

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 273–285, 2014.
© Springer International Publishing Switzerland 2014

MRFS: A Distributed Files System
with Geo-replicated Metadata

Jiongyu Yu, Weigang Wu, Di Yang, and Ning Huang

Department of Computer Science, Sun Yat-sen University, Guangzhou 510006, China
{yujiongy,yangdi5}@mail2.sysu.edu.cn, wuweig@mail.sysu.edu.cn

Abstract. Distributed file system is one of the key blocks of data centers. With
the advance in geo-replicated storage systems across data centers, both system
scale and user scale are becoming larger and larger. Then, a single metadata
server in distributed file system may lead to capacity bottleneck and high
latency without considering locality. In this paper, we present the design and
implementation of MRFS (Metadata Replication File System), a distributed file
system with hierarchical and efficient distributed metadata management, which
introduces multiple metadata servers (MDS) and an additional namespace
server (NS). Metadata is divided into non-overlapping parts and stored on MDS
in which the creation operation is raised, while namespace and directory
information is maintained in NS. Such a hierarchical design not only achieves
high scalability but also provides low-latency because it satisfies a majority of
requests in local MDS. To address hotspot issues and flash crowds, the system
supports flexible and configurable metadata replication among MDSs.
Evaluation results show that our system MRFS is effective and efficient, and
the replication mechanism brings substantial local visit at the cost of affordable
memory overhead under various scenarios.

Keywords: Distributed file system, Metadata management, data replication.

1 Introduction

With the emergence and development of large-scale geo-replicated application,
distributed file system, as a general storage infrastructure, has attracted more and
more attentions in the past years. One of the key challenges in distributed file system
lies in big data processing. Data has become of greater importance, and storage
demand also has an explosive growth, which has increased exponentially exceeding
petabytes and getting close to exabytes in certain applications [1].

Consequently, high scalability and providing low-latency response have been two
critical factors in the design of distributed file system for geo-replicated applications.
Since metadata transactions account for over 50% of all file system operations [2],
most modern distributed file systems decouple the metadata transactions from actual
data accesses so as to achieve scalability and availability. Dedicated metadata server
(MDS) is deployed to process metadata transactions while storage nodes are to store
actual data. Metadata management then becomes a critical issue in file systems.

274 J. Yu et al.

However, in most of existing distributed file systems, there is usually only single
MDS node, which is prone to be a bottleneck if the number of files is very large [3].
Though a few designs introduce distributed metadata model, it is costly to maintain a
global and consistent namespace. Besides, these works consider only single
datacenter, which are not suitable for systems that spread across multi-datacenters, i.e.
geo-replicated systems.

To solve the issues discussed above, this paper presents a two-tiered metadata
management scheme with metadata across multiple metadata servers (MDSs). We
separate the file metadata and namespace information and store them in MDS
(metadata server) and NS (namespace server), respectively. File metadata is initially
stored in the MDS where the creation operation is raised. We call such MDS as
primary MDS of the metadata in the rest of the paper. Based on the rule of locality
and visit pattern of applications, we assume that a majority of client requests are
satisfied in the primary MDS and therefore will not cost high network latency among
different datacenters. In addition, multiple MDSs can serve requests simultaneously
and potentially improve the performance and concurrency. Moreover, NS maintains a
global and consistent namespace which supports fast response for directory lookup
and modification requests from clients. Such operation is supposed to cause high
delay in other designs since the namespace is scattered among different MDSs and
involved entries should be located and merged upon each query.

We propose to extend MooseFS, a well-known open source distributed file system,
by modifying the entire metadata module and introducing a new role, namespace
server. More precisely, we refer to the basic blocks of MooseFS, like communication
mechanism and client module, but recode the whole metadata service module, i.e.,
redesign the data structure of file metadata and namespace information and implement
the replication mechanism. The metadata of the file system is dynamically partitioned
into non-overlapping parts upon clients’ creation request. Namely, each metadata
node is in charge of one subset of the whole metadata in file system. It should be
clarified that, in the context of MRFS, clients are applications or front-end servers that
issue read/write operations on behalf of real world users. All processes and interaction
with NS hiding behind the primary MDS are transparent to clients.

