, and Yong Guan

Iowa State University, Ames, Iowa, USA
{gxu,gamari,guan}@iastate.edu

Abstract. Outsourcing computation is a fundamental principle of the
new cloud computing paradigm. Among its various aspects, the correct-
ness of the computation result remains paramount. This motivates the
birth of verifiable computation, which aims at efficiently checking the
result for general-purpose computation. The common goal of recently
sprouted verifiable computation protocols is to reduce the costs associ-
ated with verification at both prover and verifier. Unfortunately, the high
computation and communication costs of verification still keep general
verifiable computation away from practicality. Besides the computational
costs, we observe that another type of verification cost has been generally
ignored until now –the informational costs, namely, the information re-
quired for the verification. In particular, in the context of the third-party
verification, this cost implies the information leakage of sensitive infor-
mation regarding the computational task and its results. In this paper,
we introduce the new verifiable-computation protocol RIVER, which re-
duces the computational costs of the verifier and of the prover, comparing
to the most recent alternative protocols, and (for the first time in the
context of verifiable computation) addresses and decreases informational
costs.

Keywords: verifiable computing, QAPs, PCPs, clouds, informational
costs, privacy.

1 Introduction

In the era of cloud computing, outsourcing computation becomes a new trend.
Instead of purchasing, maintaining, and updating expensive computing assets
for local computation, users can outsource computation and other IT services
from relatively weaker devices to a professional service provider (like the Cloud).
But while enjoying the appealing benefits of outsourcing computation – such
as reduced financial, personnel and computational burdens – a critical security
issue arises: Cloud servers may be error-prone or otherwise not trustworthy. This
motivates a great body of research on verifiable computation. Many works focus
on specific computational tasks, exploiting their special structure to provide
efficient verification [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]. However, when it
comes to verifying the results of general computation, most efforts seem to be

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 292–309, 2014.
c© Springer International Publishing Switzerland 2014

RIVER 293

concentrated around classic proof systems in theoretical computer science. In this
framework, the server plays the role of a prover, trying to convince the client, who
plays the role of a verifier, that the result returned from the server is correct. The
verification procedure usually consists of the verifier issuing randomly-chosen
queries, and the prover providing answers.

Interactive proof (IP) systems [13] have recently been introduced to the con-
text of delegation of computation [14] [15] [16]. They are efficient in terms
of asymptotic complexity. As a new encoding scheme for arithmetic circuits,
Quadratic Arithmetic Programs (QAPs, [17]) have shown great potential for the
design of verifiable computation protocols [17] [18]. The third notable direction
in verifiable computation is based on probabilistically checkable proof (PCP)
systems [19] [20]. Argument systems [21], one variant of the PCP model, seem
to be appropriate for practical verifiable computation. Argument systems hold
a more practical assumption that, in addition to the verifier being polynomial-
time probabilistic, the prover is also computationally bounded. Combining PCP
with a homomorphic cryptographic machinery, recent works on argument sys-
tems, such as IKO [22], Pepper [23], Ginger [24], XAG [25], and Zaatar [26], have
brought PCP-based approaches closer to practicality – they sharply reduced the
number of queries, and the overhead required to prevent the falsification of the
proof string.

1.1 Motivation

The state-of-the-art Zaatar [26] showed the connection between Linear PCP and
QAP. However, unlike other QAP-based designs [17] [18], Zaatar relies only on
standard cryptographic assumptions. It applies QAP into the framework of PCP
and generates a novel verifiable computation scheme. Moreover, as an appealing
verifiable computation scheme, Zaatar makes the prover more efficient than any
other PCP-based designs. However, Zaatar does not bring major improvements
to the verifier’s computational cost. As in the recent PCP-based works [22] [27]
[23] [24], once the prover has committed to the proof, the most computationally-
intensive part for the verifier in Zaatar is the generation of queries. The high
costs of the verifier are hence lowered by reusing some of the queries for multiple
instances of the same problem – or batching. For computational tasks that can
tolerate large batch sizes, the costs of verification in Zaatar can be driven down
by amortizing. However, for tasks that require low investment on the verification
and tolerate only small batch sizes, a new, more efficient protocol is needed.

Besides the computation and communication costs that have been concerned
in existing research of verifiable computation, another type of verification cost
has been generally ignored until now. We call this the informational cost –
the cost associated with information required for verification on both sides. The
verifier’s information required for verification usually consists of verification keys
and the full knowledge of the computation task. The prover’s informational costs
usually consists of the proof vector.

The informational cost generally has a strong impact on the adoption of
the verification algorithms. On one hand, the size of the required information

294 G. Xu, G.T. Amariucai, and Y. Guan

directly influences the memory cost for verification, and the speed of verifica-
tion. For the memory cost, verifiers in existing research keep the required infor-
mation in a large memory and frequently access it. For the speed, the length
of the proof vector determines the cost of generating, and responding to, the
queries while verifying. On the other hand, the informational cost implies the
privacy/confidentiality issues. One obvious risk is that, storing this information
itself introduces potential leakage of sensitive information about the computa-
tional task and its results. A more serious risk occurs in the context of the third
party verification. (For example, disputes between the server and the client can
be solved by an arbitrator who plays the role of the third-party verifier. Similar
verifications may be required by government agencies, nonprofit organizations,
and consumer organization, for the purpose of quality evaluation, project man-
agement, etc.) In such scenarios, information cost implies the computation task
and its results being delivered to the third party. However, once delivered, the
information is out of the control of the client and the client can never call them
back. This security issue, in turn, may limit the outsourcing of verification [25].

As far as informational costs are concerned, all recent PCP-based works [22]
[27] [23] [24], [26] require the verifier to have full knowledge of the computation
circuit while performing the verification.

1.2 Our Contributions

In this paper, we introduce RIVER, a Reduced-investment verified computa-
tion protocol, whose improvement further enhances the practicality of argument
systems in verifiable computation. Our contributions are summarized as follows:

– RIVER reduces the verifier’s workload that needs to be amortized. Namely,
the number of batched instances of the protocol, required for amortization,
will largely decrease. Instead of batching over instances of the same circuit as
in existing works, RIVER makes more parts of costs amortized over instances
of all different circuits of the same size. We model the costs and compare
the costs using a typical computation such as matrix multiplication, showing
that RIVER is 28% better than state-of-the-art Zaatar at the verifier side.

– As a side effect, RIVER reduces the prover’s non-amortized cost. As in the
typical computation of matrix multiplication, RIVER achieves 55% better
than Zaatar at the prover’s non-amortized cost. Although RIVER introduces
amortized cost to the prover side, this cost can be amortized over instances
of all different circuits of the same size.

– RIVER reduces the informational cost of the verifier, by removing the re-
quirement that the verifier has to access the circuit description during query
generating. Thus, a third-party verifier can help generating the queries with-
out knowing the computation task details.

– RIVER adopts one of our theoretical findings. We show that under certain
assumptions, the Single-Commit-Multi-Decommit protocol provides the in-
herent linearity tests. Thus, a modified Single-Commit-Multi-Decommit pro-
tocol will make the linearity tests obsolete and reduce verification costs.

RIVER 295

2 System Model

In the context of cloud computing, we propose a computation architecture in-
volving two parties: the client V , who is computationally weak, has computation
tasks to be delegated to the cloud; the cloud server P , who is computationally
powerful, provides computing services to the client. The computation tasks are
formalized into the arithmetic circuit – i.e., the computation task is performed
over an arithmetic circuit. This is pretty natural, since arithmetic circuits can
be easily mapped to real-world computation tasks1. Let Ψ be a |Ψ |-gate arith-
metic circuit. The client V is providing the prover P with Ψ and input X ∈ Fn,
and expects P to return the correct output Y ∈ Fn′

. Then P tries to convince
V that Y is correct. P will hold a proof Z, which is a correct assignment Z
–the concatenation of the input X , output Y with all the intermediate results
W inside the circuit, (Z = X ||Y ||W) and has length |Z| = m, where W is the
intermediate result vector W ∈ Fm−n−n′

of the circuit Ψ .

3 Preliminaries

3.1 PCP and Commitments

Now we briefly review the line of verifiable computation based on argument
systems. To make argument systems efficient, current implementations rely on
probabilistically checkable proofs (PCPs). However, PCP algorithms assume that
the proof is computed by the prover, and fixed before the interaction with the
verifier begins. The same assumption cannot be made in the context of argument
systems. To bridge the gap between arguments and PCPs, an additional protocol
is required, in which the prover commits to the proof before starting the PCP
protocol with the verifier. Consequently, an argument is generally formed by
joining together two protocols: a PCP and a commitment protocol.

To avoid the need for convoluted short PCP proofs, as well as the uncertain
security of practical hashing primitives, [22] takes a new approach to argument
systems: maintain a large (exponential-size) proof, and base the commitment on
(computationally) provably-secure encryption primitives – public-key primitives.

The protocols of [22] are restricted to linear PCPs ([28], Section 6). It is
shown how SAT problems, formulated in the context of a boolean circuit, can
be readily addressed by a simple linear PCP [22]. To form the argument system,
[22] complemented the linear PCP with the notion of commitment with linear
decommitment, which is instantiated with a simple public-key-based protocol.
Once the proof is committed, V will check the proof in the linear PCP fashion.

In Ishai et al.’s original commitment design [22], one query is accompanied
by an auxiliary query which is associated to a commitment. This requires many
commitments, therefore increases the overhead. As in [22], where the PCP proof
is represented by the vector d, the prover P commits to a certain proof, in a

1 Existing compilers can turn high-level programs into arithmetic circuits [24], [26],
[18]. For simplicity, we omit these techniques.

296 G. Xu, G.T. Amariucai, and Y. Guan

Table 1. The Single-Commit-Multi-Decommit Design [24]

P’s Input: a vector z ∈ Fn, a linear function π : Fn2+n 	→ F

where π(·) = 〈Z||z ⊗ z, ·〉, n is the length of a correct assignment z.
V’s Input: arity n, security parameter k of the encryption.

Commitment

Step 1: V generates the key pair: (pk, sk)← Gen(1k).

V randomly generates a vector: r = (r1, r2, · · · , rn2+n) ∈R Fn2+n.
ri ∈ F, i = 1, 2, · · · , n2 + n. V encrypts each entry of the vector r.
He sends Enc(pk, r1), · · · , Enc(pk, rn2+n) to P .
Step 2: Using the homomorphism, P gets: e = Enc(pk, 〈r, z〉) P sends e to V.
Step 3: V decrypts e. He gets s = 〈r, z〉 = Dec(sk, e).

Decommitment
Step 1: V picks μ secrets α1, · · · , αμ ∈ F

V queries P with q1, · · · , qμ and t = r + α1q1 + · · ·+ αμqμ.
Step 2: P returns (a1, · · · , aμ, b) where ai = π(qi) for i = 1, · · · , μ and b = π(t)
Step 3: V checks whether b = s+ α1a1 + · · ·αμaμ holds.
If so, V outputs a1, · · · , aμ. Otherwise, he rejects and output ⊥.

manner that assures the verifier V that the proof he later queries is the orig-
inal proof, and not some adaptively-modified false proof. Several recent works
build upon the ideas developed in [22]. Of these, [23] introduces several contribu-
tions, including a single-commit-multi-decommit protocol. In [23], one auxiliary
query is made, which is a random linear combination of all the PCP queries
and the secret information that is associated to the commitment. In this de-
sign, one decommitment could guarantee many PCP queries are bound to the
committed function. This sharply reduced the computational cost of generating
the commitment information (although remaining cost is still very high.). The
Single-Commit-Multi-Decommit design is demonstrated in Table 1. For more
details regarding Table 1, refer to [22] and [23].

3.2 Quadratic Programs and Zaatar

Recently Gennaro, Gentry, Parno and Raykova introduced a new characteriza-
tion of the NP complexity class – the Quadratic Span Programs (QSPs) (and
Quadratic Arithmetic Programs (QAPs)) [17] [18]. They showed that NP can
be defined as the set of languages with proofs that can be efficiently verified by
QSPs (or QAPs). Similar to PCPs – another characterization of NP, which has al-
ready been widely used to obtain verifiable computation schemes – QSPs/QAPs
are considered to be well-suited for verifiable computation and zero-knowledge
schemes. One limitation of QSPs is that they inherently compute boolean cir-
cuits. But since arithmetic circuits are more natural and efficient in real-world
computation tasks, we focus on QAPs, the counterpart of QSPs dealing with
arithmetic circuit evaluation.

Definition 1 (Quadratic Arithmetic Programs)([17]) A QAP Q over field F

contains three sets of m + 1 polynomials: {Ai(t)}, {Bi(t)}, {Ci(t)}, for i ∈

RIVER 297

{0, 1, · · · ,m}, and a target polynomial D(t). For function Ψ : Fn �→ Fn′
, we

say Q computes Ψ if the following holds: (z1, z2, · · · , zn+n′) ∈ Fn+n′
is a valid

assignment of Ψ ’s inputs and outputs, if and only if there exist coefficients

zn+n′+1, · · · , zm such that D(t) divides P (t), where P (t)=

(
m∑
i=1

zi · Ai(t)+A0(t)

)
·(

m∑
i=1

zi · Bi(t) + B0(t)

)
−
(

m∑
i=1

zi · Ci(t) + C0(t)

)
. In other words, there exists

a polynomial H(t) such that D(t) ·H(t) = P (t).

Given an arithmetic circuit, its QAP can be constructed by polynomial inter-
polation. Consider the set of circuit wires corresponding to the input and output
of the circuit, and the outputs of all multiplication gates. Each one of these wires
is assigned three interpolation polynomials in Lagrange form, encoding whether
the wire is a left input, right input, or output of each multiplication gate. The
resulting set of polynomials is a complete description of the original circuit.

The very recent work of [26] observes that QAPs can also be viewed as linear
PCPs. By re-designing the PCP query generation and replacing the quadratic
consistency checks and circuit correctness checks with the divisibility check of a
QAP, they successfully fit QAPs into the framework of Ginger [24]. The result
is the novel protocol Zaatar, which significantly reduces the prover’s workload.
The key observation of Zaatar is that the evaluation of the polynomial P (t) in
(1) at the point t = τ can be simply written as:

P (τ) =(〈Z, q〉+ A0(τ)) · (〈Z, q′〉+ B0(τ)) − (〈Z, q′′〉+ C0(τ)), (1)

where Z = (z1, · · · , zm), q = (A1(τ), · · · , Am(τ)), q′ = (B1(τ), · · · , Bm(τ)),
q′′ = (C1(τ), C2(τ), · · · , Cm(τ)). Thus, P (τ) can be evaluated through three
standard PCP queries to the oracle πZ(·) = 〈Z, ·〉. If we represent the polynomi-
als H(t) explicitly: H(t) = h|CZ|t

|CZ| + · · ·+h1t+h0 (where CZ is the set of con-
straints in Zaatar), similar observations on H(τ) can be made: H(τ) = 〈KH , qH〉,
where KH = (h0, h1, · · · , h|CZ|) and qH = (1, τ, τ2, · · · , τ |CZ |). Thus, H(τ) can
also be evaluated through one PCP query to the oracle πH(·) = 〈KH , ·〉.

If Z consists of the input X with width |X | = n, output Y with width |Y | = n′

and intermediate results W with width |W | = m− (n + n′), then to guarantee
that Y is the correct output when the input is X , the verifier needs to compute
a part of 〈Z, q〉, and also a part of 〈Z, q′〉 and 〈Z, q′′〉, by himself. Consequently,
V only queries the linear function oracle πW (·) = 〈W, ·〉, instead of πZ(·).

4 A Technique: A Commitment Providing Inherent
Linearity Tests

In the line of linear-PCP fashion verifiable computation designs, once the prover
is committed to a proof, the verifier has to perform laborious linearity tests to
ensure the proof is linear. In fact, the number of queries required to perform
linearity tests dominate the number of overall queries of the protocol. Thus, the
cost caused by linearity test is still one of the bottlenecks of current protocols.

298 G. Xu, G.T. Amariucai, and Y. Guan

Up to now, in the context of Single-Commit-Multi-Decommit protocol (refer to
Section 3), whether the linearity tests are necessary was still an open question.
In this section, we propose our theoretical result, showing that under an as-
sumption, the Single-Commit-Multi-Decommit protocol will provides inherent
linearity tests. Thus, if linear PCP is combined with this commitment protocol,
the linearity tests are obsolete. We will adopt the following theoretical results in
our protocol design and thus achieve cost savings.

Theorem 1. The Single-Commit-Multi-Decommit protocol ensures that, if the
secret commit information is generated by the prover using an affine function
(analytically defined), (or equivalent to the cases that is generated by the verifier
himself), for all query tuples, unless the sender (or prover) replies to all queries
with the same linear function and he knows the analytic description of this linear
function, the prover will not pass the decommitment test except with probability
1
|F| + εS, where the probability is over the randomness of the prover and the

verifier in the decommitment phase.

Proof. Let π() denote the proof in the PCP sense. The prover knows that, when
the verifier generates the commitment information π(r), he uses the linear func-
tion F1(·), such that π(r) = F1(r). We claim that in this scenario, the prover has
to answer all queries with the same linear function F1 – otherwise the probability
that the prover passes the decommitment test is less than 1

|F| + εS .

To prove this, we assume that there exists a PPT prover P∗, and queries
q1, q2, · · · , qμ, such that once committed, with these queries, the probability that
P∗ answers the μ queries with a function f(·) – such that there exists at least
one index k for which f(qk) �= F1(qk) – and passes the decommitment test, is
more than 1

|F| + εS , where the probability is over the randomness of the prover

and the verifier in the decommitment phase.
We can now modify P∗ and make it into an algorithm P† which can solve the

problem stated in Lemma 1 with probability more than 1
|F| + εS :

1. P† has inputs: Enc(r), r + αqk, qk
2. P† uses Enc(r) as inputs and runs P∗’s commitment phase.
3. P∗ outputs with Enc(F1(r) which P† will neglect.
4. P† uses the set of queries {q1, . . . , qμ}. He produces a set of coefficients
{α1, · · · , αk−1, αk+1, · · · , αμ−1, αμ}, and runs P∗’s decommitment phase

with following: {q1, q2, . . . , qμ−1, qμ, (r + αqk) +
∑k−1

i=1 αiqi +
∑μ

i=k+1 αiqi}..
5. P∗ outputs {f(q1), . . . , f(qμ), F1(r) + αf(qk) +

∑k−1
i=1 αif(qi) +∑μ

i=k+1 αif(qi)}. This will pass the decommitment test with proba-

bility more than 1
|F| + εS.

6. Having access to {α1, · · · , αk−1, αk+1, · · · , αμ−1, αμ}, and f(q1), . . . , f(qμ),
P† can now obtain an equation of the form F1(r) +αf(qk) = b (where b ∈ F

is easily calculated).

Recall that P† has knowledge of r + αqk, which yields a group of n linearly-
independent linear equations in the form of r + αqk = a. Given that F1(qk) �=

RIVER 299

qH

(qH)

V

qA
qB

qC

H (qH)

P

W (qA), W (qB), W (qC)

Fig. 1. PCP querying

f(qk), the equation F1(r) + αf(qk) = b is linearly independent of the former
n equations r + αqk = a. Thus, A can solve for α from these n + 1 linearly
independent equations. This will contradict Lemma 1:

Lemma 1. (from [22]) For any probabilistic polynomial time algorithm A, any
q ∈ Fn, and any uniformly-randomly picked r ∈ Fn we have Pr[A(Enc(r), r +
αq, q) = α] ≤ 1

|F| + εS , where εS is from the semantic security.

5 A Reduced-Investment Verifiable Computation
Protocol: RIVER

In this section, we introduce RIVER(reduced-investment verifiable computation
protocol), an improvement of Zaatar [26], aimed at reducing the amortized cost
of the verifier – or equivalently, the number of instances required before amor-
tization can be considered complete. We accomplishes this by deferring some
of the verifier’s amortizable computation to the prover. In doing so, two other
benefits are achieved as side effects. First, the overall cost for the verifier is de-
creased when compared to Zaatar (and implicitly also to Ginger). This is despite
deferring some of the amortized computation to the prover (the deferred part
is almost negligible when compared to the construction of the proof). Second,
RIVER enables the verifier to generate queries independently – that is, the query
generating stage does not require full knowledge of the circuit. We detail RIVER
as follows.

5.1 PCP Querying

Our main observation is that the PCP query generation in Zaatar is somewhat
redundant. RIVER removes the redundancy by employing three rounds of PCP
querying and one round of decision making. The logical procedure is demon-
strated in Figure 1.

300 G. Xu, G.T. Amariucai, and Y. Guan

5.2 PCP Querying of RIVER

Let l = |CR|. We represent the QAP polynomials Ai(t), Bi(t), Ci(t), with i =
0, 1, · · · ,m explicitly as:

Ai(t) = a
(i)
l tl + a

(i)
l−1t

l−1 + · · ·+ a
(i)
1 t + a

(i)
0 (2)

Bi(t) = b
(i)
l tl + b

(i)
l−1t

l−1 + · · ·+ b
(i)
1 t + b

(i)
0 (3)

Ci(t) = c
(i)
l tl + c

(i)
l−1t

l−1 + · · ·+ c
(i)
1 t + c

(i)
0 (4)

Evaluation of any one of these polynomials at the point t = τ can be expressed as

a linear function: Ai(τ) = π
(i)
A (qH) = 〈K(i)

A , qH〉, Bi(τ) = π
(i)
B (qH) = 〈K(i)

B , qH〉,
Ci(τ) = π

(i)
C (qH) = 〈K(i)

C , qH〉, where qH = (1, τ, τ2, · · · , τ l) and

K
(i)
A = (a

(i)
l , a

(i)
l−1, · · · , a

(i)
1 , a

(i)
0) (5)

K
(i)
B = (b

(i)
l , b

(i)
l−1, · · · , b

(i)
1 , b

(i)
0) (6)

K
(i)
C = (c

(i)
l , c

(i)
l−1, · · · , c

(i)
1 , c

(i)
0). (7)

We can simply express the PCP queries of Zaatar as

qA = (πm
A (qH), πm−1

A (qH), . . . , πn+n′+1
A (qH)) (8)

qB = (πm
B (qH), πm−1

B (qH), . . . , πn+n′+1
B (qH)) (9)

qC = (πm
C (qH), πm−1

C (qH), . . . , πn+n′+1
C (qH)). (10)

In RIVER, the verifier constructs qA, qB, qC by querying linear functions πi
A,

πi
B, πi

C (i = 0, · · · ,m) by a single query qH .
Similarly, we can express H(t) and D(t) as:

H(t) = hlt
l + hl−1t

l−1 + · · ·+ h1t+ h0 (11)

D(t) = dlt
l + dl−1t

l−1 + · · ·+ d1t+ d0, (12)

and define: πH(·) = 〈KH , ·〉, where KH = (h0, h1, · · · , hl), and πD(·) = 〈KD, ·〉,
where KD = (d0, d1, · · · , dl). Zaatar points out that the evaluation of H(τ) can
be viewed as querying an oracle πH(·) with qH . Here, we argue that the same
holds for the evaluation of D(τ) – querying the oracle πD(·) with qH . The idea
is detailed in Table 2. Note that by comparison, Zaatar requires the queries
qA, qB, qC , along with D(τ) to be entirely computed by V . It should be men-
tioned that computing these queries by querying another set of proofs requires
additional commitments and testing. However, the procedure can be simplified
by removing all linearity tests for these 3m+4 = 3(m+1)+1 proofs. The reason
this works is that, according to Theorem 1, our decommitment already provides
an inherent linearity test. In the second round of our design, V issues queries qH
as in Table 3. In the third round, V issues queries qA, qB , qC , qD as in Table 4.
After V collects all responses, he makes the decision as in Table 5.

RIVER 301

Table 2. The First Round of Our QAP-based Linear PCP

For every π in the set of π
(i)
A , π

(i)
B , π

(i)
C , (i = 0, 1, · · ·m) πD, perform the following:

– Divisibility queries generation. V randomly selects τ ∈R F. V takes qH ←
(1, τ, τ 2, · · · , τ l).

– Querying. V sends out qH and gets back π(qH).

If all these proofs pass all linearity tests, V will have: πD(qH) and

– π
(m)
A (qH), π

(m−1)
A (qH), · · · , π(0)

A (qH),

– π
(m)
B (qH), π

(m−1)
B (qH), · · · , π(0)

B (qH),

– π
(m)
C (qH), π

(m−1)
C (qH), · · · , π(0)

C (qH),

Table 3. The Second Round of Our QAP-based Linear PCP

V queries πH .

– Linearity queries generation. V selects q2, q3 ∈R Fl. Take q4 ← q3+q2. Perform
ρlin iterations in total.

– QAP queries generation. V takes qH ← (1, τ, τ 2, · · · , τ l) and q1 ← (qH + q2).
– Querying πH . V sends out q1, q2, · · · , q1+3ρ and gets back

πH(q1), πH(q2), · · · , πH(q1+3ρ).
– Linearity tests. Check whether following holds: πH(q4) = πH(q3)+πH(q2) and
likewise for all other ρ− 1 iterations. If not, reject.

At the end of this phase, if πH passes all linearity tests, V will have: πH(qH).

Table 4. The Second Round of Our QAP-based Linear PCP

V queries πW . Remember πW (·) = 〈W, ·〉, where W = (zm, zm−1, · · · , zN+1)

– Linearity queries generation. V select q4, q5 ∈R Fm−N . Take q6 ← q4 + q5.
Perform ρlin iterations in total.

– QAP queries generation. V takes:
• qA ← (π

(m)
A (qH), π

(m−1)
A (qH), · · · , π(n+n′+1)

A (qH)), and q1 ← (qA + q4).

• qB ← (π
(m)
B (qH), π

(m−1)
B (qH), · · · , π(n+n′+1)

B (qH)), and q2 ← (qB + q4).

• qC ← (π
(m)
C (qH), π

(m−1)
C (qH), · · · , π(n+n′+1)

C (qH)), and q3 ← (qC + q4).
– Querying πW . V sends out q1, q2, · · · , q3+3ρ and gets back

πW (q1), πW (q2), · · · , πW (q3+3ρ).
– Linearity tests. Check whether following holds: πW (q6) = π(q4) + π(q5) and
likewise for all other ρ − 1 iterations. If not, reject. Otherwise, accept and
output πW (qA)← πW (q1)− πW (q4), πW (qB)← πW (q2)− πW (q4), πW (qC)←
πW (q3)− πW (q4).

302 G. Xu, G.T. Amariucai, and Y. Guan

Table 5. The Decision Making Stage of Our QAP-based Linear PCP

Decision Making: (Note: (z1, z2, ·, zn+n′) = X||Y .)
– V computes:

• pA ← ∑(n+n′)
i=1 zi · π(i)

A (qH) + π
(0)
A (qH)

• pB ← ∑(n+n′)
i=1 zi · π(i)

B (qH) + π
(0)
B (qH)

• pC ← ∑(n+n′)
i=1 zi · π(i)

C (qH) + π
(0)
C (qH)

– Divisibility Test. V checks whether the following holds: πD(qH) · πH(qH) =
(πZ(qA) + pA) · (πZ(qB) + pB)− (πZ(qC) + pC).

5.3 Commit, Decommit and Consistency Verification of RIVER

To ensure the security of the protocol, P commits to all the linear functions
mentioned above. Similarly to Zaatar, our design inherits the single-commit-
multiple-decommit protocol from Ginger. For πH and πW , V and P run the
IKO-style single-commit-multi-decommit protocol to generate the commitment.
This part is omitted for simplicity.

For π
(i)
A , π

(i)
B , π

(i)
C , (i = 0, 1, · · · ,m) and πD, the case is a bit more complex.

We note that in addition to the commitments and decommitments, V has to
also verify the consistency of the polynomials’ coefficient vectors corresponding

to π
(i)
A , π

(i)
B , π

(i)
C , for i = 1, . . . ,m, and πD. Namely, V needs to make sure that

P eventually uses π
(i)
A , π

(i)
B , π

(i)
C , for i = 1, . . . ,m, and πD to answer V ’s queries.

To accomplish this, we use the technique in Section 4 and come up with the
commitment/decommitment protocol as follows: Before sending P his computa-
tion task, V secretly generates a random number r and computes by himself the
values Ai(r), Bi(r), Ci(r) (i = 0, 1, · · ·m) and D(r), each of which represents,

respectively, the commitment for π
(i)
A (), π

(i)
B (), π

(i)
C (), for i = 0, 1, . . . ,m, and

πD(). The algorithm to compute these values is demonstrated in Section 6.1.
These values are stored for future decommitment. This setup computation is
done only once for different values of τ . In comparison with Zaatar, where the
setup requires the verifier to evaluate the queries associated with different values
of τ , a single r suffices for all τ ’s in RIVER, since the verifier outsources extra
computation to the prover. As in Table 6, our commitment design guarantees
the consistency of the polynomials’ coefficient vectors with the linear functions
to which P commits.

Theorem 2. Let π be any of the linear functions π
(i)
A , π

(i)
B , π

(i)
C and πD. By

performing our protocol, the commitment to π is guaranteed to be bound to a
linear function π̃, and the probability that π �= π̃ is at most 1/|F|. The probability
is over all the randomness of the prover.

Proof. Given that our protocol performs the single-commit-multi-decommit pro-
tocol when querying π, the response to the query is guaranteed to be bound to a
linear function π̃. This feature is provided by the underlying single-commit-multi-
decommit protocol. If π �= π̃ but π̃ still passes the decommitment, π̃(r) = π(r)

RIVER 303

Table 6. Decommit Design for π
(i)
A , π

(i)
B , π

(i)
C , (i = 0, 1, · · · ,m) and πD

P’s Input: linear functions πD, π
(i)
A , π

(i)
B , π

(i)
C , for i = 1, . . . ,m.

V’s Input: Ai(r), Bi(r), Ci(r), i = 0, · · · ,m and D(r), t = (1, r, r2, · · · , rl). q1, · · · , qμ
Commitment
The verifier generates the commitment information as in Section 6.1.

Decommitment
Step 1: V picks μ secrets α1, · · · , αμ ∈ F

V queries P with q1, · · · , qμ and T = t+ α1q1 + · · ·+ αμqμ.

Step 2: P returns (π
(i)
A (q1), · · · , π(i)

A (qμ), π
(i)
A (T)), (π

(i)
B (q1), · · · , π(i)

B (qμ), π
(i)
B (T)),

(π
(i)
C (q1), · · · , π(i)

C (qμ), π
(i)
C (T)), where i = 0, · · · ,m and (πD(q1), · · · , πD(qμ), πD(T)).

Step 3: V checks whether π(i)
A (T) = Ai(r) +

∑μ
j=1 αjπ

(i)
A (qj) and whether

π
(i)
B (T) = Bi(r) +

∑μ
j=1 αjπ

(i)
B (qj) and whether π

(i)
C (T) = Ci(r) +

∑μ
j=1 αjπ

(i)
C (qj),

i = 0, · · · , m and πD(T) = D(r) +
∑μ

j=1 αjπD(qj) hold.

If so, V accepts. Otherwise, he rejects and output ⊥.

must hold. For all possible choices of π̃, only 1/|F| of them can satisfy this equa-
tion. However, r is unknown by the prover. Thus, the probability that a dishonest
prover chooses a π̃ �= π that passes the decommitment is at most 1/|F|.

6 Performance Analysis

For the informational cost, it is straightforward to see that, once committed,
all the queries in the verification are not depending on the circuit description.
Namely, during the query generating of the verification stage, the verifier does
not need to access the circuit information any more. Our design separates the
verification workload that involves only non-sensitive information from the verifi-
cation workload that involves sensitive information (e.g. the circuit information).
In the scenarios with a third-party verifier, the verifier can undertake the work-
load involving only non-sensitive information (e.g. query generating) without
knowing the secrecy of the computation task.

In the following, we derive the computational cost of our RIVER design and
compare it with previous work. In the process, we show that, similarly to Ginger
and Zaatar, our protocol batches many instances for one same circuit to reduce
the cost per instance. But RIVER can amortize more parts of amortized cost
over all different circuits of the same size.

6.1 The Verifier

This section performs an analysis of the verifier’s cost. A comparison with the
verifier’s costs in two other the state-of-the-art designs is given in Table 7.

Setup. The cost that RIVER incurs upon the commitment is (|WR| + |CR|) ·
(e + c)/β. This is because RIVER needs two commitment query constructions.

304 G. Xu, G.T. Amariucai, and Y. Guan

Table 7. Comparison of Cost for Verifier in Each Instance

Ginger Zaatar RIVER

Setup: Commit |WG| · e/(β · γ) (|WZ |+|CZ |)·e/(β·γ) (|WR| + |CR|) ·
e/(β · γ) + (fdiv +
5f) · |CR|/(β · γ)

Linearity Query Gen-
eration

ρ·ρlin ·2·(|CG |+|CG|2)·
c/(β · γ)

ρ · ρlin · 2 · (|WZ | +
|CZ |) · c/(β · γ)

ρ ·ρlin ·2 · (|WR|+
|CR|) · c/(β · γ)

Other PCP Query
Generation

ρ · (c · |CG|+ f ·K)/β ρ · [c + (fdiv + 5f) ·
|CZ | + f · K + 3f ·
K2]/β

ρ · |CR| · f/(β · γ)

Decommitment
Query Generation

ρ · L · f/β ρ · (ρlin · 3 · (|WZ | +
|CZ |) + (3|WZ | +
|CZ |)) · f/β

ρ ·(ρlin ·3 ·(|WR|+
|CR|) + (3|WR| +
|CR|)) · f/β

Decommitment Test d+ ρ · L · f d+ ρ · (ρlin · 6+ 4) · f 2d+ρ·(ρlin ·6+4)·
f+ρ·(3m+4)·f/β

Decision Making ρ · (|X|+ |Y |) · f ρ · (3|X|+ 3|Y |) · f ρ · (2|X|+ |Y |) · f
Total non-amortized
cost

d+ρ · (L+ |X|+ |Y |) ·f 2d+ρ·f ·(3|X|+3|Y |+
ρlin · 6 + 4)

2d+ ρ · f · (2|X|+
|Y |+ ρlin · 6 + 4)

Total amortized cost |WG| ·e/(β ·γ)+ρ ·ρlin ·
2 · (|CG|+ |CG|2) · c/(β ·
γ) + ρ · c · |CG|/β + ρ ·
(L+K) · f/β

(|WZ |+ |CZ |) · e/(β ·
γ)+ρ ·ρlin ·2·(|WZ |+
|CZ |)·c/(β ·γ)+ρ·[c+
(fdiv)·|CZ |]/β+(ρlin ·
3 · (|WZ | + |CZ |) +
(3|WZ |+6|CZ |+K+
3K2)) · ρ · f/β

(|WR| + |CR|) ·
e/(β ·γ)+ ρ ·ρlin ·
2 · (|WR|+ |CR|) ·
c/(β · γ) + (ρlin ·
3 ·(|WR|+ |CR|)+
(3|WR| + |CR|) +
3m+4) · ρ · f/β+
((fdiv+5f)·|CR |+
ρ · |CR| · f)/(β · γ)

CG: set of constraints in Ginger |WG|: number of variables in the constraints
(excluding inputs and outputs) in Ginger

CZ : set of constraints in Zaatar |WZ |: number of variables in the constraints
(excluding inputs and outputs) in Zaatar

CR: set of constraints in our design |WR|: number of variables in the constraints
(excluding inputs and outputs) in our design

|X|: number of input |Y |: number of output
g: cost of addition over F L: number of PCP queries in Ginger
β: number of batching γ: number of circuits of the same size.
ρ: number of iteration of verification for one
instance

ρlin: number of iterations of linearity tests in
one iteration of verification.

fdiv : cost of division over F f : cost of multiplication over F
c: cost of pseudorandomly generating an ele-
ment in F

d: cost of decryption over F e: cost of encryption over F
K: number of additive terms in the constraints
of Ginger

K2: number of distinct additive degree-2 terms
in the constraints of Ginger

One is for πH , and incurs a cost of |CR| · (e+c)/β, while the other is for πW , and
incurs a cost of |WR| · (e+ c)/β. This total cost is the same as that of Zaatar.

It is apparent that RIVER introduces additional workload to the setup stage.
V has to evaluate Ai(r), Bi(r), Ci(r) and D(r). However, we have discovered that
a large part of the computation cost is independent of the underlying circuits.

RIVER 305

Rather, the computation only depends on the size of the circuit. This implies that
this part of the computation can be amortized over many different circuits, which
only share the same size, rather than over many different instances of the same

circuit. To see this, first notice that the target polynomial D(t) =
∏|CR|

k=1 (t−σk)
does not depend on the circuit details, but rather D(t) is determined by the
circuit size. Hence, we can compute D(r) once for all circuits of the same size,
where r is the secret as in Section 5. If given in the form of generalized Newton’s
interpolation formula ([29], 4.6.4), D(r) can be evaluated in time |CR|·f . Second,
we express Ai(t), Bi(t), Ci(t) in the form of Lagrange Polynomial interpolation:

Ai(t) =
∑|CR|

j=1 aij · lj(t), Bi(t) =
∑|CR|

j=1 bij · lj(t), Ci(t) =
∑|CR|

j=1 cij · lj(t),
where lj(t) =

∏
1≤k≤|CR|,k �=j

(t−σk)
(σj−σk) are Lagrange basis polynomials. We can

represent these Lagrange basis polynomials as follows: lj(t) = D(t)

(t−σj)· 1
vj

, where

vj = 1/
∏

0≤k≤|C|,k �=j(σj − σk). If we choose these σk (k = 1, · · · , |CR|) to

follow an arithmetic progression [26], lj(r) (j = 1, · · · , |CR|) can be evaluated
in total time of (fdiv + 4f)|CR|. (Computing 1/vj+1 from 1/vj requires only
two operations and computing 1/v0 uses |CR| multiplication. Recall that D(r)
is computed already. Finally, to get each lj(r), a multiplication and one division
are needed.) Given that both the evaluation of D(r) and lj(r) are independent of
the underlying circuit, we can amortize the cost of the evaluation into all circuits
of the same size.

The remaining work is to evaluate Ai(r), Bi(r), Ci(r) from the Lagrange
polynomials lj(r) (j = 1, · · · , |CR|). But this is reduced to merely several ad-
ditions of lj(r) polynomials – note that the coefficients aij , bij , cij are all ei-
ther 0 or 1. The number of wires in the circuit that can contribute to the
multiplication gates is at most 2|CR|. The total number of additions to eval-
uate Ai(r) and Bi(r) is at most the number of wires in the circuit that can
contribute to the multiplication gates. Then, the total number of additions
to evaluate Ai(r) and Bi(r) is at most 2|CR|. The total number of additions
to evaluate Ci(r) is (|WR| + |Y |), since it takes (|WR| + |CR|) · (e + c) to
generate the commitment queries (where, the whole cost of setup is at most
(|WR|+ |CR|) · (e+c)/β+(fdiv +5f) · |CR|/β+(2|CR|+ |WR|+ |Y |) ·g/β), where
g is the cost of addition over a finite field. Since g is small, we omit addition cost
in the tables of cost, as Zaatar [26] does.

Compared to Zaatar, RIVER introduces an extra cost of (fdiv +5f) · |CR|/β+
(2|CR|+ |WR| + |Y |) · g/β to the total cost of setup. However, notice that this
part of the computation can be amortized over many different circuits, which
only share the same size, rather than over many different instances of the same
circuit. Thus, RIVER actually introduces a negligible cost in the setup phase.

Linearity Query Generation. The cost of generating the linearity queries for
πH is ρ ·ρlin ·2 · |CR| ·c/(β ·γ). Another group of linearity queries are for the proof
πW . The cost of generating these linearity queries is ρ · ρlin · 2 · |WR| · c/(β · γ).
Thus, the total cost of generating linearity queries amounts to ρ ·ρlin ·2 · (|CR|+
|WR|) · c/(β · γ).

306 G. Xu, G.T. Amariucai, and Y. Guan

Divisibility Query Generation, Decommitment Query Generation and
Decommitment Test. These are straight-forward, we omit these for simplicity.

Non-amortized Costs. From the construction above, we draw the following
observations:

– For i = 1, · · · , n, we have Ci(t) = 0 for any t ∈ F, since the inputs of the
circuit cannot be outputs of multiplication gates.

– For i = n+ 1, · · · , n+ n′, we have Ai(t) = 0 for any t ∈ F, since the outputs
of the circuit Ψ ′ cannot be inputs to multiplication gates.

– For i = n+ 1, · · · , n+n′, we have Bi(t) = 0 for any t ∈ F, since the outputs
of the circuit Ψ ′ cannot be inputs to multiplication gates.

Thus, the verifier’s cost in the decision making stage (computing pA, pB, pC)
is merely ρ · (2|X |+ |Y |) · f .

Comparison with Zaatar. We list the amortized and non-amortized cost of
both RIVER and Zaatar in Table 7. At this time, it is useful to take WR = WZ

and CR = CZ .
We can see that, both the amortized and non-amortized cost of RIVER are

less than Zaatar. For the amortized part, which is known as the investment,
even for cases when β = 1 and γ = 1, the cost of RIVER is less than Zaatar.
(To have a clear picture, we look at a real example: computing xA where the
input x is a 1×M vector and A is a fixed M ×M matrix. This is widely used
in all kinds of scientific computing such as communications, signal processing,
and control systems, and is a basic operation of many computations. We use
previously published models ([26]) and instantiate the costs as in Table 7. From
the instance, for M > 5000, We see the amortized cost in RIVER is at least
28% less than that in Zaatar. For M < 5000, the improvement is even greater.)
Since the same part of the amortized cost in RIVER and Zaatar is dominated
by linearity test queries, if we apply the query compressing technique in Ginger
([30]), RIVER will have a more significant improvement compared to Zaatar.

6.2 The Prover

The method to construct the proof vector is the same as that in Zaatar. The cost
is T+3f ·|CR|·log2|CR|. We omit the details here. The remaining cost is from the
fact that the prover needs to compute the coefficients of Ai(t), Bi(t), and Ci(t),
(i = 0, 1, · · · ,m). However, this could be amortized. First, remember that each
of Ai(t), Bi(t) and Ci(t), (i = 0, 1, · · · ,m) are sums of several Lagrange basis
polynomials. The cost to get the coefficients of the Lagrange basis polynomials
is independent of the underlying circuit and can be amortized into all circuits
of the same size and is negligible. Second, similarly to Section 5.2, the number
of additions of Lagrange basis polynomials is at most 2|Ψ |+ |Y |. Each Lagrange
basis polynomials has degree at most |CR|. Thus, for each instance, the cost of
computing the coefficients is at most (2|Ψ |+ |Y |) · |CR| · g/β, where g is the cost
of addition over the field F. As in Zaatar [26], we omit the addition cost.

RIVER 307

When the prover issues the PCP responses, he needs to respond to not only

queries for πW and πH , but also queries for π
(i)
A , π

(i)
B , π

(i)
C , (i = 0, 1, · · · ,m) and

πD. The cost for the former is (h + 1) · (|WR| + |CR|) · f + ρ · (3|WR| + |CR|) ·
f + ρlin · 3 · (|WR|+ |CR|) · ρ · f . Given that the length of the latter is |CR| and
these responses do not depend on underlying circuit or the proof vector πW , the
cost to compute the responses for the latter can be amortized into all instances
of the same circuit size. This cost is [h + ρ · (3m+ 4) · f] · |CR|/(β · γ).

The comparison in terms of the prover’s cost is in Table 8. We also use the
computation example in Section 6.1 to demonstrate the improvement. For any
M > 100, RIVER’s non-amortized cost of the prover is at least 55% better than
that of Zaatar. We demonstrate the results using M = 10000. Although RIVER
introduces amortized cost, this cost becomes negligible since it can be amortized
into all instances of the same circuit size.

Table 8. Comparison of Cost for Prover in Each Instance

Ginger Zaatar RIVER

Construct
proof

T + f · |WG|2 T + 3f · |CZ | ·
log2|CZ |

T + 3f · |CR| · log2|CR|

32s + 3.2 × 109s 32s + 3.2× 104s 32s + 3.2× 104s
Issue PCP
responses

(h+(ρ·L+1)·f)·
(|CG|+ |CG|2)

(h+ (ρ · L′ + 1) ·
f) · (|CZ |+ |WZ |)

(h+1) · (|WR|+ |CR|) · f + ρ · (3|WR|+
|CR|) ·f +ρlin ·3 · (|WR|+ |CR|) ·ρ ·f +
[h+ ρ · (3m+ 4) · f] · |CR|/(β · γ)

2.9× 1012s 9.0× 104s 4.0× 104s+ 7.7×1010

(β·γ) s

T : cost of computing the task h: cost of ciphertext add plus multiply
L = 3ρlin + 2: number of (high order) PCP queries in Ginger
L′ = 6ρlin + 4: number of PCP queries in Zaatar

7 Conclusions

The state-of-the-art designs such as Pepper/Ginger/Zaatar combine a commit-
ment protocol to a linear PCP, achieving breakthroughs in verifiable compu-
tation. However, the high computation, communication and storage costs still
keep general verifiable computation away from practicality. In this paper, we
presented a new verifiable-computation protocol called RIVER. We show that
RIVER reduces the amortized computational costs of the verifier and the non-
amortized cost of the prover. Namely, the number of batched instances of the
protocol, required for amortization, will largely decrease. RIVER introduces only
a negligible increase in the prover’s costs. However, this increased cost can be
amortized over instances of different circuits of the same size. Thus, this part
can be done only once, but used for all possible verifications.

In addition, for the first time in the context of verifiable computation, we
address the problem of reducing the informational costs. RIVER removes the
requirement that the verifier has to access the circuit description during query
generating. Furthermore, this feature of RIVER can be viewed as a first step

308 G. Xu, G.T. Amariucai, and Y. Guan

towards applying QAP-based arguments to the secure outsourcing of verification
introduced in [25].

References

1. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011)

2. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011)

3. Ergun, F., Kumar, S.R.: Approximate checking of polynomials and functional equa-
tions. In: Proceedings of the 37th Annual Symposium on Foundations of Computer
Science, pp. 592–607. IEEE Computer Society, Washington, DC (1996)

4. Golle, P., Mironov, I.: Uncheatable distributed computations. In: Naccache, D.
(ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 425–440. Springer, Heidelberg (2001)

5. Karame, G.O., Strasser, M., Čapkun, S.: Secure remote execution of sequential
computations. In: Qing, S., Mitchell, C.J., Wang, G. (eds.) ICICS 2009. LNCS,
vol. 5927, pp. 181–197. Springer, Heidelberg (2009)

6. Sion, R.: Query execution assurance for outsourced databases. In: Proceedings of
the 31st International Conference on Very Large Data Bases, VLDB 2005, pp.
601–612. VLDB Endowment (2005)

7. Thompson, B., Haber, S., Horne, W.G., Sander, T., Yao, D.: Privacy-preserving
computation and verification of aggregate queries on outsourced databases. In:
Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS, vol. 5672, pp. 185–201.
Springer, Heidelberg (2009)

8. Wang, C., Ren, K., Wang, J.: Secure and practical outsourcing of linear program-
ming in cloud computing. In: INFOCOM, pp. 820–828. IEEE (2011)

9. Wang, C., Ren, K., Wang, J., Urs, K.M.R.: Harnessing the cloud for securely
solving large-scale systems of linear equations. In: Proceedings of the 2011 31st
International Conference on Distributed Computing Systems, ICDCS 2011, pp.
549–558. IEEE Computer Society, Washington, DC (2011)

10. Atallah, M.J., Frikken, K.B.: Securely outsourcing linear algebra computations. In:
Proceedings of the 5th ACM Symposium on Information, Computer and Commu-
nications Security, ASIACCS 2010, pp. 48–59. ACM, New York (2010)

11. Garofalakis, M.: Proof sketches: Verifiable in-network aggregation. In: IEEE Inter-
nation Conference on Data Engineering, ICDE (2007)

12. Przydatek, B., Song, D., Perrig, A.: Sia: secure information aggregation in sen-
sor networks. In: Proceedings of the 1st International Conference on Embedded
Networked Sensor Systems, SenSys 2003, pp. 255–265. ACM, New York (2003)

13. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

14. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Proceedings of the 40th Annual ACM Symposium on Theory
of Computing, STOC 2008, pp. 113–122. ACM, New York (2008)

15. Canetti, R., Riva, B., Rothblum, G.N.: Two 1-round protocols for delegation of
computation. Cryptology ePrint Archive, Report 2011/518 (2011),
http://eprint.iacr.org/

http://eprint.iacr.org/

RIVER 309

16. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with
streaming interactive proofs. In: Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ITCS 2012, pp. 90–112. ACM, New York (2012)

17. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)

18. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: The IEEE Symposium on Security and Privacy, IEEE S&P
2013 (2013)

19. Arora, S., Safra, S.: Probabilistic checking of proofs; a new characterization of
np. In: Proceedings of the 33rd Annual Symposium on Foundations of Computer
Science, SFCS 1992, pp. 2–13. IEEE Computer Society, Washington, DC (1992)

20. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: Proceedings of the Twenty-Third Annual ACM Symposium
on Theory of Computing, STOC 1991, pp. 21–32. ACM, New York (1991)

21. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

22. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short pcps.
In: Proceedings of the Twenty-Second Annual IEEE Conference on Computational
Complexity, CCC 2007, pp. 278–291. IEEE Computer Society, Washington, DC
(2007)

23. Setty, S., McPherson, R., Blumberg, A.J., Walfish, M.: Making argument systems
for outsourced computation practical (sometimes). In: NDSS (2012)

24. Setty, S., Vu, V., Panpalia, N., Braun, B., Blumberg, A.J., Walfish, M.: Taking
proof-based verified computation a few steps closer to practicality. In: USENIX
Security (2012)

25. Xu, G., Amariucai, G., Guan, Y.: Delegation of computation with verification out-
sourcing: Curious verifiers. In: Proceedings of the ACM Symposium on Principles
of Distributed Computing, PODC 2013. ACM (2013)

26. Setty, S., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.: Resolving the
conflict between generality and plausibility in verified computation. In: Proceedings
of the 8th ACM European Conference on Computer Systems, EuroSys 2013, pp.
71–84. ACM, New York (2013)

27. Setty, S., Blumberg, A.J., Walfish, M.: Toward practical and unconditional verifi-
cation of remote computations. In: Proceedings of the 13th USENIX Conference
on Hot Topics in Operating Systems, HotOS 2013, p. 29. USENIX Association,
Berkeley (2011)

28. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

29. Knuth, D.E.: Seminumerical Algorithms, the art of computer programming, 3rd
edn. Addison-Wesley (2007)

30. Setty, S., Vu, V., Panpalia, N., Braun, B., Ali, M., Blumberg, A.J., Walfish, M.:
Taking proof-based verified computation a few steps closer to practicality (extended
version). Cryptology ePrint Archive, Report 2012/598 (2012),
http://eprint.iacr.org/

http://eprint.iacr.org/

Detangling Resource Management Functions from the
TCB in Privacy-Preserving Virtualization

Min Li1, Zili Zha1, Wanyu Zang1, Meng Yu1, Peng Liu2, and Kun Bai3

1 Virginia Commonwealth University
{lim4,zhaz,wzang,myu}@vcu.edu

2 Pennsylvania State University, University Park
pliu@ist.psu.edu

3 IBM T.J. Watson Research Center
kunbai@us.ibm.com

Abstract. Recent research has developed virtualization architectures to protect
the privacy of guest virtual machines. The key technology is to include an access
control matrix in the hypervisor. However, existing approaches have either lim-
ited functionalities in the hypervisor or a Trusted Computing Base (TCB) which
is too large to secure. In this paper, we propose a new architecture, MyCloud
SEP, to separate resource allocation and management from the hypervisor in or-
der to reduce the TCB size while supporting privacy protection. In our design,
the hypervisor checks all resource accesses against an access control matrix in
the hypervisor. While providing flexibility of plugging-in resource management
modules, the size of TCB is significantly reduced compared with commercial hy-
pervisors. Using virtual disk manager as an example, we implement a prototype
on x86 architecture. The performance evaluation results also show acceptable
overheads.

Keywords: Cloud Computing, Privacy Protection, TCB Minimization, Decom-
position, Isolation.

1 Introduction

While more and more companies deploy their service in clouds that provide scalable
and effective computing resources, privacy concerns may lead to cloud market loss
up to $35 billion by 2016 [1]. The primary cause of security and privacy concerns is
the privilege design in existing cloud platforms. On current cloud platforms, such as
Xen [2], KVM [3], and Amazon EC2 [4], the control Virtual Machine (VM) has admin-
istrative privileges for resource management. Consequently, both the hypervisor and
the control VM are running in the processor’s root mode that has the most privileges.
Unfortunately, such architecture design gives no chance to the cloud clients to protect
their privacy. Furthermore, 1) it enables insider attacks from the cloud administrators;
2) the control domain can evade detection of malicious behaviors; and 3) the Trusted
Computing Base (TCB) includes both the control domain and the hypervisor, which is
too large to secure.

In order to solve the privacy protection problems, recent research such as Self-
Service Cloud (SSC) [5] proposed to divide the privileges of Dom0 (control VM) into

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 310–325, 2014.
c© Springer International Publishing Switzerland 2014

Detangling Resource Management Functions from the TCB 311

smaller domains including MTSD domains and user domains. The smaller domains are
running in the same processor privilege as legacy Dom0. The TCB size of such design
is still very large because SSC does not move the third-part drivers and control VM to
a non-privileged mode. Our previous work MyCloud [6] achieves a verifiable TCB size
with only 6K LOCs by removing the control VM from the processor root mode. We
create a user configurable Access Control Matrix (ACM) in the hypervisor to protect
the privacy of guest VMs. However, the functionalities of the hypervisor in MyCloud
are very limited.

In this paper, we propose an innovative structure, MyCloud SEP (SEP for separa-
tion), to solve the separation of functionality and security check. In our design, we put
resource allocator and management outside the hypervisor. Security checks are included
in the hypervisor. Such design enables the flexibility of resource management. In this
paper, we use virtual disk management as an example to explain our technology. The
same approach can be applied to other types of resource management in virtualization
platforms.

In MyCloud SEP, since the control VM and resource managers are moved to the
processor’s non-root mode, the new structure reduces the TCB by an order of magni-
tude (the size is similar to that of MyCloud) compared with commercial hypervisors.
Compared with our previous work, the new architecture supports better functionalities
without significantly increasing the TCB size. In summary, our new contributions are:
1) To the best of our knowledge, this is the first effort to separate resource allocation
from security checks in order to reduce the hypervisor size; 2) The proposed architec-
ture enables privacy protection and full functionality of a hypervisor without signifi-
cantly increasing the TCB size; and 3) Our performance evaluations show acceptable
overheads.

The rest of the paper is organized as follows. Section 2 discusses related work. Sec-
tion 3 clarifies assumptions and threat model, and describes our proposed architecture.
Section 4 describes the detailed implementations. The experimental results are pre-
sented in Section 5 . Section 6 discusses how different threats are handled. Finally,
Section 7 concludes the paper.

2 Related Work

In traditional cloud platforms, the cloud provider owns full privileges over the VMM
and users VMs, providing no way for the cloud users to protect their own privacy.
To address the threats from the administrative domain, previous research has been fo-
cused on shrinking the TCB either by disaggregation of privileges functionality of the
control domain [5,7] or by splitting VMM into smaller components based on nested
virtualization[8]. Self-Service Cloud computing (SSC) [5] allows client VMs to execute
some management of privileges, which used to be provided in administrative domain.
SplitVisor [8] splits VMM into a smaller part as the minimized TCB to enforce isolation
and a larger part to provide rich service functionality. Nevertheless, this design is not
compatible with current cloud computing schemes because the cloud users are required
to upload a specialized guest VMM.

Similar to SplitVisor, some approaches investigate the use of nested virtualization
to disaggregate some host VMM components to the guest VMM [9,10,11]. CloudVisor

312 M. Li et al.

[9] introduces a small security monitor underneath the VMM to enforce strict isola-
tion among the VMM and the host VMs using nested virtualization. According to our
understanding, CloudVisors late launch includes the host operating system of KVM as
part of the TCB, though it is not explicitly stated. Hence, the TCB is still too large due
to the large code base of the whole operating system. Moreover, to deploy nested vir-
tualization on x86 hardware imposes tremendous performance penalties that increase
exponentially with nesting depth [12].

To reduce the size of the TCB even further, NOVA [13,14] constructs a microkernel
based VMM with 9K LOCs. Nonetheless, Its TCB is not markedly decreased since the
microhypervisor is still in charge of complex management tasks, such as address space
allocation, interrupt and exception handling. Therefore, the thin TCB is still difficult to
verify dynamically. Compared with this, NoHype [15,16] narrows down the attack sur-
face of the hypervisor by dynamically eliminating VMM layer. However, the number
of VMs that can run simultaneously on the physical platform are restricted since it re-
quires one-VM-per-core on multi-core processors and pre-allocated nested page table.
Flicker [17] is considered as a privacy protection solution based on the hardware fea-
tures provided by the hardware vendors, like Intel and AMD. It significantly enhances
the security and reliability of the code while at the same time inducing large perfor-
mance overhead. Other than that, it only offers application level protection and is not a
general solution for VMs in cloud.

Besides above architectural improvement attempts, many research efforts focus on
protecting the privacy of user application against untrusted operating system using a
VMM-based approach [18,19,20,21,22]. The goal of our work is different from that
of above research. We aim to protect privacy of guest VMs (including the hosted user
applications) against the untrusted cloud administrators, rather than protecting the user
applications’ privacy against the untrusted OS.

Our previous work, MyCloud, achieves a verifiable TCB size (6K LOCs) by re-
moving the control VM from the processor root mode. It also has a flexible privacy
protection mechanism based on a user configured ACM. MyCloud isolates the memory
space among guest VMs, physical devices and the hypervisor. However, the function-
alities of the hypervisor are limited, e.g., needs device level support of virtualization.
To remove the restrictions and better support physical devices, we propose a design
that launches resource managers in the non-root mode. The procedure and results of re-
source management can be monitored by the hypervisor in the root mode. Through this
design, MyCloud SEP provides better functionalities without significantly increasing
the hypervisor size.

3 MyCloud SEP Architecture

3.1 Threat Model and Assumptions

We take insider attacks into consideration but we must distinguish the cloud adminis-
trators from the cloud providers. Generally, the famous cloud providers such as Ama-
zon [4], Microsoft [23] and Hewlett-Packard [24] have strong motivation to protect
users’ privacy rather than reveal customers’ privacy. Protecting users’ privacy will in-
crease the reputation of cloud enterprises to a large extent and bring more economic

Detangling Resource Management Functions from the TCB 313

benefits. On the contrary, the cloud administrators employed by the cloud providers
may be motivated to disclose cloud tenants’ privacy to pursue monetary benefits. More-
over, any mistakes they make by accident may breach users’ privacy or help external
attackers to compromise guest VMs. Therefore, we consider the cloud administrators
malicious.

Due to many vulnerabilities from the device drivers, device emulation and software
components in the control VM [25,26,27], the external adversary can compromise the
control VM and obtain the administrative privilege of the cloud platform. Afterwards,
the external adversary will exploit cloud tenants’ private data. Meanwhile, the external
adversary can also breach the cloud users’ privacy relying on the vulnerabilities found
in current virtual machine monitors (VMM) design [28,29,30,31,32]. Furthermore, the
console interface provided by the cloud provider is also vulnerable to many external
attacks [33,34].

In MyCloud SEP design, we take both insider and external attacks into consideration.
But the physical attack [35] is out of the scope of this paper. The cloud provider can
solve the physical attack by deploying more protection mechanisms on the server side
such as secure door control system.

In this paper, we assume that the cloud providers can utilize Intel Trusted Execu-
tion Technology (TXT) [36] and chip-based Trusted Platform Module (TPM) [37] to
measure the integrity of the hypervisor execution environment before MyCloud SEP
is loaded. This is not a strong assumption since now all servers are using the technol-
ogy or similar ones. Similarly, we assume that the System Management Range Register
(SMRR) is properly configured in order to protect the processor System Management
Mode (SMM) from attacks [38].

We will not discuss how to make a mutually agreed access control policy between
the cloud providers and cloud tenants in this paper. It is up to the cloud providers and
cloud users to decide which part of memory can be accessed. MyCloud SEP just pro-
vides isolated execution environment and mechanisms to implement the access control
policies.

3.2 Virtualization Architecture

The architecture of MyCloud SEP is shown in Figure 1. Using Intel virtualization tech-
nology [39], the software stack of MyCloud SEP is divided into root mode and non-root
mode. Each mode in MyCloud SEP has the same ring privilege structure from ring 0 to
ring 3. As shown in Figure 1, the hypervisor runs in the root mode, while other com-
ponents run in non-root mode. When the hypervisor is booted, MyCloud SEP will stay
in the root mode. The CPU will enter the non-root mode, when the hypervisor exe-
cutes VMRESUME/VMLAUNCH instruction. If the guest VMs execute the privileged
instructions, CPU will automatically transfer to the root-mode and trigger hypervisor
handlers via VMEXITs. After the hypervisor handles the privileged instruction, the
guest VM can be resumed.

In Figure 1, the Platform Control VM is moved to non-root mode and a Virtual Disk
Manager (VDM) launched in non-root mode will drive physical disks. Different from
existing techniques, VDM is not part of the TCB and the access to the physical disks
will be examined by the hypervisor against an ACM in the hypervisor. In MyCloud

314 M. Li et al.

Hypervisor

 Virtual Disk
 Manager

Device Driver

Non-Root Mode

Root Mode

Management
 Tools

 Platform Control VM

 Migration
 AlgorithmGuest VM

VMEXIT Handler
Access Control Matrix

Scheduler

Memory Isolation

Security Manager

Application

Guest VM

Application

 VM
ENTRY

 VM
EXIT

Hype
 Call

 VM
ENTRY

 VM
EXIT

Hype
 Call

 VM
ENTRY

 VM
EXIT

Hype
 Call

 VM
ENTRY

VM
EXIT

 Resource
 Allocator

 Device
 Emulator

Fig. 1. MyCloud SEP architecture design

SEP design, only the hypervisor and platform hardware are in the TCB. The TCB size
is remarkably reduced because there is no operating system, physical device drivers
and device emulator running in the privileged mode and the hypervisor will intercept
all privileged instruction executed by the components in non-root mode.

Note that our architecture is different from Xen since the control VM is moved out of
the processor’s root mode. Also, different from other designs, we are not trying to put
device management in a separate domain. Instead, our design goal is to put resource
management outside the TCB. In the figure, we only show virtual disk management
since in cloud environment, we usually need much less device support than a desktop
computer does.

Device Management. In this paper, we use virtual disks as an example to explain how to
separate resource management from security management in the hypervisor. The virtual
disk structure in MyCloud SEP is illustrated in Figure 2. As shown in the figure, each
virtual machine, including the Platform Control VM, only has access to limited number
of disks in the virtual disk pool. The Virtual Disk Manager manages the disk resources
and has access privileges to the physical disks.

Virtual Disk Pool

Guest VM Guest VM

Read Write Read Write

Virtual Disk Manager Platform Control VM

Allocator

Device Driver

Management
Tools

VMM

Manage

Hyper
 Call

Invoke

Read Write

 Device
Emulator

Fig. 2. Virtual disk structure

Note that all accesses to the physical disks
will be checked by the hypervisor against the
ACM in it. Although the device drivers and
resource allocator work in non-root mode,
MyCloud SEP will grant an access if and
only if the access is permitted in the ACM. In
the initialization process of a VM, the device
drivers need a lot of device information such
as manufacturer ID, etc.. MyCloud SEP inter-
cepts the guest VM initialization operations
and provides a device emulator to guest VMs.
The device drivers in guest VMs may be ma-
licious, thus, MyCloud SEP needs to monitor
I/O from the device drivers in the guest VMs.

Detangling Resource Management Functions from the TCB 315

Since the resource allocator is out of the TCB, MyCloud SEP hypervisor will ver-
ify whether the results of resource allocation and allocation procedure (described in
Section 4) are secure. For example, allocating the same disk block to multiple VMs is
prohibited. The allocation of disks space should have no overlaps either.

The Virtual Disk Manager launched in non-root mode includes device emulators for
guest VMs and physical device drivers for disks. In MyCloud SEP implementation, the
Virtual Disk Manager is just a piece of codes which provides Intel AHCI [40] emulation
and communicates with local SATA disks. The new design reduces the attack surface of
Virtual Disk Manager. In order to monitor the activity of disk drivers, the hypervisor will
also create a VMCS structure and configure which instructions should be intercepted.

MyCloud SEP Hypervisor. The hypervisor is the only component running in the root
mode. Before the hypervisor is initialized, the boot loader of MyCloud SEP will verify
the integrity of the hypervisor execution environment using Intel TXT technology. If
the environment is secure, the hypervisor will be initialized. The initialization process
of hypervisor completes the following tasks.

– Detect E820 map and isolate the physical memory for other component.
– Detect all PCI devices installed in cloud platform.
– Configure IOMMU in order to isolate device memory and guest VM’s memory.
– Copy the hypervisor into specific memory address.

After the initialization process is finished, the hypervisor will be able to perform the
following tasks

– Create VMCS structure for the control VM, guest VMs and Virtual Disk Manager.
Specify what should be trapped in each VMCS structure.

– Create Access Control Matrix.
– Handle interrupts and exceptions happened in the guest VMs and devices while

checking those operations against ACM.
– Deliver the device access operations from guest VMs to device emulator.
– Schedule the guest VMs.

The Platform Control VM. The hypervisor creates a VMCS for the Platform Control
VM and launches it in non-root mode. In MyCloud SEP, the hypervisor will set VMCS
for the control VM so that any memory access not in its EPT will be trapped by CPU.
Therefore, even the Platform Control VM cannot access the memory of a guest VM
without its explicit permissions. The guest VM can grant access permissions to its own
memory space through a hypercall that modifies the ACM in hypervisor.

The Platform Control VM can still allocate resources because the hypervisor will
provide resource utilization status through HyperCall API (described in Section 4).
Thus, the Platform Control VM can migrate VMs as long as it follows resource al-
location procedures and the resource allocation does not violate policies specified in
ACM.

Guest VMs. Although guest VMs are running in the non-root mode, they can configure
the ACM table via interfaces (HyperCalls) provided by the hypervisor. The guest VMs

316 M. Li et al.

can also implement some privileged work such as memory introspection. The VM im-
age and configuration file are stored in the local storage. Normally, the guest VMs are
running as the same way in physical machine, because all of privileged instructions, in-
terrupt and exceptions will be handled by the hypervisor. When a privileged instruction
is executed in guest VMs, CPU will automatically switch to the root mode. Conse-
quently, the hypervisor will receive a VMEXIT containing all information about the
privileged instruction. After the hypervisor handles the privilege instruction, it will ex-
ecute VMRESUME to return to the non-root mode. Guest VMs will receive the results
generated by the hypervisor and resume.

4 Implementation

4.1 General Resource Management

There are resources on two types of devices - character devices and block devices.
Character devices include keyboard, mouse and serial port etc,. Block devices include
disks, network card etc,. In MyCloud SEP, block devices are managed in the unit
of a “resource region”. A resource region is specified by {start address, end
address}. A region is not necessary to be the full address space for a VM. For ex-
ample, a VM can have a disk block ResourceRegioni {(track #100, head #0,
sector #15), (track #500, head #0, sector #15)}.

Resource
Manager

MyCloud SEP

Guest VM
Resource Request

HyperCall

HyperCall Handler
Detect PCI devices (initialization)

Resource Allocator

Invoke
HyperCall

HyperCall Handler

RARVerify
ACM/RAR

Resume

UpdateRARRegister
......

1

2

3 4

5

6

7

Return

Fig. 3. Workflow of resource allocation

Figure 3 shows the procedure of how guest VMs apply for a block of resource. In
step 1©, the hypervisor sends I/O commands to port 0xcf8 and 0xcfc in order to
obtain each PCI device configurations. The acquired PCI device structure includes base
address (BAR), specified command and I/O ports etc,. The hypervisor will then register
the allocation information in a data structure – Resource Access Recorder (RAR).

When a guest VM applies a new resource region, it starts with step 2©. The guest VM
sends a HyperCall to the hypervisor. In order to improve the compatibility for different
resource allocators and reduce the TCB size, MyCloud SEP allows multiple resource
allocators in the non-root mode. The HyperCall handler invokes the resource allocators
in step 3© by VMLAUNCH instruction. The resource allocator will return the allocation

Detangling Resource Management Functions from the TCB 317

Table 1. Access Control Matrix in MyCloud SEP (VDM-Virtual Disk Manager, CVM-Control
Virtual Machine, H-Hyper Calls, R-Read, W-Write, P- Permission Required)

Components Hypervisor CV M V DM ResourceRegioni ResourceRegion j

Hypervisor Full Full Full Full Full
CV M H Full P P
V DM H Full
V Mi H Full
V Mj H Full

plan by another HyperCall. Since the resource allocator is not trusted, the hypervisor
will verify the allocation plan by checking the RAR table. If the plan is approved, the
hypervisor will update the RAR and ACM table. In step 6©, the hypervisor will resume
the guest VM with a new allocated resource region. Finally, the hypervisor returns the
responses of the HyperCall sent from resource manager in step 7©.

The process to free a resource region is similar. First, a guest VM sends the request
to the hypervisor. The hypervisor invokes the resource allocator in resource manager
to generate a new resource allocation plan. Then, the hypervisor verifies the security of
new resource allocation plan by searching the RAR table and checking ACM. Finally,
the hypervisor will resume the guest VM after updating the ACM table.

4.2 Access Authorization Based on ACM

In MyCloud SEP, the hypervisor maintains an Access Control Matrix that is config-
urable by users, as shown in Table 1. The ACM table stores access permissions for each
VM and resource regions. In the table, we use VDM as an example of resource man-
agers. The VDM does not have direct access to any allocated resource regions such as
disk blocks.

Physical Disk

Virtual Disk 1

......

Virtual Disk 2

......

Fragment

Head#: 1
Sector#: 7
Cylinder#:2

Fig. 4. Physical disk assignment

Note that the privilege design in MyCloud SEP
is completely different from any of the existing
cloud platform because the control VM does not
have full privileges over the platform. In MyCloud
SEP, the control VM is removed from the root
mode and the privileges are specified in the ACM
maintained by the hypervisor. The hypervisor re-
lies on Intel Extended Page Table (EPT) technol-
ogy to intercept CPU memory accesses. We use
Intel VT-d technology to isolate IOMMU memory
accesses. Besides, the hypervisor will also check
ACM table when allocating devices.

As shown in Table 1, only the hypervisor has
accesses to all resources in the platform. The con-
trol VM has the same privilege level as guest VMs. It can only access resources assigned
to the cloud administrator. If the cloud administrator needs to access users resources,

318 M. Li et al.

it needs to be authorized by users through hypercalls of ACM configuration. VDM is
responsible to provide device emulator and transfer data between SATA disks and guest
VMs. Therefore, VDM has no permissions to access VMs memory. But the hypervi-
sor provides a secure mechanism to verify the activities of VDM. The details will be
explained in section 4.4.

4.3 Case Study: Disk Management

Figure 2 shows how to manage virtual disk in MyCloud SEP. The control VM accesses
the virtual disks in the same way as guest VMs because it is running in the non-root
mode. When the control VM or guest VMs boot, any device initialization in guest VMs
or control VM will be trapped into the hypervisor, then handled by a device emulator.
In the initialization stage, the guest OS will request device information such as device
ID, mentor ID, Base Address etc,. The device emulator will offer virtualized device
information to enable a guest OS to complete initialization.

In order to protect disk allocation information, the hypervisor in MyCloud SEP will
employ a linear mapping from a logical disk space to a physical disk space. Figure 4
shows how the physical disk blocks are mapped to virtual disks. The linear mapping
function calculates the address of a physical disk block by three parameters: cylinder
number, sector number, and head number. We place the virtual disks in similar size into
the same physical disk in order to reduce the number of fragments. If the users try to
expand the size of virtual disks, the hypervisor can migrate it into other physical disks
or servers. The linear mapping is protected in the hypervisor.

According to Intel AHCI 1.3 specification [40], the AHCI works as an interface be-
tween OS and SATA disks. The hypervisor can detect AHCI information throughout
PCI configuration space (0xcf8 and 0xcfc). Afterwards, the hypervisor will store de-
vice allocation information in RAR table such as base address, AHCI specific I/O port
and registers. etc,. When a guest VM applies for new virtual disks, the hypervisor will
invoke the resource allocator in VDM. The VDM designs which part of physical disk
can be used for virtual disk volume. The hypervisor checks the ACM table and verifies
if the physical disk blocks have already been allocated. Finally, the hypervisor updates
the ACM table.

4.4 Hypervisor Processing of Disk I/Os

MyCloud SEP implements disk emulator based on Intel ATA AHCI 1.3 Specifica-
tion [40]. In essential, the Advanced Host Controller Interface (AHCI) encompasses
a PCI device, then the AHCI Host Bus Adapter is constructed by a PCI header and PCI
Capabilities. In the initialization step, guest VMs will try to access to PCI Configuration
Space by I/O port 0xcf8 and 0xcfc. As shown in Figure 1, when guest VMs try to detect
PCI Configuration Space, a VMEXIT will be triggered and the hypervisor will transfer
the I/O command to device emulator in VDM.

Figure 5 shows how a guest VM executes a write() function. When an application
in the guest VM sends a disk write request to OS kernel, the kernel will process it
and issue a series of I/O commands to configure and transfer data with AHCI HBA.
The hypervisor can intercept the commands when the guest kernel or driver sends the

Detangling Resource Management Functions from the TCB 319

Virtual Disk
 Manager

MyCloud SEP

Guest VM Application
write(...)

Kernel
Process

VMEXIT Handler
ACM Table

Trap
Inspect

Storage Emulator

Invoke

Handle Device Access
Device Driver

DMA Write

VMEXIT Handler

Trap

Waiting

ACM Table Inspect

Approve

VMRESUME

Handle Other VMEXIT

...

1

2

4

5

6

3

Fig. 5. Workflow of read/write operation

commands to the I/O ports specified in AHCI 1.3. The hypervisor will verify if the
trapped I/O commands meet the requirement of AHCI. The hypervisor will also check
the ACM table for permissions. After that, the hypervisor will trigger the VDM and
deliver the command to the device emulator. The VDM handles the commands and
calls physical disk drivers to execute the I/O write operation.

PCI / PCI-X

IOMMU

CPU

MMU

AHCI
 HBA

SATA Disk

Guest VM1

Guest VM2

Control VM

Guest VMn

......

VM Space

Physical Memory

Device Space

Hypervisor Memory

Access Control Table

SATA

......
Devicen

Command List
Received FIS

PxCLB
PxFB

Port Register

GVA

HPA

DVA

HPA

......

Fig. 6. Device and VM isolation in My-
Cloud SEP

The VDM needs to access guest mem-
ory in order to transfer data from memory
to disk. If the trapped I/O command indi-
cates the disk is ready to transfer data, the hy-
pervisor will assign the physical disk to the
VDM using Intel VT-d technology [41]. To
prohibit VDM from visiting memory space
assigned to other VMs, MyCloud SEP config-
ures IOMMU DMA remapping hardware and
specifies the memory space the VDM can ac-
cess. If the VDM reads/writes other memory
space, the hypervisor will receive a VMEXIT.

To prevent VDM drivers from recon-
figuring the device via I/O command, the
hypervisor stores the resource region infor-
mation when users send I/O commands to
prepare disk operations. If the access is out of
the scope of users-specified resourced region,
the hypervisor will block the command. After
VDM finishes the write operation, hypervisor
resumes the guest VM.

4.5 Memory Isolation

Figure 6 shows the isolated memory between VMs, device and hypervisor owned space.
The memory isolation is implemented as follows:

320 M. Li et al.

MMU Access Isolation. In order to isolate the memory space when the applications or
kernel in the guest VMs try to access the data or instructions in memory, MyCloud SEP
relies on Intel Extended Page Table (EPT) technology. The hypervisor will configure
a 4-layer EPT table before users crate a guest VM. EPT base pointer in VMCS is set
to record the entry address of EPT table. When a memory translation is requested by
applications or kernel in the guest VM, Memory Management Unite (MMU) will walk
the EPT table and translate the Guest Virtual Address (GVA) to Physical Host Address
(PHA). Since there is no overlapped host physical memory space in EPT table, any
guest VM cannot access the memory space assigned to other VMs. If a guest VM wish
to share memory with the control VM, it should send the request to the hypervisor via a
HyperCall. Next, the hyeprvisor will first verify the request, then revise the ACM table
and EPT in order to make the memory space “visible” to the control VM.

IOMMU Access Isolation. Most of device transmit data via DMA access and IOMMU
is responsible for translating device virtual memory address to physical memory ad-
dress. To isolate the DMA access made by physical device, MyCloud SEP implements
Intel Virtualization Technology for Directed I/O [41]. Before disks execute DMA ac-
cess, the hypervisor will set up Context-Entry Table (CET) in IOMMU to implement
DMA Remapping. The CET table is indexed by {PCI bus, device# and function#} to
find the address of translation table. The hypervisor builds Multi-Level Page Table in
hypervisor’s memory to translate Device Virtual Address (DVA) to Physical Host Ad-
dress (PHA). Although the CPU cannot control the DMA access, IOMMU can trap the
address translation and report DMA remapping faults if disks access the memory as-
signed to other devices. In general, the DMA Remapping and IOMMU configuration
can also assign other peripheral devices (network card) to guest VMs and control the
memory space that the device can visit. In our prototype, we implement the IOMMU
access isolation for SATA disks.

Resource Allocation Recorder Isolation. MyCloud SEP also protects I/O related space,
such as memory mapped I/O space (MMIO), PCI device configuration space and sys-
tem register (MSR) mapped space. MMIO space is used to store I/O command and data
for each device. The entry address and I/O port assigned for each device are basically
specified by device mentor. In MyCloud SEP, we protect the MMIO space for AHCI
and SATA disks. Based on AHCI specification 1.3, the most data and I/O commands are
stored in two structures: Command List and Received FIS. The entry point for Com-
mand List and Received FIS is specified at chipset register PXCLB and PxFB. The
hypervisor specifies the memory space for those structures by setting up the port regis-
ter: PxCLB and PxFB. In order to protect PCI configuration space, the hypervisor will
detect base address for each PCI devices via I/O port (0xcfc and 0xcf8), then set those
space only “visible” to hypervisor. To verify the memory and disk access, the hyper-
visor should store ACM table and a liner mapping that translates 3-dimension logical
disk volume to physical disk volume.

Detangling Resource Management Functions from the TCB 321

5 Evaluation

Our evaluation test is built on a hardware platform that includes an Intel i7 2600 SEPces-
sor (with both Vt-x and Vt-d) running at 3.3Ghz, an Intel DQ67SW Motherboard, 4 GB
RAM and 1 TB SATA HDD. The guest VM is Ubuntu 10.04 LTS with linux kernel
2.6.32.

5.1 Disk Operation Performance

To evaluate the performance of disk I/O operations in MyCloud SEP, we counted the
number of VMEXITs and the time used for creating a 1GB blank file in a guest VM.

IO_INST APIC
ACCESS

 EXTERN
 INTER

 EPT
VIOLATION

 PENDING
 INTER

I/O_PORT
0

1

2

3

4

5

6

7

8x 104

N
um

be
r o

f V
M

EX
IT

s

Idle
Disk Write

(a) Block Size = 4KB (b) Block Size = 8KB

0

1

2

3

4

5

6

7x 104

N
um

be
r o

f V
M

EX
IT

s

Idle
Disk Write

IO_INST APIC
ACCESS

 EXTERN
 INTER

 EPT
VIOLATION

 PENDING
 INTER

I/O_PORT

Fig. 7. Number of VMEXITs for Disk Operations

KVM MyCloud SEP
0

4

8

12

16

20

24

28

T
im

e
C

on
su

m
pt

io
n(

s)

Block=8k Block=4k

Fig. 8. Time Consumption for Disk Operations

Figure 7 shows the types and the cor-
responding numbers of VMEXITs for
creating the file with 4KB and 8KB block
size. The figure presents the number of
VMEXITs generated when the guest VM
is at idle or disk write status. To cre-
ate a 1GB file, the guest VM will in-
troduce around 2× 105 VMEXITS with
4KB block, and 1.38× 105 VMEXITS
with 8KB block. Though the number of
VMEXITS looks huge, the correspond-
ing extra overhead compared with KVM,
such as time consumption (less than 6s more on 4KB block and 5s more on 8KB block,
see Figure 8), is acceptable.

Figure 8 shows the time used for creating the 1GB file on KVM and MyCloud SEP
platforms. We set the block size as 4KB and 8KB. In either case, MyCloud SEP takes
20% more time than KVM, because the disk I/O operations will be trapped into hy-
pervisor and examined against ACM in it. According to our evaluation, the bigger the
block size is, the less VMEXITs will be generated. The time consumption with 8KB
block size is less than that of 4 KB block size.

322 M. Li et al.

6 Discussion

In MyCloud SEP design, the ACM is fully protected by the hypervisor. The hypervisor
identifies any HyperCall that requests to change to or read from the ACM. A VM is
allowed to only read or modify its own element in the ACM table. Any attempt to read
or modify the ACM other than its own element will be detected and prohibited by the
hypervisor.

6.1 External Attacks

The external attacks come from guest VMs, targeting at the hypervisor, through the
hypervisor interfaces. In MyCloud SEP, device drivers, device emulator and the con-
trol VM are not part of the TCB. Compromising a guest VM or a malicious software
component out of the hypervisor does not gain access to any other guest VMs since
the ACM is maintained and enforced by the hypervisor. For example, in MyCloud SEP,
the control VM is moved to non-root mode and monitored by the hypervisor. The disk
space and memory space between guest VMs and the control VM are isolated and pro-
tected by the ACM in hypervisor. Any access from the control VM violating the access
control rule in ACM will be prohibited by the hypervisor. Therefore, the attacker cannot
exploit cloud tenant’s private data by comprising the control VM. The same protection
goes with disk drivers and device emulator. The disk drivers are in the VDM, the control
VM cannot directly send malicious I/O commands or interrupts to access guest VMs.

The attackers cannot breach users privacy through PCI devices either. MyCloud SEP
isolates the device memory from guest memory, therefore, any malicious DMA access
will be prohibited by the hypervisor. The hypervisor first identifies all PCI devices at
initialization process. Then, the hypervisor records MMIO and PCI Configuration space
for each device in order to prevent the attackers from overlapping the device memory
to disclose users’ private data.

6.2 Insider Attacks

In MyCloud SEP design, any privileged instructions executed in the control VM or
other guest VMs will be trapped into the hypervisor for security check. The memory
space of VMs is isolated from each other, so a malicious guest VM cannot access other
VMs’ space. Also, in MyCloud SEP, a malicious cloud administrator cannot access a
guest VM space unless the guest VM explicitly grants the access through the ACM
configuration. Thus, a malicious cloud administrator cannot gain control over guest
VMs either.

6.3 More about the Disk Management

In current design, the virtual disk manager in MyCloud SEP does not utilize popular
file systems like Linux extfs for higher level management. The fundamental reason is
that the disk access information trapped by the hypervisor are physical disks locations
indicated by cylinder number, head number, and track number. The hypervisor level
information is different from the file system abstraction like inode for a file. There is

Detangling Resource Management Functions from the TCB 323

no simple way using affordable size of codes to map from inode to disk blocks in the
hypervisor.

Therefore, in MyCloud SEP design, we deploy a resource allocation tool, virtual disk
manager, in a Linux VM, rather than using Linux file systems directly. The resource
allocation tool maps resource regions to device files. Note that malicious resource al-
location does not breach user’s privacy. For example, allocating the same disk block to
multiple VMs are monitored and prohibited by the hypervisor.

7 Conclusion

In this paper, we described a new architecture, MyCloud SEP, to separate resource allo-
cation and management from the hypervisor. While providing flexibility of plugging-in
resource management modules, the TCB size of virtualization platform is significantly
reduced compared with commercial hypervisors. In our design, the hypervisor runs se-
curity check against an ACM for the resource manager, control VM, and guest VMs in
the processor non-root mode. As the results, guest VMs’ privacy is protected. Function-
ality and security check are also separated. Using virtual disk manager as an example,
we implement a prototype on x86 architecture. The performance evaluation shows ac-
ceptable overheads of MyCloud SEP.

Ackknowledgement. We thank all reviewers for their insightful comments. Meng
Yu was supported by NSF CNS-1100221 and NSF IIP-1342664. Peng Liu was sup-
ported by ARO W911NF-09-1-0525, NSF CNS-1223710, ARO W911NF-13-1-0421,
and AFOSR W911NF1210055.

References

1. Forbes: PRISM Projected To Cost U.S. Cloud Market $35B,
http://www.forbes.com/sites/louiscolumbus/
2013/08/08/prism-projected-to-cost-u-s-cloud-computing-
industry-35b

2. Xen: http://www.xen.org/
3. KVM, http://www.linux-kvm.org/
4. Amazon Inc.: Amazon EC2, http://aws.amazon.com/ec2/
5. Butt, S., Lagar-Cavilla, H.A., Srivastava, A., Ganapathy, V.: Self-service cloud computing.

