
Xian-he Sun Wenyu Qu Ivan Stojmenovic
Wanlei Zhou Zhiyang Li Hua Guo
Geyong Min Tingting Yang Yulei Wu
Lei Liu (Eds.)

 123

LN
CS

 8
63

1

14th International Conference, ICA3PP 2014
Dalian, China, August 24–27, 2014
Proceedings, Part II

Algorithms and
Architectures
for Parallel Processing

Lecture Notes in Computer Science 8631
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Xian-he Sun Wenyu Qu Ivan Stojmenovic
Wanlei Zhou Zhiyang Li Hua Guo
Geyong Min Tingting Yang Yulei Wu
Lei Liu (Eds.)

Algorithms and Architectures
for Parallel Processing

14th International Conference, ICA3PP 2014
Dalian, China, August 24-27, 2014
Proceedings, Part II

13

Volume Editors

Xian-he Sun
Illinois Institute of Technology, Chicago, IL, USA, e-mail: sun@iit.edu

Wenyu Qu
Dalian Maritime University, China, e-mail: wenyu@dlmu.edu.cn

Ivan Stojmenovic
University of Ottawa, ON, Canada, e-mail: ivan@site.ottawa.ca

Wanlei Zhou
Deakin University, Burwood, VIC, Australia, e-mail: wanlei.zhou@deakin.edu.au

Zhiyang Li
Dalian Maritime University, China, e-mail: lizy0205@gmail.com

Hua Guo
BeiHang University, Beijing, China, e-mail: hguo@buaa.edu.cn

Geyong Min
University of Bradford, UK, e-mail: g.min@brad.ac.uk

Tingting Yang
Dalian Maritime University, China, e-mail: yangtingting820523@163.com

Yulei Wu
Chinese Academy of Sciences, Beijing, China, e-mail: yulei.frank.wu@gmail.com

Lei Liu
Shandong University, Jinan City, China, e-mail: l.liu@sdu.edu.cn

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-11193-3 e-ISBN 978-3-319-11194-0
DOI 10.1007/978-3-319-11194-0
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014947719

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.
Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Welcome to the proceedings of the 14th International Conference on Algorithms
and Architectures for Parallel Processing (ICA3PP 2014) held in Dalian, China.

ICA3PP 2014 is the 14th in this series of conferences started in 1995 that are
devoted to algorithms and architectures for parallel processing. As applications
of computing systems have permeated in every aspect of daily life, the power
of computing system has become increasingly critical. This conference provides
a forum for academics and practitioners from countries around the world to
exchange ideas for improving the efficiency, performance, reliability, security,
and interoperability of computing systems and applications.

It is our great honor to introduce the program for the conference. Thanks to
the Program Committee’s hard work, we were able to finalize the technical pro-
gram. In the selection process, each paper was assigned to at least 4 PC members
as reviewers. The authors and those PC members from the same institution were
separated in the reviewing process to avoid conflicts of interests. We received 285
submissions from all over the world. The large number of submissions indicated
continued excitement in the field worldwide. The manuscripts have been ranked
according to their original contribution, quality, presentation, and relevance to
the themes of the conference. In the end, 70 (24.56%) papers were accepted as
the main conference papers and inclusion in the conference.

ICA3PP 2014 obtained the support of many people and organizations as well
as the general chairs whose main responsibility was various tasks carried out by
other willing and talented volunteers. We want to express our appreciation to
Professor Xian-He Sun for accepting our invitation to be the keynote/invited
speaker.

We would like to give our special thanks to the program chairs of the confer-
ence for their hard and excellent work on organizing the Program Committee,
outstanding review process to select high-quality papers, and making an excellent
conference program. We are grateful to all workshop organizers for their profes-
sional expertise and excellence in organizing the attractive workshops/symposia,
and other committee chairs, advisory members and PC members for their great
support. We appreciate all authors who submitted their high-quality papers to
the main conference and workshops/symposia.

We thank all of you for participating in this year’s ICA3PP 2014 conference,
and hope you find this conference stimulating and interesting.

July 2014 Ivan Stojmenovic
Wanlei Zhou

Organization

General Chairs

Ivan Stojmenovic Ottawa University, Canada
Wanlei Zhou Deakin University, Australia

Program Chairs

Xianhe Sun Illinois Institute of Technology, USA
Wenyu Qu Dalian Maritime University, China

Publicity Chairs

Jaime Lloret Mauri Polytechnic University of Valencia, Spain
Al-Sakib Khan Pathan International Islamic University Malaysia,

Malaysia

Publication Chair

Yang Xiang Deakin University, Australia

Steering Committee Chairs

Andrzej Goscinski Deakin University, Australia
Yi Pan Georgia State University, USA
Yang Xiang Deakin University, Australia

Workshop Chairs

Mianxiong Dong National Institute of Information and
Communications Technology, Japan

Lei Liu Shandong University, China

Local Organizing Chair

Zhiyang Li Dalian Maritime University, China

VIII Organization

Registration Chair

Weijiang Liu Dalian Maritime University, China

Finance Chair

Zhaobin Liu Dalian Maritime University, China

Web Chairs

Yang Shang Dalian Maritime University, China
Tingting Wang Dalian Maritime University, China

Program Committee Members

Zafeirios Papazachos Queen’s University of Belfast, UK
Paolo Trunfio University of Calabria, Italy
Chao-Tung Yang Tunghai University, Taiwan
Yong Zhao University of Electronic Science and Technology

of China, China
Xingquan (Hill) Zhu Florida Atlantic University, USA
Giandomenico Spezzano ICAR-CNR, Italy
Yasuhiko Takenaga The University of Electro-Communications,

Japan
Sushil Prasad University of Georgia, USA
Tansel Ozyer TOBB University of Economics and

Technology, Turkey
Deng Pan Florida International University, USA
Apostolos Papadopoulos Aristotle University of Thessaloniki, Greece
Eric Pardede La Trobe University, Australia
Karampelas Panagiotis Hellenic American University, Greece
Paul Lu University of Alberta, Canada
Kamesh Madduri Penn State University, USA
Ching-Hsien Hsu Chung Hua University, Taiwan
Muhammad Khurram Khan King Saud University, Saudi Arabia
Morihiro Kuga Kumamoto University, Japan
Weiwei Fang Beijing Jiaotong University, China
Franco Frattolillo Università del Sannio, Italy
Longxiang Gao Deakin University, Australia
Javier Garćıa University Carlos III, Spain
Michael Glass University of Erlangen-Nuremberg, Germany
David E. Singh Universidad Carlos III de Madrid, Spain
Marion Oswald TU Wien, Austria
Rajkumar Buyya The University of Melbourne, Australia

Organization IX

Yue-Shan Chang National Taipei University, Taiwan
Christian Engelman Oak Ridge National Lab, USA
Alessio Bechini University of Pisa, Italy
Hideharu Amano Keio University, Japan
Wei Wei Xi’an University of Technology, China
Toshihiro Yamauchi Okayama University, Japan
Bo Yang University of Electronic Science and Technology

of China, China
Laurence T. Yang St. Francis Xavier University, Canada
Sherali Zeadally University of the District of Columbia, USA
Sotirios G. Ziavras NJIT, USA
Gennaro Della Vecchia Gennaro Della Vecchia - ICAR-CNR, Italy
Olivier Terzo Istituto Superiore Mario Boella, Italy
Hiroyuki Tomiyama Ritsumeikan University, Japan
Tomoaki Tsumura Nagoya Institute of Technology, Japan
Luis Javier Garćıa Villalba Universidad Complutense de Madrid (UCM),

Spain
Gaocai Wang Guangxi University, China
Chen Wang CSIRO ICT Centre, Australia
Martine Wedlake IBM, USA
Wei Xue Tsinghua University, China
Edwin Sha University of Texas at Dallas, USA
Sachin Shetty Tennessee State University, USA
Ching-Lung Su National Yunlin University of Science and

Technology, Taiwan
Anthony Sulistio High Performance Computing Center Stuttgart

(HLRS), Germany
Magdalena Szmajduch Cracow University of Technology (CDN

Partner Cracow), Poland
Jie Tao University of Karlsruhe (Karlsruhe Institute of

Technology), Germany
Dana Petcu West University of Timisoara, Romania
Florin Pop University Politehnica of Bucharest, Romania
Rajeev Raje Indiana University-Purdue University

Indianapolis, USA
Francoise Sailhan CNAM, France
Subhash Saini NASA, USA
Erich Schikuta University of Vienna, Austria
Alba Amato Second University of Naples, Italy
Cosimo Anglano Università del Piemonte Orientale, Italy
Ladjel Bellatreche ENSMA, France
Ateet Bhalla Oriental Institute of Science and Technology,

India

X Organization

Surendra Byna Lawrence Berkeley National Lab, USA
Aleksander Byrski AGH University of Science and Technology,

Poland
Juan M. Marin University of Murcia, Spain
Francesco Moscato Second University of Naples, Italy
Hirotaka Ono Kyushu University, Japan
Fabrizio Petrini IBM Research, USA
Stefano Marrone Second University of Naples, Italy
Alejandro Masrur Technology University of Munich, Germany
Susumu Matsumae Saga University, Japan
Wei Lu Keene University, USA
Amit Majumdar San Diego Supercomputer Center, USA
Tomas Margalef Universitat Autonoma de Barcelona, Spain
Che-Rung Lee National Tsing Hua University, Taiwan
Keqin Li State University of New York at New Paltz,

USA
Mauro Iacono Second University of Naples, Italy
Shadi Ibrahim Inria, France
Helen Karatza Aristotle University of Thessaloniki, Greece
Soo-Kyun Kim PaiChai University, Korea
Edmund Lai Massey University, New Zealand
Karl Fuerlinger Ludwig-Maximilians-University Munich,

Germany
Jose Daniel Garcia University Carlos III of Madrid, Spain
Harald Gjermundrod University of Nicosia, Cyprus
Houcine Hassan Universidad Politecnica de Valencia, Spain
Raphaël Couturier University of Franche-Comté, France
Eugen Dedu University of Franche-Comté, France
Ciprian Dobre University Politehnica of Bucharest, Romania
Massimo Cafaro University of Salento, Italy
Ruay-Shiung Chang National Dong Hwa University, Taiwan
Dan Chen University of Geosciences, China
Zizhong (Jeffrey) Chen University of California at Riverside, USA
Jing Chen National Cheng Kung University, Taiwan
Carmela Comito University of Calabria, Italy
Yujie Xu Dalian Maritime University, China
Natalija Vlajic York University, Canada
Kenji Saito Keio University, Japan
Thomas Rauber University of Bayreuth, Germany
Pilar Herero Universidad Politecnica de Madrid, Spain
Tania Cerquitelli Politecnico di Torino, Italy
Tzung-Shi Chen National University of Tainan, Taiwan
David Expósito University Carlos III, Spain
Peter Strazdins The Australian National University, Australia
Uwe Tangen Ruhr-Universitaet Bochum, Germany

Organization XI

Luca Tasquier Second University of Naples, Italy
Rafael Santos National Institute for Space Research, Brazil
George Bosilca University of Tennessee, USA
Esmond Ng Lawrence Berkeley National Lab, USA
Laurent Lefevre Laurent Lefevre, Inria, University of Lyon,

France
Giuseppina Cretella Second University of Naples, Italy
Gregoire Danoy University of Luxembourg, Luxembourg
Bernabe Dorronsoro University of Lille 1, France
Massimo Ficco Second University of Naples, Italy
Jorge Bernal Bernabe University of Murcia, Spain

Table of Contents – Part II

Parallel Data Processing in Dynamic Hybrid Computing Environment
Using MapReduce . 1

Bing Tang, Haiwu He, and Gilles Fedak

Fast Scalable k-means++ Algorithm with MapReduce 15
Yujie Xu, Wenyu Qu, Zhiyang Li, Changqing Ji, Yuanyuan Li, and
Yinan Wu

Acceleration of Solving Non-Equilibrium Ionization via Tracer Particles
and MapReduce on Eulerian Mesh . 29

Jian Xiao, Xingyu Xu, Jizhou Sun, Xin Zhou, and Li Ji

A Continuous Virtual Vector-Based Algorithm for Measuring
Cardinality Distribution . 43

Xuefei Zhou, Weijiang Liu, Zhiyang Li, and Wenwen Gao

Hmfs: Efficient Support of Small Files Processing over HDFS 54
Cairong Yan, Tie Li, Yongfeng Huang, and Yanglan Gan

Utilizing Multiple Xeon Phi Coprocessors on One Compute Node 68
Xinnan Dong, Jun Chai, Jing Yang, Mei Wen, Nan Wu, Xing Cai,
Chunyuan Zhang, and Zhaoyun Chen

HPSO: Prefetching Based Scheduling to Improve Data Locality for
MapReduce Clusters . 82

Mingming Sun, Hang Zhuang, Xuehai Zhou, Kun Lu, and
Changlong Li

Service Scheduling Algorithm in Vehicle Embedded Middleware 96
Juan Luo, Xin Jin, and Feng Wu

Similar Samples Cleaning in Speculative Multithreading 108
Yuxiang Li, Yinliang Zhao, and Bin Liu

Equi-join for Multiple Datasets Based on Time Cost Evaluation
Model . 122

Hong Zhu, Libo Xia, Mieyi Xie, and Ke Yan

Identifying File Similarity in Large Data Sets by Modulo File Length . . . 136
Yongtao Zhou, Yuhui Deng, Xiaoguang Chen, and Junjie Xie

Conpy: Concolic Execution Engine for Python Applications 150
Ting Chen, Xiao-song Zhang, Rui-dong Chen, Bo Yang, and
Yang Bai

XIV Table of Contents – Part II

A Platform for Stock Market Simulation with Distributed Agent-Based
Modeling . 164

Chunyu Wang, Ce Yu, Hutong Wu, Xiang Chen, Yuelei Li, and
Xiaotao Zhang

C2CU : A CUDA C Program Generator for Bulk Execution of a
Sequential Algorithm . 178

Daisuke Takafuji, Koji Nakano, and Yasuaki Ito

Dynamically Spawning Speculative Threads to Improve Speculative
Path Execution . 192

Meirong Li, Yinliang Zhao, and You Tao

A Parallel Algorithm of Kirchhoff Pre-stack Depth Migration Based on
GPU . 207

Yida Wang, Chao Li, Yang Tian, Haihua Yan, Changhai Zhao, and
Jianlei Zhang

An Algorithm to Embed a Family of Node-Disjoint 3D Meshes into
Locally Twisted Cubes . 219

Lantao You and Yuejuan Han

GPU Acceleration of Finding Maximum Eigenvalue of Positive
Matrices . 231

Ning Tian, Longjiang Guo, Chunyu Ai, Meirui Ren, and Jinbao Li

Improving Speculation Accuracy with Inter-thread Fetching Value
Prediction . 245

Fan Xu, Li Shen, Zhiying Wang, Hui Guo, Bo Su, and Wei Chen

Towards Efficient Distributed SPARQL Queries on Linked Data 259
Xuejin Li, Zhendong Niu, and Chunxia Zhang

MRFS: A Distributed Files System with Geo-replicated Metadata 273
Jiongyu Yu, Weigang Wu, Di Yang, and Ning Huang

An Advanced Data Redistribution Approach to Accelerate the
Scale-Down Process of RAID-6 . 286

Congjin Du, Chentao Wu, and Jie Li

Thread Mapping and Parallel Optimization for MIC Heterogeneous
Parallel Systems . 300

Tao Ju, Zhengdong Zhu, Yinfeng Wang, Liang Li, and Xiaoshe Dong

Table of Contents – Part II XV

Efficient Storage Support for Real-Time Near-Duplicate Video
Retrieval . 312

Zhenhua Nie, Yu Hua, Dan Feng, Qiuyu Li, and Yuanyuan Sun

Repairing Multiple Data Losses by Parallel Max-min Trees Based on
Regenerating Codes in Distributed Storage Systems 325

Pengfei You, Yuxing Peng, Zhen Huang, and Changjian Wang

Exploiting Content Locality to Improve the Performance and Reliability
of Phase Change Memory . 339

Suzhen Wu, Zaifa Xi, Bo Mao, and Hong Jiang

Computing, Communication and Control
Technologies in Intelligent Transportation System
(3C in ITS 2014)

Application of Support Vector Machine in the Decision-Making of
Maneuvering . 352

Zhuang Qi, Zheng Chang, Hanbang Song, and Xinyu Zhang

Mobile Phone Data Reveal the Spatiotemporal Regularity of Human
Mobility . 359

Zihan Sun, Hanxiao Zhou, Jianfeng Zheng, and Yuhao Qin

Research on Large-Scale Vessel Riding Tidal Current to Promote
Efficiency of Fairway . 366

Kang Zhou, Ran Dai, and Xingwang Yue

A Vertex-Clustering Algorithm Based on the Cluster-Clique 376
Deqiang Wang, Bin Zhang, and Kelun Wang

Designed Slide Mode Controller for Ship Autopilot with Steering Gear
Saturation . 386

Gao-Xiaori, Hong-Biguang, Xing-Shengwei, and Li-Tieshan

Automatic Assessment Model for Sailing in Narrow Channel 396
Wang Delong and Ren Hongxiang

Bus Arrival Time Prediction and Release: System, Database and
Android Application Design . 404

Junhao Fu, Lei Wang, Mingyang Pan, Zhongyi Zuo, and Qian Yang

On Key Techniques of a Radar Remote Telemetry and Monitoring
System . 417

Jiangling Hao, Mingyang Pan, Deqiang Wang, Lining Zhao, and
Depeng Zhao

XVI Table of Contents – Part II

PSC Ship-Selecting Model Based on Improved Particle Swarm
Optimization and BP Neural Network Algorithm . 425

Tingting Yang, Zhonghua Sun, Shouna Wang,
Chengming Yang, and Bin Lin

LRPON Based Infrastructure Layout Planning of Backbone Networks
for Mobile Cloud Services in Transportation . 436

Song Yingge, Dong Jie, Lin Bin, and Ding Ning

Infrastructure Deployment and Dimensioning of Relayed-Based
Heterogeneous Wireless Access Networks for Green Intelligent
Transportation . 447

Lin Bin, Guo Jiamei, He Rongxi, and Yang Tingting

Vessel Motion Pattern Recognition Based on One-Way Distance and
Spectral Clustering Algorithm . 461

Wenyao Ma, Zhaolin Wu, Jiaxuan Yang, and Weifeng Li

Navigation Safety Assessment of Ship in Rough Seas Based on Bayesian
Network . 470

Fengde Qu, Fengwu Wang, Zongmo Yang, and Jian Sun

Optimization of Ship Scheduling Based on One-Way Fairway 479
Jun Lin, Xin-yu Zhang, Yong Yin, Jin-tao Wang, and Shun Yao

Research on Virtual Crew Path Planning Simulator Based on A*
Algorithm . 487

Huilong Hao, Hongxiang Ren, and Dajun Chen

Speech Recognition Applied in VHF Simulation System 496
Dajun Chen, Hongxiang Ren, and Huilong Hao

The Assessment of Risk of Collision between Two Ships Avoiding
Collision by Altering Course . 507

Weifeng Li, Wenyao Ma, Jiaxuan Yang, Guoyou Shi, and
Robert Desrosiers

The Merging Algorithm of Radar Simulation Data in Navigational
Simulator . 516

Shun Yao, Xin-yu Zhang, Yong Yin, Xin Xiong, and Jun Lin

Data Mining Research Based on College Forum . 525
Liming Xue, Zhihuai Li, and Weixin Luan

Simulation of Maritime Joint Sea-Air Search Trend Using 3D GIS 533
Xing Shengwei, Wang Renda, Yang Xuefeng, and Liu Jiandao

Table of Contents – Part II XVII

Quantitative Analysis for the Development of Maritime Transport
Efficiency . 543

Wenbo Zhang, Zhaolin Wu, Yong Liu, and Zebing Li

Security and Privacy in Computer and Network
Systems (SPCNS 2014)

Image Compression Based on Time-Domain Lapped Transform and
Quadtree Partition . 553

Xiuhua Ma, Jiwen Dong, and Lei Wang

The Applicability and Security Analysis of IPv6 Tunnel Transition
Mechanisms . 560

Wei Mi

QOS Performance Analysis for Flexible Workflow Supporting Exception
Handling . 571

Xiaoyan Zhu, Jingle Zhang, and Bo Wang

Analysis of Propagation Characteristics of Variant Worms 581
Tao Liu, Can Zhang, Mingjing Cao, and Ruping Wu

A Design of Network Behavior-Based Malware Detection System for
Android . 590

Yincheng Qi, Mingjing Cao, Can Zhang, and Ruping Wu

Detection and Defense Technology of Blackhole Attacks in Wireless
Sensor Network . 601

Huisheng Gao, Ruping Wu, Mingjing Cao, and Can Zhang

An Improved Remote Data Possession Checking Protocol in Cloud
Storage . 611

Enguang Zhou and Zhoujun Li

Fault Localization of Concurrency Bugs and Its Application in Web
Security . 618

Zhenyuan Jiang

Feature Selection Toward Optimizing Internet Traffic Behavior
Identification . 631

Zhenxiang Chen, Lizhi Peng, Shupeng Zhao, Lei Zhang, and
Shan Jing

ID-Based Anonymous Multi-receiver Key Encapsulation Mechanism
with Sender Authentication . 645

Bo Zhang, Tao Sun, and Dairong Yu

XVIII Table of Contents – Part II

Energy Efficient Routing with a Tree-Based Particle Swarm
Optimization Approach . 659

Guodong Wang, Hua Wang, and Lei Liu

A Context-Aware Framework for SaaS Service Dynamic Discovery in
Clouds . 671

Shaochong Li and Hao-peng Chen

Author Index . 685

Table of Contents – Part I

Porting the Princeton Ocean Model to GPUs . 1
Shizhen Xu, Xiaomeng Huang, Yan Zhang, Yong Hu,
Haohuan Fu, and Guangwen Yang

Web Service Recommendation via Exploiting Temporal QoS
Information . 15

Chao Zhou, Wancai Zhang, and Bo Li

Optimizing and Scaling HPCG on Tianhe-2: Early Experience 28
Xianyi Zhang, Chao Yang, Fangfang Liu, Yiqun Liu, and Yutong Lu

Understanding the SIMD Efficiency of Graph Traversal on GPU 42
Yichao Cheng, Hong An, Zhitao Chen, Feng Li, Zhaohui Wang,
Xia Jiang, and Yi Peng

A GPU Implementation of Clipping-Free Halftoning Using the Direct
Binary Search . 57

Hiroaki Koge, Yasuaki Ito, and Koji Nakano

A Reliable and Secure GPU-Assisted File System . 71
Shang-Chieh Lin, Yu-Cheng Liao, and Yarsun Hsu

Efficient Detection of Cloned Attacks for Large-Scale RFID Systems 85
Xiulong Liu, Heng Qi, Keqiu Li, Jie Wu, Weilian Xue,
Geyong Min, and Bin Xiao

Probability Based Algorithms for Guaranteeing the Stability of
Rechargeable Wireless Sensor Networks . 100

Yiyi Gao, Ce Yu, Jian Xiao, Jizhou Sun, Guiyuan Jiang, and
Hui Wang

PTAS for Minimum k -Path Connected Vertex Cover
in Growth-Bounded Graphs . 114

Yan Chu, Jianxi Fan, Wenjun Liu, and Cheng-Kuan Lin

A Simple and Effective Long Duration Contact-Based Utility Metric
for Mobile Opportunistic Networking . 127

Chyouhwa Chen, Wei-Chung Teng, and Yu-Ren Wu

Adaptive QoS and Security for Video Transmission over Wireless
Networks: A Cognitive-Based Approach . 138

Walid Abdallah, Suk kyu Lee, Hwagnam Kim, and
Noureddine Boudriga

Virtual Network Mapping Algorithm in Wireless Data Center
Networks . 152

Juan Luo, Wenfeng He, Keqin Li, and Yaling Guo

XX Table of Contents – Part I

A Weighted Centroid Based Tracking System in Wireless Sensor
Networks . 166

Hongyang Liu, Qianqian Ren, Longjiang Guo, Jinbao Li, Hui Xu,
Hu Jin, Nan Wang, and Chengjie Song

A Smartphone Location Independent Activity Recognition Method
Based on the Angle Feature . 179

Changhai Wang, Jianzhong Zhang, Meng Li, Yuan Yuan, and
Yuwei Xu

Reliable and Energy Efficient Routing Algorithm for WirelessHART 192
Qun Zhang, Feng Li, Lei Ju, Zhiping Jia, and Zhaopeng Zhang

A DSCP-Based Method of QoS Class Mapping between WLAN and
EPS Network . 204

Yao Liu, Gang Lu, Wei Zhang, Fengling Cai, and Qian Kong

HostoSink: A Collaborative Scheduling in Heterogeneous
Environment . 214

Xiaofei Liao, Xiaobao Xiang, Hai Jin, Wei Zhang, and Feng Lu

Load Balancing in MapReduce Based on Data Locality 229
Yi Chen, Zhaobin Liu, Tingting Wang, and Lu Wang

RD-PCA: A Traffic Condition Data Imputation Method Based on
Robust Distance . 242

XueJin Wan, Yong Du, and Jiong Wang

Network-Aware Re-Scheduling: Towards Improving Network
Performance of Virtual Machines in a Data Center 255

Gangyi Luo, Zhuzhong Qian, Mianxiong Dong, Kaoru Ota, and
Sanglu Lu

A Novel Petri-Net Based Resource Constrained Multi-project
Scheduling Method . 270

Wenbin Hu and Huan Wang

Interconnection Network Reconstruction for Fault-Tolerance of
Torus-Connected VLSI Array . 285

Longting Zhu, Jigang Wu, Guiyuan Jiang, and Jizhou Sun

An Ant Colony Optimization Algorithm for Virtual Network
Embedding . 299

Wenjie Cao, Hua Wang, and Lei Liu

Temperature-Aware Scheduling Based on Dynamic Time-Slice
Scaling . 310

Gangyong Jia, Youwei Yuan, Jian Wan, Congfeng Jiang,
Xi Li, and Dong Dai

Table of Contents – Part I XXI

An Improved Energy-Efficient Scheduling for Precedence Constrained
Tasks in Multiprocessor Clusters . 323

Xin Li, Yanheng Zhao, Yibin Li, Lei Ju, and Zhiping Jia

Hierarchical Eventual Leader Election for Dynamic Systems 338
Huaguan Li, Weigang Wu, and Yu Zhou

Efficient Resource Provisioning for Mobile Media Traffic Management
in a Cloud Computing Environment . 352

Mohammad Mehedi Hassan, Muhammad Al-Qurishi,
Biao Song, and Atif Alamri

A Community Cloud for a Real-Time Financial Application -
Requirements, Architecture and Mechanisms . 364

Marcelo Dutra Ös and Graça Bressan

Strategies for Evacuating from an Affected Area with One or Two
Groups . 378

Qi Wei, Yuan Shi, Bo Jiang, and Lijuan Wang

A Novel Adaptive Web Service Selection Algorithm Based on Ant
Colony Optimization for Dynamic Web Service Composition 391

Denghui Wang, Hao Huang, and Changsheng Xie

An Optimization VM Deployment for Maximizing Energy Utility in
Cloud Environment . 400

Jinhai Wang, Chuanhe Huang, Qin Liu, Kai He, Jing Wang,
Peng Li, and Xiaohua Jia

Performance Evaluation of Light-Weighted Virtualization for PaaS in
Clouds . 415

Xuehai Tang, Zhang Zhang, Min Wang, Yifang Wang,
Qingqing Feng, and Jizhong Han

An Access Control Scheme with Direct Cloud-Aided Attribute
Revocation Using Version Key . 429

Jiaoli Shi, Chuanhe Huang, Jing Wang, Kai He, and Jinhai Wang

Full and Live Virtual Machine Migration over XIA 443
Dalu Zhang, Xiang Jin, Dejiang Zhou, Jianpeng Wang, and Jiaqi Zhu

A Near-Exact Defragmentation Scheme to Improve Restore Performance
for Cloud Backup Systems . 457

Rongyu Lai, Yu Hua, Dan Feng, Wen Xia, Min Fu, and Yifan Yang

A Music Recommendation Method for Large-Scale Music Library on a
Heterogeneous Platform . 472

Yao Zheng, Limin Xiao, Wenqi Tang, and Li Ruan

XXII Table of Contents – Part I

GPU-Accelerated Verification of the Collatz Conjecture 483
Takumi Honda, Yasuaki Ito, and Koji Nakano

Reducing the Interconnection Length for 3D Fault-Tolerant Processor
Arrays . 497

Guiyuan Jiang, Jigang Wu, Jizhou Sun, and Longting Zhu

Feature Evaluation for Early Stage Internet Traffic Identification 511
Lizhi Peng, Hongli Zhang, Bo Yang, and Yuehui Chen

Hyper-Star Graphs: Some Topological Properties and an Optimal
Neighbourhood Broadcasting Algorithm . 526

F. Zhang, K. Qiu, and J.S. Kim

Customized Network-on-Chip for Message Reduction 535
Hongwei Wang, Siyu Lu, Youhui Zhang, Guangwen Yang, and
Weimin Zheng

Athena: A Fault-Tolerant, Efficient and Applicable Routing Mechanism
for Data Centers . 549

Lijun Lyu, Junjie Xie, Yuhui Deng, and Yongtao Zhou

Performance-Aware Data Placement in Hybrid Parallel File Systems 563
Shuibing He, Xian-He Sun, Bo Feng, and Kun Feng

Security Analysis and Protection Based on Smali Injection for Android
Applications . 577

Junfeng Xu, Shoupeng Li, and Tao Zhang

The 1st International Workshop on Emerging Topics
in Wireless and Mobile Computing (ETWMC 2014)

A Novel Key Management Scheme in VANETs . 587
Guihua Duan, Yun Xiao, Rui Ju, and Hong Song

Design and Implementation of Network Hard Disk 596
Hong Song, Jialong Xu, and Xiaoqiang Cai

Combining Supervised and Unsupervised Learning for Automatic
Attack Signature Generation System . 607

Lili Yang, Jie Wang, and Ping Zhong

The Study on the Increasing Strategy of Detecting Moving Target in
Wireless Sensor Networks . 619

Jialong Xu, Zhigang Chen, Anfeng Liu, and Hong Song

A CRC-Based Lightweight Authentication Protocol for EPCglobal
Class-1 Gen-2 Tags . 632

Zhicai Shi, Yongxiang Xia, Yu Zhang, Yihan Wang, and Jian Dai

Table of Contents – Part I XXIII

Test Case Prioritization Based on Genetic Algorithm and Test-Points
Coverage . 644

Weixiang Zhang, Bo Wei, and Huisen Du

SAEP: Simulated Annealing Based Ensemble Projecting Method for
Solving Conditional Nonlinear Optimal Perturbation 655

Shicheng Wen, Shijin Yuan, Bin Mu, Hongyu Li, and Lei Chen

Converting Ptolemy II Models to SpaceEx for Applied Verification 669
Shiwei Ran, Jinzhi Lin, Ying Wu, Jianzhong Zhang, and Yuwei Xu

Research on Interest Searching Mechanism in SNS Learning
Community . 684

Renfeng Wang, Junpei Liu, Haining Sun, and Zhihuai Li

The 5th International Workshop on Intelligent
Communication Networks (IntelNet 2014)

Improving the Frequency Adaptive Capability of Hybrid Immune
Detector Maturation Algorithm . 691

Jungan Chen, ShaoZhong Zhang, and Danjiang Chen

Cluster-Based Time Synchronization Protocol for Wireless Sensor
Networks . 700

Jian Zhang, Shiping Lin, and Dandan Liu

A Fast CABAC Algorithm for Transform Coefficients in HEVC 712
Nana Shan, Wei Zhou, and Zhemin Duan

A Improved PageRank Algorithm Based on Page Link Weight 720
Xinsheng Wang, Jianchu Ma, Kaiyuan Bi, and Zhihuai Li

Computation Offloading Management for Vehicular Ad Hoc Cloud 728
Bo Li, Yijian Pei, Hao Wu, Zhi Liu, and Haixia Liu

An Approach to Model Complex Big Data Driven Cyber Physical
Systems . 740

Lichen Zhang

The 5th International Workshop on Wireless
Networks and Multimedia (WNM 2014)

Reliable Transmission with Multipath and Redundancy for Wireless
Mesh Networks . 755

Wenze Shi, Takeshi Ikenaga, Daiki Nobayashi, Xinchun Yin, and
Yebin Xu

XXIV Table of Contents – Part I

Community Roamer: A Social-Based Routing Algorithm in
Opportunistic Mobile Networks . 768

Tieying Zhu, Cheng Wang, and Dandan Liu

A Self-adaptive Reliable Packet Transmission Scheme for Wireless
Mesh Networks . 781

Wenze Shi, Takeshi Ikenaga, Daiki Nobayashi, Xinchun Yin, and
Hui Xu

Distributed Efficient Node Localization in Wireless Sensor Networks
Using the Backtracking Search Algorithm . 794

Alan Oliveira de Sá, Nadia Nedjah, and Luiza de Macedo Mourelle

User Specific QoS and Its Application in Resources Scheduling for
Wireless System . 809

Chao He and Richard D. Gitlin

A Distributed Storage Model for Sensor Networks . 822
Lee Luan Ling

Relation between Irregular Sampling and Estimated Covariance for
Closed-Loop Tracking Method . 836

Bei-bei Miao and Xue-bo Jin

Author Index . 845

Parallel Data Processing in Dynamic Hybrid

Computing Environment Using MapReduce

Bing Tang1, Haiwu He2, and Gilles Fedak2

1 School of Computer Science and Engineering,
Hunan University of Science and Technology,

Xiangtan 411201, China
btang@hnust.edu.cn

2 University of Lyon, LIP Laboratory,
UMR CNRS - ENS Lyon - INRIA - UCB Lyon 5668,

46 allée d’Italie, 69364 Lyon Cedex 07, France
{haiwu.he,gilles.fedak}@inria.fr

Abstract. A novel MapReduce computation model in hybrid comput-
ing environment called HybridMR is proposed in the paper. Using this
model, high performance cluster nodes and heterogeneous desktop PCs
in Internet or Intranet can be integrated to form a hybrid computing en-
vironment. In this way, the computation and storage capability of large-
scale desktop PCs can be fully utilized to process large-scale datasets.
HybridMR relies on a hybrid distributed file system called HybridDFS,
and a time-out method has been used in HybridDFS to prevent volatility
of desktop PCs, and file replication mechanism is used to realize reliable
storage. A new node priority-based fair scheduling (NPBFS) algorithm
has been developed in HybridMR to achieve both data storage balance
and job assignment balance by assigning each node a priority through
quantifying CPU speed, memory size and I/O bandwidth. Performance
evaluation results show that the proposed hybrid computation model not
only achieves reliable MapReduce computation, reduces task response
time and improves the performance of MapReduce, but also reduces the
computation cost and achieves a greener computing mode.

Keywords: Hybrid Computing Environment, Distributed File System,
MapReduce, Volunteer Computing, Fault-tolerance.

1 Introduction

In the past decade, Desktop Grid and Volunteer Computing Systems (DGVCS’s)
have been proved an effective solution to provide scientists with tens of Ter-
aFLOPS from hundreds of thousands of resources. DGVCS’s utilize free comput-
ing, network and storage resources of idle desktop PCs distributed over Intranet
or Internet environments for supporting large-scale computation and storage.
DGVCS’s have been one of the largest and most powerful distributed comput-
ing systems in the world, offering a high return on investment for applications

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 1–14, 2014.
c© Springer International Publishing Switzerland 2014

2 B. Tang, H. He, and G. Fedak

from a wide range of scientific domains, including computational biology, climate
prediction, and high-energy physics [1] [2] [9].

MapReduce is an emerging programming model for data intensive application
which was first introduced by Google in 2004 [4], and has attracted a lot of
attentions recently. Hadoop is an open-source implementation of MapReduce,
which is widely used in Yahoo, Facebook and Amazon.

Recently, there are some other MapReduce implementations that are designed
for large-scale parallel data processing specialized on desktop grid or volunteer
resources in Intranet or Internet, such as BitDew-MapReduce [12], MOON [8],
P2P-MapReduce [10], VMR [3], etc. However, because there exists the correla-
tion of volunteer or desktop failures, in order to achieve long-term and sustained
high throughput, MapReduce implementations adapted to volatile desktop en-
vironments can not lack the support of high reliable cluster nodes.

To this end, this paper presents a hybrid computing environment, in which
the cluster nodes and the volunteer computing nodes are integrated. For this hy-
brid computing environment, we propose and implement a MapReduce parallel
computation model that takes advantages of the computing capability of these
two kinds of resource to execute reliable MapReduce tasks.

The main challenges include three aspects: the first is how to deal with task
failures caused by unreliable volunteer computing node failures, and the sec-
ond is how to store the input data, the intermediate data and the final results
for MapReduce applications, and the third is how to achieve MapReduce task
scheduling.

To solve the above problems, we proposed HybridMR, a new MapReduce
implementation for hybrid computing environment. Similar to the design of
Hadoop, HybridMR is also decomposed into two layers, namely, data storage
layer and MapReduce task scheduling and execution layer. First, a hybrid stor-
age system called HybridDFS composed of cluster nodes and volunteer nodes
is implemented, then MapReduce task scheduling is implemented. In order to
solve the volatility of volunteer nodes, we designed and implemented a node
fault-tolerance mechanism based on the “heartbeat” and time-out method. Fur-
thermore, an optimized scheduler taking into account performance differences
between cluster nodes and volunteer desktop nodes is also implemented.

2 Background and Related Work

2.1 MapReduce

MapReduce model borrows some ideas from functional programming. MapRe-
duce applications are based on a master-slave model. A MapReduce system
includes two basic computing units, Map and Reduce. The MapReduce program-
ming model allows the user to define a Map function and a Reduce function to
realize large-scale data processing and analyzing. In the first step, input data are
divided into chunks and distributed in a distributed file system, such as HDFS,
GFS. In the second step, Mapper nodes apply the Map function on each file
chunk. Then, the Partition phase achieves splitting the keys space on Mapper

Parallel Data Processing in Hybrid Computing Environment 3

node, so that each Reducer node gets a part of the key space. This is typically
done by applying a hash function to the keys although programmers can define
their own partition function. The new data produced are called the intermediate
results. In short, the Map function processes a (key, value) pair and returns a
list of intermediate (key, value) pairs:

map(k1, v1) → list(k2, v2). (1)

During the Shuffle phase, intermediate results are sent to their corresponding
Reducer. In the Reduce phase, Reducer nodes apply the Reduce function to
merge all intermediate values having the same intermediate key:

reduce(k2, list(v2)) → list(v3). (2)

At the end, all the results can be assembled and sent back to the master node,
and this is the Combine phase.

2.2 MapReduce on Non-dedicated Computing Resources

Besides the original MapReduce implementation by Google [4], several other
MapReduce implementations have been realized within other systems. Some fo-
cused on providing more efficient implementations of MapReduce components,
such as the scheduler [13] and the I/O system, while others focused on adapting
the MapReduce model to specific computing environments, like shared-memory
systems, graphics processors, multi-core systems, volunteer computing environ-
ments and Desktop Grids [12].

BitDew-MapReduce proposed by Tang et al. [12] is specifically designed to
support MapReduce applications in Desktop Grids, and exploits the BitDew
middleware [5], which is a programmable environment for automatic and trans-
parent data management on Desktop Grid, Grid and Cloud. BitDew relies on a
specific set of metadata to drive key data management operations, namely life
cycle, distribution, placement, replication and fault-tolerance with a high level
of abstraction.

Marozzo et al. [10] proposed P2P-MapReduce which exploits a peer-to-peer
model to manage node churn, master failures, and job recovery in a decentralized
but effective way, so as to provide a more reliable MapReduce middleware that
can be effectively exploited in dynamic Cloud infrastructures.

Another similar work is VMR [3], a volunteer computing system able to run
MapReduce applications on top of volunteer resources, spread throughout the
Internet. VMR leverages users bandwidth through the use of inter-client com-
munication, and uses a lightweight task validation mechanism.

Another system that shares some of the key ideas with HybridMR is MOON
[8]. It is a system designed to support MapReduce jobs on opportunistic envi-
ronments. It extends Hadoop with adaptive task and data scheduling algorithms
to offer reliable MapReduce services on a hybrid resource architecture.

There are also some work about using node availability prediction method
to enable Hadoop running on unreliable Desktop Grid or using non-dedicated
computing resources [6] [7].

4 B. Tang, H. He, and G. Fedak

3 System Architecture

In this section we describe the architecture of HybridMR. First, we present an
overview of the system, then we focus on the algorithms and implementation
of the main components of HybridMR and we highlight the main scheduling
algorithm.

3.1 General Overview

HybridMR is composed of reliable cluster nodes and volatile desktop PCs, which
is simple but effective. MapReduce applications can be run in this hybrid envi-
ronment to analyze and process large amounts of datasets. The architecture of
proposed hybrid MapReduce computing system is shown in Fig. 1.

Client Node

1. Upload data

Desktop Worker

Server

3. Schedule data/task

Map/Reduce

Map/Reduce

Map

Reduce

Map

2. Submit task

4. Task status report

Intermediate data transfer

Map

5. Download final results

Cluster Worker

3. Schedule task/data

4. Task status report

Map/Reduce

Intermediate data
transfer

Fig. 1. Architecture of hybrid MapReduce computing system

As is shown in Fig. 1, the system is designed with a hierarchical architecture.
The top layer is the user layer, and the middle layer is the service layer, and
the bottom layer is the resource layer. Four different service components are im-
plemented in service layer, namely, data storage service, metadata service, data
scheduler service, Map/Reduce task scheduler service. Resource layer contains
two types of resource: the first is reliable cluster nodes (Cluster Workers), and

Parallel Data Processing in Hybrid Computing Environment 5

the second is large number of unreliable volunteer nodes (Desktop Workers),
which join the system in a voluntary way. These two types of resource are both
computing and storage resources,

Similar to existing MapReduce systems, data storage layer and MapReduce
task scheduling layer are also separated in our proposed model. The proposed
model relies on a hybrid distributed file system, called HybridDFS, which can
also be run independently as a sub-component. HybridDFS has similar charac-
teristics with HDFS and GFS that data are stored in block. The difference is
that HybridDFS defines two different types of data storage nodes, the reliable
cluster nodes and unreliable volunteer nodes. To sum up, in our proposed model
we implemented:

– ClientNode, provides interface to access data and submit jobs;
– NameNode, provides metadata services;
– DataNode, provides data storage services;
– WorkerNode, provides Map/Reduce task computing services;
– TrackerNode, provides Map/Reduce task monitoring services.

Among them, DataNode and WorkerNode can be deployed in cluster nodes
or volunteer nodes, while NameNode and TrackerNode can only be configured
in server. The main working principle of the system is shown as follows:

– Step 1: ClientNode uploads input data that will be analyzed and processed
to HybridDFS;

– Step 2: ClientNode submits task, specifying the data stored in HybridDFS
which will be processed;

– Step 3: Scheduled by data scheduler and MapReduce scheduler, the Map
tasks and Reduce tasks are allocated to cluster nodes and volunteer nodes.
In the meanwhile, MapReduce scheduler controls the transmission of inter-
mediate data;

– Step 4: Cluster nodes and volunteer nodes regularly send “heartbeat” sig-
nals to MapReduce scheduler to report task status;

– Step 5: Once all of the tasks have completed, ClientNode can download
final results from HybridDFS.

3.2 Design Overview of HybridDFS

In HybridDFS, each node contributes a certain space to store files. As we can see
in Fig. 2, large file is first separated into chunks, then all chunks stored in different
locations. As volunteer nodes are volatile, the chunks stored in volunteer nodes
may become unavailable. Therefore, replication approach is utilized to achieve
fault-tolerance.

HybridDFS is designed to support large files. A file is split into one or more
blocks and these blocks are stored in a set of DataNodes. All blocks in a file
except the last block are the same size. The blocks of a file are replicated for
fault-tolerance. The block size and replication factor are configurable per file, and
a typical block size is 64 MB. Users or applications can define the replication

6 B. Tang, H. He, and G. Fedak

Node 1

Node 2

PC
La

rg
e

F
ile

Chk

Chk

Chk

Chk

Chk

Chk

…
…

Chk

Node 3

PC

PC

PC Chk Chk

Chk

Chk Chk Chk

Chk

Chk

Chk

Chk

Chk

Chk

V
ol

u
nt

e
er

 N
o

de
s

C
lu

st
er

 N
od

es

Chk Chk

split

Fig. 2. The principle of file separation and storage for large files in HybridDFS

factor Rs :Rv at file creation time in HybridDFS, where Rs means the number of
replicas of the file stored in cluster nodes, and Rv means the number of replicas
of the file stored in volunteer nodes. For example, 1:2 means storing one copy in
cluster nodes, and two copies in volunteer nodes at the same time.

unconnected offline

online

Fig. 3. Node status migration chart

Unlike previous systems, HybridDFS doesn’t differentiate transient failure
from permanent failure particularly [11]. We define three node statuses: online,
offline, and unconnected, and the status migration chart is shown in Fig. 3.
Different with others which usually consider the status dead, there is a special
unconnected status. The failure detection is achieved by the method of periodi-
cally synchronization (“heartbeat”). It uses a simple timeout threshold approach
to detect both short-term failure and long-term failure. We define two thresh-
olds in this model: Synchronization Interval Time (SIT) and Failure Timeout
Time (FTT). If the failure timeout period has expired, a node failure is detected
(that becomes offline). In order to tolerate node failures, especially the volun-
teer node failures, HybridDFS uses a Timeout method to detect node failures.

Parallel Data Processing in Hybrid Computing Environment 7

Time

1: Node on

0: Node off

Failure Timeout Period

update
alivetime

update
alivetime

join join

unconnected
sync

offline

expected syncTime between two sync

Time between two sync

Fig. 4. Node synchronization and timeout-based node failure detection method. The
detailed migration of three situations: 1) node migration from online to offline; 2) node
migration from offline to online; 3) re-join (recover) in a short-time from unconnected
to online.

As the response of “heartbeat” report, the replicas of file blocks are distributed
to different volunteer PCs or cluster nodes.

Volatile nodes declare their availability to the system through periodical syn-
chronization (an interval of SIT) with the server. During each synchronization,
the value of variable alivetime is updated to the current time. If the difference
between the value of variable alivetime and the current time exceeds FTT, this
node becomes offline. The detailed migration of three situations are demon-
strated in Fig. 4. The green dots stand for periodically node synchronization or
node joining to the system, and there is also a updating of the variable alivetime
associated with each green dot. The blue dots stand for unconnected, while the
red dots stand for offline which means an node failure is detected. Both the blue
dots and red dots indicate that a node synchronization is expected, because the
node has already lost the communication with the server.

MapReduce applications demand advanced requirements for HybridDFS. Hy-
bridDFS acts as the data storage layer, while storage nodes should also run
MapReduce tasks. HybridDFS encapsulates methods and interfaces, which al-
low MapReduce applications get to know how the data is separated, and the
physical location of blocks can be queried, and the tasks are scheduled to stor-
age nodes by MapReduce scheduler.

3.3 MapReduce Algorithm and Implementation

The client submits the job that specifies the data to be processed which has
already been stored in HybridDFS. By calling HybridDFS API interface, data
blocking method and the physical storage location of each data block are ob-
tained. According to the file replication attributes Rs :Rv, one copy of each data
block in chosen to run Map task. The large data to be analyzed and processed
is denoted by Data, which is divided into n blocks, and each block is denoted
by di. The intermediate results for selected blocks when Map task completed

8 B. Tang, H. He, and G. Fedak

is denoted by IRi. At the Shuffle stage, intermediate results are divided into r
groups, and each group is written to HybridDFS. Then, r nodes are selected to
run Reduce tasks, and each node reads the corresponding intermediate results
IRj from HybridDFS. When all Reduce tasks are completed, the final results
are denoted by Outputj. Throughout all stages in a MapReduce application, n
Mappers (depending on the number of blocks) and r Reducers (defined by the
client node when submitting the task) are launched. MapReduce process can be
simply described by the following equations:

Data =
⋃

i=1:n

di (3)

Map(Data) =
⋃

i=1:n

Map(di) (4)

Map(di) =
⋃

j=1:r

IRi
j (5)

Reduce(
⋃

i=1:n

IRi
j) = Outputj (6)

In designing the runtime of HybridMR, the general fast/slow nodes detection
and fast/slow tasks detection approaches are not fit for this hybrid heteroge-
nous environment, because CPU speed of cluster nodes are always faster than
desktop PCs. In existing MapReduce computing models for desktop grid envi-
ronment, such as BitDew-MapReduce [12], the FIFO scheduling policy is usually
employed when processing “heartbeat” report, that the data chunks are assigned
in the order that “heartbeat” arrived, without other biases or preferences. In Hy-
bridMR implementation, we developed a new node priority-based fair scheduling
(NPBFS) algorithm. In the hybrid heterogenous environment, hardware config-
urations of WorkerNodes or DataNodes are diverse, which proposes an urgent
need of a fair algorithm that the node with stronger computing capability should
process more jobs.

Therefore, using NPBFS algorithm, the objective is to achieve two kinds of
balance in HybridMR: data placement balance (adaptively balances the amount
of data stored in each node considering storage capability of each node) and
job assignment balance (adaptively balances the task queue length in each node
considering computing capability of each node). In HybridMR implementation,
job priority isn’t considered, instead we focus on node priority, and developed a
node rank method considering the hardware configurations. We quantify CPU
speed, memory size, network and disk I/O bandwidth, then calculate the Rweight

for each DataNode and WorkerNode, according to the equations as follows:

Rcapacity = α ∗Rcpu ∗Rcore + βRmem + δRbandwidth (7)

Rstorageload =
∑
i

(BlockNum[i].datasize) (8)

Parallel Data Processing in Hybrid Computing Environment 9

Rworkload =
∑
i

(TaskNum[i].datasize) (9)

Rweight =
Rworkload +Rstorageload

Rcapacity
(10)

where α, β, and δ are three weight coefficients used to quantify node capacity, and
Rstorageload denotes the total size of chunk stored in a DataNode, and Rworkload

denotes the total size of data to be processed by Map tasks and Reduce tasks in a
WorkerNode, so the value of Rworkload reflects approximatively the length of task
queue. Both cluster nodes and desktop PCs are usually configured as DataNode
and WorkerNode simultaneously, therefore we use Rweight to measure the degree
of balance between capacity and load in heterogeneous environment. When a
node sends the “heartbeat” report, the updated Rweight value is capsulated in
the report. The server receives and stores all Rweight value, and all nodes are
then sorted by their Rweight value. A smaller value of Rweight means a higher
node priority, and therefore more jobs should be assigned to it, or more file
chunks should be placed on it. In this algorithm, Rcpu is measured in GHz,
and Rmem is measured in GB, while Rbandwidth is measured in 100Mbps. Both
BlockNum[i].datasize and TaskNum[i].datasize are measured in GB.

We define a threshold Thweight to distinguish overloaded nodes as follow,

Thweight = ξ [max(Rweight[j])−min(Rweight[j])] + min(Rweight[j]) (11)

where ξ is an adjustment factor. When a node sends the “heartbeat”, if Rweight >
Thweight, the server must stop placing new chunks or allocating newMap/Reduce
tasks to this overloaded node; otherwise, it means that this is not an overloaded
node which can accept more jobs.

4 Performance Evaluation

4.1 Platform Description

The prototype system of HybridMR is implemented by Java. In order to evaluate
the performance, we performed our experiments in the campus local area network
environment, and hadoop-0.21.0 is used for comparison. Both HybridMR and
Hadoop ran on Ubuntu Linux system. In order to evaluate NPBFS algorithm,
the parameters are set to empirical values. Three weight coefficients α, β, and δ
are set to 0.4, 0.2, 0.4, respectively, and the value of adjustment factor ξ is 0.6.
Our experimental hardware platforms are described as follows:

(1) Both the NameNode and TrackerNode are configured with Xeon E5-2603
Quad-Core 1.8GHz CPU, 4GB memory, and 1Gbps ethernet.

(2) We used 24 cluster nodes, and each node is configured with AMD Opteron
8378 Quad-Core 2.4GHz CPU, 8GB memory, and 1Gbps ethernet.

(3) In the students’ laboratory, we used 72 desktop PCs, configured with Intel
Core 2 Duo E6300 1.86GHz CPU, 1GB memory, and 100Mbps ethernet for each.

10 B. Tang, H. He, and G. Fedak

4.2 Throughput of HybridDFS I/O

We have implemented a set of micro-benchmarks, and have measured the achieved
throughput as more and more concurrent clients access HybridDFS. Since that
MapReduce applications need the “write-once-read-many” model, we evaluated
the I/O performance when a single client writes data and concurrent clients read
data. We also compared HybridDFS with HDFS.

Scenario 1: Single Writer, Single File. We first measure the performance of
HybridDFS when a single client writes a file whose size gradually increases. The
size of data chunks in HybridDFS is 64 MB. This test consists in sequentially
writing a unique file of N *64 MB(N goes from 1 to 192). Block allocation is also
based on the node priority-based fair scheduling policy which is explained before,
in order to achieve placing data across DataNodes in balance. We measure the
time spend for file separation and file distribution, and then calculate the write
throughput. We measure the write throughput in three conditions:

– HybridDFS - 24 cluster nodes and 72 desktop PCs;
– HDFS - 24 cluster nodes and 72 desktop PCs;
– HDFS - 24 cluster nodes only.

The results can be seen on Fig. 5(a). The value of SIT and FTT are set to 10s
and 30s, respectively. The file replication attribute setting is Rs :Rv=1:2, which
means that storing one copy in cluster nodes and two copies in desktop nodes.
Therefore, the total number of blocks of a large file stored in HybridDFS is N *3.
As the file size increases, the change of throughput is very tiny. Obviously, we
obtain the worst results when only 24 cluster nodes are used, and HDFS achieves
higher throughput than HybridDFS when 24 cluster nodes and 72 desktop PCs
are used. Because HybridDFS uses NPBFS to realize storage balance, it delays
the write client, that is the main reason why HybridDFS is inferior.

Scenario 2: Concurrent Readers, Shared File. In this scenario, N clients
read parts from the file concurrently; each client reads different 64 MB chunks.
This pattern where multiple readers request data is very common in the “map”
phase of a Hadoop MapReduce application, where the mappers read the input
file in order to parse (key, value) pairs. When a single client finished writing a file
of 192*64 MB to HybridDFS, for each given number N of clients varying from
1 to 192, we executed the experiments and calculated the average throughput.
The total size of chunks read by N clients is exactly 192*64 MB. Fig. 5(b) shows
the results of average throughput of concurrent read clients. When the number
of concurrent clients is more than 64, less than 3 chunks are allocated to each
client in average. As the increase of concurrent read clients, the metadata query
load and data traffic increases, which causes a decrease of average throughput.
The same as Scenario 1, HDFS also outperforms HybridDFS when 24 cluster
nodes and 72 desktop PCs are used, but there is only little difference between
average throughput of HybridDFS and HDFS. HybridDFS reaches a relatively
high throughput.

Parallel Data Processing in Hybrid Computing Environment 11

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

File size (GB)

T
hr

ou
gh

pu
t (

M
B

/s
)

HybridDFS − Cluster & PC
HDFS − Cluster & PC
HDFS − Cluster only

(a) Throughput of single write client.

0 32 64 96 128 160 192
0

10

20

30

40

50

60

70

80

Number of clients

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

M
B

/s
)

HybridDFS − Cluster & PC
HDFS − Cluster & PC
HDFS − Cluster only

(b) Average throughput of multi-read
clients.

Fig. 5. Throughput of HybridDFS I/O

4.3 MapReduce Job Completion Time

In order to evaluate how well HybridDFS performs in the role of storage layer for
real MapReduce applications, we select two standard MapReduce applications
WordCount (reads text files and counts how often words occur) and Distributed
Grep (extracts matching strings from text files and counts how many times they
occurred). For these two applications, the chunk size of input text files is still 64
MB.

We evaluated MapReduce job completion time as the size of input text file
changes. The same as read/write throughput evaluation, in order to compare
HybridMR with Hadoop, we also measured three conditions.

The results for WordCount and Distributed Grep are shown in Fig. 6(a) and
6(b), respectively. The maximal size of text file is 12 GB in our experiments.
Distributed Grep application has a different MapReduce pattern compared with
WordCount application. For WordCount application, the Reduce stage is com-
plex, and takes more time than the Map stage. For Distributed Grep application,
the Reduce stage is very simple, and it just collects and sums up the intermediate
results. As you can see from these two figures, as the increase of input text file
size, job completion time also increases. From these two figures, we can see that
there is also only little performance difference between HybridDFS and HDFS.

4.4 Scheduler Optimization

In this scenario, experiments on WordCount application and Distributed Grep
application have also been performed to testify the efficiency of the node priority-
based fair scheduling (NPBFS) algorithm. We also evaluated job completion
time, while we compared two scheduling policies: 1) using NPBFS scheduler; 2)
not using NPBFS scheduler. We measure how many performance improvements
are caused by NPBFS scheduler. If the NPBFS scheduler is not used, the server

12 B. Tang, H. He, and G. Fedak

0 2 4 6 8 10 12
0

100

200

300

400

500

600

700

WordCount

Text size (GB)

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

HybridMR − Cluster & PC
Hadoop − Cluster & PC
Hadoop − Cluster only

(a) WordCount application

0 2 4 6 8 10 12
0

50

100

150

200

250

300

350
Distributed Grep

Text size (GB)

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

HybridMR − Cluster & PC
Hadoop − Cluster & PC
Hadoop − Cluster only

(b) Distributed Grep application

Fig. 6. Job completion time for WordCount and Distributed Grep

doesn’t consider any information or attributes of nodes and all nodes are treated
equally, which may cause the problem that assigning a lot of tasks to slow desktop
PCs. HybridMR is deployed on 24 cluster nodes and 72 desktop PCs, then we run
WordCount and Distributed Grep again, and measure the job completion time,
varying the input text file size from 2 GB to 10 GB. The results are shown in
Fig. 7(a) and 7(b), respectively. These two figures indicate that NPBFS scheduler
improves the whole system and makes it more balanced, decreases the overall job
response time. When the text file size is 10 GB, the performance improvement
is 26.6% for WordCount, while it is 19.9% for Distributed Grep.

0

50

100

150

200

250

300

350

2 4 6 8 10

Text size (GB)

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

Without NPBFS

With NPBFS

(a) WordCount application

0

20

40

60

80

100

120

2 4 6 8 10

Text size (GB)

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

Without NPBFS

With NPBFS

(b) Distributed Grep application

Fig. 7. Performance improvements when the node priority-based fair scheduling policy
is used

4.5 Fault-Tolerance

In this scenario, we compare HybridMR with Hadoop in terms of fault-tolerance
performance, in order to justify the robustness of HybridMR. We emulate node
crashes through generating failures by randomly selecting desktop PCs and

Parallel Data Processing in Hybrid Computing Environment 13

killing the MapReduce process, during the MapReduce tasks execution period.
Failures are independents and occur sequentially. During the experiment, both
Hadoop and HybridMR are deployed on a hybrid environment composed of 24
cluster nodes and 72 desktop PCs. We run the WordCount and Distributed Grep,
which represents two different realistic situations, and the input text file size is
12 GB. The results are shown in Fig. 8(a) and 8(b), respectively.

When the number of failures injected are varied from 10 to 40, we measure
the job completion time, which are then compared with the normal situation
that without any failures. The interval between two failure injections is 60s.
We observe that HybridMR outperforms Hadoop in terms of fault-tolerance
performance. Compared with the normal situation, in the worst situation that 40
nodes are crashed, for WordCount application, the job completion time increases
by around 252.7% for Hadoop and only 43.8% for HybridMR; for Distributed
Grep application, it increases by around 313.8% for Hadoop and only 127.1%
for HybridMR. The improvement of HybridMR over Hadoop in terms of fault-
tolerance performance is quite clear when the number of failure injected is beyond
30. This reveals the robustness of HybridMR, which can accept a large number
of faults with reasonable performance overhead.

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40

#Crashed node

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

Hadoop

HybridMR

(a) WordCount application

0

50

100

150

200

250

300

350

0 10 20 30 40

#Crashed node

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

Hadoop

HybridMR

(b) Distributed Grep application

Fig. 8. Fault-tolerance performance comparison between HybridMR and Hadoop

5 Conclusion

This paper presented a MapReduce parallel model for data-intensive comput-
ing in dynamic hybrid computing environments, integrating the idle desktop PC
resources in the Internet or Intranet with high reliable and high performance clus-
ter nodes to form a hybrid computing environment. The proposed new MapRe-
duce model consists of HybridDFS layer, a new hybrid distributed file system,
and MapReduce task scheduling layer. Data replication and replacement mecha-
nism are utilized to guarantee the reliability of storage and computing. Security
issues will be considered in the future. Performance test results show that the
new model is not only able to achieve a higher throughput and efficiency, but
also able to achieve the “green computing” goal. Companies and schools can
leverage existing idle desktop PC resources running MapReduce job for massive

14 B. Tang, H. He, and G. Fedak

data analysis, and the proposed method also reduces the computational cost
overhead, which has a great potential.

Acknowledgments. This work is supported by the French Agence Nationale
de la Recherche through the MapReduce grant under contract ANR-10-SEGI-
001-01, as well as INRIA ARC BitDew. This work is also supported by Sci-
entific Research Fund of Hunan Provincial Education Department under grant
no. 12C0121, Hunan University of Science and Technology Research Fund under
grant no. E51097.

