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Preface

Welcome to the proceedings of the 14th International Conference on Algorithms
and Architectures for Parallel Processing (ICA3PP 2014) held in Dalian, China.

ICA3PP 2014 is the 14th in this series of conferences started in 1995 that are
devoted to algorithms and architectures for parallel processing. As applications
of computing systems have permeated in every aspect of daily life, the power
of computing system has become increasingly critical. This conference provides
a forum for academics and practitioners from countries around the world to
exchange ideas for improving the efficiency, performance, reliability, security,
and interoperability of computing systems and applications.

It is our great honor to introduce the program for the conference. Thanks to
the Program Committee’s hard work, we were able to finalize the technical pro-
gram. In the selection process, each paper was assigned to at least 4 PC members
as reviewers. The authors and those PC members from the same institution were
separated in the reviewing process to avoid conflicts of interests. We received 285
submissions from all over the world. The large number of submissions indicated
continued excitement in the field worldwide. The manuscripts have been ranked
according to their original contribution, quality, presentation, and relevance to
the themes of the conference. In the end, 70 (24.56%) papers were accepted as
the main conference papers and inclusion in the conference.

ICA3PP 2014 obtained the support of many people and organizations as well
as the general chairs whose main responsibility was various tasks carried out by
other willing and talented volunteers. We want to express our appreciation to
Professor Xian-He Sun for accepting our invitation to be the keynote/invited
speaker.

We would like to give our special thanks to the program chairs of the confer-
ence for their hard and excellent work on organizing the Program Committee,
outstanding review process to select high-quality papers, and making an excellent
conference program. We are grateful to all workshop organizers for their profes-
sional expertise and excellence in organizing the attractive workshops/symposia,
and other committee chairs, advisory members and PC members for their great
support. We appreciate all authors who submitted their high-quality papers to
the main conference and workshops/symposia.

We thank all of you for participating in this year’s ICA3PP 2014 conference,
and hope you find this conference stimulating and interesting.

July 2014 Ivan Stojmenovic
Wanlei Zhou
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Abstract. A novel MapReduce computation model in hybrid comput-
ing environment called HybridMR is proposed in the paper. Using this
model, high performance cluster nodes and heterogeneous desktop PCs
in Internet or Intranet can be integrated to form a hybrid computing en-
vironment. In this way, the computation and storage capability of large-
scale desktop PCs can be fully utilized to process large-scale datasets.
HybridMR relies on a hybrid distributed file system called HybridDFS,
and a time-out method has been used in HybridDF'S to prevent volatility
of desktop PCs, and file replication mechanism is used to realize reliable
storage. A new node priority-based fair scheduling (NPBFS) algorithm
has been developed in HybridMR to achieve both data storage balance
and job assignment balance by assigning each node a priority through
quantifying CPU speed, memory size and 1/O bandwidth. Performance
evaluation results show that the proposed hybrid computation model not
only achieves reliable MapReduce computation, reduces task response
time and improves the performance of MapReduce, but also reduces the
computation cost and achieves a greener computing mode.

Keywords: Hybrid Computing Environment, Distributed File System,
MapReduce, Volunteer Computing, Fault-tolerance.

1 Introduction

In the past decade, Desktop Grid and Volunteer Computing Systems (DGVCS’s)
have been proved an effective solution to provide scientists with tens of Ter-
aFLOPS from hundreds of thousands of resources. DGVCS’s utilize free comput-
ing, network and storage resources of idle desktop PCs distributed over Intranet
or Internet environments for supporting large-scale computation and storage.
DGVCS’s have been one of the largest and most powerful distributed comput-
ing systems in the world, offering a high return on investment for applications
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from a wide range of scientific domains, including computational biology, climate
prediction, and high-energy physics [1] [2] [9].

MapReduce is an emerging programming model for data intensive application
which was first introduced by Google in 2004 [4], and has attracted a lot of
attentions recently. Hadoop is an open-source implementation of MapReduce,
which is widely used in Yahoo, Facebook and Amazon.

Recently, there are some other MapReduce implementations that are designed
for large-scale parallel data processing specialized on desktop grid or volunteer
resources in Intranet or Internet, such as BitDew-MapReduce [12], MOON [8],
P2P-MapReduce [10], VMR [3], etc. However, because there exists the correla-
tion of volunteer or desktop failures, in order to achieve long-term and sustained
high throughput, MapReduce implementations adapted to volatile desktop en-
vironments can not lack the support of high reliable cluster nodes.

To this end, this paper presents a hybrid computing environment, in which
the cluster nodes and the volunteer computing nodes are integrated. For this hy-
brid computing environment, we propose and implement a MapReduce parallel
computation model that takes advantages of the computing capability of these
two kinds of resource to execute reliable MapReduce tasks.

The main challenges include three aspects: the first is how to deal with task
failures caused by unreliable volunteer computing node failures, and the sec-
ond is how to store the input data, the intermediate data and the final results
for MapReduce applications, and the third is how to achieve MapReduce task
scheduling.

To solve the above problems, we proposed HybridMR, a new MapReduce
implementation for hybrid computing environment. Similar to the design of
Hadoop, HybridMR is also decomposed into two layers, namely, data storage
layer and MapReduce task scheduling and execution layer. First, a hybrid stor-
age system called HybridDFS composed of cluster nodes and volunteer nodes
is implemented, then MapReduce task scheduling is implemented. In order to
solve the volatility of volunteer nodes, we designed and implemented a node
fault-tolerance mechanism based on the “heartbeat” and time-out method. Fur-
thermore, an optimized scheduler taking into account performance differences
between cluster nodes and volunteer desktop nodes is also implemented.

2 Background and Related Work

2.1 MapReduce

MapReduce model borrows some ideas from functional programming. MapRe-
duce applications are based on a master-slave model. A MapReduce system
includes two basic computing units, Map and Reduce. The MapReduce program-
ming model allows the user to define a Map function and a Reduce function to
realize large-scale data processing and analyzing. In the first step, input data are
divided into chunks and distributed in a distributed file system, such as HDFS,
GFS. In the second step, Mapper nodes apply the Map function on each file
chunk. Then, the Partition phase achieves splitting the keys space on Mapper
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node, so that each Reducer node gets a part of the key space. This is typically
done by applying a hash function to the keys although programmers can define
their own partition function. The new data produced are called the intermediate
results. In short, the Map function processes a (key, value) pair and returns a
list of intermediate (key, value) pairs:

map(kl,vl) — list(k2,v2). (1)

During the Shuffle phase, intermediate results are sent to their corresponding
Reducer. In the Reduce phase, Reducer nodes apply the Reduce function to
merge all intermediate values having the same intermediate key:

reduce(k2,list(v2)) — list(v3). (2)

At the end, all the results can be assembled and sent back to the master node,
and this is the Combine phase.

2.2 MapReduce on Non-dedicated Computing Resources

Besides the original MapReduce implementation by Google [4], several other
MapReduce implementations have been realized within other systems. Some fo-
cused on providing more efficient implementations of MapReduce components,
such as the scheduler [13] and the I/O system, while others focused on adapting
the MapReduce model to specific computing environments, like shared-memory
systems, graphics processors, multi-core systems, volunteer computing environ-
ments and Desktop Grids [12].

BitDew-MapReduce proposed by Tang et al. [12] is specifically designed to
support MapReduce applications in Desktop Grids, and exploits the BitDew
middleware [5], which is a programmable environment for automatic and trans-
parent data management on Desktop Grid, Grid and Cloud. BitDew relies on a
specific set of metadata to drive key data management operations, namely life
cycle, distribution, placement, replication and fault-tolerance with a high level
of abstraction.

Marozzo et al. [10] proposed P2P-MapReduce which exploits a peer-to-peer
model to manage node churn, master failures, and job recovery in a decentralized
but effective way, so as to provide a more reliable MapReduce middleware that
can be effectively exploited in dynamic Cloud infrastructures.

Another similar work is VMR [3], a volunteer computing system able to run
MapReduce applications on top of volunteer resources, spread throughout the
Internet. VMR leverages users bandwidth through the use of inter-client com-
munication, and uses a lightweight task validation mechanism.

Another system that shares some of the key ideas with HybridMR is MOON
[8]. Tt is a system designed to support MapReduce jobs on opportunistic envi-
ronments. It extends Hadoop with adaptive task and data scheduling algorithms
to offer reliable MapReduce services on a hybrid resource architecture.

There are also some work about using node availability prediction method
to enable Hadoop running on unreliable Desktop Grid or using non-dedicated
computing resources [6] [7].
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3 System Architecture

In this section we describe the architecture of HybridMR. First, we present an
overview of the system, then we focus on the algorithms and implementation
of the main components of HybridMR and we highlight the main scheduling
algorithm.

3.1 General Overview

HybridMR is composed of reliable cluster nodes and volatile desktop PCs, which
is simple but effective. MapReduce applications can be run in this hybrid envi-
ronment to analyze and process large amounts of datasets. The architecture of
proposed hybrid MapReduce computing system is shown in Fig. 1.

vV
Client Node @\r/

Py
(D —

— Intermediate data transfer

1. Upload data
2. Submit task

5. Download final results
Map/Reduee

3. Schedule data/task
P ——

-+
Server 4. Task status report

I
Intermediate data :
transfer | Desktop Worker

3. Schedule task/data

4. Task status report
Map/Reduce

Cluster Worker

Fig. 1. Architecture of hybrid MapReduce computing system

As is shown in Fig. 1, the system is designed with a hierarchical architecture.
The top layer is the user layer, and the middle layer is the service layer, and
the bottom layer is the resource layer. Four different service components are im-
plemented in service layer, namely, data storage service, metadata service, data
scheduler service, Map/Reduce task scheduler service. Resource layer contains
two types of resource: the first is reliable cluster nodes (Cluster Workers), and
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the second is large number of unreliable volunteer nodes (Desktop Workers),
which join the system in a voluntary way. These two types of resource are both
computing and storage resources,

Similar to existing MapReduce systems, data storage layer and MapReduce
task scheduling layer are also separated in our proposed model. The proposed
model relies on a hybrid distributed file system, called HybridDFS, which can
also be run independently as a sub-component. HybridDFS has similar charac-
teristics with HDFS and GFS that data are stored in block. The difference is
that HybridDFS defines two different types of data storage nodes, the reliable
cluster nodes and unreliable volunteer nodes. To sum up, in our proposed model
we implemented:

ClientNode, provides interface to access data and submit jobs;
— NameNode, provides metadata services;

DataNode, provides data storage services;

— WorkerNode, provides Map/Reduce task computing services;

TrackerNode, provides Map/Reduce task monitoring services.

Among them, DataNode and WorkerNode can be deployed in cluster nodes
or volunteer nodes, while NameNode and TrackerNode can only be configured
in server. The main working principle of the system is shown as follows:

— Step 1: ClientNode uploads input data that will be analyzed and processed
to HybridDF'S;

— Step 2: ClientNode submits task, specifying the data stored in HybridDFS
which will be processed;

— Step 3: Scheduled by data scheduler and MapReduce scheduler, the Map
tasks and Reduce tasks are allocated to cluster nodes and volunteer nodes.
In the meanwhile, MapReduce scheduler controls the transmission of inter-
mediate data;

— Step 4: Cluster nodes and volunteer nodes regularly send “heartbeat” sig-
nals to MapReduce scheduler to report task status;

— Step 5: Once all of the tasks have completed, ClientNode can download
final results from HybridDF'S.

3.2 Design Overview of HybridDFS

In HybridDFS, each node contributes a certain space to store files. As we can see
in Fig. 2, large file is first separated into chunks, then all chunks stored in different
locations. As volunteer nodes are volatile, the chunks stored in volunteer nodes
may become unavailable. Therefore, replication approach is utilized to achieve
fault-tolerance.

HybridDFS is designed to support large files. A file is split into one or more
blocks and these blocks are stored in a set of DataNodes. All blocks in a file
except the last block are the same size. The blocks of a file are replicated for
fault-tolerance. The block size and replication factor are configurable per file, and
a typical block size is 64 MB. Users or applications can define the replication
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Fig. 2. The principle of file separation and storage for large files in HybridDFS

factor Rs:Rv at file creation time in HybridDFS, where Rs means the number of
replicas of the file stored in cluster nodes, and Rv means the number of replicas
of the file stored in volunteer nodes. For example, 1:2 means storing one copy in
cluster nodes, and two copies in volunteer nodes at the same time.

P

Fig. 3. Node status migration chart

Unlike previous systems, HybridDFS doesn’t differentiate transient failure
from permanent failure particularly [11]. We define three node statuses: online,
offline, and unconnected, and the status migration chart is shown in Fig. 3.
Different with others which usually consider the status dead, there is a special
unconnected status. The failure detection is achieved by the method of periodi-
cally synchronization (“heartbeat”). It uses a simple timeout threshold approach
to detect both short-term failure and long-term failure. We define two thresh-
olds in this model: Synchronization Interval Time (SIT) and Failure Timeout
Time (FTT). If the failure timeout period has expired, a node failure is detected
(that becomes offline). In order to tolerate node failures, especially the volun-
teer node failures, HybridDF'S uses a Timeout method to detect node failures.
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1: Node on :
0: Node off
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Fig. 4. Node synchronization and timeout-based node failure detection method. The
detailed migration of three situations: 1) node migration from online to offline; 2) node
migration from offline to online; 3) re-join (recover) in a short-time from unconnected
to online.

As the response of “heartbeat” report, the replicas of file blocks are distributed
to different volunteer PCs or cluster nodes.

Volatile nodes declare their availability to the system through periodical syn-
chronization (an interval of SIT) with the server. During each synchronization,
the value of variable alivetime is updated to the current time. If the difference
between the value of variable alivetime and the current time exceeds FTT, this
node becomes offline. The detailed migration of three situations are demon-
strated in Fig. 4. The green dots stand for periodically node synchronization or
node joining to the system, and there is also a updating of the variable alivetime
associated with each green dot. The blue dots stand for unconnected, while the
red dots stand for offline which means an node failure is detected. Both the blue
dots and red dots indicate that a node synchronization is expected, because the
node has already lost the communication with the server.

MapReduce applications demand advanced requirements for HybridDFS. Hy-
bridDFS acts as the data storage layer, while storage nodes should also run
MapReduce tasks. HybridDFS encapsulates methods and interfaces, which al-
low MapReduce applications get to know how the data is separated, and the
physical location of blocks can be queried, and the tasks are scheduled to stor-
age nodes by MapReduce scheduler.

3.3 MapReduce Algorithm and Implementation

The client submits the job that specifies the data to be processed which has
already been stored in HybridDFS. By calling HybridDFS API interface, data
blocking method and the physical storage location of each data block are ob-
tained. According to the file replication attributes Rs:Rwv, one copy of each data
block in chosen to run Map task. The large data to be analyzed and processed
is denoted by Data, which is divided into n blocks, and each block is denoted
by d;. The intermediate results for selected blocks when Map task completed
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is denoted by IR’. At the Shuffle stage, intermediate results are divided into
groups, and each group is written to HybridDFS. Then, r nodes are selected to
run Reduce tasks, and each node reads the corresponding intermediate results
IR; from HybridDFS. When all Reduce tasks are completed, the final results
are denoted by Output;. Throughout all stages in a MapReduce application, n
Mappers (depending on the number of blocks) and r Reducers (defined by the
client node when submitting the task) are launched. MapReduce process can be
simply described by the following equations:

Data = U d; (3)

1=1:n

Map(Data) = U Map(d;) (4)

Map(d;) = | J IR; (5)
j=Llr

Reduce( U IR;-) = Output; (6)

i=1:n

In designing the runtime of HybridMR, the general fast/slow nodes detection
and fast/slow tasks detection approaches are not fit for this hybrid heteroge-
nous environment, because CPU speed of cluster nodes are always faster than
desktop PCs. In existing MapReduce computing models for desktop grid envi-
ronment, such as BitDew-MapReduce [12], the FIFO scheduling policy is usually
employed when processing “heartbeat” report, that the data chunks are assigned
in the order that “heartbeat” arrived, without other biases or preferences. In Hy-
bridMR implementation, we developed a new node priority-based fair scheduling
(NPBFS) algorithm. In the hybrid heterogenous environment, hardware config-
urations of WorkerNodes or DataNodes are diverse, which proposes an urgent
need of a fair algorithm that the node with stronger computing capability should
process more jobs.

Therefore, using NPBFS algorithm, the objective is to achieve two kinds of
balance in HybridMR: data placement balance (adaptively balances the amount
of data stored in each node considering storage capability of each node) and
job assignment balance (adaptively balances the task queue length in each node
considering computing capability of each node). In HybridMR implementation,
job priority isn’t considered, instead we focus on node priority, and developed a
node rank method considering the hardware configurations. We quantify CPU
speed, memory size, network and disk I/O bandwidth, then calculate the Rycignt
for each DataNode and WorkerNode, according to the equations as follows:

Rcapacity = x* chu * Rcore + 6Rmem + 6Rbandwidth (7)

Rstorageload = Z (Block Numli].datasize) (8)

i
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Ruyorkload = Z (TaskNumli].datasize) (9)

%

Rworkload + Rstorageload

Rweight = (10)

Rcapacity
where «, 3, and 0 are three weight coefficients used to quantify node capacity, and
Rstorageload denotes the total size of chunk stored in a DataNode, and Ruorkioad
denotes the total size of data to be processed by Map tasks and Reduce tasks in a
WorkerNode, so the value of Ryorkioad reflects approximatively the length of task
queue. Both cluster nodes and desktop PCs are usually configured as DataNode
and WorkerNode simultaneously, therefore we use Ryeignh: to measure the degree
of balance between capacity and load in heterogeneous environment. When a
node sends the “heartbeat” report, the updated Ryeignt value is capsulated in
the report. The server receives and stores all Ry.ignt value, and all nodes are
then sorted by their Reignt value. A smaller value of Ryeignt means a higher
node priority, and therefore more jobs should be assigned to it, or more file
chunks should be placed on it. In this algorithm, Ry, is measured in GHz,
and R.em is measured in GB, while Rpgndwidsh is measured in 100Mbps. Both
Block Numli].datasize and TaskNumli].datasize are measured in GB.
We define a threshold Thyeignt to distinguish overloaded nodes as follow,

Thweight = g [maX(Rweith [JD - min(Rweight [JD] + min(Rweight [JD (11)

where £ is an adjustment factor. When a node sends the “heartbeat”, if Ryeigne >
T huyeight, the server must stop placing new chunks or allocating new Map/Reduce
tasks to this overloaded node; otherwise, it means that this is not an overloaded
node which can accept more jobs.

4 Performance Evaluation

4.1 Platform Description

The prototype system of HybridMR is implemented by Java. In order to evaluate
the performance, we performed our experiments in the campus local area network
environment, and hadoop-0.21.0 is used for comparison. Both HybridMR and
Hadoop ran on Ubuntu Linux system. In order to evaluate NPBFS algorithm,
the parameters are set to empirical values. Three weight coefficients «, 3, and §
are set to 0.4, 0.2, 0.4, respectively, and the value of adjustment factor £ is 0.6.
Our experimental hardware platforms are described as follows:

(1) Both the NameNode and TrackerNode are configured with Xeon E5-2603
Quad-Core 1.8GHz CPU, 4GB memory, and 1Gbps ethernet.

(2) We used 24 cluster nodes, and each node is configured with AMD Opteron
8378 Quad-Core 2.4GHz CPU, 8GB memory, and 1Gbps ethernet.

(3) In the students’ laboratory, we used 72 desktop PCs, configured with Intel
Core 2 Duo E6300 1.86GHz CPU, 1GB memory, and 100Mbps ethernet for each.
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4.2 Throughput of HybridDFS I/0

We have implemented a set of micro-benchmarks, and have measured the achieved
throughput as more and more concurrent clients access HybridDF'S. Since that
MapReduce applications need the “write-once-read-many” model, we evaluated
the I/O performance when a single client writes data and concurrent clients read
data. We also compared HybridDFS with HDFS.

Scenario 1: Single Writer, Single File. We first measure the performance of
HybridDF'S when a single client writes a file whose size gradually increases. The
size of data chunks in HybridDFS is 64 MB. This test consists in sequentially
writing a unique file of N*64 MB(N goes from 1 to 192). Block allocation is also
based on the node priority-based fair scheduling policy which is explained before,
in order to achieve placing data across DataNodes in balance. We measure the
time spend for file separation and file distribution, and then calculate the write
throughput. We measure the write throughput in three conditions:

— HybridDFS - 24 cluster nodes and 72 desktop PCs;
— HDFS - 24 cluster nodes and 72 desktop PCs;
— HDFS - 24 cluster nodes only.

The results can be seen on Fig. 5(a). The value of SIT and FTT are set to 10s
and 30s, respectively. The file replication attribute setting is Rs:Rv=1:2, which
means that storing one copy in cluster nodes and two copies in desktop nodes.
Therefore, the total number of blocks of a large file stored in HybridDFS is N*3.
As the file size increases, the change of throughput is very tiny. Obviously, we
obtain the worst results when only 24 cluster nodes are used, and HDF'S achieves
higher throughput than HybridDFS when 24 cluster nodes and 72 desktop PCs
are used. Because HybridDFS uses NPBFS to realize storage balance, it delays
the write client, that is the main reason why HybridDFS is inferior.

Scenario 2: Concurrent Readers, Shared File. In this scenario, N clients
read parts from the file concurrently; each client reads different 64 MB chunks.
This pattern where multiple readers request data is very common in the “map”
phase of a Hadoop MapReduce application, where the mappers read the input
file in order to parse (key, value) pairs. When a single client finished writing a file
of 192*64 MB to HybridDFS, for each given number N of clients varying from
1 to 192, we executed the experiments and calculated the average throughput.
The total size of chunks read by N clients is exactly 192*64 MB. Fig. 5(b) shows
the results of average throughput of concurrent read clients. When the number
of concurrent clients is more than 64, less than 3 chunks are allocated to each
client in average. As the increase of concurrent read clients, the metadata query
load and data traffic increases, which causes a decrease of average throughput.
The same as Scenario 1, HDFS also outperforms HybridDFS when 24 cluster
nodes and 72 desktop PCs are used, but there is only little difference between
average throughput of HybridDFS and HDFS. HybridDFS reaches a relatively
high throughput.
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Fig. 5. Throughput of HybridDFS I/O

4.3 MapReduce Job Completion Time

In order to evaluate how well HybridDFS performs in the role of storage layer for
real MapReduce applications, we select two standard MapReduce applications
WordCount (reads text files and counts how often words occur) and Distributed
Grep (extracts matching strings from text files and counts how many times they
occurred). For these two applications, the chunk size of input text files is still 64
MB.

We evaluated MapReduce job completion time as the size of input text file
changes. The same as read/write throughput evaluation, in order to compare
HybridMR with Hadoop, we also measured three conditions.

The results for WordCount and Distributed Grep are shown in Fig. 6(a) and
6(b), respectively. The maximal size of text file is 12 GB in our experiments.
Distributed Grep application has a different MapReduce pattern compared with
WordCount application. For WordCount application, the Reduce stage is com-
plex, and takes more time than the Map stage. For Distributed Grep application,
the Reduce stage is very simple, and it just collects and sums up the intermediate
results. As you can see from these two figures, as the increase of input text file
size, job completion time also increases. From these two figures, we can see that
there is also only little performance difference between HybridDFS and HDFS.

4.4 Scheduler Optimization

In this scenario, experiments on WordCount application and Distributed Grep
application have also been performed to testify the efficiency of the node priority-
based fair scheduling (NPBFS) algorithm. We also evaluated job completion
time, while we compared two scheduling policies: 1) using NPBFS scheduler; 2)
not using NPBF'S scheduler. We measure how many performance improvements
are caused by NPBFS scheduler. If the NPBFS scheduler is not used, the server
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Fig. 6. Job completion time for WordCount and Distributed Grep

doesn’t consider any information or attributes of nodes and all nodes are treated
equally, which may cause the problem that assigning a lot of tasks to slow desktop
PCs. HybridMR is deployed on 24 cluster nodes and 72 desktop PCs, then we run
WordCount and Distributed Grep again, and measure the job completion time,
varying the input text file size from 2 GB to 10 GB. The results are shown in
Fig. 7(a) and 7(b), respectively. These two figures indicate that NPBF'S scheduler
improves the whole system and makes it more balanced, decreases the overall job
response time. When the text file size is 10 GB, the performance improvement
is 26.6% for WordCount, while it is 19.9% for Distributed Grep.
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Fig. 7. Performance improvements when the node priority-based fair scheduling policy
is used

4.5 Fault-Tolerance

In this scenario, we compare HybridMR with Hadoop in terms of fault-tolerance
performance, in order to justify the robustness of HybridMR. We emulate node
crashes through generating failures by randomly selecting desktop PCs and
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killing the MapReduce process, during the MapReduce tasks execution period.
Failures are independents and occur sequentially. During the experiment, both
Hadoop and HybridMR are deployed on a hybrid environment composed of 24
cluster nodes and 72 desktop PCs. We run the WordCount and Distributed Grep,
which represents two different realistic situations, and the input text file size is
12 GB. The results are shown in Fig. 8(a) and 8(b), respectively.

When the number of failures injected are varied from 10 to 40, we measure
the job completion time, which are then compared with the normal situation
that without any failures. The interval between two failure injections is 60s.
We observe that HybridMR outperforms Hadoop in terms of fault-tolerance
performance. Compared with the normal situation, in the worst situation that 40
nodes are crashed, for WordCount application, the job completion time increases
by around 252.7% for Hadoop and only 43.8% for HybridMR,; for Distributed
Grep application, it increases by around 313.8% for Hadoop and only 127.1%
for HybridMR. The improvement of HybridMR over Hadoop in terms of fault-
tolerance performance is quite clear when the number of failure injected is beyond
30. This reveals the robustness of HybridMR, which can accept a large number
of faults with reasonable performance overhead.
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Job completion time (s)
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(a) WordCount application (b) Distributed Grep application

Fig. 8. Fault-tolerance performance comparison between HybridMR and Hadoop

5 Conclusion

This paper presented a MapReduce parallel model for data-intensive comput-
ing in dynamic hybrid computing environments, integrating the idle desktop PC
resources in the Internet or Intranet with high reliable and high performance clus-
ter nodes to form a hybrid computing environment. The proposed new MapRe-
duce model consists of HybridDFS layer, a new hybrid distributed file system,
and MapReduce task scheduling layer. Data replication and replacement mecha-
nism are utilized to guarantee the reliability of storage and computing. Security
issues will be considered in the future. Performance test results show that the
new model is not only able to achieve a higher throughput and efficiency, but
also able to achieve the “green computing” goal. Companies and schools can
leverage existing idle desktop PC resources running MapReduce job for massive
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data analysis, and the proposed method also reduces the computational cost
overhead, which has a great potential.
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Abstract. K-means++ is undoubtedly one of the most important ini-
tializing algorithms for k-means owing to its provable approximation
guarantee to the optimal solution. However, due to its sequential nature,
k-means++ requires a large number of iterations to complete the initial-
ization and it becomes inefficient as the size of data increase. Even though
scalable k-means++ can drastically reduce the iterations and can be eas-
ily applied to the MapReduce systems, but due to its sequential nature,
it still requires two MapReduce jobs in each round. Moreover, it takes
a large number of I/O cost and it is time-consuming. In this paper, we
propose Oversampling and Refining (OnR) method which can improve
efficiency of scalable k-means++ by using only one MapReduce job to
obtain §2(k) centers in each round. Except for the oversampling factor
¢ of scalable k-means++, OnR uses another oversampling factor o to
further increase the number of chosen centers. Oversampling is executed
on the Mapper phase, and in Reducer phase, one Reducer is responsible
for removing the oversampled centers generated from o and outputs a set
of centers which is the same as the output of scalable k-means++. To
reduce the expensive network cost caused by too large o, OnR estimates
the global cost by the local clustering cost and uses it to remove some
wrong points in Mapper phase. Extensive experiments on real data are
conducted and the performance results indicate that OnR outperforms
scalable k-means++ in the aspect of I/O cost and running time.

1 Introduction

Clustering has been applied in many areas of computer science and its related
fields, such as data mining, pattern recognition and image retrieval [1-4]. K-means
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is one of the most widely used clustering methods, but it suffers from the well-
known problem that converges to a local optimum. Due to the reason that it is
highly dependent upon the chosen of initial centers. In recent years, many re-
searches have focused on improving its initialization method [5,6]. An important
piece of work in this direction is the k-means++ [7]. This algorithm is fast with
small data in practice. Moreover, it obtains an O(logk) approximation solution
to the optimal result of k-means and gives a theoretical guarantee firstly.

However, the era of big data poses new challenges for k-means++ algorithm.
Although it can be run on the MapReduce [8], and there are also many clustering
algorithms [9-12] run on MapReduce platform efficiently in practice, k-means++
is an exception. The fundamental reason is that k-means++ is a sequential
algorithm and it is lack of scalability. That is the probability a point is chosen
to be a center strongly depends on the previous centers. K-means++ algorithm
chooses one center in each round and it needs k rounds over the data to produce
the expected initial centers. This requires many iterative computations. For a
single computer, iterative computation is common and it is easily implemented.
While for the MapReduce framework, it does not directly support these iterative
data analysis applications. Instead, we must implement iterative programs by
manually issuing multiple MapReduce jobs and this renders the data must be
re-loaded and re-processed at each iteration, wasting I/O, network and CPU
resources [13,14].

To reduce the number of rounds of k-means++, Bahman Bahmani et al. pro-
posed scalable k-means++ algorithm [15]. We show it in Section 3 in more detail.
It is a parallel version of the inherently sequential k-means++. Instead of choos-
ing one point in each round, scalable k-means++ uses the oversampling method
to choose ¢ = {2(k) points. Hence, it can drastically reduce the iteration rounds
from k to approximate O(log1). Scalable k-means++ enhances the scalability of
k-means++ and it is easily paralleled in MapReduce framework. Another merit
of it is that it achieves an O(logk) approximation to the k-means objective.

However, scalable k-means++ does not thoroughly break the inherent se-
quential nature of k-means++. Thus, it is embarrassingly parallel and can not
be executed on MapReduce-based systems efficiently. Considering that there is
no communication between Mappers, MapReduce scalable k-means++ requires
two MapReduce jobs to complete in each round. The first job chooses ¢ centers
and combines them. The second one is responsible for computing the cluster-
ing cost. Therefore, it has to iterate O(logy) rounds and at least 2 x O(logy)
MapReduce jobs to choose the initial centers. As mentioned above, MapReduce
does not directly support iterative analysis applications, when logi is large, it
is time-consuming and we cannot put up with so many MapReduce jobs. In
addition, it incurs large amount of network and I/O overhead.

This paper proposes an efficient parallel scalable k-means++ algorithm which
is called Oversampling and Refining (OnR) in the situation of big data by virtue
of MapReduce. The main idea of OnR is to use only one MapReduce job, instead
of two jobs, to complete the task of choosing new centers and computing cluster-
ing cost. For lack of communication in Mapper phase, we could not compute the
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total clustering cost of the centers chosen from the previous round in Mapper
phase, thus each Mapper chooses centers with the clustering cost of the centers
chosen from before the previous round. Since this clustering cost is smaller than
the real value, except for oversampling factor £, OnR uses another oversampling
factor o to further increase the number of points in Mapper phase. Since, each
Mapper has obtained the centers chosen from the previous round, another im-
portant work of each Mapper is to calculate the local clustering cost of these
centers. In Reducer phase, one Reducer adds all local clustering cost, and uses
it to remove the oversampled points generated from o.
The major contributions of this paper are:

1. We propose Oversampling and Refing method which is an efficient scalable
k-means+-+ algorithm with MapReduce. It uses only one MapReduce job to
complete the task of choosing centers and computing clustering cost in each
round, avoiding too many jobs on multiple machines and thus reducing a
large number of I/O cost.

2. To reduce the network cost and the running time caused by too large over-
sampling factor o, our method OnR estimates the global cost by the local
clustering cost and uses it to remove some oversampling points in Mapper
phase. This measure also reduces the workload of Reducer.

3. Extensive experiments on real data are conducted. Comparing with scalable
k-means++, experimental results indicate that without increasing the net-
work cost, OnR reduces a large amount of I/O cost. It also saves more than
50% time and provides a good approximation to k-means.

The rest of this paper is organized as follows. Section 2 presents the useful
preliminaries. The details of our method are discussed in Section 3, where we
first describe MapReduce scalable k-means++ algorithm in Section 3.1, and then
present Oversampling and Refining method int Section Section 3.2. Finally, we
give some discussion and analysis in Section 3.3. Section 4 reports the experi-
mental results. Finally, Section 5 concludes the paper.

2 Preliminaries

To provide a technical context for the discussion in this paper, we begin with
preliminaries. First, we give the definition of clustering cost. Then, we describe
the scalable k-means++ algorithm in more detail.

Given a data set X = {z1,22,...,z,} in d-dimensional space and let ||z; —z,]|
denote the Euclidean distance between x; and x5, the centers set C' = {c1, ..., cx }
divides X into k exhaustive clusters and the following function is the clustering
cost.

ox(C) = Y min o c||

zeX

Scalable k-means++ [15] modifies the initialization setup of k-means++ [7]
and obtains an efficient parallel version. Seeing the following algorithm, instead
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of choosing one point as a center, it uses the oversampling method and chooses
¢ = (k) centers in each round. Firstly, it uniformly at random chooses an
initial center and computes the initial clustering cost v of this center. Then,
this method iterates O(logy) times. In each iteration, given the current set C' of
centers, each point z is chosen to be a center with probability /xd?(z, C)/¢x (C).
The sampled points are then added to C'. Finally, the algorithm updates ¢ x (C)
and the iteration continues. Since the number of chosen points is more than k
(the expected number of points in C' is £* O(logy)) after the O(logy) iterations,
it uses a weighted k-means+-+ to obtain the final £ centers.

Algorithm 1. Scalable k-means++ Initialization

Input : &, the number of clusters.
X ={x1,29,...,2,}, a set of data points.
£, oversampling factor
Output: C = {c1,¢a, ...,k }.
C' <+ sample a point uniformly at random from X
Y« ¢x(0)
for O(logi) times do
c sample each point x € X independently with probability

_ 4d*(z,0)
Pz = 4y (0)

5 C + CUC’, compute ¢x(C)
6 For x € C, set w, to be the number of points in X closer to x than any

other point in C
7 Recluster the weighted points in C' into k clusters

W N =

3 Our Method

In this section, we first introduce the Parallel Scalable k-means++ with MapRe-
duce (PSKM++), and then present our improved version of PSKM++, Over-
sampling and Refining (OnR). Finally, we give some discussion and analysis
about OnR. Table 1 shows the symbols and definitions used in this section.

3.1 Parallel Scalable k-means++ with MapReduce

The parallel scalable k-means++ algorithm has two steps: (1) computing the
initial cost v, (2) iterative process. A MapReduce job has at least two modules:
Map and Reduce. PSKM++ algorithm partitions the input data through the
Mapper phase and merges centers and clustering cost in the Reducer phase.
Figure 1 illustrates the process of parallel scalable k-means++ with MapRe-
duce. Tt starts with the first MapReduce job (Jobl) from phase P1 to P3 and
it is used to compute the initial clustering cost 1. In phase P1, each Mapper
reads the input data X; and the first random center c¢;, then computes the
squared distance between each point x € X; and ¢, d?(z,¢1), finally outputs
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Table 1. Symbols and Definitions

Symbols Definitions

X The set of all data points

X, The set of data points processed by Mapper ¢
c1 The first center chosen uniformly at random
C; Centers chosen from Mapper %

UO UO = {Cl}

Uj The union of centers until jth iteration

¢x (Uo) Clustering cost computed by Mapper i with centers Uop, i.e., ¢x, (c1)
¢X(U0) Clustering cost with centers Uy, i.e., ¢x (c1) and 1 (seeing in Alg 1)
¢x,; (Uj) Clustering cost computed by Mapper i with centers Uj;

¢x (Uj) clustering cost computed by one Reducer with centers U;

read data shuffle sum  send each shuffle merge send readdata shuffle sum
compute initial initial initial mapper centerscenters centers compute costs  cost
initial cost costs  costs cost chooses cost

centers |

send centers and cost |
| i |

| iterate |

Fig. 1. Parallel Scalable k-means++ with MapReduce

(key, ¢x,(c1)). All elements are shuffled to the same Reducer in phase P2. The
Reducer sums all ¢x,(c1) and outputs the ¢x(c1), i.e., 1. The iterative process
includes Job2 (from phase P4 to P7) and Job3 (from phase P8 to P11). Job2
is used to choose new centers and Job3 is response for computing the clustering
cost of this iteration. They correspond to the step 4 and step 5 in Algorithm 1
respectively. For jth iteration, the Mapper i of Job2 reads the input data X;, the
clustering cost ¢x (U;—1) and the centers U;_; from the (j — 1)th iteration, then
chooses the point z as a center based on the probability ¢xd?(x, U;_1)/dx (Uj—1)
(phase P5). All these centers are transferred to the same Reducer (phase P6)
and combined by this Reducer (phase P7). Job3 is similar to Jobl.

PSKM++ achieves the parallel of k-means++ and reduces the number of
iterations from k to O(logy). However, for the sequential relationship between
Job2 and Job3, it still needs too many MapReduce jobs. Generally speaking,
it requires at least 2 x O(logy) MapReduce jobs to choose the initial centers.
When logy is enormous, we cannot put up with so many MapReduce jobs.
Furthermore, in the above section, we have shown that MapReduce does not
directly support the iterative operation and the more MapReduce jobs the more
cost. As shown in Figure 1, the network cost of PSKM++ is small and there is
only U, Ci + U, éx, (U;) in each iteration, but the I/O cost is huge because
the whole input has to read twice. In the next section, we present our improved
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scalable k-means++ algorithm that uses only one MapReduce job to choose
centers and compute clustering cost in each iteration.

3.2 Oversampling and Refining

Since there is no communication among all Map tasks, one Map task can not see
the centers chosen from other Map tasks, therefore it is impossible to compute
the ¢x,(U;) in these Map tasks. It requires another MapReduce job to compute
¢x(U;) after choosing new centers. In this section, we propose Oversampling
and Refining method which uses only one MapReduce job to choose ¢ centers
and compute the clustering cost in each round. It is largely inspired by scalable
k-means++, except for the first oversampling factor ¢, we introduce another
oversampling factor o which is used to further enlarge the number of chosen
centers in Mapper phase. Our method is defined in Algorithm 2 and the process
is illustrated in Figure 2.

At a high-level, jobl (from phase P1 to P3) is still used to compute ¢ and
we have described in the above section. Each Mapper of the second Job (phases
P4-P7) applies the scalable k-means++ algorithm and samples each z with
probability £ xd?(z,Uy)/dx (Up) (phase P5, Uy = {c1}), then the Reducer reads
the new centers from all Mappers (phase P6), then combines and outputs Uy
(phase P7).

The iterative process starts from phase P8 to P11. For jth iteration, since
each Mapper does not know the previous clustering cost ¢x(U;—1), our method
chooses each x with the cost from (j — 2)th iteration, i.e., ¢x(U;—2). However,
because the number of centers of (j — 2)th iteration is smaller than that of
(j — 1)th iteration, clustering cost ¢x (U;_2) is usually larger than the real value
¢x(Uj—1) and the probability £ * d*(x,U;_1)/¢x(Uj—2) becomes smaller. This
decreases the number of centers chosen in jth iteration. To address the above
problem, our method uses another oversampling factor o to further enlarge the
probability, i.e., the chosen probability of x is p, = o* £ d?(z,U;—1)/¢x (U;j—2).
In this situation, the expected number of points chosen by all Mappers in each
iteration is more than ¢ which is the expected number of points chosen by scalable

read data shuffle sum send each shuffle merge  send each mapper shuffle  refine

compute initial initial initial mapper centers centers centers chooses centers centers  sum

initial cost costs costs cost chooses cost compute cost  costs costs
| centers from job1

| send centers and costs
|

iterate

Fig. 2. Oversampling and Refing with MapReduce
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k-means++ in each iteration. Thus, our method requires a refining method to
remove the oversampled centers in Reducer phase.

Algorithm 2. Oversampling and Refining
Input: &, X, ¢, o, ¢1
Output: initialing centers

/* job 1: Computing v */
1 m Mappers read X in parallel and read Uy = ¢;. Each of them computes
¢Xi (UO)

2 All costs ¢x, (Up) are shuffled to one Reducer.
3 One Reducer sums all ¢x, (Up).
4 Outputs ¢ = ¢x (Up).
/* job 2: Oversampling */
5 m Mappers read X in parallel and ¢x (Up). Each of them chooses centers
with p, = £ * d?(x,Ug)/dx (Up).
6 All centers C; are shuffled to one Reducer.
7 One Reducer merges all the centers C = JI, C;.
8 Outputs U; = C'|J Up.
/* iterative job */
9 for j =2; j <logy; j++ do
// Qversampling
10 m Mappers read X in parallel, U;_; and ¢x (U;j_2). Each of them
chooses centers with p, = o x £ * d*(z,U;_1)/¢x(Uj—2) and computes
ox; (Uj-1).
11 All centers Cj, all costs ¢x, (U;j—1), p and £+ d?(z,U;_1) for each new
center are shuffled to one Reducer.
// Refining by one Reducer
12 Computes ¢x(U;—1) and merges C = U:il C;.
13 if (xd*(x,Uj_1)/¢x(Uj—1) < p~ then
14 z is removed from C.

15 Output U; = CYUj-1 and ¢x(U;-1).
16 Output U;

The detailed process is as follows. In phase P9, each Mapper uses p, to
choose new centers and compute the local real clustering cost ¢x, (U;—1). Then,
all the chosen centers Cj, all the local real clustering costs ¢x, (U;j—1), the ran-
dom probability value p7, and £*d?(z,U;_1) of each chosen center are shuffled to
one Reducer (phase P10). The refining operation is executed on a single Reducer
(phase p11). It merges all centers C' = J~, C;, sums all local real clustering
costs ¢x,(U;j—1) and obtains the global real clustering cost of (j — 1)th itera-
tion ¢x(U;j—1). We also obtain the real probability for each chosen center, i.e.,
py = Lxd?(x,U;_1)/dx(Uj_1). If p,. is still larger than p’, then this center is
still kept in C, otherwise, it is removed from C'. The output of this iteration is
U; and ¢x(Uj—1), then they become the input of the next iteration. As men-
tioned above, the network cost of OnR in each iteration includes 4 parts, all
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chosen centers |JI, C;, all local clustering costs /-, ¢x, (Uj—1), random value
p? and £ * d*(z,U;_1) for each chosen center. Comparing with the network cost
of PSKM++, ie., Ui~ C; and ., ¢x, (U;), the main benefit of OnR approach
is that it dramatically reduces the I/O cost (read input data X only once), at
the cost of shuffling a bit more data in each iteration.

3.3 Discussion

Except for ¢, OnR uses another oversampling factor o to further enlarge the
number of centers in Mapper phase. While the expected number of points is still
{ after the refining phase in each iteration. Considering the jth iteration, OnR
uses the probability p, = 0; * £ * d*(z,U;-1)/dx(U;—2) to choose centers, while
the real probability should be p/, = £ d*(x,U;_1)/¢x (U;j—1). Ideally, we expect
that the centers chosen by OnR in each iteration are the same as that chosen
by PSKM++. Meanwhile, the network cost is smallest. That is,

Pz = pfp (1)
and
0j ¥ lxd*(x,Uj—1)  Lxd*(x,Uj_)
¢x (Uj-2) ¢x (Uj-1)

Therefore, the optimal value of o; is

_ ¢x(Uj-2)
¢x(Uj-1)

The number of points in U;_, contains is smaller than that in U;_, therefore
ox(Uj—2) > ¢x(Uj—1) and o; > 1. However, it is difficult to determine o exactly;
if 0 is too large, there generates too many centers in each Mapper, causing high
network cost and heavy workload of the Reducer; while o is set to a small value,
the expected number of chosen centers in Reducer may be less than ¢ and the
clustering quality is bad, i.e., ¢x (C') is large. In this section, we propose a method
to solve this problem.

From the above analysis we know, each center chosen in Mapper phase will
be resampled in Reducer phase. Ideally, for the smallest network cost, the best
probability p? of each center in the Mapper phase should be

(2)

3)

0j

o= d*(z,Uj-1)
© ox(Uj-)

For each point z, if p% > p”, it is chosen in Mapper phase. And in the Reducer
phase, it is not removed from the result. Seeing From Eq. (4), in Mapper phase,
for lack of communication, the global clustering cost ¢x (U;_1) is unknown, but
we know the local clustering cost ¢x, (U;_1). Thus, we use the following equation
to estimate ¢x (U;—1).

(4)

ox(U-1) = | % 6x,(Us-1) (5)
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n is the total number of points X contains, m is the number of points processed
by Mapper i. ¢x,(U;—1)/m is the average clustering cost each point contributes
and it is unbiased. Therefore, in the Mapper phase, no matter how large o is,
our method can remove some of points with Eq. (5) in advance, and it can also
reduce the network cost and Reducer workload of the Reducer.

4 Experiments

In this section, we present the experimental setup and experimental results for
evaluating OnR. Note that the main merits of our method OnR are: (1) OnR
reduces the number of rounds from O(log) to 0.5 x O(logy), thus OnR takes
less running time when compared to PSKM++. (2) Although the number of
points in Mapper phase of OnR is more than that of PSKM++, some of these
points will be removed in Reducer phase of OnR and the result is the same
as PSKM++. Thus, both of them has the same clustering cost. (3) By another
oversampling factor o, OnR method uses only one MapReduce job in each round,
therefore, OnR further reduces the I/O cost without increasing the network cost.
(4) For there is a refining operation in Mapper phase and the large parallelism
of Mapper phase, the running time and clustering cost of OnR are almost the
same when o varies.

All experiments are performed on a homogeneous Hadoop cluster running
the stable version of Hadoop 0.20.2. The cluster consists of 12 machines with 1
master node and 11 slave nodes. Each node has 2 AMD Opteron 2212 2.00 GHz
CPUs, 8 GB of RAM, 80 GB SCSI HDD, Intel 82551 10/100 Mbps Ethernet
Controller. The operating system of each node is Ubuntu 10.10 server 64 bit and
per Hadoop daemon is allocated 1 GB memory. This cluster has 1 TaskTracker
and 1 DataNode daemon running on each slave, and a single NameNode and
JobTracker daemon on the master. All machines are directly connected to a 100
Mbps switch. We configure 2 Map slots and 2 Reduce slots on each node. The
DFS chunk size is 64 MB.

We use Oxford Buildings DataSet to conduct the experiments. This is a real
dataset consists of 5062 images collected from Filckr by searching for particular
Oxford landmarks. A large number of 128-dimension SIFT features is extracted
from each image and there are more than 17 million features in total. In order
to speed up all the experiments, we only use 32-dimension data of each feature.
Its size is about 2.6 GB and it is split to 42 chunks in our experiments.

The following aspects are evaluated in the experiments:

1. Running time of PSKM++ and OnR.

2. Clustering cost of PSKM++ and OnR.

3. I/0 cost of PSKM++ and OnR.

4. Running time and Clustering cost of OnR while o varies.

4.1 Running Time

In this experiment, we compare the running time of PSKM++ and OnR algo-
rithm. We now describe the parameter settings for this group experiments. o is
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set to 5, k € {500,1000}, ¢ € {0.1k, 0.5k, 1k, 2k, 5k, 10k}. We randomly choose
one point and both PSKM++ and OnR use this point as the first center, there-
fore they have the same ¢ and the iteration round. In our experiments, both
algorithms iterates r = 12 rounds. The results are summarized in Fig. 3 and
we can see from it, no matter £k = 500 and k& = 1000, the running time of both
PSKM++ and OnR is getting longer as ¢ varies from 0.1k to 10k, but OnR takes
less running time than PSKM++ and this trend gradually slows down. For ex-
ample, when £ = 0.1k, 0.5k, 1k, OnR saves more than 50% running time than
PSKM++ for both & = 500 and k& = 1000. The maximum time saving is about
58% when ¢ = 0.1k for both k& = 500 and k = 1000. Furthermore, the running
time of OnR is almost the same when ¢ varies from 0.1k to 1k. However, when ¢
varies from 2k to 10k, the number of chosen points in each round becomes larger
and so does the the number of computation times. Thus, the time savings reduce
and they are about 30%, 26%, 19% (k = 500) and 40%, 18%, 11% (k = 1000).

k

EC%OO
E
200
, ol 0l
0.1k 0.5k 1k 2k 5k 10l
,

(a) k = 500 (b) k = 1000

Fig. 3. Running Time: o = 5, ¢ varies

4.2 Clustering Cost

In this section, we compare the clustering cost of PSKM++ and OnR. The
parameter configuration is the same as the above experiment, i.e., 0 = 5, k €
{500, 1000}, ¢ € {0.1k,0.5k, 1k, 2k, 5k, 10k}. We also randomly choose one point
for both algorithms and the iteration round of them is still 12. The results
are shown in Fig. 4. It can be seen from it, when ¢ varies from 0.1k to 10k,
there is little difference in clustering cost of OnR and PSKM++. The minimum
difference and the maximum difference are 4.37e8 (¢ = 1k) and 4.25¢9 (¢ = 10k)
when k& = 500. These values are 9.61e5 (¢ = 0.1k) and 1.77¢9 (¢ = 1k) when
k = 1000. Since both OnR and PSKM++ choose each point with a certain
probability, they still have the random characteristic. Thus, we observe that
OnR takes more clustering cost sometimes, e.g., £ = 1k, 2k (k = 500) and
¢ =2k (k =1000). But in most cases, e.g., £ = 0.1k, 0.5k, 5k, 10k (k = 500) and
¢ = 0.5k, 1k, 5k, 10k (k = 1000), the clustering cost of OnR is less than that of
PSKM++. Recall that in order to reduce the MapReduce jobs in each round,
OnR uses another oversampling factor o, thus OnR chooses more points than
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PSKM++ in each round and it has more chances to obtain the better result.
From Fig. 4, we also find out both OnR and PSKM-++ obtain the worst result
when ¢ = 0.1k for £ = 500 and k£ = 1000. Due to the reason the number of points
chosen by OnR and PSKM++ is too small when iteration round completes. The
expected number of points are 600 (k = 500) and 1200 (k = 1000) for both OnR
and PSKM++. Because it could not obtain a good result when using 600 and
1200 centers to represent such large number of points, let along k& = 500 and
k = 1000.

