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Abstract. The fast growth of the web of linked data raises new chal-
lenges for distributed query processing. Different from traditional feder-
ated databases, linked data sources cannot cooperate with each other.
Hence, sophisticated optimization techniques are necessary for efficient
query processing. Source selection and distributed join operations are
key factors concerning performance of linked data query engines. In this
paper, we propose identifier graph based source selection taking into ac-
count the logical relationship between triple patterns, and develop effec-
tive solutions for distributed join operations to avoid program errors and
to minimize network traffic. In experiments, we demonstrate the prac-
ticability and efficiency of our approaches on a set of real-world queries
and data sources from the Linked Open Data cloud. With the imple-
mented prototype system, we achieve a significant improvement in the
accuracy of source selection and query performance over state-of-the-art
federated query engines.
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1 Introduction

In recent years, the World Wide Web has evolved from a global information
space of linked documents to one where both documents and data are linked
[3]. The linked data adopt the general data format (RDF), are described by pre-
defined vocabularies which make them have restrict semantics, and then can be
understood by computers. This kind of Web of Data opens up possibilities for
new types of applications which can aggregate data from different data sources
and integrate fragmentary information from multiple sources to achieve a more
complete view. Transparently querying distributed RDF data sources is a key
challenge for these possibilities.

With the ever-increasing amount of data sources accessible via SPARQL end-
points, federated query approach has attracted more and more attentions. How-
ever, federated query systems for Linked Data are still in their infancy. Improving
the query performance of these systems is always in the center of their work. We
outline two key factors concerning the performance of federated query systems:
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Firstly, the decomposition of original queries must be accurate as far as possible;
Secondly, distributed join operations should be effectively executed.

In this paper we concentrate on improving performance of federated SPARQL
queries over the Web of Linked Data. To provide users with a transparent view
for this Web of Data, the only available information for query decomposition is
the user query strings. Hence, we argue that the more clues (presented or implied
in query strings) are contributed to source selection, the better accuracy of query
decomposition will be. Due to the network latency, distributed join operations
may lead to poor query performance. Our goal is to provide optimizations for
minimizing the number of remote requests and the amount of network traffic.
Thus, sophisticated optimization strategies are needed for efficiently executing
distributed join operations. Our main contributions are:

– We utilize a novel approach to make the query decomposition to be conve-
nient and accurate.

– We propose optimization strategies for distributed join operations, mainly
including join ordering and join execution.

– We implement the presented optimization techniques in our prototype sys-
tem and perform experiments on a set of real-world queries and data sources.

The remainder of this paper is structured as follows. In Section 2 we review
related work. Details of evaluating distributed SPARQL queries are discussed in
Section 3. An evaluation of our prototype system is given in Section 4. Finally,
we conclude and discuss future directions in Section 5.

2 Related Work

Related work can be divided into two main categories: (a) query decomposition
(b) query optimization.

2.1 Query Decomposition

DARQ [17] extends the popular query processor Jena ARQ to an engine for fed-
erated SPARQL queries. It requires users to explicitly supply a configuration file
which enables the query engine to decompose a query into sub-queries and opti-
mize joins based on predicate selectivity. Stuckenschmidt [20] presents an index
structure called source index hierarchy which is used to determine information
sources that contain instances of a particular schema path. Given a predicate
path in a dataset, an index hierarchy is constructed, where the source index of
the indexed path is the root element. Both two approaches require predicates of
triple patterns contained in the query string to be bound. SemWIQ [11] requires
all subjects must be variables and for each subject variable its type must be
explicitly or implicitly defined. Additional information (another triple pattern
or DL constraints) is needed to tell the type for the subject of a triple pattern.
It uses these additional information and extensive RDF statistics to decompose
the original user query. These requirements limit the variety of user queries.
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In other cases, users are required to provide additional information to de-
termine the relevant data sources. For instance, [21] theoretically describes a
solution called Distributed SPARQL for distributed SPARQL query on the top
of the Sesame RDF repository. Users are required to determine which SPARQL
endpoint the sub-queries should be sent to by the GRAPH graph pattern. The
association between graph names and respective SPARQL endpoints at which
they reside is explicitly described in a configuration file. The W3C SPARQL
working group has defined a federation extension for SPARQL 1.1 [5]. However,
remote SPARQL queries require the explicit notion of endpoint URIs. The re-
quirement of additional information imposes further burden on the user. On
the other hand, the proposed approach hardly imposes any restrictions on user
queries.