References

1. Anderson, D.P.: Boinc: A system for public-resource computing and storage. In:
Buyya, R. (ed.) GRID, pp. 4–10. IEEE Computer Society (2004)

2. Cappello, F., Djilali, S., Fedak, G., Hérault, T., Magniette, F., Néri, V., Lody-
gensky, O.: Computing on large-scale distributed systems: Xtremweb architecture,
programming models, security, tests and convergence with grid. Future Generation
Comp. Syst. 21(3), 417–437 (2005)

3. Costa, F., Veiga, L., Ferreira, P.: Internet-scale support for map-reduce processing.
J. Internet Services and Applications 4(1), 1–17 (2013)

4. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

5. Fedak, G., He, H., Cappello, F.: Bitdew: A data management and distribution
service with multi-protocol file transfer and metadata abstraction. J. Network and
Computer Applications 32(5), 961–975 (2009)

6. Jin, H., Yang, X., Sun, X.H., Raicu, I.: Adapt: Availability-aware mapreduce data
placement for non-dedicated distributed computing. In: ICDCS, pp. 516–525. IEEE
(2012)

7. Lee, K., Figueiredo, R.J.O.: Mapreduce on opportunistic resources leveraging re-
source availability. In: CloudCom, pp. 435–442 (2012)

8. Lin, H., Ma, X., Chun Feng, W.: Reliable mapreduce computing on opportunistic
resources. Cluster Computing 15(2), 145–161 (2012)

9. Litzkow, M.J., Livny, M., Mutka, M.W.: Condor - a hunter of idle workstations.
In: ICDCS, pp. 104–111 (1988)

10. Marozzo, F., Talia, D., Trunfio, P.: P2P-Mapreduce: Parallel data processing in
dynamic cloud environments. J. Comput. Syst. Sci. 78(5), 1382–1402 (2012)

11. Tang, B., Fedak, G.: Analysis of data reliability tradeoffs in hybrid distributed
storage systems. In: IPDPS Workshops, pp. 1546–1555. IEEE Computer Society
(2012)

12. Tang, B., Moca, M., Chevalier, S., He, H., Fedak, G.: Towards mapreduce for
desktop grid computing. In: Xhafa, F., Barolli, L., Nishino, H., Aleksy, M. (eds.)
3PGCIC, pp. 193–200. IEEE Computer Society (2010)

13. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R.H., Stoica, I.: Improving mapre-
duce performance in heterogeneous environments. In: Draves, R., van Renesse, R.
(eds.) OSDI, pp. 29–42. USENIX Association (2008)

Fast Scalable k-means++ Algorithm

with MapReduce

Yujie Xu1, Wenyu Qu1, Zhiyang Li1, Changqing Ji1,2,
Yuanyuan Li1,3, and Yinan Wu4

1 School of Information Science and Techology,
Dalian Maritime University, Dalian, China, 116026
{yujiex.dlmu,eunice.qu,lizy0205}@gmail.com

2 School of Physical Science and Technology,
Dalian University, Dalian, China, 116622

jcqgood@gmail.com
3 School of Software,

Dalian Jiaotong University, Dalian, China, 116028
lyy3232312@sohu.com

4 Department of Equipment, Unit 91550 of PLA,
Dalian, China, 116023
wyn0302lw@163.com

Abstract. K-means++ is undoubtedly one of the most important ini-
tializing algorithms for k-means owing to its provable approximation
guarantee to the optimal solution. However, due to its sequential nature,
k-means++ requires a large number of iterations to complete the initial-
ization and it becomes inefficient as the size of data increase. Even though
scalable k-means++ can drastically reduce the iterations and can be eas-
ily applied to the MapReduce systems, but due to its sequential nature,
it still requires two MapReduce jobs in each round. Moreover, it takes
a large number of I/O cost and it is time-consuming. In this paper, we
propose Oversampling and Refining (OnR) method which can improve
efficiency of scalable k-means++ by using only one MapReduce job to
obtain Ω(k) centers in each round. Except for the oversampling factor
� of scalable k-means++, OnR uses another oversampling factor o to
further increase the number of chosen centers. Oversampling is executed
on the Mapper phase, and in Reducer phase, one Reducer is responsible
for removing the oversampled centers generated from o and outputs a set
of centers which is the same as the output of scalable k-means++. To
reduce the expensive network cost caused by too large o, OnR estimates
the global cost by the local clustering cost and uses it to remove some
wrong points in Mapper phase. Extensive experiments on real data are
conducted and the performance results indicate that OnR outperforms
scalable k-means++ in the aspect of I/O cost and running time.

1 Introduction

Clustering has been applied in many areas of computer science and its related
fields, such as data mining, pattern recognition and image retrieval [1–4]. K-means

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 15–28, 2014.
c© Springer International Publishing Switzerland 2014

16 Y. Xu et al.

is one of the most widely used clustering methods, but it suffers from the well-
known problem that converges to a local optimum. Due to the reason that it is
highly dependent upon the chosen of initial centers. In recent years, many re-
searches have focused on improving its initialization method [5,6]. An important
piece of work in this direction is the k-means++ [7]. This algorithm is fast with
small data in practice. Moreover, it obtains an O(logk) approximation solution
to the optimal result of k-means and gives a theoretical guarantee firstly.

However, the era of big data poses new challenges for k-means++ algorithm.
Although it can be run on the MapReduce [8], and there are also many clustering
algorithms [9–12] run on MapReduce platform efficiently in practice, k-means++
is an exception. The fundamental reason is that k-means++ is a sequential
algorithm and it is lack of scalability. That is the probability a point is chosen
to be a center strongly depends on the previous centers. K-means++ algorithm
chooses one center in each round and it needs k rounds over the data to produce
the expected initial centers. This requires many iterative computations. For a
single computer, iterative computation is common and it is easily implemented.
While for the MapReduce framework, it does not directly support these iterative
data analysis applications. Instead, we must implement iterative programs by
manually issuing multiple MapReduce jobs and this renders the data must be
re-loaded and re-processed at each iteration, wasting I/O, network and CPU
resources [13, 14].

To reduce the number of rounds of k-means++, Bahman Bahmani et al. pro-
posed scalable k-means++ algorithm [15]. We show it in Section 3 in more detail.
It is a parallel version of the inherently sequential k-means++. Instead of choos-
ing one point in each round, scalable k-means++ uses the oversampling method
to choose � = Ω(k) points. Hence, it can drastically reduce the iteration rounds
from k to approximate O(logψ). Scalable k-means++ enhances the scalability of
k-means++ and it is easily paralleled in MapReduce framework. Another merit
of it is that it achieves an O(logk) approximation to the k-means objective.

However, scalable k-means++ does not thoroughly break the inherent se-
quential nature of k-means++. Thus, it is embarrassingly parallel and can not
be executed on MapReduce-based systems efficiently. Considering that there is
no communication between Mappers, MapReduce scalable k-means++ requires
two MapReduce jobs to complete in each round. The first job chooses � centers
and combines them. The second one is responsible for computing the cluster-
ing cost. Therefore, it has to iterate O(logψ) rounds and at least 2 ∗ O(logψ)
MapReduce jobs to choose the initial centers. As mentioned above, MapReduce
does not directly support iterative analysis applications, when logψ is large, it
is time-consuming and we cannot put up with so many MapReduce jobs. In
addition, it incurs large amount of network and I/O overhead.

This paper proposes an efficient parallel scalable k-means++ algorithm which
is called Oversampling and Refining (OnR) in the situation of big data by virtue
of MapReduce. The main idea of OnR is to use only one MapReduce job, instead
of two jobs, to complete the task of choosing new centers and computing cluster-
ing cost. For lack of communication in Mapper phase, we could not compute the

Fast Scalable k-means++ Algorithm with MapReduce 17

total clustering cost of the centers chosen from the previous round in Mapper
phase, thus each Mapper chooses centers with the clustering cost of the centers
chosen from before the previous round. Since this clustering cost is smaller than
the real value, except for oversampling factor �, OnR uses another oversampling
factor o to further increase the number of points in Mapper phase. Since, each
Mapper has obtained the centers chosen from the previous round, another im-
portant work of each Mapper is to calculate the local clustering cost of these
centers. In Reducer phase, one Reducer adds all local clustering cost, and uses
it to remove the oversampled points generated from o.

The major contributions of this paper are:

1. We propose Oversampling and Refing method which is an efficient scalable
k-means++ algorithm with MapReduce. It uses only one MapReduce job to
complete the task of choosing centers and computing clustering cost in each
round, avoiding too many jobs on multiple machines and thus reducing a
large number of I/O cost.

2. To reduce the network cost and the running time caused by too large over-
sampling factor o, our method OnR estimates the global cost by the local
clustering cost and uses it to remove some oversampling points in Mapper
phase. This measure also reduces the workload of Reducer.

3. Extensive experiments on real data are conducted. Comparing with scalable
k-means++, experimental results indicate that without increasing the net-
work cost, OnR reduces a large amount of I/O cost. It also saves more than
50% time and provides a good approximation to k-means.

The rest of this paper is organized as follows. Section 2 presents the useful
preliminaries. The details of our method are discussed in Section 3, where we
first describe MapReduce scalable k-means++ algorithm in Section 3.1, and then
present Oversampling and Refining method int Section Section 3.2. Finally, we
give some discussion and analysis in Section 3.3. Section 4 reports the experi-
mental results. Finally, Section 5 concludes the paper.

2 Preliminaries

To provide a technical context for the discussion in this paper, we begin with
preliminaries. First, we give the definition of clustering cost. Then, we describe
the scalable k-means++ algorithm in more detail.

Given a data set X = {x1, x2, ..., xn} in d-dimensional space and let ||xi−xj ||
denote the Euclidean distance between xi and xj , the centers set C = {c1, ..., ck}
divides X into k exhaustive clusters and the following function is the clustering
cost.

φX(C) =
∑
x∈X

min
c∈C

||x− c||2

Scalable k-means++ [15] modifies the initialization setup of k-means++ [7]
and obtains an efficient parallel version. Seeing the following algorithm, instead

18 Y. Xu et al.

of choosing one point as a center, it uses the oversampling method and chooses
� = Ω(k) centers in each round. Firstly, it uniformly at random chooses an
initial center and computes the initial clustering cost ψ of this center. Then,
this method iterates O(logψ) times. In each iteration, given the current set C of
centers, each point x is chosen to be a center with probability �∗d2(x,C)/φX(C).
The sampled points are then added to C. Finally, the algorithm updates φX(C)
and the iteration continues. Since the number of chosen points is more than k
(the expected number of points in C is �∗O(logψ)) after the O(logψ) iterations,
it uses a weighted k-means++ to obtain the final k centers.

Algorithm 1. Scalable k-means++ Initialization

Input : k, the number of clusters.
X = {x1, x2, . . . , xn}, a set of data points.
�, oversampling factor

Output: C = {c1, c2, ..., ck}.
C ← sample a point uniformly at random from X1

ψ ← φX(C)2

for O(logψ) times do3

C
′
sample each point x ∈ X independently with probability4

px = �d2(x,C)
φX(C)

C ← C ∪ C
′
, compute φX(C)5

For x ∈ C, set wx to be the number of points in X closer to x than any6

other point in C
Recluster the weighted points in C into k clusters7

3 Our Method

In this section, we first introduce the Parallel Scalable k-means++ with MapRe-
duce (PSKM++), and then present our improved version of PSKM++, Over-
sampling and Refining (OnR). Finally, we give some discussion and analysis
about OnR. Table 1 shows the symbols and definitions used in this section.

3.1 Parallel Scalable k-means++ with MapReduce

The parallel scalable k-means++ algorithm has two steps: (1) computing the
initial cost ψ, (2) iterative process. A MapReduce job has at least two modules:
Map and Reduce. PSKM++ algorithm partitions the input data through the
Mapper phase and merges centers and clustering cost in the Reducer phase.

Figure 1 illustrates the process of parallel scalable k-means++ with MapRe-
duce. It starts with the first MapReduce job (Job1) from phase P1 to P3 and
it is used to compute the initial clustering cost ψ. In phase P1, each Mapper
reads the input data Xi and the first random center c1, then computes the
squared distance between each point x ∈ Xi and c1, d

2(x, c1), finally outputs

Fast Scalable k-means++ Algorithm with MapReduce 19

Table 1. Symbols and Definitions

Symbols Definitions

X The set of all data points
Xi The set of data points processed by Mapper i
c1 The first center chosen uniformly at random
Ci Centers chosen from Mapper i
U0 U0 = {c1}
Uj The union of centers until jth iteration
φXi

(U0) Clustering cost computed by Mapper i with centers U0, i.e., φXi
(c1)

φX (U0) Clustering cost with centers U0, i.e., φX (c1) and ψ (seeing in Alg. 1)
φXi

(Uj) Clustering cost computed by Mapper i with centers Uj

φX (Uj) clustering cost computed by one Reducer with centers Uj

M1

M2

M3

Mm

...

shuffle
costs

M1

M2

M3

Mm

...

read data
compute

initial cost

R

shuffle
initial
costs

M1

M2

M3

Mm

...
R

each
mapper
chooses
centers

shuffle
centers

merge
centers

R

sum
initial
costs

send
initial
cost

read data
compute

cost

sum
cost

send
centers

P1

send centers and cost

iterate

P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Fig. 1. Parallel Scalable k-means++ with MapReduce

〈key, φXi (c1)〉. All elements are shuffled to the same Reducer in phase P2. The
Reducer sums all φXi(c1) and outputs the φX(c1), i.e., ψ. The iterative process
includes Job2 (from phase P4 to P7) and Job3 (from phase P8 to P11). Job2
is used to choose new centers and Job3 is response for computing the clustering
cost of this iteration. They correspond to the step 4 and step 5 in Algorithm 1
respectively. For jth iteration, the Mapper i of Job2 reads the input data Xi, the
clustering cost φX(Uj−1) and the centers Uj−1 from the (j− 1)th iteration, then
chooses the point x as a center based on the probability �∗d2(x, Uj−1)/φX(Uj−1)
(phase P5). All these centers are transferred to the same Reducer (phase P6)
and combined by this Reducer (phase P7). Job3 is similar to Job1.

PSKM++ achieves the parallel of k-means++ and reduces the number of
iterations from k to O(logψ). However, for the sequential relationship between
Job2 and Job3, it still needs too many MapReduce jobs. Generally speaking,
it requires at least 2 ∗ O(logψ) MapReduce jobs to choose the initial centers.
When logψ is enormous, we cannot put up with so many MapReduce jobs.
Furthermore, in the above section, we have shown that MapReduce does not
directly support the iterative operation and the more MapReduce jobs the more
cost. As shown in Figure 1, the network cost of PSKM++ is small and there is
only

⋃m
i=1 Ci +

⋃m
i=1 φXi (Uj) in each iteration, but the I/O cost is huge because

the whole input has to read twice. In the next section, we present our improved

20 Y. Xu et al.

scalable k-means++ algorithm that uses only one MapReduce job to choose
centers and compute clustering cost in each iteration.

3.2 Oversampling and Refining

Since there is no communication among all Map tasks, one Map task can not see
the centers chosen from other Map tasks, therefore it is impossible to compute
the φXi(Uj) in these Map tasks. It requires another MapReduce job to compute
φX(Uj) after choosing new centers. In this section, we propose Oversampling
and Refining method which uses only one MapReduce job to choose � centers
and compute the clustering cost in each round. It is largely inspired by scalable
k-means++, except for the first oversampling factor �, we introduce another
oversampling factor o which is used to further enlarge the number of chosen
centers in Mapper phase. Our method is defined in Algorithm 2 and the process
is illustrated in Figure 2.

At a high-level, job1 (from phase P1 to P3) is still used to compute ψ and
we have described in the above section. Each Mapper of the second Job (phases
P4-P7) applies the scalable k-means++ algorithm and samples each x with
probability � ∗d2(x, U0)/φX(U0) (phase P5, U0 = {c1}), then the Reducer reads
the new centers from all Mappers (phase P6), then combines and outputs U1

(phase P7).
The iterative process starts from phase P8 to P11. For jth iteration, since

each Mapper does not know the previous clustering cost φX(Uj−1), our method
chooses each x with the cost from (j − 2)th iteration, i.e., φX(Uj−2). However,
because the number of centers of (j − 2)th iteration is smaller than that of
(j− 1)th iteration, clustering cost φX(Uj−2) is usually larger than the real value
φX(Uj−1) and the probability � ∗ d2(x, Uj−1)/φX(Uj−2) becomes smaller. This
decreases the number of centers chosen in jth iteration. To address the above
problem, our method uses another oversampling factor o to further enlarge the
probability, i.e., the chosen probability of x is px = o∗ � ∗d2(x, Uj−1)/φX(Uj−2).
In this situation, the expected number of points chosen by all Mappers in each
iteration is more than � which is the expected number of points chosen by scalable

M1

M2

M3

Mm

...

M1

M2

M3

Mm

...
R

shuffle
centers

R

shuffle
centers

costs

M1

M2

M3

Mm

...

read data
compute

initial cost

R

shuffle
initial
costs

sum
initial
costs

send
initial
cost

P1 P2 P3 P4

each
mapper
chooses
centers

merge
centers

send
centers

 cost
from job1

each mapper
chooses centers

compute cost

refine
sum
costs

send centers and costs
iterate

P5 P6 P7 P8 P9 P10 P11

Fig. 2. Oversampling and Refing with MapReduce

Fast Scalable k-means++ Algorithm with MapReduce 21

k-means++ in each iteration. Thus, our method requires a refining method to
remove the oversampled centers in Reducer phase.

Algorithm 2. Oversampling and Refining

Input: k, X , �, o, c1
Output: initialing centers
/* job 1: Computing ψ */

m Mappers read X in parallel and read U0 = c1. Each of them computes1

φXi (U0).
All costs φXi (U0) are shuffled to one Reducer.2

One Reducer sums all φXi(U0).3

Outputs ψ = φX(U0).4

/* job 2: Oversampling */

m Mappers read X in parallel and φX(U0). Each of them chooses centers5

with px = � ∗ d2(x, U0)/φX(U0).
All centers Ci are shuffled to one Reducer.6

One Reducer merges all the centers C =
⋃m

i=1 Ci.7

Outputs U1 = C
⋃
U0.8

/* iterative job */

for j = 2; j ≤ logψ; j ++ do9

// Oversampling

m Mappers read X in parallel, Uj−1 and φX(Uj−2). Each of them10

chooses centers with px = o ∗ � ∗ d2(x, Uj−1)/φX(Uj−2) and computes
φXi (Uj−1).
All centers Ci, all costs φXi (Uj−1), p

r
x and � ∗ d2(x, Uj−1) for each new11

center are shuffled to one Reducer.
// Refining by one Reducer

Computes φX(Uj−1) and merges C =
⋃m

i=1 Ci.12

if � ∗ d2(x, Uj−1)/φX(Uj−1) < prx then13

x is removed from C.14

Output Uj = C
⋃
Uj−1 and φX(Uj−1).15

Output Uj16

The detailed process is as follows. In phase P9, each Mapper uses px to
choose new centers and compute the local real clustering cost φXi(Uj−1). Then,
all the chosen centers Ci, all the local real clustering costs φXi(Uj−1), the ran-
dom probability value prx and �∗d2(x, Uj−1) of each chosen center are shuffled to
one Reducer (phase P10). The refining operation is executed on a single Reducer
(phase p11). It merges all centers C =

⋃m
i=1 Ci, sums all local real clustering

costs φXi (Uj−1) and obtains the global real clustering cost of (j − 1)th itera-
tion φX(Uj−1). We also obtain the real probability for each chosen center, i.e.,

p
′
x = � ∗ d2(x, Uj−1)/φX(Uj−1). If p

′
x is still larger than prx, then this center is

still kept in C, otherwise, it is removed from C. The output of this iteration is
Uj and φX(Uj−1), then they become the input of the next iteration. As men-
tioned above, the network cost of OnR in each iteration includes 4 parts, all

22 Y. Xu et al.

chosen centers
⋃m

i=1 Ci, all local clustering costs
⋃m

i=1 φXi(Uj−1), random value
prx and � ∗ d2(x, Uj−1) for each chosen center. Comparing with the network cost
of PSKM++, i.e.,

⋃m
i=1 Ci and

⋃m
i=1 φXi(Uj), the main benefit of OnR approach

is that it dramatically reduces the I/O cost (read input data X only once), at
the cost of shuffling a bit more data in each iteration.

3.3 Discussion

Except for �, OnR uses another oversampling factor o to further enlarge the
number of centers in Mapper phase. While the expected number of points is still
� after the refining phase in each iteration. Considering the jth iteration, OnR
uses the probability px = oj ∗ � ∗ d2(x, Uj−1)/φX(Uj−2) to choose centers, while
the real probability should be p′x = � ∗ d2(x, Uj−1)/φX(Uj−1). Ideally, we expect
that the centers chosen by OnR in each iteration are the same as that chosen
by PSKM++. Meanwhile, the network cost is smallest. That is,

px = p′x (1)

and
oj ∗ � ∗ d2(x, Uj−1)

φX(Uj−2)
=

� ∗ d2(x, Uj−1)

φX(Uj−1)
(2)

Therefore, the optimal value of oj is

oj =
φX(Uj−2)

φX(Uj−1)
(3)

The number of points in Uj−2 contains is smaller than that in Uj−1, therefore
φX(Uj−2) ≥ φX(Uj−1) and oj ≥ 1. However, it is difficult to determine o exactly;
if o is too large, there generates too many centers in each Mapper, causing high
network cost and heavy workload of the Reducer; while o is set to a small value,
the expected number of chosen centers in Reducer may be less than � and the
clustering quality is bad, i.e., φX(C) is large. In this section, we propose a method
to solve this problem.

From the above analysis we know, each center chosen in Mapper phase will
be resampled in Reducer phase. Ideally, for the smallest network cost, the best
probability pbx of each center in the Mapper phase should be

pbx =
d2(x, Uj−1)

φX(Uj−1)
(4)

For each point x, if pbx > prx, it is chosen in Mapper phase. And in the Reducer
phase, it is not removed from the result. Seeing From Eq. (4), in Mapper phase,
for lack of communication, the global clustering cost φX(Uj−1) is unknown, but
we know the local clustering cost φXi(Uj−1). Thus, we use the following equation
to estimate φX(Uj−1).

φ̂X(Uj−1) =
n

m
∗ φXi(Uj−1) (5)

Fast Scalable k-means++ Algorithm with MapReduce 23

n is the total number of points X contains, m is the number of points processed
by Mapper i. φXi(Uj−1)/m is the average clustering cost each point contributes
and it is unbiased. Therefore, in the Mapper phase, no matter how large o is,
our method can remove some of points with Eq. (5) in advance, and it can also
reduce the network cost and Reducer workload of the Reducer.

4 Experiments

In this section, we present the experimental setup and experimental results for
evaluating OnR. Note that the main merits of our method OnR are: (1) OnR
reduces the number of rounds from O(logψ) to 0.5 ∗ O(logψ), thus OnR takes
less running time when compared to PSKM++. (2) Although the number of
points in Mapper phase of OnR is more than that of PSKM++, some of these
points will be removed in Reducer phase of OnR and the result is the same
as PSKM++. Thus, both of them has the same clustering cost. (3) By another
oversampling factor o, OnR method uses only one MapReduce job in each round,
therefore, OnR further reduces the I/O cost without increasing the network cost.
(4) For there is a refining operation in Mapper phase and the large parallelism
of Mapper phase, the running time and clustering cost of OnR are almost the
same when o varies.

All experiments are performed on a homogeneous Hadoop cluster running
the stable version of Hadoop 0.20.2. The cluster consists of 12 machines with 1
master node and 11 slave nodes. Each node has 2 AMD Opteron 2212 2.00 GHz
CPUs, 8 GB of RAM, 80 GB SCSI HDD, Intel 82551 10/100 Mbps Ethernet
Controller. The operating system of each node is Ubuntu 10.10 server 64 bit and
per Hadoop daemon is allocated 1 GB memory. This cluster has 1 TaskTracker
and 1 DataNode daemon running on each slave, and a single NameNode and
JobTracker daemon on the master. All machines are directly connected to a 100
Mbps switch. We configure 2 Map slots and 2 Reduce slots on each node. The
DFS chunk size is 64 MB.

We use Oxford Buildings DataSet to conduct the experiments. This is a real
dataset consists of 5062 images collected from Filckr by searching for particular
Oxford landmarks. A large number of 128-dimension SIFT features is extracted
from each image and there are more than 17 million features in total. In order
to speed up all the experiments, we only use 32-dimension data of each feature.
Its size is about 2.6 GB and it is split to 42 chunks in our experiments.

The following aspects are evaluated in the experiments:

1. Running time of PSKM++ and OnR.
2. Clustering cost of PSKM++ and OnR.
3. I/O cost of PSKM++ and OnR.
4. Running time and Clustering cost of OnR while o varies.

4.1 Running Time

In this experiment, we compare the running time of PSKM++ and OnR algo-
rithm. We now describe the parameter settings for this group experiments. o is

24 Y. Xu et al.

set to 5, k ∈ {500, 1000}, � ∈ {0.1k, 0.5k, 1k, 2k, 5k, 10k}. We randomly choose
one point and both PSKM++ and OnR use this point as the first center, there-
fore they have the same � and the iteration round. In our experiments, both
algorithms iterates r = 12 rounds. The results are summarized in Fig. 3 and
we can see from it, no matter k = 500 and k = 1000, the running time of both
PSKM++ and OnR is getting longer as � varies from 0.1k to 10k, but OnR takes
less running time than PSKM++ and this trend gradually slows down. For ex-
ample, when � = 0.1k, 0.5k, 1k, OnR saves more than 50% running time than
PSKM++ for both k = 500 and k = 1000. The maximum time saving is about
58% when � = 0.1k for both k = 500 and k = 1000. Furthermore, the running
time of OnR is almost the same when � varies from 0.1k to 1k. However, when �
varies from 2k to 10k, the number of chosen points in each round becomes larger
and so does the the number of computation times. Thus, the time savings reduce
and they are about 30%, 26%, 19% (k = 500) and 40%, 18%, 11% (k = 1000).

(a) k = 500 (b) k = 1000

Fig. 3. Running Time: o = 5, � varies

4.2 Clustering Cost

In this section, we compare the clustering cost of PSKM++ and OnR. The
parameter configuration is the same as the above experiment, i.e., o = 5, k ∈
{500, 1000}, � ∈ {0.1k, 0.5k, 1k, 2k, 5k, 10k}. We also randomly choose one point
for both algorithms and the iteration round of them is still 12. The results
are shown in Fig. 4. It can be seen from it, when � varies from 0.1k to 10k,
there is little difference in clustering cost of OnR and PSKM++. The minimum
difference and the maximum difference are 4.37e8 (� = 1k) and 4.25e9 (� = 10k)
when k = 500. These values are 9.61e5 (� = 0.1k) and 1.77e9 (� = 1k) when
k = 1000. Since both OnR and PSKM++ choose each point with a certain
probability, they still have the random characteristic. Thus, we observe that
OnR takes more clustering cost sometimes, e.g., � = 1k, 2k (k = 500) and
� = 2k (k = 1000). But in most cases, e.g., � = 0.1k, 0.5k, 5k, 10k (k = 500) and
� = 0.5k, 1k, 5k, 10k (k = 1000), the clustering cost of OnR is less than that of
PSKM++. Recall that in order to reduce the MapReduce jobs in each round,
OnR uses another oversampling factor o, thus OnR chooses more points than

Fast Scalable k-means++ Algorithm with MapReduce 25

PSKM++ in each round and it has more chances to obtain the better result.
From Fig. 4, we also find out both OnR and PSKM++ obtain the worst result
when � = 0.1k for k = 500 and k = 1000. Due to the reason the number of points
chosen by OnR and PSKM++ is too small when iteration round completes. The
expected number of points are 600 (k = 500) and 1200 (k = 1000) for both OnR
and PSKM++. Because it could not obtain a good result when using 600 and
1200 centers to represent such large number of points, let along k = 500 and
k = 1000.

(a) k = 500 (b) k = 1000

Fig. 4. Cost: o = 5, � varies

4.3 I/O Cost and Network Cost

As mentioned above, OnR completes one iteration round by one MapReduce
job, but compared with PSKM++, the network cost is almost the same. The
main advantage of OnR is that its I/O cost is drastically reduced.

In this section, we evaluate OnR and compare it with PSKM++ in I/O cost
and Network cost. Firstly, we present the experiment setup and parameter set-
tings for them. We test OnR and PSKM++ when k = 1000, � = 1k, o is set to 5
for OnR. We still choose one point randomly as the first center and r = 12. For
both OnR and PSKM++, the I/O cost and network cost from iterating opera-
tion are account for the largest proportion of the whole I/O cost and network
cost. Thus, we only record the I/O cost and network cost in each round. The
experimental results are summarized in Figure 5. From Fig. 5(a) we can see, for
each round, the network cost of both OnR and PSKM++ are small and they
are in [140KB, 200KB]. However, except for the first round, the network cost of
OnR is larger than that of PSKM++, due to the reason that OnR chooses more
centers (the expected number of chosen points is o ∗ �) in Mapper phase than
PSKM++ (the expected number of chosen points is �). When r = 1, because
OnR does not use the parameter o, the expect number of chosen points by OnR
is still � and the network cost of it is similar to PSKM++ (about 150KB). From
Fig. 5(b), expect for r = 1, the I/O cost of PSKM++ is about 2 times bigger
than OnR for each round (about 3.7e10 vs. 1.8e10). Due to the reason that OnR
read the input data once, while PSKM++ read twice. When r = 1, OnR only

26 Y. Xu et al.

chooses � points and does not compute the distance of each point to the new
centers, the distance computation is completed by the Mapper phase of the next
round, thus there is no distance output and the difference is big in this round
(about 2.0e10 vs. 3.1e9).

From the above analysis, although OnR takes more network cost than
PSKM++, it is fairly small. We draw the conclusion that OnR drastically reduce
the I/O cost without increasing the network cost.

(a) k = 1000 (b) k = 1000

Fig. 5. Network Cost and I/O Cost

4.4 Running Time and Clustering Cost with Different o

Recall that in order to guarantee the number of points after each iteration is
no less than �, we usually set o to a larger value, but this increases the network
cost. To solve this issue, OnR estimates the global clustering cost and uses the
refining in Mapper phase to remove some points. This section tests the running
time and clustering cost for OnR when o varies. In these experiments, we use
k ∈ {500, 1000}, � = 1k, o ∈ {3, 5, 7, 15, 50, 250}, r = 12. The experimental
results are summarized in Table 2 and Table 3. From them we observe that, no
matter how the parameter o varies, there are few changes in running time and
clustering cost. When o varies from 3 to 250, the number of chosen points in

Table 2. Execution Time (minutes)

o = 3 o = 5 o = 7 o = 15 o = 50 o = 250

k = 500 66.65 66.88 66.6 66.75 67.18 66.9
k = 1000 75.15 75.57 75.6 75.63 75.7 75.32

Table 3. Clustering Cost, ×1011

o = 3 o = 5 o = 7 o = 15 o = 50 o = 250

k = 500 2.147 2.138 2.143 2.145 2.139 2.131
k = 1000 1.915 1.902 1.901 1.905 1.908 1.904

Fast Scalable k-means++ Algorithm with MapReduce 27

Mapper phase becomes large, but owing to the large parallelism of Mapper, the
running time of OnR is almost the same.

5 Conclusion

This paper proposed an efficient MapReduce scalable k-means++ algorithm-
OnR. Compared with the MapReduce scalable k-means++, OnR uses only one
MapReduce job to choose Ω(k) centers and compute the clustering cost in each
round. The main idea of OnR is that except for the oversampling factor �, OnR
uses another oversampling factor o to further increase the number of centers
in Mapper phase, and in Reducer phase, one Reducer removes the oversampled
centers generated from o. OnR saves a large amount of I/O cost and drastically
reduces the running time. In order to reduce the expensive network cost and
heavy workload of Reducer caused by too large o, OnR estimates the global
cost by the local clustering cost and uses it to remove some oversampled cen-
ters in Mapper phase. Experimental results indicate that OnR outperforms the
MapReduce scalable k-means++ in the aspect of I/O cost and running time.

Acknowledgment. This work is supported by the National Science Founda-
tion for Distinguished Young Scholars of China under grant No. of 61225010,
National Nature Science Foundation of China (Nos. 61173162, 61173165,
61370199, 61300187, 61300189 and 61370198), New Century Excellent Talents
(No. NCET-10-0095), the Fundamental Research Funds for the Central Univer-
sities(Nos. 31322013044, 31322013029 and 2012TD008).

References

1. Chandra, E., Anuradha, V.P.: A survery on clustering algorithms for data in spatial
database management systems. Computer Applications 24(9), 19–26 (2011)

2. Xu, Z., Ke, Y., Wang, Y., Cheng, H., Cheng, J.: A model-based approach to at-
tributed graph clustering. In: Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pp. 505–516 (2012)

3. Moise, D.: D, Shestakov, G. Gudmundsson, L. Amsaleg.: Indexing and searching
100m images with map-reduce. In: Proceedings of the 3rd ACM Conference on
International Conference on Multimedia Retrieval, pp. 17–24 (2013)

4. Jin, Y., Li, K.: An optimal multimedia object allocation solution in multi-
powermode storage systems. Concurrency and Computation: Practice and Experi-
ence 22(13), 1852–1873 (2010)

5. Celebi, M.E., Kingravi, H.A., Vela, P.A.: A Comparative Study of Efficient Initial-
ization Methods for the K-means Clustering Algorithm. Expert Syst. Appl. 40(1),
200–210 (2013)

6. Onoda, T., Sakai, M., Yamada, S.: Careful Seeding Method based on Indepen-
dent Components Analysis for k-means Clustering. Emerging Technologies in Web
Intelligence 4(1), 51–59

7. Arthur, D., Vassilvitskii, S.: K-means++: The Advantages of Careful Seeding. In:
Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1027–1035 (2007)

28 Y. Xu et al.

8. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. In: Proceedings of the 6th Conference on Symposium on Opearting Systems
Design and Implementation, pp. 137–150 (2004)

9. Papadimitriou, S., Sun, J.: DisCo: Distributed Co-clustering with Map-Reduce: A
Case Study Towards Petabyte-Scale End-to-End Mining. In: Proceedings of the
2008 Eighth IEEE International Conference on Data Mining, pp. 512–521 (2008)

10. Zhao, W., Ma, H., He, Q.: Parallel K-means clustering based on mapReduce. In:
Jaatun, M.G., Zhao, G., Rong, C. (eds.) Cloud Computing. LNCS, vol. 5931,
pp. 674–679. Springer, Heidelberg (2009)

11. Ene, A., Im, S., Moseley, B.: Fast Clustering Using MapReduce. In: Proceedings
of the 17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 684–689 (2011)

12. Cordeiro, F., Leonardo, R., Caetano Jr., T., Traina, M., Juci, A., López, J., Kang,
U., Faloutsos, C.: Clustering Very Large Multi-dimensional Datasets with MapRe-
duce. In: Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 690–698 (2011)

13. Bu, Y., Howe, B., Balazinska, M., Ernst, M.D.: HaLoop: Efficient Iterative Data
Processing on Large Clusters. VLDB Endow 3(1-2), 285–296 (2010)

14. Ekanayake, J.,Li,H.,Zhang,B.,Gunarathne,T.,Bae, S.-H.,Qiu, J.,Fox,G.:Twister:
A Runtime for Iterative MapReduce. In: Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, pp. 810–818 (2010)

15. Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.: Scalable K-
Means++. VLDB Endow 5(7), 622–633 (2012)

Acceleration of Solving Non-Equilibrium

Ionization via Tracer Particles and MapReduce
on Eulerian Mesh

Jian Xiao1, Xingyu Xu1, Jizhou Sun1, Xin Zhou2, and Li Ji2

1 School of Computer Science and Technology,
Tianjin University, Tianjin, China

{xiaojian,xingyuxu,jzsun}@tju.edu.cn
2 Purple Mountain Observatory,

Chinese Academy of Sciences, Nanjing, China
{xinzhou,ji}@pmo.ac.cn

Abstract. Non-equilibrium ionization (NEI) is an important phe-
nomenon related to many astrophysical processes, but the traditional
method, which tightly couples the NEI solver with Eulerian mesh
infrastructure, introduced high overhead on computing, memory and
communication. In order to overcome the shortcomings of the pure Eu-
lerian scheme, a new approach employing tracer particles and MapRe-
duce model to solve the NEI problem was proposed. We introduce (1)
a particle-dumping scheme for tackling the problem of large amounts of
small particle snapshots continuously generated at each evolution step,
(2) a parallel method based on the MapReduce model to solve the NEI
equations along the particle trajectories. Both post-processing and non-
intrusive in-situ schemes are supported in the paper’s approach. The
approach was prototyped and tested based on the FLASH multiphysics
simulation framework, and it is easily adapted to other simulations mod-
eling reactive flow on Eulerian mesh. Evaluations on up to 192 cores
show that our approach can improve the end-to-end performance of a
real world simulation by 3-fold above.

Keywords: non-equilibrium ionization, tracer particle, AMR,
MapReduce.

1 Introduction

Non-equilibrium ionization (NEI) is an important phenomenon related to many
astrophysical processes, and is generally used in models of small-scale phenomena
such as shocked gas in solar flares, supernova remnants and stellar cluster winds
etc, as well as large-scale phenomena such as galactic superwinds, active galactic
nucleus outflows and intergalactic medium etc. The equation groups governing
the astrophysical simulations with NEI effects take the following form [9,5].

∂ρ

∂t
+∇ · (ρv) = 0, (Eq.1)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 29–42, 2014.
c© Springer International Publishing Switzerland 2014

30 J. Xiao et al.

∂ρv

∂t
+∇ · (ρvv) +∇P = ρg, (Eq.2)

∂ρE

∂t
+∇ · [(ρE + P)v] = ρv · g [+S] , (Eq.3)

∂nZ
i

∂t
+∇ · nZ

i v = RZ
i (i = 1, · · · , Nspec) , (Eq.4)

Eq.1–Eq.3 are the classic Euler equations for gas dynamics and Eq.4 is the
set of additional advection equations for all the ion species, where ρ is the fluid
density, t is the time, v is the fluid velocity, P is the pressure, E is the sum of
the internal energy and kinetic energy per unit mass, and g is the acceleration
due to gravity, and S represents the source item, nZ

i is the number density of
the ion i of the element Z, Nspec is the total number of species, R is described
by Eq.5,

RZ
i = Ne

[
nZ
i+1α

Z
i+1 + nZ

i−1S
Z
i−1 − nZ

i

(
αZ
i + SZ

i

)]
, (Eq.5)

where Ne is the electron number density, αZ
i = (Ne, T) are the collisional and

dielectronic recombination coefficients, and SZ
i = S(Ne, T) are the collisional

ionization coefficients.
In the classic Eulerian scheme, which usually employs the adaptive mesh re-

finement (AMR) technique for a good balance between performance and accu-
racy, in order to integrate the continuity equations of the ion species, the Eq.4 is
split into two equations given by Eq.6 and Eq.7, whereXZ

i is the mass fraction of
the ion i of the element Z. For each time step, the homogeneous hydrodynamic
advection equations given by Eq.1 and Eq.6 are solved by hydrodynamics solver,
and after each transport step, the ordinary differential equations (ODE) for the
NEI problem (Eq.7) are integrated by NEI solver.

∂ρXZ
i

∂t
+∇ · (ρXZ

i v
)
= 0 (i = 1, · · · , Nspec) (Eq.6)

∂nZ
i

∂t
= RZ

i (i = 1, · · · , Nspec) (Eq.7)

In many cases, integrating a large number of stiff ODEs at each time step
will dominate the total wall-clock time of a simulation [16], but fortunately in
this case the NEI solver, which only integrates several small sets of ODEs(≤27),
is very lightweight, comparing with the much more complex PDE (partial dif-
ferential equation) solvers, such as hydro solver and thermal conduction solver
(diffuse). So in practice the computing time of NEI itself is only a small frac-
tion (less 10%) of the whole simulation time, but the overhead introduced by the
classic approach can no longer be ignored as the number of ion species increasing.

As illustrated in Fig.1.(a), there are only approximate 15 double-precision
variables in solution space and three PDEs(Eq.1–Eq.3) needing to be solved by
hydrodynamic solver. However as one chemical element containing n protons is
added, n+1 variables and n+1 advection equations (Eq.6) will be introduced

Acceleration of Solving NEI via Tracer Particles and MapReduce on AMR 31

nxbnguard nguard
Adaptive Refinement Grid (AMR)

NEI

Heat Exchange

Diffuse

 ...

MPI

Timestep
(Iterative evolution)

15 vars + extra 181 ion vars
(one point)

Hydro

(2*nguard+nxb) ndims × blocks

0

10000

20000

30000

40000

50000

24 48 96 192

Ti
m

e
(s

ec
on

d)

Number of Cores

Hydro

Hydro+Diffuse

Hydro+NEI

Hydro+Diffuse+NEI

Fig. 1. Solving NEI in pure Eulerian scheme. The left(a): Time-splitting iteration and
the grid data structure in Eulerian mesh. The right(b): Performance comparison be-
tween simulations with or without NEI (All tests were built on the FLASH code and
evolved 1000 timesteps).

according to the classic method. As a result, considering the twelve most abun-
dant elements in the universe plus fully ionized hydrogen and electrons, totally
181 extra variables need to be stored and another 181 advection equations need
to be solved at every grid point. Except the increased computing workloads in-
troduced by additional advection equations, it will use up to roughly 15 times
of system memory more than the case without NEI, and the following high
communication overhead between neighbor processes is unavoidable eithor.

For example of the block-based adaptive mesh refinement–PARAMESH [5,13],
each core usually handles a 16 × 16 × 1000 (1000 is the number of blocks)
points subdomain in a common 2D simulation, and the grid data structure will
need roughly 65MB and 880MB RAM respectively with or without NEI [9,11].
As illustrated in Fig.1.(b), the traditional method caused heavy performance
degradation(15-fold slow) when all the ion species are added. Considering com-
mon multi-physics simulations involving multiple solvers for different physical
processes, except the hydro solver and NEI solver, other solvers also have to en-
dure the overhead introduced by the NEI problem although these solvers never
care these ion species. In Fig.1.(b), as the diffuse solver is added, the perfor-
mance degradation becomes larger, and using increasing number of cores is not
very helpful. Moreover, as the grid refines during evolution, the performance
degradation will be exacerbated further. For three-dimension simulations, mem-
ory and communication overhead will be increased by one order of magnitude,
much more computing resources must be employed for sharing such high bur-
den. Astrophysical simulations usually have long running circles, typically 50k
iterations above, then the total simulation time may become unacceptable. The
main contributions of this study are summarized as follows:

(1) Decoupled the NEI solver from the Eulerian mesh by employing tracer par-
ticles, and maximally reduced the high overload on computing, memory and
communication introduced by the traditional approach.

32 J. Xiao et al.

(2) Proposed an efficient particle-dumping scheme for tackling large amounts of
small particle snapshots continuously produced at each evolution step.

(3) Developed a parallel method based on the MapReduce programming model
for NEI calculation, and both post-processing and nonintrusive in-situ
scheme were supported.

The outline of the paper is as follows. Related works are presented in Section
2, and a detailed description of the new approach based on tracer particles
and MapReduce is given in Section 3. Performance evaluations are discussed in
Section 4. The conclusion is given in Section 5.

2 Background and Related Works

As mentioned above, fundamentally the high overhead introduced by the pure
Eulerian scheme is due to the tight coupling between the NEI solver and the
underlying mesh. It is possible to overcome this drawback of the mesh-based
NEI implementation by introducing Lagrange tracer particles. By recording the
thermo-dynamical history of individual fluid particles, the NEI calculation can
be migrated to the post-processing phase, and totally independent from the
Eulerian mesh. Hence, in the thermo-dynamical evolution without NEI, there
is no need for extra space to hold all ion species, and sequently the numerous
partial advection equations (Eq.6) are also ‘disappeared’.

Tracer particle and post-processing method have been widely used in astro-
physical simulations and computational fluid dynamic (CFD) domain, and the
MapReduce technique is successfully used by several projects for massive par-
allel trajectories analyses at recent years [17,15]. However the NEI problem has
two distinct characteristics that common tracer particle schemes seldom address,
(1) usually particle data are dumped at a relative larger interval comparing to
the timestep, but the particle data of NEI must be dumped at each evolution
step, the frequent dumping will lead to large amounts of small files and heavy
IO burden, moreover, it is not an easy task of reconstructing particle trajectory
from large files base, (2) most MapReduce-style schemes for analyzing simulation
trajectories mainly focus on statistical calculation, such as extreme value, dis-
tribution of physical quantities etc., but the NEI calculation must be performed
along each trajectory in a strictly time ascending order.

The paper’s approach is implemented and tested based on the FLASH code,
which is a publicly available multiphysics simulation framework running in mas-
sive parallel environments [5]. The FLASH code integrated the traditional NEI
solver since version 2.5 and introduced Lagrangian tracer particles on top of its
Eulerian hydrodynamics infrastructure since version 3.3 [4,9]. The FLASH can
output particle snapshots with either serial IO or parallel IO. But to our best
knowledge, no separate effort is made to tackle such frequent snapshot dumping
posed by NEI in the current implementation of the FLASH.

Our approach is motivated by several excellent previous studies that can be
divided into two topics. The first is map-reduce schemes for analyzing particle
trajectories. The second is space-partition method for IO acceleration and in
situ analysis.

Acceleration of Solving NEI via Tracer Particles and MapReduce on AMR 33

2.1 MapReduce Model for Reconstructing and Analyzing Particle
Trajectories

The MapReduce programing model is proposed by Google for large-scale data
processing in a distributed computing environment [1]. Ekanayake et al. [7] pro-
posed a steaming-based MapReduce implementation written in the Java lan-
guage, which eliminates the overheads associated with communicating via a file
system and send the intermediate results directly from its producers to its con-
sumers. The steaming-based idea is widely adopted by the HPC community, and
our approach is no exception.

Tu et al. [17] firstly proposed a dedicated MapReduce framework called Hi-
Mach built on top of the ubiquitous distributed-memory message-passing in-
terface (MPI), and their framework made a dramatic performance promotion
on analyzing terascale molecular dynamics simulation trajectories. Plimpton’s
group [15,14] made a series of systematic studies about map-reduce libraries
on top of MPI for use in large-scale graph analytics. They contributed the
MapReduce-MPI (MR-MPI) library and the PHISH framework to the HPC
community. Within the PHISH framework, streaming MapReduce operations
can be organized in a net, which specifies the sequence of computations and the
topology of data flow [15]. Following the idea of the PHISH framework, an in
situ scheme for NEI calculation was implemented in the paper.

2.2 Space-Partition Method for IO Acceleration and in Situ
Analysis

In the traditional time-partitioning model, usually a simulation must stop to
perform extra tasks, such as dumping the snapshots. Reconstructing trajectory
of each particle requires snapshots from every timestep in the simulation, and
the one-snapshot per-timestep will introduce heavy IO burden even for a modest
case with one million particles and 50k iterations [15,6]. With the acceleration of
take-up of multicore architecture in modern HPC systems in the last decade, the
ideas using space-partitioning approach to relieve the network and file system
contention are proposed by several research groups.

Li et al. [12] developed a novel functional partitioning runtime environment
that allocates dedicated cores to specific tasks, particularly for I/O activities.
Dorier’s group [2] proposed the Damaris I/O middleware, which avoids syn-
chronization between cores by overlapping I/O with computation and gathering
data into large files. Dorier’s approach gives the in-situ analyses the capability
of working on raw in-memory data without performing any copy [3]. However
in our case, the NEI analysis must follow the continuously moving particles, not
the ‘fixed’ points on the underlying Eulerian grid. So the paper proposed an in
situ scheme for running the NEI analysis on dedicated nodes near the simulation
cluster.

Except the in-situ scheme, the paper’s post-processing scheme also borrowed
ideas from space-partition methods. In general, parallel access to a single file will
provide the best parallel IO performance unless the number of processors is very

34 J. Xiao et al.

large, But Fisher’s work [8] shows that none of the parallel I/O libraries available
with FLASH, effectively scaled to more than 1024 processors. So a node-level
direct I/O approach is adopted in the following post-processing scheme.

3 Method

Our approach includes two independent schemes, post-processing scheme and
in situ scheme. The advantage of post-processing schemes is that all snapshots
can be reserved, and used repeatedly for various analyses, not only for NEI.
Particularly it is very useful for some general simulations, such as turbulence,
the data set can be open to the community [8]. While the advantage of in situ
scheme is bypassing the lagging IO system and reducing the amount of data
stored by large-scale simulations, moreover, in situ analysis can be used for
computational steering.

3.1 Architecture

The architecture of the system is described in Fig.2 and Fig.3. Our system con-
sists of discrete components that filter, aggregate, scatter the particles’ data
(map), perform NEI calculation (reduce), and generate statistical results. It is
modular and pluggable, for example, it can be easily adapted for nucleosynthe-
sis [16] analysis only by developing a dedicated reducer. Similar with the net
of the PHISH framework [15], components are assembled into workflows, where
data flow from component to component. Components can be divided into two
groups according whether they are located within the simulation nodes or not.
Inner components are designed as a plug-in of the simulation. While outer com-
ponents, which are loosely coupled with the evolving simulation, can be easily
replaced or extended to offer a wide range of features.

Data Filter: mainly used for reducing the data size. Usually post-processing
only needs a subset of particle attributes. A data filter continuously receives
streaming data from the simulation, and only deliver the data that just nec-
essary for reconstructing trajectories. By default, particles are defined to have

Simulation Node #1

Aggregator Local
Particles

Files

FilterParticles

FilterParticles

FilterParticles

FilterParticles

…. ….

Node #2
Ditto

Node #N
Ditto

….

Post-analyzing Nodes

….

Scatter #2

Scatter #N

Particle
ID

Stats

NEI Solver

NEI Solver

NEI Solver

NEI Solver

….

Reduce

Scatter #1

Map

Fig. 2. Post-processing scheme with direct I/O mode

Acceleration of Solving NEI via Tracer Particles and MapReduce on AMR 35

eight properties that are necessary for moving on the grid: 3 positions in x,
y, z; 3 velocities in x, y, z; the current block identification number; and a tag
which uniquely identifies the particle; additionally three custom attributes are
included for NEI calculation: density, temperature and the current timestep. All
the properties are double precision, and for a common configuration of one mil-
lion particles evolving 100k timesteps will generate at least 8TB snapshot files. In
fact only five properties are needed in NEI calculation phase, and three position
properties are only used in statistical analysis and visualization usually per-
formed at a relative large interval. Because the position data can be extracted
from the overall checkpoint files dumped at the same interval with statistical
analysis, and the timestep can be shared for all particles within the same snap-
shot, so the filter can reduce 70% volume of data by removing 8 properties,
including 3 velocities, 3 positions, the block ID and redundant timesteps.

Aggregator: mainly used for reducing the data size further and avoiding
large amounts of small snapshot files to be generated. Aggregator components
only used in post-processing schemes. Usually the simulation writes one snapshot
per file, and these snapshots are self-contained, which means metadata included.
As a result, the default mechanism will produce too many small snapshots and a
lot of redundant metadata information. An aggregator collects the data distilled
by the upstream filter, and appends the stream data into several large aggregate
files in a time ascending order. The properties with the same value on a snapshot
will be written only once, such as timestep, and the metadata is no longer put
into the snapshot, but described by a public configuration file.

Configuration File: mainly used to reduce redundant information of the
original snapshots and increase the flexibility and adaptability of the system.
The configuration file describes meta data and control options, including a full
definition of particle data structure, filter options, the max number of snapshot
files contained in one aggregate file and IO schemes etc.

Scatter: sends the particle data to a unique NEI solver (reducer) determined
by hashing on the particle ID. The hash algorithm used in the paper is very
simple, just the modulo operation on particle ID and the count of the reducers
(NEI solvers). It ensures that all data from one trajectory will be sent to the
same solver. The particle data comes from either aggregate snapshots in post-
processing scheme or the filters of in situ scheme. In order to avoid reconstructing
long trajectories in system memory, scatters ensure that data from the same
particle is sent in a strictly time ascending order.

Reducer(NEI Solver): solving the ordinary differential equations of the
NEI problem (Eq.7). The core algorithm of the solver is extracted directly from
the traditional implementation of FLASH code. Intermediate results can be ag-
gregated and saved to disk for later analysis or directly sent to the downstream
statistical tools. As mentioned in the first section, a data structure is necessary
for holding all variables of ion species within each particle. Each particle needs
181 × 8 bytes, for one million particles, approximate 1.5GB of storage globally
is needed. Comparing with the traditional implementation tightly coupled with
the grid, the most important advantage of the scheme is that neither extra mem-

36 J. Xiao et al.

ory for holding guard points nor the guard points exchange between neighbor
processes is needed.

Statistical Tool:mainly used for global analysis, for example, demonstrating
the spatial distribution of ionization state. As mentioned in data filter, these
analyses usually need additional information only founded in the full checkpoint
files, hence the limitation of these analysis is that it must be invoked on existing
checkpoints and cannot be performed on the fly.

3.2 Post-processing Scheme

As illustrated in Fig.2, in the scheme, the whole simulation is performed by two
phases: the on-line simulation, and the off-line NEI analysis. Two I/O modes
are supported in the scheme. The first is the simple serial I/O mode, where each
simulation process connecting with a dedicated filter, but only one aggregator
exists, and all the filters move the data to the single aggregator for output. In
the serial I/O mode, all files are written into a global sharing file system space.

The second is direct I/O mode, and its performance had been verified by
Fisher’s work on terascale turbulence simulation [8]. An improvement was made
based on the space-partitioning ideas [12,2]. As shown is the Fig.2, in order to
avoid file system contention from processes within the same node when snapshots
written at the same time, in each node a dedicated process is allocated for
gathering the data from other processes within the same node, and then writing
its portion of the global data to its local file system.

3.3 In Situ Scheme

Considering the NEI calculation is lightweight compared to the whole simulation
workload, if a small portion of computing resources is allocated to perform the
NEI calculation as the simulation runs, the impact on the overall performance is
trivial. As shown in the Fig.3, most of computing resources are allocated to the

Simulation Cluster

…. ….….

FilterParticles Scatter

FilterParticles Scatter

FilterParticles Scatter

FilterParticles Scatter
Stats

Map
In situ Analysis Nodes

NEI Solver

NEI Solver

NEI Solver

NEI Solver

….

Reduce

Particle
ID

Fig. 3. In situ scheme using MPI inter-communicator

Acceleration of Solving NEI via Tracer Particles and MapReduce on AMR 37

simulation, and just a few cores are reserved for in situ NEI analysis. The filter
directly puts the particle data into its private scatter, and then the scatter sends
the data to a NEI solver depending on the hash-value of particle ID. The in situ
scheme will not introduce disk storage overhead, but a balance strategy must
be made for properly allocating computing resources between the simulation
and the in-situ analysis, and this is simulation specific. In NEI experiments, the
in-situ portion is nearly 10%.

3.4 Implementation

The paper’s approach was prototyped based on the FLASH framework, and
programmed in FORTRAN 90. By employing the particular directory-based in-
heritance hierarchy of the FLASH [5], our system can be connected to the sim-
ulation in a nonintrusive way just through the particle IO interface of FLASH.
The implementation puts minimal impact on the simulation code, so that few
code changes is required for users adopting our approach in their simulations.
To use the new feature, they only need to make a few configurations and rebuild
the code.

The implementation of the MapReduce model in this paper is based on
MPICH2. In order to ensure a strict time ascending sequence in NEI calcula-
tion, synchronization must be performed carefully. In the post-processing phase,
it needs force synchronization at each timestep when scattering the particle snap-
shots to the NEI reducers. In in-situ scheme, there is no need to make special
effort to ensure time sequence, due to the inner synchronization mechanism of
the FLASH. It is worth pointing out that in the in-situ scheme, the simula-
tion and the NEI solvers resident in two independent MPI contexts respectively,
which will not impact each other, so that it makes the scheme more robust and
adaptable.

4 Evaluation

In this section, the paper’s approach was evaluated with a real world simulation–
W49B built upon the FLASH code, using a Linux cluster, which provides 10
nodes of 4 Intel 2.6GHz CPUs, 6 cores/CPU, 48 GB RAM. One node is reserved
for in-situ analysis, and another for management and job submission; therefore
in fact totally eight nodes are used for running simulation.

The physical model of W49B describes the evolution of an originally spherical
supernova remnant (SNR) expanding through an inhomogeneous medium. The
detailed information about the simulation can be found in [18]. For simplicity,
the evolution is modeled by numerically solving fluid dynamic equations (Eq.1-
Eq.3), taking into account the effects of thermal conduction (diffuse) and NEI
(Eq.4). All the particles located within a 0.5× 0.5(pc) circle region at the center
of the 9 × 12(pc) simulation domain (1pc

.
= 3.0e18cm). It is worth mentioning

that the unbalance of particle load distribution may slow down our approach at
the early stage of the evolution, but it will not impact the following performance
analysis.

38 J. Xiao et al.

The experiments use 1 million particles and initial 16× 16× 20k AMR points
(cells) spread over 12, 24, 48, 96 and 192 processors. In theory, the AMR data
structure will take up 18GB and1.3 GB global memory with or without NEI
solver coupled. It is worth pointing out that for one million total count of the
particles, only one hundred megabytes of storage are required globally in the
simulation phase, but in the NEI analysis phase, the memory overhead intro-
duced by NEI can not be avoided totally. The particle data structure will take
up 1.5GB global memory for containing all the ion mass fractions, however there
is no need for extra memory containing large amounts of ghost points (guard
cells) and frequent information exchanges between neighbor processes.

Because the real world simulation has a long running circle (according our
previous work [18], only Fe element contained, evolving 400k timesteps, about
20 days on 72 cores), so each evaluation run was limited to 1k timesteps, and
the running time varied from 0.5 to 25 hours approximately for different tests.
The performance data was collected by the timer and profiler tools of FLASH.

Five groups of tests were conducted, including the basic hydro-thermal sim-
ulation without NEI (marked with ‘AMR without NEI’), the traditional ap-
proach coupling NEI with Eulerian mesh (marked with ‘AMR with NEI’), the
post-processing approaches with serial IO and direct IO modes (marked with
‘particle serial IO’ and ‘direct IO’ respectively), and the in situ scheme (marked
with ‘particle in situ’).

4.1 Performance Analysis

The Fig.4 illustrates the total times used by each test evolving 1k iterations.
The three schemes of our approach have similar performance curves, all of them
get the maximum acceleration at 48 cores, and then as the cores increase, per-
formance degradation is exacerbated. The same phenomenon occurred more ob-
viously for the basic test (AMR without NEI). The reason is that for a selected
workload, simply increasing number of cores does not provide corresponding im-
provement, and due to the limitation of the test environment, the size of the
experiments is fixed to a moderate value.

As mentioned above, due to tightly coupled NEI with the grid, the traditional
approach (AMR with NEI) introduced at least one order of magnitude perfor-
mance degradation. Though as the cores increasing from 12 to 192, the total
time dropped from 85k seconds to 22k seconds, it is still 6 folds of the basic case
at 24 cores, and 4 folds of our approach at 48 cores. Moreover the acceleration
becomes slower as the cores increase, it can be concluded that simply increasing
number of cores have few effect on further performance improvement. Compar-
ing with the best result of the tradition method (at 192 cores), the direct IO
scheme achieved approximate 4.5-fold performance improvement but only using
a half number of cores, and for in-situ scheme, the maximum acceleration is
near 3-fold. For a real world simulation evolving 100k iterations, the traditional
method will take 28 days at least even using 192 cores according the current
experiments; therefore the improvement will save a lot of computing resources
in practice. It must be pointed out that as simulation evolves, the mesh will

Acceleration of Solving NEI via Tracer Particles and MapReduce on AMR 39

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

12 24 48 96 192

Ti
m

e
(s

ec
on

d)

Number of Cores

AMR without NEI

Particle Serial IO

Particle Direct IO

Particle In situ

AMR with NEI

Fig. 4. Total evolving time for 1k iterations at a global workload of 1 million particles
and initial 16× 16× 20k AMR points

become more refined, and consequently it will lead to more computing workload
and more memory usage. In the original W49B simulation, at the end the global
number of cells (points) had increased to 10 times of that at the start. So it’s
believed that the end-to-end performance improvement will be still better than
the experiments show.

4.2 Overhead Introduced by Tracer Particles

As shown in Fig.4, compared to the basic test (AMR with NEI), the overhead still
existed in our approach, but much lower than that of the tradition method. The
main impacts on performance introduced by tracer particles are (1) particle I/O,
(2) particle advance on Eulerian mesh, (3) computing the timestep for ensuring
that any particle travels no more than some numerical constraints during a single
step, and (4) the grid refinement operation when particle count used as one of grid
refinement criteria. For the three latter overheads, all the three schemes of our ap-
proach are approximately equivalent in both theory and practice. For the former
overhead, particle I/O, the simple serial IO scheme will inevitably encounter the
scalability problem due to the bottleneck of network communication as the num-
ber of cores increasing, while both of the direct I/O scheme and in situ scheme can
totally ignore the time used by outputting particles.

Fig.5 shows a detailed comparison of the times used by each main process of
three representative tests performed at 96 cores respectively. In the traditional
method, the hydro solver and diffuse solver have to sustain the high overhead on
computation and communication introduced by tightly coupling NEI and AMR,
and the total time increased 600%. By contrast, in our approach the four main
overheads introduced by particle totally account for less than 50% of the overall
execution time.

40 J. Xiao et al.

0

5000

10000

15000

20000

25000

30000

35000

40000

Total Hydro Diffuse Refine DT Particle Particle IO

Ti
m

e
(s

ec
on

d)

Main processes in the evolution

AMR without NEI

Particle in situ

AMR with NEI

Fig. 5. Detailed profile for 1k iterations performed at 96cores with a global workload
of 1 million particles and approximate 16× 16× 20k AMR points

4.3 Overhead Introduced by Post-processing

Large disk storage is the main overhead for saving particle snapshots. Though
some efforts (Filter, Aggregator and configuration file etc.) were made to decrease
the size of snapshots, for one million particles advancing 10k iterations, it will
generate 230GB files, and for a moderate 100k iterations required by common
astrophysical simulations, it will occupy 2.3TB of disk capacity.

In our approach, the NEI solver is separated from the Eulerian mesh, but the
above performance statistic did not yet contain the time used by NEI calculation
in our approach. Experiments showed that a single process needs 0.2s to perform
NEI calculation on one trajectory of 1k iterations, and consequently for one
million particles, the time is 0.2e6s. Unlike the traditional approach, because
there is no need to exchange information between the neighbor processes, the
NEI calculation can get a nearly linear speedup as the number of cores increasing.
In our experiments, the total time was 1160s for analyzing one million trajectories
of 1k iterations at 192 cores. Plus the minimum evolution time (5120s, as shown
in Fig.4) that the redirect IO scheme had achieved, the end-to-end performance
improvement of the direct IO scheme was approximate 3 folds.

In summary, by employing proper particle-dumping strategies and the MapRe-
duce programming model, our approach successfully controlled the overhead in-
troduced by NEI within a small scope. In fact, there is another advantage of
our method. The traditional approach can easily lead to inconsistent advection
of ion species during fluid dynamic evolution, which will break the simulation
due to large numerical errors [9]. While the tracer particle method can easily
bypass the consistent multi-fluid advection problem, which many reactive flow
simulations have to tackle carefully.

Acceleration of Solving NEI via Tracer Particles and MapReduce on AMR 41

5 Conclusion and Future Work

In the paper, we proposed a new approach employing tracer particles and
MapReduce model to solve the NEI problem in astrophysical simulations. Some
optimization mechanisms were developed for tackling the frequent output of large
amounts of snapshots, including data filter, file aggregator, direct I/O and in-situ
processing.Comprehensive theoretical analysis and experiments were conducted
to demonstrate the efficiency and scalability of the approach, and experiments
shown that it can reduce overall execution time of a real world simulation by 3
folds at least. Our system is component-based and nonintrusive, so that it can
be easily adapted to other astrophysical simulation frameworks, or extended for
accelerating other multi-species related simulations, such as nucleosynthesis [16].

