
Utilizing Multiple Xeon Phi Coprocessors

on One Compute Node

Xinnan Dong1, Jun Chai1, Jing Yang1, Mei Wen1, Nan Wu1, Xing Cai2,3,
Chunyuan Zhang1, and Zhaoyun Chen1

1 School of Computer Science, National University of Defense Technology
Changsha, Hunan 410073, China

xinnandong@126.com,

{chaijun200306,estella,meiwen,nanwu,cyzhang,chenzhaoyun}@nudt.edu.cn
2 Simula Research Laboratory

P.O. Box 134, 1325 Lyakser, Norway
xingca@simula.no

3 Department of Informatics, University of Oslo.
P.O. Box 1080 Blindern, 0316 Oslo, Norway

Abstract. Future exascale systems are expected to adopt compute
nodes that incorporate many accelerators. This paper thus investigates
the topic of programming multiple Xeon Phi coprocessors that lie inside
one compute node. Besides a standard MPI-OpenMP programming ap-
proach, which belongs to the symmetric usage mode, two offload-mode
programming approaches are considered. The first offload approach is
conventional and uses compiler pragmas, whereas the second one is new
and combines Intel’s APIs of coprocessor offload infrastructure (COI) and
symmetric communication interface (SCIF) for low-latency communica-
tion. While the pragma-based approach allows simpler programming, the
COI-SCIF approach has three advantages in (1) lower overhead associ-
ated with launching offloaded code, (2) higher data transfer bandwidths,
and (3) more advanced asynchrony between computation and data move-
ment. The low-level COI-SCIF approach is also shown to have benefits
over the MPI-OpenMP counterpart. All the programming approaches
are tested by a real-world 3D application, for which the COI-SCIF ap-
proach shows a performance upper hand on a Tianhe-2 compute node
with three Xeon Phi coprocessors.

1 Introduction

For the field of high-performance computing, energy efficiency considerations
have prompted modern supercomputers to adopt accelerators, such as general-
purpose GPUs and many-integrated-core (MIC) coprocessors. A good example
is Tianhe-2, which is currently ranked No. 1 on the TOP500 List [1]. Three In-
tel Xeon Phi coprocessors can be found in each of Tianhe-2’s 16,000 compute
nodes [2]. However, with this unconventional multi-coprocessor-per-node setup
come challenges of programming. Apart from ensuring the performance of each

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 68–81, 2014.
© Springer International Publishing Switzerland 2014



Utilizing Multiple Xeon Phi Coprocessors on One Compute Node 69

coprocessor, there arises a new challenge of joining the force of several coproces-
sors within one compute node. The most important issue in the latter subject
concerns implementing data transfers between the coprocessors, to achieve high
performance with acceptable coding difficulty.

The Xeon Phi coprocessors from Intel adopt the MIC architecture and support
a modified x86 instruction set, thereby providing the programmability of a full-
fledged multicore CPU [3–5]. A coprocessor-enhanced compute node has always a
CPU host consisting of one or more multicore CPU sockets that share a memory
address space. There can be one or more coprocessor cards, each connected to
the host as a device via a PCIe bus. The cores on each coprocessor have access
to a shared device memory space that is disjoint from both the host and the
other coprocessors.

For a multi-coprocessor compute node, two usage modes can be adopted: of-
fload and symmetric [6]. In the offload mode, the code is first started on the
CPU host, whereas compute-intensive blocks of the code are offloaded to the
coprocessors. In the symmetric mode, the coprocessors are considered as in-
dependent nodes of a mini-supercomputer. For example, MPI can be used to
start the code simultaneously on the coprocessors, and possibly also the CPU
host. This MPI approach in the symmetric mode is simple and has the best
code portability. However, one major disadvantage with a pure MPI approach
is the excessive overhead in memory footprint due to the large number of MPI
processes. A remedy is to use one MPI process per coprocessor while adopting
OpenMP threads for intra-coprocessor parallelism.