Recently, several attempts have been made to do source selection without local
statistics. FedX [19] asks all known data sources by SPARQL ASK query form
whether they contain matched data for each triple pattern presented in a user
query. FedSearch[14] is based on FedX and extends it with sophisticated static
optimization strategies. If the amount of known data sources is very large(it
is common in an open setting), the query performance may leave much to be
desired. SPLENDID [6] relies on the VOID descriptions existed in remote data
sources. However, a VOID description is not an integral part of Linked Data
principles. [1].

2.2 Query Optimization

Research on query optimization has a long history in the area of database sys-
tems. Concepts in these research areas have been adopted to optimize queries
on local RDF stores. OptARQ [2] reorders triple patterns in SPARQL queries
based on their selectivity. Hartig [9] adapted the query graph model (QGM) for
SQL queries to represent SPARQL queries. Based on SQGMs, SPARQL queries
are rewritten for optimization purpose. Due to the triple nature of RDF data,
optimization for queries on local repositories has also focused on the use of spe-
cialized indices to accelerate the join operations, e.g. [7].

In [17] Quilitz et.al have adopted some of existing techniques from relational
systems to federated SPARQL queries. They present a cost based optimization
for join ordering. However, their estimation on the result size of joins is inaccu-
rate by simply setting the selectivity factor for the join attributes to a constant.
Because unbound queries generally returning a large result set, other join imple-
mentations are proposed as an alternative to local nested-loop implementation
of joins, such as pipeline join [8] and semijoin [21]. Due to the variety of the
Web, none of these approaches can effectively process all user queries. The rea-
sons are discussed in Section 3.3. In this paper, we propose a novel way, called
groupjoin, to execute join operations. The size of group can be modified flexibly
for enhancing performance of the system in different situations.
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3 Federated SPARQL Query

A federated query system has the similar architecture shown in Figure 1. A
mediator(also called query federator) analyzes and decomposes the user query
into several sub-queries and distributes them to autonomous data sources which
execute these sub-queries and return the results, and then integrates intermedi-
ate results into query answers. This section describes in detail how to evaluate
distributed SPARQL queries.
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Fig. 1. A common architecture of federated query systems

3.1 Query Decomposition

RDF data is a kind of graph-structured data, and the Web of Linked Data can
be seen as a huge distributed RDF graph. SPARQL is a query language for RDF,
based on graph patterns and subgraph matching. The simplest graph pattern
defined for SPARQL is the triple pattern which is like the RDF triple except
that each of the subject, predicate and object may be a variable. The basic
graph pattern(BGP) consists of a set of triple patterns which are conjunctive
relationship, and also has a graph structure. Other complex graph patterns can
be constructed by BGP using SPARQL logical operators(UNION, OPTIONAL).
Solutions of a SPARQL query are decided by non-variable parts of triple patterns
and the logical relationship between graph patterns. Hence, the decision of query
decomposition should be made not only by non-variable parts of triple patterns
but also by the logical relationship between graph patterns.

Formal Definitions. Before discussing our approaches, we give formal defini-
tions of concepts used in this section.

Definition 1 (Triple). Assume that I(IRIs), B(Blank nodes) and L(RDF lit-
erals) are pairwise disjoint infinite sets. An RDF statement can be represented
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as a tuple: (s, p, o) ∈ (I ∪B)× I × (I ∪B ∪ L). In this tuple, s is the subject, p
is the predicate and o is the object. The tuple representing an RDF statement is
called a RDF triple, simply called triple.

A group of resources with similar characteristics is called a class. The members
of a class are instances of the class. In RDF, the predicate rdf:type1 generally is
used to express a source being an instance of a class. For example, P rdf:type C,
denotes that P is an instance of C. In the context of this paper, we divide RDF
triples into instance triples and class triples. Formally, they are defined as:

Definition 2 (Class Triple). A RDF class triple (C,p,D) is a RDF triple, both
C and D are instances of the rdfs:Class. If c is an instance of C and d is an
instance of D, then the triple (c,p,d) is called an instance triple of (C,p,D) and
(C,p,D) is called a class triple of (c,p,d).