A limitation exists in the current implementation. Our approach is not totally
self-consistent, because the contribution of the ionization and recombination to
the energy equation is not accounted for [9]. In the traditional Eulerian scheme,
because all the solvers share a unified solution space on the top of AMR, the
energy generated by NEI can be directly used to the energy conservation equa-
tion. But in our approach where NEI and AMR are totally decoupled, there is
no effective way to send back data to the running simulation.

Our future work will focus on optimization algorithms for particles moving on
Eulerian mesh by taking the advantage of multi-core architecture. We also plan
to integrate some new tracer particle schemes, like Monte Carlo tracers [10] for
both accuracy and performance improvement.

Acknowledgments. The authors thank Prof. Orlando for his kind guide about
the timestep of NEI solver, and Min Long and Shikui Tang for the great help
they provided. This work was supported in part by National Natural Science
Foundation of China (NSFC) through grant U1231108, and Chinese Academy
of Sciences (XXH12503-05-05).

References

1. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

2. Dorier, M., Antoniu, G., Cappello, F., Snir, M., Orf, L.: Damaris: how to efficiently
leverage multicore parallelism to achieve scalable, jitter-free i/o. In: 2012 IEEE
International Conference on Cluster Computing (CLUSTER), pp. 155–163. IEEE
Press, New York (2012)

3. Dorier, M., Sisneros, R., Peterka, T., Antoniu, G., Semeraro, D.: Damaris/viz: A
nonintrusive, adaptable and user-friendly in situ visualization framework. In: 2013
IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV), pp.
67–75. IEEE Press, New York (2013)

4. Dubey, A., Antypas, K., Daley, C.: Parallel algorithms for moving lagrangian data
on block structured eulerian meshes. Parallel Computing 37(2), 101–113 (2011)

5. Dubey, A., Antypas, K., Ganapathy, M.K., Reid, L.B., et al.: Extensible
component-based architecture for flash, a massively parallel, multiphysics simu-
lation code. Parallel Computing 35(10), 512–522 (2009)

42 J. Xiao et al.

6. Dubey, A., Calder, A.C., Daley, C., Fisher, R.T., et al.: Pragmatic optimizations
for better scientific utilization of large supercomputers. International Journal of
High Performance Computing Applications 27(3), 360–373 (2013)

7. Ekanayake, J., Pallickara, S., Fox, G.: Mapreduce for data intensive scientific anal-
yses. In: IEEE Fourth International Conference on eScience, pp. 277–284. IEEE
Press, New York (2008)

8. Fisher, R., Kadanoff, L., Lamb, D., Constantin, P., et al.: Terascale turbulence
computation on bg/l using the flash3 code. IBM Journal of Research and Devel-
opment v52 i1/2, 127–137 (2006)

9. FLASH Center for Computational Science, University of Chicago. FLASH User’s
Guide (2012)

10. Genel, S., Vogelsberger, M., Nelson, D., Sijacki, D., Springel, V., Hernquist, L.: Fol-
lowing the flow: tracer particles in astrophysical fluid simulations. Monthly Notices
of the Royal Astronomical Society 435(2), 1426–1442 (2013)

11. Latham, R., Daley, C., Liao, W.K., Gao, K., Ross, R., Dubey, A., Choudhary, A.: A
case study for scientific i/o: Improving the flash astrophysics code. Computational
Science & Discovery 5(1), 15001 (2012)

12. Li, M., Vazhkudai, S.S., Butt, A.R., Meng, F., et al.: Functional partitioning to
optimize end-to-end performance on many-core architectures. In: Proceedings of
the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis(SC), pp. 1–12. IEEE Press, New York (2010)

13. MacNeice, P., Olson, K.M., Mobarry, C., de Fainchtein, R., Packer, C.: Paramesh:
A parallel adaptive mesh refinement community toolkit. Computer Physics Com-
munications 126(3), 330–354 (2000)

14. Plimpton, S.J., Devine, K.D.: Mapreduce in mpi for large-scale graph algorithms.
Parallel Computing 37(9), 610–632 (2011)

15. Plimpton, S.J., Shead, T.: Phish library,
http://www.sandia.gov/~sjplimp/phish.html

16. Timmes, F.X., Hoffman, R.D., Woosley, S.E.: An inexpensive nuclear energy gen-
eration network for stellar hydrodynamics. The Astrophysical Journal Supplement
Series 129(1), 377–398 (2000)

17. Tu, T., Rendleman, C.A., Borhani, D.W., Dror, R.O., et al.: A scalable parallel
framework for analyzing terascale molecular dynamics simulation trajectories. In:
Proceedings of the 2008 ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis(SC), pp. 1–12. IEEE Press,
New York (2008)

18. Zhou, X., Miceli, M., Bocchino, F., Orlando, S., Chen, Y.: Unveiling the spatial
structure of the overionized plasma in the supernova remnant w49b. Monthly No-
tices of the Royal Astronomical Society 415(1), 244–250 (2011)

http://www.sandia.gov/~sjplimp/phish.html

A Continuous Virtual Vector-Based Algorithm

for Measuring Cardinality Distribution

Xuefei Zhou, Weijiang Liu�, Zhiyang Li, and Wenwen Gao

School of Information Science and Technology,
Dalian Maritime University,
Dalian, Liaoning, China
wjliu@dlmu.edu.cn

Abstract. The host cardinality is the number of distinct destinations
that a host communicates with. Host cardinality is an important metric
for high-speed network profiling. With the development of internet, net-
work attacks occur frequently such as worm spreading, DDoS attack and
port scanning and so on. One common characteristic of these attacks is
that they usually generate a lot of traffic connections in a short time
which will lead the host cardinality distribution to change. Hence we can
detect these attacks according to the host cardinality distribution. In
this paper, we present an algorithm based on continuous virtual vector
to estimate the host cardinality distribution. Through experiments using
real internet traces, we demonstrate that our algorithm can estimate the
host cardinality distribution accurately while using little storage.

1 Introduction

With the rapid development of internet, the number of users and kinds of ap-
plications are also expanding in high speed. Hence the traffic volume increases
continually and network behaviors become more and more complicated, these
bring many challenges for traffic measuring. Even though existing so many chal-
lenges many solutions have been proposed [1][2][3].

Chen et al proposed that due to the large traffic volume in the high-speed
network, it is high efficient to derive some succinct summary information that
can characterize the traffic behavior pattern as a whole [4]. And the network fea-
ture distribution can describe the aggregate behavior pattern. Due to the prior
work has focused primarily on distributions concerning traffic volume, such as
flow size distribution in [5][6][7], or packet contents distribution in [8], hence
Chen et al proposed another characterization of network feature called host car-
dinality distribution: given a number n, how many hosts communicate with n
different destination or have n number of flows in observed traffic. They also
developed an algorithm to estimate the cardinality distribution based on con-
tinuous Flajolet-Martin (FM) sketches. The algorithm is the first approach for
estimating cardinality distribution.

� Corresponding author.

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 43–53, 2014.
c© Springer International Publishing Switzerland 2014

44 X. Zhou et al.

Now Internet plays a very important role in our daily life, but it has also
revealed a lot of security problems. When these problems occur they usually
cause the host cardinality changing [9] [10]. Knowing how the host cardinality
distribute can help us detect various types of internet security attacks such as
distributed denial-of-service (DDoS) attack and worm spreading. When a DDoS
attack happens, attackers will send attack packets to the victim, if these attackers
use spoofed IP addresses, then the number of cardinality of size 1 increases. For
the worm spreading, each infected host will try to connect to other hosts to
spread the worm as quickly as possible. So we will observe a large number of
cardinalities of a particular size around the same time. Knowing cardinality
distribution can also help us engineer the usage pattern of traffic. For example,
the cardinality of many hosts increases over time that may indicate that the
number of P2P hosts is increasing. Knowing cardinality distribution can provide
us much other information. But estimating the cardinality distribution is not
a relaxed job. Existing methods for estimating the host cardinality distribution
either need large storage space or have high computation complexity.

In order to address the aforementioned problems, we propose a new algorithm
for measuring cardinality distribution. The data structure of the proposed algo-
rithm is a continuous virtual vector. This algorithm is able to record and process
large amounts of packets in the high-speed internet with small space and time
consumption. We can derive the estimation of the host cardinality distribution
according to these packets information. The main contributions of our work are
as follows:

(1) We design a new data structure, called continuous virtual vector, which only
need one bit to record a packet. This guarantees the memory efficient of our
method.

(2) We derive a reasonable formula for estimating the size of host cardinality,
and the formula can give an accurate estimation of cardinality size.

(3) The algorithm can get the host cardinality distribution with small space and
time consumption. We demonstrate its performance through experiments
using real internet traces.

The rest of this paper is organized as follows. Some related work is provided
in Section 2. In Section 3, we present our algorithm for estimating the host
cardinality distribution and analysis its performance. Section 4 is the experiment
result. Finally, we conclude in Section 5.

2 Related Work

2.1 Bitmap

Bitmap is a bit array used for counting the number of distinct elements [11]. It
uses a hash function that maps each element to a bit location of the bit array.
Assume a Bitmap with size m, namely the Bitmap is consisted of m bits, at
the begin all of its bits are initialized to 0. Whenever an element arrives, the

A Continuous Virtual Vector-Based Algorithm 45

corresponding bit location mapped to is set to 1. Because of hash collision, it is
possible that one bit may be set multiple times, while only the first setting is
effective the rest has no effect on the bit. Hence we could not use the number
of “1” as the estimation of the number of distinct elements, and we get the
estimation mathematically. Assume the actual number of the distinct elements
is n, the number of bits which are not set to 1 is U . Then the probability that a
specific bit in the Bitmap is not set to 1 is prob=(1− 1

m)n. We use the expected
value of U , E(U)=m∗prob, to derive the estimation number of distinct elements.
And the estimating result is n̂=−m ∗ ln(Um). In network measurement domain,
Bitmap has been used to count the number of flows [12]. It has low space
consumption than other structures.

2.2 Virtual Vector

For estimating host cardinality accurately, Yoon et al create a virtual vector for
each source host by taking bits uniformly at random from a bit array. The bits
in virtual vector are selected by a set of hash functions, H0(), H1(), ..., Hs−1. For
example, there is a bit array B of size m, and the ith bit in the array is denoted
as B[i], then a virtual vector X(src) of size s for a specific source address src
can be denoted as

X(src) = (B[H0(src)], B[H1(src)], ..., B[Hs−1(src)]).

The size of host cardinality can be estimated by using formula k̂ = s ∗ ln(Um

m)−
s∗ln(Us

s), where Um and Us are the number of “0” in bit array and virtual vector
respectively. It is need s hash functions to get a virtual vector, so this method
has high computing complexity. In order to decrease the computing complexity,
we design a new data structure, called continuous virtual vector in this paper.
Regard the bit array as a circular bit sequence. We only use a hash function to
map to a specific bit of the bit array. A continuous virtual vector consists of s
continuous bits starting from the mapped bit. We will describe the continuous
virtual vector in detail in the next section.

3 Our Algorithm

In order to adapt the high-speed network, and to meet the requirement of real-
time tracking and measuring online, we propose an algorithm based on contin-
uous virtual vector to estimate the host cardinality distribution. Our algorithm
consists of two phases: online processing and offline processing. The online pro-
cessing uses three continuous virtual vector to record flow information of all
hosts in the high-speed network. The offline processing obtains the estimation
of host cardinality according to those flow information recorded in the online
processing phase. The final estimation result will be output as the tuple form of
<host cardinality: host number>. The overall architecture of our algorithm is
shown in Figure 1.

46 X. Zhou et al.

Fig. 1. Overall architecture of our algorithm

3.1 Online Processing

The online processing consists of two modules: flow processing module and source
host recording module. And the two modules process packets parallelly in the
network.

A. Flow Processing Module
In this module, we use three bit arrays with size m, B1[m], B2[m], B3[m], to
record all flow information. What’s more, we allocate a continuous virtual vector
with size s for every distinct source host to record its cardinality information.
In the offline phase, we will estimate the cardinality of a host according to the
three bit arrays and the corresponding continuous virtual vectors. When a packet
comes, we first extract its source IP address, sip, and its destination IP address,
dip. The sip is hashed by three hash functions, hash1(), hash2(), hash3(), which
are used to determine the starting location of the host’s continuous virtual vec-
tors in B1[m], B2[m], B3[m]. Let s be the size of the continuous virtual vector.
Then fetch s bits in each bit array continuously, if there are less than s bits re-
mained, complement s bits from the first bit in the bit array. In this way, we get
the continuous virtual vectors of sip. Here we use three bit arrays and three hash
functions so that we can get three vectors for every distinct sip. Assume that,
i=hash1(sip), j=hash2(sip), k=hash3(sip), then the three continuous virtual
vectors of the sip are as follows:

X1(Sip) = (B1[i], B1[i+ 1], . . . , B1[(i + s− 1)modm]),

X2(Sip) = (B2[j], B2[j + 1], . . . , B2[(j + s− 1)modm]),

X3(Sip) = (B3[k], B3[k + 1], . . . , B3[(k + s− 1)modm]).

Another hash function, hash4(), is used to map dip into the vector. According
the result of hash4(), the corresponding bit in the vector is set to 1. For example,
p=hash4(dip), then B1[(i+p) mod m], B2[(j+p) mod m] , B3[(k+p) mod m] are
set to 1. After this procedure the cardinality information of sip is recorded.

B. Source Host Recording Module
In this module another array, distinctIP [n], is used to record those different

A Continuous Virtual Vector-Based Algorithm 47

source hosts. For a sip extracted from each arrival packet, if the sip has been
recorded, we discard it directly, otherwise it is inserted into distinctIP [n].

A detailed description of the online processing phase is presented in
Algorithm 1.

Algorithm 1. Online Processing

1: Initialize
2: B1[i], B2[i], B3[i]:=0; i=1,2,3, ... , m
3: n:=0;
4: Update
5: Upon the arrival of a packet pkt, extract sip, dip from it
6: i:=hash1(sip);
7: j:=hash2(sip);
8: k:=hash3(sip);
9: p=hash4(dip);
10: B1[(i+p) mod m]:=1;
11: B2[(j+p) mod m]:=1;
12: B3[(k+p) mod m]:=1;
13: Insert
14: if sip/∈distinctIP[n] then
15: distinctIP[n++]=sip;
16: end if
17: end

3.2 Offline Processing

In this phase, we estimate the cardinality of each source host recorded in ar-
ray distinctIP [n] according to its three vectors X1(sip), X2(sip), X3(sip) and
B1[m], B2[m], B3[m]. At last we preserve the results in array output[t], where
the index value t denotes the size of a cardinality and the value of element
output[t] is the number of source hosts whose cardinality is t. We estimate the
cardinality as follows: for every sip in the array distinct[n] which represents
an exclusive source host in the high-speed network, we first use the three hash
functions hash1(), hash2(), hash3() mentioned in the online processing phase to
derive three continuous virtual vectors X1(sip), X2(sip), X3(sip). Then make
these vectors do “and” operation, we get another vector X(sip). Namely:

X(sip) = X1(sip)&X2(sip)&X3(sip).

Let Us denote the number of “0” bits in the vector X(sip). Let Vs be the fraction
of “0” bits in X(sip), hence

Vs =
Us

s
.

48 X. Zhou et al.

And Um1, Um2, Um3 are the number of “0” bits in B1[m], B2[m], and B3[m],
respectively. Let Vm1, Vm2, Vm3 be the fraction of “0” bits in B1[m], B2[m],
B3[m], respectively. It is easy to get that:

Vm1 =
Um1

m
,

Vm2 =
Um2

m
,

Vm3 =
Um3

m
.

The following formula is used to estimate the cardinality of host sip:

k̂ =

3∑
i=1

(p ∗ s ∗ lnVmi − s ∗ lnVs) (1)

Below we will derive (1) mathematically. Some additional notations are given
as follows: let n be the number of distinct pairs <sip, dip> from all source hosts
during the measurement period. Define Cj1 be the event that the jth bit in B1[m]
is still zero when the measurement ends. For a source host with cardinality size
k, each of the k distinct pairs is hashed to an arbitrary bit in the vector X1(sip)
with probability 1

s . And the probability that the bit is mapped by a pair of other
source hosts is 1

m . Hence the probability that event Cj1 occurs is

Prob(Cj1) = (1− 1

m
)n−k(1− 1

s
)k, ∀j ∈ [0, s− 1] (2)

Let lCj1 be a random variable that takes on the value 1 if event Cj1 occurs,
0 otherwise. So the number of “0” in vector X1(sip) can be denoted by Us1 =∑j=s−1

j=0 lCj1. Hence we can get the expected value of Vs1 :

E(Vs1) =
1

s
E(Us1) =

1

s

j=s−1∑
j=0

E(lCj1) =

j=s−1∑
j=0

Prob(Cj1)

=
1

s
∗ s ∗ (1− 1

m
)n−k(1 − 1

s
)k = (1− 1

m
)n−k(1− 1

s
)k

 e−
n−k
m ∗ e− s

k , as (n− k), m, k, s → ∞

 e−

n
m−k

s , as k � m

(3)

From (3) we can get the cardinality value k as:

k
 −s ∗ n

m
− s ∗ ln(E(Vs1)) (4)

According to [11] we can get the relation between n and m as follows:

n
 −m ∗ ln(E(Vm1)) (5)

A Continuous Virtual Vector-Based Algorithm 49

Hence (4) can be written as:

k
 s ∗ ln(E(Vm1))− s ∗ ln(E(Vs1)) = s ∗ ln(Vm1)− s ∗ ln(Vs1) (6)

In (6) the second term is the number of distinct pairs mapped into vectorX1(sip),
but it does not equal to the number of distinct pairs of sip, because it has noise
made by pairs of other hosts. And the first term is the noise. In our algorithm
we let vectors X1(sip), X2(sip), X3(sip) do “and” operation to get the vector
X(sip). So the vectorX(sip) has eliminated fraction of those noises, we introduce
the factor p (where 0 < p < 1) to eliminate the rest noise. We get the optimal
value of p through experiments. Then we can get (1). When k is small, it may

happen with a small probability that k̂ is less than one, in this case we set k̂ to 1.

After derive the cardinality of each source host, we will estimate the cardinal-
ity distribution as output[t]++. The pseudo-code of the offline processing phase
is shown in Algorithm 2.

Algorithm 2. Offline Processing

1: Upon the sip stored by Source IP storing module in array distinctIP [n]
2: for m=0 to n do
3: sip=distinctIP[m];
4: Xi(src)=(Bi[hashi(sip)],...,Bi[(hashi(sip)+s-1)mod m]);i=1,2,3
5: end for
6: X(src)=X1(src)&X2(src)&X3(src);
7: Us=countbit(X(src));
8: Umi=countbit(Bi[m]);
9: Vs=Us/s;
10: Vmi= Umi/m;
11: k =

∑3
i=1(p ∗ s ∗ lnVmi − s ∗ lnVs);

12: if k<1 then
13: k=1;
14: else
15: k=int(k);
16: end if
17: output[k]++;
18: end

3.3 Performance Analysis

In order to know of the property of our algorithm, we analyze the space con-
sumption and estimating error theoretically in this section.

A. Space Consumption
The space consumption (SRAM) of the algorithm is mainly determined by the
online processing. The arrays distinctIP [n] and output[t] work in the DRAM,
their influence to the space consumption can be ignored. Hence the main space

50 X. Zhou et al.

consumption comes from the three bit arrays B1[m], B2[m], B3[m]. Each bit
array only needs one bit to record a flow, so the space consumption of each bit
array is 1

8*m Bytes, where m is the size of a bit array. So the total space con-
sumption of our algorithm is 3

8*m Bytes.

B. Error Analysis
In online processing phase each bit array provides a continuous virtual vector
with size s for every source host. For the high cardinality hosts, s bits can’t
record their all pairs. Two or more pairs can be mapped to the same bit. There-
fore the estimation is bigger than the true value. As mentioned above, bits of
each bit array can be shared by multiple vectors. Therefore the value of Us will
decrease when the measurement ends and the estimation will be bigger than the
true value especially for the low cardinality hosts. In our algorithm, we eliminate
this kind of error through “and” operation. From (1), the value of k̂ can not be

always integer. In our algorithm we set k̂ to k (k is the max-integer which is no

more than k̂). So every value between k and k+1 will be set to k. Therefore the
number of hosts with cardinality size k is bigger than the true value.

4 Experiment

In this section, we use the continuous virtual vector algorithm to estimate the
cardinality distribution using some real traces. Then we compare the estimation
distributions with the actual cardinality distributions.

4.1 Data Source

We use different traffic traces gathered from real internet to test our algorithm.
These traces are from MAWI Working Group of the WIDE Project (MAWI)
[14], Jiangsu provincial network border of China Education and Research Net-
work (CERNET) [15]. The trace fromMAWI was collected on a trans-Pacific line
(150Mbps link), on March 30, 2009 at 00:00 am. The IPv6 packets of MAWI are
filtered out in our experiments. The CERNET traces were collected at Jiangsu
provincial network border of China Education and Research Network (CER-
NET) on April 17, 2004.It includes TR1, TR2 and TR3. The backbone’s capacity
is 1000 Mbps, and mean traffic per day is 587 Mbps.

4.2 Parameter Analysis and Setting

For the size of bit array m, if it is big enough that the probability of hash
collision is low, in such way the result will be relatively accurate. But limited by
the memory capacity, m can not be too large. Here we set the size of m to be
65536. For the size of continuous virtual vector s, if it is large that the probability
of different source hosts share one or more bits in the bit array is low, this will
reduce measuring accuracy. But from (1), we can infer that s determines the
maximum value that the algorithm can measure. So the small size of s will limit

A Continuous Virtual Vector-Based Algorithm 51

the measurement range of host cardinality. Considering these two reasons, we set
s to be 128. We compute the weighted mean relative difference (WMRD) using
MAWI trace to get the optimal value of p. We use (7) to compute the WMRD,
where ni denotes the actual host number with cardinality size ni and n∗

i denotes
the estimation number.

WMRD =

∑
(ni − n∗

i)∑
(
ni+n∗

i

2)
(7)

When p is 0.75 the WMRD is the smallest as is shown in Table 1. In other words
when p is 0.75 the algorithm is relatively accurate, so in our experiments we set
p to be 0.75. The finally experiment results are shown in section 4.3.

Table 1. The deviation of algorithm using different p values

p 0.3 0.5 0.75 0.9

WMRD 1.432 1.397 1.175 1.268

Fr
eq

ue
nc

y

Cardinality size

Actual cardinality distribution

Estimation of our algorithm

Fr
eq

ue
nc

y

Cardinality size

Actual cardinality distribution

Estimation of our algorithm

Fr
eq

ue
nc

y

Cardinality size

Actual cardinality distribution

Estimation of our algorithm

(a) MAWI

Fr
eq

ue
nc

y

Cardinality size

Actual cardinality distribution

Estimation of our algorithm

Fr
eq

ue
nc

y

Cardinality size

Actual cardinality distribution

Estimation of our algorithm

Fr
eq

ue
nc

y

Cardinality size

Actual cardinality distribution

Estimation of our algorithm

(b) TR1

Fr
eq

ue
nc

y

Cardinality size

Actual cardinality distributio

Estimation of our algorithm

Fr
eq

ue
nc

y

Cardinality size

Actual cardinality distributio

Estimation of our algorithm

Fr
eq

ue
nc

y

Cardinality size

Actual cardinality distribution

Estimation of our algorithm

(c) TR2

Fr
eq

ue
nc

y

Cardinality size

Actual cardinality distribution

Estimation of our algorithm

Fr
eq

ue
nc

y

Cardinality size

Actual cardinality distribution

Estimation of our algorithm

Fr
eq

ue
nc

y

Cardinality size

Actual cardinality distribution

Estimation of our algorithm

(d) TR3

Fig. 2. Comparison of estimation of our algorithm with actual cardinality distribution,
(a) MAWI, (b) TR1, (c) TR2, (d) TR3

52 X. Zhou et al.

4.3 Experiment Results

In this section, we compare the cardinality distribution measured by our algo-
rithm with the actual cardinality distribution. In every experiment one million
packets are used. The experiment results are shown in Figure 2. The x-coordinate
is the cardinality size, and the y-coordinate denotes the number of hosts with the
cardinality size x. We can see that for most low cardinality hosts, the estimation
result is really bigger than the actual result as we analysed in section 3.3. In
actual application such as attack detection, we are usually interested in those
high cardinality hosts. And the experiment results show that the estimation of
those high cardinality hosts is close to the actual result. So our algorithm can
be used in actual application.

5 Conclusion

Because of the huge traffic in the high-speed network, network monitoring system
is limited by storage and processing capabilities, it can not record all of the
packets information. So getting the overall behavior of network traffic is very
necessary for network monitoring and traffic engineering. The host cardinality
distribution is one of the useful metrics to express the network overall behavior.
In this paper, we design the continuous virtual vector and propose an algorithm
to measure the distribution of the host cardinality. The experiment results show
that the algorithm can measure the cardinality distribution accurately with less
storage and faster execution speed. The future work is to improve the accuracy
of the algorithm.

Acknowledgment. This work is supported by the National Nature Science
Foundation of China under grant No. of 61370198 and 61300187, the Scientific
Research Fund of Liaoning Provincial Education Department under Grant No.
L2013195, and the Fundamental Research Funds for the Central Universities
under Grant No.3132014325.

References

1. Li, T., Chen, S., Ling, Y.: Fast and compact per-flow traffic measurement through
randomized counter sharing. In: INFOCOM, pp. 1799–1807 (2011)

2. Lieven, P., Scheuermann, B.: High-speed per-flow traffic measurement with prob-
abilistic multiplicity counting. In: INFOCOM, pp. 1–9 (2010)

3. Marold, A., Lieven, P., Scheuermann, B.: Probabilistic parallel measurement of
network traffic at multiple locations. IEEE Network 26, 6–12 (2012)

4. Chen, A., Li, L., Cao, J.: Tracking cardinality distributions in network traffic. In:
INFOCOM, pp. 819–827 (2009)

5. Duffield, N., Lund, C., Thorup, M.: Estimating flow distributions from sampled
flow statistics. In: SIGCOMM, pp. 325–336 (2003)

6. Yang, L., Michailidis, G.: Sampled based estimation of network traffic flow char-
acteristics. In: INFOCOM, pp. 1775–1783 (2007)

A Continuous Virtual Vector-Based Algorithm 53

7. Kumar, A., Sung, M., Xu, J.J., Wang, J.: Data streaming algorithms for efficient
and accurate estimation of flow size distribution. In: SIGMETRICS, vol. 32, pp.
177–188 (2004)

8. Karamcheti, V., Geiger, D., Kedem, Z., Muthukrishnan, S.: Detecting malicious
network traffic using inverse distributions of packet contents. In: SIGCOMM, pp.
165–170 (2005)

9. Chen, W., Liu, Y., Guan, Y.: Cardinality change-based early detection of largescale
cyber-attacks. In: INFOCOM, pp. 1788–1796 (2013)

10. Guan, X., Wang, P., Qin, T.: A new data streaming method for locating hosts with
large connection degree. In: GLOBECOM, pp. 1–6 (2009)

11. Whang, K.Y., Vander-Zanden, B.T., Taylor, H.M.: A linear-time probabilistic
counting algorithm for database applications. ACM Transactions on Database Sys-
tems 15, 208–229 (1990)

12. Estan, C., Varghese, G., Fisk, M.: Bitmap algorithms for counting active flows on
high speed links. In: SIGCOMM, pp. 153–166 (2003)

13. Yoon, M., Li, T., Chen, S., Peir, J.K.: Fit a spread estimator in small memory. In:
INFOCOM, pp. 504–512 (2009)

14. Wide: http://tracer.csl.sony.co.jp/mawi/samplepoint-f/
20090330/200903300000.html (2014)

15. Jslab: http://ntds.njnet.edu.cn/data/index.php (2014)

http://tracer.csl.sony.co.jp/mawi/samplepoint-f/20090330/200903300000.html
http://tracer.csl.sony.co.jp/mawi/samplepoint-f/20090330/200903300000.html
http://ntds.njnet.edu.cn/data/index.php

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 54–67, 2014.
© Springer International Publishing Switzerland 2014

Hmfs: Efficient Support of Small Files Processing
over HDFS

Cairong Yan, Tie Li, Yongfeng Huang, and Yanglan Gan

School of Computer Science and Technology,
Donghua University,

201620 Shanghai, China
cryan@dhu.edu.cn

Abstract. The storage and access of massive small files are one of the chal-
lenges in the design of distributed file system. Hadoop distributed file system
(HDFS) is primarily designed for reliable storage and fast access of very big
files while it suffers a performance penalty with increasing number of small
files. A middleware called Hmfs is proposed in this paper to improve the effi-
ciency of storing and accessing small files on HDFS. It is made up of three lay-
ers, file operation interfaces to make it easier for software developers to submit
different file requests, file management tasks to merge small files into big ones
or extract small files from big ones in the background, and file buffers to im-
prove the I/O performance. Hmfs boosts the file upload speed by using asyn-
chronous write mechanism and the file download speed by adopting prefetching
and caching strategy. The experimental results show that Hmfs can help to ob-
tain high speed of storage and access for massive small files on HDFS.

Keywords: HDFS, small files, middleware, asynchronous write, prefetching.

1 Introduction

Hadoop, an open-source software framework developed for reliable, scalable, distrib-
uted computing and storage, is successfully used by many companies including Ya-
hoo, Amazon, Facebook, and New York Times [1]. Hadoop distributed file system
(HDFS), as the primary storage system of Hadoop, is a portable, high reliability, high
throughput, and open source distributed file system. It is primarily designed for
streaming access of big files. Reading through small files normally causes lots of
seeks and lots of hopping from one DataNode to another DataNode to retrieve each
small file, all of which is an inefficient data access pattern [2].

The low efficiency of storing and accessing small files on HDFS (which is called
small files problem for simplicity in this paper) is majorly caused by: (1) the small
files will produce a lot of metadata on HDFS NameNode so that too much memory
space will be occupied when HDFS is working; (2) the file access mechanism of
HDFS is not suitable for a large number of small files; and (3) HDFS lacks of I/O
optimization mechanism such as file prefetching and caching [2,3].

 Hmfs: Efficient Support of Small Files Processing over HDFS 55

The most popular idea of solving the small files problem is to combine small files
into big ones, establish index mechanism to map the small files to HDFS blocks,
prefetch and cache the related small files when one of them is accessed. These exist-
ing research methods mainly focus on optimizing the storage structure or the access
mechanism of HDFS [3-14].

In this paper, without making any change of HDFS, we design and implement a
middleware Hmfs (Hadoop-based middleware for file system) on top of HDFS for
addressing the small files problem by providing the following features:

• Hmfs is a middleware running on HDFS. It is easy to be transplanted to some
more advanced versions of HDFS in the future.

• Hmfs saves the space of HDFS NameNode by storing the index data in an in-
memory database instead of HDFS.

• Hmfs optimizes the file upload operation on HDFS by applying asynchronous
write mechanism.

• Hmfs adopts a prefetching and caching strategy to fasten the file download
speed.

The remainder of the paper is organized as follows: section 2 reviews some related
work; section 3 analyzes the problems of small files processing over HDFS; section 4
introduces the design of Hmfs; section 5 describes the optimization strategy of Hmfs;
section 6 presents the experimental results; and section 7 concludes the paper.

2 Related Work

A small file is the one that is significantly smaller than the HDFS block size (default
64MB). Recently, research on small files problem of HDFS has attracted significant
attention. Shvachko et al from Yahoo! described the design and implementation of
HDFS where every file, directory, and block is represented as an object in the
NameNode’s memory, each of which occupies 150 bytes [2]. It is designed mainly for
the streaming access of big files not small files.

There are some general approaches based on HDFS to solve the small files prob-
lem. Hadoop Archives (HAR files) were introduced to HDFS in 0.18.0 to alleviate the
problem of lots of files putting pressure on the NameNode’s memory. HAR files work
by building a layered file system on top of HDFS. However, reading through files in
HAR is no more efficient than reading through files in HDFS, since each HAR file
access requires two index file reads as well as the data file is read [7]. SequenceFile
provides a persistent data structure for binary key-value pairs. It uses file name as the
key and file contents as the value, and supports compressing and decompressing at
record level or block level [8]. However, it may be slow to convert existing data into
SequenceFiles. Unlike HAR files there is no way to list all the keys in a
SequenceFile. A MapFile is a type of sorted SequenceFiles with an index to permit
lookups by key. It consists of an index file and a data file. The data file stores key-
value pairs as records, which are sorted in key order. The index file stores key-
location information and the location is the offset where the first record containing

56 C. Yan et al.

this key is located in data file. HBase stores data in MapFiles (indexed
SequenceFiles), and is a good choice if you need to do MapReduce style streaming
analyses with the occasional random look up [9]. These approaches improve the stor-
age efficiency of HDFS by changing the storage structure.

There are also some approaches based on HDFS for special application files. Ref-
erence [4] took the file correlations and access locality into consideration, and pro-
posed a two-level prefetching mechanism to improve the efficiency of accessing
powerpoint files. Reference [5,6] packed the related GIS data into big files and stored
them into HDFS. These researches made full use of the relationship between files.
Some approaches focused on cached the metadata and position of blocks to reduce the
access to NameNode or DataNode. Some approaches aimed at optimizing the access
of small files by storing the index data in the memory, database or in-memory data-
base [10-14].

Compared with these existing researches, Hmfs proposed in this paper is a mid-
dleware based on HDFS, and it’s easy to be transplanted to the advanced versions of
HDFS in the future. The merged big files only contain file data while the index data
of small files is stored in an in-memory database. That improves the memory utiliza-
tion and simplifies the operation of file update and delete. Furthermore, the asynchro-
nous write mechanism helps to improve the response time of jobs.

3 Small Files Problem in HDFS

HDFS has many similarities with existing distributed file systems. However, the dif-
ferences from others are significant. It supports tens of millions of files in a single
instance, and it has been designed to be easily portable from one platform to another.
So it is widely used for big-scale file storage.

Fig. 1. The architecture of HDFS

 Hmfs: Efficient Support of Small Files Processing over HDFS 57

As shown in Fig. 1, HDFS is composed of NameNode and DataNodes. NameNode
manages file system namespace which is called as metadata, and regulates client ac-
cesses. DataNodes provide block storage, serve I/O requests from clients, and perform
block operations upon instructions from NameNode. SecondNameNode which is
responsible for backing up all data on NameNode is optional.

When we download a file from HDFS, the time cost is composed of the following
parts. (1) A client sends an access request to NameNode. Assume the time is T1. (2)
NameNode looks up the metadata of the requested file in memory. Assume the time is
T2. (3) NameNode returns the block addresses to the client. Assume the time is T3. (4)
The client accesses data from DataNodes one by one. Here the time is made up of
three parts, T4a, T4b, and T4c. First, the client sends the blockId to DataNode. The time
is T4a. Then DataNode gets the blockId and fetches the file data from the hard disk.
The time is T4b. Finally, the DataNode returns the data to the client. The time is T4c.

Suppose that there are n files to be downloaded and each file is divided into m
blocks, the total time cost can be represented as formula (1):

 T௡ = ∑ (Tଵ + Tଶ + Tଷ + ∑ ସܶ) ௠ଵ୬ଵ , ସܶ = Tସ௔ + Tସ௕ + Tସ௖ (1)

When the size of the files is less than the size of a block, m is 1. The total time
consumption can be represented as formula (2):

 T୬ = ∑ (Tଵ + Tଶ + Tଷ + Tସ)୬ଵ (2)

When n is very big and m is 1, the metadata in NameNode will increase rapidly
and NameNode may be overloaded. So it is necessary to minimize the size of metada-
ta so as to reduce the access time in NameNode. Furthermore, if we fetch the files
from HDFS in advance, the response time of the job will decrease. The file prefetch-
ing and caching strategies are efficient to improve the throughput of the job. When the
total size of n files is less than the size of a block, it is a challenge to decrease the total
time consumption to Tଵ + Tଶ + Tଷ + Tସ. This paper will focus on it.

 When we upload a file to HDFS, the time cost is composed of the following parts.
(1) A client sends an access request to NameNode. Assume the time is T1

’. (2)
NameNode creates metadata for the file. Assume the time is T2

’. (3) NameNode re-
turns the data output stream to the client. Assume the time is T3

’. (4) The client
sends data to the output stream and stores the data in DataNode, DataNode informs
NameNode the place, and the client closes the output stream. Assume the time is T4

’.
Suppose that there are n files needing to be uploaded and each file is divided into

m blocks. Then the total time cost can be represented as formula (3):

 T୬ᇱ = ∑ (Tଵᇱ + Tଶᇱ + Tଷᇱ + ∑ Tସᇱ) ௠ଵ୬ଵ (3)

When the size of files is less than the size of a block, m is 1. Then the total time
consumption can be represented as formula (4):

 T୬ᇱ = ∑ (Tଵᇱ + Tଶᇱ + Tଷᇱ + Tସᇱ)୬ଵ (4)

58 C. Yan et al.

If the total size of n files is less than the size of a block, we can merge the small
files in advance so that the total access time consumption can be decreased to Tଵᇱ + Tଶᇱ + Tଷᇱ + Tସᇱ . It is also a challenge and this paper will also focus on decreasing
the file upload time.

4 The Design of Hmfs

In order to improve the efficiency of storing and accessing small files in HDFS, we
propose Hmfs, a middleware supporting file operations over HDFS including upload,
download, update, and delete.

Fig. 2. The architecture of Hmfs

Fig. 2 shows the architecture of Hmfs which consists of three layers, user interface,
Hmfs tasks, and Hmfs buffers.

The client can upload, download, update, and delete files according to the user in-
terface layer without thinking about the size of the files. If the files are small, they
will be merged in Hmfs tasks layer according to the size of HDFS block. The upload,
update, and delete operations are executed asynchronously so that the clients do not
need to wait a long time.

Hmfs tasks layer, the core component of Hmfs, is responsible for four kinds of file
processing tasks. File merge task is used to combine the small files into big ones,
build index for the small files, and upload the big files to HDFS. File cache task is to
cache the related files when a small file is accessed. File update task is used to update
files. File delete task is used to delete files.

The bottom is the Hmfs buffers layer. Hmfs uses five kinds of buffers in memory
to store the uploaded files, indexing files, caching files, and other data. File merge

 Hmfs: Efficient Support of Small Files Processing over HDFS 59

buffer is to store the files that are uploaded by the clients and waiting for merging.
File cache buffer is to store the related files when a file is accessed. File index buffer
is to store the index data that maps the small files to HDFS blocks. It includes file
length, file start position, and HDFS block path. File update buffer is to store the data
that needs to be updated, and waits to be stored in HDFS. File delete buffer is to store
fileIds that need to be deleted, and wait to be deleted from HDFS later.

All the tasks run as the daemon processes, so Hmfs can process the client request
and the file merging, caching and updating operation in parallel. The brief overview
of the relationship between Hmfs tasks and HDFS buffers is as follows. File merge
task is responsible for merging small files in the file merge buffer to form big files,
building index for each small file, and storing the index data in the file index buffer.
File cache task prefetches the related files when a small file is accessed and stores the
files in the file cache buffer. File update task gets the information in the file update
buffer, updates the related block in the HDFS, and forward the updated block to the
file merge buffer. File delete task fetches information from the file delete buffer to
know which files need to be deleted, then deletes the files in HDFS block and for-
wards the updated block to the file merge buffer.

4.1 File Operation Interface

Hmfs supports the basic file operations including upload, download, update, and de-
lete. Fig. 3 shows their workflow. The following is the detailed description of these
interfaces provided by Hmfs.

Fig. 3. File upload(red line), download(blue line), and update(green line)

• FileUpload(). This function will receive a request from a client, generate an identi-
fier fileId for the file, upload the fileId and its data to the file merge buffer, and re-
turn the fileId to the client.

60 C. Yan et al.

• FileDownload(). This function will check the file according to fileId in the file
index buffer, the file delete buffer, the file update buffer, the file merge buffer, and
the file cache buffer one by one. If the file is found, the function will return its con-
tent. If the file does not exist, the function will check the file in HDFS. After the
file is downloaded, the function will trigger the file cache task.

• FileUpdate(). When a client submits an update request, Hmfs does not update the
file in HDFS immediately. The function will check the file in the file index buffer
and the file merge buffer, then store the fileId and its new data in the file update
buffer.

• FileDelete(). When a client submits a delete request, Hmfs will check whether the
file exists in the file index buffer, the file merge buffer, or the file update buffer. If
it exists, Hmfs will store the fileId in the file delete buffer. Or an error will be re-
turned.

From the process of file upload, update, and delete, we can see that these opera-
tions will not submit the requests to HDFS immediately; instead, the files and opera-
tions will be stored in the buffers and wait for processing by the file tasks. The asyn-
chronous write mechanism is adopted in Hmfs to boost the file operations speed.

4.2 File Tasks

There are four tasks running in the background to implement the file operations.

• File merge task. The file merge task will regularly scan the file merge buffer to detect
whether it is necessary to merge files in the background. When the total size is greater
than the block size in the file merge buffer, the file merge task will merge the small
files into a big one and upload it to HDFS. Each small file has a local index record in
the file index buffer, and each big file has a block index in the file index buffer.
It has a negative impact on the performance of uploading file when the file merge

task is combining small files because both the file merge task and the file upload opera-
tion need to access a critical resource, the file merge buffer. The file merge task needs to
read data in the merge buffer and the file upload operation needs to write data in the
merge buffer. In order to improve the performance of the merge task and the file upload
operation for clients, Hmfs use two buffers to separate the read and write operations.

Fig. 4. Buffers switch

 Hmfs: Efficient Support of Small Files Processing over HDFS 61

As shown in Fig. 4, there are two file merge buffers. When a client is uploading a
file to Hmfs and Hmfs is uploading the file to the file merge buffer, the file merge
task will not do the merge task. When the file merge task is performing the merge
task, the places of buffer 1 and buffer 2 are exchanged. Then buffer 1 is used to read
for the file merge task and buffer 2 is used to write for the file upload operation.
When the file merge task executes the next task, the places of two buffers are
switched again. In this way, the buffers are switched back and forth so that the func-
tions of read and write are split.

• File update task. Because HDFS does not support file update operation currently,
if we want to update a file, it needs to delete the old file and add the new one. So
the file update task will send the old fileId to the file delete task and send the new
file to the file merge task.

• File delete task. Hmfs delete task will regularly scan the file delete buffer and
submit the delete request to HDFS.

• File cache task. Hmfs cache task executes the optimization process. The related
algorithms will be described in the next section.

4.3 Buffer Structure

There are five kinds of buffers in Hmfs. The data in the buffer is stored in the form of
<key, value>. They are the key of improving performance for Hmfs.

• Hmfs index buffer is the basic and most important. When a client uploads a file to
Hmfs, it will return a fileId according to some rules. It is necessary to generate in-
dex between the small files and the block in HDFS. There are two kinds of index
data. For each small file, there is a pair of <key, value> in the index buffer, where
key is fileId and value is HDFS path. For each block in HDFS, we store all the re-
lated index of small files in the block, which concludes fileIds and their size.

• In the file cache buffer, data is a list which stores the cached file group by block. In
order to avoid conflicting, we need to save the latest access time of the block.

• In the file merge buffer, data is stored in the form of <fileId, fileContent>, where
fileContent is the content of the file to be merged.

• In the file update buffer, data is stored in the form of <fileId, newContent>, where
newContent is the updated content of the file.

• In the file delete buffer, data is stored in the form of <fileId, delTime>, where
delTime is used for conflict detection.

5 Optimization Strategy

5.1 File Prefetching and Caching

Prefetching is a widely used storage optimization technique. It hides visible disk I/O cost
and improves response time by exploiting access locality and fetching data into cache
before they are requested. Currently, HDFS does not provide prefetching function.

62 C. Yan et al.

It is important to decide when to prefetch the files. For different applications, there
are many prefetching strategies to reduce the access time and improve the response
speed. In this paper, we assume that there is no relationship between files and the files
are merged in accordance with the order of upload time. So the files in one block may
share the similar update time. Once a client accesses a small file, Hmfs will fetch the
whole block from HDFS to get the small files. Hmfs will store the block in the file
cache buffer. If a client accesses another file in this block, Hmfs will obtain it from
the cache buffer. It is much faster than from HDFS.

Based on the above analysis, when a client accesses a file with a fileId, we adopt
the following prefetching and caching strategy in Hmfs.

Algorithm 1. File prefetching

Input: fileId
Output: cacheList<k,v>
Step 1: Hmfs looks up the file index buffer to get the path of fileId in HDFS.
Step 2: Hmfs downloads the content of the file in HDFS, and sends a request to the
file cache task.
Step 3: When the file cache task receives the cache request, it will fetch the rest of the
files belong to the same HDFS block and add <fileId, fileContent> to cacheList which
will be stored in the file cache buffer.
Step 4: Return cacheList.

5.2 Buffer Replacement Mechanism

Since the memory is limited, it is impossible to cache all the HDFS blocks in the file
cache buffer. A buffer replacement mechanism is necessary for data eliminating ac-
cording to the size of the file cache buffer.

Hmfs adopts the least recently used algorithm to eliminate the longest unused
blocks. When a client request hits a block in the file cache buffer, the block’s latest
access time in the file cache buffer will be updated. Or Hmfs needs to determine
whether the number of blocks in the file cache buffer is greater than N (the maximum
cache block number). If so, Hmfs sorts the whole block in the file cache buffer by the
latest access time and removes the longest unused block.

When a new block needs to be cached in the file cache buffer, we adopt the follow-
ing mechanism to assign the space for it.

Algorithm 2. Buffer replacement

Input: blockList<k1, v1>, k ,N // k1 is the blockId, v1 is the access time, k is the new
request, and N is the capacity of the file cache buffer
Output: blockList<k2, v2> // new blockId and access time
Step 1: Check k in blockList. If k is in blockList, update its access time. Goto Step 4.
Step 2: If the file cache buffer is full, sort the elements in blockList according to v1,
and delete the element with the smallest v1.
Step 3: Add <k, currentTime> to blockList. Goto Step 4.
Step 4: Return blockList.

 Hmfs: Efficient Support of Small Files Processing over HDFS 63

6 Experimental Evaluation

6.1 Experimental Environment

The test platform is built on a cluster with 5 nodes. One node acts as NameNode,
which has 2 Intel Xeon CPU (2.40GHz), 16 GB memory, and 1 TB disk. One node
runs Hmfs middleware, which has 2 Intel Core CPU (i5-3470, 3.20GHz), 8GB
memory, and 1TB disk. The other three nodes act as DataNodes. Each of them has 2
Intel Xeon CPU (2.00GHz), 16 GB memory, and 2 TB disk.

In each node, Ubuntu server 12.04 with the kernel of version 3.2.0-24 is installed.
Hadoop version is 1.2.1 and Java version is 1.6.0. The number of replicas is set to 3
and HDFS block size is 64 MB by default.

The small files for test are generated randomly. The minimum size of these small
files is 10 KB, and the maximum size is 1024 KB.

6.2 Memory Usage Analysis

The memory usage is an important metric to evaluate the distributed file system. In
the experiment, we use AMUPF, average memory usage per file, to evaluate the
memory usage of Hmfs. AMUPF = M N⁄ . Here, M stands for the used memory of
HDFS NameNode and N stands for the number of files stored in HDFS.

Fig. 5. NameNode memory usage of HDFS, HAR, and Hmfs

Fig. 5 shows the memory usage comparison among HDFS, HAR, and Hmfs. The
number of small files are 2000, 4000, 6000, 8000, and 10,000. Their size is distribut-
ed randomly. The values of AMUPF for HDFS, HAR, and Hmfs are 0.018, 0.0022,
and 0.0008 respectively. From this figure, we can see that, HAR and Hmfs spend
much less memory space than HDFS. The main reason why Hmfs has the best per-
formance among these three approaches is that the index of the small files is stored in
the Hmfs index buffer.

64 C. Yan et al.

Fig. 6. Download and upload time of HDFS and HAR

Fig. 6 shows the download and upload time of HDFS and HAR. They almost spend
the same download time while HDFS spend less upload time because it does not need
to combine the small files into big ones. However, HDFS spends more space to store
the metadata of the small files individually. Considering this, the following analysis
will focus on the performance comparison between HDFS and Hmfs.

6.3 Upload Efficiency Analysis

We use ARTPF (Average Response Time Per File) and AUTPF (Average Upload
Time Per File) to evaluate the file upload time of HDFS and Hmfs. ARTPF = Tr N⁄ , AUTPF = Tu N⁄ . Here, Tr is the total cost of response time when
N files are uploaded, Tu is the total cost of upload time, and N is the number of files
to be uploaded.

Fig. 7. Upload time of HDFS and Hmfs

Fig. 7 shows the upload time and response time comparison between HDFS and
Hmfs. The number of small files are 2000, 4000, 6000, 8000, and 10,000. Their size
is distributed randomly.

 Hmfs: Efficient Support of Small Files Processing over HDFS 65

From this figure, we find that the response time of Hmfs is much less than HDFS.
This is mainly because of the asynchronous write mechanism of Hmfs. That is, when
a client submits an upload request to Hmfs, Hmfs will create a fileId and send back to
the client immediately. The real file upload operation will be completed by the file
merge task in background.

When N is 10,000, the value of AUTPF for HDFS is 0.056 while it is 0.016 for
Hmfs, and the value of ARTPF for HDFS is 0.056 while it is 0.0006 for Hmfs. Such a
big gap is caused because AUTPF takes the file upload time and the file merge time
into consideration. So for Hmfs, the value of AUTPF is bigger than that of ARTPF.

6.4 Download Efficiency Analysis

We use ADTPF (Average Download Time Per File) to evaluate the file download
time of HDFS and Hmfs. ADTPF = Td N⁄ . Here, Td stands for the total time con-
sumption and N is the number of files.

For different operations such as sequential download and random download, the
execute time of HDFS and Hmfs is totally different. This is related to the size of the
file cache buffer. Here, we set the capacity of the file cache buffer is 10.

Sequential Download. We first upload 10,000 small files to HDFS and Hmfs respec-
tively, then download 2000, 4000, 6000, 8000, 10,000 files to the local disk by the
upload order. Fig. 8 shows the experimental results. The values of ADTPF for HDFS
and Hmfs are 0.018 and 0.020 respectively.

Fig. 8. Sequential download time of HDFS and Hmfs

From Fig. 8, we can see that the sequential download speed of Hmfs is a little
slower than HDFS. That’s determined by the mechanism of Hmfs prefetching and
caching. In Hmfs, when a client submits a request to download a file, Hmfs will get
the content of the file from HDFS and return the file to client. Meanwhile, the file
cache task will fetch the rest of the files which belong to the same HDFS block and
store them in the file cache buffer asynchronously. The strategy of caching files by
the asynchronous file cache task affects the response speed of a single file. So the
download speed of a single file in Hmfs is slower than HDFS.

66 C. Yan et al.

Prefetching and caching is a popular technology to improve the I/O performance in
the file systems. In Hmfs, the prefetching and caching strategy will speed up the next
file download speed if they are in the same block with the first file. In order to experi-
ence the advantage brought by the optimization strategy, we download N files in se-
quential, and repeat the process five times. The experimental result is shown on the
right side of Fig. 8. The value of ADTPF for Hmfs is 0.007 while it is 0.018 for
HDFS. The download speed of Hmfs is much faster than HDFS.

Random Download. The above experiment demonstrates that the prefetching and
caching strategy can bring high efficiency for sequential file download when we
download a big amount of files. Generally, this optimization strategy will have side
effects on random download because it is difficult to predict the next files and an
unreasonable prefetching strategy may result in low efficiency.

Fig. 9. Random download time of HDFS and Hmfs

Fig. 9 shows the results of random download. In this experiment, we download
2000, 4000, 6000, 8000, 10000 files randomly. However, the value of ADTPF for
Hmfs is 0.018, and it is 0.016 for HDFS. That is, the prefetching strategy has little
effect on the random download.

7 Conclusion

HDFS is expert in handling big files while it is inefficient to deal with small files.
This is mainly caused by the logic structure of HDFS and its access mechanism.

In this paper, we propose Hmfs, a middleware based on HDFS to solve the small
files problem in HDFS. Some contributions are outlined as follows. First, Hmfs pro-
vides a general solution for all kinds of small files such as text, image, and video
segment. It supports four basic file operations including upload, download, update,
and delete. It can run on different versions of HDFS as long as the read and write
interfaces of HDFS are not changed. Second, the asynchronous write mechanism
makes it unique and can bring rapid response for clients. Third, the prefetching and
caching strategies with in-memory database improve the efficiency of file access.

 Hmfs: Efficient Support of Small Files Processing over HDFS 67

In future work, we will consider the relationship between files and focus on
content-based file merge method with the aim of improving the speed of related file
access.

Acknowledgment. This research is supported by the Fundamental Research Funds
for the Central Universities of China (grant No. 14D111210), the National Natural
Science Foundation of China (grant No. 61300100), and the Natural Science Founda-
tion of Shanghai (grant No. 13ZR1451000).

References

1. Hadoop, http://hadoop.apache.org/
2. Shvachko, K., Kuang, H.: Radia. S.: The hadoop distributed file system. In: IEEE 26th

Symposium on Mass Storage Systems and Technologies (MSST 2010). Incline Village,
Nevada (2010)

3. Dong, B., Zheng, Q., Tian, F., et al.: An optimized approach for storing and accessing small
files on cloud storage. Journal of Network and Computer Applications 35(6), 1847–1862
(2012)

4. Dong, B., Qiu, J., Zheng, Q., et al.: A novel approach to improving the efficiency of stor-
ing and accessing small files on hadoop: a case study by powerpoint files. In: IEEE Inter-
national Conference on Services Computing (SCC 2010), Miami, Florida, USA (2010)

5. Liu, X., Han, J., Zhong, Y., et al.: Implementing WebGIS on hadoop: a case study of im-
proving small file I/O performance on HDFS. In: IEEE International Conference on Clus-
ter Computing and Workshops (CLUSTER 2009), New Orleans, LA, USA (2009)

6. Cui, J., Zhang, Y., Li, C., Xing, C.: A packaging approach for massive amounts of small
geospatial files with HDFS. In: Gao, H., Lim, L., Wang, W., Li, C., Chen, L. (eds.) WAIM
2012. LNCS, vol. 7418, pp. 210–215. Springer, Heidelberg (2012)

7. Hadoop Archives, http://hadoop.apache.org/common/docs/
r0.20.2/hadoop_archive

8. Sequence File, http://wiki.apache.org/hadoop/SequenceFile
9. Hbase, http://hbase.apache.org/

10. Gohil, P., Panchal, B.: Efficient ways to improve the performance of HDFS for small files.
Computer Engineering and Intelligent Systems 5(1), 45–49 (2014)

11. Wang, Y., Zhang, S., Liu, H.: The design of distributed file system based on HDFS. Ap-
plied Mechanics and Materials 423, 2733–2736 (2013)

12. Mao, Y., Min, W.: Storage and accessing small files based on HDFS. In: Patnaik, S., Li, X.
(eds.) 4th International Conference on Computer Science and Information Technology
(CCSIT 2014). AISC, vol. 255, pp. 565–573. Springer, Heidelberg (2014)

13. Chandrasekar, S., Dakshinamurthy, R., Seshakumar, P., et al.: A novel indexing scheme
for efficient handling of small files in hadoop distributed file system. In: 2013 Internation-
al Conference on Computer Communication and Informatics, ICCCI 2013 (2013)

14. Mackey, G., Sehrish, S., Wang, J.: Improving metadata management for small files in
HDFS. In: IEEE International Conference on Cluster Computing and Workshops
(CLUSTER 2009), New Orleans, Louisiana, USA (2009)

Utilizing Multiple Xeon Phi Coprocessors

on One Compute Node

Xinnan Dong1, Jun Chai1, Jing Yang1, Mei Wen1, Nan Wu1, Xing Cai2,3,
Chunyuan Zhang1, and Zhaoyun Chen1

1 School of Computer Science, National University of Defense Technology
Changsha, Hunan 410073, China

xinnandong@126.com,

{chaijun200306,estella,meiwen,nanwu,cyzhang,chenzhaoyun}@nudt.edu.cn
2 Simula Research Laboratory

P.O. Box 134, 1325 Lyakser, Norway
xingca@simula.no

3 Department of Informatics, University of Oslo.
P.O. Box 1080 Blindern, 0316 Oslo, Norway

Abstract. Future exascale systems are expected to adopt compute
nodes that incorporate many accelerators. This paper thus investigates
the topic of programming multiple Xeon Phi coprocessors that lie inside
one compute node. Besides a standard MPI-OpenMP programming ap-
proach, which belongs to the symmetric usage mode, two offload-mode
programming approaches are considered. The first offload approach is
conventional and uses compiler pragmas, whereas the second one is new
and combines Intel’s APIs of coprocessor offload infrastructure (COI) and
symmetric communication interface (SCIF) for low-latency communica-
tion. While the pragma-based approach allows simpler programming, the
COI-SCIF approach has three advantages in (1) lower overhead associ-
ated with launching offloaded code, (2) higher data transfer bandwidths,
and (3) more advanced asynchrony between computation and data move-
ment. The low-level COI-SCIF approach is also shown to have benefits
over the MPI-OpenMP counterpart. All the programming approaches
are tested by a real-world 3D application, for which the COI-SCIF ap-
proach shows a performance upper hand on a Tianhe-2 compute node
with three Xeon Phi coprocessors.

1 Introduction

For the field of high-performance computing, energy efficiency considerations
have prompted modern supercomputers to adopt accelerators, such as general-
purpose GPUs and many-integrated-core (MIC) coprocessors. A good example
is Tianhe-2, which is currently ranked No. 1 on the TOP500 List [1]. Three In-
tel Xeon Phi coprocessors can be found in each of Tianhe-2’s 16,000 compute
nodes [2]. However, with this unconventional multi-coprocessor-per-node setup
come challenges of programming. Apart from ensuring the performance of each

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 68–81, 2014.
© Springer International Publishing Switzerland 2014

Utilizing Multiple Xeon Phi Coprocessors on One Compute Node 69

coprocessor, there arises a new challenge of joining the force of several coproces-
sors within one compute node. The most important issue in the latter subject
concerns implementing data transfers between the coprocessors, to achieve high
performance with acceptable coding difficulty.

The Xeon Phi coprocessors from Intel adopt the MIC architecture and support
a modified x86 instruction set, thereby providing the programmability of a full-
fledged multicore CPU [3–5]. A coprocessor-enhanced compute node has always a
CPU host consisting of one or more multicore CPU sockets that share a memory
address space. There can be one or more coprocessor cards, each connected to
the host as a device via a PCIe bus. The cores on each coprocessor have access
to a shared device memory space that is disjoint from both the host and the
other coprocessors.

For a multi-coprocessor compute node, two usage modes can be adopted: of-
fload and symmetric [6]. In the offload mode, the code is first started on the
CPU host, whereas compute-intensive blocks of the code are offloaded to the
coprocessors. In the symmetric mode, the coprocessors are considered as in-
dependent nodes of a mini-supercomputer. For example, MPI can be used to
start the code simultaneously on the coprocessors, and possibly also the CPU
host. This MPI approach in the symmetric mode is simple and has the best
code portability. However, one major disadvantage with a pure MPI approach
is the excessive overhead in memory footprint due to the large number of MPI
processes. A remedy is to use one MPI process per coprocessor while adopting
OpenMP threads for intra-coprocessor parallelism.

Due to the possible shortcoming of the MPI-based symmetric usage mode, we
also want to consider the offload usage mode. The usual approach is to insert an
offload pragma in front of each code block that is to be offloaded. The resulting
coprocessor-coprocessor data transfers are actually relayed through the host. In
this paper, we present a new offload programming approach, which allows each
coprocessor to run an independent sub-program, while bi-directional and asyn-
chronous coprocessor-coprocessor data transfers are directly enabled by Intel’s
low-level APIs of coprocessor offload infrastructure (COI) [20] and symmetric
communication interface (SCIF) [21]. The choice of this offload programming
approach is motived by performance. We believe this paper is a first effort in
studying how to efficiently program multiple Xeon Phi coprocessors within one
compute node, by comparing the two offload programming approaches against
the MPI-OpenMP counterpart.

The remainder of the paper is organized as follows. Some background infor-
mation is presented in Section 2, and the related work is surveyed in Section 3.
Section 4 explains the two offload programming approaches, using a simple exam-
ple of 3D stencil computation. Section 5 quantifies the performance advantages
of the low-level COI-SCIF approach, in terms of both bandwidth measurements
and time usages of a real-world 3D application. All the experiments have been
done on a compute node of Tianhe-2, with three Xeon Phi coprocessors.

70 X. Dong et al.

2 Background

2.1 Xeon Phi Coprocessor

Intel’s Xeon Phi coprocessor has up to 61 x86-based Intel CPU cores on a single
chip. Each core supports 512-bit SIMD vector computing, and has 32 KB private
L1 data cache and 512 KB shared L2 cache. Four hardware threads can be
enabled on each core to give up to 244 threads per chip. Each coprocessor has
its own device memory and is connected to the CPU host via PCIe bus.

2.2 Pragma-Based Offloading

In this pragma-based programming approach [18], the CPU host controls the
entire execution of a code. Blocks of the code can be delegated to the coprocessors
for execution. Since memory is not shared between the host and any of the
coprocessors, variables and arrays needed in the offloaded code block also have
to be allocated on the target coprocessors. The content of the coprocessor data
can be transferred back to the host if desired. Below is an example of the directive
that combines code offload with host-coprocessor data transfers.

#pragma offload target(mic:id) \

in(input_msg: length(N)) out(output_msg: length(N))

Here, id is an integer specifying the target coprocessor. The content of array
input msg (of length N), which is marked by the in specifier, is copied from
the host at the start of offload. Similarly, the content of array output msg is
copied back to the host at the end of offload. A third possible data specifier
is inout, which marks a variable or array as both input and output. A fourth
possible data specifier is nocopy, which only marks variables that will be used on
the target coprocessor, but without any host-coprocessor data movements (by
assuming that these variables persist on the coprocessor). For a code block that
is offloaded iteratively, to save the cost of repeatedly allocating/deallocating the
same data storage, the modifiers alloc if(arg) and free if(arg) can be used.

To initiate asynchronous host-coprocessor data transfers, such that compu-
tations have the possibility of being simultaneously carried out, the signal

clause can used together with the offload pragma or another pragma named
offload transfer. The compiler directive only initiates an asynchronous data
transfer without offloading any computation to the target coprocessor. A match-
ing offload wait pragma should be used to complete the asynchronous data
transfer. An example is as follows:

#pragma offload_transfer target(mic:id) \

out(output_msg: length(N)) signal(output_msg)

...