On the other hand, to alleviate flash crowds and hotspot issues, we implement a
flexible and configurable replication mechanism. Popular metadata entries are
replicated to other MDSs that query them frequently during a pre-defined period. The
replication threshold and time interval are both configurable to meet diverse
requirements. With replication, high-latency access across MDSs is reduced and load
balance among the overall system is enhanced.

MRFS is tested in real deployment. Experiments have been conducted under
several scenarios to validate our design and evaluate the performance of the new file
system. The results show that our design is effective and efficient. Besides, the newly-
added replication mechanism largely reduces the across-datacenter communication at
the cost of affordable memory overhead.

The rest of the paper is organized as follows. We briefly review existing works on
metadata management for distributed file systems in Section 2. Section 3 describes
the design and implementation of MRFS. The experiments and results are reported in
Section 4. In the last section, we conclude the paper and discuss about future works.

 MRFS: A Distributed Files System with Geo-replicated Metadata 275

2 Related Work

According to the metadata server type, we categorize existing works on metadata
management into three classes, i.e., centralized metadata management, distributed
metadata management, and implicit metadata management.

Most of popular and famous distributed file systems, i.e., HDFS [4], GoogleFS [5]
and MooseFS [6], use a centralized metadata server. The advantage of such design
lies in easy implementation and management. However, the drawback is also obvious.
Since metadata is maintained in main memory, as the scale of file count increases to
extremely large, it may become a bottleneck and limit the scalability of overall
system.

Quite a number of distributed metadata management schemes have been
introduced to solve the problems of centralized ones. With static subtree partitioning,
metadata is divided in to non-overlapped parts and distributed into individual MDSs
by system administrator. This approach is simple and relatively efficient and used by
many famous implementations like Coda [7] and Sprite [8]. However, it may face
workload imbalance among MDSs. Besides, when namespace need to be re-divided,
system administrator is involved again.

Hashing-based namespace partitioning removes the issue of unbalanced workloads
in static partitioning. In general, path name of file and directory is hashed and then
assigned to corresponding servers, i.e., Lazy Hybrid [9]. System can quickly locate
the requested metadata utilizing the path name and hashing function. This approach
causes tremendous overhead when node is added to or deleted since system should re-
calculate the hashing-function and relocate most of the metadata. Traversal of a
directory is also inefficient in such design.

Dynamic subtree partitioning [10] is proposed to address the load imbalance
problem in static partitioning, i.e., Ceph [11]. The metadata of the whole file system is
partitioned by hashing directories near the root of the directory hierarchy, each of
which is undertaken by a node in a MDS cluster. By migrating heavily loaded
metadata automatically and overlapping popular parts, the load among different
MDSs can be balanced dynamically. However, because of the existence of overlapped
metadata, the maintenance of the consistency between different MDSs becomes more
significant and critical, and consequently, the system becomes very complex and
costly to realize and execute. Moreover, balancing load will cause metadata
redistribution when the user access pattern or the MDS set changes. This results in
additional overhead.

Hierarchical Bloom-filter Array (HBA) is an approach based on bloom filter [12].
In HBA, each metadata server constructs a bloom filter to store the path name of
metadata that it hosts. Exploiting the temporal access locality, HBA uses another
bloom filter to store some frequently accessed path. Although bloom filter is space-
efficient, it returns a probabilistic answer and cannot guarantee the location of a file.

276 J. Yu et al.

In the third class of metadata management, there is no dedicated metadata sever at
all. GlusterFS [13] is a representative of this class, which replaces the metadata
module, i.e. MDS, with an elastic hash algorithm. That is, there is in fact no explicit
MDS, and client is in charge of locating data according to file’s absolute path.
Therefore, the bottleneck and single point of failure issues in server side is eliminated
too, and high scalability and parallelism is simply achieved. However, such approach
also has trouble when traversing a directory and maintaining the consistency of
namespace. Additionally, lack of specialized MDS causes more workloads and
responsibility at client nodes.

As for the replication of metadata, the Hadoop extension by MapR Inc. [14] is the
only existing work to the best of our knowledge. In this system, metadata is replicated
like common data to achieve for high availability and better performance. Our work
differs from the work of MapR Inc. in the overall system architecture and the
management method of replication management.

