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Abstract. Distributed file system is one of the key blocks of data centers. With 
the advance in geo-replicated storage systems across data centers, both system 
scale and user scale are becoming larger and larger. Then, a single metadata 
server in distributed file system may lead to capacity bottleneck and high 
latency without considering locality. In this paper, we present the design and 
implementation of MRFS (Metadata Replication File System), a distributed file 
system with hierarchical and efficient distributed metadata management, which 
introduces multiple metadata servers (MDS) and an additional namespace 
server (NS). Metadata is divided into non-overlapping parts and stored on MDS 
in which the creation operation is raised, while namespace and directory 
information is maintained in NS. Such a hierarchical design not only achieves 
high scalability but also provides low-latency because it satisfies a majority of 
requests in local MDS. To address hotspot issues and flash crowds, the system 
supports flexible and configurable metadata replication among MDSs. 
Evaluation results show that our system MRFS is effective and efficient, and 
the replication mechanism brings substantial local visit at the cost of affordable 
memory overhead under various scenarios. 
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1 Introduction 

With the emergence and development of large-scale geo-replicated application, 
distributed file system, as a general storage infrastructure, has attracted more and 
more attentions in the past years. One of the key challenges in distributed file system 
lies in big data processing. Data has become of greater importance, and storage 
demand also has an explosive growth, which has increased exponentially exceeding 
petabytes and getting close to exabytes in certain applications [1]. 

Consequently, high scalability and providing low-latency response have been two 
critical factors in the design of distributed file system for geo-replicated applications. 
Since metadata transactions account for over 50% of all file system operations [2], 
most modern distributed file systems decouple the metadata transactions from actual 
data accesses so as to achieve scalability and availability. Dedicated metadata server 
(MDS) is deployed to process metadata transactions while storage nodes are to store 
actual data. Metadata management then becomes a critical issue in file systems. 
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However, in most of existing distributed file systems, there is usually only single 
MDS node, which is prone to be a bottleneck if the number of files is very large [3]. 
Though a few designs introduce distributed metadata model, it is costly to maintain a 
global and consistent namespace. Besides, these works consider only single 
datacenter, which are not suitable for systems that spread across multi-datacenters, i.e. 
geo-replicated systems. 

To solve the issues discussed above, this paper presents a two-tiered metadata 
management scheme with metadata across multiple metadata servers (MDSs). We 
separate the file metadata and namespace information and store them in MDS 
(metadata server) and NS (namespace server), respectively. File metadata is initially 
stored in the MDS where the creation operation is raised. We call such MDS as 
primary MDS of the metadata in the rest of the paper. Based on the rule of locality 
and visit pattern of applications, we assume that a majority of client requests are 
satisfied in the primary MDS and therefore will not cost high network latency among 
different datacenters. In addition, multiple MDSs can serve requests simultaneously 
and potentially improve the performance and concurrency. Moreover, NS maintains a 
global and consistent namespace which supports fast response for directory lookup 
and modification requests from clients. Such operation is supposed to cause high 
delay in other designs since the namespace is scattered among different MDSs and 
involved entries should be located and merged upon each query. 

We propose to extend MooseFS, a well-known open source distributed file system, 
by modifying the entire metadata module and introducing a new role, namespace 
server. More precisely, we refer to the basic blocks of MooseFS, like communication 
mechanism and client module, but recode the whole metadata service module, i.e., 
redesign the data structure of file metadata and namespace information and implement 
the replication mechanism. The metadata of the file system is dynamically partitioned 
into non-overlapping parts upon clients’ creation request. Namely, each metadata 
node is in charge of one subset of the whole metadata in file system. It should be 
clarified that, in the context of MRFS, clients are applications or front-end servers that 
issue read/write operations on behalf of real world users. All processes and interaction 
with NS hiding behind the primary MDS are transparent to clients. 

On the other hand, to alleviate flash crowds and hotspot issues, we implement a 
flexible and configurable replication mechanism. Popular metadata entries are 
replicated to other MDSs that query them frequently during a pre-defined period. The 
replication threshold and time interval are both configurable to meet diverse 
requirements. With replication, high-latency access across MDSs is reduced and load 
balance among the overall system is enhanced. 

MRFS is tested in real deployment. Experiments have been conducted under 
several scenarios to validate our design and evaluate the performance of the new file 
system. The results show that our design is effective and efficient. Besides, the newly-
added replication mechanism largely reduces the across-datacenter communication at 
the cost of affordable memory overhead. 