#pragma offload_wait target(mic:id) wait(output_msg)

Although asynchronous data transfers are achievable with pragma-based pro-
gramming, one major disadvantage is that data transfers between two coproces-
sors always have to be relayed through the host. The second disadvantage is the
offload start-up cost, especially for a code block that is offloaded iteratively.

Utilizing Multiple Xeon Phi Coprocessors on One Compute Node 71

2.3 COI and SCIF

To realize direct coprocessor-coprocessor data transfers in connection with of-
fload programming, while also avoiding the overhead related to repeated offload
start-ups, we use two low-level APIs: COI and SCIF, provided by Intel’s MPSS
software stack [19]. They provide the programmer with a finer control of code
offloading and data transfers.

Two of COI’s key abstractions, namely COIEngine and COIProcess, are im-
portant for the following implementations. The first abstraction represents a
COI-capable device, e.g., the host or a coprocessor, whereas the second one en-
capsulates a process created by COI on a remote engine. These two abstractions
can be used together to offload computations to multiple coprocessors within
one compute node.

SCIF is a low-level API that provides a low-latency communication channel
between clients, which can be either the host or coprocessors. Efficiency of SCIF
is due to direct use of the PCIe bus for bi-directional data transfers between two
coprocessors (or between the host and a coprocessor). The following is a list of
abstractions used by SCIF:

– Node: It is a physical node in SCIF network. Both the host and an MIC card
can be seen as a node.

– Port: An SCIF port on a node is represented as a 16-bit integer, which is a
logical endpoint on the SCIF node similar to an IP port.

– Endpoint: The port for a connection is defined as an endpoint, which is
similar to a socket.

– Registered memory: This is a registered memory driven by SCIF, and is held
for the connected endpoints.

For small-amount data transfers (<4KB) between two SCIF clients, the
scif send and scif recv functions should be employed, which can also be used
for synchronizing the two clients. SCIF also provides remote direct memory ac-
cess (RDMA) semantics. More specifically, the scif register function exposes
local memory on a device for remote access by another device. Then, either
function scif readfrom or function scif writeto can be used to initiate asyn-
chronous and zero-copy data transfers (≥4KB) between two devices. Finally,
the scif fence signal function can ensure the completion of an asynchronous
RDMA-based data transfer.

2.4 Coprocessor-Only Usage Mode

Strictly speaking, the symmetric usage mode means that the CPU host is used
simultaneously with the coprocessors [6], i.e., a form of hybrid computing. We
will however loosen the definition of symmetric usage to also include the sce-
nario of only using the coprocessors. This is because if the CPU host is not
involved, an existing MPI code can be readily run on multiple coprocessors
without the worry of sophisticated load balancing. As mentioned in Section 1,

72 X. Dong et al.

OpenMP threads can be used to exploit the intra-coprocessor parallelism, giv-
ing rise to an MPI-OpenMP programming approach. This is for avoiding the
pure MPI approach’s excessive overhead in memory footprint, due to the large
number of MPI processes.

3 Related Work

Many researchers have focused on single-MIC programming. There are, how-
ever, not many publications on programming multiple MIC coprocessors or MIC
clusters. As introduced in Section 2, pragma-based offload mode (combined with
OpenMP) and MPI-based native/symmetric mode are two existing programming
approaches. For the default MPI version included in MPSS, there have been re-
ported bandwidth bottlenecks in intra-node and inter-node MPI communication
between a MIC and the host or between two MICs, see [15, 16].

Due to the Intel MPI bandwidth problem in MIC clusters, some researchers
proposed alternative MPI implementations for improving the communication
performance for the native/symmetric mode. DCFA-MPI [8] is an MPI library
implementation for direct inter-node InfiniBand communication between MIC
coprocessors. MPICH2-1.5 [9] is an MPI implementation that uses shared mem-
ory, TCP/IP, and SCIF-based communication for MIC clusters. The research
group of D. K. Panda at The Ohio State University has investigated the com-
munication within a node that consists of a CPU host and one MIC coproces-
sor [17]. They proposed MVAPICH-PRISM [16], an MPI implementation that
is a proxy-based communication framework using InfiniBand and SCIF for MIC
clusters. All the above MPI implementations targeted MIC clusters with only
one MIC coprocessor per node.

In addition, to solve the MPI bandwidth problem in its early version, Intel
MPI has also implemented a proxy-based design that allows hybrid utilization
of InfiniBand and SCIF, depending on the actual communication scenario [10].

Some researchers have studied the use of COI and SCIF APIs. COSMIC [11] is
a user-level middleware for automatically managing MIC coprocessor resources
by scheduling COI processes and their offloads, which can improve both perfor-
mance and reliability of multiprocessing on MIC coprocessors. Dokulila et al. [12]
created a library that supports hybrid execution in C++ applications using MIC
coprocessors, where SCIF is used for synchronization and data transfers.

High performance has been achieved on coprocessors for many kernels and
some applications. Schulz et al. [13] ported existing scientific applications and
micro-kernels to a single MIC coprocessor. Pennycook et al. [14] explored SIMD
for molecular dynamics applications on a MIC coprocessor. Rosales [15] has sum-
marized the critical skills for pursuing high performance on Xeon Phi. By of-
floading the Linpack benchmark to MIC coprocessors, Heinecke et al. [7] achieved
over 76% efficiency on a 100-node cluster with two MIC coprocessors per node.

Although COI and SCIF are two established APIs, we believe that our work
represents a first effort in combining COI and SCIF for programming multiple
MIC coprocessors within one compute node.

Utilizing Multiple Xeon Phi Coprocessors on One Compute Node 73

4 Two Implementations of a Simple 3D Stencil

This section serves to demonstrate the two offload-basedprogramming approaches
and their related data transfers. This will be done through parallelizing a very
simple example of 3D stencil computation, to make use of multiple coprocessors
within one compute node. The MPI-based programming approach is the same as
for the scenario of a CPU cluster, thus not discussed here.

The stencil example involves a box-shaped computational grid that has in
total (nx+2)×(ny+2)×(nz+2) mesh points. The entire computation is assumed
as an iterative loop (over time). During each iteration a 3D array named C1 is
computed by applying a 7-point stencil operator over another 3D array named
C0. Values of C1 are prescribed on the entire boundary, so the actual computation
per iteration computes the nx × ny × nz inner points of C1 as follows:

for (k=1; k<=nz; k++)

for (j=1; j<=ny; j++)

for (i=1; i<=nx; i++)

C1[k][j][i]=a*C0[k][j][i]

+b*(C0[k][j][i-1]+C0[k][j][i+1]

+C0[k][j-1][i]+C0[k][j+1][i]

+C0[k-1][j][i]+C0[k+1][j][i]);

Parallelism between the coprocessors can be enforced by dividing the 3D com-
putational grid (and C0/C1 arrays) into subdomains, each being assigned to one
coprocessor. Between two neighboring subdomains, values on each other’s re-
spective internal boundary layer have to be exchanged through data transfers.
It is also customary that the subdomain grid is extended with a layer of ghost
points towards each neighbor. An example of 1D grid decomposition can be
found in Figure 1.

nz+2

(b)

ny/2+2 ny/2+2

nx+2

ny+2

nz+2

(a)

nx+2

Fig. 1. An example of 1D decomposition (in y-direction) of a 3D grid into two subdo-
mains. (a) Original 3D grid, (b) two subdomains after the decomposition.

The work on each subdomain consists of at least the following tasks per it-
eration. For each of its neighbors, first pack an “outgoing” buffer (1D array)
by copying from respective (possibly non-contiguous) entries of the subdomain
3D array C0 and then unpack an “incoming” buffer (1D array) by copying its

74 X. Dong et al.

content to respective (possibly non-contiguous) entries of C0; compute all the en-
tries of the subdomain 3D array C1 (except its boundary entries), by applying a
7-point stencil over the entries of C0; swap the subdomain array pointers C0 and
C1 before proceeding to the next iteration. The actual coprocessor-coprocessor
data transfers may be mediated by the host, or asynchronously initiated by the
coprocessors themselves, depending on the chosen approach of programming.

For simplicity, let us only consider the case of two coprocessors. In the begin-
ning of both implementations, four 3D arrays C00, C10, C01, C11 are allocated
on the host side, such that the first two are duplicated on coprocessor 0, and
the latter two duplicated on coprocessor 1. It should be obvious from the names
that C00 and C01 together constitute the global 3D array C0, which no longer
needs a physical storage. The same idea applies to C10, C11 and C1. It is only
after all the iterations are done that values of C00, C10, C01, C11 are copied from
the coprocessors back to the host.

4.1 Implementation Based on Pragmas

In this implementation, the host also needs to allocate two 1D arrays, in buffer0

and out buffer0, on coprocessor 0. Similiarly, in buffer1 and out buffer1 are
on allocated coprocessor 1. The following code segment shows the actions that
happen during each iteration:

#pragma omp parallel num_threads(2) {

int id = omp_get_thread_num();

if (id==0) {

#pragma offload target(mic:0) nocopy(C00,C01) \

in(in_buffer0) out(out_buffer0)

{ // work offloaded to coprocessor0

...

}

}

else if (id==1) {

#pragma offload target(mic:1) nocopy(C10,C11) \

in(in_buffer1) out(out_buffer1)

{ // work offloaded to coprocessor1

...

}

}

} // end of OpenMP parallel region

swap_pointers(out_buffer0,in_buffer1);

swap_pointers(out_buffer1,in_buffer0);

It should be noted that we have omitted some programming details in the
offload pragmas, and details of the offloaded work tasks are also skipped.
Coding for coprocessor 0 is identical with that for coprocessor 1, except for
the slightly different variable names and the different locations of the respective
ghost boundary points.

Utilizing Multiple Xeon Phi Coprocessors on One Compute Node 75

It can be seen from the above code segment that two OpenMP threads on the
host simultaneously offload work to the two coprocessors. All data transfers are
relayed through the host. In particular, the two swappings of the buffer array
pointers ensure the needed coprocessor-coprocessor data exchanges. Another im-
portant remark is that although overlapping computation with data movement
is theoretically possible, we have chosen a non-overlapping approach above. It
otherwise will require each coprocessor to split the offload into several parts.
These will be initiated by offload or offload transfer pragmas together with
the signal clause, for the purpose of asynchrony. Some extensive modifications
are also needed for the offloaded code blocks.

4.2 Implementation Based on COI and SCIF

The COI-SCIF implementation uses an independent sub-program per coproces-
sor. At the same time, the host main program is quite different from the previous
implementation, i.e., a pair of COIEngine and COIProcess will be created and
connected to each coprocessor. Thereafter, the host can choose not to disturb
the two coprocessors, which will carry out the needed computation iterations,
interleaved with bi-directional and asynchronous data transfers directly between
themselves. That is, data transfers do not pass through the host. As shown in
Figure 2, each coprocessor can independently initiate scif writeto towards the
other. By paying some extra effort in coding the coprocessor sub-programs, we
can obtain several advantages. First, the repeated cost of offload start-ups of the
pragma-based implementation is avoided. Instead, using COI and SCIF APIs can
make the single-time device code loading and launching more efficient. Second,
bi-directional and asynchronous coprocessor-coprocessor data transfers result in
higher bandwidths than the host-mediated data transfer approach. Third, the
more advanced asynchrony, due to RDMA data accesses such as scif readfrom

and scif writeto, make it easier to overlap computation with communication.
This possibility of overlapping is illustrated in Figure 3.

mic0_ep
host0_ep

mic1_ep
host1_ep

mic0_ep

mic0_out_ep

mic0_in_ep,
mic1_out_ep

mic1_ep

mic1_out_ep

mic1_in_ep,
mic0_out_epS _writeto

S _writeto

Fig. 2. The coupling between two coprocessors, with a COI-SCIF implementation

76 X. Dong et al.

(b)

init

Time

host

coprocessor 1

coprocessor 2

coprocessor 3

pack
_data

transfer

transfer

transfer

unpack
_data

unpack
_data

unpack
_data

pack
_data

(a)

pack
_data

Fig. 3. (a) Overlapping computation and coprocessor-coprocessor data transfers. (b)
Data transfers between multiple coprocessors with (left) or without host (right) relay.

5 Experiments and Results

We will report in this section measurements of a set of experiments involv-
ing data transfers between multiple Xeon Phi coprocessors. The purpose is to
demonstrate the advantages of the COI-SCIF approach, which provides both
higher bandwidths and lower overhead related to offload start-ups. Moreover,
we want to quantify the resulting performance benefits in connection with solv-
ing a real-world 3D reaction-diffusion problem [22] that consists of 7-point stencil
computations and additional numerical operations.

5.1 Hardware Platform

One compute node of Tianhe-2 was used as the test hardware platform, having
three Intel Xeon Phi 31S1P coprocessors and two Intel Ivy Bridge 12-core E5-
2692 CPUs. It should be mentioned that each 31S1P coprocessor has 57 cores,
where 56 of them can be used in the offload mode. The PCIe 2.0 bus with
16 lanes between the CPU host and the coprocessors can theoretically offer a
bi-directional bandwidth of 16 GB/s in total.

5.2 Bandwidth Tests

Figure 4(a) compares the bandwidth between the following six scenarios of uni-
directional data transfer:

– offload-in: data transfer from host to coprocessor by offload transfer;
– offload-out: data transfer from coprocessor to host by offload transfer;
– MIC-Host-r: host-initiated data transfer from coprocessor to host, using the

scif readfrom function;

Utilizing Multiple Xeon Phi Coprocessors on One Compute Node 77

Fig. 4. Measured bandwidths, as functions of the transferred data size, (a) for six
scenarios of uni-directional data transfers, (b) for five scenarios of bi-directional data
transfers. Details can be found in Section 5.2.

– MIC-Host-w: host-initiated data transfer from host to coprocessor, using the
scif writeto function;

– MIC-MIC-r: data transfer from one coprocessor to another (without host
involvement), using the scif readfrom function;

– MIC-MIC-w: data transfer from one coprocessor to another (without host
involvement), using the scif writeto function.

It can be seen from Figure 4(a) that the first four scenarios enjoy roughly the
same bandwidth, which is higher than that of the latter two. Nevertheless, if
data need to be transferred from one coprocessor to another, it is still beneficial
to use the MIC-MIC-w approach, because otherwise data have to first travel from
one coprocessor to the host, then from the host to the other coprocessor.

Fig. 5. Four scenarios of bi-directional data transfers: (a) both independently initiate
data transfer between MIC and Host, (b) both independently initiate data transfer
between MIC and MIC, (c) only host initiates data transfer between MIC and Host,
(d) only one MIC initiates data transfer between MIC and MIC

Figure 4(b) shows the bandwidth differences between the following five sce-
narios of bi-directional data transfer:

– MIC-Host: data transfer between host and coprocessor, for which host and co-
processor independently initiate scif writeto, as illustrated in Figure 5(a);

78 X. Dong et al.

Table 1. Time usage (in seconds), by a single coprocessor, of three implementations
of a real-world 3D application. The total number of time steps is 1000.

Mesh size Programming mode Total

Pragma-based 30.12
112× 1200 × 142 COI-SCIF 26.66

MPI-OpenMP 26.52

– MIC-MIC: data transfer between two coprocessors, for which each coprocessor
independently initiates scif writeto, as illustrated in Figure 5(b);

– Host-initiated: data transfer between host and coprocessor, for which both
scif readfrom and scif writeto are initiated on the host side, as illus-
trated in Figure 5(c);

– MIC-initated: data transfer between two coprocessors, for which both the
scif readfrom and scif writeto are initiated on the same coprocessor, as
illustrated in Figure 5(d);

– MIC-MIC-mpi: data transfer between two coprocessors, for which utilizing
MPI Isend and MPI Irecv.

In the case of two coprocessors, it is always better to let both coprocessors
simultaneously initiate scif readfrom, instead of letting one coprocessor initiate
both scif readfrom and scif writeto.

5.3 Performance of a Real-World 3D Application

We used a real-world 3D application [22] to test the two implementations of
offloading, as described in Sections 4.1 and 4.2. Both implementations used
OpenMP threads for intra-coprocessor parallelism. The performance of an MPI-
OpenMP implementation is also included for comparison. More specifically, the
real-world application involved five reaction-diffusion equations. Each equation
was numerically split into a reaction part and a diffusion part, where the latter
was solved by applying the 7-point stencil operator. In total, each time iteration
for solving all the five equations needed 150 floating-point operations per mesh
point. All calculations were done using double precision.

Table 1 shows the time usages associated with offloading the computational
work to a single Xeon Phi coprocessor. The performance difference is due to the
fact that the pragma-based offloading approach induced repeated start-up costs,
once every time iteration. Note that no data transfers were needed for this single-
coprocessor scenario, therefore no performance difference between the COI-SCIF
programming approach and the MPI-OpenMP counterpart.

Table 2 summarizes the time usages associated with employing two or three
Xeon Phi coprocessors. Unlike Table 1, the costs of data transfers and pack-
ing/unpacking data buffers are now present. The pragma-based offload imple-
mentation was considerably slower than the COI-SCIF implementation. There
are two reasons for this performance difference. The first reason is due to the
repeated offload start-up costs, as we have already experienced for Table 1. The

Utilizing Multiple Xeon Phi Coprocessors on One Compute Node 79

Table 2. Time usage (in seconds) of four implementations of a real-world 3D applica-
tion. The version of “COI-SCIF*” refers to relaying data transfers via the host. Number
of time steps: 1000, global mesh size: 112× 1200× 142.

Pragma-based COI-SCIF* MPI-OpenMP COI-SCIF

Pack/unpack 0.41 0.41 0.40 0.40
2 Coprocessors Data trans 1.27 1.26 0.98 0.80

Total 19.34 15.08 14.91 14.62

Pack/unpack 0.40 0.40 0.40 0.40
3 Coprocessors Data trans 1.21 1.31 0.99 0.76

Total 12.63 10.22 9.72 9.43

second reason is due to the less efficient data transfers of the pragma-based
implementation, demonstrated by the “Data trans” row in Table 2.

We recall that the COI-SCIF implementation adopts bi-directional and asyn-
chronous coprocessor-coprocessor data transfers, thereby capable of hiding (a
part of) the data transfer costs. The MPI-based symmetric implemetation also
has the advantages in asynchronous data transfers between coprocessors, but the
extra overhead of MPI communication leds to a lower performance than the low-
level COI-SCIF implementation. For comparison purposes, Table 2 also includes
another implementation based on using the COI and SCIF APIs. This third im-
plementation, denoted as COI-SCIF*, relayed data transfers through the host.
It thereby closely resembled the pragma-based implementation with respect to
data transfers, and also that no overlap happened between data transfer and
computation.

6 Conclusions

This paper has focused on two offload programming approaches that can be
used for a single compute node with multiple coprocessors. An MPI-based sym-
metric programming approach is included for comparison purposes. The three
approaches, MPI-based, pragma-based and COI-SCIF-based, have rather differ-
ent characteristics. While the first two are easier to use, the latter one gives
better performance but requires more involved programming. For a real-world
3D application, the best performance was achieved by the COI-SCIF approach,
where bi-directional and asynchronous data transfers were enabled directly be-
tween the coprocessors. The low-level COI-SCIF approach also resulted in lower
communication overhead, in comparison with the MPI-based approach. It should
be remarked that this programming approach is not limited to stencil computa-
tion on regular meshes. Our findings not only shed some light on this new topic
of using multiple Xeon Phi coprocessors within one compute node, but provide
a good starting point for fully utilizing Tianhe-2 in future.

80 X. Dong et al.

References

1. Top500, China’s Tianhe-2 Supercomputer Takes No.1 Ranking on 41st TOP500
List, http://www.top500.org/blog/lists/2013/06/press-release/

2. Dongarra, J.: Visit to the National University for Defense Technology Changsha,
http://www.netlib.org/utk/people/JackDongarra/PAPERS/

tianhe-2-dongarra-report.pdf

3. Intel Corporation, Intel Xeon Phi Coprocessor Instruction Set Architecture Refer-
ence Manual. Reference number 327364-001 (2012)

4. Jeffers, J., Reinders, J.C.: Intel Xeon Phi Coprocessor High-Performance Program-
ming. Morgan Kaufmann, Walthman (2013)

5. Intel MIC Architecture, http://software.intel.com/en-us/articles/
intel-xeon-phi-coprocessor-codename-knights-corner

6. Intel Corporation, Intel Xeon Phi System Software Developer’s Guide. Reference
number 328207-001EN (2012)

7. Heinecke, A., Vaidyanathan, K., Smelyanskiy, M., Kobotov, A., Dubtsov, R.,
Henry, G., Chrysos, G., Dubey, P.: Design and implementation of the Linpack
benchmark for single and multi-node systems based on Intel Xeon Phi coproces-
sor. In: IPDPS (2013), doi:10.1109/IPDPS.2013.113

8. Si, M., Ishikawa, Y., Direct, M.P.I.: library for Intel Xeon Phi Co-Processors.
In: 27th IEEE International Parallel and Distributed Processing Sympo-
sium Workshops & PhD Forum (IPDPSW), Boston, MA, USA (2013),
doi:10.1109/IPDPSW.2013.179

9. MPICH: High-performance and Portable MPI, http://www.mpich.org/
10. OFS for Xeon Phi, https://www.openfabrics.org/images/docs/

2013Dev WorkshopnewlineMon 0422/2013 Workshop Mon 1430

OpenFabrics OFS software for Xeon Phi.pdf

11. Cadambi, S., Coviello, G., Li, C., Phull, R., Rao, K., Sankaradass, M., Chakrad-
har, S.: COSMIC: Middleware for high performance and reliable multiprocess-
ing on Xeon Phi coprocessors. In: Proceedings of the 22nd Int’l Symposium
on High-Performance Parallel and Distributed Computing, HPDC 2013 (2013),
doi:10.1145/2462902.2462921

12. Dokulila, J., Bajrovica, E., Benknera, S., Pllanaa, S., Sandriesera, M., Bachmayerb,
B.: High-level support for hybrid parallel execution of C++ applications targeting
Intel Xeon Phi coprocessors. In: 2013 International Conference on Computational
Science, ICCS 2013 (2013), doi:10.1016/j.procs.2013.05.430

13. Schulz, W., Ulerich, K., Malaya, R., Bauman, N., Stogner, T.P., Simmons, R.,
Early, C.: experiences porting scientific applications to the many integrated core
(MIC) platform. In: TACC-Intel Highly Parallel Computing Symposium, Tech.
Rep. (2012), doi:10.1145/2016741.2016764

14. Pennycook, J., Hughes, S., Smelyanskiy, J.C., Jarvis, M., Exploring, A.S.: SIMD
for molecular dynamics, using Intel Xeon processors and Intel Xeon Phi co-
processors. In: IEEE Int’l Parallel & Distributed Processing Symposium (2013),
doi:10.1109/IPDPS.2013.44

15. Rosales, C.: Porting to the Intel Xeon Phi: Opportunities and challenges. In: Ex-
treme Scaling Workshop, XSCALE 2013 (2013)

16. Potluri, S., Bureddy, D., Hamidouche, K., Venkatesh, A., Kandalla, K., Subramoni,
H., Panda, D.K.: MVAPICH-PRISM: A Proxy-based Communication Framework
using InfiniBand and SCIF for Intel MIC Clusters. In: Int’l Conference on Super-
computing (2013)

http://www.top500.org/blog/lists/2013/06/press-release/
http://www.netlib.org/utk/people/JackDongarra/PAPERS/tianhe-2-dongarra-report.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/tianhe-2-dongarra-report.pdf
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://www.mpich.org/
https://www.openfabrics.org/images/docs/2013Dev_WorkshopnewlineMon_0422/2013_Workshop_Mon_1430_OpenFabrics_OFS_software_for_Xeon_Phi.pdf
https://www.openfabrics.org/images/docs/2013Dev_WorkshopnewlineMon_0422/2013_Workshop_Mon_1430_OpenFabrics_OFS_software_for_Xeon_Phi.pdf
https://www.openfabrics.org/images/docs/2013Dev_WorkshopnewlineMon_0422/2013_Workshop_Mon_1430_OpenFabrics_OFS_software_for_Xeon_Phi.pdf

Utilizing Multiple Xeon Phi Coprocessors on One Compute Node 81

17. Potluri, S., Venkatesh, A., Bureddy, D., Kandalla, K., Panda, K.: D., Efficient
intra-node communication on Intel-MIC clusters. In: 13th IEEE Int’l Symposium
on Cluster Computing and the Grid, CCGrid 2013 (2013),
doi:10.1109/CCGrid.2013.86

18. The Heterogeneous Offload Model for Intel Many Integrated Core Architecture,
http://software.intel.com/sites/default/files/article/326701/

heterogeneous-programming-model.pdf

19. Intel Manycore Platform Software Stack (MPSS),
http://software.intel.com/en-us/articles/intel-manycore-platform-

software-stack-mpss#downloads

20. Intel Corporation, MIC COI API Reference Manual 0.65. Monday December 17
12:12:33 (2012)

21. Intel Corporation, MIC SCIF API Reference Manual 0.65 for User Mode Linux.
Mon Dec17 12:05:03 (2012)

22. Chai, Jun, Hake, Johan, Wu, Nan, Wen, Mei, Cai, Xing, Lines, T., Glenn, Yang,
Jing, Su, Huayou, Zhang, Chunyuan, Liao, Xiangke, S.: Towards simulation of
subcellular calcium dynamics at nanometre resolution. International Journal of
High Performance Computing Applications (2013)

http://software.intel.com/sites/default/files/article/326701/heterogeneous-programming-model.pdf
http://software.intel.com/sites/default/files/article/326701/heterogeneous-programming-model.pdf
http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss#downloads
http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss#downloads

HPSO: Prefetching Based Scheduling to Improve

Data Locality for MapReduce Clusters

Mingming Sun, Hang Zhuang, Xuehai Zhou, Kun Lu, and Changlong Li

Computer Science University of Science and
Technology of China, Hefei, China

{mmsun,zhuangh,local,liclong}@mail.ustc.edu.cn, xhzhou@ustc.edu.cn

Abstract. Due to cluster resource competition and task scheduling pol-
icy, some map tasks are assigned to nodes without input data, which
causes significant data access delay. Data locality is becoming one of the
most critical factors to affect performance of MapReduce clusters. As
machines in MapReduce clusters have large memory capacities, which
are often underutilized, in-memory prefetching input data is an effective
way to improve data locality. However, it is still posing serious chal-
lenges to cluster designers on what and when to prefetch. To effectively
use prefetching, we have built HPSO (High Performance Scheduling Op-
timizer), a prefetching service based task scheduler to improve data local-
ity for MapReduce jobs. The basic idea is to predict the most appropriate
nodes to which future map tasks should be assigned and then preload the
input data to memory without any delaying on launching new tasks. To
this end, we have implemented HPSO in Hadoop-1.1.2. The experiment
results have shown that the method can reduce the map tasks causing
remote data delay, and improves the performance of Hadoop clusters.

Keywords: Data locality, MapReduce clusters, prefetching, task
scheduler.

1 Introduction

MapReduce [1] has been highly successful as a parallel distributed processing
framework in implementing large-scale data-intensive applications on commodity
cloud computing plateforms such as Amazon EC2 and Windows Azure. MapRe-
duce enables hiding the details of the underlying parallel processing to provide a
simple programming interface for developing distributed application. There are
many different implementations of MapReduce framework such as Hadoop[2],
Disco, Phoenix, etc.

In most state-of-the-art cluster systems, a key challenge is to increase the
utilization of MapReduce clusters. If map tasks are scheduled to nodes without
input data, these tasks will issue remote I/O operations to copy the data to local
nodes. This data transfer delay is primarily on the execution time cost of map
phase, while map phase often dominates the execution time of the MapReduce
jobs. So data locality becomes one critical factor to affect performance of MapRe-
duce framework. In practice, not only clusters are shared by multiple users, but

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 82–95, 2014.
c© Springer International Publishing Switzerland 2014

HPSO: Prefetching Based Scheduling to Improve Data Locality 83

also there is a limitation in the number of nodes a user can use. In this case, it
is not easy to guarantee good data locality to all map tasks. The process will
cause remote data access delay, thus degrading the performance of MapReduce.
Workloads from Facebook and Microsoft Bing datacenters show that this remote
I/O operations phase constitutes 79% of a job’s duration [3]. So in this paper, we
focus on the optimizing the map phase. Obviously, the performance of MapRe-
duce clusters is closely tied to its task scheduler. Zaharia [4][5] proposed a delay
scheduling algorithm to reduce the map tasks executing remote I/O operations.
A next-k-node scheduling method is proposed to improve the data locality [6].
However, in both methods task fairness withered as the cost.

Data prefetching [7] is a data access latency hiding technique, which decou-
ples and overlaps data transfers and computation. And machines in MapReduce
clusters have large memory capacities, which are often underutilized; the me-
dian and 95 percentile memory utilizations in the Facebook cluster are 10% and
42%, respectively [3]. In light of this trend, we investigate memory locality to
speed-up MapReduce jobs by prefetching and caching their input data. Seo et
al. [8] designed a intra-block and inter-block prefetching scheme to improve data
locality of map tasks, which are assigned to nodes without input data. A data
prefetching mechanism in heterogeneous or shared environments [9] is proposed.
However, both techniques not only cannot reduce the occurrence of such map
tasks, but also do not consider the remote access delay of the first data block
split.

The prefetching accuracy is the key factor that affects performance. In MapRe-
duce clusters, task scheduler determines the mapping between tasks and nodes.
To this end, we design HPSO, a prefetching service based task scheduler to
improve performance for MapReduce clusters. The method first predicts the ex-
ecution time of map tasks and further evaluates the sequence that nodes free
busy slots. According to this node sequence, HPSO predicts and assigns the most
suitable map tasks to nodes ahead of time. Once such scheduling decisions are
made, nodes preload the related input data from remote nodes or local disk to
memory before tasks is launching. In this way, input data prefetching is carried
out concurrently with data processing, thus data transfer overhead is overlapped
with data processing in the time demension. In summary, in this paper we claim
following contributions:

– We provide a novel prefetching mechanism to coordinately manage prefetch-
ing input data blocks.

– We exploit task scheduler to determine what and when to prefetch. This
method can greatly improve the efficiency of map tasks.

– We have built a Hadoop cluster system to evaluate the HPSO method.

The remainder of the paper is structures as follows. Section 2 introduces some
technology background necessary to understand the MapReduce and scheduler,
and motivation. Section 3 describes the prefetching technique. The design and
implementation of HPSO are illustrated in Section 4. Section 5 evaluates HPSO.
Related work is described in Section 6. Finally, conclusion is given in Section 7.

84 M. Sun et al.

2 Background and Motivation

2.1 MapReduce Programming Framework

Computations in MapReduce framework are divided into map and reduce phases,
separated by an internal grouping of the intermediate results. After user submits
a job, MapReduce jobs run as follows. Firstly, input data is divided into several
fixed-size blocks, each of which runs a map task. Then after all map tasks are
finished, the intermediate data is reassigned to reduce tasks according to different
keys generated in map phase. In our paper, we chose Hadoop since it is an open-
source implementation of MapReduce model. Furthermore it has been used by
many companies such as Yahoo!, Amazon, Facebook duo to its high performance,
reliability, and availability. Specially, Hadoop manages computing resources by
the term of slot, the basic resource allocation unit. The precise number of slots of
each slave in Hadoop cluster depends on the number of cores and the amount of
memory. Each slave node provides a number of slots for map tasks and a number
of slots for reduce tasks, and these are set independently. Each slot can only run
a task simultaneously. Hadoop Distributed File System (HDFS)[10] is designed
to provide high bandwidth for MapReduce by replicating and partitioning files
across many nodes. The partition is the basic data unit in HDFS, the size of
which by default is 64MB.

2.2 Hadoop Scheduler

Fig. 2 (a) illustrates the work mechanism of Hadoop running a MapReduce
job. Hadoop clusters have one JobTracker, which coordinates the job run, and
a number of TaskTrackers, which is in charge of running jobs and periodically
heartbeats the JobTracker. When a TaskTracker indicates that it has an idle
map slot by heartbeat, job scheduler will allocate it a map task, otherwise, it
will select a reduce task. A computation requested by a job will be performed
much more efficiently if it is executed near the data it operates on. However, as
HDFS files are divided across all nodes, some map tasks must read data over the
network. For a map task, it takes into account the TaskTracker’s network location
and picks a task whose input data is as close as possible to the TaskTracker. The
scheduling policy preferentially selects the tasks with data locality. In the optimal
case, map task is data-local, that is, running on the same node that input data
resides on. Alternatively, map task may be assigned to TaskTracker node with
the input data in the same rack, but not the same node, called rack locality.
Some map tasks retrieve their data from a different rack, rackoff locality.

2.3 Motivation

TaskTracker will not process a map task until its input data is loaded into the
tasktracker node’s memory. Map tasks with rack locality or rackoff locality cause
remote data transmission overhead. And the network bisection bandwidth in a
large cluster is much lower than the aggregate bandwidth of the disks in the

HPSO: Prefetching Based Scheduling to Improve Data Locality 85

nodes, so data locality issue becomes crucial for performance. Especially, data
locality issue suffers in two situations: concurrent jobs and small jobs[4]. It is
necessary to research a method to hide data transmission overhead.

Data prefetching is an efficient way to solve this problem. Prefetching can hide
data transmission delay by preloading the expected data ahead of time. The key
challenge, however, is how to improve prefetching rate. That is to determine
what and when to prefetch. Some approaches use prediction algorithms based
on history of data accesses or cache misses [11][12]. However, in MapReduce
clusters, task scheduler determines to assign tasks to tasktracker nodes. So our
method researches prefetching mechanism using task scheduler. Another reason
motivated this method is that history information of data is not well reflect the
future access to data in cloud computing. We design a scheduling policy which
predicts the most appropriate tasktracker nodes to assign tasks.

3 Prefetching

In this section, we present data prefetching mechanism in detail. HPSO is to
preload the input data before map task is running on tasktracker node. As a re-
sult, prefetching can hide data transmission delay and further improve MapRe-
duce performance. The emphasis of this section is not on the syntactical details
of HPSO, but on how to simply and effectively manage the memory buffer for
prefetching data.

3.1 Buffer Management

The process of data prefetching mechanism is shown as following. When a task-
tracker node receive a prefetching request from HPSO, the node will load ex-
pected data block to a buffer in memory called prefetching buffer. When the
corresponding map task arrives, it will process data of prefetching buffer. Obvi-
ously, this process is typical producer-consumer model, where data prefetching
thread is the producer and corresponding map task is the consumer. The follow-
ing issues must be addressed in the prefetching mechanism.

One issue is the size of prefetching buffer. Intuitively, bigger prefetching buffer
means better performance. But in fact, according to the producer-consumer
model, two buffer units for each map slot are enough. And with the development
of technology, memory capacity is increasing. Therefore the memory utilization
of the two buffers is unnoticeable to affect the overall performance.

Another issue is how to manage prefetching buffer. Fig. 1 illustrates the
prefetching buffer structure and management strategy. Each slot of the task-
tracker node has at most two buffer units. One is processing block using by the
running map task. The other may be prefetching block, which has been preloaded
for the next map task, or null. Fig. 1 (a) shows that all slots have preloaded the
data blocks for the following map tasks, and maintain two buffer units into a list.
This strategy is convenient to manage prefetching buffer and reuse buffer data.
Specifically, a particular data block may be used simultaneously by multiple map

86 M. Sun et al.

slot 0

slot 1

slot 2

slot 3

Prefetching bufferJVM

(a)

slot 0

slot 1

slot 2

slot 3

Prefetching bufferJVM

buffer list

(b)

Fig. 1. Prefetching buffer structure and management. The tasktracker node has four
map slots. The white box represents a processing block by map task. The black box
represents a prefetching block for the following map task, and the gray corresponds a
processed block by the previous map task.

tasks. For example, in Fig. 1 (b), slot 0 and slot 1 share the same prefetching
block. Alternatively, data block which is being processed or has processed may
be prefetching block for other slot such as slot 2 and slot 3 in Fig. 1 (b). Then
the remaining buffer units will be linked into the buffer list. When a buffer unit
is needed to store new prefetching data, the method get a buffer unit from buffer
list using LRU.

4 HPSO Design and Implementation

In this section, we present the HPSO design issues and implementation, and
discuss the techniques required to achieve our goal. Our design seeks to minimize
total execution time of applications and improve the performance of MapReduce
clusters. The emphasis of this section is that how to effectively design prefetching
requests based scheduling policy.

4.1 Framework

As shown in Fig. 2 (b), HPSO consists of three main modules: the predic-
tion module, the scheduling optimizer and the prefetching module. The role
of scheduling optimizer is to predict the most appropriate tasktracker nodes to
which future map tasks should be assigned. Once the scheduling decisions are
made before map tasks are scheduled, HPSO will trigger the prefetching module
to load expected input data. Then our method can explore the underutilized disk
bandwidth or network bandwidth in CPU-intensive process. Such pipelining can
hide away data transfer latency. To implement pipelining, the prediction module

HPSO: Prefetching Based Scheduling to Improve Data Locality 87

JobClient

JobTrackerclient node

jobtracker node

tasktracker node

TaskTracker

JVM JVM

tasktracker node

TaskTracker

JVM JVM

HDFS

6. retrieve
job resources

3. submit job

1. get job ID

2. copy job
resources

4. retrieve
input splits

5. heartbeat 5. heartbeat

(a)

tasktracker node

JVM

heartbeat

jobtracker node

Prefetching
manager

JobTracker

Scheduler
Optimizer

TaskTracker

WorkerPredictor

JVM

tasktracker node

JVM

TaskTracker

WorkerPredictor

JVM

HDFS

retrieve input
splits

prefetching
data heartbeat

(b)

Fig. 2. (a) How Hadoop runs a MapReduce job. (b)The architecture and framework
of HPSO.

in each tasktracker node predicts the remaining execution time of map tasks
and further evaluates the sequence that slot become idle. The prefetching mod-
ule consists of a central prefetching manager in JobTracker and a set of worker
threads located at tasktracker nodes. The function of prefetching manager is
to monitor the status of worker threads and coordinate the prefetching process
for map tasks. Each worker thread can automatically finish loading data block
by itself before the map task is received. When prefetching manager achieves
prefetching instructions from scheduling optimizer, prefetching manager trig-
gers worker threads to load data to memory. Prefetching manager also reports
scheduling optimizer the data blocks in tasktracker nodes’ prefetching buffer.

4.2 Node Prediction

In Hadoop, tasktracker node requests a map task when it frees a busy slot. And
the sooner a tasktracker node has an idle slot, the earlier the node requests a
new map task. So tasktracker to issue a request can be predicted according to
the time of each tasktracker to complete tasks. That it can be measured by the
remaining time of map tasks running on the node. Hadoop monitors task process
using a process score, which is a number from 0 to 1. For a map, the score is
the fraction of input data read. We estimate the remaining time of an executing
map task based on current process using Eq. (1), which is proposed in Ref. [14].

RTm =
texe
sexe

∗ (1− sexe) (1)

In the method, RTm is the time left of map task, and texe is the execution
time of the task when the process is up to sexe. In MapReduce framework, a
node normally runs multiple tasks simultaneously. For each slot, we compute

88 M. Sun et al.

Eq. (1) and sort results by ascending order. Then we can get the sequence that
slots become idle.

Tm =
texe
sexe

(2)

texe = ttran + tcpu (3)

Tcpu =
tcpu
sexe

(4)

Further we can calculate the completed execution time of map task by Eq.
(2), instead of waiting task completion. In the implementation of Hadoop, the
input data of map tasks is not transferred all to memory, but a mass of small
slices instead. When the processing of the data slice is completed, map tasks
will transfer and process another data slice. The data transmission and data
processing happens in sequence. So the execution time of map tasks is composed
of the data transmission time and the data processing time as shown as Eq. (3).
The total data processing time can be estimated by Eq. (4). With the completion
of map tasks of same job, we calculate the average of the completed execution
time of map tasks as the predicted execution time, assuming that each node
processes tasks at a roughly constant speed.

4.3 Scheduling Policy

In Hadoop, task scheduler maintains a complete view of which tasks are running
on which tasktracker nodes and job waiting queue. HPSO combines this view
with the slot sequence predicted in Section 4.2 to map appropriate tasktracker
nodes with future tasks from job waiting queue, and then triggers the prefetching
module to preload input data for map tasks without input data.

Algorithm 1 outlines the basic steps of scheduling optimized algorithm. HPSO
considers the data blocks in prefetching buffer. If input data block of map task
has been in prefetching buffer of certain node, we called this buffer-local and
preferentially assign the task to this node. The data in prefetching buffer is
equivalent to one replica, which in turn increases the chances of achieving data
locality. If a node-local task is found, HPSO will trigger prefetching module
to cache data from disk. Unfortunately if we must select rack-local or rack-off
task, HPSO will make prefetching instructions and trigger prefetching module to
preload data from remote node. The prefetching instructions contain expected
data block list and the corresponding destination tasktracker nodes, and where
the required data blocks are located.

HPSO guarantees all map task with data locality to the maximum extent.
One important principle is that the method does not affect the priotiry of jobs.
In this paper we suppose that map tasks in the same priority can be executed
out of order. However, inaccurate prediction may cause that low priority tasks
will be executed earlier than high priority tasks. To address this problem, when

HPSO: Prefetching Based Scheduling to Improve Data Locality 89

a tasktracker node is ready to request map tasks, task scheduler calculates Eq.
(5) for the high priority map task whose RTn is longest. RTn is the waiting
time left. Ttran is the data transmission time. If u is positive, we will remove the
map task from original slot waiting queue and assign to idle tasktracker node.
Otherwise, HPSO will select a low priority task. To this end, HPSO does not
affect the priotiry of jobs. Another issue is fault tolerance. HPSO’s failure does
not hamper the job’s execution as input data can always be read from remote
nodes or local disk.

u = RTn − Ttran (5)

Algorithm 1. Scheduling Optimizer Algorithm

Input:
1: Array N: the predicted slot sequence that slots become idle;
2: Array J: job waiting queue.
Begin:
3: while ! (All slots have at least one waiting task or J has no waiting job) do
4: n: the head slot of N
5: for j in J do
6: if j has a buffer-local task t for n then
7: Map t with n; inform prefetching module of the mapping
8: Break
9: else
10: if j has a node-local task t for n then
11: Map t with n; trigger prefetching module to prefetch input data
12: Break
13: else if j has a rack-local task t for n then
14: Map t with n; trigger prefetching module to prefetch input data
15: Break
16: else
17: Map t with n; trigger prefetching module to prefetch input data
18: end if
19: end if
20: end for
21: RTn = RTn+Tcpu (RTn: the time left that n becomes idle, Tcpu: the processing

time of t)
22: Ascendingly reorder array N;
23: end while

4.4 Prefetching Module

The prefetching manager constructs a list known as the data list for each task-
tracker node, a collection of all data blocks stored in prefetching buffer. It is
worth noting that network bandwith is one of the critical factors to affect per-
formance of MapReduce cluster. To this end, HPSO combines these data infor-
mation to make scheduling decisions in order to minimize the network transmis-
sion traffic. For example, it can reduce the cost of loading the released data at

90 M. Sun et al.

Table 1. Configurations of single jobs in experiments

Job ID Workload map taks reduce tasks input file size input split size nodes

1 Word count 16 1 1GB 64MB 15

2 Word count 8 1 512MB 64MB 15

3 Word count 4 1 256MB 64MB 15

4 Word count 2 1 128MB 64MB 15

5 Word count 4 1 512MB 128MB 15

6 Word count 4 1 1GB 256MB 15

7 Word count 4 1 256MB 64MB 10

8 Word count 4 1 256MB 64MB 20

the previous round for iterative applications. Upon the arrival of a prefetching
request from HPSO, prefetching manager triggers worker threads in tasktracker
nodes to start loading corresponding input data to prefetching buffer according
to prefetching instructions. The worker thread’s main role is to serve cached
blocks illustrated in Section 3, as well as prefetch new data blocks. The worker
thread periodically informs the prefetching manager of data block updates as
the part of heartbeat message. The prefetching manager uses these updates to
maintain data lists.

5 Evaluation

We are going to evaluate HPSO in term of performance and scaling. The perfor-
mance metric is measured as the improvement over default Hadoop. The scaling
metric is measured as a different number of cluster nodes. To measure HPSO’s
performance, we have built a Hadoop cluster, which has one master and 20 ma-
chines. A common gigabit Ethernet switch connected each node. We installed
Hadoop 1.1.2 and configured that HDFS maintains three replicas for each data
block in this cluster. And every node was limited to run at most four map tasks
and four reduce tasks simultaneously. We performed our evaluations with word-
count, one of the main benchmarks used for evaluating Hadoop performance.
Table 1 depicts the eight types of job sets. In the paper, these benchmarks ran
varying numbers of jobs based on the job size so as to take 20-30 minutes in
total.

5.1 Performance of HPSO

Firstly, we designed this test to evaluate HPSO’s performance. Hadoop employed
a simple FIFO scheduling policy, which assigns the earliest submitted job to
execute, then the second, etc. There is also a priority policy for putting jobs
into higher-priority queues. We compared the performance of HPSO with that
of default Hadoop as a different number of input data size. Fig. 3 (b) shows
normalized running times of the workload in Table 1, while Fig. 3 (a) shows

HPSO: Prefetching Based Scheduling to Improve Data Locality 91

(a) (b)

Fig. 3. Comparison for different job settings. (a) comparison of the map tasks processed
with data locality. (b) comparison of normalized running time. The horizontal axis
shows the Job ID in Table 1.

locality achieved by default Hadoop and HPSO. We can observe that our method
shows significantly higher data locality than default Hadoop for all of test sets
in Fig. 3 (a). HPSO raised data locality to at least 88.7%, and at most 95.6%.
HPSO increased throughout by at most 8% for job ID 3 and at least 6% for job
ID 1. The throughput gain is lower for job ID 1 than other jobs because locality
with job ID 1 is fairly good even without data prefetching. However, the gain
for the smallest job ID 4 is lower than for job ID 2 and job ID 3, because at
small job sizes, job initialization becomes a bottleneck in Hadoop. Virtually all
the gains are due to preloading the input data for rack-local or rackoff tasks.
This would increase throughput in a more bandwidth-constrained environment.

Fig. 4 (b) shows the performance improvement when the data block size of
HDFS is set with different values. HPSO has increasingly improved the perfor-
mance greatly as the data block size becomes larger, from 7.9% to 18.11%. That
is because the data transmission time becomes longer with block size increas-
ingly. Our method improves the percentage of map tasks with data locality by
prefetching as shown as Fig. 4 (a). We can observe that our method is not sub-
stantially affected by the size of the data block. In summary, HPSO raises the
percentage of map tasks with data locality by prefetching. Therefore it improves
the performance compared with default Hadoop.

However, our approach has not yet reached ideal data locality. Although
prefetching is performed simultaneously with computation, the performance is
also affected by disk overhead or network congestion. Another reason is ineffec-
tive prefetch duo to prediction error. But our method can raise data locality
to at least 88.7%, which is fairly high and acceptable for most state-of-the-art
literatures.

92 M. Sun et al.

(a) (b)

Fig. 4. Comparison for different block size for job ID 3, job ID 5 and job ID 6 respec-
tively. (a) comparison of the map tasks processed with data locality. (b) performance
improvement of HPSO compared to default Hadoop. The horizontal axis shows the
data block size in HDFS.

(a) (b)

Fig. 5. Comparison for different tasktracker node number for job ID 7, job ID 3 and
job ID 8, respectively. (a) comparison of the map tasks processed with data locality.
(b) comparison of normalized running time. The horizontal axis shows the number of
tasktracker nodes.

5.2 Scaling Performance

We explored the scalability of HPSO, growing with the number of nodes. In our
tests, we vary the number of tasktracker nodes from 10 to 20. Fig. 5 suggests
that HPSO outperforms default Hadoop with different nodes. HPSO reduces the
map tasks without data locality by 6.9% for job ID 7 and by 8.9% for job ID
3 and by 10.5% for job ID 8. The improvement in data locality for 10 nodes is
lowest because locality with job ID 7 in this smallest cluster is fairly good. The
performance gain for job ID 8 is higher than other jobs since the improvement
in data locality is the most.

HPSO: Prefetching Based Scheduling to Improve Data Locality 93

Of course, the only way to conclusively evaluate HPSO’s performance at scale
will be to deploy it on a large cluster. But in light of this trend, our experiments
suggest that HPSO will continue to perform well at scale.

6 Related Work

Recently, prefetching and scheduling technology has been used to slove the data
locality problem of MapReduce. Zaharia [4][5] presented a delay scheduling al-
gorithm, which addresses the conflict between locality and fairness in shared
MapReduce clusters. A next-k-node scheduling method [6] is similar to delay
scheduling algorithm, and considers k candidate nodes for each tasks. However
both algorithms do not consider other map tasks without data locality and task
fairness withered as the cost. Our work optimizes all map tasks.

Considerable work has been carried out on prefetching methods to reduce
I/O latency. Yong [11] proposed an Algorithm-level Feedback-controlled Adap-
tive (AFA) data prefetcher to address data-access delay in High-Performance
computing by analyzing the data-access history cache. A real-time data prefetch-
ing algorithm [12] is proposed based on sequential pattern mining and adopts
predictive prefetching technology predict related data objects of data object on
demand. Both algorithms focus on analyzing the historical data access records
and require to predict uses’ behavior. Performance improvement has relationship
with the uses’ behavior. Our method combines prefetching with task scheduler
and prefetches input data of the next running map task ahead of time to hide
the data transmission delay. Seo et al. [8] designs a prefetching scheme and a
pre-shuffling scheme. However, it cannot reduce the total number of the map
tasks without node locality, and the method occupies much network bandwidth,
so system performance may be decreased. Compared with the Seos method, our
method can hide the remote access delay of the first data block and handle all
map tasks without data locality. A data prefetching mechanism [9] in heteroge-
neous or shared environments is proposed, but the method also does not con-
sider the first data block transfer delay. The method only deal with intra-block
prefetching for map tasks. A predictive scheduler and prefetching mechanism
[13] are proposed to improve the performance of MapReduce by assigning two
tasks to each slot. Unfortunately, it affects the priotiry of jobs.

Caching technology also has been used to improve MapReduce performance.
PACMan [3] is an in-memory caching system for parallel jobs. Ref. [18] proposed
a distributed high-performance storage in memory. Zhang et al. [20] designs a
new method to improve the performance by using distributed memory cache as
a high speed access between map tasks and reduce tasks. Map outputs sent to
the distributed memory cache can be gotten by reduce tasks as soon as possible.

7 Conclusion

This paper presents HPSO, which exploits task scheduler to preload required in-
put data prior to launching tasks to TaskTracker. Our method hides the waiting

94 M. Sun et al.

period of map tasks with rack and rackoff locality and shortens the completion
time for MapReduce jobs. HPSO integrates a prediction module and a prefetch-
ing module with scheduling optimizer. A scheduling optimizer is integrated into
HPSO to improve prefetching rate. We use wordcount workload to demonstrate
that our method can outperform default Hadoop at least 6%, and improve data
locality at least 88.7%. In light of these results, we believe that HPSO can achieve
better utilization of node resources and a high system throughout in MapReduce
clusters.

Acknowledgment. Our work could not have been implemented without the
assistance of many individuals and teams. Especially our work was supported
by the National Science Foundation of China under grants No. 61272131 and
No. 61202053, China Postdoctoral Science Foundation grant No. BH0110000014,
Fundamental Research Funds for the Central Universities No. WK0110000034,
and Jiangsu Provincial Natural Science Foundation grant No. SBK201240198.

References

1. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

2. White, T.: Hadoop: The definitive guide. O’Reilly Media, Inc. (2009)
3. Ananthanarayanan, G., Ghodsi, A., Warfield, A., Borthakur, D., Kandula, S.,

Shenker, S., Stoica, I.: PACMan: Coordinated Memory Caching for Parallel Jobs.
In: NSDI, pp. 267–280 (2012)

4. Zaharia, M., Borthakur, D., Sarma, J.S., Elmeleegy, K., Shenker, S., Stoica, I.:
Job scheduling for multi-user mapreduce clusters. EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2009-55 (2009)

5. Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., Stoica, I.:
Delay scheduling: A simple technique for achieving locality and fairness in cluster
scheduling. In: Proceedings of the 5th European Conference on Computer Systems,
pp. 265–278. ACM (2010)

6. Zhang, X., Zhong, Z., Feng, S., Tu, B., Fan, J.: Improving data locality of mapre-
duce by scheduling in homogeneous computing environments. In: 2011 IEEE 9th
International Symposium on Parallel and Distributed Processing with Applications
(ISPA), pp. 120–126. IEEE (2011)

7. Byna, S., Chen, Y., Sun, X.H.: A taxonomy of data prefetching mechanisms. In:
International Symposium on Parallel Architectures, Algorithms, and Networks, I-
SPAN 2008, pp. 19–24. IEEE (2008)

8. Seo, S., Jang, I., Woo, K., Kim, I., Kim, J.S., Maeng, S.: HPMR: Prefetching and
pre-shuffling in shared MapReduce computation environment. In: IEEE Interna-
tional Conference on Cluster Computing and Workshops, CLUSTER 2009, pp.
1–8. IEEE (2009)

9. Gu, T., Zuo, C., Liao, Q., Yang, Y., Li, T.: Improving MapReduce Performance by
Data Prefetching in Heterogeneous or Shared Environments. International Journal
of Grid & Distributed Computing 6(5) (2013)

10. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file
system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–10. IEEE (2010)

HPSO: Prefetching Based Scheduling to Improve Data Locality 95

11. Chen, Y., Zhu, H., Sun, X.H.: An adaptive data prefetcher for high-performance
processors. In: 2010 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing (CCGrid), pp. 155–164. IEEE (2010)

12. Li, J., Wu, S.: Real-time Data Prefetching Algorithm Based on Sequential Pat-
ternmining in Cloud Environment. In: 2012 International Conference on Industrial
Control and Electronics Engineering (ICICEE), pp. 1044–1048. IEEE (2012)

13. Xie, J., Meng, F., Wang, H., Pan, H., Cheng, J., Qin, X.: Research on Scheduling
Scheme for Hadoop Clusters. Procedia Computer Science 18, 2468–2471 (2013)

14. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R.H., Stoica, I.: Improving
MapReduce Performance in Heterogeneous Environments. In: OSDI, vol. 8(4),
p. 7 (2008)

15. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating
mapreduce for multi-core and multiprocessor systems. In: IEEE 13th International
Symposium on High Performance Computer Architecture, HPCA 2007, pp. 13–24.
IEEE (2007)

16. Chen, R., Chen, H., Zang, B.: Tiled-MapReduce: Optimizing resource usages of
data-parallel applications on multicore with tiling. In: Proceedings of the 19th
International Conference on Parallel Architectures and Compilation Techniques,
pp. 523–534. ACM (2010)

17. Ganapathi, A., Kuno, H., Dayal, U., Wiener, J.L., Fox, A., Jordan, M.I., Patterson,
D.: Predicting multiple metrics for queries: Better decisions enabled by machine
learning. In: IEEE 25th International Conference on Data Engineering, ICDE 2009,
pp. 592–603. IEEE (2009)

18. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Stoica, I.:
Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In: Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation, pp. 2–2. USENIX Association (2012)

19. Zhang, Y., Gao, Q., Gao, L., Wang, C.: Priter: a distributed framework for pri-
oritized iterative computations. In: Proceedings of the 2nd ACM Symposium on
Cloud Computing, p. 13. ACM (2011)

20. Zhang, S., Han, J., Liu, Z., Wang, K., Feng, S.: Accelerating MapReduce with
distributed memory cache. In: 2009 15th International Conference on Parallel and
Distributed Systems (ICPADS), pp. 472–478. IEEE (2009)

Service Scheduling Algorithm

in Vehicle Embedded Middleware

Juan Luo, Xin Jin, and Feng Wu

College of Computer Science and Electronic Engineering,
Hunan University, Changsha, Hunan 410082, China

juanluo@hnu.edu.cn

Abstract. Due to different hardware environments of different vehicle
electronic control units, the reusability of vehicle electronic software is
reduced, which hinders the development of vehicle electronics. First, in
this paper, we proposed a SOA-based middleware for vehicular embedded
system, which makes it possible for each ECU to dispatch and receive
data on the bus by service, it will hide the underlying heterogeneity.
Second, on the basis of the vehicular service scheduling algorithm, a
priority allocation algorithm based on criticality level is proposed. This
algorithm makes the transmission of all interior services more efficient.
Third, simulation results show that our algorithm has a higher scheduling
ratio when the number of tasks is increased to a certain amount.

Keywords: OSGi, middleware, SOA, vehicle.

1 Introduction

In recent years, for the increasing demand for greater vehicle safety, comfort,
and entertainment, etc., the functions of vehicle electronics becomes much more
powerful. Now,vehicular electronic systems [1] can help the driver control not
only the driving, steering, brakes, engines and other systems, but also the lights,
wipers, doors and entertainment control systems. And all of these functions are
achieved by the electronic control unit (ECU). Premium vehicles have more than
70 ECUs which could exchange multiple signals. So this is a great challenge since
the vehicular network has to offer low delay and high reliability. Instant response
is a mandatory for embedded systems. The reason is that for many applications
consequences can be disastrous if those applications cannot work within deadline.
For example, in order to ensure the real-time performance, safety and reliability
of systems in emergency situation, the anti-lock system must take effect and
function within the deadline, which is closely related to priorities of ECU tasks.

Controller Area Network (CAN) is a simple, effective, robust communication
bus [2] that inside the vehicle network. Nowadays, most of transmissions among
vehicle ECUs are accomplished via the CAN bus. CAN is a multi-master asyn-
chronous serial data bus that could access the bus through the Carrier Sense
Multiple Access/Collision Detection (CSMA/CD) mechanism. CAN bus pro-
tocol specifies that nodes can transmit information only when the CAN bus is

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 96–107, 2014.
c© Springer International Publishing Switzerland 2014

Service Scheduling Algorithm in Vehicle Embedded Middleware 97

free. If two or more nodes need to transmit their information simultaneously, the
CAN message with minimum number identifiers takes priority. And the other
nodes can not send their information until the bus is available again. In fact,
CAN nodes transmit information through a fixed-priority and non-preemptive
scheduling approach, and the ID of each message is its priority.

Service-Oriented Architecture (SOA) [3], aiming to provide a unified interface
for functional units of each application, enables each functional system to satisfy
their mission requirements collaboratively and independently at the same time.
As a component model, the design of SOA consists of functional units in the
form of low-coupling, and the functional unit is the so-called service. SOA-based
middleware embedded into vehicular systems abstracts functions attributes of
electronic control units as services, and meets the needs of the upper application
by providing a unified interface.

OSGi (Open Service Gateway initiative) [4] is not only a typical service-
oriented components system, but also a dynamic, light-weighted middleware
platform. Applications or components in the form of bundles for deployment
can be remotely installed, started, stopped, updated, and uninstalled without
requiring a reboot. Application life cycle management is done via APIs that
allow remote downloading of management policies. The service registry allows
bundles to detect the addition of new services, or the removal of services, and
adapt accordingly. OSGi technology has improved the Java defects in modular
programming, and created a dynamic modular system. OSGi framework mainly
consists of three components: Framework,Bundle and Service. Framework
architecture is on the Java VM (Java Virtual Machine), Bundle is executed
on the application over Framework, and Service is interface service that pro-
vided(export) or required(import) by Bundle. Class loading, life cycle manage-
ment, service registry and standardize services provided by OSGi framework are
all for Bundles. Bundle is actually a jar file that meets specific form. Security
mechanism of OSGi extends the Java security mechanisms, so that the module
is running in a secure environment through access control module and life cycle
management. With the help of OSGi, we can reuse resources that were used in
the framework, which will reduce a great deal of cost.

In existing intelligent vehicles, the increasing number of ECUs satisfies the
growing requirements, but different ECUs have different hardware environments,
which reduces vehicle electronics software reusability and restricts the develop-
ment of vehicle electronics. Existing researches on intelligent vehicles focused
more on vehiclular ad hoc network (VANET) and operating system-level stud-
ies, and less on service content of in-vehicle or vehicle-vehicle system. Therefore,
it will be an important subject for embedded vehicular middleware to improve
software reusability and reach mandatory targets of real-time vehicular systems.

In this paper, we deployed a light-weightedOSGimiddleware into vehicular sys-
tems in the form of plug-ins. Abstracting ECU services and non-functional prop-
erties as services by taking advantage of the service features of OSGi to achieve
interoperability among ECUs. In vehicular electronics systems, however, real-time
and high efficiency are mandatory targets to reach, and scheduling algorithm is

98 J. Luo, X. Jin, and F. Wu

the key to achieve high levels of system performance. So it is essential to schedule
tasks within deadline. Therefore, considering a number of factors, including the
priority assignment, we propose an OSGi-based service scheduling algorithm to
satisfy the real-time vehicular electronics and high efficiency requirements.

2 Related Work

Many efforts in research literature have extended the study and realization
of traditional distributed OSGi platform. Rellermeyer [5] achieved the inter-
operability of OSGi applications by extending the traditional centralized and
industry-standard OSGi platform to a distributed middleware on, which greatly
simplifies the development of distributed applications with low overhead of per-
formance. But it is invasive to the OSGi programming model, and cannot interact
with non-OSGi system. Shi et al. [6] proposed CORBA-based distributed OSGi
model, which supports interoperability among multiple OSGi applications and
between non-OSGi and OSGi, and it reaches the goal of low invasiveness and
high scalability.

Lai et al. [7] analyzed the P2P multimedia sharing mechanism of home net-
work and he found that the transmission could only be achieved with the use
of P2P networks, but when the content server and the client have adopted this
mechanism, the transmission speed of the internal network could not increase
any more. To solve this problem, the OSGi middleware was added to the DLNA-
based multimedia sharing system to expand the network to an OSGi-based P2P
one, which effectively improves the quality of service for users. For the smart
home service network with limited or unreachable resources, Cheng et al. [8] de-
signed a service management mechanism based on priority scheduling algorithm
by embedding the middleware into the service gateway to ensure the quality
of service and better dealing with emergency situations. But this priority-based
service management platform cannot be called among multiple platforms, and
thus its scope of application is limited.

CAN bus is widely used in the field of vehicular applications. So information
scheduling of vehicles has always been a research hotspot. As for the worst case
response time of the vehicular systems, Tian et al. [9] proposed a fixed priority
scheduling algorithm in the message transfer model based on CAN bus, and its
core idea is to determine the priority based on deadline of node information. The
shorter the deadline is, the more urgent the task will be, and the higher priority
will be assigned. In this way, time and resource can be fully used to complete
the task before its deadline. And the results of the experiment showed that this
method has improved network utilization in CAN network. However, this method
has disadvantage when many tasks are triggered at the same time, the scheduling
ratio is not ideal. As for the problem of interconnection between processors in
multi-processor systems, in other words, there exist data dependencies among
multiple tasks.