0.1k 0.5k 1k 2k 5k 10k

/ l
(a) k = 500 (b) k = 1000

Fig. 4. Cost: 0 = 5, £ varies

4.3 I/0 Cost and Network Cost

As mentioned above, OnR completes one iteration round by one MapReduce
job, but compared with PSKM++, the network cost is almost the same. The
main advantage of OnR is that its I/O cost is drastically reduced.

In this section, we evaluate OnR and compare it with PSKM++ in I/O cost
and Network cost. Firstly, we present the experiment setup and parameter set-
tings for them. We test OnR and PSKM-++ when k& = 1000, ¢ = 1k, o is set to 5
for OnR. We still choose one point randomly as the first center and » = 12. For
both OnR and PSKM++, the I/O cost and network cost from iterating opera-
tion are account for the largest proportion of the whole I/O cost and network
cost. Thus, we only record the I/O cost and network cost in each round. The
experimental results are summarized in Figure 5. From Fig. 5(a) we can see, for
each round, the network cost of both OnR and PSKM++ are small and they
are in [140K B, 200K B]. However, except for the first round, the network cost of
OnR is larger than that of PSKM++, due to the reason that OnR chooses more
centers (the expected number of chosen points is o * £) in Mapper phase than
PSKM++ (the expected number of chosen points is £). When r = 1, because
OnR does not use the parameter o, the expect number of chosen points by OnR
is still £ and the network cost of it is similar to PSKM++ (about 150K B). From
Fig. 5(b), expect for r = 1, the I/O cost of PSKM++ is about 2 times bigger
than OnR for each round (about 3.7¢10 vs. 1.8¢10). Due to the reason that OnR
read the input data once, while PSKM++ read twice. When r = 1, OnR only
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chooses ¢ points and does not compute the distance of each point to the new
centers, the distance computation is completed by the Mapper phase of the next
round, thus there is no distance output and the difference is big in this round
(about 2.0e10 vs. 3.1€9).

From the above analysis, although OnR takes more network cost than
PSKM++, it is fairly small. We draw the conclusion that OnR drastically reduce
the I/O cost without increasing the network cost.
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Fig. 5. Network Cost and I/O Cost

4.4 Running Time and Clustering Cost with Different o

Recall that in order to guarantee the number of points after each iteration is
no less than ¢, we usually set o to a larger value, but this increases the network
cost. To solve this issue, OnR estimates the global clustering cost and uses the
refining in Mapper phase to remove some points. This section tests the running
time and clustering cost for OnR when o varies. In these experiments, we use
k € {500,1000}, ¢ = 1k, o € {3,5,7,15,50,250}, » = 12. The experimental
results are summarized in Table 2 and Table 3. From them we observe that, no
matter how the parameter o varies, there are few changes in running time and
clustering cost. When o varies from 3 to 250, the number of chosen points in

Table 2. Execution Time (minutes)

o0=30=50=T70=150=50 0=250
k =500 66.65 66.88 66.6 66.75 67.18 66.9
k = 1000 75.15 75.57 75.6 75.63 75.7 75.32

Table 3. Clustering Cost, x 10
o0o=30=50=T70=150=50 0=250

k =500 2.147 2.138 2.143 2.145 2.139 2.131
k = 1000 1.915 1.902 1.901 1.905 1.908 1.904
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Mapper phase becomes large, but owing to the large parallelism of Mapper, the
running time of OnR is almost the same.

5 Conclusion

This paper proposed an efficient MapReduce scalable k-means+-+ algorithm-
OnR. Compared with the MapReduce scalable k-means++, OnR uses only one
MapReduce job to choose £2(k) centers and compute the clustering cost in each
round. The main idea of OnR is that except for the oversampling factor ¢, OnR
uses another oversampling factor o to further increase the number of centers
in Mapper phase, and in Reducer phase, one Reducer removes the oversampled
centers generated from o. OnR saves a large amount of I/O cost and drastically
reduces the running time. In order to reduce the expensive network cost and
heavy workload of Reducer caused by too large o, OnR estimates the global
cost by the local clustering cost and uses it to remove some oversampled cen-
ters in Mapper phase. Experimental results indicate that OnR outperforms the
MapReduce scalable k-means++ in the aspect of I/O cost and running time.

Acknowledgment. This work is supported by the National Science Founda-
tion for Distinguished Young Scholars of China under grant No. of 61225010,
National Nature Science Foundation of China (Nos. 61173162, 61173165,
61370199, 61300187, 61300189 and 61370198), New Century Excellent Talents
(No. NCET-10-0095), the Fundamental Research Funds for the Central Univer-
sities(Nos. 31322013044, 31322013029 and 2012TDO00S).

References

1. Chandra, E., Anuradha, V.P.: A survery on clustering algorithms for data in spatial
database management systems. Computer Applications 24(9), 19-26 (2011)

2. Xu, Z., Ke, Y., Wang, Y., Cheng, H., Cheng, J.: A model-based approach to at-
tributed graph clustering. In: Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pp. 505-516 (2012)

3. Moise, D.: D, Shestakov, G. Gudmundsson, L. Amsaleg.: Indexing and searching
100m images with map-reduce. In: Proceedings of the 3rd ACM Conference on
International Conference on Multimedia Retrieval, pp. 17-24 (2013)

4. Jin, Y., Li, K.: An optimal multimedia object allocation solution in multi-
powermode storage systems. Concurrency and Computation: Practice and Experi-
ence 22(13), 1852-1873 (2010)

5. Celebi, M.E., Kingravi, H.A., Vela, P.A.: A Comparative Study of Efficient Initial-
ization Methods for the K-means Clustering Algorithm. Expert Syst. Appl. 40(1),
200-210 (2013)

6. Onoda, T., Sakai, M., Yamada, S.: Careful Seeding Method based on Indepen-
dent Components Analysis for k-means Clustering. Emerging Technologies in Web
Intelligence 4(1), 51-59

7. Arthur, D., Vassilvitskii, S.: K-means++: The Advantages of Careful Seeding. In:
Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1027-1035 (2007)



28

10.

11.

12.

13.

14.

15.

Y. Xu et al.

Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. In: Proceedings of the 6th Conference on Symposium on Opearting Systems
Design and Implementation, pp. 137-150 (2004)

Papadimitriou, S., Sun, J.: DisCo: Distributed Co-clustering with Map-Reduce: A
Case Study Towards Petabyte-Scale End-to-End Mining. In: Proceedings of the
2008 Eighth IEEE International Conference on Data Mining, pp. 512-521 (2008)
Zhao, W., Ma, H., He, Q.: Parallel K-means clustering based on mapReduce. In:
Jaatun, M.G., Zhao, G., Rong, C. (eds.) Cloud Computing. LNCS, vol. 5931,
pp. 674-679. Springer, Heidelberg (2009)

Ene, A., Im, S., Moseley, B.: Fast Clustering Using MapReduce. In: Proceedings
of the 17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 684-689 (2011)

Cordeiro, F., Leonardo, R., Caetano Jr., T., Traina, M., Juci, A., Lépez, J., Kang,
U., Faloutsos, C.: Clustering Very Large Multi-dimensional Datasets with MapRe-
duce. In: Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 690-698 (2011)

Bu, Y., Howe, B., Balazinska, M., Ernst, M.D.: HaLoop: Efficient Iterative Data
Processing on Large Clusters. VLDB Endow 3(1-2), 285-296 (2010)

Ekanayake, J.,Li, H., Zhang, B., Gunarathne, T., Bae, S.-H., Qiu, J., Fox, G.: Twister:
A Runtime for Iterative MapReduce. In: Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, pp. 810-818 (2010)
Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.: Scalable K-
Means++. VLDB Endow 5(7), 622-633 (2012)



Acceleration of Solving Non-Equilibrium
Ionization via Tracer Particles and MapReduce
on Eulerian Mesh

Jian Xiao', Xingyu Xu!, Jizhou Sun', Xin Zhou?, and Li Ji?

! School of Computer Science and Technology,
Tianjin University, Tianjin, China
{xiaojian,xingyuxu,jzsun}@tju.edu.cn
2 Purple Mountain Observatory,
Chinese Academy of Sciences, Nanjing, China
{xinzhou, ji}@pmo.ac.cn

Abstract. Non-equilibrium ionization (NEI) is an important phe-
nomenon related to many astrophysical processes, but the traditional
method, which tightly couples the NEI solver with Eulerian mesh
infrastructure, introduced high overhead on computing, memory and
communication. In order to overcome the shortcomings of the pure Eu-
lerian scheme, a new approach employing tracer particles and MapRe-
duce model to solve the NEI problem was proposed. We introduce (1)
a particle-dumping scheme for tackling the problem of large amounts of
small particle snapshots continuously generated at each evolution step,
(2) a parallel method based on the MapReduce model to solve the NEI
equations along the particle trajectories. Both post-processing and non-
intrusive in-situ schemes are supported in the paper’s approach. The
approach was prototyped and tested based on the FLASH multiphysics
simulation framework, and it is easily adapted to other simulations mod-
eling reactive flow on Eulerian mesh. Evaluations on up to 192 cores
show that our approach can improve the end-to-end performance of a
real world simulation by 3-fold above.

Keywords: non-equilibrium ionization, tracer particle, AMR,
MapReduce.

1 Introduction

Non-equilibrium ionization (NEI) is an important phenomenon related to many
astrophysical processes, and is generally used in models of small-scale phenomena
such as shocked gas in solar flares, supernova remnants and stellar cluster winds
etc, as well as large-scale phenomena such as galactic superwinds, active galactic
nucleus outflows and intergalactic medium etc. The equation groups governing

the astrophysical simulations with NEI effects take the following form [9,5].
0
85 +V-(pv) =0, (Eq.1)
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)
gtv +V - (pvv)+ VP = pg, (Eq.2)
OpE
b VB +P)v] = pv-gl+s], (Eq.3)
Z
agti +V-nfv=R? (i=1,-, Nepec), (Eq.4)

Eq.1-Eq.3 are the classic Euler equations for gas dynamics and Eq.4 is the
set of additional advection equations for all the ion species, where p is the fluid
density, ¢ is the time, v is the fluid velocity, P is the pressure, E is the sum of
the internal energy and kinetic energy per unit mass, and g is the acceleration
due to gravity, and S represents the source item, nZ is the number density of
the ion ¢ of the element Z, Ngp.. is the total number of species, R is described
by Eq.5,

RY = Ne [nf 0l + 0 STy —nf (of +S7)], (Eq.5)

where N, is the electron number density, aZ = (N,,T) are the collisional and
dielectronic recombination coefficients, and SZ = S(N,,T) are the collisional
ionization coefficients.

In the classic Eulerian scheme, which usually employs the adaptive mesh re-
finement (AMR) technique for a good balance between performance and accu-
racy, in order to integrate the continuity equations of the ion species, the Eq.4 is
split into two equations given by Eq.6 and Eq.7, where X7 is the mass fraction of
the ion ¢ of the element Z. For each time step, the homogeneous hydrodynamic
advection equations given by Eq.1 and Eq.6 are solved by hydrodynamics solver,
and after each transport step, the ordinary differential equations (ODE) for the
NEI problem (Eq.7) are integrated by NEI solver.

OpXZ .
p@tz +Vv- (sz‘ZV) =0 (i=1,, Nopec) (Eq.6)
on? .
ag =RZ (i=1,,Ngpec) (Eq.7)

In many cases, integrating a large number of stiff ODEs at each time step
will dominate the total wall-clock time of a simulation [16], but fortunately in
this case the NEI solver, which only integrates several small sets of ODEs(<27),
is very lightweight, comparing with the much more complex PDE (partial dif-
ferential equation) solvers, such as hydro solver and thermal conduction solver
(diffuse). So in practice the computing time of NEI itself is only a small frac-
tion (less 10%) of the whole simulation time, but the overhead introduced by the
classic approach can no longer be ignored as the number of ion species increasing.

As illustrated in Fig.1.(a), there are only approximate 15 double-precision
variables in solution space and three PDEs(Eq.1-Eq.3) needing to be solved by
hydrodynamic solver. However as one chemical element containing n protons is
added, n+1 variables and n+1 advection equations (Eq.6) will be introduced
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Fig. 1. Solving NEI in pure Eulerian scheme. The left(a): Time-splitting iteration and
the grid data structure in Eulerian mesh. The right(b): Performance comparison be-
tween simulations with or without NEI (All tests were built on the FLASH code and
evolved 1000 timesteps).

according to the classic method. As a result, considering the twelve most abun-
dant elements in the universe plus fully ionized hydrogen and electrons, totally
181 extra variables need to be stored and another 181 advection equations need
to be solved at every grid point. Except the increased computing workloads in-
troduced by additional advection equations, it will use up to roughly 15 times
of system memory more than the case without NEI, and the following high
communication overhead between neighbor processes is unavoidable eithor.

For example of the block-based adaptive mesh refinement—-PARAMESH [5,13],
each core usually handles a 16 x 16 x 1000 (1000 is the number of blocks)
points subdomain in a common 2D simulation, and the grid data structure will
need roughly 65MB and 880MB RAM respectively with or without NEI [9,11].
As illustrated in Fig.1.(b), the traditional method caused heavy performance
degradation(15-fold slow) when all the ion species are added. Considering com-
mon multi-physics simulations involving multiple solvers for different physical
processes, except the hydro solver and NEI solver, other solvers also have to en-
dure the overhead introduced by the NEI problem although these solvers never
care these ion species. In Fig.1.(b), as the diffuse solver is added, the perfor-
mance degradation becomes larger, and using increasing number of cores is not
very helpful. Moreover, as the grid refines during evolution, the performance
degradation will be exacerbated further. For three-dimension simulations, mem-
ory and communication overhead will be increased by one order of magnitude,
much more computing resources must be employed for sharing such high bur-
den. Astrophysical simulations usually have long running circles, typically 50k
iterations above, then the total simulation time may become unacceptable. The
main contributions of this study are summarized as follows:

(1) Decoupled the NEI solver from the Eulerian mesh by employing tracer par-
ticles, and maximally reduced the high overload on computing, memory and
communication introduced by the traditional approach.
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(2) Proposed an efficient particle-dumping scheme for tackling large amounts of
small particle snapshots continuously produced at each evolution step.

(3) Developed a parallel method based on the MapReduce programming model
for NEI calculation, and both post-processing and nonintrusive in-situ
scheme were supported.

The outline of the paper is as follows. Related works are presented in Section
2, and a detailed description of the new approach based on tracer particles
and MapReduce is given in Section 3. Performance evaluations are discussed in
Section 4. The conclusion is given in Section 5.

2 Background and Related Works

As mentioned above, fundamentally the high overhead introduced by the pure
Eulerian scheme is due to the tight coupling between the NEI solver and the
underlying mesh. It is possible to overcome this drawback of the mesh-based
NEI implementation by introducing Lagrange tracer particles. By recording the
thermo-dynamical history of individual fluid particles, the NEI calculation can
be migrated to the post-processing phase, and totally independent from the
Eulerian mesh. Hence, in the thermo-dynamical evolution without NEI, there
is no need for extra space to hold all ion species, and sequently the numerous
partial advection equations (Eq.6) are also ‘disappeared’.

Tracer particle and post-processing method have been widely used in astro-
physical simulations and computational fluid dynamic (CFD) domain, and the
MapReduce technique is successfully used by several projects for massive par-
allel trajectories analyses at recent years [17,15]. However the NEI problem has
two distinct characteristics that common tracer particle schemes seldom address,
(1) usually particle data are dumped at a relative larger interval comparing to
the timestep, but the particle data of NEI must be dumped at each evolution
step, the frequent dumping will lead to large amounts of small files and heavy
IO burden, moreover, it is not an easy task of reconstructing particle trajectory
from large files base, (2) most MapReduce-style schemes for analyzing simulation
trajectories mainly focus on statistical calculation, such as extreme value, dis-
tribution of physical quantities etc., but the NEI calculation must be performed
along each trajectory in a strictly time ascending order.

The paper’s approach is implemented and tested based on the FLASH code,
which is a publicly available multiphysics simulation framework running in mas-
sive parallel environments [5]. The FLASH code integrated the traditional NEI
solver since version 2.5 and introduced Lagrangian tracer particles on top of its
Eulerian hydrodynamics infrastructure since version 3.3 [4,9]. The FLASH can
output particle snapshots with either serial IO or parallel I0. But to our best
knowledge, no separate effort is made to tackle such frequent snapshot dumping
posed by NEI in the current implementation of the FLASH.

Our approach is motivated by several excellent previous studies that can be
divided into two topics. The first is map-reduce schemes for analyzing particle
trajectories. The second is space-partition method for 10 acceleration and in
situ analysis.
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2.1 MapReduce Model for Reconstructing and Analyzing Particle
Trajectories

The MapReduce programing model is proposed by Google for large-scale data
processing in a distributed computing environment [1]. Ekanayake et al. [7] pro-
posed a steaming-based MapReduce implementation written in the Java lan-
guage, which eliminates the overheads associated with communicating via a file
system and send the intermediate results directly from its producers to its con-
sumers. The steaming-based idea is widely adopted by the HPC community, and
our approach is no exception.

Tu et al. [17] firstly proposed a dedicated MapReduce framework called Hi-
Mach built on top of the ubiquitous distributed-memory message-passing in-
terface (MPI), and their framework made a dramatic performance promotion
on analyzing terascale molecular dynamics simulation trajectories. Plimpton’s
group [15,14] made a series of systematic studies about map-reduce libraries
on top of MPI for use in large-scale graph analytics. They contributed the
MapReduce-MPI (MR-MPI) library and the PHISH framework to the HPC
community. Within the PHISH framework, streaming MapReduce operations
can be organized in a net, which specifies the sequence of computations and the
topology of data flow [15]. Following the idea of the PHISH framework, an in
situ scheme for NEI calculation was implemented in the paper.

2.2 Space-Partition Method for IO Acceleration and in Situ
Analysis

In the traditional time-partitioning model, usually a simulation must stop to
perform extra tasks, such as dumping the snapshots. Reconstructing trajectory
of each particle requires snapshots from every timestep in the simulation, and
the one-snapshot per-timestep will introduce heavy IO burden even for a modest
case with one million particles and 50k iterations [15,6]. With the acceleration of
take-up of multicore architecture in modern HPC systems in the last decade, the
ideas using space-partitioning approach to relieve the network and file system
contention are proposed by several research groups.

Li et al. [12] developed a novel functional partitioning runtime environment
that allocates dedicated cores to specific tasks, particularly for I/O activities.
Dorier’s group [2] proposed the Damaris I/O middleware, which avoids syn-
chronization between cores by overlapping I/O with computation and gathering
data into large files. Dorier’s approach gives the in-situ analyses the capability
of working on raw in-memory data without performing any copy [3]. However
in our case, the NEI analysis must follow the continuously moving particles, not
the ‘fixed’ points on the underlying Eulerian grid. So the paper proposed an in
situ scheme for running the NEI analysis on dedicated nodes near the simulation
cluster.

Except the in-situ scheme, the paper’s post-processing scheme also borrowed
ideas from space-partition methods. In general, parallel access to a single file will
provide the best parallel IO performance unless the number of processors is very
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large, But Fisher’s work [8] shows that none of the parallel I/O libraries available
with FLASH, effectively scaled to more than 1024 processors. So a node-level
direct I/O approach is adopted in the following post-processing scheme.

3 Method

Our approach includes two independent schemes, post-processing scheme and
in situ scheme. The advantage of post-processing schemes is that all snapshots
can be reserved, and used repeatedly for various analyses, not only for NEI.
Particularly it is very useful for some general simulations, such as turbulence,
the data set can be open to the community [8]. While the advantage of in situ
scheme is bypassing the lagging 10 system and reducing the amount of data
stored by large-scale simulations, moreover, in situ analysis can be used for
computational steering.

3.1 Architecture

The architecture of the system is described in Fig.2 and Fig.3. Our system con-
sists of discrete components that filter, aggregate, scatter the particles’ data
(map), perform NEI calculation (reduce), and generate statistical results. It is
modular and pluggable, for example, it can be easily adapted for nucleosynthe-
sis [16] analysis only by developing a dedicated reducer. Similar with the net
of the PHISH framework [15], components are assembled into workflows, where
data flow from component to component. Components can be divided into two
groups according whether they are located within the simulation nodes or not.
Inner components are designed as a plug-in of the simulation. While outer com-
ponents, which are loosely coupled with the evolving simulation, can be easily
replaced or extended to offer a wide range of features.

Data Filter: mainly used for reducing the data size. Usually post-processing
only needs a subset of particle attributes. A data filter continuously receives
streaming data from the simulation, and only deliver the data that just nec-
essary for reconstructing trajectories. By default, particles are defined to have
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eight properties that are necessary for moving on the grid: 3 positions in x,
y, z; 3 velocities in x, y, z; the current block identification number; and a tag
which uniquely identifies the particle; additionally three custom attributes are
included for NEI calculation: density, temperature and the current timestep. All
the properties are double precision, and for a common configuration of one mil-
lion particles evolving 100k timesteps will generate at least 8B snapshot files. In
fact only five properties are needed in NEI calculation phase, and three position
properties are only used in statistical analysis and visualization usually per-
formed at a relative large interval. Because the position data can be extracted
from the overall checkpoint files dumped at the same interval with statistical
analysis, and the timestep can be shared for all particles within the same snap-
shot, so the filter can reduce 70% volume of data by removing 8 properties,
including 3 velocities, 3 positions, the block ID and redundant timesteps.

Aggregator: mainly used for reducing the data size further and avoiding
large amounts of small snapshot files to be generated. Aggregator components
only used in post-processing schemes. Usually the simulation writes one snapshot
per file, and these snapshots are self-contained, which means metadata included.
As a result, the default mechanism will produce too many small snapshots and a
lot of redundant metadata information. An aggregator collects the data distilled
by the upstream filter, and appends the stream data into several large aggregate
files in a time ascending order. The properties with the same value on a snapshot
will be written only once, such as timestep, and the metadata is no longer put
into the snapshot, but described by a public configuration file.

Configuration File: mainly used to reduce redundant information of the
original snapshots and increase the flexibility and adaptability of the system.
The configuration file describes meta data and control options, including a full
definition of particle data structure, filter options, the max number of snapshot
files contained in one aggregate file and IO schemes etc.

Scatter: sends the particle data to a unique NEI solver (reducer) determined
by hashing on the particle ID. The hash algorithm used in the paper is very
simple, just the modulo operation on particle ID and the count of the reducers
(NEI solvers). It ensures that all data from one trajectory will be sent to the
same solver. The particle data comes from either aggregate snapshots in post-
processing scheme or the filters of in situ scheme. In order to avoid reconstructing
long trajectories in system memory, scatters ensure that data from the same
particle is sent in a strictly time ascending order.

Reducer(NEI Solver): solving the ordinary differential equations of the
NEI problem (Eq.7). The core algorithm of the solver is extracted directly from
the traditional implementation of FLASH code. Intermediate results can be ag-
gregated and saved to disk for later analysis or directly sent to the downstream
statistical tools. As mentioned in the first section, a data structure is necessary
for holding all variables of ion species within each particle. Each particle needs
181 x 8 bytes, for one million particles, approximate 1.5GB of storage globally
is needed. Comparing with the traditional implementation tightly coupled with
the grid, the most important advantage of the scheme is that neither extra mem-
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ory for holding guard points nor the guard points exchange between neighbor
processes is needed.

Statistical Tool: mainly used for global analysis, for example, demonstrating
the spatial distribution of ionization state. As mentioned in data filter, these
analyses usually need additional information only founded in the full checkpoint
files, hence the limitation of these analysis is that it must be invoked on existing
checkpoints and cannot be performed on the fly.

3.2 Post-processing Scheme

As illustrated in Fig.2, in the scheme, the whole simulation is performed by two
phases: the on-line simulation, and the off-line NEI analysis. Two I/O modes
are supported in the scheme. The first is the simple serial I/O mode, where each
simulation process connecting with a dedicated filter, but only one aggregator
exists, and all the filters move the data to the single aggregator for output. In
the serial I/O mode, all files are written into a global sharing file system space.

The second is direct I/O mode, and its performance had been verified by
Fisher’s work on terascale turbulence simulation [8]. An improvement was made
based on the space-partitioning ideas [12,2]. As shown is the Fig.2, in order to
avoid file system contention from processes within the same node when snapshots
written at the same time, in each node a dedicated process is allocated for
gathering the data from other processes within the same node, and then writing
its portion of the global data to its local file system.

3.3 1In Situ Scheme

Considering the NEI calculation is lightweight compared to the whole simulation
workload, if a small portion of computing resources is allocated to perform the
NEI calculation as the simulation runs, the impact on the overall performance is
trivial. As shown in the Fig.3, most of computing resources are allocated to the
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simulation, and just a few cores are reserved for in situ NEI analysis. The filter
directly puts the particle data into its private scatter, and then the scatter sends
the data to a NEI solver depending on the hash-value of particle ID. The in situ
scheme will not introduce disk storage overhead, but a balance strategy must
be made for properly allocating computing resources between the simulation
and the in-situ analysis, and this is simulation specific. In NEI experiments, the
in-situ portion is nearly 10%.

3.4 Implementation

The paper’s approach was prototyped based on the FLASH framework, and
programmed in FORTRAN 90. By employing the particular directory-based in-
heritance hierarchy of the FLASH [5], our system can be connected to the sim-
ulation in a nonintrusive way just through the particle 10 interface of FLASH.
The implementation puts minimal impact on the simulation code, so that few
code changes is required for users adopting our approach in their simulations.
To use the new feature, they only need to make a few configurations and rebuild
the code.

The implementation of the MapReduce model in this paper is based on
MPICH2. In order to ensure a strict time ascending sequence in NEI calcula-
tion, synchronization must be performed carefully. In the post-processing phase,
it needs force synchronization at each timestep when scattering the particle snap-
shots to the NEI reducers. In in-situ scheme, there is no need to make special
effort to ensure time sequence, due to the inner synchronization mechanism of
the FLASH. It is worth pointing out that in the in-situ scheme, the simula-
tion and the NEI solvers resident in two independent MPI contexts respectively,
which will not impact each other, so that it makes the scheme more robust and
adaptable.

4 Evaluation

In this section, the paper’s approach was evaluated with a real world simulation—
W49B built upon the FLASH code, using a Linux cluster, which provides 10
nodes of 4 Intel 2.6GHz CPUs, 6 cores/CPU, 48 GB RAM. One node is reserved
for in-situ analysis, and another for management and job submission; therefore
in fact totally eight nodes are used for running simulation.

The physical model of W49B describes the evolution of an originally spherical
supernova remnant (SNR) expanding through an inhomogeneous medium. The
detailed information about the simulation can be found in [18]. For simplicity,
the evolution is modeled by numerically solving fluid dynamic equations (Eq.1-
Eq.3), taking into account the effects of thermal conduction (diffuse) and NEI
(Eq.4). All the particles located within a 0.5 x 0.5(pc) circle region at the center
of the 9 x 12(pc) simulation domain (1pc = 3.0e18cm). It is worth mentioning
that the unbalance of particle load distribution may slow down our approach at
the early stage of the evolution, but it will not impact the following performance
analysis.
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The experiments use 1 million particles and initial 16 x 16 x 20k AMR, points
(cells) spread over 12, 24, 48, 96 and 192 processors. In theory, the AMR data
structure will take up 18GB and1.3 GB global memory with or without NEI
solver coupled. It is worth pointing out that for one million total count of the
particles, only one hundred megabytes of storage are required globally in the
simulation phase, but in the NEI analysis phase, the memory overhead intro-
duced by NEI can not be avoided totally. The particle data structure will take
up 1.5GB global memory for containing all the ion mass fractions, however there
is no need for extra memory containing large amounts of ghost points (guard
cells) and frequent information exchanges between neighbor processes.

Because the real world simulation has a long running circle (according our
previous work [18], only Fe element contained, evolving 400k timesteps, about
20 days on 72 cores), so each evaluation run was limited to 1k timesteps, and
the running time varied from 0.5 to 25 hours approximately for different tests.
The performance data was collected by the timer and profiler tools of FLASH.

Five groups of tests were conducted, including the basic hydro-thermal sim-
ulation without NEI (marked with ‘AMR without NEI’), the traditional ap-
proach coupling NEI with Eulerian mesh (marked with ‘AMR with NEI’), the
post-processing approaches with serial IO and direct IO modes (marked with
‘particle serial I0” and ‘direct IO’ respectively), and the in situ scheme (marked
with ‘particle in situ’).

4.1 Performance Analysis

The Fig.4 illustrates the total times used by each test evolving 1k iterations.
The three schemes of our approach have similar performance curves, all of them
get the maximum acceleration at 48 cores, and then as the cores increase, per-
formance degradation is exacerbated. The same phenomenon occurred more ob-
viously for the basic test (AMR without NEI). The reason is that for a selected
workload, simply increasing number of cores does not provide corresponding im-
provement, and due to the limitation of the test environment, the size of the
experiments is fixed to a moderate value.

As mentioned above, due to tightly coupled NEI with the grid, the traditional
approach (AMR with NEI) introduced at least one order of magnitude perfor-
mance degradation. Though as the cores increasing from 12 to 192, the total
time dropped from 85k seconds to 22k seconds, it is still 6 folds of the basic case
at 24 cores, and 4 folds of our approach at 48 cores. Moreover the acceleration
becomes slower as the cores increase, it can be concluded that simply increasing
number of cores have few effect on further performance improvement. Compar-
ing with the best result of the tradition method (at 192 cores), the direct IO
scheme achieved approximate 4.5-fold performance improvement but only using
a half number of cores, and for in-situ scheme, the maximum acceleration is
near 3-fold. For a real world simulation evolving 100k iterations, the traditional
method will take 28 days at least even using 192 cores according the current
experiments; therefore the improvement will save a lot of computing resources
in practice. It must be pointed out that as simulation evolves, the mesh will
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Fig. 4. Total evolving time for 1k iterations at a global workload of 1 million particles
and initial 16 x 16 x 20k AMR points

become more refined, and consequently it will lead to more computing workload
and more memory usage. In the original W49B simulation, at the end the global
number of cells (points) had increased to 10 times of that at the start. So it’s
believed that the end-to-end performance improvement will be still better than
the experiments show.

4.2 Overhead Introduced by Tracer Particles

As shown in Fig.4, compared to the basic test (AMR with NEI), the overhead still
existed in our approach, but much lower than that of the tradition method. The
main impacts on performance introduced by tracer particles are (1) particle I/O,
(2) particle advance on Eulerian mesh, (3) computing the timestep for ensuring
that any particle travels no more than some numerical constraints during a single
step, and (4) the grid refinement operation when particle count used as one of grid
refinement criteria. For the three latter overheads, all the three schemes of our ap-
proach are approximately equivalent in both theory and practice. For the former
overhead, particle I/O, the simple serial IO scheme will inevitably encounter the
scalability problem due to the bottleneck of network communication as the num-
ber of cores increasing, while both of the direct I/O scheme and in situ scheme can
totally ignore the time used by outputting particles.

Fig.5 shows a detailed comparison of the times used by each main process of
three representative tests performed at 96 cores respectively. In the traditional
method, the hydro solver and diffuse solver have to sustain the high overhead on
computation and communication introduced by tightly coupling NEI and AMR,
and the total time increased 600%. By contrast, in our approach the four main
overheads introduced by particle totally account for less than 50% of the overall
execution time.
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4.3 Overhead Introduced by Post-processing

Large disk storage is the main overhead for saving particle snapshots. Though
some efforts (Filter, Aggregator and configuration file etc.) were made to decrease
the size of snapshots, for one million particles advancing 10k iterations, it will
generate 230GB files, and for a moderate 100k iterations required by common
astrophysical simulations, it will occupy 2.3TB of disk capacity.

In our approach, the NEI solver is separated from the Eulerian mesh, but the
above performance statistic did not yet contain the time used by NEI calculation
in our approach. Experiments showed that a single process needs 0.2s to perform
NEI calculation on one trajectory of 1k iterations, and consequently for one
million particles, the time is 0.2e6s. Unlike the traditional approach, because
there is no need to exchange information between the neighbor processes, the
NEI calculation can get a nearly linear speedup as the number of cores increasing.
In our experiments, the total time was 1160s for analyzing one million trajectories
of 1k iterations at 192 cores. Plus the minimum evolution time (5120s, as shown
in Fig.4) that the redirect IO scheme had achieved, the end-to-end performance
improvement of the direct IO scheme was approximate 3 folds.

In summary, by employing proper particle-dumping strategies and the MapRe-
duce programming model, our approach successfully controlled the overhead in-
troduced by NEI within a small scope. In fact, there is another advantage of
our method. The traditional approach can easily lead to inconsistent advection
of ion species during fluid dynamic evolution, which will break the simulation
due to large numerical errors [9]. While the tracer particle method can easily
bypass the consistent multi-fluid advection problem, which many reactive flow
simulations have to tackle carefully.
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5 Conclusion and Future Work

In the paper, we proposed a new approach employing tracer particles and
MapReduce model to solve the NEI problem in astrophysical simulations. Some
optimization mechanisms were developed for tackling the frequent output of large
amounts of snapshots, including data filter, file aggregator, direct I/O and in-situ
processing.Comprehensive theoretical analysis and experiments were conducted
to demonstrate the efficiency and scalability of the approach, and experiments
shown that it can reduce overall execution time of a real world simulation by 3
folds at least. Our system is component-based and nonintrusive, so that it can
be easily adapted to other astrophysical simulation frameworks, or extended for
accelerating other multi-species related simulations, such as nucleosynthesis [16].

A limitation exists in the current implementation. Our approach is not totally
self-consistent, because the contribution of the ionization and recombination to
the energy equation is not accounted for [9]. In the traditional Eulerian scheme,
because all the solvers share a unified solution space on the top of AMR, the
energy generated by NEI can be directly used to the energy conservation equa-
tion. But in our approach where NEI and AMR are totally decoupled, there is
no effective way to send back data to the running simulation.

Our future work will focus on optimization algorithms for particles moving on
Eulerian mesh by taking the advantage of multi-core architecture. We also plan
to integrate some new tracer particle schemes, like Monte Carlo tracers [10] for
both accuracy and performance improvement.
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Abstract. The host cardinality is the number of distinct destinations
that a host communicates with. Host cardinality is an important metric
for high-speed network profiling. With the development of internet, net-
work attacks occur frequently such as worm spreading, DDoS attack and
port scanning and so on. One common characteristic of these attacks is
that they usually generate a lot of traffic connections in a short time
which will lead the host cardinality distribution to change. Hence we can
detect these attacks according to the host cardinality distribution. In
this paper, we present an algorithm based on continuous virtual vector
to estimate the host cardinality distribution. Through experiments using
real internet traces, we demonstrate that our algorithm can estimate the
host cardinality distribution accurately while using little storage.

1 Introduction

With the rapid development of internet, the number of users and kinds of ap-
plications are also expanding in high speed. Hence the traffic volume increases
continually and network behaviors become more and more complicated, these
bring many challenges for traffic measuring. Even though existing so many chal-
lenges many solutions have been proposed [1][2][3].

Chen et al proposed that due to the large traffic volume in the high-speed
network, it is high efficient to derive some succinct summary information that
can characterize the traffic behavior pattern as a whole [4]. And the network fea-
ture distribution can describe the aggregate behavior pattern. Due to the prior
work has focused primarily on distributions concerning traffic volume, such as
flow size distribution in [5][6][7], or packet contents distribution in [8], hence
Chen et al proposed another characterization of network feature called host car-
dinality distribution: given a number n, how many hosts communicate with n
different destination or have n number of flows in observed traffic. They also
developed an algorithm to estimate the cardinality distribution based on con-
tinuous Flajolet-Martin (FM) sketches. The algorithm is the first approach for
estimating cardinality distribution.
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Now Internet plays a very important role in our daily life, but it has also
revealed a lot of security problems. When these problems occur they usually
cause the host cardinality changing [9] [10]. Knowing how the host cardinality
distribute can help us detect various types of internet security attacks such as
distributed denial-of-service (DDoS) attack and worm spreading. When a DDoS
attack happens, attackers will send attack packets to the victim, if these attackers
use spoofed IP addresses, then the number of cardinality of size 1 increases. For
the worm spreading, each infected host will try to connect to other hosts to
spread the worm as quickly as possible. So we will observe a large number of
cardinalities of a particular size around the same time. Knowing cardinality
distribution can also help us engineer the usage pattern of traffic. For example,
the cardinality of many hosts increases over time that may indicate that the
number of P2P hosts is increasing. Knowing cardinality distribution can provide
us much other information. But estimating the cardinality distribution is not
a relaxed job. Existing methods for estimating the host cardinality distribution
either need large storage space or have high computation complexity.

In order to address the aforementioned problems, we propose a new algorithm
for measuring cardinality distribution. The data structure of the proposed algo-
rithm is a continuous virtual vector. This algorithm is able to record and process
large amounts of packets in the high-speed internet with small space and time
consumption. We can derive the estimation of the host cardinality distribution
according to these packets information. The main contributions of our work are
as follows:

(1) We design a new data structure, called continuous virtual vector, which only
need one bit to record a packet. This guarantees the memory efficient of our
method.

(2) We derive a reasonable formula for estimating the size of host cardinality,
and the formula can give an accurate estimation of cardinality size.

(3) The algorithm can get the host cardinality distribution with small space and
time consumption. We demonstrate its performance through experiments
using real internet traces.

The rest of this paper is organized as follows. Some related work is provided
in Section 2. In Section 3, we present our algorithm for estimating the host
cardinality distribution and analysis its performance. Section 4 is the experiment
result. Finally, we conclude in Section 5.

2 Related Work

2.1 Bitmap

Bitmap is a bit array used for counting the number of distinct elements [11]. It
uses a hash function that maps each element to a bit location of the bit array.
Assume a Bitmap with size m, namely the Bitmap is consisted of m bits, at
the begin all of its bits are initialized to 0. Whenever an element arrives, the
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corresponding bit location mapped to is set to 1. Because of hash collision, it is
possible that one bit may be set multiple times, while only the first setting is
effective the rest has no effect on the bit. Hence we could not use the number
of “1” as the estimation of the number of distinct elements, and we get the
estimation mathematically. Assume the actual number of the distinct elements
is n, the number of bits which are not set to 1 is U. Then the probability that a
specific bit in the Bitmap is not set to 1 is prob=(1 — nll)”. We use the expected
value of U, E(U)=mx*prob, to derive the estimation number of distinct elements.
And the estimating result is h=—m * ln(g) In network measurement domain,
Bitmap has been used to count the number of flows [12]. It has low space
consumption than other structures.

2.2 Virtual Vector

For estimating host cardinality accurately, Yoon et al create a virtual vector for
each source host by taking bits uniformly at random from a bit array. The bits
in virtual vector are selected by a set of hash functions, Hy(), H1(), ..., Hs—1. For
example, there is a bit array B of size m, and the ith bit in the array is denoted
as Bli], then a virtual vector X (src) of size s for a specific source address src
can be denoted as

X (src) = (B[Ho(src)], B[Hy(src)], ..., BlHs—1(src)]).

The size of host cardinality can be estimated by using formula k = s % In( l{gl) —
sxln( z ), where U,,, and U, are the number of “0” in bit array and virtual vector
respectively. It is need s hash functions to get a virtual vector, so this method
has high computing complexity. In order to decrease the computing complexity,
we design a new data structure, called continuous virtual vector in this paper.
Regard the bit array as a circular bit sequence. We only use a hash function to
map to a specific bit of the bit array. A continuous virtual vector consists of s
continuous bits starting from the mapped bit. We will describe the continuous
virtual vector in detail in the next section.

3 Our Algorithm

In order to adapt the high-speed network, and to meet the requirement of real-
time tracking and measuring online, we propose an algorithm based on contin-
uous virtual vector to estimate the host cardinality distribution. Our algorithm
consists of two phases: online processing and offline processing. The online pro-
cessing uses three continuous virtual vector to record flow information of all
hosts in the high-speed network. The offline processing obtains the estimation
of host cardinality according to those flow information recorded in the online
processing phase. The final estimation result will be output as the tuple form of
<host cardinality: host number>. The overall architecture of our algorithm is
shown in Figure 1.
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Fig. 1. Overall architecture of our algorithm

3.1 Online Processing

The online processing consists of two modules: flow processing module and source
host recording module. And the two modules process packets parallelly in the
network.

A. Flow Processing Module

In this module, we use three bit arrays with size m, B1[m], Ba[m|, Bs|m], to
record all flow information. What’s more, we allocate a continuous virtual vector
with size s for every distinct source host to record its cardinality information.
In the offline phase, we will estimate the cardinality of a host according to the
three bit arrays and the corresponding continuous virtual vectors. When a packet
comes, we first extract its source IP address, sip, and its destination IP address,
dip. The sip is hashed by three hash functions, hashi(), hashz(), hashs(), which
are used to determine the starting location of the host’s continuous virtual vec-
tors in Bi[m], Ba[m], Bs[m]. Let s be the size of the continuous virtual vector.
Then fetch s bits in each bit array continuously, if there are less than s bits re-
mained, complement s bits from the first bit in the bit array. In this way, we get
the continuous virtual vectors of sip. Here we use three bit arrays and three hash
functions so that we can get three vectors for every distinct sip. Assume that,
i=hashy(sip), j=hashz(sip), k=hashs(sip), then the three continuous virtual
vectors of the sip are as follows:

X1(Sip) = (B1li], Bili + 1], ..., B1[(i + s — 1)modm]),
X»(Sip) = (Balj], B2[j + 1], .., B2[(j + s — 1)modm]),
Xs(Sip) = (Bslk], Bs[k + 1],. .., Bs[(k + s — 1)modm]).

Another hash function, hash4(), is used to map dip into the vector. According
the result of hashy(), the corresponding bit in the vector is set to 1. For example,
p=hash4(dip), then Bi[(i+p) mod m], Bz[(j+p) mod m] , B3[(k+p) mod m] are
set to 1. After this procedure the cardinality information of sip is recorded.

B. Source Host Recording Module
In this module another array, distinctI P[n], is used to record those different
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source hosts. For a sip extracted from each arrival packet, if the sip has been
recorded, we discard it directly, otherwise it is inserted into distinctI P[n].

A detailed description of the online processing phase is presented in
Algorithm 1.

Algorithm 1. Online Processing

1: Initialize

2. BI1[i], B2[i], B3[i}:=0; i=1,2,3, ... , m
3: n:=0;

4: Update

5: Upon the arrival of a packet pkt, extract sip, dip from it
6: 1i:=hashl(sip);

7:  j:=hash2(sip);

8:  k:=hash3(sip);

9: p=hash4(dip);

10:  B1[(i+p) mod m]:=1;

11:  B2[(j+p) mod m]:=1;

12:  B3[(k+p) mod m]:=1;

13: Insert

14: if sip¢distinctIP[n] then

15: distinctIP[n++]=sip;

16: end if

17: end

3.2 Offline Processing

In this phase, we estimate the cardinality of each source host recorded in ar-
ray distinct] P[n] according to its three vectors Xi(sip), Xa(sip), Xs3(sip) and
Bi[m], Ba[m], Bs[m]. At last we preserve the results in array output[t], where
the index value ¢ denotes the size of a cardinality and the value of element
output[t] is the number of source hosts whose cardinality is ¢t. We estimate the
cardinality as follows: for every sip in the array distinct[n] which represents
an exclusive source host in the high-speed network, we first use the three hash
functions hashi (), hasha(), hashs() mentioned in the online processing phase to
derive three continuous virtual vectors X (sip), Xa(sip), X3(sip). Then make
these vectors do “and” operation, we get another vector X (sip). Namely:

X (sip) = X1 (sip)&Xo(sip)&Xs(sip).

Let U, denote the number of “0” bits in the vector X (sip). Let V; be the fraction
of “0” bits in X (sip), hence

Ve= .
S



48 X. Zhou et al.

And Up1, Unma, Ung are the number of “0” bits in By[m], Ba[m], and Bs[m],
respectively. Let Vi1, Vina, Ving be the fraction of “0” bits in Bi[m], Ba[m],
Bs[m], respectively. It is easy to get that:

Uml

Vin1 = )
m

Um2

Vm2 - )
m

UmS

V;n?) = .

The following formula is used to estimate the cardinality of host sip:
) 3
k::Z(p*s*anmi—s*ans) (1)
i=1

Below we will derive (1) mathematically. Some additional notations are given
as follows: let n be the number of distinct pairs <sip, dip> from all source hosts
during the measurement period. Define Cj1 be the event that the jth bit in By [m)]
is still zero when the measurement ends. For a source host with cardinality size
k, each of the k distinct pairs is hashed to an arbitrary bit in the vector X (sip)
with probablhty . And the probability that the bit is mapped by a pair of other
source hosts is . Hence the probability that event C}1 occurs is

Prob(Cj1) = (1 — Tln)"_k(l — i)’“, Vi€ 0,5 —1] (2)

Let lcj1 be a random variable that takes on the value 1 if event Cj; occurs,
0 otherwise. So the number of “0” in vector X;(sip) can be denoted by Us =
Zj s—1 lcj1. Hence we can get the expected value of V; :

j=s—1 j=s—1

1 1
E(Vs) = SE(USI) = Z (gjn) = Z Prob(Cj1)
7=0
1 Lo 1, 1o 1
_ o n o _ . n . 3
LT Bt (o (B Y R Lo (R LR C)

_n—k _s
e~ m xe k as(n—k), m k, s = 0

1

~eTm ,ask <m
From (3) we can get the cardinality value k as:
n
ke~ —sx —sxin(E(Vs)) (4)
m
According to [11] we can get the relation between n and m as follows:

n~—mxIn(E(Vmn1)) (5)
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Hence (4) can be written as:
kE~sxIn(E(Vm)) —s*xIn(E(Vs1)) = sxIn(Vip1) — s In(Vs) (6)

In (6) the second term is the number of distinct pairs mapped into vector X (sip),
but it does not equal to the number of distinct pairs of sip, because it has noise
made by pairs of other hosts. And the first term is the noise. In our algorithm
we let vectors X (sip), Xo(sip), X3(sip) do “and” operation to get the vector
X (sip). So the vector X (sip) has eliminated fraction of those noises, we introduce
the factor p (where 0 < p < 1) to eliminate the rest noise. We get the optimal
value of p through experiments. Then we can get (1). When k is small, it may
happen with a small probability that k is less than one, in this case we set ktol.

After derive the cardinality of each source host, we will estimate the cardinal-
ity distribution as output[t]++. The pseudo-code of the offline processing phase
is shown in Algorithm 2.

Algorithm 2. Offline Processing

Upon the sip stored by Source IP storing module in array distinct! P[n|

for m=0 to n do
sip=distinctIP[m];
Xi(src)=(Bi[hashi(sip)],...,Bi[(hashi(sip)+s-1)mod m]);i=1,2,3

end for

X (sre)=X1(src)&X2(src)&X3(src);

Us=countbit(X(src));

Umi=countbit(Bi[m]);

Vs=Us/s;

: Vmi= Umi/m;

k= Zle(p x5 x NV — s x InVs);

: if k<1 then

k=1;

: else

k=int(k);

: end if

: output[k]++;

: end

= e R e e e e
WU W~ O©

3.3 Performance Analysis

In order to know of the property of our algorithm, we analyze the space con-
sumption and estimating error theoretically in this section.

A. Space Consumption

The space consumption (SRAM) of the algorithm is mainly determined by the
online processing. The arrays distinct] P[n] and output[t] work in the DRAM,
their influence to the space consumption can be ignored. Hence the main space
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consumption comes from the three bit arrays Bi[m], Ba[m], Bs[m]. Each bit
array only needs one bit to record a flow, so the space consumption of each bit
array is ! *m Bytes, where m is the size of a bit array. So the total space con-

8
sumption of our algorithm is g*m Bytes.

B. Error Analysis

In online processing phase each bit array provides a continuous virtual vector
with size s for every source host. For the high cardinality hosts, s bits can’t
record their all pairs. Two or more pairs can be mapped to the same bit. There-
fore the estimation is bigger than the true value. As mentioned above, bits of
each bit array can be shared by multiple vectors. Therefore the value of U, will
decrease when the measurement ends and the estimation will be bigger than the
true value especially for the low cardinality hosts. In our algorithm, we eliminate
this kind of error through “and” operation. From (1), the value of k can not be
always integer. In our algorithm we set k to k (k is the max-integer which is no
more than k). So every value between k and k + 1 will be set to k. Therefore the
number of hosts with cardinality size k is bigger than the true value.

4 Experiment

In this section, we use the continuous virtual vector algorithm to estimate the
cardinality distribution using some real traces. Then we compare the estimation
distributions with the actual cardinality distributions.