3 The Design and Implementation of MRFS

3.1 Overview of MRFS

MRFS (Metadata Replication File system) is mainly composed of four components:
Metadata Server (MDS), Namespace Server (NS), Client and Chunk Server (CS).
Several MDSs distribute in different geography locations, and store actual file
metadata. On the other side, there is only one single NS maintaining a global
namespace and managing the whole file system. Clients connect and conduct
operations to their primary MDSs. Chunk servers are nodes that provide storage for
file data.

MRFS aims to provide low latency for a majority of client requests of metadata
under different scenarios. It is assumed that clients have higher interest in metadata
that they created, which means that requests are more probably satisfied in clients’
primary MDS. A small portion of requests cannot be handled locally and therefore
primary MDS inquires NS for the location of that metadata and then forward the
request to corresponding MDS containing the requested metadata. In case of special
states, like hotspots or flash crowds, replication is used to reduce such across-MDS
interactions noticeably, and in consequence, improve the overall performance and
load balance.

Taking advantage of the locality of metadata and client behavior, such design
avoids the inherently existing drawbacks of other methods like static subtree
partitioning and hashing design, and provides low-latency access for clients in most
situations. Moreover, by means of replication, MRFS addresses the work balance
issue.

In the rest of this section, we present the details of the design and implementation
of MRFS. The architecture of MRFS is shown in Fig 1, which is the basis of the
following description.

 MRFS: A Distributed Files System with Geo-replicated Metadata 277

Fig. 1. The architecture of MRFS

3.2 The Client Module of MRFS

The client of MRFS is built on FUSE [15], a loadable kernel module that provides
library API to create a file system in user space. We implement interfaces that are
essential to build a practical file system. These interfaces are listed in table 1.

Table 1. Implemented interfaces in MRFS

Name Description
fsinit initiating process for file system
getattr retrieve attributes of file or directory
create create a file
unlink remove a file
mkdir create a directory
rmdir remove a directory
read read a file
write write a file
readdir read a directory, i.e., ls operation
chmod change modes of file or directory

When initiated, client connects and registers with its primary MDS, which has a

lowest latency for client requests. Client communicates with its primary MDS through
a long-lived TCP connection. Such design eliminates the process of figuring out the

278 J. Yu et al.

closest MDS and initializing a connection, like looking up the routing table and then
connecting to that MDS, upon receiving any request from FUSE.

After client process is mounted on a certain directory, all operations conducted in
this directory are transmitted to the client process through FUSE module. Client
identifies the type of command and then sends a corresponding message directly to
the primary MDS via the connection already established. It should be noted that
FUSE automatically call getattr function to acquire the file attribute for existence and
access privilege check. Only when it returns with a success code, actual operation can
be executed onwards.

Two types of operations should be considered individually. First type is only-
metadata-involved operations like create and unlink. The primary MDS is in charge of
handling the whole workflow. Such operations come to an end when client receives
the execution result and/or the requested metadata information.

The second type is operation that involves actual data of files. Client retrieves the
storage location of data blocks from MDS at first, and then interacts with
corresponding storage nodes for real data read/write.

3.3 The Namespace Server of MRFS

The namespace server (NS) maintains a global and consistent directory tree in main
memory. All metadata servers connect to NS when starting up, and forward all
namespace-related operations, i.e., creating or removing a file, to NS. Since NS uses a
single-thread model, we don’t need to worry about the annoying consistency issues.
By novelly separating the namespace from traditional metadata service, unlike other
distributed metadata management, MRFS is able to provide much more efficient and
straightforward response for directory query, i.e., ls operation.

Additionally, NS stores the mapping between metadata entry of each file and its
primary MDS, identified by the absolute path name of files. Therefore, MDS can
acquire the location of every metadata entry along with its path name. Though
absolute path may cause extra memory overhead, the overall system is benefited from
its faster locating and traversal of the directory. As a workaround, we can use the
prefix-compression algorithm on path name to reduce memory usage, at the cost of
longer delay of processing.

To realize replication mechanism, NS also records the replicas information. With
this, NS provides more flexibility and useful functionalities, like restricting the total
number of replicas and computing the popularity of entries.

3.4 The Metadata Server of MRFS

The MDS module in MooseFS is originally designed as a central node that bundles
metadata and namespace service together. So we extend it to support distributed
metadata model. There are multiple metadata servers in system and each of them is in
charge of managing a part of the metadata. The metadata of the whole file system is
divided into non-overlapping parts in accordance with the client’s creation operation.
Fig 2 and Fig 3 illustrate the creation process and the consequent namespace.