Qiu et al. [10] presented the dynamic B Level first (DBLF) algorithm based
on heterogeneous distributed systems by introducing a weighted directed acyclic

Service Scheduling Algorithm in Vehicle Embedded Middleware 99

graph (DAG) model and the dynamic path mechanisms to optimize communi-
cation resources, this algorithm takes the communication behavior of real-time
system into account, namely there is competition among communications de-
vices while accessing to each other, so compared with existing algorithms, it is
much more practical and accurate.

Davis et al. [11] pointed out that the analysis of existing literature on CAN
networks are based on the priority scheduling, in fact, many transmissions of
tasks are based on FIFO (First In First Out) queue in CAN network. Therefore,
this literature introduced the method of response time analysis based on FIFO
for task scheduling. Experiments proved that the proposed method has a high
utilization of network. Mubeen et al. [12] indicated that the node will send two
types of messages in CAN network: periodic messages or sporadic messages. At
the same time, there are two scheduling modes in CAN network: FIFO-based
scheduling and priority-based scheduling. Finally, the literature verified trans-
mission performance through these two scheduling methods, which proved that
priority-based scheduling method is superior to FIFO-based scheduling method.

Davis et al. [13] pointed out that there is something wrong with the origi-
nal analysis of CAN bus information scheduling, because it cannot ensure the
information reaches the destination node within deadline. Zheng [14] proposed
a model-based architecture design in vehicular electronic systems because ECU
have to perform more and more complicated function. It also analyzed time-
triggered scheduling and event-based trigger scheduling model, and proposed a
mapping from signal to information and task to ECU.

3 Architecture of Service-Oriented Vehicular Middleware

OSGi-based service-oriented vehicular middleware is shown in Fig.1, which can
not only shield the different underlying hardware environment, but also facilitate
the further development of the applications.

Schedule center is the key module in our middleware, which manages the ser-
vice scheduling for vehicular system. In our framework, the coordination between
service schedule component and multiple components could reduce collision rate
when multiple tasks are simultaneously transmitted in bus. When the access
collision rate is decreased, then the number of repeated requests will be reduced,
and so does the number of service request. In addition, service scheduling man-
agement can effectively help the whole system quickly complete the task.

SocketCAN is a communication interface between the applications and the
underlying hardware in Linux kernel. This module allows underlying SocketCAN
framework to be a service in OSGi framework, which exchanges data in CAN
bus.

The Data Mapper bundle is used to convert the received byte arrays into
data with application-defined meaning. It provides utilities for converting bytes
to Java object and vice versa. The Data Mapper bundle converts the raw data in
OSGi environment according to the rules of defined XML-based bus definitions
file.

100 J. Luo, X. Jin, and F. Wu

Fig. 1. Overall Framework of OSGi based middleware

Data Interpreter is an information translator. Data Interpreter is mainly used
for processing data from the underlying CANSocket, and translating data into
java language that can be recognized by various components of the OSGi frame-
work. It also implements the applications to send and to receive vehicle infor-
mation without considering the underlying structure of vehicles.

Data Management manages data by OSGi DMT (Date Management Tree),
and it provides a pattern to access the vehicular data. DMT is used to store and
manage vehicle information. DMT provides appropriate metadata for applica-
tions. The application running in a local environment can also get the vehicular
sensor data via data center module.

4 Service Scheduling Algorithm

4.1 Basic Concepts and Definitions

Service is the set of attributes input and output by the Electronic Control Unit
(ECU) in vehicular network. Let S denotes the set of service, Sm = (Im, Om) is
the mth service in S,where Im is the set of input attributes, and Om represents
the set of output attributes.

In fact, the OSGi middlewares consist of bundles, so services input or output
by ECU are all in the form of bundles. And the information mentioned above is
contained in bundles.

Service Priority is the execution sequence of services under the condition
of ensuring reliability and service performance. Let Pm represent the priority
of service m. The value of Pm is a positive integer, and the service with a

Service Scheduling Algorithm in Vehicle Embedded Middleware 101

bigger value has a higher priority (e.g. service m with the lowest priority satisfies
Pm = 1).

As for service m (Sm = (Im, Om)) and service n (Sn = (In, On)), if Sm is
transmitted on the CAN bus before Sn, the priority of Sm is higher than that
of Sn, i.e. Pm > Pn.

In real-time intelligent vehicular systems, the service transmitted on the CAN
bus must satisfy the real-time requirement. In this case, each service has a fixed
deadline, which is the time allowed between a service being sent and received.

Dm is the deadline of service m, and it is an intrinsic property. If transmission
time is beyond the deadline, it can not guarantee the real-time character of a
service.

We assume that each service has a worst-case response time, which is the
maximum time interval between sending and receiving a service. Wm represents
the worst-case response time of service m. The service m is schedulable only if
Wm ≤ Dm, and it means that m satisfies the real-time requirement.

Therefore,Wm ≤ Dm is the sufficient and necessary conditions for schedula-
bility of service m. The worst-case response time[15] is

Wn+1
m = max(Bm, Cm) +

∑
∀k∈hp(m)

⌈
wn

m + Jk + τbit
Tκ

⌉
Ck (1)

In Eq.(1), Jk is the queuing jitter of service k and represents the maximum
delay time that a released service k should wait until it can be executed. And
k is a service whose priority is higher than m, since the value of Jk is typically
small, so it evaluates to 0.

Tk is the minimum time interval that service k would be triggered. Therefore,
as time goes on, Tk will still be able to satisfy the scheduling requirements under
the condition that each Tk satisfies scheduling requirements right now.

Bm is the blocking time. Since service scheduling is non-preemptive, Bm rep-
resents the time that service m with higher priority should wait while service
with lower priority being transmitted. It results from the order of those services
being triggered, that is, service with lower priority occupies the CAN bus.

Cm (or Ck) represents the transmission time of service m (or k) on the CAN
bus.

τbit is the time required to transmit 1 bit service message.
If a service has a low criticality level, this service instance will be dumped to

save resource and ensure the complement of other instances with high criticality
level when the criticality level of system is switched to a high one. Therefore,
the definition of worst-case response time is modified as

Wn+1
m = max(Bm, Cm) +

∑
∀k∈hp(m)

⌈
wn

m + Jk + τbit
Tκ

⌉
Ck(L) (2)

Where Ck(L) is the transmission time of service Sk whose criticality level is
L.

102 J. Luo, X. Jin, and F. Wu

Equation (2) indicates that the worst-case response time of a service is the
sum of the transmission time of all service instances with high priority and the
larger one of Bm and Cm.

The task of CAN node is transmitted on CAN bus in the form of service
instance, which is a component of OSGi, namely bundle. The character of SOA
hides the heterogeneity of different hardware and enhances the reusability of
software. In the end, high-priority service nodes send messages firstly and low-
priority service nodes send messages till bus is free. Different transmit order
leads to different scheduling results, as shown in Fig.2.

Fig. 2. Service transmission on CAN bus

4.2 Priority Allocation Algorithm Based on Criticality Level

We proposed a priority allocation algorithm based on criticality level as follows:

1. Determine transmission time C, detection period T and the deadline of every
service instance Sm with high or low criticality level in set S of service
instances.

2. Determine the lowest priority P1. Select service instance which has the
biggest deadline from low criticality level or high criticality level instances
as candidate value, then iterate Eq.(2) till Wn+1

m will not change.
3. If Wn+1

m ≤ Dm, then we can determine priority Pm=1,otherwise, return to
step 2.

4. Continue allocating priority and selecting the service instance which has the
biggest deadline from low criticality level or high criticality level instances,
then iterate Eq.(2) till Wn+1

i will not change.
5. If Wn+1

i ≤ Di, then we can determine priority Pi=2, otherwise, return to
step 4.

6. Determine the priority of each service instance according to above methods.

Service Scheduling Algorithm in Vehicle Embedded Middleware 103

Each service is transmitted in a state of low criticality level. If the transmission
time of some services exceeds their deadline, then the service is switched to a
high criticality level and transmission time of it will increase to prevent it over
its deadline, which lead to failure of this service. With the determined criticality
level of a service, we could determine its priority. This algorithm makes more
services with high criticality level to be successfully transmitted on bus.

5 Experimental Analysis

In order to verify the execution efficiency of priority allocation algorithm based
on criticality level, we use multiple service instances to get it at the aspect of
scheduling ratio in this paper. Employing a dynamic task generation algorithm
to generate service instances randomly in order to simulate the influence of the
real-time variable vehicular interior network environment on experiments. This
algorithm is implemented in C programming language.

Since two or more nodes will send messages in experiments, so high-priority
nodes will send messages firstly and low-priority nodes will send messages till bus
is available. Thus, experiments select bus utilization as the independent variable
to denote the time of bus being occupied in unite time and scheduling ratio as
dependent variable, which means the rate of tasks executed successfully while
system criticality level changes from low to high with a part of low criticality
level tasks being discarded.

5.1 Experiment Parameter

Some of parameters in experiments are initiated as follows:
The bus utilization u is randomly produced by task allocation function: u=c/T;
Task cycle T can be produced by random distribution function and set to be

[10ms, 1s];
This paper employs double criticality level L ,namely 0 represents low criti-

cality level and 1 represents high criticality level;
Transmission time of task with low criticality level is : c(0) = u ∗ T ;
Transmission time of task with high criticality level is : c(1) = CF ∗ c(0),

where the fixed parameter CF is greater than 1;
The deadline D equals T ;
CP (L) means the probability of criticality level L ,where CP (0)+CP (1) = 1;
Experiments in this paper can be expressed by n, L,CF, (CP (0), CP (1)),

where n is the number of experimental samples that being employed, bus uti-
lization and scheduling ratio of every sample are both statistic calculated by
multiple messages; each service instance has L criticality levels, and transmis-
sion speed of message with high criticality level is CF times as much as that
of messages with low criticality level, CP (0) is the probability of instance with
low criticality level and CP (1) is the probability of instance with high criticality
level.

104 J. Luo, X. Jin, and F. Wu

5.2 Experimental Analysis

In this section, we evaluate the performance of the proposed priority allocation
algorithm based on criticality through comparing with the traditional one in
terms of scheduling ratio, as shown in Fig.3. Our algorithm is named as new
optimal assignment algorithm (NOPA), and the traditional one is called optimal
assignment algorithm (OPA) [15] which is designed at the level of processor aim-
ing at improving the processing successful ratio of CPU while dealing with tasks.
Bus utilization(network utilization) is the independent variable and scheduling
ratio is the dependent variable.And since we concern about the impact on the
scheduling of critical level, so the value of CF is set to be 2, with the same value
as [15].

Fig. 3. Comparison about two algorithms

As shown in Fig.3, bus utilization changes from 0 to 0.4, scheduling ratio of
these two algorithms are both very high and nearly equal to 1. This indicates
that when there are less tasks transmitted on bus ,namely bus utilization is very
low, tasks will be executed successfully. With the increasing of bus utilization,
scheduling ratio of OPA will suffer a sharp decrease, since the number of tasks
increases gradually and more tasks will be abandoned to make sure that high-
priority tasks can be executed within deadline, so scheduling ratio will decrease.
In contrast, scheduling ratio of NOPA will slowly decrease with the increasing of
bus utilization. This experiment shows that NOPA has significant performance
overhead over OPA.

Fig.4 and Fig.5 indicate that scheduling ratio has different values with dif-
ferent proportion of high to low criticality level, namely CP = (0.7, 0.3) and
CP = (0.3, 0.7). But compared to traditional priority allocation algorithm, the

Service Scheduling Algorithm in Vehicle Embedded Middleware 105

Fig. 4. Comparison with CP=(0.7,0.3)

Fig. 5. Comparison with CP=(0.3,0.7)

scheduling ratio of NOPA will decrease more slowly after bus utilization is higher
than 0.5 as shown in last two figures. We can conclude that NOPA outperforms
traditional priority allocation algorithm. With the increasing number of experi-
mental samples, scheduling ratio of NOPA will always higher than that of OPA
though the values of them will both decrease.

106 J. Luo, X. Jin, and F. Wu

6 Conclusion

In this paper, we have studied the service scheduling inside the vehicle. We pro-
posed a SOA-based middleware and embedded into vehicular ECUs which allows
messages to be transmitted among different ECUs in the form of service. With
the help of this design pattern, we can reuse software resources more effectively
and don’t need to consider the heterogeneity of different underlying hardware.
We have also proposed the priority allocation algorithm based on criticality level
by improving traditional priority allocation algorithm in the original vehicular
scheduling model. The experimental results demonstrate that the proposed algo-
rithm is very efficient, and the higher scheduling ratio of this algorithm showed
that it outperforms the traditional one when there is a large number of services
transmitted on the CAN bus.

Acknowledgments. This work was partially supported by Program for New
Century Excellent Talents in University (NCET-12-0164); National Natural Sci-
ence Foundation of China (61370094); Natural Science Foundation of Hunan
(13JJ1014); National Key Technology R&D Program(2012BAD35B06).

References

1. Nilsson, D.K., Phung, P.H., Larson, U.E.: Vehicle ecu classification based on safety-
security characteristics. In: Road Transport Information and Control-RTIC 2008
and ITS United Kingdom Members’ Conference, IET, pp. 1–7. IET (2008)

2. Navet, N., Song, Y., Simonot-Lion, F., Wilwert, C.: Trends in automotive commu-
nication systems. Proceedings of the IEEE 93(6), 1204–1223 (2005)

3. Guinard, D., Trifa, V., Karnouskos, S., Spiess, P., Savio, D.: Interacting with the
soa-based internet of things: Discovery, query, selection, and on-demand provi-
sioning of web services. IEEE Transactions on Services Computing 3(3), 223–235
(2010)

4. OSGi, http://en.wikipedia.org/wiki/OSGi

5. Rellermeyer, J.S., Alonso, G., Roscoe, T.: R-osgi: Distributed applications through
software modularization. In: Cerqueira, R., Campbell, R.H. (eds.) Middleware
2007. LNCS, vol. 4834, pp. 1–20. Springer, Heidelberg (2007)

6. Shi, D., Wu, Y., Ding, B.: Starosgi: A distributed extension middleware for osgi.
Computer Science 38(01), 162–189 (2011)

7. Lai, C.F., Chen, M., Vasilakos, A.V., Huang, Y.M.: Extending the dlna-based mul-
timedia sharing system to p2p network on osgi frameworks. In: 2010 IEEE Global
Telecommunications Conference (GLOBECOM 2010), pp. 1–5. IEEE (2010)

8. Cheng, S.T., Chou, C.L., Horng, G.J.: Priority-oriented architecture service man-
agement on osgi home-service platform. Wireless Personal Communications 71(1),
611–628 (2013)

9. Tian, J., Huang, Y., Wang, L.: Application of fixed priority schedule algorithm in
can bus. Computer Engineering 32(23), 94–96 (2006)

10. Qiu, W., Chen, Y., Li, J., Peng, C.: A task scheduling algorithm for real-time
heterogeneous embedded systems. Journal of Software 15(4), 504–511 (2004)

http://en.wikipedia.org/wiki/OSGi

Service Scheduling Algorithm in Vehicle Embedded Middleware 107

11. Davis, R.I., Kollmann, S., Pollex, V., Slomka, F.: Controller area network (can)
schedulability analysis with fifo queues. In: 2011 23rd Euromicro Conference on
Real-Time Systems (ECRTS), pp. 45–56. IEEE (2011)

12. Mubeen, S., Maki-Turja, J., Sjodin, M.: Response-time analysis of mixed messages
in controller area network with priority-and fifo-queued nodes. In: 2012 9th IEEE
International Workshop on Factory Communication Systems (WFCS), pp. 23–32.
IEEE (2012)

13. Davis, R.I., Burns, A., Bril, R.J., Lukkien, J.J.: Controller area network (can)
schedulability analysis: Refuted, revisited and revised. Real-Time Systems 35(3),
239–272 (2007)

14. Zheng, W.: Architectural Synthesis Techniques for distributed automotive system.
PhD thesis, University of California, Berkeley (2009)

15. Baruah, S.K., Burns, A., Davis, R.I.: Response-time analysis for mixed criticality
systems. In: 2011 IEEE 32nd Real-Time Systems Symposium (RTSS), pp. 34–43.
IEEE (2011)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 108–121, 2014.
© Springer International Publishing Switzerland 2014

Similar Samples Cleaning in Speculative Multithreading*

Yuxiang Li, Yinliang Zhao, and Bin Liu

Department of Computer Science and Technology,
Xi’an Jiaotong University,

Xi’an, China
liyuxiang@stu.xjtu.edu.cn, zhaoy@mail.xjtu.edu.cn,

liubin2010@gmail.com

Abstract. Speculative multithreading (SpMT) is a thread-level automatic paral-
lelization technique to accelerate sequential programs on multi-core. Too large
and too dense samples can not be able to effectively promote the effectiveness
of thread partition, parallel thread evaluation, etc. Selection of appropriate sam-
ples is of vital importance. The appropriateness reflects in two points. First,
redundant samples never exist. Second, similarity between any two samples is
not high. We express a sample with one feature vector of fixed length. We ex-
tract sample feature vectors using profiler in Prophet during compile time when
running programs. Such profiles are created by feature extraction routines
which map each program onto a tuple (N1, N2, N3, N4, N5, N6) where Ni is a
count of an occurrence of a particular feature. A comparison routine is then in-
voked which detects similarities amongst tuples. According to the program fea-
tures, similarity values between samples are calculated to assess the similar de-
gree. In this paper, we introduce a novel way of assessing the similarity of two
program samples using Theory of Fuzzy. We firstly calculate the Euclidean
Distance of two different program samples as the input, and then assess the
overall similarity degrees as well as respective similarity degrees, using corres-
ponding Fuzzy Functions. Based on them, we clean the similar samples.
With multidimensional samples generated virtually, we get that average density
of samples decreases, so that a more effective collection of samples are created.

Keywords: Theory of Fuzzy, Similarity Assessment, code features.

1 Introduction

In previous work, static or dynamic features have been represented as structured data,
usually as fixed-length feature vectors. Also, previous work has shown that models
using dynamic characterizations out-perform the ones with static characterizations
[1]. However, dynamic characterizations have disadvantages over static characteriza-
tions. To collect this dynamic information from a program, the application must be at

* This work is supported by National Natural Science Foundation of China through grants

No.61173040 and Doctoral Fund of Ministry of Education of China under Grant
No.2013021110012.

 Similar Samples Cleaning in Speculative Multithreading 109

least once, which increases training time to construct prediction models and adds an
additional cumbersome profiling step to the compilation process. Moreover, dynamic
characterizations are sensitive to a program’s input because the information was col-
lected during a program run.

In this paper, we introduce a novel method to assess the similarity of program
samples using Fuzzy Theory. Firstly we produce the program’s graph-based interme-
diate representation (IR) from the original program. A program’s graph-based IR is a
static characterization technique because it is collected during the compilation of the
program. Then, we use fixed-length feature vectors to present the static characteriza-
tions. Finally, Euclidean Distance is brought to calculate the similarity distance be-
tween two vectors and Fuzzy Theory is also introduced to assess the similarity values.

In conclusion, this work first calculates the fuzzy similarity values between samples,
and adjusts the similarity thresholds as well as eliminates similar samples, to realize the
preprocessing, providing efficient input samples for sample analysis process.

This paper is organized as follows. In Sections 2, we characterize the program,
mainly included in a feature table. In Section 3, we assess the overall similarity. In
Section 4, we perform the experiment. In Section 5, we explain and compare it with
related work. Section 6 presents our conclusion and future work.

2 Characterizing the PROG

Compiler researchers have used fixed-length representations of the program’s source
code features or (IR) intermediate representations [2-4]. These representations are
straight-forward to extract from a program and can be collected during compilation
time. Other researchers have proposed using dynamic characterizations of programs;
however, techniques (e.g. performance counters [1] and reactions [5, 6]) are expen-
sive and require running the program, which limits their practical use.

Table 1. Sample Procedure

1 main()

2 {

3 int i, s;

4 i = 0, s = 0;

5 if(i<=10)

6 {

7 s = s+i^2;

8 }

9 else

10 {

11 s = s-i;

12 }

13 printf(("s=%d",s);

14 }

110 Y. Li, Y. Zhao, and B. Liu

2.1 Extracting Feature Vectors

In this section, we motivate the applicability of using the program’s source code as
input for finding the program features. Table 1 shows an example of source codes.

With regard to a program, we first establish the corresponding structured diagram.
Then, we extract the features from the structured diagram. Figure 2 shows the
associative process of collecting sample features. How can we characterize a program
is to be solved. We need extract features to represent it. As we use the static characters
to stand for a procedure, we use the features shown in Table 2 [7] to form the
vectors.

Fig. 1. Flow chart of similar samples cleaning

Fig. 2. Collecting different program features

 Similar Samples Cleaning in Speculative Multithreading 111

Table 2. A collection of eight different features for each node (basic block) in CFG

variables Features Descriptions

N1 Number of basic blocks Number of basic blocks in a function
N2 Number of instructions Number of dynamic instructions in basic block
N3 Loop probability The probability of loop to jump test part
N4 Branch probability The probability of branch to be taken and not taken
N5 DDC Data dependence counts between two basic blocks
N6 DDD Data dependence distance between two basic blocks

Thread size, load balance, data and control dependence are the main factors affect-

ing program’s speedup. Generally speaking, we use six features shown in Table 2 to
express programs.

Features are extracted from Olden benchmarks by SUIF compiler and data flow
analysis framework with program profiling. When dealing with a program, SUIF IR is
firstly constructed. Then, features are extracted from SUIF IR and the corresponding
features are saved in the matrix M and array A. For a given function, we obtain a
fixed-length feature vector, shown in formula (1), where Fk is used to characterize a
program.

Prophet can convert any C programs, and change C programs to SUI IRs (SUIF In-
termediate Representation) after syntax and semantic analysis. Then, IRs are opti-
mized to create low-grade SUIT IRs, which are sent to Profiler modules to get the
feature information. All feature analysis is performed at the high-level intermediate
representation of SUIF (high-SUIF). Features are counted based on the CFG of func-
tion and CFG can be expressed by matrix n nM × , where n is the number of basic

blocks. The matrix elements are defined as follows:

 1(, , ,..., ,)i j nM l b d d n× = < > (1)

where l is the loop branch probability, b is the branch probability, dk is the kth data
dependence distance and n is the data dependence count between node i and node j in
CFG. Matrix M stores inter-block features that contain data dependence counts, data
dependence distance, branch probability and loop information. Different inter-block
features are attached to matrix M in order, as shown in Figure 3. Block features, such
as the number of dynamitic instructions are stored in array A. Matrix M and array A are
used to represent features of a function.

2.2 Presenting the Solving Scheme

This section provides a brief flow chart of solving scheme, shown in the Figure 1. The
whole scheme is divided into five steps. The first step is starting to input two compared
programs. The second step is to judge whether or not the topologies of two programs are
the same. The third one is to calculate the similarity values between two programs in the
same subsection and branch. The fourth step is to accumulate the similarity value of
every part of program. The fifth step is to calculate the fuzzy function values between
two compared programs. The sixth step is to clean the similar samples.

112 Y. Li, Y. Zhao, and B. Liu

Fig. 3. Features representation

In Figure 3, we show the process of extracting our graph-based characterizations
[8]. We use Prophet [9] to extract control flow graphs based on analysis of basic
blocks. From the CFG, we generate graph-based characterizations, which include (1)
a feature vector for each basic block in the CFG as shown in Table 2 and (2) a list of
directed edges in the graph. Prophet [10, 11] can be used to extract other graph-based
IRs too.

Fig. 4. Control Flow Graph of main() procedure shown in Table 1

3 Assessing the Overall Similarity

In Figure 4, we use Prophet to produce the CFG topologies and features (related with
the Table 2) of each node for n-1 programs. The meanings of Ni (1≤i≤8) have been
shown in Table 2. The rightmost of Figure.1 shows two separate parts, one is feature
vectors for each bb (basic block), and the other shows the CFG topology (CFG: Control
Flow Graph). Features which correspond to a row in Mij are expressed as follows.

 1 2 3 4 5 6 7 8, , , , , , , ,k k k k k k k k
kF N N N N N N N N k N= < > ∈ (2)

Make a definition, as follows.

 1, 0,1,(i 2,3, 4,5,6,) 7i
k

kF N i+= = (3)

Then, we form the comparison vectors Ai or Bi, which is expressed in the following
way.

A

B

E

DC

 Similar Samples Cleaning in Speculative Multithreading 113

 1 2 3[F (i),F (i),F (i),.....,F (i)] , (n 1) &(n N), (0 i 7) &(i N)T
i nA = ≥ ∈ ≤ ≤ ∈ (4)

Assume two vectors Ai, and Bi, we calculate the similarity distance between Ai and
Bi using the following algorithm.

7

2

0 1

F (A (k) B (k))
n

n i i

i k= =

= −  (5)

To calculate the distance of two vectors and evaluate the similarity degree of two
vectors we have proposed, we meet the challenge in two stages. First, we give a me-
chanism of similarity calculation. Second, model of similarity assessment is given.

3.1 Mechanism of Similarity Calculation

Now that we have owned the features to calculate the similarity degree, the first step
is to determine how these features should be compared. We formulize the comparison
by defining distance functions. Due to features that are represented in vector formats
(e.g., static instruction mix), we use the Euclidean Distance between two vectors to
measure their similarity. For two vectors A and B both with length n, Euclidean dis-
tance [12] is defined as:

n 2

i=1
i i(-)A B (6)

3.2 Model of Respective Similarity Assessment

Compared to the section 3.1 of this paper, this part aims to assess the respective simi-
larity degree, while the section 3.1 focuses on the overall similarity of two feature
vectors. Before we take consideration into the process of assessing the similarity of
two features, the process of collecting features is firstly presented. As is shown in
Figure 5, we assess the similarity between two feature vectors in three separated stag-
es, including feature collection, analysis, and fuzzy function used to get the specific
similarity values.

In the Figure 6, programs are related to the samples, which are used to extract fea-
tures. In the studying stage, programs are associated with studying samples, while
programs are relevant with testing samples in the testing stage. FEATURE Database
corresponds to an assemble of features, shown as follows.

 1 2 3 8{F |n N, F , , N ,...., }n nFEATURE Database N N N= ∈ =< > (7)

In the analysis stage, we figure out the similarity distances, corresponding to the fol-
lowing matrix.

114 Y. Li, Y. Zhao, and B. Liu

Fig. 5. Collecting different program features

Table 3. Similarity Caculation between Two Blocks. A collection of similarity function fij
between basic blocks is given. As the similarity between Bi and Bj. equals to the one between Bj
and Bi.. The annotation ‘-’ denotes the symmetrical values, which can be gotten from the
corresponding values in another half matrix. Each element’s inherent meaning is shown in the
formula (7).

 B1 B2 B3 B4 B5 B6

B1 1 f12 f13 f14 f15 f16

B2 - 1 f23 f24 f25 f26

B3 - - 1 f34 f35 f36

B4 - - - 1 f45 f46

B5 - - - - 1 f56

B6 - - - - - 1

Fig. 6. Procedure of assessing similarities involves three stages：feature collection, analysis
and evaluation. In feature collection, features involved in program are assembled. Analysis uses
these features to compute distance between two vectors, in turn using distance data to estimate
the similarity degree. Finally, we use Fuzzy Function to figure out the similarity values (0~1),
and to determine which sample will be cleaned

 Similar Samples Cleaning in Speculative Multithreading 115

6

2

1

()i j

ij m m

m

f N N
=

= − (8)

From formula (8), we can see that fij = 0, while i=j; and fij = fji. So we can get the
following similarity matrix.

The Half Similarity Matrix in Table 3 is mapped to the “analysis” process. In the
process of analysis, the similarity values are normalized. The values are rounded to be
a series of discrete values {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}. The eleven
discrete values are mapped to eleven cubes with varying degrees of black. For exam-
ple, corresponds to the value 1.0; corresponds to the value 0.9; is related to
the value 0.8; is associated with the value 0.7; is associated with the value 0.6;

is associated with 0.5; is connected with 0.4; corresponds to 0.3; is related
to the value 0.2; is associated with 0.1; corresponds to the value 0.0.

3.3 Similarity Measurement Using Fuzzy Function

Once the similarity value between two program feature vectors is obtained, we can
get the similarity degree for them using a fuzzy function in Figure 7 and formula (8).
The input variable represents the similarity values, while the output variable denotes
the degree of similarity. The input variables are shown along the x-axis, while the
output variables are denoted along the y-axis. Slow represents the low similarity value,
while Slarge represents the high similarity value. Using the Fuzzy Function, we can get
the result table, namely Table 3.

According to the Table 4, the similarity degree (low or high, or moderate) of two
programs is gotten. Figure 8 gives an example of how to clean a similar sample. S(,) is
the similarity function between adjacent nodes, and is equal to D(,) in the Table 4.

Table 4. Similarity values of two program feature vectors corresponding to formula (9)

Conditions Similarity values

D(VA,VB) <= Dlow 0

Dlow =< D(VA,VB) <= Dlarg D(VA,VB)-Dlow

D(VA,VB) >= Dhigh 1

If the value of S(,) is lower than a certain threshold, we will randomly clean a sam-

ple. This process is corresponding to “Evaluation” in Figure 6.

 arg arg
arg

arg

() & &S

h low

h l
l l low l

low l

l l

D S S

D D
D S S D S S S

S S

D S S

 ≤

 −= − + ≥ ≤ −


≥

 (9)

Similarity calculation is completed with the formula (8).

116 Y. Li, Y. Zhao, and B. Liu

Fig. 7. Fuzzy Function between Similarity and Degree of fuzziness. The x-axis represents simi-
larity value, Slow denotes the low similarity value and Slarge denotes the large similarity value.
The y-axis denotes degrees of corresponding similarity over the similarity values between two
vectors, Dh represents a high degree and Dl represents a low degree.

3.4 Cleaning of Similar Samples

After assessing the similarity degree between two samples, the operation of cleaning
similar samples will be performed. The principles for the operation involve: (1)
similarity values (obtained from formula (9)) are sorted in descending order. (2) The
more similar two samples are, the more likely they will be cleaned. (3) Once similari-
ty degree is fixed, the sample to be cleaned is random. The specific cleaning process
is shown in Figure 8.

Fig. 8. Samples correlation graph. A,B,C,D,etc are sample nodes. S(,) are similarity degree,
ranging from 0 to 1.

4 Experimental Evaluation

4.1 Experimental Setup

We have implemented similar samples cleaning process on the Prophet developed
based on SUIF/MACHSUIF. All the compiler analysis is performed at the high-level

 Similar Samples Cleaning in Speculative Multithreading 117

intermediate representation (IR) of SUIF. A profiler is implemented to produce profil-
ing information from SUIF-IR as forms of annotations. The profiler interprets and
executes SUIF programs and provides information such as control flow path predic-
tion, data value prediction, the number of dynamic instructions of loops and subrou-
tines. The Prophet simulator [9] models a generic SpMT processor with four pipe-
lined MIPS-based R3000 processing elements (PEs). The simulator is an execution-
driven simulation and executes binaries generated by the Prophet compiler. Each PE
has its own program counter, fetch unit, decode unit, and execution unit and it can
fetch and execute instructions from a thread. Each PE can issue up to four instructions
per cycle in an in-order fashion. Each PE also has private multi-versioned L1 cache
with 2 cycles access latency. Multi-version L1 cache is used to buffer the speculation
results for each PE and performs cache communication, and the four PEs share a
write-back L2 cache via a snoopy bus.

In this section, we use Olden benchmarks to evaluate our approach. Olden bench-
marks [15] are popular benchmarks for the study of irregular programs, which have
complex control flow and irregular, pointer-intensive data structures. These programs
have dynamic structures such as trees, lists and DAGs so that they are hard to be pa-
rallelized by the conventional approaches.

4.2 Static Features Extraction

According to the second part of paper, we can refer ten collection of virtual samples
generated using feature sets and abstract syntax tree [16] and establish the feature sets
(corresponding to Table 2), shown in Table 5.

Table 5. Seldom Collection of Feature Vectors

Items N1 N2 N3 N4 N5 N6
1 10 102 0.50 0.30 12 8

2 8 56 0.60 0.60 3 6

3 6 48 0.10 0.20 5 7

4 3 63 0.60 0.30 7 6

5 25 78 0.70 0.80 9 3

6 14 59 0.90 0.60 10 8

7 10 34 0.50 0.70 13 9

8 11 87 0.30 0.90 8 7

As depicted above, we take an example to seldom choose two vectors from the ta-
ble 6 and assign them to N1, N2.

() ()
() ()

1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8

2 2 2 2 2 2 2 2
1 2 3 4 5 6 7 8

N1 N , N , N , N , N , N , N , N 25,78,0.70,0.80,9,3 ;

N2 N , N , N , N , N , N , N , N 14,59,0.90,0.60,10,8 .

= =

= =
 (10)

As every feature in vectors has different value ranges, so our first task before obtain-
ing the similarity distance is to normalize every feature value.

118 Y. Li, Y. Zhao, and B. Liu

4.3 Similarity Calculation

Using the formula (5), we can calculate the similarity value

8

21 2
2

1

() ()
() , x 1& & x count(N(i)), x N

(N (i))i x

N i N i
Y

MAX=

−= ≥ ≤ ∈ (11)

 () 1 2
1 2i N , () , 1,2,.....,8i iN N i N i= = = (12)

Where, count(N(i)) is the number of Ni, ,so we get the value of Y=

0.6416 0.801≈ .

4.4 Similarity Assessment

In the Table 4, we take an example to set the threshold values of Slow and Slarge to be
(1,10). Note that the values of Slow and Slarge are given just for an example. Accor-
dingly, they need to be in depth study to get the precise values.

According to the formula (11), we figure out that S(N1,N2)=0.801, as
0.801>0.5(Slow), so the similarity degree for N1 and N2 is high shown in the Figure 7.
Once two samples have high similarity, the operation of sample cleaning will be done.
Moreover, the setting of fuzzy threshold is adaptive. How fuzzy thresholds be adap-
tively adjusted will be finished in the next stage.

4.5 Similar Samples Cleaning and Evaluation

According to the formula (9), we get that the similarity of N1 and N2 is high, so that
we must clean one of them .Moreover, we define similarity density to evaluate the
similarity degree of two samples.

'

1

(,)

()

n

i i
i

S N N
D

Count
==


 (13)

D is density of all samples, S(Ni, Ni’) is similarity of two adjacent samples Ni and Ni’
.and Count() is the total sample number. We make use of 10000*20 samples from
our Prophet samples (including Quad-core samples and Octa-core samples) to realize
the approach. Results show in Table 6.

Table 6. Density of Sample before and after cleaning

Items Before cleaning After cleaning

Results 8.2434 8.0012

 Similar Samples Cleaning in Speculative Multithreading 119

4.6 Analysis of the Models

This section analyzes the advantages of our approach against other models, including
Artificial Neural Network (ANN) [14] and Support Vector Machine (SVN) [14].

This work is based on the scheme “sample selection->features extraction-
>similarity calculation->fuzziness analysis->similar samples cleaning”. In the
process of “fuzziness analysis”, half a trapezoidal distribution function is adopted, so
that value settings of top and bottom edges of trapezoid are adaptive. Different appli-
cations may need adaptive upper limit and bottom limit of trapezoids (Corresponding
to the values of Dl and Dh in Figure 1), in order to adaptively modify sample densi-
ty. However, this approach also incurs the overheads of mistakenly elimination, and
just using Euclidean distance to measure sample similarity can not fully exhibit the
contribution degree of single sample.

5 Related Work

There have also been some researches on improving the program characterization to
be used with machine learning for selecting good optimizations. In particular, Leather
et al. [15] used compiler’s IR and genetic programming to construct automatically
new features from the GCC RTL representation of loops to improve a machine learn-
ing algorithm’s performance on loop unrolling. However, the static features discov-
ered are those that can be summarized into a fixed-length feature vector. Also, their
technique only outperforms static source code features (such as, SRC) by only a
couple of percent on average. Fursin et al. [16] also use the program’s intermediate
representation along with source code information in the Milepost GCC project [16] .
These features are used to construct models that predict good optimization strategies
according to metrics desired by the user (e.g., performance or code size). The authors
collect summary statistics about the different instructions and from the control flow
graph for each function, but again, these features are summarized into a fixed-length
feature vector.

Wang et al. [17] also used an intermediate representation called the streaming
graph to extract static program features. In this work, they focus on streaming pro-
grams, and they constructed a model that automatically predicts the ideal partitioning
structure of each streaming program. Their program feature includes two sets of fea-
ture, one is the summary characteristics of streaming program, e.g., instruction mix,
and other characteristics of critical path extracted from stream IR. Again, these fea-
tures are summarized in a fixed-length feature vector. They developed a tool that
automatically generated small training examples for this predictive model.

In contrast to these previous works, we firstly extract topological information from
the program’s control flow graph, and then we cite the coarse-grained statistics [7] in
the graph-based characterization corresponding to each node in the CFG.

120 Y. Li, Y. Zhao, and B. Liu

6 Conclusions and Future Work

Speculative multithreading (SpMT) is a thread-level automatic parallelization tech-
nique to accelerate sequential programs on multi-core. Too large and too dense sam-
ples can’t be able to effectively promote the effectiveness of thread partition, parallel
thread evaluation, etc. Selection of appropriate samples is of vital importance.

In this paper, the main contributions involve four distinct aspects: (1) Solution of
assessing the similarity degree of feature vectors is proposed, based on graphical in-
termediate program representations. (2) To do so, we need first develop expressive
means of characterizing the program being optimized. We use the technique for cha-
racterizing programs, using a fixed-length feature vector collected by performance
counters when running the program. (3) According to the program features, similarity
values are calculated to assess the similar degree. (4) We also introduce a novel way
of assessing the similarity of program samples using Theory of Fuzzy, which calcu-
lates the Euclidean distance of two different program samples as the input, and assess
the similarity values using corresponding Fuzzy Function. Using the results of simi-
larity degrees, we realize to clean the similar samples.

Although our approach in certain extent handle the issue that similarity degrees
amongst samples are calculated to assess the similarity of them. However, just using
Euclidean distance to assess the similarity amongst samples is obviously too
straightforward, unable to fully express the contribution degree of single sample to the
whole group, so easily leading to operations of mistakenly cleaning.

References

1. Cavazos, J., Fursin, G., Agakov, F., Bonilla, E., O’Boyle, M.F., Temam, O.: Rapidly se-
lecting good compiler optimizations using performance counters. In: International Sympo-
sium on Code Generation and Optimization, CGO 2007, San Jose, pp. 185–197 (2007)

2. Agakov, F., Bonilla, E., Cavazos, J., Franke, B., Fursin, G., O’Boyle, M.F., Thomson, J.,
Toussaint, M., Williams, C.K.: Using machine learning to focus iterative optimization. In:
Proceedings of the International Symposium on Code Generation and Optimization,
pp. 295–305 (2006)

3. Monsifrot, A., Bodin, F., Quiniou, R.: A machine learning approach to automatic produc-
tion of compiler heuristics. In: Scott, D. (ed.) AIMSA 2002. LNCS (LNAI), vol. 2443,
pp. 41–50. Springer, Heidelberg (2002)

4. Stephenson, M., Amarasinghe, S.: Predicting unroll factors using supervised classification.
In: International Symposium on Code Generation and Optimization, CGO 2005, pp. 123–134
(2005)

5. Fursin, G.G., Temam, O.: Collective optimization. In: Seznec, A., Emer, J., O’Boyle, M.,
Martonosi, M., Ungerer, T. (eds.) HiPEAC 2009. LNCS, vol. 5409, pp. 34–49. Springer,
Heidelberg (2009)

6. Park, E., Cavazos, J., Pouchet, L., Bastoul, C., Cohen, A., Sadayappan, P.: Predictive
modeling in a polyhedral optimization space. International Journal of Parallel Program-
ming 41, 704–750 (2013)

 Similar Samples Cleaning in Speculative Multithreading 121

7. Park, E., Cavazos, J., Alvarez, M.A.: Using graph-based program characterization for pre-
dictive modeling. In: Proceedings of the Tenth International Symposium on Code Genera-
tion and Optimization, pp. 196–206 (2012)

8. Wilson, R.P., French, R., Wilson, C., Amarasinghe, S., Anderson, J., Tjiang, S., Liao, S.,
Tseng, C., Hall, M., Lam, M.: The SUIF compiler system: A parallelizing and optimizing
research compiler: Computer Systems Laboratory. Stanford University (1994)

9. Dong, Z., Zhao, Y., Wei, Y., Wang, X., Song, S.: Prophet: A speculative multi-threading
execution model with architectural support based on CMP. In: International Conference on
Scalable Computing and Communications; Eighth International Conference on Embedded
Computing, SCALCOM-EMBEDDEDCOM 2009, pp. 103–108 (2009)

10. Chen, Z., Zhao, Y.-L., Pan, X.-Y., Dong, Z.-Y., Gao, B., Zhong, Z.-W.: An overview of
Prophet. In: Hua, A., Chang, S.-L. (eds.) ICA3PP 2009. LNCS, vol. 5574, pp. 396–407.
Springer, Heidelberg (2009)

11. Demme, J., Sethumadhavan, S.: Approximate graph clustering for program characteriza-
tion. ACM Transactions on Architecture and Code Optimization (TACO) 8, 21 (2012)

12. Carlisle, M.C., Rogers, A.: Software Caching and Computation Migration in Olden. Jour-
nal of Parallel and Distributed Computing 38, 248–255 (1996)

13. Liu, B., Zhao, Y., Li, M., Liu, Y., Feng, B.: A Virtual Sample Generation Approach for
Speculative Multithreading Using Feature Sets and Abstract Syntax Trees. In: 2012 13th
International Conference on Parallel and Distributed Computing, Applications and Tech-
nologies (PDCAT), pp. 39–44 (2012)

14. Wang, Z.O., Boyle, M.: Mapping parallelism to multi-cores: a machine learning based ap-
proach. In: PPoPP, pp. 75–84. ACM (2009)

15. Leather, H., Bonilla, E., O’Boyle, M.: Automatic feature generation for machine learning
based optimizing compilation. In: International Symposium on Code Generation and Op-
timization, CGO 2009, pp. 81–91 (2009)

16. Fursin, G., Kashnikov, Y., Memon, A.W., Chamski, Z., Temam, O., Namolaru, M., Yom-
Tov, E., Mendelson, B., Zaks, A., Courtois, E.: Milepost gcc: Machine learning enabled
self-tuning compiler. International Journal of Parallel Programming 39, 296–327 (2011)

17. Wang, Z., O’Boyle, M.F.: Partitioning streaming parallelism for multi-cores: A machine
learning based approach. In: Proceedings of the 19th International Conference on Parallel
Architectures and Compilation Techniques, pp. 307–318 (2010)

Equi-join for Multiple Datasets

Based on Time Cost Evaluation Model

Hong Zhu, Libo Xia, Mieyi Xie�, and Ke Yan

School of Computer Science and Technology,
Huazhong University of Science and Technology,

Wuhan, Hubei, 430074, P.R. China
{zhuhong,xiemeiyi}@hust.edu.cn

Abstract. MapReduce is an important programming model for pro-
cessing big data with a parallel, distributed algorithm on a cluster. In
big data analytic application, equi-join is an important operation. How-
ever, it is inefficient to perform equi-join operations in MapReduce when
multiple datasets are involved in the join. In this paper, a time cost eval-
uation model is extended for an equi-join by considering the time cost of
calculation. In addition, the sub-joins in an equi-join are classified into
star pattern sub-joins on single attribute and chain pattern sub-joins.
Based on the extended model, optimization methods are presented and
an equi-join plan with lower time cost is chosen for the equi-join. The op-
timization methods include: the star pattern sub-joins on one attribute
are first processed; next, a chain pattern sub-join with minimal scale of
intermediate results (i.e. the number of tuples in intermediate results)
is processed; at last, a chain pattern sub-join is decomposed into several
MapReduce jobs or single MapReduce job by dynamic programming to
obtain an optimal scheme for the chain pattern sub-join. We conducted
extensive experiments, and the results show that our method is more
efficient than those methods such as MDMJ, Hive and Pig.

Keywords: Join, MapReduce, Dynamic Programming.

1 Introduction

With the development of information technology, massive amount of data are
collected in many fields, such as medical, finance, communication, and govern-
ments. Nowadays, there are urgent needs for analyzing big data in these applica-
tions. However, solutions based on conventional distributed or parallel databases
are difficult to meet the needs of big data analysis. MapReduce is an important
programming model for processing big data with parallel, distributed algorithms
on a cluster [3]. Nowadays, thousands of projects for big data processing have
been implemented by this model, including large-scale image processing, ma-
chine learning as well as many other areas. In data analytical queries, equi-join
is an important operation. However, it is not efficient to perform an equi-join

� Corresponding author.

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 122–135, 2014.
c© Springer International Publishing Switzerland 2014

Equi-join for Multiple Datasets Based on Time Cost Evaluation Model 123

operation in MapReduce when multiple datasets are involved in the join. Al-
though several approaches performing an equi-join are presented in literatures
[1, 5–10], these approaches have advantages for the equi-joins on some special
datasets and most of them are not general on any datasets.

The approaches for equi-joins are classified into two groups: Map-side join and
Reduce-side join [5]. The Broadcast-Join and its improved approaches Semi-Join
and Per-Split Semi-Join are all Map-side joins [2]. However, the performances of
these approaches for equi-joins decrease seriously when the scales of datasets in-
volved in equi-joins increase, because the efficiencies of these methods depend on
the hardware of the clusters. There are also several approaches for Reduce-side
joins on multiple datasets, such as the equi-join method with multiple MapRe-
duce jobs (MRJs) [7, 9], multi-dimensional Reducer matrix based multi-join
(MDMJ) [1], and modifying original MapReduce frameworks [8, 10]. These meth-
ods have different advantages when specific datasets are joined. Amongst these
approaches, an equi-join is processed by a series of MRJs or single MRJ. How-
ever, it is difficult to determine whether an equi-join should be processed by
single MRJ or by multiple MRJs. If we are able to evaluate the time cost for
disk I/O, communication and calculation of an equi-join, we could choose a plan
with time cost as low as possible from different schemes of the equi-join. Then
the efficiency of the equi-join can be improved. We think this is an issue.

The contributions of this paper are listed in the following.
1. The time cost of calculation for an equi-join is extended based on the time

cost model in literature [11]. Therefore, time cost for an equi-join consists of
three parts: disk I/O, communication, and calculation.

2. Based on the time cost model, optimization methods are presented and an
equi-join plan with lower time cost is chosen. Then the performance of the equi-
join is improved. The optimization methods include: the star pattern sub-joins
on one attribute are first processed; next, a chain pattern sub-join with minimal
scale of intermediate results (the number of tuples in intermediate results) is
processed; at last, an optimal plan for the chain pattern sub-join is obtained by
dynamic programming.

3. We conduct extensive experiments to verify the efficiency of our method.
Experimental results show that the performance of our approach is better than
that of other methods such as MDMJ, Hive and Pig.

The rest of this paper is organized as follows. Related work is briefly intro-
duced in Section 2. The extended cost model is illustrated in Section 3. The
optimization methods for equi-joins are presented in Section 4. In Section 5, ex-
periments are illustrated and at last in Section 6 we summarize the conclusion.

2 Related Work

2.1 Equi-join on Single Attribute

Equi-join on single attribute is an equi-join based on multiple datasets and
one attribute. For example, R1(a, b1)∞R2(a, b2)∞· · ·∞RL(a, bL) is a typical
equi-join on one attribute a. During Map phase, the Map() function produces

124 H. Zhu et al.

〈key, value〉 pairs based on a value of the equi-join attribute a (as key) and
name of a dataset and values of other attributes [Ri, (a+ bi)] (as value). During
Reduce stage, the reduce() function receives a 〈key, valuelist〉 each time, then
the values in valuelist are classified according to the dataset and are joined.
Here the valuelist is the list of values with the same key (in 〈key, value〉 pair).
Finally, the results are obtained and collected.

2.2 Equi-join on Multiple Attributes

The equi-join on multiple attributes is a join based on multiple datasets and
several attributes. Existing approaches for equi-joins focus on Reduce-side join
and we briefly summarize them in the following.

In multiple MRJs approach, the equi-join is processed in a series of MRJs.
At first, two datasets are joined and the intermediate results are written into
HDFS(Hadoop Distributed File System) as an input dataset of next MRJ. In
the next MRJ, the results from the previous MRJ are read from HDFS, and a
new dataset is chosen to join. Thus, for an equi-join with n datasets, n-1 MRJs
are needed.

In MDMJ method [1], Reduce nodes are divided into a multi-dimensional
Reducer matrix. When an equi-join is processed, tuples in a dataset are copied
from a Map node to Reduce nodes repeatedly. In Reduce stage, intermediate
results are saved in buffer, and then the time cost for disk I/O is reduced.
The datasets are joined in the order specified in an original SQL statement. By
this way, the equi-join can be implemented in one MRJ and the performance
is improved. When the number of attributes, the number of Reduce nodes and
the scales of the datasets increase, the time cost for communication would be
exponentially increases and the performance of the equi-join decreases seriously.

In the approach for joining datasets with bloom filters [6], a bloom filter is
constructed for an input dataset, and the redundant tuples are filtered out in
another input dataset involved in the equi-join in Map phase. Thus, the number
of tuples involved in the equi-join is reduced and the performance of the equi-join
is improved.

In Network-aware multi-way join for MapReduce (NAMM) [8], tuples are re-
distributed directly between Reduce nodes with an intelligent network aware
algorithm so that the workload is redistributed amongst Reduce nodes. By con-
sidering network distance and workloads of Reduce nodes, datasets are chosen
to join, and then the workload of each Reduce node is alleviated and the perfor-
mance of an equi-join is improved.

Yang et al proposed a Map-Reduce-Merge join [10]. Merge phase is added
to MapReduce so that the partitioned and sorted data could be merged and
then the final results can be obtained. The model could express relational alge-
bra operators, and several equi-join algorithms are implemented for the model.
However, they did not demonstrate experimental results of their method.

The equi-join algorithms in [6, 8, 10] improve the performance of an equi-join
in single MRJ. They only optimize single MRJ to improve performance and the
improvement is limit, especially when the scales of datasets increase.

Equi-join for Multiple Datasets Based on Time Cost Evaluation Model 125

3 The Extended Time Cost Model for Equi-join

3.1 The Time Cost Model for Single MRJ

In Map stage, datasets are read from HDFS, and data blocks with 〈key, value〉
pairs are produced and stored into local disk. In Reduce phase, the data copied
from Map tasks through network are aggregated, sorted and calculated, then the
final equi-join results are written on HDFS. Therefore, the total time cost of a
MRJ consists of the disk I/O in Map phase, copying data in the network and
calculation in Reduce phase.

The Time Cost in Map Phase. In Map phase, assume there are m Map
tasks and tM is the time cost for each Map task, and TM is the time cost in
Map phase. If we define the total scales of input datasets of an equi-join for a
MRJ is SI , the total scales of input datasets in each Map task for read is SI

m .
The time cost for a Map task is tM = tin + tout, where tin and tout are the time
cost of read and write respectively. For the Reduce-side join mthods, we have
tin = C1 × SI/m, where C1 is a constant factor about disk I/O capability for
read, tout = (p + C2) × α × SI/m, where α denotes the output ratio of a Map
task, which is query specific and can be computed with the selectivity estimation,
C2 is a constant factor about disk I/O capability for write and p is a random
variable for partitioning and sorting and compressing the data in buffer. The
time cost for a Map Task is:

tM = C1 × SI

m
+ C2 × α × SI

m
+ p × α × SI

m
(1)

The time cost for the Map phase is: TM = tM× m
m′ [11], where m’ is the current

number of Map tasks running in parallel in the system.

Time Cost for Copying Data in Network. The time cost for copying data
from Map tasks to Reduce tasks is related to scales of data produced by Map
tasks. It consists of the cost of data copying in network as well as overhead of
serving network protocols. Assume there are n Reduce nodes in the system, and
tCP stands for the time cost for copying the output data from single Map task
to n Reduce nodes. For a Map task, tCP = C3×α×SI/m×(1/n)+q×n , where
C3 is a constant factor denoting the efficiency of data copying over network, q is
a random variable which represents the cost of a Map task serving n connections
from n Reduce tasks. After the data copying ends, Reduce tasks begin to process
the data received. Suppose that TCP denotes the time of copying output data
from Map tasks to n Reduce nodes, then we have TCP = tCP × m

m′ . Assume
the time when Reduce tasks begin is TRS , TRS is determined by the time when
the last Map task ends data copying. If tM ≥ tCP , and when the last Map
task ends copying output data, then TRS = TM + tCP . If tM ≤ tCP , and when
the last Map task ends, some Reduce nodes are still copying output data, then
TRS = tM + TCP .

The Time Cost in Reduce Phase. Assume Si
R is the dataset that the ith

Reduce node received, the time cost of Reduce phase is composed of the cost of

126 H. Zhu et al.

reading, calculation and writing: TRi = (p + C1) × TS(Si
R) + FO(Si

R) × C4 +
C2 × β × TS(Si

R), where TS(x) is a function that returns the scale of a dataset
x. (p+C1)× TS(Si

R) is the time cost consists of pre-processing data from Map
nodes (including shuffle, merge and sort) and sending the data from disk to
reduce() function. C2 × β × TS(Si

R) is the time cost of writing final results on
HDFS. β denotes the output ratio of a Reduce task. FO(Si

R) × C4 is the time
cost of calculation for the equi-join in a Reduce node. Obviously, the time cost of
calculation should not be ignored because the time cost of calculation depends
on the equi-join algorithms and scales of datasets. Comparing with the time cost
model in literature [11], we consider the time cost of calculation in our model.

Assume TR stands for the time cost in Reduce phase. The time cost for Reduce
tasks depends on the time which the last Reduce task spends. Therefore, TR is
determined by the end time of the Reduce task with maximal scale Sx

R of data.
Then we have:

TR = (C1 + p) × TS(Sx
R) + FO(Sx

R) × C4 + C2 × β × TS(Sx
R) (2)

After all, the time cost model for a MRJ is:

T =

{
TM + tCP + TR, tM ≥ tCP

tM + TCP + TR, tM < tCP
(3)

Although the formula (3) is the same as the time cost in [11], TR is different
from the TR in [11]. When we consider time cost of calculate for a MRJ, we
need determine the values for α, β, Sx

R and FO(Sx
R) . In the following discussion,

we will give these values for an equi-join in single MRJ on single attribute and
multiple attributes.

3.2 The Time Cost of an Equi-join for Single MRJ on Single
Attribute

Suppose we join datasets R1, R2, · · · , RL. In Map phase, a tuple is read in map()
function and is changed into a 〈key, value〉 pair. Therefore, the sum of scales for
input datasets R1, R2, · · · , RL is equal to the total number of tuples in output
datasets, then α = 1 . In Reduce phase, the tuples are classified in reduce()
function according to the dataset which the tuples come from, and then Cartesian
product is calculated. The total cost of computation for a Reduce node x is:

FO(Sx
R) =

L∑
i=1

TS(SRx
i) + TS(SRx

1∞SRx
2∞· · ·∞SRx

L) (4)

As the number of tuples in output is the number of tuples in results, the
output ratio is:

β = TS(SRx
1∞SRx

2∞· · ·∞SRx
L)/

L∑
i=1

TS(SRx
i), (5)

Where SRx
i stands for the number of tuples in dataset Ri which is received

by a Reduce node x. Assume the data distribution in each dataset Ri is uniform,
and we can preprocess the dataset such that the number of tuples which each

Equi-join for Multiple Datasets Based on Time Cost Evaluation Model 127

Reduce task receives is almost equal. Then we have TS(Sx
R) =

L∑
i=1

TS(SRx
i) and

TS(SRx
i) = TS(Ri)/n , where n is the number of Reduce nodes.

3.3 The Time Cost of an Equi-join for Single MRJ on Multiple
Attributes

In this section, we evaluate the time cost of an equi-join for MDMJ. Before a
MRJ is executed, Reduce nodes are divided into a multi-dimensional Reducer
matrix according to the scales of datasets involved in the equi-join. Because a
tuple in a dataset will be useful for the result of multiple tuples, and these tuples
are distributed on different nodes. Therefore, the input tuples would be copied
several times in map() function, and a partition function would calculate which
reduce nodes the tuple should be copied to for each attribute involved in the
equi-join. The total scale of input datasets for the equi-join SI is the sum of
scales for all datasets, and the scale of output in Map phase is related to the
number of times copying tuples, if we define cpTi as the times of copying datasets
Ri, then we have:

α × SI =
N∑

i=1

(TS(Ri) × cpTi) (6)

The cpTi can be calculated by Lagrange formula.
In Reduce phase, after copying data from different Map Tasks, the tuples

stored on local disk are partitioned by keys, and are sorted according to the first
joining attribute specified in the equi-join. In reduce() function, the tuples from
the first dataset are read into the buffer, and when the tuples from the second
dataset come, we just check whether there are suitable tuples (which have the
same joining keys with the tuples from the second dataset) in the buffer. If there
are suitable tuples, we join the tuples in the buffer and from the second dataset,
and the intermediate results are stored into another buffer and sorted according
to the attribute which would join with the next dataset. Then we check the
intermediate results and continue the join following above steps. Because the
tuples in buffer are sorted in advance, when we check whether there are suitable
tuples in the buffer, we only traverse the data once. Therefore, the tuples received
from different datasets are joined in the order specified in the equi-join.

Suppose we have a typical equi-join R1(a1)∞R2(a1, a2)∞· · ·∞RL(aL−1). For
each Reduce node x, tuples from dataset Ri(1 ≤ i ≤ L) are sorted. According
to the description above, we first finish the equi-join R1∞R2, then we sort their
results according to next joining attribute a2, and so on. The time cost of com-
putation for this procedure is:

FO(Sx
R) =

L∑
i=2

(TS(MidRx
1i−1 + TS(SRx

i) + TS(MidRx
1i)) +

L−1∑
i=2

TS(MidRx
1i)× log(TS(MidRx

1i))

(7)

Where SRx
i stands for the data in Ri received by Reduce node x. MidRx

1i

denotes intermediate results of joining from SRx
1 to SRx

i . At last, the amount of

128 H. Zhu et al.

data written into HDFS is equal to the scale of results, namely the output ratio
is the same as formula (5).

After analysis the time cost of an equi-join, we have following Theorem 1.

Theorem 1. The time cost of an equi-join for single MRJ is a monotone in-
creasing function of the total scales of input datasets SI .

Proof. From the formula (1) and (3), we first prove that the total time cost
of Map phase and copying data in network phase is the monotone increasing
function of SI : for TM + tCP , we have:
TM + tCP = (C1 × SI

m +C2 × α×SI

m + p× α×SI

m)× m
m′ +C3 × α×SI

m × 1
n + q× n;

for tM + TCP , we have:
tM + TCP = C1 × SI

m +C2 × α×SI

m + p× α×SI

m + (C3 × α×SI

m × 1
n + q × n)× m

m′ ;
Therefore, the total time cost for Map phase and copying data in network

phase is linear dependent to SI and is the monotone increasing function of SI .
For the time cost in Reduce phase, from formula (2), where β × TS(Si

R) is
related to the scale of the final results.

Next, we only prove FO(Sx
i) is also a monotone increasing function of SI .

For single attribute, by replacing the formula (4) in above formula, we can
prove that time cost of an equi-join in single MRJ is a monotone increasing
function of the total scales of input datasets SI .

For multiple attributes, according to results estimation method for an equi-
join in [4] and formula (7), we have:

MidRx
1i =

MidRx
1i−1 × Rx

i

max(min(MidRx
1i−1, difR

x
i−1), difR

x
i)

where difRx
i−1 is the number of different attribute values in Rx

i−1 involved in
an equi-join.

Suppose MidRx
1i−1 ≥ difRx

i−1, then we have:

MidRx
1i =

MidRx
1i−1 × Rx

i

max(difRx
1i−1, difR

x
i)

≥ MidRx
1i−1 × Rx

i

max(MidRx
1i−1, R

x
i)

≥ min(MidRx
1i−1, R

x
i)

Otherwise, if MidRx
1i−1 ≤ difRi−1, because the number of different attribute

values is less than the number of attribute values in a dataset, then difRx
i−1 =

MidRx
1i−1.

MidRx
1i =

MidRx
1i−1 × Rx

i

max(MidRx
1i−1, difR

x
i)

≥ MidRx
1i−1 × Rx

i

max(MidRx
1i−1, R

x
i)

≥ min(MidRx
1i−1, R

x
i)),

Therefore, we have:MidRx
1i ≥ min(MidRx

1i−1, R
x
i), · · · , as MidRx

12 ≥ min(MidRx
11, R

x
2) =

min(Rx
1 , R

x
2),MidRx

1i ≥ min(Rx
1 , R

x
2 , · · · , Rx

i). Then the formula (7) is changed into:
FO(Sx

R) ≥ α×SI

n + 2× L×min(Rx
1 , R

x
2 , · · ·Rx

i) + L ×min(Rx
1 , R

x
2 , · · ·Rx

i)×
log(min(Rx

1 , R
x
2 , · · ·Rx

i))
Therefore, the time cost in the Reduce phase is the monotone increasing

function of the scale of input datasets SI .

4 The Optimization Methods for an Equi-join

For an equi-join, the problem is in what order the datasets be joined such that the
total time cost is as low as possible. When we choose an optimal equi-join plan

Equi-join for Multiple Datasets Based on Time Cost Evaluation Model 129

with lowest time cost, a naive method is enumerating and evaluating the time
costs of all possible equi-join schemes, and the method is a NP-hard problem [11].
There are two types of sub-joins in an equi-join: star pattern sub-joins and chain
pattern sub-joins. In a star pattern sub-join, a dataset (star-center) is joined with
all of other datasets (the star-angle) on single attribute. In a chain pattern sub-
join, a typical sub-join is described asR1(a1)∞R2(a1, a2)∞· · ·∞RL(aL−1). For a
chain pattern sub-join Ri(ai−1, ai)∞Ri+1(ai, ai+1)∞· · ·∞Rj(aj−1, aj)(1 < i ≤
j < L), we call it a sub-chain of R1(a1)∞R2(a1, a2)∞· · ·∞RL(aL−1). If a chain
pattern sub-join is not a sub-chain of any other chain pattern sub-join of the equi-
join, the chain pattern sub-join is called a complete chain pattern sub-join.

Our optimization methods for an equi-join have following three steps:

1. A star pattern sub-join should be first processed and replaced by the set of
intermediate results of the star pattern sub-join in an original equi-join.

2. A complete chain pattern sub-join could be searched, and then the chain
pattern sub-join with minimal number of tuples in results would be processed.
The complete chain is also replaced by the set of intermediate results.