In: Proceedings of the 2012 ACM Conference on Computer and Communications Security,
CCS 2012, pp. 253–264. ACM, New York (2012)

6. Li, M., Zang, W., Bai, K., Yu, M., Liu, P.: Mycloud: Supporting user-configured privacy
protection in cloud computing. In: Proceedings of the 29th Annual Computer Security Ap-
plications Conference, ACSAC 2013, pp. 59–68. ACM, New York (2013)

7. Murray, D., Milos, G., Hand, S.: Improving xen security through disaggregation. In: Proceed-
ings of the Fourth ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, pp. 151–160. ACM (2008)

8. Pan, W., Zhang, Y., Yu, M., Jing, J.: Improving virtualization security by splitting hypervisor
into smaller components. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-Alfaro, J. (eds.)
DBSec 2012. LNCS, vol. 7371, pp. 298–313. Springer, Heidelberg (2012)

http://www.forbes.com/sites/louiscolumbus/2013/08/08/prism-projected-to-cost-u-s-cloud-computing-industry-35b
http://www.forbes.com/sites/louiscolumbus/2013/08/08/prism-projected-to-cost-u-s-cloud-computing-industry-35b
http://www.forbes.com/sites/louiscolumbus/2013/08/08/prism-projected-to-cost-u-s-cloud-computing-industry-35b
http://www.xen.org/
http://www.linux-kvm.org/
http://aws.amazon.com/ec2/

324 M. Li et al.

9. Zhang, F., Chen, J., Chen, H., Zang, B.: Cloudvisor: Retrofitting protection of virtual ma-
chines in multi-tenant cloud with nested virtualization. In: Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, pp. 203–216. ACM (2011)

10. Williams, D., Jamjoom, H., Weatherspoon, H.: The xen-blanket: virtualize once, run every-
where. In: ACM EuroSys (2012)

11. Ben-Yehuda, M., Day, M., Dubitzky, Z., Factor, M., Har’El, N., Gordon, A., Liguori, A.,
Wasserman, O., Yassour, B.: The turtles project: Design and implementation of nested virtu-
alization. In: Proceedings of the 9th USENIX Conference on Operating Systems Design and
Implementation, pp. 1–6. USENIX Association (2010)

12. Kauer, B., Verissimo, P., Bessani, A.: Recursive virtual machines for advanced security
mechanisms. In: 2011 IEEE/IFIP 41st International Conference on Dependable Systems and
Networks Workshops (DSN-W), pp. 117–122. IEEE (2011)

13. Steinberg, U., Kauer, B.: Nova: a microhypervisor-based secure virtualization architecture.
In: Proceedings of the 5th European Conference on Computer Systems, EuroSys 2010, pp.
209–222. ACM, New York (2010)

14. Heiser, G., Uhlig, V., LeVasseur, J.: Are virtual-machine monitors microkernels done right?
SIGOPS Oper. Syst. Rev. 40(1), 95–99 (2006)

15. Keller, E., Szefer, J., Rexford, J., Lee, R.: Nohype: virtualized cloud infrastructure without
the virtualization. ACM SIGARCH Computer Architecture News 38, 350–361 (2010)

16. Szefer, J., Keller, E., Lee, R., Rexford, J.: Eliminating the hypervisor attack surface for a
more secure cloud. In: Proceedings of the 18th ACM Conference on Computer and Commu-
nications Security, pp. 401–412. ACM (2011)

17. McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: an execution infras-
tructure for tcb minimization. SIGOPS Oper. Syst. Rev. 42(4), 315–328 (2008)

18. Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A., Boneh, D.,
Dwoskin, J., Ports, D.R.K.: Overshadow: A virtualization-based approach to retrofitting pro-
tection in commodity operating systems. In. In: ASPLOS (May 2008)

19. Yang, J., Shin, K.G.: Using hypervisor to provide data secrecy for user applications on a per-
page basis. In: Proceedings of the Fourth ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, VEE 2008, pp. 71–80. ACM, New York (2008)

20. Hofmann, O.S., Kim, S., Dunn, A.M., Lee, M.Z., Witchel, E.: Inktag: secure applications on
an untrusted operating system. In: Proceedings of the Eighteenth International Conference on
Architectural Support for Programming Languages and Operating System, ASPLOS 2013,
pp. 265–278. ACM, New York (2013)

21. Ta-Min, R., Litty, L., Lie, D.: Splitting interfaces: making trust between applications and
operating system configurable. In: Proceedings of the 7th Symposium on Operating Sys-
tems Design and Implementation, OSDI 2006, pp. 279–292. USENIX Association, Berkeley
(2006)

22. Cheng, Y., Ding, X., Deng, R.H.: Appshield: Protecting applications against untrusted operat-
ing system. In: Singaport Management University Technical Report. smu-sis-13-101 (2013)

23. Cloud, M., http://www.microsoft.com/enterprise/microsoftcloud/
24. Cloud, H.P., http://www.hpcloud.com/
25. CVE-2007-4993: Xen guest root escape to dom0 via pygrub
26. CVE-2010-0431: Qemu-kvm in redhat enterprise virtualization (rhev) 2.2 and kvm 83, does

not properly validate guest qxl driver pointers, which allows guest os users to gain privileges
via unspecified vectors

27. CVE-2009-1758: The hypervisor callback function in xen, as applied to the linux kernel
2.6.30-rc4 allows guest user applications to cause a denial of service of the guest os by
triggering a segmentation fault in certain address ranges

28. Elhage, N.: Virtunoid: Breaking out of kvm (2011)

http://www.microsoft.com/enterprise/microsoftcloud/
http://www.hpcloud.com/

Detangling Resource Management Functions from the TCB 325

29. Kortchinsky, K.: Cloudburst: Hacking 3d (and breaking out of vmware). In: Black Hat Con-
ference (2009)

30. Wojtczuk, R., Rutkowska, J.: Xen 0wning trilogy. In: Black Hat Conference (2008)
31. Secunia: Vulnerability report: Vmware esx server 3.x,

http://secunia.com/advisories/product/10757/
32. Secunia: Xen multiple vulnerability report,

http://secunia.com/advisories/44502/
33. CVE-2009-2277: Cross-site scripting (xss) vulnerability in webaccess in vmware allows at-

tackers to inject arbitrary web script via vectors related to context data
34. CVE-2009-1244: Vulnerability in the virtual machine display function in vmware worksta-

tion allows guest os users to execute arbitrary code on host os
35. Anderson, R., Kuhn, M.: Tamper resistance-a cautionary note. In: Proceedings of the Second

Usenix Workshop on Electronic Commerce, vol. 2, pp. 1–11 (1996)
36. Intel Coperation: Intel trusted execution technology (2011)
37. Intel Coperation: Intel trusted platform module (2003)
38. Wojtczuk, R., Rutkowska, J.: Attacking smm memory via intel cpu cache poisoning. Invisible

Things Lab (2009)
39. Intel Corporation: Intel vprof technology, http://www.intel.com/content/

www/us/en/architecture-and-technology/vpro/
vpro-technology-general.html

40. Intel Coperation: Serial ATA Advanced Host Controller Interface (2012)
41. Intel Corporation: Intel R© Virtualization Technology Specification for Directed I/O Specifi-

cation, www.intel.com/technology/vt/

http://secunia.com/advisories/product/10757/
http://secunia.com/advisories/44502/
http://www.intel.com/content/www/us/en/architecture-and-technology/vpro/vpro-technology-general.html
http://www.intel.com/content/www/us/en/architecture-and-technology/vpro/vpro-technology-general.html
http://www.intel.com/content/www/us/en/architecture-and-technology/vpro/vpro-technology-general.html
www.intel.com/technology/vt/

Securely Outsourcing Exponentiations with

Single Untrusted Program for Cloud Storage

Yujue Wang1,2,3, Qianhong Wu3,1, Duncan S. Wong2, Bo Qin4,
Sherman S.M. Chow5, Zhen Liu2, and Xiao Tan2

1 Key Laboratory of Aerospace Information Security and Trusted Computing
Ministry of Education, School of Computer, Wuhan University, Wuhan, China

2 Department of Computer Science
City University of Hong Kong, Hong Kong

wyujue2-c@my.cityu.edu.hk, {duncan,zhenliu7}@cityu.edu.hk,
xiaotan4@gapps.cityu.edu.hk

3 School of Electronic and Information Engineering
Beihang University, Beijing, China

qianhong.wu@buaa.edu.cn
4 School of Information, Renmin University of China, Beijing, China

bo.qin@ruc.edu.cn
5 Department of Information Engineering

Chinese University of Hong Kong, Hong Kong
sherman@ie.cuhk.edu.hk

Abstract. Provable Data Possession (PDP) allows a file owner to out-
source her files to a storage server such that a verifier can check the
integrity of the outsourced file. Public verifiable PDP schemes allow any
one other than the file owner to be a verifier. At the client side (file
owner or verifier), a substantial number of modular exponentiations is
often required. In this paper we make PDP more practical via propos-
ing a protocol to securely outsource the (most generic) variable-exponent
variable-base exponentiations in one untrusted program model. Our pro-
tocol demonstrates advantages in efficiency or privacy over existing pro-
tocols coping with only special cases in two or single untrusted program
model. We then apply our generic protocol to Shacham-Waters PDP and
a variant of Yuan-Yu PDP. The analyses show that our protocol makes
PDP much more efficient at the client side.

Keywords: Offloading computation, Verifiable computation, Modular
exponentiation, Provable Data Possession, Cloud storage.

1 Introduction

A recent trend to reduce the storage costs is to outsource it to a cloud service
provider. It is beneficial to the (cloud service) clients since the outsourced files
can be easily shared with others. There are also increasing concerns about the
security of their outsourced files. In addition to the many secrecy issues [1–3],
there are concerns about whether those outsourced files are still kept intact.

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 326–343, 2014.
c© Springer International Publishing Switzerland 2014

Securely Outsourcing Exponentiations with Single Untrusted Program 327

Traditional primitives like signature or signcryption (e.g., [4, 5]) are insufficient
for this purpose since it requires the signed message for verification.

Considerable efforts have been devoted to addressing these concerns. A promis-
ing one is to verify the outsourced file integrity via provable data possession
(PDP) [6–11]. In many scenarios, publicly verifiable PDP is preferable. However,
existing such schemes need many modular exponentiations, especially in file pro-
cessing and integrity verification. Exponentiations are relatively expensive for
devices with limited computation capacity such as mobile phones or tablet, al-
beit outsourcing files is attractive to mobile terminals due to their limited storage
space. This motivates us to consider how to make PDP more affordable by se-
curely outsourcing exponentiation to a computation server.

1.1 Our Contributions

Secure Exponentiations Outsourcing. We present the first generic scheme that al-
lows to securely outsource variable-exponent variable-base multi-exponentiations
to just one untrusted computation server. Although a few schemes have been pro-
posed for securely outsourcing variable-exponent variable-base exponentiations,
they treat the special cases of our setting and are not satisfactory enough for
outsourcing multi-exponentiations in practice. Both Hohenberger-Lysyanskaya
scheme [12] and Chen et al.’s scheme [13] are presented in two untrusted pro-
gram model. This seems a strong assumption hard to be met as the client needs
to outsource her exponentiations to two computation servers who will not col-
lude. Our scheme is implemented in single untrusted program model, and is also
superior since less interactions are needed between the client and the computa-
tion server. Although Dijk et al.’s scheme [14] is presented in a single untrusted
program model, it cannot ensure the privacy of the queried input since the base
of the outsourced exponentiation is known to the untrusted server. In contrast,
our scheme is computationally more efficient and ensures higher privacy level.

Before showing our algorithm of outsourcing exponentiations, we provide two
preprocessing subroutines which generate random pairs. The first one, called
BPV+, generates statistically indistinguishable random pairs and is suitable to
implement outsourcing schemes over cyclic groups of large prime order. The
other one, standard multiplicative base list (SMBL), is more efficient especially
for applications over finite groups on elliptic curves.

Secure Offloading Provable Data Possession. Built on our scheme of outsourcing
generic exponentiations, we investigate how to efficiently and securely offload
PDP schemes. As we know, most existing publicly verifiable PDP schemes take
many expensive exponentiations. Specifically, those exponentiations intensively
occur in two stages. One is the file processing algorithm ProFile, which is carried
out by the file owner to generate the verifiable metadata for a given file before
uploading it to the storage server. The other one is the verification algorithm
Vrfy, which is executed by a verifier to check whether the outsourced file is kept
intact. Thus, to speed-up PDP schemes at the client side, we let the file owner
and the verifier securely outsource exponentiations to an untrusted computation

328 Y. Wang et al.

server. To showcase the effectiveness of our protocol, we show how to securely
offload Shacham-Waters PDP [8] and a variant of Yuan-Yu PDP [11]. Analyses
show that for both offloaded PDP schemes, the computational efficiency at the
client side is greatly improved compared with the plain ones. Furthermore, the
saving computation cost increases with the number of elements involved in a
multi-exponentiation.

1.2 Related Work

Provable Data Possession. The concept of PDP was first introduced by Ateniese
et al. [6], which allows the clients to check the integrity of an outsourced file
without retrieving its entire version from the cloud storage server. For responding
to integrity queries, the cloud server does not need to access the entire file.
There are some attempts in outsourcing operations in PDP. Wang et al. [15]
considered PDP in identity-based setting to relieve the users from complicated
certificate management. In Wang et al.’s privacy-preserving publicly-verifiable
PDP scheme [10], a third party auditor (TPA) is introduced to securely carry
out verification algorithm on behalf of file owners. Here the privacy of the file
is preserved from the view of the TPA. In another work with privacy concern,
Wang et al. [9] considered a scenario such that the members of an organization
can perform the file processing for PDP with the help of a security-mediator
(SEM). As a side effect, part of the computation workloads is also outsourced.
The privacy is preserved from the view of the SEM.

Proofs of Retrievability (PoR) is a closely related notion to PDP. PoR was first
introduced by Juels and Kaliski [7], which enables the storage server to convince
its clients that the outsourced files can be entirely retrieved. In their scheme [7],
the clients can only submit a limited number of integrity queries, because the
corresponding responses are produced by checking whether the special sentinels
have been modified. Shacham and Waters [8] presented (both privately and pub-
licly) verifiable PoR schemes, which are the first ones that being proved in the
strongest model. Based on polynomial commitments [16], Yuan and Yu [11] pro-
posed a public verifiable PoR scheme with constant communication costs for
integrity verification. Benabbas, Gennaro and Vahlis [17] investigated verifiable
delegation of computations for high degree polynomial functions to an untrusted
server, and based on which a PoR scheme is discussed where the file blocks are
represented as the coefficients in a polynomial. For reducing the computation
costs at the client sides, Li et al. [18] introduced a semi-honest cloud audit
server into PoR framework. Specifically, the audit server takes charge of prepro-
cessing the data for generating metadata as well as auditing the data integrity
on behalf of data owners.

Securely Outsourcing Exponentiations. Dijk et al. [14] considered outsourcing
algorithms of variable-exponent fixed-base and fixed-exponent variable-base ex-
ponentiations in one untrusted server model. Specifically, the computations are
outsourced to one powerful but untrusted server, where the variable parts are
blinded before sending to the server. Ma, Li and Zhang [19] also proposed se-
cure algorithms of outsourcing these two types of exponentiations by using two

Securely Outsourcing Exponentiations with Single Untrusted Program 329

non-collusion untrusted servers. An algorithm of outsourcing variable-exponent
variable-base exponentiations was also presented in [14], where the outsourced
base is known to the server. Both the schemes of Hohenberger and Lysyan-
skaya [12] and Chen et al. [13] considered outsource-secure algorithms of variable-
exponent variable-base exponentiations in one-malicious version of two untrusted
program model, that is, the computations are securely outsourced to two servers
one of which is trusted and will not collude with the other dishonest one. Chen
et al. [13] also studied how to securely and efficiently outsource simultaneous
exponentiations in this security model.

Other Secure Outsourcing Schemes. Tsang, Chow and Smith [20] proposed the
concept of batch pairing delegations for securely outsourcing expensive pairing
operations in batch. Canard, Devigne and Sanders [21] also showed delegat-
ing a pairing can be both secure and efficient. The main operation required by
the client is exponentiation. With our new protocol, it provides a “complete
solution” of outsourcing many pairing-based schemes, in particular, the PDP
schemes we concerned in this work. Xu, Amariucai and Guan [22] considered
a scenario in which the burdensome computations are delegated to a server P ,
and the verification on the outputs of P is also outsourced to another server
V . Gennaro, Gentry and Parno [23] first considered verifiable computation by
combining Yao’s Garbled Circuits with a fully-homomorphic encryption scheme,
such that the evaluation of a function can be securely outsourced to a remote
untrusted server. Carter et al. [24] also considered securely outsourcing function
evaluation by using an efficient outsourced oblivious transfer protocol. Zhang and
Safavi-Naini [25] considered special cases of securely outsourcing function evalu-
ation, i.e., univariate polynomial evaluation and matrix multiplication, without
fully-homomorphic encryption, yet with multilinear maps. Recently, Wang et
al. [26, 27] showed how to compute over data encrypted under multiple keys
in the two-server model. Two-server model is also used in other work such as
efficient privacy-preserving queries over distributed databases [28].

2 Definitions and Security Requirements

In this section, we review the definitions of outsource-secure algorithms as well
as the corresponding security requirements [12, 13].

An algorithm Alg to be outsourced is divided into two parts, namely, a trusted
part T which should be efficient compared with Alg and is carried out by the
outsourcer, and an untrusted part U which is invoked by T . Following the works
[12, 13], we use the same notations in the upcoming sections. Specifically, TU

denotes the works that carried out by T by invoking U . The adversary A is
modelled by a pair of algorithms A = (E,U ′), where E represents the adver-
sarial environment, and generates adversarial inputs for Alg; we denote U ′ an
adversarial software. It is invoked in the same way as U and thus it is used to
mirror the view of U during the execution of TU .

330 Y. Wang et al.

Definition 1 (Algorithm with Outsource-IO). An outsourcing algorithm
Alg takes five inputs and produces three outputs, i.e., Alg(xhs, xhp, xhu, xap, xau)
→ (ys, yp, yu).

Inputs: All the inputs are classified by how they are generated and how much the
adversary A = (E,U ′) knows about them. The first three inputs are generated by
an honest party, while the last two are generated by the adversarial environment
E. Specifically, the honest, secret input xhs is unknown to both E and U ; the
honest, protected input xhp may be known to E, but is protected from U ; the
honest, unprotected input xhu may be known by both E and U ; the adversarial,
protected input xap is known by E, but protected from U ; and the adversarial,
unprotected input xau may be known by both E and U .

Outputs: Similarly, all the outputs are classified by how much the adversary
A = (E,U ′) knows about them. The first one ys is called the secret output and
unknown to both parties of A; the protected output yp may be known by E, but
unknown to U ; and yu is the unprotected output known by both E and U .

It is assumed that the adversary A consists of two parties E and U ′. Both can
only make direct communications before the execution of TU . In any other cases
if necessary, they should be communicated via T . An outsource-secure algorithm
(T, U) requires that neither party of A can learn anything interesting during the
execution of TU . This requirement is captured by the simulatability of (T, U). In
other words, for any probabilistic polynomial-time (PPT) adversaryA = (E,U ′),
the view of E on the execution of TU can be simulated in a computationally
indistinguishable way given the protected and unprotected inputs, and similarly,
the view of U ′ can also be simulated but only given the unprotected inputs.

Definition 2 (Correctness). Let Alg be an algorithm with outsource-IO. A
pair of algorithms (T, U) is said to be a correct implementation of Alg, if Alg =
TU for any honest, secret, or honest, protected, or adversarial, protected inputs.

Definition 3 (λ-security). Let Alg be an algorithm with outsource-IO. A pair
of algorithms (T, U) is said to be a λ-outsource-secure implementation of Alg if:
for any PPT adversary A = (E,U ′), both the views of E and U ′ can be simulated
on the execution of TU , i.e., there exist PPT algorithms (S1, S2) such that the
following two pairs of random variables are computationally indistinguishable
under the security parameter λ,

Pr[EV iewreal ∼ EV iewideal] ≥ 1− 2−λ,

and

Pr[UV iewreal ∼ UV iewideal] ≥ 1− 2−λ.

Pair One: EV iewreal ∼ EV iewideal, which means that E learns nothing during
the execution of TU . They are defined by the following processes that proceed in
rounds, where the notation “←” denotes the outputs of the procedure in the right
hand side.

Securely Outsourcing Exponentiations with Single Untrusted Program 331

– The i-th round of real process consists of the following steps, in which I is
an honest, stateful process that the environment E cannot access:
• (istatei, xihs, x

i
hp, x

i
hu)← I(1κ, istatei−1);

• (estatei, ji, xiap, x
i
au, stop

i)← E(1κ, EV iewi−1
real, x

i
hp, x

i
hu);

• (tstatei, ustatei, yis, y
i
p, y

i
u)

← TU ′(ustatei−1)(tstatei−1, xj
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au).

Thus, the view of E in the i-th round of the real process is EV iewi
real =

(estatei, yip, y
i
u) and the overall view is just its view in the last round, i.e.,

EV iewreal = EV iewi
real for some i such that stopi = True.

– The i-th round of ideal process consists of the following steps. In which, the
stateful algorithm S1 is given all the non-secret outputs which Alg generates
in i-th round, but knows nothing about the secret input xihs. Finally, S1

outputs (yip, y
i
u) or some other values (Y i

p , Y
i
u), which is captured by using a

boolean indicator indi.
• (istatei, xihs, x

i
hp, x

i
hu)← I(1κ, istatei−1);

• (estatei, ji, xiap, x
i
au, stop

i)← E(1κ, EV iewi−1
real, x

i
hp, x

i
hu);

• (astatei, yis, y
i
p, y

i
u)← Alg(astatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

• (sstatei, ustatei, Y i
p , Y

i
u, ind

i)

← S
U ′(ustatei−1)
1 (sstatei−1, xj

i

hp, x
ji

hu, x
i
ap, x

i
au, y

i
p, y

i
u);

• (zip, z
i
u) = indi(Y i

p , Y
i
u) + (1− indi)(yip, yiu).

Thus, the view of E in the i-th round of the ideal process is EV iewi
ideal =

(estatei, zip, z
i
u) and the overall view is just its view in the last round, i.e.,

EV iewideal = EV iewi
ideal for some i such that stopi = True.

Pair Two: UV iewreal ∼ UV iewideal, which means that the untrusted software
U ′ learns nothing during the execution of TU ′

.

– By the definition of Pair One, U ′’s view in the real process is UV iewreal =
ustatei for some i such that stopi = True.

– The i-th round of ideal process consists of the following steps, in which
the stateful algorithm S2 is just given the unprotected outputs which Alg
generates in i-th round:
• (istatei, xihs, x

i
hp, x

i
hu)← I(1κ, istatei−1);

• (estatei, ji, xiap, x
i
au, stop

i)← E(1κ, EV iewi−1
real, x

i
hp, x

i
hu);

• (astatei, yis, y
i
p, y

i
u)← Alg(astatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

• (sstatei, ustatei)← S
U ′(ustatei−1)
2 (sstatei−1, xj

i

hu, x
i
au) .

Thus, U ′’s view in i-th round of ideal process is UV iewi
ideal = (ustatei),

and the overall view is just its view in the last round, i.e., UV iewideal =
UV iewi

ideal for some i such that stopi = True.

As we discussed, by employing the outsource-secure techniques, the clients
can relieve from carrying out resource-intensive computations locally. Thus, it is
reasonable to measure the efficiency of an outsource-secure algorithm (T, U) by
comparing the works that T undertakes to those for the state-of-the-art execution
of Alg.

332 Y. Wang et al.

Definition 4 (α-efficient, λ-secure outsourcing). For a pair of λ-outsource-
secure algorithms (T, U) which implement an algorithm Alg, they are α-efficient
if for any inputs x, the running time of T is less than an α-multiplicative factor
of that of Alg(x).

Definition 5 (β-checkable, λ-secure outsourcing). For a pair (T, U) of
λ-outsource-secure algorithms which implement an algorithm Alg, they are β-
checkable if for any inputs x, T can detect any deviations of U ′ from its adver-
tised functionality during the execution of TU ′(x) with probability at least β.

In practice, the cloud server can only misbehave with very small probability.
Otherwise, it will be caught after outsourcing invocations.

Definition 6 ((α, β, λ)-outsource-security). A pair of algorithms (T, U) are
an (α, β, λ)-outsource-secure implementation of an algorithm Alg if they are both
α-efficient and β-checkable, λ-secure outsourcing.

3 Secure Modular Exponentiation Outsourcing

3.1 Preprocessing

In [13, 12], a subroutine Rand is used to generate random pairs. On each in-
vocation, Rand takes a prime p, a base g ∈ Z∗

p and possibly some other val-
ues as inputs, and outputs a random, independent pair (a, ga mod p) for some
a ∈R Z∗

p. For security, the distribution of Rand outputs should be computation-
ally indistinguishable from truly random ones. There are two ways to realize this
subroutine. One is to use a trusted server to generate a number of random and
independent pairs for T , and the other is let T generate those random pairs by
using EBPV generator [29].

In this paper, we provide two preprocessing subroutines for generating random
pairs. Both of them take a cyclic group G = 〈g〉 of prime order p and possibly
some other values as inputs, and output a random, independent pair (a, ga) for
some a ∈R Z∗

p. Besides, those subroutines maintain two tables, i.e., a static table
ST and a dynamic table DT .

BPV+: The first one is called BPV+ which is derived from the BPV genera-
tor [30], i.e., by running BPV or EBPV generator totally offline. In detail, BPV+

is described as follows.

– ST: T chooses n random numbers β1, · · · , βn ∈ Z∗
p, and computes νi = gβi

for each i ∈ [1, n]. T stores these n pairs (βi, νi) in the static table ST .
– DT: T maintains a dynamic table DT, of which each element (αj , μj) can

be produced as follows. T chooses a random subset S ⊆ {1, · · · , n} such
that |S| = k and computes αj =

∑
i∈S

βi mod p. If αj �= 0 mod p, then
compute μj =

∏
i∈S

νi; otherwise, discard αj and repeat this procedure. On
each invocation of BPV+, T just picks a pair (α, μ) and removes it from DT ,
and then replenishes some fresh random pairs in its idle time.

Securely Outsourcing Exponentiations with Single Untrusted Program 333

SMBL: Another preprocessing algorithm is called standard multiplication base
list (SMBL), which produces truly random pairs.

– ST: T computes νi = g2i

for every i ∈ {0, · · · , �log p�} and stores these
pairs (i, νi) in the static table ST . In fact, νi = νi−1 · νi−1 for every i ∈
{1, · · · , �log p�}.

– DT: T maintains a dynamic table DT , of which each element (αj , μj) can
be produced as follows. T chooses a random value αj ∈ Z∗

p and denotes its
i-th bit by αi,j . Let A ⊆ {0, · · · , �log p�} be the set of i such that αi,j = 1.
Computes μj =

∏
i∈A

νi. On each invocation of SMBL, T just picks a pair
(α, μ) and removes it from DT , and then replenishes some fresh random
pairs afterwards.

Note that, the preprocessing algorithms, i.e., Rand, BPV+ and SMBL just
deal with exponentiations with some fixed-base g. The comparison between the
proposed subroutines is shown in Table 1 in terms of computation and storage
costs and randomness of the generated pairs. Here, |DT | and ESG denote the
cardinality of table DT and the element size of group G, respectively. It is easy
to see that BPV+ produces statistically indistinguishable random pairs, while
SMBL generates truly random ones. Both the computations and the storage
of BPV+ with regard to ST are more costly than its counterpart in SMBL.
However, if p is large, then the computations of DT in BPV+ are more efficient
than that in SMBL, since the parameter k is relatively small compared with p.
Thus, BPV+ will be more effective when used in preprocessing or outsourcing
schemes that are designed over cyclic groups of large prime orders, such as DSA
scheme, El Gamal scheme as well as RSA-type schemes, etc. While SMBL is well-
suited for other cases, e.g., in the applications over ECC such as that discussed
in Section 4, where a relatively small p is secure enough.

Table 1. Comparison of preprocessing subroutines BPV+ and SMBL

Subroutines Computation costs Storage costs Randomness

BPV+
ST nE n log p+ nESG -

DT |DT |(k − 1)A+ |DT |(k − 1)M |DT | log p+ |DT |ESG

Statistically
indistinguishable

SMBL
ST �log p�M (�log p�+ 1) log log p

-
+(�log p�+ 1)ESG

DT |DT |�log p�/2M |DT | log p+ |DT |ESG Truly random

(A, M, and E denote addition, multiplication, and exponentiation, respectively.)

3.2 Generic Algorithm for Outsourcing Exponentiations

Let G be a cyclic group of prime order p and g be a generator. Takes ai,j ∈R Zp

and ui,j ∈R G (1 ≤ i ≤ r, 1 ≤ j ≤ s) as inputs, the algorithm GExp outputs
(
∏s

j=1 u
a1,j

1,j , · · · ,
∏s

j=1 u
ar,j

r,j), i.e.,

334 Y. Wang et al.

GExp((a1,1, · · · , a1,s;u1,1, · · · , u1,s), · · · , (ar,1, · · · , ar,s;ur,1, · · · , ur,s))

→ (

s∏
j=1

u
a1,j

1,j , · · · ,
s∏

j=1

u
ar,j

r,j),

where {ai,j : 1 ≤ i ≤ r, 1 ≤ j ≤ s} may be secret or (honest/adversarial) pro-
tected, {ui,j : 1 ≤ i ≤ r, 1 ≤ j ≤ s} are distinct and may be (honest/adversarial)
protected, and {

∏s
j=1 u

a1,j

1,j : 1 ≤ i ≤ r} may be secret or protected.

Step 1: T invokes the algorithm BPV+ or SMBL to generate four pairs
(α1, μ1), · · · , (α4, μ4) where μi = gαi . Pick a random value χ such that χ ≥ 2λ

where λ is a security parameter, e.g. λ = 64. For every pair (i, j) such that
1 ≤ i ≤ r and 1 ≤ j ≤ s, pick a random number bi,j ∈R Z∗

p and compute the
following values

– ci,j = ai,j − bi,jχ mod p;
– wi,j = ui,j/μ1;
– hi,j = ui,j/μ3;

– θi =
(
α1

∑s
j=1 bi,j − α2

)
χ+

(
α3

∑s
j=1 ci,j − α4

)
mod p.

Step 2: T invokes BPV+ or SMBL to obtain (t1, g
t1), · · · , (tr+2, g

tr+2) and
queries the server U in random order as:
U(θi/ti, g

ti)→ Bi, for every i (1 ≤ i ≤ r);
U(θ/tr+1, g

tr+1)→ A, where θ = tr+2 −
∑r

i=1 θi mod p;
U(bi,j , wi,j)→ Ci,j , for every i, j (1 ≤ i ≤ r, 1 ≤ j ≤ s);
U(ci,j , hi,j)→ Di,j , for every i, j (1 ≤ i ≤ r, 1 ≤ j ≤ s).

Step 3: T checks whether A ·
∏r

i=1 Bi
?
= gtr+2 . If it holds, then compute the

results as follows, for 1 ≤ i ≤ r,

s∏
j=1

u
ai,j

i,j =

⎛
⎝μ2

s∏
j=1

Ci,j

⎞
⎠

χ

Biμ4

s∏
j=1

Di,j ;

otherwise it indicates that U has produced wrong responses, and thus T outputs
“error”.

3.3 Security Analysis

Lemma 1 (Correctness). In single untrusted program model, the above algo-
rithms (T, U) are a correct implementation of GExp, where the inputs {(ai,1,
· · · , ai,s;ui,1, · · · , ui,s) : 1 ≤ i ≤ r} may be honest, secret; or honest, protected;
or adversarial, protected.

Proof. If U performs honestly, we have

A ·
r∏

i=1

Bi = gθ ·
r∏

i=1

gθi = gtr+2−
∑r

i=1 θi ·
r∏

i=1

gθi = gtr+2 ,

Securely Outsourcing Exponentiations with Single Untrusted Program 335

and for every 1 ≤ i ≤ r, we have⎛
⎝μ2

s∏
j=1

Ci,j

⎞
⎠

χ

Biμ4

s∏
j=1

Di,j

=

⎛
⎝gα2

s∏
j=1

w
bi,j
i,j

⎞
⎠

χ

g(α1
∑s

j=1 bi,j−α2)χ+(α3
∑s

j=1 ci,j−α4)gα4

s∏
j=1

h
ci,j
i,j

=

⎛
⎝ s∏

j=1

w
bi,j
i,j g

α1

∑s
j=1 bi,j

⎞
⎠

χ

gα3

∑s
j=1 ci,j

s∏
j=1

h
ci,j
i,j

=

⎛
⎝ s∏

j=1

w
bi,j
i,j

s∏
j=1

μ
bi,j
1

⎞
⎠

χ
s∏

j=1

μ
ci,j
3

s∏
j=1

h
ci,j
i,j

=

⎛
⎝ s∏

j=1

(μ1wi,j)
bi,j

⎞
⎠

χ
s∏

j=1

(μ3hi,j)
ci,j

=

⎛
⎝ s∏

j=1

u
bi,j
i,j

⎞
⎠

χ
s∏

j=1

u
ci,j
i,j =

s∏
j=1

u
bi,jχ+ci,j
i,j =

s∏
j=1

u
ai,j

i,j .

Thus, the correctness follows. ��
Theorem 1 (λ-security). In single untrusted program model, the above algo-
rithms (T, U) are a λ-outsource-secure implementation of GExp, where the in-
puts {(ai,1, · · · , ai,s;ui,1, · · · , ui,s) : 1 ≤ i ≤ r} may be honest, secret; or honest,
protected; or adversarial, protected, and all the bases are distinct.

The proof of Theorem 1 is given in the full version of this paper.

Theorem 2. In single untrusted program model, the above algorithms (T, U)
are an

(
O
(
rs+r log χ+r

rs�

)
, r+1

2rs+r+1 , λ
)
-outsource-secure implementation of GExp.

Proof. On one hand, the well-known square-and-multiply method to calculate
one exponentiation ua takes roughly 1.5� multiplications, where � denotes the
bit-length of a. Accordingly, by using this method, it requires roughly 1.5rs� mul-
tiplications for calculating r multi-exponentiations (

∏s
j=1 u

a1,j

1,j , · · · ,
∏s

j=1 u
ar,j

r,j).
On the other hand, GExp makes (r+3) inversions and (5rs+6r+1.5r logχ+1)
multiplications for calculating the same exponentiations. Thus, the algorithms
(T, U) are an O

(
rs+r logχ+r

rs�

)
-efficient implementation of GExp.

Since U cannot distinguish the test queries from the other real queries that T
makes, if it deviates the execution of GExp, the deviations of U will be detected
with probability r+1

2rs+r+1 . ��

3.4 Comparisons

We conduct thorough comparisons between our scheme GExp and the
up-to-date schemes [13, 14, 12] on outsourcing variable-exponent variable-base

336 Y. Wang et al.

exponentiations, in terms of computation and communication costs at the client
side, and security properties.

The schemes with regard to computing just one exponentiation are summa-
rized in Table 2, in which ESG denotes the element size of G. All of those schemes
enjoy results checkability of certain levels. Both schemes [12, 13] implemented
in two untrusted program model make several invocations to subroutine Rand.
For each invocation of Rand, the online phase will take roughly (2k + h − 4)
multiplications by using their suggested EBPV generator, where k is the same
parameter as that in BPV+ and h ≥ 1. Dijk et al.’s scheme [14] takes about
(3(3 log s + 2 logws)/2 + 5) multiplications where ws is determined by the se-
curity parameter s. In their scheme, one may note that T makes two rounds of
interactions with just one untrusted server U for querying 4 powers. Although
Dijk et al.’s scheme [14] is presented in single untrusted program model, the base
g is known to the server U .

Table 2. Comparison of securely outsourcing single exponentiation ua

Scheme [12] Scheme [13] Scheme [14] Ours

Multiplications 6O(Rand) + 9 5O(Rand) + 7
4.5 log s

12 + 1.5 log χ
+3 logws + 5

Inversions 5 3 1 4

Queries to U 8 6 4 4

Communications 8 log p+ 16ESG 6 log p+ 12ESG 2 log n+ 7ESG 4 log p+ 8ESG

Privacy � � × �
Checkability 1/2 2/3 1 1/2

Security Model Two UP Two UP Single UP Single UP

(“Two/Single UP” denotes Two / Single Untrusted Program Model respectively)

Chen et al. [13] also presented an algorithm for outsourcing simultaneous
exponentiations in two untrusted program model. A comparison between their
scheme [13] and ours is shown in Table 3.

Table 3. Comparison of securely outsourcing simultaneous exponentiation ua1
1 ua2

2

Scheme [13] Ours

Multiplications 5O(Rand) + 10 17 + 1.5 log χ

Inversions 3 4

Queries to U 8 6

Communications 8 log p+ 16ESG 6 log p+ 12ESG

Privacy � �
Checkability 1/2 1/3

Security Model Two UP Single UP

Securely Outsourcing Exponentiations with Single Untrusted Program 337

4 Securely Offloading PDP

We first review the definition of PDP (e.g., [6, 8]).

Definition 7 (PDP). A Provable Data Possession scheme consists of five poly-
nomial time computable algorithms, i.e., KeyGen, ProFile, Chall, PrfGen and Vrfy.

– KeyGen(1κ) → (pk, sk): on input 1κ where κ ∈ N is a security parameter,
the (randomized) key generation algorithm, which is carried out by the cloud
clients, generates a pair of public and secret key (pk, sk).

– ProFile(sk,M) → (t,M∗): on input a file M and the secret key sk, the pro-
cessing file algorithm, which is carried out by the file owner, generates a file
tag t and a processed file M∗ for M .

– Chall(pk, t) → Q: on input the public key pk and a file tag t, the challenge
generation algorithm, which is carried out by the verifier, produces a chal-
lenge Q.

– PrfGen(pk, t,M∗, Q)→ R: on input the public key pk, a file tag t, a processed
file M∗ and a challenge Q, the proof generation algorithm, which is carried
out by the cloud storage server, produces a response R.

– Vrfy(pk, sk, t, Q,R) → {0, 1}: on the public key pk, the secret key sk, a file
tag t and a challenge-response pair (Q,R), the deterministic verification al-
gorithm outputs “1” if R is a valid response for Q, or “0” otherwise.

Our schemes are built from bilinear pairings reviewed below. Suppose G = 〈g〉
be a cyclic group of prime order p. The group G is said to be bilinear if there
exists a cyclic group GT and a bilinear map ê : G × G → GT such that: (1)
Bilinearity: ∀μ, ν ∈ G, and ∀a, b ∈ Zp, ê(μa, νb) = ê(μ, ν)ab; (2) Non-degeneracy:
ê(g, g) �= 1 is a generator of GT .

4.1 Securely Offloading Shacham-Waters PDP

Let H : {0, 1}∗ → G be the collusion-resistant map-to-point hash function (to
be modelled as a random oracle) and Σ = (SKG, SSig, SVer) be the Boneh-Lynn-
Shacham signature scheme [31]. We are ready to describe how to securely offload
the Shacham-Waters PDP scheme.

KenGen(1κ)→ (pk, sk): First generate a random signing key pair (spk, ssk) ←
Σ.SKG(1κ). Then random pick α ←R Z∗

p and compute v = gα. Thus, the
public key and secret key are pk = (v, spk) and sk = (α, ssk), respectively.

ProFile(sk,M)→ (t,M∗): Given a file M , split it into blocks such that each
block has s sectors, i.e., M = {Mi = (mi,1, · · · ,mi,s) : 1 ≤ i ≤ n}. Parse sk
to get (α, ssk). Then, choose a random file name name ∈R Z∗

p and s random
elements u1, · · · , us ∈R G. Let t0 = name ‖ n ‖ u1 ‖ · · · ‖ us. Compute
the file tag as t ← t0 ‖ Σ.SSigssk(t0) = t0 ‖ GExp(ssk;H(t0)). For each
file block Mi (1 ≤ i ≤ n), compute hi = H(name ‖ i) and invoke GExp to
generate metadata σi as

σi ← GExp(α, αmi,1, · · · , αmi,s;hi, u1, · · · , us).

338 Y. Wang et al.

Then, send the processed file M∗ = {mi,j}1≤i≤n,1≤j≤s ∪ {σi}1≤i≤n to the
cloud storage server.

Chall(pk, t)→ Q: Parse pk as (v, spk) and use spk to validate t. If it is invalid,
output 0 and terminate; otherwise, parse t to obtain (name, n, u1, · · · , us).
Pick a random subset I ⊆ [1, n] and a random value vi ∈R Z∗

p for each i ∈ I.
Send Q = {(i, vi) : i ∈ I} to the cloud storage server.

PrfGen(pk, t,M∗, Q)→ R: Parse the processed file M∗ as {mi,j}1≤i≤n,1≤j≤s ∪
{σi}1≤i≤n, and the challenge Q to obtain {(i, vi) : i ∈ I}. Compute

μj =
∑

(i,vi)∈Q

vimi,j ∈ Zp, and σ =
∏

(i,vi)∈Q

σvi
i ∈ G.

Then send R = (μ1, · · · , μs, σ) to the verifier.
Vrfy(pk, sk, t, Q,R)→ {0, 1}: Parse R to obtain (μ1, · · · , μs) ∈ (Zp)s and σ ∈ G.

If parsing fails, output 0 and terminate. Otherwise, compute hi = H(name ‖
i) for each i ∈ I and

ρ = GExp
(

(vi)(i,vi)∈Q, μ1, · · · , μs; (hi)(i,vi)∈Q, u1, · · · , us
)
.

Check whether ê(σ, g)
?
= ê (ρ, v) holds; if so, output 1; otherwise, output 0.

Correctness. If the computation server performs honestly, we have

σi = GExp(α, αmi,1, · · · , αmi,s;hi, u1, · · · , us)

= hαi ·
s∏

j=1

u
αmi,j

j =

(
H(name ‖ i) ·

s∏
j=1

u
mi,j

j

)α

.

ρ = GExp
(

(vi)(i,vi)∈Q, μ1, · · · , μs; (hi)(i,vi)∈Q, u1, · · · , us
)

=
∏

(i,vi)∈Q

hvii ·
s∏

j=1

u
μj

j =
∏

(i,vi)∈Q

H(name ‖ i)vi ·
s∏

j=1

u
μj

j .

The correctness of the file tag generation is straightforward.

4.2 Securely Offloading a Variant of Yuan-Yu PDP

In the following, for a given vector c = (c0, · · · , cs−1) for ci ∈ Zp, we use fc(x)

to denote the polynomial defined as fc(x) =
∑s−1

i=0 cix
i over Zp.

KenGen(1κ)→ (pk, sk): First generate a random signing key pair (spk, ssk) ←
Σ.SKG(1κ). Then pick two random values α, β ←R Z∗

p, and compute γ = gβ ,

λ = gαβ and {gαj

: j ∈ [0, s − 1]}. Thus, the public key and secret key are

pk = (γ, λ, spk, g, gα, · · · , gαs−1

) and sk = (α, β, ssk), respectively.
ProFile(sk,M)→ (t,M∗): Given a file M , split it into blocks such that each

block has s sectors, i.e., M = {Mi = (mi,0, · · · ,mi,s−1) : 1 ≤ i ≤ n}. Choose
a random file name name ∈R Z∗

p and set t0 = name ‖ n. Compute the file
tag as t ← t0 ‖ Σ.SSigssk(t0) = t0 ‖ GExp(ssk;H(t0)). For each file block
Mi (1 ≤ i ≤ n):

Securely Outsourcing Exponentiations with Single Untrusted Program 339

– compute hi = H(name ‖ i) and fi = β ·fπi
(α) = β

∑s−1
j=0 mi,jα

j mod p;

– invoke GExp to generate metadata, i.e., σi ← GExp(β, fi;hi, g).

Then, send the processed file M∗ = {mi,j}1≤i≤n,0≤j≤s−1 ∪ {σi}1≤i≤n to the
cloud storage server.

Chall(pk, t)→ Q: Parse pk to obtain spk and use it to validate the signature on t.
If it is invalid, output 0 and terminate; otherwise, parse t to obtain (name, n).
Pick a random subset I ⊆ [1, n] and a random value vi ∈R Z∗

p for each i ∈ I.
Choose another random value r ∈R Z∗

p and send Q = {r, (i, vi) : i ∈ I} to
the cloud storage server.

PrfGen(pk, t,M∗, Q)→ R: Parse the processed file M∗ as {mi,j}1≤i≤n,1≤j≤s ∪
{σi}1≤i≤n, and the challenge Q to obtain {r, (i, vi) : i ∈ I}. Compute

μj =
∑

(i,vi)∈Q

vimi,j ∈ Zp, and σ =
∏

(i,vi)∈Q

σvi
i ∈ G.

Define a polynomial fμ(x) =
∑s−1

j=0 μjx
j mod p and calculate y = fμ(r).

Then compute the polynomial fω(x) =
fμ(x)−fμ(r)

x−r using polynomial long
division, and denote its coefficient vector as ω = (ω0, · · · , ωs−2). Compute

ψ = gfω(α) =
∏s−2

j=0(gα
j

)ωj and send R = (ψ, y, σ) to the verifier.

Vrfy(pk, sk, t, Q,R)→ {0, 1}: After receiving the proof response R, the verifier
parses it to obtain (ψ, y, σ) and parses t to obtain (name, n). If parsing fails,
output 0 and halting. Otherwise, compute hi = H(name ‖ i) for each i ∈ I,
and invoke GExp to compute

ρ = GExp
(
y,−r, (vi)(i,vi)∈Q; g, ψ, (hi)(i,vi)∈Q

)
.

If ê(σ, g) = ê(ψ, λ)ê(ρ, γ) holds, then output 1; otherwise, output 0.

Correctness. It is easy to see that, if both the computation server and the
storage server perform honestly, we have

σi = GExp(β, fi;hi, g) = hβi · gβfπi
(α) = H(name ‖ i)β · gβ

∑s−1
j=0 mi,jα

j

=
(
H(name ‖ i) · g

∑s−1
j=0 mi,jα

j
)β

=
(
H(name ‖ i) ·

s−1∏
j=0

gmi,jα
j
)β
.

ρ = GExp
(
y,−r, (vi)(i,vi)∈Q; g, ψ, (hi)(i,vi)∈Q

)
= gyψ−r

∏
(i,vi)∈Q

hvii = gyψ−r
∏

(i,vi)∈Q

H(name ‖ i)vi .

340 Y. Wang et al.

The correctness of file tag generation is straightforward. Specifically,

ê(σ, g) = ê
(∏

(i,vi)∈Q

σvi
i , g
)

= ê

(∏
(i,vi)∈Q

(
H(name ‖ i) · gfπi

(α)
)viβ

, g

)

= ê
(∏

(i,vi)∈Q

H(name ‖ i)vi , gβ
)
ê
(
gβ

∑
(i,vi)∈Q vifπi

(α), g
)

= ê
(∏

(i,vi)∈Q

H(name ‖ i)vi , gβ
)
ê
(
gfμ(α), gβ

)
.

ê(ψ, λ)ê(ρ, γ) = ê
(
gfω(α), gαβ

)
ê
(
gyψ−r

∏
(i,vi)∈Q

H(name ‖ i)vi , gβ
)

= ê
(
gαfω(α), gβ

)
ê
(
gfμ(r)g−rfω(α)

∏
(i,vi)∈Q

H(name ‖ i)vi , gβ
)

= ê
(
g(α−r)fω(α)+fμ(r), gβ

)
ê
(∏

(i,vi)∈Q

H(name ‖ i)vi , gβ
)

= ê
(
gfμ(α)−fμ(r)+fμ(r), gβ

)
ê
(∏

(i,vi)∈Q

H(name ‖ i)vi , gβ
)

= ê
(
gfμ(α), gβ

)
ê
(∏

(i,vi)∈Q

H(name ‖ i)vi , gβ
)
.

4.3 Efficiency Analysis

The original Shacham-Waters PDP [8] takes many exponentiations in algorithm
ProFile and algorithm Vrfy. For processing a file M = {Mi = (mi,0, · · · ,mi,s−1) :
1 ≤ i ≤ n}, the file owner takes 1 exponentiation and (s + 1) exponentiations
for producing the file tag and one metadata, respectively. While the verifier
takes (|I| + s) exponentiations during the verification phase. In our variant of
the Yuan-Yu PDP [11], since α is a secret key, we assume α2, · · · , αs−1 have
been pre-calculated by the file owner. Thus, the algorithm ProFile and algorithm
Vrfy take (2n + 1) and (|I| + 2) exponentiations, respectively. We compare the
computation costs as well as the communication overheads between the client
and the untrusted computation server of the schemes with/without outsourcing
exponentiations in Table 4. It can be seen that offloading makes both schemes
much more efficient.

Securely Outsourcing Exponentiations with Single Untrusted Program 341

Table 4. Comparison of Two PDP Schemes with and without Outsourcing

Original scheme Outsourced scheme
Computation costs Communication costs

Shacham-Waters PDP

File tag
1h+ 1E 1h+ (12 + 1.5 log χ)M+ 4I 4 log p+ 8ESGgeneration

Each metadata
1h+ sM+ (s+ 1)E

1h+ 4I (2s + 4) log p
generation +(6s+ 1.5 log χ+ 12)M +(4s+ 8)ESG

Verification
|I |h+ (|I |+ s− 1)M (5|I |+ 5s+ 1.5 log χ+ 7)M (2|I |+ 2s+ 2) log p
+(|I |+ s)E+ 2P +|I |h+ 4I+ 2P +(4|I |+ 4s+ 4)ESG

Our Variant of Yuan-Yu PDP

File tag
1h+ 1E 1h+ (12 + 1.5 log χ)M+ 4I 4 log p+ 8ESGgeneration

Each metadata
1h+ sM+ 2E

1h+ 4I
6 log p+ 12ESGgeneration +(s+ 1.5 log χ+ 17)M

Verification
|I |h+ (|I |+ 2)M |I |h+ 4I+ 3P (2|I |+ 6) log p
+(|I |+ 2)E+ 3P +(5|I |+ 1.5 log χ+ 18)M +(4|I |+ 12)ESG

Notations: h denotes hash evaluation; M, I and E denote one multiplication, one inversion
and one exponentiation, respectively; P denotes one bilinear pairing evaluation.

5 Concluding Remark

Outsourcing storage can save the cost of a client in maintaining the storage
locally. Cryptographic approaches like provable data possession ensures the in-
tegrity of the outsourced file can still be verified, yet these often require modular
exponentiations expensive to computationally bounded devices. We filled this
gap with offloaded PDP by securely and efficiently outsourcing the most generic
variable-exponent variable-base exponentiations to one untrusted computation
server. Compared with the known schemes, our scheme is not only superior in
its security model, but also its efficiency, interactions and privacy. Our protocol
may find applications in many other cryptographic solutions which use number-
theoretic cryptographic techniques.

Acknowledgements and Disclaimer. We appreciate the anonymous review-
ers for their valuable suggestions. Qianhong Wu is the corresponding author.
This work is supported by the National Key Basic Research Program (973 pro-
gram) through project 2012CB315905, by the National Nature Science Founda-
tion of China through projects 61272501, 61173154, 61370190 and 61003214, by
a grant from the RGC of the HKSAR, China, under Project CityU 123913, by
the Beijing Natural Science Foundation through project 4132056, by the Fun-
damental Research Funds for the Central Universities, and the Research Funds
(No. 14XNLF02) of Renmin University of China and by the Open Research Fund
of Beijing Key Laboratory of Trusted Computing. Sherman Chow is supported
by the Early Career Scheme and the Early Career Award of the Research Grants

342 Y. Wang et al.

Council, Hong Kong SAR (CUHK 439713), and grants (4055018, 4930034) from
Chinese University of Hong Kong.

References

1. Deng, H., Wu, Q., Qin, B., Chow, S.S.M., Domingo-Ferrer, J., Shi, W.: Tracing
and Revoking Leaked Credentials: Accountability in Leaking Sensitive Outsourced
Data. In: 9th ACM Symposium on Information, Computer and Communications
Security (ASIACCS), pp. 425–443. ACM, New York (2014)

2. Deng, H., Wu, Q., Qin, B., Domingo-Ferrer, J., Zhang, L., Liu, J., Shi, W.:
Ciphertext-Policy Hierarchical Attribute-Based Encryption with Short Cipher-
texts. Information Sciences 275, 370–384 (2014)

3. Deng, H., Wu, Q., Qin, B., Mao, J., Liu, X., Zhang, L., Shi, W.: Who is touching
my cloud. In: Kutylowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712,
pp. 362–379. Springer, Heidelberg (2014)

4. Chow, S.S.M., Yiu, S.M., Hui, L.C.K., Chow, K.P.: Efficient Forward and Provably
Secure ID-Based Signcryption Scheme with Public Verifiability and Public Cipher-
text Authenticity. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971,
pp. 352–369. Springer, Heidelberg (2004)

5. Qin, B., Wang, H., Wu, Q., Liu, J., Domingo-Ferrer, J.: Simultaneous Authentica-
tion and Secrecy in Identity-Based Data Upload to Cloud. Cluster Computing 16,
845–859 (2013)

6. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable Data Possession at Untrusted Stores. In: 14th ACM Conference on
Computer and Communications Security (CCS), pp. 598–609. ACM, New York
(2007)

7. Juels, A., Kaliski Jr., B.S.: PoRs: Proofs of Retrievability for Large Files. In: 14th
ACM Conference on Computer and Communications Security (CCS), pp. 584–597.
ACM, New York (2007)

8. Shacham, H., Waters, B.: Compact Proofs of Retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

9. Wang, B., Chow, S.S.M., Li, M., Li, H.: Storing Shared Data on the Cloud via
Security-Mediator. In: 33rd IEEE International Conference on Distributed Com-
puting Systems (ICDCS), pp. 124–133 (2013)

10. Wang, C., Chow, S.S.M., Wang, Q., Ren, K., Lou, W.: Privacy-Preserving Public
Auditing for Secure Cloud Storage. IEEE Transactions on Computers 62(2), 362–
375 (2013)

11. Yuan, J., Yu, S.: Proofs of Retrievability with Public Verifiability and Constant
Communication Cost in Cloud. In: International Workshop on Security in Cloud
Computing, pp. 19–26. ACM, New York (2013)

12. Hohenberger, S., Lysyanskaya, A.: How to Securely Outsource Cryptographic Com-
putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,
Heidelberg (2005)

13. Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New Algorithms for Secure Outsourc-
ing of Modular Exponentiations. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 541–556. Springer, Heidelberg (2012)

14. Dijk, M., Clarke, D., Gassend, B., Suh, G., Devadas, S.: Speeding up Exponentia-
tion using an Untrusted Computational Resource. Designs, Codes and Cryptogra-
phy 39(2), 253–273 (2006)

Securely Outsourcing Exponentiations with Single Untrusted Program 343

15. Wang, H., Wu, Q., Qin, B., Domingo-Ferrer, J.: Identity-Based Remote Data Pos-
session Checking in Public Clouds. Information Security, IET 8(2), 114–121 (2014)

16. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-Size Commitments to Poly-
nomials and Their Applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 177–194. Springer, Heidelberg (2010)

17. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable Delegation of Computation over
Large Datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–
131. Springer, Heidelberg (2011)

18. Li, J., Tan, X., Chen, X., Wong, D.S.: An Efficient Proof of Retrievability with
Public Auditing in Cloud Computing. In: 5th International Conference on Intelli-
gent Networking and Collaborative Systems (INCoS), pp. 93–98 (2013)

19. Ma, X., Li, J., Zhang, F.: Outsourcing Computation of Modular Exponentiations
in Cloud Computing. Cluster Computing 16(4), 787–796 (2013)

20. Tsang, P.P., Chow, S.S.M., Smith, S.W.: Batch Pairing Delegation. In: Miyaji,
A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 74–90.
Springer, Heidelberg (2007)

21. Canard, S., Devigne, J., Sanders, O.: Delegating a Pairing Can Be Both Secure and
Efficient. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS,
vol. 8479, pp. 549–565. Springer, Heidelberg (2014)

22. Xu, G., Amariucai, G., Guan, Y.: Delegation of Computation with Verification
Outsourcing: Curious Verifiers. In: ACM Symposium on Principles of Distributed
Computing (PODC), pp. 393–402. ACM, New York (2013)

23. Gennaro, R., Gentry, C., Parno, B.: Non-interactive Verifiable Computing: Out-
sourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

24. Carter, H., Mood, B., Traynor, P., Butler, K.: Secure Outsourced Garbled Circuit
Evaluation for Mobile Devices. In: 22nd USENIX Conference on Security, pp. 289–
304. USENIX Association, Berkeley (2013)

25. Zhang, L.F., Safavi-Naini, R.: Private Outsourcing of Polynomial Evaluation and
Matrix Multiplication Using Multilinear Maps. In: Abdalla, M., Nita-Rotaru, C.,
Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 329–348. Springer, Heidelberg
(2013)

26. Wang, B., Li, M., Chow, S.S.M., Li, H.: Computing Encrypted Cloud Data Effi-
ciently Under Multiple Keys. In: 4th IEEE Security and Privacy in Cloud Comput-
ing, co-located with IEEE Conference on Communications and Network Security
(CNS), pp. 504–513 (2013)

27. Wang, B., Li, M., Chow, S.S.M., Li, H.: A Tale of Two Servers: Efficient Privacy-
Preserving Computation over Cloud Data under Multiple Keys. In: 2nd IEEE
Conference on Communications and Network Security, CNS (2014)

28. Chow, S.S.M., Lee, J.H., Subramanian, L.: Two-Party Computation Model for
Privacy-Preserving Queries over Distributed Databases. In: Network and Dis-
tributed System Security Symposium, NDSS (2009)

29. Nguyen, P., Shparlinski, I.E., Stern, J.: Distribution of Modular Sums and the
Security of the Server Aided Exponentiation. In: Cryptography and Computational
Number Theory. Progress in Computer Science and Applied Logic, vol. 20, pp.
331–342. Birkhäuser, Basel (2001)

30. Boyko, V., Peinado, M., Venkatesan, R.: Speeding up Discrete Log and Factoring
Based Schemes via Precomputations. In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 221–235. Springer, Heidelberg (1998)

31. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. Journal
of Cryptology 17(4), 297–319 (2004)

Quantitative Workflow Resiliency

John C. Mace, Charles Morisset, and Aad van Moorsel

Centre for Cybercrime & Computer Security,
Newcastle University, Newcastle upon Tyne,

NE1 7RU, United Kingdom
{j.c.mace,charles.morisset,aad.vanmoorsel}@ncl.ac.uk

Abstract. A workflow is resilient when the unavailability of some users
does not force to choose between a violation of the security policy or an
early termination of the workflow. Although checking for the resiliency
of a workflow is a well-studied problem, solutions usually only provide
a binary answer to the problem, leaving a workflow designer with lit-
tle help when the workflow is not resilient. We propose in this paper
to provide instead a measure of quantitative resiliency, indicating how
much a workflow is likely to terminate for a given security policy and a
given user availability model. We define this notion by encoding the re-
siliency problem as a decision problem, reducing the finding of an optimal
user-task assignment to that of solving a Markov Decision Process. We
illustrate the flexibility of our encoding by considering different measures
of resiliency, and we empirically analyse them, showing the existence of a
trade-off between multiple aspects such as success rate, expected termi-
nation step and computation time, thus providing a toolbox that could
help a workflow designer to improve or fix a workflow.

Keywords: Workflow Satisfiability Problem, Markov Decision Process,
Quantitative Analysis.

1 Introduction

A workflow is the automation of a business process comprising tasks and pred-
icate conditions defining their partial order [1]. Ensuring all workflow instances
complete means assigning each task to a user in accordance with business rules
specifying when and by whom workflow data may be accessed and modified.
From a security perspective, access management ensures users with the correct
clearance and capabilities are matched with appropriate tasks while reducing
the threat of collusion and fraud. Each user-task assignment may have to satisfy
many different kind of security constraints [2, 3, 4], the three most common be-
ing: i) the user must be authorised to perform the task; ii) if the task is related
to another task through a binding of duty, then the same user should perform
both tasks; iii) if the task is related to another task through a separation of
duty, then the same user cannot perform both tasks.

The Workflow Satisfiability Problem (WSP) [5, 6] therefore consists in finding
a user-task assignment ensuring both the termination of all instances and the

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 344–361, 2014.
c© Springer International Publishing Switzerland 2014

Quantitative Workflow Resiliency 345

non-violation of the security constraints, especially in highly dynamic environ-
ments, subject to unpredictable events such as user unavailability. This can be an
issue for dynamic workflow management systems whose choices made for early
tasks can constrict later assignments [7]. In extreme cases, bad assignments will
remove all assignment options for an upcoming task and block a workflow from
completing [8, 9]. It is therefore important these workflows can be appraised
before enactment via suitable tools and useable metrics that aid workflow con-
figuration and formulation of contingency plans, such as resiliency [6], which
checks whether the unavailability of some users has an impact on satisfiability.

Most existing approaches, e.g. [10, 11, 12, 13, 6], address the WSP from a
computational point-of-view, by finding the most efficient algorithm to com-
pute a suitable assignment, which either return a correct assignment if it exists,
or nothing. In practice finding such an assignment can be demanding and of-
ten unmanageable, especially when facing unforeseen and emergency situations.
For example, despite the provision of guidelines stipulating many public service
staffing levels (e.g. [14]), high sickness rates, budget cuts, staff shortage, increased
workloads and unpredictability all contribute to critical workflows often being
attempted without enough available users.

Taking a binary approach therefore fails to address a number of real-life issues
where the ideal case is not always reachable. Indeed, declaring a workflow to be
either resilient or not may be of little practical use to a workflow designer. Of
course, a satisfiable workflow is always better than an unsatisfiable one but
a workflow where all but one instance can be correctly assigned provides on
average, a better service than one where no instance can be assigned. In addition,
if both workflows terminate early instead of violating the policy, they are both
better than a workflow violating the policy.

In this paper we take the stance to provide a workflow designer with quanti-
tative measures, indicating a degree of satisfaction and/or resiliency for a given
workflow, instead of simply returning an assignment if one exists. In order to
do so, we propose to model the WSP as a decision problem, in order to benefit
from the extensive collections of tools related to the discipline. More precisely,
the contributions of this paper are as follows:

– We first encode the workflow satisfaction problem as finding the optimal
solution of a Markov Decision Process (MDP);

– We then encode the decremental resiliency problem [6] as an extension of
the above one, by modelling user availability in the state of the MDP;

– We illustrate the flexibility of our model by showing how a simple change
of the reward function can move the focus from the normal termination
rate of the workflow to the expected termination step, and we show on a
simple use case that both approaches are in general incomparable, and that
in general, finding the optimal assignment requires addressing a trade-off
between multiple aspects, including computation time.

Is is important to note that the focus of this paper is not to provide a particularly
efficient solution to the WSP, but to propose a novel approach of this problem.

346 J.C. Mace, C. Morisset, and A. van Moorsel

We however believe our approach paves the way to defining an efficient solution
by using the extensive literature dedicated to the efficient solving of an MDP.

The rest of this paper is as follows. Section 2 gives a brief overview of related
work while Section 3 revisits the workflow satisfiability problem and defines it as
an MDP. In Section 4 we define quantitative measures for workflow satisfaction
and resiliency. An assessment of our approach is given in Section 5 and concluding
remarks in Section 6.

2 Related Work

A number of previous studies on workflow resiliency appear in the literature.
Wang et al. took a first step in [6] to quantify resiliency by addressing the
problem of whether a workflow can still complete in the absence of users and
defined a workflow as k resilient to all failures of up to k users across an entire
workflow. Lowalekar et al. show in [15] multiple assignments may provide the
same level of k resiliency and give a technique for selecting the most favourable
using security attributes that minimize the diffusion of business knowledge across
all users.

Basin et al. in [8, 16] allow the reallocation of roles to users thus overcoming
workflow blocks created by user failure. This is feasible in certain business do-
mains but may have limited application in public service workflows where roles
are more specialised; a nurse cannot step in for a doctor for example. Wainer et
al. consider in [17] the explicit overriding of security constraints in workflows,
by defining a notion of privilege. Similarly, Bakkali [18] suggests introducing
resiliency through delegation and the placement of criticality values over work-
flows. Delegates are chosen on their suitability but may lack competence; this is
considered the ‘price to pay’ for resiliency. As delegation takes place at a task
level it is not currently clear whether a workflow can still complete while meeting
security constraints.

A more practical approach is presented by Mace et al. [19] and more for-
mally by Watson [20] who discuss the practicalities of assigning workflows, or
parts of workflow across multiple cloud-based platforms while ensuring security
constraints are met. Discussion is given on the various trade-offs that must be
considered including performance and security risks. Current literature does not
address the issue of workflows that must execute but may not be satisfiable
nor resilient in every instance. Neither does it provide quantitative measures to
analyse and optimise workflows in such cases, which is the focus of this paper.

3 The Workflow Satisfiability Problem

In a nutshell, the Workflow Satisfiability Problem (WSP) [6] consists in assign-
ing each user to a task for a given workflow such that all security constraints
are met. Whereas existing work mostly considers WSP as a constraint solving
problem (for instance as the graph k-colouring problem when the workflow con-
tains separation of duties constraints [6, 16]), we propose to consider it as a

Quantitative Workflow Resiliency 347

t1

[u1, u2]

t2

[u2, u3]

t3

[u1, u3]

⊥t

SoD

Fig. 1. Running example

Table 1. Workflow assignments

a1 a2 a3 a4

t1 u1 u2 u2 u2

t2 u2 u2 u2 u3

t3 u3 u1 u3 u1

decision problem1, thus modelling the decision made to assign a user to a task
in a given context. Hence, we define below an encoding of the WSP as solving a
Markov Decision Process (MDP) [21]. We first propose a definition of workflow,
which, although driven by the MDP encoding, is general enough to consider
complex workflows. After briefly recalling the notion of MDP, we then present
the corresponding MDP encoding and the definition of the WSP.

3.1 Workflow

As described in Section 2, there exist several definitions of workflow in the liter-
ature. They commonly define a set of users U and a set of tasks T , structured
to indicate which sequences of tasks can be executed, for instance with a partial
ordering over tasks. For the sake of generality, we consider a task manager, which
is a function τ : T × U → P(T)2. In other words, given a task t and a user u,
τ(t, u) is a probability function over tasks indicating the probability of each task
to be the next one.

The set of tasks contains an initial task t0 ∈ T , and in order to model the fact
that a workflow can finish we consider a special task ⊥t ∈ T , such that, given
any user u, τ(⊥t, u) = ⊥t

3

Running Example. As a running example to illustrate the different concepts
presented here, we consider the workflow shown in Figure 1 where T = {t1, t2, t3}
and where the only possible sequence is t1; t2; t3. Hence, the initial task is t1, and
the task manager is defined as, for any user u, τ(t1, u) = t2, τ(t2, u) = t3, and
τ(t3, u) = ⊥t.

The second common aspect of workflows across existing definitions is to define
a set of users U coming with a security policy over the set of tasks T , including
basic user permissions, separations and bindings of duties, expressed as sets of
constraints. Hence, we consider security policies of the form p = (P, S,B) where

– P ⊆ U × T are user-task permissions, such that (u, t) ∈ P if, and only if u
is allowed to perform t;

1 It is worth noting that in the end, both perspectives can join, for instance by solving
the decision problem using Linear Programming.

2 Given a set X, we write P(X) for the set of functions f : X → [0, 1], such that∑
x∈X f(x) = 1.

3 For the sake of simplicity, we write f(x) = y whenever f(x, y) = 1, where f(x) ∈
P(Y), for some Y . In this case, we say that f(x) is deterministic.

348 J.C. Mace, C. Morisset, and A. van Moorsel

– S ⊆ ℘(T)4 are separations of duty, such that {t1, . . . , tn} ∈ S if, and only if
each user assigned to ti is distinct;

– B ⊆ ℘(T) are bindings of duty, such that {t1, . . . , tn} ∈ B if, and only if the
same user is assigned to all ti;

Running Example. We now consider a set of users U = {u1, u2, u3, u4} and
a security policy p1 = (P1, S1, B1) that states:

– P1 = {(u1, t1), (u2, t1), (u2, t2), (u3, t2), (u1, t3), (u3, t3)}
– S1 = {{t1, t3}, {t2, t3}}
– B1 = ∅

Figure 1 illustrates this security policy, where a dotted arrow signifies a constraint
given in p between the tasks t and t′. A label [um, ..., un] states the users that are
authorised by P to execute t.

A workflow therefore consists of both a set of tasks, with a task manager and
a set of users, with a security policy.

Definition 1 (Workflow). A workflow is a tuple W = (U , T , τ, t0, p), where U
is a set of users, T is a set of tasks, τ is a task manager, t0 is the initial task
and p is a security policy.

3.2 Workflow Assignment

A user-task assignment is a relation UA ⊆ U ×T , associating each ti with some
ui. Given a policy p = (P, S,B), UA satisfies p, and in this case, we write UA " p,
if, and only if the three following conditions are met:

UA ⊆ P (1)

∀s ∈ S ∀u ∈ U |{t ∈ s | (u, t) ∈ UA}| ≤ 1 (2)

∀b ∈ B |{u ∈ U | ∃t ∈ b (u, t) ∈ UA}| ≤ 1 (3)

In our running example, Table 1 provides all workflow assignments satisfying
p1, such that each ai is represented as a function from task to users. For instance,
a2 assigns t1 and t2 to u2 and t3 to u1. An instance of a workflow is a sequence of
tasks (t1, . . . , tn) such that τ(ti, u, ti+1) �= 0, for any i and any user u. Informally,
the WSP consists of defining a relation UA such that, for any instance of a
workflow, the restriction of UA to tasks in this instance satisfies the policy of
the workflow.

In some cases, solving the WSP can be relatively simple. For instance, consider
a policy where S = B = ∅, i.e., where there are no separations or bindings of duty.
In this case, it is enough to assign each task t with a user u such that (u, t) ∈ P ,
and if there is no such user, then the workflow is unsatisfiable. However, the
enforcement of separations and bindings of duty might require to keep track of
the previous assignments. For instance, in our running example, u1 can only be
assigned to t3 if it has not been assigned neither to t2 nor to t1.

4 We use ℘(X) to denote the set of finite subsets of X.

Quantitative Workflow Resiliency 349

t1

[u1, u2]
{u1, u2}

t2

[u2, u3]
{u2, u3}

t3

[u1, u3]
{}

Xu1 u3

SoD

Fig. 2. The task t3 cannot be executed

t1

[u1, u2]
{u1, u2}

t2

[u2, u3]
{u2}

t3

[u1, u3]
{u1}

⊥tu1 u2 u3

SoD

Fig. 3. The workflow terminates correctly

3.3 Contextual Assignment

As illustrated above, in order to ensure that the security constraints are met,
the user-task assignment needs to take into account at least the previous assign-
ments. We call context any dynamic information relevant to user-task assign-
ments, such as the security policy, the history of execution, or the user failures.
Here again, we aim for generality, and given a workflow W = (U , T , τ, t0, p), we
consider a set C of contexts, with a context manager γ : C ×T ×U → P(C), such
that given a context c, a task t and a user u, γ(c, t, u) represents the probability
space of the next context. We write D = (C, γ, c0) for a context description,
which includes a set of contexts, a context manager and initial context c0 ∈ C.

For instance, in order to define the WSP, the context needs to contain all
previous assignments, in order to check the validity of separations and bindings
of duty at each step. Hence we define Ch = ℘(U × T), such that for any c ∈ Ch,
all (u, t) ∈ c correspond to previous assignments. We then define the context
manager γh as, for any context c ∈ Ch, any task t and any user u, γh(c, t, u) =
c ∪ {(u, t)}. The assignment (u, t) is permitted if it satisfies p when combined
with the previous assignments contained in c. Thus, for any context c ∈ Ch we
write c, u, t " p if, and only if, c ∪ {(u, t)} " p. We write Dh = (Ch, γh, ∅) for the
context description corresponding to previous assignments. In the following, we
assume the sets U and T to be clear from context when using Dh, unless stated
otherwise.

Definition 2 (Assignment). Given a workflow W = (U , T , τ, t0, p) and a con-
text description D = (C, γ, c0), a contextual assignment is a function δ : C×T →
U , such that δ(c, t) represents the user assigned to t in the context c.

For instance, with the context description Dh, a simple contextual assignment
is to return any user that can execute the task, taking previous assignments into
account. We define the set of all permitted users PU c,t = {u | c, u, t " p}. The
on-the-fly assignment is then the function δo(c, t) returning any user from PU c,t,
if it is not empty, and any user otherwise (meaning that no user can execute t
in the context c without violating the workflow policy).

As illustrated on Figure 2, where {um, ..., un} denotes PU c,t, δo might not
select the best possible assignment. For instance if u1 is assigned to t1 and u3

is assigned to t2, which are both correct assignments in their respective context,
then the separation of duty constraints make it impossible to assign t3 to any
user. However, as shown on Figure 3, if u2 is assigned to t2 instead, then u3 can

350 J.C. Mace, C. Morisset, and A. van Moorsel

be assigned to t3. We present in the next section the encoding of the workflow
as an MDP, which aims at defining an assignment avoiding the above pitfall.

3.4 Markov Decision Process

In order to define the optimal contextual assignment, we encode the notion of
assignment into a Markov Decision Process (MDP) [21], which is a stochastic
process where the transition from one state to another is governed both prob-
abilistically and by a decision made by a policy. Each transition is associated
with a reward, and solving an MDP consists in defining a policy maximising
the expected reward collected by the process. More precisely, an MDP is a tuple
(S,A,p, r) where:
– S is a set of states, describing the possible configurations of the system;
– A is a set of actions, describing how to go from one state to another;
– p : S ×A× S → [0, 1] is a transition function, such that pa

ss′ describes5 the
probability of reaching s′ from s when executing the action a;

– r : S ×A× S → R is a reward function, such that rass′ describes the reward
associated with execution a from the state s and reaching s′.

A policy for an MDP (which should not be confused with the security policy of
a workflow) is a function δ : S → A, i.e., associating each state with an action,
and the value of a policy for an MDP is given as:

V δ(s) =
∑
s′∈S

p
δ(s)
ss′ r

δ(s)
ss′ + β

∑
s′∈S

p
δ(s)
ss′ V

δ(s′)

where 0 ≤ β < 1 is a discount factor, giving more or less weight to “future”
values. The optimal policy is then defined as:

δ∗(s) = argmax
a∈A

[∑
s′∈S

pa
ss′ r

a
ss′ + β

∑
s′∈S

pa
ss′V

∗(s′)

]
(4)

where V ∗ is the value function of δ∗. Note that since β < 1, the optimal policy
is always defined, even when s = s′. It is possible to show that V ∗(s) ≥ V δ′(s),
for any other policy δ′ and any state s, and we refer to [21] for further details
about the proof of this property and further details on the notion of MDP.

In order to reduce the WSP to solving an MDP, we combine three different
elements: a workflow, a context and a reward function, the latter expressing the
metric we are interested in measuring. Note that this encoding is loosely inspired
by the MDP encoding of access control mechanisms proposed in [22].

Definition 3 (MDP Encoding). Given a workflow W = (T ,U , τ, t0, p), a
context description D = (C, γ, c0) and a reward function r : (C × T) × U ×
(C × T) → R, we write MDP[W,D, r] for the MDP defined by the tuple (C ×
T ,U ,pγ,τ , r), where given any pairs (c, t), (c′, t′) ∈ C × T and any user u ∈ U :

pγ,τ ((c, t), u, (c′, t′)) = γ(c, t, u, c′) · τ(t, u, t′)

5 For the sake of conciseness, we write pa
ss′ for p(s, a, s

′) when no confusion can arise.

Quantitative Workflow Resiliency 351

A policy for MDP[W,D, r] is then a function δ : C×T → U , that is, a contextual
assignment. In other words, the optimal policy δ∗ is the optimal contextual
assignment for the workflow, the context description and the reward function.
Since we focus on the non-violation of the security policy, we define the reward
function associating each violation with −∞ for the context description Dh:

rp((c, t), u, (c′, t′)) =

{
−∞ if t �= ⊥t and c, u, t �" p
0 otherwise.

where we assume that −∞∗ 0 = 0, meaning that an −∞ reward on a transition
that cannot happen has no effect on the overall value function. Note that by
construction, we know that transitions starting from ⊥t can only finish at ⊥t,
so we do not need to measure such transitions.

Definition 4 (WSP). Given a workflow W = (U , T , τ, t0, p), we write V ∗
h for

the optimal value function of MDP[W,Dh, rp], and we say that W is satisfiable
if, and only if, V ∗

h (∅, t0) = 0.

In the following, we usually write δc for the optimal policy of MDP[W,Dh, rp],
and Table 1 actually presents all possible instance for δc in the running example.
It is easy to see that this definition of the WSP matches the informal one given
above: the optimal policy δ∗ avoids any transition reachable from (∅, t0) with
a reward of −∞, i.e., any transition that would violate the policy. So, as long
as there is a possible assignment that allows the workflow to reach the task ⊥t

without violating the policy, the optimal policy will select it. It is also worth
observing that this definition is binary: either V ∗(∅, t0) = 0 or V ∗(∅, t0) = −∞.
We generalise it in Section 4, since the objective of this model is to go beyond
binary satisfaction and resiliency.

3.5 Implementation of the Optimal Policy

Solving an MDP is in general an intractable problem [21, 23], because the optimal
value function must be calculated on every possible state (and the WSP is shown
to be NP-complete [6]). Hence, we do not aim here to present an efficient solution
to solve this problem, and we refer to e.g. [24] for recent work on the complexity
of solving WSP.

Calculating all possible future states is equivalent to traversing a tree of all
possible assignment paths outgoing from the current state. To help visualise
this concept Figure 4 depicts an assignment tree where each complete path is
equivalent to a valid workflow assignment given in Table 1. A node c in the
tree represents a context such that ci at level j represents a state (ci, tj). A
leaf node is the workflow finish point ⊥t. All outgoing edges from ci at level j
define the set of users PUci,tj from which one is selected. Essentially, δc ensures
all assignments are made within the bounds of an assignment tree composed of
assignment paths which all finish with ⊥t. It follows that in any state, any user
selected from PU c,t will allow the workflow to complete. We present in Section 5
an implementation of the optimal policy using Value Iteration under simplifying
assumptions.

352 J.C. Mace, C. Morisset, and A. van Moorsel

c1

−∞c3

c7

−∞−∞⊥t

u1
u2

u3

c6

⊥t−∞⊥t

u1
u2

u3

−∞

u1

u2

u3

c2

c5

−∞−∞−∞

u1
u2

u3

c4

⊥t−∞−∞

u1
u2

u3

−∞

u1

u2

u3

u1 u2 u3

Fig. 4. Workflow assignment tree

4 Quantitative Analyses

4.1 Quantitative Satisfaction

In general, the fact alone that a workflow is unsatisfiable is, as such, of little
help for a system designer. Consider for instance a workflow where all but one
instance can be correctly assigned, and another where no instance can be cor-
rectly assigned. Both workflows are unsatisfiable, however, on average, the first
one provides a better service than the second one. In addition, if both work-
flows terminate early instead of violating the policy, they are both better than a
workflow violating the policy. Of course, a satisfiable workflow is always better
than an unsatisfiable one, but as said in the Introduction, we aim at providing
tools and quantitative measures for concrete situations, where the ideal case is
not always reachable.

In order to model the early termination of a workflow, given a workflow W =
(U , T , τ, t0, p) with the context Dh, we introduce a special user ⊥u ∈ U , such
that τ(t,⊥u) = ⊥t, for any task t. In order to reward successful termination we
provide a positive reward for such successful completion, and we associate a null
reward for the early termination:

rs((c, t), u, (c
′, t′)) =

⎧⎪⎨
⎪⎩
−∞ if t �= ⊥t, u �= ⊥u and c, u, t �" p
1 if t �= ⊥t, u �= ⊥u and t′ = ⊥t

0 otherwise.

We are then able to provide a probabilistic statement about satisfiability.

Definition 5. Given a workflow W = (U , T , τ, t0, p) we define the quantita-
tive satisfaction of W by V ∗

s (∅, t0), where V ∗
s is the optimal value function of

MDP[W,Dh, rs].

Quantitative Workflow Resiliency 353

The quantitative satisfaction of a workflow is either −∞, if the workflow is
not satisfiable, or a number between 0 and 1, indicating the probability of the
workflow to finish, based on the probabilistic task manager. In particular, it is
easy to prove the following proposition, following a similar reasoning to that
matching Definition 4 with the informal description of the WSP.

Proposition 1. Given a workflow W , W is satisfiable if, and only if its quan-
titative satisfaction is equivalent to 1.

Note that we cannot define the quantitative satisfaction to be equal to 1, which
is only possible if β = 1, which is forbidden, by definition. In practice, if there
is no infinite loop in the MDP (as it is the case in Section 5), this factor can
be equal to 1. The proof of Proposition 1 is quite straight-forward: in order to
obtain V ∗

s (∅, t0) = 1, the optimal policy must be able to assign each task to a
user without violating the policy nor terminating early.

4.2 Quantitative Resiliency

Wang and Li define in [6] resiliency as a “property of those system configurations
that can satisfy the workflow even with absence of some users”. As described
in the Introduction, there are indeed multiple scenarios where users can fail at
some point, thus not being able to execute an assigned task. Hence, a user-task
assignment might need to take into account such failures.

Several levels of resiliency are introduced in [6]: static resiliency, where users
can only fail before the start of the workflow; decremental resiliency, where users
can fail during the workflow, and cannot become available again; and dynamic
resiliency, where users can fail and later become available during the workflow.

Let us first observe that the notion of static resiliency does not require any
special encoding, since checking for it can be done by directly checking the WSP
for the workflow without the failing users. We now focus on the decremental and
dynamic resiliency. We consider the set of contexts Cf,N = {f ⊆ U | |f | ≤ N},
where each context c ∈ Cf,N corresponds to a set of at most N users not available.
For any user u and task t, an assignment (u, t) satisfies p if u is available, hence
for any context c ∈ Cf,N , we write c, u, t " p if, and only if, u �∈ c.f . For the
sake of simplicity, we assume that each user has the same probability of failing
(although this could clearly be easily generalised), and given a context c, the set
of all possible next contexts is defined as:

nf N (c) = {c ∪ f | f ⊆ (U \ c) ∧ |c ∪ f | ≤ N}

In particular, when the size of c is already equal to N , then nf N (c) = {c}. We
can then define the probability of reaching a new context c′ from a context c
from the user failure perspective:

γf,N (c, t, u, c′) =

{
|nf N (c)|−1 if c′ ∈ nf N (c),

0 otherwise.

354 J.C. Mace, C. Morisset, and A. van Moorsel

t1

[u1, u2]
<>

{u1, u2}

t2

[u2, u3, u4]
<u4>
{u3}

t3

[u1, u3]
<u1, u4>

{u3}

⊥tu2 u3 u3

SoD

Fig. 5. δs - optimal resiliency

t1

[u1, u2]
<u2>
{u1}

t2

[u2, u3, u4]
<u2>
{u3, u4}

t3

[u1, u3]
<u2, u3>

{}

Xu1 u4

SoD

Fig. 6. δs - sub-optimal distance

We write Df,N = (Cf,N , γf,N , ∅) for the context description corresponding to the
decremental and equiprobable failure of up to N users, and we write Dh,f,N =
Dh × Df,N for the cartesian product of this context description and the one
modelling previous assignments, where the context manager is defined in a point-
wise way, and reward functions applies to the relevant components of a tuple6.
For any context c ∈ Ch,f,N , user u and task t, an assignment (u, t) satisfies p,
and we write c, u, t " p, if, and only if, c ∪ {(u, t)} " p ∧ u �∈ c.f .

Proposition 2. A workflow is decrementally resilient up to N users if and
only if

∑
c∈Cf,N

V ∗
f,N ((∅, c), t0) � 1, where V ∗

f,N is the optimal value function

of MDP[W,Dh,f,N , rs].

In the following, we usually write δs for the optimal policy of MDP[W,Dh,f,N , rs].
Note that we sum over all possible contexts, because the notion of decremental
resiliency also considers that users can fail before the start of the execution
of the workflow. In addition, dynamic resiliency can be encoded similarly by
defining nf N(c) = Cf,N , and we therefore focus only in the rest of the paper on
decremental resiliency, unless specified otherwise.

Running Example. Consider now a different security policy p2 = (P2, S2, B2),
where P2 = {(u1, t1), (u2, t1), (u2, t2), (u3, t2), (u4, t2), (u1, t3), (u3, t3)}, B2 = ∅
and S2 = {{t1, t2}, {t1, t3}}. A label <ui> denotes ui has failed. Figure 5 illus-
trates how δs can maximise the quantitative resiliency of the running example
for two failed users. Assigning t1 to u2 generates two assignment options for t2.
In turn, selecting u3 for the assignment of t2 ensures two assignment options for
t3. Despite the failure of u4 at t2 and u1 at t3, the workflow can terminate.

Figure 6 illustrates how the workflow can still fail under δs due to an unavoid-
able block caused by two failed users. User u1 must be assigned t1 following the
failure of u2. Two assignment options are available at t2 from which either can
be chosen but due to the failure of u3 at t3, the workflow is blocked.

4.3 Expected Distance

The quantitative satisfaction of a workflow denotes the probability of a workflow
to terminate, taking the context into account. This metric therefore does not

6 In this paper, the only examples of reward functions we consider are defined either on
the violation of the policy or the (early) termination. However, in general, we could
have more complex reward functions, depending for instance on user availability.

Quantitative Workflow Resiliency 355

t1

[u1, u2]
<u3, u4>

{u1}

t2

[u2, u3, u4]
<u3, u4>

{u2}

t3

[u1, u3]
<u3, u4>

{}

Xu1 u2

SoD

Fig. 7. δd - optimal distance

t1

[u1, u2]
<u4>
{u1}

t2

[u2, u3, u4]
<u4>
{u2, u3}

t3

[u1, u3]
<u3, u4>

{}

Xu1 u2

SoD

Fig. 8. δd - sub-optimal resiliency

differentiate between an instance terminating at the first task and an instance
terminating at the penultimate task. In order to illustrate the flexibility of our
model, we define the expected distance of the workflow, i.e., the number of tasks
performed before terminating, using the following reward function, defined over
the context description Dh:

rd((c, t), u, (c′, t′)) =

⎧⎪⎨
⎪⎩
−∞ if t �= ⊥t, u �= ⊥u and c, u, t �" p
1 if t �= ⊥t and u �= ⊥u,

0 otherwise.

The expected distance of the workflow can therefore be calculated with
V ∗
d (∅, t0), where V ∗

d is the optimal value function of MDP[W,Dh, rd]. We can
also redefine the notion of resiliency to measure the expected distance instead of
the success rate with the optimal value function of MDP[W,Dh,f,N , rd], and we
usually write δd for the optimal policy of this model. Interestingly, an assignment
optimal for the notion of resiliency as defined in Section 4.2 is not necessarily
optimal for this notion of resiliency, as illustrated in Section 5. This reinforces
our motivation for building the model presented here, which can provide several
metrics and thus help a system designer to improve or fix a workflow, rather
than a simple boolean indicating whether the workflow is satisfiable or not.