 MRFS: A Distributed Files System with Geo-replicated Metadata 279

Fig. 2. Clients create different files

/

/path1 /path2

/path2/file3 /path2/file4/path1/file1 /path1/file2

MDS1 MDS2

NS: Global Namespace
And the Mapping

Metadata Metadata

Fig. 3. Metadata construction in server side

Client1 and client2 create files respectively and send command to their own
primary MDSs. MDS stores that metadata entry is called Host MDS, i.e., MDS1 is the
Host MDS of /path/file1. To complete the command, MDS should inform NS of the
creation operation, so that new files are added into the namespace. As a result,
namespace and file metadata are stored in NS and MDS separately. For MDS, it
constructs a hash table in memory to store all local file metadata, so as to accelerate
the query speed.

Each MDS serves multiple clients simultaneously. When a request from client is
coming, primary MDS scans the hash table to check whether the requested entry
exists locally. If so, MDS returns directly; or else, it should forward the query to NS
for a global query. If the path exists in other MDS, NS will return its location. Then
primary MDS connects to the Host MDS (for the first time of connection) and queries
for the actual metadata. This procedure introduces an extra RTT, but such situation is
supposed to be rare.

In case that there are hotspot issues or flash crowds, we implement the replication
mechanism among MDSs. It uses a server-initiated model. Host MDS pushes the
copy of popular metadata entries to other MDSs that have queried the metadata
beyond a configurable threshold in a specific time interval. Replicas are distributed in
different MDSs to improve the workload balance for servers and a low latency for

280 J. Yu et al.

clients. When creating a new replica, Host MDS keeps track of the replica MDS for
subsequent updates. To simplify the design, metadata updates can only be executed in
the Host MDS. Whenever the metadata is modified, the updates will be pushed to all
available replicas by Host MDS.

MRFS removes the stale replicas automatically to avoid unlimited increase of
replicas. Each MDS maintains the visit information for replicas. At intervals of a
configurable period, each MDS scans all existing replicas and removes those that are
old enough and under the deletion threshold. To guarantee the fairness and decrease
the impact of history information, the concept of decay is applied in our design. Each
decay period the history visit count is decayed at a rate, whose value can be set
according to different requirements.

At last, all processes in server side are transparent to client. The only thing clients
concern about is the execution result or the returned metadata information.

4 Experiments and Results

4.1 Experiment Setup

We deploy four machines as MDSs, each of which is with 1G main memory and
running Ubuntu 12.04 Server. Along with each MDS, there is a client running at the
same node and connecting to the MDS process. Besides, the NS is deployed at
another node with 8G main memory and running Ubuntu 12.10 Server. The local-disk
file system at each node is ext4.

4.2 Experiment Results

We use four different metrics to measure the performance of metadata service. Firstly,
we measure the memory overhead of MDS and NS without replicas. Then we create
replicas in one MDS on purpose to measure the replica’s impact on memory usage.
Secondly, the execution time of creation in different situation is measured. At last, we
use NumPy [16] and Python to simulate the visit pattern of web applications. By this,
we can measure the efficiency of replicas and the performance enhancement it brings.

Fig. 4. Memory usage of NS and MDS process changes as the number of created files increases

 MRFS: A Distributed Files System with Geo-replicated Metadata 281

Fig. 5. Increment of memory usage of NS and MDS process in each creation operation

Fig 4 and Fig 5 show the memory usage and increment in NS and MDS along with
the increasing of the number of created files. Obviously, the memory usage increase
linearly with the file count. Each entry in MDS costs about 110 bytes, while that of
NS is about 30% less. This can be explained because NS doesn’t store the file
information but the directory tree and mapping. Although MDS may take up more
memory, in real environment, there are multiple MDS in different locations, workload
will be distributed among them and MDS is unlikely to have a bottleneck in memory.
It should be clarified that the reason why MDS takes much more memory than NS is
that process allocates the memory to hash table in advance.