3. The time cost of a complete chain pattern sub-join obtained in step 2 is
evaluated by dynamic programming, and then an optimal equi-join scheme is
chosen. The set of intermediate results are added to the equi-join after step
1, and then the equi-join is further modified. The step 2 is repeated. From the
associative law for the join operation, the final results of the equi-join are correct.

4.1 Optimization Methods for Star Pattern Sub-joins and Chain
Pattern Sub-joins

A star pattern sub-join should be processed in single MRJ. We have following
Property 1.

Property 1. Assume there is a star pattern equi-join Ja. Suppose Ja is processed
with several MRJs and the time cost is TMJ , and Ja is also implemented with a
MRJ and the time cost is TS. Then we have TS ≤ TMJ .

Property 1 is obvious according to Theorem 1. From Property 1 above, a star
pattern sub-join should not be divided into several MRJs.

After processing all star pattern sub-joins, the equi-join consists of several
chain pattern sub-joins. Then we have property 2.

Property 2. Suppose two chain pattern sub-joins cross in an equi-join. If the
chain pattern sub-join, which would produce less number of tuples in results, is
first joined, and then the total time cost for the equi-join would be decreased.

We will use these two properties to simplify the equi-join and reduce the time
cost. Due to space limitation, we will not give their proofs. Actually, they will
be verified in our experiments.

4.2 The Optimization Method by Dynamic Programming

We will use the time cost evaluation model in Section 3 and dynamic pro-
gramming to choose an optimal plan for chain pattern sub-joins. In dynamic

130 H. Zhu et al.

programming, all of the time costs for possible join schemes are evaluated for a
chain pattern sub-join and a join scheme with minimal time cost is chosen.

Assume a chain pattern equi-join R1(a1)∞R2(a1, a2)∞· · ·∞RL(aL−1), and
fcost(i, j) stands for the minimal time cost of joining from dataset Ri to dataset
Rj . If a chain pattern equi-join from Ri to Rj is decomposed into two sub-chains,
namely the final results would be obtained by joining the intermediate results of
Ri to Rk and the intermediate results of Rk+1 to Rj , then the minimal time cost
is fcost(i, j) = min(fcost(i, k)+fcost(k+1, j)+fjoincost(midR(i, k),midR(k+
1, j))), i ≤ k ≤ j − 1, where fjoincost(x, y) stands for the time cost of joining
datasets x with y, midR(i, j) denotes intermediate results by joining dataset
Ri to dataset Rj . For example, if a chain pattern equi-join is divided into three
sub-joins, then the formula is: fcost(i, j) = min(fcost(i, k1)+fcost(k1+1, k2)+
fjoincost(midR(i, k1),midR(k1 +1, k2),midR(k2 +1, j))), i ≤ k1 < k2 ≤ j− 1.
The same methods could be used for the equi-join with four sub-chains, five
sub-chains, and so on. In addition, it is possible that the time cost for MDMJ
is minimal in some cases. Therefore, we could choose one scheme from all of the
possible schemes:

fcost(1, L) = min(

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fcost(1, k) + fcost(k + 1, L) + fjoincost(midR(i, k), midR(k + 1, L));

when1 ≤ k ≤ L− 1

fcost(1, k1) + fcost(k1 + 1, k2) + fcost(k2 + 1, L)+

fjoincost(midR(1, k1),midR(k1 + 1, k2),midR(k2 + 1, L));

when1 ≤ k1 ≤ k2 ≤ L − 1

· · ·
fjoincost(R1, R2, · · · , Ri, · · · , RL); otherwise

We can obtain the optimal join scheme with lowest time cost by dynamic
programming. The time cost (e.g. fjoincost) of joining datasets in single MRJ
can be calculated by formula (3). If two datasets join on single attribute, the
time cost can be computed by the method in Section 3.2. If several datasets join,
the cost can be calculated by the method in Section 3.3. Actually, the number of
datasets and attributes involved in an equi-join is determined by configuration
of hardware and the number of Reduce nodes. We can specify the maximum
number of datasets in single MRJ to improve the efficiency of search in above
formula.

5 Experiments

5.1 The Environment in Experiments

In this section, we will verify the efficiency of our approach and compare with
other equi-join algorithms. As NAMN and MapReduceMerge algorithms modi-
fied MapReduce framework, they are not comparable to our method. Then we
will compare the MDMJ and multiple MRJs algorithms with our method. In ad-
dition, Pig and Hive are two databases based on Hadoop and need to compare
with our method. The experiments are based on Hadoop platform, the hardware
in experiments consists of 1 Master node and 3 slave nodes, all of the nodes are

Equi-join for Multiple Datasets Based on Time Cost Evaluation Model 131

Table 1. Hardware and software lists in experiments

Hardware Software

CPU:Intel Xeon(R)
2.13GHz*4

Operating System:
Ubuntu-12.04 LTS

Memory: 8G Type of OS: 64bit
Disk:300GB Hadoop: Hadoop-1.0.1

Table 2. SQL statements in experiments

NO. SQL statements

Q1 SELECT * FROM T1, T2, T3, T4, T5 WHERE T1.T1 COL1=T5.T5 COL1 AND
T2.T2 COL1=T5.T5 COL2 AND T3.T3 COL1=T5.T5 COL3 AND

T4.T4 COL1=T5.T5 COL3

Q2 SELECT * FROM T1, T2, T3, T4, T5 WHERE T1.T1 COL1=T5.T5 COL1 AND
T2.T2 COL1=T5.T5 COL2 AND T3.T3 COL1=T5.T5 COL3 AND

T4.T4 COL1=T5.T5 COL4

Q3 SELECT * FROM T1, T2, T3, T4, T5 WHERE T4.T4 COL1=T5.T5 COL4 AND
T3.T3 COL1=T5.T5 COL3 AND T2.T2 COL1=T5.T5 COL2 AND

T1.T1 COL1=T5.T5 COL1

Q4 SELECT * FROM T1, T2, T3, T4, T5 WHERE T1.T1 COL1=T2.T2 COL1 AND
T2.T2 COL2 =T3.T3 COL1 AND T3.T3 COL2=T4.T4 COL1 AND

T4.T4 COL2=T5.T5 COL1

Q5 SELECT * FROM T1, T2, T3, T4, T5 WHERE T4.T4 COL2=T5.T5 COL1 AND
T3.T3 COL2=T4.T4 COL1 AND T2.T2 COL2 =T3.T3 COL1 AND

T1.T1 COL1=T2.T2 COL1

blade servers. The hardware and software environment in experiments are listed
in Table 1.

The experiments consist of three types of equi-joins: hybrid join with star
pattern sub-joins, hybrid join without star pattern sub-joins, and chain pattern
equi-joins. The datasets are produced randomly by specifying the scope of the
data and the different number of tuples for different join attributes. In the fol-
lowing discussion, our method is denoted as JoinStrategy and multiple MRJs as
MutipleJob.

5.2 The Experiments for a Hybrid Equi-join with Star Pattern
Sub-joins

In the experiments (EXP1 for short), we will have two tests for the SQL state-
ments Q1 in Table 2. For the equi-join, the number of tuples in each dataset is
shown in Table 3 and Table 4 respectively. Compared with Table 3, the scales
of datasets in star-center (dataset T5) in Table 4 are changed. The results of
experiments are shown in Fig.1 and Fig.2 in which the scales (1-5) in x-axis
are shown in Table 3 and Table 4 (from No.1 to No.5) respectively. From the
experiments, the joinStrategy is more efficient than that of other methods.

Comparing Fig.1 with Fig.2, whether the scales of datasets in star-center or
in star-angle are changed, JoinStrategy is the most efficient approach among
these methods. The reason is that in one MRJ only star pattern sub-joins are

132 H. Zhu et al.

Table 3. In experiment EXP1.a, the number of tuples in datasets and the final results

No. T1(×106) T2(×106) T3(×106) T4(×106) T5(×106) Results

1 6 6 2 2 2 2444916
2 6 6 2 4 2 2453824
3 6 6 2 6 2 2448719
4 6 6 2 8 2 2457335
5 6 6 2 10 2 2467211

Table 4. In experiment EXP1.b, the number of datasets in join and the final results

No. T1 (×106) T2(×106) T3(×106) T4(×106) T5(×106) Results

1 2 2 2 2 2 2453578
2 2 2 2 2 4 4910520
3 2 2 2 2 6 7378282
4 2 2 2 2 8 9822087
5 2 2 2 2 10 12290426

processed so that large amount of redundant disk I/O is avoided. However, the
methods for MutipleJob, Hive and Pig decompose star pattern sub-joins into
several MRJs, the time costs of them are more than that of JoinStrategy. In
Fig.2 the time cost for MDMJ is almost the same as JoinStrategy when the
scales of datasets are small, but when the scales of datasets increase, the time
cost for MDMJ is more than that of JoinStrategy. The reason is that when the
scales of datasets are small the JoinStrategy process the star pattern sub-joins
first, then the JoinStrategy chooses MDMJ to process rest of datasets.

Fig. 1. Time cost for datasets in Table 2 Fig. 2. Time cost for datasets in Table 3

From the experimental results above, the JoinStrategy are more efficient than
that of other methods as the star pattern sub-join is processed first. The results
indicate that the Property1 in Section 4.1 is correct and effective.

5.3 Experiments for Hybrid Equi-joins without Star Pattern
Sub-joins

For the experiments in this section (EXP2 for short), we will test the efficiencies
of queries Q2 and Q3 in Table 2. The difference of the two SQL statements is

Equi-join for Multiple Datasets Based on Time Cost Evaluation Model 133

that the orders of datasets in the two equi-joins are different, and the order of
joining datasets in our approach would be rearranged according to the optimiza-
tion method: the chain pattern sub-joins with smaller intermediate results are
processed after star pattern sub-joins are processed.

The experimental results are illustrated in Fig.3 and Fig.4, and the scales of
datasets and results for the equi-joins are illustrated in Table 5.

Table 5. In experiment EXP2, the number of tuples in datasets and final results

No. T1 (×106) T2(×106) T3(×106) T4(×106) T5(×106) Results

1 2 2 2 2 6 89915
2 2 2 2 6 6 271685
3 2 2 2 10 6 271142
4 2 2 6 10 6 825062
5 2 2 10 10 6 820939
6 2 6 10 10 6 2458097
7 2 10 10 10 6 2453931
8 6 10 10 10 6 7386461

Fig. 3. The time cost for the join Q2 Fig. 4. The time cost for the join Q3

Comparing the experimental results in Fig.3 and Fig.4, when we changed the
order of datasets in an equi-join, the efficiency of MDMJ and JoinStrategy is un-
changed but the performances of other methods decrease obviously. The reason is
that MDMJ and JoinStrategy optimize the order of joining datasets while other
methods only join datasets in the order specified in SQL statements. Once the
order of joining datasets is unreasonable, the performance would decrease obvi-
ously. From the experimental results in Fig.4, the performance of an equi-join is
improved when the chain pattern sub-joins with smaller intermediate results are
processed first. The results indicates that Property2 in Section 4.1 is suitable.

5.4 Experiments for Chain Pattern Joins

We will verify that the plan produced by dynamic programming would improve
the efficiency of an equi-join in the experimental (EXP3 for short). Like the

134 H. Zhu et al.

experiments for hybrid equi-join without star pattern sub-joins, this experiment
will test the joins with different order, the SQL statements Q4 and Q5 are
illustrated in Table 2.

Table 6. In experiment EXP3, the number of tuples in datasets and final results

No. T1(×106) T2(×106) T3(×106) T4(×106) T5(×106) Results

1 2 2 2 2 2 2459063
2 2 2 2 2 6 2447277
3 2 2 2 2 10 2455207
4 2 2 2 6 10 2458453
5 2 2 2 10 10 2458784
6 2 2 6 10 10 2453944
7 2 2 10 10 10 2455965
8 2 6 10 10 10 2462062
9 2 10 10 10 10 2461461

Fig. 5. The time cost for join Q4 Fig. 6. The time cost for join Q5

The experiment results are illustrated in Fig.5 and Fig.6. The experimental
results are similar to the results in Section 5.3. From the results in Fig.5, the
efficiency of the JoinStrategy is almost the same as Pig and Multiplejob, the
reason is that the order of datasets in SQL statement in Fig.5 is close to the order
of joining datasets by our optimization methods. However, in Fig.6, the order
of joining datasets is unreasonable in Multiplejob and Pig, and the efficiencies
of Pig and Multiplejob decrease. Moreover, as the data scales are small before
the datasets of No.4 in Table 6, in Fig.5 and Fig.6, MDMJ is more efficient
than that of MultipleJob, so we choose MDMJ for multiple datasets in single
MRJ by dynamic programming. Therefore, before the datasets No.4 in Table 6,
JoinStrategy is more close to MDMJ. When the scales of datasets increase and
the cost for copying data in network increases in MDMJ, performance of MDMJ
decreases. At this time, the plan for the equi-join tends to choose multiple MRJs.
Therefore, from the datasets No.5 in Table 6, the optimal plan obtained from
dynamic programming is the multiple MRJs. From the results, the performance
of our method is more efficient.

Equi-join for Multiple Datasets Based on Time Cost Evaluation Model 135

6 Conclusion

An new equi-join method is presented in this paper. A time cost evaluation
model is extended for equi-joins on multiple datasets and multiple attributes
by considering the time cost of calculation. Then optimization methods is pre-
sented: star pattern sub-joins are first processed, then the intermediate result-set
replaces the star pattern sub-joins and the original equi-join can be simplified;
next, the scale of results for each chain pattern sub-join is estimated and the
chain pattern sub-joins with minimal scale of results are processed; at last, for
chain pattern sub-joins time costs are evaluated for each MRJ by dynamic pro-
gramming and an optimal plan is chosen. We conducted extensive experiments
and verified the efficiency of our approach. In the future, we will study on how
to solve the problem of theta-join based on this model.

References

1. Afrati, F.N., Ullman, J.D.: Optimizing joins in a map-reduce environment. In: Pro-
ceedings of the 13th International Conference on Extending Database Technology,
pp. 99–110. ACM (2010)

2. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A compari-
son of join algorithms for log processing in mapreduce. In: Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data, pp. 975–986.
ACM (2010)

3. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

4. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database system implementation,
vol. 654. Prentice Hall, Upper Saddle River (2000)

5. Lee, K.H., Lee, Y.J., Choi, H., Chung, Y.D., Moon, B.: Parallel data processing
with mapreduce: A survey. AcM sIGMoD Record 40(4), 11–20 (2012)

6. Lee, T., Kim, K., Kim, H.J.: Exploiting bloom filters for efficient joins in mapre-
duce. Information an International Interdisciplinary Journal 16(8), 5869–5885
(2013)

7. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: A not-so-
foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, pp. 1099–1110. ACM (2008)

8. Slagter, K., Hsu, C.-H., Chung, Y.-C., Park, J.H.: Network-aware multiway join
for mapreduce. In: Park, J.J(J.H.), Arabnia, H.R., Kim, C., Shi, W., Gil, J.-M.
(eds.) GPC 2013. LNCS, vol. 7861, pp. 73–80. Springer, Heidelberg (2013)

9. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyck-
off, P., Murthy, R.: Hive: A warehousing solution over a map-reduce framework.
Proceedings of the VLDB Endowment 2(2), 1626–1629 (2009)

10. Yang, H.C., Dasdan, A., Hsiao, R.L., Parker, D.S.: Map-reduce-merge: Simplified
relational data processing on large clusters. In: Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data, pp. 1029–1040. ACM
(2007)

11. Zhang, X., Chen, L., Wang, M.: Efficient multi-way theta-join processing using
mapreduce. Proceedings of the VLDB Endowment 5(11), 1184–1195 (2012)

Identifying File Similarity in Large Data Sets

by Modulo File Length

Yongtao Zhou, Yuhui Deng�, Xiaoguang Chen, and Junjie Xie

Department of Computer Science, Jinan University, Guangzhou, 510632, P.R. China
y.t.zhou@foxmail.com, tyhdeng@jnu.edu.cn, {iczabg,xiejunjiejnu}@gmail.com

Abstract. Identifying file similarity is very important for data man-
agement. Sampling files is a simple and effective approach to identify
the file similarity. However, the traditional sampling algorithm(TSA) is
very sensitive to file modification. For example, a single bit shift would
result in a failure of similarity detection. Many research efforts have
been invested in solving/alleviating this problem. This paper proposes
a Position-Aware Sampling(PAS) algorithm to identify file similarity
in large data sets by modulo file length. This method is very effective
in dealing with file modification when performing similarity detection.
Comprehensive experimental results demonstrate that PAS significantly
outperforms a well-known similarity detection algorithm called simhash
in terms of precision and recall. Furthermore, the time overhead, CPU
and memory occupation of PAS are much less than that of simhash.

Keywords: file similarity, large data sets, position shifted, simhash.

1 Introduction

In 2013, IDC predicts[13]that the digital data created in 2014 will reach 4ZBytes.
This leads to a 50% growth in contrast to the data volume in 2012. IBM em-
ploys volume, variety, velocity, value, and veracity to summarize the features of
those data. This indicates that the characteristics of this data are very complex.
For example, the data sets could contain structured, semi-structured, and un-
structured data. The characteristics of data sets pose many challenges to the
existing data management technologies. File similarity detection plays a very
important role in the data management. For example, clustering similar data
is crucial for data mining, adopting similarity to improve the performance of
data backup[3][17][29], employing similarity to enhance the cache hierarchy in
clouds[4][14].

Although the community has made important strides in identifying data sim-
ilarity, effectively detecting the data similarity is still facing many challenges.
We summarize the challenges as follows:

1. Reducing the computing overhead of similarity detection: Tradi-
tional similarity identification algorithms belong to I/O bound and CPU-
bound tasks. Calculating the eigenvalues of similar files requires lots of CPU

� Corresponding author.

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 136–149, 2014.
c© Springer International Publishing Switzerland 2014

Identifying File Similarity in Large Data Sets by Modulo File Length 137

cycles and memory space, and incurs comprehensive disk accesses, when us-
ing the traditional algorithms. Furthermore, the disk accesses are normally
random accesses, which results in a significantly performance degradation.
What’s more, the computing overhead normally increases with the growth
of data sets.

2. Reducing the time of similarity detection: Traditional similarity iden-
tify algorithms normally require a large amount of time for detecting, which
results in long delays especially with large data sets. This makes it difficult
to apply the algorithms to some applications requiring real time and high
throughput.

3. Achieving both the efficiency and accuracy: It is a challenge to achieve
both the efficiency and accuracy of the similarity detection. The traditional
algorithms have to make a tradeoff between the efficiency and accuracy.

In this paper, we propose a Position-Aware Similarity (PAS) identification
algorithm to detect the similar files in large data sets by modulo file length.
This method is very effective in dealing with file modification when perform-
ing similarity detection. Comprehensive experimental results demonstrate that
PAS significantly outperforms a well-known similarity detection algorithm called
simhash in terms of precision and recall. Furthermore, the time overhead, CPU
and memory occupation of PAS are much less than that of simhash. This is be-
cause the overhead of PAS is relatively stable. It is not increases with the growth
of data size.

The remainder of this paper is organized as follows: we present related work
in section 2. In section 3 we describe some background knowledge. Section 4
introduces the basic idea of PAS algorithm. Section 5 shows the evaluation results
of PAS algorithm. Section 6 draws conclusions.

2 Related Work

The research efforts focusing on data similarity detection can be divided into
five categories.

The first one is similar web page detection with web search engine. Detecting
and removing similar web pages can save network bandwidth, reduce storage
consumption, and improve the quality of web search engine index. Andrei et al
[7][8] proposed a similar web page detection technique called shingle algorithm.
The shingle algorithm detects similarity by using set operations. This algorithm
is applied to AltaVista web search engine.

The second one is similar file detection in storage system. In storage systems,
data similarity detection and encoding can greatly improve the resource utiliza-
tion. Forman[12] presented an approach for finding similar files and applied to
document repositories. This approach greatly reduces storage space consump-
tion. Manber[18] implemented a tool, called SIF, for detecting similar files in a
file system. Ouyang[22] presented a large-scale file compression technique based
on cluster by using shingle similarity detection technique.

138 Y. Zhou et al.

The third one is plagiarism detection. Digital information can be easily copied
and retransmitted. This feature causes owner copyright violated. In order to pro-
tect copyright and other related rights, we need plagiarism detection. Baker[2]
ddescribed a program called dup which can be used to locate instances of dupli-
cation or near duplication in a software. Shivakumar[27] presented a data struc-
tures for finding overlap detection between documents and implemented these
data structures in SCAM. Brin et al[6] described an algorithms for copy detec-
tion, either complete copies or partial copies. Brin also implemented a working
prototype, called COPS.

The forth one is remote file backup. Traditional remote file backup approaches
take high bandwidth and consume a lot of resources. Similarity detection applied
to remote file backup can greatly reduce bandwidth consumption. Teodosiu et
al[28] proposed an algorithm to efficiently find the client files that are the most
similar to a given server file. Teodosiu implemented this algorithm in DFSR. Ex-
perimental results suggest that these optimizations may help reduce the band-
width required to transfer file updates across a network. Muthitacharoen et al[21]
presented LBFS which exploits similarity between files or versions of the same
file to save bandwidth. Cox et al[11] presented a similarity-based mechanism for
locating a single source file to perform peer-to-peer backup and implemented a
system called Pastiche.

The fifth one is similarity detection for specific domain. Hua et al[14] explored
and exploited data similarity which supports efficient data placement for cloud.
They designed a novel multi-core-enabled and locality-sensitive hashing that
can accurately capture the differentiated similarity across data. Biswas et al[4]
proposed a novel cache architecture called Mergeable. Mergeable detects data
similarities and merges cache blocks. This results in substantial savings in cache
storage requirements. Experimental results suggested thatMergeable reduces off-
chip memory accesses and overall power usage. Mergeable also can increase the
performance of applications.

3 Background

3.1 Simhash Algorithm

Charikar proposed a Simhash[10] algorthim. Manku et al[19] applied the simhash
algorithm to identify similarity in web documents belonging to a multi-billion
page repository. Simhash is a member of the local sensitive hash[15]. It is different
from traditional hash functions whose signature values are discrete and uniform
distributed. When using the traditional hash functions, if two files differ just a
bit, their hash signature values are almost different. Simhash has the property
that the fingerprints of similar files differ in a small number of bit positions. It
can map a file into f-bit fingerprints. Figure 1 shows the computing process of
m-bit simhash fingerprints. It can be described as follows:

1. Employ chunk algorithm to split files into a set of data blocks: C1, C2, . . . , Cn

2. Define an m-dimension vector V , every dimension is initialized as zero.

Identifying File Similarity in Large Data Sets by Modulo File Length 139

File

C1

C2

C3

Cn

...

010 101

110 111

010 101

000 1111

[-1,1,-1, ,1,-1,1]

[1,1,-1, ,1,1,1]

[-1,1,-1, ,1-1,1]

[-1,-1,-1, ,1,1,1]
Chunks

[18,-8,16, ,5,10,6]101 111

Fig. 1. Process of Calculating simhahs fingerprint

3. Calculate m-bit signature of every data block by using traditional hash func-
tions. If the i-th bit of a signature is positive, then the i-th dimension V
should plus 1. Otherwise, it minus 1.

4. Generate a m-bit simhash fingerprint f according to each dimension of vector
V . If the i-th dimension of V is a positive number, then the i-th bit of f is 1.
Otherwise, it will be 0.

After calculating the simhash fingerprints of files, we can determine the sim-
ilarity of files by working out their Hamming distance.

4 Position-Aware Similarity Algorithm

In order to quickly identify similarity in large data sets with less overhead, we
propose a similarity detection algorithm PAS. The symbols used in the following
sections are summarized in Table 1.

4.1 Traditional Sampling Algorithm

Suppose we sample N data blocks of file A, each data block sizing Lenc is in-
jected to a hash function. We then can obtain N fingerprint values that are
collected as a fingerprint set SigA(N,Lenc). In this scenario, similarity detec-
tion problem can be transformed into a set intersection problem. By analogy, we
will have a fingerprint set SigB(N,Lenc) of file B. According to equation (1),

Table 1. Symbols and the corresponding means used in the following sections

Symbol Meaning

Lenc The length of sampling data blocks length

N The number of sampling data blocks

FileSize File size

LenR The distance between two sampling data blocks

T Sampling position impact factor of PAS

δ The threshold of PAS

140 Y. Zhou et al.

0KB 11KB 22KB 33KB 44KB 55KB

0KB 12KB 24KB 36KB 48KB 60KB

0KB 12KB 24KB 36KB 48KB 60KBKB KKBB KBB KBKBKBKB 0KBKB

0KB 12KB 24KB 36KB 60KB

File A

File B1

File B2

File B3

Sampling chunk Increasing chunk

48KB

(a) TSA

0KB 11KB 22KB 33KB 44KB 55KB

0KB 11KB 22KB 33KB 44KB 60KB

0KB 11KB 22KB 33KB 44KB 60KB

0KB 11KB 22KB 33KB 60KB

File A

File B1

File B2

File B3

Sampling chunk Increasing chunk

44KB

(b) PAS

Fig. 2. The Sampling positions of TSA and PAS

the degree of similarity between file A and file B can be described as equation
(1), where Sim(A,B) ranges s between 0 and 1. If Sim(A,B) is reaching 1, it
means the similarity of file A and file B are very high, vice verse. After selecting
a threshold δ of the similarity, we can determine that file A is similar to file B
when Sim(A,B) ≥ δ is satisfied. This TSA is described in algorithm 1. by using
pseudo-code.

Sim(A,B) =
|SigA(N,Lenc) ∩ SigB(N,Lenc)|
|SigA(N,Lenc) ∪ SigB(N,Lenc)| (1)

TSA is simple, but it is very sensitive to file modifications. A small modifica-
tion would cause the sampling positions shifted, thus resulting a failure. Suppose
we have a file A sizing 56KB. We sample 6 data blocks and each data block sizes
1KB. According to Algorithm 1, file A has N = 6, Lenc = 1KB,FileSize =
56KB,LenR = 10KB. If we add 5KB data to file A to form file B, file B
will have N = 6, Lenc = 1KB,FileSize = 61KB,LenR = 11KB in terms of
algorithm 1..

Algorithm 1. Traditional Sampling Algorithm

function traditionalSampling(fd, N , Lenc)
LenR = (FileSize - Lenc*N)/(N - 1)//Calculate distance between the sampling

data blocks
for i = 1 to N do

offset = (i - 1)*(Lenc + LenR)//Calculate the sampling offset
lseek(fd, offset, SEEKSET) //Set the sampling offset
read(fd, buf , Lenc)
Md5(buf , Lenc, Md5V al)
put(Md5V al, SigA) //Put the fingerprint to the SigA(N,Lenc)

end for
end function

Adding 5KB data to file A has three situations including the begging, the
middle, and the end of the file A. File B1, B2, and B3 in figure 2(a) represent

Identifying File Similarity in Large Data Sets by Modulo File Length 141

Algorithm 2. PAS Sampling Algorithm

function PASSampling(fd, N , Lenc, T)
FileSize = (FileSize/T)T
LenR = (FileSize - Lenc*N)/(N - 1)
LenR = LenR > 0 ? LenR : 0
for i = 1 to N - 1 do

offset = (i - 1)*(Lenc + LenR)
lseek(fd, offset, SEEKSET)
read(fd, buf , Lenc)
Md5(buf , Lenc, Md5V al)
put(Md5V al, SigA)

end for
lseek(fd, -Lenc, SEEKEND)
read(fd, buf , lenc)
Md5(buf , Lenc, Md5V al)
put(Md5V al, SigA)

end function

these three different situations. We can find that the above file modifications
cause the sampling position shifted and result in an inaccuracy of similarity
detection. For example, the six sampling positions of file A are 0KB, 11KB,
22KB, 33KB, 44KB, and 55KB ((1 − 1) ∗ (1 + 10) = 0KB, (2 − 1) ∗ (1 +
10) = 11KB, (3 − 1) ∗ (1 + 10) = 22KB, (4 − 1) ∗ (1 + 10) = 33KB, (5 −
1) ∗ (1 + 10) = 44KB, (6 − 1) ∗ (1 + 10) = 55KB), respectively. However, due
to the added 5KB data, the six sampling positions of file B1,B2, and B3 are
shifted to 0KB, 12KB, 24KB, 36KB, 48KB, and 60KB((1 − 1) ∗ (1 + 11) =
0KB, (2− 1) ∗ (1 + 11) = 12KB, (3− 1) ∗ (1 + 11) = 24KB, (4− 1) ∗ (1 + 11) =
36KB, (5 − 1) ∗ (1 + 11) = 48KB, (6 − 1) ∗ (1 + 11) = 60KB), respectively.
Although the Sim(A,B) is far from actual value when using TSA, the sampling
method is very simple and takes much less overhead in contrast to the shingle
algorithm and simhash algorithm.

4.2 PAS Algorithm

FPP [17] exploits prefetching fingerprints belonging to the same file by leverag-
ing file similarity, thus improving the performance of data deduplication systems.
The experimental results suggest that FPP increases cache hit ratio and reduces
the number of disk accesses greatly. FPP samples three data blocks in the be-
ginning, the middle, and the end of files to determine that a forthcoming file is
similar to the files stored in the backed storage system, by using the TSA. This
method is sample and effective. However, as explained in section 4.1, a single bit
modification would result in a failure. Therefore, PAS is proposed to solve this
problem.

Definition 1. Given a positive integer p for any integer n must be existing
equation n = kp + r. There k, r is an integer and 0 ≤ r < p, k is quotient n
divided by p, r is remainder n divided by p.

142 Y. Zhou et al.

Suppose n = 150, p = 100 , we have 150 = 1100 + 50 in terms of Definition
1, where r and k equal to 50 and 1, respectively. The k always equals to 1 for
−50 < r ≤ 50. Then we have k × p ≡ p. Therefore, the changing of r keeps n
unchanged.

We can apply this simple method to the identification of file similarity. This
mechanism is illustrated in algorithm 2. with pseudo-code.

In order to detect similarity accurately, we sample two data blocks in the
beginning and in the end of files, respectively. The remaining sampling positions
are calculated by using algorithm 2.. After choosing an appropriate parameter
T according to algorithm 2., we can avoid the shifting of sampling positions due
to slight file modifications

We take the same example used in Section 4.1 to illustrate the basic idea
of PAS. Suppose file A sizes 56KB, and file B is achieved by adding 5KB
data to file A. We also sample six data blocks and the length of each data
block is 1KB. We take T as 28KB. This is because in order to avoid the
shifting of sampling positions incurred by adding the 5KB data, T should
be bigger than 5KB. Other numbers of T are also applicable. For example,
T could be 6KB, 7KB, 8KB, 9KB and so on. We will discuss how to deter-
mine an optimal T in Section 5.2. Then, the file A has N = 6, F ileSize =
56KB,LenR = 10KB, T = 28KB. According to Algorithm 2., file B will have
N = 6, F ileSize = 61KB,LenR = 10KB, T = 28KB.

Consider adding 5KB to file A in the beginning, the middle, and the end of
the file, we will have file B1, B2, B3 illustrated in Figure 3. We can find that the
sampling positions of file B are 0KB, 11KB, 22KB, 33KB, 44KB((1− 1) ∗ (1 +
10) = 0KB, (2−1)∗(1+10) = 11KB, (3−1)∗(1+10) = 22KB, (4−1)∗(1+10) =
33KB, (5− 1) ∗ (1 + 10) = 44KB), and 60KB, respectively. In contrast to the
sampling positions of file A, the only difference is the last sampled data block at
the position 60KB. This is because we fix two sampling position in the beginning
and the end of the corresponding files. According to the above analysis, we can
conclude that the PAS algorithm can effectively avoid the shifting of sampling
positions due to slightly file modifications.

Fig.2(b) shows that the sampling positions when using PAS algorithm. It
also illustrates that the file modifications incur a shift of some sampled file
contents. For example, the modification of file B1 is at the beginning of the file,
although the sampling positions are the same as that of file A, all the sampled
contents have been shifted except the first sample. However, this problem will
be alleviated when the modification gradually moves from the beginning to the
end of the file. For instance, all the sampled contents of file B3 are the same as
that of file A except the last one occurring at the end of file B3.

Data deduplication systems [24][26][25] normally employ fixed-sized partition
algorithm to obtain data chunks. In this scenario, most of the striped data
chunks of file A and file B1 are not identical due to the modification at the
beginning of file B1. Therefore, the mapped fingerprints of the data chunks are
not identical as well. Even if file A and file B1 are actually similar, prefetching
the fingerprints cannot improve the hit ratio of the fingerprints accesses when

Identifying File Similarity in Large Data Sets by Modulo File Length 143

using the fixed-sized partition algorithm. According to the above analysis, we
can determine that PAS matches the problem of data deduplication systems
when the fixed-sized partition algorithm is adopted. Therefore, we believe that
the PAS algorithm is applicable although it contains defects mentioned before.

Fig. 3. The file size distribution of data set
D1

Table 2. The profile of data set D1

Popularity Storage Space
Rank Ext. %Occur Ext. %Storage
1 h 55.30 pdf 77.52
2 pdf 14.70 mkv 4.38
3 jpg 5.34 rar 4.24
4 c 4.28 mp3 4.01
5 mp3 3.48 zip 2.39

Total – 83.1 – 92.54

5 Evaluation

5.1 Evaluation Environment

The experiments in this paper are performed in a Ubuntu operation system (ker-
nel version is 2.6.32) at VirtualBox(4.3.8.r92456) with virtual machine software.
The virtual machine consists of 1GB memory, 2.0GHZ Intel(R) Pentium(R)
CPU. We use Tokyo Cabinet(1.4.48)[16] to store PAS results.

In order to measure the performance of PAS algorithm, we employed two
data sets D1 and D2 to perform the evaluation. Data set D1 is collected from
a Linux server in our research lab and a personal cloud DropBox. D1 has 2756
files with total size of 11.5GB. Table 2 summarizes the profile of D1. It shows
that the top five popular files are the files with the suffix of .h, .pdf, .jpg, .c and
.mp3. Tables 2 also indicates that the files with suffix .pdf consumes the highest
portion of storage capacity. Fig.3 shows the distribution of file size. It implies
that the highest portion of file size ranging between 0KB to 4KB. The file size
distribution in Fig.3 is consistent with the investigation of Agrawal et al[1] and
Meyeret et al[20]. Therefore, we believe that data set D1 is very representative.

In order to determine the optimal parameters of PAS, we build another data
set D2. The files in D2 consist of original files and the augmented files that are
modified in the begging, the middle, and the end of the corresponding original
files. D2 is made up of 14 txt files. It total size is 128MB.

5.2 Parameters Selection

Since the parameters T and threshold δ have a significant impact on the perfor-
mance of PAS, it is important to determine the optimal parameters. We compare

144 Y. Zhou et al.

(a) The impact of T on the detection
probability(Lenc = 32byte, N = 8, T =
2KB, 8KB, 32KB, 128KB, 512KB)

(b) The precision and recall of PAS algo-
rithm

Fig. 4. Parameters selection of PAS

the detection probability of PAS algorithm against the actual portion of match-
ing chunks in data set D2. Because the actual portion of matching chunks is
the up bound of the similarity between two files, the optimal parameters should
make the detection probability of PAS get close to the actual portion of match-
ing chunks. The Fix-Size Partition algorithm first split files into predefined fixed
size chunks[5], then maps these chunks into fingerprints by using hash functions
and obtains a fingerprint set. The chunk size is defined as 4KB in our experi-
ments. Applying this method to file A and file B, we have two fingerprint sets
Finger(A) and Finger(B). The actual portion of matching chunk fingerprints
of file A and file B is described with equation (2), where Match(A,B) lies be-
tween 0 to 1. This is consistent with equation (1). If Match(A,B) reaches 1, this
indicates that most of chunks of file A and file B are matching, vice verse.

Match(A,B) =
|Finger(A) ∩ Finger(B)|
|Finger(A) ∪ Finger(B)| (2)

By comparing Match(A,B) in equation(2) against Sim(A,B) in equation
(1), we can determine optimal parameters. For example, if Match(A,B) =
Sim(A,B), this implies that the PAS algorithm catches the real similarity of
file A and file B. This scenario can be expressed in mathematical form as y = x,
where y and x range between 0 and 1. Theoretically, if a curve keeps very close
to y = x, it means this curve is the best candidate to select optimal parameters.
The experiments in this section are all performed with data set D2.

Sampling Position Impact Factor T . Fig.4(a) shows the impact of sampling
position impact factor T on the detection probability, where Lenc equals to
32byte, N equals to 8, and T is determined as 2KB, 8KB, 32KB, 128KB, and
512KB. It is very interesting to observe that when T is defined as 2KB and 8KB,
the corresponding two curves goes far from the line Sim(A,B) = Match(A,B).

Identifying File Similarity in Large Data Sets by Modulo File Length 145

At this point, the values of actual matching chunk fingerprints Match(A,B)
range from 0.05 to 0.98, while the values of detection probability Sim(A,B) float
around 0.07. In this situation, the failure ratio of detection is very high. Because
even though two files most data blocks are identical, detection probability is
low. When T is set as 32KB, 128KB, and 512KB, the corresponding curves are
very close to the line Sim(A,B) = Match(A,B). This indicates 32KB, 128KB,
and 512KB are optimal values of T. We take T = 512KB in the following
experiments.

Threshold δ of PAS Algorithm. Consider file A and file B, Sim(A,B) ≥ δ
indicates that file A is similar to file B, where δ is a threshold of similarity. We
employ Precision and Recall introduced in [9][23] to select an optimal thresh-
old δ. The Precision and Recall are defined in equation (3) and equation (4),
respectively, where A represents a file set, u denotes the file required to detect
similarity among the file set A, Query(A, u) means a file set detected by us-
ing PAS algorithm, that file set is similar to the file u among the file set A,
Matchall(A, u) indicates a file set that is actually similar to the file u among
the file set A, |Matchall(A, u)∩Query(A, u)| implies that a detection file set is
actually similar to file u.

Precision =
|Matchall(A, u)∩Query(A, u)|

|Query(A, u)| (3)

Recall =
|Matchall(A, u)∩Query(A, u)|

|Matchall(A, u)| (4)

According to formula (3) and formula (4), precision is the fraction of detection
instances which are actually similar, while recall is the fraction of actually similar
instances that are retrieved, both values are between 0 to 1. If the precision value
is close to 1, it means that most detection instances are actually similar. On the
country, if the precision value is close to 0, it indicates that most detection
instances are not similar. By analogy, if the recall value is close to 1, it implies
that we detect most actually similar instances. If the recall value is close to 0, it
denotes that we just detect a few similar instances.

Generally, according to the above analysis, we expect to have very high preci-
sion and recall that are close to 1. Unfortunately, this is very hard to achieve. If
we want to detect more actually similar files, it means we have to relax the limit
of threshold value δ. However, reducing the threshold value δ incurs more actual
instances that are not similar to occur in the detection results. This will decrease
the precision value. Expecting most detection results are actually similar means
that we need to restrict the limit of threshold value δ. This will reduce the ac-
tually similar instances detected, thus decreasing the recall value. Therefore, we
have to make a tradeoff between the precision and recall.

Fig.4(b) shows the impact of similarity threshold δ on the precision and recall
when using PAS algorithm, where T equals to 512KB, Lenc is 32byte, and N
is defined as 10. It is easy to observe that with the growth of δ, the precision

146 Y. Zhou et al.

(a) The size of file are 2MB, 5MB and
10MB, respectively

(b) Data set D1

Fig. 5. The time overhead of PAS and simhash algorithm

increases, while the recall decreases. According to figure 10, We determine that
the optimal similarity threshold δ is 0.5, because both the precision and recall
can achieve a high value of 0.85. Therefore, if file A and file B satisfy the equation
Sim(A,B) ≥ 0.5, we treat these two file as similar.

5.3 PAS Algorithm Evaluation

We evaluate the time overhead, memory and CPU utilization, precision and recall
of PAS against the well-known similarity detection algorithm called simhash.
The T, Lenc, N, and δ are set as 512KB, 32bytes, 10, and 0.5, respectively.
And according to the work in [19], hamming distance is selected as 3, and the
number of stored table is determined as 4. All the measurements in this section
are performed with data set D1.

In order to reduce the storage consumption and easy to express, the PAS
algorithm use 8 bits to store a fingerprint. Therefore, it takes 80 bits for each file.
However, the redundant table of simhash needs 256 bits to store the fingerprints
of each file.

Time Overhead. The time overhead is evaluated with three different file size
including 2MB, 5MB, 10MB. Fig.5(a) shows that the time overhead of PAS is
much smaller than that of simhash across the three different file size. The actual
time overhead of PAS are 4ms, 4ms, and 3.9ms, while the corresponding time
overhead of simhash are 232.198ms, 564.668ms, and 1046.38ms. When using the
data set D1, we obtain a similar trend in fig.5(b). The time overhead of PAS
and simhash are 105s and 1452.5s, respectively.

CPU and Memory Utilization. Fig.6 illustrates the CPU and memory uti-
lization of PAS algorithm against that of simhash algorithm when employing

Identifying File Similarity in Large Data Sets by Modulo File Length 147

Fig. 6. CPU and memory utilization of PAS and simhash with data set D1

data set D1. It shows that the CPU utilization of PAS and simhash are 20%
and 40%, respectively. This indicates that simhash is more computing intensive
than PAS algorithm. However, the memory utilization of PAS and simhash are
2% and 1%, respectively. The reason behind this is because PAS algorithm use
Tokyo Cabinet to store fingerprint sets, and the Tokyo Cabinet maps data files
into memory as much as possible. This makes the PAS algorithm take more
memory space. However, PAS algorithm memory utilization does not increase
with time. Tokyo Cabinet does not store any data in cache. Simhash algorithm
memory utilization increases with time. Simhash algorithm stores all fingerprints
in memory and exists redundance fingerprints. So we think PAS particularly
suitable for limited physical memory environment.

Precision and Recall. In order to illustrate the effectiveness of PAS, we eval-
uate the precision and recall of PAS against that of simhash with data set D1.
Our experiments demonstrate that the precision and recall of PAS are 0.875 and
1, respectively. However, the measured precision and recall of simhash are 1 and
0.125, respectively.

The Main reason of this result is because simhash employs fixed-size partition
algorithm. This makes the simhash algorithm become very sensitive to the file
modifications. A single bit modification will make the fingerprints of the cor-
responding two files completely different. Therefore, we believe that the PAS
algorithm is a practical and applicable solution for the file similarity detection.

6 Conclusion

In this paper, we proposed an algorithm PAS to identify file similarity in large
data sets by modulo file length. Comprehensive experiments are performed to
select optimal parameters of PAS. Corresponding analysis and discussion of the
parameter selection are introduced in the paper. The evaluation of precision

148 Y. Zhou et al.

and recall demonstrates that PAS is very effective in detecting file similarity
in contrast to a well-known similarity detection algorithm called simhash. The
experiment results suggest that the time overhead, CPU and memory occupation
of PAS are much less than that of simhash.

Acknowledgement. We would like to thank the anonymous reviewers for help-
ing us refine this paper. Their constructive comments and suggestions are very
helpful. This work is supported by the National Natural Science Foundation
(NSF) of China under grant (No.61272073, No. 61073064), the key program
of Natural Science Foundation of Guangdong Province (no. S2013020012865),
the Scientific Research Foundation for the Returned Overseas Chinese Schol-
ars (State Education Ministry), the Educational Commission of Guangdong
Province (No. 2012KJCX0013), the Creative Engineering for Undergraduates of
Jinan University(No.cx13113). The corresponding author of this paper is Yuhui
Deng.

References

1. Agrawal, N., Bolosky, W.J., Douceur, J.R., Lorch, J.R.: A five-year study of file-
system metadata. ACM Transactions on Storage (TOS) 3(3), 9 (2007)

2. Baker, B.S.: On finding duplication and near-duplication in large software systems.
In: Proceedings of 2ndWorking Conference on Reverse Engineering,1995, pp. 86–95.
IEEE (1995)

3. Bhagwat, D., Eshghi, K., Long, D.D., Lillibridge, M.: Extreme binning: Scalable,
parallel deduplication for chunk-based file backup. In: IEEE International Sym-
posium on Modeling, Analysis & Simulation of Computer and Telecommunication
Systems, MASCOTS 2009, pp. 1–9. IEEE (2009)

4. Biswas, S., Franklin, D., Savage, A., Dixon, R., Sherwood, T., Chong, F.T.: Multi-
execution: Multicore caching for data-similar executions. In: ACM SIGARCHCom-
puter Architecture News, vol. 37, pp. 164–173. ACM (2009)

5. Bitton, D., DeWitt, D.J.: Duplicate record elimination in large data files. ACM
Transactions on Database Systems (TODS) 8(2), 255–265 (1983)

6. Brin, S., Davis, J., Garcia-Molina, H.: Copy detection mechanisms for digital doc-
uments. In: ACM SIGMOD Record, vol. 24, pp. 398–409. ACM (1995)

7. Broder, A.Z.: On the resemblance and containment of documents. In: Proceedings
of the Compression and Complexity of Sequences 1997, pp. 21–29. IEEE (1997)

8. Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G.: Syntactic clustering of
the web. Computer Networks and ISDN Systems 29(8), 1157–1166 (1997)

9. Buckland, M.K., Gey, F.C.: The relationship between recall and precision.
JASIS 45(1), 12–19 (1994)

10. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: Pro-
ceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing,
pp. 380–388. ACM (2002)

11. Cox, L.P., Murray, C.D., Noble, B.D.: Pastiche: Making backup cheap and easy.
ACM SIGOPS Operating Systems Review 36(SI), 285–298 (2002)

12. Forman, G., Eshghi, K., Chiocchetti, S.: Finding similar files in large document
repositories. In: Proceedings of the Eleventh ACM SIGKDD International Confer-
ence on Knowledge Discovery in Data Mining, pp. 394–400. ACM (2005)

Identifying File Similarity in Large Data Sets by Modulo File Length 149

13. Gens, F.: Top 10 predictions idc predictions Competing on the 3rd platform (2013),
http://www.idc.com/research/Predictions13/downloadable/238044.pdf

14. Hua, Y., Liu, X., Feng, D.: Data similarity-aware computation infrastructure for
the cloud. IEEE Transactions on Computers p. 1 (2013)

15. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, pp. 604–613. ACM (1998)

16. Labs, F.: Tokyo cabinet, http://fallabs.com/tokyocabinet/
17. Song, L., Deng, Y., Xie, J.: Exploiting fingerprint prefetching to improve the per-

formance of data deduplication. In: Proceedings of the 15th IEEE International
Conference on High Performance Computing and Communications. IEEE (2013)

18. Manber, U., et al.: Finding similar files in a large file system. Usenix Winter 94,
1–10 (1994)

19. Manku, G.S., Jain, A., Das Sarma, A.: Detecting near-duplicates for web crawl-
ing. In: Proceedings of the 16th International Conference on World Wide Web,
pp. 141–150. ACM (2007)

20. Meyer, D.T., Bolosky, W.J.: A study of practical deduplication. ACM Transactions
on Storage (TOS) 7(4), 14 (2012)

21. Muthitacharoen, A., Chen, B., Mazieres, D.: A low-bandwidth network file system.
In: ACM SIGOPS Operating Systems Review, vol. 35, pp. 174–187. ACM (2001)

22. Ouyang, Z., Memon, N., Suel, T., Trendafilov, D.: Cluster-based delta compression
of a collection of files. In: Proceedings of the Third International Conference on
Web Information Systems Engineering, WISE 2002, pp. 257–266. IEEE (2002)

23. Powers, D.M.: Evaluation: from precision, recall and f-measure to roc, informed-
ness, markedness & correlation. Journal of Machine Learning Technologies 2(1),
37–63 (2011)

24. Quinlan, S., Dorward, S.: Venti: A new approach to archival storage. In: FAST,
vol. 2, pp. 89–101 (2002)

25. Ruijter, M.: Lessfs, http://www.lessfs.com/wordpress/
26. Sapuntzakis, C.P., Chandra, R., Pfaff, B., Chow, J., Lam, M.S., Rosenblum, M.:

Optimizing the migration of virtual computers. ACM SIGOPS Operating Systems
Review 36(SI), 377–390 (2002)

27. Shivakumar, N., Garcia-Molina, H.: Building a scalable and accurate copy detection
mechanism. In: Proceedings of the First ACM International Conference on Digital
Libraries, pp. 160–168. ACM (1996)

28. Teodosiu, D., Bjorner, N., Gurevich, Y., Manasse, M., Porkka, J.: Optimizing file
replication over limited bandwidth networks using remote differential compression.
Microsoft Research TR-2006-157 (2006)

29. Xia, W., Jiang, H., Feng, D., Hua, Y.: Silo: A similarity-locality based near-exact
deduplication scheme with low ram overhead and high throughput. In: Proceed-
ings of the 2011 USENIX Conference on USENIX Annual Technical Conference,
pp. 26–28. USENIX Association (2011)

http://www.idc.com/research/Predictions13/downloadable/238044.pdf
http://fallabs.com/tokyocabinet/
http://www.lessfs.com/wordpress/

Conpy: Concolic Execution Engine

for Python Applications

Ting Chen1, Xiao-song Zhang1, Rui-dong Chen1, Bo Yang1, and Yang Bai2

1 School of Computer Science & Engineering, University of Electronic Science and
Technology of China, Chengdu 611731, China

2 No.30 Research Institute, China Electronics Technology Group Corporation
(CETC), Chengdu 618841, China

chenting19870201@163.com

Abstract. Concolic execution has become a promising technique for
program analysis in recent years, whereas it rarely applies to Python
applications. In this work, we propose a concolic execution engine for
Python applications named Conpy. Conpy is easy to deploy since it is
written in pure Python and it is not dependent on any third-party tools.
Conpy is also easy to use. Anyone with basic knowledge of Python and
concolic execution can quickly get start with Conpy. Besides, Conpy
works in low level and produces human-readable reports which facilitate
subsequent analysis. We then make an elaborate performance testing on
Conpy. Results show that the overhead of Conpy is acceptable, that is
to say, less than one order of magnitude in most cases.

Keywords: Python, concolic execution, easy to deploy, easy to use, low
overhead.

1 Introduction

Concolic execution, or dynamic symbolic execution, which is a variation of tradi-
tional symbolic execution proposed in 1970s [1], is now becoming a hot technique
for program analysis. As the name implies, concolic execution combines concrete
execution which runs the programs under analysis (PUA) concretely with sym-
bolic execution which marks symbols, tracks symbols and produces path condi-
tion in the meanwhile. So far, concolic execution has applied to software testing,
software bugs finding and malware analysis. A number of concolic execution
tools have been proposed recently, such as SAGE [2], Pex [3], KLEE [4], DART
[5], CUTE [6], Fuzzgrind [7], Catchconv [8], S2E [9], Splat [10], TaintScope [11],
BitBlaze [12], CREST [13], JPF-SE [14] as well as our previous tools SMAFE
[15] and SEVE [16].

However, rare tools can handle Python applications. Python was often used
as a scripting language for web applications, but now it is widely used by large
organizations including Google, Yahoo!, NASA for its high productivity [17]. So
it is meaningful to design and implement a concolic execution tool for Python
applications.

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 150–163, 2014.
c© Springer International Publishing Switzerland 2014

Conpy: Concolic Execution Engine for Python Applications 151

We have two major contributions in this work. The first, we design and imple-
ment a concolic execution engine for Python applications named Conpy. Conpy
is written in pure Python and it does not depend on any third-party tools, so
it can be released with Python’s codebase as a module. Besides, Conpy is easy
to use. Typically, the only effort for users is to specify symbol sources, such
as the inputs read from files, data comes from Internet, return values of any
functions. Conpy runs in low level, so it is able to produce reports containing
low-level information, which obviously benefit subsequent analysis. Furthermore,
the reports generated by Conpy are human-friendly. So experts can analyze the
reports manually or interpret the reports by any third-party tools.

The second contribution is that we test the performance (i.e. overhead) of
Conpy extensively. To our knowledge, the overhead issue of existing concolic ex-
ecution tools has not been studied in depth. Current concolic execution tools are
employed in off-line analysis, such as automated test generation, software bugs
finding etc., rather than on-line detection or protection. So overhead is not so
critical for current usage. The results from performance testing are promising
that in most cases the overhead is less than one order of magnitude.

2 Related Work

This section briefly reviews the design and implementation of existing concolic
execution tools in order to outline the differences between them and our Conpy.
We try to present some typical tools which have got high attention, but we do
not intend to present all of them. Readers who are interested in current concolic
execution tools can refer to a recent survey [18].

SAGE [2] is proposed by Microsoft Corporation which concolically executes
Windows binaries. SAGE is built on top of a trace replay framework, named Tr-
uScan. The trace files consumed by TruScan are produced by iDNA framework.
So concolic execution in SAGE is according to the following process: (1) executes
PUA concretely and gathers trace files by iDNA. (2) executes trace files symbol-
ically with the help of TruScan. The paper [2] reports SAGE is rather slow and
it gives an example to illustrate how slow SAGE is. The symbolic execution of
Media 2 with wff-3 takes 25 minutes 30 seconds, while concrete execution costs
only several seconds.

DART [5], CUTE [6], Splat [10] and CREST [13] are instrumented by a source-
to-source translator, named CIL. New source files will be produced by CIL,
including original source which performs concrete execution and instrumented
functions which perform symbolic execution. Those tools above can handle C
programs only when source code is available since CIL requires C source code.
JPF-SE [14] is based on Java Pathfinder which applies a similar approach: it
utilizes a Java source-to-source translation tool for instrumentation.

Fuzzgrind [7] and Catchconv [8] employ Valgrind to instrument PUA dy-
namically. That is, the function of symbolic execution is instrumented when
PUA is running. TaintScope [11], as well as our previous tools SMAFE [15] and

152 T. Chen et al.

SEVE [16] do a similar work based on another dynamic instrumentation tool,
Pin. Similarly, Minesweeper [19] enhances Qemu with dynamic binary instru-
mentation. Those tools which are built on dynamic binary instrumentation can
handle unmodified binary PUA with the cost of very high overhead. For exam-
ple, the average overhead introduced by Pin and Valgrind is 2.5 times and 8.3
times respectively even if a simple task for basic-block counting is instrumented.
So it is not surprising that orders of magnitude overhead will be incurred by
those dynamic-instrumentation-based concolic execution tools.

KLEE [4] itself acts as an interpreter to concolically execute the bytecode
produced by LLVM. KLEE runs below PUA and it is in charge of the execution
of PUA. KLEE does not instrument PUA in static or dynamic way. Instead,
KLEE directly interprets bytecode and maps bytecode to constraints. S2E [9]
reuses the symbolic execution engine of KLEE to handle both user-mode and
kernel-mode binaries. To translate x86 instructions to the bytecode that KLEE’s
symbolic execution engine can understand, S2E proposes an x86-to-LLVM back-
end for QEMU on where the guest OS and S2E run. As mentioned in paper [9],
the overhead of S2E in symbolic mode is ∼78 times.

Pex [3] adopts a dynamic-instrumentation-based method to concolically exe-
cute .NET code. It instruments by .NET profiling API and it enhances .NET
virtual machine with symbolic execution. BitBlaze [12] and BitScope [20] imple-
ment a plugin for TEMU to mark and track symbols. As PUA runs in TEMU,
so those tools have the privilege to interpret the execution of PUA in symbolic
mode.

Conpy employs a different design with existing concolic execution tools. Un-
like DART, CUTE, Splat, CREST, JPF-SE, no source-to-source translators are
required. Compared to Fuzzgrind, Catchconv, TaintScope, SMAFE, SEVE etc.,
Conpy does not depend on dynamic instrumentation tools. Besides, Conpy does
not require virtue machines like Qemu and Temu. Moreover, Conpy does not be-
have as an interpreter like KLEE. Actually, Conpy does not care about (or even
be aware of) the executions which do not involve symbolic computations. Also,
in Conpy, symbolic execution is along with concrete execution, so it is different
from the replay scheme of SAGE.

This work conducts experiments to measure the overhead of Conpy. We find
that only two (i.e. SAGE [2] and S2E [9]) existing concolic execution tools briefly
report their overhead that is high. Concretely speaking, paper [2] presents an
example to show SAGE’s high overhead and paper [9] claims the overhead of
S2E in symbolic mode is ∼78 times. The overhead evaluation of the two tools
considers the whole process of test data generation such as concolic execution,
constraint solving, path exploration and so on. Differently, this work measures
the overhead of concolic execution only which includes concrete execution and
symbolic execution (e.g. symbol marking, symbol tracking, generation of path
conditions).

Conpy: Concolic Execution Engine for Python Applications 153

3 Design

3.1 Principles

At first, we present the design principles of Conpy, and then describe the design
scheme. The design principles are actually the goals we want to achieve.

1. Conpy should be easy to deploy. That is to say, it is able to run on main-
stream hardware platforms and software platforms. Besides, this tool would
better not depend on any special third-party tools. Otherwise, if the tool
can run on special situations only, its practicability will be impaired.

2. Conpy shouldbe easy touse.The reason is obvious that toomuchpre-knowledge
and complex usage will hinder users from getting start with the tool.

3. Conpy runs in low level and produces reports with low-level information.
Even if it is not always so, low-level information is usually richer and more
interesting than high-level information. For instance, if Conpy runs in the
string level, it can discern whether the two strings are equal or not. But if it
runs in the byte level, additional information can be got: if the two strings
are not equal, Conpy can tell users which bytes are different.

Besides, high-level concolic execution tool may produce more false alarms
than the low-level counterparts. For example, assume a string s1 is a sym-
bol, if the concolic execution tool is now in the string level, the new string s2
which is the concatenation of s1 and a non-symbol string s3 should be sym-
bolized. So consider the string s4, which is computed as s2[len(s2)−len(s3) :
], s4 should be symbolized since s2 is a symbol. However it is incorrect be-
cause s4 equals to s3 in essence. On the contrary, if the concolic execution
tool runs in the byte level, s4 will be recognized accurately.

Additionally, low-level concolic execution facilitates tracking symbols among
different data types. For example, in statement s = “%i”%x, x is a symbol-
ized integer. After the execution of this statement, Conpy will map the symbol
linked with x to each byte of the string s, thus string s will be symbolized.

4. The overhead of Conpy should be acceptable. Even if current concolic exe-
cution tools are applied in off-line analysis, overly high overhead may make
them impracticable.

3.2 Scheme

The design of Conpy is based on the claim “everything in Python is an object”
[21]. Even the primitive types such as “int”, “float”, “bool” are objects, which
is different from traditional programming languages such as C, C++. The core
idea of Conpy consists of extending the Python’s objects with an additional at-
tribute termed by symbol or symbol set indicating the symbol(s) linked with the
objects and enhancing Python’s functions with the abilities to track symbols
and produce path conditions.

Whether an object links with a symbol or a symbol set depending on whether
the object is a primitive type or a container. For example, an integer which is a

154 T. Chen et al.

primitive type links with a symbol but a string that is a container is associated
with a symbol set. Each item in the symbol set indicates whether the corre-
sponding item in the container is a symbol or not. Put it another way, if an item
in the symbol set is empty, the associated item in the container is not a symbol
even if the container itself is already symbolized. In this way, Conpy is able to
run in primitive level rather than much higher container level.

Consider the following example, assume a string with length three is symbol-
ized ass1, the symbol set of s1 is something like [‘b1’, ‘b2’, ‘b3’] indicating the
three bytes of the string links with three symbols b1, b2 and b3 respectively. If
a new string s2 is the concatenation of s1 and a constant string, say ‘abc’, the
symbol set of s2 should be [‘b1’, ‘b2’, ‘b3’, ‘’, ‘’, ‘’]. Therefore, by looking up
the symbol set, Conpy is aware that the last three bytes of s2 are actually not
dependent on symbols.

The concolic execution of Conpy typically consists of three procedures: mark-
ing symbol sources, tracking symbols and producing path conditions. The last
two steps are fully automated, only the first one requires human intervention. To
mark symbol sources, users is asked to specify which variables are of interested.
This step is made by simply calling the interface symbolize provided by Conpy.
To facilitate users, Conpy can run in a fully automated mode which marks all
inputs read from the environment as symbols.

The general principle of symbol tracking is: mapping the effects of statements
to the symbols of destination variables if the statements involve symbolic compu-
tations. The mapping process should maintain the semantics of the statements.
For example, given a statement y = x+10, assuming before its execution, y and
x have been symbolized as i0 and i1 respectively. After its execution, the symbol
associated with y should be updated as i1 + 10.

Constraints should be produced when the comparisons which involve symbolic
computations are made. Like symbolic expressions, constraints should maintain
the semantics of comparison statements. A critical step of producing constraints
is to discern which statements can produce constraints. In many cases, the state-
ments for comparison are obvious, such as x == y, x >= y, x! = 0.

But in some cases, comparisons are implicit. For instance, if Conpy symbolizes
a string by invoking the interface symbolize, it should produce a constraint like
s1 == b0.‘a’.b3. The constraint contains the following information: the string is
symbolized as s1; its first byte corresponds to a symbol b0; its second byte is
a constant ‘a’; its last byte links with a symbol b3. Let’s consider another ex-
ample, find is a build-in function of the str type which returns the lowest index
where the substring is found. Conpy extends find with constraint generation if
comparisons in find involve symbols.

To get low-level path conditions, Conpy runs in primitive type level. That’s
to say, Conpy treats a primitive type as an atom which cannot be broken down.
While executing a container concolically, Conpy dives into the container and
symbolizes primitive variables in the container. For example, Conpy symbolizes
each byte of a string. Given a list of integers, Conpy treats each integer of the
list as a symbol.

Conpy: Concolic Execution Engine for Python Applications 155

Low overhead can be achieved through our design since only the symbolized
variables are manipulated by Conpy. In other words, Conpy does not care about
or even not be aware of non-symbol variables. So actually the computations
without symbols run in native mode which incurs no overhead. Experiments val-
idate our claim that the overhead of a symbol-intensive program is as high as 46
times, but the overhead of a symbol-non-intensive program is only about 80%.

4 Implementation

This section presents the implementation details as well as some critical code of
Conpy. As a representative of primitive type, we present the handling of int in
Section 4.1. The other primitive types such as float, bool are handled similarly.

Then we show the concolic execution of str in Section 4.2, which is a frequently-
used container in Python. We handle the other containers such as list, tuple in a
similar way. In fact, we find that the handling of str is more intricate than the other
containers. One obvious reason is that str provides so many build-in functions
which require extensions for concolic execution. Additionally, the atomic items
of list, tuple etc. may be the primitive types we have already handled such as int,
float, bool. So considerable development effort can be saved. However, the atomic
items of str is still str. So we have to manipulate the str type from scratch.

Finally, we show how symbols spread from the int type to the str type and
back in Section 4.3.