Due to the possible shortcoming of the MPI-based symmetric usage mode, we
also want to consider the offload usage mode. The usual approach is to insert an
offload pragma in front of each code block that is to be offloaded. The resulting
coprocessor-coprocessor data transfers are actually relayed through the host. In
this paper, we present a new offload programming approach, which allows each
coprocessor to run an independent sub-program, while bi-directional and asyn-
chronous coprocessor-coprocessor data transfers are directly enabled by Intel’s
low-level APIs of coprocessor offload infrastructure (COI) [20] and symmetric
communication interface (SCIF) [21]. The choice of this offload programming
approach is motived by performance. We believe this paper is a first effort in
studying how to efficiently program multiple Xeon Phi coprocessors within one
compute node, by comparing the two offload programming approaches against
the MPI-OpenMP counterpart.

The remainder of the paper is organized as follows. Some background infor-
mation is presented in Section 2, and the related work is surveyed in Section 3.
Section 4 explains the two offload programming approaches, using a simple exam-
ple of 3D stencil computation. Section 5 quantifies the performance advantages
of the low-level COI-SCIF approach, in terms of both bandwidth measurements
and time usages of a real-world 3D application. All the experiments have been
done on a compute node of Tianhe-2, with three Xeon Phi coprocessors.



70 X. Dong et al.

2 Background

2.1 Xeon Phi Coprocessor

Intel’s Xeon Phi coprocessor has up to 61 x86-based Intel CPU cores on a single
chip. Each core supports 512-bit SIMD vector computing, and has 32 KB private
L1 data cache and 512 KB shared L2 cache. Four hardware threads can be
enabled on each core to give up to 244 threads per chip. Each coprocessor has
its own device memory and is connected to the CPU host via PCIe bus.

2.2 Pragma-Based Offloading

In this pragma-based programming approach [18], the CPU host controls the
entire execution of a code. Blocks of the code can be delegated to the coprocessors
for execution. Since memory is not shared between the host and any of the
coprocessors, variables and arrays needed in the offloaded code block also have
to be allocated on the target coprocessors. The content of the coprocessor data
can be transferred back to the host if desired. Below is an example of the directive
that combines code offload with host-coprocessor data transfers.

#pragma offload target(mic:id) \

in(input_msg: length(N)) out(output_msg: length(N))

Here, id is an integer specifying the target coprocessor. The content of array
input msg (of length N), which is marked by the in specifier, is copied from
the host at the start of offload. Similarly, the content of array output msg is
copied back to the host at the end of offload. A third possible data specifier
is inout, which marks a variable or array as both input and output. A fourth
possible data specifier is nocopy, which only marks variables that will be used on
the target coprocessor, but without any host-coprocessor data movements (by
assuming that these variables persist on the coprocessor). For a code block that
is offloaded iteratively, to save the cost of repeatedly allocating/deallocating the
same data storage, the modifiers alloc if(arg) and free if(arg) can be used.

To initiate asynchronous host-coprocessor data transfers, such that compu-
tations have the possibility of being simultaneously carried out, the signal

clause can used together with the offload pragma or another pragma named
offload transfer. The compiler directive only initiates an asynchronous data
transfer without offloading any computation to the target coprocessor. A match-
ing offload wait pragma should be used to complete the asynchronous data
transfer. An example is as follows:

#pragma offload_transfer target(mic:id) \

out(output_msg: length(N)) signal(output_msg)

...

#pragma offload_wait target(mic:id) wait(output_msg)

Although asynchronous data transfers are achievable with pragma-based pro-
gramming, one major disadvantage is that data transfers between two coproces-
sors always have to be relayed through the host. The second disadvantage is the
offload start-up cost, especially for a code block that is offloaded iteratively.



Utilizing Multiple Xeon Phi Coprocessors on One Compute Node 71

2.3 COI and SCIF

To realize direct coprocessor-coprocessor data transfers in connection with of-
fload programming, while also avoiding the overhead related to repeated offload
start-ups, we use two low-level APIs: COI and SCIF, provided by Intel’s MPSS
software stack [19]. They provide the programmer with a finer control of code
offloading and data transfers.

Two of COI’s key abstractions, namely COIEngine and COIProcess, are im-
portant for the following implementations. The first abstraction represents a
COI-capable device, e.g., the host or a coprocessor, whereas the second one en-
capsulates a process created by COI on a remote engine. These two abstractions
can be used together to offload computations to multiple coprocessors within
one compute node.

SCIF is a low-level API that provides a low-latency communication channel
between clients, which can be either the host or coprocessors. Efficiency of SCIF
is due to direct use of the PCIe bus for bi-directional data transfers between two
coprocessors (or between the host and a coprocessor). The following is a list of
abstractions used by SCIF:

– Node: It is a physical node in SCIF network. Both the host and an MIC card
can be seen as a node.