Running Example. Figure 7 illustrates how δd can optimize the expected dis-
tance of our running example for two failed users. Following the failure of u3 and
u4 at t1, u1 is assigned t1 to generate the assignment option u2 at t2. Task t2 can
be assigned before the workflow blocks at t3. In contrast, δs would always finish
at t1 while δo and δc would assign either u1 or u2 at t1 resulting in the workflow
finishing at either t2 or t3. Figure 8 illustrates how δd can lower the expected
distance for two failed users. The failure of u4 means t1 must be assigned to u1

to optimise the distance-resiliency at that point. The failure of u3 at t3 means
the workflow is now blocked. However, under δs, t1 would be assigned to t2 which
reduces the assignment options for t2 to just u3 but increases the options for the
final task t3 to u1 and u3. It follows that the workflow would complete with this
particular failure under δs.

5 Assessment

In this section, we give an empirical assessment of the different policies intro-
duced in Sections 3 and 4. More precisely, given a uniform distribution of user

356 J.C. Mace, C. Morisset, and A. van Moorsel

Algorithm 1. Value Iteration for the optimal value function, where c.h refers
to the history of previous assignments in the context c.

1: function Q∗(c, t, u, β,R)
2: if t = ⊥t then RS

3: else if c, u, t � p then RV

4: else
5: t′ ← τ (t, u)
6: if u = ⊥u then 0

7: else RT +β ∗max
u∈U

[
|nf N (c)|−1 ∗∑|nfN (c)|

i=1 {Q∗(ci, t′, u, β,R) | ci ∈ nf N (c)}
]

8: end if
9: end if
10: end function

failure, we are able to generate resiliency metrics for a workflow and show the
average success rate appears higher using the resiliency assignments δs and δd.

Implementation. We solve the MDP defined in Section 3 using value itera-
tion [21] and implement a simplified version of the optimal policy function δ∗

under the assumption that user failures are equiprobable and workflow behaviour
is linear, i.e., no loops or branches exist. Given a context c, a task t, a discount
factor β and a reward vector R = (RS , RT , RV), corresponding to the atomic
rewards for successfully terminating, doing one step and violating the policy,
respectively, the optimal policy is given as:

δ∗(c, t, β, R) = arg max
u∈U

Q∗(c, t, u, β,R)

where Q∗ is defined in Algorithm 1. We are now in position to define the policies
introduced in Section 3 and Section 4. Given c ∈ Ch, c′ ∈ Ch,f,N and t ∈ T

δo(c, t) = δ∗(c, t, 0, 1, 0,−∞) δc(c, t) = δ∗(c, t, 1, 1, 0,−∞)

δs(c
′, t) = δ∗(c′, t, 1, 1, 0,−∞) δd(c′, t) = δ∗(c′, t, 1, 0, 1,−∞)

Note that since we assume the workflow is linear, we can safely assign 1 to
β. As δc and δs concern themselves with optimising workflow satisfaction it is
possible to carry out a degree of pre-processing before runtime. Assignments
with reward −∞ can be removed offline as they clearly do not contribute to the
satisfiability of a workflow. All correct assignments are therefore cached in a tree
data structure. Any unavailable users are removed before selecting a user for the
current assignment. If multiple users are found to be optimal by any of the four
policies, one is simply selected at random.

To model user failure, all possible user failures are generated up to N as a
set of failure vectors. The test program takes as input parameters a sequence of
tasks, a security policy, a set of users, a single failure vector and an assignment
policy. Before assigning each task, the failure vector is checked and users removed
as appropriate. A call is made to the given assignment policy for each task in

Quantitative Workflow Resiliency 357

Table 2. Test results for Example 1

δo δc δs δd

Success rate 0.136 0.769 0.803 0.793
Expected distance (tasks) 5.20 8.83 8.67 9.29
Computation time (μs) 579.06 139.20 1.35×105 2.94×106

turn and the result logged in an assignment history. The program terminates if
the end of the workflow is reached or no assignment can be made and outputs the
assignment history and assignment time which is the aggregation of computation
time captured through a benchmarking library. For instance, we define Example
1 to contain 10 tasks, 6 users and a security policy consisting 10 separation and
2 binding of duty constraints. We consider 1 user failure per run giving 61 failure
vectors in all, each run 10 times. The testing was done on a computing platform
incorporating a 2.40Ghz i5 Intel processor and 4GB RAM.

Results. A total of 610 runs were recorded per policy. It should be noted
that 150 correct assignments exist for the workflow instance in Example 1. The
recorded test data has been analysed and the primary results presented in Ta-
ble 2. To aid understanding, the sample data is also presented in graphical form.
Figure 9 shows the probability of assignment for each task in Example 1. For
example, the probability of the workflow to execute until at least t3 using δo is
0.49 while under δc the probability is 0.95. The workflow success rate is equiva-
lent to the probability of reaching t10. Figure 10 gives average computation time
(excluding pre-computed data, such as the assignment tree). For example, the
average time to compute assignments up to and including t4 under δo is 111μs
while under δc the time is 17.2μs.

Discussion. Table 3 summarises the different characteristics of the different
policies. As expected, δs generates assignments providing the highest success
rate, and δd generates assignments giving the highest expected distance. In-
tuitively δs reserves users for the final task assignments and δd reserves users
to ensure every task has the highest possibility of being assigned. Our results
indicate choosing δs to optimise success rate does not mean optimal expected
distance will follow: since δs is only concerned with reaching the finish point, it
terminates once it knows failure is guaranteed, thus lowering expected distance
achieved by other strategies. This phenomenon is seen in Figure 9 which gives
the appearance of δs striving straight to the finish point while δc and δd prioritise
assigning tasks along the way.

It is noticeable that average task assignment probabilities are raised when
made within the bounds of an assignment tree used in δc and δs. However an
observed side-effect of removing known bad assignments (with reward −∞) is
to lower initial task assignment probabilities below that achieved by δo and δd.
Figure 9 shows the probability to assign t2 under δs is 0.9 and δc as 0.98, yet

358 J.C. Mace, C. Morisset, and A. van Moorsel

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1

Task

Probability

δo
δc
δs
δd

Fig. 9. Example 1 - expected distance

1 2 3 4 5 6 7 8 9 10

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Task

Time (μs)

Fig. 10. Example 1 - computation time

equals 1 under δo and δd. It follows that basing decisions solely on initial task
assignments would indicate δo, δc and δd are better then δs, yet δs is more likely
to finish. Caution should be taken of this somewhat false impression, especially
with δo as performance can clearly drop suddenly. The behaviour of δo can be
attributed to bad assignments made with or without user failure, and a greedy
nature of using up critical users for early tasks leaving more and more bad
assignment options for later ones. If no bad assignments or user failures exist,
δo can expect to match the performance of δc.

The fastest computation time is achieved by δc which is expected due to the
least amount of runtime processing it must perform. Note that δc uses the assign-
ment tree data structure so does not need to calculate correct task assignments
at runtime, nor does it calculate any aspect of resiliency; only the current failed
users must be removed. This runtime performance does come with the cost of
calculating all correct assignments offline and generating the data tree structure
(17.39s for Example 1); the time for this grows exponentially with the num-
ber of tasks and users. It follows that timings for each strategy increase with
the amount of runtime processing performed. As expected, the slowest strategy
δd has the heaviest runtime workload, i.e. calculating correct assignments and
calculating a resiliency value for each potential task assignment.

To summarise, none of the four policies we have introduced guarantee a full
success rate and we do not suggest one is the outright best in terms of optimising
workflow satisfaction and resiliency. Optimising success can lower distance while
optimising time can lower resiliency for example. These tensions are heavily
dependent on the nature of the workflow, the security policy and which users
fail and at what point they fail. The results we have presented give a first step in
the generation of useable metrics indicating the success rate, expected distance,
computation time and task-assignment probabilities of workflow assignments.
These values give a more meaningful measure than previous work and make it
easier to compare workflow assignments in terms of how much satisfiability and
resiliency they can give.

Quantitative Workflow Resiliency 359

Table 3. Assignment strategy comparison

Characteristic δo δc δs δd

User selection from PU c,t random random optimal optimal
Caches assignment options × � � ×
Calculates resiliency × × � �
Optimal success rate random random � random
Optimal expected distance random random random �
Computation 2nd 1st 3rd 4th

Clearly the establishment of an acceptable workflow is a case of security and
business trade-offs. Favouring one measure over another will depend on workflow
priorities, i.e., whether the only concern is to finish or instead be confident that
a certain point will be reached, or does computation time outweigh the need
for resiliency? This decision can become crucial due to tension we have shown
existing between these aspects. Providing suitable metrics and tools for workflow
designers would facilitate more informed decisions regarding these concerns.

Running Example. In addition, two sets of results for the running example
used throughout this paper are given in Table 4. The first, Example 2 are gener-
ated using policy p1 defined in Section 3.1, and second, Example 3 using policy
p2 defined in Section 4.2. A maximum of 2 user failures is considered totalling
67 equiprobable failures, each run 10 times per assignment policy. The testing
for Example 2 was carried out on a computing platform incorporating a 2.40Ghz
i5 Intel processor, and for Example 3, a 2.3GHz Intel duo-core processor, both
with 4GB RAM.

Table 4. Test results

Example 2 Example 3

δo δc δs δd δo δc δs δd

Success rate (%) 20.27 26.49 43.24 43.24 62.99 63.43 74.62 73.13
Expected distance (tasks) 2.04 1.93 1.81 2.27 2.57 2.59 2.52 2.67
Computation time (μs) 4.56 0.77 123.27 299.62 12.03 5.10 379.35 678.91

6 Conclusion

We have presented in this paper a Markov Decision Process (MDP) encoding
of the workflow satisfaction and resiliency problem. We have therefore reduced
the problem of finding optimal user-task assignment to that of solving an MDP,
which is a well studied problem. One of the main strengths of our approach is

360 J.C. Mace, C. Morisset, and A. van Moorsel

to provide a very flexible approach, where a simple modification of the context
or the reward function provides a new metric to analyse a workflow. We believe
that by addressing the workflow satisfaction and resiliency problem from a quan-
titative viewpoint rather than from a binary one, we provide tools and metrics
that can be helpful for a workflow designer to analyse all those cases that are
neither satisfiable nor resilient ideally, but need to work nevertheless.

We have illustrated that the analysis of a workflow is multi-dimensional, and
that there is a trade-off to be established, among others, between computation
time, success rate and expected distance. Clearly, other dimensions can be taken
into account, such that the possibility to dynamically modify the security pol-
icy [16], or perhaps the possibility to override the security constraints [17].

For future work, an interesting point is to develop the tools to help the sys-
tem designer fix a given workflow, using different metrics. For instance, a set of
workflow modifications proven to be monotonic with the quantitative satisfac-
tion or with the decremental resiliency could be a very helpful tool, especially in
the context of structured workflow design, e.g., with business processes. Another
lead is the study of sub-optimal policies. Indeed, calculating a sub-optimal solu-
tion might be more tractable [23], at the cost of a loss of accuracy. In this case,
it could be worth understanding the impact on the WSP of using a sub-optimal
solution.

References

1. Workflow handbook, pp. 243–293. John Wiley & Sons, Inc., New York (1997)
2. Bertino, E., Ferrari, E., Atluri, V.: The specification and enforcement of autho-
rization constraints in workflow management systems. ACM Trans. Inf. Syst. Se-
cur. 2(1), 65–104 (1999)

3. Botha, R., Eloff, J.H.P.: Separation of duties for access control enforcement in
workflow environments. IBM Systems Journal 40(3), 666–682 (2001)

4. Kohler, M., Liesegang, C., Schaad, A.: Classification model for access control con-
straints. In: IEEE International Performance, Computing, and Communications
Conference, IPCCC 2007, pp. 410–417 (April 2007)

5. Crampton, J.: A reference monitor for workflow systems with constrained task ex-
ecution. In: Proceedings of the Tenth ACM Symposium on Access Control Models
and Technologies, SACMAT 2005, pp. 38–47. ACM, New York (2005)

6. Wang, Q., Li, N.: Satisfiability and resiliency in workflow authorization systems.
ACM Trans. Inf. Syst. Secur. 13(4), 40:1–40:35 (2010)

7. Kumar, A., van der Aalst, W.M.P., Verbeek, E.M.W.: Dynamic work distribution
in workflow management systems: How to balance quality and performance. J.
Manage. Inf. Syst. 18(3), 157–193 (2002)

8. Basin, D., Burri, S.J., Karjoth, G.: Obstruction-free authorization enforcement:
Aligning security with business objectives. In: Proceedings of the 2011 IEEE 24th
Computer Security Foundations Symposium, CSF 2011, pp. 99–113. IEEE Com-
puter Society, Washington, DC (2011)

9. Kohler, M., Schaad, A.: Avoiding policy-based deadlocks in business processes.
In: Third International Conference on Availability, Reliability and Security, ARES
2008, pp. 709–716 (2008)

Quantitative Workflow Resiliency 361

10. Crampton, J., Gutin, G., Yeo, A.: On the parameterized complexity of the workflow
satisfiability problem. In: Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS 2012, pp. 857–868. ACM, New York (2012)

11. Crampton, J., Gutin, G.: Constraint expressions and workflow satisfiability. In:
Proceedings of the 18th ACM Symposium on Access Control Models and Tech-
nologies, SACMAT 2013, pp. 73–84. ACM, New York (2013)

12. Khan, A.A., Fong, P.W.L.: Satisfiability and feasibility in a relationship-based
workflow authorization model. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ES-
ORICS 2012. LNCS, vol. 7459, pp. 109–126. Springer, Heidelberg (2012)

13. Tan, K., Crampton, J., Gunter, C.: The consistency of task-based authorization
constraints in workflow. In: Proceedings of the 17th IEEE Computer Security Foun-
dations Workshop, pp. 155–169 (June 2004)

14. National Quality Board: How to ensure the right people, with the right skills, are
in the right place at the right time @ONLINE (2013)

15. Lowalekar, M., Tiwari, R.K., Karlapalem, K.: Security policy satisfiability and fail-
ure resilience in workflows. In: Matyáš, V., Fischer-Hübner, S., Cvrček, D., Švenda,
P. (eds.) The Future of Identity. IFIP AICT, vol. 298, pp. 197–210. Springer, Hei-
delberg (2009)

16. Basin, D., Burri, S.J., Karjoth, G.: Optimal workflow-aware authorizations. In:
Proceedings of the 17th ACM Symposium on Access Control Models and Tech-
nologies, SACMAT 2012, pp. 93–102. ACM, New York (2012)

17. Wainer, J., Barthelmess, P., Kumar, A.: W-rbac - a workflow security model incor-
porating controlled overriding of constraints. International Journal of Cooperative
Information Systems 12, 2003 (2003)

18. Bakkali, H.E.: Enhancing workflow systems resiliency by using delegation and pri-
ority concepts. Journal of Digital Information Management 11(4), 267–276 (2013)

19. Mace, J., van Moorsel, A., Watson, P.: The case for dynamic security solutions in
public cloud workflow deployments. In: 2011 IEEE/IFIP 41st International Con-
ference on Dependable Systems and Networks Workshops (DSN-W), pp. 111–116
(June 2011)

20. Watson, P.: A multi-level security model for partitioning workflows over federated
clouds. Journal of Cloud Computing 1(1), 1–15 (2012)

21. Bellman, R.: A markovian decision process. Indiana Univ. Math. J. 6, 679–684
(1957)

22. Martinelli, F., Morisset, C.: Quantitative access control with partially-observable
markov decision processes. In: Proceedings of the Second ACM Conference on Data
and Application Security and Privacy, CODASPY 2012, pp. 169–180. ACM, New
York (2012)

23. Cassandra, A.R.: Optimal policies for partially observable markov decision pro-
cesses. Technical report, Brown University, Providence, RI, USA (1994)

24. Crampton, J., Gutin, G., Yeo, A.: On the parameterized complexity and kernel-
ization of the workflow satisfiability problem. ACM Trans. Inf. Syst. Secur. 16(1),
4 (2013)

Who Is Touching My Cloud

Hua Deng1,2,3, Qianhong Wu2,5, Bo Qin3, Jian Mao2,
Xiao Liu2, Lei Zhang4, and Wenchang Shi3

1 School of Computer, Wuhan University, Wuhan, China
denghua@whu.edu.cn

2 School of Electronic and Information Engineering, Beihang University, Beijing, China
{qianhong.wu,maojian}@buaa.edu.cn

3 School of Information, Renmin University of China, Beijing, China
{bo.qin,wenchang}@ruc.edu.cn

4 Software Engineering Institute, East China Normal University, Shanghai, China
leizhang@sei.ecnu.edu.cn

5 The Academy of Satellite Application, Beijing

Abstract. Advanced access controls have been proposed to secure sensitive data
maintained by a third party. A subtle issue in such systems is that some access
credentials may be leaked due to various reasons, which could severely damage
data security. In this paper, we investigate leakage tracing enabled access con-
trol over outsourced data, so that one can revoke the suspected leaked credentials
or prepare judicial evidences for legal procedure if necessary. Specifically, we
propose a leaked access credential tracing (LACT) framework to secure data out-
sourced to clouds and formalize its security model. Following the framework, we
construct a concrete LACT scheme that is provably secure. The proposed scheme
offers fine-grained access control over outsourced data, by which the data owner
can specify an access policy to ensure that the data is only accessible to the users
meeting the policy. In case of suspectable illegal access to outsourced data with
leaked credentials, a tracing procedure can be invoked to tracing in a black-box
manner at least one of the users who leaked their access credentials. The tracing
procedure can run without the cloud service provider being disturbed. Analysis
shows that the introduction of tracing access credential leakage incurs little addi-
tional cost to either data outsourcing or access procedure.

Keywords: Data privacy, Access control, Cloud storage, Access credential leak-
age, Digital forensics.

1 Introduction

Cloud computing services provide an efficient and cost-effective mechanism for indi-
viduals and organizations to enforce highly scalable and technology-enabled manage-
ment on their data. This new and exciting paradigm has generated significant interests in
both industrial and academic world, resulting a number of notable theoretical and prac-
tical cloud computing models, such as Amazon EC2, Apple iCloud, Microsoft Azure
and some more complex models designed for multi-cloud [21]. In the context of cloud
storage [20, 23], users can outsource their data to a cloud storage server (maintained by

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 362–379, 2014.
c© Springer International Publishing Switzerland 2014

Who Is Touching My Cloud 363

a cloud service provider, CSP), so that themselves and other authorized users can access
the outsorced data anytime and anywhere. In this way, users are able to share their data
with others without worrying about their local hardware and software limitations.

Although cloud storage brings about many benefits, the concerns on data security are
believed the major obstacles for the wide usage of cloud services. When users outsource
their data to clouds, they may worry about unauthorized data access due to the loss of
physical control of their data. Encryption is a standard approach to protect data security
but traditional cryptosystems, including symmetric and asymmetric cryptosystems, can
not support complicated access policy or suffer from complicated key management in
securing outsourced data with flexible access policies. Nevertheless, in cloud storage
scenario, users usually do not know who will request to access their data in the future,
so a flexible access control over data is desired; besides, it is not practical to issue an
access key for each authorized requestor. Attribute-based encryption (ABE, [9, 24]) is
a recently proposed promising approach to enable flexible access control on the data
outsourced to clouds. In an ABE system, data owners can specify access policies over
attributes that the potential authorized users should possess. Then the authorized users
with the attributes satisfying the specified access policy can access the outsourced data.

The attribute-based cryptosystem provides a reliable method to protect the data in
clouds, while at the same time enabling fine-grained access control over the data. This
is realized by assigning access credentials to authorized users so that the encrypted data
are only accessible to them. In practice, these access credentials may be leaked due to
various reasons, e.g., intentionally leaked by authorized users for their own benefits or
compromised by hackers. For instance, a company employs a cloud storage system to
store its data and assigns access credentials to its employees. It is possible that some
employees unsatisfied with the company disclose their access credentials to the com-
pany’s competitors who are interested in the sensitive data stored on the clouds. Once
this happens, some countermeasures should be taken to find the leaked credentials in
order to prevent illegal access in future.

There are some solutions for the purpose of tracing leaked access credentials. Boneh
et al. [4, 5] provided a traitor tracing mechanism in broadcast encryption system, while
only achieving a gross-grained access control over data. Based on the works [4, 5], the
schemes [16–18] resolved the problem of tracing leaked access credentials in attribute-
based encryption. Although these schemes achieve fine-grained access control, they
either only possess a weak tracing capability or suffer from large-size ciphertexts. A de-
sired solution in the cloud-based scenario is what on the one hand provides fine-grained
access control over outsourced data, on the other hand fulfills a strong tracing mecha-
nism to find leaked access credentials, and at the same time achieves short ciphertexts
for outsourced data.

1.1 Our Contributions

In this paper, we investigate security-enhanced access control over the data stored in
the cloud server, so that an access credential leakage tracing mechanism can be incor-
porated to find leaked access credentials used for illegal access. We propose a feasible
solution to find leaked access credentials with strong tracing capability and achieve

364 H. Deng et al.

short ciphertexts for outsourced data in a cloud-based scenario. Our contributions in-
clude the following aspects.

We present a leaked access credential tracing (LACT) framework to secure out-
sourced data in cloud storage. It allows a user to define an access policy for each file
or its any content to be outsourced. Authorized cloud clients will be given a secret
access credential for access to outsourced data. In case of illegal access with leaked
access credentials, in a black-box way, a tracing procedure can find at least one of the
leaked credentials, even if the illegal access credentials were produced with multiple
leaked credentials in an unknown way. This implies that the trusted third party does not
need to know how the illegal access credentials were forged, which captures powerful
collusion attacks in practice.

Following the generic framework, we propose a concrete LACT scheme that is prov-
ably secure. When an access credential is assigned to an authorized user associated
with his/her attributes, an unique fingerprint code is embedded into each user’s access
credential. During outsourcing a file, the file owner encrypts the file with a policy, so
that only the users having access credentials of the matching attributes can decrypt the
outsourced file, without fully trusting the cloud storage provider. When some access
credentials are leaked and used to forge illegal credentials for unauthorized access, a
trusted third party is employed to find at least one of the leaked credentials involved
in the illegal access. Surprisingly, the tracing procedure does not disturb the CSP. The
security properties are formally defined and proved by assuming the security of the
underlying ABE scheme and the fingerprint codes scheme.

We analyze our LACT scheme and compare it with some up-to-date similar works.
The analysis shows that the introduction of a black-box leakage tracing countermea-
sure does not incur any significant cost to the access control. The comparison demon-
strates that the proposed scheme achieves a strong traceability with barely expanding
the ciphertexts. Indeed, the most critical data outsourcing and access sub-protocols,
which determine the practicality of the system, are almost as efficient as the underlying
attribute-based access control model which does not provide any leakage tracing mech-
anism. Our scheme also supports any access structure admitting a linear secret sharing
and enables fine-gained access control over outsourced data. These features make our
scheme a practical solution to secure sensitive data outsourced to untrusted clouds.

1.2 Related Work

There is an increasing demand to secure data maintained by a third party in distributed
computing systems. Asokan et al. [1] proposed a framework to safely share sensitive
data among mobile devices, with the focus on the data privacy and user privacy. Huang
et al. [10] exploited the attribute-based encryption (ABE) to protect user’s privacy in
mobile systems. Considering that in the ABE applied into mobile systems a single au-
thority is too easy to be broken, Li et al. [13] proposed a multi-authority solution to
reduce the power of single authority and alleviate overheads of mobile users.

In cloud computing environments, the protection of data security is pressing because
of the scalability and easy accessibility requirements. Due to the fine-grained access
control feature, ABE has been extensively employed in cloud computing to protect data
security. Liu et al. proposed an elegant ABE scheme [15] with arbitrary attributes and

Who Is Touching My Cloud 365

security against adaptively chosen ciphertext attacks in the standard. They achieved
this goal with a novel application of Chameleon hash functions. Yu et al. [29] used
the ABE to protect the security of data stored in clouds, then flexible access control
over outsourced data is achieved. Lai et al. [11] presented an ABE scheme with par-
tially hidden access structure to protect the access policies’ privacy. To adapt for multi-
authority scenario, where each authority may manage the attributes in its domain, Yang
and Jia [27] proposed a multi-authority access control scheme for cloud storage to re-
duce the dependance on a single authority. Recently, Deng et al. [7] presented a novel
ABE system allowing hierarchical key delegation and efficient data sharing among large
organizations.

A challenging task in access control of sensitive data is to trace access credential
leakage. Boneh and Naor presented a paradigm [3] to equip the public key cryptosys-
tems with tracing mechanism by using fingerprint codes. To find the users who leaked
their access credentials in broadcasting cryptosystems, Boneh et al. ([5, 4]) constructed
two tracing schemes built from the composite-order bilinear groups, which are less ef-
ficient than in prime-order bilinear groups. Garg et al. [8] transmitted Boneh et al.’s
tracing schemes to being constructed in prime-order bilinear groups to achieve better
system performance in terms of encryption and decryption time. Wu and Deng [26] en-
hanced Boneh et al.’s schemes by considering the denial of tracing and farming attacks
and proposed a countermeasure on the framing attack.

A few recent efforts have been made to trace access credential leakage since the
employment of ABE for access control in clouds. Wang et al. [25] proposed the attribute-
based traitor tracing system while the allowed access policy is not expressive. The
systems in [28, 14, 12] support expressive policy, although the traceability is not
collusion-resistant, that is, the attacker is not allowed to have more than one creden-
tial when building the illegal access devices. Liu et al. [16] proposed traceable ABE
schemes allowing more than one access credentials used in forging an illegal access de-
vice, while the tracing capability is weak, i.e., white-box tracing. The white-box model
can only capture weak attacks in which the dishonest user directly discloses his ac-
cess credential. Liu et al. [17] suggested a method to construct the black-box traceable
CP-ABE from the Boneh et al.’s schemes ([5, 4]). Their schemes require inefficient
operations in composite-order bilinear groups and have ciphertexts sub-linear with the
number of total users. Liu et al. [18] also proposed a black-box traceable CP-ABE with
full security, although it still requires that the size of ciphertext grows sub-linearly with
the number of users in the system. Recently, Deng et al. [6] achieved a very efficient
trace-and-then-revoke mechanism of illegal access credentials distribution in cloud stor-
age systems. The encryption procedure of their scheme requires to explicitly knows the
identities of the ones who may later access the encrypted data.

Data sharing calls for efficient and reliable mechanisms to protect the data security.
All the aforementioned works protect data security for different application scenarios
and most of them achieve fine-grained access control due to the employment of ABE.
In the face of access credentials leakage issue in ABE-based systems, the above coun-
termeasures either allow less expressive access policy, or only withstand weak attacks,
or incur heavy burdens. Our LACT scheme overcome these drawbacks in that it sup-
ports any access structure admitting a linear secret sharing and provides traceability in a

366 H. Deng et al.

black-box manner which is a stronger security notion than white-box manner. Besides,
it is built on prime-order bilinear groups and the computation operations thus are more
efficient than in composite-order bilinear groups. Particularly, the LACT scheme incurs
almost no extra costs for the most frequent procedures of data outsourcing and access.
These advantages make the LACT scheme a very practical and secure solution to en-
force a fine-grained access control over outsourced data and a trace mechanism to find
out leaked access credentials in cloud storage systems.

1.3 Paper Organization

The rest of this paper is organized as follows. Section 2 presents the LACT framework
and a threat model. We present the LACT scheme in Section 3. In Section 4, the security
of the proposal is formally analyzed. We conduct detailed performance analysis of the
LACT system in Section 5. Section 6 concludes the paper.

2 System Model and Security

2.1 System Architecture

We consider a LACT framework for cloud storage, as depicted in Fig.1. There are four
types of entities in the system: the cloud service provider, the trusted authority (TA),
the data owner and the data consumer. The cloud service provider (CSP) stores the out-
sourced data from the data owner and responds to the data access requests from the data
consumer. The trusted authority is the key party trusted by other entities to generate sys-
tem parameters and issue access credentials (i.e., decryption keys) for data consumers.
Receiving a data owner’s forensics request, the TA executes the digital forensics proce-
dure and returns the forensic results to the data owner. The data owners define access
policies and encrypt their data with the access policies before outsourcing them to the
clouds. The data consumers are the cloud users who download the data owners’ data
from the cloud server and then decrypt them.

In our system, neither data owners nor data consumers are required to always keep
online. The CSP and the TA are always online. We assume that the TA always correctly
responds to the digital forensics requests and honestly returns the results.

2.2 Security Model

Unauthorized users and intruders may try to get the users’ data that are outside their
access privileges. We assume that the CSP is honest-but-curious in the sense that it
is curious about the content of the encrypted data but still honestly execute the tasks
assigned by data owners. To protect the security of the data stored in the clouds from
unauthorized access, cloud users need to encrypt their data before outsourcing them to
the clouds. Therefore, an encryption mechanism is preferable to make the stored data
unreadable to any unauthorized users and curious CSP.

A single encryption mechanism is not sufficient to protect data privacy. In practice,
there is an unavoidable problem that some access credentials may be leaked to unau-
thorized users, e.g., some access devices containing access credentials may be stolen

Who Is Touching My Cloud 367

Fig. 1. System architecture

by the unauthorized users, or some users deliberately disclose their access credentials
to others for some benefits. For instance, some employees of a company could sell their
access rights to the sensitive data stored in clouds to the company’s competitors due to
economic interests. To avoid being traced, they could probably forge an illegal access
credential and sell it in a black market. The misbehavior competitors then can buy the
illegal access credential for unauthorized access to the company’s sensitive data. In this
case, we make a minimum assumption that the data owner (i.e., the sacrifice company)
can find that its sensitive data were abnormally accessed, e.g., receiving alarms from
the clouds that its data were accessed by some requestors with IP addresses out of the
domain of the company’s IP addresses, or the company find a decryption device able to
access its stored data appearing at some public network market (e.g., eBay). To fulfill
this assumption, we can enforce in the clouds an independent regulatory mechanism
which monitors the access of the stored data and alarms the data owners in case of
abnormal access.

To simplify the discussion about unauthorized access, we suppose that there exists a
pirate decoder PD, which works in a black-box manner and enables unauthorized users
to access to the stored data. The notion of black-box here means that one can access the
stored data by using PD without knowing the internal construction of PD. This captures
the realistic situation that the attacker may exploit technologies to conceal which access
credentials are involved in creating the pirate decoder. To find out the users who leaked
their access credentials, a tracing procedure is required. The tracing procedure should
be allowed to access the PD and executed in a passive way, which means that it only
needs to record and analyze the outputs of the PD on indistinguishable inputs. The
formal definition for the security of LACT will be described in Section 4.

3 Our Solution

In this section, we propose our LACT scheme in cloud storage systems. Before present-
ing our scheme, we first review some basic concepts and technologies underlying our
construction.

368 H. Deng et al.

3.1 Preliminaries

Bilinear Maps. Let G and GT be two multiplicative cyclic groups of prime order p
and g be a generator of G. Let e : G × G → GT be a bilinear map with the following
properties:

i) Bilinearity: for all u, v ∈ G and a, b ∈ Zp, e(ua, vb) = e(u, v)ab;
ii) Non-degeneracy: e(g, g) �= 1;
iii) Computability: there is an efficient algorithm to compute e(u, v) for all u, v ∈ G.

Fingerprint Codes. Following [3], we give the definition of collusion-resistant finger-
print codes.

– Let ω ∈ {0, 1}L denote a L-bit codeword. We write ω = ω1ω2 · · ·ωL and ωi is the
i-th bit of ω.

– Let W = {ω(1), ω(2), ..., ω(t)} be a set of codewords in {0, 1}L. We say that a
codeword ω∗ ∈ {0, 1}L is feasible for W if for all i = 1, 2, ..., L there exists a

j ∈ {1, 2, ..., t} such that ω∗
i = ω

(j)
i .

– Let F (W) be a feasible set of W, if it includes all the codewords that are feasible
for W.

A t-collusion resistant fingerprint codes scheme is composed of generation algorithm
GenFC and tracing algorithm TraFC . The algorithm GenFC generates a set Γ ofN L-
bit codewords. Then each user will be assigned to a unique codeword. The t-collusion
traceability guarantees that if the number of colluders is no greater than t, i.e., |W| ≤ t,
the algorithm TraFC which takes in a feasible codeword ω∗ ∈ F (W) can output at
least one codeword in W, provided that W ⊆ Γ .

We will exploit the fingerprint codes scheme of [19] which is an improvement of
the well-studied Tardos fingerprint codes [22]. To provide ε-security against t collud-
ers in N users, the length L of this fingerprint codes is required to be no less than

− 1
log T (t)

(
log N

ε + log c
c−1 + log log c

ε

)
, where T (t) < 1 is parameterized by t, a

fixed c > 1 and ε denotes the probability that one innocent has been accused.

Access Structure and LSSS [2]. In the following, we review the formal definitions for
access structures and LSSS, which are extensively used in ABE schemes [9, 24, 16–18]
and will still be adopted in our proposal.

Definition 1. Let {P1, P2, · · · , Pn} be a set of parties. A collectionA ⊆ 2{P1,P2,··· ,Pn}

is monotone if for ∀B,C, we have that C ∈ A holds if B ∈ A and B ⊆ C. An access
structure (respectively, monotone access structure) is a collection (respectively, mono-
tone collection)Aof non-empty subsets of{P1, P2, ..., Pn}, i.e.,A ⊆ 2{P1,P2,··· ,Pn}\{∅}.
The sets in A are called the authorized sets, and the sets not in A are called the unau-
thorized sets.

In our LACT scheme, the role of the parties is played by the attributes. Then an
access structure is a collection of sets of attributes. The monotone access states that, if
a user’s attribute set S satisfies an access structure A, i.e., S ∈ A, then another user

Who Is Touching My Cloud 369

associated a larger attribute set S′ ⊇ S also satisfies the access structure, i.e., S′ ∈ A.
Note that in most applications, the access policy has this monotone feature. Hence, we
will only consider the monotone access structures in this paper.

Definition 2. A secret-sharing scheme Π over a set of parties P is called linear (over
Zp) if

1. The shares for each party form a vector over Zp.
2. There exists a matrix A called the share-generating matrix for Π , where A has l

rows and n columns. For all i = 1, · · · , l, the i-th row of A is labeled by a party
ρ(i), where ρ is a function from {1, · · · , l} to P . We consider the column vector
s = (s, s2, · · · , sn), where s ∈ Zp is the secret to be shared, and s2, · · · , sn ∈ Zp

are randomly chosen. Then λi = Ais is the share belonging to party ρ(i), where
Ai is the i-th row of A.

In practice, an LSSS scheme is employed to realize an access structure in an ABE
scheme. For an access structure A, it generates a share-generating matrix A with l rows
and n columns and define a function that map each row of the matrix to an attribute
involved in A. Then for a secret s to be shared, the LSSS scheme forms an n-dimension
vector with the first entry equal to s and rests randomly picked. It then computes the
inner product of this vector and each row of the matrix, and takes the product as the
share for the attribute associated with that row. The following linear reconstruction
property guarantees that an LSSS scheme for an access structure A can recover the
secret s if there exists a set S composed by some attribute associated with the rows of
A, satisfying that S ∈ A.

Linear Reconstruction. It has been shown in [2] that every LSSS Π enjoys the linear
reconstruction property. Suppose Π is the LSSS for access structure A and S is an
authorized set in A, i.e., A contains S. There exist constants {wi ∈ Zp} which can be
found in time polynomial in the size of the share-generating matrix A such that if {λi}
are valid shares of s, then

∑
i∈I wiλi = s, where I = {i : ρ(i) ∈ S} ⊆ {1, · · · , l}.

3.2 The LACT Scheme

We first provide a high-level view of our LACT construction. To fulfill fine-grained
access control over the data stored in cloud, we apply the Ciphertext-Policy Attribute-
based Encryption (CP-ABE) in [24]. The data owners encrypt their files with some
access policies they specified and upload the encrypted files to the CSP. Authorized
data consumers will obtain access credentials, serving as decryption keys, issued by
the trusted authority. A data consumer can access a file stored in clouds only if his/her
associated attribute set satisfies the access policy specified in the file. In practice, some
users’ access credentials may be stolen or leaked. These leaked credentials might be
used to forge an illegal functional access credential. To address this problem, by ex-
ploiting the tracing technology of [3], we label each user with a distinct fingerprint such
that each functional access credential corresponds to a feasible codeword. The tracing
procedure first finds the feasible codeword associated with the illegal access credential
used by PD and then takes this feasible codeword as the input of the tracing algorithm

370 H. Deng et al.

of the underlying fingerprint codes scheme. Then the tracing algorithm will output at
least one of the codewords of the access credentials used in forging the illegal functional
access credential.

The LACT scheme works as follows. First, the system is set up by the TA to gen-
erate and publish public parameters. For any user qualified to join the system, the TA
generates a user credential (i.e., decryption key) with the set of attributes describing the
user and embeds a fingerprint codeword into the credential. Before outsourcing data
to the clouds, the data owner encrypts the data with an access structure so that only
the users with attribute sets meeting this access structure can access the data. At some
point, some user credentials are leaked and used to create a pirate decoder PD. This PD
then can be sold on network market such as eBay for anyone interested in the sensitive
data that can be decrypted by PD. Once this pirate decoder is found and reported to the
data owner, the TA can be called to execute the digital forensics procedure to find out at
least one of the user credentials in creating PD. Specifically, our LACT scheme consists
of the following procedures.

System Setup: In this procedure, the TA setups the system. It runs the following al-
gorithm to generate system public parameter PP , a set of fingerprint codewords Γ and
system master secret key MSK . It keeps MSK secret while publishes PP for other
entities.

(PP,MSK)← Setup: This algorithm selects a bilinear group G of prime order p.
It chooses a random generator g ∈ G and two random elements α, γ ∈ Zp. It chooses
a hash function H : {0, 1}∗ → G that will be modeled as a random oracle in the
security proof. By calling the generation algorithm GenFC on inputs N and L, this
algorithm also generates a set of codewords Γ = {ω(1), ..., ω(N)}, where N denotes
the maximum number of cloud users in this system and L denotes the length of each
codeword. The public parameter and master secret key are set as

PP = (g, gγ , e(g, g)α, H) , MSK = gα.

User Admission: In this procedure, a user requests to join the system. The TA checks
whether the requestor is qualified, if so, it works as follows. First, the TA randomly se-
lects a codeword ω ∈ Γ and specifies an attribute set S which describes the requestor.
Then the TA generates a user credential UC, serving as a decryption key, for the re-
questing user by calling the following credential generation algorithm.
UC ← CreGen(MSK,S, ω): This algorithm takes as inputs MSK , an attribute set

S and a codeword ω. Recall that ω = ω1 · · ·ωL. First, for each attribute x ∈ S, this
algorithm uses the hash function H to compute H(x||j||ωj), where j = 1, 2, ..., L and
the symbol “||” represents the operation of concatenation. Next, the algorithm picks a
random exponent r ∈ Zp and computes:

K0 = gαgγ·r, K1 = gr,

{Dx,j = H(x||j||ωj)
r}∀x∈S,j=1,...,L.

The access credential of this user associated with S and ω is set as (including S)

UC = (K0,K1, {Dx,j}∀x∈S,j=1,...,L) .

Who Is Touching My Cloud 371

Here, the codeword ω is embedded in the user credential and distinctly associated with
the user. Then in the tracing procedure, tracing a user is identical to tracing the user’s
codeword.

File Creation: Before outsourcing data to the CSP, the data owner encrypts his/her
data as follows. First, the data owner encrypts the data using a symmetric session key

M
R← GT of a symmetric encryption, e.g., AES. The encrypted data under the sym-

metric encryption forms the body of the file stored in clouds. Second, the data owner
specifies an access structure A over a group of attributes which indicate what attributes
the potential decryptors should possess. Then the data owner encapsulates the key M
with the A (that is represented by an LSSS (A, ρ)) by calling the following algorithm.
The ciphertexts Hdr output by this algorithm is the header of the file stored in clouds.
Hdr ← Encapsulate(PP,M, (A, ρ)): This algorithm takes as inputs PP , an LSSS

(A, ρ) and an element M ∈ GT , where M is the symmetric session key used in the
symmetric encryption. To enable traceability in the system, the algorithm picks a ran-
dom j ∈ {1, 2, ..., L} and runs the following algorithm twice on input b = 0 and b = 1,
respectively.

Hdrj,b ← Enc′(PP,M, (A, ρ), (j, b)): In the LSSS (A, ρ), ρ is a function mapping
each row of the matrix A to an attribute. In this construction, we limit ρ to be an in-
jection function, that is, an attribute is associated with at most one row of A (note that
this requirement can be relaxed to allow multiple use of one attribute by taking multiple
copies of each attribute in the system, similar with the work [24]). Let A be an l × n
matrix. This algorithm first chooses a random vector

v = (s, v2, ..., vn) ∈ Zn
p

where s is the secret exponent needed to be shared by all involved attributes. For each i
from 1 to l, the algorithm computes the hash value H(ρ(i)||j||b) for attribute ρ(i) and
calculates the share λi = Ai · v, where Ai is the vector corresponding to the i-th row
of A. It then computes

C = Me(g, g)αs, C0 = gs

and
Ci = gγ·λiH(ρ(i)||j||b)−s

for each i = 1, ..., l. The algorithm outputs

Hdrj,b =
(
C,C0, {Ci}li=1

)
.

After running twice Enc′ respectively on input (j, 0) and (j, 1), the algorithm
Encapsulate obtains Hdrj,0 and Hdrj,1. It finally outputs

Hdr = (j,Hdrj,0, Hdrj,1).

File Access: In this procedure, a data consumer requests a file stored in CSP. CSP gives
the requested file to the data consumer. Then, the data consumer decapsulates the file’s
header to recover the symmetric session key by calling the following algorithm and then
uses this key to decrypt the file’s body.

372 H. Deng et al.

M/⊥ ← Decapsulate(Hdr, UC): This algorithm takes as inputs the file’s header
Hdr = (j,Hdrj,0, Hdrj,1) associated with LSSS (A, ρ) and the data consumer’s cre-
dential UC associated with attribute set S. If S does not satisfy the access structure,
this algorithm returns a false symbol ⊥. If S satisfies the access structure, i.e., S ∈ A,
due to the the linear reconstruction property of LSSS, the algorithm can find constants
wi ∈ Zp such that ∑

i∈I

wiλi = s,

where I = {i : ρ(i) ∈ S} ⊆ {1, 2, ..., l}. This algorithm only needs to know A and I
to determine these constants.

Recall that ω is associated with the credential UC. If the j-bit ωj = 0, the algorithm
picks Hdrj,0 (otherwise, chooses Hdrj,1) and computes

M ′ =
e(C0,K0)∏

ρ(i)∈S

(
e(Ci,K1) · e(C0, Dρ(i),j)

)wi

=
e(gs, gα)e(gs, gγr)

e(gγ , gr)
∑

ρ(i)∈S wiλi
= e(g, g)αs.

It recovers M as M = C/M ′.
In the above decapsulation algorithm, if the user’s codeword has the value 0 at the

j-th position, then he can only decapsulate the header Hdrj,0 since his credential only
has the component H(ρ(i)||j||0) which is required to cancel out the same blind factor
in Hdrj,0; otherwise, he can only decapsulate Hdrj,1 in the same way. This is the key
point in the execution of the tracing procedure.

Digital Forensics: In this procedure, when a data owner finds that his/her file stored in
clouds can be accessed by a pirate decoder PD, he can request the TA to find out the
misbehavior users who have leaked their access credentials in forging the PD. Recall
that in the file creation procedure all files stored in clouds are encrypted by symmetric
keys which were encapsulated with specific access policies, thus the data owner can
identify the access policy associated with his file that was illegally accessed. Note that
a PD could possess accessability to different stored files, which means it holds the
attribute sets that satisfy different access policies of these files. However, as for this
data owner, he/she may only care about the access policy he/she specified for the file
accessed by PD. Given this access policy, denoted by APD, as well as PD, the data
owner then can ask the TA to proceed a forensics procedure.

When we consider the pirate decoder PD, it is possible that it correctly decrypts a
file with a probability less than 1. This issue has been extensively studied in [3]. In this
paper, to simplify the discussion about the tracing procedure, we assume that PD can
correctly decrypt a file with probability 1.

Upon a request for digital forensics, the TA responds by calling the following algo-
rithm.

C ← Find(PP, PD,APD): This algorithm takes as inputs PP , the pirate decoder
PD and the access structureAPD satisfied by an attribute set involved in PD. It generates
an LSSS (A, ρ)PD for APD and works in two steps to find out the users who leaked
their access credentials in forging PD.

Who Is Touching My Cloud 373

The first step is to find the feasible codeword ω∗ associated with the illegal access
credential used by PD to access the data owner’s file. This algorithm chooses each j
from 1 to L and conducts the following experiment:

1. Choose two distinct random symmetric keys Mj �= M ′
j ∈ GT .

2. Compute the header

Hdrj,0 ← Enc′(PP,Mj , (A, ρ)PD, (j, 0)),

Hdr′j,1 ← Enc′(PP,M ′
j , (A, ρ)PD, (j, 1)).

3. Take the header Hdr′ = (j,Hdrj,0, Hdr
′
j,1) as the input of PD and define PD’s

output as M∗
j . If M∗

j = Mj , set ω∗
j = 0; otherwise, set ω∗

j = 1.

Finally, the algorithm defines ω∗ = ω∗
1ω

∗
2 · · ·ω∗

L.
The second step is to find out the users involved in leaking their access credentials.

This algorithm runs the tracing algorithm GenFC of the underlying fingerprint codes
scheme on input ω∗ to obtain a set C ⊆ {1, ..., N}.

The TA returns the set C, as the set of the users who are accused of leaking their
access credentials, to the data owner.

4 Security Analysis

In this section, we formally analyze the security of our LACT scheme. At a high level,
we show that the LACT scheme is secure against any number of unauthorized accesses
colluding with CSP. We also demonstrates that when some users leaked their access
credentials to forge an illegal access credential, which was then used to access the files
stored in clouds, our LACT scheme can find out at least one of these users with a high
probability. Formally, the security of the LACT scheme is defined by the following
SS-Game and T-Game.

the security of LACT is composed of semantical security and traceability. The se-
mantic security states that without the access credential, no one can get any useful
information about the file outsourced by the data owner. The traceability demonstrates
that if one uses an unauthorized access credential to access the file stored in clouds, TA
can find out at least one of the access credentials involved in forging the unauthorized
one.

SS-Game: To capture the unauthorized access to a file, we define an adversary which
can query for any access credential except the authorized one that is able to access
that file. We also define a challenger responsible for simulating the system procedures
to interact with the adversary. In this game, the adversary is able to choose an access
structure A∗ to be challenged and ask for any user’s credential for a set S of attributes
on the condition that S does not satisfy A∗. This game is formally defined as follows.

Init: The adversaryA outputs the access structure A∗ to be challenged.

Setup: The challenger runs the setup algorithm and gives the system public parameter,
PP to the adversaryA.

374 H. Deng et al.

Phase 1: The adversary A queries the challenger for user credentials corresponding to
attribute sets S1, S2, ..., Sq1 ,

Challenge: The adversary A outputs two equal-length messages M0 and M1 and an
access structure A∗. The restriction is that A∗ can not be satisfied by any of the queried
attribute sets in phase 1. The challenger flips a coin β ∈ {0, 1}, and encapsulates Mβ

with A∗, producing header Hdr∗. It then returns Hdr∗ to A.

Phase 2: The adversary A queries the challenger for user credentials corresponding to
attribute sets Sq1+1, ..., Sq, with the added restriction that none of these sets satisfies
A∗.

Guess: The attacker outputs a guess β′ ∈ {0, 1}.
The advantage of the adversary A in this game is defined as AdvSS

A = |Pr[β =
β′]− 1/2|.

Definition 3. Our LACT scheme is semantically secure if all polynomial-time adver-
saries have at most negligible advantages in the above game.

In this semantic security, the adversary is able to query for users’ access credentials,
which means it can collude with any user, as well as the CSP. When it is challenged,
there is a requirement that it cannot trivially win the challenge. The semantic security
states that given any user’s credential, there is no polynomial time adversary which can
distinguish the encapsulations of two symmetric keys, provided that it does not have the
access credential able to decapsulate any of these encapsulations.

T-Game: In this game, we define an adversary which can collude with users by query-
ing their access credentials. The adversary can use some or all of the queried access
credentials to forge a pirate decoder PD. The adversary outputs the PD as a challenge
and terminates the credential queries. This game is formally defined as follows.

Setup: The challenger runs the setup algorithm and gives the system public parameter
PP to the adversaryA.

Query: The adversary adaptively makes credential queries for attribute sets. In re-
sponse, the challenger runs the credential generation algorithm and gives the queried
credentials to A.

Challenge: The adversary A stops the credential queries and gives the challenger a
pirate decoder PD able to access the file associated with access structure APD.

Trace: The challenger runs the tracing algorithm on inputs PD and APD to obtain the
set C ⊆ {1, ..., N}. Let S denote the set of users whose access credentials have been
queried byA. We say that the adversaryA wins in this game if:

1. The set C is empty, or not a subset of S.
2. The pirate decoder can decapsulate any valid header with probability 1.
3. There are at most t credential queries for the attribute sets which can satisfy the

access structure APD.

We briefly explain the correctness of the three conditions above. The first condi-
tion is straightforward and the second condition is required by the assumption about

Who Is Touching My Cloud 375

PD discussed in the digital forensics procedure. The third condition is implied by the
underlying fingerprint codes scheme. The pirate decoder was created by various creden-
tials for attribute sets, some of which satisfy the access structure APD . The underlying
fingerprint codes scheme that is secure against t-collusion attack restricts that there are
at most t queried credentials that can be used to directly decapsulate the header asso-
ciated with APD . Then in the traceability definition above, it is also required that at
most t credentials associated with the attribute sets satisfying APD can be queried by
the adversary. Specially, when t = N , our scheme is fully resistant.

We define the advantage of the adversary A in winning in this game as AdvTA =
|Pr[A wins]|.

Definition 4. A LACT scheme is t-collusion resistant if all polynomial-time adversaries
have at most negligible advantages in both SS-Game and T-Game.

The following theorem claims the semantic security and traceability of the LACT
scheme. The proof of this theorem is given in the full version.

Theorem 1. Our LACT scheme is semantically secure if the underlying CP-ABE scheme
[24] is secure. It is also t-collusion resistant with the additional condition that the un-
derlying fingerprint codes scheme [19] is t-collusion resistant, where t is the maximum
number of colluders. In particular, letM denote the message space,L denote the length
of fingerprint codes and ε denote the probability that one innocent has been accused,
then any polynomial-time adversary breaks the LACT system with the advantage at most

AdvTA ≤ L · AdvSS
A + ε+

L

|M| .

The LACT scheme is semantically secure if the underlying CP-ABE scheme is se-
cure. Hence, the advantage AdvSS

A is negligible. In the t-collusion resistant fingerprint
codes scheme, the error probability ε is negligible too. Moreover, since the size of mes-
sage spaceM is much larger than the codes length L, then L/|M| is very close to 0.
Hence, the advantage AdvTA of the adversary in breaking the traceability of our LACT
scheme is negligible, which means that the LACT scheme is t-collusion resistant.

5 Performance Analysis

In this section, we analyze the computation cost of each procedure of the LACT scheme.
We view the underlying fingerprint codes scheme as a black-box. We use O(Gen)FC

and O(Tra)FC to denote the computation complexity of the generation algorithm and
tracing algorithm of the fingerprint codes respectively. Tardos proposed a fingerprint
codes scheme which is a milestone in this area and has been well studied, while the
codes length is a bit long. Nuida et.al’s fingerprint codes [19] achieves a shorter length,
about 1/20 of Tardos codes for the same security level. Thus we suggest Nuida et.al’s
codes to be used. Their fingerprint codes scheme has the length

L ≥ − 1

logT (t)

(
log

N

ε
+ log

c

c− 1
+ log log

c

ε

)
(1)

376 H. Deng et al.

where T (t) is a function of t and valued in (0, 1), c an auxiliary variable larger than 1,
N the number of users and ε is the error probability of tracing an innocent user.

Our LACT scheme is built on the bilinear groups G and GT . We evaluate the time
consumed by the basic groups operations, i.e., exponentiation and bilinear pairing map.
Although the multiplication operation is also involved, its cost time is negligible com-
pared to the former two operations. We use τe and τp to denote the time consumed by
exponentiation and bilinear pairing map, respectively, without discriminating exponen-
tiation operations in G and GT .

Table 1 gives the computation cost of each procedure in our LACT scheme. In this
table,L denotes the length of the fingerprint codes, |S| the number of attributes of the set
associated with a credential, l the number of attributes involved in the access structure
associate with a file and |S∗| the number of attributes of the set S∗ which satisfies
the access structure. From Table 1, we can see that only the user admission procedure
and the digital forensics procedure are affected by the introduction of tracing access
credential leakage. Specially, adding the traceability functionality does not affect the
file creation and file access procedures. This is a desirable property in practice because
the most frequent operations in cloud environments are uploading and downloading
files while the user admission operation is only carried out once by the TA.

Table 2 compares our LACT scheme with other similar works in terms of public
and secret key size, ciphertext size, the number of pairings required in decryption, fine-
grained access control (supported or not), tracing capability (black-box tracing or not)
and the type of based bilinear groups (composite order or prime order). In this table,
the schemes of [4] and [5] are proposed for the broadcast encryption systems, where
the number of total users is denoted by N . The two schemes are built from composite
order groups, thus the efficiency of cryptographic operations is much lower (about one-
order) than in prime order groups. The scheme of [6] is devised for the identity-based
broadcast encryption which assumes the maximal size of the set with each member as
a decryptor to be m. This scheme achieves a constant-size ciphertext at the expense of
secret key size linear with the length L of codes. The schemes [4–6] all provides black-
box tracing, but due to the property of broadcast encryption, they do not support the
fine-grained access control. The rest schemes in the table are proposed in the attribute-
based encryption systems and support fine-grained access control. The schemes of [16–
18], as well as ours, require that the number of pairings in a decryption is linear with the
cardinality of the set S∗ satisfying the access policy of a ciphertext, which is inevitable
in almost all ABE schemes. In the scheme of [16], the size of public key is linear with
the size of attribute universe U and the size of secret key is linear with the size of
the attribute set S, while this scheme only provides the weak white-box tracing. The
schemes in [17] and [18] achieve black-box tracing, while the size of public key grows
linearly with the attribute universe size |U| and the quadratic root of the number of total
users. Besides, the ciphertexts of these two schemes are sub-linear with the number of
the users, which results larger amount of data to be uploaded/stored and more bandwidth
consumption for the communication between the cloud server and cloud clients.

Table 2 also reveals the better practicality for the LACT scheme to be employed in
cloud storage systems. Compared to the schemes [4–6], our scheme achieve the fine-
grained access control but still retains the black-box tracing capability. Compared to

Who Is Touching My Cloud 377

Table 1. Computation

Operation Computation Cost

System Setup 1τp + 2τe +O(GenFC)

User Admission (L · |S|+ 2)τe
File Creation 4(l + 1)τe

File Access (2|S∗|+ 1)τp + |S∗|τe
Digital Forensics 4L(l + 1)τe +O(TraFC)

Table 2. Comparison with related works

Public key Private key Ciphertext e(·, ·) in Fine-grained Black-box Prime-order

size size size decryption control tracing groups

[4] 3 + 4
√
N 1 6

√
N 3 × √ ×

[5] 5 + 9
√
N 1 +

√
N 7

√
N 4 × √ ×

[6] 3 +m L 6 2 × √ √

[16] |U|+ 4 |S|+ 4 2l + 3 2|S∗|+ 1 √ × ×
[17] |U|+ 7 + 8√N |S|+ 3 2l + 8

√
N 2|S∗|+ 5 √ √ ×

[18] |U|+ 3 + 4√N |S|+ 4 2l + 9
√
N 2|S∗|+ 6 √ √ ×

Ours 3 |S|L+ 2 2l + 4 2|S∗|+ 1 √ √ √

the similar works [17, 18], the ciphertext of the LACT scheme is independent of the
number of total users in the system. In addition, the LACT scheme achieves constant-
size public key. Moreover, the LACT scheme is based on prime order groups, thus the
cryptographic operations are much more efficient than those of schemes [17, 18] that
are built from composite order bilinear groups. Although the secret keys are linear with
the product of the size |S| of the attribute set and the length L of codes, this will not
severely impact the system practicality since the key generation operation is run by the
TA in offline phase. All these advantages render our scheme as an efficient solution to
enable leaked access credentials finding mechanism in cloud storage systems.

6 Conclusion

In this paper, we investigated the access credentials leakage problem in cloud storage
systems. The proposed LACT scheme not only offers fine-grained access control over
outsourced data, but also provides a tracing mechanism to find the leaked access cre-
dentials. Formal proofs show the security and traceability of the LACT scheme. We
also conducted detailed performance analysis on the LACT scheme and compared it
with similar works. The analysis and comparisons show that our LACT scheme has en-
joyable performance and provides an efficient solution to find leaked access credentials
in data outsourced environments.

378 H. Deng et al.

Acknowledgments and Disclaimer. We appreciate the anonymous reviewers for their
valuable suggestions. Dr. Bo Qin is the corresponding author. This paper was sup-
ported by the National Key Basic Research Program (973 program) under project
2012CB315905, the Natural Science Foundation of China through projects 61370190,
61173154, 61003214, 60970116, 61272501, 61321064 and 61202465, the Beijing Nat-
ural Science Foundation under projects 4132056 and 4122041, the Shanghai NSF under
Grant No. 12ZR1443500, the Shanghai Chen Guang Program (12CG24), the Science
and Technology Commission of Shanghai Municipality under grant 13JC1403500, the
Fundamental Research Funds for the Central Universities, and the Research Funds(No.
14XNLF02) of Renmin University of China, the Open Research Fund of The Academy
of Satellite Application and the Open Research Fund of Beijing Key Laboratory of
Trusted Computing.

References

1. Asokan, N., Dmitrienko, A., Nagy, M., Reshetova, E., Sadeghi, A.-R., Schneider, T., Stelle,
S.: CrowdShare: Secure mobile resource sharing. In: Jacobson, M., Locasto, M., Mohassel,
P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 432–440. Springer, Heidelberg
(2013)

2. Beimel, A.: Secure schemes for secret sharing and key distribution. PhD thesis, Israel Insti-
tute of Technology, Technion, Haifa, Israel (1996)

3. Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: ACM CCS 2008, pp.
501–510. ACM Press, New York (2008)

4. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short cipher-
texts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
573–592. Springer, Heidelberg (2006)

5. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke system. In:
ACM CCS 2006, pp. 211–220. ACM Press, New York (2006)

6. Deng, H., Wu, Q., Qin, B., Chow, S.S.M., Domingo-Ferrer, J., Shi, W.: Tracing and revoking
leaked credentials: accountability in leaking sensitive outsourced data. In: ASIACCS 2014,
pp. 425–434. ACM Press, New York (2014)

7. Deng, H., Wu, Q., Qin, B., Domingo-Ferrer, J., Zhang, L., Liu, J., Shi, W.: Ciphertext-policy
hierarchical attribute-based encryption with short ciphertexts. Information Sciences 275,
370–384 (2014)

8. Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building efficient fully collusion-
resilient traitor tracing and revocation schemes. In: ACM CCS 2010, pp. 121–130. ACM
Press, New York (2010)

9. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted Data. In: ACM CCS 2006, pp. 89–98. ACM Press, New York
(2006)

10. Huang, D., Zhou, Z., Xu, L., Xing, T., Zhong, Y.: Secure data processing framework for
mobile cloud computing. In: IEEE Conferenc on Computer Communications Workshops,
pp. 614–618. IEEE (2011)

11. Lai, J., Deng, R.H., Li, Y.: Expressive cp-abe with partially hidden access structures. In:
ASIACCS 2012, pp. 18–19. ACM Press, New York (2012)

12. Li, J., Huang, Q., Chen, X., Chow, S.S.M., Wong, D.S., Xie, D.: Multi-authority ciphertext-
policy attribute-based encryption with accountability. In: ASIACCS 2011, pp. 386–390.
ACM Press, New York (2011)

Who Is Touching My Cloud 379

13. Li, F., Rahulamathavan, Y., Rajarajan, M., Phan, R.C.W.: Low complexity multi-authority
attribute based encryption scheme for mobile cloud computing. In: IEEE 7th International
Symposium on Service Oriented System Engineering, pp. 573–577. IEEE (2013)

14. Li, J., Ren, K., Kim, K.: A2BE: accountable attribute-based encryption for abuse free access
control. IACR Cryptology ePrint Archive, Report 2009/118 (2009),
http://eprint.iacr.org/

15. Liu, W., Liu, J., Wu, Q., Qin, B., Zhou, Y.: Practical direct chosen ciphertext secure key-
policy attribute-based encryption with public ciphertext test. In: Kutylowski, M., Vaidya, J.
(eds.) ESORICS 2014. LNCS, vol. 8713, pp. 91–108. Springer, Heidelberg (2014)

16. Liu, Z., Cao, Z.F., Wong, D.S.: White-box traceable ciphertext-policy attribute-based encryp-
tion supporting any monotone access structures. IEEE Transaction on Informaction Forensics
and Security 8(1), 76–88 (2013)

17. Liu, Z., Cao, Z.F., Wong, D.S.: Expressive black-box traceable ciphertext-policy attribute-
based encryption. IACR Cryptology ePrint Archive, Report 2012/669 (2012),
http://eprint.iacr.org/

18. Liu, Z., Cao, Z.F., Wong, D.S.: Blackbox traceable cp-abe: how to catch people leaking their
keys by selling decryption devices on eBay. In: ACM CCS 2013, pp. 475–486. ACM Press,
New York (2013)

19. Nuida, K., Fujitsu, S., Hagiwara, M., Kitagawa, T., Watanabe, H., Ogawa, K., Imai, H.:
An improvement of discrete tardos fingerprinting codes. Designs, Codes and Cryptogra-
phy 52(3), 339–362 (2009)

20. Qin, B., Wang, H., Wu, Q., Liu, J., Domingo-Ferrer, D.: Simultaneous authentication and
secrecy in identity-based data upload to cloud. Cluster Computing 16(4), 845–859 (2013)

21. Singhal, M., Chandrasekhar, S., Ge, T., Sandhu, R., Krishnan, R., Ahn, G.J., Bertino, E.:
Collaboration in multicloud computing environments: framework and security issues. IEEE
Computer 46(2), 76–84 (2013)

22. Tardos, G.: Optimal Probabilistic Fingerprint Codes. In: STOC 2003, pp. 116–125. ACM
Press, New York (2003)

23. Wang, Y., Wu, Q., Wong, D.S., Qin, B., Chow, S.S.M., Liu, Z., Tan, X.: Securely outsourcing
exponentiations with single untrusted program for cloud storage. In: Kutylowski, M., Vaidya,
J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 323–340. Springer, Heidelberg (2014)

24. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and prov-
ably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

25. Wang, Y.T., Chen, K.F., Chen, J.H.: Attribute-based traitor tracing. J. Inf. Sci. Eng. 27(1),
181–195 (2011)

26. Wu, Y., Deng, R.H.: On the security of fully collusion resistant taitor tracing schemes. IACR
Cryptology ePrint Archive, Report 2008/450 (2008), http://eprint.iacr.org/

27. Yang, Y., Jia, X.: Attributed-based access control for multi-authority systems in cloud stor-
age. In: IEEE 32nd International Conference on Distributed Computing Systems, pp. 536–
545. IEEE (2012)

28. Yu, S., Ren, K., Lou, W., Li, J.: Defending against key abuse attacks in KP-ABE en-
abled broadcast systems. In: Chen, Y., Dimitriou, T.D., Zhou, J. (eds.) SecureComm 2009.
LNICST, vol. 19, pp. 311–329. Springer, Heidelberg (2009)

29. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained data access
control in cloud computing. In: 2010 Proceedings of IEEE INFOCOM, pp. 1–9. IEEE (2010)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

A Fast Single Server Private Information Retrieval
Protocol with Low Communication Cost

Changyu Dong1 and Liqun Chen2

1 Department of Computer and Information Sciences, University of Strathclyde, Glasgow, UK
changyu.dong@strath.ac.uk

2 Hewlett-Packard Laboratories, Bristol, UK
liqun.chen@hp.com

Abstract. Existing single server Private Information Retrieval (PIR) protocols
are far from practical. To be practical, a single server PIR protocol has to be both
communicationally and computationally efficient. In this paper, we present a sin-
gle server PIR protocol that has low communication cost and is much faster than
existing protocols. A major building block of the PIR protocol in this paper is a
tree-based compression scheme, which we call folding/unfolding. This compres-
sion scheme enables us to lower the communication complexity to O(log log n).
The other major building block is the BGV fully homomorphic encryption scheme.
We show how we design the protocol to exploit the internal parallelism of the
BGV scheme. This significantly reduces the server side computational overhead
and makes our protocol much faster than the existing protocols. Our protocol can
be further accelerated by utilising hardware parallelism. We have built a proto-
type of the protocol. We report on the performance of our protocol based on the
prototype and compare it with the current most efficient protocols.

Keywords: Private Information Retrieval, Fully Homomorphic Encryption,
Privacy.

1 Introduction

Private Information Retrieval (PIR) is an important primitive with many applications. A
PIR protocol allows a client to retrieve information from a database without revealing
what has been retrieved. We have seen PIR being applied in areas such as location-based
services [1] and e-commerce [2]. There are two types of PIR protocols: multi-server PIR
[3] and single server PIR [4]. In a multi-server PIR protocol, the database is replicated
to multiple servers and the queries will be answered jointly by the servers. In a single
server PIR protocol, only one server hosts and serves the database. In this paper, we con-
sider single server PIR. It is well-known that designing a non-trivial yet practical single
server PIR protocol is a challenging task. For single server PIR, there exists a trivial
protocol such that the server simply sends the whole database to the client. Therefore
the first design criteria for non-trivial single server PIR protocols is to have sub-linear
communication complexity. Traditionally, research in single server PIR focused almost
entirely on how to minimise the communication cost [4–12]. However, low communi-
cation cost does not mean the protocols are practical. As pointed out by Sion et al [13],

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 380–399, 2014.
c© Springer International Publishing Switzerland 2014

A Fast Single Server Private Information Retrieval Protocol with Low 381

due to costly server side computation, single server PIR protocols are often slower than
the trivial solution despite that they transmit less bits. The most computationally effi-
cient PIR protocol to date [4] requires n big integer modular multiplications, where n
is the size of the database. The computation time of each operation is often much more
significant than simply transmitting a bit. Therefore, all single server PIR protocols can
be easily beaten by the trivial solution even when the network bandwidth is only a few
hundred Kbps (300 in Sion’s experiment). How to make the server side computation
faster has become another important consideration.

There has been some work in reducing server side computation time. One approach
is to use trusted hardware [14, 15]. Another approach is to base privacy on anonymity
by mixing queries from different users [16]. Lipmaa proposed a BDD-based protocol
[17] that is very efficient when the database is sparse, but in general case it requires
O(n/ logn) modular exponentiations, which is more expensive than n modular multi-
plications. Those approaches can improve performance but rely on extra assumptions.
To the best of our knowledge, the only work that can significantly reduce server side
computation time and without extra assumptions is [18]. Unfortunately as we will dis-
cuss in section 2, this protocol is not secure.

Contributions. In this paper, we present a fast single server PIR protocol with low
communication cost. Our protocol belongs to the homomorphic encryption based PIR
family [19]. Namely, we utilise the ring homomorphism provided by the BGV fully
homomorphic encryption (FHE) scheme [20] to privately retrieve the bit. Communica-
tion wise, the protocol has low communication complexity O(log logn). To achieve
low communication, we designed a tree-based compression scheme called folding/
unfolding. Computation wise, the protocol is much faster than all previous ones. We
show how we design the PIR protocol to take advantage of the internal parallelism pro-
vided by the BGV FHE scheme, which allows us to amortise the server side computa-
tion. Most operations on the server side will be applied to 103−104 bits in the database
simultaneously. The amortised cost per bit is quite low: only around twelve 64-bit mod-
ular multiplications at 128-bit security. In contrast, per bit computational cost in previ-
ous protocols is one or more big integer modular multiplications (e.g. 3072-bit integers
at 128-bit security). So overall, the server side computational overhead in our protocol
is much lower. The security of our protocol is based on the security of the BGV FHE
scheme, which is based on the well studied Ring Learning with Errors assumption [21].

We have implemented a prototype. We report performance measurements based on
this prototype and make comparison with existing protocols. The performance test
shows that our protocol consumes only a few hundreds KB bandwidth and is much
faster than the previous fastest protocol by Kushilevitz et al [4]. For example, when
the database is 4MB, our protocol consumes only 372 KB bandwidth and is 12 times
faster than Kushilevitz’s protocol; when the database is 4 GB, our protocol consumes
only 423 KB bandwidth and is 90 times faster than Kushilevitz’s protocol. With some
hardware parallelism, our protocol can beat the trivial solution in 100 Mbps LAN.

382 C. Dong and L. Chen

2 Related Work

There has been abundant research in multi-server PIR, e.g. [3, 22–25]. We will not
elaborate them here since our focus is single server PIR. In the single server case,
Kushilevitz et al [4] proposed a protocol based on the Goldwasser-Micali homomor-
phic encrytion with communication complexity O(nε) for ε > 0. This homomorphic
approach is then generalised by Stern [5], Chang [8] and Lipmaa [10, 17] . Stern and
Chang uses the Pallier’s scheme [26] and the communication complexity is superpoly-
logarithmic. Lipmaa uses the Damgård-Jurik scheme [27]. The protocol can achieve
O(log2n) communication complexity. Our protocol follows this line and uses the BGV
FHE scheme. Cachin et al proposed a PIR protocol that has polylogarithmic commu-
nication complexity (O(log8 n)) based on the φ-hiding assumption. Gentry et al [9]
generalised Cachin et al’s approach and proposed a very communication efficient PIR
protocol. The total communication cost of the protocol is 3 messages, each of the size of
Ω(log3−o(1)n) bits. Kushilevitz et al [7] showed a single server PIR protocol can also
be based on one-way trapdoor permutations (TDPs). The communication complexity
is n − cn

k + O(k2) bits, where c is a constant and k is the security parameter of the
one-way trapdoor permutation. Sion et al [13] showed that the trivial single server PIR
protocol often out-performed non-trivial ones. To improve computational efficiency, a
few approaches have been taken. Williams et al [14] proposed a PIR protocol that has
O(log2n) server side computational complexity. However it requires trusted temper-
resistant hardware. Similarly with trusted hardware, Ding et al [15] developed a proto-
col that requires O(n) offline computation and constant online computation. Ishai et al
[16] showed that anonymous communication could be used as a building block to imple-
ment more efficient single serve PIR protocols when there are multiple users. Melchor
et al [18] proposed a lattice-based PIR protocol. However a practical attack by Bi et al
[28] can be applied to break the security of this protocol. Namely the server can obtain
the secret matrixes used to generate the request by constructing a reduced-dimension
lattice and then recovers the index being queried.

Our protocol is based on FHE. It has been shown that PIR protocols with low com-
munication can be easily obtained by using FHE. In [11], Brakerski et al proposed a
generic PIR protocol that uses an FHE scheme with a symmetric encryption scheme. In
the protocol, the client encrypts the index bit-by-bit using a symmetric key and encrypts
the key using the FHE scheme. Then with the encrypted index and encrypted key, the
server evaluates a circuit homomorphically to retrieve from its database the requested
bit. The communication cost is O(log n) but the computational cost can be quite high
because of the deep circuit. Gentry [29] proposed a PIR protocol. In the protocol, the
client encrypts the index i bit-by-bit using FHE, then sends the ciphertexts to the server.
The server homomorphically evaluates

∑n
t=1 xt ·

∏�logn+1�
j=1 (tj − ij + 1), where tj , ij

are the jth bit of indexes t and i. This approach is also used by Yi et al [12], instantiated
using the DGHV FHE scheme [30]. The communication complexity is O(log n) and
the computational complexity is O(n logn). Our approach is different from previous
FHE based PIR protocols, and better both in terms of computation and communication.
Yi’s paper showed better performance results than ours in their experiments. But in their
experiments, γ was set to 2205, which should be at the level of 106 to prevent lattice

A Fast Single Server Private Information Retrieval Protocol with Low 383

based attack at the targeted security level. If the parameters were set correctly, then the
performance of the protocol would be worse than ours.

3 Preliminaries

3.1 Notation

We use bit string and bit vector interchangeably. We use lower case bold face letters
to denote vectors, e.g. q. The vector indexes always start at 1. Depending on context,
we use bit vectors as plain bit vectors or to represent binary polynomials or vectors
of binary polynomials. In the folding/unfolding algorithms, bit vectors are plain bit
vectors. On the server side, a query string is viewed as a vector of constant polynomials,
i.e. 0 · x0 or 1 · x0. When encoding server’s database, we view a bit vector as a binary
polynomial in its coefficient form. Namely, a bit vector a of size d represents a binary
polynomial

∑d
i=1 aix

i−1, whose degree is at most d − 1. We use capital letters to
denote matrices, We denote the ith row of a matrix M by Mi, its jth column by M j ,
and a single element at the ith row and the jth column by Mij . Naturally, each row or
column in a matrix can be viewed as a vector (not necessarily binary). The base of log
is 2 throughout the paper.

3.2 Security Definition for Single Server PIR

A single server PIR protocol is between two parties: a server that has an n-bit database
x = x1x2...xn, a client that has some index i ∈ [1, n]. The client wants to obtain the ith
bit xi without revealing i. Any database can be represented in this string form by con-
catenating all records into a single bit string. The protocol consists of four algorithms:

1. Init: Takes as input a security parameter λ and the size n of the database, outputs a
set of private parameters S and a set of public parameters P , denoted as (S,P) =
Init(λ, n).

2. QGen: Takes as input S, P , the size n of the database, and the index i of the bit to
retrieve, outputs a queryQ = QGen(S,P , n, i).

3. RGen: Takes as inputQ, P and x, outputs a responseR = RGen(Q,P ,x).
4. RExt: Takes as inputR, S, P , the index i and the size of the database n, extracts a

bit b = RExt(R,S,P , i, n) such that b = xi.

In this paper, we consider a PIR protocol to be secure in the sense that it is com-
putationally infeasible for an adversary to distinguish two queries. We say a function
μ(·) is negligible in n, or just negligible, if for every positive polynomial p(·) and any
sufficiently large n it holds that μ(n) ≤ 1/p(n). Formally the security of a single server
PIR protocol is defined as follows:

Definition 1. We say a single server PIR protocol is secure if for any PPT adversary
A, the advantage of distinguishing two queries is negligible:

Pr

⎡
⎢⎢⎢⎢⎣
b′ = b

(S ,P) = Init(λ,n),
i0, i1 ← AQGen(S,P,·,·)(P ,x),

b
R← {0, 1},

Q = QGen(S ,P , n, ib),

b′ ← AQGen(S,P,·,·)(P ,x,Q)

⎤
⎥⎥⎥⎥⎦
− 1

2
< negl(λ)

384 C. Dong and L. Chen

3.3 The BGV Fully Homomorphic Encryption

A homomorphic encryption scheme allows certain operations to be performed on ci-
phertexts without decrypting the ciphertexts first. In 2009, Gentry [31] developed the
first FHE scheme. Following the breakthrough, several FHE schemes based on dif-
ferent hardness assumptions have been proposed, e.g. [30, 20, 32]. In this paper, we
use the BGV FHE scheme [20]. We describe it here with improvements introduced
in [33, 20, 34]. The security of this scheme is based on the ring-LWE (RLWE) [21]
problem.

Let Φm(x) be the m-th cyclotomic polynomial with degree φ(m), then we have a
polynomial ring A = Z[x]/Φm(x), i.e. the set of integer polynomials of degree up to
φ(m) − 1. Here φ(·) is the Euler’s totient function. The ciphertext space of the BGV
encryption scheme consists of polynomials overAq = A/qA, i.e. elements in A reduced
modulo q where q is an odd integer1. The plaintext space is usually the ring A2 =
A/2A, i.e. binary polynomials of degree up to φ(m) − 1. We also have the following
distributions that we will use later in the key generation and encryption algorithms:

– Uq: The uniform distribution over Aq .
– DGq(σ2): The discrete Gaussian distribution over Aq with mean and variance

(0, σ2).
– ZO(p): For a probability p, ZO(p) draws a polynomial in Aq such that each coef-

ficient is 0 with a probability of 1− p, and is ±1 with a probability of p/2 each.
– HWT (h): Uniformly draws a polynomial in Aq with exactly h nonzero coefficient

and each nonzero coefficient is either 1 or −1.

The BGV encryption scheme has 3 basic algorithms (G,E,D):

– G(λ, L): Given λ and L such that λ is the security parameter and L is the depth
of the arithmetic circuit to be evaluated, the key generation algorithm chooses
Φm(x), q, σ, h, generates a secret key, the corresponding public key and a set of
public parameters. Namely, we sample

s← HWT (h), a← Uq, e← DGq(σ2)

Then the secret key is sk = s and the public key is pk = (a, b) ∈ A2
q where

b = a · s + 2e. The public parameter set param = {m,φ(m), q, σ, L, l}, where
m,φ(m), q defines Aq and l is the number of plaintext slots (will explain later).

– Epk(m): Given pk = (a, b), to encrypt an element m ∈ A2, we choose one small
polynomial and two Gaussian polynomials:

v ← ZO(0.5), e0, e1 ← DGq(σ2)

Then we set d0 = b · v+ 2e0 +m, d1 = a · v+ 2 · e1, the ciphertext is c = (d0, d1).
– Dsk(c): Given sk = s, to decrypt a ciphertext c = (d0, d1), we compute m =

(d0 − s · d1 mod q) mod 2.

1 In the BGV encryption scheme, there are actually a chain of moduli q0 < q1 < · · · < qL
defined for modulus switching. But for simplicity we just use q throughout the paper.

A Fast Single Server Private Information Retrieval Protocol with Low 385

We denote homomorphic addition by � and homomorphic multiplication by �. At a
high level, we can express the homomorphic operations as the following:

– Homomorphic Addition: Given two ciphertexts c = Epk(m) and c′ = Epk(m′) for
m,m′ ∈ A2, then cadd = c� c′ = Epk(m + m′).

– Homomorphic Multiplication: Given two ciphertexts c = Epk(m) and c′=Epk(m′)
for m,m′ ∈ A2, then cmult = c� c′ = Epk(m ·m′).

– Homomorphic Addition (with a plaintext): Given a ciphertext c = Epk(m) and a
plaintext m′ for m,m′ ∈ A2, then cadd = c�m′ = Epk(m + m′).

– Homomorphic Multiplication (with a plaintext): Given a ciphertext c = Epk(m)
and a plaintext m′ for m,m′ ∈ A2, then cmult = c�m′ = Epk(m ·m′).

Apart from the above operations, the BGV scheme also has two maintenance opera-
tions: modulus switching and key switching. These two operations are used to control
noise in cihpertexts and to keep ciphertext size down. We do not go into the details of
them because they do not change the plaintext encrypted in a ciphertext. They can be
viewed as background routines that are invoked automatically when necessary.

Another important feature of the BGV scheme is that it allows packing plaintexts
and batching homomorphic computation. It was first observed in [33] that the native
plaintext space A2 can be partitioned into a vector of plaintext slots. The idea is that
although the ring polynomial Φm(x) is irreducible modulo q, it can be factorised into
distinct factors modulo 2. More specifically, we can factor Φm(x) modulo 2 into l ir-
reducible factors Φm(x) = F1(x) · F2(x) · · ·Fl(x) mod 2, each factor is of degree
d = φ(m)/l. So by the Chinese Remainder Theorem, a single element a in A2 can rep-
resent an l-vector (a mod F1(x), a mod F2(x), ..., a mod Fl(x)). In other words, we
have a mapping π : Fl

2d → A2 that packs l elements in field F2d into a single element
in A2. Then we can encrypt this packed plaintext as usual. The packed plaintext can
be unpacked by the inverse mapping π−1 : A2 → Fl

2d . For convenience, we use c in
normal font to denote a ciphertext that encrypts a native element in A2, and use c in
Fraktur font to denote a packed ciphertext that encrypts an l-vector.

A homomorphic operation on packed ciphertexts adds or multiplies component-
wise the entire plaintext vectors in an SIMD (single instruction multiple data) fashion.
Namely, if we have two ciphertexts c = Epk(π(p)) and c′ = Epk(π(p′)), where p
and p′ are plaintext vectors of size l. Then cadd = c � c′ encrypts π(p+) such that
p+
i = pi + p′

i, cmult = c� c′ encrypts π(p×) such that p×
i = pi · p′

i. Similarly in the
multiplication with a plaintext vector case, cmult = c�π(p′) encrypts π(p×) such that
p×
i = pi · p′

i.
We can also homomorphically rotate, i.e. circularly shift, a plaintext vector encrypted

in a ciphertext. At a high level, we have:

– Homomorphic rotation: Given an integer i such that 1 ≤ i < l and a ciphertext c
that encrypts π(p) where p is an l-vector, , the ciphertext crot = c � i encrypts
π(p�) such that p� = p& i = (pi+1 . . .plp1 . . .pi)

386 C. Dong and L. Chen

4 The Single Server PIR Protocol

4.1 Some Intuitions

We start from a non-private protocol. The server has an n-bit database x, and the client
wants to retrieve the ith bit xi. Firstly, the server picks an integer t < n and arranges
its database into an n′ × t matrix X , where n′ = �nt �. Now xi becomes Xjk for
some j and k in the matrix. To retrieve the bit, it is sufficient that the client retrieves
the jth row. Each row in X is a bit vector and can be viewed as a binary polynomial
of degree at most t − 1. To retrieve a row, the client creates an n′-bit query string
q = q1q2 . . .qn′ such that all bits are 0 except qj . This query string can be viewed as
a vector of constant binary polynomials. The client sends the query string to the server.
The server computes the inner product of q and X (viewed as an n′-vector of binary
polynomials)q1·X1+q2·X2+...+qn′ ·Xn′ . Here · and + are polynomial multiplication
and addition operations. The server sends the inner product to the client. Clearly, since
only qj is 1, the inner product equals Xj . Given Xj which is the jth row in the server’s
matrix, the client checks the kth bit. This is the bit it wants to retrieve. If we use an
FHE scheme, we can make the above protocol private. However, the communication
complexity is too high. To deal with this problem, we use a tree-based compression
scheme described in the next section to compress the query string.

4.2 Folding and Unfolding

In this section we show the folding/unfolding compression scheme we designed to com-
press query strings in the protocol2. Without loss of generality, in the following we
always assume the parameter n′ = 2ζ for some ζ that is a positive integer.

Given a query string q, which is n′-bit long and with only one bit at index j set to 1.
To fold it, we create a d1 × d2 matrix M . Then we fill the query string into the matrix,
starting from the top leftmost cell and wrapping at the end of each row. In the matrix,
only one bit Mαβ is 1, and all other bits are 0. We then obtain two strings u,v such that
u is d1-bit and v is d2-bit. Both u and v have only a single bit set to 1. A toy example
is shown in Fig. 1. In this example, q is 16-bit and d1 = d2 =

√
n′ = 4. We obtain u

and v such that in u the αth (α = 3 in the example) bit is 1 and in v the βth (β = 2
in the example) bit is 1. To unfold, we create a two-dimensional matrix M ′, then fill it
using u and v such that for each 1 ≤ a ≤ d1, 1 ≤ b ≤ d2, M ′

ab = ua · vb. Then we
concatenate the rows and get back the original query string q.

Note that since u and v are also two strings with only a single bit set to 1, what we
have done to q can be done to u and v in the same way. For each of them, we can fold it
into two shorter strings. In the example, both strings can be represented as a 2×2 matrix
and folded into two 2-bit strings. The four 2-bit strings can be unfolded and allows us
to get back to u and v. In general, for any bit string of size n′ with only one bit set to 1,
we can always fold it into logn′ strings that each one is only 2-bit long.

Folding a string can be done in different ways if we choose different dimensions for
the matrix in each step. In the example in Fig. 1, we can also use a 2 × 8 matrix to

2 As pointed out by a reviewer, functionally the algorithms are equivalent to the encoder and
decoder circuits as described in chapter 2 of [35].

A Fast Single Server Private Information Retrieval Protocol with Low 387

q = 00000000 010000000 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 1 0 0

0

0

1

0

u = 0010

v = 0100

Fig. 1. Fold and unfold a query string

215

28 27

24 24 24 23

22 22 22 22 22 22 22

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Fig. 2. A folding tree for a 215-bit query string. The number in each node is the length of the
string to be folded/unfolded at the node.

fold q. To be deterministic, we define a tree structure and associated algorithms. The
tree is an auxiliary structure that directs how to fold and unfold a string recursively. To
build such a tree, the only information we need is the length of the query string. More
formally, we define a folding tree to be a binary tree, such that each non-leaf node has
exactly two children (referred to as the left child and the right child). Each node in the
folding tree stores a number that is the length of the string to be folded or unfolded at
this node. The algorithm to build a folding tree is given in Algorithm 1 and a folding
tree built from the algorithm is shown in Fig. 2. It is easy to prove that a folding tree
built from the algorithm has height log logn′ and has logn′ leaf nodes.

What Algorithm 1 does is to build a tree structure. At each node, it checks the input
number n′ which is always a power of 2, if n′ > 2 then n′ can always be factored into
n′ = 2ζ1 · 2ζ2 . To make it deterministic, we choose ζ1 such that ζ1 is an integer and
2ζ1 < n′ ≤ 22ζ1 . After we find ζ1, we set ζ2 = logn′ − ζ1. That means we can write
the n′-bit string into an 2ζ1 × 2ζ2 matrix, thus the string can be folded into two strings
of 2ζ1-bit and 2ζ2-bit long. Then we invoke the next level recursions with 2ζ1 and 2ζ2 .
The recursions will end when the input number is 2.