Definition 3 (Triple Pattern). Assume that I( IRIs ),B( Blank nodes ),L(
RDF literals ) and V( variables ) are pairwise disjoint infinite sets. A triple
pattern tp satisfies: tp ∈ (I ∪B ∪ V )× (I ∪ V )× (I ∪B ∪ L ∪ V ).

Similarly, we divide RDF triple patterns into RDF class triple patterns and
RDF instance triple patterns. Following the definition above, we give the formal-
ized definitions of RDF class triple patterns and RDF instance triple patterns:

Definition 4 (Class Triple Pattern). Assume that V is a infinite set of vari-
ables, for a given triple pattern (v1, v2, v3), if v1 �∈ V and v1 is a instance of the
class C, then s = C, else s = v1; if v3 �∈ V and v3 is a instance of the class
D, then o = D, else o = v3. The triple pattern (s, v2, o) is called a class triple
pattern of the triple pattern (v1, v2, v3) and (v1, v2, v3) is called an instance triple
pattern of (s, v2, o).

Source Selection. Before source selection, we previously extract class triples
from all known data sources. The RDF graph consisting of all class triples from
one data source is named by the URI of the SPARQL endpoint of this data source
and stored into a local RDF dataset. A RDF dataset represents a collection of
RDF graphs. It comprises one default graph and none or more named graphs,
where each named graph is identified by an IRI [16]. Besides, we also compute the
total number of instance triples and the number of distinct subjects associated
with each class triple. The object values domain for predicates is represented by
histograms[15]. Consequently, a Web of Linked Class is built on top of the Web
of Linked Data. The former is much smaller than the latter, and can be loaded
into memory during the system running.

If all triple patterns contained in a SPARQL query are class triple patterns,
then this query is called a class query. If all class triple patterns in a class query

1 In this paper we use the following prefixes: rdf:
http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
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are respectively replaced with an instance triple pattern of them, then the new
query is called an instance query of the class query. Before a SPARQL query
being evaluated, it is transformed into class queries. Graph patterns containing
in class queries are used as identifier graph for source selection.

SPARQL provides the mechanism accessing names of named graphs in a
dataset. By using the keyword of GRAPH, a query engine can access the name
of a named graph from which the matched data of one or a group of triple pat-
terns come. Our main idea for query decomposition is that firstly translating
the original query into class queries; then adding the GRAPH keyword for each
class triple pattern; finally evaluating each class query on the statistical model
dataset. Classes of an IRI resource can be obtained by dereferencing this IRI.
Non-IRI resources are assigned with a common class of rdfs:Literal. SPARQL
GRAPH keywords do not change the logical relationships between SPARQL
graph patterns. Hence, the result of query decomposition is a comprehensive
action of the information of classes, predicates and logical relationships between
graph patterns in a query. To the best of our knowledge, there are not any ex-
isting approaches considering all these three factors. Hence, we can expect that
the presented approach is more accurate than others.

3.2 Cardinality Estimation

Single Triple Pattern. Estimating the cardinality of one single triple pattern
tp = (s, p, o) on a data source d includes two steps: Firstly transforming tp into
its class triple pattern ctp and evaluating ctp on the class graph dm of d, then a
subset d

′
of d can be decided; the cardinality of tp is estimated on d

′
.

The cardinality of tp can be estimated by the following function:

cardd(tp) = cardd′ (tp) = |T ′ |×seld′ (tp) = |T ′ |×seld′ (s)×seld′ (p)×seld′ (o) (1)

Where |T ′ | is the total number of triples in d
′
. seld′ (s), seld′ (p) and seld′ (o)

respectively are the selectivity of s, p and o on d
′
. For s, p and o, if it is a vari-

able, then its selectivity is set to 1. Otherwise, their selectivity are respectively
computed by the following functions:

seld′ (s) =
1

|I ′ | (2) seld′ (p) =
|T ′

p|
|T ′ | (3)

seld′ (o) =

⎧
⎪⎪⎨

⎪⎪⎩

∑
si∈S

∑
pj∈Psi

c(si, pj, oc) if both s and p are not bound
∑

si∈S c(si, p, oc) if s is not bound and p is bound
∑

pj∈Psi
c(s, pj , oc) if s is bound and p is not bound

c(s, p, oc) if both s and p are bound
(4)

where |I ′ | is the total number of URIs in d
′
, c(s, p, oc) = hc(s,p,oc)

|T ′
(s,p)
| , i.e., the

frequency of oc normalized by the number of triples matching s and p, and oc
is the histogram class in which the object o falls into, |T ′

p| corresponds to the

number of triples matching predicate p in d
′
. If p is bound, then |T ′

p| = |T ′ |.
Hence, seld′ (p) ≡ 1.
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Pattern Groups. The function estimating the cardinality of a group of triple
patterns TP = (tp1, tp2, ..., tpn) is:

card(TP ) = min(m1,m2, ...,mn)

n∏

i=1

card(tpi)

mi
(5)