4.1 Data Source

We use different traffic traces gathered from real internet to test our algorithm.
These traces are from MAWI Working Group of the WIDE Project (MAWTI)
[14], Jiangsu provincial network border of China Education and Research Net-
work (CERNET) [15]. The trace from MAWI was collected on a trans-Pacific line
(150Mbps link), on March 30, 2009 at 00:00 am. The IPv6 packets of MAWT are
filtered out in our experiments. The CERNET traces were collected at Jiangsu
provincial network border of China Education and Research Network (CER-
NET) on April 17, 2004.1t includes TR1, TR2 and TR3. The backbone’s capacity
is 1000 Mbps, and mean traffic per day is 587 Mbps.

4.2 Parameter Analysis and Setting

For the size of bit array m, if it is big enough that the probability of hash
collision is low, in such way the result will be relatively accurate. But limited by
the memory capacity, m can not be too large. Here we set the size of m to be
65536. For the size of continuous virtual vector s, if it is large that the probability
of different source hosts share one or more bits in the bit array is low, this will
reduce measuring accuracy. But from (1), we can infer that s determines the
maximum value that the algorithm can measure. So the small size of s will limit
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the measurement range of host cardinality. Considering these two reasons, we set
s to be 128. We compute the weighted mean relative difference (WMRD) using
MAWT trace to get the optimal value of p. We use (7) to compute the WMRD,
where n; denotes the actual host number with cardinality size n; and n; denotes
the estimation number.

>(ni —nj
el @
275
When p is 0.75 the WMRD is the smallest as is shown in Table 1. In other words

when p is 0.75 the algorithm is relatively accurate, so in our experiments we set
p to be 0.75. The finally experiment results are shown in section 4.3.

WMRD =

Table 1. The deviation of algorithm using different p values

D 0.3 05 075 09
WMRD 1.432 1.397 1.175 1.268
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Fig. 2. Comparison of estimation of our algorithm with actual cardinality distribution,
(a) MAWI, (b) TR1, (c) TR2, (d) TR3
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4.3 Experiment Results

In this section, we compare the cardinality distribution measured by our algo-
rithm with the actual cardinality distribution. In every experiment one million
packets are used. The experiment results are shown in Figure 2. The x-coordinate
is the cardinality size, and the y-coordinate denotes the number of hosts with the
cardinality size x. We can see that for most low cardinality hosts, the estimation
result is really bigger than the actual result as we analysed in section 3.3. In
actual application such as attack detection, we are usually interested in those
high cardinality hosts. And the experiment results show that the estimation of
those high cardinality hosts is close to the actual result. So our algorithm can
be used in actual application.

5 Conclusion

Because of the huge traffic in the high-speed network, network monitoring system
is limited by storage and processing capabilities, it can not record all of the
packets information. So getting the overall behavior of network traffic is very
necessary for network monitoring and traffic engineering. The host cardinality
distribution is one of the useful metrics to express the network overall behavior.
In this paper, we design the continuous virtual vector and propose an algorithm
to measure the distribution of the host cardinality. The experiment results show
that the algorithm can measure the cardinality distribution accurately with less
storage and faster execution speed. The future work is to improve the accuracy
of the algorithm.
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Abstract. The storage and access of massive small files are one of the chal-
lenges in the design of distributed file system. Hadoop distributed file system
(HDFS) is primarily designed for reliable storage and fast access of very big
files while it suffers a performance penalty with increasing number of small
files. A middleware called Hmfs is proposed in this paper to improve the effi-
ciency of storing and accessing small files on HDFS. It is made up of three lay-
ers, file operation interfaces to make it easier for software developers to submit
different file requests, file management tasks to merge small files into big ones
or extract small files from big ones in the background, and file buffers to im-
prove the I/O performance. Hmfs boosts the file upload speed by using asyn-
chronous write mechanism and the file download speed by adopting prefetching
and caching strategy. The experimental results show that Hmfs can help to ob-
tain high speed of storage and access for massive small files on HDFS.

Keywords: HDFS, small files, middleware, asynchronous write, prefetching.

1 Introduction

Hadoop, an open-source software framework developed for reliable, scalable, distrib-
uted computing and storage, is successfully used by many companies including Ya-
hoo, Amazon, Facebook, and New York Times [1]. Hadoop distributed file system
(HDFS), as the primary storage system of Hadoop, is a portable, high reliability, high
throughput, and open source distributed file system. It is primarily designed for
streaming access of big files. Reading through small files normally causes lots of
seeks and lots of hopping from one DataNode to another DataNode to retrieve each
small file, all of which is an inefficient data access pattern [2].

The low efficiency of storing and accessing small files on HDFS (which is called
small files problem for simplicity in this paper) is majorly caused by: (1) the small
files will produce a lot of metadata on HDFS NameNode so that too much memory
space will be occupied when HDFS is working; (2) the file access mechanism of
HDFEFS is not suitable for a large number of small files; and (3) HDFS lacks of I/O
optimization mechanism such as file prefetching and caching [2,3].

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 54-67, 2014.
© Springer International Publishing Switzerland 2014
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The most popular idea of solving the small files problem is to combine small files
into big ones, establish index mechanism to map the small files to HDFS blocks,
prefetch and cache the related small files when one of them is accessed. These exist-
ing research methods mainly focus on optimizing the storage structure or the access
mechanism of HDFS [3-14].

In this paper, without making any change of HDFS, we design and implement a
middleware Hmfs (Hadoop-based middleware for file system) on top of HDFS for
addressing the small files problem by providing the following features:

e Hmfs is a middleware running on HDFS. It is easy to be transplanted to some
more advanced versions of HDFS in the future.

e Hmfs saves the space of HDFS NameNode by storing the index data in an in-
memory database instead of HDFS.

¢ Hmfs optimizes the file upload operation on HDFS by applying asynchronous
write mechanism.

e Hmfs adopts a prefetching and caching strategy to fasten the file download
speed.

The remainder of the paper is organized as follows: section 2 reviews some related
work; section 3 analyzes the problems of small files processing over HDFS; section 4
introduces the design of Hmfs; section 5 describes the optimization strategy of Hmfs;
section 6 presents the experimental results; and section 7 concludes the paper.

2 Related Work

A small file is the one that is significantly smaller than the HDFS block size (default
64MB). Recently, research on small files problem of HDFS has attracted significant
attention. Shvachko et al from Yahoo! described the design and implementation of
HDFS where every file, directory, and block is represented as an object in the
NameNode’s memory, each of which occupies 150 bytes [2]. It is designed mainly for
the streaming access of big files not small files.

There are some general approaches based on HDFS to solve the small files prob-
lem. Hadoop Archives (HAR files) were introduced to HDFS in 0.18.0 to alleviate the
problem of lots of files putting pressure on the NameNode’s memory. HAR files work
by building a layered file system on top of HDFS. However, reading through files in
HAR is no more efficient than reading through files in HDFS, since each HAR file
access requires two index file reads as well as the data file is read [7]. SequenceFile
provides a persistent data structure for binary key-value pairs. It uses file name as the
key and file contents as the value, and supports compressing and decompressing at
record level or block level [8]. However, it may be slow to convert existing data into
SequenceFiles. Unlike HAR files there is no way to list all the keys in a
SequenceFile. A MapFile is a type of sorted SequenceFiles with an index to permit
lookups by key. It consists of an index file and a data file. The data file stores key-
value pairs as records, which are sorted in key order. The index file stores key-
location information and the location is the offset where the first record containing
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this key is located in data file. HBase stores data in MapFiles (indexed
SequenceFiles), and is a good choice if you need to do MapReduce style streaming
analyses with the occasional random look up [9]. These approaches improve the stor-
age efficiency of HDFS by changing the storage structure.

There are also some approaches based on HDFS for special application files. Ref-
erence [4] took the file correlations and access locality into consideration, and pro-
posed a two-level prefetching mechanism to improve the efficiency of accessing
powerpoint files. Reference [5,6] packed the related GIS data into big files and stored
them into HDFS. These researches made full use of the relationship between files.
Some approaches focused on cached the metadata and position of blocks to reduce the
access to NameNode or DataNode. Some approaches aimed at optimizing the access
of small files by storing the index data in the memory, database or in-memory data-
base [10-14].

Compared with these existing researches, Hmfs proposed in this paper is a mid-
dleware based on HDFS, and it’s easy to be transplanted to the advanced versions of
HDES in the future. The merged big files only contain file data while the index data
of small files is stored in an in-memory database. That improves the memory utiliza-
tion and simplifies the operation of file update and delete. Furthermore, the asynchro-
nous write mechanism helps to improve the response time of jobs.

3 Small Files Problem in HDFS

HDFS has many similarities with existing distributed file systems. However, the dif-
ferences from others are significant. It supports tens of millions of files in a single
instance, and it has been designed to be easily portable from one platform to another.
So it is widely used for big-scale file storage.

NameNode secondMameNode
File metadata: File metadata:
finput/filel->1,2, 3 E A Jinputffilel-»1,32, 3
finput/file2->»4, 5 finput/file2-»4,5
% A /,-7.-\\ . "
DataNodel - DataNode2 “\ DataNode3 ™ \DataNodezl
< i Y
3 3 5 3 1
5 a4 5 2 a
A |2 1 4 1 2

Fig. 1. The architecture of HDFS
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As shown in Fig. 1, HDFS is composed of NameNode and DataNodes. NameNode
manages file system namespace which is called as metadata, and regulates client ac-
cesses. DataNodes provide block storage, serve I/O requests from clients, and perform
block operations upon instructions from NameNode. SecondNameNode which is
responsible for backing up all data on NameNode is optional.

When we download a file from HDFS, the time cost is composed of the following
parts. (1) A client sends an access request to NameNode. Assume the time is T;. (2)
NameNode looks up the metadata of the requested file in memory. Assume the time is
T,. (3) NameNode returns the block addresses to the client. Assume the time is T;. (4)
The client accesses data from DataNodes one by one. Here the time is made up of
three parts, T4, Tap, and T,. First, the client sends the blockld to DataNode. The time
is T4,. Then DataNode gets the blockld and fetches the file data from the hard disk.
The time is Typ. Finally, the DataNode returns the data to the client. The time is Tj.

Suppose that there are n files to be downloaded and each file is divided into m
blocks, the total time cost can be represented as formula (1):

T,=21(Ti+ T+ T3+ XT1'Ty), Ty =Tag +Tap + Ty (H

When the size of the files is less than the size of a block, m is 1. The total time
consumption can be represented as formula (2):

Th=21(Ti+ T, + T3+ T, ) (2)

When n is very big and m is 1, the metadata in NameNode will increase rapidly
and NameNode may be overloaded. So it is necessary to minimize the size of metada-
ta so as to reduce the access time in NameNode. Furthermore, if we fetch the files
from HDFS in advance, the response time of the job will decrease. The file prefetch-
ing and caching strategies are efficient to improve the throughput of the job. When the
total size of n files is less than the size of a block, it is a challenge to decrease the total
time consumption to T; + T, + T3 + T,. This paper will focus on it.

When we upload a file to HDFS, the time cost is composed of the following parts.
(1) A client sends an access request to NameNode. Assume the time is T,. (2)
NameNode creates metadata for the file. Assume the time is Tz’. (3) NameNode re-
turns the data output stream to the client. Assume the time is T;. (4) The client
sends data to the output stream and stores the data in DataNode, DataNode informs
NameNode the place, and the client closes the output stream. Assume the time is T .

Suppose that there are n files needing to be uploaded and each file is divided into
m blocks. Then the total time cost can be represented as formula (3):

T =21(T1 + T + T3 + X1 ) 3)

When the size of files is less than the size of a block, m is 1. Then the total time
consumption can be represented as formula (4):

Ty =21(T + T, + T3 + Ts) “4)
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If the total size of n files is less than the size of a block, we can merge the small
files in advance so that the total access time consumption can be decreased to
T, + T; + T3 + T,. It is also a challenge and this paper will also focus on decreasing
the file upload time.

4 The Design of Hmfs

In order to improve the efficiency of storing and accessing small files in HDFS, we
propose Hmfs, a middleware supporting file operations over HDFS including upload,
download, update, and delete.

Client
User Interface File File File File
Upload Download Update Delete
g it it {
File Merge File Cache File Update File Delete
Hmfs Tasks Task Task Task Task
g ¢ ¢ 3
File Merge File Cache File Update File Delete
Hmfs Buffers Buffer Buffer Buffer Buffer
File IndexBuffer
HDF5S

Fig. 2. The architecture of Hmfs

Fig. 2 shows the architecture of Hmfs which consists of three layers, user interface,
Hmfs tasks, and Hmfs buffers.

The client can upload, download, update, and delete files according to the user in-
terface layer without thinking about the size of the files. If the files are small, they
will be merged in Hmfs tasks layer according to the size of HDFS block. The upload,
update, and delete operations are executed asynchronously so that the clients do not
need to wait a long time.

Hmfs tasks layer, the core component of Hmfs, is responsible for four kinds of file
processing tasks. File merge task is used to combine the small files into big ones,
build index for the small files, and upload the big files to HDFS. File cache task is to
cache the related files when a small file is accessed. File update task is used to update
files. File delete task is used to delete files.

The bottom is the Hmfs buffers layer. Hmfs uses five kinds of buffers in memory
to store the uploaded files, indexing files, caching files, and other data. File merge
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buffer is to store the files that are uploaded by the clients and waiting for merging.
File cache buffer is to store the related files when a file is accessed. File index buffer
is to store the index data that maps the small files to HDFS blocks. It includes file
length, file start position, and HDFS block path. File update buffer is to store the data
that needs to be updated, and waits to be stored in HDFS. File delete buffer is to store
fileIds that need to be deleted, and wait to be deleted from HDFS later.

All the tasks run as the daemon processes, so Hmfs can process the client request
and the file merging, caching and updating operation in parallel. The brief overview
of the relationship between Hmfs tasks and HDFS buffers is as follows. File merge
task is responsible for merging small files in the file merge buffer to form big files,
building index for each small file, and storing the index data in the file index buffer.
File cache task prefetches the related files when a small file is accessed and stores the
files in the file cache buffer. File update task gets the information in the file update
buffer, updates the related block in the HDFS, and forward the updated block to the
file merge buffer. File delete task fetches information from the file delete buffer to
know which files need to be deleted, then deletes the files in HDFS block and for-
wards the updated block to the file merge buffer.

4.1 File Operation Interface

Hmfs supports the basic file operations including upload, download, update, and de-
lete. Fig. 3 shows their workflow. The following is the detailed description of these
interfaces provided by Hmfs.

— File Cache Task
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Fig. 3. File upload(red line), download(blue line), and update(green line)

¢ FileUpload(). This function will receive a request from a client, generate an identi-
fier fileld for the file, upload the fileld and its data to the file merge buffer, and re-
turn the fileld to the client.
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e FileDownload(). This function will check the file according to fileld in the file
index buffer, the file delete buffer, the file update buffer, the file merge buffer, and
the file cache buffer one by one. If the file is found, the function will return its con-
tent. If the file does not exist, the function will check the file in HDFS. After the
file is downloaded, the function will trigger the file cache task.

e FileUpdate(). When a client submits an update request, Hmfs does not update the
file in HDFS immediately. The function will check the file in the file index buffer
and the file merge buffer, then store the fileld and its new data in the file update
buffer.

e FileDelete(). When a client submits a delete request, Hmfs will check whether the
file exists in the file index buffer, the file merge buffer, or the file update buffer. If
it exists, Hmfs will store the fileld in the file delete buffer. Or an error will be re-
turned.

From the process of file upload, update, and delete, we can see that these opera-
tions will not submit the requests to HDFS immediately; instead, the files and opera-
tions will be stored in the buffers and wait for processing by the file tasks. The asyn-
chronous write mechanism is adopted in Hmfs to boost the file operations speed.

4.2  File Tasks

There are four tasks running in the background to implement the file operations.

¢ File merge task. The file merge task will regularly scan the file merge buffer to detect
whether it is necessary to merge files in the background. When the total size is greater
than the block size in the file merge buffer, the file merge task will merge the small
files into a big one and upload it to HDFS. Each small file has a local index record in
the file index buffer, and each big file has a block index in the file index buffer.

It has a negative impact on the performance of uploading file when the file merge
task is combining small files because both the file merge task and the file upload opera-
tion need to access a critical resource, the file merge buffer. The file merge task needs to
read data in the merge buffer and the file upload operation needs to write data in the
merge buffer. In order to improve the performance of the merge task and the file upload
operation for clients, Hmfs use two buffers to separate the read and write operations.

& >

Upload file —{ File Merge Buffer1 File Merge Buffer1l — Fileto merge

File Merge Buffer2 Upload file —>| File Merge Buffer2

Fig. 4. Buffers switch
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As shown in Fig. 4, there are two file merge buffers. When a client is uploading a
file to Hmfs and Hmfs is uploading the file to the file merge buffer, the file merge
task will not do the merge task. When the file merge task is performing the merge
task, the places of buffer 1 and buffer 2 are exchanged. Then buffer 1 is used to read
for the file merge task and buffer 2 is used to write for the file upload operation.
When the file merge task executes the next task, the places of two buffers are
switched again. In this way, the buffers are switched back and forth so that the func-
tions of read and write are split.

¢ File update task. Because HDFS does not support file update operation currently,
if we want to update a file, it needs to delete the old file and add the new one. So
the file update task will send the old fileld to the file delete task and send the new
file to the file merge task.

¢ File delete task. Hmfs delete task will regularly scan the file delete buffer and
submit the delete request to HDFS.

¢ File cache task. Hmfs cache task executes the optimization process. The related
algorithms will be described in the next section.

4.3  Buffer Structure

There are five kinds of buffers in Hmfs. The data in the buffer is stored in the form of
<key, value>. They are the key of improving performance for Hmfs.

e Hmfs index buffer is the basic and most important. When a client uploads a file to
Hmfs, it will return a fileld according to some rules. It is necessary to generate in-
dex between the small files and the block in HDFS. There are two kinds of index
data. For each small file, there is a pair of <key, value> in the index buffer, where
key is fileId and value is HDFS path. For each block in HDFS, we store all the re-
lated index of small files in the block, which concludes filelds and their size.

e In the file cache buffer, data is a list which stores the cached file group by block. In
order to avoid conflicting, we need to save the latest access time of the block.

e In the file merge buffer, data is stored in the form of <fileld, fileContent>, where
fileContent is the content of the file to be merged.

e In the file update buffer, data is stored in the form of <fileld, newContent>, where
newContent is the updated content of the file.

e In the file delete buffer, data is stored in the form of <fileld, delTime>, where
delTime is used for conflict detection.

5 Optimization Strategy

5.1 File Prefetching and Caching

Prefetching is a widely used storage optimization technique. It hides visible disk I/O cost
and improves response time by exploiting access locality and fetching data into cache
before they are requested. Currently, HDFS does not provide prefetching function.
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It is important to decide when to prefetch the files. For different applications, there
are many prefetching strategies to reduce the access time and improve the response
speed. In this paper, we assume that there is no relationship between files and the files
are merged in accordance with the order of upload time. So the files in one block may
share the similar update time. Once a client accesses a small file, Hmfs will fetch the
whole block from HDFS to get the small files. Hmfs will store the block in the file
cache buffer. If a client accesses another file in this block, Hmfs will obtain it from
the cache buffer. It is much faster than from HDFS.

Based on the above analysis, when a client accesses a file with a fileld, we adopt
the following prefetching and caching strategy in Hmfs.

Algorithm 1. File prefetching

Input: fileld

Output: cacheList<k,v>

Step 1: Hmfs looks up the file index buffer to get the path of fileld in HDFS.

Step 2: Hmfs downloads the content of the file in HDFS, and sends a request to the
file cache task.

Step 3: When the file cache task receives the cache request, it will fetch the rest of the
files belong to the same HDFS block and add <fileld, fileContent> to cacheList which
will be stored in the file cache buffer.

Step 4: Return cacheList.

5.2  Buffer Replacement Mechanism

Since the memory is limited, it is impossible to cache all the HDFS blocks in the file
cache buffer. A buffer replacement mechanism is necessary for data eliminating ac-
cording to the size of the file cache buffer.

Hmfs adopts the least recently used algorithm to eliminate the longest unused
blocks. When a client request hits a block in the file cache buffer, the block’s latest
access time in the file cache buffer will be updated. Or Hmfs needs to determine
whether the number of blocks in the file cache buffer is greater than N (the maximum
cache block number). If so, Hmfs sorts the whole block in the file cache buffer by the
latest access time and removes the longest unused block.

When a new block needs to be cached in the file cache buffer, we adopt the follow-
ing mechanism to assign the space for it.

Algorithm 2. Buffer replacement

Input: blockList<kl1, vI>, k ,N // k1 is the blockld, v1 is the access time, k is the new
request, and N is the capacity of the file cache buffer

Output: blockList<k2, v2> // new blockld and access time

Step 1: Check k in blockList. If k is in blockList, update its access time. Goto Step 4.
Step 2: If the file cache buffer is full, sort the elements in blockList according to v1,
and delete the element with the smallest v1.

Step 3: Add <k, currentTime> to blockList. Goto Step 4.

Step 4: Return blockList.
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6 Experimental Evaluation

6.1 Experimental Environment

The test platform is built on a cluster with 5 nodes. One node acts as NameNode,
which has 2 Intel Xeon CPU (2.40GHz), 16 GB memory, and 1 TB disk. One node
runs Hmfs middleware, which has 2 Intel Core CPU (i5-3470, 3.20GHz), 8GB
memory, and 1TB disk. The other three nodes act as DataNodes. Each of them has 2
Intel Xeon CPU (2.00GHz), 16 GB memory, and 2 TB disk.

In each node, Ubuntu server 12.04 with the kernel of version 3.2.0-24 is installed.
Hadoop version is 1.2.1 and Java version is 1.6.0. The number of replicas is set to 3
and HDFS block size is 64 MB by default.

The small files for test are generated randomly. The minimum size of these small
files is 10 KB, and the maximum size is 1024 KB.

6.2 Memory Usage Analysis

The memory usage is an important metric to evaluate the distributed file system. In
the experiment, we use AMUPF, average memory usage per file, to evaluate the
memory usage of Hmfs. AMUPF = M/N. Here, M stands for the used memory of
HDFS NameNode and N stands for the number of files stored in HDFS.

Memory Usage
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Fig. 5. NameNode memory usage of HDFS, HAR, and Hmfs

Fig. 5 shows the memory usage comparison among HDFS, HAR, and Hmfs. The
number of small files are 2000, 4000, 6000, 8000, and 10,000. Their size is distribut-
ed randomly. The values of AMUPF for HDFS, HAR, and Hmfs are 0.018, 0.0022,
and 0.0008 respectively. From this figure, we can see that, HAR and Hmfs spend
much less memory space than HDFS. The main reason why Hmfs has the best per-
formance among these three approaches is that the index of the small files is stored in
the Hmfs index buffer.
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Fig. 6. Download and upload time of HDFS and HAR

Fig. 6 shows the download and upload time of HDFS and HAR. They almost spend
the same download time while HDFS spend less upload time because it does not need
to combine the small files into big ones. However, HDFS spends more space to store
the metadata of the small files individually. Considering this, the following analysis
will focus on the performance comparison between HDFS and Hmfs.

6.3  Upload Efficiency Analysis

We use ARTPF (Average Response Time Per File) and AUTPF (Average Upload
Time Per File) to evaluate the file upload time of HDFS and Hmfs.

ARTPF = Tr/N, AUTPF = Tu/N. Here, Tr is the total cost of response time when
N files are uploaded, Tu is the total cost of upload time, and N is the number of files

to be uploaded.
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Fig. 7. Upload time of HDFS and Hmfs

Fig. 7 shows the upload time and response time comparison between HDFS and

Hmfs. The number of small files are 2000, 4000, 6000, 8000, and 10,000. Their size

is distributed randomly.
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From this figure, we find that the response time of Hmfs is much less than HDFS.
This is mainly because of the asynchronous write mechanism of Hmfs. That is, when
a client submits an upload request to Hmfs, Hmfs will create a fileld and send back to
the client immediately. The real file upload operation will be completed by the file
merge task in background.

When N is 10,000, the value of AUTPF for HDFS is 0.056 while it is 0.016 for
Hmfs, and the value of ARTPF for HDEFS is 0.056 while it is 0.0006 for Hmfs. Such a
big gap is caused because AUTPF takes the file upload time and the file merge time
into consideration. So for Hmfs, the value of AUTPF is bigger than that of ARTPF.

6.4 Download Efficiency Analysis

We use ADTPF (Average Download Time Per File) to evaluate the file download
time of HDFS and Hmfs. ADTPF = Td/N. Here, Td stands for the total time con-
sumption and N is the number of files.

For different operations such as sequential download and random download, the
execute time of HDFS and Hmfs is totally different. This is related to the size of the
file cache buffer. Here, we set the capacity of the file cache buffer is 10.

Sequential Download. We first upload 10,000 small files to HDFS and Hmfs respec-
tively, then download 2000, 4000, 6000, 8000, 10,000 files to the local disk by the
upload order. Fig. 8 shows the experimental results. The values of ADTPF for HDFS
and Hmfs are 0.018 and 0.020 respectively.

5 Sequential Download Sequential Download (repeat5times)

(s)
250 1000
—4—HDFS == Hrnfs TR ks

200 /.//If 800 /
150 // 600 /
100 400

o o
2000 4000 5000 8000 10000 2000 4000 5000 8000 10000
File number File number

Fig. 8. Sequential download time of HDFS and Hmfs

From Fig. 8, we can see that the sequential download speed of Hmfs is a little
slower than HDFS. That’s determined by the mechanism of Hmfs prefetching and
caching. In Hmfs, when a client submits a request to download a file, Hmfs will get
the content of the file from HDFS and return the file to client. Meanwhile, the file
cache task will fetch the rest of the files which belong to the same HDFS block and
store them in the file cache buffer asynchronously. The strategy of caching files by
the asynchronous file cache task affects the response speed of a single file. So the
download speed of a single file in Hmfs is slower than HDFS.
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Prefetching and caching is a popular technology to improve the I/O performance in
the file systems. In Hmfs, the prefetching and caching strategy will speed up the next
file download speed if they are in the same block with the first file. In order to experi-
ence the advantage brought by the optimization strategy, we download N files in se-
quential, and repeat the process five times. The experimental result is shown on the
right side of Fig. 8. The value of ADTPF for Hmfs is 0.007 while it is 0.018 for
HDEFS. The download speed of Hmfs is much faster than HDFS.

Random Download. The above experiment demonstrates that the prefetching and
caching strategy can bring high efficiency for sequential file download when we
download a big amount of files. Generally, this optimization strategy will have side
effects on random download because it is difficult to predict the next files and an
unreasonable prefetching strategy may result in low efficiency.
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Fig. 9. Random download time of HDFS and Hmfs

Fig. 9 shows the results of random download. In this experiment, we download
2000, 4000, 6000, 8000, 10000 files randomly. However, the value of ADTPF for
Hmfs is 0.018, and it is 0.016 for HDFS. That is, the prefetching strategy has little
effect on the random download.

7 Conclusion

HDES is expert in handling big files while it is inefficient to deal with small files.
This is mainly caused by the logic structure of HDFS and its access mechanism.

In this paper, we propose Hmfs, a middleware based on HDFS to solve the small
files problem in HDFS. Some contributions are outlined as follows. First, Hmfs pro-
vides a general solution for all kinds of small files such as text, image, and video
segment. It supports four basic file operations including upload, download, update,
and delete. It can run on different versions of HDFS as long as the read and write
interfaces of HDFS are not changed. Second, the asynchronous write mechanism
makes it unique and can bring rapid response for clients. Third, the prefetching and
caching strategies with in-memory database improve the efficiency of file access.
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In future work, we will consider the relationship between files and focus on

content-based file merge method with the aim of improving the speed of related file
access.
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Abstract. Future exascale systems are expected to adopt compute
nodes that incorporate many accelerators. This paper thus investigates
the topic of programming multiple Xeon Phi coprocessors that lie inside
one compute node. Besides a standard MPI-OpenMP programming ap-
proach, which belongs to the symmetric usage mode, two offload-mode
programming approaches are considered. The first offload approach is
conventional and uses compiler pragmas, whereas the second one is new
and combines Intel’s APIs of coprocessor offload infrastructure (COI) and
symmetric communication interface (SCIF) for low-latency communica-
tion. While the pragma-based approach allows simpler programming, the
COI-SCIF approach has three advantages in (1) lower overhead associ-
ated with launching offloaded code, (2) higher data transfer bandwidths,
and (3) more advanced asynchrony between computation and data move-
ment. The low-level COI-SCIF approach is also shown to have benefits
over the MPI-OpenMP counterpart. All the programming approaches
are tested by a real-world 3D application, for which the COI-SCIF ap-
proach shows a performance upper hand on a Tianhe-2 compute node
with three Xeon Phi coprocessors.

1 Introduction

For the field of high-performance computing, energy efficiency considerations
have prompted modern supercomputers to adopt accelerators, such as general-
purpose GPUs and many-integrated-core (MIC) coprocessors. A good example
is Tianhe-2, which is currently ranked No. 1 on the TOP500 List [1]. Three In-
tel Xeon Phi coprocessors can be found in each of Tianhe-2’s 16,000 compute
nodes [2]. However, with this unconventional multi-coprocessor-per-node setup
come challenges of programming. Apart from ensuring the performance of each
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© Springer International Publishing Switzerland 2014
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coprocessor, there arises a new challenge of joining the force of several coproces-
sors within one compute node. The most important issue in the latter subject
concerns implementing data transfers between the coprocessors, to achieve high
performance with acceptable coding difficulty.

The Xeon Phi coprocessors from Intel adopt the MIC architecture and support
a modified x86 instruction set, thereby providing the programmability of a full-
fledged multicore CPU [3-5]. A coprocessor-enhanced compute node has always a
CPU host consisting of one or more multicore CPU sockets that share a memory
address space. There can be one or more coprocessor cards, each connected to
the host as a device via a PCle bus. The cores on each coprocessor have access
to a shared device memory space that is disjoint from both the host and the
other coprocessors.

For a multi-coprocessor compute node, two usage modes can be adopted: of-
fload and symmetric [6]. In the offload mode, the code is first started on the
CPU host, whereas compute-intensive blocks of the code are offloaded to the
coprocessors. In the symmetric mode, the coprocessors are considered as in-
dependent nodes of a mini-supercomputer. For example, MPI can be used to
start the code simultaneously on the coprocessors, and possibly also the CPU
host. This MPI approach in the symmetric mode is simple and has the best
code portability. However, one major disadvantage with a pure MPI approach
is the excessive overhead in memory footprint due to the large number of MPI
processes. A remedy is to use one MPI process per coprocessor while adopting
OpenMP threads for intra-coprocessor parallelism.

Due to the possible shortcoming of the MPI-based symmetric usage mode, we
also want to consider the offload usage mode. The usual approach is to insert an
offload pragma in front of each code block that is to be offloaded. The resulting
coprocessor-coprocessor data transfers are actually relayed through the host. In
this paper, we present a new offload programming approach, which allows each
coprocessor to run an independent sub-program, while bi-directional and asyn-
chronous coprocessor-coprocessor data transfers are directly enabled by Intel’s
low-level APIs of coprocessor offload infrastructure (COI) [20] and symmetric
communication interface (SCIF) [21]. The choice of this offload programming
approach is motived by performance. We believe this paper is a first effort in
studying how to efficiently program multiple Xeon Phi coprocessors within one
compute node, by comparing the two offload programming approaches against
the MPI-OpenMP counterpart.

The remainder of the paper is organized as follows. Some background infor-
mation is presented in Section 2, and the related work is surveyed in Section 3.
Section 4 explains the two offload programming approaches, using a simple exam-
ple of 3D stencil computation. Section 5 quantifies the performance advantages
of the low-level COI-SCIF approach, in terms of both bandwidth measurements
and time usages of a real-world 3D application. All the experiments have been
done on a compute node of Tianhe-2, with three Xeon Phi coprocessors.
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2 Background

2.1 Xeon Phi Coprocessor

Intel’s Xeon Phi coprocessor has up to 61 x86-based Intel CPU cores on a single
chip. Each core supports 512-bit SIMD vector computing, and has 32 KB private
L1 data cache and 512 KB shared L2 cache. Four hardware threads can be
enabled on each core to give up to 244 threads per chip. Each coprocessor has
its own device memory and is connected to the CPU host via PCle bus.

2.2 Pragma-Based Offloading

In this pragma-based programming approach [18], the CPU host controls the
entire execution of a code. Blocks of the code can be delegated to the coprocessors
for execution. Since memory is not shared between the host and any of the
coprocessors, variables and arrays needed in the offloaded code block also have
to be allocated on the target coprocessors. The content of the coprocessor data
can be transferred back to the host if desired. Below is an example of the directive
that combines code offload with host-coprocessor data transfers.

#pragma offload target(mic:id) \
in(input_msg: length(N)) out(output_msg: length(N))

Here, id is an integer specifying the target coprocessor. The content of array
input msg (of length N), which is marked by the in specifier, is copied from
the host at the start of offload. Similarly, the content of array output msg is
copied back to the host at the end of offload. A third possible data specifier
is inout, which marks a variable or array as both input and output. A fourth
possible data specifier is nocopy, which only marks variables that will be used on
the target coprocessor, but without any host-coprocessor data movements (by
assuming that these variables persist on the coprocessor). For a code block that
is offloaded iteratively, to save the cost of repeatedly allocating/deallocating the
same data storage, the modifiers alloc if (arg) and free if (arg) can be used.

To initiate asynchronous host-coprocessor data transfers, such that compu-
tations have the possibility of being simultaneously carried out, the signal
clause can used together with the offload pragma or another pragma named
offload transfer. The compiler directive only initiates an asynchronous data
transfer without offloading any computation to the target coprocessor. A match-
ing offload wait pragma should be used to complete the asynchronous data
transfer. An example is as follows:

#pragma offload_transfer target(mic:id) \
out (output_msg: length(N)) signal (output_msg)

#pragma offload_wait target(mic:id) wait(output_msg)

Although asynchronous data transfers are achievable with pragma-based pro-
gramming, one major disadvantage is that data transfers between two coproces-
sors always have to be relayed through the host. The second disadvantage is the
offload start-up cost, especially for a code block that is offloaded iteratively.
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2.3 COI and SCIF

To realize direct coprocessor-coprocessor data transfers in connection with of-
fload programming, while also avoiding the overhead related to repeated offload
start-ups, we use two low-level APIs: COI and SCIF, provided by Intel’s MPSS
software stack [19]. They provide the programmer with a finer control of code
offloading and data transfers.

Two of COTI’s key abstractions, namely COIEngine and COIProcess, are im-
portant for the following implementations. The first abstraction represents a
COl-capable device, e.g., the host or a coprocessor, whereas the second one en-
capsulates a process created by COI on a remote engine. These two abstractions
can be used together to offload computations to multiple coprocessors within
one compute node.

SCIF is a low-level API that provides a low-latency communication channel
between clients, which can be either the host or coprocessors. Efficiency of SCIF
is due to direct use of the PClIe bus for bi-directional data transfers between two
coprocessors (or between the host and a coprocessor). The following is a list of
abstractions used by SCIF:

— Node: 1t is a physical node in SCIF network. Both the host and an MIC card
can be seen as a node.

— Port: An SCIF port on a node is represented as a 16-bit integer, which is a
logical endpoint on the SCIF node similar to an IP port.

— FEndpoint: The port for a connection is defined as an endpoint, which is
similar to a socket.

— Registered memory: This is a registered memory driven by SCIF, and is held
for the connected endpoints.

For small-amount data transfers (<4KB) between two SCIF clients, the
scif send and scif recv functions should be employed, which can also be used
for synchronizing the two clients. SCIF also provides remote direct memory ac-
cess (RDMA) semantics. More specifically, the scif register function exposes
local memory on a device for remote access by another device. Then, either
function scif readfrom or function scif writeto can be used to initiate asyn-
chronous and zero-copy data transfers (>4KB) between two devices. Finally,
the scif fence signal function can ensure the completion of an asynchronous
RDMA-based data transfer.

2.4 Coprocessor-Only Usage Mode

Strictly speaking, the symmetric usage mode means that the CPU host is used
simultaneously with the coprocessors [6], i.e., a form of hybrid computing. We
will however loosen the definition of symmetric usage to also include the sce-
nario of only using the coprocessors. This is because if the CPU host is not
involved, an existing MPI code can be readily run on multiple coprocessors
without the worry of sophisticated load balancing. As mentioned in Section 1,
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OpenMP threads can be used to exploit the intra-coprocessor parallelism, giv-
ing rise to an MPI-OpenMP programming approach. This is for avoiding the
pure MPI approach’s excessive overhead in memory footprint, due to the large
number of MPI processes.

3 Related Work

Many researchers have focused on single-MIC programming. There are, how-
ever, not many publications on programming multiple MIC coprocessors or MIC
clusters. As introduced in Section 2, pragma-based offload mode (combined with
OpenMP) and MPI-based native/symmetric mode are two existing programming
approaches. For the default MPI version included in MPSS, there have been re-
ported bandwidth bottlenecks in intra-node and inter-node MPI communication
between a MIC and the host or between two MICs, see [15, 16].

Due to the Intel MPI bandwidth problem in MIC clusters, some researchers
proposed alternative MPI implementations for improving the communication
performance for the native/symmetric mode. DCFA-MPI [8] is an MPI library
implementation for direct inter-node InfiniBand communication between MIC
coprocessors. MPICH2-1.5 [9] is an MPI implementation that uses shared mem-
ory, TCP/IP, and SCIF-based communication for MIC clusters. The research
group of D. K. Panda at The Ohio State University has investigated the com-
munication within a node that consists of a CPU host and one MIC coproces-
sor [17]. They proposed MVAPICH-PRISM [16], an MPI implementation that
is a proxy-based communication framework using InfiniBand and SCIF for MIC
clusters. All the above MPI implementations targeted MIC clusters with only
one MIC coprocessor per node.

In addition, to solve the MPI bandwidth problem in its early version, Intel
MPI has also implemented a proxy-based design that allows hybrid utilization
of InfiniBand and SCIF, depending on the actual communication scenario [10].

Some researchers have studied the use of COI and SCIF APIs. COSMIC [11] is
a user-level middleware for automatically managing MIC coprocessor resources
by scheduling COI processes and their offloads, which can improve both perfor-
mance and reliability of multiprocessing on MIC coprocessors. Dokulila et al. [12]
created a library that supports hybrid execution in C++ applications using MIC
coprocessors, where SCIF is used for synchronization and data transfers.

High performance has been achieved on coprocessors for many kernels and
some applications. Schulz et al. [13] ported existing scientific applications and
micro-kernels to a single MIC coprocessor. Pennycook et al. [14] explored SIMD
for molecular dynamics applications on a MIC coprocessor. Rosales [15] has sum-
marized the critical skills for pursuing high performance on Xeon Phi. By of-
floading the Linpack benchmark to MIC coprocessors, Heinecke et al. [7] achieved
over 76% efficiency on a 100-node cluster with two MIC coprocessors per node.

Although COI and SCIF are two established APIs, we believe that our work
represents a first effort in combining COI and SCIF for programming multiple
MIC coprocessors within one compute node.
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4 Two Implementations of a Simple 3D Stencil

This section serves to demonstrate the two offload-based programming approaches
and their related data transfers. This will be done through parallelizing a very
simple example of 3D stencil computation, to make use of multiple coprocessors
within one compute node. The MPI-based programming approach is the same as
for the scenario of a CPU cluster, thus not discussed here.

The stencil example involves a box-shaped computational grid that has in
total (ng+2) x (ny+2) x (n;+2) mesh points. The entire computation is assumed
as an iterative loop (over time). During each iteration a 3D array named C1 is
computed by applying a 7-point stencil operator over another 3D array named
CO. Values of C1 are prescribed on the entire boundary, so the actual computation
per iteration computes the n, X n, x n, inner points of C1 as follows:

for (k=1; k<=nz; k++)
for (j=1; j<=ny; j++)
for (i=1; i<=nx; i++)
C1[k] [j][il=axCO[k] [j] [i]
+b* (CO[k] [j] [i-1]1+CO[k] [j] [i+1]
+C0[k] [j-1] [1]1+CO[k] [j+1] [i]
+C0[k-1] [j] [i1+CO[k+1] [j1[11);

Parallelism between the coprocessors can be enforced by dividing the 3D com-
putational grid (and CO/C1 arrays) into subdomains, each being assigned to one
coprocessor. Between two neighboring subdomains, values on each other’s re-
spective internal boundary layer have to be exchanged through data transfers.
It is also customary that the subdomain grid is extended with a layer of ghost
points towards each neighbor. An example of 1D grid decomposition can be
found in Figure 1.

nz+2

nz+2,
X712
nx+2<(

S — O S S

ny+2 ny/24+2 ny/2+2

Fig. 1. An example of 1D decomposition (in y-direction) of a 3D grid into two subdo-
mains. (a) Original 3D grid, (b) two subdomains after the decomposition.

The work on each subdomain consists of at least the following tasks per it-
eration. For each of its neighbors, first pack an “outgoing” buffer (1D array)
by copying from respective (possibly non-contiguous) entries of the subdomain
3D array CO and then unpack an “incoming” buffer (1D array) by copying its



74 X. Dong et al.

content to respective (possibly non-contiguous) entries of CO; compute all the en-
tries of the subdomain 3D array C1 (except its boundary entries), by applying a
7-point stencil over the entries of CO; swap the subdomain array pointers CO and
C1 before proceeding to the next iteration. The actual coprocessor-coprocessor
data transfers may be mediated by the host, or asynchronously initiated by the
coprocessors themselves, depending on the chosen approach of programming.

For simplicity, let us only consider the case of two coprocessors. In the begin-
ning of both implementations, four 3D arrays C00, C10, CO1, C11 are allocated
on the host side, such that the first two are duplicated on coprocessor 0, and
the latter two duplicated on coprocessor 1. It should be obvious from the names
that CO0 and CO1 together constitute the global 3D array CO, which no longer
needs a physical storage. The same idea applies to C10, C11 and C1. It is only
after all the iterations are done that values of C00, C10, CO1, C11 are copied from
the coprocessors back to the host.

4.1 Implementation Based on Pragmas

In this implementation, the host also needs to allocate two 1D arrays, in buffer0
and out buffer0, on coprocessor 0. Similiarly, in bufferl and out bufferi are
on allocated coprocessor 1. The following code segment shows the actions that
happen during each iteration:

#pragma omp parallel num_threads(2) {
int id = omp_get_thread_num();
if (id==0) {
#pragma offload target(mic:0) nocopy(C00,C01) \
in(in_buffer0) out(out_buffer0)
{ // work offloaded to coprocessor0

}
}
else if (id==1) {
#pragma offload target(mic:1) nocopy(C10,C11) \
in(in_bufferl) out(out_bufferl)
{ // work offloaded to coprocessorl

}
}
} // end of OpenMP parallel region
swap_pointers (out_buffer0,in_bufferl);
swap_pointers(out_bufferl,in_buffer0);

It should be noted that we have omitted some programming details in the
offload pragmas, and details of the offloaded work tasks are also skipped.
Coding for coprocessor 0 is identical with that for coprocessor 1, except for
the slightly different variable names and the different locations of the respective
ghost boundary points.
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It can be seen from the above code segment that two OpenMP threads on the
host simultaneously offload work to the two coprocessors. All data transfers are
relayed through the host. In particular, the two swappings of the buffer array
pointers ensure the needed coprocessor-coprocessor data exchanges. Another im-
portant remark is that although overlapping computation with data movement
is theoretically possible, we have chosen a non-overlapping approach above. It
otherwise will require each coprocessor to split the offload into several parts.
These will be initiated by offload or offload transfer pragmas together with
the signal clause, for the purpose of asynchrony. Some extensive modifications
are also needed for the offloaded code blocks.

4.2 Implementation Based on COI and SCIF

The COI-SCIF implementation uses an independent sub-program per coproces-
sor. At the same time, the host main program is quite different from the previous
implementation, i.e., a pair of COIEngine and COIProcess will be created and
connected to each coprocessor. Thereafter, the host can choose not to disturb
the two coprocessors, which will carry out the needed computation iterations,
interleaved with bi-directional and asynchronous data transfers directly between
themselves. That is, data transfers do not pass through the host. As shown in
Figure 2, each coprocessor can independently initiate scif writeto towards the
other. By paying some extra effort in coding the coprocessor sub-programs, we
can obtain several advantages. First, the repeated cost of offload start-ups of the
pragma-based implementation is avoided. Instead, using COI and SCIF APIs can
make the single-time device code loading and launching more efficient. Second,
bi-directional and asynchronous coprocessor-coprocessor data transfers result in
higher bandwidths than the host-mediated data transfer approach. Third, the
more advanced asynchrony, due to RDMA data accesses such as scif readfrom
and scif writeto, make it easier to overlap computation with communication.
This possibility of overlapping is illustrated in Figure 3.

Host

micO_ep micl_ep <
host0_ep hostl_ep
| ——

|

micl_ep

micl_in_ep,
micO_out_ep ‘

micO_ep

micO_out_ep

micO_in_ep,

micl_out_ep
S—

micl_out_ep

Fig. 2. The coupling between two coprocessors, with a COI-SCIF implementation
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Fig. 3. (a) Overlapping computation and coprocessor-coprocessor data transfers. (b)
Data transfers between multiple coprocessors with (left) or without host (right) relay.

5 Experiments and Results

We will report in this section measurements of a set of experiments involv-
ing data transfers between multiple Xeon Phi coprocessors. The purpose is to
demonstrate the advantages of the COI-SCIF approach, which provides both
higher bandwidths and lower overhead related to offload start-ups. Moreover,
we want to quantify the resulting performance benefits in connection with solv-
ing a real-world 3D reaction-diffusion problem [22] that consists of 7-point stencil
computations and additional numerical operations.

5.1 Hardware Platform

One compute node of Tianhe-2 was used as the test hardware platform, having
three Intel Xeon Phi 31S1P coprocessors and two Intel Ivy Bridge 12-core E5-
2692 CPUs. It should be mentioned that each 31S1P coprocessor has 57 cores,
where 56 of them can be used in the offload mode. The PCle 2.0 bus with
16 lanes between the CPU host and the coprocessors can theoretically offer a
bi-directional bandwidth of 16 GB/s in total.

5.2 Bandwidth Tests

Figure 4(a) compares the bandwidth between the following six scenarios of uni-
directional data transfer:

— offload-in: data transfer from host to coprocessor by offload transfer;

— offload-out: data transfer from coprocessor to host by offload transfer;

— MIC-Host-r: host-initiated data transfer from coprocessor to host, using the
scif readfrom function;
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Fig. 4. Measured bandwidths, as functions of the transferred data size, (a) for six
scenarios of uni-directional data transfers, (b) for five scenarios of bi-directional data
transfers. Details can be found in Section 5.2.

— MIC-Host-w: host-initiated data transfer from host to coprocessor, using the
scif writeto function;

— MIC-MIC-r: data transfer from one coprocessor to another (without host
involvement), using the scif readfrom function;

— MIC-MIC-w: data transfer from one coprocessor to another (without host
involvement), using the scif writeto function.

It can be seen from Figure 4(a) that the first four scenarios enjoy roughly the
same bandwidth, which is higher than that of the latter two. Nevertheless, if
data need to be transferred from one coprocessor to another, it is still beneficial
to use the MIC-MIC-w approach, because otherwise data have to first travel from
one coprocessor to the host, then from the host to the other coprocessor.

( Hpst [ Host ) Host Host '
(a) (b)

(©) (@)

Fig. 5. Four scenarios of bi-directional data transfers: (a) both independently initiate
data transfer between MIC and Host, (b) both independently initiate data transfer
between MIC and MIC, (c) only host initiates data transfer between MIC and Host,
(d) only one MIC initiates data transfer between MIC and MIC

Figure 4(b) shows the bandwidth differences between the following five sce-
narios of bi-directional data transfer:

— MIC-Host: data transfer between host and coprocessor, for which host and co-
processor independently initiate scif writeto, as illustrated in Figure 5(a);
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Table 1. Time usage (in seconds), by a single coprocessor, of three implementations
of a real-world 3D application. The total number of time steps is 1000.

Mesh size Programming mode Total
Pragma-based  30.12

112 x 1200 x 142 COI-SCIF 26.66
MPI-OpenMP  26.52

— MIC-MIC: data transfer between two coprocessors, for which each coprocessor
independently initiates scif writeto, as illustrated in Figure 5(b);

— Host-initiated: data transfer between host and coprocessor, for which both
scif readfrom and scif writeto are initiated on the host side, as illus-
trated in Figure 5(c);

— MIC-initated: data transfer between two coprocessors, for which both the
scif readfrom and scif writeto are initiated on the same coprocessor, as
illustrated in Figure 5(d);

— MIC-MIC-mpi: data transfer between two coprocessors, for which utilizing
MPI Isend and MPI Irecv.

In the case of two coprocessors, it is always better to let both coprocessors
simultaneously initiate scif readfrom, instead of letting one coprocessor initiate
both scif readfrom and scif writeto.

5.3 Performance of a Real-World 3D Application

We used a real-world 3D application [22] to test the two implementations of
offloading, as described in Sections 4.1 and 4.2. Both implementations used
OpenMP threads for intra-coprocessor parallelism. The performance of an MPI-
OpenMP implementation is also included for comparison. More specifically, the
real-world application involved five reaction-diffusion equations. Each equation
was numerically split into a reaction part and a diffusion part, where the latter
was solved by applying the 7-point stencil operator. In total, each time iteration
for solving all the five equations needed 150 floating-point operations per mesh
point. All calculations were done using double precision.