– Port: An SCIF port on a node is represented as a 16-bit integer, which is a
logical endpoint on the SCIF node similar to an IP port.

– Endpoint: The port for a connection is defined as an endpoint, which is
similar to a socket.

– Registered memory: This is a registered memory driven by SCIF, and is held
for the connected endpoints.

For small-amount data transfers (<4KB) between two SCIF clients, the
scif send and scif recv functions should be employed, which can also be used
for synchronizing the two clients. SCIF also provides remote direct memory ac-
cess (RDMA) semantics. More specifically, the scif register function exposes
local memory on a device for remote access by another device. Then, either
function scif readfrom or function scif writeto can be used to initiate asyn-
chronous and zero-copy data transfers (≥4KB) between two devices. Finally,
the scif fence signal function can ensure the completion of an asynchronous
RDMA-based data transfer.

2.4 Coprocessor-Only Usage Mode

Strictly speaking, the symmetric usage mode means that the CPU host is used
simultaneously with the coprocessors [6], i.e., a form of hybrid computing. We
will however loosen the definition of symmetric usage to also include the sce-
nario of only using the coprocessors. This is because if the CPU host is not
involved, an existing MPI code can be readily run on multiple coprocessors
without the worry of sophisticated load balancing. As mentioned in Section 1,



72 X. Dong et al.

OpenMP threads can be used to exploit the intra-coprocessor parallelism, giv-
ing rise to an MPI-OpenMP programming approach. This is for avoiding the
pure MPI approach’s excessive overhead in memory footprint, due to the large
number of MPI processes.

3 Related Work

Many researchers have focused on single-MIC programming. There are, how-
ever, not many publications on programming multiple MIC coprocessors or MIC
clusters. As introduced in Section 2, pragma-based offload mode (combined with
OpenMP) and MPI-based native/symmetric mode are two existing programming
approaches. For the default MPI version included in MPSS, there have been re-
ported bandwidth bottlenecks in intra-node and inter-node MPI communication
between a MIC and the host or between two MICs, see [15, 16].

Due to the Intel MPI bandwidth problem in MIC clusters, some researchers
proposed alternative MPI implementations for improving the communication
performance for the native/symmetric mode. DCFA-MPI [8] is an MPI library
implementation for direct inter-node InfiniBand communication between MIC
coprocessors. MPICH2-1.5 [9] is an MPI implementation that uses shared mem-
ory, TCP/IP, and SCIF-based communication for MIC clusters. The research
group of D. K. Panda at The Ohio State University has investigated the com-
munication within a node that consists of a CPU host and one MIC coproces-
sor [17]. They proposed MVAPICH-PRISM [16], an MPI implementation that
is a proxy-based communication framework using InfiniBand and SCIF for MIC
clusters. All the above MPI implementations targeted MIC clusters with only
one MIC coprocessor per node.

In addition, to solve the MPI bandwidth problem in its early version, Intel
MPI has also implemented a proxy-based design that allows hybrid utilization
of InfiniBand and SCIF, depending on the actual communication scenario [10].

Some researchers have studied the use of COI and SCIF APIs. COSMIC [11] is
a user-level middleware for automatically managing MIC coprocessor resources
by scheduling COI processes and their offloads, which can improve both perfor-
mance and reliability of multiprocessing on MIC coprocessors. Dokulila et al. [12]
created a library that supports hybrid execution in C++ applications using MIC
coprocessors, where SCIF is used for synchronization and data transfers.

High performance has been achieved on coprocessors for many kernels and
some applications. Schulz et al. [13] ported existing scientific applications and
micro-kernels to a single MIC coprocessor. Pennycook et al. [14] explored SIMD
for molecular dynamics applications on a MIC coprocessor. Rosales [15] has sum-
marized the critical skills for pursuing high performance on Xeon Phi. By of-
floading the Linpack benchmark to MIC coprocessors, Heinecke et al. [7] achieved
over 76% efficiency on a 100-node cluster with two MIC coprocessors per node.

Although COI and SCIF are two established APIs, we believe that our work
represents a first effort in combining COI and SCIF for programming multiple
MIC coprocessors within one compute node.