Where mi is the number of different values of tpi in the joint position. If the joint
variable is in subject position, then mi = |R′ |. If the joint variable is in predicate
position, then mi is the number of different predicates. If the joint variable is in
object position, then mi is the number of different values of all predicates.

Join Cardinality. We compute the join cardinality as

card(q1 �� q2) = |R1||R2|sel��(q1, q2) (6)

Where |R1| and |R2| are respective the cardinality of q1 and q2; sel��(q1, q2) is
the join selectivity of q1 and q2. It is a reduction factor which depends on the
selectivity of the join variable in both datasets. We use the maximum selectivity
of the join variable as the join selectivity.

3.3 Join Reordering

The join order determines the number of intermediate results and is thus one
of key factor for query performance. For the federated setup, we propose a rule-
based join optimizer, which orders a list of subqueries according to a heuristics-
based cost estimation. Our algorithm uses a variation of technique proposed in
[19] and is depicted in Algorithm 1. Firstly, It selects the subquery with minimum
cardinality(line 3) and append it to the result list(line 4). Then, it selects the
subquery from remaining subqueries which has minimum join cardinality with
the last subquery in the result list (line 7-8) and append it to the end of the
result list(line 9).

Algorithm 1. Join Order Optimization
1: order(sqs : list of n joint subqueries)
2: result ← ∅

3: mincard← min(card(sqs[1− n]))
4: result ← result + {sqs[j]}//j is the index of subquery with minimum cardinality
5: sqs← sqs\sqs[j]
6: while sq �= ∅ do
7: q ← result[result.len − 1]
8: mincost ← card(q �� sqs[i])//i is the index of subquery which has the minimum join cardi-

nality with q
9: result ← result + {sqs[i]}

10: sqs← sqs\sqs[i]
11: end while
12: return result
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3.4 Join Execution

While pipeline join(PJ) directly passes each solution produced by one operation
to the operation that uses it, semijoin(SJ) buffers the obtained variable binding
sets and sends them in a batch as conditions in a SPARQL FILTER expression
to remote SPARQL endpoints. The former may produce too many concurrent
access to remote data sources, and the latter may lead to program errors due to
long query strings.

We propose groupjoin(GJ) which restrains the number of the cached solutions
in the mediator. In contrast to caching all solutions of the prior sub-query in
semijoin, these solutions are divided into some groups, each group contains n
solutions. Assume that, q1 and q2 are two join query and are respectively eval-
uated on dataset D1 and D2; the cardinality of q1 is N1 and the times which
D2 allows one client to access in a period of time is NC . Then, the size of each
group should be n ≥ N1

NC
. Again, the maximum length of query string evaluated

on D2 is NF . Hence,
N1

NC
≤ n ≤ NF

NT
, where NT is the average length of RDF

terms in D2. In practice, n is firstly set to an experimental value between N1

Nc

and NF

NT
. When errors occurred due to too many remote connections, the query

engine increases the group size, and thus decreases the number of concurrent
threads. When errors occurred due to too many value constraints, the query
engine decreases the group size.

The difference between PJ, SJ and GJ lies in the different number of concur-
rent threads during executing join operations. However, in case of distributed
query processing the amount of transferred data has the highest influence on
query execution time. Essentially, PJ, SJ and GJ need equal network traffic. For
simplicity, we consider the transfer cost of SJ. The cost of a semijoin is estimated
as

costsj(q1 �� q2) = |R1||V1|ct + |ΠV (R1)||V |ct + |R′
2||V2|ct + 2cq (7)

Where ct and cq are the respective transfer costs for one result tuple2 and one

query; R1 is the result set of q1; R
′
2 is the result set of q

′
2 which is the query

with variables bound with values of a result tuple from q1; V1 and V2 are the
respective variable set of q1 and q2; V is the intersection of V1 and V2, ΠV (R1)
is the projection of R1 on V .