After we have built the folding tree, we can use it to fold and unfold the query string.
Each folding tree is built with an input n′ and can only fold/unfold query strings of
length n′. The algorithm to fold a query string is shown in Algorithm 2. In the algo-
rithm, we do not really need to fill the string into a matrix. As we can see in line 2,
the dimensions of the matrix are stored in the folding tree: the number stored in the left
child node is the number of rows and the number stored in the right child node is the
number of columns. With this information, then in line 3, given the index j of the 1 bit
in the input string, we can convert the index into a row index α and a column index β in

388 C. Dong and L. Chen

Algorithm 1. buldTree(node, n’)

input : A tree node node and an integer n′ = 2ζ

output: A folding tree for a query string of length n′

1 if node == NULL then node = new node; // a new tree

2 node.strLen = n′;
3 if n′ == 2 then return; // end condition of the recursion

4 ζ1 = �log n′/2�, ζ2 = log n′ − ζ1; // determine the dimensions

5 left = new node, right = new node;
6 node.left = left, node.right = right;
7 buldTree(left, 2ζ1); // recursion

8 buldTree(right, 2ζ2);
9 return node;

Algorithm 2. fold(T, q)

input : A folding tree T and a query string q of length n′ = 2ζ

output: A folded representation of q, which is a string of 2 log n′ bits
1 if T is a leaf node then return q;
2 d1=T.left.strLen, d2= T.right.strLen;
3 j = the index of the 1 bit in q, α = �(j − 1)/d2�+ 1, β = ((j − 1) mod d2) + 1;
4 l = new bit string of length d1, all bits are initialized to 0;
5 r = new bit string of length d2, all bits are initialized to 0;
6 set the αth bit in l to 1;
7 set the βth bit in r to 1;
8 a = fold(T.left, l);
9 b = fold(T.right,r);

10 return a||b;

the matrix. Then we can generate two strings, one with the αth bit set to 1 and one with
the βth bit set to 1. The strings will be passed to the next recursions. At a leaf node,
the recursion ends. At the end of the algorithm, the 2-bit strings at all leaf nodes are
concatenated and returned. Since we have log n′ leaf nodes, the query string is folded
into a string of 2 logn′ bits. Unfolding is essentially the inverse process. The folded
query string is broken into logn′ strings each of 2 bits long and assigned to the leaf
nodes. Then starting from the leaf nodes, the strings held by sibling nodes are unfolded
into a longer string by multiplying the bits. Eventually at the root the original query
string is fully unfolded.

The unfolding algorithm can work perfectly with an FHE scheme. Now all strings
in the algorithm are replaced by vectors of ciphertexts that encrypt the strings bit-by-
bit. The input ciphertext vector is of size 2 logn′ and the output ciphertext vector is
of size n′. The process is almost identical to the plaintext case. The only difference is
that in line 10 of Algorithm 3, the multiplication operation will be the homomorphic
multiplication operation.

A Fast Single Server Private Information Retrieval Protocol with Low 389

Algorithm 3. unfold(T, s)
input : A folding tree T and a folded query string s
output: A query string q of n′ bit, unfolded from s

1 if T is a leaf node then return s;
2 d1=T.left.strLen, d2= T.right.strLen, ζ1 = 2 log d1, ζ2 = 2 log d2;
3 Split s into two strings such that s = sl||sr, sl is ζ1-bit and sr is ζ2-bit;
4 l = unfold(T.left, sl);
5 r = unfold(T.right, sr);
6 q = new bit string of length d1 × d2;
7 for a = 1 to d1 do
8 for b = 1 to d2 do
9 i = (a− 1) · d2 + b;

10 qi = la · rb;
11 end
12 end
13 return q;

4.3 The PIR Protocol

Now we are ready to describe our PIR protocol. The protocol is the parallelised version
of the protocol described in Section 4.1. Recall that in BGV, we can pack an l-vector
of elements in F2d in a single ciphertext and process the elements in an SIMD fashion.
We will use this feature in our protocol to run l instances of the protocol in section
4.1 simultaneously. On the server side, the server represents its database as an n′ × l
matrix, each element in the matrix is a d-bit binary vector that can be viewed as an
element in F2d . Later, homomorphic operations will be applied to all elements in the
l-vector simultaneously. That is, we can process l · d = φ(m) bits each time. In this
way, we can amortise server side computation. On the client side, the client needs to
send the query string q to the server. It uses the folding algorithm to fold q into s. The
folded query string s is short, only 2 logn′ bits. We can always find BGV parameters
such that 2 logn′ ≤ l. Therefore the client can pack s into one single ciphertext and
sends it to the server. The protocol is as follows and we will explain why this is correct
after the description:

1. Init: Given a security parameter λ and the size of the database n, the client chooses
the maximum depth of circuit L, and invokes G(λ, L) to generate a BGV key pair
(pk, sk) and public parameters param. The private parameter set S = {sk}, the
public parameter set S = {pk, param}. Given φ(m) and the number of plaintext
slots l, the server arranges its database into an n′× l matrixX , where n′ = � n

φ(m)�.
Each element in the matrix is a bit vector of length d, where d = φ(m)/l.

2. QGen: The client does the following to generate a query:
(a) The client converts i into (α, β, γ), i.e. the bit xi is the γth bit of the element at

Xαβ . Then the client creates a query string q of length n′, which contains all 0
bits except the αth bit set to 1. The client creates a folding tree with n′ as the
input. Then the client folds q into s using the folding algorithm.

390 C. Dong and L. Chen

(b) The client pads s with 0 to l bits. Then the client circularly right shifts s to get
a new string s′ = s ' (β − 1) so that in s′ the βth bit is the first bit in s.
Here s′ can be viewed as an l-vector of constant binary polynomials. Then the
client uses the packing feature: maps s′ to an element in A2 and encrypts it.
The result s = Epk(π(s′)) is the queryQ and is sent to the server.

3. RGen: GivenQ = s, the server generates a response as follows:
(a) The server generates a vector of ciphertext c that contains 2 logn′ ciphertexts

after receiving Q, such that c1 = s and for each 2 ≤ k ≤ 2 logn′, ck =
s � (k − 1). The server generates a folding tree with n′ as input. Then the
server runs the unfolding algorithm homomorphically with the folding tree and
c as input. The result c′ is a vector of n′ ciphertexts.

(b) The server then computes a single ciphertext r = (c′1 � π(X1)) � (c′2 �
π(X2)) . . . � (c′n′ � π(Xn′)). Then the server returns the resoponse R = r
to the client.

4. RExt: GivenR = r, the client decrypts r and obtains an l-vector. The γth bit in the
βth element in the vector is the bit xi it wants to retrieve.

As we said earlier, in this protocol we work with packed ciphertexts. Homomorphic
operations involving packed ciphertexts are component-wise. So one major change in
this protocol compared to the protocol described in Section 4.1 is that instead of just
one single binary polynomial in a row of the matrix X , now in each row we have a
vector of l binary polynomials. The client’s goal is to retrieve the βth polynomial in the
αth row that contains the bit. In step 2a, the client generates a query string q that can
be used to retrieve the αth row in the server’s matrix and folds it into s. In step 2b, the
client circularly right shifts the string s by β− 1 positions. The reason is that s contains
only information about the row index of the element the client wants to retrieve, by
shifting it the result s′ contains information about both the row index and the column
index. This becomes clearer in step 3a. The server generates a vector of ciphertext c
by rotating the ciphertext from the client. The first ciphertext c1 encrypts s′, and the
βth bit in s′ is s1, the second ciphertext encrypts s′ & 1, and the βth bit in s′ & 1
is s2, and so on and so forth. In fact we can view c as encrypting a bit matrix S of
size 2 logn′ × l. The βth column Sβ is the folded query string s generated in step 2a
by the client. The server can unfold s back to q by running the unfolding algorithm.
This is because the batched homomorphic operations are component-wise. Therefore
by running the algorithm with packed ciphertexts, the server actually runs l instances of
unfolding simultaneously, each with the same folding tree and a distinct column from
S as input. The input string to the βth instance is s and thus q can be unfolded. For the
other unfolding instances, it does not matter what the unfolding results are because the
client is only interested in the αth element in the βth column of the server’s database
matrix. So as long as the βth instance is correct then it is fine. The result c′ obtained
from running the unfolding algorithm can also be viewed as encrypting an n′× l matrix
such that the βth column is q and the other columns contain useless bits. Then in step
3b, the server again uses batched homomorphic operations to run l instances of inner
product evaluation. The input to each instance is a column in the unfolding result matrix
and the corresponding column in X . The βth instance computes the inner product of
q and Xβ . The result is Xαβ which is the element the client wants to retrieve. The

A Fast Single Server Private Information Retrieval Protocol with Low 391

element is encrypted in the βth slot in r and by decrypting the ciphertext, the client can
obtain the element. Then by examining the γth bit in the element, the client knows the
bit it wants to retrieve. Fig. 3 shows a toy example. In the example n = 32, l = 4, d = 2
and n′ = 4, so the server’s database is organised as a 4 × 4 matrix. The bit the client
wants to retrieve is the first bit inX3,2.

10

l = 4

n' = 4

c1 = Epk(0011)

c2 = Epk(0110)

c3 = Epk(1100)

c4 = Epk(1001) c′4 = Epk(∗0 ∗ ∗)
c′3 = Epk(∗1 ∗ ∗)
c′2 = Epk(∗0 ∗ ∗)
c′1 = Epk(∗0 ∗ ∗)

q = 0010, s = 0110, s′ = 0011

s′

s

q

unfold

inner product
of columns

00

11

01

11 01 10

10

10

00

10

01

11

10

00

00

r = Epk((∗∗, 10, ∗∗, ∗∗))
X3,2 = 0 · 11 + 0 · 10 + 1 · 10 + 0 · 00

x = 10110110001010101110010001001100

Fig. 3. An Example of the PIR Protocol (* means a bit we do not care)

Extensions. With some modifications, we can extend the PIR protocol into a PBR pro-
tocol [3] or a symmetric PIR protocol [4]. In a PBR protocol, the client retrieves a block
rather than a single bit. In a symmetric PIR protocol, the client retrieves just one bit and
learns nothing about the other bits in the server’s database. Due to limited space, we do
not discuss them here. They will be presented in the full version of the paper.

4.4 Efficiency Analysis

Communication. In the protocol, the client sends a request that is a single ciphertext
and the server returns a single ciphertext. The size of the ciphertexts depends on Aq .
For each element in Aq , it is a polynomial of degree at most φ(m) − 1. Therefore the
size of a ring element is at most φ(m) · log q bits. The parameters φ(m) and q are inter-
dependent. For simplicity, in our protocol we choose a large enough and fixed φ(m) and
therefore q becomes a variable independent of φ(m). Then we have log q = a + b · L
where a, b are small constants and L is the depth of circuit to be evaluated. Since L =
log logn′, the bit length of q is O(log logn′). Then overall, the communication cost is
O(log logn′) = O(log log n

φ(m)) = O(log logn).

Server Side Computation. The server side computation consists of three parts: ho-
momorphic rotations, unfolding and homomorphic inner product computation. The
complexity of the rotation operation is O(φ(m)logφ(m)) multiplications modulo q.
We need in total 2 logn′ − 1 rotations. To unfold the query string, the server needs∑log logn′

i=0 2i 2i
√
n′ < n′ + 3

√
n′ homomorphic multiplications. The computational cost

of the inner product part is dominated by the n′ homomorphic multiplications. To un-
derstand the cost of the protocol, we need to understand the cost of homomorphic mul-
tiplication operations. We have two different homomorphic multiplication operations:

392 C. Dong and L. Chen

raw multiplications and full multiplications. A raw multiplication simply computes the
tensor product of the parts in the ciphertexts, so the cost is 4 (2 if one operand is a plain-
text) multiplications over Aq . A full multiplication is a raw multiplication followed by
a modulus switching and a key switching on the product. The maintenance operations
are necessary to ensure correctness and maintain the size of the ciphertext. The cost of
a multiplication over Aq is φ(m) multiplications modulo q. The complexity of modulus
switching and key switching is O(φ(m)logφ(m)) multiplications modulo q. Therefore
a full multiplication is more costly than a raw multiplication.

Our observation is that in our protocol most homomorphic multiplications can be
raw multiplications. Namely, we mean the n′ multiplications required by the last step
of the unfolding algorithm and the n′ multiplications required by the inner product
computation. The total cost of this part is 4 · n′ · φ(m) + 2 · n′ · φ(m) = 6n multi-
plication modulo q (q is less than 64-bit because of previous modulus switching oper-
ations). We only need less than 3

√
n′ full multiplications. The total cost of this part is

O(
√
n′φ(m)logφ(m)) modular multiplication operations. Each modular multiplication

here can be implemented by 1 or a few 64-bit modular multiplications.
As we can see, the overall computational complexity is O(log n′ +

√
n′ + n′) =

O(n). For sufficiently large n, the computational cost of the homomorphic rotation part
is insignificant compared to the the other two parts. Moreover, when n is sufficiently
large,

√
n′ will be much smaller than n′. That means the number of total operations

required by full multiplication part is smaller than the raw multiplication part. Then in
this case, the server side computation is bounded by 12n 64-bit modular multiplication
operations.

Client Side Computation. The client side computation in our protocol is very light.
The client needs to do 1 encryption and 1 decryption. The cost of encryption or de-
cryption is O(φ(m)) multiplications modulo q. In practice, each encryption/decryption
needs only a couple of milliseconds.

4.5 Security Analysis

In this section, we analyse the security of our PIR protocol. We have the following
theorem:

Theorem 1. If the BGV FHE is semantically secure, then our PIR protocol is a secure
single server PIR protocol.

Proof. We show that if a PPT adversary A can distinguish two queries with a non-
negligible advantage, then an adversary A′ can use A as a subroutine to win the BGV
CPA game with a non-negligible advantage. The BGV CPA game is a standard public
key encryption CPA game, in which A′ needs to distinguish two ciphertexts encrypted
under a BGV public key. The game is in the appendix.A′ does the following:

– A′ chooses n and generates a database x, chooses λ and L, then receives the BGV
public key and parameters (pk, param). It then invokesA with x, pk, param.

– For any index i, A can generate the query by itself using the public key. At some
point of time, A outputs two indexes i0, i1 and sends them to A′.

A Fast Single Server Private Information Retrieval Protocol with Low 393

– A′ generatesm0 using i0.A′ first generates a query string q from i0, folds q into s
and then pads and shifts to get s′ from s. The message m0 = π(s′).

– A′ generates m1 in the same way as above but using i1 as input.
– A′ sends m0 and m1 to the challenger in the BGV CPA game, then receives cb.
– A′ sends cb to A, and outputs whateverA outputs.

It is clear that the probability of A′ winning the BGV game is the same as the prob-
ability of A outputting b′ = b. Since the BGV encryption is semantically secure, the
probability ofA′ winning the game is 1

2 + η, where η is negligible. Then the advantage
of A is also negligible.

5 Implementation and Performance

5.1 Implementation

We have implemented a prototype in C++. The implementation is based on HElib [36],
an open source implementation of the BGV FHE scheme. Currently in the prototype the
client and the server run in the same process. This does not affect the evaluation result.
To measure network communication, we output the ciphertexts to files and measure the
file size. We have done a few optimisations:

Delayed Unfolding. We delay the last unfolding step. Instead of fully unfolding the
query string, we combine this step with the inner product computation step. The main
reason is that if we fully unfold the query string, we need to store n′ ciphertexts. Be-
cause n′ can be large, we need enormous memory to store the ciphertexts. If we stop at
the two children of the root, then we only need to store two vectors of approximate

√
n′

ciphertexts. When we compute the inner product, we can unfold the bit we need on the
fly using the two vectors.

Tree Pruning. We can also prune the folding tree to lower the communication cost. The
idea is that if we do not fully fold the query string, we will end up with a longer folded
string, but we might still be able to pack it into one ciphertext. For space reason, we do
not formally present the tree pruning algorithm but use an example to explain the idea.
Consider without pruning, the client and the server use the folding tree in Fig. 2, so the
client fully folds its query string into a 30-bit string and the server can unfold the query
string. If we prune the tree to have only 3 nodes: the root node and the two children of it,
then with this tree, the client can fold the the query string into a 28+27 = 384-bit string.
As long as the number of plaintext slot l ≥ 384, the client can pack the string into one
ciphertext. With this packed ciphertext, the server can obtain c by 383 rotations, and
then breaks c into two vectors, the first one with 28 ciphertexts and second one with 27

ciphertexts. The encrypted query string can be unfolded from these two vectors, and the
server can then compute the inner product. The tree pruning algorithm takes a folding
tree and l as input, scans from the root, once it finds a level such that the sum of strLen
of all nodes at this level is smaller than l, it prunes all nodes below this level. Tree
pruning requires only a minor modification to the unfolding algorithm. Tree pruning

394 C. Dong and L. Chen

can reduce communication cost because lower tree height means lower circuit depth,
and then smaller q.

Multithreading. Conceptually, the server side computation in our protocol can be eas-
ily parallelised. Each step in unfolding requires d1 · d2 independent homomorphic
multiplications, and the inner product computation step requires n′ independent ho-
momorphic multiplications. We can parallelise those multiplications without much ef-
fort. However, multithreading is not easy with HElib because it depends on the NTL
library that is not thread safe. After analysing the source code of HElib, we managed
to make the raw multiplication and addition operations independent of the NTL library
and make the prototype partially multithreaded. This enables our implementation to
take advantage of multicore hardware.

5.2 Performance

In this section, we report the performance based on our prototype implementation. All
experiments were conducted on a MacBook Pro laptop, with an Intel 2720QM quad-
core 2.2 GHz CPU and 16 GB RAM. The choice of the BGV parameters is based on
the formula given in [37]: φ(m) ≥ log(q/σ)(λ+110)

7.2 , where σ is the noise variance of the
discrete Gaussian distribution and λ is the security parameter. The variance σ = 3.2
in HElib. We chose m = 8191 thus φ(m) = 8190 and the number of plaintext slot
l = 630. The modulus q is an odd integer of 40 + 20L bits, where L is the height
of the folding tree. When λ = 128, the largest L supported by the chosen m is 7. In
other words, the parameters ensure 128-bit security as long as the database is less than
227

= 2128-bit, which is more than enough in any practical settings.
We first show the communication cost (Table 1). One thing to be noticed is that HElib

outputs ciphertexts as textual strings of decimal numbers, so the measured size is bigger
than the raw bit size. We used database of size 225 bits (4 MB), 230 bits (128 MB), and
235 bits (4 GB) in our experiments. As we can see, the communication cost is low, only
a few hundred KB. The response is only one ciphertext and the size is fixed across all
cases. Most time the request is larger than the response despite that it is also just a single
ciphertext. The reason is that q is not fixed in the BGV FHE scheme. We use modulus
switching to switch to smaller q during the homomorphic operations. So the ciphertext
in the response uses a smaller q and in consequence the size of the ciphertext is smaller.
Another fact about the response is that has 3 ring elements3 because we omitted the key
switching operations in the last unfolding step. This explains why in the first experiment
with pruning (database size = 225), the request is smaller than the response. We can also
see that tree pruning does help reduce the request size.

We then show the server side computation time (Fig. 4). In Fig. 4a, we show the
computation time for each step as well as the total time. The columns show the time
for rotation, full multiplications (unfolding except the last step) and raw multiplications
and additions (the last unfolding step plus inner product computation). The line shows
the total computation time. As we can see, the rotation step is always fast. When the size

3 The 3-part ciphertext can still be decrypted correctly, so this does not affect the correctness of
our protocols.

A Fast Single Server Private Information Retrieval Protocol with Low 395

Table 1. Communication cost with different database size

Without Pruning With Pruning
L Request Response L Request Response

225 5 336 KB 192 KB 2 180 KB 192 KB
230 6 389 KB 192 KB 3 231 KB 192 KB
235 6 389 KB 192 KB 3 231 KB 192 KB

of the database is small, the computation is dominated by the full multiplications. But
when the size of the database increases, the raw multiplication and addition step starts to
become dominant. From the total time, we can estimate the minimal bandwidth needed
to make the trivial solution faster. When the database is 4 MB, 128 MB and 4 GB, the
minimal bandwidth is 1.25 Mbps, 5.65 Mbps and 10.44 Mbps. With a more powerful
CPU (our experiments were done on a laptop), the minimal bandwidth would be higher.
We can make our protocol more practical by utilising hardware parallelism. In Fig. 4b,
we show the performance of our multithreaded implementation versus single threaded
one. The time compared in the diagram is the raw multiplication and addition step,
which is the only step we can currently implement in parallel. The experiments were
done with a quad-core CPU, and the performance improvement was about 2.7 - 3 times.
If with a fully thread safe BGV implementation and 2 or 3 more CPUs, the performance
of our protocol can compete with the trivial solution in 100 Mbps LAN.

(a) Computation Time (b) Hardware Parallelisation

Fig. 4. Server Side Computation Time of Our PIR Protocol

5.3 Performance Comparison

Communication. We compare the communication cost with the current most efficient
protocols: Lipmaa’s protocol [10] and Gentry’s protocol [9]. The result is plotted in
Fig. 5. Note we use size of ciphertext in the raw bit representation to draw the line
for each protocols, so the numbers for our protocol are different from the numbers in
Table 1. Lipmaa’s protocol assumes that the n-bit database has n′ entries each is t

396 C. Dong and L. Chen

bits. The smallest modulus size is 2k-bit. When t = k, the total cost is α · ((s + α +
1)ζ/2)(n′1/α − 1) · k bit. In the figure, we set k = 3072 for 128-bit security and let
α = log n′, s = 1, ζ = 1. Then as we can see, our protocol (without pruning) incurs
more communication when the database is small, but would be better when the database
is sufficiently large. This is due to the large ciphertext size in the BGV scheme. Gentry’s
protocol is very communication efficient. The communication cost is 3 log3−o(1) n-bit
integers. With any practical database size, it would be always more efficient than our
protocol in terms of communication. However, the difference is less than 200 KB, which
is not significant.

20 30 40 50 60 70 80
0

200

400

600

800

1000

Database Size (log)

T
o

ta
l C

o
m

m
u

n
ic

at
io

n
 (

K
B

)

Lipmaa
Our
Gentry

Fig. 5. Communication Cost Comparison

Computation. Here we do not compare with Melchor’s protocol [18] because it is not
secure. We do not compare with other FHE based protocols [11, 12] because they are
obviously less efficient. Among all other existing protocols:

– Kushilevitz’s protocol [4] requires n modular multiplications.
– Kushilevitz’s TDP-based protocol [7] uses interactive hashing to protect the client’s

privacy against the server. It requires n TDP evaluations on the server side. Each
TDP evaluation requires at least one modular multiplication.

– Gentry’s protocol [9] requires only one modular exponentiation but the exponent is
2n-bit. The computational cost is approximately n modular multiplications.

– Cachin’s protocol [6] requires n modular exponentiations. The computational cost
is approximately len/2 modular multiplications, where le is the bit length of the
exponent.

– Lipmaa’s protocol [10] requires for each 2 ≤ j ≤ logn′, 2logn′−j exponentiations.
The computational cost is at least c·nmodular multiplications for some c depending
on logn′.

– Lipmaa’s BDD based protocol [17] requires O(n/(log n)) modular exponentia-
tions. The computational cost is approximately len/(2 logn) modular multiplica-
tions. Because the exponent size le is larger than 2 logn, the total cost is larger than
n modular multiplications.

– Chang’s protocol [8] requires n modular multiplications and 2 logn modular expo-
nentiations.

A Fast Single Server Private Information Retrieval Protocol with Low 397

The most efficient protocol of all above ones is Kushilevitz’s protocol [4] that re-
quires n modular multiplications. Although the number of operations in Gentry’s pro-
tocol is similar to Kushilevitz’s protocol, in practice it would be less efficient due to the
large exponent which is twice as big as the database. Another factor that makes Kushile-
vitz’s protocol the most efficient one is the modulus size. Some protocols, e.g. Cachin’s,
Lipmaa’s (and the BDD-based), and Chang’s, require larger moduli. So the modular
multiplication operation is slower in those protocols than in Kushilevitz’s protocol.

We then compare our protocol with Kushilevitz’s protocol. For 128-bit security, the
modulus size needs to be at least 3072-bit. We measured time for a 3072-bit modular
multiplication using the GMP library [38]. This is done by averaging the time for 1
million operations. The time for a single operation is 8.269× 10−6 second. Thus, when
the database size is 225, 230 and 235 bits, Kushilevitz’s protocol would need 277.46,
8878.72 and 284119.04 seconds respectively. That is 12.5, 49.2 and 90.5 times slower
than our protocol in single threaded mode.

6 Conclusion

In this paper, we presented a single server PIR protocol based on the BGV FHE scheme.
The protocol is efficient both in terms of communication and computation. We have
analysed its efficiency and security. We validated its practicality by a prototype imple-
mentation. The test results show that the total communication cost is as low as a few
hundreds KB and the server side computation is much faster than existing single server
PIR protocols.

In future work, we will test and improve performance over large data. We will ex-
tend the protocol to multi-query PIR [39]. Namely to further amortise the server-side
computation complexity of PIR over multiple queries performed by a single client.

References

1. Khoshgozaran, A., Shahabi, C.: Private information retrieval techniques for enabling location
privacy in location-based services. In: Bettini, C., Jajodia, S., Samarati, P., Wang, X.S. (eds.)
Privacy in Location-Based Applications. LNCS, vol. 5599, pp. 59–83. Springer, Heidelberg
(2009)

2. Henry, R., Olumofin, F.G., Goldberg, I.: Practical PIR for electronic commerce. In: ACM
Conference on Computer and Communications Security, pp. 677–690 (2011)

3. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: FOCS,
pp. 41–50 (1995)

4. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database, computationally-
private information retrieval. In: FOCS, pp. 364–373 (1997)

5. Stern, J.P.: A new and efficient all-or-nothing disclosure of secrets protocol. In: Ohta, K., Pei,
D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 357–371. Springer, Heidelberg (1998)

6. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval with poly-
logarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp.
402–414. Springer, Heidelberg (1999)

7. Kushilevitz, E., Ostrovsky, R.: One-way trapdoor permutations are sufficient for non-trivial
single-server private information retrieval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 104–121. Springer, Heidelberg (2000)

398 C. Dong and L. Chen

8. Chang, Y.-C.: Single database private information retrieval with logarithmic communication.
In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 50–61.
Springer, Heidelberg (2004)

9. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant commu-
nication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg (2005)

10. Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In: Zhou, J.,
López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 314–328. Springer,
Heidelberg (2005)

11. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard)
LWE. In: FOCS, pp. 97–106 (2011)

12. Yi, X., Kaosar, M.G., Paulet, R., Bertino, E.: Single-database private information retrieval
from fully homomorphic encryption. IEEE Trans. Knowl. Data Eng. 25(5), 1125–1134
(2013)

13. Sion, R., Carbunar, B.: On the practicality of private information retrieval. In: NDSS (2007)
14. Williams, P., Sion, R.: Usable PIR. In: NDSS (2008)
15. Ding, X., Yang, Y., Deng, R.H., Wang, S.: A new hardware-assisted PIR with o(n) shuffle

cost. Int. J. Inf. Sec. 9(4), 237–252 (2010)
16. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography from anonymity. In: FOCS,

pp. 239–248 (2006)
17. Lipmaa, H.: First CPIR protocol with data-dependent computation. In: Lee, D., Hong, S.

(eds.) ICISC 2009. LNCS, vol. 5984, pp. 193–210. Springer, Heidelberg (2010)
18. Melchor, C.A., Gaborit, P.: A fast private information retrieval protocol. In: ISIT, pp. 1848–

1852 (2008)
19. Ostrovsky, R., Skeith III, W.E.: A survey of single-database private information retrieval:

Techniques and applications. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450,
pp. 393–411. Springer, Heidelberg (2007)

20. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption with-
out bootstrapping. In: ITCS, pp. 309–325 (2012)

21. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg
(2010)

22. Chor, B., Gilboa, N.: Computationally private information retrieval (extended abstract). In:
STOC, pp. 304–313 (1997)

23. Ishai, Y., Kushilevitz, E.: Improved upper bounds on information-theoretic private informa-
tion retrieval (extended abstract). In: STOC, pp. 79–88 (1999)

24. Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.-F.: Breaking the O(n1/(2k-1)) barrier for
information-theoretic private information retrieval. In: FOCS, pp. 261–270 (2002)

25. Goldberg, I.: Improving the robustness of private information retrieval. In: IEEE Symposium
on Security and Privacy, pp. 131–148 (2007)

26. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg
(1999)

27. Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s
probabilistic public-key system. In: Kim, K.-C. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–
136. Springer, Heidelberg (2001)

28. Bi, J., Liu, M., Wang, X.: Cryptanalysis of a homomorphic encryption scheme from ISIT
2008. In: ISIT, pp. 2152–2156 (2012)

29. Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford University (2009)

A Fast Single Server Private Information Retrieval Protocol with Low 399

30. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over
the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer,
Heidelberg (2010)

31. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178
(2009)

32. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013)

33. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. IACR Cryptology ePrint
Archive 2011, 133 (2011)

34. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482.
Springer, Heidelberg (2012)

35. Savage, J.E.: Models of Computation: Exploring the Power of Computing, 1st edn. Addison-
Wesley Longman Publishing Co., Inc., Boston (1997)

36. Halevi, S., Shoup, V.: Algorithms in HElib. IACR Cryptology ePrint Archive 2014 (2014)
37. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-

Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Hei-
delberg (2012)

38. Granlund, T.: The GMP development team: GNU MP: The GNU Multiple Precision Arith-
metic Library. 5.1.3 edn. (2013), http://gmplib.org/

39. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Batch codes and their applications. In:
STOC, pp. 262–271 (2004)

A The CPA Game

The security of the BGV scheme is captured by the following CPA game between an
adversary and a challenger:

1. The adversary chooses L, then given a security parameter λ, the challenger runs
G(λ, L) to generate the secret key sk, the public key pk and the public parameters
param. The challenger retains sk and gives the adversary pk and param.

2. The adversary may choose a polynomially bounded number of plaintexts and en-
crypts them using the public key.

3. Eventually, the adversary submits two chosen plaintexts m0,m1 to the challenger.
4. The challenger selects a bit b ∈ {0, 1} uniformly at random, and sends the challenge

ciphertext c = Epk(mb) back to the adversary.
5. The adversary is free to perform a polynomially bounded number of additional

computations or encryptions. Finally, it outputs a guess b′.

The adversary wins the game if b′ = b. Under the RLWE assumption, the BGV scheme
is secure which means the probability of any PPT adversary winning this game is 1

2 + η
for some negligible η.

http://gmplib.org/

Privacy-Preserving Complex Query Evaluation
over Semantically Secure Encrypted Data

Bharath Kumar Samanthula1, Wei Jiang2, and Elisa Bertino1

1 Department of Computer Science, Purdue University
305 N. University Street, West Lafayette, IN 47907

{bsamanth,bertino}@purdue.edu
2 Department of Computer Science, Missouri S&T

500 W. 15th Street, Rolla, MO 65409
wjiang@mst.edu

Abstract. In the last decade, several techniques have been proposed to evalu-
ate different types of queries (e.g., range and aggregate queries) over encrypted
data in a privacy-preserving manner. However, solutions supporting the privacy-
preserving evaluation of complex queries over encrypted data have been devel-
oped only recently. Such recent techniques, however, are either insecure or not
feasible for practical applications. In this paper, we propose a novel privacy-
preserving query processing framework that supports complex queries over en-
crypted data in the cloud computing environment and addresses the shortcomings
of previous approaches. At a high level, our framework utilizes both homomor-
phic encryption and garbled circuit techniques at different stages in query pro-
cessing to achieve the best performance, while at the same time protecting the
confidentiality of data, privacy of the user’s input query and hiding data access
patterns. Also, as a part of query processing, we provide an efficient approach
to systematically combine the predicate results (in encrypted form) of a query to
derive the corresponding query evaluation result in a privacy-preserving manner.
We theoretically and empirically analyze the performance of this approach and
demonstrate its practical value over the current state-of-the-art techniques. Our
proposed framework is very efficient from the user’s perspective, thus allowing
a user to issue queries even using a resource constrained device (e.g., PDAs and
cell phones).

Keywords: Privacy, Complex Query, Encryption, Cloud Computing.

1 Introduction

In the past few years, there has been a significant growth in user’s interest to outsource
their data as well as operational services to the cloud. Along this direction, many small
and medium size businesses have already outsourced their daily business processes to
prominent cloud service providers such as Amazon, Google, and IBM. As privacy is
a crucial requirement for many users, applications and organizations, data are usually
encrypted before being uploaded to the cloud. By doing so, data confidentiality is still
guaranteed even when a cloud server is compromised due to a hacking attack. How-
ever, the management of encrypted data poses several challenges, the most important

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 400–418, 2014.
c© Springer International Publishing Switzerland 2014

Privacy-Preserving Complex Query Evaluation over Encrypted Data 401

of which is query processing. During query processing, we need to not only keep the
data private from the cloud, but also the users’ input queries. The question to ask is
“how can the cloud perform searches over encrypted data without ever decrypting them
or compromising the user’s privacy”. In the past decade, such question has resulted in
a specific research area, known as privacy-preserving query processing over encrypted
data (PPQED).

As mentioned in [1], there are three different approaches to perform PPQED: (i) the
query issuer downloads the entire encrypted database and performs a local search on
the decrypted database, (ii) the cloud employs custom-designed cryptographic proto-
cols to operate over encrypted data directly or indirectly, and (iii) the cloud deploys the
tamper-proof trusted hardware (which is either trusted or certified by the clients) on the
cloud-side that facilitates the cloud when operating over encrypted data inside a secure
environment. The first approach, however, is not practical as it incurs heavy cost (both
computation and communication) on the end-user (i.e., the query issuer). Techniques
based on trusted hardware (e.g., [1]), such as the IBM 4764 or 4765 cryptographic co-
processor, have gained significant attention in recent years. However, secure (or trusted)
hardware is still very expensive and may not be suitable for cloud computing which is
intended to use cheap commodity machines. Also, services based on secure hardware
may not be affordable for some small businesses. Apart from those approaches, another
widely investigated approach is based on the deployment of custom-designed crypto-
graphic techniques by the cloud to operate over encrypted data.

Along this direction, researchers from both academia and industry have proposed
several approaches (e.g., [2–8]). However, most of such approaches focus on privacy-
preserving protocols for evaluating specific queries (e.g., range and aggregate) over
encrypted data. That is, they are not directly useful to execute complex queries over en-
crypted data. As a result, privacy-preserving evaluation of complex and arbitrary queries
over encrypted data is still an open and challenging problem for data outsourcing. Some
recent approaches have addressed this problem to an extent. However, such approaches
are either insecure or not feasible for practical applications (see Section 2 for more de-
tails). In particular, as highlighted in [9–11], data access pattern information can leak
much valuable information (e.g., correspondence between plaintexts and ciphertexts) to
the cloud. We believe that the data access patterns should be protected from the cloud
which would otherwise compromise the semantic security [12] of encrypted data stored
in the cloud. Unfortunately, most of the existing PPQED methods do not address access
pattern issue (see Section 2.2 for more details).

Hence, the primary focus of this paper is to develop a secure cloud computing frame-
work that can support the evaluation of complex queries and is also efficient from an
end-user’s perspective. To obtain the best performance, our framework switches be-
tween homomorphic encryption and garbled circuit techniques based on the underlying
parametric values and the sub-task (part of query processing) at hand.

1.1 Problem Statement

In our problem setting, we consider three different parties: the data owner (also referred
to as Alice), the cloud, and the data consumer (also referred to as Bob). Let T denote
Alice’s database with n records, denoted by t1, . . . , tn, and m attributes. We assume

402 B.K. Samanthula, W. Jiang, and E. Bertino

that Alice initially encrypts T attribute-wise using her public key and outsources the
encrypted database to a cloud. In this paper, we explicitly assume that Alice’s secret key
is generated using a semantically secure1 and additive homomorphic encryption scheme
(such as the Paillier cryptosystem [13]). First, it is worth pointing out that semantic
security is necessary to ensure that the cloud cannot distinguish the encrypted data in
the first place (i.e., ciphertexts should be computationally indistinguishable from the
cloud’s perspective). Second, by encrypting the data using an additive homomorphic
encryption scheme, Alice makes it possible for the cloud to perform certain operations
directly over encrypted data, such as operations that might also be useful for other data
analytics tasks (e.g., secure clustering and classification). More details regarding the
properties of the additive homomorphic encryption scheme used in our approach are
provided in Section 3.2.

Let T ′ denote the encrypted database of Alice. Now consider an authorized user Bob
(which would typically be authorized by Alice) who wants to securely retrieve data
from T ′ in the cloud using his private (complex) queryQ. In this paper, a complex query
is defined as a query with arbitrary number of sub-queries where each sub-query can
consist of conjunctions and/or disjunctions of arbitrary number of relational predicates.
An example could be Q = ((Age ≥ 40) ∨ ((Sex = M) ∧ (Marital Status =
Married))) ∧ (Disease = Diabetes). We assume that Q is represented as a boolean
function expressed in disjunctive normal form2 (DNF) as follows.

Q : G1 ∨G2 ∨ . . . ∨Gl−1 ∨Gl → 0, 1

where the input to Q is a data record ti. Here Gj denotes the jth clause which is a
conjunction of bj predicates, for 1 ≤ j ≤ l, and l denotes the number of clauses in Q.
More specifically, Gj = Pj,1 ∧ Pj,2 ∧ . . . ∧ Pj,bj−1 ∧ Pj,bj and each predicate Pj,k is
also a boolean function that returns either 0 or 1 depending on the underlying condition.
In general, a predicate applies a relational operator (i.e., >,≥, <,≤,=) on specific
attribute values and search input. For example, consider the predicate P1,1 : AGE >
20, where AGE is an attribute in T , and a record ti from T . Then, P1,1(ti) = 1 iff the
AGE attribute value in data record ti is greater than 20. Otherwise, P1,1(ti) = 0.

Under the above system model, the goal of our approach is to facilitate Bob in ef-
ficiently retrieving the data records from T ′ (stored in the cloud) that satisfy Q in a
privacy-preserving manner. We refer to such a process as privacy-preserving query pro-
cessing over encrypted data (PPQED). More formally, we define a PPQED protocol as
follows:

PPQED(T ′, Q)→ S

where S ⊆ T denotes the output set of records that satisfy Q. That is, ∀ t′ ∈ S, Q(t′) =
1. In general, a PPQED protocol should meet the following privacy requirements:

– Data Confidentiality - during the query processing phase, neither the contents of
T nor of any intermediate results are disclosed to the cloud.

1 Precisely, if the encryption scheme is semantically secure, then the ciphertexts are random
numbers from the cloud’s perspective.

2 Note that any given boolean function can be represented in both DNF and conjunctive normal
form (CNF). In this paper, we simply choose DNF to represent Q. However, our proposed
protocol can be easily adopted to the later case upon simple modifications.

Privacy-Preserving Complex Query Evaluation over Encrypted Data 403

– End-user’s Privacy - At any point of time, Bob’s query Q should not be disclosed
to the cloud and Alice.

– At the end of the PPQED protocol, S should be revealed only to Bob.
– T − S (i.e., information other than the output) should never be disclosed to Bob.
– Data access patterns should never be disclosed to the cloud (as well as to Alice).

That is, for any two queries Q1 and Q2, the corresponding output sets S1 and S2

should be computationally indistinguishable from the cloud’s perspective.

In our proposed PPQED protocol, once Alice outsources her encrypted data to the
cloud, she does not participate in the query processing task; therefore, no information is
revealed to Alice. However, it may be required that in certain applications, Alice is able
to validate Bob’s query before forwarding it to the cloud. We claim that such extensions
can be easily incorporated into the proposed PPQED protocol upon straightforward
modifications. For simplicity, we do not consider such natural extensions to PPQED in
the rest of this paper. Also, due to space limitations, we do not discuss how our solu-
tion can be extended to protect access pattern information in this paper. However, we
refer the reader to our technical report [14] for a detailed discussion on extending our
proposed solution to hide the data access pattern information.

1.2 Main Contributions

In this paper, we propose a new two-stage PPQED protocol under the cloud computing
environment. At a high level, the main contributions of this paper are as follows.

(a). Security: The proposed PPQED protocol protects the confidentiality of data, pri-
vacy of the user’s input query and also hides the data access patterns under the
standard semi-honest model [15].

(b). Efficiency: Our proposed protocol incurs negligible computation cost on the end-
user. Also, we propose an efficient mechanism that systematically combines the
individual predicate results to compute the corresponding query evaluation re-
sult. Our theoretical analysis shows that the proposed solution improves the upper
bound compared to the naive solution constructed from the existing techniques.

(c). Flexibility: Since the proposed PPQED protocol is a hybrid approach, in that it
utilizes both homomorphic encryption and garbled circuits, it allows the developers
to switch between the two depending on the application requirements, and thus
enhancing flexibility. Specifically, our protocol can be used as a building block in
larger privacy-preserving applications. E.g., the cloud can perform data analytics
on different query results either using homomorphic encryption or garbled circuit
techniques. More details on how to convert homomorphic values to garbled values
and vice versa are presented in Section 4.

The rest of the paper is organized as follows. In Section 2, we review upon the ex-
isting work related to our problem domain. Section 3 introduces relevant background
information on the threat model assumed in this paper and on additive homomorphic
encryption scheme used in our approach. A set of security primitives that are utilized
in the proposed PPQED protocol and their possible implementations are provided in
Section 4. Also, the proposed PPQED protocol is explained in detail along with the
security and complexity analysis in this section. Finally, we conclude the paper and
highlight possible directions for future research in Section 5.

404 B.K. Samanthula, W. Jiang, and E. Bertino

2 Related Work

2.1 Query Processing over Encrypted Data

In general, the computations involved in query processing depend on the query un-
der consideration. Along this direction, several methods have been proposed to se-
curely process range (e.g., [2, 4, 6–8, 16]) and aggregate (e.g., [3, 5, 17]) queries over
encrypted data. It is worth noting that such methods are suitable for evaluating only
specific queries; thus, they are not directly applicable to solve the PPQED problem (i.e.,
combination of multiple and different sub-queries) over encrypted data. Also, they leak
different kinds of information for efficiency reasons. Due to space limitations, we refer
the reader to our technical report [14] for more details regarding their disadvantages.

2.2 Existing PPQED Methods

Unfortunately, only a very few approaches have been proposed to address the PPQED
problem. In what follows, we discuss the main differences of our work with approaches
proposed along those directions. Table 1 highlights some of the key differences between
the existing work and our solution.

Golle et al. [18] were the first to propose a protocol that can evaluate conjunctive
equality queries on encrypted documents. However, their protocol supports neither dis-
junctive queries nor predicates with inequality conditions. As an improvement, Boneh
and Waters [16] proposed a new searchable public-key system (referred to as hidden
vector encryption) that supports comparison and general subset queries over encrypted
data. We emphasize that their technique is very expensive and complex to implement.
Also, their method is suitable for conjunctive queries, but not applicable to either dis-
junctive queries or combination of both. As an alternative approach, Popa et al. [19]
proposed CryptDB, a system that executes SQL queries over encrypted data using a set
of SQL-aware encryption schemes. At a high level, their system encrypts each data item
using an onion of encryption schemes with the outermost layer providing maximum se-
curity, whereas the innermost layer provides more functionality and weak security. Dur-
ing the query processing stage, the cloud is given secret keys to decrypt the outer layers
and perform the necessary operations over encrypted data at inner layers. However,
CryptDB has some major drawbacks: (i) it uses a proxy which is a trusted third-party
and thus makes it hard to use the system in practical applications, (ii) it reveals differ-
ent types of information to the cloud server at different layers, and (iii) multiple onions
may have to be generated for each data item which makes the approach very expensive.
The actual security offered by an onion in CryptDB is the protection offered by its inner
most layer. For example, consider an onion in CryptDB for comparison operations, it re-
veals the relative ordering among the attribute values to the cloud. Thus, CryptDB does
not ensure data confidentiality in all cases. Also, none of the above PPQED methods
addressed the access pattern issue which is a crucial privacy requirement [9–11].

In the past few years, researchers have also investigated secure query processing
frameworks based on the use of tamper-proof trusted hardware on the cloud side. Along
this direction, Bajaj and Sion [1] proposed TrustedDB, an outsourced database frame-
work that allows a client to execute SQL queries by leveraging cloud-hosted tamper-
proof trusted hardware in critical query processing stages. However, as mentioned in

Privacy-Preserving Complex Query Evaluation over Encrypted Data 405

Table 1. Comparison with the existing work

Method Low Cost Data Query Hide Data CNF and DNF
on Bob Confidentiality Privacy Access Patterns Query Support

Golle et al. [18] ✖ ✔ ✔ ✖ ✖

Boneh and Waters [16] ✖ ✔ ✔ ✖ ✖

Popa et al. [19] ✔ ✖ ✖ ✖ ✔

This paper ✔ ✔ ✔ ✔ ✔

Section 1, secure hardware is very expensive and may not be suitable for cloud com-
puting which is intended to use cheap commodity machines. Also, services based on
secure hardware may not be affordable for some small businesses. Another area of re-
search is based on the use of Oblivious RAM (ORAM) techniques (e.g., [20]) to solve
the PPQED problem. However, under ORAM techniques, the query issuer need to know
the index structure before hand (which may not always be possible). In particular to the
PPQED problem, each authorized user has to efficiently maintain multiple indexes to
support complex queries. We believe that more research is needed to investigate the side
effects of using secure processors and ORAM techniques to solve the PPQED problem
and we leave this interesting open problem for future work.

We may ask whether fully homomorphic cryptosystems such as [21], which can
perform arbitrary computations over encrypted data without ever decrypting them, are
suitable to solve the PPQED problem. It is a known fact that fully homomorphic en-
cryption schemes can compute any function over encrypted data [22]. However, such
schemes are very expensive and their usage in practical applications has yet to be ex-
plored. For example, it was shown in [23] that even for weak security parameters one
“bootstrapping” operation of the homomorphic operation would take at least 30 seconds
on a high performance machine.

Based on the above discussions, it is clear that there is a strong need to develop
an efficient PPQED protocol that can protect data confidentiality, privacy of the user’s
input query and data access patterns at all times.

3 Background

3.1 Adversarial Model

In this paper, privacy/security is closely related to the amount of information disclosed
during the execution of a protocol. To maximize security guarantee, we adopt the com-
monly accepted security definitions and proof techniques in the literature of secure
multi-party computation (SMC) to analyze the security of our proposed protocol. SMC
was first introduced by the Yao’s Millionaire problem [24, 25] under the two-party set-
ting, and it was extended to multi-party computations by Goldreich et al. [26].

There are two common adversarial models under SMC: semi-honest and malicious.
Due to space limitations, we refer the reader to [15] for more details regarding their
security definitions and proof techniques. In this paper, to develop secure and efficient

406 B.K. Samanthula, W. Jiang, and E. Bertino

protocols, we assume that the participating parties are semi-honest. This implicitly as-
sumes that there is no collusion between the parties. We emphasize that this assumption
is not new and the existing PPQED methods discussed in Section 2.2 were also pro-
posed under the semi-honest model. Indeed, it is worth noting that such an assumption
makes sense especially under the cloud environment. This is because, since the current
known cloud service providers are well established IT companies, it is hard to see the
possibility for two companies, e.g., Google and Amazon, to collude to damage their rep-
utations and consequently place negative impact on their revenues. Thus, in our problem
domain, assuming that the participating parties are semi-honest is realistic. Note that,
even under the malicious two-party setting, one has to assume that there is no collusion
between the participating parties due to the theoretical limitation [27].

3.2 Paillier Cryptosystem

The Paillier cryptosystem is an additive homomorphic and probabilistic asymmetric
encryption scheme [13]. Let Epk be the encryption function with public key pk given
by (N, g), where N is a product of two large primes and g is a generator in Z∗

N2 . Also,
let Dsk be the decryption function with secret key sk. Given two plaintexts x, y ∈ ZN ,
the Paillier encryption scheme exhibits the following properties.

a. Homomorphic Addition: Epk(x + y)← Epk(x) ∗ Epk(y) mod N2;
b. Homomorphic Multiplication: Epk(x ∗ y)← Epk(x)y mod N2;
c. Semantic Security: The encryption scheme is semantically secure [12]. Briefly,

given a set of ciphertexts, an adversary cannot deduce any additional information
about the plaintexts.

We emphasize that any other additive homomorphic encryption scheme (e.g., [28]) that
satisfies the above properties can be utilized to implement our proposed framework.
However, to be concrete and for efficiency reasons, this paper assumes that Alice en-
crypts her data using the Paillier cryptosystem before outsourcing them to a cloud.

4 The Proposed Framework

In this section, we first discuss a set of privacy-preserving primitives that will be later
used in the proposed PPQED protocol as building blocks. Then, we demonstrate how
to securely evaluate a predicate using homomorphic encryption and garbled circuits.
Finally, we present our novel PPQED scheme that facilitates Bob in retrieving the data
(that satisfy his query Q) from the cloud in a privacy-preserving manner.

In the proposed framework, we assume the existence of two non-colluding semi-
honest cloud service providers, denoted by C1 and C2, which together form a federated
cloud. We emphasize that such a setting is not new and has been commonly used in
the recent related works (e.g., [29, 30]). Initially, as part of the key setup stage, the
data owner Alice generates a pair of public/secret key pair (pk, sk) based on Paillier’s
scheme [13]. Suppose Alice outsources her encrypted database T ′ to C1 and the secret
key sk to C2. That is, C1 has T ′

i,j = Epk(ti,j), for 1 ≤ i ≤ n and 1 ≤ j ≤ m. In
this paper, we explicitly assume that there exist secure communication channels (e.g.,

Privacy-Preserving Complex Query Evaluation over Encrypted Data 407

SSL) between each pair of participating parties. Note that other basic mechanisms,
such as authentication and data replication, are well-studied problems under the cloud
computing model; therefore, they are outside the scope of this paper.

Though we propose the PPQED protocol under the federated cloud model, we stress
that it can also be implemented under the single cloud model with the same security
guarantees. More specifically, under the single cloud setting, the role of the second
cloud (i.e., C2) can be played by Alice with her own private server holding the key
sk. However, with limited computing resource and technical expertise, it is in the best
interest of Alice to completely outsource its data management and operational tasks
to a cloud. In general, whether Alice uses a private server or cloud service provider
C2 actually depends on her resources. In particular to our solution, after outsourcing
encrypted data to C1 and C2, Alice does not participate in any future computations.

4.1 Basic Security Primitives

In this sub-section, we discuss three basic security primitives that will be later used in
constructing our proposed PPQED protocol.

– Secure Multiplication (SMP): In this protocol, we assume that C1 holds the private
input (Epk(a), Epk(b)) and C2 holds the secret key sk, where a and b are unknown
to C1 and C2. The output of SMP is Epk(a ∗ b) and revealed only to C1. During
this process, no information regarding a and b should be revealed to C1 and C2.

– Secure Bit-OR (SBOR): In this protocol,C1 holds private input (Epk(o1), Epk(o2))
and C2 holds sk. The goal of SBOR is to securely compute Epk(o1 ∨ o2), where
o1 and o2 are two bits. The output Epk(o1 ∨ o2) should be known only to C1.

– Secure Comparison (SC): In this protocol,C1 holds private input (Epk(a), Epk(b))
and C2 holds sk such that a and b are unknown to both parties, where 0 ≤ a, b <
2w. Here w denotes the domain size (in bits) of a and b. The goal of the secure
comparison (SC) protocol is to evaluate the condition a > b. At the end of the
protocol, the output Epk(c) should be revealed only to C1, where c denotes the
comparison result. More specifically, c = 1 if a > b, and c = 0 otherwise. During
this process, no information regarding a, b, and c is revealed to C1 and C2.

The efficient implementations of SMP and SBOR are given in [14]. On the other hand,
though many SC protocols (under the two-party setting) have been proposed, we ob-
serve that they reveal the comparison result c to at least one of the participating parties.
In this paper, we extend the SC protocol proposed in [31] to address our problem re-
quirements. More details are given in the next sub-section.

4.2 Secure Evaluation of Individual Predicates (SEIP)

In this sub-section, we consider the scenario of evaluating a given predicate over T ′

stored in C1. Without loss of generality, let P : (k, α, op) be a predicate, where α
denotes the search input and k denotes the attribute index upon which the relational
operator op has to be evaluated. More specifically, ti satisfies the predicate P (i.e.,
P (ti) = 1) iff the relational operation op on ti,k and α holds. In general, the possible

408 B.K. Samanthula, W. Jiang, and E. Bertino

set for op is {>,≥, <,≥,=}. It is important to note that the value of α should not be
revealed to Alice,C1, andC2 for privacy reasons (note that Alice does not participate in
query processing, so no information is revealed to her). To evaluate P , Bob first needs
to send Epk(P) = (k,Epk(α), op) to C1. However, if the number of predicates is
large, Bob’s computation cost for encryption can be high. E.g., if Q has 100 predicates,
denoted by P1, . . . , P100, then Bob has to compute Epk(P1), . . . , Epk(P100).

We adopt the following simple strategy that incurs negligible computation cost on
Bob and at the same time preserves the privacy of his predicate. Bob generates two
random shares of α such that α1 + α2 mod N = α. A simple way to generate these
shares is to set α1 = N−r and α2 = α+r mod N , where r is a random number in ZN

known only to Bob. It is clear that α = α1 + α2 mod N . After this, he sends P 〈1〉 and
P 〈2〉 to C1 and C2, respectively, where P 〈1〉 = (k, α1, op) and P 〈2〉 = (α2, op). Here
Bob needs to send the relational operator op to both C1 and C2 in order to evaluate P .
Then, C1 with input 〈T ′

i , P
〈1〉〉 and C2 with input P 〈2〉 need to securely verify whether

the relational operation op holds between ti,k and α without revealing any information
to C1 and C2, for 1 ≤ i ≤ n. We refer to such a process as secure evaluation of
individual predicates (SEIP).

For simplicity, let op be the greater than relational comparison operator (however,
similar steps can be derived for other relational operators). Under this case, the goal is
for C1 with private input 〈T ′

i , (k, α1, >)〉 and C2 with (α2, >) to securely determine
whether ti,k > α, for 1 ≤ i ≤ n. Let the evaluation result be ci. Then the output
should be Epk(ci) such that ci = 1 if ti,k > α, and ci = 0 otherwise. At the end, the
output Epk(ci) should be revealed only to C1. Also, the values of ci and α should not
be revealed to C1 and C2. In addition, during this process, no information regarding the
contents of T should be revealed to C1 and C2.

At first sight, it is clear that the existing secure comparison (SC) protocols can be
used to solve the SEIP problem (assuming greater than relational operator). Current SC
protocols, under the two-party setting, are based on two techniques: (i) homomorphic
encryption and (ii) garbled circuits. We now discuss how to solve the SEIP problem
using SC with each of these two techniques.

SEIP Using Homomorphic Encryption. Given that C1 holds 〈T ′
i , (k, α1, >)〉 and

C2 holds (α2, >), we aim to solve the SEIP problem using the homomorphic encryp-
tion based SC protocols (denoted by SEIPh) as follows. To start with, C2 initially
sends Epk(α2) to C1. Upon receiving, C1 locally computes Epk(α) = Epk(α1) ∗
Epk(α2). Now, the goal is for C1 and C2 to securely evaluate the functionality ti,k > α
with (Epk(ti,k), Epk(α)) as input using the existing SC protocols. Remember that
(Epk(ti,k), Epk(α)) is known only to C1.

The existing SC protocols under homomorphic encryption strongly rely on encryp-
tions of individual bits rather than on simple encrypted integers [31]. However, existing
secure bit-decomposition (SBD) techniques can be utilized for converting an encrypted
integer into encryptions of the corresponding individual bits. For example, consider two
integers x and y such that 0 ≤ x, y < 2w, where w denotes the domain size (in bits)
of x and y. Let x1 (resp., y1) and xw (resp., yw) denote the most and least significant
bits of x (resp., y), respectively. Given Epk(x) and Epk(y), C1 and C2 can securely

Privacy-Preserving Complex Query Evaluation over Encrypted Data 409

convert them into 〈Epk(x1), . . . , Epk(xw)〉 and 〈Epk(y1), . . . , Epk(yw)〉 using the ex-
isting SBD techniques [32, 33]. Note that the outputs are revealed only to C1. Next, we
detail the main steps involved in the SC protocol, proposed by Blake et al. [31], that
takes the encrypted bit-wise vectors of x and y as input and outputs c = 1 if x > y, and
0 otherwise. To start with, for 1 ≤ i ≤ w, C1 performs the following operations:

– Compute an encryption of the difference between the ith bits of x and y as Epk(di)
= Epk(xi − yi).

– Compute an encryption of the XOR between the ith bits asEpk(zi) = Epk(xi⊕yi).
Note that xi⊕yi = xi+yi−2xi∗yi. Therefore, this step requires an implicit secure
multiplication (SMP) protocol as the building block to compute Epk(xi ∗ yi).

– Generate an encrypted vector γ such that γ0 = 0 and γi = 2γi−1 + zi.
– Generate an encrypted vector δ such that δi = di + ri ∗ (γi − 1), where ri is

a random number in ZN . The observation here is, if γk = 1 (denoting the first
position at which the corresponding bits of x and y differ), then δk = dk. For all
other indexes (i.e., i �= k), δi is a random number in ZN .

– Let δ′ = 〈Epk(δ1), . . . , Epk(δw)〉. C1 permutes δ′ using a random permutation
function π (known only to C1) to get τ = π(δ′) and sends it to C2.

Upon receiving,C2 decrypts τ component-wise and checks for index k. IfDsk(τk) = 1,
then x > y. Similarly, if Dsk(τk) = −1, then y > x. Note that Dsk(τj) always yields
a random value in ZN , for j �= k and 1 ≤ j ≤ w.

It is worth pointing out that we cannot directly use the SC protocol of [31] in SEIPh as
it leaks the comparison result to C2. Therefore, in order to use the method in [31], we
need to somehow prevent this information leakage. Along this direction, with the goal
of providing better security, we now provide a mechanism, as an extension to [31], that
obliviously hides the comparison result from both C1 and C2. We denote the extended
version of the SC protocol in [31] by SCobv.

The main idea of SCobv is as follows. Instead of evaluating the greater than function-
ality directly, C1 can randomly choose a functionality F (by flipping a coin), where F
is either x > y or y ≥ x, and obliviously execute F with C2. Since F is randomly cho-
sen and known only to C1, the comparison result is oblivious to C2. Also, unlike [31],
the output of SCobv is the encryption of comparison result (i.e., Epk(c)) which will be
known only to C1. Note that the comparison result (i.e., c) should not be revealed to C1

and C2. The main steps involved in the SCobv protocol are as given below:

– Initially, C1 chooses F randomly and proceeds as follows. If F : x > y, compute
Epk(di) = Epk(xi − yi). Else, compute Epk(di) = Epk(yi − xi), for 1 ≤ i ≤ w.

– C1 computes the encrypted vector δ′ using the similar steps (as discussed above) in
the SC protocol of [31]. After this, C1 sends τ = π(δ′) to C2.

– Upon receiving,C2 decrypts it component-wise and finds the index k. IfDsk(τk) =
1, then compute U = Epk(1). Else, i.e., when Dsk(τk) = −1, compute U =
Epk(0). Then, C2 sends U to C1.

– Finally,C1 computes the outputEpk(c) as follows. If F : x > y, thenEpk(c) = U .
Else, Epk(c) = Epk(1) ∗ UN−1.

It is important to note that, since U is in encrypted form, C1 cannot deduce any infor-
mation regarding the output c. In addition, as F is randomly chosen and known only

410 B.K. Samanthula, W. Jiang, and E. Bertino

to C1, the output is oblivious to C2. Hence, we claim that the comparison result c is
protected from both C1 and C2. Note that Epk(c) is known only to C1.

SEIP Using Garbled Circuits. In this sub-section, we discuss how to solve the SEIP
problem using the garbled circuit technique (denoted by SEIPg) [34]. For this purpose,
we first need to convert the homomorphic value Epk(ti,k) into a garbled value. Also, a
garbled value for α should be generated. To achieve this, we propose a simple solution
which is as follows. Initially, C1 generates random shares for ti,k using Epk(ti,k). That
is, C1 computes Epk(ti,k + r), where r is a random value in ZN , and sends it to C2.
Upon receiving, C2 decrypts it to get the random share ti,k + r mod N . Also, C1 sets
his/her random share as N − r. Apart from this, remember that C1 and C2 have α1 and
α2 (random shares of α), respectively. Also, C1 picks a random number r′ from ZN .
Now, C1 constructs a garbled circuit by extending the circuit corresponding to the SC
protocol of [35] based on the following steps (assuming thatC2 is the circuit evaluator):

– Add the random shares of C1 andC2 (with an explicit modulo operation) to get ti,k
and α as part of the circuit.

– Compare ti,k with α. It is important to note that the comparison result c is part of
the circuit; therefore, not known to C1 and C2.

– Add r′ to c (within the circuit followed by a modulo operation). The masked com-
parison result (i.e., c + r′ mod N) is the final output of the circuit. Note that the
circuit output should be known only to C2 (i.e., the circuit evaluator).

After this, C2 sends Epk(c + r′) to C1. Finally, C1 removes the extra random factor
using homomorphic operations to get Epk(c) locally.

In summary, given any predicate (where search input is randomly shared between
C1 and C2) with relational operators {>,≥, <,≤}; C1 and C2 can securely compute
the encryption of the predicate result on record ti using either SEIPh or SEIPg, for
1 ≤ i ≤ n. In general, which technique to use actually depends on the domain size
of the attribute under consideration (more details are given in Sections 4.3 and 4.5).
Similarly, C1 and C2 can securely evaluate the predicate with an equality operator.
Once we know how to securely evaluate a given predicate, the next step is to securely
combine the results of all predicates in Q and decide whether ti satisfies Q. Along
this direction, we next present a new two-stage protocol to solve the privacy-preserving
complex query evaluation over encrypted data (PPQED) problem.

4.3 The Proposed PPQED Protocol

As mentioned in Section 1, this paper explicitly assumes that Bob’s input query Q is
represented in disjunctive normal form given by G1 ∨ G2 ∨ . . . ∨Gl−1 ∨Gl. Here Gj

is a conjunction of bj predicates given by Gj = Pj,1 ∧ Pj,2 ∧ . . . ∧ Pj,bj−1 ∧ Pj,bj .
We now propose a novel solution to the PPQED problem using Q as Bob’s input

query over encrypted data T ′ stored in C1. At a high level, the proposed PPQED proto-
col consists of the following two stages:

– Stage 1 - Secure Evaluation of Predicates (SEP): In this stage, Bob initially sends
his private query Q (using random shares) to C1 and C2. Then, C1 and C2 jointly

Privacy-Preserving Complex Query Evaluation over Encrypted Data 411

Algorithm 1. PPQED(T ′, Q)→ S

Require: C1 has T ′, C2 has sk, and Bob has Q
1: Bob, for 1 ≤ j ≤ l do:

(a). Send P
〈1〉
j = {P 〈1〉

j,1 , . . . , P
〈1〉
j,bj

} to C1 and P
〈2〉
j = {P 〈2〉

j,1 , . . . , P
〈2〉
j,bj

} to C2

2: for 1 ≤ i ≤ n do:

(a). C1 and C2, for 1 ≤ j ≤ l do:

– Li,j [h] ← SEIP
(
〈T ′

i , P
〈1〉
j,h 〉, P 〈2〉

j,h

)
, where 〈T ′

i , P
〈1〉
j,h 〉 is the private input of C1

and P
〈2〉
j,h is the private input of C2, for 1 ≤ h ≤ bj

(b). SRODs(Li,1, . . . , Li,l), where Li,j = 〈Li,j [1], . . . , Li,j [bj]〉 and 1 ≤ j ≤ l

evaluate the predicates of each clause in Q using SEIP as a sub-routine. At the end
of this stage, only C1 knows the encryptions of the evaluation results of Pj,h’s on
each data record ti, i.e., Epk(Pj,h(ti)), for 1 ≤ j ≤ l and 1 ≤ h ≤ bj .

– Stage 2 - Secure Retrieval of Output Data (SROD):C1 andC2 computeEpk(Q(ti))
using the evaluation results on the individual predicates resulted from Stage 1.
Then, Bob securely retrieves the output set S with the help of C1 and C2.

The main steps involved in the proposed PPQED protocol are given in Algorithm 1.
Next, we discuss each stage of PPQED in detail.

Stage 1 - Secure Evaluation of Predicates (SEP). The key steps involved in Stage
1 are shown as steps 1 to 2(a) in Algorithm 1. To start with, as explained in the pre-
vious sub-section, Bob initially generates the random shares for each predicate in Q
and sends them to C1 and C2. More specifically, given a predicate Pj,h, Bob sends

P
〈1〉
j,h = (kj,h, α

〈1〉
j,h, opj,h) and P

〈2〉
j,h = (α

〈2〉
j,h, opj,h) to C1 and C2, respectively, for

1 ≤ j ≤ l and 1 ≤ h ≤ bj . Here αj,h = α
〈1〉
j,h + α

〈2〉
j,h mod N is the search input, kj,h

is the attribute index to be searched, and opj,h is the relational operator of predicate
Pj,h. Upon receiving the values, C1 and C2 jointly evaluate each predicate Pj,h on T ′

i

using the SEIP solution discussed in the previous sub-section. Let the output be denoted
by Li,j [h] which will be known only to C1. Note that Li,j [h] = Epk(Pj,h(ti)), where
Pj,h(ti) = 1 iff ti satisfies Pj,h, and Pj,h(ti) = 0 otherwise.

We emphasize that, depending on the domain size of the attribute in consideration,
either SEIPh or SEIPg can be utilized in this step. As it will be clear in Section 4.5,
for attributes with smaller domain size (e.g., Age attribute), SEIPh gives better per-
formance than SEIPg. On the other hand, for attributes with larger domain sizes (e.g.,
Bank account numbers), SEIPg is more efficient than SEIPh. Hence, by conveniently
choosing between homomorphic encryption (SEIPh) and garbled circuit (SEIPg) based
solution depending on the underlying attribute domain size, our PPQED protocol takes
advantage of both techniques and significantly improves the overall performance.

412 B.K. Samanthula, W. Jiang, and E. Bertino

Stage 2 - Secure Retrieval of Output Data (SROD). Following from Stage 1, C1

has the evaluation results (in encrypted form) for all the predicates in Q on each data
record ti. The goal of Stage 2 is to utilize these predicate results and compute the query
evaluation result on ti. Since Epk(Pj,h(ti)) is an encryption of either 0 or 1 and as Q is
assumed to be in disjunctive normal form, a naive solution to computeEpk(Q(ti)) is by
using secure multiplication (SMP) and secure bit-or (SBOR) protocols as sub-routines.
More specifically, C1 and C2 can securely compute Epk(Gj(ti)) by applying the SMP
protocol on Epk(Pj,h(ti)) as inputs, for 1 ≤ j ≤ l and 1 ≤ h ≤ bj . For example,
consider the case of computing Epk(G1(ti)). In this case, C1 and C2 initially compute
Epk(P1,1(ti) ∧ P1,2(ti)) by feeding Epk(P1,1(ti)) and Epk(P1,2(ti)) as inputs to the
SMP protocol. The above result is fed as an input along with the next predicate result
of G1 to SMP and so on. At the end, C1 has Epk(G1(ti)) = Epk(P1,1(ti) ∧ . . . ∧
P1,b1(ti)). After that, in a similar fashion, they compute Epk(Q(ti)) by applying the
SBOR protocol on Epk(Gj(ti)) as inputs, for 1 ≤ j ≤ l. We refer to the above basic
solution as SRODb. However, since its complexity grows linearly with the number of
predicates in Q, we claim that SRODb is not that efficient. More details regarding the
complexities of SRODb are given in Section 4.5.

To overcome this issue, we next propose an efficient approach to systematically ag-
gregate predicate results (in encrypted form) to compute the corresponding query result
on each data record ti, where 1 ≤ i ≤ n. We denote our approach by SRODs (where the
subscript ‘s’ stands for summation). The main steps involved in SRODs are shown in
Algorithm 2. To start with, for each record T ′

i ,C1 locally aggregates (in encrypted form)
the evaluation results of predicates in each clause by computingL′

i,j =
∏bj

h=1Li,j [h] =

Epk

(∑bj
h=1 Pj,h(ti)

)
, for 1 ≤ j ≤ l.

Observation 1. Since clause Gj is a conjunction of bj predicates, a record ti satisfies
Gj , i.e., Gj(ti) = 1, only if Pj,h(ti) = 1, for 1 ≤ h ≤ bj . This further implies that

Gj(ti) = 1 only if
∑bj

h=1 Pj,h(ti) = bj . In addition, if ∃ h such that Pj,h(ti) = 0, then

Gj(ti) = 0 and
∑bj

h=1 Pj,h(ti) < bj .

Following from the above observation, in order to evaluate Gj , we need to securely

check whether
∑bj

h=1 Pj,h(ti) is equal to bj or not. For this purpose, C1 with input
L′
i,j and C2 jointly involve in the SCobv protocol (i.e., the extended version of the

secure comparison protocol in [31] as discussed in Section 4.2). That is, C1 and C2

jointly check whether
∑bj

h=1 Pj,h(ti) is greater than bj − 1. If the comparison result

is 1 (in encrypted form), then
∑bj

h=1 Pj,h(ti) = bj . At the end of this step, the output
Mi,j = SCobv(L′

i,j , bj) will be known only to C1. Remember that Mi,j = Epk(1) iff ti
satisfies Gj , and Epk(0) otherwise, for 1 ≤ i ≤ n and 1 ≤ j ≤ l.

Once C1 knows Epk(Gj(ti)), for 1 ≤ i ≤ n and 1 ≤ j ≤ l, the goal is to compute
the final evaluation result of Q on ti (in encrypted form), i.e., Epk(Q(ti)). For this
purpose, we use the following observation.

Observation 2. Given any query Q which is a disjunction of l clauses, Q(ti) = 1 only
if ∃ j such that Gj(ti) = 1. That is, if ti satisfies at least one of the clauses in Q,
then it also satisfies Q. This further implies that Q(ti) = 1 only if

∑l
j=1 Gj(ti) > 0.

Furthermore, when
∑l

j=1 Gj(ti) = 0, we have Q(ti) = 0 (i.e., ti does not satisfy Q).

Privacy-Preserving Complex Query Evaluation over Encrypted Data 413

Algorithm 2. SRODs(Li,1, . . . , Li,l)

Require: C1 has (Li,1, . . . , Li,l)
1: for 1 ≤ j ≤ l do:

(a). C1 compute L′
i,j ← ∏bj

h=1 Li,j [h]
(b). C1 and C2: Mi,j ← SCobv(L

′
i,j , bj)

2: C1 compute M ′
i ←

∏l
j=1 Mi,j

3: C1 and C2: Oi ← SCobv(M
′
i , l)

4: C1 send Oi to C2

5: C2 compute xi ← Dsk(Oi) and send xi to C1

6: C1: if xi = 1 then:

(a). Vi,j ← T ′
i,j ∗ Epk(r

′
i,j), for 1 ≤ j ≤ m, where r′i,j is a random number in ZN

(b). Send r′i,j to Bob and Vi,j to C2

7: C2, foreach Vi received do: zi,j ← Dsk(Vi,j) and send zi,j to Bob
8: Bob, foreach received entry pair (zi, r′i) do:

(a). t′j ← zi,j − r′i,j mod N, for 1 ≤ j ≤ m, and S ← S ∪ t′

Based on the above observation, C1 locally computes the encryption of sum of the
evaluation results on l clauses in Q. That is, he/she computes M ′

i =
∏l

j=1 Mi,j , for

1 ≤ i ≤ n. It is important to observe that M ′
i = Epk

(∑l
j=1 Gj(ti)

)
. After this, C1

and C2 securely verify whether the value of
∑l

j=1 Gj(ti) is greater than 0. For this
purpose, they jointly involve in the SCobv protocol. Specifically, they together compute
Oi = SCobv(M ′

i , l) = Epk(Q(ti)), for 1 ≤ i ≤ n. Note that the output of SCobv, i.e.,Oi

will be known only toC1. OnceC1 computes the evaluation result ofQ on a data record
ti (in encrypted form), the next step is for Bob to securely retrieve only those records
that satisfy Q with the help of C1 and C2. We emphasize that there are many ways
through which Bob can obliviously retrieve the output set of records from C1. In this
paper, we present a simple approach that is very efficient from the Bob’s perspective.

For 1 ≤ i ≤ n, C1 sends Oi to C2. Upon receiving,C2 computes xi = Dsk(O′
i) and

sends the result to C1. After this, C1 proceeds as follows:

– If xi = 1, then Q(ti) = 1. In this case, C1 randomizes T ′
i attribute-wise and sends

Vi,j = T ′
i,j ∗Epk(r′i,j) toC2, where r′i,j is a random number in ZN , for 1 ≤ j ≤ m.

Here m denotes the number of attributes in T ′. Also, C1 sends r′i,j to Bob.

– Else, ignore the data record corresponding to the entry xi.

Upon receiving the entry Vi, C2 computes zi,j = Dsk(Vi,j), for 1 ≤ j ≤ m, and sends
the result to Bob. Then, for each received entry pair (zi, r

′
i), Bob removes the extra

random factors attribute-wise to get t′j = zi,j − r′i,j mod N , for 1 ≤ j ≤ m. Based on
the above discussions, it is clear that t′ will be a data record in T that satisfies the input
query Q. Finally, Bob adds the data record t′ to the output set: S = S ∪ t′.

414 B.K. Samanthula, W. Jiang, and E. Bertino

 0

 1

 2

 3

 4

 0 10 20 30 40 50

T
im

e
(s

ec
on

ds
)

Domain size of attribute in bits (w)

SEIPh
SEIPg

Fig. 1. Computation costs of SEIPh and SEIPg for encryption key size 1024 bits

4.4 Security Analysis of PPQED

First of all, since Bob’s input queryQ is randomly shared betweenC1 andC2, search in-
put values in each predicate are never disclosed toC1 andC2. However, the PPQED pro-
tocol reveals the attribute index to be searched in each predicate to C1 (but not C2) for
efficiency reasons. Nevertheless, we stress that such information will not be useful for
C1 to deduce any meaningful information about the attribute values.

We emphasize that the SCobv protocol which is used as a building block in PPQED is
secure under the semi-honest model (security proof follows directly from [31]). As a re-
sult, the secure evaluation of individual predicates (SEIP) task at step 2(a) of Algorithm
1 do not reveal any information to C1 and C2. Thus, Stage 1 of PPQED is secure under
the semi-honest model. During Stage 2, all the intermediate results revealed to C2 are
either random or pseudo-random. On the other hand, the intermediate results seen byC1

are always in encrypted form (except at step 5 of Algorithm 2). Thus, whatever mes-
sages C1 and C2 receive in Stage 2 are computationally indistinguishable (assuming
large key size, say 1024 bits) from random numbers in ZN . Therefore, Stage 2 is secure
under the semi-honest model. Also, the outputs of Stage 1 which are passed as input to
Stage 2 are also in encrypted format. According to the Composition Theorem [15], we
claim that the sequential composition of Stages 1 and 2 leads to our PPQED protocol
that is also secure under the semi-honest model. In short, the proposed PPQED protocol
protects the confidentiality of the data as well as privacy of the user’s input query. At
the same time, it supports evaluation of complex queries over encrypted data.

In the proposed PPQED protocol, C1 and C2 know the value of xi (at step 5 of
Algorithm 2) that can reveal the data access pattern information (i.e., whether the data
record ti satisfies the input query) to C1 and C2. Nevertheless, our protocol can be
easily extended to hide the data access patterns from both C1 and C2 at an additional
cost. Due to space limitations, we do not go into any details regarding this extension.
However, we refer the reader to our technical report [14] for more details on how to
hide the access pattern information in the proposed protocol.

4.5 Complexity Analysis of PPQED

During Stage 1 of PPQED, the computation cost of the federated cloud (i.e., the com-
bined cost of C1 and C2) is bounded by O(n ∗ l ∗ s) instantiations of SEIP, where s

Privacy-Preserving Complex Query Evaluation over Encrypted Data 415

denotes the upper bound on the number of predicates in each clause. As mentioned ear-
lier, one can use either SEIPh (i.e., SEIP under homomorphic encryption) or SEIPg (i.e.,
SEIP under garbled circuits) in Stage 1. To get more insights, we implemented both
SEIPh and SEIPg, and ran experiments on a Linux machine with an Intel R©Xeon R© Six-
CoreTM CPU 3.07 GHz processor and 12GB RAM running Ubuntu 10.04 LTS. We
use the Paillier cryptosystem [13] and fix the encryption key size K to 1024 bits. In
particular to SEIPg, we constructed and evaluated the circuit under the FastGC [34]
framework (the fastest known implementation for garbled circuits). We considered at-
tributes of different domain sizes (in bits), denoted by w, and executed predicates at
random using both SEIPh and SEIPg. The results are shown in Figure 1. Note that, in
PPQED, we consider predicates with relation operators {>,≥, <,≤}. Since the under-
lying operations are almost the same for all these four relational operations, the com-
putation costs reported for SEIPh and SEIPg remain the same for any of these relational
operators.

Following from Figure 1, the computation cost of SEIPh increases from 0.79 to 3.93
seconds when w varies from 10 to 50. On the other hand, the computation cost of
SEIPg almost remains constant at 2.01 seconds. This is because the computation cost
of SEIPg mainly depends on the addition circuits (operating over 1024 bits) whose
costs remain the same for any fixed encryption key size. From the above results, we
conclude that SEIPh is more efficient than SEIPg for attributes with domain size 225

(i.e., w = 25). Note that the attribute domain size [0, 225) is realistic for most practical
applications, e.g., the attribute domain size for Age, Annual Salary, and Temperature is
less than 25 bits. Also, the categorical attributes usually take few values. However, if
the domain size of an attribute is ≥ 225, we would use SEIPg in PPQED for efficiency
reasons. Our experimental results given in Figure 1 are based on one record and it is
important to note that these results are independent of the record. Thus the reported
costs remain the same for any given data record. As a result, the cloud providers can
evaluate a predicate on multiple data records in parallel.

Next, for Stage 2, we analyze the costs associated with the query evaluation step
(using the individual predicate results) in SRODs and compare its performance with the
basic solution SRODb. For any given data record ti, the complexities of SRODb and
SRODs are shown in Table 2. From Table 2, it is clear that our approach in SRODs out-
performs (in terms of both computations and communications) SRODb if s is large.
Also, the round complexity of both approaches is bounded by O(log2 l+ log2 s). How-
ever, if the round complexity is crucial in an application, one can replace SCobv in
SRODs with the SC protocol based on garbled circuits [35] (which takes one round of
communication to perform the secure comparison). However, for practical values of l
and s, SCobv is more efficient than [35], thus providing a trade-off between efficiency
and round complexity. Due to space limitations, we refer the reader to our technical
report [14] for a more elaborated theoretical and empirical analysis of PPQED.

Nevertheless, the main advantage of the proposed PPQED protocol is that the com-
putation cost on Bob is negligible. This is especially beneficial if Bob issues queries
using a resource-constrained device (e.g., PDAs and cell phones).

416 B.K. Samanthula, W. Jiang, and E. Bertino

Table 2. SRODb vs. SRODs for any given record ti

Method Computations Communications

SRODb O(l ∗ s) encryptions O(K ∗ l ∗ s) bits

SRODs O(l ∗ log2 s) encryptions O(K ∗ l ∗ log2 s) bits

5 Conclusion and Future Work

In this paper, we proposed a novel protocol to securely evaluate complex queries over
encrypted data in the cloud. The core of our protocol is based on a hybrid approach
to evaluate the predicates in the user’s query using both homomorphic encryption and
garbled circuit techniques. Also, we developed an efficient approach to systematically
combine the evaluation results of individual predicates to compute the corresponding
query evaluation result. Our protocol protects data confidentiality, privacy of the user’s
input query and access patterns. Our empirical results show that techniques based on
homomorphic encryption are efficient for attributes of smaller domain sizes. Also, we
theoretically demonstrated the efficiency of our systematic approach to combine the
predicate results.

As future work, we will implement and evaluate our framework using the MapRe-
duce technique in a real federated cloud computing environment. We also plan to
develop a sequence diagram for the proposed protocol in our future work. Another
interesting direction is to extend our protocol to other adversary models, such as the
malicious model, and evaluate the trade-offs between security and efficiency. Though
our protocol concentrates on the relational operators, we believe that it can also support
other SQL operations, such as JOIN and GROUP BY, as they are essentially based on
the relational operations. We plan to investigate this problem in our future work.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their helpful comments. The work reported in this paper has been partially supported
by the Purdue Cyber Center and by the National Science Foundation under grants CNS-
1111512, CNS-1016722, and CNS-1011984.

References

1. Bajaj, S., Sion, R.: Trusteddb: a trusted hardware based database with privacy and data con-
fidentiality. In: ACM SIGMOD, pp. 205–216 (2011)

2. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for numeric data.
In: ACM SIGMOD, pp. 563–574 (2004)

3. Mykletun, E., Tsudik, G.: Aggregation queries in the database-as-a-service model. In: Dami-
ani, E., Liu, P. (eds.) Data and Applications Security 2006. LNCS, vol. 4127, pp. 89–103.
Springer, Heidelberg (2006)

4. Shi, E., Bethencourt, J., Chan, T.H.H., Song, D., Perrig, A.: Multi-dimensional range query
over encrypted data. In: IEEE Security & Privacy, pp. 350–364. IEEE Computer Society
(2007)

Privacy-Preserving Complex Query Evaluation over Encrypted Data 417

5. Chung, S., Ozsoyoglu, S., Anti-tamper, G.: Anti-tamper databases: Processing aggregate
queries over encrypted databases. In: ICDE Workshops, p. 98 (2006)

6. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric encryption.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241. Springer, Heidelberg
(2009)

7. Hore, B., Mehrotra, S., Canim, M., Kantarcioglu, M.: Secure multidimensional range queries
over outsourced data. The VLDB Journal 21(3), 333–358 (2012)

8. Samanthula, B.K., Jiang, W.: Efficient privacy-preserving range queries over encrypted data
in cloud computing. In: IEEE CLOUD, pp. 51–58 (2013)

9. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: practical access pattern
privacy and correctness on untrusted storage. In: CCS, pp. 139–148. ACM (2008)

10. De Capitani di Vimercati, S., Foresti, S., Samarati, P.: Managing and accessing data in the
cloud: Privacy risks and approaches. In: 7th International Conference on Risk and Security
of Internet and Systems, pp. 1–9 (2012)

11. Islam, M., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable encryption:
Ramification, attack and mitigation. In: NDSS (2012)

12. Goldreich, O.: Encryption Schemes. In: The Foundations of Cryptography, vol. 2, pp. 373–
470. Cambridge University Press, Cambridge (2004)

13. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223. Springer, Heidelberg (1999)

14. Samanthula, B.K., Jiang, W., Bertino, E.: Privacy-preserving complex query evaluation over
semantically secure encrypted data. Technical Report TR 2014-05, Dept. of Computer Sci-
ence, Missouri S&T, Rolla (2014), http://web.mst.edu/˜wjiang/PPQED.pdf

15. Goldreich, O.: General Cryptographic Protocols. In: The Foundations of Cryptography,
vol. 2, pp. 599–746. Cambridge University Press, Cambridge (2004)

16. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan,
S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)

17. Hacıgümüş, H., Iyer, B., Mehrotra, S.: Efficient execution of aggregation queries over en-
crypted relational databases. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004.
LNCS, vol. 2973, pp. 125–136. Springer, Heidelberg (2004)

18. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over encrypted data. In:
Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 31–45. Springer,
Heidelberg (2004)

19. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: Cryptdb: Protecting confi-
dentiality with encrypted query processing. In: SOSP, pp. 85–100. ACM (2011)

20. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with o((logn)3) worst-case cost.
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 197–214. Springer,
Heidelberg (2011)

21. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178. ACM
(2009)

22. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be practical? In:
The ACM Workshop on Cloud Computing Security, pp. 113–124. ACM (2011)

23. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme. In: Pa-
terson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg
(2011)

24. Yao, A.C.: Protocols for secure computations. In: SFCS, pp. 160–164. IEEE Computer So-
ciety (1982)

25. Yao, A.C.: How to generate and exchange secrets. In: SFCS, pp. 162–167. IEEE Computer
Society (1986)

26. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game - a completeness
theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM (1987)

http://web.mst.edu/~wjiang/PPQED.pdf

418 B.K. Samanthula, W. Jiang, and E. Bertino

27. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols. In:
STOC, pp. 11–19. ACM (1988)

28. Damgard, I., Geisler, M., Kroigard, M.: Homomorphic encryption and secure comparison.
International Journal of Applied Cryptography 1(1), 22–31 (2008)

29. Bugiel, S., Nürnberger, S., Sadeghi, A.R., Schneider, T.: Twin clouds: An architecture for
secure cloud computing (extended abstract). In: Workshop on Cryptography and Security in
Clouds (March 2011)

30. Wang, J., Ma, H., Tang, Q., Li, J., Zhu, H., Ma, S., Chen, X.: Efficient verifiable fuzzy
keyword search over encrypted data in cloud computing. Computer Science and Information
Systems 10(2), 667–684 (2013)

31. Blake, I.F., Kolesnikov, V.: One-round secure comparison of integers. Journal of Mathemat-
ical Cryptology 3(1), 37–68 (2009)

32. Schoenmakers, B., Tuyls, P.: Efficient binary conversion for paillier encrypted values. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 522–537. Springer, Heidelberg
(2006)

33. Samanthula, B.K., Jiang, W.: An efficient and probabilistic secure bit-decomposition. In:
ACM ASIACCS, pp. 541–546 (2013)

34. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled
circuits. In: Proceedings of the 20th USENIX Conference on Security, pp. 35–35 (2011)

35. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building blocks and
applications to auctions and computing minima. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.)
CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg (2009)

Authorized Keyword Search on Encrypted Data

Jie Shi1,2, Junzuo Lai2,�, Yingjiu Li1, Robert H. Deng1, and Jian Weng2

1 Singapore Management University, Singapore
{jieshi,yjli,robertdeng}@smu.edu.sg

2 Jinan University, China
{laijunzuo,cryptjweng}@gmail.com

Abstract. Cloud computing has drawn much attention from research
and industry in recent years. Plenty of enterprises and individuals are
outsourcing their data to cloud servers. As those data may contain sen-
sitive information, it should be encrypted before outsourced to cloud
servers. In order to ensure that only authorized users can search and
further access the encrypted data, two important capabilities must be
supported: keyword search and access control. Recently, rigorous efforts
have been made on either keyword search or access control over en-
crypted data. However, to the best of our knowledge, there is no encryp-
tion scheme supporting both capabilities in a public-key scenario so far.
In this paper, we propose an authorized searchable public-key encryption
scheme supporting expressive search capability and prove it fully secure
in the standard model.