Utilizing Multiple Xeon Phi Coprocessors on One Compute Node 73

4 Two Implementations of a Simple 3D Stencil

This section serves to demonstrate the two offload-basedprogramming approaches
and their related data transfers. This will be done through parallelizing a very
simple example of 3D stencil computation, to make use of multiple coprocessors
within one compute node. The MPI-based programming approach is the same as
for the scenario of a CPU cluster, thus not discussed here.

The stencil example involves a box-shaped computational grid that has in
total (nx+2)×(ny+2)×(nz+2) mesh points. The entire computation is assumed
as an iterative loop (over time). During each iteration a 3D array named C1 is
computed by applying a 7-point stencil operator over another 3D array named
C0. Values of C1 are prescribed on the entire boundary, so the actual computation
per iteration computes the nx × ny × nz inner points of C1 as follows:

for (k=1; k<=nz; k++)

for (j=1; j<=ny; j++)

for (i=1; i<=nx; i++)

C1[k][j][i]=a*C0[k][j][i]

+b*(C0[k][j][i-1]+C0[k][j][i+1]

+C0[k][j-1][i]+C0[k][j+1][i]

+C0[k-1][j][i]+C0[k+1][j][i]);

Parallelism between the coprocessors can be enforced by dividing the 3D com-
putational grid (and C0/C1 arrays) into subdomains, each being assigned to one
coprocessor. Between two neighboring subdomains, values on each other’s re-
spective internal boundary layer have to be exchanged through data transfers.
It is also customary that the subdomain grid is extended with a layer of ghost
points towards each neighbor. An example of 1D grid decomposition can be
found in Figure 1.

nz+2

(b)

ny/2+2 ny/2+2

nx+2

ny+2

nz+2

(a)

nx+2

Fig. 1. An example of 1D decomposition (in y-direction) of a 3D grid into two subdo-
mains. (a) Original 3D grid, (b) two subdomains after the decomposition.

The work on each subdomain consists of at least the following tasks per it-
eration. For each of its neighbors, first pack an “outgoing” buffer (1D array)
by copying from respective (possibly non-contiguous) entries of the subdomain
3D array C0 and then unpack an “incoming” buffer (1D array) by copying its



74 X. Dong et al.

content to respective (possibly non-contiguous) entries of C0; compute all the en-
tries of the subdomain 3D array C1 (except its boundary entries), by applying a
7-point stencil over the entries of C0; swap the subdomain array pointers C0 and
C1 before proceeding to the next iteration. The actual coprocessor-coprocessor
data transfers may be mediated by the host, or asynchronously initiated by the
coprocessors themselves, depending on the chosen approach of programming.

For simplicity, let us only consider the case of two coprocessors. In the begin-
ning of both implementations, four 3D arrays C00, C10, C01, C11 are allocated
on the host side, such that the first two are duplicated on coprocessor 0, and
the latter two duplicated on coprocessor 1. It should be obvious from the names
that C00 and C01 together constitute the global 3D array C0, which no longer
needs a physical storage. The same idea applies to C10, C11 and C1. It is only
after all the iterations are done that values of C00, C10, C01, C11 are copied from
the coprocessors back to the host.

4.1 Implementation Based on Pragmas

In this implementation, the host also needs to allocate two 1D arrays, in buffer0

and out buffer0, on coprocessor 0. Similiarly, in buffer1 and out buffer1 are
on allocated coprocessor 1. The following code segment shows the actions that
happen during each iteration:

#pragma omp parallel num_threads(2) {

int id = omp_get_thread_num();

if (id==0) {

#pragma offload target(mic:0) nocopy(C00,C01) \

in(in_buffer0) out(out_buffer0)

{ // work offloaded to coprocessor0

...

}

}

else if (id==1) {

#pragma offload target(mic:1) nocopy(C10,C11) \

in(in_buffer1) out(out_buffer1)

{ // work offloaded to coprocessor1

...

}

}

} // end of OpenMP parallel region

swap_pointers(out_buffer0,in_buffer1);

swap_pointers(out_buffer1,in_buffer0);

It should be noted that we have omitted some programming details in the
offload pragmas, and details of the offloaded work tasks are also skipped.
Coding for coprocessor 0 is identical with that for coprocessor 1, except for
the slightly different variable names and the different locations of the respective
ghost boundary points.