While semijoin projects R1 on V in the mediator, double semijoin(DSJ)[12]
executes this operation in D1. The cost of a double semijoin is estimated as

costdsj(q1 �� q2) = (2|ΠV (R1)|+ |ΠV (R
′
2)|)|V |ct+ |R′

2||V2|ct+ |R′
1||V1\V |ct+3cq

(8)
Where |R′

1| is the result set of q
′
1 which is the query with variables bound with

values of R
′
2.

Distributed join operations are parallel executed in GJ. In each thread, we
select the optimal way according to function (7-8).

2 For simplicity, we currently disregard the specific tuple size.
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4 Evaluations

We have developed a prototype system(LDMS3) implementing the proposed ap-
proaches and conducted an experimental study to empirically analyze the effec-
tiveness of it compared with several existing federated SPARQL query systems.

Our evaluation is based on FedBench4[18]. In contrast to other SPARQL
benchmarks[4,13], FedBench focus on testing and analyzing the performance
of federated query processing strategies on semantic data. It includes two sub-
sets of data sources in the Linked Data cloud: Cross Domain(DBpedia, NY-
Times, LinkedMDB, Jamendo, GeoNames) and Life Sciences(KEGG, Drugbank,
ChEBI, DBpedia). For each data set, it defines seven queries. In this paper, we
discuss the evaluation of graph pattern containing BGP and UNION, omitting
other kinds of graph patterns. Hence, thirteen out of fourteen queries are adopted
in our experiments. The overview of the data sets is shown in Table 1(a) in terms
of number of triples(#Triples), size of statistical models and time taken to create
them in hh:mm:ss. Queries are shown in Table 1(b) in terms of number of BGPs
and patterns in the WHERE clause and size of results.

Table 1. FedBench datasets and queries used for the evaluation

(a)

Dataset #Triples SM Size SM Time

DBpedia 43.6M 12.8MB 03:55:18
NYTimes 335k 103KB 00:01:27
LinkedMDB 6.15M 368KB 00:27:36
Jamendo 1.05M 33KB 00:5:12
Geo Names 108M 68KB 08:43:47
SW DogFood 104k 646KB 00:00:30
KEGG 1.09M 42KB 00:05:30
Drugbank 767k 195KB 00:02:12
ChEBI 7.33M 23KB 00:25:12

(b)
Query #BGPs #Patterns #Results

CD1 2 3 90
CD2 1 3 1
CD3 1 5 2
CD4 1 5 1
CD5 1 4 2
CD6 1 4 11
CD7 1 4 1
LS1 2 2 1159
LS2 2 3 333
LS3 1 5 9054
LS4 1 7 3
LS5 1 7 393
LS6 1 5 28

The data server was set up using OpenRDF Sesame framework which provides
a query service (SPRAQL endpoint) for each data source. Benchmark datasets
simulated on the same physical host and were respectively loaded as a single
repository with the type of Sesame Native Store. The prototype system(i.e. test
client) was on a Windows XP with two Dual-Core Intel Xeon processors (2.8
GHz) and 3GB memory. The server was running a 64 Bit Debian Linux Opera-
tion System with two Intel Xeon CPU E7530 processors (each with twelve cores
at 2 GHz), 32 GB main memory. The statistical models for data sources were
loaded into memory when starting the system.

3 LDMS is available as Java source code(eclipse project) from the SVN repository:
https://svn.code.sf.net/p/semwldms/code/LDMS/trunk

4 FedBench can be downloaded at http://code.google.com/p/fbench/

https://svn.code.sf.net/p/semwldms/code/LDMS/trunk
http://code.google.com/p/fbench/
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4.1 Evaluation of Join Execution

Based on LDMS, benchmark queries were respectively evaluated by four ways of
execution of join operations: pipeline join(LDMS-PJ), nested loops join(LDMS-
NLJ), semijoin(LDMS-SJ) and groupjoin(LDMS-GJ). We measured the query
evaluation time to see how different ways of join execution affects the overall
performance of the query system. For group-join, the size of group was set to
100. All queries were evaluated five times with the five minutes timeout. Figure
2 shows the average time of returning completed answers.