Keywords: Authorized Searchable Public-Key Encryption, Attribute-
Based Encryption, Public-Key Encryption with Keyword Search ,Public-
Key Encryption.

1 Introduction

Recently, as a new commercial model, cloud computing has attracted much at-
tention from both academia and industry. A major advantage of cloud comput-
ing is that it supplies virtually unlimited storage capabilities and elastic resource
provisioning [1]. In order to reduce the capital and operational expenditures for
hardware and software, plenty of IT enterprises and individuals are outsourcing
their data to cloud servers instead of building and maintaining their own data
centers [2].

Despite clear benefits provided by cloud computing, there are many impedi-
ments to its widespread adoption. Data security and privacy concerns are proba-
bly the biggest challenges. As outsourced data may contain much sensitive/private
information, such as Personal Health Records (PHRs), personal photos and busi-
ness documents, some cloud servers or unauthorized users are motivated to access
and derive such sensitive/private information. Without addressing such concerns,
users may hesitate to outsource their data to cloud servers. As it is shown in many

� Corresponding author.

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 419–435, 2014.
c© Springer International Publishing Switzerland 2014

420 J. Shi et al.

recent works [3,2,4], data encryption is applied on users’ data before outsourcing
so as to address the security and privacy concerns.

While documents are encrypted and outsourced to cloud servers, two important
capabilities should be supported: keyword search and access control. The keyword
search capability facilitates data users to access encrypted data as it enables quick
location of required data based on keywords. The access control capability allows
data owners to share their information with restricted users according to the ac-
cess control policies associated with their encrypted data. In the literature, much
work has been done on either keyword search or access control over encrypted
data. However, no rigorous effort has been dedicated on supporting both keyword
search and access control at the same time, which means that only authorized
users are allowed to process keyword search and further access encrypted data.
We call it authorized searchable encryption if an encryption scheme enables autho-
rized users only to perform keyword search. Many real-world applications demand
such authorized searchable encryption. One example is the cloud storage system in
healthcare as it is shown in Figure 1. In this system, any patient (i.e. data owner)
outsources his/her medical records to a cloud server so as to share with authorized
users such as hospital doctors. Assuming that the medical records are sensitive,
they are encrypted before outsourced to the cloud. The encrypted data should sup-
port both keyword search and access control in this scenario. In particular, data
owner 1 John outsources an encrypted medical record to the cloud with both key-
words and an access policy. The keywords specify the features about the encrypted
data which can be used in any authorized users’ queries, while the access policy
specifies who are the authorized users (i.e., a cardiologist in Hospital A or a patient
with social security number 110-222-1234). Since both keywords and access pol-
icy associated with a medical record contain sensitive/private information, they
should be hidden from the cloud service provider or any unauthorized users, just
as the medical record itself. Every user in this system is associated with a set of
attributes; for example, the attributes of user 1 in Figure 1 include her name, her
social security number, her affiliation, and her occupation. When a user intends to
obtain certain information from the cloud server, the user submits an authorized
token constructed by an authority according to the user’s keywords query and the
user’s attributes. The query token enables the cloud server to locate all medical
records such that the keywords of the medical records satisfy the user’s query and
the attributes of the user meet the access policy of the medical records.

In this paper, we focus on constructing an authorized searchable encryption
scheme in a public-key scenario, which we call authorized searchable public-key
encryption (AS-PKE). It is challenging to design an AS-PKE scheme support-
ing both expressive search capability and being fully secure in the standard
model. In the literature, there exist two kinds of encryption schemes close to
AS-PKE, which are the attribute-based encryption and the public-key encryp-
tion with keyword search. First, the attribute-based encryption (ABE) was in-
troduced by Sahai and Waters [5] and further developed into two complimentary
forms: KP-ABE [6,7] and CP-ABE [8,9]. There also exist many solutions in ABE
with hidden access structures, including predicate encryption [10] and CP-ABE

Authorized Keyword Search on Encrypted Data 421

Data Owner 1

Data Owner 2

Data Owner m

......

Query

User 1

Query

User 2

Query

User n

......

Name: Alice
SS#: 100-234-5555
Affiliation: Hospital A
Occupation: Cardiologist

Attributes:

Keywords:

Name: John
Age: 25
Sex: Male
Illness: cardiopathy
Provider: Hospital A

OR

AND
SS#: 110-222-1234

Affiliation: Hospital A Occupation: Cardiologist

Access Policy:

Fig. 1. An example of cloud storage system architecture

with hidden access structures [11]. Second, the public-key encryption with key-
word search (PEKS) was proposed by Boneh et al. [12], which supports equality
queries only. Later, Park et al. proposed the notion of public key encryption with
conjunctive keyword search [13] and Katz et al. proposed the notion of inner-
product predicate encryption [10], which can be extended to construct public
key encryption with disjunctive keyword search. Neither ABE nor PEKS satis-
fies the requirements of AS-PKE; in other words, they do not support keyword
search and access control at the same time. Simply combining ABE and PEKS
schemes cannot achieve AS-PKE too, as in AS-PKE both keywords and access
control policies are required to be hidden and expressive search on encrypted
data is required to be supported.

1.1 Our Contribution

In [11], Lai et al. proposed a new model of CP-ABE with partially hidden access
structures. In this model, each attribute consists of two parts: attribute name
and its value. In the access policy associated with a ciphertext, all attribute
values are hidden, while the other information, such as attribute names, about
the access structure is public. Taking the access policy in Figure 1 as an example,
the policy is published in the following format in Lai et al.’s model:

SS# : $ OR (Affiliation: $ AND Occupation:$)

422 J. Shi et al.

Fig. 2. An access structure (a) and the corresponding partially hidden access structure
(b)

Note that all attribute values, such as “110-222-1234”, “Hospital A” and “Car-
diologist”, are hidden. Figure 2 shows graphically this example of a partially
hidden access structure.

Based on the CP-ABE scheme with partially hidden access structure given in
[11] and the KP-ABE scheme proposed in [7], we design a flexible and expressive
construction as an AS-PKE scheme, and prove that it is fully secure in the
standard model.

The proposed AS-PKE scheme can be considered as a variant of dual-policy
ABE [14] in which the object attributes and the subject access policy are both
hidden and the scheme is fully secure in the standard model. In other words, the
proposed AS-PKE implies a fully secure dual-policy ABE scheme.

1.2 Related Work

In this section, we briefly review the related works in the areas of ABE, KP-ABE,
CP-ABE, PEKS, and PE (Predicate Encryption).

Attribute-Based Encryption (ABE). The concept of ABE was first proposed by
Sahai and Waters as an application of fuzzy identity-based encryption (IBE)
scheme [5], where both ciphertext and secret key are labeled with sets of de-
scriptive attributes. The decryption of a ciphertext is enabled if and only if
the cardinality of the intersection of these labeled attributes exceeds a certain
threshold.

Key Policy Attribute-Based Encryption (KP-ABE). Two complimentary forms of
ABE — KP-ABE and CP-ABE — were formulated by Goyal et al. [6]. In a CP-
ABE scheme, each ciphertext is associated with an access structure while each
decryption key is associated with a set of attributes. Reversely, in a KP-ABE
scheme, each decryption key is associated with an access structure while each
ciphertext is associated with a set of attributes. Generally, a KP-ABE scheme
can be transformed into a CP-ABE using the method proposed in [15]. While
the KP-ABE scheme proposed by Goyal et al. [6] supports monotonic access
structures only, Ostrovsky et al. [16] presented a KP-ABE system supporting
more flexible access control policies — non-monotone access structures.

Ciphertext Policy Attribute-Based Encryption (CP-ABE). Bethencourt et al.
proposed the first CP-ABE scheme [8], which was proven to be secure under the

Authorized Keyword Search on Encrypted Data 423

generic group mode. Later, Cheung and Newport presented a CP-ABE scheme
that is secure under the standard model [17]. However, the access structures in
this scheme are restricted to conjunctions of different attributes. Recently, se-
cure and expressive CP-ABE schemes were proposed in [9,7]. In order to hide
access structures, Nishide et al. introduced the concept of CP-ABE with par-
tially hidden access structures [18]. Recently, Lai et al. proposed a fully secure
(cf. selectively secure) CP-ABE scheme with partially hidden access structures
[19]; however, the scheme only supports restricted access structure as in [18].
Later, Lai et al. proposed a fully secure CP-ABE scheme with partially hidden
access structures [11] that can be expressed as an LSSS which is more flexible
and expressive than the previous work [18].

Predicate Encryption (PE). Predicate encryption can be considered as attribute-
based encryption supporting attribute-hiding. Katz et al. introduced the concept
of PE and designed the first inner-product PE [10]. Shi and Waters presented
a delegation mechanism for a class of PE [20]; later, Okamota and Takashima
presented a (hierarchical) delegation mechanism for an inner-product PE scheme
[21]. Shen et al. introduced a new security notion of PE called predicate privacy
and also proposed a symmetric-key inner-product PE, which achieves both plain-
text privacy and predicate privacy [22]. However, these schemes were proven to
be selectively secure only. The first fully secure inner-product PE was proposed
by Lweko et al. [7]. Okamota and Takashima presented a fully secure PE for
a wide class of admissible predicates, which are specified using non-monotone
access structures combined with inner-product predicates [23].

Public-key Encryption with Keyword Search (PEKS). Boneh et al. initiated the
research on PEKS and provided a specific scheme, which supports equality query
only [12]. Park et al. proposed the notion of public key encryption with conjunc-
tive keyword search [13]; Hwan and Lee made an improvement on the sizes of
ciphertext and private key, and extended the scheme in a multi-user setting [24].
Boneh and Waters presented a general framework for analyzing and constructing
several schemes that support arbitrary conjunctions [25]. Katz et al. proposed
the notion of inner-product predicate encryption (IPE), which can be extended
to construct public key encryption with disjunctive keyword search [10]. How-
ever, as shown in [10], the resulting solution suffers from a super polynomial
blowup in ciphertext size and search-token key size.

Others. Recently, Li et al. [2] presented a framework for authorized private key-
word search (APKS) over encrypted cloud data and proposed two schemes for
APKS. In their proposed framework, every data owner’s trust is delegated to a
trusted authority and/or several local trusted authorities who are in charge of
determining users’ search privileges. Based on this framework, they employed
the hierarchical predicate encryption to construct APKS. However, there exists
a significant difference between the APKS and our AS-PKE: the access con-
trol policies are defined and maintained by trusted authorities in APKS scheme;
however, in our AS-PKE scheme, the access control policies are defined by data
owners themselves. Therefore, our AS-PKE scheme is more general and can be

424 J. Shi et al.

used in many applications which require access control policies to be defined
by data owners. In [26], Sun et al. proposed an attribute-based keyword search
with fine-grained owner-enforced search authorization scheme, which supports
limited authorization policies with “AND” gates and limited keyword queries
with conjunctive keywords only. Our AS-PKE scheme supports more expressive
authorization policies and keyword queries supporting arbitrary Boolean formu-
las. In [27], Narayan et al. combined PEKS and ABE to create a secure electronic
health record system providing both keyword search and access control function-
alities; however, it does not address the privacy of access control policies as in
our work.

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we review necessary
standard notations and cryptographic definitions. In Section 3, we define the
security model of AS-PKE, and propose a concrete construction of AS-PKE. In
Section 4, we conclude our paper.

2 Preliminaries

In this paper, we use s
$← S to denote the operation of picking an element s

uniformly at random from a set S. Let N be the set of natural numbers, and 1λ

denote the string of λ ones if λ ∈ N. Let z ← A(x, y, . . .) denote the operation
of running an algorithm A with inputs (x, y, . . .) and output z. A function f(λ)
is negligible if for every c > 0 there exists a λc such that f(λ) < 1/λc for all
λ > λc.

2.1 Access Structures

Definition 1 (Access Structure [28]). Let {P1, . . . , Pn} be a set of parties. A
collection A ⊆ 2{P1,...,Pn} is monotone if ∀B,C : if B ∈ A and B ⊆ C, then C ∈
A. An access structure (respectively, monotone access structure) is a collection
(respectively, monotone collection) A of non-empty subsets of {P1, . . . , Pn}, i.e.,
A ⊆ 2{P1,...,Pn}\{∅}. The sets in A are called authorized sets, and the sets not
in A are called unauthorized sets.

In our context, attributes play the role of parties. We focus on the monotone
access structures in this paper. However, it is possible to (inefficiently) realize
general access structures using the proposed technique by taking the negation
of an attribute as a separate attribute. In what follows, unless stated otherwise,
the access structures are monotone access structures.

2.2 Linear Secret Sharing Schemes

We will make use of linear secret sharing schemes in our design of AS-PKE. The
following definition is adapted from those given in [28].

Authorized Keyword Search on Encrypted Data 425

Definition 2. [Linear Secret-Sharing Schemes (LSSS)] A secret sharing scheme
Π over a set of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.
2. There exists a matrix A with � rows and n columns called the share-generating

matrix for Π. For all i = 1, . . . , �, the ith row of A is labeled by a party
ρ(i) (ρ is a function from {1, . . . , �} to P). When we consider the column
vector v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared, and
r2, . . . , rn ∈ Zp are randomly chosen, then Av is the vector of � shares of the
secret s according to Π. The share (Av)i belongs to party ρ(i).

It is shown in [28] that every linear secret-sharing scheme according to the
above definition enjoys the linear reconstruction property, defined as follows.
Suppose that Π is an LSSS for an access structure A. Let S ∈ A be any authorized
set, and I ⊂ {1, . . . , �} be defined as I = {i|ρ(i) ∈ S}. Then there exist constants
{ωi ∈ Zp}i∈I such that, if {λi} are valid shares of any secret s according to Π,
then

∑
i∈I ωiλi = s. Let Ai denote the ith row of A, we have

∑
i∈I ωiAi =

(1, 0, . . . , 0). These constants {ωi} can be found in time polynomial in the size
of the share-generation matrix A [28]. Note that, for unauthorized sets, no such
constants {ωi} exist.

Boolean Formulas. Access structures might also be described in terms of
monotonic boolean formulas. Using standard techniques [28] one can convert
any monotonic boolean formula into an LSSS representation. When a boolean
formula is represented as an access tree with � leaf nodes, it will result in an
LSSS matrix of � rows. Details on how to perform this conversion refer to the
appendix of [29].

2.3 Composite Order Bilinear Groups

We construct our scheme in composite order bilinear groups whose order is
the product of four distinct primes. Composite order bilinear groups were first
introduced in [30].

Let G be a group generator, an algorithm taking a security parameter 1λ

as input and outputting a tuple (p1, p2, p3, p4,G, GT , e), where p1, p2, p3, p4 are
distinct primes, G and GT are cyclic groups of order N = p1p2p3p4, and e :
G×G→ GT is a map such that

1. Bilinear: For all g, h ∈ G, and a, b ∈ ZN , we have e(ga, hb) = e(g, h)ab;
2. Non-degeneracy: ∃g ∈ G such that e(g, g) has order N in GT .

It further requires that the group operation in G and GT and the bilinear
map e are both efficiently computable in time polynomial in λ. Let Gp1 ,Gp2 ,Gp3 ,
and Gp4 be the subgroups of G having order p1, p2, p3, and p4 respectively. Thus,
G = Gp1×Gp2×Gp3×Gp4 . Note that if g1 ∈ Gp1 and g2 ∈ Gp2 , then e(g1, g2) = 1.
Similar rules hold whenever e is applied to elements in distinct subgroups.

We adopt the following four complexity assumptions in this paper, which were
also used in [11,31].

426 J. Shi et al.

Assumption 1. Given a group generator G, we define the following distribu-
tion:

(p1, p2, p3, p4,G,GT , e)← G(1λ), N = p1p2p3p4,

g
$← Gp1 , X3

$← Gp3 , X4
$← Gp4 ,

D = (G,GT , N, e, g,X3, X4),

T1
$← Gp1 ×Gp2 , T2

$← Gp1 .

The advantage of an algorithm A in breaking Assumption 1 is defined as

Adv1
A = |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 3. we say G satisfies Assumption 1 if for any polynomial time algo-
rithm A, Adv1

A is negligible.

Assumption 2. Given a group generator G, we define the following distribu-
tion:

(p1, p2, p3, p4,G,GT , e)← G(1λ), N = p1p2p3p4,

g,X1
$← Gp1 , X2, Y2

$← Gp2 , X3, Y3
$← Gp3 , X4

$← Gp4 ,

D = (G,GT , N, e, g,X1X2, Y2Y3, X3, X4),

T1
$← Gp1 ×Gp2 ×Gp3 , T2

$← Gp1 ×Gp3 .

The advantage of an algorithm A in breaking Assumption 2 is defined as

Adv2
A = |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 4. we say G satisfies Assumption 2 if for any polynomial time algo-
rithm A, Adv2

A is negligible.

Assumption 3. Given a group generator G, we define the following distribu-
tion:

(p1, p2, p3, p4,G,GT , e)
$← G(1λ), N = p1p2p3p4,

s
$← ZN , g, h

$← Gp1 , g2, X2, B2, D2
$← Gp2 ,

X3
$← Gp3 , B4, D4, X4, Z

′ $← Gp4 ,

D = (G,GT , N, e, g, g2, hX2, hZ
′, gsB2B4, X3, X4),

T1 = hsD2D4, T2
$← Gp1 ×Gp2 ×Gp4 .

The advantage of an algorithm A in breaking Assumption 3 is defined as

Adv3
A = |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 5. we say G satisfies Assumption 3 if for any polynomial time algo-
rithm A, Adv3

A is negligible.

Authorized Keyword Search on Encrypted Data 427

Assumption 4. Given a group generator G, we define the following
distribution:

(p1, p2, p3, p4,G,GT , e)← G(1λ), N = p1p2p3p4,

a, s
$← ZN , g

$← GP1 , g2, X2, Y2, D2
$← Gp2

X3
$← Gp3 , X4, Z

′, Y4, D4
$← Gp4

D = (G,GT , N, e, g, g2, g
aX2, g

aZ ′, gsY2Y4, X3, X4),

T1 = gasD2D4, T2
$← Gp1 ×Gp2 ×Gp4 .

The advantage of an algorithm A in breaking Assumption 4 is defined as

Adv4
A = |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 6. we say G satisfies Assumption 4 if for any polynomial time algo-
rithm A, Adv4

A is negligible.

3 Authorized Searchable Public Key Encryption

In authorized searchable public key encryption (AS-PKE), a document is iden-
tified by a vector of m keywords (o1, . . . , om), where ox is the keyword of the
document in the x-th keyword field. For notational purpose, let x be the x-th
keyword field. Similarly, a user has n attributes (s1, . . . , sn) with each attribute
belonging to a different category. Let i be the attribute name of the i-th category
attribute. Our AS-PKE scheme supports arbitrary monotone boolean predicate
for both access policy and user query. We express an access policy by an LSSS
(A, ρ, T) over user attributes, where A is an ls×n matrix, ρ is a map from each
row of A to an attribute field (i.e., ρ is a function from {1, . . . , ls} to {1, . . . , n}),
T can be parsed into (tρ(1), . . . , tρ(ls)) and tρ(i) is the value of attribute field

ρ(i). Similarly, we express a user query by an LSSS (Â, ρ̂, T̂) over document key-
words, where Â is an lo×m matrix, ρ̂ is a map from each row of Â to a keyword
field (i.e., ρ̂ is a function from {1, . . . , lo} to {1, . . . ,m}), T̂ can be parsed into
(t̂ρ̂(1), . . . , t̂ρ̂(lo)) and t̂ρ̂(x) is the value of keyword field ρ̂(x).

Before presenting our AS-PKE scheme, we give some intuitions of our con-
struction. Suppose that a document is encrypted with a set of keywords O =
(o1, . . . , om) and an access policy (A, ρ, T), a query token key TKP,S is embedded

with a set of user attributes S = (s1, . . . , sn) and a user query P = (Â, ρ̂, T̂). The
encrypted document D will be returned if and only if there exist I ⊆ {1, . . . , ls},
Î ⊆ {1, . . . , lo} and constants {wi}i∈I , {ŵx}x∈Î such that∑

i∈I
wiAi = (1, 0, . . . , 0) and sρ(i) = tρ(i) for ∀i ∈ I,

∑
x∈Î

ŵxÂx = (1, 0, . . . , 0) and oρ̂(x) = t̂ρ̂(x) for ∀x ∈ Î,

428 J. Shi et al.

where Ai and Âx denote the i-th row of A and the x-th row of Â, respectively. We
also say that I ⊆ {1, . . . , ls} satisfies (A, ρ, T) if there exist constants {wi}i∈I
such that

∑
i∈I wiAi = (1, 0, . . . , 0). This can be applied to Î ⊆ {1, . . . , lo} and

(Â, ρ̂, T̂).
We define IA,ρ and ÎÂ,ρ̂ as the set of minimum subsets of {1, . . . , ls} and

{1, . . . , lo} that satisfy (A, ρ, T) and (Â, ρ̂, T̂), respectively.

3.1 Authorized Searchable Public Key Encryption

In AS-PKE scheme, keywords O = (o1, o2, . . . , on) of a document are encrypted
under an access policy A and can be searched by an authorized query token.
An authorized query token is generated by authority according to a query and
user attributes set. An authorized searchable public key encryption (AS-PKE)
scheme consists of the following four algorithms:

Setup(1λ). This setup algorithm takes in the security parameter λ with output
of the public parameters PK and a secret key SK.

Encrypt(PK,O = (o1, . . . , om),A = (A, ρ, T)). This encryption algorithm
takes in the public parameter PK, keywords O = (o1, . . . , om), and an access
policy A = (A, ρ, T). It outputs a ciphertext CO,A.

GenToken(PK, SK,P, S = (s1, . . . , sn)). This algorithm takes in the public
key PK, the secret key SK, a user attributes set S = (s1, . . . , sn) and a query
predicate P. It outputs an authorized query token key TKP,S.

Test(PK,TKP,S, CO,A). This test algorithm takes in the public key PK, an
authorized query token TKP,S = GenToken(PK, SK, P, S) and a ciphtertext
CO,A = Encrypt(PK,O,A). It outputs “Yes” if the keywords in O satisfy the
predicate P (i.e., P(O) = 1) and the user attributes in set S satisfy the access
policy A (i.e. A(S) = 1); and outputs “No” otherwise.

Correctness. The system must satisfy the following correctness property:

– Let (PK, SK)← Setup(1λ), CO,A ← Encrypt(PK,O,A), TKP,S ← GenToke(PK,
SK,P, S). If P(O) = 1 and A(S) = 1, then Test(PK,TKP,S, CO,A) = “Yes”;
Otherwise, Pr[Test(PK,TKP,S, CO,A) = “No”] > 1 − ε(λ) where ε(λ) is a
negligible function.

3.2 Security Model for AS-PKE

We define a security model for AS-PKE in the sense of semantic-security using
the following game between a challenger and an attacker.

Setup. The challenger runs Setup(1λ) to obtain a public PK and a secret
key SK. It gives the public key PK to the adversary and keeps SK by itself.

Query phase 1. The adversaryA adaptively queries the challenger for token
keys for pairs of user attributes set and predicate (S,P). In response, the
challenger runs TKPi,Si ← GenToken(PK, SK,Pi, Si) and gives the authorized
query token TKPi,Si to A, for 1 ≤ i ≤ q.

Authorized Keyword Search on Encrypted Data 429

Challenge. The adversaryA submits two pairs of keywords and access policy
(O0,A0 = (A, ρ, T0)), (O1,A1 = (A, ρ, T1)) subject to the restriction that,
for any previous query (Pi, Si) in phase 1, either Oj does not satisfy Pi or
Si does not satisfy Aj for all j ∈ [0, 1]. The challenger selects a random
bit β ∈ {0, 1}, sets COβ ,Aβ

= Encrypt(PK,Oβ,Aβ), and sends COβ ,Aβ
to the

adversary as its challenge ciphertext.
Note that, the LSSS matrix A and ρ are the same in the two access struc-
tures provided by the adversary. In an AS-PKE scheme, one can distinguish
the ciphertexts if the associated access structures have different (A, ρ), since
(A, ρ) is sent along with the encrypted document explicitly.

Query phase 2. The adversary continues to adaptively query the challenger
for token keys corresponding to predicates and user attribute sets with the
same restriction in Challenge phrase.

Guess. The adversary A outputs its guess β′ ∈ {0, 1} for β and wins the
game if β′ = β.

The advantage of the adversary in this game is defined as |Pr[β = β′] − 1
2 |

where the probability is taken over the random bits used by the challenger and
the adversary.

Definition 7. An AS-PKE scheme is secure if all polynomial time adversaries
have at most a negligible advantage in this security game.

3.3 Constructions

Our construction of a secure AS-PKE scheme is shown as follows.
Setup(1λ). The setup algorithm first runs G(1λ) to obtain (p1, p2, p3, p4,

G,GT , e) with G = Gp1×Gp2×Gp3×Gp4 , where G and GT are cyclic groups of or-

der N = p1p2p3p4. Then, it chooses random elements g, u, h1, . . . , hn, ĥ1, . . . , ĥm
∈ Gp1 , X3 ∈ Gp3 , X4, Z, Z

′, Z0, Z1, . . . , Zn, Ẑ1, . . . , Ẑm ∈ Gp4 and random
number a ∈ ZN . The public key is published as PK = (N, gZ, gaZ ′, U =

uZ0, {Hi = hi · Zi}1≤i≤n, {Ĥi = ĥi · Ẑi}1≤i≤m, X4). The secret key is SK =

(g, u, h1, . . . , hn, ĥ1, . . . , ĥm, X3, a).
Encrypt(PK,O = (o1, . . . , om) ∈ Zm

N ,A = (A, ρ, T)). A is an ls×n matrix, ρ
is a map from each rowAi of A to a user attribute ρ(i), and T = (tρ(1), . . . , tρ(ls)).
The encryption algorithm chooses a random vector v = (s, v2, . . . , vn) ∈ Zn

N . For
each row Ai of A, it chooses a random ri ∈ ZN . It also chooses random elements
Z̃1,0, {Z̃1,i}1≤i≤n, {Z̃ ′

1,i}1≤i≤n ∈ Gp4 , {Z2,x}1≤x≤m ∈ Gp4 . The ciphertext CT =

((A, ρ), C, Ci, Di, Ĉx) is computed as:

C = (gZ)s · Z̃1,0 = gs · Z1,0,

Ci = (gaZ ′)Ai·v(U tρ(i)Hρ(i))
ri · Z̃1,i = gaAi·v(U tρ(i)Hρ(i))

ri · Z1,i,

Di = (gZ)−ri · Z̃ ′
1,i = g−ri · Z ′

1,i, Ĉx = (Uox · Ĥx)s · Z2,x ∀x,

where Z1,0 = Zs · Z̃1,0, Z1,i = Z ′Ai·v · Z̃1,i, Z
′
1,i = Z−ri · Z̃ ′

1,i.

430 J. Shi et al.

GenToken(PK, SK, P̂ = (Â, ρ̂, T̂), S = (s1, . . . , sn)). Â is an lo × m ma-
trix, ρ̂ is a map from each row Âx of Â to a keyword field ρ̂(x), and T̂ =
(t̂ρ̂(1), . . . , t̂ρ̂(lo)). The algorithm first chooses two random numbers t1, t2 ∈ ZN

and a random vector v̂ = (t2, v̂2, ..., v̂m) ∈ Zm
N . It also chooses random el-

ements R0, R
′
0, R

′
x, Ri, R̂x ∈ Gp3 . The authorized query token key TKP̂,S =

((Â, ρ̂),K, L,Ki, K̂x,K
′
x) is computed as:

K = ga(t1+t2)R0, L = gt1R′
0, Ki = (usihi)

t1Ri

K̂x = gaÂx·v̂(ut̂ρ̂(x) ĥρ̂(x))
txR̂x ∀x, K ′

x = g−txR′
x ∀x

Test(PK,TKP̂,S,CT). Let CT = ((A, ρ), C, Ci, Di, Ĉx) and TKP̂,S = ((Â, ρ̂),

K, L,Ki, K̂x,K
′
x). The test algorithm first calculates IA,ρ from (A, ρ), where IA,ρ

denotes the set of minimum subsets of (1, . . . , ls) that satisfies IA,ρ. It similarly

calculates ÎÂ,ρ̂ from (Â, ρ̂). Then, it checks if there exist an I ∈ IA,ρ and an

Î ∈ ÎÂ,ρ̂ that satisfies

e(C,K) =
∏
i∈I

(e(Ci, L)e(Ki, Di))
ωi ·
∏
x∈Î

(e(K̂x, C)e(Ĉx,K
′
x))ω̂x (1)

where
∑

i∈I ωiAi = (1, 0, . . . , 0) and
∑

x∈Î ω̂xÂx = (1, 0, . . . , 0). If no elements in

IA,ρ and ÎÂ,ρ̂ satisfy the above equation, it outputs “No”; otherwise, it outputs
“Yes”.

The correctness is shown as follows. Suppose P(O) = 1 and A(S) = 1, i.e.
there exist I ⊆ {1, . . . , ls}, Î ⊆ {1, . . . , lo} and constants {wi}i∈I , {ŵx}x∈Î
such that

∑
i∈I wiAi = (1, 0, . . . , 0) and sρ(i) = tρ(i) for ∀i ∈ I,

∑
x∈Î ŵxÂx =

(1, 0, . . . , 0) and oρ̂(x) = t̂ρ̂(x) for ∀x ∈ Î. Then, the left side of Equation (1) is
equal to

e(C,K) = e(gs · Z1,0, g
a(t1+t2)R0) = e(g, g)as(t1+t2)

and the right side of Equation (1) is equal to∏
i∈I

(e(Ci, L)e(Ki, Di))
ωi ·
∏
x∈Î

(e(K̂x, C)e(Ĉx,K
′
x))ω̂x

=
∏
i∈I

(e(gaAi·v(U
tρ(i)Hρ(i))

ri · Z1,i, g
t1R′

0) · e((usihi)tiRi, g
−riZ ′

1,i))
wi

·
∏
x∈Î

(e(gaÂx·v̂(u(̂t)ρ̂(x) ĥρ̂(x))
txR̂x, g

sZ1,0) · e((UoxĤx)s · Z2,x, g
−txR′

x))ŵx

=
∏
i∈I

(e(gaAi·v(utρi ·hi)
ri ,gt1

) · e((usihi)t1 , g−ri))wi

·
∏
x∈Î

(e(gaÂx·v̂(ut̂ρ̂(x) ĥρ̂(x))
tx , gs) · e((uox , ĥx)s, g−tx))ŵx

= e(g, g)at1s · e(g, g)at2s = e(g, g)as(t1+t2)

which is equal to the left side of Equation (1).

Authorized Keyword Search on Encrypted Data 431

3.4 Security

Theorem 1. If assumptions 1, 2, 3 and 4 hold, then the proposed AS-PKE
scheme is secure.

Proof. Following the approach by Lewko and Waters [7], we define two additional
structures: semi-functional ciphertexts and semi-functional keys. They are not
used in the real system, only in our proof.

Semi-functional Ciphertext. Let g2 denote a generator of the subgroup Gp2 .
A semi-functional ciphertext is created as follows. We first use the encryption
algorithm to form a normal ciphertext CT′ = ((A, ρ), C′, C′

i, D
′
i, Ĉ

′
x). Then, we

choose random exponent c, b′ ∈ ZN and random values zi ∈ ZN associated to
user attributes, random values γi ∈ ZN associated to rows i of matrix A, random
values z′x ∈ ZN associated to keywords and a random vector w ∈ Zn

N . Then, the
semi-functional ciphertext is set to be:

(A, ρ), C = C′ · gc2, Ci = C′
i · g

Ai·w+γizρ(i)
2 ,

Di = D′
i · g

−γi

2 ∀i ∈ [1, n], Ĉx = Ĉ′
x · g

b′z′
x

2 ∀x ∈ [1,m]

It should be noted that the values zi and z′x are chosen randomly once and
then fixed — the same values are also involved in semi-functional keys as defined
below.

Semi-functional Key. A semi-functional key will take on one of the following
two forms. In order to create a semi-functional key, we first use the key generation
algorithm to form a normal key TK′

P̂,S = ((Â, ρ̂), K ′, L′,K ′
i, K̂

′
x, K̃

′
x). Then, we

choose random exponents d, b ∈ ZN , random values γ′x ∈ ZN associated to row
x of matrix Â and a random vector ŵ ∈ Zn

N . The semi-functional key of type 1
is set as:

(Â, ρ̂), K = K ′ · gd2 L = L′ · gb2, Ki = K ′
i · gbzi2 ∀i ∈ [1, n]

K̂x = K̂ ′
x · g

Âx·ŵ+γ′
xz

′
ρ̂(x)

2 ∀x ∈ [1,m], K ′
x = K̃ ′

x · g
γ′
x

2 ∀x ∈ [1,m]

The semi-functional key of type 2 is set as:

(Â, ρ̂), K = K ′ · gd2 L = L′, Ki = K ′
i ∀i ∈ [1, n]

K̂x = K̂ ′
x · gÂx·ŵ

2 ∀x ∈ [1,m], K ′
x = K̃ ′

x ∀x ∈ [1,m]

We will prove the security of the proposed scheme based on the Assumptions
1, 2, 3 and 4 using a hybrid argument over a sequence of games. The first game,
Gamereal, is the real security game where the ciphertext and all token keys are
normal. In the next game, Game0, all of token keys are normal, but the challenge
ciphertext is semi-functional. Let q denote the number of token key queries made
by the attacker. For k from 1 to q and l from 1 to m, we define:

432 J. Shi et al.

Gamek,1. In this game, the challenge ciphertext is semi-functional, the first
k−1 token keys are semi-functional of type 2, the kth token key is semi-functional
of type 1, and the remaining token keys are normal.

Gamek,2. In this game, the challenge ciphertext is semi-functional, the first
k token keys are semi-functional of type 2, the remaining keys are normal.

Gamekeywordl
. In this game, all token keys are semi-functional of type 2, and

the challenge ciphertext CT = (C,Ci, Di, Ĉx) is a semi-functional ciphertext
with Ĉ1, . . . , Ĉl randomly chosen from Gp1 ×Gp2 ×Gp4 .

GameFinal0 . This game is the same as Gamekeywordm
.

GameFinal1 . This game is the same as GameFinal0 , except that in the chal-
lenge ciphertext Ci are chosen from Gp1 ×Gp2 ×GG4 at random.

We prove that these games are indistinguishable in five lemmas, which are
given in the Appendix. Therefore, we conclude that the advantage of the ad-
versary in Gamereal , i.e. the real security game, is negligible. This completes the
proof of Theorem 1.

3.5 Efficiency

Let |G| be the length of the bit-representation of a group in G. The size of
the public key, a token key, and a ciphertext are (n + m + 4)|G|, (n + 2m +
2)|G|, and (2n + m + 1)|G|, respectively. For a predicate (A, ρ, T), let l1 =
|IA,ρ|, IA,ρ = {I1, . . . , Il1} and l2 = |I1|+ . . .+ |Il1 |; for a predicate (Â, ρ̂, T̂), let

l̂1 = |ÎÂ,ρ̂|, ÎÂ,ρ̂ = {Î1, . . . , Îl̂1} and l̂2 = |Î1|+. . .+|Îl1 |. Then, the computational

costs of an encryption and a test are (4n + 2m + 1)te + (4n + 2m + 1)tm and

(2l1 l̂2 + 2l2l̂1 + 1)tb + (l1 l̂2 + 2l2 l̂1)tT m + (l1 l̂2 + l2 l̂1)tT e, respectively, where tb,
te, tm, tT e, and tT m denote the computational costs of bilinear map, exponen-
tiation in G, multiplication in G, exponentiation in GT , and multiplication in
GT , respectively. We note that the proposed AS-PKE scheme may not be highly
practical due to the use of composite order bilinear groups. The major contribu-
tion of this paper is more on the theoretical aspects, including the concept and
the security model of AS-PKE, and the first AS-PKE scheme and its security
proof. In the future, we will investigate how to construct more efficient AS-PKE
schemes.

3.6 Discussion

The proposed AS-PKE scheme is based on the KP-ABE scheme proposed by
Lewko et al. and the CP-ABE with hidden access structures proposed by Lai
et al. [7,11]. Different from the KP-ABE scheme [7] which works in a small
universe of attributes, the keywords in the proposed AS-PKE scheme have a
large universe (i.e. ZN). The proposed AS-PKE scheme can be easily extended
to obtain an anonymous dual-policy ABE scheme which implies a fully secure
dual-policy ABE scheme [14].

Similar to the KP-ABE scheme in [7], the proposed AS-PKE scheme has a
restriction that each keyword field can only be used once in a predicate, which is

Authorized Keyword Search on Encrypted Data 433

called one-use AS-PKE. We can construct a secure AS-PKE scheme where the
keyword fields can be used multiple times (up to a constant number of uses fixed
at setup) from a one-use AS-PKE scheme by applying the generic transformation
given in Lewko et al. [7].

4 Conclusion

This paper presented AS-PKE, a public-key encryption scheme supporting both
keyword search and access control capabilities. The AS-PKE scheme is con-
structed based on the KP-ABE scheme proposed by Lewko et al. [7] and the
CP-ABE with hidden access structure proposed by Lai et al. [11]. The scheme
supports monotone boolean predicates and is proven to be fully secure in the
standard model.

Acknowledgments. The work of Jie Shi was supported by the National Natu-
ral Science Foundation of China (No. 61300227), and the Guangdong Provincial
Natural Science Foundation (No. S2013040015711). The work of Junzuo Lai was
supported by the National Natural Science Foundation of China (Nos. 61300226,
61272534), the Research Fund for the Doctoral Program of Higher Education of
China (No. 20134401120017), the Guangdong Provincial Natural Science Foun-
dation (No. S2013040014826), and the Fundamental Research Funds for the Cen-
tral Universities. The work of Jian Weng was supported by the National Science
Foundation of China (Nos. 61272413, 61133014), the Fok Ying Tung Education
Foundation (No. 131066), the Program for New Century Excellent Talents in
University (No. NCET-12-0680), the Research Fund for the Doctoral Program
of Higher Education of China (No. 20134401110011), and the Foundation for
Distinguished Young Talents in Higher Education of Guangdong (No. 2012LYM
0027).

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee,
G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (2010)

2. Li, M., Yu, S., Cao, N., Lou, W.: Authorized private keyword search over encrypted
data in cloud computing. In: ICDCS, pp. 383–392 (2011)

3. Benaloh, J., Chase, M., Horvitz, E., Lauter, K.: Patient controlled encryption:
ensuring privacy of electronic medical records. In: CCSW, pp. 103–114 (2009)

4. Li, M., Yu, S., Ren, K., Lou, W.: Securing personal health records in cloud comput-
ing: Patient-centric and fine-grained data access control in multi-owner settings.
In: Jajodia, S., Zhou, J. (eds.) SecureComm 2010. LNICST, vol. 50, pp. 89–106.
Springer, Heidelberg (2010)

5. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

434 J. Shi et al.

6. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

7. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

8. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

9. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

10. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

11. Lai, J., Deng, R.H., Li, Y.: Expressive CP-ABE with partially hidden access struc-
tures. In: ASIACCS, pp. 18–19 (2012)

12. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

13. Park, D.J., Kim, K., Lee, P.J.: Public key encryption with conjunctive field keyword
search. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 73–86.
Springer, Heidelberg (2005)

14. Attrapadung, N., Imai, H.: Dual-policy attribute based encryption. In: Abdalla, M.,
Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536,
pp. 168–185. Springer, Heidelberg (2009)

15. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
579–591. Springer, Heidelberg (2008)

16. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Proceedings of the 14th ACM Conference on Com-
puter and Communications Security, pp. 195–203. ACM (2007)

17. Cheung, L., Newport, C.C.: Provably secure ciphertext policy ABE. In: ACM Con-
ference on Computer and Communications Security, pp. 456–465 (2007)

18. Nishide, T., Yoneyama, K., Ohta, K.: Attribute-based encryption with partially
hidden encryptor-specified access structures. In: Bellovin, S.M., Gennaro, R.,
Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 111–129.
Springer, Heidelberg (2008)

19. Lai, J., Deng, R.H., Li, Y.: Fully secure cipertext-policy hiding CP-ABE. In: Bao,
F., Weng, J. (eds.) ISPEC 2011. LNCS, vol. 6672, pp. 24–39. Springer, Heidelberg
(2011)

20. Shi, E., Waters, B.: Delegating capabilities in predicate encryption systems. In:
Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 560–578. Springer,
Heidelberg (2008)

21. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer,
Heidelberg (2009)

22. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)

Authorized Keyword Search on Encrypted Data 435

23. Okamoto, T., Takashima, K.: Fully secure functional encryption with general re-
lations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

24. Hwang, Y.H., Lee, P.J.: Public key encryption with conjunctive keyword search and
its extension to a multi-user system. In: Takagi, T., Okamoto, T., Okamoto, E.,
Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 2–22. Springer, Heidelberg
(2007)

25. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007)

26. Sun, W., Yu, S., Lou, W., Hou, Y.T., Li, H.: Protecting your right: Attribute-based
keyword search with fine-grained owner-enforced search authorization in the cloud.
In: INFOCOM (2014)

27. Narayan, S., Gagné, M., Safavi-Naini, R.: Privacy preserving EHR system using
attribute-based infrastructure. In: CCSW, pp. 47–52 (2010)

28. Beimel, A.: Secure schemes for secret sharing and key distribution. PhD thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

29. Lewko, A.B., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011)

30. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

31. Lai, J., Zhou, X., Deng, R.H., Li, Y., Chen, K.: Expressive search on encrypted
data. In: Proceedings of the 8th ACM SIGSAC Symposium on Information, Com-
puter and Communications Security, ASIA CCS 2013, pp. 243–252. ACM, New
York (2013)

A Lemmas

The following five lemmas are used in the proof of Theorem 1. The proof of the
lemmas is detailed in (the appendix of) the full version of this paper, which is
accessible at http://www.mysmu.edu/faculty/yjli/ASPKE-full.pdf.

Lemma 1. Suppose that G satisfies Assumption 1. Then Gamereal and Game0

are computationally indistinguishable.

Lemma 2. Suppose that G satisfies Assumption 2. Then Gamek−1,2 and Gamek,1
are computationally indistinguishable.

Lemma 3. Suppose that G satisfies Assumption 2. Then Gamek,1 and Gamek,2
are computationally indistinguishable.

Lemma 4. Suppose that G satisfies Assumption 3. Then Gamekeywordl−1
and

Gamekeywordl
are computationally indistinguishable.

Lemma 5. Suppose that G satisfies Assumption 4. Then Gamefinal0 and
Gamefinal1 are computationally indistinguishable.

Double-Authentication-Preventing Signatures�

Bertram Poettering1 and Douglas Stebila2

1 Royal Holloway, University of London, United Kingdom
bertram.poettering@rhul.ac.uk

2 Queensland University of Technology, Brisbane, Australia
stebila@qut.edu.au

Abstract. Digital signatures are often used by trusted authorities to
make unique bindings between a subject and a digital object; for ex-
ample, certificate authorities certify a public key belongs to a domain
name, and time-stamping authorities certify that a certain piece of in-
formation existed at a certain time. Traditional digital signature schemes
however impose no uniqueness conditions, so a trusted authority could
make multiple certifications for the same subject but different objects,
be it intentionally, by accident, or following a (legal or illegal) coercion.
We propose the notion of a double-authentication-preventing signature,
in which a value to be signed is split into two parts: a subject and a mes-
sage. If a signer ever signs two different messages for the same subject,
enough information is revealed to allow anyone to compute valid signa-
tures on behalf of the signer. This double-signature forgeability property
discourages signers from misbehaving—a form of self-enforcement—and
would give binding authorities like CAs some cryptographic arguments to
resist legal coercion. We give a generic construction using a new type of
trapdoor functions with extractability properties, which we show can be
instantiated using the group of sign-agnostic quadratic residues modulo
a Blum integer.

Keywords: digital signatures, double signatures, dishonest signer, coer-
cion, compelled certificate creation attack, self-enforcement, two-to-one
trapdoor functions.

1 Introduction

Digital signatures are used in several contexts by authorities who are trusted to
behave appropriately. For instance, certificate authorities (CAs) in public key
infrastructures, who assert that a certain public key belongs to a party with a
certain identifier, are trusted to not issue fraudulent certificates for a domain
name; time-stamping services, who assert that certain information existed at a

� Parts of this work were funded by EPSRC Leadership Fellowship EP/H005455/1 and
by European Commission ICT Programme Contract ICT-2007-216676 ECRYPT II
(for BP), and by the Australian Technology Network and German Academic Ex-
change Service (ATN-DAAD) Joint Research Co-operation Scheme and Australian
Research Council (ARC) Discovery Project DP130104304 (for DS).

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 436–453, 2014.
c© Springer International Publishing Switzerland 2014

Double-Authentication-Preventing Signatures 437

certain point in time, are trusted to not retroactively certify information (they
should not “change the past”). In both of these cases, the authority is trusted
to make a unique binding between a subject—a domain name or time—and a
digital object—a public key or piece of information. However, traditional digital
signatures provide no assurance of the uniqueness of this binding. As a result,
an authority could make multiple bindings per subject.

Multiple bindings per subject can happen due to several reasons: poor man-
agement practices, a security breach, or coercion by external parties. Although
there have been a few highly publicized certificate authority failures due to either
poor management practices or security breaches, the vast majority of certificate
authorities seem to successfully apply technological measures—including audited
key generation ceremonies, secret sharing of signing keys, and use of hardware
security modules—to securely and correctly carry out their role.

However, CAs have few tools to resist coercion, especially in the form of le-
gal demands from governments. This was identified by Soghoian and Stamm [1]
as the compelled certificate creation attack. For example, a certificate authority
may receive a national security letter compelling it to assist in an investigation
by issuing a second certificate for a specified domain name but containing the
public key of the government agency, allowing the agency to impersonate Inter-
net services to the target of the investigation. Regardless of one’s opinions on
the merits of these legal actions, they are a violation of the trust promised by
certificate authorities: to never issue a certificate to anyone but the correct party.
The extent to which legal coercion of CAs occurs is unknown, however there are
indications that the technique is of interest to governments. A networking device
company named Packet Forensics sells a device for eavesdropping on encrypted
web traffic in which, reportedly, “users have the ability to import a copy of any
legitimate key they obtain (potentially by court order)”.1 Various documents
released by NSA contractor Edward Snowden in June–September 2013 indicate
government interest in executing man-in-the-middle attacks on SSL users.2

Two certificates for the same domain signed by a single CA indeed constitute
a cryptographic proof of fraud. However, in practice, it is currently up to the
“market” to decide how to respond: the nature of the response depends on the
scope and nature of the infraction and the CA’s handling of the issue. The
consequences that have been observed from real-world CA incidents range from
minimal, such as the CA revoking the extra certificates amid a period of bad
publicity (as in the 2011 Comodo incident3), up to the ultimate punishment
for a CA on the web: removal of its root certificate from web browsers’ lists of
trusted CAs (as in the 2011 DigiNotar incident [2], which was found to have
issued fraudulent certificates that were used against Iranian Internet users [3],
and which lead to the bankruptcy of DigiNotar).

For a CA making business decisions on management and security practices,
such consequences may be enough to convince it to invest in better systems.

1
http://www.wired.com/threatlevel/2010/03/packet-forensics/

2
https://www.schneier.com/blog/archives/2013/09/new_nsa_leak_sh.html

3
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html

http://www.wired.com/threatlevel/2010/03/packet-forensics/
https://www.schneier.com/blog/archives/2013/09/new_nsa_leak_sh.html
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html

438 B. Poettering and D. Stebila

For a CA trying to resist a lawful order compelling it to issue a fraudulent
certificate, such consequences may not be enough to convince a judge that it
should not be compelled to violate the fundamental duty with which it was
entrusted.

1.1 Contributions

We propose a new type of digital signature scheme for which the consequences
of certain signer behaviours are unambiguous: any double signing, for any rea-
son, leads to an immediate, irreversible, incontrovertible loss of confidence in
the signature system. This “fragility” provides no room for mistakes, thereby
encouraging “self-enforcement” of correct behaviour and allows a signer to make
a more compelling argument resisting lawful coercion. If a CA fulfills a request
to issue a double signature even to a lawful agency, the agency, by using the
certificate, enables the attacked party to issue arbitrary certificates as well.

In a double-authentication-preventing signature (DAPS), the data that is to
be signed is split into two parts: a subject and a message. If a signer ever signs
two messages for the same subject, then enough information is revealed for any-
one to be able to forge signatures on arbitrary messages, rendering the signer
immediately and irrevocably untrustworthy. More precisely, in addition to un-
forgeability we require a new security property for DAPS, double-signature ex-
tractability: from any two signatures on the same subject the signing key can be
fully recovered. Depending on the nature of the subjects, an honest signer may
need to track the list of subjects signed to avoid signing the same subject twice.

We give a generic construction for DAPS based on a new primitive called
extractable two-to-one trapdoor function which allows anyone, given two preim-
ages of the same value, to recover the trapdoor required for inverting the func-
tion. We show how to construct these functions using the group of sign-agnostic
quadratic residues modulo a Blum integer (RSA modulus), an algebraic refor-
mulation of a mathematical construction that has been used in several crypto-
graphic primitives. The resulting DAPS scheme is efficient; with 1024-bit signing
and verification keys, the signature size is about 20 KiB, and the runtime of our
implementation using libgcrypt is about 0.3 s for signing and 0.1 s for verifying.

1.2 Related Work

Certificate auditing and other techniques. Mechanisms such as Certificate Trans-
parency4 and others aim to identify malicious or incorrect CA behaviour by
collecting and auditing public certificates. Incorrect behaviour, such as a CA
issuing two certificates for the same domain name, can be identified and then
presented as evidence possibly leading to a loss of trust. DAPS differs in that
it provides an immediate and irrevocable loss of confidence and, importantly,
provides a completely non-interactive solution.

Self-enforcement and traitor tracing. Dwork et al. [4] introduced the notion of
self-enforcement in cryptography, in which the cryptosystem is designed to force

4
http://www.certificate-transparency.org/

http://www.certificate-transparency.org/

Double-Authentication-Preventing Signatures 439

the user to keep the functionality private, that is, to not delegate or transfer
the functionality to another user. There are a variety of techniques for ensuring
self-enforcement: tradeoffs in efficiency [4] or by allowing recovering of some
associated secret value with any delegated version of the secret information [5–7].
Broadcast encryption schemes often aim for a related notion, traitor tracing [8],
in which the broadcaster aims to detect which of several receivers have used their
private key to construct and distribute a pirate device; typically the broadcaster
can identify which private key was leaked. DAPS differs from this line of research
in that it does not aim to deter delegation or transferring of keys, rather it aims
to deter a single party from performing a certain local operation (double signing).

Accountable IBE. Goyal [9] aimed to reduce trust in the key generation centre
(KGC) in identity-based encryption.In accountable IBE, the key generation pro-
tocol between the user and the KGC results in one of a large number of possible
keys being generated, and which one is generated is unknown to the KGC. Thus
if the KGC issues a second key, it will with high probability be different, and
the two different keys for the same identity serve as a proof that the KGC mis-
behaved. This effectively allows IBE to achieve the same level of detection as
normal public key infrastructures: two certificates for the same subject serve as a
proof that the CA misbehaved. However, neither approach has the stronger level
of deterrence of DAPS: double signing leads to an immediate loss of confidence,
rather than just proof of misbehaving for consideration of prosecution.

Digital cash. Digital cash schemes [10] often aim to detect double spending:
a party who uses a token once maintains anonymity, but a party who uses a
token twice reveals enough information for her identity to be recovered and
traced. DAPS has some conceptual similarities, in that a party who signs two
messages with the same subject reveals enough information for her secret key to
be recovered. In both settings, double operations leak information, but double
spending in digital cash typically leaks only an identity, whereas double signing
in DAPS leaks the signer’s private key. It is interesting to note that the number-
theoretic structures our DAPS scheme builds on are similar to those used in
early digital cash to provide double spending traceability [10]: both schemes use
RSA moduli that can be factored if signers/spenders misbehave. However, there
does not seem to be a direct connection between the primitives.

One-time signatures. One-time signatures, first proposed by Lamport using a
construction based on hash functions [11], allow at most one message to be
signed. Many instances can be combined using Merkle trees [12] to allow multiple
signatures with just a single verification key, but key generation time becomes
a function of the total number of signatures allowed. DAPS differs in that the
number of messages to be signed need not be fixed a priori, and our construction
relies on number-theoretic trapdoor functions, rather than solely hash functions.

Fail-stop signatures. Fail-stop signatures [13–17] allow a signer to prove to a
judge that a forgery has occurred; a signer is protected against cryptanalytic
attacks by even an unbounded adversary. Verifiers too are protected against
computationally bounded signers who try to claim a signature is a forgery when

440 B. Poettering and D. Stebila

it is not. When a forgery is detected, generally the security of the scheme col-
lapses, because some secret information can be recovered, and so the security
of previous signatures is left in doubt. Forgery-resilient signatures [18] aim to
have similar properties to fail-stop signatures—the ability for a signer to prove
a cryptanalytic forgery—but discovery of a forgery does not immediately render
previous signatures insecure. Both focus on an honest signer proving someone
else has constructed a forgery, whereas DAPS is about what happens when a
dishonest or coerced signer signs two messages for the same subject.

Chameleon hash functions. Chameleon hash functions [19] are trapdoor-based
and randomized. Hashing is collision-resistant as long as only the public param-
eters are known. However, given the trapdoor and the message-randomness pair
used to create a specific hash value, a collision for that value can be efficiently
found. Some constructions allow the extraction of the trapdoor from any col-
lision [20, 21]. However, it remains open how DAPS could be constructed from
Chameleon hash functions.

2 Definitions

We now present our main definitions: a double-authentication-preventing sig-
nature and its security requirements: the standard (though slightly adapted)
notion of existential unforgeability, as well as the new property of signing key
extractability given two signatures on the same subject.

Notation. If S is a finite set, let U(S) denote the uniform distribution on S
and x←

R
S denote sampling x uniformly from S. If A and B are two probability

distributions, then notation A ≈ B denotes that the statistical distance between
A and B is negligible. If A is a (probabilistic) algorithm, then x ←R AO(y)
denotes running A with input y on uniformly random coins with oracle access
to O, and setting x to be the output. We use A(y; r) to explicitly identify the
random coins r on which the otherwise deterministic algorithm A is run.

Definition 1 (Double-authentication-preventing signature). A double-
authentication-preventing signature (DAPS) is a tuple of efficient algorithms
(KGen, Sign,Ver) as follows:

– KGen(1λ): On input security parameter 1λ, this algorithm outputs a signing
key sk and a verification key vk.

– Sign(sk, subj,msg): On input signing key sk and subject/message pair subj,
msg ∈ {0, 1}∗, this algorithm outputs a signature σ.

– Ver(vk, subj,msg, σ): On input verification key vk, subject/message pair subj,
msg ∈ {0, 1}∗, and candidate signature σ, this algorithm outputs 0 or 1.

Definition 2 (Correctness). A DAPS scheme is correct if, for all λ ∈ N,
for all key pairs (sk, vk) ←

R
KGen(1λ), for all subj,msg ∈ {0, 1}∗, and for all

signatures σ ←R Sign(sk, subj,msg), we have that Ver(vk, subj,msg, σ) = 1.

Our unforgeability notion largely coincides with the standard unforgeability
notion for digital signature schemes [22]; the main difference is that, for DAPS,

Double-Authentication-Preventing Signatures 441

Exp EUF
DAPS,A(λ):

1. SignedList← ∅
2. (sk, vk)←R KGen(1λ)
3. (subj∗,msg∗, σ∗)←R AOSign(vk)
If A queries OSign(subj,msg):

(a) Append (subj,msg) to SignedList
(b) σ ←R Sign(sk, subj,msg)
(c) Return σ to A

4. Return 1 iff all the following hold:

– Ver(vk, subj∗,msg∗, σ∗) = 1
– (subj∗,msg∗) �∈ SignedList
– ∀ subj,msg0,msg1:
if (subj,msg0), (subj,msg1) ∈ SignedList
then msg0 = msg1

ExpDSE
DAPS,A(λ):

1. (vk, (S1, S2))←R A(1λ)
2. sk′ ←R Extract(vk, (S1, S2))
3. Return 1 iff all the following hold:

– (S1, S2) is compromising
– sk′ is not the signing key cor-
responding to vk

ExpDSE∗
DAPS,A(λ):

1. (sk, vk)←R KGen(1λ)
2. (S1, S2)←R A(sk, vk)
3. sk′ ←R Extract(vk, (S1, S2))
4. Return 1 iff all the following hold:

– (S1, S2) is compromising
– sk′ �= sk

Fig. 1. Security experiments for DAPS: unforgeability and double signature ex-
tractability (without and with trusted setup)

forgeries crafted by the adversary are not considered valid if the adversary has
requested forgeries on different messages for the same subject.

Definition 3 (Existential unforgeability). A DAPS scheme is existentially
unforgeable under adaptive chosen message attacks if, for all efficient adver-
saries A, the success probability Succ EUF

DAPS,A(λ) := Pr[Exp EUF
DAPS,A(λ) = 1] in

the EUF experiment of Figure 1 is a negligible function.

Although Definition 3 ensures that signatures of DAPS are generally unforge-
able, we do want signatures to be forgeable in certain circumstances. In fact we
aim at an even higher goal: when two different messages have been signed for the
same subject, the signing key should leak from the two signatures. The notion
of compromising pairs of signatures makes this condition precise.

Definition 4 (Compromising pair of signatures). For a fixed verification
key vk, a pair (S1, S2) of subject/message/signature triples S1 = (subj1,msg1, σ1)
and S2 = (subj2,msg2, σ2) is compromising if σ1, σ2 are valid signatures on
different messages for the same subject; that is, if Ver(vk, subj1,msg1, σ1) = 1,
Ver(vk, subj2,msg2, σ2) = 1, subj1 = subj2, and msg1 �= msg2.

We now define the double-signature extractability requirement. Here, the ad-
versary takes the role of a malicious signer that aims to generate compromising
pairs of signatures that do not lead to successful signing key extraction. We con-
sider two scenarios: the trusted setup model, where key generation is assumed to
proceed honestly, and the untrusted setup model, where the adversary has full
control over key generation as well.

Definition 5 (Double-signature extractability). A double-authentication-
preventing signature DAPS is double-signature extractable (resp. with trusted
setup) if an efficient algorithm

442 B. Poettering and D. Stebila

– Extract(vk, (S1, S2)): On input verification key vk and compromising pair
(S1, S2), this algorithm outputs a signing key sk′.

is known such that, for all efficient adversaries A, the probability SuccDSE(∗)

DAPS,A(λ)

:= Pr[ExpDSE(∗)

DAPS,A(λ) = 1] of success in the DSE (resp. DSE∗) experiment of
Figure 1 is a negligible function in λ.

The DSE experiment assumes existence of an efficient predicate that verifies
that a candidate sk′ is the signing key corresponding to a verification key. In some
schemes, there may be several signing keys that correspond to a verification key
or it may be inefficient to check. However, for the scheme presented in Section 5,
when instantiated with the factoring-based primitive of Section 4, it is easy to
check that a signing key (p, q) corresponds to a verification key n; note that there
is a canonical representation of such signing keys (take p < q).

3 2:1 Trapdoor Functions and Extractability

We introduce the concept of 2:1 trapdoor functions (2:1-TDF). At a high level,
such functions are trapdoor one-way functions, meaning that they should be hard
to invert except with knowledge of a trapdoor. They are two-to-one, meaning
that the domain is exactly twice the size of the range, and every element of
the range has precisely two preimages. We also describe an additional property,
extractability, which means that given two distinct preimages of an element of
the range, the trapdoor can be computed.

Consider two finite sets, A and B, such that A is twice the size of B. Let
f : A → B be a surjective function such that, for any element b ∈ B, there are
exactly two preimages in A; f is not injective, so the inverse function does not
exist. Define instead f−1 : B × {0, 1} → A such that for each b ∈ B the two
preimages under f are given by f−1(b, 0) and f−1(b, 1). This partitions set A
into two subsets A0 = f−1(B, 0) and A1 = f−1(B, 1) of the same size.

A

A0

A1

B

Fig. 2. Illustration of a 2:1 trapdoor func-
tion f : A → B. Each element of B has
exactly two preimages, one in A0 and one
in A1

Function f is a 2:1-TDF if the fol-
lowing additional properties hold: sets
A0, A1, and B are efficiently sam-
plable, function f is efficiently com-
putable, and inverse function f−1 is
hard to compute unless some specific
trapdoor information is known. We fi-
nally require an extraction capability:
there should be an efficient way to re-
cover the trapdoor for the computa-
tion of f−1 from any two elements
a0 �= a1 with f(a0) = f(a1) (we will
also write a0

x∼ a1 for such configu-
rations). The setting of 2:1-TDFs is il-
lustrated in Figure 2. We will formalize
the functionality and security proper-
ties below.

Double-Authentication-Preventing Signatures 443

3.1 Definition

We give a formal definition of 2:1-TDF and its correctness, and establish after-
wards that it implements the intuition developed above.

Definition 6 (2:1 trapdoor function). A 2:1 trapdoor function (2:1-TDF)
is a tuple of efficient algorithms (TdGen,Apply,Reverse,Decide) as follows:

– TdGen(1λ): On input security parameter 1λ, this randomized algorithm out-
puts a pair (td, pub), where td is a trapdoor and pub is some associated
public information. Each possible outcome pub implicitly defines finite sets
A = A(pub) and B = B(pub).

– Apply(pub, a): On input public information pub and element a ∈ A(pub),
this deterministic algorithm outputs an element b ∈ B(pub).

– Reverse(td, b, d): On input trapdoor td, element b ∈ B(pub), and bit d ∈
{0, 1}, this deterministic algorithm outputs an element a ∈ A(pub).

– Decide(pub, a): On input public information pub and element a ∈ A(pub),
this deterministic algorithm outputs a bit d ∈ {0, 1}.

Definition 7 (Correctness of 2:1-TDF). A 2:1-TDF is correct if, for all
(td, pub)←

R
TdGen, all d ∈ {0, 1}, all a ∈ A(pub), and all b ∈ B(pub), we have

that (1) a ∈ Reverse(td,Apply(pub, a), {0, 1}), (2) Apply(pub,Reverse(td, b, d)) =
b, and (3) Decide(pub,Reverse(td, b, d)) = d.

Let (td, pub) be output by TdGen. Consider partition A(pub) = A0(pub)
.
∪

A1(pub) obtained by setting Ad(pub) = {a ∈ A(pub) : Decide(pub, a) = d},
for d ∈ {0, 1}. It follows from correctness requirement (3) that function ψd :=
Reverse(td, ·, d) is a mapping B(pub) → Ad(pub). Note that ψd is surjective by
condition (1), and injective by condition (2). Hence, we have bijections ψ0 :
B(pub)→ A0(pub) and ψ1 : B(pub)→ A1(pub). Thus, |A0(pub)| = |A1(pub)| =
|B(pub)| = |A(pub)|/2.

Define now relation x∼ ⊆ A(pub)×A(pub) such that

a x∼ a′ ⇐⇒ Apply(pub, a) = Apply(pub, a′) ∧ Decide(pub, a) �= Decide(pub, a′).

Note that for each a ∈ A(pub) there exists exactly one a′ ∈ A(pub) such that
a x∼ a′; indeed, if a ∈ Ad(pub), then a′ = ψ1−d(ψ−1

d (a)) ∈ A1−d(pub). Observe
how algorithms Apply and Reverse correspond to functions f : A → B and
f−1 : B × {0, 1} → A discussed at the beginning of Section 3.

We next extend the functionality of 2:1-TDFs to include extraction of the
trapdoor: knowledge of any two elements a0, a1 ∈ A with a0 �= a1∧f(a0) = f(a1)
shall immediately reveal the system’s inversion trapdoor.

Definition 8 (Extractable 2:1-TDF). A 2:1-TDF is extractable if an effi-
cient algorithm

– Extract(pub, a, a′): On input public information pub and a, a′ ∈ A(pub), this
algorithm outputs a trapdoor td∗.

is known such that, for all (td, pub) output by TdGen and all a, a′ ∈ A(pub) with
a x∼ a′, we have Extract(pub, a, a′) = td.

444 B. Poettering and D. Stebila

Exp INV-1
X,A (λ):

1. (td, pub)←R TdGen(1λ)
2. b ←R B(pub)
3. a ←R A(pub, b)
4. Return 1 iff Apply(pub, a) = b

Exp INV-2
X,B (λ):

1. (td, pub)←R TdGen(1λ)
2. a ←R A(pub)
3. a′ ←R B(pub, a)
4. Return 1 iff a x∼ a′

Fig. 3. Security experiments for (second) preimage resistance of 2:1-TDF X

3.2 Security Notions

We proceed with the specification of the principal security property of 2:1-TDFs:
one-wayness. Intuitively, it should be infeasible to find preimages and second
preimages of the Apply algorithm without knowing the corresponding trapdoor.

Definition 9 (Preimage resistance of 2:1-TDF). A 2:1-TDF X is preim-
age resistant if Succ INV-1

X,A (λ) := Pr[Exp INV-1
X,A (λ) = 1] and second preimage re-

sistant if Succ INV-2
X,B (λ) := Pr[Exp INV-2

X,B (λ) = 1] are respectively negligible func-

tions in λ, for all efficient adversaries A and B, where Exp INV-1
X,A and Exp INV-2

X,B
are as in Figure 3.

As expected, second preimage resistance implies preimage resistance. Perhaps
more surprising is that notions INV-1 and INV-2 are equivalent for extractable
2:1-TDFs. The proofs of the following lemmas appear in the full version [23].

Lemma 1 (INV-2 ⇒ INV-1). Let X be a 2:1-TDF and let A be an efficient
algorithm for the INV-1 experiment. Then there exist an efficient algorithm B
for the INV-2 experiment such that Succ INV-1

X,A (λ) ≤ 2 · Succ INV-2
X,B (λ).

Lemma 2 (INV-1 ⇒ INV-2 for extractable 2:1-TDF). Let X be an ex-
tractable 2:1-TDF and let B be an efficient algorithm for the INV-2 experiment.
Then there exists an efficient algorithm A for the INV-1 experiment such that
Succ INV-2

X,B (λ) = Succ INV-1
X,A (λ).

4 Constructing Extractable 2:1 Trapdoor Functions

Having introduced 2:1-TDFs and extractable 2:1-TDFs, we now show how to
construct these primitives: we propose an efficient extractable 2:1-TDF and prove
it secure, assuming hardness of the integer factorization problem.

Our construction builds on a specific structure from number theory, the group
of sign-agnostic quadratic residues. This group was introduced to cryptography
by Goldwasser, Micali, and Rivest in [22], and rediscovered 20 years later by
Hofheinz and Kiltz [24]. We first reproduce the results of [22,24] and then extend
them towards our requirements.5

5 Goldwasser et al. gave no name to this group; Hofheinz and Kiltz called it the group
of signed quadratic residues, but this seems to be a misnomer as the whole point is
to ignore the sign, taking absolute values and forcing the elements to be between 0
and (n− 1)/2; hence our use of the term sign-agnostic.

Double-Authentication-Preventing Signatures 445

In our exposition, we assume that the reader is familiar with properties of Z×
n

(the mutiplicative group of integers modulo n), Jn (the subgroup of Z×
n with

Jacobi symbol equal to 1), and QRn (quadratic residues modulo n), for Blum
integers n. If we additionally define Jn = Z×

n \ Jn and QRn = Jn \QRn, these
five sets are related to each other as visualized in Figure 4 (left). Also illustrated
is the action of the squaring operation: it is 4:1 from Z×

n to QRn, 2:1 from Jn
to QRn, and 1:1 (i.e., bijective) from QRn to QRn. For reference, we reproduce
all number-theoretic details relevant to this paper in the full version [23].

4.1 Sign-Agnostic Quadratic Residues

For an RSA modulus n, it is widely believed that efficiently distinguishing el-
ements in QRn from elements in QRn is a hard problem. It also seems to be
infeasible to sample elements from QRn without knowing a square root of the
samples, or to construct hash functions that map to QRn and could be mod-
eled as random oracles. However, such properties are a prerequisite in certain
applications in cryptography [24], which renders group QRn unsuitable for such
cases. As we see next, by switching from the group of quadratic residues modulo
n to the related group of sign-agnostic quadratic residues modulo n, sampling
and hashing becomes feasible.

The use of sign-agnostic quadratic residues in cryptography is explicitly pro-
posed in [22,24]. However, some aspects of the algebraical structure of this group
are concealed in both works by the fact that the group operation is defined to
act directly on specific representations of elements. In the following paragraphs
we use a new and more consistent notation that aims at making the algebraical
structure more readily apparent.

Let (H, ·) be an arbitrary finite abelian group that contains an element T ∈
H \ {1} such that T 2 = 1. Then {1, T } is a (normal) subgroup in H , that is,
quotient group H/{1,T} is well-defined, ψ : H → H/{1,T} : x �→ {x, Tx} is a
group homomorphism, and |ψ(H)| = |H/{1,T}| = |H |/2 holds. Further, for all
subgroups G ≤ H we have that ψ(G) ≤ ψ(H) = H/{1,T}. In such cases, if G is
such that T ∈ G, then |ψ(G)| = |G/{1,T}| = |G|/2 as above; otherwise, if T �∈ G,
then |ψ(G)| = |G| and thus ψ(G) ∼= G.

Consider now the specific group H = Z×
n , for a Blum integer n. Then T = −1

has order 2 in Z×
n and above observations apply, with mapping ψ : x �→ {x,−x}.

For any subgroup G ≤ Z×
n , let G/±1 := ψ(G). For subgroup QRn ≤ Z×

n , as
−1 �∈ QRn, we have QRn/±1

∼= QRn and thus |QRn/±1| = ϕ(n)/4. Moreover,
as Jn ≤ Z×

n and −1 ∈ Jn, we have |Jn/±1| = |Jn|/2 = ϕ(n)/4. Similarly we
see |Z×

n /±1| = ϕ(n)/2. After setting QRn/±1 := (Z×
n /±1) \ (QRn/±1) we finally

obtain |QRn/±1| = ϕ(n)/4.
Note that we just observed QRn/±1 ≤ Jn/±1 ≤ Z×

n /±1 and |QRn/±1| =
ϕ(n)/4 = |Jn/±1|. The overall structure is hence QRn/±1 = Jn/±1 � Z×

n /±1, as
illustrated in Figure 4 (right). After agreeing on notations {±x} = {x,−x} and
{±x}2 = {±(x2)} we obtain the following (proven in the full version [23]):

Lemma 3. Let n be a Blum integer, then QRn/±1 =
{
{±x}2 : {±x} ∈ Z×

n /±1

}
.

446 B. Poettering and D. Stebila

Z×
n

Jn

QRn

QRn

Jn

Z×
n /±1

QRn/±1

= Jn/±1
QRn/±1

Fig. 4. Illustration of Z×
n and Z×

n /±1 (for Blum integers n), and subgroups QRn, Jn,
and Jn/±1 = QRn/±1. Also visualized is the action of the squaring operation.

Moreover, by exploiting identity QRn/±1 = Jn/±1, we directly get the fol-
lowing characterizations of QRn/±1 and QRn/±1. Observe that the sets are
well-defined since

(
x
n

)
=
(−x

n

)
for all x ∈ Z×

n .

QRn/±1 =
{
{±x} ∈ Z×

n /±1 :
(
x
n

)
= +1

}
(1)

QRn/±1 =
{
{±x} ∈ Z×

n /±1 :
(
x
n

)
= −1

}
. (2)

Many facts on the structure of Z×
n can be lifted to Z×

n /±1. This holds in
particular for the following five lemmas and corollaries, which we prove in the
full version [23]. We stress that the following results do not appear in [22, 24].

Lemma 4 (Square roots in Z×
n /±1). Let n be a Blum integer. Every el-

ement {±y} ∈ QRn/±1 has exactly two square roots in Z×
n /±1. More pre-

cisely, there exist unique {±x0} ∈ QRn/±1 and {±x1} ∈ QRn/±1 such that
{±x0}2 = {±y} = {±x1}2. The factorization of n can readily be recovered from
such pairs {±x0}, {±x1}: non-trivial divisors of n are given by gcd(n, x0 − x1)
and gcd(n, x0 + x1). Square roots in Z×

n /±1 can be efficiently computed if the
factors of n = pq are known.

Corollary 1 (Squaring in Z×
n /±1, QRn/±1, QRn/±1). Let n be a Blum in-

teger. The squaring operation Z×
n /±1 → QRn/±1 : {±x} �→ {±x}2 is a 2:1

mapping. Moreover, squaring is a 1:1 function from QRn/±1 to QRn/±1 and
from QRn/±1 to QRn/±1. These relations are illustrated in Figure 4 (right).

Lemma 5 (Computing square roots in Z×
n /±1 is hard). Let n be a Blum

integer. Computing square roots in Z×
n /±1 is as hard as factoring n.

Lemma 6 (Samplability and decidability). Let n be a Blum integer and
t ∈ Z×

n be fixed with
(
t
n

)
= −1. The algorithm that samples a←

R
Zn and returns

{±a} generates a distribution that is statistically indistinguishable from uniform
on Z×

n /±1. If the algorithm is modified such that it returns {±a} if
(
a
n

)
= +1

and {±ta} if
(
a
n

)
= −1, then the output is statistically indistinguishable from

uniform on QRn/±1. QRn/±1 can be sampled correspondingly. Sets QRn/±1

and QRn/±1 are efficiently decidable (within Z×
n /±1) by equations (1) and (2).

Double-Authentication-Preventing Signatures 447

Lemma 7 (Indifferentiable hashing into QRn/±1). Let H
′ : {0, 1}∗ → Jn

denote a hash function that is indifferentiable from a random oracle (see the full
version [23] on how to construct one). Consider auxiliary function G : Jn →
QRn/±1 : y �→ {±y} and let H = G ◦ H ′. Then H : {0, 1}∗ → QRn/±1 is
indifferentiable as well.

Remark 1 (Representation of elements). An efficient and compact way to repre-
sent elements {±x} ∈ Z×

n /±1 is by the binary encoding of x = min{x, n− x} ∈
[1, (n− 1)/2], as proposed by [22]. The decoding procedure is x �→ {x,−x}.

4.2 Constructing a 2:1-TDF from Sign-Agnostic Quadratic Residues

We use the tools from Section 4.1 to construct a factoring-based extractable 2:1-
TDF, which will map Z×

n /±1 → QRn/±1. While the Apply algorithm corresponds
to squaring, extractability is possible given distinct square roots of an element.

Construction 1 (Blum-2:1-TDF). Define algorithms Blum-2:1-TDF = (TdGen,
Apply,Reverse,Decide,Extract) as follows:

– TdGen(1λ): Pick random Blum integer n = pq of length λ such that p < q.
Pick t ∈ Z×

n with
(
t
n

)
= −1. Return pub ← (n, t) and td ← (p, q). We will

use sets A0(pub) := QRn/±1, A1(pub) := QRn/±1, A(pub) := Z×
n /±1, and

B(pub) := QRn/±1.
– Apply(pub, {±a}): Return {±b} ← {±a}2.
– Reverse(td, {±b}, d): By Lemma 4, element {±b} ∈ QRn/±1 has exactly two

square roots: {±a0} ∈ QRn/±1 and {±a1} ∈ QRn/±1. Return {±ad}.
– Decide(pub, {±a}): Return 0 if {±a} ∈ QRn/±1; otherwise return 1.
– Extract(pub, {±a0}, {±a1}): Both gcd(n, a0 − a1) and gcd(n, a0 + a1) are

non-trivial factors of n = pq. Return td∗ ← (p, q) such that p < q.

These algorithms are all efficient. Correctness of Blum-2:1-TDF and the security
properties follow straightforwardly from the number-theoretic facts established
in Sections 4.1; a formal proof appears in the full version [23]. Observe that the
samplability of sets A,A0, A1, B is warranted by Lemma 6.

Theorem 1 (Security and extractability of Blum-2:1-TDF). Blum-2:1-TDF
is (second) preimage resistant (Def. 9) under the assumption that factoring is
hard, and extractable (Def. 8).

Remark 2 (Choice of element t). In Construction 1, public element t can be
any quadratic non-residue; small values likely exist and might be favorable for
storage efficiency. Observe that, if p ≡ 3 mod 8 and q ≡ 7 mod 8, for t = 2 we
always have

(
t
n

)
= −1, so there is not need to store t at all.

5 DAPS Construction Based on Extractable 2:1-TDF

We now come to the central result of this paper, a DAPS scheme generically
constructed from any extractable 2:1 trapdoor function, such as the factoring-
based Blum-2:1-TDF from the previous section.

448 B. Poettering and D. Stebila

KGen(1λ) : Return (sk, vk) = (td, pub) where (td, pub)←R TdGen(1λ2)

Sign(sk, subj,msg) :

1. s ← Reverse(td,Hpub(subj), 0)
2. (d1, . . . , dλh

)← H#(subj, s,msg)
3. For 1 ≤ i ≤ λh :

(a) bi ← Hpub(subj, s, i)
(b) ai ← Reverse(td, bi, di)

4. Return σ ← (s, a1, . . . , aλh
)

Ver(vk, subj,msg, σ) :

1. Parse (s, a1, . . . , aλh
)← σ

2. If Decide(pub, s) �= 0, return 0
3. If Apply(pub, s) �= Hpub(subj), return 0
4. (d1, . . . , dλh

)← H#(subj, s,msg)
5. For 1 ≤ i ≤ λh :

(a) If Apply(pub, ai) �= Hpub(subj, s, i), return 0
(b) If Decide(pub, ai) �= di, return 0

6. Return 1

Fig. 5. Double-authentication-preventing signature scheme 2:1-DAPS

Construction 2 (DAPS from extractable 2:1-TDF). Let λ denote a secu-
rity parameter, and let λ2 and λh be parameters polynomially dependent on λ. Let
X = (TdGen,Apply,Reverse,Decide) be an extractable 2:1 trapdoor function and
let H# : {0, 1}∗ → {0, 1}λh be a hash function. For each pub output by TdGen, let
Hpub : {0, 1}∗ → B(pub) be a hash function. Double-authentication-preventing
signature scheme 2:1-DAPS consists of the algorithms specified in Figure 5.

The basic idea of the signing algorithm is as follows. From any given subject,
the signer derives message-independent signing elements b1, . . . , bλh

∈ B.6 The
signer also hashes subject and message to a bit string d1 . . . dλh

; for each bit di,
she finds the preimage ai of the signing element bi which is in the di partition
of A; either in A0 or A1. The signature σ is basically the vector of these preim-
ages. Intuitively, the scheme is unforgeable because it is hard to find preimages
of signing elements bi without knowing the trapdoor. The scheme is extractable
because the signing elements bi are only dependent on the subject, so the sig-
natures of two different messages for the same subject use the same bi; if H# is
collision resistance, at least one different di is used in the two signatures, so two
distinct preimages of bi are used, allowing recovery of the trapdoor.

5.1 Security of Our Construction

We next establish existential unforgeability of 2:1-DAPS (cf. Definition 3). The
proof proceeds by changing the EUF simulation so that it performs all operations
without using the signing key and without (noticeably) changing the distribution
of verification key and answers to A’s oracle queries. From any forgery crafted by
adversaryA, either a preimage or second preimage of X , or a collision of H# can
be extracted. Observe that, by Lemma 1, it suffices to require second preimage
resistance of X in Theorem 2. The proof appears in the full version [23].

Theorem 2 (2:1-DAPS is EUF). In the setting of Construction 2, if X is sec-
ond preimage resistant, H# is collision-resistant, and Hpub is a random or-
acle, then double-authentication-preventing signature 2:1-DAPS is existentially

6 For rationale on why the subj-dependent value s is required see the full version [23].

Double-Authentication-Preventing Signatures 449

unforgeable under adaptive chosen message attacks. More precisely, for any effi-
cient EUF algorithm A making at most q1 queries to Hpub(·) and qS queries to
OSign oracle, there exist efficient algorithms B1, B2, and C such that

Succ EUF
2:1-DAPS,A(λ) ≤ q1Succ

INV-1
X,B1

(λ2) + 2qSλh Succ
INV-2
X,B2

(λ2) +SuccCR
H#,C(λh),

where Succ CR
H#,C(λh) is the success probability of algorithm C in finding collisions

of hash function H#.

Assuming collision resistance of H#, two signatures for different messages but
the same subject result in some index i where the hashes H#(subj, s,msg1) and
H#(subj, s,msg2) differ. The corresponding ith values ai in the two signatures
can be used to extract the signing key. This is the intuition behind Theorem 3;
the proof appears in the full version [23].

Theorem 3 (2:1-DAPS is DSE∗). In the setting of Construction 2, if X is
extractable and H# is collision-resistant, then double-authentication-preventing
signature 2:1-DAPS is double-signature extractable with trusted setup.7

5.2 Efficiency of Our Construction

Table 1 shows the size of verification keys, signing keys, and signatures, and
the cost of signature generation and verification for the 2:1-DAPS based on
Blum-2:1-TDF, with abstract results as well as for 1024- and 2048-bit keys. We
assume the element representation from Remark 1, the verification key optimiza-
tion from Remark 2, and an implementation of Hpub as in Lemma 7.

We also report the results of our implementation of DAPS using the libgcrypt
cryptographic library.8 As libgcrypt does not have routines for square roots or
Jacobi symbols, we implemented our own, and we expect that there may be space
for improvement with optimized implementations of these operations. Timings
reported are an average of 50 iterations, performed on a 2.6 GHz Intel Core i7
(3720QM) CPU, using libgcrypt 1.5.2, compiled in x86 64 mode using LLVM
3.3 and compiler flag -O3. Source code for our implementation is available online
at http://eprints.qut.edu.au/73005/.

With 1024-bit signing and verification keys, a signature is about 20 KiB in
size, and takes about 0.341 s to generate and 0.105 s to verify. While less efficient
than a regular signature scheme, we believe these timings are still tolerable; this
holds in particular if our scheme is used to implement CA functionality where
signature generation happens rarely and verification results can be cached.

6 Applications

DAPS allows applications that employ digital signatures for establishing unique
bindings between digital objects to provide self-enforcement for correct signer

7 See the full version [23] for how to achieve double-signature extractability without
trusted setup using zero-knowledge proofs.

8
http://www.gnu.org/software/libgcrypt/

http://eprints.qut.edu.au/73005/
http://www.gnu.org/software/libgcrypt/

450 B. Poettering and D. Stebila

Table 1. Efficiency of 2:1-DAPS based on sign-agnostic quadratic residues

General analysis libgcrypt implementation

λh — 160 160
λ2 (size of n in bits) — 1024 2048

Key generation time — 0.097 s 0.759 s
Signing key size (bits) log2 n 1024 2048
Verification key size (bits) log2 n 1024 2048

Signature generation cost (λh + 1) · Jac, (λh + 1) · sqrt 0.341 s 1.457 s
Signature size (bits) (λh + 1) log2 n 164 864 = 20KiB 329 728 = 40KiB

Signature verification cost (2λh + 1) · Jac, (λh + 1) · sqr 0.105 s 0.276 s

Legend: Jac: computation of Jacobi symbol modulo n; sqrt: square root modulo n;
sqr: squaring modulo n.

behaviour, and resistance by signers to coercion. Whenever the verifier places
high value on the uniqueness of the binding, it may be worthwhile to employ
DAPS instead of traditional digital signatures, despite potential increased dam-
age when signers make mistakes.

It should be noted that use of DAPS may impose an additional burden on
honest signers: they need to maintain a list of previously signed subjects to
avoid double signing. Some signers may already do so, but the importance of
the correctness of this list is increased with DAPS. As noted below, signers may
wish to use additional protections to maintain their list of signed subjects, for
example by cryptographically authenticating it using a message authentication
code with a key in the same hardware security module as the main signing key.

In this section, we examine a few cryptographic applications involving unique
bindings and discuss the potential applicability of DAPS.

Certificate authorities. DAPS could be used to ensure that certification au-
thorities in the web PKI behave as expected. For example, by having the sub-
ject consist of the domain name and the year, and the message consist of the
public key and other certificate details, a CA who signs one certificate for
“www.example.com” using DAPS cannot sign another for the same domain and
time period without invalidating its own key. A CA using DAPS must then
be stateful, carefully tracking the previous subjects signed and refusing to sign
duplicates. In commercial CAs, where signing is done on a hardware security
module (HSM), the list of subjects signed should be kept under authenticated
control of the HSM.

A DAPS-based PKI would need to adopt an appropriate convention on va-
lidity periods to accommodate expiry of certificates without permitting double-
signing. For example, a DAPS PKI may use a subject with a low-granularity non-
overlapping validity period (“www.example.com‖2014”) since high-granularity
overlapping validity periods in the subject give a malicious CA a vector for issu-
ing two certificates without signing the exact same subject twice (“www.example
.com‖20140501-20150430” versus “www.example.com‖20140502-20150501”).