We run another experiment with two MDS and a NS to demonstrate the impact of
replicas. Initially, we create 100K files in MDS2, and then make MDS1 create all files’
replica locally. The dmap command is used to monitor the memory usage of each process
in different stages. Fig 6 shows some features of MRFS. The creation in one MDS won’t
affect other MDS, which means MDS is able to work individually. The replica creation
will introduce extra memory overhead in all three machines. NS increases a tiny amount
of memory as it only keeps track of the replica MDS’s ip for further use. As the Replica
MDS, MDS1 increases about 85% of the primary metadata copy in MDS2. This is
because Replica MDS doesn’t store the information of remote visit but local visit. As the
Primary MDS, MDS2 need to record the replica MDS’s information, and therefore its
memory usage increases about 20% compared to the original.

Fig. 6. Comparison of memory usage before and after creating replicas

282 J. Yu et al.

Fig. 7. Total execution time of creating 100K files in four MDS

Each MDS applies the creation of 100K files for three times. More precisely, creation
is firstly operated in parallel and then individually and lastly executed in local file
system. Fig 7 shows that local file system provides the best performance with the total
execution time of 80 seconds. For MRFS, due to the network latency, the elapsed time
is about 5 times slower than local file system. Averagely, each creation operation costs
about 5ms. When executed in parallel, the average execution time is a little longer, for
the reason that each MDS should interchange with NS to finish the operation and the
single-thread design of NS limits the throughput. Fortunately, all metadata and
namespace information are stored in main memory and this inherent advantage leads to
a fast processing. Therefore, network latency takes up most of the elapsed time, and
even in parallel mode, the average time of 8ms for each creation is efficient enough for
a distributed file system. This result meets our design expectation.

To measure the effectiveness of replication, we firstly create 500 disjoint files in
each MDS, and then use Python script and the NumPy library to simulate the access
pattern of metadata. Each Client executes 40K access operations through their
Primary MDS, and every operation is carried out at a time interval of 10ms.

The local/remote access ratio is set in the script, i.e., ratio=0.2 means that local
access takes up 20% of all access while remote access of other MDS takes up 80%.
All accesses conform to the Pareto Distribution, which is a power-like distribution
and can be used as a model for many read-world problems [17][18]. For MRFS, that
means only a small part of metadata is involved with a majority of accesses. Another
parameter is the threshold of replica creation which can be configured in MDS
module. In our experiment, threshold parameter is set as 5, 10 and 20. We also count
the number of created replicas, and calculate the average hit number of all replicas.
This metric can show the overall efficiency of the metadata replication.

We can calculate the hit ratio of generated replicas among all accesses that could
not be satisfied by local metadata. The hit rates and the number of created replicas are
plotted in Fig 8 and Fig 9 respectively. Firstly, we can see obviously the hit ratio is
decreasing as the threshold number increases. This is simply because fewer replicas
are generated and more requests are forward to remote MDS. In the worst case
(ratio=0.8 and threshold=20), the hit ratio drops to 48.44%. However, since the total
remote accesses account for 20% of all accesses, the actual forward operations take
up only 10.29%. Secondly, with the value of ratio increases, which reflects more

 MRFS: A Distributed Files System with Geo-replicated Metadata 283

requests are handled locally, the percentage of replica hit falls on the contrary. The
reason is that with the same value of threshold, fewer remote accesses will lead to
fewer replicas according to the feature of Pareto distribution, and consequently a
greater number of requests will be forward to other MDS.

Fig. 8. Hit rate of replicas with various parameters

Fig. 9. Number of generated replicas with various parameters

Fig. 10. Average hit count of replicas with various parameters

284 J. Yu et al.

Besides the hit ratio of replicas, we use the average hit count to measure the
efficiency of replicas. As can be observed in Fig 10, one replica serves more visit
requests while the total number of replicas declines. This can be explained by the
basic properties of Pareto distribution, that is a majority of access only involve with a
small amount of metadata. Therefore, the most popular part of replicas will take over
more requests than others.

From the discussions and comparisons above, we can see that MRFS performs
efficiently and effectively in metadata service in various scenarios. And the
replication mechanism largely reduces the cross-MDS visit at the cost of affordable
memory overhead. Besides, we can take advantage of the flexible configuration to
achieve the balance between the overall performance and memory usage.