Fig. 2. The Comparison of Time Performance for Different Ways to Execute Join
Operations(not including the time for query decomposition)

Due to all intermediate results being transferred over network, the time per-
formance of nested loops join is in the worst situation. However, if all sub-queries
have small result sets, it still can be comparable to other ways, i.e. CD2. While
pipeline join needing too many remote requests, semijoin suffers from too many
intermediate results. When the amount of intermediate results being attached
to a sub-query is very large, the internal performance of the remote data sources
may become very low, i.e. CD6 and LS5. For LS3 LDMS-SJ sends too long query
strings to KEGG data source and encounters program errors. No distributed join
operations are concerned in CD1, LS1 and LS2. Hence, LDMS-PJ, LDMS-SJ and
LDMS-GJ evaluate these three queries in the same way, and are similar in time
performance. For queries that the group size is larger than the size of intermedi-
ate result sets, LDMS-SJ is equal to LDMS-GJ, i.e. CD3, CD4, CD5 ,CD7 and
LS6. For CD6 and LS4-5, LDMS-GJ is faster than LDMS-SJ.

4.2 Comparison with Other Federated SPARQL Query Systems

Some other state-of-the-art federated SPARQL query systems were deployed in
our experimental environments, namely SPLENDID and FedX to which LDMS
was compared. Every system evaluates all benchmark queries and returns com-
pleted answers. We test the accuracy of query decomposition and time perfor-
mance for these three systems.
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Evaluation of Query Decomposition. We define R = Ne

NE
and P = Ne

N to
measure the quality of query decomposition, where Ne is the number of effective
query plans generated by query systems and NE is the number of all effective
query plans that a original query should have, N is the number of all query plans
generated by query systems. An effective query plan means that it can produce
query answers. A poor recall will produces incomplete query answers and a poor
precision means unnecessary access to the remote data resources which leads to
poor time performance. Therefore, we investigated how different strategies affect
the accuracy of the source selection. For each query, we look at the recall and
the precision of query plans. We test approaches used in LDMS, SPLENDID
and FedX respectively. While the recall of these three systems in term of query
decomposition is 100%, the precision is different.

(a) (b)

Fig. 3. The Precision(a) and Time Performance(b) of Query Decomposition

As shown in Figure 3(a), both LDMS and SPLENDID have 100% preci-
sion for CD2-5, LS3-4. The query decomposition strategies of SPLENDID can
be approximately seen as the integration of approaches used by DARQ and
SemWIQ(reviewed in Section 2.1). For queries with unbound predicates, SPLEN-
DID have to use additional SPARQL ASK queries to refine selected data sources.
Nevertheless, for six queries LDMS is better than SPLENDID, i.e. CD1, CD6-7,
LS2 and LS5-6. SPLENDID misses consideration of the path information which
is common in conjunctive queries. The similar shortcoming is happened to FedX.
For example, FedX decides that (?x <owl:sameAs> ?present) and (?present
<rdf:type> <dbpedia-owl:President>) in CD3 are relevant to DBpedia which
can not give any answers for the conjunctive query comprising these two triple
pattern. FedX has 100% precision for only three out of thirteen queries, i.e. CD2,
LS1 and LS4.

FedX directly asks all known data sources whether they contain matched data
for each triple pattern in a query. On the other hand, LDMS accesses remote
data sources when getting types of IRIs in the position of subject and object. As
shown in Figure 3(b), for all queries LDMS is better than FedX in terms of query
decomposition time. SPLENDID hardly needs remote requests, hence takes just
a little time for query decomposition. For CD1 and LS2, FedX is comparable
to SPLENDID. The reason is that these two queries contains triple patterns
comprising three variables and SPLENDID needs accessing to all remote data
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sources for their source selection. For CD4, CD6 and CD7, all predicates are
bound and no IRIs presented in the position of subject or object, hence, LDMS
needs no remote requests, and then is comparable to SPLENDID in term of
decomposition time.

Time Performance. We measure the overall time performance for LDMS,
SPLENDID and FedX. Again, all queries were evaluated five times and the av-
erage time is used for comparisons. Besides of query decomposition, these three
systems are different in join optimization strategies. FedX uses heuristics to
reordering join operations whereas SPLENDID and LDMS use statistical infor-
mation to optimize query plans based on dynamic programming. While FedX
uses bound join to optimize traditional implementation of semi-join, SPLEN-
DID adopt nested loops join and pipeline join. LDMS reorders joins based on
the result of cardinality estimation of sub-queries and executes join operations
in the way of groupjoin.