Utilizing Multiple Xeon Phi Coprocessors on One Compute Node 75

It can be seen from the above code segment that two OpenMP threads on the
host simultaneously offload work to the two coprocessors. All data transfers are
relayed through the host. In particular, the two swappings of the buffer array
pointers ensure the needed coprocessor-coprocessor data exchanges. Another im-
portant remark is that although overlapping computation with data movement
is theoretically possible, we have chosen a non-overlapping approach above. It
otherwise will require each coprocessor to split the offload into several parts.
These will be initiated by offload or offload transfer pragmas together with
the signal clause, for the purpose of asynchrony. Some extensive modifications
are also needed for the offloaded code blocks.

4.2 Implementation Based on COI and SCIF

The COI-SCIF implementation uses an independent sub-program per coproces-
sor. At the same time, the host main program is quite different from the previous
implementation, i.e., a pair of COIEngine and COIProcess will be created and
connected to each coprocessor. Thereafter, the host can choose not to disturb
the two coprocessors, which will carry out the needed computation iterations,
interleaved with bi-directional and asynchronous data transfers directly between
themselves. That is, data transfers do not pass through the host. As shown in
Figure 2, each coprocessor can independently initiate scif writeto towards the
other. By paying some extra effort in coding the coprocessor sub-programs, we
can obtain several advantages. First, the repeated cost of offload start-ups of the
pragma-based implementation is avoided. Instead, using COI and SCIF APIs can
make the single-time device code loading and launching more efficient. Second,
bi-directional and asynchronous coprocessor-coprocessor data transfers result in
higher bandwidths than the host-mediated data transfer approach. Third, the
more advanced asynchrony, due to RDMA data accesses such as scif readfrom

and scif writeto, make it easier to overlap computation with communication.
This possibility of overlapping is illustrated in Figure 3.

mic0_ep
host0_ep

mic1_ep
host1_ep

mic0_ep

mic0_out_ep

mic0_in_ep, 
mic1_out_ep

mic1_ep

mic1_out_ep

mic1_in_ep, 
mic0_out_epS _writeto

S _writeto

Fig. 2. The coupling between two coprocessors, with a COI-SCIF implementation



76 X. Dong et al.

(b)

init

Time

host

coprocessor 1

coprocessor 2

coprocessor 3

pack
_data

transfer

transfer

transfer

unpack
_data

unpack
_data

unpack
_data

pack
_data

(a)

pack
_data

Fig. 3. (a) Overlapping computation and coprocessor-coprocessor data transfers. (b)
Data transfers between multiple coprocessors with (left) or without host (right) relay.

5 Experiments and Results

We will report in this section measurements of a set of experiments involv-
ing data transfers between multiple Xeon Phi coprocessors. The purpose is to
demonstrate the advantages of the COI-SCIF approach, which provides both
higher bandwidths and lower overhead related to offload start-ups. Moreover,
we want to quantify the resulting performance benefits in connection with solv-
ing a real-world 3D reaction-diffusion problem [22] that consists of 7-point stencil
computations and additional numerical operations.

5.1 Hardware Platform

One compute node of Tianhe-2 was used as the test hardware platform, having
three Intel Xeon Phi 31S1P coprocessors and two Intel Ivy Bridge 12-core E5-
2692 CPUs. It should be mentioned that each 31S1P coprocessor has 57 cores,
where 56 of them can be used in the offload mode. The PCIe 2.0 bus with
16 lanes between the CPU host and the coprocessors can theoretically offer a
bi-directional bandwidth of 16 GB/s in total.

5.2 Bandwidth Tests

Figure 4(a) compares the bandwidth between the following six scenarios of uni-
directional data transfer:

– offload-in: data transfer from host to coprocessor by offload transfer;
– offload-out: data transfer from coprocessor to host by offload transfer;
– MIC-Host-r: host-initiated data transfer from coprocessor to host, using the

scif readfrom function;



Utilizing Multiple Xeon Phi Coprocessors on One Compute Node 77

Fig. 4. Measured bandwidths, as functions of the transferred data size, (a) for six
scenarios of uni-directional data transfers, (b) for five scenarios of bi-directional data
transfers. Details can be found in Section 5.2.

– MIC-Host-w: host-initiated data transfer from host to coprocessor, using the
scif writeto function;

– MIC-MIC-r: data transfer from one coprocessor to another (without host
involvement), using the scif readfrom function;

– MIC-MIC-w: data transfer from one coprocessor to another (without host
involvement), using the scif writeto function.