The rest of the paper is organized as follows. We briefly review existing works on 
metadata management for distributed file systems in Section 2. Section 3 describes 
the design and implementation of MRFS. The experiments and results are reported in 
Section 4. In the last section, we conclude the paper and discuss about future works. 
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2 Related Work 

According to the metadata server type, we categorize existing works on metadata 
management into three classes, i.e., centralized metadata management, distributed 
metadata management, and implicit metadata management. 

Most of popular and famous distributed file systems, i.e., HDFS [4], GoogleFS [5] 
and MooseFS [6], use a centralized metadata server. The advantage of such design 
lies in easy implementation and management. However, the drawback is also obvious. 
Since metadata is maintained in main memory, as the scale of file count increases to 
extremely large, it may become a bottleneck and limit the scalability of overall 
system. 

Quite a number of distributed metadata management schemes have been 
introduced to solve the problems of centralized ones. With static subtree partitioning, 
metadata is divided in to non-overlapped parts and distributed into individual MDSs 
by system administrator. This approach is simple and relatively efficient and used by 
many famous implementations like Coda [7] and Sprite [8]. However, it may face 
workload imbalance among MDSs. Besides, when namespace need to be re-divided, 
system administrator is involved again. 

Hashing-based namespace partitioning removes the issue of unbalanced workloads 
in static partitioning. In general, path name of file and directory is hashed and then 
assigned to corresponding servers, i.e., Lazy Hybrid [9]. System can quickly locate 
the requested metadata utilizing the path name and hashing function. This approach 
causes tremendous overhead when node is added to or deleted since system should re-
calculate the hashing-function and relocate most of the metadata. Traversal of a 
directory is also inefficient in such design. 

Dynamic subtree partitioning [10] is proposed to address the load imbalance 
problem in static partitioning, i.e., Ceph [11]. The metadata of the whole file system is 
partitioned by hashing directories near the root of the directory hierarchy, each of 
which is undertaken by a node in a MDS cluster. By migrating heavily loaded 
metadata automatically and overlapping popular parts, the load among different 
MDSs can be balanced dynamically. However, because of the existence of overlapped 
metadata, the maintenance of the consistency between different MDSs becomes more 
significant and critical, and consequently, the system becomes very complex and 
costly to realize and execute. Moreover, balancing load will cause metadata 
redistribution when the user access pattern or the MDS set changes. This results in 
additional overhead. 

Hierarchical Bloom-filter Array (HBA) is an approach based on bloom filter [12]. 
In HBA, each metadata server constructs a bloom filter to store the path name of 
metadata that it hosts. Exploiting the temporal access locality, HBA uses another 
bloom filter to store some frequently accessed path. Although bloom filter is space-
efficient, it returns a probabilistic answer and cannot guarantee the location of a file. 
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In the third class of metadata management, there is no dedicated metadata sever at 
all. GlusterFS [13] is a representative of this class, which replaces the metadata 
module, i.e. MDS, with  an elastic hash algorithm. That is, there is in fact no explicit 
MDS, and client is in charge of locating data according to file’s absolute path. 
Therefore, the bottleneck and single point of failure issues in server side is eliminated 
too, and high scalability and parallelism is simply achieved. However, such approach 
also has trouble when traversing a directory and maintaining the consistency of 
namespace. Additionally, lack of specialized MDS causes more workloads and 
responsibility at client nodes. 

As for the replication of metadata, the Hadoop extension by MapR Inc. [14] is the 
only existing work to the best of our knowledge. In this system, metadata is replicated 
like common data to achieve for high availability and better performance. Our work 
differs from the work of MapR Inc. in the overall system architecture and the 
management method of replication management. 

3 The Design and Implementation of MRFS 

3.1 Overview of MRFS 

MRFS (Metadata Replication File system) is mainly composed of four components: 
Metadata Server (MDS), Namespace Server (NS), Client and Chunk Server (CS). 
Several MDSs distribute in different geography locations, and store actual file 
metadata. On the other side, there is only one single NS maintaining a global 
namespace and managing the whole file system. Clients connect and conduct 
operations to their primary MDSs. Chunk servers are nodes that provide storage for 
file data. 