Fig. 4. The Comparison of Time Performance with other state-of-the-art Federated
SPARQL Query Systems

The result of the experiment is encouraging, shown in Figure 4. For all queries
LDMS is faster than other two systems. However, FedX is comparable to LDMS
for queries with a large amount of results, i.e. LS3. It is because that the cost of
query decomposition is insignificant for the overall time performance. SPLEN-
DID fails to return results for CD6, LS3 and LS5. The reason is that SPLENDID
opens too many connections to data sources and encounters connection errors.
For six queries FedX is faster than SPLENDID, i.e. CD1-5, CD7, LS1-2, LS4.
For LS6, FedX generates many ineffective query plans and the first sub-query
evaluated in some of query plans has non-empty result set. It means that many
intermediate results need to be transferred to local federator, but produce no
results when join with the next sub-query.
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5 Conclusions

We have presented an approach for evaluating SPARQL queries over the Web
of Linked Data, based on general statistical models which form a local web of
linked classes. We have shown how the statistical model can be used to select
relevant sources, and how to optimize distributed join. As revealed by our bench-
marks, source selection approaches are effective in terms of accuracy and time
performance. We use almost all clues presented or implied in the original user
queries to make query decompositions. By decreasing the number of classes of
entities, the precision of query decompositions is satisfactory. Compare with the
traditional ways of executing join operations, groupjoin makes a compromise be-
tween pipeline join and semijoin. By setting an appropriate group size, LDMS is
better than or at least comparable to the state-of-art federated SPARQL query
systems.

The approach presented in this paper can be seen as a very first step towards
a solution for the problems of federated query processing on Linked Data. A
number of limitations exist in the current proposal with respect to the generality
of the approach and assumptions made. In federation query, query service is
necessary for relevant data sources. However, providing a SPARQL endpoint is
not required in the Linked Data principles. Both traditional federation query
and our approach just omit those datasets not providing query services. For a
more general query interface, additional technologies should be considered. The
link traversal based query execution [10] is a possible solution.

Though the network communication is the main factor influencing the time
performance of systems, the internal efficiency of remote data sources is also
important. We aim at providing an infrastructure for developing semantic ap-
plications. In a future release, we propose to combine these technologies into a
hybrid one.

Acknowledgments. This work is supported by the National Natural Science
Foundation of China (No 61272361) and the National Basic Research Program
of China (No 2012CB7207002).

References

1. Berners-Lee, T.: Design issues: Linked data (2006),
http://www.w3.org/DesignIssues/LinkedData.html (2011)

2. Bernstein, A., Kiefer, C., Stocker, M.: OptARQ: A SPARQL optimization approach
based on triple pattern selectivity estimation. Citeseer (2007)

3. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. International
Journal on Semantic Web and Information Systems (IJSWIS) 5(3), 1–22 (2009)

4. Bizer, C., Schultz, A.: The berlin sparql benchmark. International Journal on Se-
mantic Web and Information Systems (IJSWIS) 5(2), 1–24 (2009)

5. Garlik, S.H., Seaborne, A., Prudhommeaux, E.: Sparql 1.1 query language. In:
World Wide Web Consortium (2013)

http://www.w3.org/DesignIssues/LinkedData.html


272 X. Li, Z. Niu, and C. Zhang

6. Görlitz, O., Staab, S.: Splendid: Sparql endpoint federation exploiting void descrip-
tions. In: COLD (2011)

7. Harth, A., Decker, S.: Optimized index structures for querying rdf from the web.
In: Third Latin American Web Congress, LA-WEB 2005, p. 10. IEEE (2005)

8. Hartig, O., Bizer, C., Freytag, J.-C.: Executing sparql queries over the web of
linked data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,
D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 293–309.
Springer, Heidelberg (2009)

9. Hartig, O., Heese, R.: The sparql query graph model for query optimization. In:
Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 564–578.
Springer, Heidelberg (2007)

10. Ladwig, G., Tran, T.: Linked data query processing strategies. In: Patel-Schneider,
P.F., Pan,Y., Hitzler, P.,Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm,B. (eds.)
ISWC 2010, Part I. LNCS, vol. 6496, pp. 453–469. Springer, Heidelberg (2010)
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