Double-Authentication-Preventing Signatures 451

Furthermore, a DAPS-based PKI could support revocation using standard
mechanisms such as certificate revocation lists. Reissuing could be achieved by
including a counter in the DAPS subject (e.g., “www.example.com‖2014‖0”)
and using DAPS-based revocation to provide an unambiguous and unalterable
auditable chain from the initial certificate to the current one.

One of the major problems with multi-CA PKIs such as the web PKI is that
clients trust many CAs, any one of which can issue a certificate for a particu-
lar subject. A DAPS-based PKI would prevent one CA from signing multiple
certificates for a subject, but not other CAs from also signing certificates for
that subject. It remains a very interesting open question to find cryptographic
constructions that solve the multi-CA PKI problem.

Time-stamping. A standard approach to preventing time-stamping authorities
from “changing the past” is to require that, when asserting that certain pieces of
information x exist at a particular time t, the actual message being signed must
also include the (hash of) messages authenticated in the previous time periods.
The authority is prevented from trying to change the past and assert that x′ �= x
existed at time t because the signatures issued at time periods t + 1, t + 2, . . .
chain back to the original message x.

DAPS could be used to alternatively discourage time-stamping authority
fraud by having the subject consist of the time period t and the message consist
of whatever information x is to be signed at that time period. A time-stamping
authority who signs an assertion for a given time period using DAPS cannot
sign another for the same time period without invalidating its own key. Assum-
ing an honest authority’s system is designed to only sign once per time period,
the signer need not track all signed subjects, since time periods automatically
increment.

Hybrid DAPS + standard signatures. DAPS could be combined with a standard
signature scheme to provide more robustness in the case of an accidental error,
but also provide a clear and quantifiable decrease in security due to a double
signing, giving users a window of time in which to migrate away from the signer.

We can achieve this goal by augmenting a generic standard signature scheme
with our factoring-based DAPS as follows. The signer publishes a public key
consisting of the standard signature’s verification key, the 2:1-DAPS verification
key n, and a verifiable Rabin encryption under key n of, say, the first half of
the bits of the standard scheme’s signing key. The hybrid DAPS signature for a
subject/message pair would consist of the standard scheme’s signature on subject
and message concatenated, and the DAPS signature on separated subject and
message. If two messages are ever signed for the same subject, then the signer’s
DAPS secret key can be recovered, which can then be used to decrypt the Rabin
ciphertext containing the first half of the standard scheme’s signing key. This is
not quite enough to readily forge signatures, but it substantially and quantifiably
weakens trust in this signer’s signatures, making it clear that migration to a new
signer must occur but still providing a window of time in which to migrate. As the

452 B. Poettering and D. Stebila

sketched combination of primitives exhibits non-standard dependencies between
different secret keys, a thorough cryptographic analysis would be required.

7 Conclusions

We have introduced a new type of signatures, double-authentication-preventing
signatures, in which a subject/message pair is signed. In certain situations, DAPS
can provide greater assurance to verifiers that signers behave honestly since
there is a great disincentive for signers who misbehave: if a signer ever signs
two different messages for the same subject, then enough information is revealed
to allow anyone to fully recover the signer’s secret key. Although this leads to
less robustness in the face of accidental errors, it also provides a mechanism for
self-enforcement of correct behaviour and gives trusted signers such as CAs an
argument to resist coercion and the compelled certificate creation attack.

Our construction is based on a new primitive called extractable 2:1 trapdoor
functions. We have shown how to instantiate this using an algebraic reformu-
lation of sign-agnostic quadratic residues modulo Blum integers; the resulting
DAPS is unforgeable assuming factoring is hard, with reasonable signature sizes
and computation times.

We believe DAPS can be useful in scenarios where trusted authorities are
meant to make unique bindings between identifiers and digital objects, such
as certificate authorities in PKIs who are supposed to make unique bindings
between domain names and public keys, and time-stamping authorities who are
supposed to make unique bindings between time periods and pieces of data.

Besides the practical applications of DAPS, several interesting theoretical
questions arise from our work. Are there more efficient constructions of DAPS?
How else can extractable 2:1 trapdoor functions be instantiated? Given that
DAPS and double-spending-resistant digital cash use similar number-theoretic
primitives, can DAPS be used to generically construct untraceable digital cash?
Can these techniques be applied to key generation in the identity-based setting?
Can DAPS be adapted to provide assurance in a multi-CA setting?

References

1. Soghoian, C., Stamm, S.: Certified lies: Detecting and defeating government inter-
ception attacks against SSL (short paper). In: Danezis, G. (ed.) FC 2011. LNCS,
vol. 7035, pp. 250–259. Springer, Heidelberg (2012)

2. Fox-It: Black tulip: Report of the investigation into the DigiNotar certificate au-
thority breach (2012)

3. Google Online Security Blog: An update on attempted man-in-the-middle attacks
(2011)

4. Dwork, C., Lotspiech, J.B., Naor, M.: Digital signets: Self-enforcing protection of
digital information (preliminary version). In: 28th ACM STOC, pp. 489–498. ACM
Press (1996)

5. Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

Double-Authentication-Preventing Signatures 453

6. Jakobsson, M., Juels, A., Nguyên, P.Q.: Proprietary certificates. In: Preneel, B.
(ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 164–181. Springer, Heidelberg (2002)

7. Kiayias, A., Tang, Q.: How to keep a secret: leakage deterring public-key cryp-
tosystems. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp.
943–954. ACM Press (2013)

8. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

9. Goyal, V.: Reducing trust in the PKG in identity based cryptosystems. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430–447. Springer, Heidelberg (2007)

10. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, Heidelberg (1990)

11. Lamport, L.: Constructing digital signatures from a one way function. Technical
Report CSL-98, SRI International (1979)

12. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

13. Waidner, M., Pfitzmann, B.: The dining cryptographers in the disco: Unconditional
sender and recipient untraceability with computationally secure serviceability. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
690–690. Springer, Heidelberg (1990)

14. van Heyst, E., Pedersen, T.P.: How to make efficient fail-stop signatures. In: Ruep-
pel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 366–377. Springer, Hei-
delberg (1993)

15. van Heijst, E., Pedersen, T.P., Pfitzmann, B.: New constructions of fail-stop sig-
natures and lower bounds (extended abstract). In: Brickell, E.F. (ed.) CRYPTO
1992. LNCS, vol. 740, pp. 15–30. Springer, Heidelberg (1993)

16. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)

17. Pedersen, T.P., Pfitzmann, B.: Fail-stop signatures. SIAM Journal on Comput-
ing 26, 291–330 (1997)

18. Mashatan, A., Ouafi, K.: Forgery-resilience for digital signature schemes. In: Proc.
7th ACM Symposium on Information, Computer and Communications Security
(ASIACCS 2012), pp. 24–25. ACM (2012)

19. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000. The Internet
Society (2000)

20. Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)

21. Ateniese, G., de Medeiros, B.: Identity-based chameleon hash and applications. In:
Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 164–180. Springer, Heidelberg (2004)

22. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17, 281–308 (1988)

23. Poettering, B., Stebila, D.: Double-authentication-preventing signatures (full ver-
sion). Cryptology ePrint Archive, Report 2013/333 (2014)

24. Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg
(2009)

Statistical Properties of Pseudo Random Sequences
and Experiments with PHP and Debian OpenSSL

Yongge Wang1 and Tony Nicol2

1 UNC Charlotte, USA
2 University of Liverpool, UK

yongge.wang@uncc.edu, tonynicol@inbox.com

Abstract. NIST SP800-22 (2010) proposed the state of the art statistical test-
ing techniques for testing the quality of (pseudo) random generators. However,
it is easy to construct natural functions that are considered as GOOD pseudo-
random generators by the NIST SP800-22 test suite though the output of these
functions is easily distinguishable from the uniform distribution. This paper pro-
poses solutions to address this challenge by using statistical distance based testing
techniques. We carried out both NIST tests and LIL based tests on the following
pseudorandom generators by generating more than 200TB of data in total: (1)
the standard C linear congruential generator, (2) Mersenne Twister pseudoran-
dom generator, (3) PHP random generators (including Mersenne Twister and Lin-
ear Congruential based), and (4) Debian Linux (CVE-2008-0166) pseudorandom
generator with OpenSSL 0.9.8c-1. As a first important result, our experiments
show that, PHP pseudorandom generator implementation (both linear congru-
ential generators and Mersenne Twister generators) outputs completely insecure
bits if the output is not further processed. As a second result, we illustrate the
advantages of our LIL based testing over NIST testing. It is known that Debian
Linux (CVE-2008-0166) pseudorandom generator based on OpenSSL 0.9.8c-1 is
flawed and the output sequences are predictable. Our LIL tests on these sequences
discovered the flaws in Debian Linux implementation. However, NIST SP800-22
test suite is not able to detect this flaw using the NIST recommended parameters.
It is concluded that NIST SP800-22 test suite is not sufficient and distance based
LIL test techniques be included in statistical testing practice. It is also recom-
mended that all pseudorandom generator implementations be comprehensively
tested using state-of-the-art statistically robust testing tools.

Keywords: pseudorandom generators, statistical testing, OpenSSL, the law of
the iterated logarithm.

1 Introduction

The weakness in pseudorandom generators could be used to mount a variety of attacks
on Internet security. Heninger et al [6] surveyed millions of TLS and SSH servers and
found out that 0.75% of TLS certificates share keys due to poor implementation of
pseudorandom generators. Furthermore, they were able to recover RSA private keys for
0.50% of TLS hosts and 0.03% of SSH hosts because their public keys shared non-
trivial common factors (due to poor implementation of pseudorandom generators), and

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 454–471, 2014.
© Springer International Publishing Switzerland 2014

Randomness Testing 455

DSA private keys for 1.03% of SSH hosts because of insufficient signature random-
ness (again, due to poor implementation of pseudorandom generators). It is reported
in the Debian Security Advisory DSA-1571-1 [3] that the random number generator
in Debian’s OpenSSL release CVE-2008-0166 is predictable. The weakness in Debian
pseudorandom generator affected the security of OpenSSH, Apache (mod_sl), the onion
router (TOR), OpenVPN, and other applications (see, e.g., [1]). These examples show
that it is important to improve the quality of pseudorandom generators by designing
systematic testing techniques to discover these weak implementations in the early stage
of system development.

Statistical tests are commonly used as a first step in determining whether or not a
generator produces high quality random bits. For example, NIST SP800-22 Revision
1A [12] proposed the state of art statistical testing techniques for determining whether
a random or pseudorandom generator is suitable for a particular cryptographic applica-
tion. In a statistical test of [12], a significance level α ∈ [0.001, 0.01] is chosen for each
test. For each input sequence, a P-value is calculated and the input string is accepted as
pseudorandom if P-value ≥ α. A pseudorandom generator is considered good if, with
probability α, the sequences produced by the generator fail the test. For an in-depth
analysis, NIST SP800-22 recommends additional statistical procedures such as the ex-
amination of P-value distributions (e.g., using χ2-test). In section 3, we will show that
NIST SP800-22 test suite has inherent limitations with straightforward Type II errors.
Furthermore, our extensive experiments (based on over 200TB of random bits gener-
ated) show that NIST SP800-22 techniques could not detect the weakness in the above
mentioned pseudorandom generators.

In order to address the challenges faced by NIST SP800-22, this paper designs a
“behavioristic” testing approach which is based on statistical distances. Based on this
approach, the details of LIL testing techniques are developed. As an example, we carried
out LIL testing on the flawed Debian Linux (CVE-2008-0166) pseudorandom generator
based on OpenSSL 0.9.8c-1 and on the standard C linear congruential generator. As we
expected, both of these pseudorandom generators failed the LIL testing since we know
that the sequences produced by these two generators are strongly predictable. How-
ever, as we have mentined earlier, our experiments show that the sequences produced
by these two generators pass the NIST SP800-22 test suite using the recommended pa-
rameters. In other words, NIST SP800-22 test suite with the recommended parameters
has no capability in detecting these known deviations from randomness. Furthermore,
it is shown that for several pseudorandom generators (e.g., the linear congruential gen-
erator), the LIL test results on output strings start off fine but deteriorate as the string
length increases beyond that which NIST can handle since NIST testing tool package
has an integer overflow issue.

The paper is organized as follows. Section 2 introduces notations. Section 3 points
out the limitation of NIST SP800-22 testing tools. Section 4 discusses the law of iterated
logarithm (LIL). Section 5 reviews the normal approximation to binomial distributions.
Section 6 introduces statistical distance based LIL tests. Section 7 reports experimental
results, and Section 8 contains general discussions on OpenSSL random generators.

456 Y. Wang and T. Nicol

2 Notations and Pseudorandom Generators

In this paper, N and R+ denotes the set of natural numbers (starting from 0) and the set
of non-negative real numbers, respectively. Σ = {0, 1} is the binary alphabet, Σ∗ is the
set of (finite) binary strings, Σn is the set of binary strings of length n, and Σ∞ is the
set of infinite binary sequences. The length of a string x is denoted by |x|. For strings
x, y ∈ Σ∗, xy is the concatenation of x and y, x � y denotes that x is an initial segment
of y. For a sequence x ∈ Σ∗ ∪Σ∞ and a natural number n ≥ 0, x |̀ n = x[0..n− 1] denotes
the initial segment of length n of x (x |̀ n = x[0..n − 1] = x if |x| ≤ n) while x[n] denotes
the nth bit of x, i.e., x[0..n − 1] = x[0] . . . x[n − 1].

The concept of “effective similarity” (see, e.g., Wang [14]) is defined as follows: Let
X = {Xn}n∈N and Y = {Yn}n∈N be two probability ensembles such that each of Xn and Yn

is a distribution over Σn. We say that X and Y are computationally (or statistically) indis-
tinguishable if for every feasible algorithm A (or every algorithm A), the total variation
difference between Xn and Yn is a negligible function in n.

Let l : N → N with l(n) ≥ n for all n ∈ N and G be a polynomial-time computable
algorithm such that |G(x)| = l(|x|) for all x ∈ Σ∗. Then G is a polynomial-time pseu-
dorandom generator if the ensembles {G(Un)}n∈N and {Ul(n)}n∈N are computationally
indistinguishable.

3 Limitations of NIST SP800-22

In this section, we show that NIST SP800-22 test suite has inherent limitations with
straightforward Type II errors. Our first example is based on the following observation:
for a function F that mainly outputs “random strings” but, with probability α, outputs
biased strings (e.g., strings consisting mainly of 0’s), F will be considered as a “good”
pseudorandom generator by NIST SP800-22 test though the output of F could be dis-
tinguished from the uniform distribution (thus, F is not a pseudorandom generator by
definition). Let RANDc,n be the sets of Kolmogorov c-random binary strings of length
n, where c ≥ 1. That is, for a universal Turing machine M, let

RANDc,n = {x ∈ {0, 1}n : if M(y) = x then |y| ≥ |x| − c} . (1)

Let α be a given significance level of NIST SP800-22 test and R2n = Rn
1 ∪ Rn

2 where

Rn
1 ⊂ RAND2,2n and |Rn

1| = 2n(1 − α)
Rn

2 ⊂ {0nx : x ∈ {0, 1}n} and |Rn
2| = 2nα.

Furthermore, let fn : {0, 1}n → R2n be an ensemble of random functions (not necessar-
ily computable) such that f (x) is chosen uniformly at random from R2n. Then for each
n-bit string x, with probability 1−α, fn(x) is Kolmogorov 2-random and with probabil-
ity α, fn(x) ∈ Rn

2. Since all Kolmogorov 2-random strings are guaranteed to pass NIST
SP800-22 test at significance level α (otherwise, they are not Kolmogorov 2-random by
definition) and all strings in Rn

2 fail NIST SP800-22 test at significance level α for large
enough n, the function ensemble { fn}n∈N is considered as a “good” pseudorandom gen-
erator by NIST SP800-22 test suite. On the other hand, a similar proof as in Wang [14]

Randomness Testing 457

can be used to show that that R2n could be efficiently distinguished from the uniform
distribution with a non-negligible probability. Thus { fn}n∈N is not a cryptographically
secure pseudorandom generator.

The above example shows the limitation of testing approaches specified in NIST
SP800-22. The limitation is mainly due to the fact that NIST SP800-22 does not fully
realize the differences between the two common approaches to pseudorandomness def-
initions as observed and analyzed in Wang [14]. In other words, the definition of pseu-
dorandom generators is based on the indistinguishability concepts though techniques
in NIST SP800-22 mainly concentrate on the performance of individual strings. In this
paper, we propose testing techniques that are based on statistical distances such as root-
mean-square deviation or Hellinger distance. The statistical distance based approach is
more accurate in deviation detection and avoids above type II errors in NIST SP800-22.
Our approach is illustrated using the LIL test design.

4 Stochastic Properties of Long Pseudorandom Sequences

The law of the iterated logarithm (LIL) describes the fluctuation scales of a random
walk. For a nonempty string x ∈ Σ∗, let

S (x) =
|x|−1∑

i=0

x[i] and S ∗(x) =
2 · S (x) − |x|√|x|

where S (x) denotes the number of 1s in x and S ∗(x) denotes the reduced number of 1s
in x. S ∗(x) amounts to measuring the deviations of S (x) from |x|

2 in units of 1
2

√|x|.
The law of large numbers states that, for a pseudo random sequence ξ, the limit of

S (ξ |̀ n)
n is 1

2 , which corresponds to the frequency (Monobit) test in NIST SP800-22 [12].
But it states nothing about the reduced deviation S ∗(ξ |̀ n). It is intuitively clear that, for
a pseudorandom sequence ξ, S ∗(ξ |̀ n) will sooner or later take on arbitrary large values
(though slowly). The law of the iterated logarithm (LIL), which was first discovered by
Khinchin [7], gives an optimal upper bound

√
2 ln ln n for the fluctuations of S ∗(ξ |̀ n).

It is shown in [13] that p-random sequences satisfy common statistical laws such as
the law of the iterated logarithm. Thus it is reasonable to expect that pseudorandom
sequences produced by pseudorandom generators satisfy these laws also.

5 Normal Approximations to Slil

In this section, we provide several results on normal approximations to the function
S lil(·) that will be used in following sections. The DeMoivre-Laplace theorem is a nor-
mal approximation to the binomial distribution, which states that the number of “suc-
cesses” in n independent coin flips with head probability 1/2 is approximately a normal
distribution with mean n/2 and standard deviation

√
n/2. We first review a few classical

results on the normal approximation to the binomial distribution.

Definition 1. The normal density function with mean μ and variance σ is defined as

f (x) =
1

σ
√

2π
e−

(x−μ)2
2σ2 ; (2)

458 Y. Wang and T. Nicol

For μ = 0 and σ = 1, we have the standard normal density function ϕ(x) and the
standard normal distribution function Φ(x):

ϕ(x) =
1√
2π

e−
x2

2 and Φ(x) =
∫ x

−∞
ϕ(y)dy (3)

The following DeMoivre-Laplace limit theorem is derived from the approximation
theorem on page 181 of [4].

Theorem 1. For fixed x1, x2, we have

lim
n→∞ Prob

[
x1 ≤ S ∗(ξ |̀ n) ≤ x2

]
= Φ(x2) − Φ(x1). (4)

The growth speed for the above approximation is bounded by max{k2/n2, k4/n3} where
k = S (ξ |̀ n) − n

2 .

In this paper, we only consider tests for n ≥ 226 and x2 ≤ 1. That is, S ∗(ξ |̀ n) ≤√
2 ln ln n. Thus k = S (ξ |̀ n) − n

2 �
√

n
2 S ∗(ξ |̀ n) ≤ √2n ln ln n/2. Hence, we have

max
{

k2

n2 ,
k4

n3

}
= k2

n2 =
(1−α)2 ln ln n

2n < 2−22

By Theorem 1, the approximation probability calculation errors in this paper will
be less than 2−22 which is negligible. Unless stated otherwise, we will not mention the
approximation errors in the remainder of this paper.

6 Snapshot LIL Tests and Random Generator Evaluation

The distribution S lil defines a probability measure on the real line R. Let R ⊂ Σn be a
set of m sequences with a standard probability definition on it. That is, for each x0 ∈ R,
let Prob[x = x0] = 1

m . Then each set R ⊂ Σn induces a probability measure μRn on R by
letting

μRn (I) = Prob [S lil(x) ∈ I, x ∈ R]

for each Lebesgue measurable set I on R. For U = Σn, we use μU
n to denote the corre-

sponding probability measure induced by the uniform distribution. By definition, if Rn

is the collection of all length n sequences generated by a pseudorandom generator, then
the difference between μU

n and μRn
n is negligible.

By Theorem 1, for a uniformly chosen ξ, the distribution of S ∗(ξ |̀ n) could be ap-
proximated by a normal distribution of mean 0 and variance 1, with error bounded by
1
n (see [4]). In other words, the measure μU

n can be calculated as

μU
n ((−∞, x]) � Φ(x

√
2 ln ln n) =

√
2 ln ln n

∫ x

−∞
φ(y
√

2 ln ln n)dy. (5)

Figure 1 shows the distributions of μU
n for n = 226, · · · , 234. For the reason of conve-

nience, in the remaining part of this paper, we will use B as the discrete partition of the
real line R defined by

{(∞, 1), [1,∞)} ∪ {[0.05x − 1, 0.05x − 0.95) : 0 ≤ x ≤ 39} .

Randomness Testing 459

Fig. 1. Density functions for distributions μU
n with n = 226, · · · , 234

Table 1. The distribution μU
n induced by S lil for n = 226, · · · , 234 (due to symmetry, only distribu-

tion on the positive part of real line R is given)

226 227 228 229 230 231 232 233 234

[0.00, 0.05) .047854 .048164 .048460 .048745 .049018 .049281 .049534 .049778 .050013
[0.05, 0.10) .047168 .047464 .047748 .048020 .048281 .048532 .048773 .049006 .049230
[0.10, 0.15) .045825 .046096 .046354 0.04660 .046839 .047067 .047287 .047498 .047701
[0.15, 0.20) .043882 .044116 .044340 .044553 .044758 .044953 .045141 .045322 .045496
[0.20, 0.25) .041419 .041609 .041789 .041961 .042125 .042282 .042432 .042575 .042713
[0.25, 0.30) .038534 .038674 .038807 .038932 .039051 .039164 .039272 .039375 .039473
[0.30, 0.35) .035336 .035424 .035507 .035584 .035657 .035725 0.03579 .035850 .035907
[0.35, 0.40) .031939 .031976 .032010 .032041 .032068 .032093 .032115 .032135 .032153
[0.40, 0.45) .028454 .028445 .028434 .028421 .028407 .028392 .028375 .028358 .028340
[0.45, 0.50) .024986 .024936 .024886 .024835 .024785 .024735 .024686 .024637 .024588
[0.50, 0.55) .021627 .021542 .021460 .021379 .021300 .021222 .021146 .021072 .020999
[0.55, 0.60) .018450 .018340 .018234 .018130 .018029 .017931 .017836 .017743 .017653
[0.60, 0.65) .015515 .015388 .015265 .015146 .015032 .014921 .014813 .014709 .014608
[0.65, 0.70) .012859 .012723 .012591 .012465 .012344 .012227 .012114 .012004 .011899
[0.70, 0.75) .010506 .010367 .010234 .010106 .009984 .009867 .009754 .009645 .009541
[0.75, 0.80) .008460 .008324 .008195 .008072 .007954 .007841 .007733 .007629 .007530
[0.80, 0.85) .006714 .006587 .006466 .006351 .006241 .006137 .006037 .005941 .005850
[0.85, 0.90) .005253 .005137 .005027 .004923 .004824 .004730 .004640 .004555 .004474
[0.90, 0.95) .004050 .003948 .003851 .003759 .003672 .003590 .003512 .003438 .003368
[0.95, 1.00) .003079 .002990 .002906 .002828 .002754 .002684 .002617 .002555 .002495

[1.00,∞) .008090 .007750 .007437 .007147 .006877 .006627 .006393 .006175 .005970

With this partition, Table 1 lists values μU
n (I) on B with n = 226, · · · , 234. Since μU

n (I) is
symmetric, it is sufficient to list the distribution in the positive side of the real line.

In order to evaluate a pseudorandom generator G, first choose a list of testing points
n0, · · · , nt (e.g., n0 = 226+t). Secondly use G to generate a set R ⊆ Σnt of m sequences.
Lastly compare the distances between the two probability measures μRn and μU

n for n =
n0, · · · , nt.

A generator G is considered “good”, if for sufficiently large m (e.g., m ≥ 10, 000), the
distances between μRn and μU

n are negligible (or smaller than a given threshold). There
are various definitions of statistical distances for probability measures. In our analysis,
we will consider the total variation distance [2]

d(μRn , μ
U
n) = sup

A⊆B

∣∣∣μRn (A) − μU
n (A)
∣∣∣ (6)

460 Y. Wang and T. Nicol

Hellinger distance [5]

H(μRn ||μU
n) =

1√
2

√√∑

A∈B

(√
μRn (A) −

√
μU

n (A)

)2
(7)

and the root-mean-square deviation

RMSD(μRn , μ
U
n) =

√√∑
A∈B
(
μRn (A) − μU

n (A)
)2

|B| . (8)

7 Experimental Results

As an example to illustrate the importance of LIL tests, we carried out both NIST
SP800-22 tests [9] and LIL tests on the following commonly used pseudorandom bit
generators: The standard C linear congruential generator, Mersenne Twister generators,
PHP web server random bit generators (both MT and LCG), and Debian (CVE-2008-
0166) random bit generator with OpenSSL 0.9.8c-1. Among these generators, linear
congruential generators and Debian Linux (CVE-2008-0166) pseudorandom genera-
tors are not cryptographically strong. Thus they should fail a good statistical test. As
we expected, both of these generators failed LIL tests. However, neither of these gen-
erators failed NIST SP800-22 tests which shows the limitation of NIST SP800-22 test
suite.

It should be noted that NIST SP800-22 test suite [9] checks the first 1,215,752,192
bits (�145MB) of a given sequence since the software uses 4-byte int data type for
integer variables only. For NIST SP800-22 tests, we used the parameter α = 0.01 for all
experiments. For each pseudorandom generator, we generated 10, 000×2GB sequences.
The results, analysis, and comparisons are presented in the following sections.

7.1 The Standard C Linear Congruential Generator

A linear congruential generator (LCG) is defined by the recurrence relation

Xn+1 = aXn + c mod m

where Xn is the sequence of pseudorandom values, m is the modulus, and a, c < m.
For any initial seeding value X0, the generated pseudorandom sequence is ξ = X0X1 · · ·
where Xi is the binary representation of the integer Xi.

Linear congruential generators (LCG) have been included in various programming
languages. For example, C and C++ functions drand48(), jrand48(), mrand48(), and
rand48() produce uniformly distributed random numbers on Borland C/C++ rand()
function returns the 16 to 30 bits of

Xn+1 = 0x343FD · Xn + 0x269EC3 mod 232.

LCG is also implemented in Microsoft Visual Studio, Java.Util.Random class, Borland
Delphi, and PHP. In our experiments, we tested the standard linear congruential gener-
ator used in Microsoft Visual Studio.

Randomness Testing 461

In our experiments, we generated 10, 000× 2GB sequences by calling Microsoft Vi-
sual Studio stdlib function rand() which uses the standard C linear congruential gen-
erator. Each sequence is generated with a 4-byte seed from www.random.org [11].
For the 10, 000 × 2GB sequences, we used a total of 10, 000 × 4-byte seeds from
www.random.org. The rand() function returns a 15-bit integer in the range [0, 0x7FFF]
each time. Since LCG outputs tend to be correlated in the lower bits, we shift the re-
turned 15 bits right by 7 positions. In other words, for each rand() call, we only use the
most significant 8 bits. This is a common approach that most programmers will do to
offset low bit correlation and missing most significant bits (MSB).

Since linear congruential generator is predictable and not cryptographically strong,
we expected that these 10,000 sequences should fail both NIST SP800-22 tests and LIL
tests. To our surprise, the collection of 10,000 sequences passed NIST SP800-22 [9]
testing with the recommended parameters. Specifically, for the randomly selected 10
sequences, all except one of the 150 non-overlapping template tests passed the NIST
test (pass ratio = 0.965). In other words, these sequences are considered as random by
NIST SP800-22 testing standards. On the other hand, these sequences failed LIL tests
as described in the following.

Table 2. Total variation and Hellinger distances for Standard C LCG

n 226 227 228 229 230 231 232 233 234

d .061 .097 .113 .156 .176 .261 .324 .499 .900
H .064 .088 .126 .167 .185 .284 .387 .529 .828

RMSD .004 .006 .008 .010 .011 .017 .021 .031 .011

Based on snapshot LIL tests at points 226, · · · , 234, the corresponding total variation
distance d(μcLCG

n , μU
n), Hellinger distance H(μcLCG

n ||μU
n), and the root-mean-square de-

viation RMSD(μcLCG
n , μU

n) at sample size 1000 are calculated and shown in Table 2. It
is observed that at the sample size 1000, the average distance between μcLCG

n and μU
n is

larger than 0.10 and the root-mean-square deviation is large than 0.01. It is clear that
this sequence collection is far away from the true random source.

Fig. 2. Density functions for distributions μcLCG
n with n = 226, · · · , 234 (first) and LIL curves for

the standard C LCG (second) for 10,000×2GB strings

The first picture in Figure 2 shows that the distributions of μcLCG
n for n = 226, · · · , 234

are far away from the expected distribution in Figure 1. Furthermore, the second picture
in 2 shows the LIL-test result curves for the 10,000 sequences. For a good random
bit generator, the LIL curves should be distributed within the y-axis interval [−1, 1]

462 Y. Wang and T. Nicol

through the entire x-axis according to the normal distribution. For example, a good
curve should look like the third picture in the following Figure 3. However, LIL curves
for the standard C LCG generated sequences in the second picture of Figure 2 start
reasonably well but deteriorate as the string length increases.

7.2 Mersenne Twister Generators

Mersenne Twister (MT) is a pseudorandom generator designed by Matsumoto and
Nishimura [8] and it is included in numerous software packages such as R, Python, PHP,
Maple, ANSI/ISO C++, SPSS, SAS, and many others. The commonly used Mersenne
Twister MT19937 is based on the Mersenne prime 219937 − 1 and has a long period of
219937 − 1. The Mersenne Twister is sensitive to the seed value. For example, too many
zeros in the seed can lead to the production of many zeros in the output and if the seed
contains correlations then the output may also display correlations.

In order to describe the pseudorandom bit generation process MT19937, we first
describe the tempering transform function t(x) on 32-bit strings. For x ∈ Σ32, t(x) is
defined by

y1 := x ⊕ (x >> 11)
y2 := y1 ⊕ ((y1 << 7) AND 0x9D2C5680)
y3 := y2 ⊕ ((y2 << 15) AND 0xEFC60000)
t(x) := y3 ⊕ (y3 >> 18)

Let x0, x2, · · · , x623 ∈ Σ32 be 32× 624 = 19968 bits seeding values for the MT19937
pseudorandom generator. Then the MT19937 output is the sequence t(x624)t(x625)t(x626)
· · · where for k = 0, 1, 2, 3, · · · , we have x624+k = x397+k ⊕ (xk[0]xk+1[1..31]) A and A is
the 32 × 32 matrix

A =

(
0 I31

a31 (a30, · · · , a0)

)

with a31a30 · · · a0 = 0x9908B0DF. For a 32 bit string x, xA is interpreted as multiplying
the 32 bit vector x by matrix A from the right hand side.

Using the source code provided in Matsumoto and Nishimura [8], we generated
10, 000 × 2GB sequences. The collection of these sequences passed NIST SP800-22
[9] test with the recommended parameters. The following discussion shows that these
sequences have very good performance in LIL testing also. Thus we can consider these
sequences passed the LIL test.

Based on snapshot LIL tests at points 226, · · · , 234, the corresponding total variation
distance d(μMT19937

n , μU
n), Hellinger distance H(μMT19937

n ||μU
n), and the root-mean-square

deviation RMSD(μMT19937
n , μU

n) at sample size 1,000 (resp. 10,000) are calculated and
shown in Table 3. In Table 3, the subscript 1 is for sample size 1,000 and the subscript
2 is for sample size 10,000.

Figure 3 shows the distributions of μMT19937
n for n = 226, · · · , 234 where the curves

are plotted on top of the expected distribution in Figure 1. Furthermore, the third picture
in Figure 3 shows the LIL-test result curves for the 10,000 sequences. The plot in the
third picture of Figure 3 is close to what we are expecting for a random source.

Randomness Testing 463

Table 3. Total variation and Hellinger distances for MT19937

n 226 227 228 229 230 231 232 233 234

d1 .057 .068 .084 .068 .063 .075 .073 .079 .094
H1 .056 .077 .072 .069 .065 .083 .074 .080 .081

RMSD1 .004 .004 .005 .004 .004 .005 .005 .005 .006
d2 .023 .025 .026 .021 .020 .025 .026 .027 .020
H2 .022 .022 .024 .021 .021 .026 .024 .023 .020

RMSD2 .001 .002 .002 .001 .001 .002 .002 .002 .001

Fig. 3. Density functions for distributions μMT 19937
n at n = 226, · · · , 234 with 1000 (first) and 10,000

(second) strings and LIL plot for Mersenne Twister MT19937 with 10,000×2GB strings (third)

7.3 PHP Web Server Random Bit Generators

PHP is a server side processing language and its random number generator is very
important for guaranteeing Web server security. In the experiments, we installed an
Apache web server together with PHP v5.3.5. By default, PHP supports rand(), which
is a linear congruential random bit generator, and m_rand() which is a Mersenne Twister
random bit generator. The random bit outputs from these two generators are tested in the
experiments. By modifying php.ini script in PHP 5.3, one may also use the OpenSSL
pseudorandom generator via the openssl_random_pseudo_bytes() function call.

PHP Mersenne Twister. In Section 7.2, we showed that the output of the correctly im-
plemented Mersenne Twister pseudorandom generators has very good performance and
passes both the NIST and LIL testing. However, if the Mersenne Twister in PHP imple-
mentation is not properly post-processed, it generates completely non-random outputs.
This is illustrated by our experiments on the PHP Mersenne Twister implementation.

Since the PHP server script is slow in generating a large amount of pseudorandom
bits, we only generated 6 × 2GB random bit strings from hte PHP Mersenne Twister
m_rand() function call. It is estimated to take 2 years for our computer to generate
10, 000×2GB random bit strings since each 2GB sequence takes 90 minutes to generate.

As discussed earlier, it is expected that LIL values stay within the interval [−1, 1].
However, LIL curves for the 6 PHP MT generated sequences display a range from 0 to
-2000. This indicates that these sequences are overwhelmed with zeros which get worse
as the sequence gets longer.

By checking the rand.c code in PHP 5.3.27, it seems that programmers are prepared
to make arbitrary changes with arbitrary post-processing. In particular, for the PHP
Mersenne Twister, it will output an integer in the range [0, 0x7FFFFFFF] each time
while the source code in Matsumoto and Nishimura [8] that we used in Section 7.2

464 Y. Wang and T. Nicol

outputs an integer in the range [0, 0xFFFFFFFF] each time. This difference is not re-
alized by some PHP implementers as illustrated in the following comments of PHP
rand.c. Thus it is important to use the LIL test to detect these weak implementations.

/* Melo : hmms . . randomMT () r e t u r n s 32 random b i t s . . .

* Yet , t h e p r e v i o u s php_rand on ly r e t u r n s 31 a t most .

* So I p u t a r i g h t s h i f t t o l o o s e t h e l s b . I t * seems *
* b e t t e r t h a n c l e a r i n g t h e msb .

* Update :
* I t a l k e d wi th Cokus v i a e m a i l and i t won ’ t r u i n

* t h e a l g o r i t h m * /

The experiments show that all of 6 PHP Mersenne Twister generated sequences fail
NIST SP800-22 tests, illustrating the effect of users not accommodating the limitations
of the PHP 31 bit implementation.

PHP Linear Congruential Generator. Since it is slow to generate a large amount of
random bits using PHP script, we only generated 6 × 2GB sequences using the PHP
rand() function call (similarly, it is estimated to take 2 years for our computer to gener-
ate 10, 000× 2GB random bits). All of the sequences have similar LIL curves as shown
in the first picture of Figure 4. The second picture in Figure 4 shows that the distri-
butions of μphpLCG

n at n = 226, · · · , 234 are far away from the expected distribution in
Figure 1. One may also compare the second picture in Figure 4 against the density dis-
tributions by the standard C linear congruential generator in Figure 2. In summary, the
PHP implementation of the linear congruential generator comprehensively failed NIST
and LIL tests.

Fig. 4. LIL curves for PHP LCG generated sequences (first) and density functions for distributions
μphpLCG

n (second) of 6 × 2GB PHP LCG sequences with n = 226, · · · , 234

7.4 Flawed Debian’s OpenSSL package

It is reported in Debian Security Advisory DSA-1571-1 [3] that the random num-
ber generator in Debian Linux (CVE-2008-0166) pseudorandom generator based on
OpenSSL 0.9.8c-1 is predictable since the following line of code in md_rand.c has
been removed by one of its implementors.

MD_Update(&m, buf , j) ; /* p u r i f y c o m p l a i n s * /

Randomness Testing 465

Note that the code MD_Update(&m,buf,j) is responsible for adding the entropy into
the state that is passed to the random bit generation process from the main seeding
function. By commenting out this line of codes, the generator will have small number
of states which will be predictable.

We generated 10, 000 × 2GB sequences using this version of the flawed Debian
OpenSSL with multi-threads (the single thread results are much worse). The snapshot
LIL test result for this flawed Debian OpenSSL implementation is shown in Figure
5, where the first picture is for the sample size of 1,000 and the second picture is for
the sample size of 10,000. In particular, Figure 5 shows the distributions of μDebian

n for
n = 226, · · · , 234 where the curves are plotted on top of the expected distribution in
Figure 1. As a comparison, we carried out snapshot LIL test on the standard OpenSSL
pseudorandom generator [10]. We generated 10, 000 × 2GB sequences using the stan-
dard implementation of OpenSSL (with single thread). The snapshot LIL test result for
this standard OpenSSL implementation is shown in Figure 6, where the first picture is
for the sample size of 1,000 and the second picture is for the sample size of 10,000. In
particular, Figure 6 shows the distributions of μOpenS S L

n for n = 226, · · · , 234 where the
curves are plotted on top of the expected distribution in Figure 1.

The results in Figures 5 and 6 indicate that the flawed Debian pseudorandom genera-
tor has a very large statistical distance from the uniform distribution while the standard
OpenSSL pseudorandom generator has a smaller statistical distance from the uniform
distribution. In other words, statistical distance based LIL tests could be used to detect
such kinds of implementation weakness conveniently.

While the Debian Linux implementation of openSSL pseudorandom generator fails
the LIL test obviously, the experiments show that the collection of the 10,000 sequences
passed the NIST SP800-22 testing with the recommended parameters.

Fig. 5. Density functions for distributions μDebian
n with n = 226, · · · , 234

Fig. 6. Density functions for distributions μOpenS S L
n with n = 226, · · · , 234

466 Y. Wang and T. Nicol

7.5 Summary of Experiments

As a summary, Table 4 lists the results of both NIST SP800-22 testing and LIL testing
on commonly used pseudorandom generators. In the table, we listed the expected testing
results for MT19937 as “pass” since MT19937 was designed to be k-distributed to
32-bit accuracy for every 1 ≤ k ≤ 623. In other words, the output of MT19937 is
uniformly distributed and should pass all statistical tests even though the output is not
cryptographically strong. The results in Table 4 show that the LIL testing techniques
always produce expected results while NIST SP800-22 test suite does not.

Table 4. NIST SP800-22 and LIL testing results

Generator NIST SP800-22 LIL expected result
Standard C LCG pass fail fail
MT19937 pass pass pass
PHP LCG fail fail fail
PHP MT19937 fail fail fail
flawed Debian openSSL pass fail fail
standard openSSL pass pass pass

8 General Discussion on OpenSSL Random Generators

It is noted in [1] that the serious flaws in Debian OpenSSL had not been noticed for
more than 2 years. A key contributor to this problem was the lack of documentation
and poor source code commenting of OpenSSL making it very difficult for a maintainer
to understand the consequences of a change to the code. This section provides an anal-
ysis of the OpenSSL default RNG. We hope this kind of documentation will help the
community to improve the quality of OpenSSL implementations.

Figure 7 illustrates the architecture of the OpenSSL RNG. It consists of a 1023 byte
circular array named statewhich is the entropy pool from which random numbers are
created. state and some other global variables are accessible from all threads. Crypto
locks protect the global data from thread contention except for the update of state as
this improves performance. Locked access, direct access to data from threads, and the
mapping of global to local variables (e.g., state_num to st_num, md to local_md)
are illustrated in Figure 7.
state is the entropy pool that is a declared array of of 1023+ MD_DIGEST_SIZE

bytes. However the RNG algorithm only uses state[0..1022] in a circular manner.
There are two index markers state_num and state_index on state which mark
the region of state to be accessed during reads or updates. md is the global message
digest produced by the chosen one-way hash function which defaults to SHA1 making
MD_DIGEST_LENGTH = 20. md is used and updated by each thread as it seeds the RNG.

Each thread maintains a count of the number of message digest blocks used during
seeding. This counter is copied to the global md_count enabling other threads to read it
as another entropy source. The global variable entropy records the entropy level of the
entropy pool. This value is checked when generating random numbers to ensure they
are based on sufficient entropy. initialized is a global flag to indicating seed status.
If not initialized, entropy collection and seeding functions are called.

Randomness Testing 467

Fig. 7. High Level view of OpenSSL RNG

8.1 OpenSSL Entropy Collection

Entropy data is required to seed the RNG. OpenSSL caters for a number of entropy
sources ranging from its default source through to third party random bit generators.
This section discusses the OpenSSL library-supplied entropy collection process. Once
entropy data is collected, it is passed to ssleay_rand_add or ssleay_rand_seed to
be added into the RNG’s entropy pool.
RAND_poll is the key entropy collection function. Default entropy data sources for

Windows installations are illustrated in Figure 8. A check is made to determine the
operating system and if Windows 32 bit, ADVAPI32.DLL, KERNEL32.DLL and NE-
TAPI32.DLL are loaded. These libraries include Windows crypto, OS, and network
functions. Following is an overview of the default entropy collection process.

1. Collect network data using netstatget(NULL, L“LanmanWorkstation”, 0,
0, &outbuf). By using LanmanWorkstation, it returns a STAT_WORKSTATION_0
structure in outbuf containing 45 fields of data including: time of stat collection,
number of bytes received and sent on LAN, number of bytes read from and written
to disk etc. Each field is estimated as 1 byte of entropy. netstatget is also called
with LanmanServer to obtain another 17 bytes of entropy in STAT_SERVER_0.

2. Collect random data from the cryptographic service provided by ADVAPI32. Use
the default cryptographic service provider in hProvider to call CryptGenRandom
and obtain 64 bytes of random data in buff. the RAND_add function is passed 0
as the entropy estimate despite this data coming from an SHA-based crypto RNG
so presumably the OpenSSL programmer does not trust this source. An attempt is
made to access the processor’s on-chip RNG and if successful 64 bytes of random
data are passed to RAND_addwith a 100% entropy value.

468 Y. Wang and T. Nicol

Fig. 8. OpenSSL entropy sources on Windows

3. Get entropy data from Windows message queue, 4-byte foreground window handle,
and 2-byte cursor position. However, dynamically tracing these operations identi-
fied an OpenSSL coding error discussed in Section 8.2.

4. Get kernel-based entropy data by taking a snapshot of the heap status then walk-
ing the heap collecting entropy from each entry. Similarly walk the process list,
thread list and module list. The depth that each of the four lists is traversed is deter-
mined as follows: the heap-walk continues while there is another entry and either
the good flag is false OR a timeout has not expired AND the number or iterations
has not exceeded a max count. This ensures loop termination in a reasonable time.
However, setting the good flag is suspicious as it is set if random data is retrieved
from the Microsoft crypto library or from the hardware DRNG. This is odd as zero
was assigned as the entropy value for the crypto library numbers and data from the
DRNG may be unavailable yet the good flag is still set which limits the amount of
kernel data collected.

5. Add the state of global physical and virtual memory. The current process ID is also
added to ensure that each thread has something different than the others.

8.2 Potential Bugs in OpenSSL Entropy Collection

4 1 8 . CURSORINFO c i ;
4 1 9 . c i . c b S i z e = s i z e o f (CURSORINFO) ;
4 2 0 . i f (c u r s o r (& c i))
4 2 1 . RAND_add(& c i , c i . cbSize , 2) ;

In above OpenSSL code, a static trace implies that all 20 bytes of CURSOR_INFO are
added into the entropy pool as ci.cbsize is set to the size of the CURSORINFO struc-
ture. The programmer has decided that this data is worth an entropy value of 2 which

Randomness Testing 469

is passed to RAND_add. However, a dynamic code trace shows that ci.cbsize is set to
zero after the call to cursor(&ci), where cursor is defined as:

3 9 5 . c u r s o r = (GETCURSORINFO) Ge tProcAddres s (use r , " G e t C u r s o r I n f o ") ;

user is the DLL module handle containing function GetCursorInfo.GetCursorInfo
that returns true on success and ci.cbsize is initialized to sizeof (CURSORINFO)
before the call. However, MSDN does not promise to maintain the fields in this struc-
ture on return yet the OpenSSL code relies on it. Our experiments show the ci.cbsize is
zero yet is attributed an entropy value of 2.
RAND_add calls ssleay_rand_add. The local variables in ssleay_rand_add are

shown in the following.

s t a t i c i n t s s l e a y _ r a n d _ a d d (c o n s t vo id * buf , i n t num , doub le add)
{
i n t i , j , k , s t _ i d x ;
long md_c [2] ;
u n s i g n e d c h a r loca l_md [MD_DIGEST_LENGTH] ;
EVP_MD_CTX m;
i n t d o _ n o t _ l o c k ;

According to the code, the ssleay_rand_add function increments the global entropy
value by 2 if there is not enough current entropy. However, in the Windows environment,
the ci.cbsize is always 0 yet it has 2 bytes of entropy added and if timing causes this
to happen multiple times due to other threads also incrementing the entropy counter,
there could potentially be a situation where there is substantially less entropy than that
reported. Specifically, once the entropy threshold of 32 is reached, entropy is no longer
updated.

8.3 Seeding the RNG

To seed the RNG, RAND_add is called and the collected entropy data, its length and an
entropy estimate are passed in as function parameters. For flexibility, this function is
a wrapper for the actual entropy addition function to enable alternatives to be chosen
by RAND_get_rand_method so the function binding is dynamic through a pointer to
meth->add. RAND_get_rand_method returns the addresses of the preferred functions.
For example, it checks for an external device and if not found it returns the address
of the default functions in a structure of type RAND_METHOD which holds pointers to
the functions. Of the five functions now available, RAND_add() calls meth->add()
which in this case (default) points to the physical function ssleay_rand_add. Study-
ing ssleay_rand_add reveals that the entropy data passed to it is hashed directly into
the RNG’s state.

s t a t i c vo id s s l e a y _ r a n d _ a d d (c o n s t vo id * buf , i n t num , doub le add)

A byte buffer buf of length num containing data, ideally from a good entropy source,
is passed to this function to be mixed into the RNG. add is the entropy value of the
data in buff estimated by the programmer. For system generated entropy, the value
is not calculated but presumably estimated by the OpenSSL developers. RAND_add is
available to the caller to add more or better entropy if required. In a summary, Figure 9
describes the seeding flowchart for OpenSSL random number generators.

470 Y. Wang and T. Nicol

Fig. 9. Seeding the OpenSSL Random Number Generator

OpenSSL provides a second function ssleay_rand_seed to seed the RNG, but this
simply calls ssleay_rand_add, providing the buffer size as the entropy value, i.e., it
assumes 100% entropy.

8.4 OpenSSL Documentation Error

If a user requests secure random numbers but the entropy is inadequate, an error mes-
sage is generated pointing them to: http://www.openssl.org/support/faq.html. The FAQ
under “Why do I get a ‘PRNG not seeded’ error message?” states: “As of version 0.9.5,
the OpenSSL functions that need randomness report an error if the random number
generator has not been seeded with at least 128 bits of randomness”. Yet in the code,
entropy is defined in rand_lcl.h as 32 (bytes) which is 256 bits.

9 Conclusion

This paper proposed statistical distance based LIL testing techniques. This technique
has been used to identify flaws in several commonly used pseudorandom generator
implementations that have not been detected by NIST SP800-22 testing tools. It is con-
cluded that the LIL testing technique is an important tool and should be used for statisti-
cal testing. We also provided a detailed documentation on OpenSSl random generators
and described several potential attacks.

http://www.openssl.org/support/faq.html

Randomness Testing 471

References

1. Ahmad, D.: Two years of broken crypto: debian’s dress rehearsal for a global pki compro-
mise. IEEE Security & Privacy 6(5), 70–73 (2008)

2. Clarkson, J.A., Adams, C.R.: On definitions of bounded variation for functions of two vari-
ables. Tran. AMS 35(4), 824–854 (1933)

3. Debian. Debian security advisory dsa-1571-1,
http://www.debian.org/security/2008/dsa-1571

4. Feller, W.: Introduction to probability theory and its applications, vol. I. John Wiley & Sons,
Inc., New York (1968)

5. Hellinger, E.: Neue begründung der theorie quadratischer formen von unendlichvielen verän-
derlichen. J. für die reine und angewandte Mathematik 136, 210–271 (1909)

6. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your ps and qs: Detec-
tion of widespread weak keys in network devices. In: Proc. 21st USENIX Security Sympo-
sium, vol. 2 (2012)

7. Khinchin, A.: Über einen satz der wahrscheinlichkeitsrechnung. Fund. Math. 6, 9–20 (1924)
8. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uni-

form pseudo-random number generator. ACM TOMACS 8(1), 3–30 (1998)
9. NIST. Test suite (2010), http://csrc.nist.gov/groups/ST/toolkit/rng/

10. OpenSSL. Openssl implementation from http://www.openssl.com/
11. RANDOM.ORG. Random.org, http://www.random.org/
12. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel,

M., Banks, D., Heckert, A., Dray, J., Vo, S.: A Statistical Test Suite for Random and Pseudo-
random Number Generators for Cryptographic Applications. NIST SP 800-22 (2010)

13. Wang, Y.: Resource bounded randomness and computational complexity. Theoret. Comput.
Sci. 237, 33–55 (2000)

14. Wang, Y.: A comparison of two approaches to pseudorandomness. Theoretical computer
science 276(1), 449–459 (2002)

http://www.debian.org/security/2008/dsa-1571
http://csrc.nist.gov/groups/ST/toolkit/rng/
http://www.openssl.com/
http://www.random.org/

Efficient Hidden Vector Encryption

with Constant-Size Ciphertext

Tran Viet Xuan Phuong, Guomin Yang, and Willy Susilo�

Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Australia
tvxp750@uowmail.edu.au, {gyang,wsusilo}@uow.edu.au

Abstract. A Hidden Vector Encryption (HVE) scheme is a special type
of anonymous identity-based encryption (IBE) scheme where the at-
tribute string associated with the ciphertext or the user secret key
can contain wildcards. In this paper, we introduce two constant-size
ciphertext-policy hidden vector encryption (CP-HVE) schemes. Our first
scheme is constructed on composite order bilinear groups, while the sec-
ond one is built on prime order bilinear groups. Both schemes are proven
secure in a selective security model which captures plaintext (or payload)
and attribute hiding. To the best of our knowledge, our schemes are the
first HVE constructions that can achieve constant-size ciphertext among
all the existing HVE schemes.

Keywords: Hidden vector encryption, Ciphertext policy, Constant-size
ciphertext, Viète’s Formulas.

1 Introduction

Embedding policy-based access control into modern encryption schemes is an
interesting but challenging task that has been intensively studied by the crypto-
logic research community in recent years. Typical examples of such encryption
schemes include Attribute-based Encryption (ABE) [1–4] and Predicate Encryp-
tion [5, 6] schemes, which can be treated as special instances of a more general
notion called Functional Encryption which was formalized by Boneh, Sahai, and
Waters [7].

As a special type of functional encryption, Hidden Vector Encryption (HVE)
schemes [5, 6, 8, 9] allow wildcards to appear in either the encryption attribute
vector associated with a ciphertext or the decryption attribute vector associated
with a user secret key. Similar to ABE schemes, we name the former Ciphertext
Policy (CP-) HVE schemes and the latter Key Policy (KP-) HVE schemes. The
decryption will work if and only if the two vectors match. That is, for each
position, the two vectors must have the same letter (defined in an alphabet Σ)

� This work is partially supported by Australian Research Council Discovery Project
(DP130101383).

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 472–487, 2014.
c© Springer International Publishing Switzerland 2014

Efficient Hidden Vector Encryption with Constant-Size Ciphertext 473

unless a wildcard symbol ‘$’ appears in one of these two vectors at that position.
In this paper, we focus on the construction of CP-HVE schemes.

Related Works. All the recent development on functional encryptions can be
traced back to the earlier work on identity-based encryption which was intro-
duced by Shamir [10] and first realized by Boneh and Franklin [11] and Cocks
[12]. One important extension of IBE is hierarchical IBE (HIBE) [13], which
allows users at a level to issue keys to those on the level below.

The notion of Anonymous IBE was introduced by Boneh et al. [14] and later
formalized by Abdalla et al. [15]. Compared with the normal IBE, anonymous
IBE supports the additional feature of identity/attribute hiding. That is, except
the user holding the correct decryption key, no one is able to link a ciphertext
with the identity string used to create that ciphertext.

In [16], Abdalla et al. also proposed another extension of IBE called Wild-
carded IBE (or WIBE for short). WIBE is closely related to CP-HVE except
that the former does not consider the property of identity/attribute hiding when
it was introduced in [16]. Abdalla et al. proposed several WIBE constructions
based on the Waters HIBE [17], the Boneh-Boyen HIBE [18], and the Boneh-
Boyen-Goh HIBE [13]. Recently, to address the identity hiding problem, Abdalla
et al. also proposed an anonymous WIBE in [19].

In a predicate encryption system [5, 6] for a (polynomial-time) predicate P ,
two inputs (besides some public parameters) are required in the encryption pro-
cess, one is the message M to be encrypted, and the other one is an index string
i. A decryption key is generated based on a master secret and a key index k.
The decryption key can successfully decrypt a valid encryption of (i,M) if and
only if P (k, i) = 1. IBE can be treated as a special type of predicate encryption
where the predicate function simply performs an equality test, while for HVE
the predicate function will ignore the positions where wildcard symbols ‘$’ have
occurred when doing an equality test.

After the notion of hidden vector encryption was first proposed by Boneh and
Waters in [5], several HVE schemes [6, 8, 9, 20–23] have been proposed, most
of which are key policy based (i.e., the wildcards ‘$’ appear in the decryption
attribute vector). One common drawback in many early HVE schemes (e.g.
[5, 6, 21, 22]) is that the ciphertext size and the decryption key size are large
(linear in the length of the vector). In [8], Sedghi et al. proposed an HVE scheme
that has constant decryption key size and short (but still not constant-size)
ciphertext. In [9], Hattori et al. introduced a formal definition for CP-HVE and
proposed a CP-HVE scheme based on the anonymous HIBE proposed in [24]
and the wildcarded IBE proposed in [16]. Hattori et al.’s CP-HVE scheme also
has a linear cipertext size. To the best of our knowledge, there is no HVE scheme
proposed in the literature that can achieve constant-size ciphertext.
Our Contributions. We propose two ciphertext policy hidden vector encryption
schemes with constant-size ciphertext.

• Our first proposed scheme (CP-HVE1) is constructed on bilinear groups
with a composite order n = pq where p, q are prime numbers. The secu-
rity of the scheme is proven in the standard model under three complexity

474 T.V. Xuan Phuong, G. Yang, and W. Susilo

assumptions: the Decisional L-composite Bilinear Diffie-Hellman Exponent
(L-cBDHE) assumption, the L-composite Decisional Diffie Hellman (l-cDDH)
assumption, and the Bilinear Subspace Decision (BSD) assumption.
• Additionally, we also construct our second scheme (CP-HVE2), which is built

on bilinear groups with a prime order. We note that our second scheme is
more efficient compared to the scheme converted from CP-HVE1 by applying
the conversion tool from a composite order to a prime order bilinear group.
Our second scheme is proven under the Decisional L-Bilinear Diffie-Hellman
Exponent (L-BDHE) assumption.

We highlight the differences between our schemes and the previous HVE
schemes in Table 1. A more detailed comparison among these schemes is given
in Sec. 7.

Table 1. A Comparison on Ciphertext Size and Key Size among HVE Schemes

Scheme Type Constant Ciphertext Size Constant Key Size

Katz et al. [6] Key Policy No No

Shi, Waters [20] Key Policy No No

Ivovino and Persiano [21] Key Policy No No

Sedghi et al. [8] Key Policy No Yes

Lee and Dong [25] Key Policy No Yes

Park [23] Key Policy No Yes

Hattori et al. [9] Ciphertext Policy No No

Ours Ciphertext Policy Yes No

2 Preliminaries

2.1 Bilinear Map on Prime Order Groups

Let G and GT be two multiplicative cyclic groups of same prime order p, and
g a generator of G. Let e : G × G → GT be a bilinear map with the following
properties:

1. Bilinearity : e(ua, vb) = e(ub, va) = e(u, v)ab for all u,v ∈ G and a,b ∈ Zp.
2. Non-degeneracy : e(g, g) �= 1

Notice that the map e is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

Decision L-BDHE Assumption. The Decision L-BDHE problem in G is
defined as follows: Let G be a bilinear group of prime order p, and g, h two
independent generators of G. Denote −→y g,α,L = (g1, g2, . . . , gL, gL+2, . . . , g2L) ∈
G2L−1 where gi = gα

i

for some unknown α ∈ Z∗
p. We say that the L-BDHE

assumption holds in G if for any probabilistic polynomial-time algorithm A

|Pr[A(g, h,−→y g,α,L, e(gL+1, h)) = 1]− Pr[A(g, h,−→y g,α,L, T) = 1]| ≤ ε(k)

where the probability is over the random choive of g, h in G, the random choice
α ∈ Z∗

p, the random choice T ∈ GT , and ε(k) is negligible in the security
parameter k.

Efficient Hidden Vector Encryption with Constant-Size Ciphertext 475

2.2 Bilinear Map on Composite Order Groups

Let p, q be two large prime numbers and n = pq. Let G,GT be cyclic groups of
order n, We say e : G×G→ GT is bilinear map on composite order groups if e
satisfies the following properties:

1. Bilinearity : e(ua, vb) = e(ub, va) = e(u, v)ab. for all u,v ∈ G and a,b ∈ Zp.
2. Non-degeneracy : e(g, g) �= 1

Let Gp and Gq be two subgroups of G of order p and q, respectively. Then
G = Gp ×Gq, GT = GT,p × GT,q. We use gp and gq to denote generators of Gp

and Gq, respectively. e(hp, hq) = 1 for all elements hp ∈ Gp and hq ∈ Gq since
e(hp, hq) = e(gap , g

b
q) = e(gqa, gpb) = e(g, g)pqab = 1 for a generator g of G.

Below are three complexity assumptions defined on composite order bilinear
groups: the decisional L-composite bilinear Diffie-Hellman exponent (L-cBDHE)
assumption, the L-composite Decisional Diffie-Hellman (L-cDDH) assumption,
and the bilinear subspace decision (BSD) assumption.

The Decisional L−cBDHE Assumption

Let gp, h
R←− Gp, gq

R←− Gq, α
R←− Zn

Z = (gp, gq, h, g
α
p , . . . , g

αL

p , gα
L+2

p , . . . , gα
2L

p),

T = e(gp, h)α
L+1

, and R← GT,p

We say that the decisional L−cBDHE assumption holds if for any probabilistic
polynomial-time algorithm A

|Pr[A(Z, T) = 1]− Pr[A(Z,R) = 1]| ≤ ε(k)

where ε(k) denotes an negligible function of k.

The L− cDDH Assumption

Let gp
R←− Gp, gq, R1, R2, R3

R←− Gq, α, β
R←− Zn

Z = (gp, gq, g
α
p , . . . , g

αL

p , gα
L+1

p R1, g
αL+1β
p R2)

T = gβpR3, and R← G

We say that the L− cDDH assumption holds if for any probabilistic polynomial-
time algorithm A

|Pr[A(Z, T) = 1]− Pr[A(Z,R) = 1]| ≤ ε(k)

where ε(k) denotes an negligible function of k.

The BSD Assumption

Let gp ← Gp, gq ← Gq

Z = (gp, gq)
T ← GT,p, and R← GT,p

476 T.V. Xuan Phuong, G. Yang, and W. Susilo

We say that the BSD assumption holds if for any probabilistic polynomial-time
algorithm A

|Pr[A(Z, T) = 1]− Pr[A(Z,R) = 1]| ≤ ε(k)

where ε(k) denotes an negligible function of k.

2.3 The Viète’s Formulas

Both of our schemes introduced in this paper are based on the Viète’s formulas
[8] which is reviewed below. Consider two vectors −→v = (v1, v2, . . . , vL) and −→z =
(z1, z2, . . . , zL). Vector v contains both alphabets and wildcards, and vector z
only contains alphabets. Let J = {j1, . . . , jn} ⊂ {1, . . . , L} denote the positions
of the wildcards in vector −→v . Then the following two statements are equal:

vi = zi ∨ vi = ∗ for i = 1 . . . L
L∑

i=1,i/∈J

vi
∏
j∈J

(i − j) =
L∑

i=1

zi
∏
j∈J

(i− j). (1)

Expand
∏
j∈J

(i−j) =
n∑

k=0

aki
k, where ak are the coefficients dependent on J , then

(1) becomes:
L∑

i=1,i/∈J

vi
∏
j∈J

(i− j) =
n∑

k=0

ak
L∑

i=1

zii
k (2)

To hide the computations, we choose random group elemen Hi and put vi, zi
as the exponents of group elements: Hvi

i , H
zi
i . Then (2) becomes:

L∏
i=1,i/∈J

H
vi

∏
j∈J (i−j)

i =
n∏

k=0

(
L∏

i=1
Hzii

k

i)ak (3)

Using Viète’s formulas we can construct the coefficient ak in (2) by:

an−k = (−1)k
∑

1≤i1<i2<...<ik≤n

ji1ji2 . . . jik , 0 ≤ k ≤ n. (4)

where n = |J |. If we have J = {j1, j2, j3}, the polynomial is (x−j1)(x−j2)(x−j3),
then:

a3 = 1
a2 = −(j1 + j2 + j3)
a1 = (j1j2 + j1j3 + j2j3)
a0 = −j1j2j3.

3 Ciphertext-Policy Hidden Vector Encryption

A ciphertext-policy hidden vector encryption (CP-HVE) scheme consists of the
following four probabilistic polynomial-time algorithms:

Efficient Hidden Vector Encryption with Constant-Size Ciphertext 477

• Setup(1k, Σ, L): on input a security parameter 1k, an alphabet Σ, a vector-
length L, the algorithm outputs a public key PK and master secret key
MSK.
• Encryption(PK,−→v ,M): on input a public key PK, a message M , a vector
v ∈ Σ∗

L where Σ∗ denotes Σ ∪ {∗}, the algorithm outputs a ciphertext CT .
• KeyGen(MSK,−→x): on input a master secret key MSK , a vector −→x ∈ ΣL,

the algorithm outputs a decryption key SK.
• Decryption(CT, SK): on input a ciphertext CT and a secret key SK, the

algorithm outputs either a message M or a special symbol ⊥.

Security Model. The security model for a CP-HVE scheme is defined via the
following game between an adversary A and a challenger B.

• Init: The adversary A chooses two target patterns,

−→
v∗0 = (v0,1, v0,2, . . . , v0,L) and

−→
v∗1 = (v1,1, v1,2, . . . , v1,L)

under the restriction that the wildcards ‘*’ must appears at the same posi-
tions.
• Setup: The challenger B run Setup(k,Σ, L) to generate the PK and MSK.
PK is then passed to A.
• Query Phase 1: A adaptively issues key queries for −→σ = (σ1, . . . , σL) ∈ ΣL

under the restriction that −→σ does not match
−→
v∗0 or

−→
v∗1 . That is, there exist

i, j ∈ {1, . . . , L} such that v∗0,i �= ∗ ∧ v∗0,i �= σi, and v∗1,j �= ∗ ∧ v∗1,j �=
σj . The challenger runs KeyGen(MSK,−→σ) and returns the corresponding
decryption key to A.
• Challenge: A outputs two equal-length messages M∗

0 ,M
∗
1 . B picks β ←

{0, 1} and runs Encrypt(PK,
−→
v∗β, M

∗
β) to generate a challenge ciphertext C∗.

B then passes C∗ to A.
• Query Phase 2: same as Learning Phase 1.
• Output: A outputs a bit β′ as her guess for β.

Define the advantage of A as

AdvCP−HVE
A (k) = Pr[β′ = β]− 1/2.

4 CP-HVE Scheme 1

In this section, we present our first CP-HVE under composite order bilinear
groups. Let −→v denote the attribute vector associated with the ciphertext and −→z
the attribute vector associated with the user secret key. The expression of these
two vectors is designed based on the idea The Viète’s formulas. To do encryption,

we represent each component of the vector−→v by (gvi)

∏
j∈J

(i−j)

where J denotes all
the wildcard positions and is attached to the ciphertext. Notice that

∏
j∈J

(i−j) =

n∑
k=0

aki
k according to the Viète’s formulas. In the decryption process, based on

478 T.V. Xuan Phuong, G. Yang, and W. Susilo

J , the decryptor can reconstruct the coefficients ak, and generate
∏
j∈J

gzii
kak =

(gzi)

∏
j∈J

(i−j)

for each component of −→z . In this way, whether vi = zi will not
affect the decryption if i ∈ J .

� Setup(1k, Σ, L): The setup algorithm first chooses N << L where N is the
maximum number of wildcards that are allowed in an encryption vector. It
then picks large primes p, q, generates bilinear groups G,GT of composite
order n = pq, and selects generators gp ∈ Gp, gq ∈ Gq. After that, it selects
random elements:

g, f, v, v′, h1, . . . , hL, h
′
1, . . . , h

′
L, w ∈ Gp,

Rg, Rf , Rv, Rv′ , Rh1 , . . . , RhL , Rh′
1
, . . . , Rh′

L
∈ Gq,

and computes :

G = gRg, F = fRf , V = vRv, V
′ = v′Rv′ ,

H1 = h1Rh1 , . . . , HL = hLRhL ,
H ′

1 = h′1Rh′
1
, . . . , H ′

L = h′LRh′
L
,

E = e(g, w).

Then it creates the public key and master secret key as:

PK = {gp, gq, G, F, V, V ′, (H1, . . . , HL), (H ′
1, . . . , H

′
L), E},

MSK = {p, q, g, f, v, v′, (h1, . . . , hL), (h′1, . . . , h
′
L), w}.

� Encrypt(PK,M,−→v = (v1, . . . , vL) ∈ Σ∗
L): Suppose that −→v contains τ ≤ N

wildcards which occur at positions J = {j1, . . . , jτ}. The encryption algo-
rithm first chooses:

s ∈R Zn, and Z1, Z2, Z3, Z4 ∈R Gq.

Using formulas (3) and (4), compute ak for k = 1, 2, · · · , τ , and t = a0. Then
set:

C0 = M · Es, C1 = G
s
tZ1, C2 = F sZ2,

C3 = ((
L∏

i=1

V Hvi
i)

τ∏
k=1

(i−jk)
)

s
t · Z3, C4 = ((

L∏
i=1

V ′(H ′
i)

vi)

τ∏
k=1

(i−jk)
)

s
t · Z4,

J = {j1, j2, . . . , jτ},

and ciphertext CT = {C0, C1, C2, C3, C4, J}.

� KeyGen(MSK,−→z = (z1, . . . , zL) ∈ ΣL): The key generation algorithm
chooses r1, r

′
1, r2 randomly in Zn, and computes:

K1 = gr1 ,K2 = gr
′
1 ,K3 = gr2 ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

K4,0 = w(
L∏

i=1

hzii v)r1(
L∏

i=1

(h′i)
ziv′)r

′
1f r2 ,

K4,1 = (
L∏

i=1

hzii v)ir1(
L∏

i=1

(h′i)
ziv′)ir

′
1 ,

. . .

K4,N = (
L∏

i=1

hzii v)i
N r1(

L∏
i=1

(h′i)
ziv′)i

N r′1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Efficient Hidden Vector Encryption with Constant-Size Ciphertext 479

The secret key is SK = {K1,K2,K3,K4,0, . . . ,K4,N}.
� Decrypt(CT, SK): The decryption algorithm first applies the Viète’s for-

mulas to compute

aτ−k = (−1)k
∑

1≤i1<i2<...<ik≤τ

ji1ji2 . . . jik , 0 ≤ k ≤ τ

and then outputs:

M =
e(K1, C3) · e(K2, C4) · e(K3, C2)

e(
τ∏

k=0

Kak

4,k, C1)
· C0.

Correctness

e(K1, C3) = e(gr1 , ((
L∏

i=1

VH
vi
i)

τ∏

k=1
(i−jk)

)
s
a0 · Z3)

=
L∏

i=1

e(g, v)

sr1
τ∏

k=1
(i−jk)

a0 · e(g, hi)

sr1
τ∏

k=1
(i−jk)vi

a0 .

e(K2, C4) = e(gr′1 , ((
L∏

k=1

V ′(H′)
vi
i)

τ∏

k=1
(i−jk)

)
s
a0 · Z4)

=
L∏

i=1

e(g, v′)

sr′1
τ∏

k=1
(i−jk)

a0 · e(g, h′
i)

sr′1
τ∏

k=1
(i−jk)vi

a0 .

e(K3, C2) = e(gr2 , F sZ2) = e(g, f)r2s.

e(
τ∏

k=0

K
ak
4,k, C1) = e(wa0 (

τ∏

k=0

L∏

i=1

vikakh
zii

kak
i vikak)r1(

τ∏

k=0

L∏

i=1

(h′
i)

zii
kakv′ikak)r

′
1fr2a0 , G

s
a0 Z1)

= e(g, w)
sa0
a0 · e(g, f)

sr2a0
a0 ·

L∏

i=1

e(g, hi)

sr1
τ∏

k=1
(i−jk)zi

a0 e(g, v)
sr1

∑τ
k=0 ikak
a0

·
L∏

i=1

e(g, h′
i)

sr′1
τ∏

k=1
(i−jk)zi

a0 e(g, v′)
sr′1

∑τ
k=0 ikak
a0

= e(g, w)s · e(g, f)sr2 ·
L∏

i=1

e(g, v)

sr1
τ∏

k=1
(i−jk)

a0 · e(g, hi)

sr1
τ∏

k=1
(i−jk)zi

a0

·
L∏

i=1

e(g, v′)

sr′1
τ∏

k=1
(i−jk)

a0 · e(g, h′
i)

sr′1
τ∏

k=1
(i−jk)zi

a0 .

Then we have

e(K1 , C3) · e(K2 , C4) · e(K3, C2)

=
L∏

i=1
e(g, v)

sr1
τ∏

k=1
(i−jk)

a0 · e(g, hi)

sr1
τ∏

k=1
(i−jk)vi

a0 ·
L∏

i=1
e(g, v′)

sr′1
τ∏

k=1
(i−jk)

a0 · e(g, h′
i)

sr′1
τ∏

k=1
(i−jk)vi

a0 ,

e(
τ∏

k=0
K

ak
4,k

, C1)

=
L∏

i=1
e(g, v)

sr1
τ∏

k=1
(i−jk)

a0 · e(g, hi)

sr1
τ∏

k=1
(i−jk)zi

a0 ·
L∏

i=1
e(g, v′)

sr′1
τ∏

k=1
(i−jk)

a0 · e(g, h′
i)

sr′1
τ∏

k=1
(i−jk)zi

a0

·e(g, w)s · e(g, f)sr2 ,

480 T.V. Xuan Phuong, G. Yang, and W. Susilo

and can recover message M by:

e(K1, C3) · e(K2, C4) · e(K3, C2)

e(
τ∏

k=0

K
ak
4,k, C1)

· C0 =
e(g, f)r2s ·M · e(g,w)s
e(g,w)s · e(g, f)sr2 =M.

Theorem 1. Our CP-HVE Scheme 1 is secure if the Decisional L−cBDHE
assumption, the L− cDDH assumption, and the BSD assumption hold.

We prove Theorem 1 by the following sequence of games.

Game0 : [C0, C1, C2, C3, C4]

Game1 : [C0 ·Rp, C1, C2, C3, C4]

Game2 : [R0, C1, C2, C3, C4]

Game3 : [R0, C1, C2, R3, C4]

Game4 : [R0, C1, C2, R3, R4],

where Rp is a randomly chosen from GT,p, R0 is uniformly distributed in GT ,
and R0, R3, R4 are uniformly distributed in G.

We will prove the following Lemmas. Notice that in Game4 the challenge
ciphertext is independent of the message and the encryption vector, which means
the adversary has no advantage in winning the game over random guess.

Lemma 1. Assume that the Decisional L−cBDHE assumption holds, then for
any PPT adversary, the difference between the advantages in Game0 and Game1

is negligible.

Lemma 2. Assume that the BSD assumption holds, then for any PPT adver-
sary, the difference between the advantages in Game1 and Game2 is negligible.

Lemma 3. Assume that the L−cDDH assumption holds, then for any PPT
adversary, the difference between the advantages in Game2 and Game3 is negli-
gible.

Lemma 4. Assume that the L−cDDH assumption holds, then for any PPT
adversary, the difference between the advantages in Game3 and Game4 is negli-
gible.

(The proof is given in the full version of the paper).

5 CP-HVE Scheme 2

One straightforward approach to obtain a new CP-HVE scheme under prime-
order bilinear groups is to apply the conversion technique introduced by Lewko
[26]. In this section, we present a new prime-order CP-HVE scheme that is more
efficient than the converted scheme.

Efficient Hidden Vector Encryption with Constant-Size Ciphertext 481

� Setup(1k, Σ, L): The setup algorithm chooses N << L to be the maxi-
mum number of wildcards that are allowed in an encryption vector. Then it
generates other system parameters including:

e : G×G→ GT ,
L + 1 random elements V,H1, . . . , HL ∈R G,
Then chooses randomly generator g, w, f ∈ G,
Y = e(g, w).

The public key and master secret key are set as:

PK = (Y, V, (H1, . . . , HL), g, f, p,G,GT , e),
MSK = w.

� Encrypt(PK,M,−→v = (v1, . . . , vL) ∈ Σ∗
L): Assume that −→v = (v1, . . . , vL)

contains τ ≤ N wildcards which occur at positions J = {j1, . . . , jτ}. The
encryption algorithm chooses s ∈R Zp, and computes using Viete’s formulas
t = a0. It then computes:

C0 = MY s, C1 = g
s
t , C2 = f s, C3 = (

L∏
i=1

VHvi
i)

∏τ
k=1(i−jk)s

t ,

and set the ciphertext CT = (C0, C1, C2, C3, J = {j1, j2, . . . , jτ}).

� Key Generation(MSK,−→z = (z1, . . . , zL) ∈ ΣL): given a key vector −→z =
(z1, . . . , zL), the key generation algorithm chooses r, r1 ∈R Zp, then it creates
secret key SK as:

K1 = gr,K2 = gr1 ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

K3,0 = w(
L∏

i=1

(Hzi
i V)rf r1

K3,1 = (
L∏

i=1

Hzi
i V)ir

. . .

K3,N = (
L∏

i=1

Hzi
i V)i

N r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

� Decrypt(CT, SK): The decryption algorithm first applies the Viete formu-
las on J = {j1, . . . , jτ} included in the ciphertext to compute:

aτ−k = (−1)k
∑

1≤i1<i2<...<ik≤τ

ji1ji2 . . . jik , for 0 ≤ k ≤ τ

and then outputs:

M =
e(K1, C3) · e(K2, C2)

e(
τ∏

k=0

Kak

3,k, C1)
· C0.

482 T.V. Xuan Phuong, G. Yang, and W. Susilo

Correctness

e(K1, C3) = e(gr , ((
L∏

i=1
V H

vi
i)

τ∏
k=1

(i−jk)

)
s
a0)

=
L∏

i=1
e(g, V)

sr
τ∏

k=1
(i−jk)

a0 · e(g,Hi)

sr
τ∏

k=1
(i−jk)vi

a0 .

e(K2, C2) = e(gr1 , fs) = e(g, f)r1s

e(
τ∏

k=0
K

ak
3,k, C1) = e(wa0(

τ∏

k=0

L∏

i=1
H

zii
kak

i V ikak)rfr1a0 , g
s
a0)

= e(g,w)
sa0
a0 · e(g, f)

sr1a0
a0 ·

L∏

i=1
e(g, V)

sr
τ∏

k=1
(i−jk)

a0 e(g,Hi)

sr
τ∏

k=1
(i−jk)zi

a0

= e(g,w)s · e(g, f)sr1 ·
L∏

i=1
e(g, V)

sr
τ∏

k=1
(i−jk)

a0 · e(g,Hi)

sr
τ∏

k=1
(i−jk)zi

a0 .

Then we have:

e(K1,C3)·e(K2,C2)·C0

e(
τ∏

k=0
K

ak
3,k

,C1)

=
M·e(g,w)s ·

L∏

i=1
e(g,V)

sr
τ∏

k=1
(i−jk)

a0 ·e(g,Hi)

sr
τ∏

k=1
(i−jk)vi

a0 ·e(g,f)r1s

e(g,w)s ·e(g,f)sr1 ·
L∏

i=1
e(g,V)

sr
τ∏

k=1
(i−jk)

a0 ·e(g,Hi)

sr
τ∏

k=1
(i−jk)zi

a0

= M.

6 Security Proof of CCP-HVE2 Scheme

Theorem 2. Assume decision L-BDHE assumption holds in G, then our CP-
HVE Scheme 2 is secure.

Proof. Suppose that there exists an adversary A which can attack our scheme
with non-negligible advantage ε, we construct another algorithm B which uses A
to solve the decision L-BDHE problem. On input (g, h,−→y g,α,L = (g1, g2, . . . , gL,

gL+2, . . . , g2L), T), where gi = gα
i

and for some unknown α ∈ Z∗
p. The goal of

B is to determine whether T = e(gL+1, h) or not.
In the rest of the proof, we denote W (−→v) = {1 ≤ i ≤ L|vi = ∗} and W (−→v) =
{1 ≤ i ≤ L|vi �= ∗}, and W (−→v)|kj as {i ∈ W (−→v)|j ≤ i ≤ k}.
B simulates the game for A as follows:

• Init: A declares two challenge alphabet vectors
−→
v∗0 ∈ Σ∗

L and
−→
v∗1 ∈ Σ∗

L under

the restriction that W (
−→
v∗0) = W (

−→
v∗1). B flips a coin μ ∈ {0, 1}. For simplicity

we denote
−→
v∗μ = (v∗1 , v

∗
2 , · · · , v∗L).

• Setup: B chooses N << L, and random values γ, y, ψ, u1, . . . , uL ∈R Zp

and sets
Y = e(gα, gα

L

gγ), f = gψ,

V = gy
∏

i∈W (
−→
v∗
μ)

gα
L+1−iv∗

μ,i

{Hi = gui−αL+1−i}
i∈W (

−→
v∗
μ)
, {Hi = gui}

i∈W (
−→
v∗
μ)
.

Efficient Hidden Vector Encryption with Constant-Size Ciphertext 483

The master key component w is gα
L+1+αγ . Since B does not have gα

L+1

, B
cannot compute w directly.

• Query Phase 1: A queries the user secret key for −→σu = (σ1, σ2, . . . , σu)

that does not match the challenge patterns. Let k ∈ W (
−→
v∗μ) be the smallest

integer such that σk �= v∗μ,k.
B needs to simulate the user key generation process. We start from K3,i.

K3,0 = w(
L∏

i=1

Hσi
i V)rfr1

= gα
L+1+αγ(

∏
W (

−→
v∗
μ)|k1

gui−αL+1−i · ∏
W (

−→
v∗
μ)|k1

(gui))σi · g
y+

∑

W(
−→
v∗μ)

αL+1−iv∗
μ,i

)rfr1 .

def
= gα

L+1+αγ(gX)rfr1

where

X =
∑

W (
−→
v∗
μ)

αL+1−iv∗μ,i + y +
∑

W (
−→
v∗
μ)|k1

(ui − αL+1−i)σi +
∑

W (
−→
v∗
μ)|k1

uiσi.

Since

∑
W (

−→
v∗
μ)|k1

(ui − αL+1−i)σi +
∑

W (
−→
v∗
μ)|k1

uiσi =
∑

W (
−→
v∗
μ)|k1

(−αL+1−iσi) +

k∑
i=1

uiσi

and recall σi = v∗μ,i for i ∈ W (
−→
v∗μ)|k−1

1 and σk �= v∗μ,k. Hence, we have

X = αL+1−kΔk +
∑

W (
−→
v∗
μ)|Lk+1

αL+1−iv∗μ,i +
∑k

i=1 xiσi + y

where Δk = v∗μ,k − σk. Then we choose r̂, r1 randomly in Zn, and set r =
−αk

Δk
+ r̂. K3,0 can be represented as

K3,0

= gαL+1+αγ · g−αL+1
· g

∑

i∈W (
−→
v∗μ)|Lk+1

−αL+1−i+kv∗μ,i
Δk

· g
ak(−

∑k
i=1 xiσi+y.

Δk
)
· (V

k∏

i=1

h
σi
i)r̂ · fr1

= gαγ · g

∑

i∈W (
−→
v∗μ)|Lk+1

−αL+1−i+kv∗μ,i
Δk

· g
ak(−

∑k
i=1 xiσi+y.

Δk
)
· (V

k∏

i=1

H
σi
i)r̂ · fr1 .

For k̂ = 1 to N , we compute

K3,k̂ = (g

y+
∑

W(
−→
v∗μ)

αL+1−iv∗
μ,i

· (∏
W (

−→
v∗
μ)|k−1

1

gui−αL+1−i · ∏
W (

−→
v∗
μ)|k−1

1

(gui)σi)
−αkik̂

Δk
+r̂ik̂

.

484 T.V. Xuan Phuong, G. Yang, and W. Susilo

Table 2. Performance Comparison

Scheme Group Order Ciphertext Size Decryption Cost Assumption

Katz et al. [6] pqr (2L+ 1)|G|+ 1|GT | (2L+ 1)p c3DH

Shi–Waters [20] pqr (L+ 3)|G|+ 1|GT | (L+ 3)p c3DH

Ivovino–Persiano[21] p (2L+ 1)|G|+ 1|GT | (2L+ 1)p DBDH + DLIN

Sedghi et al. [8] p (N + 3)|G|+ 1|GT | 3p DLIN

cBDH
Lee–Dong [25] pqr (L+ 2)|G|+ 1|GT | 4p BSD

c3DH

Park [23] p (2L+ 3)|G|+ 1|GT | 5p DBDH+DLIN

L− wDBDHI
Hattori et al. [9] pq (2L+ 3)|G|+ 1|GT | 3p BSD

L− cDDH

L−cBDHE
CP-HVE1 pq 4|G|+ 1|GT | 4p BSD

L− cDDH

CP-HVE2 p 3|G|+ 1|GT | 3p L-BDHE

Other elements in the key can also be simulated:

K1 = gr = (gαk)−1/Δk · gr̂,K2 = gr1 .

• Challenge: A sends to message M0,M1 to B, then sets using Viete formulas

aτ−k = (−1)k
∑

i≤i1<i2<...<ik≤τ

ji1ji2 . . . jik , 0 ≤ k ≤ τ.

Let t = a0. It creates ciphertext as:

C0 = Mb · T · e(gα, h)γ , C1 = h1/t, C2 = hψ, C3 = ((h
y+

L∑
i=1

uiv
∗
μ,i

)

τ∏
k=1

(i−jk)
)

1
t

If T = e(g, h)α
L+1

, the challenge ciphertext is a valid encryption of Mb. On
the other hand, when T is uniformly distributed in GT , the challenge ci-
phertext is independent of b.

• Query Phase 2: Same Phase 1.

• Guess: A output b′ ∈ {0, 1}. If b′ = b then B outputs 1, otherwise outputs
0.

If b′ = 0, then the simulation is the same as in the real game. Hence, A will
have the probability 1

2 + ε to guess b correctly. If b′ = 1, then T is random in G,
then A will have probability 1

2 to guess b correctly. Therefore, B can solve the
decision L-BDHE assumption also with advantage ε. �

Efficient Hidden Vector Encryption with Constant-Size Ciphertext 485

7 Performance Comparison

We give a detailed comparison among all the HVE schemes in Table 2. The
schemes are compared in terms of the order of the underlying group, ciphertext
size, decryption cost, and security assumption. In the table, p denotes the pairing
operation, L the length of the vector, and N denotes the maximum number of
wildcards.

Remark : In Table 2, we do not count the wildcard positions when measuring the
ciphertext size. To indicate those wildcard positions, a naive way is to use an
L-bit string, which has the same size as several group elements when L is linear
in the security parameter. When N & L, then a more efficient way is to use the
index for the first wildcard position and the offsets for the remaining wildcard
positions.

8 Conclusion

We proposed two efficient ciphertext policy Hidden Vector Encryption schemes
in this paper. Both of our encryption schemes can achieve constant ciphertext
size, which forms the major contribution of this work. We proved the security
of our schemes in a selective security model which captures both plaintext and
attribute hiding properties. One of our future work is to extend our schemes so
that they can achieve adaptive security.