MRFS aims to provide low latency for a majority of client requests of metadata 
under different scenarios. It is assumed that clients have higher interest in metadata 
that they created, which means that requests are more probably satisfied in clients’ 
primary MDS. A small portion of requests cannot be handled locally and therefore 
primary MDS inquires NS for the location of that metadata and then forward the 
request to corresponding MDS containing the requested metadata. In case of special 
states, like hotspots or flash crowds, replication is used to reduce such across-MDS 
interactions noticeably, and in consequence, improve the overall performance and 
load balance. 

Taking advantage of the locality of metadata and client behavior, such design 
avoids the inherently existing drawbacks of other methods like static subtree 
partitioning and hashing design, and provides low-latency access for clients in most 
situations. Moreover, by means of replication, MRFS addresses the work balance 
issue. 

In the rest of this section, we present the details of the design and implementation 
of MRFS. The architecture of MRFS is shown in Fig 1, which is the basis of the 
following description. 
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Fig. 1. The architecture of MRFS 

3.2 The Client Module of MRFS 

The client of MRFS is built on FUSE [15], a loadable kernel module that provides 
library API to create a file system in user space. We implement interfaces that are 
essential to build a practical file system. These interfaces are listed in table 1. 

Table 1. Implemented interfaces in MRFS 

Name Description 
fsinit initiating process for file system 
getattr retrieve attributes of file or directory 
create create a file 
unlink remove a file 
mkdir create a directory 
rmdir  remove a directory 
read read a file 
write write a file 
readdir read a directory, i.e., ls operation 
chmod change modes of file or directory 

 
When initiated, client connects and registers with its primary MDS, which has a 

lowest latency for client requests. Client communicates with its primary MDS through 
a long-lived TCP connection. Such design eliminates the process of figuring out the 
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closest MDS and initializing a connection, like looking up the routing table and then 
connecting to that MDS, upon receiving any request from FUSE. 

After client process is mounted on a certain directory, all operations conducted in 
this directory are transmitted to the client process through FUSE module. Client 
identifies the type of command and then sends a corresponding message directly to 
the primary MDS via the connection already established. It should be noted that 
FUSE automatically call getattr function to acquire the file attribute for existence and 
access privilege check. Only when it returns with a success code, actual operation can 
be executed onwards. 

Two types of operations should be considered individually. First type is only-
metadata-involved operations like create and unlink. The primary MDS is in charge of 
handling the whole workflow. Such operations come to an end when client receives 
the execution result and/or the requested metadata information.  

The second type is operation that involves actual data of files. Client retrieves the 
storage location of data blocks from MDS at first, and then interacts with 
corresponding storage nodes for real data read/write. 

3.3 The Namespace Server of MRFS 

The namespace server (NS) maintains a global and consistent directory tree in main 
memory. All metadata servers connect to NS when starting up, and forward all 
namespace-related operations, i.e., creating or removing a file, to NS. Since NS uses a 
single-thread model, we don’t need to worry about the annoying consistency issues. 
By novelly separating the namespace from traditional metadata service, unlike other 
distributed metadata management, MRFS is able to provide much more efficient and 
straightforward response for directory query, i.e., ls operation. 

Additionally, NS stores the mapping between metadata entry of each file and its 
primary MDS, identified by the absolute path name of files. Therefore, MDS can 
acquire the location of every metadata entry along with its path name. Though 
absolute path may cause extra memory overhead, the overall system is benefited from 
its faster locating and traversal of the directory. As a workaround, we can use the 
prefix-compression algorithm on path name to reduce memory usage, at the cost of 
longer delay of processing. 

To realize replication mechanism, NS also records the replicas information. With 
this, NS provides more flexibility and useful functionalities, like restricting the total 
number of replicas and computing the popularity of entries. 

3.4 The Metadata Server of MRFS 

The MDS module in MooseFS is originally designed as a central node that bundles 
metadata and namespace service together. So we extend it to support distributed 
metadata model. There are multiple metadata servers in system and each of them is in 
charge of managing a part of the metadata. The metadata of the whole file system is 
divided into non-overlapping parts in accordance with the client’s creation operation. 
Fig 2 and Fig 3 illustrate the creation process and the consequent namespace. 
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Fig. 2. Clients create different files 
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Fig. 3. Metadata construction in server side 

Client1 and client2 create files respectively and send command to their own 
primary MDSs. MDS stores that metadata entry is called Host MDS, i.e., MDS1 is the 
Host MDS of /path/file1. To complete the command, MDS should inform NS of the 
creation operation, so that new files are added into the namespace. As a result, 
namespace and file metadata are stored in NS and MDS separately. For MDS, it 
constructs a hash table in memory to store all local file metadata, so as to accelerate 
the query speed. 