Table 1 shows the time usages associated with offloading the computational
work to a single Xeon Phi coprocessor. The performance difference is due to the
fact that the pragma-based offloading approach induced repeated start-up costs,
once every time iteration. Note that no data transfers were needed for this single-
coprocessor scenario, therefore no performance difference between the COI-SCIF
programming approach and the MPI-OpenMP counterpart.

Table 2 summarizes the time usages associated with employing two or three
Xeon Phi coprocessors. Unlike Table 1, the costs of data transfers and pack-
ing /unpacking data buffers are now present. The pragma-based offload imple-
mentation was considerably slower than the COI-SCIF implementation. There
are two reasons for this performance difference. The first reason is due to the
repeated offload start-up costs, as we have already experienced for Table 1. The
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Table 2. Time usage (in seconds) of four implementations of a real-world 3D applica-
tion. The version of “COI-SCIF*” refers to relaying data transfers via the host. Number
of time steps: 1000, global mesh size: 112 x 1200 x 142.

Pragma-based COI-SCIF* MPI-OpenMP COI-SCIF

Pack/unpack 0.41 0.41 0.40 0.40

2 Coprocessors Data trans 1.27 1.26 0.98 0.80
Total 19.34 15.08 14.91 14.62

Pack/unpack 0.40 0.40 0.40 0.40

3 Coprocessors Data trans 1.21 1.31 0.99 0.76
Total 12.63 10.22 9.72 9.43

second reason is due to the less efficient data transfers of the pragma-based
implementation, demonstrated by the “Data trans” row in Table 2.

We recall that the COI-SCIF implementation adopts bi-directional and asyn-
chronous coprocessor-coprocessor data transfers, thereby capable of hiding (a
part of) the data transfer costs. The MPI-based symmetric implemetation also
has the advantages in asynchronous data transfers between coprocessors, but the
extra overhead of MPI communication leds to a lower performance than the low-
level COI-SCIF implementation. For comparison purposes, Table 2 also includes
another implementation based on using the COI and SCIF APIs. This third im-
plementation, denoted as COI-SCIF*, relayed data transfers through the host.
It thereby closely resembled the pragma-based implementation with respect to
data transfers, and also that no overlap happened between data transfer and
computation.

6 Conclusions

This paper has focused on two offload programming approaches that can be
used for a single compute node with multiple coprocessors. An MPI-based sym-
metric programming approach is included for comparison purposes. The three
approaches, MPI-based, pragma-based and COI-SCIF-based, have rather differ-
ent characteristics. While the first two are easier to use, the latter one gives
better performance but requires more involved programming. For a real-world
3D application, the best performance was achieved by the COI-SCIF approach,
where bi-directional and asynchronous data transfers were enabled directly be-
tween the coprocessors. The low-level COI-SCIF approach also resulted in lower
communication overhead, in comparison with the MPI-based approach. It should
be remarked that this programming approach is not limited to stencil computa-
tion on regular meshes. Our findings not only shed some light on this new topic
of using multiple Xeon Phi coprocessors within one compute node, but provide
a good starting point for fully utilizing Tianhe-2 in future.
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Abstract. Due to cluster resource competition and task scheduling pol-
icy, some map tasks are assigned to nodes without input data, which
causes significant data access delay. Data locality is becoming one of the
most critical factors to affect performance of MapReduce clusters. As
machines in MapReduce clusters have large memory capacities, which
are often underutilized, in-memory prefetching input data is an effective
way to improve data locality. However, it is still posing serious chal-
lenges to cluster designers on what and when to prefetch. To effectively
use prefetching, we have built HPSO (High Performance Scheduling Op-
timizer), a prefetching service based task scheduler to improve data local-
ity for MapReduce jobs. The basic idea is to predict the most appropriate
nodes to which future map tasks should be assigned and then preload the
input data to memory without any delaying on launching new tasks. To
this end, we have implemented HPSO in Hadoop-1.1.2. The experiment
results have shown that the method can reduce the map tasks causing
remote data delay, and improves the performance of Hadoop clusters.

Keywords: Data locality, MapReduce clusters, prefetching, task
scheduler.

1 Introduction

MapReduce [1] has been highly successful as a parallel distributed processing
framework in implementing large-scale data-intensive applications on commodity
cloud computing plateforms such as Amazon EC2 and Windows Azure. MapRe-
duce enables hiding the details of the underlying parallel processing to provide a
simple programming interface for developing distributed application. There are
many different implementations of MapReduce framework such as Hadoop|[2],
Disco, Phoenix, etc.

In most state-of-the-art cluster systems, a key challenge is to increase the
utilization of MapReduce clusters. If map tasks are scheduled to nodes without
input data, these tasks will issue remote I/O operations to copy the data to local
nodes. This data transfer delay is primarily on the execution time cost of map
phase, while map phase often dominates the execution time of the MapReduce
jobs. So data locality becomes one critical factor to affect performance of MapRe-
duce framework. In practice, not only clusters are shared by multiple users, but
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also there is a limitation in the number of nodes a user can use. In this case, it
is not easy to guarantee good data locality to all map tasks. The process will
cause remote data access delay, thus degrading the performance of MapReduce.
Workloads from Facebook and Microsoft Bing datacenters show that this remote
1/0 operations phase constitutes 79% of a job’s duration [3]. So in this paper, we
focus on the optimizing the map phase. Obviously, the performance of MapRe-
duce clusters is closely tied to its task scheduler. Zaharia [4][5] proposed a delay
scheduling algorithm to reduce the map tasks executing remote I/O operations.
A next-k-node scheduling method is proposed to improve the data locality [6].
However, in both methods task fairness withered as the cost.

Data prefetching [7] is a data access latency hiding technique, which decou-
ples and overlaps data transfers and computation. And machines in MapReduce
clusters have large memory capacities, which are often underutilized; the me-
dian and 95 percentile memory utilizations in the Facebook cluster are 10% and
42%, respectively [3]. In light of this trend, we investigate memory locality to
speed-up MapReduce jobs by prefetching and caching their input data. Seo et
al. [8] designed a intra-block and inter-block prefetching scheme to improve data
locality of map tasks, which are assigned to nodes without input data. A data
prefetching mechanism in heterogeneous or shared environments [9] is proposed.
However, both techniques not only cannot reduce the occurrence of such map
tasks, but also do not consider the remote access delay of the first data block
split.

The prefetching accuracy is the key factor that affects performance. In MapRe-
duce clusters, task scheduler determines the mapping between tasks and nodes.
To this end, we design HPSO, a prefetching service based task scheduler to
improve performance for MapReduce clusters. The method first predicts the ex-
ecution time of map tasks and further evaluates the sequence that nodes free
busy slots. According to this node sequence, HPSO predicts and assigns the most
suitable map tasks to nodes ahead of time. Once such scheduling decisions are
made, nodes preload the related input data from remote nodes or local disk to
memory before tasks is launching. In this way, input data prefetching is carried
out concurrently with data processing, thus data transfer overhead is overlapped
with data processing in the time demension. In summary, in this paper we claim
following contributions:

— We provide a novel prefetching mechanism to coordinately manage prefetch-
ing input data blocks.

— We exploit task scheduler to determine what and when to prefetch. This
method can greatly improve the efficiency of map tasks.

— We have built a Hadoop cluster system to evaluate the HPSO method.

The remainder of the paper is structures as follows. Section 2 introduces some
technology background necessary to understand the MapReduce and scheduler,
and motivation. Section 3 describes the prefetching technique. The design and
implementation of HPSO are illustrated in Section 4. Section 5 evaluates HPSO.
Related work is described in Section 6. Finally, conclusion is given in Section 7.
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2 Background and Motivation

2.1 MapReduce Programming Framework

Computations in MapReduce framework are divided into map and reduce phases,
separated by an internal grouping of the intermediate results. After user submits
a job, MapReduce jobs run as follows. Firstly, input data is divided into several
fixed-size blocks, each of which runs a map task. Then after all map tasks are
finished, the intermediate data is reassigned to reduce tasks according to different
keys generated in map phase. In our paper, we chose Hadoop since it is an open-
source implementation of MapReduce model. Furthermore it has been used by
many companies such as Yahoo!, Amazon, Facebook duo to its high performance,
reliability, and availability. Specially, Hadoop manages computing resources by
the term of slot, the basic resource allocation unit. The precise number of slots of
each slave in Hadoop cluster depends on the number of cores and the amount of
memory. Each slave node provides a number of slots for map tasks and a number
of slots for reduce tasks, and these are set independently. Each slot can only run
a task simultaneously. Hadoop Distributed File System (HDFS)[10] is designed
to provide high bandwidth for MapReduce by replicating and partitioning files
across many nodes. The partition is the basic data unit in HDFS, the size of
which by default is 64MB.

2.2 Hadoop Scheduler

Fig. 2 (a) illustrates the work mechanism of Hadoop running a MapReduce
job. Hadoop clusters have one JobTracker, which coordinates the job run, and
a number of TaskTrackers, which is in charge of running jobs and periodically
heartbeats the JobTracker. When a TaskTracker indicates that it has an idle
map slot by heartbeat, job scheduler will allocate it a map task, otherwise, it
will select a reduce task. A computation requested by a job will be performed
much more efficiently if it is executed near the data it operates on. However, as
HDFS files are divided across all nodes, some map tasks must read data over the
network. For a map task, it takes into account the TaskTracker’s network location
and picks a task whose input data is as close as possible to the TaskTracker. The
scheduling policy preferentially selects the tasks with data locality. In the optimal
case, map task is data-local, that is, running on the same node that input data
resides on. Alternatively, map task may be assigned to TaskTracker node with
the input data in the same rack, but not the same node, called rack locality.
Some map tasks retrieve their data from a different rack, rackoff locality.

2.3 Motivation

TaskTracker will not process a map task until its input data is loaded into the
tasktracker node’s memory. Map tasks with rack locality or rackoff locality cause
remote data transmission overhead. And the network bisection bandwidth in a
large cluster is much lower than the aggregate bandwidth of the disks in the
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nodes, so data locality issue becomes crucial for performance. Especially, data
locality issue suffers in two situations: concurrent jobs and small jobs[4]. It is
necessary to research a method to hide data transmission overhead.

Data prefetching is an efficient way to solve this problem. Prefetching can hide
data transmission delay by preloading the expected data ahead of time. The key
challenge, however, is how to improve prefetching rate. That is to determine
what and when to prefetch. Some approaches use prediction algorithms based
on history of data accesses or cache misses [11][12]. However, in MapReduce
clusters, task scheduler determines to assign tasks to tasktracker nodes. So our
method researches prefetching mechanism using task scheduler. Another reason
motivated this method is that history information of data is not well reflect the
future access to data in cloud computing. We design a scheduling policy which
predicts the most appropriate tasktracker nodes to assign tasks.

3 Prefetching

In this section, we present data prefetching mechanism in detail. HPSO is to
preload the input data before map task is running on tasktracker node. As a re-
sult, prefetching can hide data transmission delay and further improve MapRe-
duce performance. The emphasis of this section is not on the syntactical details
of HPSO, but on how to simply and effectively manage the memory buffer for
prefetching data.

3.1 Buffer Management

The process of data prefetching mechanism is shown as following. When a task-
tracker node receive a prefetching request from HPSO, the node will load ex-
pected data block to a buffer in memory called prefetching buffer. When the
corresponding map task arrives, it will process data of prefetching buffer. Obvi-
ously, this process is typical producer-consumer model, where data prefetching
thread is the producer and corresponding map task is the consumer. The follow-
ing issues must be addressed in the prefetching mechanism.

One issue is the size of prefetching buffer. Intuitively, bigger prefetching buffer
means better performance. But in fact, according to the producer-consumer
model, two buffer units for each map slot are enough. And with the development
of technology, memory capacity is increasing. Therefore the memory utilization
of the two buffers is unnoticeable to affect the overall performance.

Another issue is how to manage prefetching buffer. Fig. 1 illustrates the
prefetching buffer structure and management strategy. Each slot of the task-
tracker node has at most two buffer units. One is processing block using by the
running map task. The other may be prefetching block, which has been preloaded
for the next map task, or null. Fig. 1 (a) shows that all slots have preloaded the
data blocks for the following map tasks, and maintain two buffer units into a list.
This strategy is convenient to manage prefetching buffer and reuse buffer data.
Specifically, a particular data block may be used simultaneously by multiple map
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Fig. 1. Prefetching buffer structure and management. The tasktracker node has four
map slots. The white box represents a processing block by map task. The black box
represents a prefetching block for the following map task, and the gray corresponds a
processed block by the previous map task.

tasks. For example, in Fig. 1 (b), slot 0 and slot 1 share the same prefetching
block. Alternatively, data block which is being processed or has processed may
be prefetching block for other slot such as slot 2 and slot 8 in Fig. 1 (b). Then
the remaining buffer units will be linked into the buffer list. When a buffer unit
is needed to store new prefetching data, the method get a buffer unit from buffer
list using LRU.

4 HPSO Design and Implementation

In this section, we present the HPSO design issues and implementation, and
discuss the techniques required to achieve our goal. Our design seeks to minimize
total execution time of applications and improve the performance of MapReduce
clusters. The emphasis of this section is that how to effectively design prefetching
requests based scheduling policy.

4.1 Framework

As shown in Fig. 2 (b), HPSO counsists of three main modules: the predic-
tion module, the scheduling optimizer and the prefetching module. The role
of scheduling optimizer is to predict the most appropriate tasktracker nodes to
which future map tasks should be assigned. Once the scheduling decisions are
made before map tasks are scheduled, HPSO will trigger the prefetching module
to load expected input data. Then our method can explore the underutilized disk
bandwidth or network bandwidth in CPU-intensive process. Such pipelining can
hide away data transfer latency. To implement pipelining, the prediction module
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Fig. 2. (a) How Hadoop runs a MapReduce job. (b)The architecture and framework
of HPSO.

in each tasktracker node predicts the remaining execution time of map tasks
and further evaluates the sequence that slot become idle. The prefetching mod-
ule consists of a central prefetching manager in JobTracker and a set of worker
threads located at tasktracker nodes. The function of prefetching manager is
to monitor the status of worker threads and coordinate the prefetching process
for map tasks. Each worker thread can automatically finish loading data block
by itself before the map task is received. When prefetching manager achieves
prefetching instructions from scheduling optimizer, prefetching manager trig-
gers worker threads to load data to memory. Prefetching manager also reports
scheduling optimizer the data blocks in tasktracker nodes’ prefetching buffer.

4.2 Node Prediction

In Hadoop, tasktracker node requests a map task when it frees a busy slot. And
the sooner a tasktracker node has an idle slot, the earlier the node requests a
new map task. So tasktracker to issue a request can be predicted according to
the time of each tasktracker to complete tasks. That it can be measured by the
remaining time of map tasks running on the node. Hadoop monitors task process
using a process score, which is a number from 0 to 1. For a map, the score is
the fraction of input data read. We estimate the remaining time of an executing
map task based on current process using Eq. (1), which is proposed in Ref. [14].

t
RT, = " % (1 — Sexe) (1)
seme
In the method, RT,, is the time left of map task, and t.,. is the execution
time of the task when the process is up to sege. In MapReduce framework, a
node normally runs multiple tasks simultaneously. For each slot, we compute
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Eq. (1) and sort results by ascending order. Then we can get the sequence that
slots become idle.

t
T”L — exre (2)
SSIE
teze = tiran + tcpu (3)
tcpu
T = (4)
Sexe

Further we can calculate the completed execution time of map task by Eq.
(2), instead of waiting task completion. In the implementation of Hadoop, the
input data of map tasks is not transferred all to memory, but a mass of small
slices instead. When the processing of the data slice is completed, map tasks
will transfer and process another data slice. The data transmission and data
processing happens in sequence. So the execution time of map tasks is composed
of the data transmission time and the data processing time as shown as Eq. (3).
The total data processing time can be estimated by Eq. (4). With the completion
of map tasks of same job, we calculate the average of the completed execution
time of map tasks as the predicted execution time, assuming that each node
processes tasks at a roughly constant speed.

4.3 Scheduling Policy

In Hadoop, task scheduler maintains a complete view of which tasks are running
on which tasktracker nodes and job waiting queue. HPSO combines this view
with the slot sequence predicted in Section 4.2 to map appropriate tasktracker
nodes with future tasks from job waiting queue, and then triggers the prefetching
module to preload input data for map tasks without input data.

Algorithm 1 outlines the basic steps of scheduling optimized algorithm. HPSO
considers the data blocks in prefetching buffer. If input data block of map task
has been in prefetching buffer of certain node, we called this buffer-local and
preferentially assign the task to this node. The data in prefetching buffer is
equivalent to one replica, which in turn increases the chances of achieving data
locality. If a node-local task is found, HPSO will trigger prefetching module
to cache data from disk. Unfortunately if we must select rack-local or rack-off
task, HPSO will make prefetching instructions and trigger prefetching module to
preload data from remote node. The prefetching instructions contain expected
data block list and the corresponding destination tasktracker nodes, and where
the required data blocks are located.

HPSO guarantees all map task with data locality to the maximum extent.
One important principle is that the method does not affect the priotiry of jobs.
In this paper we suppose that map tasks in the same priority can be executed
out of order. However, inaccurate prediction may cause that low priority tasks
will be executed earlier than high priority tasks. To address this problem, when
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a tasktracker node is ready to request map tasks, task scheduler calculates Eq.
(5) for the high priority map task whose RT,, is longest. RT, is the waiting
time left. T},qp is the data transmission time. If w is positive, we will remove the
map task from original slot waiting queue and assign to idle tasktracker node.
Otherwise, HPSO will select a low priority task. To this end, HPSO does not
affect the priotiry of jobs. Another issue is fault tolerance. HPSO’s failure does
not hamper the job’s execution as input data can always be read from remote
nodes or local disk.

u= RT, — Tiran (5)

Algorithm 1. Scheduling Optimizer Algorithm

Input:

1: Array N: the predicted slot sequence that slots become idle;
2: Array J: job waiting queue.
Begin:

3: while ! ( All slots have at least one waiting task or J has no waiting job) do
4 n: the head slot of N

5: for j in J do

6 if j has a buffer-local task t for n then

7 Map t with n; inform prefetching module of the mapping
8

: Break

9: else

10: if j has a node-local task ¢ for n then

11: Map t with n; trigger prefetching module to prefetch input data
12: Break

13: else if j has a rack-local task ¢ for n then

14: Map t with n; trigger prefetching module to prefetch input data
15: Break

16: else

17: Map t with n; trigger prefetching module to prefetch input data
18: end if

19: end if
20: end for

21: RT, = RTy+Tepu (RT,: the time left that n becomes idle, Tep,: the processing
time of t)

22: Ascendingly reorder array N;

23: end while

4.4 Prefetching Module

The prefetching manager constructs a list known as the data list for each task-
tracker node, a collection of all data blocks stored in prefetching buffer. It is
worth noting that network bandwith is one of the critical factors to affect per-
formance of MapReduce cluster. To this end, HPSO combines these data infor-
mation to make scheduling decisions in order to minimize the network transmis-
sion traffic. For example, it can reduce the cost of loading the released data at
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Table 1. Configurations of single jobs in experiments

Job ID Workload map taks reduce tasks input file size input split size nodes

1 Word count 16 1 1GB 64MB 15
2 Word count 8 1 512MB 64MB 15
3 Word count 4 1 256MB 64MB 15
4 Word count 2 1 128MB 64MB 15
5  Word count 4 1 512MB 128MB 15
6  Word count 4 1 1GB 256 MB 15
7  Word count 4 1 256MB 64MB 10
8 Word count 4 1 256MB 64MB 20

the previous round for iterative applications. Upon the arrival of a prefetching
request from HPSO, prefetching manager triggers worker threads in tasktracker
nodes to start loading corresponding input data to prefetching buffer according
to prefetching instructions. The worker thread’s main role is to serve cached
blocks illustrated in Section 3, as well as prefetch new data blocks. The worker
thread periodically informs the prefetching manager of data block updates as
the part of heartbeat message. The prefetching manager uses these updates to
maintain data lists.

5 Evaluation

We are going to evaluate HPSO in term of performance and scaling. The perfor-
mance metric is measured as the improvement over default Hadoop. The scaling
metric is measured as a different number of cluster nodes. To measure HPSO’s
performance, we have built a Hadoop cluster, which has one master and 20 ma-
chines. A common gigabit Ethernet switch connected each node. We installed
Hadoop 1.1.2 and configured that HDFS maintains three replicas for each data
block in this cluster. And every node was limited to run at most four map tasks
and four reduce tasks simultaneously. We performed our evaluations with word-
count, one of the main benchmarks used for evaluating Hadoop performance.
Table 1 depicts the eight types of job sets. In the paper, these benchmarks ran
varying numbers of jobs based on the job size so as to take 20-30 minutes in
total.

5.1 Performance of HPSO

Firstly, we designed this test to evaluate HPSO’s performance. Hadoop employed
a simple FIFO scheduling policy, which assigns the earliest submitted job to
execute, then the second, etc. There is also a priority policy for putting jobs
into higher-priority queues. We compared the performance of HPSO with that
of default Hadoop as a different number of input data size. Fig. 3 (b) shows
normalized running times of the workload in Table 1, while Fig. 3 (a) shows
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Fig. 3. Comparison for different job settings. (a) comparison of the map tasks processed
with data locality. (b) comparison of normalized running time. The horizontal axis
shows the Job ID in Table 1.

locality achieved by default Hadoop and HPSO. We can observe that our method
shows significantly higher data locality than default Hadoop for all of test sets
in Fig. 3 (a). HPSO raised data locality to at least 88.7%, and at most 95.6%.
HPSO increased throughout by at most 8% for job ID 3 and at least 6% for job
ID 1. The throughput gain is lower for job ID 1 than other jobs because locality
with job ID 1 is fairly good even without data prefetching. However, the gain
for the smallest job ID 4 is lower than for job ID 2 and job ID 3, because at
small job sizes, job initialization becomes a bottleneck in Hadoop. Virtually all
the gains are due to preloading the input data for rack-local or rackoff tasks.
This would increase throughput in a more bandwidth-constrained environment.

Fig. 4 (b) shows the performance improvement when the data block size of
HDFS is set with different values. HPSO has increasingly improved the perfor-
mance greatly as the data block size becomes larger, from 7.9% to 18.11%. That
is because the data transmission time becomes longer with block size increas-
ingly. Our method improves the percentage of map tasks with data locality by
prefetching as shown as Fig. 4 (a). We can observe that our method is not sub-
stantially affected by the size of the data block. In summary, HPSO raises the
percentage of map tasks with data locality by prefetching. Therefore it improves
the performance compared with default Hadoop.

However, our approach has not yet reached ideal data locality. Although
prefetching is performed simultaneously with computation, the performance is
also affected by disk overhead or network congestion. Another reason is ineffec-
tive prefetch duo to prediction error. But our method can raise data locality
to at least 88.7%, which is fairly high and acceptable for most state-of-the-art
literatures.
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job ID 8, respectively. (a) comparison of the map tasks processed with data locality.
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5.2 Scaling Performance

We explored the scalability of HPSO, growing with the number of nodes. In our
tests, we vary the number of tasktracker nodes from 10 to 20. Fig. 5 suggests
that HPSO outperforms default Hadoop with different nodes. HPSO reduces the
map tasks without data locality by 6.9% for job ID 7 and by 8.9% for job ID
3 and by 10.5% for job ID 8. The improvement in data locality for 10 nodes is
lowest because locality with job ID 7 in this smallest cluster is fairly good. The
performance gain for job ID 8 is higher than other jobs since the improvement
in data locality is the most.
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Of course, the only way to conclusively evaluate HPSO’s performance at scale
will be to deploy it on a large cluster. But in light of this trend, our experiments
suggest that HPSO will continue to perform well at scale.

6 Related Work

Recently, prefetching and scheduling technology has been used to slove the data
locality problem of MapReduce. Zaharia [4][5] presented a delay scheduling al-
gorithm, which addresses the conflict between locality and fairness in shared
MapReduce clusters. A next-k-node scheduling method [6] is similar to delay
scheduling algorithm, and considers k candidate nodes for each tasks. However
both algorithms do not consider other map tasks without data locality and task
fairness withered as the cost. Our work optimizes all map tasks.

Considerable work has been carried out on prefetching methods to reduce
1/0 latency. Yong [11] proposed an Algorithm-level Feedback-controlled Adap-
tive (AFA) data prefetcher to address data-access delay in High-Performance
computing by analyzing the data-access history cache. A real-time data prefetch-
ing algorithm [12] is proposed based on sequential pattern mining and adopts
predictive prefetching technology predict related data objects of data object on
demand. Both algorithms focus on analyzing the historical data access records
and require to predict uses’ behavior. Performance improvement has relationship
with the uses’ behavior. Our method combines prefetching with task scheduler
and prefetches input data of the next running map task ahead of time to hide
the data transmission delay. Seo et al. [8] designs a prefetching scheme and a
pre-shuffling scheme. However, it cannot reduce the total number of the map
tasks without node locality, and the method occupies much network bandwidth,
so system performance may be decreased. Compared with the Seos method, our
method can hide the remote access delay of the first data block and handle all
map tasks without data locality. A data prefetching mechanism [9] in heteroge-
neous or shared environments is proposed, but the method also does not con-
sider the first data block transfer delay. The method only deal with intra-block
prefetching for map tasks. A predictive scheduler and prefetching mechanism
[13] are proposed to improve the performance of MapReduce by assigning two
tasks to each slot. Unfortunately, it affects the priotiry of jobs.

Caching technology also has been used to improve MapReduce performance.
PACMan [3] is an in-memory caching system for parallel jobs. Ref. [18] proposed
a distributed high-performance storage in memory. Zhang et al. [20] designs a
new method to improve the performance by using distributed memory cache as
a high speed access between map tasks and reduce tasks. Map outputs sent to
the distributed memory cache can be gotten by reduce tasks as soon as possible.

7 Conclusion

This paper presents HPSO, which exploits task scheduler to preload required in-
put data prior to launching tasks to TaskTracker. Our method hides the waiting
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period of map tasks with rack and rackoff locality and shortens the completion
time for MapReduce jobs. HPSO integrates a prediction module and a prefetch-
ing module with scheduling optimizer. A scheduling optimizer is integrated into
HPSO to improve prefetching rate. We use wordcount workload to demonstrate
that our method can outperform default Hadoop at least 6%, and improve data
locality at least 88.7%. In light of these results, we believe that HPSO can achieve
better utilization of node resources and a high system throughout in MapReduce
clusters.
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Abstract. Due to different hardware environments of different vehicle
electronic control units, the reusability of vehicle electronic software is
reduced, which hinders the development of vehicle electronics. First, in
this paper, we proposed a SOA-based middleware for vehicular embedded
system, which makes it possible for each ECU to dispatch and receive
data on the bus by service, it will hide the underlying heterogeneity.
Second, on the basis of the vehicular service scheduling algorithm, a
priority allocation algorithm based on criticality level is proposed. This
algorithm makes the transmission of all interior services more efficient.
Third, simulation results show that our algorithm has a higher scheduling
ratio when the number of tasks is increased to a certain amount.

Keywords: OSGi, middleware, SOA, vehicle.

1 Introduction

In recent years, for the increasing demand for greater vehicle safety, comfort,
and entertainment, etc., the functions of vehicle electronics becomes much more
powerful. Now,vehicular electronic systems [1] can help the driver control not
only the driving, steering, brakes, engines and other systems, but also the lights,
wipers, doors and entertainment control systems. And all of these functions are
achieved by the electronic control unit (ECU). Premium vehicles have more than
70 ECUs which could exchange multiple signals. So this is a great challenge since
the vehicular network has to offer low delay and high reliability. Instant response
is a mandatory for embedded systems. The reason is that for many applications
consequences can be disastrous if those applications cannot work within deadline.
For example, in order to ensure the real-time performance, safety and reliability
of systems in emergency situation, the anti-lock system must take effect and
function within the deadline, which is closely related to priorities of ECU tasks.

Controller Area Network (CAN) is a simple, effective, robust communication
bus [2] that inside the vehicle network. Nowadays, most of transmissions among
vehicle ECUs are accomplished via the CAN bus. CAN is a multi-master asyn-
chronous serial data bus that could access the bus through the Carrier Sense
Multiple Access/Collision Detection (CSMA/CD) mechanism. CAN bus pro-
tocol specifies that nodes can transmit information only when the CAN bus is
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free. If two or more nodes need to transmit their information simultaneously, the
CAN message with minimum number identifiers takes priority. And the other
nodes can not send their information until the bus is available again. In fact,
CAN nodes transmit information through a fixed-priority and non-preemptive
scheduling approach, and the ID of each message is its priority.

Service-Oriented Architecture (SOA) [3], aiming to provide a unified interface
for functional units of each application, enables each functional system to satisfy
their mission requirements collaboratively and independently at the same time.
As a component model, the design of SOA consists of functional units in the
form of low-coupling, and the functional unit is the so-called service. SOA-based
middleware embedded into vehicular systems abstracts functions attributes of
electronic control units as services, and meets the needs of the upper application
by providing a unified interface.

OSGi (Open Service Gateway initiative) [4] is not only a typical service-
oriented components system, but also a dynamic, light-weighted middleware
platform. Applications or components in the form of bundles for deployment
can be remotely installed, started, stopped, updated, and uninstalled without
requiring a reboot. Application life cycle management is done via APIs that
allow remote downloading of management policies. The service registry allows
bundles to detect the addition of new services, or the removal of services, and
adapt accordingly. OSGi technology has improved the Java defects in modular
programming, and created a dynamic modular system. OSGi framework mainly
consists of three components: Framework, Bundle and Service. Framework
architecture is on the Java VM (Java Virtual Machine), Bundle is executed
on the application over Framework, and Service is interface service that pro-
vided(export) or required(import) by Bundle. Class loading, life cycle manage-
ment, service registry and standardize services provided by OSGi framework are
all for Bundles. Bundle is actually a jar file that meets specific form. Security
mechanism of OSGi extends the Java security mechanisms, so that the module
is running in a secure environment through access control module and life cycle
management. With the help of OSGi, we can reuse resources that were used in
the framework, which will reduce a great deal of cost.

In existing intelligent vehicles, the increasing number of ECUs satisfies the
growing requirements, but different ECUs have different hardware environments,
which reduces vehicle electronics software reusability and restricts the develop-
ment of vehicle electronics. Existing researches on intelligent vehicles focused
more on vehiclular ad hoc network (VANET) and operating system-level stud-
ies, and less on service content of in-vehicle or vehicle-vehicle system. Therefore,
it will be an important subject for embedded vehicular middleware to improve
software reusability and reach mandatory targets of real-time vehicular systems.

In this paper, we deployed a light-weighted OSGi middleware into vehicular sys-
tems in the form of plug-ins. Abstracting ECU services and non-functional prop-
erties as services by taking advantage of the service features of OSGi to achieve
interoperability among ECUs. In vehicular electronics systems, however, real-time
and high efficiency are mandatory targets to reach, and scheduling algorithm is
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the key to achieve high levels of system performance. So it is essential to schedule
tasks within deadline. Therefore, considering a number of factors, including the
priority assignment, we propose an OSGi-based service scheduling algorithm to
satisfy the real-time vehicular electronics and high efficiency requirements.

2 Related Work

Many efforts in research literature have extended the study and realization
of traditional distributed OSGi platform. Rellermeyer [5] achieved the inter-
operability of OSGi applications by extending the traditional centralized and
industry-standard OSGi platform to a distributed middleware on, which greatly
simplifies the development of distributed applications with low overhead of per-
formance. But it is invasive to the OSGi programming model, and cannot interact
with non-OSGi system. Shi et al. [6] proposed CORBA-based distributed OSGi
model, which supports interoperability among multiple OSGi applications and
between non-OSGi and OSGi, and it reaches the goal of low invasiveness and
high scalability.

Lai et al. [7] analyzed the P2P multimedia sharing mechanism of home net-
work and he found that the transmission could only be achieved with the use
of P2P networks, but when the content server and the client have adopted this
mechanism, the transmission speed of the internal network could not increase
any more. To solve this problem, the OSGi middleware was added to the DLNA-
based multimedia sharing system to expand the network to an OSGi-based P2P
one, which effectively improves the quality of service for users. For the smart
home service network with limited or unreachable resources, Cheng et al. [8] de-
signed a service management mechanism based on priority scheduling algorithm
by embedding the middleware into the service gateway to ensure the quality
of service and better dealing with emergency situations. But this priority-based
service management platform cannot be called among multiple platforms, and
thus its scope of application is limited.

CAN bus is widely used in the field of vehicular applications. So information
scheduling of vehicles has always been a research hotspot. As for the worst case
response time of the vehicular systems, Tian et al. [9] proposed a fixed priority
scheduling algorithm in the message transfer model based on CAN bus, and its
core idea is to determine the priority based on deadline of node information. The
shorter the deadline is, the more urgent the task will be, and the higher priority
will be assigned. In this way, time and resource can be fully used to complete
the task before its deadline. And the results of the experiment showed that this
method has improved network utilization in CAN network. However, this method
has disadvantage when many tasks are triggered at the same time, the scheduling
ratio is not ideal. As for the problem of interconnection between processors in
multi-processor systems, in other words, there exist data dependencies among
multiple tasks.

Qiu et al. [10] presented the dynamic B Level first (DBLF) algorithm based
on heterogeneous distributed systems by introducing a weighted directed acyclic
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graph (DAG) model and the dynamic path mechanisms to optimize communi-
cation resources, this algorithm takes the communication behavior of real-time
system into account, namely there is competition among communications de-
vices while accessing to each other, so compared with existing algorithms, it is
much more practical and accurate.

Davis et al. [11] pointed out that the analysis of existing literature on CAN
networks are based on the priority scheduling, in fact, many transmissions of
tasks are based on FIFO (First In First Out) queue in CAN network. Therefore,
this literature introduced the method of response time analysis based on FIFO
for task scheduling. Experiments proved that the proposed method has a high
utilization of network. Mubeen et al. [12] indicated that the node will send two
types of messages in CAN network: periodic messages or sporadic messages. At
the same time, there are two scheduling modes in CAN network: FIFO-based
scheduling and priority-based scheduling. Finally, the literature verified trans-
mission performance through these two scheduling methods, which proved that
priority-based scheduling method is superior to FIFO-based scheduling method.

Davis et al. [13] pointed out that there is something wrong with the origi-
nal analysis of CAN bus information scheduling, because it cannot ensure the
information reaches the destination node within deadline. Zheng [14] proposed
a model-based architecture design in vehicular electronic systems because ECU
have to perform more and more complicated function. It also analyzed time-
triggered scheduling and event-based trigger scheduling model, and proposed a
mapping from signal to information and task to ECU.

3 Architecture of Service-Oriented Vehicular Middleware

OSGi-based service-oriented vehicular middleware is shown in Fig.1, which can
not only shield the different underlying hardware environment, but also facilitate
the further development of the applications.

Schedule center is the key module in our middleware, which manages the ser-
vice scheduling for vehicular system. In our framework, the coordination between
service schedule component and multiple components could reduce collision rate
when multiple tasks are simultaneously transmitted in bus. When the access
collision rate is decreased, then the number of repeated requests will be reduced,
and so does the number of service request. In addition, service scheduling man-
agement can effectively help the whole system quickly complete the task.

SocketCAN is a communication interface between the applications and the
underlying hardware in Linux kernel. This module allows underlying SocketCAN
framework to be a service in OSGi framework, which exchanges data in CAN
bus.

The Data Mapper bundle is used to convert the received byte arrays into
data with application-defined meaning. It provides utilities for converting bytes
to Java object and vice versa. The Data Mapper bundle converts the raw data in
OSGi environment according to the rules of defined XML-based bus definitions
file.
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Fig. 1. Overall Framework of OSGi based middleware

Data Interpreter is an information translator. Data Interpreter is mainly used
for processing data from the underlying CANSocket, and translating data into
java language that can be recognized by various components of the OSGi frame-
work. It also implements the applications to send and to receive vehicle infor-
mation without considering the underlying structure of vehicles.

Data Management manages data by OSGi DMT (Date Management Tree),
and it provides a pattern to access the vehicular data. DMT is used to store and
manage vehicle information. DMT provides appropriate metadata for applica-
tions. The application running in a local environment can also get the vehicular
sensor data via data center module.

4 Service Scheduling Algorithm

4.1 Basic Concepts and Definitions

Service is the set of attributes input and output by the Electronic Control Unit
(ECU) in vehicular network. Let S denotes the set of service, Sy, = (I, Om) 18
the mth service in S,where I,,, is the set of input attributes, and O, represents
the set of output attributes.

In fact, the OSGi middlewares consist of bundles, so services input or output
by ECU are all in the form of bundles. And the information mentioned above is
contained in bundles.

Service Priority is the execution sequence of services under the condition
of ensuring reliability and service performance. Let P, represent the priority
of service m. The value of P, is a positive integer, and the service with a
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bigger value has a higher priority (e.g. service m with the lowest priority satisfies
P, = 1)~

As for service m (Sp, = (Im,Om)) and service n (S, = (I,,0,)), if Sy, is
transmitted on the CAN bus before S,,, the priority of S, is higher than that
of Sy, ie. Py > Py.

In real-time intelligent vehicular systems, the service transmitted on the CAN
bus must satisfy the real-time requirement. In this case, each service has a fixed
deadline, which is the time allowed between a service being sent and received.

D,, is the deadline of service m, and it is an intrinsic property. If transmission
time is beyond the deadline, it can not guarantee the real-time character of a
service.

We assume that each service has a worst-case response time, which is the
maximum time interval between sending and receiving a service. W, represents
the worst-case response time of service m. The service m is schedulable only if
Wm < Dpy, and it means that m satisfies the real-time requirement.

Therefore, W,,, < Dy, is the sufficient and necessary conditions for schedula-
bility of service m. The worst-case response time[15] is

W{YLL+1 = max(By,,Cn) + Z ’V

wfrlL + Jk + Tbit“ Ck
Vk€hp(m)

T (1)

In Eq.(1), Ji is the queuing jitter of service k and represents the maximum
delay time that a released service k should wait until it can be executed. And
k is a service whose priority is higher than m, since the value of Jj is typically
small, so it evaluates to 0.

Ty is the minimum time interval that service k would be triggered. Therefore,
as time goes on, T} will still be able to satisfy the scheduling requirements under
the condition that each T} satisfies scheduling requirements right now.

B, is the blocking time. Since service scheduling is non-preemptive, B,, rep-
resents the time that service m with higher priority should wait while service
with lower priority being transmitted. It results from the order of those services
being triggered, that is, service with lower priority occupies the CAN bus.

Cp, (or Cf) represents the transmission time of service m (or k) on the CAN
bus.

Teit 1s the time required to transmit 1 bit service message.

If a service has a low criticality level, this service instance will be dumped to
save resource and ensure the complement of other instances with high criticality
level when the criticality level of system is switched to a high one. Therefore,
the definition of worst-case response time is modified as

Wy, + Jk + Toit

W;}ﬁ*l = maX(Bm’ C?n) + Z ’V Tk “Ck(L) (2)
m)

Vkehp(

Where Cy(L) is the transmission time of service Sy whose criticality level is
L.
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Equation (2) indicates that the worst-case response time of a service is the
sum of the transmission time of all service instances with high priority and the
larger one of B,, and C,.

The task of CAN node is transmitted on CAN bus in the form of service
instance, which is a component of OSGi, namely bundle. The character of SOA
hides the heterogeneity of different hardware and enhances the reusability of
software. In the end, high-priority service nodes send messages firstly and low-
priority service nodes send messages till bus is free. Different transmit order
leads to different scheduling results, as shown in Fig.2.

0861 0561 05Gi

* ECU

Hardwaretos Hardware+os Hardwaretos
+jvm +jvm +jvm

CAN Bus

Fig. 2. Service transmission on CAN bus

4.2 Priority Allocation Algorithm Based on Criticality Level
We proposed a priority allocation algorithm based on criticality level as follows:

1. Determine transmission time C, detection period T" and the deadline of every
service instance S, with high or low criticality level in set S of service
instances.

2. Determine the lowest priority P1. Select service instance which has the
biggest deadline from low criticality level or high criticality level instances
as candidate value, then iterate Eq.(2) till W2 will not change.

3. If Wil < Dy, then we can determine priority Pm=1,otherwise, return to
step 2.

4. Continue allocating priority and selecting the service instance which has the
biggest deadline from low criticality level or high criticality level instances,
then iterate Eq.(2) till W will not change.

5. If VVin"'1 < Dy, then we can determine priority P;=2, otherwise, return to
step 4.

6. Determine the priority of each service instance according to above methods.
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Each service is transmitted in a state of low criticality level. If the transmission
time of some services exceeds their deadline, then the service is switched to a
high criticality level and transmission time of it will increase to prevent it over
its deadline, which lead to failure of this service. With the determined criticality
level of a service, we could determine its priority. This algorithm makes more
services with high criticality level to be successfully transmitted on bus.

5 Experimental Analysis

In order to verify the execution efficiency of priority allocation algorithm based
on criticality level, we use multiple service instances to get it at the aspect of
scheduling ratio in this paper. Employing a dynamic task generation algorithm
to generate service instances randomly in order to simulate the influence of the
real-time variable vehicular interior network environment on experiments. This
algorithm is implemented in C programming language.

Since two or more nodes will send messages in experiments, so high-priority
nodes will send messages firstly and low-priority nodes will send messages till bus
is available. Thus, experiments select bus utilization as the independent variable
to denote the time of bus being occupied in unite time and scheduling ratio as
dependent variable, which means the rate of tasks executed successfully while
system criticality level changes from low to high with a part of low criticality
level tasks being discarded.

5.1 Experiment Parameter

Some of parameters in experiments are initiated as follows:

The bus utilization w is randomly produced by task allocation function: u=c/T;

Task cycle T can be produced by random distribution function and set to be
[10ms, 1s];

This paper employs double criticality level L namely 0 represents low criti-
cality level and 1 represents high criticality level;

Transmission time of task with low criticality level is : ¢(0) = u x T}

Transmission time of task with high criticality level is : ¢(1) = CF * ¢(0),
where the fixed parameter C'F is greater than 1;

The deadline D equals T

CP(L) means the probability of criticality level L ;where CP(0)+CP(1) = 1;

Experiments in this paper can be expressed by n, L, CF,(CP(0),CP(1)),
where n is the number of experimental samples that being employed, bus uti-
lization and scheduling ratio of every sample are both statistic calculated by
multiple messages; each service instance has L criticality levels, and transmis-
sion speed of message with high criticality level is CF times as much as that
of messages with low criticality level, C P(0) is the probability of instance with
low criticality level and C'P(1) is the probability of instance with high criticality
level.
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5.2 Experimental Analysis

In this section, we evaluate the performance of the proposed priority allocation
algorithm based on criticality through comparing with the traditional one in
terms of scheduling ratio, as shown in Fig.3. Our algorithm is named as new
optimal assignment algorithm (NOPA), and the traditional one is called optimal
assignment algorithm (OPA) [15] which is designed at the level of processor aim-
ing at improving the processing successful ratio of CPU while dealing with tasks.
Bus utilization(network utilization) is the independent variable and scheduling
ratio is the dependent variable.And since we concern about the impact on the
scheduling of critical level, so the value of CF is set to be 2, with the same value
as [15].

n=20,L=2 CF=2,CP=(0.5,0.5)
1 Lo :
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Fig. 3. Comparison about two algorithms

As shown in Fig.3, bus utilization changes from 0 to 0.4, scheduling ratio of
these two algorithms are both very high and nearly equal to 1. This indicates
that when there are less tasks transmitted on bus ,namely bus utilization is very
low, tasks will be executed successfully. With the increasing of bus utilization,
scheduling ratio of OPA will suffer a sharp decrease, since the number of tasks
increases gradually and more tasks will be abandoned to make sure that high-
priority tasks can be executed within deadline, so scheduling ratio will decrease.
In contrast, scheduling ratio of NOPA will slowly decrease with the increasing of
bus utilization. This experiment shows that NOPA has significant performance
overhead over OPA.

Fig.4 and Fig.5 indicate that scheduling ratio has different values with dif-
ferent proportion of high to low criticality level, namely CP = (0.7,0.3) and
CP = (0.3,0.7). But compared to traditional priority allocation algorithm, the
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Fig. 4. Comparison with CP=(0.7,0.3)
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Fig. 5. Comparison with CP=(0.3,0.7)

scheduling ratio of NOPA will decrease more slowly after bus utilization is higher
than 0.5 as shown in last two figures. We can conclude that NOPA outperforms
traditional priority allocation algorithm. With the increasing number of experi-
mental samples, scheduling ratio of NOPA will always higher than that of OPA
though the values of them will both decrease.
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6 Conclusion

In this paper, we have studied the service scheduling inside the vehicle. We pro-
posed a SOA-based middleware and embedded into vehicular ECUs which allows
messages to be transmitted among different ECUs in the form of service. With
the help of this design pattern, we can reuse software resources more effectively
and don’t need to consider the heterogeneity of different underlying hardware.
We have also proposed the priority allocation algorithm based on criticality level
by improving traditional priority allocation algorithm in the original vehicular
scheduling model. The experimental results demonstrate that the proposed algo-
rithm is very efficient, and the higher scheduling ratio of this algorithm showed
that it outperforms the traditional one when there is a large number of services
transmitted on the CAN bus.
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Abstract. Speculative multithreading (SpMT) is a thread-level automatic paral-
lelization technique to accelerate sequential programs on multi-core. Too large
and too dense samples can not be able to effectively promote the effectiveness
of thread partition, parallel thread evaluation, etc. Selection of appropriate sam-
ples is of vital importance. The appropriateness reflects in two points. First,
redundant samples never exist. Second, similarity between any two samples is
not high. We express a sample with one feature vector of fixed length. We ex-
tract sample feature vectors using profiler in Prophet during compile time when
running programs. Such profiles are created by feature extraction routines
which map each program onto a tuple (N;, N, N; N, Ns, Ng) where N; is a
count of an occurrence of a particular feature. A comparison routine is then in-
voked which detects similarities amongst tuples. According to the program fea-
tures, similarity values between samples are calculated to assess the similar de-
gree. In this paper, we introduce a novel way of assessing the similarity of two
program samples using Theory of Fuzzy. We firstly calculate the Euclidean
Distance of two different program samples as the input, and then assess the
overall similarity degrees as well as respective similarity degrees, using corres-
ponding Fuzzy Functions. Based on them, we clean the similar samples.
With multidimensional samples generated virtually, we get that average density
of samples decreases, so that a more effective collection of samples are created.

Keywords: Theory of Fuzzy, Similarity Assessment, code features.

1 Introduction

In previous work, static or dynamic features have been represented as structured data,
usually as fixed-length feature vectors. Also, previous work has shown that models
using dynamic characterizations out-perform the ones with static characterizations
[1]. However, dynamic characterizations have disadvantages over static characteriza-
tions. To collect this dynamic information from a program, the application must be at
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least once, which increases training time to construct prediction models and adds an
additional cumbersome profiling step to the compilation process. Moreover, dynamic
characterizations are sensitive to a program’s input because the information was col-
lected during a program run.

In this paper, we introduce a novel method to assess the similarity of program
samples using Fuzzy Theory. Firstly we produce the program’s graph-based interme-
diate representation (IR) from the original program. A program’s graph-based IR is a
static characterization technique because it is collected during the compilation of the
program. Then, we use fixed-length feature vectors to present the static characteriza-
tions. Finally, Euclidean Distance is brought to calculate the similarity distance be-
tween two vectors and Fuzzy Theory is also introduced to assess the similarity values.

In conclusion, this work first calculates the fuzzy similarity values between samples,
and adjusts the similarity thresholds as well as eliminates similar samples, to realize the
preprocessing, providing efficient input samples for sample analysis process.

This paper is organized as follows. In Sections 2, we characterize the program,
mainly included in a feature table. In Section 3, we assess the overall similarity. In
Section 4, we perform the experiment. In Section 5, we explain and compare it with
related work. Section 6 presents our conclusion and future work.

2 Characterizing the PROG

Compiler researchers have used fixed-length representations of the program’s source
code features or (IR) intermediate representations [2-4]. These representations are
straight-forward to extract from a program and can be collected during compilation
time. Other researchers have proposed using dynamic characterizations of programs;
however, techniques (e.g. performance counters [1] and reactions [5, 6]) are expen-
sive and require running the program, which limits their practical use.

Table 1. Sample Procedure

1 main()

2

3 inti,s;

4 i=0,s=0;

5 if(i<=10)

6 {

7 S = s+i2;
8 }

9 else

10 {

11 S = s-1;
12 }

13 printf(("s=%d",s);
4 }
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2.1  Extracting Feature Vectors

In this section, we motivate the applicability of using the program’s source code as

input for finding the program features. Table 1 shows an example of source codes.

With regard to a program, we first establish the corresponding structured diagram.
Then, we extract the features from the structured diagram. Figure 2 shows the
associative process of collecting sample features. How can we characterize a program
is to be solved. We need extract features to represent it. As we use the static characters

to stand for a procedure, we use the features shown in Table 2 [7] to form the

vectors.

— b —— W ——— N —

N — O €&—— U

Start

A4

According to program features (Tab 2),

we compare whether or not two program =—No»

topologies(Fig 2.) are same?
1
Yes
v

Calculate the similarity values between
two programs in the same subsection and
branch, using the formula (4).