References

1. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, CCS 2006, pp. 89–98. ACM,
New York (2006)

2. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: Attribute-based encryption and (Hierarchical) inner product
encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

3. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

4. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: Achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

5. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007)

6. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

486 T.V. Xuan Phuong, G. Yang, and W. Susilo

7. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

8. Sedghi, S., van Liesdonk, P., Nikova, S., Hartel, P., Jonker, W.: Searching keywords
with wildcards on encrypted data. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010.
LNCS, vol. 6280, pp. 138–153. Springer, Heidelberg (2010)

9. Hattori, M., Hirano, T., Ito, T., Matsuda, N., Mori, T., Sakai, Y., Ohta, K.:
Ciphertext-policy delegatable hidden vector encryption and its application to
searchable encryption in multi-user setting. In: Chen, L. (ed.) IMACC 2011. LNCS,
vol. 7089, pp. 190–209. Springer, Heidelberg (2011)

10. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

11. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

12. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

13. Boneh, D., Boyen, X., Goh, E.J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005)

14. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

15. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consistency
properties, relation to anonymous ibe, and extensions. J. Cryptology 21(3), 350–
391 (2008)

16. Abdalla, M., Catalano, D., Dent, A., Malone-Lee, J., Neven, G., Smart, N.:
Identity-based encryption gone wild. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 300–311. Springer, Heidel-
berg (2006)

17. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

18. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

19. Abdalla, M., De Caro, A., Phan, D.H.: Generalized key delegation for wildcarded
identity-based and inner-product encryption. IEEE Transactions on Information
Forensics and Security 7(6), 1695–1706 (2012)

20. Shi, E., Waters, B.: Delegating capabilities in predicate encryption systems. In:
Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 560–578. Springer,
Heidelberg (2008)

21. Iovino, V., Persiano, G.: Hidden-vector encryption with groups of prime order. In:
Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 75–88.
Springer, Heidelberg (2008)

Efficient Hidden Vector Encryption with Constant-Size Ciphertext 487

22. Blundo, C., Iovino, V., Persiano, G.: Private-key hidden vector encryption with key
confidentiality. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS,
vol. 5888, pp. 259–277. Springer, Heidelberg (2009)

23. Park, J.H.: Efficient hidden vector encryption for conjunctive queries on encrypted
data. IEEE Trans. on Knowl. and Data Eng. 23(10), 1483–1497 (2011)

24. Seo, J., Kobayashi, T., Ohkubo, M., Suzuki, K.: Anonymous hierarchical identity-
based encryption with constant size ciphertexts. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 215–234. Springer, Heidelberg (2009)

25. Lee, K., Lee, D.H.: Improved hidden vector encryption with short ciphertexts and
tokens. Des. Codes Cryptography 58(3), 297–319 (2011)

26. Lewko, A.B.: Tools for simulating features of composite order bilinear groups in
the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

Enabling Short Fragments for Uncoordinated Spread
Spectrum Communication

Naveed Ahmed1, Christina Pöpper2, and Srdjan Capkun3

1 DTU Copenhagen, Denmark
naah@dtu.dk

2 HGI Ruhr-University Bochum, Germany
christina.poepper@rub.de

3 ETH Zurich, Switzerland
srdjan.capkun@ethz.ch

Abstract. Uncoordinated spread spectrum (USS) protocols have been proposed
for anti-jamming communication in wireless settings without shared secrets. The
existing USS protocols assume that fragments of hundreds of bits can be trans-
mitted on different channels in order to identify fragments that belong to the same
message. However, such long transmissions are susceptible to reactive jamming.
To address this problem, we present a protocol that allows the use of short frag-
ments of a few bits only. This makes our scheme resilient to a large class of re-
active jammers. We prove that reassembling the fragmented message is not only
feasible but also efficient: it can be completed in polynomial time in the size of the
message, even if the jammer is computationally resourceful. We demonstrate the
protocol efficiency by simulating the reassembly process at the link layer under
different design parameters.

Keywords: Anti-jamming, Spread-spectrum Communication, Wireless Security.

1 Introduction

The primary countermeasure against jamming attacks on wireless communication is
spread spectrum (SS) communication. Traditional (coordinated) SS communication be-
tween two parties requires shared secrets, however, establishing the secret key is a
challenge in itself [1]. If two parties are unknown to each other, such as in wireless
ad-hoc communication, emergency alert broadcast, or the dissemination of navigation
signals [2], pre-sharing secrets is not feasible. Jamming-resistant key establishment is
not only a bootstrapping problem but it reoccurs during re-keying if the old keys have
been compromised.

A few years ago, a technique for uncoordinated spread spectrum (USS) communi-
cation, which does not require pre-shared secrets, was proposed at the US Air Force
Academy [3]. Since then the interest in USS has grown, both for civilian [1, 4, 5] and
military applications [6]. In effect, a USS transmitter transmits a long message as a
sequence of shorter, fixed-size encoded fragments (frames) on randomly selected chan-
nels. A channel here corresponds to a frequency channel in frequency hopping spread
spectrum (FHSS) or a chip code (or sequence of chip codes) in direct sequence spread
spectrum (DSSS).

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 488–507, 2014.
c© Springer International Publishing Switzerland 2014

Enabling Short Fragments for USS Communication 489

Reactive Jamming Sweep Jamming

.............

t

f

Sensing,
reaction &
transmis-
sion time

Long
Frame

Long
Frame

Jammed
Transmission

(a)

Short
Frame

Short
Frame

Short
Frame

Short
Frame

Reactive Jamming Sweep Jamming

.............
t

f

Sensing,
reaction &
transmis-
sion time

Short
Frame

d-bit
Short
Frame

Short
Frame

Short
Frame

(b)

Fig. 1. Long and short frame transmissions. (a) Long frames are an easy target for jammers.
Reactive jammers will have sufficient time to sense an ongoing transmission and then react to jam
the used channel. Sweep (non-reactive) jammers have a high probability of hitting the channel
where a long frame is transmitted. (b) Short frames reduce the risk of successful jamming attacks
for both reactive and non-reactive sweep jammers.

The frame size is a key parameter of USS communication because it determines how
fast a transmitter can switch the transmission channel. Clearly, if the frames are long
then the respective channel will remain active for a long time, which makes it easy for
a reactive adversary to locate and jam the channel and which results in high jamming
probabilities for sweep jammers, as illustrated in Fig. 1-(a). If the switching frequency
is high enough (see Fig. 1-(b)) then the adversary does not get enough time to react.

The feasibility of real-time, reactive radio jamming has recently been demonstrated
using software-defined radio equipment [7, 8] with reaction times on the order of few
symbol durations for 802.15.4 communication. Although error correction schemes can
be used to repair some errors, these schemes are not effective against reactive jammers
that can jam the channel if the frames are long. Thus, a USS protocol that supports short
frames is highly desirable. Existing USS protocols, however, depend on long frames
in order to transmit “linking information” that is used to identify parts that belong to
the same message (we further elaborate on this in § 3 and § 7). This identification
problem exists due to trivial pollution attacks at the link layer, in which a large number
of well-designed fake frames are broadcasted to overburden the reassembly process at
a legitimate receiver.

In this paper, we challenge the current assumption that long frames are indeed a nec-
essary requirement for USS schemes. The idea of our solution is based on two insights.
First, the payload and the message link do not need to be in the same fragment – instead
they can be decoupled. This allows to independently transmit the payload and the link
as shorter fragments. Second, if the function that computes a link is secure against a
computationally unbounded adversary, then the size of the link can be reduced to a few
bits. Using these insights, our protocol is the first scheme for USS communication that
allows for short fragments–down to a few bits.

In more details, consider a reactive adversary who can jam frames longer than d-bit.
To circumvent this reactive jamming, we disassemble a long message into m fragments
of d-bit each, which are cryptographically linkable. As we will show, our protocol en-
ables a USS receiver to reassemble the original message in a time that is polynomial in

490 N. Ahmed, C. Pöpper, and S. Capkun

m, provided z(z + 1) < 2d, where z is the number of fake fragments that an adversary
can transmit in parallel to each legitimate fragment.

The rest of the paper is arranged as follows. In § 2, we clarify the problem and define
the system and adversary models. In § 3, we give an overview of our proposal. We
present our proposed solution and its properties in § 4 and prove its security in § 5. In
§ 6, we describe various performance results that we obtained by a simulation. In § 7,
we describe related work. Finally, in § 8, we conclude our work.

2 Problem Statement

Problem Formulation: A number of message fragmentation schemes [1,9–11] for USS
communication were proposed (see § 7). The current approaches face a dilemma.

First, the required fragment size is too long to be practical against reactive jamming
at the physical layer. That is, the proposed schemes apply linking techniques that not
only require embedded linking information within the fragment but also the linking
information must be hundred bits long for adequate cryptographic security.

Second, shortening the fragments (to provide more resistance to reactive jammers)
conflicts with the schemes’ very resistance against computationally powerful adver-
saries. For instance, the minimum fragment size of hash-based solutions [9] is mainly
given by the length of the hash values used in the frame encoding; if the length of
the hash values is reduced to make the scheme resistant to faster jammers then the
hash function may no longer be second pre-image resistant. A computationally power-
ful adversary will then be able to break the linking function and introduce exponential
complexity in the reassembly process—with the effect of a DoS-attack.

The goal of this work is to identify a way that allows to significantly reduce the frame
size compared to prior proposals.

System Model: We consider an environment in which the communication bandwidth
is given by a set of channels C, where |C| = n. For instance, c ∈ C can be a frequency
channel or a spreading code (or a short sequence of chippings codes) that encodes d bits.
We consider ad-hoc communication between pairs of devices or from a transmitter T to
unknown receivers in its transmission range (broadcast). T transmits d-bit fragments,
encoded in frames, on randomly selected channels. We do not assume any shared secrets
in the system and all protocol specifications are public and known to the receivers.

A receiver R is located in the transmission range of T and can receive on all or a
subset of channels in parallel (broadband or partial-band receiver).R does not need to
be time synchronized with T at the fragment level but is assumed to be in reception
mode while the sender is transmitting. There can be a large number of receivers, but
we do not assume any inter-receiver communication. We do not consider point-to-point
communication, i. e., we do not require headers with physical address information.

Adversary Model: The aim of an adversary A is to prevent R from reassembling a
legitimate message sent by T . The adversary can mount attacks at two different levels.

First, at the radio level, A can try to jam T ’s transmission. We assume that, due
to limitations of radio equipments (e. g., required time for sensing and synthesizing
the frequency of the carrier wave), A cannot deterministically jam transmissions of

Enabling Short Fragments for USS Communication 491

fragments of a few bits. Similar to conventional SS communication,A can jam a frame
probabilistically by guessing as was, e. g., analyzed for longer frames in [1]. Therefore,
as typical for conventional SS, we assume that A can only jam a limited portion of the
available bandwidth. We note that number of channels where the attacker can jam may
also be larger than the number of receiving channels at the receiver (which increases
reception time accordingly).

Second, at a computational level, an all-powerful A tries to exploit our protocol at
the data link layer. To this end, A transmits fake fragments to make it infeasible for R
to identify legitimate fragments. The adversary may be located within the transmission
range of T and her fake fragments can be a function of the legitimate fragments.

We synthesize the above discussion in two assumptions:

Assumption 1 (Minimum Reaction Time). The reaction time of A, i. e., the time re-
quired to sense an ongoing transmission on a channel and then jam that channel, is
longer than the time required to transmit a frame containing a d-bit fragment (d ≥ 1).

In short, we assume that communication using conventional FHSS with fragments
of d bits would resist the considered reactive attacker A (but cannot be used due to the
lack of shared secrets). The reaction time depends on A’s distance to T and to R and
on the response times of A’s radio equipments; channel switching can easily account
for tens of microseconds [7, 12] and channel sensing by energy detection may be up
to an order of milliseconds [13]. Given the bit rates of common wireless standards for
comparison (e. g., 11 Mbit/s for 802.11b or 5-15 Mbit/s in 3G-UMTS) and the resulting
bit duration of around one μs, it is reasonable to assume that the combined attack time
is longer than the frame transmission time for a d-bit fragment when d is small.

Assumption 2 (z-channel Adversary). A’s transmission power is limited to z < n
channels (on which A can transmit in parallel) such that z(z + 1) < 2d.

Assumption 2 limits the bandwidth on which the adversary can transmit; e. g., our pro-
posed scheme will work efficiently for d = 5-bit fragments if the attacker transmits on
up to z = 4 channels in parallel. Note that unlimited computation power cannot be used
to overcome the limitations of the communication hardware.

The effect of non-reactive jamming strategies (e.g., sweep jamming) on R is the
same as randomly corrupting some of the fragments, because T sends the fragments on
randomly selected channels; for UFH, random selection is the optimum strategy [9]. In
principle, error-correcting schemes [14] can be used to counter random errors. Tradi-
tional error correction increases the frame size, though. Therefore, we propose a scheme
based on the repetition of fragments in order to tolerate random errors.

Clearly,A’s attacks are not effective at the radio level given the design parameters, z
and d, correctly capture the capabilities ofA’s radio equipment. Next, we introduce the
details of our protocol and show thatA, even with infinite computational power, cannot
devise a jamming strategy that exploits our protocol at the data link layer.

3 Solution Overview

In this section, we provide an overview of our protocol, which we call the collision
detection protocol (CDP or CD protocol). In the CDP, a message TT

m to be broadcasted

492 N. Ahmed, C. Pöpper, and S. Capkun

m2 m3 m4l2 l3 l4 l5

m2' m3' m4'l2' l3' l4' l5'

Co
llis
ion

Co
llis
ionFork

Fork

Fig. 2. Collisions and forks among paths significantly increase the number of paths that R must
reassemble. Although forks and collisions are unavoidable for short fragments, collisions can be
detected, which suffices to efficiently decode a legitimate message.

by transmitter T is assembled as a list of m message fragments (M-fragments), each
of which is d bits long: TT

m = m1, . . . ,mm. We define TT
m [i → j] = mi, . . . ,mj ,

where 1 ≤ i ≤ j ≤ m. Each M-fragment is sent on a randomly selected SS channel.
Since an adversary can transmit fake fragments, we link the M-fragments together, so
that the CDP receiver R can reassemble the original message. For this purpose, we
use a link certificate TT

l , which consists of m linking fragments (L-fragments) each
of size d bits. The i-th L-fragment is computed from the message fragments using a
CDP linking function: li = link(TT

m [1 → i]); we specify this function in § 4.1. We
then interleave the L-fragments and the M-fragments, to obtain a transmission schedule:
TT = m1,l2,m2, . . . ,lm,mm. The scheduleTT is followed by T who sends fragments
sequentially on randomly selected channels.

Since an L-fragment is a function of prior M-fragments, R can perform an online
verification of the incoming L-fragments. A path is a plausible reconstruction of the
transmission schedule TT and it consists of a list of interleaved L-fragments and M-
fragments upon which the linking function can be verified. We say thatR is tracking a
path at an index i if the online verification of the i-th L-fragment li succeeds for the
path m1 → l2 → · · · → li → mi. A path is complete, when the tracking terminates
successfully with the verification of the m-th L-fragment.

A z-channel adversary can simultaneously transmit on z channels, and thus R may
receive z+1 fragments at each time instant. In this case, finding the path of the original
message (consisting of m fragments) involves searching among (z + 1)m plausible
paths, which can be infeasible, e. g., with m = 128 and z = 2. In this paper, we show
that if an appropriate linking function is used then the number of paths are significantly
reduced, which enables R to efficiently reassemble a legitimate message. Ideally, if
z + 1 fragments are received per time unit then no more than z + 1 paths should be
tracked by R. In reality, however, the number of trackable paths could be more than
z + 1 due to a combination of collisions and forks. We say that a collision occurs
when two paths merge together (at an L- or M-fragment) and a fork occurs when a
path splits into different paths, as illustrated in Fig. 2. Ideally, one would expect that
the linking function can resist both collisions and forks in order to limit the number of
paths, however, this may be impossible to achieve; e. g., if d = 4 then the probability
that two random paths will have the same subsequent L-fragment is at least 2−4.

Fortunately, the following two insights lead to a technique that reduces the number
of search paths for short fragments. First, by preventing collisions only, we can avoid
an exponential number of plausible paths. If there are no collisions thenR never tracks
more than z+1 paths when receiving z+1 fragments per time unit. Without collisions,

Enabling Short Fragments for USS Communication 493

the search space for tracking can be visualized as a tree-shaped structure (due to the
forks), which will have less than z + 1 complete paths. Second, a linking function that
only takes the current and the previous fragment into account (such as a hash chain
in [1]) is not sufficient to detect collisions, because if a collision is not detected in the
first link that arrives after the collision then the collision will remain undetected in the
subsequent tracking. Hence, the number of paths would be high for such a function.

We propose a linking function that takes all (or a large number of) the previous frag-
ments into account, which enables to detect collisions in the subsequent tracking (hence
the name collision detection protocol). Although an adversary may be able to create col-
lisions between her path and the legitimate path, these collisions can be detected once
the tracking progresses with the arrival of more fragments. Towards the end of the le-
gitimate path, collisions are less likely to be detected, but this does not exponentially
increase the message reassembly time, since only few fragments are concerned.

4 Collision Detection Protocol

We next present our proposed scheme on the sender (§ 4.1) and receiver (§ 4.2-4.3) side.

4.1 Sender Side: Message Transmission

Let the message TT
m to be sent by T come from a uniformly distributed encoding of

the message payload, making TT
m unpredictable for the adversary, e.g., TT

m can be
computed by a symmetric encryption function: TT

m ← EK
(
NT ,M,SSkT (M)

)
. Here,

K is a publicly known key, NT is a secretly generated nonce used to randomize TT
m ,

M is the payload, and SSkT (M) is the signature1 computed onM using T ’s private
key SkT . The payload may contain a time-stamp to provide freshness of TT

m .
Assuming the encryption function has pseudo-random properties [15], the outputTT

m

is uniformly distributed for the adversary until TT
m is transmitted. This randomization

is required in order to make the value of a fragment unpredictable for the adversary
before the fragment is actually transmitted (details will follow later). The signature
SSkT is required so thatR can distinguish a legitimate message from fake messages.

As described in § 3, T assembles TT
m as a list of M-fragments, computes the link

certificate TT
l , and interleaves it with TT

m : TT =
[
TT
l [i], TT

m [i] : 1 ≤ i ≤ m
]
.

The i-th fragment TT [i] is transmitted at the i-th time instant ti on randomly selected
channels.

Resilience to Fragment Loss. To tolerate possible fragment loss (due to, e.g., adver-
sarial jamming or channel noise), the front-end of T operates with a repetition factor
of ρ: each fragment TT [i] is repeated ρ times between time instants ti and ti + ΔT
on randomly selected channels, as illustrated in Fig. 3. Here, ΔT is the window size in
which R senses the incoming signals for data. The period size ΔT is fixed but R may
not know the start and end of a period.

1 Existing digital signature schemes (DSS) are only secure against computationally bounded
adversaries, but this does not affect the security of the link layer, which is responsible for
re-assembling the message from received fragments.

494 N. Ahmed, C. Pöpper, and S. Capkun

Fig. 3. Repetitions enable R to tolerate fragment
losses, as common for USS techniques

Properties of the Linking Function.
The core of our scheme is the linking of
message fragments using a linking func-
tion: H : {0, 1}∗ → {0, 1}d. This func-
tion is computed on the current fragment
and all prior fragments. We require the
following property to hold forH(·) in or-
der to efficiently identify the legitimate
message Tm atR.

Property 1. Let xl, x′l and xh be three bit strings such that xl �= x′l, |xl| = |x′l| ≤ md,
and |xh| = d. Let xl be known to the adversary, x′l be chosen by the adversary, and xh
comes from the uniform distribution. The functionH(·) is a linking function ifH(xl) =
H(x′l)⇒ H(xl, xh) = H(x′l, xh) only holds with probability 2−d.

As an intuition, xh stands for the current fragment of a transmitted message, which
is connected to all prior fragments xl using the link H(xl, xh). Similarly, x′l stands
for all prior fragments of an adversarial message. A may well compute x′l such that
H(xl) = H(x′l) holds for x′l �= xl, which results in a collision of the two search paths
in the decoding process onR. This collision, however, is likely to be detected during the
consideration of the next fragment xh, because the corresponding links,H(xl, xh) and
H(x′l, xh), can only be equal with a low probability (2−d). This probability is further
decreased when more fragments arrive: Property 1 not only specifies the collision de-
tection probability with the current fragment xh, but also with all subsequent fragments
of the message.

Instantiation of the Linking Function. A simple instantiation of H(·) is a crypto-
graphic hash function, such as SHA-256. For this purpose, one can treat ’,’ as string
concatenation, pad the resultant string to make it compliant to the hash function, and
truncate the digest to d-bit. H(·) can also be constructed using a set of random tables
(especially if d is a few bit long), or using the truncated output of an encryption or
signature function. The bitwise XOR function however, does not satisfy Property 1 and
collisions will propagate (i. e., remain undetected) with probability 1.

If SHA-256 type hash function is used, then new fragments must be prepended to the
existing string of fragments. We explain this requirement in the following. Due to the
Merkle-Damgård construction, SHA-256 computes the digest from an input iteratively,
by taking 512-bit at a time. Let s1 and s2 be two bit strings that are multiples of 512-
bit2 with s1 �= s2. Let s3 be another bit string of arbitrary length. If a collision occurs,
namely H(s1) = H(s2), then we also get another collision H(s1, s3) = H(s2, s3).
Therefore, to avoid this problem and to cause re-computation of the whole chain of
compression functions inside SHA-256, new fragments must be prepended.

Note that Property 1 does not imply one-wayness, second pre-image resistance, or
conventional collision-resistance of H(·). This is important because, for the link layer,
we consider a computationally unbounded adversary, for whom these assumptions may
not hold. With a small value of d, such as 4 bits, the standard assumptions of a hash
function are not even realistic for a computationally limited adversary.

2 The internal “chunk size” of SHA-256 and SHA-512 is 512 bit.

Enabling Short Fragments for USS Communication 495

If the fragments are very short and the adversary can introduce a large number of
parallel fragments, a single link certificate may not be enough to detect collisions ef-
ficiently. This problem can be addressed by using α > 1 link certificates; we call α
amplification factor. With α = 2, the encoding becomes: m1, l2,l

′
2,m2, . . . ,mm. Each

additional link certificate uses a different linking function. When we describe the re-
ceiver side, we assume α = 1, but the results can be extended for α > 1 and we
investigate its impact on the performance of the CDP in § 6.

4.2 Receiver Side: Reception of Fragments

Handling of Fragment Loss and Fake Fragments. The CDP tolerates a situation in
which up to a certain threshold of the transmitted fragments—typically half of them—
get corrupted or lost due to adversarial jamming or channel characteristics. To achieve
time synchronization,R uses a sliding-window technique to get alignment for the ΔT
window, which can be achieved by repeating the decoding process ρ/2 times, possibly
in parallel. To illustrate the decoding process, we consider two special cases of a re-
ceiver antenna. In both cases, the purpose is to make sure that a z-channel adversary
can only makeR accept, at most, one value per adversarial channel.

First, we consider a broadband antenna, namely R can receive data on all channels
in parallel. In this case, the top z + 1 values that occur the most in ΔT are marked
as received. Clearly, a z-channel adversary cannot make R to ignore the legitimate
transmission, because for doing so the adversary would need to transmit z+ 1 different
values, such that each of them occurs at least ρ times.

In the second case, the receiver antenna is narrow-band, namelyR can only receive
on one or a few channels. In this case, our solution is very similar to the technique
from [2, 9]: R listens on randomly selected channels. The probability that R listens
on the correct channel(s) (where a fragment is being transmitted) is n′/n, where n is
the total number of channels and n′ is the number of channels whereR can listen on in
parallel. Since a fragment is repeated ρ times,R is expected to receive ρn′/n fragments.
With an argument similar to the first case, the top z + 1 values occurring the most are
marked as received. To make this scheme work, we further require ρ' n/n′ such that
ρn′/n is sufficiently large (such as 32).

Receiver’s Search Space. The described handling of arriving fragments during ΔT
results in at most z+ 1 fragments. In this way,R gets up to z+ 1 fragments for each ti.
We use capital letters to denote variables corresponding to received fragments, e. g.,M1

where the first M-fragment is expected. Note that R does not have a-priori knowledge
about the type of fragments it receives. The set of received fragments between ti and
ti + ΔT is called the i-th reception set, denoted by σi. For a z-channel adversary, the
size of a reception set is |σi| ≤ z + 1, in which up to z fragments can be from the
adversary. In the following, we denote the adversary’s transmission schedule as TA,
where TA[i] is the set of M/L-fragments transmitted by A in the i-th time period.

To achieve fragment alignment, R makes a random guess to mark odd time in-
stants for the reception of L-fragments and even time instants for the reception of
M-fragments. The guess is correct if it matches the position of legitimate fragments.
If the decoding fails, R switches the role of even and odd fragments. In this way, two

496 N. Ahmed, C. Pöpper, and S. Capkun

Fig. 4. (a) The search space S for a CDP receiver R (b) Two example paths: Π3 =
M2

1 , L
3
2,M

2
2 , L

1
3,M

2
3 and Π ′

3 =M4
1 , L

3
2,M

2
2 , L

2
3,M

2
3

decoding attempts are enough to achieve correct alignment. All received fragments are
arranged in a search space:

Definition 1 (Search Space). The search space is S = [σ1, . . . , σ2m], where σ2i =
TT
m [i] ∪TA

m [i], and σ2i−1 = TT
l [i] ∪TA

l [i], for 1 ≤ i ≤ m.

As illustrated in Fig. 4-(a), reception sets on each odd index correspond to L-fragments
and sets on each even index correspond to M-fragments. Certainly, an adversary does
not need to abide by the rule and can transmit an L-fragment where an M-fragment is
expected (and vice versa). This, however, does not help her because the linking function
that connects L- and M-fragments is not symmetric, namely if li = link(m1, ...,mi)
holds then mi �= link(l2, ...,li).

4.3 Receiver Side: Decoding Algorithm

The receiver’s goal is to efficiently identify the fragments of the legitimate transmission
from the search space. For this purpose, we next introduce the notion of a path:

Definition 2 (Path). Let Li ∈ σ2i−1 and Mi ∈ σ2i. A path of length j is Πj =
M1, L2, . . . , Lj,Mj , which is a sequence of j interleaved M-fragments and L-fragments,
such that all the linking functions in Πj can be verified.

Two example paths are shown in Fig. 4-(b), one being Π3 = M2
1 , L

3
2, M

2
2 , L

1
3, M

2
3 .

The path Π3 is tracked by verifying the relations L3
2 =H(M2

1 , M
2
2) and L1

3 =H(M2
1 ,

M2
2 , M

2
3). A complete path, Πm, represents an entire CDP transmission, which is then

considered as a candidate for the legitimate transmission TT . A candidate message on
which the signature verification succeeds represents TT .

Algorithm. The CDP decoding algorithm—denoted by search(S, PkT)—reassembles
the legitimate message from all received fragments. Its inputs are the search space S and
the sender’s public key PkT . The algorithm is based on a recursive depth-first search
and terminates within a time polynomial in m and z, which we will prove in § 5.

Each of the M-fragments of S is associated with a visited-counter (v-counter), ini-
tialized to zero. Let θ be a constant representing the threshold (maximum) of the v-
counters. Its value will be determined in § 5 in the security analysis.

Enabling Short Fragments for USS Communication 497

The function search(·) consists of the following steps:

1. By exhaustive search, find the roots of all paths in S. A root is a path of type
Π2 = M1, L2,M2, whereL2 = H(M1,M2) forM1 ∈ σ2, L2 ∈ σ3, andM2 ∈ σ4.

2. Start a depth-first search (dfs) from each root path Π2 found in Step 1 by calling
a recursive function b = dfs(Π2) (defined below). If b = 1 then the legitimate
message has been found, so terminate search(·) successfully. If b = 0, repeat
Step 2 with a new root.

3. Terminate search(·) with an error signal.
The recursive function b = dfs(Πi) is defined as follows:
1. From the path Πi of length i, compute a new extended path Πi+1 = Πi, Li+1,

Mi+1, where Li+1 = H(M1, . . . , Mi+1) for Li+1 ∈ σ2i+1, and Mi+1 ∈ σ2i+2. If
no such new pair (Li+1,Mi+1) can be found then return 0.

2. If the v-counter associated with the new M-fragmentMi+1 is equal to θ then back-
track to the path Πi, i. e., go back to Step 1.

3. If the v-counter of Mi+1 is less than θ then increment the v-counter. If i + 1 = m
go to Step 4; otherwise make a recursive call to compute b: b = dfs(Πi+1). If
the returned value b is 0 (indicating a failure to find the legitimate message) then
backtrack, i. e., go back to Step 1. If b = 1 then return 1.

4. The path is complete. Extract the message from pathΠm. Verify the signature of the
message. If the signature verification fails then backtrack to Step 1. If the signature
verification succeeds (meaning that this is a legitimate path) then return 1.

Running Time. We derive an upper bound on the running time of the decoding algo-
rithm search(·). Let Tl be the time to compute the hash functionH(·). In S, an upper
bound on the number of root paths is (z+1)2. Each root path requires one computation
of the hash function. Therefore, in Step 1 of search(·), the upper bound on the time to
compute all root paths is (z + 1)2Tl.

For Step 2 of search(·), each M-fragment in S is associated with a v-counter that is
upper-bounded by θ. Therefore, each M-fragment can cause at most θ computations of
the hash function. The total number of M-fragments in S is m(z + 1). Hence, the time
to compute Step 2 of search(·) is mθ(z + 1)Tl. Due to our repetition scheme (Fig. 3),
the decoding process may need to be repeated ρ times. An upper bound on the running
time of the algorithm is, therefore, as follows:

τr < ρ
(
mθ(z + 1) + (z + 1)2

)
Tl. (1)

Since the hash function is efficiently computable, Tl represents a polynomial time. If θ
is polynomial in m then the running time of the decoding algorithm, τr, has an upper
bound that is polynomial in z and m, as given by Eq. 1.

Clearly, if we do not set a threshold, i. e., θ = ∞, then the decoding algorithm
reduces to an exhaustive search, which may require an exponential amount of time.
On the other hand, if the number of fake paths is small then θ can be set to a small
number. In the next section, we show that there is indeed a limit on the number of fake
paths, which allows us to determine the value of θ, thus guaranteeing that the legitimate
message can be reassembled efficiently.

498 N. Ahmed, C. Pöpper, and S. Capkun

5 Security Analysis

We now show that our protocol cannot be successfully attacked on the link layer.

5.1 Definitions

Security of the CDP is defined as adversary’s inability to jam a legitimate transmission.

Definition 3 (Security of CDP). The CDP protocol is secure if a z-channel adversary,
under Assumptions 1-2, cannot prevent the CDP receiver R from receiving and re-
assembling a legitimate message, consisting of m fragments, within an amount of time
that is polynomial in m and z.

As described earlier, with an appropriate value of d, radio level jamming byA can be
prevented. At the link layer, however,Amay preventR from reassembling a legitimate
message. To show the link layer security, namely the efficiency of reassembly process,
the notion of collision is important, and in the following we formally define this notion.
Let Πi→j , with i < j, denote a partial path from Li,Mi to Lj ,Mj .

Definition 4 (Collision). Consider two paths Πj and Π ′
j in a search space. We can

write the two paths as Πj = Πi, Πi+1→j and Π ′
j = Π ′

i, Π
′
i+1→j , for i < j. The path

Π ′
j is said to generate a (i,Πj)-collision in Πj if Πi+1→j

m
= Π ′

i+1→j and Πi

m

�= Π ′
i ,

where
m
= means that the corresponding M-fragments in two paths are equal.

For example, in Fig. 4, the two paths are Π3 = M2
1 , L

3
2, M

2
2 , L

1
3, M

2
3 and Π ′

3 =
M4

1 , L
3
2, M

2
2 , L

2
3, M

2
3 . The path Π ′

3 creates a (1, Π3)-collision in Π3, and the path Π3

creates a (1, Π ′
3)-collision in Π ′

3. From Def. 4 it is clear that a (i,Πj)-collision implies
(i,Πi+1)-, . . . , (i,Πj−1)-collisions, e. g., in Fig. 4 the (1, Π3)-collision implies the
(1, Π2)-collision. If one of the (i, Πi+1)-, . . . , (i,Πj−1)-collisions does not occur then
a (i,Πj)-collision cannot occur. This fact is later used in the security proof.

In Def. 4, a (i,Πj)-collision can be generated due to an adversarial strategy or purely
by chance. When the subsequent pair of fragments are added to the path, i. e., Πj grows
toΠj+1, the (i,Πj)-collision can only propagate to the (i,Πj+1)-collision with a prob-
ability that is negligible in d. This happens due to Property 1 of our linking function
H(·), and we formally prove this fact. The low probability of collision propagation is
exemplified below.

Example 1. Consider a legitimate path,Π2 = M1, L2,M2, and a 1-channel adversary
who generates a (1, Π2)-collision. For this purpose, she computes M ′

1, L
′
2, such that

M ′
1 �= M1 andL′

2 = H(M ′
1,M2). In this way, her fake path merges intoΠ2, but a prop-

agation of the (1, Π2)-collision to a (1, Π3)-collision requires L3 = H(M ′
1,M2,M3).

Since M3 was not sent by T when the (1, Π2)-collision was generated, M3 was un-
known to her for (1, Π2)-collision. Due to Property 1, she can only guess the value of
L3 (or M3) with probability 2−d. Hence, L3 cannot be used by the adversary to gen-
erate a (1, Π2)-collision. The probability of a successful propagation of the (1, Π2)-
collision to a (2, Π3)-collision is thus 2−d. The probability of propagation decreases
further as more L-fragments are added to the legitimate path. 	

Enabling Short Fragments for USS Communication 499

On the other hand, A can create both collisions and forks between her own z paths,
which may result in an exponential number of fake paths. Therefore, our decoding al-
gorithm (§ 4.3) uses v-counters for the M-fragments when exploring the search space.
Each time a path from the search space is decoded, the v-counters associated with the
path are incremented. If a counter reaches the threshold θ, the associated M-fragment
is not used in the subsequent decoding process. In this way, the M-fragments of the
adversary start becoming unavailable as the decoding proceeds.

We proceed in two steps. First, we model a benign adversary, who relies on the
transmission of random messages as attack strategy, and quantify an upper bound on
the probability of collisions in the search space (Claims 1 and 2). Later we quantify
the advantage of a computationally unbounded adversary over the benign adversary
(Claim 3), which brings us finally to argue on the security of our protocol (Claim 4).

Definition 5 (Random Transmission). The random transmission of a benign adver-
sary is Trnd = [Trnd

l [i],Trnd
m [i] : 1 ≤ i ≤ m], where Trnd

m [i] is a set consisting of z
(uniformly distributed) d-bit random strings and Trnd

l [i] is a set consisting of the i-th
L-fragments of the link certificates of Trnd

m .

Claim 1. Let ΠT
j be the path of the legitimate transmission. For a z-channel benign

adversary under Assumption 2 (i. e., with z(z + 1) < 2d), the following relation holds
for i < j ≤ m and η = (1 + z)2−d:

Number of (i,ΠT
j)-collisions ≤ 2zηj−i.

Claim 2. The total number of collisions in a partial legitimate pathΠT
j in the presence

of Trnd is ℵrndj < 2zη(j − 1).

Claim 3. The total number of collisions in a partial legitimate pathΠT
j in the presence

of TA, which is due to a computationally unbounded adversary A, is ℵAj ≤ ℵrndj + z.

The proofs of Claims 1, 2, and 3 can be found in Appendix A.

Claim 4. The transmission TT of the CD protocol as specified in § 4.1 is secure as per
Def. 3.

Proof. From Eq. 1, we know that an upper bound on the running time of the decoding
algorithm is ρ

(
mθ(z + 1) + (z + 1)2

)
Tl. The term Tl (the time to compute a link) is

polynomial in m, due to our choice of a hash function as a linking function. The only
unknown value is the threshold θ, which we determine in the following.

Using Claim 3, we can calculate an upper bound on the number of collisions into
a legitimate full path Πm. A fragment on a path Πm can be visited by the decoding
algorithm not only by full-length fake paths but also by partial fake paths (of length less
than m). Therefore, an upper bound on the threshold θ is the total number of paths that
can pass through a legitimate fragment:

θ ≤
m∑
j=2

ℵAj + 1=2zη
[
1 + 2 + · · ·+ (m− 1)

]
+ z + 1= zηm(m− 1) + z + 1. (2)

Here, the constant 1 is due to the legitimate path itself. Clearly, the upper-bound is
polynomial inm and z. Hence, with θ = zηm(m−1)+z+1 the decoding is guaranteed
to succeed in polynomial time in the adversarial environment.

500 N. Ahmed, C. Pöpper, and S. Capkun

6 Performance Evaluation

We evaluate the theoretical results by a simulation that addresses the link-layer reassem-
bly process on the receiver side. Physical-layer issues, such as signal strengths, modu-
lation types, and the actual transmission of the signals are not part of this simulation.

Setup. The simulation code is written in C and is parameterizable for the adversarial
power (z), length of fragments (d), number of fragments (m), and amplification factor
(α). The simulation randomly generates a legitimate message consisting ofm fragments
and mixes the message with z other random messages to simulate the benign adversary3.
The resulting search space has (z+1)m plausible combinations to search for a legitimate
message. For a typical set of values, say z = 2 andm = 128, the infeasibility to explore
this search space is clear.

The CDP protocol makes the search of the legitimate message tractable. To demon-
strate this, we encode the legitimate message as per the CDP protocol. The linking
function in the simulation is the truncated output of SHA-256. The CDP decoder effi-
ciently reassembles all CDP messages from the search space. The output consists of one
legitimate message, z adversarial messages, and a small number of accidental messages
formed by pure chance. In the simulation, this whole process is called a run.

Metrics. We consider three metrics to demonstrate the performance of the CDP. The
first one is Ω, the number of fake paths per legitimate path in a given search space. This
metric is independent of the computer and language used to implement the CDP. The
second metric is the running time τr of the decoding algorithm, which depends on the
computer used for the simulation; in our case, it is a Thinkpad T400s laptop with 3GB
memory and P9400 Intel Core 2 processor at 2.4GHz clock. This measure is machine
specific and should be interpreted in a relative sense. The third metric is the maximum
value of θ (see § 4.3), which determines the theoretical upper bound on the running time
of the decoding algorithm, as per Eq. 1.

To get statistically significant measurements, each of the presented results is based
on 10, 000 independent simulation runs. We report three values over these 10, 000 sam-
ples: the minimum value Ωmin, the arithmetic mean Ωavg , and the maximum value
Ωmax. Alongside, we also report the values of the standard deviation (SD) and the 95%
confidence intervals (CI).

Results. The first set of results shown in Table 2a indicates the variation of Ω with
respect to z. In this set, the message size is 768-bit, which is divided into 128 fragments
of 6 bits. In these simulation runs, one link certificate is used (α = 1). The results show
that Ω increases with z, but it remains tractable as long as the threshold z(z + 1) < 2d

(cf. Assumption 1) is respected, which occurs at z = 7 in this case. Furthermore, the
value of θ is consistent with the theoretical upper bound of Eq. 2.4

3 From Claim 3, we know that a reactive adversary can generate at most z additional fake paths
compared to the benign adversary. Hence, we can limit the simulation to the benign adversary
for the performance evaluation and there from derive the results for the worst-case adversary.

4 The upper bound of θ in Eq. 2 is large when compared to the actual value of θ reported in
Table 2a. This is due to the extensive use of over-approximations in our security analysis.

Enabling Short Fragments for USS Communication 501

Table 1. Performance results

z 0 1 2 3 4 5 6 7

Ωmin 1 2 3 4 5 6 8 37
Ωavg 1 2.067 3.329 4.98 7.435 11.9 23.3 132.34
Ωmax 1 4 7 11 17 24 56 351
SD 0 0.256 0.565 0.997 1.637 2.81 5.94 44.968
95% CI 1–1 2–3 3–5 4–7 5–11 7–18 13–36 63–234
θ 1 2 3 4 5 6 9 32
τr [ms] 0.57 1.71 3.71 6.68 11.68 21.17 47.59 261.75

(a) z =variable, d = 6, m = 128, α = 1

α 1 2 3 4 5 6

Ωmin 33 8 8 8 8 8
Ωavg 131.66 8.8751 8.0943 8.0104 8.0011 8.0002
Ωmax 419 14 10 9 9 9
SD 46.228 0.9221 0.3082 0.1014 0.0331 0.0141
95% CI 62–238 8–11 8–9 8–8 8–8 8–8
θ 30 3 2 2 1 1
τr [ms] 308.75 177.17 289.0 437.667 562.5 711

(b) α =variable, d = 6, m = 128, z = 7

The second set of results is shown in Table 2b and indicates the variation of Ω with
respect to the amplification factorα, for a 7-channel adversary. Once again, the message
size is 768-bit divided into 128 fragments of 6-bit each. Ideally, there should be 8 paths,
i. e., Ω = 8, corresponding to one legitimate and 7 adversarial paths. As expected, the
value ofΩ quickly converges to 8 with an increase in α. In this particular configuration,
α = 2 is optimum for the decoding time. These simulation runs demonstrate that the
use of additional link certificates can improve the security level of the CDP, however,
increasing α too much can in turn degrade the decoding time, due to software overhead.

Table 2. Performance results for d =variable, α = 1,
m = 128, z = 7

d 6 7 8 9 10 11 12 13

Ωmin 37 8 8 8 8 8 8 8
Ωavg 132.339 14.674 10.291 9.007 8.467 8.223 8.113 8.053
Ωmax 351 28 17 15 12 11 11 10
SD 44.9682 2.9075 1.5322 1.0103 0.6836 0.467 0.339 0.233
95% CI 63–234 10–21 8–14 8–11 8–10 8–9 8–9 8–9
θ 32 6 4 3 3 2 2 2
τr [ms] 261.75 34.9 33.867 30.788 29.457 29.0 28.67 28.64

The third set of results is shown in
Table 2 and indicates the variation of
Ω with respect to the fragment size
d. In these simulation runs, we use
a 7-channel adversary and one link
certificate. The message size is 128d,
which is formatted as 128 fragments
of d bits. The results show that in-
creasing d also increases the secu-
rity level, namely the number of fake
paths decreases. This is due to the
fact that by increasing d the threshold on z also increases, due to the relation z(z+1) <
2d. We also note that the machine we use for testing has a 32-bit architecture, which
means increasing d from 6 to 13 does not significantly increase the software overhead,
because each fragment is internally stored as a 32-bit memory word. Therefore, the
decrease in τr is almost entirely due to a decrease in the number of fake paths.

Security Performance Trade-Off. The CD protocol allows trade-offs between secu-
rity and performance by changing d, α, and the linking function. As a typical design
flow, consider a reactive adversary who takes at least 10μs to sense and jam an active
SS channel. If each of the channels supports a data rate of 800-kbps or more then it is
safe to assume that 8 bits cannot be deterministically jammed within a 1-μs window,
which implies d ≤ 8-bit. From the threshold z(z + 1) < 2d, we can derive the maxi-
mum value of z to be z ≤ 15. Since z is the ratio of the absolute power (in Watts) of
the adversary’s antenna to that of T ’s antenna, T ’s transmission power can be changed
to an optimal level that meets the constraint of z ≤ 15, as proposed by Xu et al. [16].

502 N. Ahmed, C. Pöpper, and S. Capkun

10

100

1000

10000

SHA-1 (=1) SHA-256 (=1) SHA-512 (=1) SHA-1 (=2) SHA-256 (=2) SHA-512 (=2)

ti
m

e
o
n

lo
g
-s

c
a
le

(i
n

m
s
)

(d=3,z=2)
(d=4,z=3)
(d=5,z=4)
(d=6,z=7)
(d=7,z=10)
(d=8,z=15)

Fig. 5. Visualization of security and performance trade-offs. For the left three sets of data, α = 1,
for the right three, α = 2. The parameters d and z respectively model the levels of protection
against reactive and pollution attacks (the smaller d and the larger z, the more protection the
scheme provides). The decoding times are specific for our implementation; they must be inter-
preted in a relative sense. The message size in all these cases is about 1024-bit: for instance,
m = 128 for d = 8, and m = 171 for d = 6.

The next step is the design of a CDP receiver with z ≤ 15 and d ≤ 8. Fig. 5
shows how different linking functions and values of α change the decoding time in our
simulation. The best decoding time is achieved with SHA-1, α = 1, d = 5 for a 4-
channel adversary with a 1ms reaction time. Fig. 5 also shows that the use of more than
one link (α ≥ 2) is beneficial if the fragment length d is very small and that the selection
of the hash-function may have a non-negligible impact on overall running time.

7 Related Work

Many protocols have been proposed for uncoordinated anti-jamming communication.
Many of these protocols [17–19] assume that packets of arbitrary size can be received
with a certain probability, which, however, is only realistic if the jammer is non-reactive
or the combined transmission power of senders is greater than that of the jammer.

The first scheme for keyless anti-jamming broadcast was proposed in 2007 by Baird
et al. [3] using concurrent codes. Its security depends on the pre-image resistance of the
hash function and the adversary’s inability to delete or overshadow 1s in transmitted
packets. For impulse radios employing time hopping [20], this scheme is promising;
for DSSS and FHSS, however, it requires specialized radio transceivers.

Strasser et al. [1] propose a scheme for UFH using the hash function to achieve
anti-jamming key-establishment. The fragment sizes of this scheme are in the order of
hundreds of bits, e. g., SHA-1 based fragments are to be longer than 160 bits. Since
the security of this scheme depends on the computational power of the adversary, a
truncated hash of a small size, such as 16 bit, will make the scheme insecure.

To make the solutions more efficient, Strasser et al. [9], Slater et al. [10], and Pöpper
et al. [2] propose alternatives to the hashes, but the fragment size remains a limiting
factor. For example, for the scheme using short signatures based on bilinear maps [9],
the linking information is 4k-bit, where k is the security level, again resulting in packets

Enabling Short Fragments for USS Communication 503

of few hundred bits (even for short-term security levels). The decoding of messages in
these schemes is (partially) offline. The decoding process in our protocol is online, i. e.,
the decoding can start as soon as fragments are arriving. Wang et al. [21] model UFH
transmissions as a multi-armed bandit problem. Since they assume the same verifica-
tion schemes as proposed by Strasser et al. [1, 9], this scheme is vulnerable to reactive
jamming due to long packets. In our protocol, the requirement z(z + 1) < 2d implies
the fragment size to be 2log2(z + 1)-bit (e.g., 2-bit for z = 1). This means that a single
hop in FHSS systems or a sequence of codes in DSSS systems is used to transmit only
2log2(z + 1) bits, thus allowing a higher switching frequency.

As an alternative to UFH, Pöpper et al. [22] propose a UDSSS scheme that transmits
messages of fixed length without splitting them into fragments; large messages and re-
active jammers are also a problem for this scheme. Jin et al. [23] propose a DSSS-based
scheme using time-reversed message extraction and key scheduling. This scheme can
only be applied for a known receiver, it requires offline decoding, and the size of the first
fragment is half of the full message size. Liu et al. propose a UDSSS protocol based
on the theory of finite projective planes [24] and another protocol called randomized
differential (RD)-DSSS [4]. Both are quite robust against reactive jammers, but cannot
directly be applied to FHSS-based communication. RD-DSSS assumes a computation-
ally bounded adversary, as opposed to our CDP.

Xu et al. [25] propose the use of timing-based covert channels for anti-jamming
transmission. They, however, assume that the transmission power of an adversary is
comparable to that of a legitimate transmitter, i. e., z ≈ 1. To cope with insertion or
pollution attacks, where an adversary transmits fake packets, the authors assume shared
secrets. Xiao et al. [5] propose a UFH-based broadcast scheme that assumes collabora-
tion of receivers, namely after having received a message the receiver helps to broadcast
it to other receivers. This is orthogonal to our work. Strasser et al. [26] propose a com-
plementary technique to detect jamming attacks using received signal strength. If the
presence of a jammer is detected then the receiver can take additional countermeasures,
such as changing the location to reduce the strength of the jamming signals. In contrast
to BitTrickle proposed by Liu et al. [12], our protocol does not rely on physical-layer
authentication approaches to verify individual bits nor on specific hardware.

Xu et al. [16] propose an adaptive protocol for point-to-point UFH transmission,
which is modelled as a game played between a sender, a receiver, and a jammer. The
transmission power of the transmitter and jammer may vary. As compared to our solu-
tion, the jammer is assumed to be weaker, not being able to jam in the current time-slot.
The authors assume bi-directional, time-slotted communication between the sender and
receiver, in which the sender can always receive acknowledgement (ACK) from the
receiver in the same time-slot and frequency channel.

8 Conclusion

Avoiding DoS-threats is important for all dependable wireless networks. USS proto-
cols are link-layer protocols that are required in situations where parties who do not
share a secret need to communicate under the threat of (reactive) jamming attacks. Ex-
isting USS protocols, however, are not effective enough against fast reactive jammers

504 N. Ahmed, C. Pöpper, and S. Capkun

due to their dependency on long fragments. In this context, the presented protocol is
the first USS protocol that supports short fragments of a few bits. Our protocol uses
the idea of collision detection to efficiently link legitimate fragments, even when the
jammer pollutes the communication channels with a large number of fake fragments
using concurrent transmissions. We hope that the presented protocol will serve as an
important technique for bootstrapping spread spectrum communication in cases where
shared secrets do not exist or have been compromised.

References

1. Strasser, M., Pöpper, C., Capkun, S., Cagalj, M.: Jamming-resistant key establishment using
uncoordinated frequency hopping. In: Proc. of S&P, pp. 64–78. IEEE (2008)

2. Pöpper, C., Strasser, M., Capkun, S.: Anti-jamming broadcast communication using un-
coordinated spread spectrum techniques. IEEE Journal on Selected Areas in Communica-
tions 28(5), 703–715 (2010)

3. Baird, L., Bahn, W., Collins, M., Carlisle, M., Butler, S.: Keyless jam resistance. In: Infor-
mation Assurance and Security Workshop (IAW), pp. 143–150. IEEE (2007)

4. Liu, Y., Ning, P., Dai, H., Liu, A.: Randomized differential DSSS: Jamming-resistant wireless
broadcast communication. In: Proceedings of INFOCOM, pp. 1–9. IEEE (2010)

5. Xiao, L., Dai, H., Ning, P.: Jamming-resistant collaborative broadcast using uncoordinated
frequency hopping. IEEE Trans. on Information Forensics & Security 7(1), 297–309 (2012)

6. Hamilton, S., Hamilton, J.: Secure jam resistant key transfer: Using the DOD CAC card to
secure a radio link by employing the BBC jam resistant algorithm. In: Military Communica-
tions Conference (MILCOM), pp. 1–7. IEEE (2008)

7. Wilhelm, M., Martinovic, I., Schmitt, J., Lenders, V.: Short paper: Reactive jamming in wire-
less networks. In: Proc. of WiSec, pp. 47–52. ACM (2011)

8. Wilhelm, M., Martinovic, I., Schmitt, J., Lenders, V.: Wifire: a firewall for wireless networks.
In: Proceedings of the ACM SIGCOMM Conference, pp. 456–457. ACM (2011)

9. Strasser, M., Pöpper, C., Capkun, S.: Efficient uncoordinated FHSS anti-jamming communi-
cation. In: Proc. of MobiHoc, pp. 207–218. ACM (2009)

10. Slater, D., Tague, P., Poovendran, R., Matt, B.J.: A coding-theoretic approach for efficient
message verification over insecure channels. In: Proc. of WiSec, pp. 151–160. ACM (2009)

11. Slater, D., Poovendran, R., Tague, P., Matt, B.J.: Tradeoffs between jamming resilience and
communication efficiency in key establishment. SIGMOBILE Mobile Computing and Com-
munications Review 13, 14–25 (2009)

12. Liu, Y., Ning, P.: BitTrickle: Defending against broadband and high-power reactive jamming
attacks. In: Proceedings of INFOCOM, pp. 909–917. IEEE (2012)

13. Cabric, D., Tkachenko, A., Brodersen, R.W.: Experimental study of spectrum sensing based
on energy detection and network cooperation. In: Proc. of TAPAS. ACM (2006)

14. Bhargava, V.: Forward error correction schemes for digital communications. IEEE Commu-
nications Magazine 21(1), 11–19 (1983)

15. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sci-
ences 28(2), 270–299 (1984)

16. Xu, K., Wang, Q., Ren, K.: Joint UFH and power control for effective wireless anti-jamming
communication. In: Proceedings of INFOCOM, pp. 738–746. IEEE (2012)

17. Awerbuch, B., Richa, A., Scheideler, C.: A jamming-resistant MAC protocol for single-hop
wireless networks. In: Proc. of PODC, pp. 45–54. ACM (2008)

18. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Gossiping in a multi-channel radio net-
work. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 208–222. Springer, Heidelberg
(2007)

Enabling Short Fragments for USS Communication 505

19. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Secure communication over radio chan-
nels. In: Proc. of ACM Symp. on Principles of Distributed Computing, pp. 105–114 (2008)

20. Win, M., Scholtz, R.: Impulse radio: How it works. IEEE Communications Letters 2(2),
36–38 (1998)

21. Wang, Q., Xu, P., Ren, K., Li, X.: Towards optimal adaptive UFH-based anti-jamming wire-
less communication. Journal on Selected Areas in Communications 30(1), 16–30 (2012)

22. Pöpper, C., Strasser, M., Capkun, S.: Jamming-resistant broadcast communication without
shared keys. In: Proceedings of the USENIX Security Symposium, pp. 231–247 (2009)

23. Jin, T., Noubir, G., Thapa, B.: Zero pre-shared secret key establishment in the presence of
jammers. In: Proc. of MobiHoc, pp. 219–228. ACM (2009)

24. Liu, A., Ning, P., Dai, H., Liu, Y., Wang, C.: Defending DSSS-based broadcast communica-
tion against insider jammers via delayed seed-disclosure. In: Proceedings of the 26th Annual
Computer Security Applications Conference, pp. 367–376. ACM (2010)

25. Xu, W., Trappe, W., Zhang, Y.: Anti-jamming timing channels for wireless networks. In:
Proceedings of Wireless Network Security (WiSec), pp. 203–213. ACM (2008)

26. Strasser, M., Danev, B., Capkun, S.: Detection of reactive jamming in sensor networks. ACM
Transactions on Sensor Networks (TOSN) 7(2), 16 (2010)

A Proofs of Claims

A.1 Proof of Claim 1

Proof. Let pj be the probability of a (i,ΠT
j)-collision due to one fake path Π ′

i . Let qi
be the total number of fake paths of length i; each of the qi paths can cause a (i,ΠT

j)-
collision. Therefore, we have

Number of (i,ΠT
j)-collisions ≤ pjqi. (3)

We next determine the values of pj and qi.

Value of pj: According to Def. 4, a (i,ΠT
j)-collision occurs if a fake path Π ′

j merges
into the legitimate path ΠT

j after index i, i. e., Π ′
i+1→j = ΠT

i+1→j . By definition, a
(i,ΠT

j)-collision implies (i,ΠT
i+1), . . . , (i,ΠT

j)-collisions. The required conditions
corresponding to these collisions, +i+1 . . .+j are as follows:

+i+1
def
= ∃Li+1 ∈ σ2i+1 : Li+1 = H(M1, . . . ,Mi+1) = H(M ′

1, . . . ,M
′
i ,Mi+1)

... (4)

+j
def
= ∃Lj ∈ σ2j−1 : Lj = H(M1, . . . ,Mj) = H(M ′

1, . . . ,M
′
i ,Mi+1, . . . ,Mj).

Here, {Mi,M
′
i} ⊆ σ2i and {Mj} ⊆ σ2j . Let pi+1, . . . , pj be the probabilities

corresponding to the (i,ΠT
i+1), . . . , (i,ΠT

j)-collisions. First we claim that pi+1 ≤ η

because a path Π ′
i can use any of the Li+1 in σ2i+1 to cause a (i,ΠT

i+1)-collision.
For a given value of Li+1, the collision probability is 2−d due to Property 1 of
the linking function. We have |σ2i+1| = z + 1, therefore, pi+1 ≤ (z + 1)2−d =
η. On the next pair of fragments, once again for z + 1 values of Li+2, we have
Pr
[
(i,ΠT

i+2)-collision| (i,ΠT
i+1)-collision

]
≤ η. Thus, pi+2 = pi+1· Pr

[
(i,ΠT

i+2)

506 N. Ahmed, C. Pöpper, and S. Capkun

Table 3. Maximum number (#) of fake paths along the legitimate path

Index i 1 2 3 . . . j − 1
qi (max. # of fake paths of length i) z ≤ z + 1

2
z = 3

2
z ≤ z + 3

4
z = 7

4
z . . . ≤ (2j−1−1

2j−2)z
Prob. of (i,Πi+1)-collision per fake path pi+1 ≤ η ≤ 1

2
pi+1 ≤ η ≤ 1

2
pi+1 ≤ η ≤ 1

2
. . . pi+1 ≤ η ≤ 1

2

Total # of (i,Πi+1)-collisions ≤ ηz = 1
2
z ≤ 3

4
z ≤ 7

8
z . . . ≤ (2j−1−1

2j−1)z

(a) (b)

Fig. 6. Long and short fragment transmissions. (a) Long fragments are an easy target for jammers.
Reactive jammers will have sufficient time to sense an ongoing transmission and then react to
(deterministically) jam the used channel. Sweep (non-reactive) jammers have a high probability
of hitting the channel where a long fragment is transmitted. (b) Short fragments reduce the risk
of successful jamming attacks for both reactive and non-reactive sweep jammers.

-collision| (i,ΠT
i+1)-collision

]
≤ η2. Re-applying the above arguments until index j,

we get this result:

pj ≤ ηj−i. (5)

Value of qi: We assume z(z + 1) < 2d, which implies η ≤ 1/2.5 Table 3 shows upper
bounds on the value of qi (the number of fake paths of length i). For the first pair of
fragments, there are no collisions, but there are z adversarial paths due to T rnd, thus
q1 = z. Next, q2 is the sum of the number of (1, Π2)-collisions and the number of
adversarial paths (z). Repeating this procedure, we can calculate the rest of the table.
For convenience, we use a simpler expression 2z to represent an upper bound on qi:

qi ≤ (
2j−1 − 1

2j−2
)z < 2z. (6)

Substituting Eq. 5 and Eq. 6 in Eq. 3 proves the claim.

5 Solving η from z(z + 1) < 2d results in η < 1/z. Clearly, for z > 1, we have η ≤ 1/2. For
the remaining two values, z = 1 and z = 0, the minimum values of d that satisfy the relation
z(z + 1) < 2d are 1 and 2 respectively, which implies that η = 1/2 for these two values.

Enabling Short Fragments for USS Communication 507

A.2 Proof of Claim 2

Proof. An upper bound on ℵrndj is obtained by summing up all collisions on path ΠT
j :

ℵrndj ≤
j−1∑
i=1

Number of (i,ΠT
j)-collisions =

j−1∑
i=1

qipj (using Claim 1)

<

j−1∑
i=1

2zηj−i = 2zηj
[
η−1 + η−2 + · · ·+ η−(j−1)

]
< 2zηj

[
η−(j−1) + · · ·+ η−(j−1)

]
= 2zη(j − 1).

This completes the proof.

A.3 Proof of Claim 3

Proof. The proof is based on the following observation: The adversary is constrained
by the fact that she must send her fragment at ti before receiving T ’s fragment at ti+1

because fragments are transmitted in order. The conditions to create collisions are the
same as in Eq. 4. There are two cases of collisions, which we analyze in the following.

First, we consider case (a) of the (i,ΠT
j)-collision as shown in Fig. 6-(a). Here, the

fragment Mi+1 is unknown before t2i+1and, hence, the output of the linking function,
Li+1, appears as a random value to the adversary. Before t2i+1, there is no strategy to
generate [M ′

1, . . . ,M
′
i] deterministically in such a way that a collision can be created.

Next, we consider case (b) of the collision, as in Fig. 6-(b). We analyze the situation
at t2i+1 when T transmits Li+1. On reading Li+1, the adversary’s task is to generate
L′
i+1 such that the condition +i+1 holds. The condition +i+1 can be satisfied by com-

puting a new L′
i+1, but a z-channel adversary cannot generate more than z values of

L-fragments at a time. Therefore,A can only create z number of (i,ΠT
i+1)-collisions.

If the adversary is not active at t2i+3, a (i,ΠT
i+1)-collision cannot deterministically

propagate to a (i,ΠT
i+2)-collision because, at t2i+1, the value of Mi+2 (required to

compute Li+2) is still unknown. If the adversary is active at t2i+3, the above arguments
for +i+1 can be applied to +i+2 to generate either a new (i + 1, ΠT

i+2)-collision or
make a (i,ΠT

i+1)-collision propagate as a (i,ΠT
i+2)-collision. The same arguments can

be applied for the rest of the conditions up to +j .
Therefore, we conclude that the best A can do is to create z number of (i,ΠT

j)-
collisions. Creating z collisions, however, does not affect the number of collisions that
are inherently present in the search space due to random transmission, because any
attack strategy can be considered as an instance of random transmissions in which the
adversary provides the output of coin tosses. Hence, the total number of collisions is
ℵAj ≤ ℵrndj + z. This completes the proof.

Fingerprinting Far Proximity from Radio Emissions

Tao Wang, Yao Liu, and Jay Ligatti

University of South Florida, Tampa, FL 33620, USA
taow@mail.usf.edu, {yliu,ligatti}@cse.usf.edu

Abstract. As wireless mobile devices are more and more pervasive and adopted
in critical applications, it is becoming increasingly important to measure the phys-
ical proximity of these devices in a secure way. Although various techniques have
been developed to identify whether a device is close, the problem of identifying
the far proximity (i.e., a target is at least a certain distance away) has been ne-
glected by the research community. Meanwhile, verifying the far proximity is
desirable and critical to enhance the security of emerging wireless applications.
In this paper, we propose a secure far proximity identification approach that deter-
mines whether or not a remote device is far away. The key idea of the proposed
approach is to estimate the far proximity from the unforgeable “fingerprint” of
the proximity. We have validated and evaluated the effectiveness of the proposed
far proximity identification method through experiments on real measured chan-
nel data. The experiment results show that the proposed approach can detect the
far proximity with a successful rate of 0.85 for the non-Line-of-sight (NLoS)
scenario, and the successful rate can be further increased to 0.99 for the Line-of-
sight (LoS) scenario.

Keywords: Far proximity, channel impulse response, wireless fingerprinting.

1 Introduction

As mobile platforms are more and more pervasive and adopted in critical applications,
it is becoming increasingly important to measure the physical proximity of mobile de-
vices in a secure way. For example, Implantable Medical Devices (IMDs) like pace-
makers may grant access to an external control device only when that device is close
enough [25]. As another example, contactless-payment systems (like Google Wallet),
which enable users to make payments by placing a mobile device in the close proximity
of a payment terminal, may require the mobile devices to be within several centimeters
or even millimeters of the payment terminals.

Thus, verifying the close proximity has triggered significant attention and activity
from the research community, and multiple techniques have been proposed to achieve
the efficient identification of close proximity (e.g., [5, 7, 11, 12, 16, 24, 29]), including
the well-known distance bounding protocols and their variants (e.g., [5, 24, 29]).

Although various techniques have been developed to identify whether a device is
close, the problem of identifying the far proximity (i.e., a target is at least a certain
distance away) has been neglected by the research community. Meanwhile, verifying
the far proximity is desirable and critical to enhance the security of emerging wire-
less applications. By enforcing far proximity, in addition to traditional access control

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 508–525, 2014.
c© Springer International Publishing Switzerland 2014

Fingerprinting Far Proximity from Radio Emissions 509

and cryptographic approaches, we can enhance the security of various critical wireless
applications, such as satellite communication, long-haul wireless TV, radio, and alarm
broadcasting, and Marine VHF radio for rescue and communication services [2].

For example, GPS devices receive signals, presumably from satellites in space, to
determine their locations. Ideally, the GPS devices could verify that received signals
are from far-away sources, to avoid being deceived by a nearby adversary’s signals. In
cellular networks, mobile phones may at times expect to receive signals from particular
cell towers. It has been demonstrated that adversaries can set up a fake short-range cell
tower to fool nearby mobile phones [21,31]. To avoid being deceived by such a fake cell
tower, it is desirable that mobile phones can authenticate that the signals they receive
originate from a tower at an expected, further distance away.

Existing close proximity identification techniques (e.g., [7, 11, 16]) qualitatively de-
cide whether or not a target is nearby, but they cannot be directly extended to address
the far proximity identification problem. The qualitative decision that a target is not
nearby doesn’t quantitatively guarantee that the target is at least a certain distance away
(i.e., in the far proximity).

Distance bounding protocols (e.g., [5, 24, 29] demonstrated their success in quanti-
tatively estimating the distance between two wireless devices. However, they cannot be
directly applied to enforce far proximity identification. In distance bounding protocols,
a local device sends a challenge to a remote device, and the remote device replies with a
response that is computed as a function of the received challenge. The local device then
measures the round-trip time between sending its challenge and receiving the response,
subtracts the processing delay from the round-trip time, and uses the result to calculate
the distance between itself and the remote device. However, by delaying its response
to a challenge, a dishonest remote device can appear to be arbitrarily further from the
local device than it actually is.

In this paper, we develop a secure far proximity identification approach that can
determine whether a remote device is far away. The key idea of the proposed approach
is to estimate the proximity from the unforgeable “fingerprint” of the proximity. We
develop a technique that can extract the fingerprint of a wireless device’s proximity from
the physical-layer features of signals sent by the device. The proximity fingerprints are
closely related to the distance between the local and remote devices. They are easy to
extract but difficult to forge. We also develop a novel technique that uses the proximity
fingerprint to identify the lower bound of the distance between the local and the remote
devices.

The contributions of this paper are: (1) we develop a novel fingerprinting technique
that enables the local device to extract the fingerprint of a wireless device’s proxim-
ity from the physical-layer features of signals sent by the device; (2) we discover the
theoretical relationship between the proximity and its fingerprint, and we developed a
technique that can use such a relationship to estimate the lower bound of the distance
between the local and remote devices; and (3) we validate and evaluate the effective-
ness of the proposed far proximity identification method through experiments on the
real-world data. The experiment results show that the proposed approach can detect the
far proximity with a success rate of 0.85 for the non-Line-of-sight (NLoS) scenario, and
the success rate can be further increased to 0.99 for the Line-of-sight (LoS) scenario.

510 T. Wang, Y. Liu, and J. Ligatti

The rest of the paper is organized as follows. Section 2 describes our assumptions
and system and threat models. Section 3 presents the proposed far proximity identifica-
tion techniques. Sections 4 and 5 discuss the experimental evaluation and related work.
Section 6 concludes this paper.

2 System and Threat Models

To facilitate the presentation, we refer to the local device, which verifies the proximity,
as the verifier and the remote device, whose proximity is being verified, as the prover.
The verification system consists of a verifier and a prover. Both are equipped with radio
interfaces that can transmit and receive wireless signals.

The verifier aims to determine whether or not a prover is at least a certain distance
away, and it analyzes the signals emitted by the prover to achieve this goal. The ver-
ifier can work in both active or passive modes. In the active mode, the verifier sends
a message to the prover to initialize the proximity identification, and the prover coop-
erates with the verifier by sending wireless signals back to the verifier to enable the
verification. In the passive mode, instead of actively sending out signals, the verifier
monitors the wireless channel to capture the prover’s signal. Once the prover’s signals
are captured, the verifier can identify the prover’s proximity.

We assume that the prover is untrusted. The prover may provide the verifier with fake
messages and wrong configuration information regarding its hardware and software
settings, such as device type, signal processing delay, and protocols in use. The prover
may intentionally delay its replies to the verifier’s messages or send bogus replies at any
time to mislead the verifier. However, we assume that the verifier can receive wireless
signals sent by the prover. We assume that there are no metal shields on the straight line
between the verifier and the prover to block wireless signals from the prover.

3 Far Proximity Verification

A simple and naive method to identify whether a prover is far away is to examine the
received signal strength (RSS). A signal decays as it propagates in the air. Thus, it
seems that strong RSS indicates a short signal propagation length and a close transmit-
ter, whereas weak RSS strength implies a far-away transmitter. However, a dishonest
prover can increase or decrease its transmit power to pretend to be close to, or far from,
the verifier. The root reason for the failure of the naive method is that RSS can be eas-
ily forged. In this paper, we discover unforgeable and unclonable fingerprints of the
proximity and propose techniques that can identify the far proximity based on these
fingerprints.

3.1 Proximity Fingerprints

Because of the multipath effect [9], a signal sent by the prover generally propagates
to the verifier in the air along multiple paths due to reflection, diffraction, and scat-
tering. Each path has an effect (e.g., distortion and attenuation) on the signal traveling

Fingerprinting Far Proximity from Radio Emissions 511

on it [23]. A channel impulse response characterizes the overall effects imposed by the
multipath propagation, and it reflects the physical feature of a wireless link [9]. Because
it is difficult to change the physical feature, channel impulse responses have been used
as “link signatures” to uniquely identify the wireless link between a wireless transmit-
ter and a receiver [6, 23, 33].

Figure 1 (a) shows a simple example of multipath propagation. The signal sent by the
prover is reflected by an obstacle (i.e., a building), and thus it travels along Path 1 (the
direct path from the prover to the verifier), and Path 2 (the reflection path). The signal
copy that travels along one path is usually referred to as a multipath component [9].
Let r1 and r2 denote the multipath components that travel along Path 1 and Path 2
respectively. Figure 1 (b) is an example of the corresponding channel impulse response,
which shows that r1 arrives at the verifier first and the peak of the signal amplitude of
r1 is Ar1, and r2 arrives after r1, and its peak is Ar2.

Intuitively, if the prover increases (decreases) the transmit power, both Ar1 and Ar2

will increase (decrease), but the prover cannot adjust its transmit power such that it
arbitrarily manipulates only one of Ar1 and Ar2, because it is difficult for the prover
to identify and modify the physical paths over which multipath components propa-
gate [23]. On the other hand, the length of the signal propagation path is closely related
to the amplitude of the received signal. A far-away prover results in weaker Ar1 and
Ar2 than a close prover. Based on this intuition, we give the definition of proximity
fingerprint below.

Prover
Verifier

Building

Path 1

Path 2

time

Am
pl

itu
de

1rA
2rA

(a) (b)

r1
r2

Fig. 1. An example of the multipath effect

Definition 1 (Proximity Fingerprint) Let Ar1 and Ar2 be the amplitudes of the first and
the second received multipath components, respectively. The proximity fingerprint f is
the ratio of Ar1 to Ar2, i.e., f = Ar1

Ar2
.

Key Features of Proximity Fingerprints: It appears that an attacker (i.e., a dishonest
prover or a third-party adversary against benign provers) could affect the proximity
fingerprint by intentionally placing a reflector nearby the prover to generate a fake path,
in addition to the direct signal path from the prover to the verifier.

However, at the verifier’s view, the direct and fake paths are still one unresolvable
path if the difference between the arrival times of the signals traveling on both paths
is much smaller than the symbol duration, which is the transmission time of a wireless
physical-layer unit [9]. To be successful, an attacker has to place the reflector far enough

512 T. Wang, Y. Liu, and J. Ligatti

away from the prover (i.e., δc meters, where δ is the symbol duration and c is the speed
of light [9]), such that the difference between the two path arrival times is resolvable at
the verifier. More crucially, at this distance the attacker must make sure that the prover’s
signal can exactly hit his reflector and be bounced back to the target verifier. However, it
is quite uncertain for the prover’s signal to be delivered to the reflector, then reflected by
the reflector to the verifier due to the random scattering effect caused by long distance
propagation [9].

For example, GPS satellites have a typical symbol duration of 0.01 second [1]. It is
impractical for the satellite’s signal to exactly hit a reflector that is 3,000,000 meters
away, and moreover be reflected by the reflector to hit a target GPS navigation device
on earth.

To summarize, proximity fingerprints are caused by wireless reflections somewhere,
which the verifier does not need to know and identify. The verifier can easily extract
Ar1 and Ar2 from the channel impulse response and compute the proximity fingerprint
asAr1/Ar2. Note that estimating the channel impulse responses is a must-have function
for most modern wireless systems [9, 20]. But in order for the attacker to be success-
fully, the attacker has to know (1) how to pinpoint a far-away place to put a reflector or
an active wireless device, and (2) exactly where to direct the reflector to shoot a needle
in a haystack. Thus, significant practical hurdles exist for attacking proximity finger-
prints. In this way, verifiers can easily extract proximity fingerprints, but it is difficult
for attackers to forge or manipulate a specific fingerprint.

The attacker may also launch active attacks to undermine the verification of prox-
imity fingerprints. In later section (3.4), we will discuss these active attacks and the
corresponding countermeasures.

Impact of Directional Antennas: When directional antennas are used, the multipath
effect may be reduced. However, directional antennas cannot provide perfect laser-like
radio signals. For example, the beamwidth of a 3-element Yagi Antenna, the most com-
mon type of directional antenna, is 90 degrees in the vertical plane and 54 degrees in the
horizontal plane [14]. Thus, it is not possible to completely eliminate the multipath ef-
fect, and accordingly the multipath propagation has been also considered in designing
wireless communication systems equipped with directional antennas (e.g., [28, 32]).
The proximity fingerprint can be calculated based on a very limited number of paths
(i.e., two paths), and thus it is compatible to wireless systems with directional antennas
in use.

3.2 Far Proximity Identification Using Proximity Fingerprints

Based on the study of proximity fingerprint, we now reveal the relationship between
the proximity fingerprint and the actual proximity, and we propose far proximity iden-
tification techniques that can provide fine granularity and lower bounds on proximity
(i.e., the prover is at least a certain distance away from the verifier) using the proximity
fingerprint.

Fingerprinting Far Proximity from Radio Emissions 513

Far Proximity Identification. To calculate the proximity of the prover, we first model
the fingerprint of the proximity. We consider signal propagation in two typical wireless
environments, i.e., the outdoor and the indoor environments.

Outdoor Signal Propagation: One of the most common models for outdoor signal
propagation in urban, suburban, and rural areas is the Okumura Model [9]. According
to the Okumura model, the signal path loss in decibels (dB) in urban areas can be
modeled as

L(dB) = 69.55 + 26.16 log10(fc)− 13.82 log10(hte)

− a(hre, fc) + (44.9− 6.55 log10(hte)) log10(d),

where d is the length of the path along which the signal propagates from the transmitter
to the receiver, fc is the central frequency, hte and hre are the transmitter’s and the
receiver’s antenna heights respectively, and a(hre, fc) is a correction factor computed
using hre and fc [9]. Based on the Okumura Model, we give Lemma 1

Lemma 1. The proximity fingerprint in the outdoor environment is
√

(d2

d1
)

γ
10 , where

d1 and d2 are the lengths of the paths along which the first and the second received
multipath components travel respectively, γ = 44.9 − 6.55 log10(hte), and hte is the
transmitter’s antenna height.

Proof: The received signal power Pr can be represented as Pr(dB) = Pt(dB) - L (dB),
where Pt is the transmit power. To facilitate the calculation, we change the unit of
Pr from dB to watt (W). Thus, Pr(W) = 10

1
10 (Pt(dB)−L(dB)) = Pt(W)

L(W) , and L(W) =

10
1
10L(dB) = 10

1
10 (β+γ log10(d)), where β = 69.55+26.16 log10(fc)−13.82 log10(hte)−

a(hre, fc) and γ = 44.9− 6.55 log10(hte). The amplitude of a signal is the square root

of the received signal power. Accordingly, Ar1 =
√
Pr1(W) =

√
Pt(W)

10
1
10

(β+γ log10(d1))

and Ar2 =
√
Pr2(W) =

√
Pt(W)

10
1
10

(β+γ log10(d2))
, where d1 and d2 are the lengths of the

paths along which the first and the second received multipath components travel re-
spectively. Note that both multipath components have the same values for γ and β,
because they are from the same signal source (i.e., the prover) and exhibit the same

frequency fc. Thus, the proximity fingerprint f can be written as f = Ar1

Ar2
=
√

(d2

d1
)

γ
10 .

According to the Okumura Model, the signal path loss models in suburban and ru-
ral areas are Lsuburban(dB) = L(dB) − 2[log10(fc/28)]2 − 5.4 and Lrural(dB) =
L(dB) − 4.78[log10(fc)]

2 + 18.33 log10(fc) −K , respectively, where K ranges from
35.94 (countryside) to 40.94 (desert). By using the same analysis, we can obtain similar

result that f in the suburban and rural areas is
√

(d2

d1
)

γ
10 . �

Indoor Signal Propagation: The path loss in the indoor environment can be usually
represented by the ITU Indoor Propagation Model [20] as shown below

L(dB) = 20 log fc + λ log d+ Pf (Nf),

where λ is the empirical path loss at the same floor, Nf denote the number of floors
between the transmitter and receiver, and Pf (Nf) denotes the floor penetration loss.
Based on the ITU indoor model, we give Lemma 2

514 T. Wang, Y. Liu, and J. Ligatti

Lemma 2. The proximity fingerprint in the indoor environment is
√

(d2

d1
)

λ
10 , where d1

and d2 are the lengths of the paths along which the first and the second received multi-
path components travel respectively, and λ is the empirical floor penetration loss factor.

Proof: As discussed earlier, the received signal power Pr can be represented as Pr(dB)
= Pt(dB) - L (dB). By converting the unit of Pr from dB to W, we can obtain Pr(W) =
Pt(W)
L(W) = Pt(W)

10
1
10

(20 log fc+λ log d+Pf (Nf))
. The proximity fingerprint, the ratio of Ar1 to Ar2,

can be written as f =

√
Pr1(W)√
Pr2(W)

=
√

(d2

d1
)

λ
10 �

Far Proximity Identification: Assume there are no large metallic obstacles that can
significantly block the signal propagation between the verifier and the prover. The path
that the first received multipath component usually travels along (i.e., Path 1) is roughly
straight between the verifier and the prover due to penetration and diffraction-around-
obstacles features of wireless signals [9]. Thus, d1 approximately equals to the distance
between the verifier and the prover. The lower bound of d1 is given in Lemma 3.

Lemma 3. Let d be the distance between the prover and the verifier. We have d ≥
c

B(f
2
α −1)

, where c is the speed of light,B is the bandwidth of the communication system,

α is the path loss exponent, and f is the proximity fingerprint.

Proof: Let t denote the time at which the prover’s signal starts to propagate to the
verifier. Let t1 and t2 denote the arrival times of the first and the second received mul-
tipath components, respectively. Therefore, d1 = (t1 − t)c and d2 = (t2 − t)c =
(t1 − t)c + (t2 − t1)c = d1 + Δc, where Δ = t2 − t1. From Lemmas 1 and 2, we
know that for both the outdoor and indoor environments, the proximity fingerprint f

can be generalized by the same expression f =
√

(d2

d1
)α, where α equals to γ

10 and λ
10

for the outdoor and indoor propagation respectively. The first received multipath com-
ponent travels along the straight line between the verifier and the prover. Hence, the
distance d between the verifier and the prover is equal to d1. According to [9], for re-
solvable multiple path components, Δ ≥ 1

B , where B is the bandwidth of the wireless

communication system. Thus, f =
√

(d2

d)α =
√

(d+Δc
d)α ≥

√
(
d+ c

B

d)α and we have
d ≥ c

B(f
2
α −1)

. �

Choosing α: For the outdoor signal propagation, according to the Okumura model,
γ = 44.9− 6.55 log10(hte), where hte is the height of the transmitter’s antenna. If the
verifier has specific types of targets, for example, the verifier aims to verify the prox-
imity of a satellite, a cellular base station, or a TV tower, then the verifier can directly
compute γ by looking up the typical values of hte from the corresponding wireless
device handbooks. Alternatively, the verifier can also get an estimate of γ by using the
typical transmitter antenna height in the outdoor environment (e.g., the typical transmit-
ter antenna height ranges between 1 to 200 meters [20], and thus γ approximately lies
between 44.9 and 29.83). After obtaining γ, the verifier can compute α = γ

10 . For the
indoor signal propagation, α = λ

10 , where λ is the indoor path loss factor that doesn’t
rely on the antenna height and it can be obtained through empirical experiments.

Fingerprinting Far Proximity from Radio Emissions 515

Note that the path loss exponent α for both outdoors and indoors can be actually
regarded as an attenuation factor that reflects the attenuation caused by the propaga-
tion path. Previous studies have performed extensive empirical experiments to measure
typical values of such an attenuation factor in different wireless environments [9]. For
example, the attenuation factor is 2.0 for vacuum free space, 2.7–3.5 for urban areas,
3.0–5.0 for suburban areas, and 1.6–1.8 for indoors [9]. In the following discussion,
without loss of generality, we use these typical empirical values of the attenuation fac-
tor as the example α. Nevertheless, the verifier can obtain α empirically using existing
readily-available approaches (e.g., [3, 19]), and a real-measured attenuation factor can
help to improve the accuracy of the proximity lower bound estimation.

0 100 200 300 400
0

0.2

0.4

0.6

0.8

Delay, ns

A
m

pl
itu

de

Fig. 2. An example of the real-measured
channel impulse response obtained from the
CRAWDAD data set

1.6 1.65 1.7 1.75 1.8
2.5

3

3.5

4

4.5

D
is

ta
nc

e
(m

et
er

s)

α

Estimated proximity
Real distance

Fig. 3. Estimated lower bound v.s. the real dis-
tance

Experimental Examples. Figure 2 shows an example of a real-measured channel im-
pulse response obtained from the CRAWDAD data set [27], which contains channel
impulse responses collected in an indoor environment with obstacles (e.g., cubicle of-
fices and furniture) and scatters (e.g., windows and doors). The channel impulse re-
sponse was measured when the distance between the transmitter and the receiver is
4.09 meters. From Figure 2, we can see that each received multipath component leads
to a triangle in shape with a peak [23]. The second multipath component arrives at the
receiver about 75 nanoseconds after the arrival of the first one. The proximity finger-
print is 5.6499. The channel impulse response was measured indoors, and thus α ranges
between 1.6 and 1.8.

We use Lemma 3 to estimate the lower bound of the proximity of the transmitter,
and Figure 3 shows the result. We can observe that the estimated lower bound increases
as α increases. However, when α reaches the maximum value (i.e., 1.8) of the indoor
environment, the real distance is still bounded by (i.e., greater than) the estimated lower
bound. Specifically, when α = 1.8, the lower bound of the proximity is 3.84 meters.
This means the transmitter should be at least 3.84 meters away from the receiver. The
actual distance between the transmitter and the receiver is 4.09 meters, which is slightly
greater than the lower bound 3.84 meters.

516 T. Wang, Y. Liu, and J. Ligatti

Note that long-haul communications may desire a much relaxed tightness of the
proximity lower bound. For example, GPS satellites running on the Low Earth Orbit
have an altitude of approximately 2,000,000 meters (1,200 miles). With a proximity
lower bound of 1,000,000 meters (i.e., the bound is less than the actual proximity by
50%), it would be possible to prevent most attackers from impersonating the satellites,
because it is usually very difficult for the attacker to achieve such a long transmission
range.

3.3 System Design

In what follows, we show how the theoretical result of Lemma 3 can be used in a
practical communication system to achieve the far proximity identification.

The verifier’s objective is to find out the proximity lower bound of the prover, i.e.,
to verify that the prover is at least a certain distance away. According to Lemma 3, the
proximity lower bound is computed by c

B(f
2
α −1)

. Thus, the verifier can simply compute

this bound with the knowledge of the speed of light c, the system bandwidth B, the
path loss exponentα, and the proximity fingerprint f . The speed of light c is a universal
physical constant and the bandwidth B is a system configuration parameter, and both
of them are known to the verifier. The path loss exponent α can be either obtained
empirically, or can be determined using the typical values. The proximity fingerprint
f is the only remaining factor that the verifier needs to decide to compute the lower
bound.

As we discussed earlier, the fingerprint f is the ratio of Ar1 to Ar2, where Ar1

and Ar2 are the amplitudes of the first and the second received multipath components.
Ar1 and Ar2 can be extracted from the channel impulse response. A wireless packet
is usually preceded by a preamble, a special data content that indicates the beginning
of an incoming packet. When the prover sends a packet to the wireless channel, the
verifier will first capture the preamble using the match filtering technique [10]; then the
verifier knows that there is an incoming packet and continues to receive the payload.
The preamble not only enables packet capture, but also enables the estimation of the
channel impulse response at the verifier.

After receiving the preamble, the verifier can use existing channel estimation tech-
niques (e.g., least-square (LS) and linear minimum mean squared error (LMMSE) es-
timators [4]) to estimate the channel impulse response from the preamble, and thereby
obtain the values of Ar1 and Ar2 and the proximity fingerprint f = Ar1/Ar2. It is
worth pointing out that using the preamble is not the only way to obtain Ar1 and Ar2.
The verifier can also use blinding estimation methods (e.g., [30]) to estimate the channel
impulse response from the entire content of the preamble and the payload. In addition,
the verifier can use hybrid methods (e.g., [13]) that combine preamble-based estimation
and blind estimation together to improve the estimation accuracy. After obtaining the
proximity fingerprint f and demodulating the payload and authentication information,
the verifier then verifies the prover’s proximity using Lemma 3.

Fingerprinting Far Proximity from Radio Emissions 517

3.4 Dealing with Jam-and-Replay Attacks

To fool the verifier, the attacker may try to create a fake second path by using another
active wireless device to send signals from a different direction. In this case, the attacker
must make sure that there is no multipath effect for the signals traveling on the direct
path (i.e., the path from the prover to the verifier) and the fake path (i.e., the path from
the active wireless device to the verifier). Otherwise, the attacker cannot control and
guarantee that the fake path is exactly the second received path at the verifier side.
Eliminating the multipath effect completely is normally regarded as infeasible.

However, the attacker may alternatively launch Jam-and-replay attacks to deceive the
far proximity identification system. In the jam-and-replay attack, the attacker replays an
intercepted signal from the prover at the attacker’s own location, such that the verifier is
fooled into taking the attacker’s proximity as the prover’s proximity. At the same time,
the attacker jams the transmission to prevent the verifier from receiving the original
signal from the prover; hence, traditional anti-replay mechanisms such as sequence
numbers do not work.

A common method of addressing jam-and-replay attacks is to explore timestamps
(e.g., [16]). In such a method, the sender includes a timestamp in the transmitted mes-
sage, which indicates the time when a particular bit or byte called the anchor (e.g.,
the start of the message header) is transmitted over the air. Upon receiving a frame,
the receiver can use this timestamp and its local message receiving time to estimate
the message traverse time. An overly long time indicates that the message has been
forwarded by an intermediate attacker.