Each MDS serves multiple clients simultaneously. When a request from client is 
coming, primary MDS scans the hash table to check whether the requested entry 
exists locally. If so, MDS returns directly; or else, it should forward the query to NS 
for a global query. If the path exists in other MDS, NS will return its location. Then 
primary MDS connects to the Host MDS (for the first time of connection) and queries 
for the actual metadata. This procedure introduces an extra RTT, but such situation is 
supposed to be rare. 

In case that there are hotspot issues or flash crowds, we implement the replication 
mechanism among MDSs. It uses a server-initiated model. Host MDS pushes the 
copy of popular metadata entries to other MDSs that have queried the metadata 
beyond a configurable threshold in a specific time interval. Replicas are distributed in 
different MDSs to improve the workload balance for servers and a low latency for 
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clients. When creating a new replica, Host MDS keeps track of the replica MDS for 
subsequent updates. To simplify the design, metadata updates can only be executed in 
the Host MDS. Whenever the metadata is modified, the updates will be pushed to all 
available replicas by Host MDS. 

MRFS removes the stale replicas automatically to avoid unlimited increase of 
replicas. Each MDS maintains the visit information for replicas. At intervals of a 
configurable period, each MDS scans all existing replicas and removes those that are 
old enough and under the deletion threshold. To guarantee the fairness and decrease 
the impact of history information, the concept of decay is applied in our design. Each 
decay period the history visit count is decayed at a rate, whose value can be set 
according to different requirements. 

At last, all processes in server side are transparent to client. The only thing clients 
concern about is the execution result or the returned metadata information. 

4 Experiments and Results 

4.1 Experiment Setup 

We deploy four machines as MDSs, each of which is with 1G main memory and 
running Ubuntu 12.04 Server. Along with each MDS, there is a client running at the 
same node and connecting to the MDS process. Besides, the NS is deployed at 
another node with 8G main memory and running Ubuntu 12.10 Server. The local-disk 
file system at each node is ext4. 

4.2 Experiment Results 

We use four different metrics to measure the performance of metadata service. Firstly, 
we measure the memory overhead of MDS and NS without replicas. Then we create 
replicas in one MDS on purpose to measure the replica’s impact on memory usage. 
Secondly, the execution time of creation in different situation is measured. At last, we 
use NumPy [16] and Python to simulate the visit pattern of web applications. By this, 
we can measure the efficiency of replicas and the performance enhancement it brings. 

 

Fig. 4. Memory usage of NS and MDS process changes as the number of created files increases 
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Fig. 5. Increment of memory usage of NS and MDS process in each creation operation 

Fig 4 and Fig 5 show the memory usage and increment in NS and MDS along with 
the increasing of the number of created files. Obviously, the memory usage increase 
linearly with the file count. Each entry in MDS costs about 110 bytes, while that of 
NS is about 30% less. This can be explained because NS doesn’t store the file 
information but the directory tree and mapping. Although MDS may take up more 
memory, in real environment, there are multiple MDS in different locations, workload 
will be distributed among them and MDS is unlikely to have a bottleneck in memory. 
It should be clarified that the reason why MDS takes much more memory than NS is 
that process allocates the memory to hash table in advance. 

We run another experiment with two MDS and a NS to demonstrate the impact of 
replicas. Initially, we create 100K files in MDS2, and then make MDS1 create all files’ 
replica locally. The dmap command is used to monitor the memory usage of each process 
in different stages. Fig 6 shows some features of MRFS. The creation in one MDS won’t 
affect other MDS, which means MDS is able to work individually. The replica creation 
will introduce extra memory overhead in all three machines. NS increases a tiny amount 
of memory as it only keeps track of the replica MDS’s ip for further use. As the Replica 
MDS, MDS1 increases about 85% of the primary metadata copy in MDS2. This is 
because Replica MDS doesn’t store the information of remote visit but local visit. As the 
Primary MDS, MDS2 need to record the replica MDS’s information, and therefore its 
memory usage increases about 20% compared to the original. 