4.1 Manipulation of int

To mark new integer symbols, users need to invoke the interface symbolize with
the argument being an integer. After discerning the type of the argument, the
corresponding routine symbolize int is called. The function symbolize int is de-
fined as:

1 de f symbo l i z e i n t (va l) :
2 sym int = symbol int (va l)

3 sym int . symbol = symbol (0)
4 re turn sym int

The integer is passed as the argument val in line 1. In line 2, a new object of
type symbolize int is created. Actually, the class symbolize int inherits from the
primitive type int. So all attributes and build-in functions of int are also available
in symbolize int. Line 3 links the attribute symbol of object symbolize int with
an object of class symbol. Finally the object symbolize int is returned. The code
of initializing an object of class symbol is:

1 c l a s s symbol :
2 sym num = 0
3 def i n i t (s e l f , f atom) :
4 i f f atom==0: #atomic symbol
5 s e l f . s i gn = s i gn none

6 s e l f . atom= ‘ i ’ + s t r (symbol .
sym num)

7 symbol . sym num += 1
8 s e l f . operand num = 0
9 s e l f . operands = []

The variable sym num which is defined in line 2 denotes the number of sym-
bols. Once an atomic symbol is created, the variable will increase by 1 (line 7).
If a new symbol is created from existing symbols (i.e. the predicate in line 4

156 T. Chen et al.

evaluates as false), the following statements will not be executed. Conpy orga-
nizes a symbol as a tree in memory. As an atomic symbol, the sign of the symbol
is initialized as sign none (line 5) and its operands are empty (line 8 and line 9).

To track symbols, Conpy overrides the build-in functions which are able to
spread symbols. We present the implementation of add as an example.

1 de f add (f i r s t , second) :
2 r e s = in t . a d d (f i r s t , second)
3 i f i s i n s t a n c e (f i r s t , symbol int) :
4 i f i s i n s t a n c e (second , symbol int) :
5 sym = symbol . a d d (f i r s t . symbol , second . symbol)
6 e l s e :
7 sym = symbol . a d d (f i r s t . symbol , second)
8 add int = symbol int (r e s)
9 add int . symbol = sym

10 e l s e : pass
11 re turn add int

When a statement like x+y executes, the build-in function add or radd
will be called depending on which operands (x or y or both) are symbols. Specif-
ically, if the first operand is a symbol (no matter whether the second operand
is a symbol or not), the function add will be invoked. In cases when the first
operand is not a symbol but the second is, in turn the function radd will be
called. Note that if neither of them are symbols, original function of class int
will be called, thus no additional overhead will be introduced in this case.

The original function add of class int is invoked to compute the concrete
outcome of the statement (line 2). Then the integer res is symbolized as add int
in line 8. The symbol linked with add int is created by invoking the function
add of class symbol. Below is the core code of symbol. add .

1 de f add (sym1 , sym2) :
2 add sym = symbol (1)
3 add sym . s i gn = s i gn p l u s
4 add sym . operand num = 2

5 add sym . operands = []
6 add sym . operands . append (sym1)
7 add sym . operands . append (sym2)
8 re turn add sym

A new symbol is created in line 2. As the new symbol is the plus of existing
symbols, the argument of class symbol should be 1. The sign of the symbol is
defined as sign plus (line 3) denoting the symbol results from a plus operation.
The symbol has two operands (line 4) and each of them is a symbol or a concrete
value. The two operands are appended in the set operands as two subtrees of
symbol add sym (line 6 and line 7). Finally, the symbol is returned.

Conpy will produce constraints when the comparisons which involve symbolic
computations are executed. Consider the following example, when executes the
statement x == y, the build-in function eq will be called. So Conpy extends
the function with the ability to produce constraints as follows:

1 de f e q (val1 , va l2) :
2 r e s = in t . e q (val1 , va l2)
3 i f i s i n s t a n c e (val1 , symbol in t)& i s i n s t a n c e (val2 , symbol int) :
4 print sym (va l1 . symbol)
5 i f r e s == 1 :
6 p r i n t (‘== ’ , end = ‘ ’)
7 e l s e :
8 p r i n t (‘ != ’ , end = ‘ ’)
9 print sym (va l2 . symbol)

10 e l i f : # code f o r the other s i t u a t i o n s
11 re turn r e s

Conpy: Concolic Execution Engine for Python Applications 157

The concrete outcome of the comparison is got by invoking original function
of class int in line 2. If both val1 and val2 are symbols, the statements from line 4
to line 9 will be executed. The other situations are handled similarly, so related
code does not present here. The symbols of val1 and val2 are printed by the
function print sym. The function print sym is actually a recursive function which
traverses the trees where store symbols. Naturally, depending on the outcome of
comparison, ‘==’ or ‘!=’ is printed.

4.2 Manipulation of str

To mark a string as a symbol, users invoke the interface symbolize. Inside the
this function, routine symbolize str is invoked as the argument being a string.
Function symbolize str works similar with the function symbolize int except two
aspects. First, a symbol set rather than a symbol links with the symbolized
string. The symbol set is created by invoking function create sym of class sym-
bolize str which inherits from the build-in class str. Related code is:

1 de f c reate sym (s) :
2 sym set = []
3 f o r i in range (0 , l e n (s)) :
4 sym = symbol ()
5 sym . s i gn = sign none
6 sym . atom = ‘b ’ + s t r (symbol st r . sym num)
7 sym set . append (sym)
8 symbol st r . sym num += 1
9 re turn sym set

Conpy links each byte of the string with a symbol through the loop from
statement 3 to statement 8. Second, a constraint denoting the string is the
concatenation of its bytes is produced through the function print create cons of
class symbol.

Conpy tracks the propagation of symbols by overriding build-in functions of
class str. Consider the example, given a symbolized string s with its symbol
being b0.b1.b2, after the execution of the statement s = s ∗ 2, the symbol of
s should be updated as b0.b1.b2.b0.b1.b2. To this purpose, Conpy extends the
build-in functions mul and rmul with the ability to symbolic execution.
We present mul here.

1 de f mu l (s , count) :
2 r e s = s t r . mu l (s , count)
3 sym = symbol st r (r e s)
4 sym . name = ‘ s ’ + s t r (symbol st r . str num)
5 symbol st r . str num += 1
6 ln = l en (s . sym set)
7 sym . sym set =[0]∗ ln ∗ count
8 f o r i in range (0 , count) :
9 sym . sym set [i ∗ ln : (i +1)∗ ln]= s . sym set

10 symbol . p r i n t c r e a t e c o n s (sym)
11 re turn sym

The outcome of multiplication is computed by invoking original function
mul of class str (line 2). The symbol set of symbolized string is copied from

the symbol set of argument s by count times (line 8 and line 9).
When statements like x == y, x > y, x! = y execute, Conpy will produce con-

straints if those statements involve symbolic computations. Conpy handles those

158 T. Chen et al.

statements similarly with the manipulations of symbolized integers except that
the comparison of two strings usually produces a number of constraints rather
than only one. Conpy handles find, rfind, contains , index etc. specially because
those functions can produce constraints besides their original return values. We
do not show associated code here since the code is relatively long. In short, the
basic idea is to use symbolic strings to simulate operations of concrete strings.

4.3 Symbol Propagation between str and int

Conpy runs in low level making it is able to spread symbols among different types.
This section shows how symbols propagate from int type to str type through
function chr and back through function ord. The basic idea is to extend functions
chr and ord with the abilities to spread symbols and produce constraints. Look
at the code below:

1 def symbol func (org) :
2 def i nner (∗ args , ∗∗kwargs) :
3 r = org (∗ args , ∗∗kwargs)
4 i f org . name == ’ ord ’ :
5 c = args [0]
6 i f i s i n s t a n c e (c , symbol s t r) :
7 r e s = symbol i ze (r)
8 pr int sym (re s . symbol)
9 p r i n t (‘==’ , end = ‘ ’)

10 pr int sym (c . sym set [0])
11 re tu rn r e s
12 e l i f org . name == ‘ chr ’ :

13 i = args [0]
14 i f i s i n s t a n c e (i , symbol int) :
15 r e s = symbol i ze (r)
16 pr int sym (r e s . sym set [0])
17 p r i n t (‘== ’ , end = ‘ ’)
18 pr int sym (i . symbol)
19 re tu rn re s
20 re tu rn r
21 re tu rn inner
22 ord = symbol func (ord)
23 chr = symbol func (chr)

Original functions chr and ord are enhanced by invoking function symbol func
in line 22 and line 23. In symbol func, original function is invoked first to get the
concrete return value r (line 3). If the function is ord , the first item in args should
be the argument passed to ord and then the item is assigned to a variable c for
convenience (line 5). If c is symbolized, the return value r should be symbolized
accordingly (line 7). After that, a constraint indicating the correlation between
the symbol of res and the symbol of c is produced (lines 8 – 10). Finally, the
symbolized integer res is returned. The handling of function chr is similar (lines
13 – 19).

5 Experiments

5.1 Setup

Our experiments have two goals. The first is to validate the ability of Conpy to
produce path conditions. The second is to evaluate the performance overhead
of Conpy. We first present test environment. CPU is an Intel Core i7-2760QM
with the frequency of 2.4GHz. The capacity of main memory is 8GB. Operating
system is 64-bit Windows 7 Home Premium. The version of Python installed on
my computer is 3.3.0.

We select ten programs which are all standard modules of Python as bench-
marks. The reason for choosing those programs lies in that those modules are
frequently invoked by any other Python programs making experimental results
more valuable. Results as well as corresponding test harnesses are presented in
the following section.

Conpy: Concolic Execution Engine for Python Applications 159

5.2 Results

We first summarize test results in table 1 and then detail each tested program
with its test harness. The second column of table 1 shows the length of path
condition of each tested program. To measure overheads accurately, we run some
of tested programs multiple times. So we get very long path conditions. The last
column gives the overhead of each tested program. We can observe that seven
out of ten tested programs slow down by less than one order of magnitude. The
highest overhead is about 46 times when testing heapq module. The overhead
can be as low as 80% when testing imghdr program. Actually, we can expect
even lower overhead after further optimizations of our implementation.

Table 1. Test results

Program Length of PC Overhead

heapq 142825 46

calendar 1749090 5.1

random 34662 2.7

bisect 237987 4.1

html.parser 237000 12.1

re 140042 5.1

mimetypes 62000 6.4

urllib.parse 280114 27.6

imghdr 301000 0.8

sndhdr 30000 2.9

heapq. The tested program is Lib/heapq.py which provides an implementa-
tion of heap queue algorithm. Test harness is shown below. The code for import-
ing Conpy, producing random integers, outputting the statistics of performance
overhead etc. is omitted.

1 #ln = symbol i z e (ln)
2 h = []
3 f o r v in ln :
4 heappush (h , v)
5 heappop (h) f o r i in range (l e n (h))

The list ln contains 10000 random integers. After sorting, the result is stored in
the list h. By uncommenting line 1, the program will run concolically, otherwise,
it will run concretely. Time cost for concrete execution is about 6.7ms while the
time for concolic execution is about 313.8ms which is roundly 46 times longer
than concrete execution. Path condition produced by Conpy is as long as 142825
denoting there are 142825 constraints in the path condition.

calendar. It is a program (Lib/calendar.py) allows to output calendars like
the Unix Lib cal program. Test harness is given below.

1 f o r year in range (1000 , 3000) :
2 f o r month in range (1 , 13) :
3 #year = symbol i z e (year)
4 #month = symbol i z e (month)
5 matrix = monthcalendar (year , month)

160 T. Chen et al.

As variable year ranges from 1000 to 3000 and variable month ranges from 1
to 13, function monthcalendar will be called 24000 times. The reason for run-
ning monthcalendar so many times is that it facilitates to evaluate performance
overhead. Time for concrete execution is about 744ms. By uncommenting line
3 and line 4, the program runs concolically. Consequently, time consumption
increases to 4538.3ms (i.e. overhead is about 5.1 times). Path condition consists
of 1749090 constraints.

random. It is a program (Lib/random.py) implements pseudo-random num-
ber generators for various distributions. Below presents test harness.

1 f o r i in range (0 , 10000) :
2 #i = symbol i z e (i)
3 x = randrange (i)

Running the above program, 10000 random integers are generated in about
60.8ms. In concolic mode, the program costs about 223.8ms indicating overhead
is about 2.7 times. The length of path condition is 34662.

bisect. It is a program (Lib/bisect.py) provides support to maintain a list in
sorted order without having to sort the list after each insertion. This module
is termed by bisect because it uses a basic bisection algorithm to do its work.
Below is the test harness.

1 f o r i in range (0 , 10000) :
2 #r = symbol i z e (r)
3 b i s e c t (l i s t , r)
4 i n s o r t (l i s t , r)

The variable r is a random integer. Time for concrete execution is 121.2ms.
Concolic execution costs about 612.7ms which is 4.1 times longer than concrete
execution. Produced path condition contains as many as 237987 constraints.

html.parser. The module (Lib/html/parser.py) defines a class HTMLParser
which serves as the basis to parse text files formatted in HTML or XHTML.
Here is the test harness.
1 f o r i in range (0 , 1000) :
2 par se r = HTMLParser (s t r i c t = Fal se)
3 s = ‘ <html><head><t i t l e >Test</ t i t l e ></head><body><h1>Parse me!</h1></

body></html> ’
4 #s = symbol i ze (s)
5 par se r . f e ed (s)

To evaluate the performance overhead of Conpy accurately, the parsing pro-
cess repeats for 1000 times. The parsed html text is given in line 3 which will be
symbolized in line 4. In concrete mode, the program costs about 133.2ms. Switch-
ing to concolic mode, time consumption rises to 1748.2ms. In other words, the
overhead incurred by Conpy is about 12.1 times. The length of path condition
is 237000.

re. This module provides regular expression matching operations. Test har-
ness is shown as following.

1 f o r i in range (0 , 10000) :
2 s1 = ‘ (?<=abc) de f ’
3 s2 = ‘ abcdef ’

4 #s1 = symbol i z e (s1)
5 s2 = symbol i z e (s2)
6 m = re . search (s1 , s2)

Function search provided by re module is used to look for a location where
the regular expression (as shown in line 2) produce a match, and return a

Conpy: Concolic Execution Engine for Python Applications 161

corresponding match object. Search process repeats for 10000 times so as to
evaluate Conpy’s overhead adequately. Time cost by concrete execution is about
159.6ms. The program runs concolically by uncommenting line 4 and line 5. Time
consumption in concolic mode is 981ms. So the overhead of Conpy is about 5.1
times. The number of constraints produced by Conpy is as many as 140042.

mimetypes. The mimetypes module (Lib/mimetypes.py) converts between a
filename or a URL and the MIME type associated with the filename extension.
Two functions guess type and guess extension are tested in the following test
harness.

1 minetypes . i n i t ()
2 f o r i in range (0 , 1000) :
3 fname = ‘/ ct /ycg/ f . tgz ’
4 #fname = symbol i ze (fname)

5 r e s = mimetypes . gues s type (fname)
6 ty = re s [0]
7 #ty = symbol i ze (ty)
8 mimetypes . gue s s e x t en s i on (ty)

To evaluate performance overhead reliably, test progress repeats 1000 times.
Concrete execution costs 70.4ms, while concolic execution spends about 523ms
which is 6.4 times longer. The path condition produced by Conpy consists of
62000 constraints.

urllib.parse. This module (Lib/urllib/parse.py) defines a standard interface
to break URL strings up in components, to combine the components back into a
URL string, and to convert a “relative URL” to an absolute URL given a “base
URL”. We test function urlparse through the following harness.

1 f o r i in range (0 , 5000) :
2 u r l = ‘ http : //www. uestc . edu . cn/ index . html ’
3 #ur l = symbol i z e (u r l)
4 u r l pa r s e (u r l)

Time cost for concrete execution is about 45.7ms. By uncommenting line 3,
the program runs concolically which spends 1307.4ms. Overhead is about 27.6
times. The length of path condition is 280114.

imghdr. This module (Lib/imghdr.py) determines the type of image con-
tained in a file or byte stream. We reuse the test harness included in the source
imghdr.py by only a few modifications. For example, we insert a line of code
h = symbolize(h) after line 13 to symbolize the data read from input file. Test
harness recognizes whether the type of files under current path is image. We
repeat test process for 1000 times to get accurate information of performance
overhead. The result is that concrete execution spends 5326.5ms, while concolic
execution costs about 9552ms. That is to say, the overhead of Conpy is about
80%. The path condition consists of 301000 constraints.

sndhdr. The sndhdr module (Lib/sndhdr.py) provides utility functions which
attempt to determine the type of sound data which is in a file. We reuse the test
harness in the source sndhdr.py. Test harness recognizes whether the files under
current path are sound files or not. We just make only a few modifications to run
the program concolically. For example, we add a line of code h = symbolize(h)
after line 44. Additionally, the test process repeats 100 times in order to evaluate
overhead. Time consumption for concrete execution is about 663.2ms, while the
time for concolic execution is 2591.7ms. So the overhead incurred by Conpy is
about 2.9 times. The generated path condition contains 30000 constraints.

162 T. Chen et al.

6 Conclusion

Concolic execution is a promising technique for program analysis. But so far we
have not observed any concolic execution tools for Python applications. In this
work, we propose a concolic execution engine named Conpy. Conpy is easy to
deploy and easy to use. Besides, Conpy runs in low level which produces mean-
ingful reports. We make preliminary experiments to validate Conpy’s capability
of producing path conditions. Additionally, experiments show that the overhead
of Conpy is low.

References

1. King, J.C.: Symbolic execution and program testing. J. ACM 19(7), 385–394 (1976)
2. Godefroid, P., Levin, M., Molnar, D.: Automated whitebox fuzz testing. In: NDSS,

pp. 151–166 (2008)
3. Tillmann, N., de Halleux, J.: Pex-white box test generation for.NET. In: Beckert,

B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008)

4. Cadar, C., Dunbar, D., Engler, D.: Klee: unassisted and automatic generation of
high-coverage tests for complex systems programs. In: OSDI, pp. 209–224 (2008)

5. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
ACM Sigplan Notices 40(6), 213–223 (2005)

6. Sen, K., Marinov, D., Agha, G.: CUTE: A concolic unit testing engine for C. In:
ESEC/FSE, pp. 263–272 (2005)

7. Fuzzgrind: An automatic fuzzing tool,
http://esec-lab.sogeti.com/dotclear/index.php?pages/Fuzzgrind

8. Molnar, D.A., Wagner, D.: Catchconv: symbolic execution and run-time type infer-
ence for integer conversion errors. Tech. Rep. UC Berkeley EECS, 2007–23 (2007)

9. Chipounov, V., Kuznetsov, V., Candea, G.: S2E: A platform for in-vivo multi-path
analysis of software systems. Sigarch Comput. Archit. News 39(1), 265–278 (2011)

10. Xu, R.G., Godefroid, P., Majumdar, R.: Testing for buffer overflows with length
abstraction. In: ISSTA, pp. 27–37 (2008)

11. Wang, T.L., Wei, T., Gu, G.F., Zou, W.: TaintScope: A checksum-aware directed
fuzzing tool for automatic software vulnerability detection. In: S&P, pp. 497–512
(2010)

12. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z.,
Newsome, J., Poosankam, P., Saxena, P.: BitBlaze: A new approach to computer
security via binary analysis. In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS,
vol. 5352, pp. 1–25. Springer, Heidelberg (2008)

13. Burnim, J., Sen, K.: Heuristics for scalable dynamic test generation. In: ASE,
pp. 443–446 (2008)

14. Khurshid, S., Păsăreanu, C.S., Visser, W.: Generalized symbolic execution for
model checking and testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 553–568. Springer, Heidelberg (2003)

15. Chen, T., Zhang, X.S., Zhu, C., Ji, X.L., Guo, S.Z., Wu, Y.: Design and implemen-
tation of a dynamic symbolic execution tool for windows executables. J. Softw-Evol.
Proc. 25(12), 1249–1272 (2013)

16. Chen, T., Zhang, X.S., Xiao, X., Wu, Y., Xu, C.X., Zhao, H.T.: SEVE: Symbolic
execution based vulnerability exploring system. COMPEL. 32(2), 620–637 (2013)

http://esec-lab.sogeti.com/dotclear/index.php?pages/Fuzzgrind

Conpy: Concolic Execution Engine for Python Applications 163

17. Python (programming language),
http://en.wikipedia.org/wiki/Python_programming_language

18. Chen, T., Zhang, X.S., Guo, S.Z., Li, H.Y., Wu, Y.: State of the art: dynamic
symbolic execution for automated test generation. Future Gener. Comp. Sy. 29(7),
1758–1773 (2013)

19. Brumley, D., Hartwig, C., Liang, Z.K., Newsome, J., Poosankam, P., Song, D.,
Yin, H.: Automatically identifying trigger-based behavior in malware. In: Botnet
Detection, pp. 65–88 (2008)

20. Brumley, D., Hartwig, C., Kang, M.G., Liang, Z.K., Newsome, J., Poosankam,
P., Song, D.: BitScope: automatically dissecting malicious binaries. Tech. Rep.
CMU-CS-07-133 (2007)

21. Dive into python, everything is an object,
http://www.diveintopython.net/getting to know python/

everything is an object.html

http://en.wikipedia.org/wiki/Python_programming_language
http://www.diveintopython.net/getting_to_know_python/everything_is_an_object.html
http://www.diveintopython.net/getting_to_know_python/everything_is_an_object.html

A Platform for Stock Market Simulation

with Distributed Agent-Based Modeling

Chunyu Wang1, Ce Yu1,�, Hutong Wu1, Xiang Chen1,
Yuelei Li2, and Xiaotao Zhang2

1 School of Computer Science and Technology, Tianjin University, Tianjin, China
2 School of Economics and Management, Tianjin University, Tianjin, China

{wangchunyu,yuce,wht}@tju.edu.cn

Abstract. Agent-based modeling (ABM) has been widely used in stock
market simulation. However, traditional simulations of stock markets
with ABM on single computers are limited by the computing capabil-
ity as breakthroughs in financial research need much larger amount of
agents. This paper introduces a platform for stock market simulation
with ABM focusing on large scale parallel agents in a distributed com-
puting environment such as Cluster and MPP. With the customized trade
strategies inside the agents, the runtime system of the platform can dis-
tribute the massive amount of agents to multiple computing nodes auto-
matically during the execution of the simulation. And agents exchange
information with each other and the market through a uniform com-
munication system. With this platform financial researchers can design
their own financial model without caring about the complexity of paral-
lelization and related problems. The sample simulation on the platform
is verified to be compatible with the data from Euronext-NYSE and the
platform shows fair scalability and performance under different paral-
lelism configurations.

Keywords: stock market simulation, agent-based modeling, parallel,
distributed environment.

1 Introduction

The simulation of financial markets, such as stock markets, is an important
method in behavioral finance to reveal the irrational behavior and decision-
making laws. Financial markets can be regarded as complex adaptive systems
described by a large number of variables, which are in turn influenced by an even
larger number of factors or investors [1], and agent-based modeling (ABM) is an
efficient method to simulate complex adaptive systems. In ABM, each agent in-
dividually assesses its situation and makes decisions on the basis of a set of rules.
The potential system-level consequences of financial market are reflected through
the behaviors of sets of agents [2]. With ABM, a financial market is simulated as
a collection of autonomous decision-making entities called agents, and a market

� Corresponding author.

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 164–177, 2014.
c© Springer International Publishing Switzerland 2014

A Platform for Stock Market Simulation with ABM 165

in which stocks or bonds are exchanged. ABM has been applied in some simu-
lations of stock market [3][4], but the schedule of agents in these simulations is
sequential, which is not corresponding with the situation in real world where the
agents (investors participating in stock market) think and behave concurrently.
Besides, with the development of behavioral finance, it is needed to expand the
amount of agents in a stock market to achieve breakthrough research results.
But when number of agents is much larger, these sequential simulations show
bad performance. So we adapt traditional ABM method to parallel agent-based
modeling, which has been applied in some complex adaptive systems [5].

Massive parallel agents requires greater computing capability beyond single
computer server. This paper proposes a platform called PSSPAM (Platform for
Stock market Simulation with Parallel Agent-based Modeling) to support the
stock market simulation with large amount of parallel agents. The platform is
designed for distributed environments with multi processors, which can provide
much greater computing capability than a single processor. With the increasing
of agent number, the distributed platform shows a good scalability. Also PSS-
PAM supports easy customization for new financial models provided by users.
For researchers in financial field, they are just concerned with financial items
in stock market simulation and try to avoid being trapped in complex com-
puter related stuff. The platform handles parallel programming and completes
the frame of a basic stock market so that financial researchers can extend their
own algorithms without being confused by the complexity in parallel program-
ming. Another advantage of PSSPAM is its modularity with four loosely coupled
modules: i) Communication system, providing message interface for agents to in-
teract with the market and shield the distributed environment from the agents,
ii) Agents module, defining agents and their behaviors, iii) Market module, a
mimic of a real stock exchange, iv) User interface, handling interaction with
users.

The rest of paper is organized as the follows. In section 2, we discuss related
works. Section 3 introduces the architecture of the PSSPAM. Section 4 presents
the experiments evaluating this platform. And in Section 5, we summarize cur-
rent work and suggest questions for the future.

2 Related Works

The dynamics of the stock markets results from the behavior of many interacting
agents, leading to emergent phenomena that are best understood by using a
bottom-up approach: ABM (Agent-Based Modeling) [6]. Since it is proposed in
1980s, the study on financial field with ABM has developed much further.

Traditionally, the stock markets with ABM are on single processor and the
agents involved in run sequentially. Such works focus on the financial model
and learning algorithms of agents. SFI-ASM (Santa Fe Institute Artificial Stock
Market) is a famous achievement among all the works. The first generation
SFI-ASM was published in 1994 [7]. The authors said in [8] that the Santa Fe
Market is a computer-based model that can be altered, experimented with, and

166 C. Wang et al.

studied in a rigorously controlled way. Most of the artificial market’s features
are malleable and can be changed to carry out different experiments. But SFI-
ASM is not of extensible structure and the financial researchers have to change
the source code of SFI-ASM to achieve their own market model. Additionally,
running on single processors restricts the amount of agents in the artificial stock
market. And all the agents in SFI-ASM are of sequential manner, which cannot
reflect the concurrent behaviors of investors in real world. Up to now, there
are many researches or improvements on SFI-ASM [9][10], but these works are
launched in financial perspective, and cannot solve the problems above.

The development of computer technology, especially in high performance
computing, brings new opportunity for ABM to make breakthroughs in multi-
processor environments. RepastHPC (Repast for High Performance Computing)
is a toolkit for parallel agent-based modeling in distributed environments. It is
improved on the base of Repast (Recursive Porous Agent Simulation Toolkit),
which is a set of libraries that allows programmers to build simulation environ-
ments, create agents in social networks, collect data from simulations automat-
ically, and build user interfaces easily [11]. RepastHPC is a useful and usable
framework, a complete ABM simulation platform developed explicitly for larger
scale distributed computing systems that leverages modern C++ techniques and
the ReLogo language [2]. Communication in RepastHPC is implemented by MPI.
Besides RepastHPC, there are several other works [12][13] describe the toolkits
for general parallel agent-based modeling. These platforms are not specialized
in financial field, and building a stock market simulation with these toolkits
seems complex for financial experts who just want to focus on financial items.
Artificial Open Market (ATOM) is a highly flexible agent-based model of finan-
cial markets in an API form [14]. It allows distributed simulations with many
computers interacting through a network as well as localhost. ATOM stresses
too much on the equity among all the agents. In ATOM, each agent sends at
most one order during a “round table discussion” [14], which makes agents be-
have in a synchronized way. While in the real world, traders behave concurrently
and independently. In this paper, we introduce parallel agents into stock market
simulation to mimic the concurrent features of real traders.

PSSPAM in this paper builds the basic skeleton of a stock market simulation,
and at the same time, provides the interface for financial researchers to easily
extend this simulation with their own algorithms or methods. Furthermore, the
platform is designed for distributed environments so that it can support large
amount of parallel agents. PSSPAM also introduces a communication system
to support different types of logical network topology of agents in distributed
environments.

3 PSSPAM Platform for Distributed Environments

The architecture of PSSPAM is based on the Agent-based Modeling method,
which generally consists with two parts: individual agents and the environment
they interact with. In the platform, the agents represent individual investors, and

A Platform for Stock Market Simulation with ABM 167

the environment is the stock market. As in the real world, agents communicate
with each other and participate in the market to trade stocks. PSSPAM is also
designed for researchers in financial field, hiding the programming details from
them. Thus the user interface is ease of use for financial researchers.

3.1 Logical Architecture of PSSPAM

The logical architecture of PSSPAM is depicted in Fig. 1. There are four rel-
atively independent modules in the platform, namely communication system,
agents module, market module, and the user interface module. Physical layer
is the distributed environment that the platform will run on, such as Cluster,
MPP, or other types of distributed computing environment.

Physical Layer(Cluster)

Communication System

Market Module

User Interface

Agents Module

Data Display
Control

 Arguements
Modeling

 Arguements
Customization

Agents Set

...... Comm_network

Fig. 1. Logical Architecture of PSSPAM

The communication system provides interaction interface for agents to com-
municate with each other and with the market. Due to the system, the dis-
tributed environment is transparent to agents module and market module. The
agents module has two components: the collection of all the agents, and the net-
work. The network defines the logical network topology of all the agents. The
agents reside on different nodes, and the number of agents on each node is de-
termined by the control arguments from user interface. The market module is
a model of stock market in real world, such as Shanghai Stock Exchange and
it is simplified to a market model trading only one stock. It can sustain large
amount of concurrent access from agents. The platform is fairly extensible by
supporting customization in agents module and market module. The user inter-
face is the top layer to handle the interaction with users, such as configuration
and execution of simulations.

3.2 Communication System

As the agents are distributed in different nodes, it’s difficult for them to commu-
nicate with each other directly. We introduce an efficient communication system

168 C. Wang et al.

to provide message interfaces for the agents module and market module, so that
agents can communicate with each other and the market without the knowledge
of physical information of the destination. We take a compromise between a
centralized communication mode and a point-to-point mode: on each node there
is a local server responsible for forwarding the messages of local agents; and all
the local servers communicate with each other in a point-to-point mode. The
compromised scheme is depicted in Fig. 2. Usually on the market node, there
is only the market and the local server. The local server on each node is like a
postman whose task is to deliver the message according to the destination. And
the local server here is also responsible for parsing the destination, because that
the physical location of all the agents and the market is maintained by local
servers.

Local
Server

Agent

NodeA NodeB

Fig. 2. Communication scheme

During the delivery process of a message, showed in Fig. 3, the destination of
the message has three types. The first type is < agentID >, which is used in
the agents module. As for the market, it has a unique ID to identify itself. When
the message comes to the communication system, the local server will parse the
destination to the type of < node, queue >, where “node” is the name of the node
that the destination agent locates in, and “queue” refers to the receive queue of
the destination agent. When the message posted from the communication system
to physical layer, it comes to the local area network, and the node name will be
transferred to IP address. Then the delivery will be done by general network.

After the message arrives at the destination node, a reverse parsing process
will be done to get the ID of the destination: an agent or the market. Then the
agent or the market can just invoke the message interface to get messages from
its own receive queue.

With this mechanism of delivery, the physical layer is transparent to agents
module and market module, thus the two modules are physical environment-
independent.

3.3 Agents Module

The agents module consists of two submodules: agents set and the communi-
cation network model. Agents set is the collection of agents that reside on dis-
tributed nodes. Communication network model defines the social relationship of
all the agents.

A Platform for Stock Market Simulation with ABM 169

Fig. 3. Communication system

Agents Set. In agent-based modeling, an agent is a complete and independent
individual. It receives messages from outside and adapts itself according to the
messages. In PSSPAM, we define the agent as investor agent (ItAgent), a sim-
ulation for real investors. The structure of ItAgent is depicted in Fig. 4. Kernel
specifies the activity flow of an ItAgent during its lifetime. Generally, in the
lifetime of an ItAgent, it is continuously repeating the course: making decision
and behaving as the result of the decision indicates which can be submitting an
order or getting data from the market. MsgInterface contains send/receive meth-
ods and send/receive buffers. Actually the message interface is an application of
the communication system. Adjacency list contains the agents with which the
ItAgent can directly communicate. The list is defined according to the communi-
cation network model, which is configurable. Assets as well as history data forms
the internal state of ItAgent. Assets refer to all the cash and stock an ItAgent
owns. History data is the accumulated data in each course cycle of ItAgent and
the content of data varies according to different decision methods, as different
algorithms may reference to different history data.

The internal state evolves during the lifetime of ItAgent, which is a concrete
manifestation of self-adaptation. Usually an agent achieves self-adaption through
continuously learning, and for ItAgent, the learning process embodies in the

MsgInterface Kernel

ItAgent

Market

Messages

Other Agents

Messages

Decide History DataAssets

Adjacency
List

Fig. 4. Investor agent

170 C. Wang et al.

decide procedure. PSSPAM provides an interface for users to customize their
own decision methods, so that the platform can be extended to support agents
with varying levels of intelligence.

Communication Network Model. Communication network model can be
represented by an undirected graph and the scale of a network model increases
with a speed of n2 as the number of agent denoted by n increases. Due to the large
amount of agents, a network model is even larger, so in each agent there is an
adjacency list containing its neighbors rather than a whole network model, which
avoids unnecessary duplication and improves the space utilization. Communica-
tion network models specify the relationship of agents, and the communication
system provides an efficient way for agents to interact with neighbors specified
in network models, which indicates that the communication is compatible with
various network models. In PSSPAM, we also provide the interfaces for users to
customize the network.

3.4 Market Module

Market is a simple model of the real exchange market. It has the basic functions
of a real market, namely, matching orders, storing data, and displaying data.
As it shows in Fig. 5, there are three separate areas in the market module, and
they are loosely coupled, which makes the market module easily extended. The
register area maintains a global ID table, and allocates a unique ID for each
agent participated in the market. Agent response area is responsible for all the
requests from agents. It parses the requests, and calls the corresponding handler
to handle the request. As it may have additional requests in the customized de-
cision method, we provide the interface for users to define new handlers. Trading
area matching orders sent by agents. The data generated during the register and
trade process is stored in database, and there is a user interaction handler to
deal with the data display request from the user interface.

Start-up
Management

Data

Register Area Trading AreaAgent Response
Area

Communication System

User Interaction
Handler

 Arguements Data DisplayCustomization

User Customization
Interface

Fig. 5. Market module

A Platform for Stock Market Simulation with ABM 171

Agent Response Area. Agent response area is the port of market module.
Messages sent to market are treated as requests by this area and it parses various
requests and then invokes different handlers to handle them. Due to the large
number of parallel agents, there will be large amount of requests queuing in the
receive queue of the market. To deal with the large amount of requests efficiently,
we introduce a worker pool to agent response area, as it shows in Fig. 6. Each
time a request is fetched from the receive queue, the area will take a worker to
deal with this request. Parsing request is done concurrently in each worker rather
than being done sequentially before a worker is taken. In this way, the requests
in the receive queue will be consumed as quickly as possible. After parsing the
request, the worker invokes corresponding handler to handle the request. Pre-
defined handlers in the system include register handler and order handler. Users
can also define their own request handlers to coordinate with customized decision
methods of agents module.

Handlers Library

System Provided
Handlers

User Defined
Handlers

Selected Handler

Parse the Request

Handle the Request

Return the Result

Start-up
Management

Get Request from
Receive Queue

Start a New Worker

Worker Pool

Worker

Worker

.

.

.

Fig. 6. Agent response area

Trading Area. In a real market, the auction mechanism defines the occasion
of matching orders. Generally there are two kinds of auction mechanism, namely
Call Auction mechanism and Continuous mechanism. With Call Auction mecha-
nism, the matching just happens at the end of a trading period. With Continuous
Auction mechanism, the matching happens each time when an order is submit-
ted to the market. Trading area supports both auction mechanisms. Different
auction mechanisms usually go with varies matching rules which specify the con-
ditions under which two orders can be matched. To customize a matching rule,
users need to specify the matching conditions as well as how to insert an or-
der into sell/buy queues according to the matching conditions. Sell/buy queues
are the shared field of all the order handlers, and can be concurrently accessed
by multi handlers, as it shows in Fig. 7. To ensure the operations on sell/buy
queues, we implement the safety insert and get operations on the queues and
package them as interface. So that the users need only focus on the matching
rule, without being trapped in the details of concurrent visit to a shared field.

172 C. Wang et al.

Start-up
Management

Arguements

Matching Rule
Library

Selected Matching
Rule

System Provided
Matching Rules

User Defined
Matching Rules

Buy Order Queue

Sell Order Queue

Insert /
 Get

Order
 Interface

Order Handler

Order Handler

Order Handler

.

.

.

Trading Area

Fig. 7. Trading area

4 Experiments

We have implemented the prototype of PSSPAM in Java. The source codes can
be fetched at https://github.com/POPEYEpopeye/stock-market-simulation.

The sample simulation with the platform is executed on a Cluster with 5
nodes. Each node is a multi-core server which has four 800MHz AMD proces-
sors with 4cores (Quad-Core AMD Opteron Processor 8374 HE). The operating
system is CentOS release 5.8. The market is deployed on a single node, and the
agents are deployed on other nodes, which is indicated in the configuration file
of xml format. The graphic user interface runs on a Windows operating system,
communicating with this Cluster through a local network. Fig. 8 presents this
graphic interface. Fig. 8(a)is the control panel, managing the simulation config-
urations, and Fig. 8(b) is the data panel, displaying the trading results in real
time.

We conduct experiments respectively to verify the validity of the simulation
platform and evaluate the scalability and performance of the platform. In these
experiments, the market is customized with Continuous Auction mechanism [15]
and agents use a random strategy [15].

Firstly, we ran the sample simulation to verify whether PSSPAM can generate
major stylized facts that are usually found in real-world stock markets. These

(a) Control panel (b) Data panel

Fig. 8. Graphic user interface

A Platform for Stock Market Simulation with ABM 173

stylized facts are reposted in [15], and for the sake of simplicity we only present a
form of the classical departure from Normality of asset returns. The distribution
of asset returns does not follow the normal distribution, but appears the property
of sharp peaked and heavy tailed [15]. Sharp peaked indicates that the peak value
(frequency near mean returns) is higher than the theoretical value estimated
with normal distribution, while heavy tailed means that the frequency at the
end is also higher than the theoretical value estimated with normal distribution,
indicating that low probability events are more likely to happen in real world.
Fig. 9(b) is the distribution of asset returns of a specific stock on Euronext-
NYSE. The curve is the fitted result of asset returns using normal distribution
and the histogram is the exact frequency distribution of asset returns, which
shows a typical feature of sharp peaked and heavy tailed.

Fig.9(a) depicts the departure from normality of asset returns when using
random strategy, and shows the sharp peaked, heavy tailed property of stock
market, suggesting that PSSPAM produces stylized facts in line with those ob-
served for a specific stock on Euronext-NYSE. This experiment results prove
that PSSPAM is a valid mimic of stock markets.

(a) Departure from normality on
PSSPAM

(b) Departure from normality on
Euronext-NYSE[14]

Fig. 9. PSSPAM produces stylized facts in line with those observed on Euronext-NYSE

Secondly, we ran a series of experiments to evaluate the performance and
scalability of PSSPAM. For simplicity there is no communication among agents
in these experiments. In agents module, there are two methods to implement
the running of all the agents. The first one is that each thread takes care of
one agent, executing the kernel of that agent, so the threads are as many as
the number of agents. To test the scalability of the simulation platform with
this method, we present the execution time for varying agent counts grouped by
computing cores, depicted in Fig. 10. The abscissa is the total number of agents
running in the simulation, representing the scale of the simulation. For same
agent counts the platform achieves a good time reduction with increasing cores,
and this trend keeps well as agent counts increase. It also shows that PSSPAM
scales weakly at smaller number of agents but scales well at larger numbers,

174 C. Wang et al.

as with agents increasing, the computation time instead of the cost of creating
and scheduling threads conducts the execution time. This means that PSSPAM
performs a good scalability in distributed environments. But when the number
of agents exceeds 1600, there will be too much agents connecting the market at
the same time, resulting in timeout error at market. To overcome this problem,
we proposed another method of using thread pool to coordinate all the agents.

Fig. 10. Execution time without threadPool, varying agent counts grouped by com-
puting cores

Because the main activity of agents is a loop in which an agent makes deci-
sions and then act as the decision indicates, we can throw each loop of every
agent into the thread pool randomly, which achieves same results as the first
method, at the mean time decreasing the concurrency pressure of the market.
Fig. 11(a) illustrates the execution time for varying sizes of a thread pool grouped
by agent counts, while Fig. 11(b) illustrates the speedup based on the serial run-
ning. When the size is smaller than 64, it performs a good time deduction, and
the speedup at each pool size shows that the execution time reduces proportion-
ally as the pool size increases. This is granted because that there are totally 64
cores in the distributed environment, so that the time consumption is mainly
donated by the computing of each agent, with rarely threads scheduling costs.
This property keeps well as agent counts increase, presenting a good scalability
of the platform. When the pool size exceeds 64, there is still a time reduction
as pool size increases, but the growth rate of speedup is evidently slower. This
results due to the threads scheduling in each processor, and this cost increases as
there are more threads. The trend of slower growth rate lasts to 256 threads for
agent counts less than 1200, while for agent counts larger than 1200, this trend
keeps till 128 threads. And then it finally reaches a roughly stable execution
time for each agent count, which is limited by the concurrent and synchronized
processing in the market. During the stable stage, the average concurrent con-
nections to market should be generally stable. While with the same pool size,
the total connections increase with the agent counts increasing, bringing much
more scheduling cost, resulting that the speedup decreases as the agent counts

A Platform for Stock Market Simulation with ABM 175

(a) Execution time for varying pool
sizes grouped by agent counts

(b) Speedup for varying pool sizes
grouped by agent counts

Fig. 11. Execution result using threadPool

increase. To further enhance the performance of this platform, more optimization
needs to be done at the market.

Fig. 12 shows the comparison of the minimum execution time at various agent
counts respectively with the two methods. When agent counts is less than 1200,
the execution time with each method is nearly the same and when agent counts is
larger, the method using thread pool is more efficient than the first method. This
results from that there is much less threads creation and scheduling consumption
when using thread pool and when agent counts is smaller, the total execution
time is mainly donated by computing and these consumption can be neglected;
but when the agent counts is larger, these consumption in the first method is
much greater than that in the method using thread pool. What’s more, too
much concurrent threads will bring heavy connection pressure for market, which
is more likely to generate timeout errors. So we can conclude that using a thread
pool to implement the execution of agents is a better way rather than running
them directly with newly created threads.

Fig. 12. Execution time comparison of the two methods at various agent counts

176 C. Wang et al.

5 Summary and Future Work

In this paper, we introduce a platform called PSSPAM (Platform of Stock mar-
ket Simulation with Parallel Agent-based Modeling) and present the architecture
design of this platform. PSSPAM is implemented with agent-based modeling and
extends this method to large amount of parallel agents, so that the stock market
simulation is more efficient. The platform is designed for distributed environ-
ments, which provide sufficient computing capability for the large amount of
parallel agents. A communication system is specially designed to support the
interaction of agents and the market residing on distributed environments and
it is compatible with various communication network models that define the so-
cial relationship of all the agents. Another contribution of the PSSPAM is that
financial researchers can use this platform to customize their own algorithms
of decision methods and matching rules without considering details of parallel
programming. Users can specify the decision method of agents and the auction
mechanism, either by selecting pre-defined methods or programming their own
methods. To support fair extensibility, PSSPAM also allows users to customize
different network structure in agents module, and more request handlers in mar-
ket module. In addition, this platform provides a graphical user interface, so
that researchers on finance can easily extend this stock market and conveniently
control the configuration of deployment and running through parameters. We
conduct a series of experiment to verify the correctness of the simulation and
evaluate the performance and scalability of the platform.

The paper gives a detailed design scheme of PSSPAM and a referenced imple-
mentation of the platform. PSSPAM is still under development and needs more
supplements and improvements in the future. For instance, the communication
system is under evaluated and the market is also need to be optimized for better
scalability. There is still much work to be done to enhance the system’s robust-
ness and performance. It is also hoped that more graphical tools can be provided
to simplify users customization.

Acknowledgments. The work is sponsored by the National Natural Science
Foundation of China (71131007, 61303021).

References

1. Lye, R., Tan, J.P.L., Cheong, S.A.: Understanding agent-based models of financial
markets: A bottom-up approach based on order parameters and phase diagrams.
J. Physica A: Statistical Mechanics and its Applications 391, 5521–5531 (2012)

2. Collier, N., North, M.: Parallel agent-based simulation with Repast for high per-
formance computing. J. Simulation 89, 1215–1235 (2013)

3. Johnson, P.E.: Agent-based modeling: what I learned from the artificial stock mar-
ket. J. Social Science Computer Review 20, 174–186 (2002)

4. Chen, S.H., Yeh, C.H.: Evolving traders and the business school with genetic pro-
gramming: A new architecture of the agent-based artificial stock market. J. Journal
of Economic Dynamics and Control 25, 363–393 (2001)

A Platform for Stock Market Simulation with ABM 177

5. Deissenberg, C., Van Der Hoog, S.: EURACE: A massively parallel agent-based
model of the European economy. J. Applied Mathematics and Computation 204,
541–552 (2008)

6. Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating hu-
man systems. J. Proceedings of the National Academy of Sciences of the United
States of America 99, 7280–7287 (2002)

7. LeBaron, B.: Building the Santa Fe artificial stock market. J. Physica A (2002)
8. Arthur, W.B.: Asset pricing under endogenous expectations in an artificial stock

market. Diss. Brunel University, London (1996)
9. LeBaron, B.: Evolution and time horizons in an agent based stock market. J.

Macroeconomic Dynamics 5, 225–254 (2001)
10. Ehrentreich, N.: The Santa Fe artificial stock market re-examined-suggested cor-

rections. Technical report, Computational Economics series of EconWPA (2002)
11. Gilbert, N., Bankes, S.: Platforms and methods for agent-based modeling. J. Pro-

ceedings of the National Academy of Sciences of America 99, 7197–7198 (2002)
12. Kiran, M., Richmond, P., Holcombe, M., Chin, L.S., Worth, D.: FLAME: Simulating

large populations of agents on parallel hardware architectures. In: 9th International
Conference onAutonomousAgents andMultiagent Systems, pp. 1633–1636. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, Toronto (2010)

13. Scheutz, M., Schermerhorn, P., Connaughaton, R., Dingler, A.: SWAGES: an ex-
tendable distributed experimentation system for large-scale agent-based ALife sim-
ulations. J. Proceedings of Artificial Life X 412–419 (2006)

14. Mathieu, P., Brandouy, O.: A Generic Architecture for Realistic Simulations of
Complex Financial Dynamics. In: Demazeau, Y., Dignum, F., Corchado, J.M.,
Pérez, J.B. (eds.) Advances in PAAMS. AISC, vol. 70, pp. 185–197. Springer,
Heidelberg (2010)

15. Cont, R.: Empirical properties of asset returns: Stylized facts and statistical issues.
J. Quantitative Finance 1, 223–236 (2001)

C2CU : A CUDA C Program Generator

for Bulk Execution of a Sequential Algorithm

Daisuke Takafuji, Koji Nakano, and Yasuaki Ito

Department of Information Engineering,
Hiroshima University,

Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan

Abstract. A sequential algorithm is oblivious if an address accessed
at each time does not depend on input data. Many important tasks
including matrix computation, signal processing, sorting, dynamic pro-
gramming, and encryption/decryption can be performed by oblivious
sequential algorithms. Bulk execution of a sequential algorithm is to ex-
ecute it for many independent inputs in turn or in parallel. The main
contribution of this paper is to develop a tool that generates a CUDA
C program for the bulk execution of an oblivious sequential algorithm.
More specifically, our tool automatically converts a C language program
describing an oblivious sequential algorithm into a CUDA C program
that performs the bulk execution of the C language program. Generated
C programs can be executed in CUDA-enabled GPUs. We have imple-
mented CUDA C programs for the bulk execution of bitonic sorting
algorithm, Floyd-Warshall algorithm, and Montgomery modulo multi-
plication. Our implementations running on GeForce GTX Titan for the
bulk execution can be 199 times faster for bitonic sort, 54 times faster for
Floyd-Warshall algorithm, and 78 times faster for Montgomery modulo
multiplication, over the implementations on a single Intel Xeon CPU.

Keywords: GPGPU, CUDA, bulk execution, oblivious algorithms,
Floyd-Warshall algorithm, Montgomery modulo multiplication.

1 Introduction

A Graphics Processing Unit (GPU) is a specialized circuit designed to accel-
erate computation for building and manipulating images [1–3]. Latest GPUs
are designed for general purpose computing and can perform computation in
applications traditionally handled by the CPU. Hence, GPUs have recently at-
tracted the attention of many application developers [1, 4–7]. NVIDIA provides
a parallel computing architecture called CUDA (Compute Unified Device Archi-
tecture) [8], the computing engine for NVIDIA GPUs. CUDA gives developers
access to the virtual instruction set and memory of the parallel computational
elements in NVIDIA GPUs. In many cases, GPUs are more efficient than mul-
ticore processors [9], since they have hundreds of processor cores and very high
memory bandwidth.

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 178–191, 2014.
c© Springer International Publishing Switzerland 2014

C2CU : A CUDA C Program Generator for Bulk Execution 179

CUDA uses two types of memories in the NVIDIA GPUs: the shared mem-
ory and the global memory [8]. The shared memory is an extremely fast on-chip
memory with lower capacity, say, 16-48 Kbytes. The global memory is imple-
mented as an off-chip DRAM, and thus, it has large capacity, say, 1.5-6 Gbytes,
but its access latency is very long. The efficient usage of the shared memory
and the global memory is a key for CUDA developers to accelerate applications
using GPUs. In particular, we need to consider the bank conflict of the shared
memory access and the coalescing of the global memory access [6, 9, 10]. The
address space of the shared memory is mapped into several physical memory
banks. If two or more threads access the same memory bank at the same time,
the access requests are processed in turn. Hence, to maximize the memory access
performance, CUDA threads should access the distinct memory banks to avoid
the bank conflicts of the memory accesses. To maximize the bandwidth between
the GPU and the DRAM chips, the consecutive addresses of the global mem-
ory must be accessed at the same time. Thus, CUDA threads should perform
coalesced access and avoid stride access when they access the global memory.
However, it is not an easy task for CUDA developers to design efficient parallel
algorithms that does not perform stride memory access.

The bulk execution of a sequential algorithm is to execute it for many indepen-
dent inputs in turn or in parallel. For example, suppose that we have p arrays
b0, b1, . . . bp−1 of n points each. We can execute the Fourier transform of each
bj (0 ≤ j ≤ p − 1) by executing the FFT algorithm for n points on a single
CPU in turn or on a parallel machine in parallel. The bulk execution of an FFT
is frequently used in the area of image processing and signal processing. Fur-
ther, the bulk execution is widely used in many applications. For example, plain
text is partitioned into substrings with the same size when we encrypt it. The
substrings are encrypted in turn to obtain encrypted text.

Intuitively, a sequential algorithm is oblivious if an address accessed at each
time unit is independent of the input. For example, the prefix-sums of an array b
of size n can be computed by executing b[i] ← b[i]+b[i−1] for all i (1 ≤ i ≤ n−1)
in turn. This prefix-sum algorithm is oblivious because the address accessed at
each time unit is independent of the values stored in b. The readers may think
that the oblivious memory access is too restricted, and most useful algorithms
are not oblivious. However, many important and complicated tasks including
many matrix computations, signal processing, sorting, dynamic programming,
and encryption/decryption can be performed by oblivious sequential algorithms.

In our previous paper [11], we have introduced an algorithmic technique per-
forming the bulk execution of a sequential algorithm on the GPU and evaluated
the performance using the Unified Memory Machine (UMM). The UMM is a
theoretical parallel computing machine used to evaluate the performance of the
computation on the GPU. The resulting implementation on the UMM performs
the bulk execution for p independent inputs in O(ptw + lt) time units using p
threads on the UMM if a sequential algorithm is oblivious, where w is the num-
ber of threads in a warp, l is the global memory access latency, and t is the
running time of a sequential algorithm. It also proved that this implementation

180 D. Takafuji, K. Nakano, and Y. Ito

is time optimal. Further, it implemented the prefix-sum algorithm and the dy-
namic programming algorithm using this algorithmic technique and obtained a
speedup factor of 150 over the sequential computation by a single CPU. How-
ever, developers need to write CUDA C programs for the bulk execution of a
sequential algorithm. Since it needs deep knowledge of CUDA programming and
GPU architecture to optimize CUDA C programs, it is not an easy task to write
efficient CUDA C programs for the bulk execution.

The main contribution of this paper is to present a tool, C2CU, that converts
a sequential C program into a CUDA C program with no stride memory access.
More specifically, a sequential program written by C programming language is
given to C2CU. C2CU converts it into a CUDA C program that performs the
bulk execution of a sequential program on CUDA-enabled GPUs. The CUDA
C program thus obtained performs no stride global memory access of GPUs.
Hence, even developers with few knowledge of CUDA C programming and GPU
architecture can automatically generate a CUDA C program for the bulk execu-
tion. Once they write a C program for a sequential algorithm, they can obtain
a CUDA C program for the bulk execution using our tool C2CU.

To see the performance of CUDA C programs generated by our C2CU con-
verter, we have measured the running time of the bulk execution of three obliv-
ious sequential algorithms: bitonic sort [12, 13], Floyd-Warshall algorithm [14–
16], and Montgomery modulo multiplication [17–19]. For this purpose, we first
have written sequential algorithms for these three algorithms by C programming
language. We then have converted them into CUDA C programs using our C2CU
converter. CUDAC programs thus obtained have been executed on GeForce GTX
Titan. They run 199 times faster for bitonic sort, 54 times faster for Floyd-Warshall
algorithm, and 78 times faster for Montgomery modulo multiplication, over the
implementations on a single Intel Xeon CPU.

2 The Bulk Execution of Sequential Algorithms on the
UMM

The main purpose of this section is to review the bulk execution of sequen-
tial algorithms on the Unified Memory Machine(UMM). Please see [11] for the
details.

Intuitively, a sequential algorithm is oblivious if an address accessed in each
time unit is independent of the input. More specifically, there exists a function
a : {0, 1, . . . , t − 1} → N , where t is the running time of the algorithm and N
is a set of all non-negative integers such that, for any input of the algorithm, it
accesses address a(i) or does not access the memory at each time i (0 ≤ i ≤ t−1).
In other words, at each time i (0 ≤ i ≤ t− 1), it never accesses an address other
than a(i).

Let us see an example of oblivious algorithms. Suppose that an array b of
n integers are given. The prefix-sum computation is a task to store each i-th
prefix-sum b[0]+b[1]+ · · ·+b[i] in b[i]. Let r be a register variable. The following
algorithm computes the prefix-sum of n numbers.

C2CU : A CUDA C Program Generator for Bulk Execution 181

[Algorithm Prefix-sums]
r ← 0
for i ← 0 to n− 1 do
r ← r + b[i]
b[i] ← r

Since b[0], b[1], . . ., b[n − 1] are added to r in turn, the prefix-sums are stored
in b correctly when this algorithm terminates. Let us see the address accessed
in each time unit to confirm that this algorithm is oblivious. For simplicity, we
ignore access to registers and local computation such as addition and we assume
that such operations can be done in zero time unit. Clearly, memory access
operations performed in this algorithm are: read b[0], write b[0], read b[1], write
b[1], . . ., read b[n − 1], and write b[n − 1]. Hence, the memory access function
a is a(2i) = a(2i + 1) = i for all i (0 ≤ i ≤ n − 1), and thus, this algorithm is
oblivious.

Suppose that we need to execute a sequential algorithm for many independent
inputs on a single CPU in turn or on a parallel machine at the same time. We
call such computation the bulk execution. For example, suppose that we have p
arrays b0, b1, . . . , bp−1 of size n each on the UMM. The goal of the bulk execution
of the prefix-sums is to execute the prefix-sums of every bj (0 ≤ j ≤ p − 1) on
the UMM in parallel. We use p threads and each thread j (0 ≤ j ≤ p − 1)
executes the prefix-sums of bi by Algorithm Prefix-sums. Let rj (0 ≤ j ≤ p− 1)
be a register of thread j. The prefix-sums can be computed in parallel by the
following algorithm:

[Parallel Algorithm Prefix-sums]
for j ← 0 to p− 1 do in parallel
rj ← 0
for i ← 0 to n− 1 do
rj ← rj + bj[i]
bj [i] ← rj

In our previous paper [11], we have evaluated the running time of the bulk
execution of the prefix-sums algorithm for column-wise arrangement on the Uni-
fied Memory Machine (UMM) [20, 21]. The UMM captures the essence of the
global memory access of CUDA-enabled GPUs. The UMM has three parameters:
the number p of threads, width w, and memory access latency l. Each thread is
a Random Access Machine (RAM) [22], which can execute fundamental opera-
tions in a time unit. Threads are executed in SIMD [23] fashion, and run on the
same program and work on the different data. The p threads are partitioned into
p
w groups of w threads each called warp. The p

w warps are dispatched for the
memory access in turn, and w threads in a dispatched warp send the memory
access requests to the memory banks (MBs) through the memory management
unit (MMU). We do not discuss the architecture of the MMU, but we can think
that it is a multistage interconnection network in which the memory access re-
quests are moved to destination memory banks in a pipeline fashion. Note that
the UMM with width w has w memory banks and each warp has w threads.

182 D. Takafuji, K. Nakano, and Y. Ito

MBs constitute a single address space of the memory. A single address space
of the memory is mapped to the MBs in an interleaved way such that the word
of data of address i is stored in the (i mod w)-th bank B[i mod w], where w is
the number of MBs. In the UMM, a single set of address lines from the MMU
is connected to the MBs. Hence, the same address value is broadcast to every
MB, and the same address of the MBs can be accessed at each time unit. Also,
we assume that MBs are accessed in a pipeline fashion with latency l. In other
words, if a thread sends a memory access request, it takes at least l time units
to complete it. A thread can send a new memory access request only after the
completion of the previous memory access request and thus, it can send at most
one memory access request in l time units. Let A[j] = {j · w, j · w + 1, . . . , (j +
1) · w − 1} denote the j-th address group. In the UMM, if multiple memory
access requests by a warp are destined for different address groups, they are
processed separately. Figure 1 illustrates the memory access by two warps W (0)
and W (1). Since memory access requests by W (0) are destined for three address
groups, they occupy three pipeline stages. On the other hand, those by W (1)
are destined for the same bank, they occupy only one stages. Thus it takes
3(stages) + 1(stage)+ 5(pipeline stages)− 1 = 8 time units to complete memory
access requests in Figure 1.

0

1

2

3

4

5

6

7

12

13

14

15

A[0] A[1] A[2] A[3]l = 5

5-stage pipeline regsiters

W (0)

W (1)

3 4 6 12

3

4

6

12

10 11 8 9

8

9

10

11

8

9

10

11

memory
2 warps

w = 4

Fig. 1. The memory access of Unified Memory Machine (UMM) with width w = 4 and
latency l = 5

Suppose that each element bj [i] (0 ≤ i ≤ n− 1, 0 ≤ j ≤ p− 1) is arranged in
address i ·p+ j of the global memory as illustrated in Figure 2. Suppose that the
bulk execution of an oblivious algorithm running in t time units is performed for
p inputs with column-wise arrangement on the UMM. Clearly, pt memory access
operations are performed at all and all memory access operations by all warps are
coalesced. Also, each thread on the UMM performs t memory access operations,
each of which takes l time units. Thus, we have the following theorem:

Theorem 1 ([11]). A column-wise oblivious computation of size n × p runs
O(ptw + lt) time units using p threads on the UMM with width w and latency l,
where t is the running time of the corresponding oblivious sequential algorithm.

Please see [11] for the details of the proof of Theorem 1.

C2CU : A CUDA C Program Generator for Bulk Execution 183

b0[0] b1[0] b2[0] b3[0] b4[0] b5[0] b6[0] b7[0]

b0[1] b1[1] b2[1] b3[1] b4[1] b5[1] b6[1] b7[1]

b0[2] b1[2] b2[2] b3[2] b4[2] b5[2] b6[2] b7[2]

b0[3] b1[3] b2[3] b3[3] b4[3] b5[3] b6[3] b7[3]

b0[4] b1[4] b2[4] b3[4] b4[4] b5[4] b6[4] b7[4]

b0[5] b1[5] b2[5] b3[5] b4[5] b5[5] b6[5] b7[5]

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

Fig. 2. Column-wise arrangement of p = 8 arrays of n = 6 elements each

3 Our C2CU Converter

The main purpose of this section is to describe C2CU converter, that converts a
sequential algorithm written by C programming language into CUDA C program
for the bulk execution on CUDA-enabled GPUs.

Figure 3 illustrates the behavior of C2CU converter. A sequential program
written by C programming language is converted into a CUDA C program.
The converted C program accepts p independent inputs. They are copied to the
device memory (global memory) of the GPU. The CUDA device program with
p threads is spawned, and each thread executes the sequential program for one
input. After all threads terminate, p outputs obtained by all threads are copied
to the host memory.

Let us see how C2CU converter generates CUDA C program using Floyd-
Warshall algorithm [14–16] as an example. Floyd-Warshall algorithm is a well
known graph theoretic algorithm that computes the distances of the shortest
paths of all pairs of nodes in a directed graph. It uses a 2-dimensional array D of
size n×n for an n-node graph. We assume that, initially, D[i][j] (0 ≤ i, j ≤ n−1)

sequential
program

input

output

p inputs

CUDA
host

program

CUDA
device

program
(GPU)

cudaMemcpyToSymbol

cudaMemcpyFromSymbol

p outputs

C2CU

Fig. 3. The behavior of C2CU converter

184 D. Takafuji, K. Nakano, and Y. Ito

stores the distance of an edge from node i to j if it exists and +∞ otherwise.
Floyd-Warshall algorithm is described as follows:

[Algorithm Floyd-Warshall]
for k ← 0 to n do

for i ← 0 to n do
for j ← 0 to n do

if (D[i][j] > D[i][k] +D[k][j])
D[i][j] ← D[i][k] +D[k][j]

After termination of the algorithm, D[i][j] stores the distance of the shortest
path from node i to j. If there is no such path, it stores +∞.

Figure 4 shows a C program for Floyd-Warshall algorithm. It should be clear
that this C program computes the all-pairs shortest distance by Floyd-Warshall
algorithm. The values of D is updated by calling update dist, although it is not
necessary to be a function. The reason is to show our C2CU converter supports
function calls. The C program in Figure 4 is a direct implementation of Floyd-
Warshall algorithm except that it has a directive #pragma kernel in line 22.
Most C compilers such as GNU C compiler ignores this directive. Hence, this C
program can be compiled correctly, and it computes all-pairs shortest distance
in an input graph by Floyd-Warshall algorithm. A directive #pragma kernel is
used to specify a function for the bulk execution on the GPU. A function call
just after directive #pragma kernel will be executed on the GPU in the CUDA
C program obtained by C2CU.