A4

Accumulate the similarity value of every
section

v

Output the similarity degree, using Fuzzy
Function (Tab 4, and Formula 8)

v

Clean similar samples, so that samples
density decreases..

\

End

The similarity degree
between them is low

Fig. 1. Flow chart of similar samples cleaning
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Fig. 2. Collecting different program features
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Table 2. A collection of eight different features for each node (basic block) in CFG

variables Features Descriptions

N Number of basic blocks Number of basic blocks in a function

N: Number of instructions Number of dynamic instructions in basic block

N; Loop probability The probability of loop to jump test part

Ny Branch probability The probability of branch to be taken and not taken
Ns DDC Data dependence counts between two basic blocks
Ns DDD Data dependence distance between two basic blocks

Thread size, load balance, data and control dependence are the main factors affect-
ing program’s speedup. Generally speaking, we use six features shown in Table 2 to
express programs.

Features are extracted from Olden benchmarks by SUIF compiler and data flow
analysis framework with program profiling. When dealing with a program, SUIF IR is
firstly constructed. Then, features are extracted from SUIF IR and the corresponding
features are saved in the matrix M and array A. For a given function, we obtain a
fixed-length feature vector, shown in formula (1), where F; is used to characterize a
program.

Prophet can convert any C programs, and change C programs to SUI IRs (SUIF In-
termediate Representation) after syntax and semantic analysis. Then, IRs are opti-
mized to create low-grade SUIT IRs, which are sent to Profiler modules to get the
feature information. All feature analysis is performed at the high-level intermediate
representation of SUIF (high-SUIF). Features are counted based on the CFG of func-
tion and CFG can be expressed by matrix M where n is the number of basic

nxn

blocks. The matrix elements are defined as follows:
Mix_j :(l,b,< dl""’dn >,n) (1)

where [ is the loop branch probability, b is the branch probability, d, is the k,; data
dependence distance and # is the data dependence count between node i and node j in
CFG. Matrix M stores inter-block features that contain data dependence counts, data
dependence distance, branch probability and loop information. Different inter-block
features are attached to matrix M in order, as shown in Figure 3. Block features, such
as the number of dynamitic instructions are stored in array A. Matrix M and array A are
used to represent features of a function.

2.2 Presenting the Solving Scheme

This section provides a brief flow chart of solving scheme, shown in the Figure 1. The
whole scheme is divided into five steps. The first step is starting to input two compared
programs. The second step is to judge whether or not the topologies of two programs are
the same. The third one is to calculate the similarity values between two programs in the
same subsection and branch. The fourth step is to accumulate the similarity value of
every part of program. The fifth step is to calculate the fuzzy function values between
two compared programs. The sixth step is to clean the similar samples.
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data dependence distance
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loop information data dependence count
number of dynamic instructions \
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Fig. 3. Features representation

In Figure 3, we show the process of extracting our graph-based characterizations
[8]. We use Prophet [9] to extract control flow graphs based on analysis of basic
blocks. From the CFG, we generate graph-based characterizations, which include (1)
a feature vector for each basic block in the CFG as shown in Table 2 and (2) a list of
directed edges in the graph. Prophet [10, 11] can be used to extract other graph-based
IRs too.

Fig. 4. Control Flow Graph of main() procedure shown in Table 1

3 Assessing the Overall Similarity

In Figure 4, we use Prophet to produce the CFG topologies and features (related with
the Table 2) of each node for n-1 programs. The meanings of N; (1<5i<:8) have been
shown in Table 2. The rightmost of Figure.l shows two separate parts, one is feature
vectors for each bb (basic block), and the other shows the CFG topology (CFG: Control
Flow Graph). Features which correspond to a row in M; are expressed as follows.

F, =<N/,Ni,N{,N;,NS,NS,N; ,Ni > ke N 2)
Make a definition, as follows.

F (i)=N/!,,i=0,1,2,3,4,5,6,7 3)

i+1°

Then, we form the comparison vectors A; or B;, which is expressed in the following
way.
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A = [E@),E@),E(@),....EO, 02D &MneN), 0<i<?)&(GieN) @

Assume two vectors A; and B;, we calculate the similarity distance between A; and
B; using the following algorithm.

F=Y 3@ 00-B M) 5)

i=0 k=1

To calculate the distance of two vectors and evaluate the similarity degree of two
vectors we have proposed, we meet the challenge in two stages. First, we give a me-
chanism of similarity calculation. Second, model of similarity assessment is given.

3.1  Mechanism of Similarity Calculation

Now that we have owned the features to calculate the similarity degree, the first step
is to determine how these features should be compared. We formulize the comparison
by defining distance functions. Due to features that are represented in vector formats
(e.g., static instruction mix), we use the Euclidean Distance between two vectors to
measure their similarity. For two vectors A and B both with length n, Euclidean dis-

tance [12] is defined as:
\,z (Ai'Bi)z ©)

3.2  Model of Respective Similarity Assessment

Compared to the section 3.1 of this paper, this part aims to assess the respective simi-
larity degree, while the section 3.1 focuses on the overall similarity of two feature
vectors. Before we take consideration into the process of assessing the similarity of
two features, the process of collecting features is firstly presented. As is shown in
Figure 5, we assess the similarity between two feature vectors in three separated stag-
es, including feature collection, analysis, and fuzzy function used to get the specific
similarity values.

In the Figure 6, programs are related to the samples, which are used to extract fea-
tures. In the studying stage, programs are associated with studying samples, while
programs are relevant with testing samples in the testing stage. FEATURE Database
corresponds to an assemble of features, shown as follows.

FEATURE Database ={F,Ine N,E, =< N, N,,N,,..,N; >} (7)

In the analysis stage, we figure out the similarity distances, corresponding to the fol-
lowing matrix.
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Feature Vectors of Each Point
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16:<2,1,0,,0,0,0,0,1>
17:<2,0,0,,0,0,1,1,0>
18:<1,0,0,,0,0,0,0,1>
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Fig. 5. Collecting different program features
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Table 3. Similarity Caculation between Two Blocks. A collection of similarity function fj;
between basic blocks is given. As the similarity between B; and B;. equals to the one between B;
and B... The annotation ‘-’ denotes the symmetrical values, which can be gotten from the
corresponding values in another half matrix. Each element’s inherent meaning is shown in the
formula (7).

Bl BZ B3 B4 B5 B6
B, 1 fi2 fi3 fi4 fis fi6
B, - 1 f3 fo4 s f26
B; - - 1 f34 f3s f36
B, - - - 1 fus fu6
Bs - _ - - 1 f56
B, - - - - - 1
Feature Collection Analysis Evaluation
= E—,:“> g:; S1S2 83 S4 S5 Se
Program ﬂ
FEATURE
DATABASE
\ y—N'(,—‘>
\— ~—_

Fig. 6. Procedure of assessing similarities involves three stages: feature collection, analysis
and evaluation. In feature collection, features involved in program are assembled. Analysis uses
these features to compute distance between two vectors, in turn using distance data to estimate
the similarity degree. Finally, we use Fuzzy Function to figure out the similarity values (0~1),
and to determine which sample will be cleaned
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®)

From formula (8), we can see that f; = 0, while i=j; and f; = f;. So we can get the
following similarity matrix.

The Half Similarity Matrix in Table 3 is mapped to the “analysis” process. In the
process of analysis, the similarity values are normalized. The values are rounded to be
a series of discrete values {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}. The eleven
discrete values are mapped to eleven cubes with varying degrees of black. For exam-
ple, M corresponds to the value 1.0; [corresponds to the value 0.9; [ is related to
the value 0.8; [ is associated with the value 0.7; B is associated with the value 0.6;
[ is associated with 0.5; [ is connected with 0.4; [Jcorresponds to 0.3; [] is related
to the value 0.2; [] is associated with 0.1; [] corresponds to the value 0.0.

3.3  Similarity Measurement Using Fuzzy Function

Once the similarity value between two program feature vectors is obtained, we can
get the similarity degree for them using a fuzzy function in Figure 7 and formula (8).
The input variable represents the similarity values, while the output variable denotes
the degree of similarity. The input variables are shown along the x-axis, while the
output variables are denoted along the y-axis. Sy, represents the low similarity value,
while Sy, represents the high similarity value. Using the Fuzzy Function, we can get
the result table, namely Table 3.

According to the Table 4, the similarity degree (low or high, or moderate) of two
programs is gotten. Figure 8 gives an example of how to clean a similar sample. S(,) is
the similarity function between adjacent nodes, and is equal to D(,) in the Table 4.

Table 4. Similarity values of two program feature vectors corresponding to formula (9)

Conditions Similarity values
D(Va,Vg) <= Diow 0

Diow =< D(V4,Vp) <= Diurg D(V4,Ve)-Diow
D(V4,VB) >= Dhigh 1

If the value of S(,) is lower than a certain threshold, we will randomly clean a sam-
ple. This process is corresponding to “Evaluation” in Figure 6.

Dh S S Slow
D -D
D= #(S_Slarg)—i_l)l SZSIUW&&SSSIarg (9)
Slow _Slafg
D, S>5,,,

Similarity calculation is completed with the formula (8).
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DA

v

Slow Slarge S

Fig. 7. Fuzzy Function between Similarity and Degree of fuzziness. The x-axis represents simi-
larity value, Sj,,, denotes the low similarity value and S,,,. denotes the large similarity value.
The y-axis denotes degrees of corresponding similarity over the similarity values between two
vectors, D, represents a high degree and D, represents a low degree.

3.4  Cleaning of Similar Samples

After assessing the similarity degree between two samples, the operation of cleaning
similar samples will be performed. The principles for the operation involve: (1)
similarity values (obtained from formula (9)) are sorted in descending order. (2) The
more similar two samples are, the more likely they will be cleaned. (3) Once similari-
ty degree is fixed, the sample to be cleaned is random. The specific cleaning process
is shown in Figure 8.

Fig. 8. Samples correlation graph. A,B,C,D,etc are sample nodes. S(,) are similarity degree,
ranging from O to 1.

4 Experimental Evaluation

4.1 Experimental Setup

We have implemented similar samples cleaning process on the Prophet developed
based on SUIF/MACHSUIF. All the compiler analysis is performed at the high-level
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intermediate representation (IR) of SUIF. A profiler is implemented to produce profil-
ing information from SUIF-IR as forms of annotations. The profiler interprets and
executes SUIF programs and provides information such as control flow path predic-
tion, data value prediction, the number of dynamic instructions of loops and subrou-
tines. The Prophet simulator [9] models a generic SpMT processor with four pipe-
lined MIPS-based R3000 processing elements (PEs). The simulator is an execution-
driven simulation and executes binaries generated by the Prophet compiler. Each PE
has its own program counter, fetch unit, decode unit, and execution unit and it can
fetch and execute instructions from a thread. Each PE can issue up to four instructions
per cycle in an in-order fashion. Each PE also has private multi-versioned L1 cache
with 2 cycles access latency. Multi-version L1 cache is used to buffer the speculation
results for each PE and performs cache communication, and the four PEs share a
write-back L2 cache via a snoopy bus.

In this section, we use Olden benchmarks to evaluate our approach. Olden bench-
marks [15] are popular benchmarks for the study of irregular programs, which have
complex control flow and irregular, pointer-intensive data structures. These programs
have dynamic structures such as trees, lists and DAGs so that they are hard to be pa-
rallelized by the conventional approaches.

4.2  Static Features Extraction

According to the second part of paper, we can refer ten collection of virtual samples
generated using feature sets and abstract syntax tree [16] and establish the feature sets
(corresponding to Table 2), shown in Table 5.

Table 5. Seldom Collection of Feature Vectors

Items N N, N; N, N;s Ne
1 10 102 0.50 0.30 12 8
2 8 56 0.60 0.60 3 6
3 48 0.10 0.20 5 7
4 3 63 0.60 0.30 6
5 25 78 0.70 0.80 9 3
6 14 59 0.90 0.60 10 8
7 10 34 0.50 0.70 13 9
8 11 87 0.30 0.90 8 7

As depicted above, we take an example to seldom choose two vectors from the ta-
ble 6 and assign them to Ny, N,.

Ni=(N/,N,, N, N, N, N/, N, Ny = (25,78,0.70,0.80,9,3);
(10)
N2=( N7, N2, N, NG NG, N2 N, NG =(14,59,0.90,0.60,10,8).

As every feature in vectors has different value ranges, so our first task before obtain-
ing the similarity distance is to normalize every feature value.
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4.3  Similarity Calculation

Using the formula (5), we can calculate the similarity value

\/Z(]]‘V/I:;(NN((S) x21& & x < count(N(i)),xe N (11)

N, (i) = N,N,()=N},i=12,...8 (12)

Where, count(N(i)) is the number of N, ,so we get the value of Y=

10.6416 = 0.801.

4.4  Similarity Assessment

In the Table 4, we take an example to set the threshold values of Sy, and S, to be
(1,10). Note that the values of S, and Sy, are given just for an example. Accor-
dingly, they need to be in depth study to get the precise values.

According to the formula (11), we figure out that S(N,N,)=0.801, as
0.801>0.5(S},,,), so the similarity degree for N; and N, is high shown in the Figure 7.
Once two samples have high similarity, the operation of sample cleaning will be done.
Moreover, the setting of fuzzy threshold is adaptive. How fuzzy thresholds be adap-
tively adjusted will be finished in the next stage.

4.5  Similar Samples Cleaning and Evaluation

According to the formula (9), we get that the similarity of N;and N, is high, so that
we must clean one of them .Moreover, we define similarity density to evaluate the
similarity degree of two samples.

S S(N,.N))

D=+ (13)
Count()

D is density of all samples, S(N;, N;’) is similarity of two adjacent samples N;and N;’
.and Count() is the total sample number. We make use of 10000#*20 samples from
our Prophet samples (including Quad-core samples and Octa-core samples) to realize
the approach. Results show in Table 6.

Table 6. Density of Sample before and after cleaning

Items Before cleaning After cleaning

Results 8.2434 8.0012




Similar Samples Cleaning in Speculative Multithreading 119

4.6  Analysis of the Models

This section analyzes the advantages of our approach against other models, including
Artificial Neural Network (ANN) [14] and Support Vector Machine (SVN) [14].

This work is based on the scheme ‘“sample selection->features extraction-
>similarity calculation->fuzziness analysis->similar samples cleaning”. In the
process of “fuzziness analysis”, half a trapezoidal distribution function is adopted, so
that value settings of top and bottom edges of trapezoid are adaptive. Different appli-
cations may need adaptive upper limit and bottom limit of trapezoids (Corresponding
to the values of D, and D, in Figure 1), in order to adaptively modify sample densi-
ty. However, this approach also incurs the overheads of mistakenly elimination, and
just using Euclidean distance to measure sample similarity can not fully exhibit the
contribution degree of single sample.

5 Related Work

There have also been some researches on improving the program characterization to
be used with machine learning for selecting good optimizations. In particular, Leather
et al. [15] used compiler’s IR and genetic programming to construct automatically
new features from the GCC RTL representation of loops to improve a machine learn-
ing algorithm’s performance on loop unrolling. However, the static features discov-
ered are those that can be summarized into a fixed-length feature vector. Also, their
technique only outperforms static source code features (such as, SRC) by only a
couple of percent on average. Fursin et al. [16] also use the program’s intermediate
representation along with source code information in the Milepost GCC project [16] .
These features are used to construct models that predict good optimization strategies
according to metrics desired by the user (e.g., performance or code size). The authors
collect summary statistics about the different instructions and from the control flow
graph for each function, but again, these features are summarized into a fixed-length
feature vector.

Wang et al. [17] also used an intermediate representation called the streaming
graph to extract static program features. In this work, they focus on streaming pro-
grams, and they constructed a model that automatically predicts the ideal partitioning
structure of each streaming program. Their program feature includes two sets of fea-
ture, one is the summary characteristics of streaming program, e.g., instruction mix,
and other characteristics of critical path extracted from stream IR. Again, these fea-
tures are summarized in a fixed-length feature vector. They developed a tool that
automatically generated small training examples for this predictive model.

In contrast to these previous works, we firstly extract topological information from
the program’s control flow graph, and then we cite the coarse-grained statistics [7] in
the graph-based characterization corresponding to each node in the CFG.
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6 Conclusions and Future Work

Speculative multithreading (SpMT) is a thread-level automatic parallelization tech-
nique to accelerate sequential programs on multi-core. Too large and too dense sam-
ples can’t be able to effectively promote the effectiveness of thread partition, parallel
thread evaluation, etc. Selection of appropriate samples is of vital importance.

In this paper, the main contributions involve four distinct aspects: (1) Solution of
assessing the similarity degree of feature vectors is proposed, based on graphical in-
termediate program representations. (2) To do so, we need first develop expressive
means of characterizing the program being optimized. We use the technique for cha-
racterizing programs, using a fixed-length feature vector collected by performance
counters when running the program. (3) According to the program features, similarity
values are calculated to assess the similar degree. (4) We also introduce a novel way
of assessing the similarity of program samples using Theory of Fuzzy, which calcu-
lates the Euclidean distance of two different program samples as the input, and assess
the similarity values using corresponding Fuzzy Function. Using the results of simi-
larity degrees, we realize to clean the similar samples.

Although our approach in certain extent handle the issue that similarity degrees
amongst samples are calculated to assess the similarity of them. However, just using
Euclidean distance to assess the similarity amongst samples is obviously too
straightforward, unable to fully express the contribution degree of single sample to the
whole group, so easily leading to operations of mistakenly cleaning.
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Abstract. MapReduce is an important programming model for pro-
cessing big data with a parallel, distributed algorithm on a cluster. In
big data analytic application, equi-join is an important operation. How-
ever, it is inefficient to perform equi-join operations in MapReduce when
multiple datasets are involved in the join. In this paper, a time cost eval-
uation model is extended for an equi-join by considering the time cost of
calculation. In addition, the sub-joins in an equi-join are classified into
star pattern sub-joins on single attribute and chain pattern sub-joins.
Based on the extended model, optimization methods are presented and
an equi-join plan with lower time cost is chosen for the equi-join. The op-
timization methods include: the star pattern sub-joins on one attribute
are first processed; next, a chain pattern sub-join with minimal scale of
intermediate results (i.e. the number of tuples in intermediate results)
is processed; at last, a chain pattern sub-join is decomposed into several
MapReduce jobs or single MapReduce job by dynamic programming to
obtain an optimal scheme for the chain pattern sub-join. We conducted
extensive experiments, and the results show that our method is more
efficient than those methods such as MDMJ, Hive and Pig.

Keywords: Join, MapReduce, Dynamic Programming.

1 Introduction

With the development of information technology, massive amount of data are
collected in many fields, such as medical, finance, communication, and govern-
ments. Nowadays, there are urgent needs for analyzing big data in these applica-
tions. However, solutions based on conventional distributed or parallel databases
are difficult to meet the needs of big data analysis. MapReduce is an important
programming model for processing big data with parallel, distributed algorithms
on a cluster [3]. Nowadays, thousands of projects for big data processing have
been implemented by this model, including large-scale image processing, ma-
chine learning as well as many other areas. In data analytical queries, equi-join
is an important operation. However, it is not efficient to perform an equi-join
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operation in MapReduce when multiple datasets are involved in the join. Al-
though several approaches performing an equi-join are presented in literatures
[1, 5-10], these approaches have advantages for the equi-joins on some special
datasets and most of them are not general on any datasets.

The approaches for equi-joins are classified into two groups: Map-side join and
Reduce-side join [5]. The Broadcast-Join and its improved approaches Semi-Join
and Per-Split Semi-Join are all Map-side joins [2]. However, the performances of
these approaches for equi-joins decrease seriously when the scales of datasets in-
volved in equi-joins increase, because the efficiencies of these methods depend on
the hardware of the clusters. There are also several approaches for Reduce-side
joins on multiple datasets, such as the equi-join method with multiple MapRe-
duce jobs (MRJs) [7, 9], multi-dimensional Reducer matrix based multi-join
(MDMJ) [1], and modifying original MapReduce frameworks [8, 10]. These meth-
ods have different advantages when specific datasets are joined. Amongst these
approaches, an equi-join is processed by a series of MRJs or single MRJ. How-
ever, it is difficult to determine whether an equi-join should be processed by
single MRJ or by multiple MRJs. If we are able to evaluate the time cost for
disk I/O, communication and calculation of an equi-join, we could choose a plan
with time cost as low as possible from different schemes of the equi-join. Then
the efficiency of the equi-join can be improved. We think this is an issue.

The contributions of this paper are listed in the following.

1. The time cost of calculation for an equi-join is extended based on the time
cost model in literature [11]. Therefore, time cost for an equi-join consists of
three parts: disk I/O, communication, and calculation.

2. Based on the time cost model, optimization methods are presented and an
equi-join plan with lower time cost is chosen. Then the performance of the equi-
join is improved. The optimization methods include: the star pattern sub-joins
on one attribute are first processed; next, a chain pattern sub-join with minimal
scale of intermediate results (the number of tuples in intermediate results) is
processed; at last, an optimal plan for the chain pattern sub-join is obtained by
dynamic programming.

3. We conduct extensive experiments to verify the efficiency of our method.
Experimental results show that the performance of our approach is better than
that of other methods such as MDMJ, Hive and Pig.

The rest of this paper is organized as follows. Related work is briefly intro-
duced in Section 2. The extended cost model is illustrated in Section 3. The
optimization methods for equi-joins are presented in Section 4. In Section 5, ex-
periments are illustrated and at last in Section 6 we summarize the conclusion.

2 Related Work

2.1 Equi-join on Single Attribute

Equi-join on single attribute is an equi-join based on multiple datasets and
one attribute. For example, Rj(a,b1)ooR2(a,bs)oo---00R(a,br) is a typical
equi-join on one attribute a. During Map phase, the Map() function produces
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(key,value) pairs based on a value of the equi-join attribute a (as key) and
name of a dataset and values of other attributes [R;, (a + b;)] (as value). During
Reduce stage, the reduce() function receives a (key,valuelist) each time, then
the values in valuelist are classified according to the dataset and are joined.
Here the valuelist is the list of values with the same key (in (key, value) pair).
Finally, the results are obtained and collected.

2.2 Equi-join on Multiple Attributes

The equi-join on multiple attributes is a join based on multiple datasets and
several attributes. Existing approaches for equi-joins focus on Reduce-side join
and we briefly summarize them in the following.

In multiple MRJs approach, the equi-join is processed in a series of MRJs.
At first, two datasets are joined and the intermediate results are written into
HDFS(Hadoop Distributed File System) as an input dataset of next MRJ. In
the next MRJ, the results from the previous MRJ are read from HDFS, and a
new dataset is chosen to join. Thus, for an equi-join with n datasets, n-1 MRJs
are needed.

In MDMJ method [1], Reduce nodes are divided into a multi-dimensional
Reducer matrix. When an equi-join is processed, tuples in a dataset are copied
from a Map node to Reduce nodes repeatedly. In Reduce stage, intermediate
results are saved in buffer, and then the time cost for disk I/O is reduced.
The datasets are joined in the order specified in an original SQL statement. By
this way, the equi-join can be implemented in one MRJ and the performance
is improved. When the number of attributes, the number of Reduce nodes and
the scales of the datasets increase, the time cost for communication would be
exponentially increases and the performance of the equi-join decreases seriously.

In the approach for joining datasets with bloom filters [6], a bloom filter is
constructed for an input dataset, and the redundant tuples are filtered out in
another input dataset involved in the equi-join in Map phase. Thus, the number
of tuples involved in the equi-join is reduced and the performance of the equi-join
is improved.

In Network-aware multi-way join for MapReduce (NAMM) [8], tuples are re-
distributed directly between Reduce nodes with an intelligent network aware
algorithm so that the workload is redistributed amongst Reduce nodes. By con-
sidering network distance and workloads of Reduce nodes, datasets are chosen
to join, and then the workload of each Reduce node is alleviated and the perfor-
mance of an equi-join is improved.

Yang et al proposed a Map-Reduce-Merge join [10]. Merge phase is added
to MapReduce so that the partitioned and sorted data could be merged and
then the final results can be obtained. The model could express relational alge-
bra operators, and several equi-join algorithms are implemented for the model.
However, they did not demonstrate experimental results of their method.

The equi-join algorithms in [6, 8, 10] improve the performance of an equi-join
in single MRJ. They only optimize single MRJ to improve performance and the
improvement is limit, especially when the scales of datasets increase.
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3 The Extended Time Cost Model for Equi-join
3.1 The Time Cost Model for Single MRJ

In Map stage, datasets are read from HDFS, and data blocks with (key, value)
pairs are produced and stored into local disk. In Reduce phase, the data copied
from Map tasks through network are aggregated, sorted and calculated, then the
final equi-join results are written on HDFS. Therefore, the total time cost of a
MRJ consists of the disk I/O in Map phase, copying data in the network and
calculation in Reduce phase.

The Time Cost in Map Phase. In Map phase, assume there are m Map
tasks and t,; is the time cost for each Map task, and T); is the time cost in
Map phase. If we define the total scales of input datasets of an equi-join for a
MRJ is Sy, the total scales of input datasets in each Map task for read is “:; .
The time cost for a Map task is tp; = tin + tout, Where t;, and t,,; are the time
cost of read and write respectively. For the Reduce-side join mthods, we have
tin = C1 X Sp/m, where C is a constant factor about disk I/O capability for
read, tour = (p + C2) X a X Sr/m, where a denotes the output ratio of a Map
task, which is query specific and can be computed with the selectivity estimation,
C5 is a constant factor about disk I/O capability for write and p is a random
variable for partitioning and sorting and compressing the data in buffer. The
time cost for a Map Task is:

S x S x S
b =Cix T 4 Cax CFT ppx X (1)
m m m

The time cost for the Map phase is: Thy = tas X :T?, [11], where m’ is the current
number of Map tasks running in parallel in the system.

Time Cost for Copying Data in Network. The time cost for copying data
from Map tasks to Reduce tasks is related to scales of data produced by Map
tasks. It consists of the cost of data copying in network as well as overhead of
serving network protocols. Assume there are n Reduce nodes in the system, and
tcp stands for the time cost for copying the output data from single Map task
to n Reduce nodes. For a Map task, tcp = C3 x ax S;/mx (1/n)+qgxn , where
Cj is a constant factor denoting the efficiency of data copying over network, ¢ is
a random variable which represents the cost of a Map task serving n connections
from n Reduce tasks. After the data copying ends, Reduce tasks begin to process
the data received. Suppose that Tcp denotes the time of copying output data
from Map tasks to n Reduce nodes, then we have Tcp = top x [7,. Assume
the time when Reduce tasks begin is Trg, Trs is determined by the time when
the last Map task ends data copying. If ¢5; > tcp, and when the last Map
task ends copying output data, then Trs = Ty + top. If tyr < tep, and when
the last Map task ends, some Reduce nodes are still copying output data, then
Trs =tm +Tcp.

The Time Cost in Reduce Phase. Assume S}é is the dataset that the ith
Reduce node received, the time cost of Reduce phase is composed of the cost of



126 H. Zhu et al.

reading, calculation and writing: Tr, = (p + C1) x TS(S%) + FO(S%) x Cy +
Co x B x TS(S%), where TS(z) is a function that returns the scale of a dataset
z. (p+ C1) x TS(S%) is the time cost consists of pre-processing data from Map
nodes (including shuffle, merge and sort) and sending the data from disk to
reduce() function. Cy x 8 x T'S(S%) is the time cost of writing final results on
HDFS. 3 denotes the output ratio of a Reduce task. FO(S%) x Cy is the time
cost of calculation for the equi-join in a Reduce node. Obviously, the time cost of
calculation should not be ignored because the time cost of calculation depends
on the equi-join algorithms and scales of datasets. Comparing with the time cost
model in literature [11], we consider the time cost of calculation in our model.

Assume Tg stands for the time cost in Reduce phase. The time cost for Reduce
tasks depends on the time which the last Reduce task spends. Therefore, Ty is
determined by the end time of the Reduce task with maximal scale S% of data.
Then we have:

Tr = (C1 + p) x TS(SZ) + FO(SE) x Ca + Cz x B x TS(S%) (2)

After all, the time cost model for a MRJ is:

T = Tvm +tecp +Tr, tm 2 tcp
tm +Tecp +Tr, tum <tcp

(3

Although the formula (3) is the same as the time cost in [11], T is different
from the Tg in [11]. When we consider time cost of calculate for a MRJ, we
need determine the values for «, 8, S% and FO(S%) . In the following discussion,
we will give these values for an equi-join in single MRJ on single attribute and
multiple attributes.

3.2 The Time Cost of an Equi-join for Single MRJ on Single
Attribute

Suppose we join datasets Rq, Ra, -+, Ry,. In Map phase, a tuple is read in map()
function and is changed into a (key, value) pair. Therefore, the sum of scales for
input datasets Ry, Ro,---, Ry, is equal to the total number of tuples in output
datasets, then @ = 1 . In Reduce phase, the tuples are classified in reduce()
function according to the dataset which the tuples come from, and then Cartesian
product is calculated. The total cost of computation for a Reduce node z is:

L
FO(S%) => TS(SR}) + TS(SR{coSRjco- - c0SR]) (4)
1=1
As the number of tuples in output is the number of tuples in results, the
output ratio is:
L
B =TS(SR{ooSR3oc---00SR7)/ > TS(SRY), (5)
i=1
Where SR stands for the number of tuples in dataset R; which is received
by a Reduce node z. Assume the data distribution in each dataset R; is uniform,
and we can preprocess the dataset such that the number of tuples which each
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L

Reduce task receives is almost equal. Then we have T'S(S%) = > T'S(SRY) and
i=1

TS(SR?) =TS(R;)/n , where n is the number of Reduce nodes.

3.3 The Time Cost of an Equi-join for Single MRJ on Multiple
Attributes

In this section, we evaluate the time cost of an equi-join for MDMJ. Before a
MRJ is executed, Reduce nodes are divided into a multi-dimensional Reducer
matrix according to the scales of datasets involved in the equi-join. Because a
tuple in a dataset will be useful for the result of multiple tuples, and these tuples
are distributed on different nodes. Therefore, the input tuples would be copied
several times in map() function, and a partition function would calculate which
reduce nodes the tuple should be copied to for each attribute involved in the
equi-join. The total scale of input datasets for the equi-join S7 is the sum of
scales for all datasets, and the scale of output in Map phase is related to the
number of times copying tuples, if we define ¢pT; as the times of copying datasets

R;, then we have:
N

ax Sy =Y (TS(R;) x cpT}) ©

i=1

The ¢pT; can be calculated by Lagrange formula.

In Reduce phase, after copying data from different Map Tasks, the tuples
stored on local disk are partitioned by keys, and are sorted according to the first
joining attribute specified in the equi-join. In reduce() function, the tuples from
the first dataset are read into the buffer, and when the tuples from the second
dataset come, we just check whether there are suitable tuples (which have the
same joining keys with the tuples from the second dataset) in the buffer. If there
are suitable tuples, we join the tuples in the buffer and from the second dataset,
and the intermediate results are stored into another buffer and sorted according
to the attribute which would join with the next dataset. Then we check the
intermediate results and continue the join following above steps. Because the
tuples in buffer are sorted in advance, when we check whether there are suitable
tuples in the buffer, we only traverse the data once. Therefore, the tuples received
from different datasets are joined in the order specified in the equi-join.

Suppose we have a typical equi-join Ry (a1)ooRz2(a1,az)o0 - 0oR (ar—1). For
each Reduce node z, tuples from dataset R;(1 < i < L) are sorted. According
to the description above, we first finish the equi-join Ry00Rs, then we sort their
results according to next joining attribute ao, and so on. The time cost of com-
putation for this procedure is:

L L—1
FO(S§) = Y (TS(MidRj, , + TS(SR}) + TS(MidR},)) + > TS(MidR;;) x log(TS(MidR,))
i=2 i=2

(7
Where SR stands for the data in R; received by Reduce node z. MidRY;
denotes intermediate results of joining from SRY to SRY. At last, the amount of
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data written into HDFS is equal to the scale of results, namely the output ratio
is the same as formula (5).
After analysis the time cost of an equi-join, we have following Theorem 1.

Theorem 1. The time cost of an equi-join for single MRJ is a monotone in-
creasing function of the total scales of input datasets S7.

Proof. From the formula (1) and (3), we first prove that the total time cost
of Map phase and copying data in network phase is the monotone increasing
function of Sy: for Ths + tcp, we have:
Tr +top = (Ch X fr{ + Coy % afnsf +p X afnsf) x "+ C3 afnsf X i—l—qxn;
for tps + Top, we have:
tar + Top = C1 X Jr 4 Co x @750 4 p X @80 4 (Cy x 75 x|+ g Xn) X 1
Therefore, the total time cost for Map phase and copying data in network
phase is linear dependent to S; and is the monotone increasing function of Sj.
For the time cost in Reduce phase, from formula (2), where 8 x T'S(5%) is
related to the scale of the final results.
Next, we only prove FO(S?) is also a monotone increasing function of S;.
For single attribute, by replacing the formula (4) in above formula, we can
prove that time cost of an equi-join in single MRJ is a monotone increasing
function of the total scales of input datasets Sy.
For multiple attributes, according to results estimation method for an equi-
join in [4] and formula (7), we have:
MidR¥;, | x R¥

MidR?, = o , .
* max(min(MidRY,_,,dif R?_,),dif RY)

where difRf_; is the number of different attribute values in R} ; involved in
an equi-join.

Suppose MidRY;_; > dif Rf_;, then we have:
MidR¥;_, x R¢ MidR$;_; x RY
max(dif Ry, _,,dif R?) — max(MidRy,_,, RY)
Otherwise, if MidRY;_; < difR;_1, because the number of different attribute

values is less than the number of attribute values in a dataset, then difR] | =
MidR7;_;.

MidRY, = > min(MidR7,_, R])

MidR¥; , x R¥ MidR%; , x R¥

max(MidRY,_,,dif RY) =~ max(MidR},_,, RY)

MidRY, = > min(MidRy,_;, R})),

Therefore, we have:MidR?, > min(MidR?;,_,, RY),---, a8 MidR?, > min(MidR¥,, R%) =
min(RY, RY), MidRY, > min(RY, R%,--- , RY). Then the formula (7) is changed into:
FO(S%) > **51 42 x L x min(R§, RS, -+ R¥) + L x min(R, RS, - RY) x
log(min(R%, 3, RY))
Therefore, the time cost in the Reduce phase is the monotone increasing
function of the scale of input datasets Sy.

4 The Optimization Methods for an Equi-join

For an equi-join, the problem is in what order the datasets be joined such that the
total time cost is as low as possible. When we choose an optimal equi-join plan
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with lowest time cost, a naive method is enumerating and evaluating the time
costs of all possible equi-join schemes, and the method is a NP-hard problem [11].
There are two types of sub-joins in an equi-join: star pattern sub-joins and chain
pattern sub-joins. In a star pattern sub-join, a dataset (star-center) is joined with
all of other datasets (the star-angle) on single attribute. In a chain pattern sub-
join, a typical sub-join is described as Ry (a1)ooRa (a1, az)oo - - - coRy (ar,—1). For a
chain pattern sub-join R;(ai—1,a;)00Rit+1(ai, Git1)00 - - -00R;(aj—1,a;)(1 < i <
j < L), we call it a sub-chain of Ry (a;)ooRz(a1,az2)o0 -+ ooR(ar,—1). If a chain
pattern sub-join is not a sub-chain of any other chain pattern sub-join of the equi-
join, the chain pattern sub-join is called a complete chain pattern sub-join.
Our optimization methods for an equi-join have following three steps:

1. A star pattern sub-join should be first processed and replaced by the set of
intermediate results of the star pattern sub-join in an original equi-join.

2. A complete chain pattern sub-join could be searched, and then the chain
pattern sub-join with minimal number of tuples in results would be processed.
The complete chain is also replaced by the set of intermediate results.

3. The time cost of a complete chain pattern sub-join obtained in step 2 is
evaluated by dynamic programming, and then an optimal equi-join scheme is
chosen. The set of intermediate results are added to the equi-join after step
1, and then the equi-join is further modified. The step 2 is repeated. From the
associative law for the join operation, the final results of the equi-join are correct.

4.1 Optimization Methods for Star Pattern Sub-joins and Chain
Pattern Sub-joins

A star pattern sub-join should be processed in single MRJ. We have following
Property 1.

Property 1. Assume there is a star pattern equi-join J,. Suppose J, is processed
with several MRJs and the time cost is Ths5, and J, is also implemented with a
MRJ and the time cost is Ts. Then we have Ts < Ths.

Property 1 is obvious according to Theorem 1. From Property 1 above, a star
pattern sub-join should not be divided into several MRJs.

After processing all star pattern sub-joins, the equi-join consists of several
chain pattern sub-joins. Then we have property 2.

Property 2. Suppose two chain pattern sub-joins cross in an equi-join. If the
chain pattern sub-join, which would produce less number of tuples in results, is
first joined, and then the total time cost for the equi-join would be decreased.

We will use these two properties to simplify the equi-join and reduce the time
cost. Due to space limitation, we will not give their proofs. Actually, they will
be verified in our experiments.

4.2 The Optimization Method by Dynamic Programming

We will use the time cost evaluation model in Section 3 and dynamic pro-
gramming to choose an optimal plan for chain pattern sub-joins. In dynamic
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programming, all of the time costs for possible join schemes are evaluated for a
chain pattern sub-join and a join scheme with minimal time cost is chosen.

Assume a chain pattern equi-join Rj(aj)ooRz2(a1,az)o0 - 0oRr(ar—1), and
fcost(i, 7) stands for the minimal time cost of joining from dataset R; to dataset
R;. If a chain pattern equi-join from R; to R; is decomposed into two sub-chains,
namely the final results would be obtained by joining the intermediate results of
R; to Ry and the intermediate results of Ry41 to R;, then the minimal time cost
is feost(i, j) = min(fcost(i, k)+ feost(k+1, j)+ fjoincost(midR(i, k), midR(k+
1,9)),t <k < j—1, where fjoincost(z,y) stands for the time cost of joining
datasets z with y, midR(i,j) denotes intermediate results by joining dataset
R; to dataset R;. For example, if a chain pattern equi-join is divided into three
sub-joins, then the formula is: fcost (i, j) = min(fcost(i, k1) + feost(k1+1, k2) +
fjoincost(midR(i, k1), midR(k1 + 1, k), midR(ka+1,7))),i < kl < k2 < j—1.
The same methods could be used for the equi-join with four sub-chains, five
sub-chains, and so on. In addition, it is possible that the time cost for MDM.J
is minimal in some cases. Therefore, we could choose one scheme from all of the
possible schemes:

feost(1,k) + fcost(k + 1, L) + fjoincost(midR(3, k), midR(k + 1, L));
whenl < k<L -1
feost(1,k1) + fcost(kr + 1, ka) + fcost(ks + 1, L)+
feost(1, L) = min(] fjoincost(midR(1, k1), midR(k1 + 1, k2), midR(k2 + 1, L));
whenl <k <kos <L-1

fjoincost(R1, R2, -+ ,Ri, -+, Rp); otherwise

We can obtain the optimal join scheme with lowest time cost by dynamic
programming. The time cost (e.g. fjoincost) of joining datasets in single MRJ
can be calculated by formula (3). If two datasets join on single attribute, the
time cost can be computed by the method in Section 3.2. If several datasets join,
the cost can be calculated by the method in Section 3.3. Actually, the number of
datasets and attributes involved in an equi-join is determined by configuration
of hardware and the number of Reduce nodes. We can specify the maximum
number of datasets in single MRJ to improve the efficiency of search in above
formula.

5 Experiments

5.1 The Environment in Experiments

In this section, we will verify the efficiency of our approach and compare with
other equi-join algorithms. As NAMN and MapReduceMerge algorithms modi-
fied MapReduce framework, they are not comparable to our method. Then we
will compare the MDMJ and multiple MRJs algorithms with our method. In ad-
dition, Pig and Hive are two databases based on Hadoop and need to compare
with our method. The experiments are based on Hadoop platform, the hardware
in experiments consists of 1 Master node and 3 slave nodes, all of the nodes are
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Table 1. Hardware and software lists in experiments

Hardware Software
CPU:Intel Xeon(R) Operating System:
2.13GHz*4 Ubuntu-12.04 LTS
Memory: 8G Type of OS: 64bit
Disk:300GB Hadoop: Hadoop-1.0.1

Table 2. SQL statements in experiments

NO. SQL statements

Q1 SELECT * FROM T1, T2, T3, T4, T5 WHERE T1.T1 COL1=T5.T5 COL1 AND
T2.T2 COL1=T5.T5 COL2 AND T3.T3 COL1=T5.T5 COL3 AND
T4.T4 COL1=T5.T5 COL3

Q2 SELECT * FROM T1, T2, T3, T4, T5 WHERE T1.T1 COL1=T5.T5 COL1 AND
T2.T2 COL1=T5.T5 COL2 AND T3.T3 COL1=T5.T5 COL3 AND
T4.T4 COL1=T5.T5 COL4

Q3 SELECT * FROM T1, T2, T3, T4, T5 WHERE T4.T4 COL1=T5.T5 COL4 AND
T3.T3 COL1=T5.T5 COL3 AND T2.T2 COL1=T5.T5 COL2 AND
T1.T1 COL1=T5.T5 COL1

Q4 SELECT * FROM T1, T2, T3, T4, T5 WHERE T1.T1 COL1=T2.T2 COL1 AND
T2.T2 COL2 =T3.T3 COL1 AND T3.T3 COL2=T4.T4 COL1 AND
T4.T4 COL2=T5.T5 COL1

Q5 SELECT * FROM T1, T2, T3, T4, T5 WHERE T4.T4 COL2=T5.T5 COL1 AND
T3.T3 COL2=T4.T4 COL1 AND T2.T2 COL2 =T3.T3 COL1 AND
T1.T1 COL1=T2.T2 COL1

blade servers. The hardware and software environment in experiments are listed
in Table 1.

The experiments consist of three types of equi-joins: hybrid join with star
pattern sub-joins, hybrid join without star pattern sub-joins, and chain pattern
equi-joins. The datasets are produced randomly by specifying the scope of the
data and the different number of tuples for different join attributes. In the fol-
lowing discussion, our method is denoted as JoinStrategy and multiple MRJs as
MutipleJob.

5.2 The Experiments for a Hybrid Equi-join with Star Pattern
Sub-joins

In the experiments (EXP1 for short), we will have two tests for the SQL state-
ments Q1 in Table 2. For the equi-join, the number of tuples in each dataset is
shown in Table 3 and Table 4 respectively. Compared with Table 3, the scales
of datasets in star-center (dataset T5) in Table 4 are changed. The results of
experiments are shown in Fig.1 and Fig.2 in which the scales (1-5) in x-axis
are shown in Table 3 and Table 4 (from No.l to No.5) respectively. From the
experiments, the joinStrategy is more efficient than that of other methods.
Comparing Fig.1 with Fig.2, whether the scales of datasets in star-center or
in star-angle are changed, JoinStrategy is the most efficient approach among
these methods. The reason is that in one MRJ only star pattern sub-joins are
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Table 3. In experiment EXP1.a, the number of tuples in datasets and the final results

No. T1(x10%) T2(x10%) T3(x10°%) T4(x10%) T5(x10%) Results
1 6 6 2 2 2 2444916
2 6 6 2 4 2 2453824
3 6 6 2 6 2 2448719
4 6 6 2 8 2 2457335
5 6 6 2 10 2 2467211

Table 4. In experiment EXP1.b, the number of datasets in join and the final results

No. T1 (x10%) T2(x10%) T3(x105) T4(x10%) T5(x108) Results
1 2 2 2 2 2 2453578
2 2 2 2 2 4 4910520
3 2 2 2 2 6 7378282
4 2 2 2 2 8 9822087
5 2 2 2 2 10 12290426

processed so that large amount of redundant disk I/0O is avoided. However, the
methods for MutipleJob, Hive and Pig decompose star pattern sub-joins into
several MRJs, the time costs of them are more than that of JoinStrategy. In
Fig.2 the time cost for MDMJ is almost the same as JoinStrategy when the
scales of datasets are small, but when the scales of datasets increase, the time
cost for MDMJ is more than that of JoinStrategy. The reason is that when the
scales of datasets are small the JoinStrategy process the star pattern sub-joins
first, then the JoinStrategy chooses MDMJ to process rest of datasets.
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Fig. 1. Time cost for datasets in Table 2 Fig. 2. Time cost for datasets in Table 3

From the experimental results above, the JoinStrategy are more efficient than
that of other methods as the star pattern sub-join is processed first. The results
indicate that the Propertyl in Section 4.1 is correct and effective.

5.3 Experiments for Hybrid Equi-joins without Star Pattern
Sub-joins

For the experiments in this section (EXP2 for short), we will test the efficiencies
of queries Q2 and Q3 in Table 2. The difference of the two SQL statements is
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that the orders of datasets in the two equi-joins are different, and the order of
joining datasets in our approach would be rearranged according to the optimiza-
tion method: the chain pattern sub-joins with smaller intermediate results are
processed after star pattern sub-joins are processed.

The experimental results are illustrated in Fig.3 and Fig.4, and the scales of
datasets and results for the equi-joins are illustrated in Table 5.

Table 5. In experiment EXP2, the number of tuples in datasets and final results

No. T1 (x10%) T2(x10%) T3(x10°) T4(x10%) T5(x108) Results
1 2 2 2 2 6 89915
2 2 2 2 6 6 271685
3 2 2 2 10 6 271142
4 2 2 6 10 6 825062
5 2 2 10 10 6 820939
6 2 6 10 10 6 2458097
7 2 10 10 10 6 2453931
8 6 10 10 10 6 7386461
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e Tt —— Jolndtrategy
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Fig. 3. The time cost for the join Q2 Fig. 4. The time cost for the join Q3

Comparing the experimental results in Fig.3 and Fig.4, when we changed the
order of datasets in an equi-join, the efficiency of MDMJ and JoinStrategy is un-
changed but the performances of other methods decrease obviously. The reason is
that MDMJ and JoinStrategy optimize the order of joining datasets while other
methods only join datasets in the order specified in SQL statements. Once the
order of joining datasets is unreasonable, the performance would decrease obvi-
ously. From the experimental results in Fig.4, the performance of an equi-join is
improved when the chain pattern sub-joins with smaller intermediate results are
processed first. The results indicates that Property2 in Section 4.1 is suitable.

5.4 Experiments for Chain Pattern Joins

We will verify that the plan produced by dynamic programming would improve
the efficiency of an equi-join in the experimental (EXP3 for short). Like the
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experiments for hybrid equi-join without star pattern sub-joins, this experiment
will test the joins with different order, the SQL statements Q4 and Q5 are
illustrated in Table 2.

Table 6. In experiment EXP3, the number of tuples in datasets and final results

No. T1(x10%) T2(x10%) T3(x10°) T4(x10%) T5(x10°) Results
1 2 2 2 2 2 2459063
2 2 2 2 2 6 2447277
3 2 2 2 2 10 2455207
4 2 2 2 6 10 2458453
5 2 2 2 10 10 2458784
6 2 2 6 10 10 2453944
7 2 2 10 10 10 2455965
8 2 6 10 10 10 2462062
9 2 10 10 10 10 2461461
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Fig. 5. The time cost for join Q4 Fig. 6. The time cost for join Q5

The experiment results are illustrated in Fig.5 and Fig.6. The experimental
results are similar to the results in Section 5.3. From the results in Fig.5, the
efficiency of the JoinStrategy is almost the same as Pig and Multiplejob, the
reason is that the order of datasets in SQL statement in Fig.5 is close to the order
of joining datasets by our optimization methods. However, in Fig.6, the order
of joining datasets is unreasonable in Multiplejob and Pig, and the efficiencies
of Pig and Multiplejob decrease. Moreover, as the data scales are small before
the datasets of No.4 in Table 6, in Fig.5 and Fig.6, MDMJ is more efficient
than that of MultipleJob, so we choose MDMJ for multiple datasets in single
MRJ by dynamic programming. Therefore, before the datasets No.4 in Table 6,
JoinStrategy is more close to MDMJ. When the scales of datasets increase and
the cost for copying data in network increases in MDMJ, performance of MDMJ
decreases. At this time, the plan for the equi-join tends to choose multiple MRJs.
Therefore, from the datasets No.5 in Table 6, the optimal plan obtained from
dynamic programming is the multiple MRJs. From the results, the performance
of our method is more efficient.
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6 Conclusion

An new equi-join method is presented in this paper. A time cost evaluation
model is extended for equi-joins on multiple datasets and multiple attributes
by considering the time cost of calculation. Then optimization methods is pre-
sented: star pattern sub-joins are first processed, then the intermediate result-set
replaces the star pattern sub-joins and the original equi-join can be simplified;
next, the scale of results for each chain pattern sub-join is estimated and the
chain pattern sub-joins with minimal scale of results are processed; at last, for
chain pattern sub-joins time costs are evaluated for each MRJ by dynamic pro-
gramming and an optimal plan is chosen. We conducted extensive experiments
and verified the efficiency of our approach. In the future, we will study on how
to solve the problem of theta-join based on this model.
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Abstract. Identifying file similarity is very important for data man-
agement. Sampling files is a simple and effective approach to identify
the file similarity. However, the traditional sampling algorithm(7'SA) is
very sensitive to file modification. For example, a single bit shift would
result in a failure of similarity detection. Many research efforts have
been invested in solving/alleviating this problem. This paper proposes
a Position-Aware Sampling(PAS) algorithm to identify file similarity
in large data sets by modulo file length. This method is very effective
in dealing with file modification when performing similarity detection.
Comprehensive experimental results demonstrate that PAS significantly
outperforms a well-known similarity detection algorithm called simhash
in terms of precision and recall. Furthermore, the time overhead, CPU
and memory occupation of PAS are much less than that of simhash.