Timestamps-based method requires clock synchronization between the sender and
the receiver, but it generally has a low synchronization requirement in common wireless
applications. For example, in an 11 Mbps 802.11g wireless network, the transmission
of a typical 1500-byte TCP message requires 1.09 (i.e., 1500∗8

11×103) milliseconds. Thus,
the attacker at least doubles the transmission time of the message to 2.18 milliseconds.
As long as the verifier and the prover have coarsely synchronized clocks that differ in
the order of milliseconds, the verifier can detect jam-and-replay attacks. Note that the
synchronization requirement can be further relaxed in GPS applications. GPS satellites
have a transmission rate ranging between 20 bits/s and 100 bits/s [1]. The transmis-
sion of a standard 1500-bits GPS navigation message [1] takes 15 – 75 seconds, and
accordingly the synchronization accuracy can be reduced to the order of seconds.

In addition, to launch jam-and-replay attacks, the attacker must send jamming signals
to jam the wireless transmission. Jamming attacks have been extensively studied in the
literature, and various techniques regarding jamming detection and countermeasures
have been proposed (e.g., [9, 15, 26]). The prover and the verifier can also use existing
jamming detection or anti-jamming techniques to discover the presence of jam-and-
replay attacks, or to defend against such attacks.

4 Experimental Evaluation

4.1 Experiment Setup

Wireless propagation can be either line-of-sight (LoS) or non-LoS (NLoS). In LoS sce-
narios, there exist no major or very few obstacles residing between the transmitter and

518 T. Wang, Y. Liu, and J. Ligatti

receiver, and thus LoS scenarios usually feature better signal quality. In NLoS scenar-
ios, there exist a number of major obstacles between the transmitter and receiver, and
NLoS scenarios are more complicated with higher signal distortion and sharper changes
in signal strength.

Far proximity identification often applies to long-haul wireless communications (e.g.,
GPS) in outdoor environments, which are usually open and have a much stronger fea-
ture in LoS than NLoS. Compared to outdoor environments, indoor environments like
offices, residential homes, and shops, are more complicated due to the frequent oc-
currences of walls, people, furniture, cubicles, etc. Thus, indoor environments usually
have a fairly large number of NLoS propagation paths. In our experiment, we choose
the more challenging indoor environment for our evaluation to examine the worst-case
performance of the proposed method.

We validate the proposed far proximity identification technique using the CRAW-
DAD data set [22], which contains more than 9,300 real channel impulse response mea-
surements (i.e., link signatures) in a 44-node wireless network [27]. The measurement
environment is an indoor environment with obstacles (e.g., cubicle offices and furniture)
and scatters (e.g., windows and doors). More information regarding the CRAWDAD
data set can be found in [22, 27].

We herein use error rate and tightness of the bound as metrics to evaluate the per-
formance of the proposed technique in the real world. In addition, the proximity lower
bound is computed based on a key factor, the proximity fingerprint. Thus, the prox-
imity fingerprints plays a vital role in proximity identification. To further validate the
the feasibility of using proximity fingerprints for proximity identification, we also per-
form experiments to reveal the relationship between the real distance and the proximity
fingerprints. Our evaluation metrics are summarized below.

– Error rate: The error rate is the ratio of the number of failed trials (i.e., error
happens in the trail) to the total number of trials.

– Tightness of the bound: Tightness is the normalized difference between the esti-
mated lower bound and the real distance (i.e., d−β

d , where β is the estimated prox-
imity lower bound, and d is the real distance between the verifier and the prover).

– Proximity Fingerprints: The proximity fingerprint is the ratio of the amplitude of
the first received multipath component to that of the second one.

4.2 Experiment Results

Based on the CRAWDAD data set, we perform experiments under both LoS and NLoS
scenarios to show the error rate, tightness of the bound, and the relationship between
the proximity fingerprint and the distance.

We distinguish two types of channel impulse responses: if a LoS path exists and
there are no obstacles between the transmitter and the receiver, we mark the corre-
sponding channel impulse responses as LoS channel impulse responses. Otherwise, we
mark them as NLoS channel impulse responses. Thus, we obtain two sets of data. The
first set is formed by all LoS channel impulse responses, and the second one is formed
by all NLoS channel impulse responses. We perform our experiments using both sets.

Fingerprinting Far Proximity from Radio Emissions 519

Error Rate Error Rate vs. Pathloss: To obtain the error rate, we experiment as fol-
lows. Let NLoS denote the number of channel impulse responses in the LoS data set.
For each channel impulse response in the data set, we compute the proximity finger-
print and the corresponding proximity lower bound using Lemma 3. We also compute
the real distance between the transmitter and the receiver based on their coordinates. If
the lower bound is less than the real distance, we mark the trial as successful. Otherwise,
we mark the trial as failed. Accordingly, the error rate is calculated as Nf

NLoS
, where Nf

is the number of failed trails and NLoS is the total number of trials. We perform the
experiment again using the NLoS data set and obtain the corresponding error rate for
the NLoS scenario.

1.6 1.65 1.7 1.75 1.8
0

0.05

0.1

0.15

0.2

0.25

Path loss exponent α

E
rr

or
 r

at
e

LoS
NLoS(worst case)

Fig. 4. Error rate as a function of pathloss
exponent α

1 2 3 4 5
0

0.02

0.04

0.06

0.08

Distance threshold (meter)

E
rr

or
 r

at
e

α = 1.80
α = 1.70
α = 1.65
α = 1.60

Fig. 5. Error rate as a function of the distance
threshold dthreshold in the LoS scenario

The channel impulse responses are collected from an indoor environment, and the
corresponding pathloss exponent α empirically ranges between 1.6 and 1.8. Thus, we
perform our experiment for different values of α in this range. Figure 4 plots the error
rate as a function of α. The pathloss exponent α reflects how a signal is distorted and
attenuated during its propagation, and a large α can result in higher signal distortion and
attenuation. Accordingly, from Figure 4 we can observe that the error rate increases as
α increases. However, when α reaches the maximum value for indoor environments,
the achieved error rate in the LoS scenario is as low as 0.075. For the minimum α of
1.6, the proposed approach has a reduced error rate of 0.05.

For the NLoS scenario, we can still achieve an error rate between 0.17 and 0.22.
Note that NLoS scenarios are the worst-case scenarios. Far proximity identification
is typically used in outdoor environments, which have the stronger LoS feature. As
shown in Figure 4, the error rate of LoS scenarios is much lower than that of the NLoS
scenarios.

Error Rate vs. Distance: We then perform experiments to examine how the real dis-
tance affects the error rate. For each channel impulse response in the LoS data set,
we compute the distance between the corresponding transmitter and the receiver. Let
dmax and dmin denote the maximum and minimum distance among all computed dis-
tances. We calculate the error rate using the set formed by channel impulse responses

520 T. Wang, Y. Liu, and J. Ligatti

whose corresponding distance are larger than a threshold value dthreshold. We start from
dthreshold = dmin and increase dthreshold each time until dthreshold reaches dmax. We
perform the experiments again using the NLoS set.

Figure 5 shows the error rate as a a function of dthreshold in the LoS scenario.
The error rate decreases as dthreshold increases. The obvious reason is that a larger
dthreshold indicates a longer distance between the transmitter and the receiver, and thus
a higher chance that the estimated proximity lower bound is less than the distance.
When dthreshold approaches the maximum distance between the sender and the re-
ceiver, the corresponding error rate is 0.01. When dthreshold approaches the minimum
distance, the error rate slightly increases but it is still a small rate that ranges between
0.05 and 0.07 for different α.

Figure 6 plots the error rate of the NLoS scenario for α = 1.80, which results the
worst error rate as compared to other values of α. Contrary to the LoS scenario, the error
rate of the NLoS scenario increases as dthreshold increases. That’s because in the NLoS
scenario a longer distance between the transmitter and the receiver indicates a higher
chance that there are more obstacles, and thus a reduced proximity detection accuracy.
The “worst worst case” happens when dthreshold approaches the maximum distance
dmax for the worst case NLoS scenario. However, as we can observe from Figure 6,
the achieved error rate of the “worst worst case” is about 0.25. This means that we can
successfully obtain the proximity lower bound for a majority number (75%) of verifiers.
As dthreshold decreases, the error rate decreases quickly. When dthreshold approaches
the minimum distance, the achieved error rate is about 0.15. Again, the experiment is
performed in an indoor environment (e.g., WiFi and Bluetooth), which has a short signal
propagation distance. Outdoor wireless applications (e.g., space communications and
TV broadcasting) usually have the stronger LoS feature, and therefore can substantially
benefit from the proposed method in terms of significantly reducing the error rate.

16 14 12 10
0.1

0.15

0.2

0.25

E
rr

or
 r

at
e

Distance threshold (meter)

Fig. 6. Error rate as a function of the distance
threshold dthreshold in the NLoS scenario

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Tightness values

E
m

pi
ric

al
 C

D
F

 o
f t

ig
ht

ne
ss

LoS(α = 1.8)
NLoS(α = 1.8)
LoS(α = 1.6)
NLoS(α = 1.6)

Fig. 7. The empirical CDFs of the tightness

Tightness of the Proximity Bound. Our second evaluation metric is the tightness of
the bound. To evaluate the tightness, we perform the following experiments using LoS
and NLoS data sets. In all experiments, the pathloss exponent α is set to the minimum
and maximum values of 1.6 and 1.8. For each channel impulse response in the LoS data

Fingerprinting Far Proximity from Radio Emissions 521

set, we compute the distance between the corresponding transmitter and the receiver
and the proximity lower bound. Based on the bound and the actual distance, we can cal-
culate the tightness of the bound. We then sort all the tightness values and compute the
empirical cumulative distribution function (CDF) for them. We perform the experiment
again using NLoS data set and obtain the CDFs of the NLoS tightness values.

Figure 7 shows the CDF curves of the tightness computed using channel impulse re-
sponses collected in LoS and NLoS scenarios. For the LoS scenario with α = 1.8, we
can observe that 95% of the tightness values are less than 0.2. The indoor environment
typically features a short propagation path, and thus a 0.2 tightness indicates a small ab-
solute difference in distance. For example, if the distance between the transmitter and
receiver is 5 meters, the achieved tightness can be around 1 meter. In particular, the max-
imum distance dmax between the transmitter and the receiver is about 11 meters, and the
corresponding proximity bound is 9.56 meters, which is very close to the actual distance.

For the NLoS scenario with α = 1.8, we can observe from Figure 7 that 90% of the
tightness values are less than 0.3. Compared to the LoS Scenario, the NLoS scenario has
a reduced performance due to the existence of obstacles. Again, the experiment is con-
ducted based on short-range communications, and a 0.3 tightness still suggests a small
absolute difference in distance. When α decreases to 1.6, the achieved tightness in-
creases. That’s because the corresponding estimated proximity lower bound decreases,
and a decreased bound grows the difference between the bound and the real distance,
and thus augments the tightness. However, for α = 1.6, we can still observe that a
great majority of the tightness values are fairly small, e.g., 95% and 80% of the tight-
ness values are less than 0.25 and 0.3 in the LoS and the NLoS (worst-case) scenarios
respectively. As we have discussed, such tightness of the bound is usually sufficient
to prevent attackers from impersonating the transmitters in typical long-haul outdoor
wireless applications.

Proximity Fingerprint vs. Distance. The proximity fingerprint is an important param-
eter in computing the proximity lower bound. According to Lemma 3, the theoretical
proximity lower bound is calculated as c

B(f
2
α −1)

. From this formula, we can easily de-

rive that as the proximity fingerprint f increases (other parameters remain the same), the
proximity lower bound decreases and vice versa. Note that the proximity lower bound
reveals the least distance between the verifier and the prover. Thus, the increase of the
proximity fingerprint f may also indicate the decrease of the real distance and vice
versa. We plot the proximity fingerprint as a function of the distance in Figure 8. We
can see that the proximity fingerprint in the NLoS scenario slightly differs from that of
the LoS scenario in magnitude due to the reflection loss. However, for both scenarios,
their proximity fingerprints exhibit the same tendency, i.e., they both decrease as the
distance increases. This observation is consistent with our theoretical result.

5 Related Work

Related work falls into the following two areas.

(a) Distance Bounding Protocols: Distance bounding protocols are a class of proto-
cols that determine an approximate distance between a local device and a remote device.

522 T. Wang, Y. Liu, and J. Ligatti

2 4 6 8 10
0

5

10

15

20

25

Distance (meter)

F
in

ge
rp

rin
t v

al
ue

LoS
NLoS (worst case)

Fig. 8. Relationship between the distance and the proximity fingerprint

(e.g., [5, 24, 29]). Distance bounding protocols and their variants are based on the com-
mon observation that the distance between the local and the remote devices is equal to
the product of the speed of electromagnetic wave and the one-way signal propagation
time. The approximate distance is obtained from a series of wireless packets exchanged
between the local device and the remote device. Specifically, the local device sends a
challenge to the remote device, which then replies with a response that is generated
based on the challenge. The local device measures the round-trip time between send-
ing the challenge and receiving the response, subtracts the processing delay from the
round-trip time, and uses the result to compute the distance. Because the response is
generated based on the challenge, the distance bounding protocol can prevent the re-
mote device from pretending to be closer than it actually is by sending a fake response
before it receives the challenge.

However, by delaying its response to a challenge, a remote device can appear to be
arbitrarily further from the local device than it actually is. Hence, distance-bounding
protocols cannot enforce lower bounds on proximity (i.e., requirements that the remote
device be at least a certain distance from the local device). For this reason, the GPS-
device and mobile-phone examples used for motivation in Section 1 cannot be enforced
by distance-bounding protocols.

(b) Close Proximity Identification: There also exist traditional close proximity detec-
tion techniques (e.g., [8,17]) that can detect the presence of nearby objects without any
physical contact. These techniques use electromagnetic field changes to identify a close
object. A proximity sensor generates an electromagnetic field or a beam of electromag-
netic radiation (e.g., infrared). If an object moves into the field range of the sensor, a
field change can result, and thus the sensor senses the presence of the object. For ex-
ample, a sound alert is triggered when a vehicle moves into the close proximity of a
worker or an obstacle. However, traditional techniques cannot identify the proximity
of a specific object, because the proximity sensor reports all nearby objects as long as
those objects are in the field range.

Researchers later developed techniques that identify the close proximity of an in-
dividual target if the target can emit wireless signals (e.g., [7, 11, 18]). For example,
based on the observation that a strong received signal usually indicates a close trans-
mitter, Macii et al developed approaches that determine the proximity of the remote

Fingerprinting Far Proximity from Radio Emissions 523

wireless device by measuring received signal strength [18]. However, the use of signal
strength to determine proximity was found to be insecure, as a dishonest remote device
can easily pretend to be close to the local device by boosting its transmit power.

More recent efforts overcome this drawback with the assistance of special hard-
ware [7,11]. Cai et al. proposed a scheme that identifies the presence of a close wireless
device by using multiple antennas [7]. Halevi et al. proposed to use ambient sensors to
detect whether a Near-Field-Communication (NFC) device is nearby or not [11]. Al-
though those approaches can prevent attackers manipulating transmit power to deceive
the local device, they cannot be directly extended to address the far proximity identifi-
cation problem. They output a decision regarding whether a target is nearby, but such
a decision cannot guarantee that the target is at least a certain distance away. Also, the
requirement of special hardware such as multiple antennas and ambient sensors intro-
duces extra cost and may reduce their compatibility.

Liu et al. proposed a new close proximity identification approach that does not rely
on special hardware [16]. By using the wireless physical features that uniquely identify
a wireless link between a transmitter and a receiver, the proposed technique enables
the local device to distinguish between a nearby and a far-away remote device. An
attacker cannot manipulate such physical features to pretend to be close to the local
device. However, similar to all previous approaches, this approach is a decision-based,
i.e. outputs a simple “yes” or “no” to indicate whether the remote device is very close
or not. Hence, it does not provide the quantitative lower bound of the proximity, which
is the primary contribution of this paper.

6 Conclusion

In this paper, we proposed a far proximity identification approach that determines the
lower bound of the distance between the verifier and the prover. The key idea of the pro-
posed approach is to estimate the proximity lower bound from the unforgeable finger-
print of the proximity. We have examined the proposed approach through experimental
evaluation using the CRAWDAD data set.

References

1. Gps signals, http://en.wikipedia.org/wiki/GPS_signals
(accessed July 27, 2013)

2. Marine vhf radio, http://en.wikipedia.org/wiki/Marine_VHF_radio
(accessed July 13, 2013)

3. Alam, N., Balaie, A.T., Dempster, A.G.: Dynamic path loss exponent and distance estimation
in a vehicular network using doppler effect and received signal strength. In: Proceedings of
2010 Vehicular Technology Conference Fall (VTC 2010-Fall), pp. 1–5 (2010)

4. Biguesh, M., Gershman, A.B.: Training-based mimo channel estimation: A study of esti-
mator tradeoffs and optimal training signals. IEEE Transaction on Signal Processing 54(3),
884–893 (2006)

5. Brands, S., Chaum, D.: Distance bounding protocols. In: Helleseth, T. (ed.) EUROCRYPT
1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994)

http://en.wikipedia.org/wiki/GPS_signals
http://en.wikipedia.org/wiki/Marine_VHF_radio

524 T. Wang, Y. Liu, and J. Ligatti

6. Brik, V., Banerjee, S., Gruteser, M., Oh, S.: Wireless device identification with radiometric
signatures. In: Proceedings of the 14th ACM International Conference on Mobile Computing
and Networking (MobiCom 2008), pp. 116–127 (2008)

7. Cai, L., Zeng, K., Chen, H., Mohapatra, P.: Good neighbor: Ad hoc pairing of nearby wireless
devices by multiple antennas. In: Proceedings of the Annual Network and Distributed System
Security Symposium (NDSS 2011) (2011)

8. Chen, Z., Luo, R.C.: Design and implementation of capacitive proximity sensor using micro-
electromechanical systems technology. IEEE Transactions on Industrial Electronics 45(6),
886–894 (1998)

9. Goldsmith, A.: Wireless Communications. Cambridge University Press, New York (2005)
10. Gunnam, K., Choi, G., Yeary, M., Zhai, Y.: A low-power preamble detection methodology

for packet based rf modems on all-digital sensor front-ends. In: Proceedings of the IEEE
Instrumentation and Measurement Technology Conference (2007)

11. Halevi, T., Ma, D., Saxena, N., Xiang, T.: Secure proximity detection for NFC devices based
on ambient sensor data. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS,
vol. 7459, pp. 379–396. Springer, Heidelberg (2012)

12. Hancke, G.P., Kuhn, M.G.: An RFID distance bounding protocol. In: Proceedings of Se-
cureComm 2005, pp. 67–73 (2005)

13. Jinho, C.: Equalization and semi-blind channel estimation for space-time block coded signals
over a frequency-selective fading channel. IEEE Transactions on Signal Processing 52(3),
774–785 (2004)

14. Kuechle, L.B.: Selecting receiving antennas for radio tracking,
http://www.atstrack.com/PDFFiles/receiverantrev6.pdf

15. Liu, A., Ning, P., Dai, H., Liu, Y., Wang, C.: Defending DSSS-based broadcast communica-
tion against insider jammers via delayed seed-disclosure. In: Proceedings of the 26th Annual
Computer Security Applications Conference, ACSAC 2010 (December 2010)

16. Liu, Y., Ning, P., Dai, H.: Authenticating primary users’ signals in cognitive radio networks
via integrated cryptographic and wireless link signatures. In: Proceedings of 2010 IEEE Sym-
posium on Security and Privacy (S&P 2010), pp. 286–301 (May 2010)

17. Lo, P.H., Hong, C., Lo, S.C., Fang, W.: Implementation of inductive proximity sensor us-
ing nanoporous anodic aluminum oxide layer. In: Proceedings of 2011 International Solid-
State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), pp. 1871–1874
(2011)

18. Macii, D., Trenti, F., Pivato, P.: A robust wireless proximity detection technique based on rss
and tof measurements. In: Proceedings of 2011 IEEE International Workshop on Measure-
ments and Networking (M&N 2011), pp. 31–36 (2011)

19. Mao, G., Anderson, B.D.O., Fidan, B.: Path loss exponent estimation for wireless sensor
network localization. The International Journal of Computer and Telecommunications Net-
working 51(10), 2467–2483 (2007)

20. Molisch, A.F.: Wireless Communications, 2nd edn. Wiley India Pvt. Limited (2007)
21. Paget, C.: Practical cellphone spying. In: DEF CON 18 (2010)
22. Patwari, N., Kasera, S.K.: CRAWDAD utah CIR measurements,

http://crawdad.cs.dartmouth.edu/meta.php?name=utah/CIR
23. Patwari, N., Kasera, S.K.: Robust location distinction using temporal link signatures. In:

MobiCom 2007: Proceedings of the 13th Annual ACM International Conference on Mobile
Computing and Networking, pp. 111–122. ACM, New York (2007)

24. Rasmussen, K.B., Čapkun, S.: Realization of rf distance bounding. In: Proceedings of the
USENIX Security Symposium (2010)

25. Rasmussen, K.B., Castelluccia, C., Heydt-Benjamin, T.S., Čapkun, S.: Proximity-based ac-
cess control for implantable medical devices. In: Proceedings of the 16th ACM Conference
on Computer and Communications Security (CCS 2009) (2009)

http://www.atstrack.com/PDFFiles/receiverantrev6.pdf
http://crawdad.cs.dartmouth.edu/meta.php?name=utah/CIR

Fingerprinting Far Proximity from Radio Emissions 525

26. Scholtz, R.A.: Spread Spectrum Communications Handbook. McGraw-Hill (2001)
27. SPAN. Measured channel impulse response data set, http://span.ece.utah.edu/

pmwiki/pmwiki.php?n=Main.MeasuredCIRDataSet
28. Sud, S.: A low complexity spatial rake receiver using main beam multipath combining for a

cdma smart antenna system. In: Proceedings of 2007 IEEE Military Communications Con-
ference (MILCOM), pp. 1–6 (2007)

29. Tippenhauer, N.O., Čapkun, S.: ID-based secure distance bounding and localization. In:
Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 621–636. Springer, Hei-
delberg (2009)

30. Tsatsanis, M.K., Giannakis, G.B.: Blind estimation of direct sequence spread spectrum sig-
nals in multipath. IEEE Transactions on Signal Processing 5(45), 1241–1252 (1997)

31. Weinmann, R.: The baseband apocalypse. In: BlackHat DC (2011)
32. Yu, L., Liu, W., Langley, R.J.: Robust beamforming methods for multipath signal reception.

Digital Signal Processing 20(2), 379–390 (2007)
33. Zhang, J., Firooz, M.H., Patwari, N., Kasera, S.K.: Advancing wireless link signatures for

location distinction. In: MobiCom 2008: Proceedings of the 14th ACM International Confer-
ence on Mobile Computing and Networking. ACM, New York (2008)

http://span.ece.utah.edu/pmwiki/pmwiki.php?n=Main.MeasuredCIRDataSet
http://span.ece.utah.edu/pmwiki/pmwiki.php?n=Main.MeasuredCIRDataSet

A Cross-Layer Key Establishment Scheme

in Wireless Mesh Networks

Yuexin Zhang1, Yang Xiang1, Xinyi Huang1,2,�, and Li Xu2

1 School of Information Technology, Deakin University
Burwood, VIC 3125, Australia

2 Fujian Provincial Key Laboratory of Network Security and Cryptology
School of Mathematics and Computer Science, Fujian Normal University

Fuzhou, 350108, China
{yuexinz,yang.xiang}@deakin.edu.au, {xyhuang,xuli}@fjnu.edu.cn

Abstract. Cryptographic keys are necessary to secure communications
among mesh clients in wireless mesh networks. Traditional key estab-
lishment schemes are implemented at higher layers, and the security of
most such designs relies on the complexity of computational problems.
Extracting cryptographic keys at the physical layer is a promising ap-
proach with information-theoretical security. But due to the nature of
communications at the physical layer, none of the existing designs sup-
ports key establishment if communicating parties are out of each other’s
radio range, and all schemes are insecure against man-in-the-middle at-
tacks. This paper presents a cross-layer key establishment scheme where
the established key is determined by two partial keys: one extracted at
the physical layer and the other generated at higher layers. The anal-
ysis shows that the proposed cross-layer key establishment scheme not
only eliminates the aforementioned shortcomings of key establishment at
each layer but also provides a flexible solution to the key generation rate
problem.

Keywords: Key establishment, Cross-layer, Coding, Channel phase,
Wireless mesh networks.

1 Introduction

Wireless mesh networks (hereinafter, WMNs) becomes a research hotspot due to
its low costs for deployment, easy expansion, and capability of self organization
and self configuration. WMNs consists of two types of entities: mesh routers and
mesh clients [1]. Mesh clients are stationary or mobile devices, and mesh routers
form the mesh backbone for mesh clients. Each node (including mesh clients and
mesh routers) in WMNs serves as a host and as a router, but mesh clients are
not as powerful as mesh routers. As shown in Fig. 1, mesh clients can access the
networks through mesh routers or meshing with other mesh clients directly [1].

� Corresponding author.

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 526–541, 2014.
c© Springer International Publishing Switzerland 2014

A Cross-Layer Key Establishment Scheme in Wireless Mesh Networks 527

Mesh Router

Mesh Router
Mesh Router

Mesh Router

Mesh Router

Mesh Router

Internet

Wireless Mesh Clients
IDk

IDj
IDuIDu

IDi

Vehicular Networks,
Wireless Sensor Networks,
Ad Hoc networks,
Cellular Networks, etc.

Fig. 1. Hybrid WMNs [1]

To secure wireless communications among clients, cryptographic keys are
needed to provide confidentiality, integrity and authentication services. As a
fundamental problem, key establishment has been extensively and intensively
studied. Existing designs can be classified into two main types: asymmetric key
establishment schemes and symmetric key establishment schemes. Most of them
are implemented at higher layers (Fig. 2 shows the system model). However,
there are some disadvantages in those schemes. For example, a large portion of
them rely on the intractability of computational problems, and some of those
problems will become tractable on quantum computers. Specifically, costly com-
putation operations are needed to be executed in asymmetric key based schemes.
In symmetric key based schemes, e.g., key pre-distribution schemes, considerable
memory spaces are used to pre-load secrets.

To obtain communication keys with information-theoretical security, there is
an increasing interest in extracting keys by exploiting the wireless channel. In
the typical multipath environments, the wireless channel between two clients
(e.g., Alice and Bob) experiences a time-varying, stochastic mapping between
the transmitted and received signals. This mapping (commonly termed fading)
is unique, location-specific and reciprocal, namely, the fading is invariant within
the channel coherence time whether the signals are transmitted from Alice to
Bob or vice-versa. In wireless communications, coherence time is a statistical
measure of the time duration over which the channel impulse response is es-
sentially invariant. Based on communication theory [2], the fading decorrelates
over distances of the order of half a wavelength, λ. Thus, the signals transmitted
between Alice and Bob and the signals transmitted between Alice (or Bob) and
the eavesdropper (who is at least λ/2 away from the clients) experience indepen-
dent fading. For instance, at 2.4 GHz used in IEEE 802.11b and 802.11g, these
properties ensure that the eavesdropper cannot get useful information as long
as it is roughly λ/2 = 6.25 cm away from Alice and Bob.

528 Y. Zhang et al.

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Session Layer

Presentation Layer

Application Layer

Physical Layer

Higher Layers

Fig. 2. The system model

But as a coin always has two sides, physical layer based key extraction schemes
cannot establish communication keys securely when two clients are out of each
other’s radio range. It is due to the fact that the two clients must forward the
fluctuated states to untrusted relay devices. Besides, the key generation rate of
those schemes is quite slow (about 1 bit/sec, and more details will be given in
Section 2.2), which constraints their applications.

Our Contribution. Many schemes have been proposed to extract secret keys
from the wireless channel at the physical layer (a brief review of closely related
works shall be given in Section 2), but few of them can securely and efficiently
extract keys when two clients are out of each other’s communication range. Fac-
ing the practical requirement, this paper presents a cross-layer key establishment
scheme by employing the characteristics of the physical layer and higher layers
corporately. Our scheme possesses the following properties:

1. Our scheme is specifically designed for assisting two remote mesh clients,
who are out of each other’s radio range, to establish a secure communication
key;

2. In this paper we propose a cross-layer key establishment scheme. The channel
phase is employed by clients to extract a partial key at the physical layer,
and XOR coding is used to obtain another partial key at higher layers. The
communication key is determined by these two partial keys;

3. The security of our scheme is guaranteed by two-fold: a partial key generated
by coding at higher layers and the other partial key extracted via the wireless
fading channel at the physical layer. Security analysis shows that our scheme
is secure against man-in-the-middle attacks and node capture attacks; and

4. According to the needs of practical applications, e.g., security concerns and
environmental conditions, the proposed design provides a flexible solution to

A Cross-Layer Key Establishment Scheme in Wireless Mesh Networks 529

key generation rate problem. Clients in our scheme can dynamically adjust
the length of the generated partial key (extracted at the physical layer). Def-
initely, a shorter partial key (extracted at the physical layer) will contribute
to a higher key generation rate.

Organization of This Paper. The remainder of this paper is organized as
follows. We present a brief overview on the related work in Section 2. Sec-
tion 3 reviews the preliminaries required in this paper. The proposed scheme
is described in Section 4, and its security and performance analysis is given in
Section 5. Section 6 concludes this paper.

2 Related Work

A number of key establishment schemes were presented, for example, the Diffie-
Hellman protocol allows two clients to establish a shared secret key over an inse-
cure channel without prior knowledge. Symmetric key pre-distribution schemes,
on the other hand, need to pre-load keys or secrets at clients. Due to restrictions
on length, in this section we only focus on the closely related works.

2.1 Establish Keys Using XOR Coding

At higher layers, XOR coding technology was employed to establish secret keys
in [3], where a mobile device S was used to bootstrap networks. In key pre-
distribution phase, system authority: (a). produces a Vernam cipher R1, gen-
erates a large key pool P , and computes XOR coding blocks {Ki ⊕ R}s; (b).
stores mobile device S with coding blocks {Ki ⊕ R}s and corresponding identi-
fiers; and (c). selects r keys and key identifiers from key pool P for each sensor
node. After deployment, S broadcasts HELLO messages and neighbor nodes
A and B respond by sending their key identifiers. Upon receiving the identi-
fiers idA and idB from node A and B respectively, mobile device S computes
Ki(A)⊕R⊕Ki(B)⊕R and broadcasts Ki(A)⊕Ki(B). Based on the received
XOR coding Ki(A) ⊕ Ki(B), A and B can easily recover each other’s key (A
owns Ki(A), computes Ki(A)⊕Ki(A)⊕Ki(B), and obtains Ki(B). B can obtain
Ki(A) by executing similar operations). Then they can negotiate a communi-
cation key using Ki(A) and Ki(B). Liu et al. improved and applied it to a
cluster-based hierarchical network in [5].

2.2 Extract Keys Using the Wireless Fading Channel

It is possible to extract secret bits from the physical layer, and the fundamental
bounds are pointed out in [6, 7]. However, the authors of [6, 7] only provided
theoretical results without giving explicit constructions. But it motivates other

1 A Vernam cipher R is a binary sequence introduced in [4]. It is randomly generated
according to a Bernoulli (1/2) distribution and its size is equal to the key size.

530 Y. Zhang et al.

schemes using the attenuation of amplitude, deviation of phase or decline of
other physical quantities to extract secret bits at the physical layer.

The attenuation of amplitude was employed to extract secrets in [8–11].
Mathur et al. used the crucial characteristics in [8] that the received signals at
the receiver are modified by the channel in a manner unique to the transmitter-
receiver pair. In Mathur et al.’s scheme, two wireless devices evaluated the
envelope of multipath fading channel between them by probing a fixed test fre-
quency, and quantized the evaluation into secret bits. Furthermore, the authors
validated their algorithm using the 802.11a packet preamble on a FPGA-based
802.11 platform. They showed that it is possible to achieve key establishment
rates of 1 bit/sec in a real indoor wireless environment. In [9], Received Sig-
nal Strength (RSS) was used as a channel statistic. By exploiting quantization,
information reconciliation and privacy amplification, Jana et al. evaluated the
effectiveness of secret key extraction from RSS variations in a variety of envi-
ronments and settings. Besides, Vehicle-to-Infrastructure communication keys
and Vehicle-to-Vehicle communication keys were extracted in [10]. In [11], an
environment adaptive secret key generation scheme was proposed.

Deviation of phase (or phase offset) was used to extract secret bits in [12–15].
To increase the key bit generation rate, Zeng et al. exploited multiple-antenna
diversity in [12] to generate secret keys for wireless nodes and implemented it on
off-the-shelf 802.11n multiple-antenna devices. Pairwise key generation approach
and group key generation approach were presented in [13] by utilizing the uni-
formly distributed phase information of channel responses under narrowband
multipath fading models. A cooperative key generation protocol was proposed
in [14] to facilitate high rate key generation in narrowband fading channels with
the aid of relay node(s). Zhuo et al. [15] presented a multihop key establish-
ment scheme based on the assumption that the network is biconnected, and the
security of [15] is guaranteed against adversaries in a single path.

It is also proved in [16, 17] that decline of other physical quantities are avail-
able to extract secret bits. Liu et al. came up with a novel idea to extract cryp-
tography keys in [16]. Noticing that the fading exhibited in RSS measurements
follows similar increasing or decreasing trend despite of the mismatch of abso-
lute values, they proposed a fading trend based secret key extraction scheme. Liu
et al. presented another idea in [17] to mitigate the non-reciprocity component
by learning the channel response from multiple Orthogonal Frequency-Division
Multiplexing (OFDM) subcarriers.

However, there are some practical requirements that schemes [8–17] failed to
securely fulfill. For example, (1). It is a practical requirement in WMNs that
two remote clients should establish a secret key to secure their communications.
The schemes in [15, 16] provide solutions to fulfill this requirement, but some
problems still exist in their schemes. The proposed scheme in [15] is based on the
assumption that the network is biconnected, i.e., there are at least two disjoint
paths between any pair of nodes. This assumption limits its practicality. In [16],
a collaborative key extraction scheme is designed under the assistance of relay
nodes. However, the extracted key is not secure as it is known by one of the

A Cross-Layer Key Establishment Scheme in Wireless Mesh Networks 531

relay nodes; (2). Designed schemes should be secure against man-in-the-middle
attacks. Until now, the existing physical layer based key extraction schemes
failed to secure against this kind of attacks. Realizing that it is possible to utilize
the characteristics of the physical layer and higher layers cooperatively to meet
foregoing requirements, in this paper we present a cross-layer key establishment
scheme. At higher layers, we use coding to gain partial secrets; At the physical
layer, we employ the channel phase to extract other partial secrets. The details
of our scheme will be described in Section 4.

3 Preliminaries

This section presents some preliminaries required in this paper.

3.1 Extract Secret Bits from the Wireless Fading Channel

The characteristic of the wireless channel between two wireless devices provides
them an access to extract secret keys, even in the presence of an eavesdropper [8,
9]. An example is given in Fig. 3.

Alice sends
x(t)

Bob receives
yAB(t)

The eavesdropper receives
yAE(t)

Fig. 3. An example of fading

In Fig. 3, Alice sends a sinusoidal signal x(t) = A sin(wct+ φ0) to Bob. Here
A is the amplitude, wc is the angular frequency, and φ0 is the initial phase. Due
to the multipath environment, noise, and/or mobile environment, the sinusoidal
signals received at Bob and the eavesdropper are different. Let yAB(t) and yAE(t)
denote the signals received by Bob and the eavesdropper, and they can be written
as:

yAB(t) = AAB sin(wct+ φ0 + φAB) + nAB(t),

yAE(t) = AAE sin(wct+ φ0 + φAE) + nAE(t).

532 Y. Zhang et al.

Here, AAB and AAE are the modulated amplitudes, and they are functions of
path loss and shadowing; φAB and φAE are the deviated phases, and they are
depend on delay, Doppler, and carrier offset 2. nAB(t) and nAE(t) denote the
additive white Gaussian noise.

Upon receiving yAB(t), Bob sends the signal x(t) = A sin(wct + φ0) back to
Alice in the coherence time. Similarly, Alice and the eavesdropper will receive
yBA(t) and yBE(t), and they can be written as:

yBA(t) = ABA sin(wct+ φ0 + φBA) + nBA(t),

yBE(t) = ABE sin(wct+ φ0 + φBE) + nBE(t).

By assuming that key extraction operations are executed in the coherence
time, we have φAB = φBA. If the eavesdropper is more than λ/2 away from
Alice and Bob, it cannot extract any useful secrets by making use of his received
signals. Taking Fig. 3 as an example, φAE and φAB (φBE and φBA) are statisti-
cally independent as long as the eavesdropper is more than λ/2 away from Bob
(Alice).

3.2 Assumptions

There are three types of participants in our cross-layer key establishment scheme,
i.e., the system authority, mesh routers and mesh clients. We assume that:

1. Operations related to the system authority are carried out in a secure en-
vironment, while mesh routers and mesh clients are not physically secure.
Particularly, mesh routers are equipped with tamper-detection technology
and they can erase secret information when captured. However, any secret
data stored in mesh clients will be exposed once they are captured by ad-
versaries;

2. The area of mesh clients is covered by the wireless transmission radius of
mesh routers;

3. A mesh client is able to securely apply for a secret S from the system au-
thority for the first time it joins the mesh networks; and

4. Key extraction operations at the physical layer are executed in the coherence
time to ensure φAB = φBA as shown in Section 3.1.

3.3 Adversary Model

As assumptions made in [8–17], the adversary is at least λ/2 away from legiti-
mate clients, and it can eavesdrop the communications among clients. We also
assume that the adversary knows the key establishment scheme and it can per-
form phase estimation during key generation process. In addition, the adversary
aims to derive the secret keys generated between legitimate mesh clients, and

2 Path loss, shadowing, delay, Doppler, and carrier offset are components in analysis
of a communication system. Please refer to [2] for more information.

A Cross-Layer Key Establishment Scheme in Wireless Mesh Networks 533

it is not interested in interrupting the key generation scheme by jamming the
communications. Different from the schemes in [8, 9, 13], we assume that relay
clients are not fully trusted, and node capture attacks and man-in-the-middle
attacks are considered in this paper.

4 A Cross-Layer Key Establishment Scheme in WMNs

This section is devoted to the description of our cross-layer key establishment
scheme for two mesh clients who are beyond each other’s communication range.

4.1 Overview

As shown in Fig. 4, the scheme consists of five phases, and details of each phase
will be followed in Section 4.2.

System Setup

Apply for Secrets

Partial Key Kh Gained at
Higher Layers

Partial Key Kp Extracted at
the Physical Layer

Negotiate the
Communication Key

The system authority generates system parameters, and the operations
can be executed when it is offline.

Mesh clients apply for secrets from the system authority.

Two mesh clients establish the partial key Kh at higher layers.

Two mesh clients extract the partial key Kp at the physical layer.

Two mesh clients negotiate a communication key using Kh and Kp.

Fig. 4. Five phase of our cross-layer key establishment scheme

4.2 A Cross-Layer Key Establishment Scheme

System Setup: Assume that the population of residents in a community is P .
For each individual, there are about Q devices (like PCs or phones) may serve
as mesh clients and access the WMNs through mesh routers or directly meshing
with other mesh clients. It means that there are about M = PQ mesh clients in
this area. During the system setup phase, the system authority

– Chooses N independent secrets S1, S2, ..., SN from a finite field GFq, for
N ≥M . Let idi be the identifier of secret Si;

534 Y. Zhang et al.

– Computes S2
i , S

3
i , . . . , S

e
i , for i = 1, 2, . . . , N . e is the expected times that

secret Si be used to establish communication keys;
– Chooses a secure hash function H(x);
– Produces Vernam cipher Rijs, i.e., binary sequences drawn randomly accord-

ing to a Bernoulli (1
2) distribution. Here i = 1, 2, . . . , N , j = 1, 2, . . . , N , and

i �= j. The generated Rijs should possess the characteristic that Rij = Rji;
– Computes coding blocks {H(Sk

i)⊕Rij}s, for 2 ≤ k ≤ e; and
– Loads {idi, k : H(Sk

i)⊕Rij}s at mesh routers.

To facilitate understanding, we provide a flowchart of computing coding blocks
in Fig. 5. Note that Rijs possess the characteristic Rij = Rji.

start

input N; Si; Rij; H(x)

i=1

i≤ Nj=1; k=2

j≤ N

i≠ j

yi
k=H(Si

k) Rij; k++

j++

i++

output coding blocks

end

No

Yes

Yes

Yes

No

No

y1
2=H(S1

2) R12

y1
3=H(S1

3) R13

y1
4=H(S1

4) R14

.

.

.

.

.

.
y1

N=H(S1
N) R1N

y2
2=H(S2

2) R21

y2
3=H(S2

3) R23

y2
4=H(S2

4) R24

.

.

.

.

.

.
y2

N=H(S2
N) R2N

y3
2=H(S3

2) R31

y3
3=H(S3

3) R32

y3
4=H(S3

4) R34

.

.

.

.

.

.
y3

N=H(S3
N) R3N

.

(a) A flowchart of computing coding blocks (b) Outputted coding blocks

Fig. 5. A flowchart of computing coding blocks

Apply for Secrets: We assume that mesh client i is able to apply for a secret
Si and the corresponding secret identifier idi from the system authority securely
for the first time it joins the mesh networks.
Partial Key Kh Gained at Higher Layers: When two mesh clients u and v
want to establish a communication key, they should execute following operations:

– Say HELLO to each other and exchange secret identifiers idu, idv. This
operation can be completed by employing forward function of multiple relay
clients; and

– Send a request, {req: idu, idv}, to mesh routers.

Upon receiving the request, mesh routers retrieve the stored coding blocks
{idi, k : H(Sk

i)⊕Rij}s and reply mesh clients u, v with {idu, x; idv, y : H(Sx
u)⊕

H(Sy
v) = H(Sx

u)⊕Ruv ⊕H(Sy
v)⊕Rvu} publicly.

A Cross-Layer Key Establishment Scheme in Wireless Mesh Networks 535

Then, mesh clients u and v:

– Compute H(Sy
v) and H(Sx

u), separately. Taking client u as an example, it
owns Su, computes H(Sx

u) and H(Sx
u)⊕H(Sx

u)⊕H(Sy
v), and obtains H(Sy

v).
Client v can obtain H(Sx

u) by executing similar operations;
– Negotiate the partial key Kh using H(Sx

u) and H(Sy
v). For example, client

u and v can compute Kh = H(H(Sx
u)‖H(Sy

v)). Here, ‖ is the connection
operation.

Partial Key Kp Extracted at the Physical Layer: The basic idea of key
extraction algorithms at the physical layer is to employ the inherent channel
randomness associated with distinct pairwise links, i.e., the sinusoidal signal
transmitted back and forth between two mesh clients will experience the same
phase variation over the coherence time period. We assume that there are x
relay clients between u and v, denoted as r1, r2, . . . , rx. As depicted in [13], the
key extraction scheme contains |Kp|/ log2(q) round, and there are two time slots
(ST1 and ST2) in each round. Here |Kp| is the length of Kp. In ST1:

– Mesh client u chooses φ1 uniformly at random from [0, 2π], and sends the
sinusoidal signal x(t) = A sin(wct + φ1) to relay client r1;

– Relay client ri forwards the signal to relay client rj , where ri,
rj∈ {r1, r2, . . . , rx} and 1 ≤ i < j ≤ x;

– Relay client rx forwards the signal to mesh client v.

The steady-state portion of the beacon received at mesh client v can be written
as

yu→v(t) = A
′
sin(wct + φ1 + φur1 + φr1r2 + · · ·+ φrxv) + n

′
(t),

where n
′
(t) denotes the additive white Gaussian noise, and φij denotes the phase

offset when the signal is transmitted from client i to client j. After ST1, client
v gets φu→v = φ1 + φur1 + φr1r2 + · · ·+ φrxv. In ST2:

– Mesh client v chooses φ2 uniformly at random from [0, 2π] and sends the
sinusoidal signal x(t) = A sin(wct + φ2) to relay client rx;

– Relay client rj forwards the signal to relay client ri, where ri,
rj∈ {r1, r2, . . . , rx} and 1 ≤ i < j ≤ x;

– Relay client r1 forwards the signal to mesh client u.

Similarly, the steady-state portion of the beacon received at mesh client u can
be written as

yv→u(t) = A
′′

sin(wct+ φ2 + φvrx + φrxrx−1 + · · ·+ φr1u) + n
′′
(t).

After ST2, client u obtains φv→u = φ2 + φvrx + φrxrx−1 + · · ·+ φr1u.
At the end of first round, both client u and v can compute the phase compo-

nents Φ1

client u : Φ1 = φv→u + φ1 mod 2π,

client v : Φ1 = φu→v + φ2 mod 2π.

536 Y. Zhang et al.

As shown in [13], we can map Φ1 into the quantization inter/index using the
formula:

Qx = k if x ∈ [
2π(k − 1)

q
,

2πk

q
),

for k = 1, 2, . . . , q. Thus, the quantization of phase value generates log2(q) bits
secret. To extract the partial key Kp with length |Kp|, mesh clients u and v need
to repeat the operations (presented in ST1 and ST2) for |Kp|/ log2(q) round.

Due to the presence of noise and interference, manufacturing variations, half-
duplex mode of communication and estimation errors, secure sketch can be ap-
plied to reconcile the differences in the bit streams (refer to [13] for details).

Negotiate the Communication Key: After completing the aforementioned
operations, mesh clients u and v obtain shared partial keys Kh and Kp. Then
they can negotiate the communication key K using Kh and Kp. For example,
the communication key can be computed as: K = H(Kh‖Kp).

This completes the description of our cross-layer key establishment scheme.

5 Security and Performance Analysis

In this section, we analyze the security and performance of our cross-layer key
establishment scheme.

5.1 Security Analysis

The security of our proposed cross-layer key establishment scheme is guaranteed
by two-fold: the partial key Kh generated at higher layers and the partial key
Kp extracted at the physical layer.

At higher layers, coding is employed to ensure the security of the partial key
Kh. Under the assumption that a mesh client is able to apply for a secret S
from system authority securely for the first time it joins the mesh networks, any
pair of clients can compute and obtain Kh. Take Partial Key Kh Gained at
Higher Layers as an example, only clients u and v can decode H(Sx

u)⊕H(Sy
v),

obtain H(Sy
v) and H(Sx

u), and compute Kh = H(H(Sx
u)||H(Sy

v)) correctly.
At the physical layer, it is widely assumed that an adversary cannot obtain

the identical channel response for key generation if it is at least λ/2 away from
communicating clients [8–17], and this has been validated in real experiments
in [8, 9]. During partial key Kp extracted at the physical layer phase,
the adversary will experience independent channel variations as long as it is
more than 6.25 cm away from the communicating nodes. Here we let the carrier
frequency be 2.4 GHz. In our scheme, the communicating nodes include clients
u, v and relay clients r1, r2, . . . , rx.

Resilience against Man-in-the-Middle Attacks. When the fading channel
is employed to extract secret keys, Mathur et al. pointed out in [8] that two
clients will suffer from man-in-the-middle attacks if they are not within each

A Cross-Layer Key Establishment Scheme in Wireless Mesh Networks 537

other’s communication range. Just as other physical layer based schemes, the
partial key Kp extracted from the wireless fading channel are vulnerable to man-
in-the-middle attacks. But the communication key K generated in our scheme is
secure against such kind of attacks. The reason is that the communication key
in our scheme is computed as: K = H(Kh||Kp). Recall that Kh is computed by
coding at higher layers. Without secret Su or Sv, an attacker cannot compute
Kh correctly. So it cannot cheat the communicating clients. The cross-layer key
establishment design makes the scheme resist against man-in-the-middle attacks
when two clients are beyond each other’s radio range.

Resilience against Node Capture Attacks. Our cross-layer key establish-
ment scheme is secure against node capture attacks. Assume that the adversary
obtains a secret Sw by capturing client w. It can impersonate client w and try to
establish communication key with legitimate client v. The adversary can obtain
H(Sy

v) after mesh routers replied H(Sx
w) ⊕ H(Sy

v). However, it cannot obtain
H(Sy−1

v) or H(Sy+1
v) by using H(Sy

v) due to the one way hash function. Fur-
thermore, it cannot obtain those clients’ secrets who established communication
keys with client v, because client v establishes communication keys with different
clients using different secret codings. For coding H(Sy

v) ⊕ Rvw, it is only used
between clients w and v. So, the leak of a secret in our scheme will not contribute
to other secrets’ insecurity.

5.2 Performance Analysis

Probability of Successful Partial Key Generation. During partial key
Kp extracted at the physical layer phase, each node (source node and desti-
nation node) generates an initial phase randomly. As assumed in [13], all obser-
vations in different time slots or at different nodes are affected by independent
noise realizations. Let T0 be the observation time, fs be the sampling rate and N
be the number of samples in the observation. The estimation errors converge to
zero-mean Gaussian random variables with variances σ2

φ when N increases, and
it can be lower-bounded by the Cramer-Rao bounds (CRB) [18]. Recall that the
amplitude of the transmitted sinusoid signal is A, when estimating it in white
noise with Power Spectral Density (PSD) N0

2 , the CRBs for the variance of the
phase estimate is given as (refer to schemes [13, 18] for details)

σ2
φ ≥

2fsN0(2N − 1)

A2N(N + 1)
≈ 4N0

A2T0
(1)

When N is sufficiently large, fs
N = 1

T0
. As described in Partial key Kp

Extracted at the Physical Layer, there are x relay nodes. Thus, the variance
of the accumulated estimation errors across x + 2 nodes is σ2

(x+2) = (x + 2)σ2
φ.

Wang et al. present the average probability of quantization index agreement
PQIA in [13] as

PQIA =

∫ 2π(i+1)
q

2πi
q

PQIA(φ)
q

2π
dφ ≈

∫ 2π(i+1)
q

2πi
q

P
(x+2)
i (φ)

q

2π
dφ (2)

538 Y. Zhang et al.

where Pi(φ) =
∫ 2π(i+1)

q
2πi
q

1√
2πσ(x+2)

e
− (y−φ)2

2σ2
(x+2) dy.

Randomness of Key. To extract high entropy secret bits from wireless fading
channel, most of the related schemes rely on node mobility or channel variations.
In a static environment the adversary has the ability to predict the changes of
channel phase when clients u and v are stationary (it is pointed out in [9, 17]).
However, our cross-layer key establishment scheme can provide communication
keys with sufficient randomness even in a static environment. In our scheme,
φ1 and φ2 are chosen uniformly at random from [0, 2π] by clients u and v re-
spectively, which contributes to the randomness of the partial key Kp. Besides,
secrets Su, Sv are generated randomly by the system authority, the partial key
Kh is obtained by Kh = H(H(Sx

u)||H(Sy
v)), and the communication key is com-

puted as K = H(Kh||Kp). Due to the randomness of Kp and Kh, our scheme
can provide random communication keys in the dynamic or static environment.

Key Rate. Due to the fact that in the time slots where the channel changes
slowly, a limited number of key bits can be generated. It has been investigated by
previous work in [8] that two wireless clients can generate a communication key
at about 1 bit/sec by using off-the-shelf 802.11a hardware. This constraint signif-
icantly limits their practical applications [14]. The cross-layer key establishment
scheme provides a flexible solution to this limitation. In practical applications,
clients in our scheme can dynamically adjust the length of the generated partial
key Kp based on actual application requirements, e.g., security concerns and
environmental conditions. Definitely, a short partial key Kp will save the partial
key generation time at the physical layer, and this will contribute to a high key
generation rate. Our cross-layer key establishment scheme will degrade to XOR
coding based scheme when the length of partial key Kp is “0”.

Storage, Communication and Computation Complexities. We consider
the storage, communication and computation costs of our scheme from two
parts: the partial key Kh generated at higher layers and the partial key Kp

extracted at the physical layer. To obtain the partial key Kh, client u needs
to: (a). apply a secret Su and the corresponding secret identifier idu from the
system authority; (b). exchange identifiers idu, idv with client v and send re-
quest {req: idu, idu} to mesh routers; (c). compute Kh using Su after receiving
{idu, x; idv, y : H(Sx

u) ⊕ H(Sy
v)}. To extract partial key Kp, client u needs to

repeat the operations (presented in ST1 and ST2) for |Kp|/log(q)
2 = 16 rounds

when |Kp| = 64 bits and q = 16.
Specifically, our cross-layer key establishment scheme will degrade to XOR

coding based scheme when |Kp| = 0. In this case, our scheme has the same se-
curity level as [3, 5]. Recall that each node needs to pre-load r keys and N − 1
coding blocks in [3] and [5], respectively. So, our scheme has a significant advan-
tage over [3, 5] from the aspect of storage costs at clients. The light storage costs

A Cross-Layer Key Establishment Scheme in Wireless Mesh Networks 539

at mesh clients are achieved by migrating all coding blocks to mesh routers (re-
call that mesh routers have much more storage space than clients). To establish
communication keys, clients need to exchange identifiers. Obviously, communi-
cation costs of clients in our scheme are the same with [3, 5]. However, comparing
with schemes [3, 5], computation costs are higher in our scheme. Because client u
in [3, 5] only needs to execute XOR coding, but it needs to compute Sx

u, H(Sx
u),

and XOR coding in our scheme.
We now compare the computation cost of our cross-layer key establishment

scheme (consumed at higher layers when computing Sx
u) with the technique of

asymmetric key cryptography. To achieve a security level of 80-bit, our scheme
shall require one modular exponentiation with the length of 40-bit when |Kh| =
|Kp| = 40, while it requires at least one modular exponentiation with the length
of 1024-bit using asymmetric key techniques such as the RSA.

Take sensor node MICAz mote as an example, it is equipped with an 8-bit
AVR processor (the ATmega128) and has only 4 kB of RAM and 128 kB flash
memory [19]. To the best of our knowledge, the fastest software implementation
of modular multiplication (mod-mul) for such 8-bit AVR processors roughly
requires 240 clock cycles for operand with a length of 40-bit and roughly 220596
clock cycles for a 1024-bit operand. It means that the costs of performing a 1024-
bit modular multiplication equal to 920 times of performing a 40-bit modular
multiplication. It is the same case for modular squaring (mod-sqr). Thus, we
have

mod-mul-1024 = 920×mod-mul-40, and

mod-sqr-1024 = 920×mod-sqr-40.

The basic method to perform modular exponentiation (mod-exp) is called
“square-and-multiply” method. Take an n-bit modular exponentiation as an
example, the computation costs for the modular exponentiation roughly need
n times modular squaring and n/2 times modular multiplication operations. In
this case, the computation costs of modular exponentiation are

mod-exp-1024 = 1024×mod-sqr-1024 + 512×mod-mul-1024

= (1024× 920× 0.8 + 512× 920)×mod-mul-40

= 1224704×mod-mul-40, and

mod-exp-40 = 40×mod-sqr-40 + 20×mod-mul-40

= 52×mod-mul-40.

(mod-sqr = 0.8×mod-mul)

So, one 1024-bit modular exponentiation is at least 20000 times more expensive
than one 40-bit modular exponentiation.

We can accelerate the 1024-bit modular exponentiation using hardware accel-
eration technologies: The implementation of modular multiplication for a 1024-
bit operand can be accelerated to 3μs with a hardware accelerator [20]. Together
with micro controllers running at a frequency of 8MHz, a 1024-bit modular mul-
tiplication only requires 3μs × 8M = 24 clock cycles. This can also meet the

540 Y. Zhang et al.

practical requirement3. But in wireless mesh networks, mesh clients consist of
various devices, including laptap/desktop PC, pocket PC, PDA, IP phone, RFID
reader, BACnet (building automation and control networks) controller and tiny
wireless sensor nodes. Assuming each device with hardware acceleration would
be too strong to hold in certain situations. It is obvious that an efficient proto-
col without the need of hardware acceleration, such as the one proposed in this
paper, can better suit the nature of wireless mesh networks.

6 Conclusion

As a fundamental security technology, key establishment has been widely stud-
ied in wireless mesh networks. Many key establishment schemes are proposed,
and they are implemented at the physical layer or higher layers. However, due to
the characteristics of these layers, there are some inherent disadvantages in those
schemes. This paper presents a cross-layer key establishment scheme, with which
the communication key is determined by two partial keys: one extracted at the
physical layer and the other generated at higher layers. The analysis shows that
the proposed cross-layer key establishment scheme not only eliminates the short-
comings of key establishment at each layer but also provides a flexible solution
to the key generation rate problem.

Acknowledgement. The authors would like to thank anonymous reviewers for
their helpful comments, and Dr. Zhe Liu (from the University of Luxembourg)
for his generous sharing of simulation data.

Xinyi Huang is supported by Distinguished Young Scholars Fund of Depart-
ment of Education, Fujian Province, China (JA13062), Fok Ying Tung Education
Foundation (Grant NO. 141065), National Natural Science Foundation of China
(Grant NO. 61202450), Ph.D. Programs Foundation of Ministry of Education of
China (Grant NO. 20123503120001) and Fujian Normal University Innovative
Research Team (NO. IRTL1207).

References

1. Akyildiz, I.F., Wang, X., Wang, W.: Wireless mesh networks: A survey. Computer
Networks 47(4), 445–487 (2005)

2. Goldsmith, A.: Wireless communications. Cambridge University Press (2005)

3. Oliveira, P.F., Barros, J.: A network coding approach to secret key distribution.
IEEE Transactions on Information Forensics and Security 3(3), 414–423 (2008)

4. Vernam, G.: Cipher printing telegraph systems: For secret wire and radio tele-
graphic communications. Journal of the A.I.E.E. 45(2), 109–115 (1926)

3 To be more precise, a 1024-bit modular multiplication with hardware acceleration
is roughly 10 times more efficient than a 40-bit modular multiplication without
hardware acceleration.

A Cross-Layer Key Establishment Scheme in Wireless Mesh Networks 541

5. Liu, J., Sangi, A.R., Du, R., Wu, Q.: Light weight network coding based key
distribution scheme for MANETs. In: Lopez, J., Huang, X., Sandhu, R. (eds.)
NSS 2013. LNCS, vol. 7873, pp. 521–534. Springer, Heidelberg (2013)

6. Maurer, U.M.: Information-theoretically secure secret-key agreement by not au-
thenticated public discussion. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 209–225. Springer, Heidelberg (1997)

7. Maurer, U.M., Wolf, S.: Secret-key agreement over unauthenticated public chan-
nels I: Definitions and a completeness result. IEEE Transactions on Information
Theory 49(4), 822–831 (2003)

8. Mathur, S., Trappe, W., Mandayam, N.B., Ye, C., Reznik, A.: Radio-telepathy:
Extracting a secret key from an unauthenticated wireless channel. In: MOBICOM,
pp. 128–139. ACM (2008)

9. Jana, S., Premnath, S.N., Clark, M., Kasera, S.K., Patwari, N., Krishnamurthy,
S.V.: On the effectiveness of secret key extraction from wireless signal strength in
real environments. In: MOBICOM, pp. 321–332. ACM (2009)

10. Zan, B., Gruteser, M., Hu, F.: Key agreement algorithms for vehicular communi-
cation networks based on reciprocity and diversity theorems. IEEE Transactions
on Vehicular Technology 62(8), 4020–4027 (2013)

11. Premnath, S.N., Jana, S., Croft, J., Gowda, P.L., Clark, M., Kasera, S.K., Patwari,
N., Krishnamurthy, S.V.: Secret key extraction from wireless signal strength in real
environments. IEEE Transaction on Mobile Computing 12(5), 917–930 (2013)

12. Zeng, K., Wu, D., Chan, A.J., Mohapatra, P.: Exploiting multiple-antenna diversity
for shared secret key generation in wireless networks. In: INFOCOM, pp. 1837–
1845. IEEE (2010)

13. Wang, Q., Su, H., Ren, K., Kim, K.: Fast and scalable secret key generation exploit-
ing channel phase randomness in wireless networks. In: INFOCOM, pp. 1422–1430.
IEEE (2011)

14. Wang, Q., Xu, K., Ren, K.: Cooperative secret key generation from phase estima-
tion in narrowband fading channels. IEEE Journal on Selected Areas in Commu-
nications 30(9), 1666–1674 (2012)

15. Hao, Z., Zhong, S., Yu, N.: A multihop key agreement scheme for wireless ad
hoc networks based on channel characteristics. The Scientific World Journal 2013
(2013)

16. Liu, H., Yang, J., Wang, Y., Chen, Y.: Collaborative secret key extraction lever-
aging received signal strength in mobile wireless networks. In: INFOCOM, pp.
927–935. IEEE (2012)

17. Liu, H., Wang, Y., Yang, J., Chen, Y.: Fast and practical secret key extraction by
exploiting channel response. In: INFOCOM, pp. 3048–3056. IEEE (2013)

18. Rife, D.C., Boorstyn, R.: Single tone parameter estimation from discrete-time ob-
servations. IEEE Transactions on Information Theory 20(5), 591–598 (1974)

19. Liu, Z., Großschädl, J., Wong, D.S.: Low-weight primes for lightweight elliptic
curve cryptography on 8-bit AVR processors. In: INSCRYPT 2013. LNCS. Springer
(2013)

20. Lin, W.C., Ye, J.H., Shieh, M.D.: Scalable montgomery modular multiplication ar-
chitecture with low-latency and low-memory bandwidth requirement. IEEE Trans-
actions on Computers 63(2), 475–483 (2014)

Author Index

Ahmed, Naveed I-488
Albanese, Massimiliano II-494
Amariucai, George T. I-292
Ambrosin, Moreno I-76
Au, Man Ho II-73, II-182
Aumasson, Jean-Philippe II-19
Aviv, Adam J. II-365
Azraoui, Monir I-239

Bai, Kun I-310
Balu, Raghavendran II-146
Berthomé, Pascal II-200
Bertino, Elisa I-400, II-257
Bilogrevic, Igor II-128
Biskup, Joachim II-165
Bonatti, Piero A. II-165
Bulling, Andreas I-56
Busold, Christoph I-76

Caballero, Juan II-237
Camenisch, Jan II-109
Cao, Zhenfu II-55
Capkun, Srdjan I-488
Chari, Suresh N. II-383
Chen, Liqun I-380
Chen, Xiaofeng I-148
Chothia, Tom II-219
Chow, Sherman S.M. I-326
Christin, Nicolas I-19
Conti, Mauro I-76, I-183
Cortier, Véronique II-327

Decker, Christian II-313
De Cristofaro, Emiliano II-128
Deng, Hua I-362
Deng, Robert H. I-273, I-419
Dong, Changyu I-380
Dong, Xiaolei II-55

Elkhiyaoui, Kaoutar I-239

Federrath, Hannes I-37
Freudiger, Julien II-128
Fritz, Mario I-56

Fuchs, Karl-Peter I-37
Furon, Teddy II-146

Galdi, Clemente II-165
Galindo, David II-327
Gambs, Sébastien II-146
Gates, Christopher II-383
Glondu, Stéphane II-327
Gu, Guofei I-163, II-401
Gu, Yufei II-237
Guan, Yong I-292

Han, Jinguang II-73
Hao, Feng II-257
Herrmann, Dominik I-37
Heydemann, Karine II-200
Horne, William I-1
Huang, Xinyi I-526, II-182

Izabachène, Malika II-327

Jajodia, Sushil I-202, II-494
Jiang, Wei I-400
Jing, Jiwu I-202, II-475
Jovanovic, Philipp II-19

Kate, Aniket II-345
Kawamoto, Yusuke II-219
Kiefer, Franziskus II-295
Koehl, Aaron II-419
Koo, Woo Kwon II-1

Lai, Junzuo I-273, I-419
Lalande, Jean-François II-200
Leach, Kevin I-219
Lee, Dong Hoon II-1
Lee, Kwangsu II-1
Lehmann, Anja II-109
Leontiadis, Nektarios I-19
Li, Jin I-148
Li, Min I-310
Li, Ninghui II-383
Li, Yingjiu I-419
Liang, Kaitai I-257
Ligatti, Jay I-508

544 Author Index

Lin, Xiaodong II-55
Lin, Zhiqiang II-237
Lindemann, Jens I-37
Liu, Daiping II-419
Liu, Jianwei II-91
Liu, Joseph K. I-130, I-257, II-182
Liu, Peng I-310, II-475
Liu, Weiran II-91
Liu, Xiao I-362
Liu, Yao I-508
Liu, Zhen I-326
Lou, Wenjing I-148

Ma, Jianfeng I-148
Mace, John C. I-344
Manadhata, Pratyusa K. I-1
Manulis, Mark II-295
Mao, Jian I-362
Marson, Giorgia Azzurra II-37
Min, Byungho II-457
Molloy, Ian II-383
Molva, Refik I-239
Mónica, Diogo I-94
Moreno-Sanchez, Pedro II-345
Morisset, Charles I-344
Mu, Yi II-73

Nagaraja, Shishir II-439
Neven, Gregory II-109
Neves, Samuel II-19
Nicol, Tony I-454
Ning, Jianting II-55
Novakovic, Chris II-219

Önen, Melek I-239

Pang, Hweehwa I-273
Park, Jong Hwan II-1
Park, Youngja II-383
Peris-Lopez, Pedro I-183
Poettering, Bertram I-436, II-37
Pöpper, Christina I-488
Porras, Phillip I-163

Qin, Bo I-326, I-362, II-91

Rao, Prasad I-1
Rial, Alfredo II-109
Ribeiro, Carlos I-94
Ruffing, Tim II-345

Sadeghi, Ahmad-Reza I-76
Safavi-Naini, Reihaneh I-112
Samanthula, Bharath Kumar I-400
Sauro, Luigi II-165
Schröder, Dominique I-56
Schunter, Matthias I-76
Schwenk, Jörg II-277
Shetty, Sachin II-475
Shi, Jie I-419
Shi, Wenchang I-362
Simkin, Mark I-56
Singhal, Anoop II-494
Sonchack, John II-365
Stavrou, Angelos I-219, II-419
Stebila, Douglas I-436
Suarez-Tangil, Guillermo I-183
Sun, He I-202
Sun, Kun I-202
Susilo, Willy I-257, I-472, II-73, II-182

Tan, Xiao I-326
Tapiador, Juan E. I-183

Urbina, David II-237
Uzun, Ersin II-128

van Moorsel, Aad I-344
Varadharajan, Vijay II-457
Viet Xuan Phuong, Tran I-472

Wang, Haining I-219, II-419
Wang, Haopei II-401
Wang, Lingyu II-494
Wang, Tao I-508
Wang, Yong II-401
Wang, Yongge I-454
Wang, Yuewu I-202
Wang, Yujue I-326
Wattenhofer, Roger II-313
Wei, Lifei II-55
Weng, Jian I-148, I-273, I-419
Wong, Duncan S. I-257, I-326
Wu, Qianhong I-326, I-362, II-91

Xiang, Yang I-526
Xu, Gang I-292
Xu, Haitao II-419
Xu, Lei II-401
Xu, Li I-526

Author Index 545

Xu, Zenglin II-383
Xu, Zhaoyan I-163, II-401

Yadav, Sandeep I-1
Yang, Chao I-163
Yang, Guomin I-472
Yegneswaran, Vinod I-163
Yi, Xun II-257
Yiu, Siu Ming I-130
Yu, Meng I-310
Yu, Yong II-182
Yuen, Tsz Hon I-130

Zang, Wanyu I-310
Zha, Zili I-310
Zhang, Fengwei I-219
Zhang, Jialong II-401
Zhang, Lei I-362
Zhang, Liang Feng I-112
Zhang, Lingchen II-475
Zhang, Mengyuan II-494
Zhang, Ye I-130
Zhang, Yuexin I-526
Zhou, Jianying II-73, II-182
Zhou, Yunya II-91

	Preface
	Organization
	Table of Contents – Part I
	Detecting Malicious Domainsvia Graph Inference
	1 Introduction
	1.1 Malicious Domain Detection
	1.2 Contributions and Roadmap

	2 A Graph Inference Approach
	2.1 Belief Propagation

	3 HTTP Proxy Data Analysis
	3.1 Data Set and Graph Generation
	3.2 BP Parameters
	3.3 Experimental Setup
	3.4 Result Computation

	4 Results and Discussion
	4.1 K-Fold Cross Validation
	4.2 Parameter Sensitivity Analysis
	4.3 Malicious Domain Detection
	4.4 More Event Logs
	4.5 Detection Details
	4.6 Near Real Time Detection
	4.7 Seven Months’ Data

	5 Related Work
	6 Summary and Future Work
	References

	Empirically Measuring WHOIS Misuse
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Constructing a Microcosm Sample
	3.2 Pilot Registrant Survey
	3.3 Experimental Measurements

	4 Experimental Domain Registrations
	4.1 Registrar Selection
	4.2 Experimental Domain Name Categories
	4.3 Registrant Identities

	5 Breaking Down the Measured Misuse
	5.1 Postal Address Misuse
	5.2 Phone Number Misuse
	5.3 Email Address Misuse
	5.4 Overall Misuse per gTLD

	6 WHOIS Anti-Harvesting
	7 Misuse Estimators
	7.1 Estimators of Email Misuse
	7.2 Estimators of Phone Number Misuse

	8 Limitations
	9 Conclusion
	References

	EncDNS: A Lightweight Privacy-PreservingName Resolution Service
	1 Introduction
	2 Fundamentals, Related Work and Requirements
	2.1 Domain Name System
	2.2 Related Work
	2.3 Requirements

	3 The EncDNS Design
	3.1 Encapsulation
	3.2 Cryptography
	3.3 Open Source Prototype and Test Installation

	4 Security Analysis
	4.1 Query Privacy and Attacker Model
	4.2 Message Integrity
	4.3 Availability

	5 Performance Evaluation
	5.1 Experiment 1: Scalability Assessment
	5.2 Experiment 2: User-Perceived Latency

	6 Compatibility Assessment
	7 Discussion and Future Work
	8 Conclusion
	References

	Ubic: Bridging the Gap between DigitalCryptography and the Physical World
	1 Introduction
	1.1 Contributions
	1.2 Smartphones vs. Head-Mounted Displays

	2 The Ubic Framework
	3 Authentication
	3.1 Threat Model
	3.2 Our Scheme

	4 Content Verification
	4.1 Threat Model
	4.2 Our Scheme
	4.3 Two-Step Verification

	5 Content Hiding
	5.1 Threat Model
	5.2 Our Scheme
	5.3 Extending Content Hiding to Support Fine-Grained Access Control

	6 The VeriDoc Interface
	7 Prototype Implementation
	8 Related Work
	9 Conclusion
	References

	Updaticator: Updating Billions of Devicesby an Efficient, Scalable and SecureSoftware Update Distributionover Untrusted Cache-enabled Networks
	1 Introduction
	2 System Model and Requirements
	2.1 System Model
	2.2 Security Requirements
	2.3 Adversary Model

	3 Background
	3.1 Attribute-Based Encryption
	3.2 Named-Data Networking

	4 Updaticator: Our Scalable Update Protocol with End-to-End Security
	4.1 Update Publication Phase
	4.2 Update Selection Phase
	4.3 Update Retrieval Phase

	5 Security Analysis
	6 Prototype and Evaluation
	6.1 Evaluation Setup
	6.2 Network Load on the Update Server
	6.3 Time Required to Retrieve an Update
	6.4 Power Consumption of the Client Devices

	7 Related Work
	8 Conclusions and Future Work
	References

	Local Password Validation Using Self-Organizing Maps
	1 Introduction
	2 Our Approach
	2.1 Compression
	2.2 Generalisation
	2.3 Hashing
	2.4 Classification

	3 Performance
	3.1 Compression Rate and Statistical Performance
	3.2 Generalisation Capability and Consistency
	3.3 Classification Speed

	4 Proof of Concept Implementation
	5 Conclusions and Future Work
	References

	Verifiable Delegation of Computationswith Storage-Verification Trade-off
	1 Introduction
	1.1 Our Work
	1.2 Background and Our Technique
	1.3 Verifiable Delegation of Polynomials
	1.4 Verifiable Delegation of Matrices
	1.5 Performance Analysis and Extensions
	1.6 Related Work

	2 Preliminaries
	2.1 Verifiable Computation
	2.2 A Technical Lemma
	2.3 Cryptographic Assumptions
	2.4 PRFs with Closed-Form Efficiency

	3 Our Schemes
	3.1 Verifiable Delegation of Polynomials
	3.2 Verifiable Delegation of Matrices
	3.3 Performance Analysis and Extensions

	4 Conclusions
	References

	Identity-Based Encryption with Post-ChallengeAuxiliary Inputs for Secure Cloud Applicationsand Sensor Networks
	1 Introduction
	1.1 Practical Threats of Using IBE for Access Control
	1.2 Motivation for Post-Challenge Auxiliary Inputs
	1.3 Our Contributions

	2 Security Model of Post-Challenge Auxiliary Inputs
	3 Strong Extractor with Hard-to-Invert Auxiliary Inputs
	4 CPA Secure PKE Construction against Post-Challenge Auxiliary Inputs
	4.1 Construction of pAI-CPA Secure PKE

	5 CCA Public Key Encryption from CPA Identity-Based Encryption
	5.1 Intuition
	5.2 Post-Challenge Auxiliary Inputs CCA Secure PKE

	References

	Verifiable Computation over Large Databasewith Incremental Updates
	1 Introduction
	1.1 Our Contribution
	1.2 Organization

	2 Preliminaries
	2.1 Bilinear Pairings
	2.2 Verifiable Database

	3 Verifiable Database with Incremental Updates
	3.1 Formal Definition
	3.2 Security Requirements

	4 Inc-VDB Framework from Vector Commitment
	4.1 High Description
	4.2 A Concrete Inc-VDB Scheme

	5 Analysis of Our Proposed Inc-VDB Scheme
	5.1 Security Analysis
	5.2 Efficiency Analysis

	6 Conclusion
	References

	DroidMiner: Automated Mining and Characterization of Fine-grained Malicious Behaviors in Android Applications
	1 Introduction
	2 Motivation and System Goals
	2.1 Motivations
	2.2 Goals and Assumptions

	3 System Design
	3.1 Behavior Graph and Modalities
	3.2 Mining Modalities
	3.3 Identification of Modalities
	3.4 Modality Use Cases

	4 Evaluation
	4.1 Prototype Implementation
	4.2 Data Collection
	4.3 Evaluation Result

	5 Related Work
	5.1 Mobile Malware Detection
	5.2 Android Platform Security Defense and Analysis

	6 Discussion
	7 Conclusion
	References

	Detecting Targeted Smartphone Malwarewith Behavior-Triggering Stochastic Models
	1 Introduction
	2 Behavioral Models
	2.1 Triggering Patterns
	2.2 Stochastic Triggering Model
	2.3 App Behavior and Risk Assessment

	3 Targeted Testing in the Cloud
	3.1 Architecture and Prototype Implementation
	3.2 Experiment I: The Structure of a Triggering Model
	3.3 Experiment II: Speed of Testing
	3.4 Experiment III: Coverage and Efficiency

	4 Case Studies
	4.1 Case 1: Dormant Malware/Grayware
	4.2 Case 2: Anti-analysis Malware

	5 Conclusions
	References

	TrustDump: Reliable Memory Acquisition on Smartphones
	1 Introduction
	2 Background
	2.1 TrustZone Overview
	2.2 TrustZone Aware Interrupt Controller (TZIC)
	2.3 General Purpose Input/Output (GPIO)

	3 Threat Model and Assumptions
	4 TrustDump Framework
	4.1 TrustDumper Deployment
	4.2 Reliable Switching
	4.3 Data Acquisition and Transmission
	4.4 System Security

	5 Implementation
	5.1 Deployment of TrustDump
	5.2 Reliable Switching
	5.3 TrustDumper

	6 Performance Evaluation
	6.1 NMI Switching Time
	6.2 Memory Dumping Time
	6.3 Analysis Performance

	7 Related Work
	8 Conclusions
	References

	A Framework to Secure Peripherals at Runtime
	1 Introduction
	2 Background
	2.1 Computer Hardware Architecture
	2.2 Firmware Rootkits
	2.3 System Management Mode and Coreboot

	3 Threat Model and Assumptions
	3.1 Threat Model
	3.2 Assumptions

	4 System Framework
	4.1 Triggering an SMI
	4.2 Checking I/O Configurations and Firmware
	4.3 Reporting an Alert and Exiting SMM

	5 System Implementation
	5.1 Triggering an SMI
	5.2 Checking I/O Configurations and Firmware
	5.3 Reporting an Alert and Exiting SMM

	6 Evaluation and Experimental Results
	6.1 Code Size
	6.2 Attack Detection
	6.3 Breakdown of SMI Handler Runtime
	6.4 System Overhead
	6.5 Comparison with the DRTM Approach

	7 Limitations and Discussions
	8 Related Work
	9 Conclusions
	References
	Appendix

	StealthGuard: Proofs of Retrievability with Hidden Watchdogs
	1 Introduction
	2 Background
	2.1 Entities
	2.2 POR

	3 Adversary Models
	3.1 Completeness
	3.2 Soundness

	4 Overview
	4.1 Idea
	4.2 StealthGuard Phases

	5 StealthGuard
	5.1 Setup
	5.2 WDSearch
	5.3 Verification
	5.4 Dynamic StealthGuard

	6 Security Analysis
	6.1 Completeness
	6.2 Soundness

	7 Discussion
	8 Related Work
	9 Conclusion
	References

	An Efficient Cloud-Based RevocableIdentity-Based Proxy Re-encryption Schemefor Public Clouds Data Sharing
	1 Introduction
	1.1 Motivation
	1.2 A Naive Solution
	1.3 Our Contributions
	1.4 System Architecture
	1.5 Related Work

	2 Definitions
	2.1 Definition of CR-IB-PRE
	2.2 Revocation Procedure

	3 A New CPA-Secure CR-IB-PRE
	3.1 A Basic Construction
	3.2 Security Analysis

	4 Performance Improvement
	4.1 Reduce the Complexity of Key Update
	4.2 Reduce Size of Re-encrypted Ciphertext and Decryption Complexity

	5 Comparison
	References

	Verifiable Computation on OutsourcedEncrypted Data
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Bilinear Groups

	4 Homomorphic Encrypted Authenticator
	4.1 Security Model for Homomorphic Encrypted Authenticator
	4.2 Proposed HEA Constructions

	5 Verifiable Homomorphic Encryption
	5.1 Generic Construction of VHE from HE and HEA

	6 Conclusion
	References

	Verifiable Computation with ReducedInformational Costs and Computational Costs
	1 Introduction
	1.1 Motivation
	1.2 Our Contributions

	2 System Model
	3 Preliminaries
	3.1 PCP and Commitments
	3.2 Quadratic Programs and Zaatar

	4 A Technique: A Commitment Providing Inherent Linearity Tests
	5 A Reduced-Investment Verifiable Computation Protocol: RIVER
	5.1 PCP Querying
	5.2 PCP Querying of RIVER
	5.3 Commit, Decommit and Consistency Verification of RIVER

	6 Performance Analysis
	6.1 The Verifier
	6.2 The Prover

	7 Conclusions
	References

	Detangling Resource Management Functions from the TCB in Privacy-Preserving Virtualization
	1 Introduction
	2 Related Work
	3 MyCloud SEP Architecture
	3.1 Threat Model and Assumptions
	3.2 Virtualization Architecture

	4 Implementation
	4.1 General Resource Management
	4.2 Access Authorization Based on ACM
	4.3 Case Study: Disk Management
	4.4 Hypervisor Processing of Disk I/Os
	4.5 Memory Isolation

	5 Evaluation
	5.1 Disk Operation Performance

	6 Discussion
	6.1 External Attacks
	6.2 Insider Attacks
	6.3 More about the Disk Management

	7 Conclusion
	References

	Securely Outsourcing Exponentiations withSingle Untrusted Program for Cloud Storage
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Definitions and Security Requirements
	3 Secure Modular Exponentiation Outsourcing
	3.1 Preprocessing
	3.2 Generic Algorithm for Outsourcing Exponentiations
	3.3 Security Analysis
	3.4 Comparisons

	4 Securely Offloading PDP
	4.1 Securely Offloading Shacham-Waters PDP
	4.2 Securely Offloading a Variant of Yuan-Yu PDP
	4.3 Efficiency Analysis

	5 Concluding Remark
	References

	Quantitative Workflow Resiliency
	1 Introduction
	2 Related Work
	3 The Workflow Satisfiability Problem
	3.1 Workflow
	3.2 Workflow Assignment
	3.3 Contextual Assignment
	3.4 Markov Decision Process
	3.5 Implementation of the Optimal Policy

	4 Quantitative Analyses
	4.1 Quantitative Satisfaction
	4.2 Quantitative Resiliency
	4.3 Expected Distance

	5 Assessment
	6 Conclusion
	References

	Who Is Touching My Cloud
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Paper Organization

	2 System Model and Security
	2.1 System Architecture
	2.2 Security Model

	3 Our Solution
	3.1 Preliminaries
	3.2 The LACT Scheme

	4 Security Analysis
	5 Performance Analysis
	6 Conclusion
	References

	A Fast Single Server Private Information Retrieval Protocol with Low Communication Cost
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notation
	3.2 Security Definition for Single Server PIR
	3.3 The BGV Fully Homomorphic Encryption

	4 The Single Server PIR Protocol
	4.1 Some Intuitions
	4.2 Folding and Unfolding
	4.3 The PIR Protocol
	4.4 Efficiency Analysis
	4.5 Security Analysis

	5 Implementation and Performance
	5.1 Implementation
	5.2 Performance
	5.3 Performance Comparison

	6 Conclusion
	References

	Privacy-Preserving Complex Query Evaluation over Semantically Secure Encrypted Data
	1 Introduction
	1.1 Problem Statement
	1.2 Main Contributions

	2 Related Work
	2.1 Query Processing over Encrypted Data
	2.2 Existing PPQED Methods

	3 Background
	3.1 Adversarial Model
	3.2 Paillier Cryptosystem

	4 The Proposed Framework
	4.1 Basic Security Primitives
	4.2 Secure Evaluation of Individual Predicates (SEIP)
	4.3 The Proposed PPQED Protocol
	4.4 Security Analysis of PPQED
	4.5 Complexity Analysis of PPQED

	5 Conclusion and Future Work
	References

	Authorized Keyword Search on Encrypted Data
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	2.1 Access Structures
	2.2 Linear Secret Sharing Schemes
	2.3 Composite Order Bilinear Groups

	3 Authorized Searchable Public Key Encryption
	3.1 Authorized Searchable Public Key Encryption
	3.2 Security Model for AS-PKE
	3.3 Constructions
	3.4 Security
	3.5 Efficiency
	3.6 Discussion

	4 Conclusion
	References

	Double-Authentication-Preventing Signatures
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Definitions
	3 2:1 Trapdoor Functions and Extractability
	3.1 Definition
	3.2 Security Notions

	4 Constructing Extractable 2:1 Trapdoor Functions
	4.1 Sign-Agnostic Quadratic Residues
	4.2 Constructing a 2:1-TDF from Sign-Agnostic Quadratic Residues

	5 DAPS Construction Based on Extractable 2:1-TDF
	5.1 Security of Our Construction
	5.2 Efficiency of Our Construction

	6 Applications
	7 Conclusions
	References

	Statistical Properties of Pseudo Random Sequences and Experiments with PHP and Debian OpenSSL
	1 Introduction
	2 Notations and Pseudorandom Generators
	3 Limitations of NIST SP800-22
	4 Stochastic Properties of Long Pseudorandom Sequences
	5 Normal Approximations to Slil
	6 Snapshot LIL Tests and Random Generator Evaluation
	7 Experimental Results
	7.1 The Standard C Linear Congruential Generator
	7.2 Mersenne Twister Generators
	7.3 PHPWeb Server Random Bit Generators
	7.4 Flawed Debian’s OpenSSL package
	7.5 Summary of Experiments

	8 General Discussion on OpenSSL Random Generators
	8.1 OpenSSL Entropy Collection
	8.2 Potential Bugs in OpenSSL Entropy Collection
	8.3 Seeding the RNG
	8.4 OpenSSL Documentation Error

	9 Conclusion
	References

	Efficient Hidden Vector Encryptionwith Constant-Size Ciphertext
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Map on Prime Order Groups
	2.2 Bilinear Map on Composite Order Groups
	2.3 The Vi`ete’s Formulas

	3 Ciphertext-Policy Hidden Vector Encryption
	4 CP-HVE Scheme 1
	5 CP-HVE Scheme 2
	6 Security Proof of CCP-HVE2 Scheme
	7 Performance Comparison
	8 Conclusion
	References

	Enabling Short Fragments for Uncoordinated Spread Spectrum Communication
	1 Introduction
	2 Problem Statement
	3 Solution Overview
	4 Collision Detection Protocol
	4.1 Sender Side: Message Transmission
	4.2 Receiver Side: Reception of Fragments
	4.3 Receiver Side: Decoding Algorithm

	5 Security Analysis
	5.1 Definitions

	6 Performance Evaluation
	7 Related Work
	8 Conclusion
	References

	Fingerprinting Far Proximity from Radio Emissions
	1 Introduction
	2 System and Threat Models
	3 Far Proximity Verification
	3.1 Proximity Fingerprints
	3.2 Far Proximity Identification Using Proximity Fingerprints
	3.3 System Design
	3.4 Dealing with Jam-and-Replay Attacks

	4 Experimental Evaluation
	4.1 Experiment Setup
	4.2 Experiment Results

	5 Related Work
	6 Conclusion
	References

	A Cross-Layer Key Establishment Schemein Wireless Mesh Networks
	1 Introduction
	2 Related Work
	2.1 Establish Keys Using XOR Coding
	2.2 Extract Keys Using the Wireless Fading Channel

	3 Preliminaries
	3.1 Extract Secret Bits from the Wireless Fading Channel
	3.2 Assumptions
	3.3 Adversary Model

	4 A Cross-Layer Key Establishment Scheme in WMNs
	4.1 Overview
	4.2 A Cross-Layer Key Establishment Scheme

	5 Security and Performance Analysis
	5.1 Security Analysis
	5.2 Performance Analysis

	6 Conclusion
	References

	Author Index