It can be seen from Figure 4(a) that the first four scenarios enjoy roughly the
same bandwidth, which is higher than that of the latter two. Nevertheless, if
data need to be transferred from one coprocessor to another, it is still beneficial
to use the MIC-MIC-w approach, because otherwise data have to first travel from
one coprocessor to the host, then from the host to the other coprocessor.

Fig. 5. Four scenarios of bi-directional data transfers: (a) both independently initiate
data transfer between MIC and Host, (b) both independently initiate data transfer
between MIC and MIC, (c) only host initiates data transfer between MIC and Host,
(d) only one MIC initiates data transfer between MIC and MIC

Figure 4(b) shows the bandwidth differences between the following five sce-
narios of bi-directional data transfer:

– MIC-Host: data transfer between host and coprocessor, for which host and co-
processor independently initiate scif writeto, as illustrated in Figure 5(a);



78 X. Dong et al.

Table 1. Time usage (in seconds), by a single coprocessor, of three implementations
of a real-world 3D application. The total number of time steps is 1000.

Mesh size Programming mode Total

Pragma-based 30.12
112× 1200 × 142 COI-SCIF 26.66

MPI-OpenMP 26.52

– MIC-MIC: data transfer between two coprocessors, for which each coprocessor
independently initiates scif writeto, as illustrated in Figure 5(b);

– Host-initiated: data transfer between host and coprocessor, for which both
scif readfrom and scif writeto are initiated on the host side, as illus-
trated in Figure 5(c);

– MIC-initated: data transfer between two coprocessors, for which both the
scif readfrom and scif writeto are initiated on the same coprocessor, as
illustrated in Figure 5(d);

– MIC-MIC-mpi: data transfer between two coprocessors, for which utilizing
MPI Isend and MPI Irecv.

In the case of two coprocessors, it is always better to let both coprocessors
simultaneously initiate scif readfrom, instead of letting one coprocessor initiate
both scif readfrom and scif writeto.

5.3 Performance of a Real-World 3D Application

We used a real-world 3D application [22] to test the two implementations of
offloading, as described in Sections 4.1 and 4.2. Both implementations used
OpenMP threads for intra-coprocessor parallelism. The performance of an MPI-
OpenMP implementation is also included for comparison. More specifically, the
real-world application involved five reaction-diffusion equations. Each equation
was numerically split into a reaction part and a diffusion part, where the latter
was solved by applying the 7-point stencil operator. In total, each time iteration
for solving all the five equations needed 150 floating-point operations per mesh
point. All calculations were done using double precision.

Table 1 shows the time usages associated with offloading the computational
work to a single Xeon Phi coprocessor. The performance difference is due to the
fact that the pragma-based offloading approach induced repeated start-up costs,
once every time iteration. Note that no data transfers were needed for this single-
coprocessor scenario, therefore no performance difference between the COI-SCIF
programming approach and the MPI-OpenMP counterpart.

Table 2 summarizes the time usages associated with employing two or three
Xeon Phi coprocessors. Unlike Table 1, the costs of data transfers and pack-
ing/unpacking data buffers are now present. The pragma-based offload imple-
mentation was considerably slower than the COI-SCIF implementation. There
are two reasons for this performance difference. The first reason is due to the
repeated offload start-up costs, as we have already experienced for Table 1. The



Utilizing Multiple Xeon Phi Coprocessors on One Compute Node 79

Table 2. Time usage (in seconds) of four implementations of a real-world 3D applica-
tion. The version of “COI-SCIF*” refers to relaying data transfers via the host. Number
of time steps: 1000, global mesh size: 112× 1200× 142.

Pragma-based COI-SCIF* MPI-OpenMP COI-SCIF

Pack/unpack 0.41 0.41 0.40 0.40
2 Coprocessors Data trans 1.27 1.26 0.98 0.80

Total 19.34 15.08 14.91 14.62

Pack/unpack 0.40 0.40 0.40 0.40
3 Coprocessors Data trans 1.21 1.31 0.99 0.76

Total 12.63 10.22 9.72 9.43

second reason is due to the less efficient data transfers of the pragma-based
implementation, demonstrated by the “Data trans” row in Table 2.