5 Conclusion and Future Work

Distributed file system plays a key role in distributed computing, especially in cloud
computing systems with high requirement of storage volumes and performance. High
scalable and effective metadata service is still a challenging issue in the design and
implementation of distributed file systems. We design and implement a real
distributed file system MRFS with novel metadata management, which takes
advantage of two-tiered architecture and separates the metadata and namespace
service. To reduce the latency and alleviate the hotspot issues and flash crowds, an
efficient and flexible replication mechanism is implemented as well. Experiments
show that the file system can process a majority of file operations with low latency.
Moreover, the distribution of metadata service provides a higher scalability and
efficiently serves clients scattered at different places. Last but not least, replicas bring
substantial performance improvement at little expense of memory loads.

In future, we will improve our system in several ways. First, high availability of
metadata will be introduced and implemented, which will make the system more
robust. Second, we will consider new approach like prefix-compression algorithm to
reduce the memory overhead in namespace server. Third, new replica placement
strategies will be considered to improve the overall efficiency while cutting down
more memory usage.

Acknowledgement. This research is partially supported by National Natural Science
Foundation of China (No. 61379157), Guangdong Natural Science Foundation (No.
S2012010010670), and Pearl River Nova Program of Guangzhou (No.
2011J2200088)

References

1. Leung, A.W., Shao, M., Bisson, T., Pasupathy, S., Miller, E.L.: Spyglass: Fast, Scalable
Metadata Search for Large-Scale Storage Systems. In: FAST, vol. 9, pp. 153–166 (2009)

2. Roselli, D.S., Lorch, J.R., Anderson, T.E.: A Comparison of File System Workloads. In:
USENIX Annual Technical Conference, General Track, pp. 41–54 (2000)

 MRFS: A Distributed Files System with Geo-replicated Metadata 285

3. Traeger, A., Zadok, E., Joukov, N., Wright, C.P.: A nine year study of file system and
storage benchmarking. ACM Transactions on Storage (TOS) 4(2), 5 (2008)

4. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In:
2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–10.
IEEE (2010)

5. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. In: ACM SIGOPS
Operating Systems Review, vol. 37(5), pp. 29–43. ACM (2003)

6. MooseFS, http://www.moosefs.org
7. Satyanarayanan, M., Kistler, J.J., Kumar, P., Okasaki, M.E., Siegel, E.H., Steere, D.C.:

Coda: A highly available file system for a distributed workstation environment. IEEE
Transactions on Computers 39(4), 447–459 (1990)

8. Rosenblum, M., Ousterhout, J.K.: The design and implementation of a log-structured file
system. ACM Transactions on Computer Systems (TOCS) 10(1), 26–52 (1992)

9. Brandt, S.A., Miller, E.L., Long, D.D., Xue, L.: Efficient metadata management in large
distributed storage systems. In: 2013 IEEE 10th International Conference on Mobile Ad-
Hoc and Sensor Systems, pp. 290–290 (2003)

10. Weil, S.A., Brandt, S.A., Miller, E.L., Maltzahn, C.: CRUSH: Controlled, scalable,
decentralized placement of replicated data. In: Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, p. 122. ACM (2006)

11. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D., Maltzahn, C.,, C.: A scalable, high-
performance distributed file system. In: Proceedings of the 7th Symposium on Operating
Systems Design and Implementation. USENIX Association (2006)

12. Zhu, Y., Jiang, H., Wang, J.: Hierarchical bloom filter arrays (hba): A novel, scalable
metadata management system for large cluster-based storage. In: 2004 IEEE International
Conference on Cluster Computing, pp. 165–174 (2004)

13. GlusterFS, http://www.gluster.org
14. MapR, http://www.mapr.com
15. FUSE, http://fuse.sourceforge.net
16. NumPy, http://www.numpy.org
17. Arnold, B.C.: Pareto distribution. John Wiley & Sons, Inc. (1985)
18. Reed, W.J.: The Pareto, Zipf and other power laws. Economics Letters 74(1) (2001)

	MRFS: A Distributed Files System with Geo-replicated Metadata
	1 Introduction
	2 Related Work
	3 The Design and Implementation of MRFS
	3.1 Overview of MRFS
	3.2 The Client Module of MRFS
	3.3 The Namespace Server of MRFS
	3.4 The Metadata Server of MRFS

	4 Experiments and Results
	4.1 Experiment Setup
	4.2 Experiment Results

	5 Conclusion and Future Work
	References