Keywords: file similarity, large data sets, position shifted, simhash.

1 Introduction

In 2013, IDC predicts[13]that the digital data created in 2014 will reach 4ZBytes.
This leads to a 50% growth in contrast to the data volume in 2012. IBM em-
ploys volume, variety, velocity, value, and veracity to summarize the features of
those data. This indicates that the characteristics of this data are very complex.
For example, the data sets could contain structured, semi-structured, and un-
structured data. The characteristics of data sets pose many challenges to the
existing data management technologies. File similarity detection plays a very
important role in the data management. For example, clustering similar data
is crucial for data mining, adopting similarity to improve the performance of
data backup[3][17][29], employing similarity to enhance the cache hierarchy in
clouds[4][14].

Although the community has made important strides in identifying data sim-
ilarity, effectively detecting the data similarity is still facing many challenges.
We summarize the challenges as follows:

1. Reducing the computing overhead of similarity detection: Tradi-
tional similarity identification algorithms belong to I/O bound and CPU-
bound tasks. Calculating the eigenvalues of similar files requires lots of CPU
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X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 136-149, 2014.
© Springer International Publishing Switzerland 2014
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cycles and memory space, and incurs comprehensive disk accesses, when us-
ing the traditional algorithms. Furthermore, the disk accesses are normally
random accesses, which results in a significantly performance degradation.
What’s more, the computing overhead normally increases with the growth
of data sets.

2. Reducing the time of similarity detection: Traditional similarity iden-
tify algorithms normally require a large amount of time for detecting, which
results in long delays especially with large data sets. This makes it difficult
to apply the algorithms to some applications requiring real time and high
throughput.

3. Achieving both the efficiency and accuracy: It is a challenge to achieve
both the efficiency and accuracy of the similarity detection. The traditional
algorithms have to make a tradeoff between the efficiency and accuracy.

In this paper, we propose a Position-Aware Similarity (PAS) identification
algorithm to detect the similar files in large data sets by modulo file length.
This method is very effective in dealing with file modification when perform-
ing similarity detection. Comprehensive experimental results demonstrate that
PAS significantly outperforms a well-known similarity detection algorithm called
simhash in terms of precision and recall. Furthermore, the time overhead, CPU
and memory occupation of PAS are much less than that of simhash. This is be-
cause the overhead of PAS is relatively stable. It is not increases with the growth
of data size.

The remainder of this paper is organized as follows: we present related work
in section 2. In section 3 we describe some background knowledge. Section 4
introduces the basic idea of PAS algorithm. Section 5 shows the evaluation results
of PAS algorithm. Section 6 draws conclusions.

2 Related Work

The research efforts focusing on data similarity detection can be divided into
five categories.

The first one is similar web page detection with web search engine. Detecting
and removing similar web pages can save network bandwidth, reduce storage
consumption, and improve the quality of web search engine index. Andrei et al
[7][8] proposed a similar web page detection technique called shingle algorithm.
The shingle algorithm detects similarity by using set operations. This algorithm
is applied to AltaVista web search engine.

The second one is similar file detection in storage system. In storage systems,
data similarity detection and encoding can greatly improve the resource utiliza-
tion. Forman[12] presented an approach for finding similar files and applied to
document repositories. This approach greatly reduces storage space consump-
tion. Manber[18] implemented a tool, called SIF, for detecting similar files in a
file system. Ouyang[22] presented a large-scale file compression technique based
on cluster by using shingle similarity detection technique.
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The third one is plagiarism detection. Digital information can be easily copied
and retransmitted. This feature causes owner copyright violated. In order to pro-
tect copyright and other related rights, we need plagiarism detection. Baker[2]
ddescribed a program called dup which can be used to locate instances of dupli-
cation or near duplication in a software. Shivakumar[27] presented a data struc-
tures for finding overlap detection between documents and implemented these
data structures in SCAM. Brin et al[6] described an algorithms for copy detec-
tion, either complete copies or partial copies. Brin also implemented a working
prototype, called COPS.

The forth one is remote file backup. Traditional remote file backup approaches
take high bandwidth and consume a lot of resources. Similarity detection applied
to remote file backup can greatly reduce bandwidth consumption. Teodosiu et
al[28] proposed an algorithm to efficiently find the client files that are the most
similar to a given server file. Teodosiu implemented this algorithm in DFSR. Ex-
perimental results suggest that these optimizations may help reduce the band-
width required to transfer file updates across a network. Muthitacharoen et al[21]
presented LBFS which exploits similarity between files or versions of the same
file to save bandwidth. Cox et al[11] presented a similarity-based mechanism for
locating a single source file to perform peer-to-peer backup and implemented a
system called Pastiche.

The fifth one is similarity detection for specific domain. Hua et al[14] explored
and exploited data similarity which supports efficient data placement for cloud.
They designed a novel multi-core-enabled and locality-sensitive hashing that
can accurately capture the differentiated similarity across data. Biswas et al[4]
proposed a novel cache architecture called Mergeable. Mergeable detects data
similarities and merges cache blocks. This results in substantial savings in cache
storage requirements. Experimental results suggested that Mergeable reduces off-
chip memory accesses and overall power usage. Mergeable also can increase the
performance of applications.

3 Background

3.1 Simhash Algorithm

Charikar proposed a Simhash[10] algorthim. Manku et al[19] applied the simhash
algorithm to identify similarity in web documents belonging to a multi-billion
page repository. Simhash is a member of the local sensitive hash[15]. It is different
from traditional hash functions whose signature values are discrete and uniform
distributed. When using the traditional hash functions, if two files differ just a
bit, their hash signature values are almost different. Simhash has the property
that the fingerprints of similar files differ in a small number of bit positions. It
can map a file into f-bit fingerprints. Figure 1 shows the computing process of
m-bit simhash fingerprints. It can be described as follows:

1. Employ chunk algorithm to split files into a set of data blocks: C1,Cs, ..., Cy
2. Define an m-dimension vector V', every dimension is initialized as zero.
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Fig. 1. Process of Calculating simhahs fingerprint

3. Calculate m-bit signature of every data block by using traditional hash func-
tions. If the i-th bit of a signature is positive, then the i-th dimension V'
should plus 1. Otherwise, it minus 1.

4. Generate a m-bit simhash fingerprint f according to each dimension of vector
V. If the i-th dimension of V' is a positive number, then the i-th bit of f is 1.
Otherwise, it will be 0.

After calculating the simhash fingerprints of files, we can determine the sim-
ilarity of files by working out their Hamming distance.

4 Position-Aware Similarity Algorithm

In order to quickly identify similarity in large data sets with less overhead, we
propose a similarity detection algorithm PAS. The symbols used in the following
sections are summarized in Table 1.

4.1 Traditional Sampling Algorithm

Suppose we sample N data blocks of file A, each data block sizing Lenc is in-
jected to a hash function. We then can obtain N fingerprint values that are
collected as a fingerprint set Siga(N, Lenc). In this scenario, similarity detec-
tion problem can be transformed into a set intersection problem. By analogy, we
will have a fingerprint set Sigp (N, Lenc) of file B. According to equation (1),

Table 1. Symbols and the corresponding means used in the following sections

Symbol Meaning
Lenc The length of sampling data blocks length
N The number of sampling data blocks
FileSize File size
LenR The distance between two sampling data blocks
T Sampling position impact factor of PAS

) The threshold of PAS
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Fig. 2. The Sampling positions of TSA and PAS

the degree of similarity between file A and file B can be described as equation
(1), where Sim(A, B) ranges s between 0 and 1. If Sim(A, B) is reaching 1, it
means the similarity of file A and file B are very high, vice verse. After selecting
a threshold § of the similarity, we can determine that file A is similar to file B
when Sim(A, B) > § is satisfied. This TSA is described in algorithm 1. by using
pseudo-code.

_|Siga(N, Lenc) N Sigp(N, Lenc)|

Sim(4, B) = |Siga(N, Lenc) U Sigg(N, Lenc)| )

TSA is simple, but it is very sensitive to file modifications. A small modifica-
tion would cause the sampling positions shifted, thus resulting a failure. Suppose
we have a file A sizing 56 KB. We sample 6 data blocks and each data block sizes
1KB. According to Algorithm 1, file A has N = 6, Lenc = 1K B, FileSize =
56K B,LenR = 10K B. If we add 5KB data to file A to form file B, file B
will have N = 6, Lenc = 1K B, FileSize = 61K B, LenR = 11K B in terms of
algorithm 1..

Algorithm 1. Traditional Sampling Algorithm

function TRADITIONALSAMPLING(fd, N, Lenc)
LenR = (FileSize - Lenc*N) /(N - 1)//Calculate distance between the sampling
data blocks
for i =1to N do
of fset = (i - 1)*(Lenc + LenR)//Calculate the sampling offset
Iseek(fd, of fset, SEEKsET) //Set the sampling offset
read(fd, buf, Lenc)
Md5(buf, Lenc, Md5V al)
put(Md5Val, SigA)
end for
end function

//Put the fingerprint to the Siga(N, Lenc)

Adding 5KB data to file A has three situations including the begging, the
middle, and the end of the file A. File B1, B2, and B3 in figure 2(a) represent
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Algorithm 2. PAS Sampling Algorithm

function PASSAMPLING(fd, N, Lenc, T)
FileSize = (FileSize/T)T
LenR = (FileSize - Lenc*N)/(N - 1)
LenR = LenR > 07 LenR : 0
for i=1to N-1do
of fset = (i - 1)*(Lenc + LenR)
Iseek(fd, of fset, SEEKsET)
read(fd, buf, Lenc)
Md5(buf, Lenc, Md5Val)
put(Md5Val, SigA)
end for
Iseek(fd, -Lenc, SEEKgND)
read(fd, buf, lenc)
Md5(buf, Lenc, Md5V al)
put(Md5Val, SigA)
end function

these three different situations. We can find that the above file modifications
cause the sampling position shifted and result in an inaccuracy of similarity
detection. For example, the six sampling positions of file A are 0K B, 11K B,
22K B, 33KB, 44K B, and 55KB ((1 — 1)« (1 +10) = 0KB,(2 - 1) « (1 +
10) = 11KB,(3— 1)« (1 + 10) = 22KB,(4 — 1) x (1 + 10) = 33KB,(5 —
1) % (1 +10) = 44K B, (6 — 1) % (1 + 10) = 55K B), respectively. However, due
to the added 5K B data, the six sampling positions of file B1,B2, and B3 are
shifted to 0K B,12KB,24K B,36 K B,48K B, and 60KB((1 — 1) = (1 + 11) =
0KB,(2—1)*(1+11)=12KB,(3—1)*x(1+11) =24KB,(4— 1)« (1 4+ 11) =
36KB,(5—1)*(1+ 11) = 48KB,(6 — 1) * (1 + 11) = 60K B), respectively.
Although the Sim(A, B) is far from actual value when using TSA, the sampling
method is very simple and takes much less overhead in contrast to the shingle
algorithm and simhash algorithm.

4.2 PAS Algorithm

FPP[17] exploits prefetching fingerprints belonging to the same file by leverag-
ing file similarity, thus improving the performance of data deduplication systems.
The experimental results suggest that FPP increases cache hit ratio and reduces
the number of disk accesses greatly. FPP samples three data blocks in the be-
ginning, the middle, and the end of files to determine that a forthcoming file is
similar to the files stored in the backed storage system, by using the TSA. This
method is sample and effective. However, as explained in section 4.1, a single bit
modification would result in a failure. Therefore, PAS is proposed to solve this
problem.

Definition 1. Given a positive integer p for any integer n must be existing
equation n = kp +r. There k, r is an integer and 0 < r < p, k is quotient n
divided by p, r is remainder n divided by p.
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Suppose n = 150, p = 100 , we have 150 = 1100 + 50 in terms of Definition
1, where r and k equal to 50 and 1, respectively. The k always equals to 1 for
—50 < r < 50. Then we have k x p = p. Therefore, the changing of r keeps n
unchanged.

We can apply this simple method to the identification of file similarity. This
mechanism is illustrated in algorithm 2. with pseudo-code.

In order to detect similarity accurately, we sample two data blocks in the
beginning and in the end of files, respectively. The remaining sampling positions
are calculated by using algorithm 2.. After choosing an appropriate parameter
T according to algorithm 2., we can avoid the shifting of sampling positions due
to slight file modifications

We take the same example used in Section 4.1 to illustrate the basic idea
of PAS. Suppose file A sizes 56 KB, and file B is achieved by adding 5K B
data to file A. We also sample six data blocks and the length of each data
block is 1K B. We take T as 28 KB. This is because in order to avoid the
shifting of sampling positions incurred by adding the 5K B data, T should
be bigger than 5K B. Other numbers of T are also applicable. For example,
T could be 6KB,7TKB,8KB,9K B and so on. We will discuss how to deter-
mine an optimal T in Section 5.2. Then, the file A has N = 6, FileSize =
56K B, LenR = 10K B,T = 28K B. According to Algorithm 2., file B will have
N =6, FileSize =61KB, LenR = 10K B,T = 28 KB.

Consider adding 5K B to file A in the beginning, the middle, and the end of
the file, we will have file B1, B2, B3 illustrated in Figure 3. We can find that the
sampling positions of file B are 0K B, 11K B,22K B,33K B, 44K B((1—1)* (1 +
10) = 0K B, (2—1)*(1410) = 11K B, (3—1)%(1+10) = 22K B, (4—1)%(1+10) =
33KB,(5—1)* (1+10) = 44K B), and 60K B, respectively. In contrast to the
sampling positions of file A, the only difference is the last sampled data block at
the position 60K B. This is because we fix two sampling position in the beginning
and the end of the corresponding files. According to the above analysis, we can
conclude that the PAS algorithm can effectively avoid the shifting of sampling
positions due to slightly file modifications.

Fig.2(b) shows that the sampling positions when using PAS algorithm. It
also illustrates that the file modifications incur a shift of some sampled file
contents. For example, the modification of file B1 is at the beginning of the file,
although the sampling positions are the same as that of file A, all the sampled
contents have been shifted except the first sample. However, this problem will
be alleviated when the modification gradually moves from the beginning to the
end of the file. For instance, all the sampled contents of file B3 are the same as
that of file A except the last one occurring at the end of file B3.

Data deduplication systems [24][26][25] normally employ fixed-sized partition
algorithm to obtain data chunks. In this scenario, most of the striped data
chunks of file A and file B1 are not identical due to the modification at the
beginning of file B1. Therefore, the mapped fingerprints of the data chunks are
not identical as well. Even if file A and file B1 are actually similar, prefetching
the fingerprints cannot improve the hit ratio of the fingerprints accesses when
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using the fixed-sized partition algorithm. According to the above analysis, we
can determine that PAS matches the problem of data deduplication systems
when the fixed-sized partition algorithm is adopted. Therefore, we believe that
the PAS algorithm is applicable although it contains defects mentioned before.

1400+ Table 2. The profile of data set D1
::: Popularity Storage Space
5 o] Rank Ext. %Occur Ext. %Storage
5 1 h 5530 pdf 77.52
& w0l 2 pdf 14.70 mkv  4.38
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5 mp3 3.48 zip 2.39
Fig. 3. The file size distribution of data set Tpota] — 83.1 _ 92.54
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5 Evaluation

5.1 Evaluation Environment

The experiments in this paper are performed in a Ubuntu operation system (ker-
nel version is 2.6.32) at VirtualBox(4.3.8.r92456) with virtual machine software.
The virtual machine consists of 1GB memory, 2.0GHZ Intel(R) Pentium(R)
CPU. We use Tokyo Cabinet(1.4.48)[16] to store PAS results.

In order to measure the performance of PAS algorithm, we employed two
data sets D1 and D2 to perform the evaluation. Data set D1 is collected from
a Linux server in our research lab and a personal cloud DropBox. D1 has 2756
files with total size of 11.5GB. Table 2 summarizes the profile of D1. It shows
that the top five popular files are the files with the suffix of .h, .pdf, .jpg, .c and
.mp3. Tables 2 also indicates that the files with suffix .pdf consumes the highest
portion of storage capacity. Fig.3 shows the distribution of file size. It implies
that the highest portion of file size ranging between 0KB to 4KB. The file size
distribution in Fig.3 is consistent with the investigation of Agrawal et al[l] and
Meyeret et al[20]. Therefore, we believe that data set D1 is very representative.

In order to determine the optimal parameters of PAS, we build another data
set D2. The files in D2 consist of original files and the augmented files that are
modified in the begging, the middle, and the end of the corresponding original
files. D2 is made up of 14 txt files. It total size is 128 M B.

5.2 Parameters Selection

Since the parameters T and threshold § have a significant impact on the perfor-
mance of PAS, it is important to determine the optimal parameters. We compare
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Fig. 4. Parameters selection of PAS

the detection probability of PAS algorithm against the actual portion of match-
ing chunks in data set D2. Because the actual portion of matching chunks is
the up bound of the similarity between two files, the optimal parameters should
make the detection probability of PAS get close to the actual portion of match-
ing chunks. The Fix-Size Partition algorithm first split files into predefined fixed
size chunks[5], then maps these chunks into fingerprints by using hash functions
and obtains a fingerprint set. The chunk size is defined as 4K B in our experi-
ments. Applying this method to file A and file B, we have two fingerprint sets
Finger(A) and Finger(B). The actual portion of matching chunk fingerprints
of file A and file B is described with equation (2), where Match(A, B) lies be-
tween 0 to 1. This is consistent with equation (1). If Match(A, B) reaches 1, this
indicates that most of chunks of file A and file B are matching, vice verse.

_ |Finger(A) N Finger(B)|

Match(A, B) = |Finger(A) U Finger(B)| (2)

By comparing Match(A,B) in equation(2) against Sim(A, B) in equation
(1), we can determine optimal parameters. For example, if Match(A,B) =
Sim(A, B), this implies that the PAS algorithm catches the real similarity of
file A and file B. This scenario can be expressed in mathematical form as y = x,
where y and x range between 0 and 1. Theoretically, if a curve keeps very close
to y = x, it means this curve is the best candidate to select optimal parameters.
The experiments in this section are all performed with data set D2.

Sampling Position Impact Factor T. Fig.4(a) shows the impact of sampling
position impact factor T on the detection probability, where Lenc equals to
32byte, N equals to 8, and T is determined as 2K B,8K B,32K B,128 K B, and
512K B. 1t is very interesting to observe that when T is defined as 2K B and 8 K B,
the corresponding two curves goes far from the line Sim(A, B) = Match(A, B).
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At this point, the values of actual matching chunk fingerprints Match(A, B)
range from 0.05 to 0.98, while the values of detection probability Sim(A, B) float
around 0.07. In this situation, the failure ratio of detection is very high. Because
even though two files most data blocks are identical, detection probability is
low. When T is set as 32K B, 128 K B, and 512K B, the corresponding curves are
very close to the line Sim (A, B) = Match(A, B). This indicates 32K B, 128 K B,
and 512K B are optimal values of T. We take T = 512K B in the following
experiments.

Threshold § of PAS Algorithm. Consider file A and file B, Sim(A4, B) > §
indicates that file A is similar to file B, where § is a threshold of similarity. We
employ Precision and Recall introduced in [9][23] to select an optimal thresh-
old 4. The Precision and Recall are defined in equation (3) and equation (4),
respectively, where A represents a file set, u denotes the file required to detect
similarity among the file set A, Query(A,u) means a file set detected by us-
ing PAS algorithm, that file set is similar to the file u among the file set A,
Matchall(A,u) indicates a file set that is actually similar to the file u among
the file set A, |Matchall(A, u) N Query(A,u)| implies that a detection file set is
actually similar to file u.

|Matchall(A,u) N Query(A, u)|

Precision =
recision |Query(A,u) Y
|Matchall(A, u) N Query(4, u)]
= '
Reca |Matchall(A, u)| Y

According to formula (3) and formula (4), precision is the fraction of detection
instances which are actually similar, while recall is the fraction of actually similar
instances that are retrieved, both values are between 0 to 1. If the precision value
is close to 1, it means that most detection instances are actually similar. On the
country, if the precision value is close to 0, it indicates that most detection
instances are not similar. By analogy, if the recall value is close to 1, it implies
that we detect most actually similar instances. If the recall value is close to 0, it
denotes that we just detect a few similar instances.

Generally, according to the above analysis, we expect to have very high preci-
sion and recall that are close to 1. Unfortunately, this is very hard to achieve. If
we want to detect more actually similar files, it means we have to relax the limit
of threshold value §. However, reducing the threshold value § incurs more actual
instances that are not similar to occur in the detection results. This will decrease
the precision value. Expecting most detection results are actually similar means
that we need to restrict the limit of threshold value d. This will reduce the ac-
tually similar instances detected, thus decreasing the recall value. Therefore, we
have to make a tradeoff between the precision and recall.

Fig.4(b) shows the impact of similarity threshold ¢ on the precision and recall
when using PAS algorithm, where T equals to 512K B, Lenc is 32byte, and N
is defined as 10. It is easy to observe that with the growth of d, the precision
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increases, while the recall decreases. According to figure 10, We determine that
the optimal similarity threshold ¢ is 0.5, because both the precision and recall
can achieve a high value of 0.85. Therefore, if file A and file B satisfy the equation
Sim(A, B) > 0.5, we treat these two file as similar.

5.3 PAS Algorithm Evaluation

We evaluate the time overhead, memory and CPU utilization, precision and recall
of PAS against the well-known similarity detection algorithm called simhash.
The T, Lenc, N, and § are set as 512K B, 32bytes, 10, and 0.5, respectively.
And according to the work in [19], hamming distance is selected as 3, and the
number of stored table is determined as 4. All the measurements in this section
are performed with data set D1.

In order to reduce the storage consumption and easy to express, the PAS
algorithm use 8 bits to store a fingerprint. Therefore, it takes 80 bits for each file.
However, the redundant table of simhash needs 256 bits to store the fingerprints
of each file.

Time Overhead. The time overhead is evaluated with three different file size
including 2MB, 5MB, 10MB. Fig.5(a) shows that the time overhead of PAS is
much smaller than that of simhash across the three different file size. The actual
time overhead of PAS are 4ms, 4ms, and 3.9ms, while the corresponding time
overhead of simhash are 232.198ms, 564.668ms, and 1046.38ms. When using the
data set D1, we obtain a similar trend in fig.5(b). The time overhead of PAS
and simhash are 105s and 1452.5s, respectively.

CPU and Memory Utilization. Fig.6 illustrates the CPU and memory uti-
lization of PAS algorithm against that of simhash algorithm when employing
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Fig. 6. CPU and memory utilization of PAS and simhash with data set D1

data set D1. It shows that the CPU utilization of PAS and simhash are 20%
and 40%, respectively. This indicates that simhash is more computing intensive
than PAS algorithm. However, the memory utilization of PAS and simhash are
2% and 1%, respectively. The reason behind this is because PAS algorithm use
Tokyo Cabinet to store fingerprint sets, and the Tokyo Cabinet maps data files
into memory as much as possible. This makes the PAS algorithm take more
memory space. However, PAS algorithm memory utilization does not increase
with time. Tokyo Cabinet does not store any data in cache. Simhash algorithm
memory utilization increases with time. Simhash algorithm stores all fingerprints
in memory and exists redundance fingerprints. So we think PAS particularly
suitable for limited physical memory environment.

Precision and Recall. In order to illustrate the effectiveness of PAS, we eval-
uate the precision and recall of PAS against that of simhash with data set D1.
Our experiments demonstrate that the precision and recall of PAS are 0.875 and
1, respectively. However, the measured precision and recall of simhash are 1 and
0.125, respectively.

The Main reason of this result is because simhash employs fixed-size partition
algorithm. This makes the simhash algorithm become very sensitive to the file
modifications. A single bit modification will make the fingerprints of the cor-
responding two files completely different. Therefore, we believe that the PAS
algorithm is a practical and applicable solution for the file similarity detection.

6 Conclusion

In this paper, we proposed an algorithm PAS to identify file similarity in large
data sets by modulo file length. Comprehensive experiments are performed to
select optimal parameters of PAS. Corresponding analysis and discussion of the
parameter selection are introduced in the paper. The evaluation of precision
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and recall demonstrates that PAS is very effective in detecting file similarity
in contrast to a well-known similarity detection algorithm called simhash. The
experiment results suggest that the time overhead, CPU and memory occupation
of PAS are much less than that of simhash.
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Abstract. Concolic execution has become a promising technique for
program analysis in recent years, whereas it rarely applies to Python
applications. In this work, we propose a concolic execution engine for
Python applications named Conpy. Conpy is easy to deploy since it is
written in pure Python and it is not dependent on any third-party tools.
Conpy is also easy to use. Anyone with basic knowledge of Python and
concolic execution can quickly get start with Conpy. Besides, Conpy
works in low level and produces human-readable reports which facilitate
subsequent analysis. We then make an elaborate performance testing on
Conpy. Results show that the overhead of Conpy is acceptable, that is
to say, less than one order of magnitude in most cases.

Keywords: Python, concolic execution, easy to deploy, easy to use, low
overhead.

1 Introduction

Concolic execution, or dynamic symbolic execution, which is a variation of tradi-
tional symbolic execution proposed in 1970s [1], is now becoming a hot technique
for program analysis. As the name implies, concolic execution combines concrete
execution which runs the programs under analysis (PUA) concretely with sym-
bolic execution which marks symbols, tracks symbols and produces path condi-
tion in the meanwhile. So far, concolic execution has applied to software testing,
software bugs finding and malware analysis. A number of concolic execution
tools have been proposed recently, such as SAGE [2], Pex [3], KLEE [4], DART
[5], CUTE [6], Fuzzgrind [7], Catchconv [8], S2E [9], Splat [10], TaintScope [11],
BitBlaze [12], CREST [13], JPF-SE [14] as well as our previous tools SMAFE
[15] and SEVE [16].

However, rare tools can handle Python applications. Python was often used
as a scripting language for web applications, but now it is widely used by large
organizations including Google, Yahoo!, NASA for its high productivity [17]. So
it is meaningful to design and implement a concolic execution tool for Python
applications.

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 150-163, 2014.
© Springer International Publishing Switzerland 2014
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We have two major contributions in this work. The first, we design and imple-
ment a concolic execution engine for Python applications named Conpy. Conpy
is written in pure Python and it does not depend on any third-party tools, so
it can be released with Python’s codebase as a module. Besides, Conpy is easy
to use. Typically, the only effort for users is to specify symbol sources, such
as the inputs read from files, data comes from Internet, return values of any
functions. Conpy runs in low level, so it is able to produce reports containing
low-level information, which obviously benefit subsequent analysis. Furthermore,
the reports generated by Conpy are human-friendly. So experts can analyze the
reports manually or interpret the reports by any third-party tools.

The second contribution is that we test the performance (i.e. overhead) of
Conpy extensively. To our knowledge, the overhead issue of existing concolic ex-
ecution tools has not been studied in depth. Current concolic execution tools are
employed in off-line analysis, such as automated test generation, software bugs
finding etc., rather than on-line detection or protection. So overhead is not so
critical for current usage. The results from performance testing are promising
that in most cases the overhead is less than one order of magnitude.

2 Related Work

This section briefly reviews the design and implementation of existing concolic
execution tools in order to outline the differences between them and our Conpy.
We try to present some typical tools which have got high attention, but we do
not intend to present all of them. Readers who are interested in current concolic
execution tools can refer to a recent survey [18].

SAGE [2] is proposed by Microsoft Corporation which concolically executes
Windows binaries. SAGE is built on top of a trace replay framework, named Tr-
uScan. The trace files consumed by TruScan are produced by iDNA framework.
So concolic execution in SAGE is according to the following process: (1) executes
PUA concretely and gathers trace files by iDNA. (2) executes trace files symbol-
ically with the help of TruScan. The paper [2] reports SAGE is rather slow and
it gives an example to illustrate how slow SAGE is. The symbolic execution of
Media 2 with wif-3 takes 25 minutes 30 seconds, while concrete execution costs
only several seconds.

DART [5], CUTE [6], Splat [10] and CREST [13] are instrumented by a source-
to-source translator, named CIL. New source files will be produced by CIL,
including original source which performs concrete execution and instrumented
functions which perform symbolic execution. Those tools above can handle C
programs only when source code is available since CIL requires C source code.
JPF-SE [14] is based on Java Pathfinder which applies a similar approach: it
utilizes a Java source-to-source translation tool for instrumentation.

Fuzzgrind [7] and Catchconv [8] employ Valgrind to instrument PUA dy-
namically. That is, the function of symbolic execution is instrumented when
PUA is running. TaintScope [11], as well as our previous tools SMAFE [15] and
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SEVE [16] do a similar work based on another dynamic instrumentation tool,
Pin. Similarly, Minesweeper [19] enhances Qemu with dynamic binary instru-
mentation. Those tools which are built on dynamic binary instrumentation can
handle unmodified binary PUA with the cost of very high overhead. For exam-
ple, the average overhead introduced by Pin and Valgrind is 2.5 times and 8.3
times respectively even if a simple task for basic-block counting is instrumented.
So it is not surprising that orders of magnitude overhead will be incurred by
those dynamic-instrumentation-based concolic execution tools.

KLEE [4] itself acts as an interpreter to concolically execute the bytecode
produced by LLVM. KLEE runs below PUA and it is in charge of the execution
of PUA. KLEE does not instrument PUA in static or dynamic way. Instead,
KLEE directly interprets bytecode and maps bytecode to constraints. S2E [9]
reuses the symbolic execution engine of KLEE to handle both user-mode and
kernel-mode binaries. To translate x86 instructions to the bytecode that KLEE’s
symbolic execution engine can understand, S2E proposes an x86-to-LLVM back-
end for QEMU on where the guest OS and S2E run. As mentioned in paper [9],
the overhead of S2F in symbolic mode is ~78 times.

Pex [3] adopts a dynamic-instrumentation-based method to concolically exe-
cute .NET code. It instruments by .NET profiling API and it enhances .NET
virtual machine with symbolic execution. BitBlaze [12] and BitScope [20] imple-
ment a plugin for TEMU to mark and track symbols. As PUA runs in TEMU,
so those tools have the privilege to interpret the execution of PUA in symbolic
mode.

Conpy employs a different design with existing concolic execution tools. Un-
like DART, CUTE, Splat, CREST, JPF-SE, no source-to-source translators are
required. Compared to Fuzzgrind, Catchconv, TaintScope, SMAFE, SEVE etc.,
Conpy does not depend on dynamic instrumentation tools. Besides, Conpy does
not require virtue machines like Qemu and Temu. Moreover, Conpy does not be-
have as an interpreter like KLEE. Actually, Conpy does not care about (or even
be aware of) the executions which do not involve symbolic computations. Also,
in Conpy, symbolic execution is along with concrete execution, so it is different
from the replay scheme of SAGE.

This work conducts experiments to measure the overhead of Conpy. We find
that only two (i.e. SAGE [2] and S2E [9]) existing concolic execution tools briefly
report their overhead that is high. Concretely speaking, paper [2] presents an
example to show SAGE’s high overhead and paper [9] claims the overhead of
S2E in symbolic mode is ~78 times. The overhead evaluation of the two tools
considers the whole process of test data generation such as concolic execution,
constraint solving, path exploration and so on. Differently, this work measures
the overhead of concolic execution only which includes concrete execution and
symbolic execution (e.g. symbol marking, symbol tracking, generation of path
conditions).
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3 Design

3.1 Principles

At first, we present the design principles of Conpy, and then describe the design
scheme. The design principles are actually the goals we want to achieve.

1. Conpy should be easy to deploy. That is to say, it is able to run on main-
stream hardware platforms and software platforms. Besides, this tool would
better not depend on any special third-party tools. Otherwise, if the tool
can run on special situations only, its practicability will be impaired.

2. Conpy should be easy to use. The reason is obvious that too much pre-knowledge
and complex usage will hinder users from getting start with the tool.

3. Conpy runs in low level and produces reports with low-level information.
Even if it is not always so, low-level information is usually richer and more
interesting than high-level information. For instance, if Conpy runs in the
string level, it can discern whether the two strings are equal or not. But if it
runs in the byte level, additional information can be got: if the two strings
are not equal, Conpy can tell users which bytes are different.

Besides, high-level concolic execution tool may produce more false alarms
than the low-level counterparts. For example, assume a string sl is a sym-
bol, if the concolic execution tool is now in the string level, the new string s2
which is the concatenation of sl and a non-symbol string s3 should be sym-
bolized. So consider the string s4, which is computed as s2[len(s2)—len(s3) :
], s4 should be symbolized since s2 is a symbol. However it is incorrect be-
cause s4 equals to s3 in essence. On the contrary, if the concolic execution
tool runs in the byte level, s4 will be recognized accurately.

Additionally, low-level concolic execution facilitates tracking symbols among
different data types. For example, in statement s = “%i” %z, z is a symbol-
ized integer. After the execution of this statement, Conpy will map the symbol
linked with x to each byte of the string s, thus string s will be symbolized.

4. The overhead of Conpy should be acceptable. Even if current concolic exe-
cution tools are applied in off-line analysis, overly high overhead may make
them impracticable.

3.2 Scheme

The design of Conpy is based on the claim “everything in Python is an object”
[21]. Even the primitive types such as “int”, “float”, “bool” are objects, which
is different from traditional programming languages such as C, C++. The core
idea of Conpy consists of extending the Python’s objects with an additional at-
tribute termed by symbol or symbol set indicating the symbol(s) linked with the
objects and enhancing Python’s functions with the abilities to track symbols
and produce path conditions.

Whether an object links with a symbol or a symbol set depending on whether
the object is a primitive type or a container. For example, an integer which is a
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primitive type links with a symbol but a string that is a container is associated
with a symbol set. Each item in the symbol set indicates whether the corre-
sponding item in the container is a symbol or not. Put it another way, if an item
in the symbol set is empty, the associated item in the container is not a symbol
even if the container itself is already symbolized. In this way, Conpy is able to
run in primitive level rather than much higher container level.

Consider the following example, assume a string with length three is symbol-
ized assl, the symbol set of sl is something like [‘b1’, ‘b2’, ‘b3’] indicating the
three bytes of the string links with three symbols b1, 52 and b3 respectively. If
a new string s2 is the concatenation of sl and a constant string, say ‘abc’, the
symbol set of s2 should be [‘b1’, ‘b2’, ‘b3, ©, @, “]. Therefore, by looking up
the symbol set, Conpy is aware that the last three bytes of s2 are actually not
dependent on symbols.

The concolic execution of Conpy typically consists of three procedures: mark-
ing symbol sources, tracking symbols and producing path conditions. The last
two steps are fully automated, only the first one requires human intervention. To
mark symbol sources, users is asked to specify which variables are of interested.
This step is made by simply calling the interface symbolize provided by Conpy.
To facilitate users, Conpy can run in a fully automated mode which marks all
inputs read from the environment as symbols.

The general principle of symbol tracking is: mapping the effects of statements
to the symbols of destination variables if the statements involve symbolic compu-
tations. The mapping process should maintain the semantics of the statements.
For example, given a statement y = x + 10, assuming before its execution, y and
x have been symbolized as 10 and il respectively. After its execution, the symbol
associated with y should be updated as 1 + 10.

Constraints should be produced when the comparisons which involve symbolic
computations are made. Like symbolic expressions, constraints should maintain
the semantics of comparison statements. A critical step of producing constraints
is to discern which statements can produce constraints. In many cases, the state-
ments for comparison are obvious, such as x ==y, x >=y,z! = 0.

But in some cases, comparisons are implicit. For instance, if Conpy symbolizes
a string by invoking the interface symbolize, it should produce a constraint like
s1 == b0.‘a’.b3. The constraint contains the following information: the string is
symbolized as sl; its first byte corresponds to a symbol b0; its second byte is
a constant ‘a’; its last byte links with a symbol b3. Let’s consider another ex-
ample, find is a build-in function of the str type which returns the lowest index
where the substring is found. Conpy extends find with constraint generation if
comparisons in find involve symbols.

To get low-level path conditions, Conpy runs in primitive type level. That’s
to say, Conpy treats a primitive type as an atom which cannot be broken down.
While executing a container concolically, Conpy dives into the container and
symbolizes primitive variables in the container. For example, Conpy symbolizes
each byte of a string. Given a list of integers, Conpy treats each integer of the
list as a symbol.
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Low overhead can be achieved through our design since only the symbolized
variables are manipulated by Conpy. In other words, Conpy does not care about
or even not be aware of non-symbol variables. So actually the computations
without symbols run in native mode which incurs no overhead. Experiments val-
idate our claim that the overhead of a symbol-intensive program is as high as 46
times, but the overhead of a symbol-non-intensive program is only about 80%.

4 Implementation

This section presents the implementation details as well as some critical code of
Conpy. As a representative of primitive type, we present the handling of int in
Section 4.1. The other primitive types such as float, bool are handled similarly.

Then we show the concolic execution of strin Section 4.2, which is a frequently-
used container in Python. We handle the other containers such as list, tuple in a
similar way. In fact, we find that the handling of stris more intricate than the other
containers. One obvious reason is that str provides so many build-in functions
which require extensions for concolic execution. Additionally, the atomic items
of list, tuple etc. may be the primitive types we have already handled such as int,
float, bool. So considerable development effort can be saved. However, the atomic
items of stris still str. So we have to manipulate the str type from scratch.

Finally, we show how symbols spread from the int type to the str type and
back in Section 4.3.

4.1 Manipulation of int

To mark new integer symbols, users need to invoke the interface symbolize with
the argument being an integer. After discerning the type of the argument, the
corresponding routine symbolize int is called. The function symbolize int is de-
fined as:

1 def symbolize int(val): 3 sym int.symbol = symbol(0)
2 sym int = symbol int(val) 4 return sym int

The integer is passed as the argument val in line 1. In line 2, a new object of
type symbolize int is created. Actually, the class symbolize int inherits from the
primitive type int. So all attributes and build-in functions of int are also available
in symbolize int. Line 3 links the attribute symbol of object symbolize int with
an object of class symbol. Finally the object symbolize int is returned. The code
of initializing an object of class symbol is:

1 class symbol: 6 self .atom= ‘i’ + str(symbol.
2 sym num = 0 Sym num)

3 def init (self, f atom): 7 symbol .sym num += 1

4 if f atom==0: #atomic symbol 8 self.operand num = 0

5 self.sign = sign none 9 self .operands = []

The variable sym num which is defined in line 2 denotes the number of sym-
bols. Once an atomic symbol is created, the variable will increase by 1 (line 7).
If a new symbol is created from existing symbols (i.e. the predicate in line 4
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evaluates as false), the following statements will not be executed. Conpy orga-
nizes a symbol as a tree in memory. As an atomic symbol, the sign of the symbol
is initialized as sign none (line 5) and its operands are empty (line 8 and line 9).
To track symbols, Conpy overrides the build-in functions which are able to
spread symbols. We present the implementation of add as an example.

1 def add (first , second):

2 res = int. add (first , second)

3 if isinstance(first , symbol int):

4 if isinstance (second, symbol int):

5 sym = symbol. add (first.symbol, second.symbol)
6 else:

7 sym = symbol. add (first.symbol, second)
8 add int = symbol int(res)

9 add int.symbol = sym

10 else: pass

11 return add int

When a statement like z+y executes, the build-in function add or radd
will be called depending on which operands (z or y or both) are symbols. Specif-
ically, if the first operand is a symbol (no matter whether the second operand
is a symbol or not), the function add will be invoked. In cases when the first
operand is not a symbol but the second is, in turn the function radd will be
called. Note that if neither of them are symbols, original function of class int
will be called, thus no additional overhead will be introduced in this case.

The original function add of class int is invoked to compute the concrete
outcome of the statement (line 2). Then the integer res is symbolized as add int
in line 8. The symbol linked with add int is created by invoking the function

add of class symbol. Below is the core code of symbol. add

1 def add (syml, sym2): 5 add sym.operands = []

2 add sym = symbol(1) 6 add sym.operands.append (syml)
3 add sym.sign = sign plus 7 add sym.operands.append (sym2)
4 add sym.operand num = 2 8 return add sym

A new symbol is created in line 2. As the new symbol is the plus of existing
symbols, the argument of class symbol should be 1. The sign of the symbol is
defined as sign plus (line 3) denoting the symbol results from a plus operation.
The symbol has two operands (line 4) and each of them is a symbol or a concrete
value. The two operands are appended in the set operands as two subtrees of
symbol add sym (line 6 and line 7). Finally, the symbol is returned.

Conpy will produce constraints when the comparisons which involve symbolic
computations are executed. Consider the following example, when executes the
statement x == y, the build-in function egq will be called. So Conpy extends
the function with the ability to produce constraints as follows:

print sym (val2.symbol)
elif: # code for the other situations
return res

1 def eq (vall, val2):

2 res = int. eq (vall, val2)
3 if isinstance(vall ,symbol int)& isinstance(val2, symbol int):
4 print sym (vall.symbol)

5 if res = 1:

6 print(‘==’, end = *7)

7 else:

8 print (‘!=", end = *’

9

0

1

e
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The concrete outcome of the comparison is got by invoking original function
of class int in line 2. If both vall and val2 are symbols, the statements from line 4
to line 9 will be executed. The other situations are handled similarly, so related
code does not present here. The symbols of vall and val2 are printed by the
function print sym. The function print sym is actually a recursive function which
traverses the trees where store symbols. Naturally, depending on the outcome of
comparison, ‘==’ or ‘!=’"is printed.

4.2 Manipulation of str

To mark a string as a symbol, users invoke the interface symbolize. Inside the
this function, routine symbolize str is invoked as the argument being a string.
Function symbolize str works similar with the function symbolize int except two
aspects. First, a symbol set rather than a symbol links with the symbolized
string. The symbol set is created by invoking function create sym of class sym-
bolize str which inherits from the build-in class str. Related code is:

sym set.append (sym)
symbol str.sym num 4= 1
return sym set

1 def create sym(s):

2 sym set = []

3 for i in range(0, len(s)):

4 sym = symbol()

5 sym.sign = sign none

6 sym.atom = ‘b’ 4 str(symbol str.sym num)
7

8

9

Conpy links each byte of the string with a symbol through the loop from
statement 3 to statement 8. Second, a constraint denoting the string is the
concatenation of its bytes is produced through the function print create cons of
class symbol.

Conpy tracks the propagation of symbols by overriding build-in functions of
class str. Consider the example, given a symbolized string s with its symbol
being b0.b1.62, after the execution of the statement s = s % 2, the symbol of
s should be updated as 50.561.62.60.b1.62. To this purpose, Conpy extends the
build-in functions mul and rmul with the ability to symbolic execution.
We present mul here.
def mul (s, count):

res = str. mul (s, count)

sym = symbol str(res)

sym.name = ‘s’ + str(symbol str.str num)

symbol str.str num 4= 1

In = len(s.sym set)

sym.sym set=[0]*ln*count

for i in range(0, count):

sym.sym set[i*Iln:(i41)*In]=s.sym set
symbol. print create cons (sym)

return sym

= O W00 Utk WN -

e

The outcome of multiplication is computed by invoking original function

mul of class str (line 2). The symbol set of symbolized string is copied from
the symbol set of argument s by count times (line 8 and line 9).

When statements like z == y, z > y, 2! = y execute, Conpy will produce con-
straints if those statements involve symbolic computations. Conpy handles those
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statements similarly with the manipulations of symbolized integers except that
the comparison of two strings usually produces a number of constraints rather
than only one. Conpy handles find, rfind, contains , indez etc. specially because
those functions can produce constraints besides their original return values. We
do not show associated code here since the code is relatively long. In short, the
basic idea is to use symbolic strings to simulate operations of concrete strings.

4.3 Symbol Propagation between str and int

Conpy runs in low level making it is able to spread symbols among different types.
This section shows how symbols propagate from int type to str type through
function chr and back through function ord. The basic idea is to extend functions
chr and ord with the abilities to spread symbols and produce constraints. Look
at the code below:

1 def symbol func(org): 13 i = args [0]

2 def inner(xargs, sxkwargs): 14 if isinstance (i, symbol int):
3 r = org(*xargs, =xkxkwargs) 15 res = symbolize(r)

4 if org. name == ’ord ’: 16 print sym(res.sym set[0])
5 ¢ = args [0] 17 print(‘==", end = ‘)

6 if isinstance(c, symbol str): 18 print sym (i.symbol)

7 res = symbolize(r) 19 return res

8 print sym(res.symbol) 20 return r

9 print(‘==’, end = *’) 21 return inner

10 print sym(c.sym set [0]) 22 ord = symbol func(ord)

11 return res 23 chr = symbol func(chr)

12 elif org. mname == ‘chr’:

Original functions chr and ord are enhanced by invoking function symbol func
in line 22 and line 23. In symbol func, original function is invoked first to get the
concrete return value r (line 3). If the function is ord , the first item in args should
be the argument passed to ord and then the item is assigned to a variable ¢ for
convenience (line 5). If ¢ is symbolized, the return value r should be symbolized
accordingly (line 7). After that, a constraint indicating the correlation between
the symbol of res and the symbol of ¢ is produced (lines 8 — 10). Finally, the
symbolized integer res is returned. The handling of function chr is similar (lines
13 - 19).

5 Experiments

5.1 Setup

Our experiments have two goals. The first is to validate the ability of Conpy to
produce path conditions. The second is to evaluate the performance overhead
of Conpy. We first present test environment. CPU is an Intel Core i7-2760QM
with the frequency of 2.4GHz. The capacity of main memory is 8GB. Operating
system is 64-bit Windows 7 Home Premium. The version of Python installed on
my computer is 3.3.0.

We select ten programs which are all standard modules of Python as bench-
marks. The reason for choosing those programs lies in that those modules are
frequently invoked by any other Python programs making experimental results
more valuable. Results as well as corresponding test harnesses are presented in
the following section.
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5.2 Results

We first summarize test results in table 1 and then detail each tested program
with its test harness. The second column of table 1 shows the length of path
condition of each tested program. To measure overheads accurately, we run some
of tested programs multiple times. So we get very long path conditions. The last
column gives the overhead of each tested program. We can observe that seven
out of ten tested programs slow down by less than one order of magnitude. The
highest overhead is about 46 times when testing heapg module. The overhead
can be as low as 80% when testing imghdr program. Actually, we can expect
even lower overhead after further optimizations of our implementation.

Table 1. Test results

Program Length of PC Overhead

heapq 142825 46
calendar 1749090 5.1
random 34662 2.7

bisect 237987 4.1

html.parser 237000 12.1
re 140042 5.1
mimetypes 62000 6.4
urllib.parse 280114 27.6
imghdr 301000 0.8
sndhdr 30000 2.9

heapq. The tested program is Lib/heapq.py which provides an implementa-
tion of heap queue algorithm. Test harness is shown below. The code for import-
ing Conpy, producing random integers, outputting the statistics of performance
overhead etc. is omitted.
#ln = symbolize(ln)
h = ]

heappush (h, v)

1

2

3 for v in In:

4

5 heappop(h) for i in range(len(h))

The list In contains 10000 random integers. After sorting, the result is stored in
the list h. By uncommenting line 1, the program will run concolically, otherwise,
it will run concretely. Time cost for concrete execution is about 6.7ms while the
time for concolic execution is about 313.8ms which is roundly 46 times longer
than concrete execution. Path condition produced by Conpy is as long as 142825
denoting there are 142825 constraints in the path condition.

calendar. 1t is a program (Lib/calendar.py) allows to output calendars like
the Unix Lib cal program. Test harness is given below.

1 for year in range(1000, 3000):

2 for month in range(1l, 13):

3 #year = symbolize(year)
4
5

#month = symbolize(month)

matrix monthcalendar (year, month)
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As variable year ranges from 1000 to 3000 and variable month ranges from 1
to 13, function monthcalendar will be called 24000 times. The reason for run-
ning monthcalendar so many times is that it facilitates to evaluate performance
overhead. Time for concrete execution is about 744ms. By uncommenting line
3 and line 4, the program runs concolically. Consequently, time consumption
increases to 4538.3ms (i.e. overhead is about 5.1 times). Path condition consists
of 1749090 constraints.

random. It is a program (Lib/random.py) implements pseudo-random num-
ber generators for various distributions. Below presents test harness.

1 for i in range(0, 10000):
2 #i = symbolize(i)
3 x = randrange(i)

Running the above program, 10000 random integers are generated in about
60.8ms. In concolic mode, the program costs about 223.8ms indicating overhead
is about 2.7 times. The length of path condition is 34662.

bisect. It is a program (Lib/bisect.py) provides support to maintain a list in
sorted order without having to sort the list after each insertion. This module
is termed by bisect because it uses a basic bisection algorithm to do its work.
Below is the test harness.

1 for i in range(0, 10000):
2 #r = symbolize(r)

3 bisect (list , r)

4 insort (list , r)

The variable r is a random integer. Time for concrete execution is 121.2ms.
Concolic execution costs about 612.7ms which is 4.1 times longer than concrete
execution. Produced path condition contains as many as 237987 constraints.

html.parser. The module (Lib/html/parser.py) defines a class HTMLParser
which serves as the basis to parse text files formatted in HTML or XHTML.
Here is the test harness.