We recall that the COI-SCIF implementation adopts bi-directional and asyn-
chronous coprocessor-coprocessor data transfers, thereby capable of hiding (a
part of) the data transfer costs. The MPI-based symmetric implemetation also
has the advantages in asynchronous data transfers between coprocessors, but the
extra overhead of MPI communication leds to a lower performance than the low-
level COI-SCIF implementation. For comparison purposes, Table 2 also includes
another implementation based on using the COI and SCIF APIs. This third im-
plementation, denoted as COI-SCIF*, relayed data transfers through the host.
It thereby closely resembled the pragma-based implementation with respect to
data transfers, and also that no overlap happened between data transfer and
computation.

6 Conclusions

This paper has focused on two offload programming approaches that can be
used for a single compute node with multiple coprocessors. An MPI-based sym-
metric programming approach is included for comparison purposes. The three
approaches, MPI-based, pragma-based and COI-SCIF-based, have rather differ-
ent characteristics. While the first two are easier to use, the latter one gives
better performance but requires more involved programming. For a real-world
3D application, the best performance was achieved by the COI-SCIF approach,
where bi-directional and asynchronous data transfers were enabled directly be-
tween the coprocessors. The low-level COI-SCIF approach also resulted in lower
communication overhead, in comparison with the MPI-based approach. It should
be remarked that this programming approach is not limited to stencil computa-
tion on regular meshes. Our findings not only shed some light on this new topic
of using multiple Xeon Phi coprocessors within one compute node, but provide
a good starting point for fully utilizing Tianhe-2 in future.



80 X. Dong et al.

References

1. Top500, China’s Tianhe-2 Supercomputer Takes No.1 Ranking on 41st TOP500
List, http://www.top500.org/blog/lists/2013/06/press-release/

2. Dongarra, J.: Visit to the National University for Defense Technology Changsha,
http://www.netlib.org/utk/people/JackDongarra/PAPERS/

tianhe-2-dongarra-report.pdf

3. Intel Corporation, Intel Xeon Phi Coprocessor Instruction Set Architecture Refer-
ence Manual. Reference number 327364-001 (2012)

4. Jeffers, J., Reinders, J.C.: Intel Xeon Phi Coprocessor High-Performance Program-
ming. Morgan Kaufmann, Walthman (2013)

5. Intel MIC Architecture, http://software.intel.com/en-us/articles/
intel-xeon-phi-coprocessor-codename-knights-corner

6. Intel Corporation, Intel Xeon Phi System Software Developer’s Guide. Reference
number 328207-001EN (2012)

7. Heinecke, A., Vaidyanathan, K., Smelyanskiy, M., Kobotov, A., Dubtsov, R.,
Henry, G., Chrysos, G., Dubey, P.: Design and implementation of the Linpack
benchmark for single and multi-node systems based on Intel Xeon Phi coproces-
sor. In: IPDPS (2013), doi:10.1109/IPDPS.2013.113

8. Si, M., Ishikawa, Y., Direct, M.P.I.: library for Intel Xeon Phi Co-Processors.
In: 27th IEEE International Parallel and Distributed Processing Sympo-
sium Workshops & PhD Forum (IPDPSW), Boston, MA, USA (2013),
doi:10.1109/IPDPSW.2013.179

9. MPICH: High-performance and Portable MPI, http://www.mpich.org/
10. OFS for Xeon Phi, https://www.openfabrics.org/images/docs/

2013Dev WorkshopnewlineMon 0422/2013 Workshop Mon 1430

OpenFabrics OFS software for Xeon Phi.pdf

11. Cadambi, S., Coviello, G., Li, C., Phull, R., Rao, K., Sankaradass, M., Chakrad-
har, S.: COSMIC: Middleware for high performance and reliable multiprocess-
ing on Xeon Phi coprocessors. In: Proceedings of the 22nd Int’l Symposium
on High-Performance Parallel and Distributed Computing, HPDC 2013 (2013),
doi:10.1145/2462902.2462921

12. Dokulila, J., Bajrovica, E., Benknera, S., Pllanaa, S., Sandriesera, M., Bachmayerb,
B.: High-level support for hybrid parallel execution of C++ applications targeting
Intel Xeon Phi coprocessors. In: 2013 International Conference on Computational
Science, ICCS 2013 (2013), doi:10.1016/j.procs.2013.05.430