 

Fig. 6. Comparison of memory usage before and after creating replicas 
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Fig. 7. Total execution time of creating 100K files in four MDS 

Each MDS applies the creation of 100K files for three times. More precisely, creation 
is firstly operated in parallel and then individually and lastly executed in local file 
system. Fig 7 shows that local file system provides the best performance with the total 
execution time of 80 seconds. For MRFS, due to the network latency, the elapsed time 
is about 5 times slower than local file system. Averagely, each creation operation costs 
about 5ms. When executed in parallel, the average execution time is a little longer, for 
the reason that each MDS should interchange with NS to finish the operation and the 
single-thread design of NS limits the throughput. Fortunately, all metadata and 
namespace information are stored in main memory and this inherent advantage leads to 
a fast processing. Therefore, network latency takes up most of the elapsed time, and 
even in parallel mode, the average time of 8ms for each creation is efficient enough for 
a distributed file system. This result meets our design expectation. 

To measure the effectiveness of replication, we firstly create 500 disjoint files in 
each MDS, and then use Python script and the NumPy library to simulate the access 
pattern of metadata. Each Client executes 40K access operations through their 
Primary MDS, and every operation is carried out at a time interval of 10ms. 

The local/remote access ratio is set in the script, i.e., ratio=0.2 means that local 
access takes up 20% of all access while remote access of other MDS takes up 80%. 
All accesses conform to the Pareto Distribution, which is a power-like distribution 
and can be used as a model for many read-world problems [17][18]. For MRFS, that 
means only a small part of metadata is involved with a majority of accesses. Another 
parameter is the threshold of replica creation which can be configured in MDS 
module. In our experiment, threshold parameter is set as 5, 10 and 20. We also count 
the number of created replicas, and calculate the average hit number of all replicas. 
This metric can show the overall efficiency of the metadata replication. 

We can calculate the hit ratio of generated replicas among all accesses that could 
not be satisfied by local metadata. The hit rates and the number of created replicas are 
plotted in Fig 8 and Fig 9 respectively. Firstly, we can see obviously the hit ratio is 
decreasing as the threshold number increases. This is simply because fewer replicas 
are generated and more requests are forward to remote MDS. In the worst case 
(ratio=0.8 and threshold=20), the hit ratio drops to 48.44%. However, since the total 
remote accesses account for 20% of all accesses, the actual forward operations take 
up only 10.29%. Secondly, with the value of ratio increases, which reflects more 
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requests are handled locally, the percentage of replica hit falls on the contrary. The 
reason is that with the same value of threshold, fewer remote accesses will lead to 
fewer replicas according to the feature of Pareto distribution, and consequently a 
greater number of requests will be forward to other MDS. 

 

Fig. 8. Hit rate of replicas with various parameters 

 

Fig. 9. Number of generated replicas with various parameters 

 

Fig. 10. Average hit count of replicas with various parameters 
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Besides the hit ratio of replicas, we use the average hit count to measure the 
efficiency of replicas. As can be observed in Fig 10, one replica serves more visit 
requests while the total number of replicas declines. This can be explained by the 
basic properties of Pareto distribution, that is a majority of access only involve with a 
small amount of metadata. Therefore, the most popular part of replicas will take over 
more requests than others.  

From the discussions and comparisons above, we can see that MRFS performs 
efficiently and effectively in metadata service in various scenarios. And the 
replication mechanism largely reduces the cross-MDS visit at the cost of affordable 
memory overhead. Besides, we can take advantage of the flexible configuration to 
achieve the balance between the overall performance and memory usage. 

5 Conclusion and Future Work 

Distributed file system plays a key role in distributed computing, especially in cloud 
computing systems with high requirement of storage volumes and performance. High 
scalable and effective metadata service is still a challenging issue in the design and 
implementation of distributed file systems. We design and implement a real 
distributed file system MRFS with novel metadata management, which takes 
advantage of two-tiered architecture and separates the metadata and namespace 
service. To reduce the latency and alleviate the hotspot issues and flash crowds, an 
efficient and flexible replication mechanism is implemented as well. Experiments 
show that the file system can process a majority of file operations with low latency. 
Moreover, the distribution of metadata service provides a higher scalability and 
efficiently serves clients scattered at different places. Last but not least, replicas bring 
substantial performance improvement at little expense of memory loads. 

In future, we will improve our system in several ways. First, high availability of 
metadata will be introduced and implemented, which will make the system more 
robust. Second, we will consider new approach like prefix-compression algorithm to 
reduce the memory overhead in namespace server. Third, new replica placement 
strategies will be considered to improve the overall efficiency while cutting down 
more memory usage. 
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