1 for i in range(0, 1000):

2 parser = HTMLParser (strict = False)

3 s = ¢ <html><head><title >Test</title ></head><body><hl>Parse me!</hl></
body></html> ~

4 #s = symbolize(s)

5 parser . feed (s)

To evaluate the performance overhead of Conpy accurately, the parsing pro-
cess repeats for 1000 times. The parsed html text is given in line 3 which will be
symbolized in line 4. In concrete mode, the program costs about 133.2ms. Switch-
ing to concolic mode, time consumption rises to 1748.2ms. In other words, the
overhead incurred by Conpy is about 12.1 times. The length of path condition
is 237000.

re. This module provides regular expression matching operations. Test har-
ness is shown as following.

1 for i in range(0, 10000): 4 #s1 = symbolize(sl)
2 sl = ¢ (?<=abc)def ~’ 5 s2 = symbolize(s2)
3 s2 = ¢ abcdef ’ 6 m = re.search(sl, s2)

Function search provided by re module is used to look for a location where
the regular expression (as shown in line 2) produce a match, and return a
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corresponding match object. Search process repeats for 10000 times so as to
evaluate Conpy’s overhead adequately. Time cost by concrete execution is about
159.6ms. The program runs concolically by uncommenting line 4 and line 5. Time
consumption in concolic mode is 981ms. So the overhead of Conpy is about 5.1
times. The number of constraints produced by Conpy is as many as 140042.

mimetypes. The mimetypes module (Lib/mimetypes.py) converts between a
filename or a URL and the MIMFE type associated with the filename extension.
Two functions guess type and guess extension are tested in the following test
harness.

1 minetypes.init () 5 res = mimetypes.guess type (fname)
2 for i in range (0, 1000): 6 ty = res[0]

3 fname = ‘/ct/ycg/f.tgz’ 7 #ty = symbolize(ty)

4 #fname = symbolize (fname) 8 mimetypes. guess extension (ty)

To evaluate performance overhead reliably, test progress repeats 1000 times.
Concrete execution costs 70.4ms, while concolic execution spends about 523ms
which is 6.4 times longer. The path condition produced by Conpy consists of
62000 constraints.

urllib.parse. This module (Lib/urllib/parse.py) defines a standard interface
to break URL strings up in components, to combine the components back into a
URL string, and to convert a “relative URL” to an absolute URL given a “base
URL”. We test function urlparse through the following harness.

1 for i in range(0, 5000):

2 url = ¢ http://www.uestc.edu.cn/index.html ’
3 #url = symbolize(url)

4 urlparse (url)

Time cost for concrete execution is about 45.7ms. By uncommenting line 3,
the program runs concolically which spends 1307.4ms. Overhead is about 27.6
times. The length of path condition is 280114.

imghdr. This module (Lib/imghdr.py) determines the type of image con-
tained in a file or byte stream. We reuse the test harness included in the source
imghdr.py by only a few modifications. For example, we insert a line of code
h = symbolize(h) after line 13 to symbolize the data read from input file. Test
harness recognizes whether the type of files under current path is image. We
repeat test process for 1000 times to get accurate information of performance
overhead. The result is that concrete execution spends 5326.5ms, while concolic
execution costs about 9552ms. That is to say, the overhead of Conpy is about
80%. The path condition consists of 301000 constraints.

sndhdr. The sndhdr module (Lib/sndhdr.py) provides utility functions which
attempt to determine the type of sound data which is in a file. We reuse the test
harness in the source sndhdr.py. Test harness recognizes whether the files under
current path are sound files or not. We just make only a few modifications to run
the program concolically. For example, we add a line of code h = symbolize(h)
after line 44. Additionally, the test process repeats 100 times in order to evaluate
overhead. Time consumption for concrete execution is about 663.2ms, while the
time for concolic execution is 2591.7ms. So the overhead incurred by Conpy is
about 2.9 times. The generated path condition contains 30000 constraints.
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6 Conclusion

Concolic execution is a promising technique for program analysis. But so far we
have not observed any concolic execution tools for Python applications. In this
work, we propose a concolic execution engine named Conpy. Conpy is easy to
deploy and easy to use. Besides, Conpy runs in low level which produces mean-
ingful reports. We make preliminary experiments to validate Conpy’s capability
of producing path conditions. Additionally, experiments show that the overhead
of Conpy is low.
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Abstract. Agent-based modeling (ABM) has been widely used in stock
market simulation. However, traditional simulations of stock markets
with ABM on single computers are limited by the computing capabil-
ity as breakthroughs in financial research need much larger amount of
agents. This paper introduces a platform for stock market simulation
with ABM focusing on large scale parallel agents in a distributed com-
puting environment such as Cluster and MPP. With the customized trade
strategies inside the agents, the runtime system of the platform can dis-
tribute the massive amount of agents to multiple computing nodes auto-
matically during the execution of the simulation. And agents exchange
information with each other and the market through a uniform com-
munication system. With this platform financial researchers can design
their own financial model without caring about the complexity of paral-
lelization and related problems. The sample simulation on the platform
is verified to be compatible with the data from FEuronext-NYSE and the
platform shows fair scalability and performance under different paral-
lelism configurations.

Keywords: stock market simulation, agent-based modeling, parallel,
distributed environment.

1 Introduction

The simulation of financial markets, such as stock markets, is an important
method in behavioral finance to reveal the irrational behavior and decision-
making laws. Financial markets can be regarded as complex adaptive systems
described by a large number of variables, which are in turn influenced by an even
larger number of factors or investors [1], and agent-based modeling (ABM) is an
efficient method to simulate complex adaptive systems. In ABM, each agent in-
dividually assesses its situation and makes decisions on the basis of a set of rules.
The potential system-level consequences of financial market are reflected through
the behaviors of sets of agents [2]. With ABM, a financial market is simulated as
a collection of autonomous decision-making entities called agents, and a market
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in which stocks or bonds are exchanged. ABM has been applied in some simu-
lations of stock market [3][4], but the schedule of agents in these simulations is
sequential, which is not corresponding with the situation in real world where the
agents (investors participating in stock market) think and behave concurrently.
Besides, with the development of behavioral finance, it is needed to expand the
amount of agents in a stock market to achieve breakthrough research results.
But when number of agents is much larger, these sequential simulations show
bad performance. So we adapt traditional ABM method to parallel agent-based
modeling, which has been applied in some complex adaptive systems [5].

Massive parallel agents requires greater computing capability beyond single
computer server. This paper proposes a platform called PSSPAM (Platform for
Stock market Simulation with Parallel Agent-based Modeling) to support the
stock market simulation with large amount of parallel agents. The platform is
designed for distributed environments with multi processors, which can provide
much greater computing capability than a single processor. With the increasing
of agent number, the distributed platform shows a good scalability. Also PSS-
PAM supports easy customization for new financial models provided by users.
For researchers in financial field, they are just concerned with financial items
in stock market simulation and try to avoid being trapped in complex com-
puter related stuff. The platform handles parallel programming and completes
the frame of a basic stock market so that financial researchers can extend their
own algorithms without being confused by the complexity in parallel program-
ming. Another advantage of PSSPAM is its modularity with four loosely coupled
modules: i) Communication system, providing message interface for agents to in-
teract with the market and shield the distributed environment from the agents,
ii) Agents module, defining agents and their behaviors, iii) Market module, a
mimic of a real stock exchange, iv) User interface, handling interaction with
users.

The rest of paper is organized as the follows. In section 2, we discuss related
works. Section 3 introduces the architecture of the PSSPAM. Section 4 presents
the experiments evaluating this platform. And in Section 5, we summarize cur-
rent work and suggest questions for the future.

2 Related Works

The dynamics of the stock markets results from the behavior of many interacting
agents, leading to emergent phenomena that are best understood by using a
bottom-up approach: ABM (Agent-Based Modeling) [6]. Since it is proposed in
1980s, the study on financial field with ABM has developed much further.
Traditionally, the stock markets with ABM are on single processor and the
agents involved in run sequentially. Such works focus on the financial model
and learning algorithms of agents. SFI-ASM (Santa Fe Institute Artificial Stock
Market) is a famous achievement among all the works. The first generation
SFI-ASM was published in 1994 [7]. The authors said in [8] that the Santa Fe
Market is a computer-based model that can be altered, experimented with, and
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studied in a rigorously controlled way. Most of the artificial market’s features
are malleable and can be changed to carry out different experiments. But SFI-
ASM is not of extensible structure and the financial researchers have to change
the source code of SFI-ASM to achieve their own market model. Additionally,
running on single processors restricts the amount of agents in the artificial stock
market. And all the agents in SFI-ASM are of sequential manner, which cannot
reflect the concurrent behaviors of investors in real world. Up to now, there
are many researches or improvements on SFI-ASM [9][10], but these works are
launched in financial perspective, and cannot solve the problems above.

The development of computer technology, especially in high performance
computing, brings new opportunity for ABM to make breakthroughs in multi-
processor environments. RepastHPC (Repast for High Performance Computing)
is a toolkit for parallel agent-based modeling in distributed environments. It is
improved on the base of Repast (Recursive Porous Agent Simulation Toolkit),
which is a set of libraries that allows programmers to build simulation environ-
ments, create agents in social networks, collect data from simulations automat-
ically, and build user interfaces easily [11]. RepastHPC is a useful and usable
framework, a complete ABM simulation platform developed explicitly for larger
scale distributed computing systems that leverages modern C++ techniques and
the ReLogo language [2]. Communication in RepastHPC is implemented by MPI.
Besides RepastHPC, there are several other works [12][13] describe the toolkits
for general parallel agent-based modeling. These platforms are not specialized
in financial field, and building a stock market simulation with these toolkits
seems complex for financial experts who just want to focus on financial items.
Artificial Open Market (ATOM) is a highly flexible agent-based model of finan-
cial markets in an API form [14]. It allows distributed simulations with many
computers interacting through a network as well as localhost. ATOM stresses
too much on the equity among all the agents. In ATOM, each agent sends at
most one order during a “round table discussion” [14], which makes agents be-
have in a synchronized way. While in the real world, traders behave concurrently
and independently. In this paper, we introduce parallel agents into stock market
simulation to mimic the concurrent features of real traders.

PSSPAM in this paper builds the basic skeleton of a stock market simulation,
and at the same time, provides the interface for financial researchers to easily
extend this simulation with their own algorithms or methods. Furthermore, the
platform is designed for distributed environments so that it can support large
amount of parallel agents. PSSPAM also introduces a communication system
to support different types of logical network topology of agents in distributed
environments.

3 PSSPAM Platform for Distributed Environments

The architecture of PSSPAM is based on the Agent-based Modeling method,
which generally consists with two parts: individual agents and the environment
they interact with. In the platform, the agents represent individual investors, and
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the environment is the stock market. As in the real world, agents communicate
with each other and participate in the market to trade stocks. PSSPAM is also
designed for researchers in financial field, hiding the programming details from
them. Thus the user interface is ease of use for financial researchers.

3.1 Logical Architecture of PSSPAM

The logical architecture of PSSPAM is depicted in Fig. 1. There are four rel-
atively independent modules in the platform, namely communication system,
agents module, market module, and the user interface module. Physical layer
is the distributed environment that the platform will run on, such as Cluster,
MPP, or other types of distributed computing environment.

User Interface

Customization Modeling Control
Arguements Arguements Data Display

177 7 Tagentsset o>
| ZComm_network™ >
;OO0 00 S - Market Module
,,,,,,,,,,,, 7
Agents Module

[ Communication System ]

[ Physical Layer(Cluster) ]

Fig. 1. Logical Architecture of PSSPAM

The communication system provides interaction interface for agents to com-
municate with each other and with the market. Due to the system, the dis-
tributed environment is transparent to agents module and market module. The
agents module has two components: the collection of all the agents, and the net-
work. The network defines the logical network topology of all the agents. The
agents reside on different nodes, and the number of agents on each node is de-
termined by the control arguments from user interface. The market module is
a model of stock market in real world, such as Shanghai Stock Exchange and
it is simplified to a market model trading only one stock. It can sustain large
amount of concurrent access from agents. The platform is fairly extensible by
supporting customization in agents module and market module. The user inter-
face is the top layer to handle the interaction with users, such as configuration
and execution of simulations.

3.2 Communication System

As the agents are distributed in different nodes, it’s difficult for them to commu-
nicate with each other directly. We introduce an efficient communication system
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to provide message interfaces for the agents module and market module, so that
agents can communicate with each other and the market without the knowledge
of physical information of the destination. We take a compromise between a
centralized communication mode and a point-to-point mode: on each node there
is a local server responsible for forwarding the messages of local agents; and all
the local servers communicate with each other in a point-to-point mode. The
compromised scheme is depicted in Fig. 2. Usually on the market node, there
is only the market and the local server. The local server on each node is like a
postman whose task is to deliver the message according to the destination. And
the local server here is also responsible for parsing the destination, because that
the physical location of all the agents and the market is maintained by local
servers.

@)

Fig. 2. Communication scheme

During the delivery process of a message, showed in Fig. 3, the destination of
the message has three types. The first type is < agentID >, which is used in
the agents module. As for the market, it has a unique ID to identify itself. When
the message comes to the communication system, the local server will parse the
destination to the type of < node, queue >, where “node” is the name of the node
that the destination agent locates in, and “queue” refers to the receive queue of
the destination agent. When the message posted from the communication system
to physical layer, it comes to the local area network, and the node name will be
transferred to IP address. Then the delivery will be done by general network.

After the message arrives at the destination node, a reverse parsing process
will be done to get the ID of the destination: an agent or the market. Then the
agent or the market can just invoke the message interface to get messages from
its own receive queue.

With this mechanism of delivery, the physical layer is transparent to agents
module and market module, thus the two modules are physical environment-
independent.

3.3 Agents Module

The agents module consists of two submodules: agents set and the communi-
cation network model. Agents set is the collection of agents that reside on dis-
tributed nodes. Communication network model defines the social relationship of
all the agents.
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Fig. 3. Communication system

Agents Set. In agent-based modeling, an agent is a complete and independent
individual. It receives messages from outside and adapts itself according to the
messages. In PSSPAM, we define the agent as investor agent (ItAgent), a sim-
ulation for real investors. The structure of ItAgent is depicted in Fig. 4. Kernel
specifies the activity flow of an ItAgent during its lifetime. Generally, in the
lifetime of an ItAgent, it is continuously repeating the course: making decision
and behaving as the result of the decision indicates which can be submitting an
order or getting data from the market. MsgInterface contains send /receive meth-
ods and send/receive buffers. Actually the message interface is an application of
the communication system. Adjacency list contains the agents with which the
ItAgent can directly communicate. The list is defined according to the communi-
cation network model, which is configurable. Assets as well as history data forms
the internal state of ItAgent. Assets refer to all the cash and stock an ItAgent
owns. History data is the accumulated data in each course cycle of ItAgent and
the content of data varies according to different decision methods, as different
algorithms may reference to different history data.

The internal state evolves during the lifetime of ItAgent, which is a concrete
manifestation of self-adaptation. Usually an agent achieves self-adaption through
continuously learning, and for ItAgent, the learning process embodies in the

Market

Adjacency
List
History Data

Messages

Msglnterface Kernel

Messages

Decide

Assets

Other Agents

ItAgent

Fig. 4. Investor agent
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decide procedure. PSSPAM provides an interface for users to customize their
own decision methods, so that the platform can be extended to support agents
with varying levels of intelligence.

Communication Network Model. Communication network model can be
represented by an undirected graph and the scale of a network model increases
with a speed of n? as the number of agent denoted by n increases. Due to the large
amount of agents, a network model is even larger, so in each agent there is an
adjacency list containing its neighbors rather than a whole network model, which
avoids unnecessary duplication and improves the space utilization. Communica-
tion network models specify the relationship of agents, and the communication
system provides an efficient way for agents to interact with neighbors specified
in network models, which indicates that the communication is compatible with
various network models. In PSSPAM, we also provide the interfaces for users to
customize the network.

3.4 Market Module

Market is a simple model of the real exchange market. It has the basic functions
of a real market, namely, matching orders, storing data, and displaying data.
As it shows in Fig. 5, there are three separate areas in the market module, and
they are loosely coupled, which makes the market module easily extended. The
register area maintains a global ID table, and allocates a unique ID for each
agent participated in the market. Agent response area is responsible for all the
requests from agents. It parses the requests, and calls the corresponding handler
to handle the request. As it may have additional requests in the customized de-
cision method, we provide the interface for users to define new handlers. Trading
area matching orders sent by agents. The data generated during the register and
trade process is stored in database, and there is a user interaction handler to
deal with the data display request from the user interface.

User Interaction
Handler

Trading Area }

Communication System ]

User Customization Start-up
Interface Management

e R
Register Area Agent Response
Area

'S

Fig. 5. Market module
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Agent Response Area. Agent response area is the port of market module.
Messages sent to market are treated as requests by this area and it parses various
requests and then invokes different handlers to handle them. Due to the large
number of parallel agents, there will be large amount of requests queuing in the
receive queue of the market. To deal with the large amount of requests efficiently,
we introduce a worker pool to agent response area, as it shows in Fig. 6. Each
time a request is fetched from the receive queue, the area will take a worker to
deal with this request. Parsing request is done concurrently in each worker rather
than being done sequentially before a worker is taken. In this way, the requests
in the receive queue will be consumed as quickly as possible. After parsing the
request, the worker invokes corresponding handler to handle the request. Pre-
defined handlers in the system include register handler and order handler. Users
can also define their own request handlers to coordinate with customized decision
methods of agents module.

_ _ 3| Handers Library

Fig. 6. Agent response area

Trading Area. In a real market, the auction mechanism defines the occasion
of matching orders. Generally there are two kinds of auction mechanism, namely
Call Auction mechanism and Continuous mechanism. With Call Auction mecha-
nism, the matching just happens at the end of a trading period. With Continuous
Auction mechanism, the matching happens each time when an order is submit-
ted to the market. Trading area supports both auction mechanisms. Different
auction mechanisms usually go with varies matching rules which specify the con-
ditions under which two orders can be matched. To customize a matching rule,
users need to specify the matching conditions as well as how to insert an or-
der into sell/buy queues according to the matching conditions. Sell/buy queues
are the shared field of all the order handlers, and can be concurrently accessed
by multi handlers, as it shows in Fig. 7. To ensure the operations on sell/buy
queues, we implement the safety insert and get operations on the queues and
package them as interface. So that the users need only focus on the matching
rule, without being trapped in the details of concurrent visit to a shared field.
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4 Experiments

We have implemented the prototype of PSSPAM in Java. The source codes can
be fetched at https://github.com/POPEYEpopeye/stock-market-simulation.

The sample simulation with the platform is executed on a Cluster with 5
nodes. Each node is a multi-core server which has four 800MHz AMD proces-
sors with 4cores (Quad-Core AMD Opteron Processor 8374 HE). The operating
system is CentOS release 5.8. The market is deployed on a single node, and the
agents are deployed on other nodes, which is indicated in the configuration file
of xml format. The graphic user interface runs on a Windows operating system,
communicating with this Cluster through a local network. Fig. 8 presents this
graphic interface. Fig. 8(a)is the control panel, managing the simulation config-
urations, and Fig. 8(b) is the data panel, displaying the trading results in real
time.

We conduct experiments respectively to verify the validity of the simulation
platform and evaluate the scalability and performance of the platform. In these
experiments, the market is customized with Continuous Auction mechanism [15]
and agents use a random strategy [15].

Firstly, we ran the sample simulation to verify whether PSSPAM can generate
major stylized facts that are usually found in real-world stock markets. These
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Fig. 8. Graphic user interface
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stylized facts are reposted in [15], and for the sake of simplicity we only present a
form of the classical departure from Normality of asset returns. The distribution
of asset returns does not follow the normal distribution, but appears the property
of sharp peaked and heavy tailed [15]. Sharp peaked indicates that the peak value
(frequency near mean returns) is higher than the theoretical value estimated
with normal distribution, while heavy tailed means that the frequency at the
end is also higher than the theoretical value estimated with normal distribution,
indicating that low probability events are more likely to happen in real world.
Fig. 9(b) is the distribution of asset returns of a specific stock on Euronext-
NYSE. The curve is the fitted result of asset returns using normal distribution
and the histogram is the exact frequency distribution of asset returns, which
shows a typical feature of sharp peaked and heavy tailed.

Fig.9(a) depicts the departure from normality of asset returns when using
random strategy, and shows the sharp peaked, heavy tailed property of stock
market, suggesting that PSSPAM produces stylized facts in line with those ob-
served for a specific stock on Euronext-NYSE. This experiment results prove
that PSSPAM is a valid mimic of stock markets.

1000
L

Frequency

o

-0.002 -0.001 0.000 0001 0002

retum

(a) Departure from normality on (b) Departure from normality on
PSSPAM Euronext-NYSE[14]

Fig. 9. PSSPAM produces stylized facts in line with those observed on Euronext-NYSE

Secondly, we ran a series of experiments to evaluate the performance and
scalability of PSSPAM. For simplicity there is no communication among agents
in these experiments. In agents module, there are two methods to implement
the running of all the agents. The first one is that each thread takes care of
one agent, executing the kernel of that agent, so the threads are as many as
the number of agents. To test the scalability of the simulation platform with
this method, we present the execution time for varying agent counts grouped by
computing cores, depicted in Fig. 10. The abscissa is the total number of agents
running in the simulation, representing the scale of the simulation. For same
agent counts the platform achieves a good time reduction with increasing cores,
and this trend keeps well as agent counts increase. It also shows that PSSPAM
scales weakly at smaller number of agents but scales well at larger numbers,
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as with agents increasing, the computation time instead of the cost of creating
and scheduling threads conducts the execution time. This means that PSSPAM
performs a good scalability in distributed environments. But when the number
of agents exceeds 1600, there will be too much agents connecting the market at
the same time, resulting in timeout error at market. To overcome this problem,
we proposed another method of using thread pool to coordinate all the agents.
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Fig. 10. Execution time without threadPool, varying agent counts grouped by com-
puting cores

Because the main activity of agents is a loop in which an agent makes deci-
sions and then act as the decision indicates, we can throw each loop of every
agent into the thread pool randomly, which achieves same results as the first
method, at the mean time decreasing the concurrency pressure of the market.
Fig. 11(a) illustrates the execution time for varying sizes of a thread pool grouped
by agent counts, while Fig. 11(b) illustrates the speedup based on the serial run-
ning. When the size is smaller than 64, it performs a good time deduction, and
the speedup at each pool size shows that the execution time reduces proportion-
ally as the pool size increases. This is granted because that there are totally 64
cores in the distributed environment, so that the time consumption is mainly
donated by the computing of each agent, with rarely threads scheduling costs.
This property keeps well as agent counts increase, presenting a good scalability
of the platform. When the pool size exceeds 64, there is still a time reduction
as pool size increases, but the growth rate of speedup is evidently slower. This
results due to the threads scheduling in each processor, and this cost increases as
there are more threads. The trend of slower growth rate lasts to 256 threads for
agent counts less than 1200, while for agent counts larger than 1200, this trend
keeps till 128 threads. And then it finally reaches a roughly stable execution
time for each agent count, which is limited by the concurrent and synchronized
processing in the market. During the stable stage, the average concurrent con-
nections to market should be generally stable. While with the same pool size,
the total connections increase with the agent counts increasing, bringing much
more scheduling cost, resulting that the speedup decreases as the agent counts
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Fig.11. Execution result using threadPool

increase. To further enhance the performance of this platform, more optimization
needs to be done at the market.

Fig. 12 shows the comparison of the minimum execution time at various agent
counts respectively with the two methods. When agent counts is less than 1200,
the execution time with each method is nearly the same and when agent counts is
larger, the method using thread pool is more efficient than the first method. This
results from that there is much less threads creation and scheduling consumption
when using thread pool and when agent counts is smaller, the total execution
time is mainly donated by computing and these consumption can be neglected;
but when the agent counts is larger, these consumption in the first method is
much greater than that in the method using thread pool. What’s more, too
much concurrent threads will bring heavy connection pressure for market, which
is more likely to generate timeout errors. So we can conclude that using a thread
pool to implement the execution of agents is a better way rather than running
them directly with newly created threads.
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Fig. 12. Execution time comparison of the two methods at various agent counts
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5 Summary and Future Work

In this paper, we introduce a platform called PSSPAM (Platform of Stock mar-
ket Simulation with Parallel Agent-based Modeling) and present the architecture
design of this platform. PSSPAM is implemented with agent-based modeling and
extends this method to large amount of parallel agents, so that the stock market
simulation is more efficient. The platform is designed for distributed environ-
ments, which provide sufficient computing capability for the large amount of
parallel agents. A communication system is specially designed to support the
interaction of agents and the market residing on distributed environments and
it is compatible with various communication network models that define the so-
cial relationship of all the agents. Another contribution of the PSSPAM is that
financial researchers can use this platform to customize their own algorithms
of decision methods and matching rules without considering details of parallel
programming. Users can specify the decision method of agents and the auction
mechanism, either by selecting pre-defined methods or programming their own
methods. To support fair extensibility, PSSPAM also allows users to customize
different network structure in agents module, and more request handlers in mar-
ket module. In addition, this platform provides a graphical user interface, so
that researchers on finance can easily extend this stock market and conveniently
control the configuration of deployment and running through parameters. We
conduct a series of experiment to verify the correctness of the simulation and
evaluate the performance and scalability of the platform.

The paper gives a detailed design scheme of PSSPAM and a referenced imple-
mentation of the platform. PSSPAM is still under development and needs more
supplements and improvements in the future. For instance, the communication
system is under evaluated and the market is also need to be optimized for better
scalability. There is still much work to be done to enhance the system’s robust-
ness and performance. It is also hoped that more graphical tools can be provided
to simplify users customization.
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Abstract. A sequential algorithm is oblivious if an address accessed
at each time does not depend on input data. Many important tasks
including matrix computation, signal processing, sorting, dynamic pro-
gramming, and encryption/decryption can be performed by oblivious
sequential algorithms. Bulk execution of a sequential algorithm is to ex-
ecute it for many independent inputs in turn or in parallel. The main
contribution of this paper is to develop a tool that generates a CUDA
C program for the bulk execution of an oblivious sequential algorithm.
More specifically, our tool automatically converts a C language program
describing an oblivious sequential algorithm into a CUDA C program
that performs the bulk execution of the C language program. Generated
C programs can be executed in CUDA-enabled GPUs. We have imple-
mented CUDA C programs for the bulk execution of bitonic sorting
algorithm, Floyd-Warshall algorithm, and Montgomery modulo multi-
plication. Our implementations running on GeForce GTX Titan for the
bulk execution can be 199 times faster for bitonic sort, 54 times faster for
Floyd-Warshall algorithm, and 78 times faster for Montgomery modulo
multiplication, over the implementations on a single Intel Xeon CPU.

Keywords: GPGPU, CUDA, bulk execution, oblivious algorithms,
Floyd-Warshall algorithm, Montgomery modulo multiplication.

1 Introduction

A Graphics Processing Unit (GPU) is a specialized circuit designed to accel-
erate computation for building and manipulating images [1-3]. Latest GPUs
are designed for general purpose computing and can perform computation in
applications traditionally handled by the CPU. Hence, GPUs have recently at-
tracted the attention of many application developers [1, 4-7]. NVIDIA provides
a parallel computing architecture called CUDA (Compute Unified Device Archi-
tecture) [8], the computing engine for NVIDIA GPUs. CUDA gives developers
access to the virtual instruction set and memory of the parallel computational
elements in NVIDIA GPUs. In many cases, GPUs are more efficient than mul-
ticore processors [9], since they have hundreds of processor cores and very high
memory bandwidth.

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 178-191, 2014.
© Springer International Publishing Switzerland 2014
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CUDA uses two types of memories in the NVIDIA GPUs: the shared mem-
ory and the global memory [8]. The shared memory is an extremely fast on-chip
memory with lower capacity, say, 16-48 Kbytes. The global memory is imple-
mented as an off-chip DRAM, and thus, it has large capacity, say, 1.5-6 Gbytes,
but its access latency is very long. The efficient usage of the shared memory
and the global memory is a key for CUDA developers to accelerate applications
using GPUs. In particular, we need to consider the bank conflict of the shared
memory access and the coalescing of the global memory access [6, 9, 10]. The
address space of the shared memory is mapped into several physical memory
banks. If two or more threads access the same memory bank at the same time,
the access requests are processed in turn. Hence, to maximize the memory access
performance, CUDA threads should access the distinct memory banks to avoid
the bank conflicts of the memory accesses. To maximize the bandwidth between
the GPU and the DRAM chips, the consecutive addresses of the global mem-
ory must be accessed at the same time. Thus, CUDA threads should perform
coalesced access and avoid stride access when they access the global memory.
However, it is not an easy task for CUDA developers to design efficient parallel
algorithms that does not perform stride memory access.

The bulk execution of a sequential algorithm is to execute it for many indepen-
dent inputs in turn or in parallel. For example, suppose that we have p arrays
bo, b1,...bp—1 of n points each. We can execute the Fourier transform of each
b; (0 < j < p—1) by executing the FFT algorithm for n points on a single
CPU in turn or on a parallel machine in parallel. The bulk execution of an FFT
is frequently used in the area of image processing and signal processing. Fur-
ther, the bulk execution is widely used in many applications. For example, plain
text is partitioned into substrings with the same size when we encrypt it. The
substrings are encrypted in turn to obtain encrypted text.

Intuitively, a sequential algorithm is oblivious if an address accessed at each
time unit is independent of the input. For example, the prefix-sums of an array b
of size n can be computed by executing b[i] < b[i]+b[i—1] for all i (1 <i <n-—1)
in turn. This prefix-sum algorithm is oblivious because the address accessed at
each time unit is independent of the values stored in b. The readers may think
that the oblivious memory access is too restricted, and most useful algorithms
are not oblivious. However, many important and complicated tasks including
many matrix computations, signal processing, sorting, dynamic programming,
and encryption/decryption can be performed by oblivious sequential algorithms.

In our previous paper [11], we have introduced an algorithmic technique per-
forming the bulk execution of a sequential algorithm on the GPU and evaluated
the performance using the Unified Memory Machine (UMM). The UMM is a
theoretical parallel computing machine used to evaluate the performance of the
computation on the GPU. The resulting implementation on the UMM performs
the bulk execution for p independent inputs in O(fut + [It) time units using p
threads on the UMM if a sequential algorithm is oblivious, where w is the num-
ber of threads in a warp, [ is the global memory access latency, and t is the
running time of a sequential algorithm. It also proved that this implementation
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is time optimal. Further, it implemented the prefix-sum algorithm and the dy-
namic programming algorithm using this algorithmic technique and obtained a
speedup factor of 150 over the sequential computation by a single CPU. How-
ever, developers need to write CUDA C programs for the bulk execution of a
sequential algorithm. Since it needs deep knowledge of CUDA programming and
GPU architecture to optimize CUDA C programs, it is not an easy task to write
efficient CUDA C programs for the bulk execution.

The main contribution of this paper is to present a tool, C2CU, that converts
a sequential C program into a CUDA C program with no stride memory access.
More specifically, a sequential program written by C programming language is
given to C2CU. C2CU converts it into a CUDA C program that performs the
bulk execution of a sequential program on CUDA-enabled GPUs. The CUDA
C program thus obtained performs no stride global memory access of GPUs.
Hence, even developers with few knowledge of CUDA C programming and GPU
architecture can automatically generate a CUDA C program for the bulk execu-
tion. Once they write a C program for a sequential algorithm, they can obtain
a CUDA C program for the bulk execution using our tool C2CU.

To see the performance of CUDA C programs generated by our C2CU con-
verter, we have measured the running time of the bulk execution of three obliv-
ious sequential algorithms: bitonic sort [12, 13|, Floyd-Warshall algorithm [14—
16], and Montgomery modulo multiplication [17-19]. For this purpose, we first
have written sequential algorithms for these three algorithms by C programming
language. We then have converted them into CUDA C programs using our C2CU
converter. CUDA C programs thus obtained have been executed on GeForce GTX
Titan. They run 199 times faster for bitonic sort, 54 times faster for Floyd-Warshall
algorithm, and 78 times faster for Montgomery modulo multiplication, over the
implementations on a single Intel Xeon CPU.

2 The Bulk Execution of Sequential Algorithms on the
UMM

The main purpose of this section is to review the bulk execution of sequen-
tial algorithms on the Unified Memory Machine(UMM). Please see [11] for the
details.

Intuitively, a sequential algorithm is oblivious if an address accessed in each
time unit is independent of the input. More specifically, there exists a function
a:{0,1,...,t — 1} — N, where ¢ is the running time of the algorithm and A
is a set of all non-negative integers such that, for any input of the algorithm, it
accesses address a(i) or does not access the memory at each time ¢ (0 < i < ¢—1).
In other words, at each time 4 (0 <4 <t —1), it never accesses an address other
than a(i).

Let us see an example of oblivious algorithms. Suppose that an array b of
n integers are given. The prefix-sum computation is a task to store each i-th
prefix-sum b[0] +b[1] +- - -+ b[i] in b[i]. Let r be a register variable. The following
algorithm computes the prefix-sum of n numbers.
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[Algorithm Prefix-sums]

r <0
fori <~ 0ton—1do
r <+ b[i]
bli] « r
Since b[0], b[1], ..., bjn — 1] are added to r in turn, the prefix-sums are stored

in b correctly when this algorithm terminates. Let us see the address accessed
in each time unit to confirm that this algorithm is oblivious. For simplicity, we
ignore access to registers and local computation such as addition and we assume
that such operations can be done in zero time unit. Clearly, memory access
operations performed in this algorithm are: read b[0], write b[0], read b[1], write
b[1], ..., read b[n — 1], and write b[n — 1]. Hence, the memory access function
ais a(2i) =a(2i+1) =i for all i (0 < i <n—1), and thus, this algorithm is
oblivious.

Suppose that we need to execute a sequential algorithm for many independent
inputs on a single CPU in turn or on a parallel machine at the same time. We
call such computation the bulk execution. For example, suppose that we have p
arrays bg, by, ..., bp—1 of size n each on the UMM. The goal of the bulk execution
of the prefix-sums is to execute the prefix-sums of every b; (0 < j < p—1) on
the UMM in parallel. We use p threads and each thread j (0 < j < p — 1)
executes the prefix-sums of b; by Algorithm Prefix-sums. Let 7; (0 < j <p—1)
be a register of thread j. The prefix-sums can be computed in parallel by the
following algorithm:

[Parallel Algorithm Prefix-sums]
for j < 0 to p — 1 do in parallel
T < 0
fori+ 0ton—1do
Tj 1 +b; [7]
bj [Z] Ty

In our previous paper [11], we have evaluated the running time of the bulk
execution of the prefix-sums algorithm for column-wise arrangement on the Uni-
fied Memory Machine (UMM) [20, 21]. The UMM captures the essence of the
global memory access of CUDA-enabled GPUs. The UMM has three parameters:
the number p of threads, width w, and memory access latency [. Each thread is
a Random Access Machine (RAM) [22], which can execute fundamental opera-
tions in a time unit. Threads are executed in SIMD [23] fashion, and run on the
same program and work on the different data. The p threads are partitioned into
P groups of w threads each called warp. The ? warps are dispatched for the
memory access in turn, and w threads in a dispatched warp send the memory
access requests to the memory banks (MBs) through the memory management
unit (MMU). We do not discuss the architecture of the MMU, but we can think
that it is a multistage interconnection network in which the memory access re-
quests are moved to destination memory banks in a pipeline fashion. Note that
the UMM with width w has w memory banks and each warp has w threads.
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MBs constitute a single address space of the memory. A single address space
of the memory is mapped to the MBs in an interleaved way such that the word
of data of address 7 is stored in the (¢ mod w)-th bank B[i mod w], where w is
the number of MBs. In the UMM, a single set of address lines from the MMU
is connected to the MBs. Hence, the same address value is broadcast to every
MB, and the same address of the MBs can be accessed at each time unit. Also,
we assume that MBs are accessed in a pipeline fashion with latency [. In other
words, if a thread sends a memory access request, it takes at least [ time units
to complete it. A thread can send a new memory access request only after the
completion of the previous memory access request and thus, it can send at most
one memory access request in ! time units. Let A[j] ={j -w,7 - w+1,...,(j +
1) - w — 1} denote the j-th address group. In the UMM, if multiple memory
access requests by a warp are destined for different address groups, they are
processed separately. Figure 1 illustrates the memory access by two warps W (0)
and W(1). Since memory access requests by W (0) are destined for three address
groups, they occupy three pipeline stages. On the other hand, those by W(1)
are destined for the same bank, they occupy only one stages. Thus it takes
3(stages) + 1(stage) + 5(pipeline stages) — 1 = 8 time units to complete memory
access requests in Figure 1.

1=5 A0] A[1] A[2] A[3]

5-stage pipeline regsiters

Fig. 1. The memory access of Unified Memory Machine (UMM) with width w = 4 and
latency | =5

Suppose that each element b;[i] (0 <i<mn—1,0<j <p—1)is arranged in
address i-p+ j of the global memory as illustrated in Figure 2. Suppose that the
bulk execution of an oblivious algorithm running in ¢ time units is performed for
p inputs with column-wise arrangement on the UMM. Clearly, pt memory access
operations are performed at all and all memory access operations by all warps are
coalesced. Also, each thread on the UMM performs ¢ memory access operations,
each of which takes [ time units. Thus, we have the following theorem:

Theorem 1 ([11]). A column-wise oblivious computation of size n X p runs
O(if + It) time units using p threads on the UMM with width w and latency [,
where t is the running time of the corresponding oblivious sequential algorithm.

Please see [11] for the details of the proof of Theorem 1.
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0 1 2 3 4 5 6 7
bo[0] | b1[0] | b2[0] | b3[0] | b4[0] | b5[O0] | bg[O] | b7[0]
8 9 10 | 11 [ 12 | 13 | 14 | 15
bol1] | b1[1] | b2[1] | b3[1] | b4[1] | b5[1] | be[1] | b7[1]
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23
bol2] | b1[2] | b2[2] | b3[2] | ba[2] | b5[2] | bg[2] | b7[2]
24 125 [ 26 | 27 | 28 | 29 | 30 | 31
bo[3] | b1[3] | b2[3] | b3[3] | b4[3] | b5[3] | be[3] | b7(3]
32 13334 |35 36 |37 |38 |39
bol4] | b1[4] | b2[4] | b3[4] | ba[4] | b5[4] | bel4] | b7[4]
40 | 41 | 42 | 43 | 44 | 45 | 46 | 47

bo[5] | b1[5] | b2[5] | b3[5] | ba[5] | b5[5] | bel5] | b7(5]

Fig. 2. Column-wise arrangement of p = 8 arrays of n = 6 elements each

3 Our C2CU Converter

The main purpose of this section is to describe C2CU converter, that converts a
sequential algorithm written by C programming language into CUDA C program
for the bulk execution on CUDA-enabled GPUs.

Figure 3 illustrates the behavior of C2CU converter. A sequential program
written by C programming language is converted into a CUDA C program.
The converted C program accepts p independent inputs. They are copied to the
device memory (global memory) of the GPU. The CUDA device program with
p threads is spawned, and each thread executes the sequential program for one
input. After all threads terminate, p outputs obtained by all threads are copied
to the host memory.

Let us see how C2CU converter generates CUDA C program using Floyd-
Warshall algorithm [14-16] as an example. Floyd-Warshall algorithm is a well
known graph theoretic algorithm that computes the distances of the shortest
paths of all pairs of nodes in a directed graph. It uses a 2-dimensional array D of
size n x n for an n-node graph. We assume that, initially, D[i][j] (0 < i, <n—1)

p inputs
input
l cudaMemcpyToSymbol
sequential C2CUu C}Il{)ISDtA ggvlijct
program program
program cudaMemcpyFromSymbol
output
p outputs

Fig. 3. The behavior of C2CU converter
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stores the distance of an edge from node ¢ to j if it exists and 400 otherwise.
Floyd-Warshall algorithm is described as follows:

[Algorithm Floyd-Warshall]
for k < 0 to n do
for i < 0 to n do
for j <~ 0 ton do
if ( D[] > DIi][k] + D[k][5] )
DIil[j] « D[i|[k] + D[k][j]

After termination of the algorithm, D[i][j] stores the distance of the shortest
path from node i to j. If there is no such path, it stores +oo.

Figure 4 shows a C program for Floyd-Warshall algorithm. It should be clear
that this C program computes the all-pairs shortest distance by Floyd-Warshall
algorithm. The values of D is updated by calling update dist, although it is not
necessary to be a function. The reason is to show our C2CU converter supports
function calls. The C program in Figure 4 is a direct implementation of Floyd-
Warshall algorithm except that it has a directive #pragma kernel in line 22.
Most C compilers such as GNU C compiler ignores this directive. Hence, this C
program can be compiled correctly, and it computes all-pairs shortest distance
in an input graph by Floyd-Warshall algorithm. A directive #pragma kernel is
used to specify a function for the bulk execution on the GPU. A function call
just after directive #pragma kernel will be executed on the GPU in the CUDA
C program obtained by C2CU.

Figure 5 shows a CUDA C program generated by our tool C2CU from the C
program in Figure 4. Users can specify the number p of inputs (i.e. the number p
of threads) and the number of threads in each CUDA block, by using options for
C2CU. These values are defined as __P__ (= p) and __T__ in lines 2 and 3. In Fig-
ure 5, they are 2048 and 64, respectively. Thus, 32 CUDA blocks with 64 threads
each are spawned by CUDA kernel call floyd_warshall<<<__B__,__T__>>>()
in line 31. Since the generated CUDA C program accepts p inputs, a 3-dimensional
array D of size N x N x p allocated in the host memory are used to store them.
Also, a 3-dimensional array __D of the same size allocated in the device memory
(i.e. the global memory of the GPU) are used. In line 30, cudaMemcpyToSymbol is
used to copy p inputs stored in D to __D. After the bulk execution by CUDA kernel
call floyd_warshall<<<__B__,__T__>>>() in line 31, cudaMemcpyToSymbol is
used to copy __D, which stores the resulting values, to D.

CUDA kernel call floyd_warshall<<<__B T__>>>() in line 31 invokes

—_—

B__ CUDA blocks with __T__ threads each. Thus, __P__ (= p) threads execute

Floyd-Warshall algorithm on the CUDA-enabled GPU. Since blockDim.x is the
number __B__ of threads in a CUDA block and blockIdx.x and threadIdx.x
take values in [0, __B__ — 1] and [0, __T__ — 1], respectively, __id__ in line 15
takes value from 0 to p— 1. Hence device function update_dist(i,j,k,__id__)
is executed for __id__ in [0,p — 1] on the GPU in parallel. The reader should

have no difficulty to confirm that CUDA C program in Figure 5 executes Floyd-
Warshall algorithm for p inputs in parallel.
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1: #define N 1024

2: float D[N][N];

3: void update_dist(int i, int j, int k){
4: if( D[i][j] > D[il[k] + DIkI[j]1 ) {
5: D[i]1[j] = D[il[k] + D[k]I[j];

6: ¥

7: }

8:

9: void floyd_warshall(){

10:  int i,j,k;

11: for(k=0;k<N;k++) {

12: for(i=0;i<N;i++) {

13: for(j=0;j<N;j++) {

14: update_dist(i,j,k);

15: }

16: ¥

17:  }

18: }

19:

20: int main(int argc, char *argv[]){
21:  input_array();

22: #pragma kernel

23: floyd_warshall();

24:

Fig.4. A C program of the Floyd-Warshall algorithm

Let us see how C2CU converts a C program into a CUDA C program for
general cases and confirm that the generated CUDA C programs performs co-
alesced memory access. If an original C program uses d dimensional array a of
size s1 X Sg X + -+ X 84, a CUDA C program generated by C2CU uses d+ 1 dimen-
sional array a of size s1 X sg X -+ X 84 X p. If the original C program accesses
ali1][i2] - - - [¢4] then each thread with ID id of the corresponding CUDA C pro-
gram accesses ali1][iz] - - - [iq][-_1d__]. Since ali1][iz] - - - [ia][0], a[i1][i2] - - [¢d][1],

.+, afi1][iz] - - - [ia][p — 1] are allocated in consecutive addresses, these memory
accesses by p threads are coalesced.

4 Experiment Results

The main purpose of this section is to show experimental results on GeForce
GTX Titan. GeForce GTX Titan has 14 streaming multiprocessors with 192
cores each. Hence, it can run 2688 threads in parallel. Note that, a single kernel
call to GeForce GTX Titan can run more than 2688 threads in a time sharing
manner using CUDA [8] parallel programming platform. All input and output
data are stored in the global memory of the GPU and we do not use the shared
memory of the streaming multiprocessors.
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#define N 1024

#define __P__ 2048
#define __T__ 64

#define __B__ __P__/__T__

float DINJ[N][__P__];

__device_ flo;’z ::D [NJINI[__P__1;

__device__ void update_dist(int i, int j, int k, int __id__){
if( __D[i1[10__id__1 > __DLil[kI[__id__1 + __DIkI[jI[__id__1 ) {
__D[i10j]10__id__1 = __Dlil[k][__id__1 + __D[k][jI[__id__1;
}

© 00 ~NO O WN -

= e
N = O

: }

= e
Sw

: __global__ void floyd_warshall(){
int __id__ = blockIdx.x * blockDim.x + threadldx.x;
int i,j,k;
for (k=0;k<N;k++) {
for(i=0;i<N;i++) {
for(j=0;j<N;j++) {
update_dist(i,j,k
}
}
}

e
©O© 00 N o o

id__);

s ——

NN NN
W N = O

: }

N NN
D O

: int main(int argc, char *argv[])

: q{

N N
o

input_array() ;

: #pragma kernel

cudaMemcpyToSymbol(__D, D, sizeof(float)*N*Nx__P__, 0);
31:  floyd_warshall<<<__B__,__T__>>>();

32: cudaMemcpyFromSymbol (D D, sizeof (float)*N*N*__P__, 0);
33:

w N
o ©

P

Fig. 5. A CUDA program for the bulk execution of Floyd-Warshall algorithm generated
by C2CU

We have used three sequential algorithms as follows:

— bitonic sort [12, 13],
— Floyd-Warshall algorithm [14-16], and
— Montgomery modulo multiplication [17-19].

Bitonic sort is a well-known parallel sorting algorithm developed by K.E.
Batcher [12]. It can be described as a sorting network with comparators as
illustrated in Figure 6. Since elements compare-exchanged in each stage are
fixed, bitonic sort can be written as an oblivious sequential algorithm.

Montgomery modulo multiplication is used to speed the modulo multiplica-
tion X-Y -2~ mod M for R-bit numbers X, Y, and M. The idea of Montgomery
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min(z, y)

| | |
i G A
! | l
f I }

max(z, y)

.

N o o A W N RO

Fig. 6. Bitonic sort for n = 8

modulo multiplication is not to use direct modulo computation, which is very
costly in terms of the computing time and hardware resources. By iterative
computation of Montgomery modulo multiplication, the modulo exponentiation
P¥ mod M can be computed, which is a key operation for RSA encryption and
decryption [24]. Since R is at least 1024 to use Montgomery modulo multiplica-
tion for RSA encryption and decryption, addition/multiplication is repeated to
perform R-bit addition/multiplication. Figure 7 illustrates how the product a - b
of two integers a and b of large bits is computed. Both a and b are partitioned
into four integers and the sum of pair-wise products is computed. Using this
idea, we can design an oblivious sequential algorithm to compute the product of
two integers with large bits in an obvious way. Since Montgomery modulo multi-
plication repeats computation of the product and the sum of two large integers,
it can also be computed by an oblivious sequential algorithm.

[[al2] [ al2] [ ali] | al0] |
x| b[2] | b[2] | b[1] | b[0] |
[ al2-b0] [ afo]-b0] |
[ alBl-bl0] [ al1]-bl0] |
[ all-b(1] [ af0]-b[1] |
[ aBl-o0] [ el]-of] |
[ all-02] [ af0]-0[2] |
+[ aBlbRI ] all]-bR2]
| ab |

Fig. 7. Multiplication of two integers with large bits

We have written a C program for bitonic sort that sorts n = 32, 1K (=
1024), and 32K (= 32768) float (32-bit) numbers. We have converted into a
CUDA C program for the bulk execution of bitonic sort with parameter p =
64,128, ...,4M. However, due to the global memory capacity of the GPU, it
is executed for up to p = 128K and p = 4K when n = 1K and n = 32K,
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respectively. The CUDA C program invokes p threads in !, CUDA blocks with
64 threads each to sort p inputs of n numbers each. To see the speedup factor, the
original C program is repeatedly executed p times on the Intel Xeon (2.66GHz)

Figure 8 (1) shows the resulting computing time for the bulk execution of
bitonic sort. Recall that, from Theorem 1, the bulk execution of a sequential
algorithm can be computed in O(I:Dt +1t) time units, where p is the total number
of threads, [ is the memory access latency, and ¢ is the running time of the original
sequential algorithm. The bulk execution of bitonic sort for n = 32 takes about
0.13ms when p <1K. Further, the computing time is proportional to p when
p >16K and it runs 65.1ms when p = 4M. Thus, we can think that O(lt) =
0.13ms and O(®") = (15.5p)ns. More specifically, the bulk execution of bitonic
sort for n = 32 and p can be computed in approximately 0.13ms+(15.5p)ns.
Figure 8 (2) shows the speedup factor of the GPU over the CPU. We can see
that the bulk execution of bitonic sort on the GPU can achieve a speedup of
factor more than 180 when n = 32 and p > 128K. Further, when n = 32 and
p =4M, the GPU is 199 times faster than the CPU.