13. Schulz, W., Ulerich, K., Malaya, R., Bauman, N., Stogner, T.P., Simmons, R.,
Early, C.: experiences porting scientific applications to the many integrated core
(MIC) platform. In: TACC-Intel Highly Parallel Computing Symposium, Tech.
Rep. (2012), doi:10.1145/2016741.2016764

14. Pennycook, J., Hughes, S., Smelyanskiy, J.C., Jarvis, M., Exploring, A.S.: SIMD
for molecular dynamics, using Intel Xeon processors and Intel Xeon Phi co-
processors. In: IEEE Int’l Parallel & Distributed Processing Symposium (2013),
doi:10.1109/IPDPS.2013.44

15. Rosales, C.: Porting to the Intel Xeon Phi: Opportunities and challenges. In: Ex-
treme Scaling Workshop, XSCALE 2013 (2013)

16. Potluri, S., Bureddy, D., Hamidouche, K., Venkatesh, A., Kandalla, K., Subramoni,
H., Panda, D.K.: MVAPICH-PRISM: A Proxy-based Communication Framework
using InfiniBand and SCIF for Intel MIC Clusters. In: Int’l Conference on Super-
computing (2013)

http://www.top500.org/blog/lists/2013/06/press-release/
http://www.netlib.org/utk/people/JackDongarra/PAPERS/tianhe-2-dongarra-report.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/tianhe-2-dongarra-report.pdf
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://www.mpich.org/
https://www.openfabrics.org/images/docs/2013Dev_WorkshopnewlineMon_0422/2013_Workshop_Mon_1430_OpenFabrics_OFS_software_for_Xeon_Phi.pdf
https://www.openfabrics.org/images/docs/2013Dev_WorkshopnewlineMon_0422/2013_Workshop_Mon_1430_OpenFabrics_OFS_software_for_Xeon_Phi.pdf
https://www.openfabrics.org/images/docs/2013Dev_WorkshopnewlineMon_0422/2013_Workshop_Mon_1430_OpenFabrics_OFS_software_for_Xeon_Phi.pdf


Utilizing Multiple Xeon Phi Coprocessors on One Compute Node 81

17. Potluri, S., Venkatesh, A., Bureddy, D., Kandalla, K., Panda, K.: D., Efficient
intra-node communication on Intel-MIC clusters. In: 13th IEEE Int’l Symposium
on Cluster Computing and the Grid, CCGrid 2013 (2013),
doi:10.1109/CCGrid.2013.86

18. The Heterogeneous Offload Model for Intel Many Integrated Core Architecture,
http://software.intel.com/sites/default/files/article/326701/

heterogeneous-programming-model.pdf

19. Intel Manycore Platform Software Stack (MPSS),
http://software.intel.com/en-us/articles/intel-manycore-platform-

software-stack-mpss#downloads

20. Intel Corporation, MIC COI API Reference Manual 0.65. Monday December 17
12:12:33 (2012)

21. Intel Corporation, MIC SCIF API Reference Manual 0.65 for User Mode Linux.
Mon Dec17 12:05:03 (2012)

22. Chai, Jun, Hake, Johan, Wu, Nan, Wen, Mei, Cai, Xing, Lines, T., Glenn, Yang,
Jing, Su, Huayou, Zhang, Chunyuan, Liao, Xiangke, S.: Towards simulation of
subcellular calcium dynamics at nanometre resolution. International Journal of
High Performance Computing Applications (2013)

http://software.intel.com/sites/default/files/article/326701/heterogeneous-programming-model.pdf
http://software.intel.com/sites/default/files/article/326701/heterogeneous-programming-model.pdf
http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss#downloads
http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss#downloads

	Utilizing Multiple Xeon Phi Coprocessorson One Compute Node
	1 Introduction
	2 Background
	2.1 Xeon Phi Coprocessor
	2.2 Pragma-Based Offloading
	2.3 COI and SCIF
	2.4 Coprocessor-Only Usage Mode

	3 Related Work
	4 Two Implementations of a Simple 3D Stencil
	4.1 Implementation Based on Pragmas
	4.2 Implementation Based on COI and SCIF

	5 Experiments and Results
	5.1 Hardware Platform
	5.2 Bandwidth Tests
	5.3 Performance of a Real-World 3D Application

	6 Conclusions
	References