100s 1000

0
32KCPU_ () KCPU g
- g
108 4_0"“0 = wor o
s 32K GPU '././ Puig 100
s é;&b*—%—*—*;ﬁ/ =
P | /g’
. - 1KGPU

64 256 1K aK 16K 64K 256K Y am 64 256 1K K 16K 64K 256K M am

(1) The computing time (2) GPU/CPU speedup factor

Fig. 8. The computing time (ms) of bitonic sort on CPU and GPU, and the speedup
for n = 32, 1K, 32K, and p = 64, 128, ..., 4M

We have written a C program for Floyd-Warshall algorithm for graphs with
n = 16, 64, and 256 nodes. We use float (32-bit) numbers to store the length of
each edge. The C program is converted into a CUDA C program using C2CU with
parameters p = 16, 64, and 256. However, due to the global memory capacity
of the GPU, it is executed for up to p = 16K and p = 1K when n = 64 and
n = 256, respectively.

Figure 9 (1) shows the resulting computing time for the bulk execution of
Floyd-Warshall algorithm. We will verify O(’;Ut +1t) time units shown in Theorem
1. The bulk execution of Floyd-Warshall algorithm for n = 16 takes about 3.4ms
when p <512. Also, the computing time is proportional to p when p >4K and
it runs 42.6ms when p = 128K. Thus, we can think that O(In3) = 3.4ms and

O(ps}g) = (325p)ns. More specifically, the bulk execution of the Floyd-Warshall
algorithm for n = 32 and p can be computed in approximately 3.4ms+(325)ns.
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Figure 9 (2) shows the speedup factor of the GPU over the CPU. We can see
that the bulk execution on the GPU can achieve a speedup of factor more than
30 when n = 16 and p > 8K. Further, when n = 16 and p = 128K, the GPU is
54 times faster than the CPU.

100s 100
256 CPU
0O

[,7._,4'5-,.—4;%:7' 256 GPU

el -

100ms

10ms

(1) The computing time (2) GPU/CPU speedup factor

Fig. 9. The computing time (ms) of the Floyd-Warshall algorithm on CPU, and GPU
and the speedup for n = 16, 64, 256, and p = 64, 128, ..., 128K

Finally, we have written a C program for Montgomery modulo multiplication
for n =512, 16K (= 16384), and 1M (= 1048576) bits. We use C2CU to convert
it into a CUDA C program with parameter p = 64,128, ..., 2M. However, due
to the global memory capacity, it is executed for up to p = 64K and p = 2K
when n = 16K and n = 1M, respectively.

Figure 10 (1) shows the resulting computing time for the bulk execution of
the Montgomery modulo multiplication. Again, we will verify O(fﬂt + It) time
units shown in Theorem 1. The bulk execution of the algorithm for n = 512
takes about 0.45ms when p < 512. Also, the computing time is proportional to
p when p >128K and it runs 124ms when p = 2M. Thus, we can think that
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Fig. 10. The computing time (ms) of the Montgomery modulo multiplication on CPU,
and GPU. and the speedup for p = 64, 128, ..., 4M.
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O(In?) = 0.45ms and O(pZ)Q) = (59.1p)ns. More specifically, the bulk execution
of the algorithm for n = 512 can be computed in approximately 124ms+(5.9p)ns.
Figure 9 (2) shows the speedup factor of GPU computation using the GPU over
the CPU. We can see that the GPU can achieve a speedup of factor more than
70 when n = 512 and p > 32K. Further, when n = 512 and p = 2M, the GPU is
78 times faster than the CPU.

5 Conclusion

The main contribution of this paper is to develop C2CU converter, which con-
verts a C language program of a sequential algorithm into a CUDA C program
for the bulk execution on the GPU. The experimental results show that the gen-
erated CUDA C program on GeForce GTX Titan can achieve up to 199 times
speed-up over the original C program running on an Intel Xeon CPU. Thus,
C2CU is a promising tool to obtain high GPGPU acceleration very easily.
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Abstract. Branch misprediction, as one of scaling bottlenecks, has a
significant effect on the performance of thread-level speculation. Due to
ambiguous control and data dependences, it is still hard for the compiler
to extract more efficient threads from the hard-to-predict branches by
means of either conservative single path-based thread selection or ag-
gressive thread optimization. Thus, this paper proposes a novel dynamic
speculative path scheme to dynamically determine the right speculative
path at runtime. It relies on compiler to select and optimize all frequent
subpaths greedily, and attempts to generate speculative threads on them
using the modified FP-growth algorithm. Based on the path-based per-
formance prediction, the best speculative path is always dynamically
chosen to parallelize. We have examined our approach using ODLEN
benchmarks. Compared to the single speculative path scheme, it can
achieve comparable or better performance.

Keywords: Branch misprediction, Thread-level speculation, Path-
based performance Prediction.

1 Introduction

As the exploitation of thread-level parallelism, various sophisticated parallel exe-
cution models have been explored on multi-core architectures. Thread-level spec-
ulation (TLS)[5],[16],[20], as one of such execution models, can extract multiple
dependent threads from irregular sequential programs, and allow them to execute
speculatively to improve performance. In case a branch misprediction occurs,
speculative threads along the incorrect path will be squashed, and the correct
path will be taken to serialize directly. This thread behavior not only causes few
spawned threads to be parallelized, but also results in performance losses.
Most efforts have been done on improving the branch prediction accuracy or
reducing the branch execution penalty in the speculation[9],[10],[12],[22]. The
path execution frequency[5],[6],[19] derived from profiling is often used for the
compiler to estimate the most likely speculative path on the hard-to-predict
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branches. And it is common that only the most frequent successor of a branch
node is chosen to parallelize while other less frequent ones are discarded. Thus,
few subpaths are selected to parallelize. Without consideration of the relation
between branch nodes, speculative threads that are executed logically later are
usually spawned more aggressively under an out-of-order thread spawn[17]. Once
a mispredicted branch is encountered, it will result in all spawned threads along
the path to be postponed or serialized forever. However, it is more adaptive for
the hardware-based branch prediction schemes[10],[22], which focus on recog-
nizing branching patterns and are extremely effective for some branches that
are not data-dependent on relatively random data. But they often suffer from
few extractable threads due to the lack of source-level information and TLS-
enhancing optimization. Although it is desirable for the hardware-based multi-
path execution[22], it is not cost-effective for TLS execution since all idle pro-
cessor cores are employed to predict the correct path in case of a hard-to-predict
branch. Therefore, other sophisticated techniques are needed to explore more
efficient speculation on branches.

This paper presents a dynamic adaptive scheme for speculative path selection
on the hard-to-predict branches. The compiler is responsible for selecting all
frequent subpaths of each branch node greedily. Based on them, we take advan-
tage of the FP-growth algorithm to reveal the relation between branch nodes,
and then extract a subset of the most frequent subpaths to generate speculative
threads. In case of a hard-to-predict branch, the right speculative path is further
decided by the runtime performance profiles of speculative threads. These per-
formance profiles are obtained from our prediction, where the hardware-based
branch detection scheme is employed to dynamically collect the information of
each speculative path and make a decision for the best speculative path. Two
policies are also used to improve the efficiency of our dynamic path selection.

The rest of the paper is organized as follows: Section 2 describes the framework
of dynamic speculative path scheme. Section 3 details frequent path selection
and the relative path-based thread partitioning algorithm. Section 4 describes
the runtime hardware-based scheme for speculative path prediction and thread
scheduling. Section 5 presents the experimental results. Section 6 discusses re-
lated work and Section 7 concludes the paper.

2 Overview of Dynamic Speculative Path Scheme

The dynamic speculative path scheme consists of compile-time and run-time
two phases. Figure 1 shows the crucial components of these two phases. In the
compiler phase, each procedure will be proceeded on the frequent path selection,
and we can obtain several most frequent subpaths of each branch node. Based on
the path-based thread partitioning algorithm, all of them are then extracted and
generated a set of speculative threads. They are further compiled and optimized
in both the thread creation and TLS-enhancing optimization modules.

In the runtime phase, these thread candidates are dynamically chosen and
executed on the basis of TLS execution model, where the construction of dynamic
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Fig. 1. The framework of dynamic speculative path scheme

speculative path module always provides the right set of speculative threads
for the TLS execution. Both speculative path prediction and thread scheduling
modules are used to collect the information of all parallelized paths and make a
decision for the best speculative path.

3 Compiler Phase

3.1 Frequent Path Selection

Due to ambiguous control and data dependences, it is hard for traditional single
speculative path[5],[13],[19] to extract sufficient threads from the hard-to-predict
branches. Instead, we assume that all possible paths of each branch node can be
dynamically parallelized by means of control flow edge profiling[5],[6]. However,
it is common that the occurrence of some branches is associated with others,
and even depends on the results of them. To make an aggressive speculation,
it is necessary to understand the relationship between branch nodes, and thus
reduce the branch misprediction overhead incurred by them.

For each procedure, we consider the traces of different paths as the frequent
itemset, which is used to explore the relation between branch nodes using associ-
ation rules. But different algorithms will cause different costs and performance.
FP-growth algorithm[1], taking advantage of the FP-tree construction, has been
proved to be efficient for all associated rules with different lengths. Therefore, it
is used for our frequent path selection.

Figure 2 describes the structure of a branch FP-tree, which can be seen
as a multi-branch tree. Each node represents the control flow of two consec-
utive branch nodes in the control flow graph(CFQG). It is further expressed as
Node(branch node(b id1,b id2),control flow(conl,con2)). Both b id! and b id2
correspond to the unique identification number of branch nodes, which can be
easily obtained from control flow edge profiling[5],[6]. The relative control flows
are indicated as conl and con2, respectively. There are at most six possible re-
sults, such as (T,T),(T,F),(T,0),(F,T),(F,F) and (F,0). Here T and F are the
control flow transfers in the CFG, where each branch node is allowed to have no
more than two successors[4]. T is the taken successor while F is the fall-through
successor. And () means that no successors have been executed no matter whether
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Fig. 2. The structure diagram of a branch FP-tree

the chosen branch is taken or not. Meanwhile, the edge between two nodes repre-
sents the control flow of branch nodes in the branch FP-tree. The path execution
frequency is also included as the value of minimal support of branch nodes, and
used to construct the branch FP-tree. More details of the FP-tree generation are
described in Algorithm 1.

Algorithm 1. Branch FP-tree generation

INOUT: the traces of branch nodes from control flow edge profiling, D
OUTPUT: the built branch FP-tree, Troot
1: function create FP tree(D)
Ordered < sort the traces of branch nodes in D;
create Troot as the root of branch FP-tree if it doesn’t exist;
for all Trace T in Ordered do
Head <+ find the first pair of branch nodes in Trace T;
insert tree(Head,Troot);
end for
end function

9: function insert tree(Head,Tyoot)
10: if Tioot has a child Tenilg equal to Head then

11: add up the execution frequency of Head to Tchila;
12: else

13: create a new node in Troot;

14: end if

15: Head <+ find the next pair of branch nodes in Trace T;
16: insert tree(Head,Troot);
17: end function

In Algorithm 1, function create FP tree is responsible for the construction of
branch FP-tree. To improve the efficiency of this algorithm, all traces of branch
nodes have been proceeded in the non-increasing order of their execution times,
and the same branches are also sorted in the non-increasing order of their edge
execution frequencies. For each trace, a root node has to be established before
all other branch nodes are inserted. The insertion of branch nodes is in the form
of node pairs using insert tree function. In case of an existing FP-tree node,
its frequencies will be added instead. Otherwise, a new node will be created
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and connected to the appropriate position of the FP-tree. Repeat this step for
inserting other branch nodes until all of them have been done.

Algorithm 2 shows the frequent path selection based on the built branch FP-
tree. In the branch FP growth function, each node will be recursively searched
by the non-increasing order of its execution frequencies. When more than one
successor has been encountered, we only consider one of the most frequent ones to
be a candidate path at a time. It will continue to be proceeded until the minimal
support of its successors is less than the predefined threshold. The threshold of
the minimal support is set to 25%, which has been proved to be effective in our
approach. In case an infrequent node is executed, we will choose the successor
with the maximum execution frequencies to continue and thus maximize the
coverage and speedup of the whole program.

Algorithm 2. Frequent path selection

INOUT: the root of branch FP-tree, Tioot; the value of minimal support, minSupport

OUTPUT: a list of all selected frequent paths, worklist

1: function branch FP growth(Troot)

2: for all Node Thode in Troot do

Path path=pathUTode;

if Thode— support>minSupport then
branch FP growth(Thode);

else
Thode < the child of T,od4e with the maximum execution frequencies;
branch FP growth(Thode);

9: end if

10: worklist=worklistUpath;

11: end for

12: end function

Based on the frequent path selection, lots of procedures are able to select at
least two candidate paths. All these paths are included in the list of worklist
in the non-increasing order of their execution frequencies. Our approach only
focuses on the exploitation of two successive conditional branch nodes. The main
reason is that the deeper the speculation is, the less likely the speculated path will
be executed. Thus, to make an efficient speculation, more alternative paths can
be dynamically parallelized and to some extent reduce such branch misprediction
costs. The overhead of our frequent path selection primarily depends on the
number of branch nodes in the FP-tree, and is simply estimated as O(logn).

3.2 Path-Based Thread Partitioning

In order to partition multiple frequent paths, we propose a path-based thread
partitioning algorithm, which is extended from the single speculative path
selection[13]. It can deal with one procedure at a time. Two critical factors are
needed in this algorithm. One is the degree of inter-thread data dependences,
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both intra- and inter-procedural data dependences are considered in our thread
selection. The other is the thread size, which is used to determine the granular-
ity of a thread and reduce the cost of load imbalance. To create threads on all
frequent paths, each of them will be proceeded due to their order in the worklist.
The more frequent the path is, the more likely it will be chosen to parallelize.

When it comes to the identification of different paths, we name each path with
a unique identification number and it is denoted as Path(procName, beging i1,
endy a2, length, rank level). The procName indicates where a path belongs
to. Both beginyg jq1 and endp, ;42 correspond to the first and last basic blocks
along the path, respectively. The length is the length of a path. The rank level
represents the order of path speculation, which is derived from the worklist. We
attempt to partition all these selected paths from the most frequent one to the
least frequent one within each procedure. The procedure of thread partitioning
is described in Algorithm 3.

Algorithm 3. Path-based thread partitioning algorithm
INOUT: a list of all selected paths, worklist
OUTPUT: a set of all partitioned paths

1: function partition thread(worklist)

2: for all Path path in worklist do

3: /*start block and end block are the beginning and end of Path path, and

curr thread is the position of the current thread*/

4: curr thread=partition subpath(start block,end block,path,curr thread);
5: end for

6: end function

Function partition subpath attempts to generate threads for each path recur-
sively in the top-down manner. For each path, it is always proceeded on the
inputs of the position of the current thread, the path information, as well as
the boundaries of the chosen path. Both the data dependences and thread size
are used to dynamically determine the appropriate position of a thread. Due to
the limitation of length, more details of thread partitioning on the non-region
are discussed in [13]. When a subpath is too large for a thread, the first basic
block of it will be further decided. Otherwise, a smaller subpath will be directly
included into the current thread until it is large enough for a thread. When a
thread is found, it will be attached with the path information to facilitate the
identification of different speculative paths. The overhead of this algorithm is es-
timated as O(logn). Particularly, this algorithm only focuses on branch nodes in
the non-loop region. Because each loop iteration is often considered as a thread,
and thus all branch nodes of the same iteration will be serialized.

3.3 Thread Creation and TLS-Enhancing Optimization

For a thread, it is necessary for the compiler to point out the beginning and end of
the thread before TLS execution. Thus, both spawn point(SP) and control quasi-
independent point(CQIP) are applied in our approach. SP is used to initiate
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a thread on an idle processor core while CQIP points to where the thread is
ready to execute. To understand the performance impact of different speculative
paths, both SP and CQIP points are annotated with the path information, i.e.,
Thread(path,target Addr). The path indicates where the thread belongs to while
targetAddr is the target address of instruction execution.

Pre-computation slice(p-slice)[16] is used to reduce the potential of inter-
thread data dependence violation. It is responsible for calculating the live-ins(the
data consumed by the current thread but produced by its predecessors) of a
thread on the assumption that the input values are always correct. All of these
live-ins are inserted at the entry of the thread. To guarantee the correctness of p-
slice, the underlying hardware mechanism can detect and recover those violated
threads from mis-speculation.

4 Runtime Phase

4.1 TLS Execution Model

Our TLS execution model is similar to the out-of-order TLS execution model[17].
Only speculative threads from the same path are allowed to be executed specula-
tively since we devote all processor cores to one path at a time, and are expected
to make an aggressive speculation. All threads are maintained in an immediate
successor(IS) list due to their relative sequential order. The least speculative
thread is the unique non-speculative thread while others are speculative threads.
The relation between two consecutive threads in the list is defined as predecessor
and successor. All speculative states of threads are buffered in the L1 D-cache
using speculative versioning cache(SVC)[21]. In case a control violation occurs,
the violated thread and its successors will be squashed immediately. Otherwise,
the successor will be verified and committed by the non-speculative thread at
the end of execution. Once done, the successor will become the non-speculative
thread to continue.

The main difference between them is that the speculative path in our approach
is further decided by the runtime path prediction. Our approach can explore a
large amount of parallelism even if a branch misprediction occurs. As illustrated
in Fig. 3, we assume the speculative path is shown by the dotted lines. When
a mispredicted branch is encountered on the path A—B, the traditional single
speculative path scheme will suffer from branch misprediction as described in
Fig. 3(a). Thus, the parallel overhead T,y consists of parallelizing the incorrect
path and serializing the correct path(i.e., Tincorrect path 80d Tcorrect path), as well
as cycles stalled for the delayed spawnee which isn’t executed by the current
branch but spawned aggressively by one of its successors. But the correct path
can also be parallelized in our approach, such as both the spawn 1 and spawn 2
spawn points. As shown in Fig. 3(b), the execution time of other branches is
also overlapped due to the potential of speculation on the path A—C. Hence the
parallel overhead Ty, is largely reduced.
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Fig. 3. An example of dynamic speculative path execution

4.2 Construction of Dynamic Speculative Path

In the TLS execution, we should dynamically decide the most frequent specu-
lative path for each procedure. Thus, a hardware-based adaptive branch table
is built on each processor core, which is a content-addressable memory(CAM)
indexed by a unique identification number associated with each candidate path.
Each table entry contains two fields: a taken counter, which is incremented if the
chosen speculative path has been proved to be correct and decremented other-
wise. Initially, the information of each candidate path is obtained from frequent
path selection, and it will be dynamically updated by different thread schedul-
ing policies as the number of invocations increases. Another is path performance
summary. It is used to keep track of the performance profiles of all parallelized
paths, i.e., the accumulative differences between the number of successful and
failure threads.

In case of a hard-to-predict branch, this table will be requested for making
a decision for the right speculative path. A decline response will fail to initi-
ate speculative threads from those less frequent speculative paths. Otherwise,
when all threads along the parallelized path have been done, the information
of the chosen path will be updated to the adaptive branch table immediately:
(1) increase or decrease the relative taken counter. (2) summarize the difference
between the successful and failure threads due to dynamic path speculation.

The adaptive branch table can be implemented by software or hardware. The
aim of our approach is to make an aggressive speculation on different paths and
maximize the parallelism of hard-to-predict branches. Thus, the adaptive branch
table is maintained on hardware. Compared to the multi-path execution[22], the
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overhead of our approach primarily depends on the number of all selected paths,
which has been largely reduced by frequent path selection.

4.3 Speculative Path Prediction and Thread Scheduling

Choosing a path to parallelize, provided that its parallel overhead outweighs
the relative sequential overhead. Due to an out-of-order thread spawn, specu-
lative threads are often spawned more aggressively on the branches. It is hard
to accurately measure the effects of them on the whole program. A simple so-
lution of our approach is to count the number of successful and failure threads
along the parallelized path. When each procedure is proceeded, the information
of the most likely speculative path is obtained from the adaptive branch table.
If a thread is successfully spawned and committed from the chosen speculative
path, it will be considered as a successful thread. Otherwise, in case a thread is
squashed due to branch misprediction, it will be taken as a failure thread. When
the last thread of the path has been committed, the results of these threads
will be updated to the adaptive branch table. It is used to make a decision for
dynamic path selection on the next invocation.

To facilitate thread scheduling, two different policies are included, the latest
effective path selection(LEPS) and the most frequent path selection(MFPS).
The performance of LEPS primarily depends on the latest speculative paths
that have been correctly executed. To doing so, we need to change the way to
count the adaptive branch table. The relative taken counter will be increased
when the speculative path has been proved to be correct and cleared otherwise.
It also indicates that the correctness of the latest speculative paths is treated as
a metric for thread scheduling in LEPS. The larger the relative taken counter is,
the more frequent the path is. But the disadvantage of this approach is that it
is only effective for branches with regular data accesses, and easily affected by
branches that are data-dependent on relatively random data.

However, the most frequent speculative path of MFPS is decided by the quan-
titative evaluation. The accumulative differences between the number of success-
ful and failure threads are used to weigh different speculative paths. Thus, the
path with the maximum value will be considered as the most likely speculative
path. When the value of the chosen path becomes negative, it reveals that exces-
sive mispredicted branches have been executed on the path. In such case, other
frequent paths will be explored instead. This method utilizes the results of all
parallelized paths to decide the next most frequent path. It is more adaptive for
hard-to-predict branches in the speculation.

5 Experimental Results

We have evaluated the effectiveness of our approach using 10 programs from
OLDEN benchmark suite[2], which is often used in Mitosis[16] and SEED[S].
An additional rook, solving the issue of chess placement on the board using
binary tree, is also applied. These benchmarks have been proved to have lots
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Table 1. Processor parameters

parameter value
Fetch/Issue/Commit Width 4/4/4

Integer Units 4 units/1 cycle
Floating Point Units 2 units/ 12 cycles
Private L1-Data/Inst Cache 64KB,4-way,32B
Speculative Buffer Size Fully associated 2KB
Latencies to Remote L1 Data Cache at least 8 cycles
Unified L2 Cache 2MB,4-way,64B
L1/L2/Memory Latencies 1/80/150 cycles
Thread Spawn/Verify /Commit 5/15/5

of complex control flow and data dependences on branches, and are difficult to
be parallelized. The SUIF compiler[3] is responsible for frequent path selection
and path-based thread partitioning on them. Under the code generation, the
generated MIPS assemble code is extended with a set of TLS-specific instructions
to support for our TLS system.

For the simulator, it models a generic speculative multithreading(SpMT) pro-
cessor with four pipelined MIPS-based R3000 processing cores similar to Stan-
ford Hydra[15]. The processor parameters are shown in Table 1. Each core has
its own function units, register file, L1 I-cache, and L1 D-cache. All of them
share a unified L2 cache. The private L1 D-cache is used to maintain the seman-
tics of sequential execution using the SVC coherence protocol[21], which allows
each cache line has multiple different values in the TLS execution, and is able
to identify remote data cache accesses and detect the cross-thread dependence
violation. Our simulator is an execution-driven and executes binaries generated
by the SUIF compiler. The speculative overhead and the costs of the ineffective
speculative path are also included in our experiments.

5.1 Subpath Candidates and Pre-computation

The dynamic speculative path scheme attempts to extract multiple frequent
paths from the hard-to-predict branches. It is common that both two sides of
the same branch node are selected by our frequent path selection. We compare
our approach with the traditional single speculative path selection, which always
assumes that the most frequent path of the whole program consists of the ones
with the highest execution possibility. Figure 4(a) shows that the total number
of all selected paths is relatively smaller in the single speculative path selection,
by contrast, most of procedures are able to extract multiple different paths in
our approach. Particularly, perimeter can find no less than 70 paths from all
branch nodes due to complex control and data dependences.

The average path length is also examined in Fig. 4(b). We simply utilize the
number of branch nodes to estimate the length of a path. Due to the utilization
of FP-growth algorithm, each path is created only if it satisfies the value of the
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Fig. 4. Path information of our frequent path selection

minimum support threshold. Thus, the average length of all frequent paths in
our approach is quite different from that in the single speculative path selec-
tion. Meanwhile, our approach, taking advantage of the relation between branch
nodes, can choose more alternative paths to parallelize when speculative threads
are executed deeply. To some extent, it avoids the branch misprediction penalty
of TLS execution.

To take a detailed analysis of the path-based thread partitioning algorithm,
we divide all created threads into postdominator and non-postdominator two
categories due to the position of thread creation in the CFG. The former cor-
responds to the thread that is executed at the beginning of an immediate post-
dominator of a branch node while the latter will be dynamically speculated in
terms of the outcomes of branches. As described in Table 2, the number of non-
postdominator threads take up a large proportion of all benchmarks. All of them
further dominate the performance of the hard-to-predict branches. Thus, it is
critical for our approach to dynamically determine the best speculative path on
each branch node. Furthermore, it has been proved that hoisting the postdomi-
nator threads aggressively on different paths can reduce the potential of all its
delayed spawnees on the path.

Table 2. Information of thread creation and pre-computation slice

benchmark bh bisort em3d mst perimeter power rook treeadd tsp voronoi
postdominator 11 2 8 13 11 3 9 1 0 5
non-postdominator 36 6 15 24 26 15 19 2 9 20
p-slice 4.3 3.5 49 42 3.2 3.8 4.2 33 31 32

p-slice(%) 6.6 9.9 12.1 10.8 8.7 6.7 103 58 9.6 6.1

For the p-slice, it consists of live-ins that are extracted from the predecessor
thread but consumed by the successor thread. The information of p-slice is shown
in Table 2. The average size of p-slice is about 3.77, and the largest p-slice doesn’t
exceed 20% of the whole thread size. It also indicates that the p-slice takes up
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a small proportion of the thread. We are expected to reduce the overhead of
p-slice that comes from those infrequent paths as well.

5.2 Performance of Dynamic Speculative Path Selection

The dynamic speculative path scheme can allow more than one speculative path
to be dynamically chosen to parallelize due to different procedure calls. But
different thread scheduling policies have different effects on overall performance.
Figure 5 shows the overall speedup of both the LEPS and MFPS policies in the
non-loop regions, where all parallelized loops are discarded and serialized. It is
because we are expect to reveal the performance impact of these two policies
on our dynamic speculative path selection. Based on the determination of the
latest speculative path, it is effective for LEPS to find the best speculative path
on some invocations. But it is still hard to handle branch nodes that are data-
dependent on the random data, such as bisort, perimeter and rook, etc.

OLEPS mMFPS

Fig. 5. Performance impact of different policies on the non-loop regions

However, the MFPS policy can achieve better performance in most cases due
to the quantitative evaluation of all parallelized paths. The best speculative
path will be always the most frequent one on each invocation. Particularly, mst,
perimeter and rook benefit from the parallelism of the right speculative path
and achieve significant performance gains. But both of LEPS and MFPS always
have the same results for em3d and treeadd. The reason is that most of the exe-
cution time of em3d only focuses on one single speculative path upon the given
input sets, and the performance of treeadd is limited by its recursion structure,
respectively.

Due to the performance impact of different policies, the speedup of the whole
program is also influenced. Figure 6 makes a performance comparison between
the traditional single speculative path selection and our dynamic speculative
path scheme. It is obvious that our approach outperforms the single specula-
tive path selection. Meanwhile, our approach is more efficient since the overhead
of those ineffective paths is largely overlapped when compared to the potential
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Fig. 6. Performance comparison between single speculative path selection and dynamic
speculative path scheme

performance brought by LEPS and MFPS. And speculative threads that are
initiated at the immediate post-dominator of the branch node benefit from the
potential of multiple spawn points on all subpaths and are able to make an ag-
gressive speculation in case a branch misprediction occurs. As we can see in Fig.
6, MFPS gains more performance improvements than LEPS, and more success-
ful spawned threads have been done by MFPS. But it is simple for MFPS to use
the accumulative differences between the successful and failure threads to evalu-
ate the dynamic performance of each parallelized path. With more sophisticated
techniques, it is expected to achieve a better performance.

6 Related Work

A great deal of research work has been done on the exploitation of more accurate
branch prediction or the reduction of branch misprediction costs on multi-core
processors. Multiscalar Processors[10] utilize the two-level branch predictor to
improve the accuracy of branch prediction, and it has been proved to be effective
for loop-level speculation. ASTEX][14] introduce the concept of hot paths where
the helper threads are extracted and allocated with a set of frequent execution
traces obtained from gprof profiling tool, and are then in parallel with the main
thread to improve performance. Likewise, the branch misprediction resolved by
[22] is at the cost of parallelizing all possible paths simultaneously on all idle
processor cores when a hard-to-predict branch is encountered.

However, the work in BLP[12] is similar to our work. It attempts to determine
the appropriate spawn points of speculative threads by means of keeping track
of the potential of control and data dependences, and thus can exploit substan-
tial branch-mispredict level parallelism from hard-to-predict branches. But the
differences between them are as follows: (1) We focus on the dynamic specula-
tive path selection where multiple frequent paths are selected greedily from each
branch node, by contrast, only one single speculative path has been resolved in
BLP. (2) The relation between branch nodes maintained in our approach is used
to create multiple different speculative paths. (3) The best speculative path of
our approach is dynamically determined by the runtime performance prediction
while the simple profiler runs are used in BLP.
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In the TLS execution, dynamically identifying the potential of performance
bottlenecks can speed up the whole program execution. [11] utilize a set of
hardware-based programmable performance counters to predict the sequential
execution time of each parallelized loop on each invocation. In case a non-
beneficial loop is found, it will be serialized directly to save execution time.
Otherwise, it will continue to be parallelized instead. Similarly, [8] present two
critical performance counters to dynamically evaluate the parallelism of different
loop nesting levels. To make the cost-performance trade-offs, the best speculative
path is simply determined by means of the accumulative differences between the
successful and failure threads in our approach. Other optimizations for branch
misprediction are also explored in [7] and [18]. Both of them focus on the selective
branch recovery to reduce the branch misprediction costs.

7 Conclusions

We describe a novel dynamic adaptive scheme for TLS execution to exploit
thread-level parallelism from the hard-to-predict branches. The basic idea is to
statically extract multiple frequent paths from the built branch FP-tree using
the modified FP-growth algorithm. All these selected paths are then proceeded
on the path-based thread partitioning to generate speculative threads. In the
process of TLS execution, these partitioned paths are dynamically chosen to
parallelize in terms of their runtime performance profiles obtained from our pre-
diction. Once each parallelized path has been done, the results of our prediction
will be collected and used to decide the best speculative path on the next invoca-
tion. Our preliminary results show that our approach can achieve a comparable
or better performance when compared to the traditional single speculative path
selection. We are also expected to integrate our approach into speculative loop
execution and further improve the overall performance of TLS execution.
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Abstract. Kirchhoff pre-stack depth migration (KPSDM) algorithm, as one of
the most widely used migration algorithms, plays an important part in getting
the real image of the earth. However, this program takes considerable time due
to its high computational cost; hence the working efficiency of the oil industry
is affected. The general purpose Graphic Processing Unit (GPU) and the
Compute Unified Device Architecture (CUDA) developed by NVIDIA have
provided a new solution to this problem. In this study, we have proposed a par-
allel algorithm of the Kirchhoff pre-stack depth migration and an optimization
strategy based on the CUDA technology. Our experiments indicate that for
large data computations, the accelerated algorithm achieves a speedup of 8~15
times compared with NVIDIA GPU.

Keywords: Kirchhoff pre-stack depth migration, GPU, CUDA, parallel algo-
rithm, optimization.

1 Introduction

In areas of complex geology, the main goal of earth exploration is to provide the oil
and gas industry with knowledge of the earth’s subsurface structure to detect where
oil can be found and recovered. To do so, large-scale seismic surveys of the earth are
performed, and the data recorded undergoes complex iterative processing to extract a
geological model of the earth. The data is then interpreted by experts to help decide
where to build oil recovery infrastructure [1] [2].

As the most efficient geophysical imaging technique in the oil industry, the 3-D
pre-stack depth migration (PSDM) supports people to understand the deep and com-
plex structure of underground. PSDM is one of the most widely used migration meth-
ods, which has advantages of flexible input and output data, high efficiency, and good
quality of images [4].

However, PSDM is a compute-intensive application. Based on the geological
model, it needs repeatedly modifying the model and multiple iterations. Even on a
cluster with hundreds of high performance CPUs, it may take days or even weeks to
complete the processing and get the final migration image for some practical jobs.

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 207-218, 2014.
© Springer International Publishing Switzerland 2014
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The Kirchhoff PSDM (KPSDM), which is a frequently-used PSDM algorithm, can
be divided into 3 partitions: parameters parsing, travel time calculation, and migra-
tion. Particularly the migration may account for more than 50% of the total processing
time, which is the most time-consuming partition. So it is necessary to accelerate the
migration processing to improve the entire performance of the KPSDM application.

In recent years, driven by the insatiable market demand for real-time, high-
definition 3D graphics, the programmable Graphic Processor Unit (GPU) has evolved
into a highly parallel, multi-threaded, many-core processor with tremendous computa-
tional horsepower and very high memory bandwidth [5]. According to the latest
figures, the theoretical floating-point operations per second for GPU have come to
thousands of GFLOPS while for CPU the number is hundreds of GFLOPS. Because
of its great performance in floating-point operation, GPUs have been used as general
platforms to exploit data-level-parallelism (DLP) for non-graphic applications, which
are known as general purpose GPUs(GPGPUs). Considerable programming models
and runtime environments for GPGPUs have been proposed. Among them, NVidia’s
compute unified device architecture (CUDA) provides a C-like programming model
to leverage the massively parallel processing power of NVidia’s GPUs, and it has
been a mature and widely adopted platform for GPGPU applications[7].

In areas of complex geology, GPUs have been used widely recently, e.g., [6] pro-
vides a new idea based on the GPGPU methodology to reduce the computation time
of the MRF algorithm for ASR image segmentation; [7] demonstrates a method to
accelerate the PKTM algorithm. All these researches have gained ideal performance
improvement. As an SIMT (Single-Instruction, Multiple-Thread) processor, GPU is
suitable for the calculation pattern of the migration partition in the KPSDM because it
is a compute-intensive application and the tasks in migration have little mutual
dependency.

In this study, we propose a new GPU-based KPSDM parallel algorithm
(GKPSDM) and its optimizing strategy using CUDA technology. This paper begins
with an overview of the CUDA technology (§2). We then present the method of the
parallel KPSDM algorithm and its optimizing strategy (§3) followed by the experi-
ments and result analysis (§4). Finally, we discuss the conclusion and future works

(85).

2 Overview of CUDA

Although GPUs have powerful floating-point operating capability, the general ap-
proach in the early days of GPU computing was extraordinarily convoluted. Because
standard graphics APIs such as Open GL and DirectX were still the only way to inter-
act with a GPU, any attempt to perform arbitrary computations on a GPU would still
be subject to the constraints of programming within a graphics APIL. This is a tough
progress and the programmers should have knowledge of the OpenGL or DirectX
graphics programming interfaces. To solve these problems, the NVIDIA published
the CUDA release to reduce the programming complexity and make it easier for
programmers to use GPUs for general purpose.
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The CUDA architecture is illustrated in Fig. 1. CPU and GPU are known as the
host and the device respectively, and each has its own memory space. CUDA pro-
vides a series of APIs to handle the device memory malloc, free, and data transmis-
sion between host and device. Generally, data should be transmitted to the device
memory from the host memory before calculation. But by using the newest release 6
of CUDA, there is no need to execute the transmitting any more.

Device
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Block 0 Block 1 Block N

|
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Fig. 1. General architecture of CUDA
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CUDA kernels are functions callable from the host that execute asynchronously on
the CUDA devices, which means that the host queues a kernel for execution only on
GPUs and does not wait for it to finish but rather continues to perform some other
work. Although the CUDA kernels cannot return values due to the asynchronous
mechanism, CUDA also provides some synchronization interfaces so that the host can
determine when the kernel or pipeline has completed [8].

A CUDA thread is a basic executing unit on GPU, which acts as if each thread has
its own processor with different registers and thread identity that runs in a shared
memory environment. A kernel should utilize many threads to perform the work. The
onboard GPU hardware thread scheduler has the responsibility for thread switching
and scheduling, which is transparent to the CUDA developers. An execution configu-
ration in the kernel source code defines both the number of threads that will run the
kernel and their arrangementinalD, 2D or 3D computational grid [9] [10].

3 KPSDM Parallel Algorithm

3.1 KPSDM Theory

The theory of the migration partition of the KPSDM is illustrated in Fig. 2. The space
subsurface can be divided into 3D grid. A mesh on the top surface is defined as a
CELL. Imaging points in the depth direction are divided into several point chunks.
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For each chunk, the travel time from source (TTS) and receiver (TTR) to the end-
points are needed to calculate the total travel time and the interpolation coefficient
which are represented by TM and TA respectively in the program. Finally we use
these parameters to compute the result of all the imaging points.
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Fig. 2. The theory of the migration partition of the KPSDM

3.2 Serial Algorithm

Fig. 3 presents the pseudocode of a practical KPSDM program. There are three main
loops: the first one loops over the input traces and calculates the relative parameters
including travel time, trace head, etc. for each trace; the second one loops over the
CELLs and calculate some parameters related to one CELL; the last one loops over
chunks of a CELL, calculates TM, TA and some other parameters for endpoints of
each chunk and then use them to calculate the final image.

for all input traces do
Calculate relative parameters including travel time,
trace head, etc.;
for all CELLs do
Calculate relative parameters;
for all chunks of a CELL do
Calculate TM, TA and some other parameters;
Calculate and accumulate the final image result to
the image points;
end for
end for
end for

Fig. 3. Pseudocode of a serial KPSDM program
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3.3 CUDA Parallel Algorithm

Fig. 4 presents the logic structure of GKPSDM. The first step is to transmit some
parameters which are constant through all the migration progress to the constant
memory of GPU. Next we have a loop of the input traces on the host. Once getting an
input trace, the CPUs will calculate parameters relative to the trace on the host as the
serial program does. Then after transmitting these parameters to the global memories
of GPUs, the GPUs will complete the following computation using 3 CUDA kernels.

Transmit constant parameters to the constant memory;
for all input traces do
Calculate relative parameters including travel time,
trace head, etc.
Transmit parameters to global memory;
(Executed by GPU)Kernell: every CUDA thread calculates
parameters relative to one CELL;
(Executed by GPU)Kernel2: every 32 CUDA threads calcu-
late all the TM, TA of one CELL;
(Executed by GPU)Kernel3: every 32 CUDA threads calcu-
late all the image results of one CELL;
}
end for
Copy the imaging result from GPU memory to host memory

Fig. 4. Pseudocode of parallel GKPSDM program

kernell : In this kernel, every CUDA thread calculates parameters relative to one
CELL and keeps them in the global memory for the later processing. Fig. 5 shows the
threads organization and simplified pseudocode of kernell. CELLNUM is the number
of CELLs. DP, OS, and OR is parameters that will be used in other kernels.

dim3 dimBlock_kernell (NCELL_kernell)
dim3 dimGrid_kernell ( (CELLNUM + NCELL_kernell - 1) /
NCELL_kernell)

kernell (..) {
CellIdx = blockIdx.x * blockDim.x + threadIdx.x
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Fig. 5. Threads organization and pseudocode of kernell
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kernel2 : In this kernel, every 32 CUDA threads calculate all the TM, TA of one
CELL. There is an inner loop in which each thread fetches a point every other 32
points. The results are stored in the global memory. The reason why we choose 32
threads to deal with one CELL will be explained in the later optimizing strategy. Fig.
6 demonstrates the threads organization of kernel2 and the simplified pseudocode.

dim3 dimBlock_kernel2 (32,NCELL_kernel?2)
dim3 dimGrid_kernel2 ( (CELLNUM + NCELL_kernel2 - 1) /
NCELL_kernel?2)

kernel?2 (..) {
CellIdx = blockIdx.x * blockDim.y + threadIdx.y
for(L = 0;L < NTAB ; L += blockDim.x) {
TM[CellIdx * ntab + L] = ...
TA[CellIdx * ntab + L] = ...

Fig. 6. Threads organization and pseudocode of kernel2

kernel3: In this kernel, every 32 CUDA threads calculate all the final image results
of one CELL. There is an inner loop just like the one in the kernel2 in which each
thread fetches a point every other 32 points. The structure of kernel3 is similar with
the one of kernel2, except replacing the TM and TA calculation with the image results
calculation. We don’t show the pseudocode here.

After all input traces have been processed, the imaging result will be copied from
the GPU memory to the host memory for the later processing.

3.4  Optimizing Strategy

Although the preceding parallel program has gained better runtime performance than
the serial program, it has not yet taken full advantage of the GPUs’ compute capabil-
ity. So a series of appropriate optimizing methods are necessary to get further im-
provement.

Based on the GPU architecture and CUDA technology, there are 4 main methods
in our optimizing strategy: processor occupancy, branch divergence, memory access,
and data transmission.

3.4.1 Processor Occupancy

The general NVIDIA GPU architecture is built around a scalable array of multi-
threaded Streaming Multiprocessors (SMs). Each SM contains several Streaming
Processors (SPs). The multiprocessor creates, manages, schedules, and executes
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threads in groups of 32 parallel threads called warps. When a multiprocessor is given
one or more thread blocks to execute, it partitions them into warps and the warp is the
unit of thread scheduling in SMs. Yet there can be more resident warps than SPs in an
SM so the CUDA processors could efficiently execute long-latency operations such as
global memory accesses. When an instruction executed by the threads in a warp must
wait for the result of a previously initiated long-latency operation, the warp is not
selected for execution. Another resident warp that is no longer waiting for results is
selected for execution. If more than one warp is ready for execution, a priority mech-
anism is used to select one for execution. With enough warps around, the hardware
will likely find a warp to execute at any point in time, thus making full use of the
execution hardware in spite of these long-latency operations.

Each CUDA device offers a limited amount of CUDA memory, which limits the
number of threads that can simultaneously reside in the streaming multiprocessors for
a given application. In general, the more memory locations each thread requires, the
fewer the number of threads that can reside in each SM and thus the fewer number of
threads that can reside in the entire processor. So it is very important to reduce the use
of memory units to improve the processor occupancy.

In our GKPSDM parallel program, the main pullback is the number of registers.
The 3 kernels consume more than 60 registers, and consequently, only 30 percent
of the threads can reside in the processors. Then we found that the actual parameters
including many pointers in the parameter list take up a considerable number of
registers.

In this paper, the optimizing method is transmitting these parameters to the con-
stant memory before the kernel invocation. As the constant memory can also be
accessed fast, the accessing delay will not increase much. After this, the number of
registers used by the 3 kernels all decrease to less than 40, causing more than 60 per-
cent of the threads to reside in the processors, and an improvement of performance
can be achieved accordingly.

3.4.2 Branch Divergence
In the CUDA architecture, the hardware executes an instruction for all threads in the
same warp, before moving to the next instruction. It works well when all threads
within a warp follow the same control flow path when working their data. For exam-
ple, for an if—then—else construct, the execution works well when either all threads
execute the then part or all execute the else part. When threads within a warp take
different control flow paths, the simple execution style no longer works well. In our
if-then—else example, when some threads execute the then part and others execute the
else part, the SIMT execution style no longer works well. In these situations, the exe-
cution of the warp will require multiple passes through these divergent paths. One
pass will be needed for those threads that follow the then part and another pass for
those that follow the else part. These passes are sequential to each other, thus adding
to the execution time.

Fig.7 demonstrates some codes in the GKPSDM parallel program. There are two
if-then-else constructs in which a branch divergence will cause considerable perfor-
mance degradation.
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if ( TTS >= -8.888f && TTR >= -8.888f ) ({

™1 = .. + TTS;

RTMP1 = .. + TTR;

™ = TM1 + RTMP1l + ..;
}
else {

™ = 0;
}

if ( TM > RKP1 ) ({...}

Fig. 7. Code with branch divergence

In this paper, as shown in Fig.8, we remove the if-then-else construct by setting a
special value at the invalid position (in our program, -99999 is appropriate), which
will make TM an invalid value accordingly. So after analyzing the second if-then-else
construct, we will get the same result as the original program. Although the calcula-
tion increases, the overall performance of the program benefits from the reduction of
branch divergence.

Set -99999 at the invalid position of TTS and TTR;
™1 = .. + TTS; //TM1 is invalid because of TTS
RTMP1 = .. + TTR;

™ = TM1 + RTMP1l + ..;

if ( TM > RKP1 ) ({...}

Fig. 8. Code after optimizing

3.43 Memory Access

Although GPUs have strong computing power, the memory access, especially the
global memory access, is not fast enough to match up with the computation and often
becomes the bottleneck of a CUDA program. Therefore, making memory optimiza-
tion has always been the most important portion of the optimizing process.

In the GKPSDM program we mainly focus on the global memory access. Perhaps
the single most important performance consideration in programming for the CUDA
architecture is coalescing global memory accesses. Global memory loads and stores
by threads of a half warp (for devices of compute capability 1.x) or of a warp (for
devices of compute capability 2.x) are coalesced by the device into as few as one
transaction when certain access requirements are met.

Global memory should be viewed in terms of aligned segments of 16 and 32
words. If the addresses fall within a 128-byte segment, then a single 128-byte transac-
tion is performed. Otherwise, if a half warp accesses memory split across two 128-
byte segments, then two transactions are performed and access time is doubled as a
result.
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In our early program version, in kernel2 and kernel3, every one thread is in charge
of one CELL. The pseudocode of kernel2_old is present in Fig.9. As the number of
CELLs is big enough so the occupancy of GPU processors are not decreased and the
program structure is simplified. But the travel time table is organized with the CELLSs
index, none of the threads” memory access fall within a 128-byte segment, as shown
in Fig.10. Then we modified the program and used 32 threads to manage a CELL
(Fig.6), so that threads in a warp could fetch the data in the global memory in an effi-
cient way. Fig.11 demonstrates the coalescing memory access after the optimization.

dim3 dimBlock_kernel2 (NCELL_kernel?2)
dim3 dimGrid_kernel2 ( (CELLNUM + NCELL_kernel2 - 1) /
NCELL_kernel?2)

kernel2_old(..) {
CellIdx = blockIdx.x * blockDim.x + threadIdx.x
for(L = 0;L < NTAB ; L ++) {
TM[CellIdx * ntab + L] = ...
TA[CellIdx * ntab + L] = ...

Fig. 9. Threads organization and pseudocode of kernel2_old
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Fig. 11. Coalescing memory access after the optimization
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3.4.4 Data Transmission

We use CUDA release 4.2 in our program, so before invoking the kernels on GPUs,
data needed for the computation should be transmitted from the host memory to the
device memory. Because of the limited PCle bandwidth, the transmission may cost
much time in a job with a huge amount of data.

The method we use in this paper to handle this pullback includes two aspects: us-
ing the CUDA stream and using the pinned memory. A stream is a sequence of com-
mands that execute in order. Different streams, on the other hand, may execute their
commands out of order with respect to one another or concurrently. Using the CUDA
stream with the asynchronous transmitting functions enables the overlap of data trans-
fers with computation.

Using pinned memory, we could attain the highest bandwidth between the host and
the device. But pinned memory should not be overused. Excessive use can reduce
overall system performance because pinned memory is a scarce resource.

4 Experiments Result and Analysis

We implemented the practical GKPSDM program on NVIDIA Tesla C2050 GPUs,
which have more than 2G GPU memory and 448 cores. The host has an Intel’s 17 3G
CPU with 12G host memory. We have two kinds of contrast experiment to measure
the optimizing effectiveness and the speedup of the GKPSDM to the serial KPSDM
respectively.

In the first contrast experiment, we use four optimizing methods mentioned above
in sequence. Each optimizing method is on the basis of the previous one. For a practi-
cal job with 10000 traces and 500 CELLS, the results are demonstrated in Fig. 12. The
original GKPSDM program has a speedup of about 6 times. After a series of optimiz-
ing, the final GKPSDM program is 14 times faster than the serial KPSDM program.

80 . 72.201

o

Time(s)
N D O
o O

Optimizing method

Fig. 12. Performance with different optimizing methods

In the second experiment, we use four different practical jobs with 1000 CELLs
and different number of trace to measure the performance with a variety of data vol-
ume. Fig.13 demonstrates the speedup times to the serial program. The speedup seems



A Parallel Algorithm of Kirchhoff Pre-stack Depth Migration Based on GPU 217

to be limited before the number of trace has come to a high level. That is because with
less data, the data transmission and kernel invocation take up a large percentage of the
executing time. But when sufficient data is available, these problems seem to be neg-
ligible. The speedup could come to and remain stable at high level. As in practical
jobs, there can be billions of traces, the performance is acceptable. For different
jobs, the speedup can be 8~15 times.

Performance of GKPSDM program
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Fig. 13. Performance of GKPSDM program with 4 jobs

5 Conclusion and Future Work

In this paper, we introduce a GPGPU solution for a practical KPSDM algorithm. We
present a parallel algorithm and optimizing strategy. Experiments have shown that with
GPGPU and CUDA technology we can achieve an acceptable speedup (8 ~15 times).
Moreover, the GPUs have several features that we should pay attention to when opti-
mizing a CUDA program, including processor occupancy, branch divergence, memory
access, and data transmission.

Although our GKPSDM program has increased the speed of KPSDM, much work
remains to be done.

e There are still some optimizing methods that haven’t been used in our program,
like shared memory, texture memory, etc.

e Some practical jobs have too much data in the travel time table, causing the data
transmission to GPU memory to become the bottleneck of the program. An effi-
cient compressing algorithm is imperative.

e Much work can be done by integrating multi-cores CPU and GPUs to avoid
wasting any computation resource.
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Abstract. In this paper, embeddings of a family of 3D meshes in locally
twisted cubes are studied. Let LT'Q,(V, E) denotes the n-dimensional
loc