Figure 5 shows a CUDA C program generated by our tool C2CU from the C
program in Figure 4. Users can specify the number p of inputs (i.e. the number p
of threads) and the number of threads in each CUDA block, by using options for
C2CU. These values are defined as __P__ (= p) and __T__ in lines 2 and 3. In Fig-
ure 5, they are 2048 and 64, respectively. Thus, 32 CUDA blocks with 64 threads
each are spawned by CUDA kernel call floyd_warshall<<<__B__,__T__>>>()
in line 31. Since the generated CUDAC programaccepts p inputs, a 3-dimensional
array D of size N ×N × p allocated in the host memory are used to store them.
Also, a 3-dimensional array __D of the same size allocated in the device memory
(i.e. the globalmemory of the GPU) are used. In line 30, cudaMemcpyToSymbol is
used to copy p inputs stored inD to __D. After the bulk execution by CUDA kernel
call floyd_warshall<<<__B__,__T__>>>() in line 31, cudaMemcpyToSymbol is
used to copy __D, which stores the resulting values, to D.

CUDA kernel call floyd_warshall<<<__B__,__T__>>>() in line 31 invokes
__B__CUDA blocks with __T__ threads each. Thus, __P__ (= p) threads execute
Floyd-Warshall algorithm on the CUDA-enabled GPU. Since blockDim.x is the
number __B__ of threads in a CUDA block and blockIdx.x and threadIdx.x

take values in [0, __B__ − 1] and [0, __T__− 1], respectively, __id__ in line 15
takes value from 0 to p−1. Hence device function update_dist(i,j,k,__id__)

is executed for __id__ in [0, p − 1] on the GPU in parallel. The reader should
have no difficulty to confirm that CUDA C program in Figure 5 executes Floyd-
Warshall algorithm for p inputs in parallel.

C2CU : A CUDA C Program Generator for Bulk Execution 185

1: #define N 1024

2: float D[N][N];

3: void update_dist(int i, int j, int k){

4: if(D[i][j] > D[i][k] + D[k][j]) {

5: D[i][j] = D[i][k] + D[k][j];

6: }

7: }

8:

9: void floyd_warshall(){

10: int i,j,k;

11: for(k=0;k<N;k++) {

12: for(i=0;i<N;i++) {

13: for(j=0;j<N;j++) {

14: update_dist(i,j,k);

15: }

16: }

17: }

18: }

19:

20: int main(int argc, char *argv[]){

21: input_array();

22: #pragma kernel

23: floyd_warshall();

24: ...

Fig. 4. A C program of the Floyd-Warshall algorithm

Let us see how C2CU converts a C program into a CUDA C program for
general cases and confirm that the generated CUDA C programs performs co-
alesced memory access. If an original C program uses d dimensional array a of
size s1×s2×· · ·×sd, a CUDA C program generated by C2CU uses d+1 dimen-
sional array a of size s1 × s2 × · · · × sd × p. If the original C program accesses
a[i1][i2] · · · [id] then each thread with ID id of the corresponding CUDA C pro-
gram accesses a[i1][i2] · · · [id][__id__]. Since a[i1][i2] · · · [id][0], a[i1][i2] · · · [id][1],
. . ., a[i1][i2] · · · [id][p − 1] are allocated in consecutive addresses, these memory
accesses by p threads are coalesced.

4 Experiment Results

The main purpose of this section is to show experimental results on GeForce
GTX Titan. GeForce GTX Titan has 14 streaming multiprocessors with 192
cores each. Hence, it can run 2688 threads in parallel. Note that, a single kernel
call to GeForce GTX Titan can run more than 2688 threads in a time sharing
manner using CUDA [8] parallel programming platform. All input and output
data are stored in the global memory of the GPU and we do not use the shared
memory of the streaming multiprocessors.

186 D. Takafuji, K. Nakano, and Y. Ito

1: #define N 1024

2: #define __P__ 2048

3: #define __T__ 64

4: #define __B__ __P__/__T__

5: float D[N][N][__P__];

6: __device__ float __D[N][N][__P__];

7:

8: __device__ void update_dist(int i, int j, int k, int __id__){

9: if(__D[i][j][__id__] > __D[i][k][__id__] + __D[k][j][__id__]) {

10: __D[i][j][__id__] = __D[i][k][__id__] + __D[k][j][__id__];

11: }

12: }

13:

14: __global__ void floyd_warshall(){

15: int __id__ = blockIdx.x * blockDim.x + threadIdx.x;

16: int i,j,k;

17: for(k=0;k<N;k++) {

18: for(i=0;i<N;i++) {

19: for(j=0;j<N;j++) {

20: update_dist(i,j,k,__id__);

21: }

22: }

23: }

24: }

25:

26: int main(int argc, char *argv[])

27: {

28: input_array();

29: #pragma kernel

30: cudaMemcpyToSymbol(__D, D, sizeof(float)*N*N*__P__, 0);

31: floyd_warshall<<<__B__,__T__>>>();

32: cudaMemcpyFromSymbol(D, __D, sizeof(float)*N*N*__P__, 0);

33: ...

Fig. 5. A CUDA program for the bulk execution of Floyd-Warshall algorithm generated
by C2CU

We have used three sequential algorithms as follows:

– bitonic sort [12, 13],
– Floyd-Warshall algorithm [14–16], and
– Montgomery modulo multiplication [17–19].

Bitonic sort is a well-known parallel sorting algorithm developed by K.E.
Batcher [12]. It can be described as a sorting network with comparators as
illustrated in Figure 6. Since elements compare-exchanged in each stage are
fixed, bitonic sort can be written as an oblivious sequential algorithm.

Montgomery modulo multiplication is used to speed the modulo multiplica-
tionX ·Y ·2−R mod M for R-bit numbersX , Y , andM . The idea of Montgomery

C2CU : A CUDA C Program Generator for Bulk Execution 187

0

1

2

3

4

5

6

7

x

y

min(x, y)

max(x, y)

x

y

max(x, y)

min(x, y)

Fig. 6. Bitonic sort for n = 8

modulo multiplication is not to use direct modulo computation, which is very
costly in terms of the computing time and hardware resources. By iterative
computation of Montgomery modulo multiplication, the modulo exponentiation
PE mod M can be computed, which is a key operation for RSA encryption and
decryption [24]. Since R is at least 1024 to use Montgomery modulo multiplica-
tion for RSA encryption and decryption, addition/multiplication is repeated to
perform R-bit addition/multiplication. Figure 7 illustrates how the product a · b
of two integers a and b of large bits is computed. Both a and b are partitioned
into four integers and the sum of pair-wise products is computed. Using this
idea, we can design an oblivious sequential algorithm to compute the product of
two integers with large bits in an obvious way. Since Montgomery modulo multi-
plication repeats computation of the product and the sum of two large integers,
it can also be computed by an oblivious sequential algorithm.

a[2] a[0]a[1]

b[0]b[1]b[2]×

a[0] · b[0]
a[1] · b[0]

a[2] · b[0]

a[0] · b[1]
a[1] · b[1]

a[2] · b[1]

a[0] · b[2]
a[1] · b[2]

a[2] · b[2]
+

a · b

a[2]

b[2]

a[3] · b[0]

a[3] · b[1]

a[3] · b[2]

Fig. 7. Multiplication of two integers with large bits

We have written a C program for bitonic sort that sorts n = 32, 1K (=
1024), and 32K (= 32768) float (32-bit) numbers. We have converted into a
CUDA C program for the bulk execution of bitonic sort with parameter p =
64, 128, . . . , 4M. However, due to the global memory capacity of the GPU, it
is executed for up to p = 128K and p = 4K when n = 1K and n = 32K,

188 D. Takafuji, K. Nakano, and Y. Ito

respectively. The CUDA C program invokes p threads in p
64 CUDA blocks with

64 threads each to sort p inputs of n numbers each. To see the speedup factor, the
original C program is repeatedly executed p times on the Intel Xeon (2.66GHz)

Figure 8 (1) shows the resulting computing time for the bulk execution of
bitonic sort. Recall that, from Theorem 1, the bulk execution of a sequential
algorithm can be computed in O(ptw + lt) time units, where p is the total number
of threads, l is the memory access latency, and t is the running time of the original
sequential algorithm. The bulk execution of bitonic sort for n = 32 takes about
0.13ms when p ≤1K. Further, the computing time is proportional to p when
p ≥16K and it runs 65.1ms when p = 4M. Thus, we can think that O(lt) =
0.13ms and O(ptw) = (15.5p)ns. More specifically, the bulk execution of bitonic
sort for n = 32 and p can be computed in approximately 0.13ms+(15.5p)ns.
Figure 8 (2) shows the speedup factor of the GPU over the CPU. We can see
that the bulk execution of bitonic sort on the GPU can achieve a speedup of
factor more than 180 when n = 32 and p ≥ 128K. Further, when n = 32 and
p = 4M, the GPU is 199 times faster than the CPU.

 0.1ms

 1ms

 10ms

 100ms

 1s

 10s

 100s

 64 256 1K 4K 16K 64K 256K 1M 4M

32 GPU

1K GPU

32K GPU

32 CPU

1K CPU32K CPU

 0.1

 1

 10

 100

 1000

 64 256 1K 4K 16K 64K 256K 1M 4M

32

1k

32k

(1) The computing time (2) GPU/CPU speedup factor

Fig. 8. The computing time (ms) of bitonic sort on CPU and GPU, and the speedup
for n = 32, 1K, 32K, and p = 64, 128, . . ., 4M

We have written a C program for Floyd-Warshall algorithm for graphs with
n = 16, 64, and 256 nodes. We use float (32-bit) numbers to store the length of
each edge. The C program is converted into a CUDA C program using C2CU with
parameters p = 16, 64, and 256. However, due to the global memory capacity
of the GPU, it is executed for up to p = 16K and p = 1K when n = 64 and
n = 256, respectively.

Figure 9 (1) shows the resulting computing time for the bulk execution of
Floyd-Warshall algorithm. We will verify O(ptw +lt) time units shown in Theorem
1. The bulk execution of Floyd-Warshall algorithm for n = 16 takes about 3.4ms
when p ≤512. Also, the computing time is proportional to p when p ≥4K and
it runs 42.6ms when p = 128K. Thus, we can think that O(ln3) = 3.4ms and

O(pn
3

w) = (325p)ns. More specifically, the bulk execution of the Floyd-Warshall
algorithm for n = 32 and p can be computed in approximately 3.4ms+(325)ns.

C2CU : A CUDA C Program Generator for Bulk Execution 189

Figure 9 (2) shows the speedup factor of the GPU over the CPU. We can see
that the bulk execution on the GPU can achieve a speedup of factor more than
30 when n = 16 and p ≥ 8K. Further, when n = 16 and p = 128K, the GPU is
54 times faster than the CPU.

 1ms

 10ms

 100ms

 1s

 10s

 100s

 64 256 1K 4K 16K 64K

16 GPU

16 CPU

64 GPU

64 CPU256 GPU

256 CPU

 0.1

 1

 10

 100

 64 256 1K 4K 16K 64K

16

64

256

(1) The computing time (2) GPU/CPU speedup factor

Fig. 9. The computing time (ms) of the Floyd-Warshall algorithm on CPU, and GPU
and the speedup for n = 16, 64, 256, and p = 64, 128, . . ., 128K

Finally, we have written a C program for Montgomery modulo multiplication
for n = 512, 16K (= 16384), and 1M (= 1048576) bits. We use C2CU to convert
it into a CUDA C program with parameter p = 64, 128, . . . , 2M. However, due
to the global memory capacity, it is executed for up to p = 64K and p = 2K
when n = 16K and n = 1M, respectively.

Figure 10 (1) shows the resulting computing time for the bulk execution of
the Montgomery modulo multiplication. Again, we will verify O(ptw + lt) time
units shown in Theorem 1. The bulk execution of the algorithm for n = 512
takes about 0.45ms when p ≤ 512. Also, the computing time is proportional to
p when p ≥128K and it runs 124ms when p = 2M. Thus, we can think that

 0.1ms

 1ms

 10ms

 100ms

 1s

 10s

 100s

 1000s

 10000s

 100000s

 64 256 1K 4K 16K 64K 256K 1M 4M

512 GPU

512 CPU

16K GPU

16K CPU
1M GPU

1M CPU

 0.1

 1

 10

 100

 64 256 1K 4K 16K 64K 256K 1M 4M

51216K

1M

(1) The computing time (2) GPU/CPU speedup factor

Fig. 10. The computing time (ms) of the Montgomery modulo multiplication on CPU,
and GPU. and the speedup for p = 64, 128, . . ., 4M.

190 D. Takafuji, K. Nakano, and Y. Ito

O(ln2) = 0.45ms and O(pn
2

w) = (59.1p)ns. More specifically, the bulk execution
of the algorithm for n = 512 can be computed in approximately 124ms+(5.9p)ns.
Figure 9 (2) shows the speedup factor of GPU computation using the GPU over
the CPU. We can see that the GPU can achieve a speedup of factor more than
70 when n = 512 and p ≥ 32K. Further, when n = 512 and p = 2M, the GPU is
78 times faster than the CPU.

5 Conclusion

The main contribution of this paper is to develop C2CU converter, which con-
verts a C language program of a sequential algorithm into a CUDA C program
for the bulk execution on the GPU. The experimental results show that the gen-
erated CUDA C program on GeForce GTX Titan can achieve up to 199 times
speed-up over the original C program running on an Intel Xeon CPU. Thus,
C2CU is a promising tool to obtain high GPGPU acceleration very easily.

References

1. Hwu, W.W.: GPU Computing Gems Emerald Edition. Morgan Kaufmann (2011)
2. Man, D., Uda, K., Ito, Y., Nakano, K.: A GPU implementation of computing

Euclidean distance map with efficient memory access. In: Proc. of International
Conference on Networking and Computing, pp. 68–76 (December 2011)

3. Uchida, A., Ito, Y., Nakano, K.: Fast and accurate template matching using pixel
rearrangement on the GPU. In: Proc. of International Conference on Networking
and Computing, pp. 153–159. CS Press (December 2011)

4. Ogawa, K., Ito, Y., Nakano, K.: Efficient Canny edge detection using a GPU. In:
Proc. of International Conference on Networking and Computing, pp. 279–280.
IEEE CS Press (November 2010)

5. Nishida, K., Ito, Y., Nakano, K.: Accelerating the dynamic programming for the
matrix chain product on the GPU. In: Proc. of International Conference on Net-
working and Computing, pp. 320–326 (December 2011)

6. Nishida, K., Nakano, K., Ito, Y.: Accelerating the dynamic programming for the
optial poygon triangulation on the GPU. In: Xiang, Y., Stojmenovic, I., Apduhan,
B.O., Wang, G., Nakano, K., Zomaya, A. (eds.) ICA3PP 2012, Part I. LNCS,
vol. 7439, pp. 1–15. Springer, Heidelberg (2012)

7. Uchida, A., Ito, Y., Nakano, K.: An efficient GPU implementation of ant colony
optimization for the traveling salesman problem. In: Proc. of International Con-
ference on Networking and Computing, pp. 94–102. IEEE CS Press (December
2012)

8. NVIDIA Corporation: NVIDIA CUDA C programming guide version 5.0 (2012)
9. Man, D., Uda, K., Ueyama, H., Ito, Y., Nakano, K.: Implementations of a parallel

algorithm for computing euclidean distance map in multicore processors and GPUs.
International Journal of Networking and Computing 1(2), 260–276 (2011)

10. NVIDIA Corporation: NVIDIA CUDA C best practice guide version 3.1 (2010)
11. Tani, K., Takafuji, D., Nakano, K., Ito, Y.: Bulk execution of oblivious algorithms

on the unified memory machine, with gpu implementation. In: Proc. of Interna-
tional Parallel and Distributed Processing Symposium Workshops, pp. 586–595
(May 2014)

C2CU : A CUDA C Program Generator for Bulk Execution 191

12. Batcher, K.E.: Sorting networks and their applications. In: Proc. AFIPS Spring
Joint Comput. Conf., vol. 32, pp. 307–314 (1968)

13. Akl, S.G.: Parallel Sorting Algorithms. Academic Press (1985)
14. Floyd, R.W.: Algorithm 97: Shortest path. Communications of the ACM 5(6), 345

(1962)
15. Warshall, S.: A theorem on boolean matrices. Journal of the ACM 9(1), 11–12

(1962)
16. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT

Press (1990)
17. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of

Computation 44(170), 519–521 (1985)
18. Shigemoto, K., Kawakami, K., Nakano, K.: Accelerating montgomery modulo mul-

tiplication for redundant radix-64k number system on the FPGA using dual-port
block RAMs. In: Proc. of International Conference on Embedded and Ubiquitous
Computing (EUC), pp. 44–51 (2008)

19. Bo, S., Kawakami, K., Nakano, K., Ito, Y.: An RSA encryption hardware algorithm
using a single DSP block and a single block RAM on the fpga. International Journal
of Networking and Computing 1(2), 277–289 (2011)

20. Nakano, K.: Simple memory machine models for GPUs. International Journal of
Parallel, Emergent and Distributed Systems 29(1), 17–37 (2014)

21. Nakano, K.: Sequential memory access on the unified memory machine with ap-
plication to the dynamic programming. In: Proc. of International Symposium on
Computing and Networking, pp. 85–94 (December 2013)

22. Aho, A.V., Ullman, J.D., Hopcroft, J.E.: Data Structures and Algorithms. Addison
Wesley (1983)

23. Flynn, M.J.: Some computer organizations and their effectiveness. IEEE Transac-
tions on Computers 21, 948–960 (1972)

24. Blum, T., Paar, C.: High-radix montgomery modular exponentiation on reconfig-
urable hardware. IEEE Trans. on Computers 50(7), 759–764 (2001)

Dynamically Spawning Speculative Threads

to Improve Speculative Path Execution�

Meirong Li, Yinliang Zhao, and You Tao

Department of Computer Science, Xi’an Jiaotong University 710049 Xi’an, China
meirongli.xjtu@gmail.com, zhaoy@mail.xjtu.edu.cn,

taoyou8115@stu.xjtu.edu.cn

Abstract. Branch misprediction, as one of scaling bottlenecks, has a
significant effect on the performance of thread-level speculation. Due to
ambiguous control and data dependences, it is still hard for the compiler
to extract more efficient threads from the hard-to-predict branches by
means of either conservative single path-based thread selection or ag-
gressive thread optimization. Thus, this paper proposes a novel dynamic
speculative path scheme to dynamically determine the right speculative
path at runtime. It relies on compiler to select and optimize all frequent
subpaths greedily, and attempts to generate speculative threads on them
using the modified FP-growth algorithm. Based on the path-based per-
formance prediction, the best speculative path is always dynamically
chosen to parallelize. We have examined our approach using ODLEN
benchmarks. Compared to the single speculative path scheme, it can
achieve comparable or better performance.

Keywords: Branch misprediction, Thread-level speculation, Path-
based performance Prediction.

1 Introduction

As the exploitation of thread-level parallelism, various sophisticated parallel exe-
cution models have been explored on multi-core architectures. Thread-level spec-
ulation (TLS)[5],[16],[20], as one of such execution models, can extract multiple
dependent threads from irregular sequential programs, and allow them to execute
speculatively to improve performance. In case a branch misprediction occurs,
speculative threads along the incorrect path will be squashed, and the correct
path will be taken to serialize directly. This thread behavior not only causes few
spawned threads to be parallelized, but also results in performance losses.

Most efforts have been done on improving the branch prediction accuracy or
reducing the branch execution penalty in the speculation[9],[10],[12],[22]. The
path execution frequency[5],[6],[19] derived from profiling is often used for the
compiler to estimate the most likely speculative path on the hard-to-predict

� This work is supported by National Nature Science Foundation of China(NSFC)
under Grant No.61173040 and Doctoral Fund of Ministry of Education of China
under Grant No.20130201110012.

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 192–206, 2014.
c© Springer International Publishing Switzerland 2014

Combined Static and Dynamic Scheme for Speculative Path Execution 193

branches. And it is common that only the most frequent successor of a branch
node is chosen to parallelize while other less frequent ones are discarded. Thus,
few subpaths are selected to parallelize. Without consideration of the relation
between branch nodes, speculative threads that are executed logically later are
usually spawned more aggressively under an out-of-order thread spawn[17]. Once
a mispredicted branch is encountered, it will result in all spawned threads along
the path to be postponed or serialized forever. However, it is more adaptive for
the hardware-based branch prediction schemes[10],[22], which focus on recog-
nizing branching patterns and are extremely effective for some branches that
are not data-dependent on relatively random data. But they often suffer from
few extractable threads due to the lack of source-level information and TLS-
enhancing optimization. Although it is desirable for the hardware-based multi-
path execution[22], it is not cost-effective for TLS execution since all idle pro-
cessor cores are employed to predict the correct path in case of a hard-to-predict
branch. Therefore, other sophisticated techniques are needed to explore more
efficient speculation on branches.

This paper presents a dynamic adaptive scheme for speculative path selection
on the hard-to-predict branches. The compiler is responsible for selecting all
frequent subpaths of each branch node greedily. Based on them, we take advan-
tage of the FP-growth algorithm to reveal the relation between branch nodes,
and then extract a subset of the most frequent subpaths to generate speculative
threads. In case of a hard-to-predict branch, the right speculative path is further
decided by the runtime performance profiles of speculative threads. These per-
formance profiles are obtained from our prediction, where the hardware-based
branch detection scheme is employed to dynamically collect the information of
each speculative path and make a decision for the best speculative path. Two
policies are also used to improve the efficiency of our dynamic path selection.

The rest of the paper is organized as follows: Section 2 describes the framework
of dynamic speculative path scheme. Section 3 details frequent path selection
and the relative path-based thread partitioning algorithm. Section 4 describes
the runtime hardware-based scheme for speculative path prediction and thread
scheduling. Section 5 presents the experimental results. Section 6 discusses re-
lated work and Section 7 concludes the paper.

2 Overview of Dynamic Speculative Path Scheme

The dynamic speculative path scheme consists of compile-time and run-time
two phases. Figure 1 shows the crucial components of these two phases. In the
compiler phase, each procedure will be proceeded on the frequent path selection,
and we can obtain several most frequent subpaths of each branch node. Based on
the path-based thread partitioning algorithm, all of them are then extracted and
generated a set of speculative threads. They are further compiled and optimized
in both the thread creation and TLS-enhancing optimization modules.

In the runtime phase, these thread candidates are dynamically chosen and
executed on the basis of TLS execution model, where the construction of dynamic

194 M. Li, Y. Zhao, and Y. Tao

Fr
eq

ue
nt

Pa
th

Se
le

ct
io

n

Pa
th

-B
as

ed
Th

re
ad

Pa
rti

tio
ni

ng

TL
S-

en
ha

nc
in

g
O

pt
im

iz
at

io
n

Execution Model

Construction of Dynamic
Speculative Path

Speculative Path
Prediction Th

re
ad

Sc
he

du
lin

g

Compiler Phase Runtime Phase

Th
re

ad
C

re
at

io
n

Fig. 1. The framework of dynamic speculative path scheme

speculative path module always provides the right set of speculative threads
for the TLS execution. Both speculative path prediction and thread scheduling
modules are used to collect the information of all parallelized paths and make a
decision for the best speculative path.

3 Compiler Phase

3.1 Frequent Path Selection

Due to ambiguous control and data dependences, it is hard for traditional single
speculative path[5],[13],[19] to extract sufficient threads from the hard-to-predict
branches. Instead, we assume that all possible paths of each branch node can be
dynamically parallelized by means of control flow edge profiling[5],[6]. However,
it is common that the occurrence of some branches is associated with others,
and even depends on the results of them. To make an aggressive speculation,
it is necessary to understand the relationship between branch nodes, and thus
reduce the branch misprediction overhead incurred by them.

For each procedure, we consider the traces of different paths as the frequent
itemset, which is used to explore the relation between branch nodes using associ-
ation rules. But different algorithms will cause different costs and performance.
FP-growth algorithm[1], taking advantage of the FP-tree construction, has been
proved to be efficient for all associated rules with different lengths. Therefore, it
is used for our frequent path selection.

Figure 2 describes the structure of a branch FP-tree, which can be seen
as a multi-branch tree. Each node represents the control flow of two consec-
utive branch nodes in the control flow graph(CFG). It is further expressed as
Node(branch node〈b id1,b id2 〉,control flow〈con1,con2 〉). Both b id1 and b id2
correspond to the unique identification number of branch nodes, which can be
easily obtained from control flow edge profiling[5],[6]. The relative control flows
are indicated as con1 and con2, respectively. There are at most six possible re-
sults, such as 〈T,T〉,〈T,F〉,〈T,∅〉,〈F,T〉,〈F,F〉 and 〈F,∅〉. Here T and F are the
control flow transfers in the CFG, where each branch node is allowed to have no
more than two successors[4]. T is the taken successor while F is the fall-through
successor. And ∅means that no successors have been executed no matter whether

Combined Static and Dynamic Scheme for Speculative Path Execution 195

root

TT TF T

TT TF T FT FF

TT TF FT

<1,2> 1413
<3,4>
<4,5>
<5,6> 98

245
136

item support link node

FT FF F

Fig. 2. The structure diagram of a branch FP-tree

the chosen branch is taken or not. Meanwhile, the edge between two nodes repre-
sents the control flow of branch nodes in the branch FP-tree. The path execution
frequency is also included as the value of minimal support of branch nodes, and
used to construct the branch FP-tree. More details of the FP-tree generation are
described in Algorithm 1.

Algorithm 1. Branch FP-tree generation

INOUT: the traces of branch nodes from control flow edge profiling, D
OUTPUT: the built branch FP-tree, Troot

1: function create FP tree(D)
2: Ordered ← sort the traces of branch nodes in D;
3: create Troot as the root of branch FP-tree if it doesn’t exist;
4: for all Trace T in Ordered do
5: Head ← find the first pair of branch nodes in Trace T;
6: insert tree(Head,Troot);
7: end for
8: end function

9: function insert tree(Head,Troot)
10: if Troot has a child Tchild equal to Head then
11: add up the execution frequency of Head to Tchild;
12: else
13: create a new node in Troot;
14: end if
15: Head ← find the next pair of branch nodes in Trace T;
16: insert tree(Head,Troot);
17: end function

In Algorithm 1, function create FP tree is responsible for the construction of
branch FP-tree. To improve the efficiency of this algorithm, all traces of branch
nodes have been proceeded in the non-increasing order of their execution times,
and the same branches are also sorted in the non-increasing order of their edge
execution frequencies. For each trace, a root node has to be established before
all other branch nodes are inserted. The insertion of branch nodes is in the form
of node pairs using insert tree function. In case of an existing FP-tree node,
its frequencies will be added instead. Otherwise, a new node will be created

196 M. Li, Y. Zhao, and Y. Tao

and connected to the appropriate position of the FP-tree. Repeat this step for
inserting other branch nodes until all of them have been done.

Algorithm 2 shows the frequent path selection based on the built branch FP-
tree. In the branch FP growth function, each node will be recursively searched
by the non-increasing order of its execution frequencies. When more than one
successor has been encountered, we only consider one of the most frequent ones to
be a candidate path at a time. It will continue to be proceeded until the minimal
support of its successors is less than the predefined threshold. The threshold of
the minimal support is set to 25%, which has been proved to be effective in our
approach. In case an infrequent node is executed, we will choose the successor
with the maximum execution frequencies to continue and thus maximize the
coverage and speedup of the whole program.

Algorithm 2. Frequent path selection

INOUT: the root of branch FP-tree, Troot; the value of minimal support, minSupport
OUTPUT: a list of all selected frequent paths, worklist
1: function branch FP growth(Troot)
2: for all Node Tnode in Troot do
3: Path path=path∪Tnode;
4: if Tnode→ support≥minSupport then
5: branch FP growth(Tnode);
6: else
7: Tnode ← the child of Tnode with the maximum execution frequencies;
8: branch FP growth(Tnode);
9: end if
10: worklist=worklist∪path;
11: end for
12: end function

Based on the frequent path selection, lots of procedures are able to select at
least two candidate paths. All these paths are included in the list of worklist
in the non-increasing order of their execution frequencies. Our approach only
focuses on the exploitation of two successive conditional branch nodes. The main
reason is that the deeper the speculation is, the less likely the speculated path will
be executed. Thus, to make an efficient speculation, more alternative paths can
be dynamically parallelized and to some extent reduce such branch misprediction
costs. The overhead of our frequent path selection primarily depends on the
number of branch nodes in the FP-tree, and is simply estimated as O(logn).

3.2 Path-Based Thread Partitioning

In order to partition multiple frequent paths, we propose a path-based thread
partitioning algorithm, which is extended from the single speculative path
selection[13]. It can deal with one procedure at a time. Two critical factors are
needed in this algorithm. One is the degree of inter-thread data dependences,

Combined Static and Dynamic Scheme for Speculative Path Execution 197

both intra- and inter-procedural data dependences are considered in our thread
selection. The other is the thread size, which is used to determine the granular-
ity of a thread and reduce the cost of load imbalance. To create threads on all
frequent paths, each of them will be proceeded due to their order in the worklist.
The more frequent the path is, the more likely it will be chosen to parallelize.

When it comes to the identification of different paths, we name each path with
a unique identification number and it is denoted as Path(procName, beginb id1,
endb id2, length, rank level). The procName indicates where a path belongs
to. Both beginb id1 and endb id2 correspond to the first and last basic blocks
along the path, respectively. The length is the length of a path. The rank level
represents the order of path speculation, which is derived from the worklist. We
attempt to partition all these selected paths from the most frequent one to the
least frequent one within each procedure. The procedure of thread partitioning
is described in Algorithm 3.

Algorithm 3. Path-based thread partitioning algorithm

INOUT: a list of all selected paths, worklist
OUTPUT: a set of all partitioned paths
1: function partition thread(worklist)
2: for all Path path in worklist do
3: /*start block and end block are the beginning and end of Path path, and

curr thread is the position of the current thread*/
4: curr thread=partition subpath(start block,end block,path,curr thread);
5: end for
6: end function

Function partition subpath attempts to generate threads for each path recur-
sively in the top-down manner. For each path, it is always proceeded on the
inputs of the position of the current thread, the path information, as well as
the boundaries of the chosen path. Both the data dependences and thread size
are used to dynamically determine the appropriate position of a thread. Due to
the limitation of length, more details of thread partitioning on the non-region
are discussed in [13]. When a subpath is too large for a thread, the first basic
block of it will be further decided. Otherwise, a smaller subpath will be directly
included into the current thread until it is large enough for a thread. When a
thread is found, it will be attached with the path information to facilitate the
identification of different speculative paths. The overhead of this algorithm is es-
timated as O(logn). Particularly, this algorithm only focuses on branch nodes in
the non-loop region. Because each loop iteration is often considered as a thread,
and thus all branch nodes of the same iteration will be serialized.

3.3 Thread Creation and TLS-Enhancing Optimization

For a thread, it is necessary for the compiler to point out the beginning and end of
the thread before TLS execution. Thus, both spawn point(SP) and control quasi-
independent point(CQIP) are applied in our approach. SP is used to initiate

198 M. Li, Y. Zhao, and Y. Tao

a thread on an idle processor core while CQIP points to where the thread is
ready to execute. To understand the performance impact of different speculative
paths, both SP and CQIP points are annotated with the path information, i.e.,
Thread(path,targetAddr). The path indicates where the thread belongs to while
targetAddr is the target address of instruction execution.

Pre-computation slice(p-slice)[16] is used to reduce the potential of inter-
thread data dependence violation. It is responsible for calculating the live-ins(the
data consumed by the current thread but produced by its predecessors) of a
thread on the assumption that the input values are always correct. All of these
live-ins are inserted at the entry of the thread. To guarantee the correctness of p-
slice, the underlying hardware mechanism can detect and recover those violated
threads from mis-speculation.

4 Runtime Phase

4.1 TLS Execution Model

Our TLS execution model is similar to the out-of-order TLS execution model[17].
Only speculative threads from the same path are allowed to be executed specula-
tively since we devote all processor cores to one path at a time, and are expected
to make an aggressive speculation. All threads are maintained in an immediate
successor(IS) list due to their relative sequential order. The least speculative
thread is the unique non-speculative thread while others are speculative threads.
The relation between two consecutive threads in the list is defined as predecessor
and successor. All speculative states of threads are buffered in the L1 D-cache
using speculative versioning cache(SVC)[21]. In case a control violation occurs,
the violated thread and its successors will be squashed immediately. Otherwise,
the successor will be verified and committed by the non-speculative thread at
the end of execution. Once done, the successor will become the non-speculative
thread to continue.

The main difference between them is that the speculative path in our approach
is further decided by the runtime path prediction. Our approach can explore a
large amount of parallelism even if a branch misprediction occurs. As illustrated
in Fig. 3, we assume the speculative path is shown by the dotted lines. When
a mispredicted branch is encountered on the path A→B, the traditional single
speculative path scheme will suffer from branch misprediction as described in
Fig. 3(a). Thus, the parallel overhead Tpar consists of parallelizing the incorrect
path and serializing the correct path(i.e., Tincorrect path and Tcorrect path), as well
as cycles stalled for the delayed spawnee which isn’t executed by the current
branch but spawned aggressively by one of its successors. But the correct path
can also be parallelized in our approach, such as both the spawn 1 and spawn 2
spawn points. As shown in Fig. 3(b), the execution time of other branches is
also overlapped due to the potential of speculation on the path A→C. Hence the
parallel overhead Tpar is largely reduced.

Combined Static and Dynamic Scheme for Speculative Path Execution 199

A

B C

F

D

G

H

I

L

N

M
J

spawn_2

spawn_4

spawn_5

cqip_1

cqip_5

cqip_4

cqip_3

spawn_3

squash

(a) The single speculative pathspeculative path
control flow

E

K

cqip_2

spawn_1 T p
ar

A

B

C

D

E
F

G
G

H

I

G

H

I

G

H

I

N

T I
nc

or
re

ct
_p

at
h

T c
or

re
ct

_p
at

h

delayed spawnee

D
spawn_1
spawn_2

potential spawnee

T p
ar

A

B

C D E

F

G
G

H

I

G

H

I

G

H
I

ED

T c
or

re
ct

_p
at

h

(b) Our dynamic speculative path scheme

T I
nc

or
re

ct
_p

at
h

D ...

...

...

...

...

...

...

...

N

...

...

Fig. 3. An example of dynamic speculative path execution

4.2 Construction of Dynamic Speculative Path

In the TLS execution, we should dynamically decide the most frequent specu-
lative path for each procedure. Thus, a hardware-based adaptive branch table
is built on each processor core, which is a content-addressable memory(CAM)
indexed by a unique identification number associated with each candidate path.
Each table entry contains two fields: a taken counter, which is incremented if the
chosen speculative path has been proved to be correct and decremented other-
wise. Initially, the information of each candidate path is obtained from frequent
path selection, and it will be dynamically updated by different thread schedul-
ing policies as the number of invocations increases. Another is path performance
summary. It is used to keep track of the performance profiles of all parallelized
paths, i.e., the accumulative differences between the number of successful and
failure threads.

In case of a hard-to-predict branch, this table will be requested for making
a decision for the right speculative path. A decline response will fail to initi-
ate speculative threads from those less frequent speculative paths. Otherwise,
when all threads along the parallelized path have been done, the information
of the chosen path will be updated to the adaptive branch table immediately:
(1) increase or decrease the relative taken counter. (2) summarize the difference
between the successful and failure threads due to dynamic path speculation.

The adaptive branch table can be implemented by software or hardware. The
aim of our approach is to make an aggressive speculation on different paths and
maximize the parallelism of hard-to-predict branches. Thus, the adaptive branch
table is maintained on hardware. Compared to the multi-path execution[22], the

200 M. Li, Y. Zhao, and Y. Tao

overhead of our approach primarily depends on the number of all selected paths,
which has been largely reduced by frequent path selection.

4.3 Speculative Path Prediction and Thread Scheduling

Choosing a path to parallelize, provided that its parallel overhead outweighs
the relative sequential overhead. Due to an out-of-order thread spawn, specu-
lative threads are often spawned more aggressively on the branches. It is hard
to accurately measure the effects of them on the whole program. A simple so-
lution of our approach is to count the number of successful and failure threads
along the parallelized path. When each procedure is proceeded, the information
of the most likely speculative path is obtained from the adaptive branch table.
If a thread is successfully spawned and committed from the chosen speculative
path, it will be considered as a successful thread. Otherwise, in case a thread is
squashed due to branch misprediction, it will be taken as a failure thread. When
the last thread of the path has been committed, the results of these threads
will be updated to the adaptive branch table. It is used to make a decision for
dynamic path selection on the next invocation.

To facilitate thread scheduling, two different policies are included, the latest
effective path selection(LEPS) and the most frequent path selection(MFPS).
The performance of LEPS primarily depends on the latest speculative paths
that have been correctly executed. To doing so, we need to change the way to
count the adaptive branch table. The relative taken counter will be increased
when the speculative path has been proved to be correct and cleared otherwise.
It also indicates that the correctness of the latest speculative paths is treated as
a metric for thread scheduling in LEPS. The larger the relative taken counter is,
the more frequent the path is. But the disadvantage of this approach is that it
is only effective for branches with regular data accesses, and easily affected by
branches that are data-dependent on relatively random data.

However, the most frequent speculative path of MFPS is decided by the quan-
titative evaluation. The accumulative differences between the number of success-
ful and failure threads are used to weigh different speculative paths. Thus, the
path with the maximum value will be considered as the most likely speculative
path. When the value of the chosen path becomes negative, it reveals that exces-
sive mispredicted branches have been executed on the path. In such case, other
frequent paths will be explored instead. This method utilizes the results of all
parallelized paths to decide the next most frequent path. It is more adaptive for
hard-to-predict branches in the speculation.

5 Experimental Results

We have evaluated the effectiveness of our approach using 10 programs from
OLDEN benchmark suite[2], which is often used in Mitosis[16] and SEED[8].
An additional rook, solving the issue of chess placement on the board using
binary tree, is also applied. These benchmarks have been proved to have lots

Combined Static and Dynamic Scheme for Speculative Path Execution 201

Table 1. Processor parameters

parameter value

Fetch/Issue/Commit Width 4/4/4
Integer Units 4 units/1 cycle
Floating Point Units 2 units/ 12 cycles
Private L1-Data/Inst Cache 64KB,4-way,32B
Speculative Buffer Size Fully associated 2KB
Latencies to Remote L1 Data Cache at least 8 cycles
Unified L2 Cache 2MB,4-way,64B
L1/L2/Memory Latencies 1/80/150 cycles
Thread Spawn/Verify/Commit 5/15/5

of complex control flow and data dependences on branches, and are difficult to
be parallelized. The SUIF compiler[3] is responsible for frequent path selection
and path-based thread partitioning on them. Under the code generation, the
generated MIPS assemble code is extended with a set of TLS-specific instructions
to support for our TLS system.

For the simulator, it models a generic speculative multithreading(SpMT) pro-
cessor with four pipelined MIPS-based R3000 processing cores similar to Stan-
ford Hydra[15]. The processor parameters are shown in Table 1. Each core has
its own function units, register file, L1 I-cache, and L1 D-cache. All of them
share a unified L2 cache. The private L1 D-cache is used to maintain the seman-
tics of sequential execution using the SVC coherence protocol[21], which allows
each cache line has multiple different values in the TLS execution, and is able
to identify remote data cache accesses and detect the cross-thread dependence
violation. Our simulator is an execution-driven and executes binaries generated
by the SUIF compiler. The speculative overhead and the costs of the ineffective
speculative path are also included in our experiments.

5.1 Subpath Candidates and Pre-computation

The dynamic speculative path scheme attempts to extract multiple frequent
paths from the hard-to-predict branches. It is common that both two sides of
the same branch node are selected by our frequent path selection. We compare
our approach with the traditional single speculative path selection, which always
assumes that the most frequent path of the whole program consists of the ones
with the highest execution possibility. Figure 4(a) shows that the total number
of all selected paths is relatively smaller in the single speculative path selection,
by contrast, most of procedures are able to extract multiple different paths in
our approach. Particularly, perimeter can find no less than 70 paths from all
branch nodes due to complex control and data dependences.

The average path length is also examined in Fig. 4(b). We simply utilize the
number of branch nodes to estimate the length of a path. Due to the utilization
of FP-growth algorithm, each path is created only if it satisfies the value of the

202 M. Li, Y. Zhao, and Y. Tao

0

15

30

45

60

75
T

ot
al

 C
ou

nt
single path ours

(a) Total count of all frequent paths

0
1
2
3
4
5
6

A
ve

ra
ge

 L
en

gt
h

single path ours

(b) Average length of all frequent paths

Fig. 4. Path information of our frequent path selection

minimum support threshold. Thus, the average length of all frequent paths in
our approach is quite different from that in the single speculative path selec-
tion. Meanwhile, our approach, taking advantage of the relation between branch
nodes, can choose more alternative paths to parallelize when speculative threads
are executed deeply. To some extent, it avoids the branch misprediction penalty
of TLS execution.

To take a detailed analysis of the path-based thread partitioning algorithm,
we divide all created threads into postdominator and non-postdominator two
categories due to the position of thread creation in the CFG. The former cor-
responds to the thread that is executed at the beginning of an immediate post-
dominator of a branch node while the latter will be dynamically speculated in
terms of the outcomes of branches. As described in Table 2, the number of non-
postdominator threads take up a large proportion of all benchmarks. All of them
further dominate the performance of the hard-to-predict branches. Thus, it is
critical for our approach to dynamically determine the best speculative path on
each branch node. Furthermore, it has been proved that hoisting the postdomi-
nator threads aggressively on different paths can reduce the potential of all its
delayed spawnees on the path.

Table 2. Information of thread creation and pre-computation slice

benchmark bh bisort em3d mst perimeter power rook treeadd tsp voronoi

postdominator 11 2 8 13 11 3 9 1 0 5
non-postdominator 36 6 15 24 26 15 19 2 9 20

p-slice 4.3 3.5 4.9 4.2 3.2 3.8 4.2 3.3 3.1 3.2
p-slice(%) 6.6 9.9 12.1 10.8 8.7 6.7 10.3 5.8 9.6 6.1

For the p-slice, it consists of live-ins that are extracted from the predecessor
thread but consumed by the successor thread. The information of p-slice is shown
in Table 2. The average size of p-slice is about 3.77, and the largest p-slice doesn’t
exceed 20% of the whole thread size. It also indicates that the p-slice takes up

Combined Static and Dynamic Scheme for Speculative Path Execution 203

a small proportion of the thread. We are expected to reduce the overhead of
p-slice that comes from those infrequent paths as well.

5.2 Performance of Dynamic Speculative Path Selection

The dynamic speculative path scheme can allow more than one speculative path
to be dynamically chosen to parallelize due to different procedure calls. But
different thread scheduling policies have different effects on overall performance.
Figure 5 shows the overall speedup of both the LEPS and MFPS policies in the
non-loop regions, where all parallelized loops are discarded and serialized. It is
because we are expect to reveal the performance impact of these two policies
on our dynamic speculative path selection. Based on the determination of the
latest speculative path, it is effective for LEPS to find the best speculative path
on some invocations. But it is still hard to handle branch nodes that are data-
dependent on the random data, such as bisort, perimeter and rook, etc.

0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Sp
ee

du
p

LEPS MFPS

Fig. 5. Performance impact of different policies on the non-loop regions

However, the MFPS policy can achieve better performance in most cases due
to the quantitative evaluation of all parallelized paths. The best speculative
path will be always the most frequent one on each invocation. Particularly, mst,
perimeter and rook benefit from the parallelism of the right speculative path
and achieve significant performance gains. But both of LEPS and MFPS always
have the same results for em3d and treeadd. The reason is that most of the exe-
cution time of em3d only focuses on one single speculative path upon the given
input sets, and the performance of treeadd is limited by its recursion structure,
respectively.

Due to the performance impact of different policies, the speedup of the whole
program is also influenced. Figure 6 makes a performance comparison between
the traditional single speculative path selection and our dynamic speculative
path scheme. It is obvious that our approach outperforms the single specula-
tive path selection. Meanwhile, our approach is more efficient since the overhead
of those ineffective paths is largely overlapped when compared to the potential

204 M. Li, Y. Zhao, and Y. Tao

0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

Sp
ee

du
p

single path LEPS MFPS

Fig. 6. Performance comparison between single speculative path selection and dynamic
speculative path scheme

performance brought by LEPS and MFPS. And speculative threads that are
initiated at the immediate post-dominator of the branch node benefit from the
potential of multiple spawn points on all subpaths and are able to make an ag-
gressive speculation in case a branch misprediction occurs. As we can see in Fig.
6, MFPS gains more performance improvements than LEPS, and more success-
ful spawned threads have been done by MFPS. But it is simple for MFPS to use
the accumulative differences between the successful and failure threads to evalu-
ate the dynamic performance of each parallelized path. With more sophisticated
techniques, it is expected to achieve a better performance.

6 Related Work

A great deal of research work has been done on the exploitation of more accurate
branch prediction or the reduction of branch misprediction costs on multi-core
processors. Multiscalar Processors[10] utilize the two-level branch predictor to
improve the accuracy of branch prediction, and it has been proved to be effective
for loop-level speculation. ASTEX[14] introduce the concept of hot paths where
the helper threads are extracted and allocated with a set of frequent execution
traces obtained from gprof profiling tool, and are then in parallel with the main
thread to improve performance. Likewise, the branch misprediction resolved by
[22] is at the cost of parallelizing all possible paths simultaneously on all idle
processor cores when a hard-to-predict branch is encountered.

However, the work in BLP[12] is similar to our work. It attempts to determine
the appropriate spawn points of speculative threads by means of keeping track
of the potential of control and data dependences, and thus can exploit substan-
tial branch-mispredict level parallelism from hard-to-predict branches. But the
differences between them are as follows: (1) We focus on the dynamic specula-
tive path selection where multiple frequent paths are selected greedily from each
branch node, by contrast, only one single speculative path has been resolved in
BLP. (2) The relation between branch nodes maintained in our approach is used
to create multiple different speculative paths. (3) The best speculative path of
our approach is dynamically determined by the runtime performance prediction
while the simple profiler runs are used in BLP.

Combined Static and Dynamic Scheme for Speculative Path Execution 205

In the TLS execution, dynamically identifying the potential of performance
bottlenecks can speed up the whole program execution. [11] utilize a set of
hardware-based programmable performance counters to predict the sequential
execution time of each parallelized loop on each invocation. In case a non-
beneficial loop is found, it will be serialized directly to save execution time.
Otherwise, it will continue to be parallelized instead. Similarly, [8] present two
critical performance counters to dynamically evaluate the parallelism of different
loop nesting levels. To make the cost-performance trade-offs, the best speculative
path is simply determined by means of the accumulative differences between the
successful and failure threads in our approach. Other optimizations for branch
misprediction are also explored in [7] and [18]. Both of them focus on the selective
branch recovery to reduce the branch misprediction costs.

7 Conclusions

We describe a novel dynamic adaptive scheme for TLS execution to exploit
thread-level parallelism from the hard-to-predict branches. The basic idea is to
statically extract multiple frequent paths from the built branch FP-tree using
the modified FP-growth algorithm. All these selected paths are then proceeded
on the path-based thread partitioning to generate speculative threads. In the
process of TLS execution, these partitioned paths are dynamically chosen to
parallelize in terms of their runtime performance profiles obtained from our pre-
diction. Once each parallelized path has been done, the results of our prediction
will be collected and used to decide the best speculative path on the next invoca-
tion. Our preliminary results show that our approach can achieve a comparable
or better performance when compared to the traditional single speculative path
selection. We are also expected to integrate our approach into speculative loop
execution and further improve the overall performance of TLS execution.

References

1. Fp-growth algorithm,
http://en.wikipedia.org/wiki/Association_rule_learning

2. Olden benchmark suite, http://www.cs.preceton.edu/mcc/odlen.html
3. The suif compiler system. suif group, stanford, http://suif.stanford.edu
4. The suif control flow graph library,

http://www.eecs.harvard.edu/hube/softwa-re/v130/cfg.html

5. Bhowmik, A., Franklin, M.: A general compiler framework for speculative multi-
threaded processors. IEEE Transactions on Parallel and Distributed Systems 15(8),
713–724 (2004)

6. Chen, Z., Zhao, Y.-L., Pan, X.-Y., Dong, Z.-Y., Gao, B., Zhong, Z.-W.: An overview
of prophet. In: Hua, A., Chang, S.-L. (eds.) ICA3PP 2009. LNCS, vol. 5574,
pp. 396–407. Springer, Heidelberg (2009)

7. Gandhi, A., Akkary, H., Srinivasan, S.: Reducing branch misprediction penalty via
selective branch recovery. In: Proceedings of the 10th International Symposium on
High Performance Computer Architecture, pp. 254–264. IEEE (2004)

http://en.wikipedia.org/wiki/Association_rule_learning
http://www.cs.preceton.edu/mcc/odlen.html
http://suif.stanford.edu
http://www.eecs.harvard.edu/hube/softwa-re/v130/cfg.html

206 M. Li, Y. Zhao, and Y. Tao

8. Gao, L., Li, L., Xue, J., Yew, P.C.: Seed: A statically greedy and dynamically
adaptive approach for speculative loop execution. IEEE Transactions on Comput-
ers 62(5), 1004–1016 (2013)

9. Iwama, C., Barli, N.D., Sakai, S., Tanaka, H.: Improving conditional branch pre-
diction on speculative multithreading architectures. In: Sakellariou, R., Keane,
J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, pp. 413–417.
Springer, Heidelberg (2001)

10. Jacobson, Q., Bennett, S., Sharma, N., Smith, J.: Control flow speculation in mul-
tiscalar processors. In: Proceedings of the IEEE Symposium on High-Performance
Computer Architecture, pp. 218–229. IEEE, San Antonio (1997)

11. Luo, Y., Packirisamy, V., Hsu, W.C., Zhai, A., Mungre, N., Tarkas, A.: Dynamic
performance tuning for speculative threads. In: Proceedings of the 36th Annual
International Symposium on Computer Architecture, pp. 462–473. ACM, New York
(2009)

12. Malik, K., Agarwal, M., Stone, S., Woley, K., Frank, M.: Branch-mispredict level
parallelism (blp) for control independence. In: IEEE 14th International Symposium
on High Performance Computer Architecture, Lake City, UT, pp. 62–73 (2008)

13. Pan, X., Zhao, Y., Chen, Z., Wang, X., Wei, Y., Du, Y.: A thread partitioning
method for speculative multithreading. In: Proceedings of the International Con-
ference on Scalable Computing and Communications, pp. 285–290. IEEE (2009)

14. Petit, E., Bodin, F., Papaure, G., Dru, F.: Astex: A hot path based thread extractor
for distributed memory system on a chip. In: Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing. ACM, New York (2006)

15. Prabhu, M.K., Olukotun, K.: Using thread-level speculation to simplify manual
parallelization. In: Proceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 1–12. ACM, New York (2003)

16. Quiñones, C.G., Madriles, C., Sánchez, J., Marcuello, P., González, A., Tullsen,
D.M.: Mitosis compiler: An infrastructure for speculative threading based on pre-
computation slices. In: Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 269–279. ACM, New York
(2005)

17. Renau, J., Tuck, J., Liu, W., Ceze, L., Strauss, K., Torrellas, J.: Tasking with out-
of-order spawn in tls chip multiprocessors: Microarchitecture and compilation. In:
Proceedings of the 19th Annual International Conference on Supercomputing, pp.
179–188. ACM, New York (2005)

18. Sarangi, S.R., Torrellas, J., Liu, W., Zhou, Y.: Reslice: Selective re-execution
of long-retired misspeculated instructions using forward slicing. In: Proceedings
of the 38th Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 257–270. IEEE Computer Society, Washington, DC (2005)

19. Sohi, G.S., Breach, S.E., Vijaykumar, T.N.: Multiscalar processors. In: Proceed-
ings of the 22Nd Annual International Symposium on Computer Architecture,
pp. 414–425. ACM, New York (1995)

20. Steffan, J.G., Colohan, C., Zhai, A., Mowry, T.C.: The stampede approach to thread-
level speculation. ACM Transactions Computer Systems 23(3), 253–300 (2005)

21. Vijaykumar, T.N., Gopal, S., Smith, J., Sohi, G.: Speculative versioning cache.
IEEE Transactions on Parallel and Distributed Systems 12(12), 1305–1317 (2001)

22. Xekalakis, P., Cintra, M.: Handling branches in tls systems with multi-path execu-
tion. In: 2010 IEEE 16th International Symposium on High Performance Computer
Architecture, pp. 1–12 (2010)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 207–218, 2014.
© Springer International Publishing Switzerland 2014

A Parallel Algorithm of Kirchhoff Pre-stack Depth
Migration Based on GPU

Yida Wang, Chao Li, Yang Tian, Haihua Yan, Changhai Zhao, and Jianlei Zhang

School of Computer Science and Engineering,
Beihang University,

Beijing, China
lianayizu@gmail.com

Abstract. Kirchhoff pre-stack depth migration (KPSDM) algorithm, as one of
the most widely used migration algorithms, plays an important part in getting
the real image of the earth. However, this program takes considerable time due
to its high computational cost; hence the working efficiency of the oil industry
is affected. The general purpose Graphic Processing Unit (GPU) and the
Compute Unified Device Architecture (CUDA) developed by NVIDIA have
provided a new solution to this problem. In this study, we have proposed a par-
allel algorithm of the Kirchhoff pre-stack depth migration and an optimization
strategy based on the CUDA technology. Our experiments indicate that for
large data computations, the accelerated algorithm achieves a speedup of 8~15
times compared with NVIDIA GPU.

Keywords: Kirchhoff pre-stack depth migration, GPU, CUDA, parallel algo-
rithm, optimization.

1 Introduction

In areas of complex geology, the main goal of earth exploration is to provide the oil
and gas industry with knowledge of the earth’s subsurface structure to detect where
oil can be found and recovered. To do so, large-scale seismic surveys of the earth are
performed, and the data recorded undergoes complex iterative processing to extract a
geological model of the earth. The data is then interpreted by experts to help decide
where to build oil recovery infrastructure [1] [2].

As the most efficient geophysical imaging technique in the oil industry, the 3-D
pre-stack depth migration (PSDM) supports people to understand the deep and com-
plex structure of underground. PSDM is one of the most widely used migration meth-
ods, which has advantages of flexible input and output data, high efficiency, and good
quality of images [4].

However, PSDM is a compute-intensive application. Based on the geological
model, it needs repeatedly modifying the model and multiple iterations. Even on a
cluster with hundreds of high performance CPUs, it may take days or even weeks to
complete the processing and get the final migration image for some practical jobs.

208 Y. Wang et al.

The Kirchhoff PSDM (KPSDM), which is a frequently-used PSDM algorithm, can
be divided into 3 partitions: parameters parsing, travel time calculation, and migra-
tion. Particularly the migration may account for more than 50% of the total processing
time, which is the most time-consuming partition. So it is necessary to accelerate the
migration processing to improve the entire performance of the KPSDM application.

In recent years, driven by the insatiable market demand for real-time, high-
definition 3D graphics, the programmable Graphic Processor Unit (GPU) has evolved
into a highly parallel, multi-threaded, many-core processor with tremendous computa-
tional horsepower and very high memory bandwidth [5]. According to the latest
figures, the theoretical floating-point operations per second for GPU have come to
thousands of GFLOPS while for CPU the number is hundreds of GFLOPS. Because
of its great performance in floating-point operation，GPUs have been used as general
platforms to exploit data-level-parallelism (DLP) for non-graphic applications, which
are known as general purpose GPUs(GPGPUs). Considerable programming models
and runtime environments for GPGPUs have been proposed. Among them, NVidia’s
compute unified device architecture (CUDA) provides a C-like programming model
to leverage the massively parallel processing power of NVidia’s GPUs, and it has
been a mature and widely adopted platform for GPGPU applications[7].

In areas of complex geology，GPUs have been used widely recently, e.g., [6] pro-
vides a new idea based on the GPGPU methodology to reduce the computation time
of the MRF algorithm for ASR image segmentation; [7] demonstrates a method to
accelerate the PKTM algorithm. All these researches have gained ideal performance
improvement. As an SIMT (Single-Instruction, Multiple-Thread) processor, GPU is
suitable for the calculation pattern of the migration partition in the KPSDM because it
is a compute-intensive application and the tasks in migration have little mutual
dependency.

In this study, we propose a new GPU-based KPSDM parallel algorithm
(GKPSDM) and its optimizing strategy using CUDA technology. This paper begins
with an overview of the CUDA technology (§2). We then present the method of the
parallel KPSDM algorithm and its optimizing strategy (§3) followed by the experi-
ments and result analysis (§4). Finally, we discuss the conclusion and future works
(§5).

2 Overview of CUDA

Although GPUs have powerful floating-point operating capability, the general ap-
proach in the early days of GPU computing was extraordinarily convoluted. Because
standard graphics APIs such as Open GL and DirectX were still the only way to inter-
act with a GPU, any attempt to perform arbitrary computations on a GPU would still
be subject to the constraints of programming within a graphics API. This is a tough
progress and the programmers should have knowledge of the OpenGL or DirectX
graphics programming interfaces. To solve these problems, the NVIDIA published
the CUDA release to reduce the programming complexity and make it easier for
programmers to use GPUs for general purpose.

 A Parallel Algorithm

The CUDA architecture
host and the device respec
vides a series of APIs to h
sion between host and dev
memory from the host mem
of CUDA, there is no need

F

CUDA kernels are funct
the CUDA devices, which
GPUs and does not wait fo
work. Although the CUDA
mechanism, CUDA also pro
determine when the kernel o

A CUDA thread is a bas
its own processor with dif
memory environment. A ke
onboard GPU hardware thr
and scheduling, which is tra
ration in the kernel source
kernel and their arrangemen

3 KPSDM Paralle

3.1 KPSDM Theory

The theory of the migration
subsurface can be divided
CELL. Imaging points in t

m of Kirchhoff Pre-stack Depth Migration Based on GPU

e is illustrated in Fig. 1. CPU and GPU are known as
ctively, and each has its own memory space. CUDA p
handle the device memory malloc, free, and data transm
vice. Generally, data should be transmitted to the dev
mory before calculation. But by using the newest releas
to execute the transmitting any more.

Fig. 1. General architecture of CUDA

tions callable from the host that execute asynchronously
means that the host queues a kernel for execution only
or it to finish but rather continues to perform some ot
A kernels cannot return values due to the asynchron
ovides some synchronization interfaces so that the host
or pipeline has completed [8].
sic executing unit on GPU, which acts as if each thread
fferent registers and thread identity that runs in a sha
ernel should utilize many threads to perform the work. T
read scheduler has the responsibility for thread switch
ansparent to the CUDA developers. An execution confi
code defines both the number of threads that will run

ntina1D, 2D or 3D computational grid [9] [10].

el Algorithm

n partition of the KPSDM is illustrated in Fig. 2. The sp
into 3D grid. A mesh on the top surface is defined a

the depth direction are divided into several point chun

209

the
pro-
mis-
vice
se 6

y on
y on
ther

nous
can

has
ared
The
hing
igu-
the

pace
as a
nks.

210 Y. Wang et al.

For each chunk, the travel time from source (TTS) and receiver (TTR) to the end-
points are needed to calculate the total travel time and the interpolation coefficient
which are represented by TM and TA respectively in the program. Finally we use
these parameters to compute the result of all the imaging points.

Fig. 2. The theory of the migration partition of the KPSDM

3.2 Serial Algorithm

Fig. 3 presents the pseudocode of a practical KPSDM program. There are three main
loops: the first one loops over the input traces and calculates the relative parameters
including travel time, trace head, etc. for each trace; the second one loops over the
CELLs and calculate some parameters related to one CELL; the last one loops over
chunks of a CELL, calculates TM, TA and some other parameters for endpoints of
each chunk and then use them to calculate the final image.

 for all input traces do
Calculate relative parameters including travel time,

trace head, etc.;
for all CELLs do

 Calculate relative parameters;
 for all chunks of a CELL do
 Calculate TM, TA and some other parameters;
 Calculate and accumulate the final image result to
the image points;
 end for

end for
end for

Fig. 3. Pseudocode of a serial KPSDM program

 A Parallel Algorithm of Kirchhoff Pre-stack Depth Migration Based on GPU 211

3.3 CUDA Parallel Algorithm

Fig. 4 presents the logic structure of GKPSDM. The first step is to transmit some
parameters which are constant through all the migration progress to the constant
memory of GPU. Next we have a loop of the input traces on the host. Once getting an
input trace, the CPUs will calculate parameters relative to the trace on the host as the
serial program does. Then after transmitting these parameters to the global memories
of GPUs, the GPUs will complete the following computation using 3 CUDA kernels.

Transmit constant parameters to the constant memory;
for all input traces do
Calculate relative parameters including travel time,

trace head, etc.
 Transmit parameters to global memory;

(Executed by GPU)Kernel1: every CUDA thread calculates
parameters relative to one CELL;

(Executed by GPU)Kernel2: every 32 CUDA threads calcu-
late all the TM, TA of one CELL;

(Executed by GPU)Kernel3: every 32 CUDA threads calcu-
late all the image results of one CELL;
}
end for
Copy the imaging result from GPU memory to host memory

Fig. 4. Pseudocode of parallel GKPSDM program

kernel1：In this kernel, every CUDA thread calculates parameters relative to one
CELL and keeps them in the global memory for the later processing. Fig. 5 shows the
threads organization and simplified pseudocode of kernel1. CELLNUM is the number
of CELLs. DP, OS, and OR is parameters that will be used in other kernels.

 dim3 dimBlock_kernel1(NCELL_kernel1)
 dim3 dimGrid_kernel1((CELLNUM + NCELL_kernel1 – 1) /
NCELL_kernel1)

 kernel1(…){
 CellIdx = blockIdx.x * blockDim.x + threadIdx.x
 ……
 DP[CellIdx] = ……
 ……
 OS[CellIdx] = ……
 ……
 OR[CellIdx] = ……
 ……
 }

Fig. 5. Threads organization and pseudocode of kernel1

212 Y. Wang et al.

kernel2：In this kernel, every 32 CUDA threads calculate all the TM, TA of one
CELL. There is an inner loop in which each thread fetches a point every other 32
points. The results are stored in the global memory. The reason why we choose 32
threads to deal with one CELL will be explained in the later optimizing strategy. Fig.
6 demonstrates the threads organization of kernel2 and the simplified pseudocode.

 dim3 dimBlock_kernel2(32,NCELL_kernel2)
 dim3 dimGrid_kernel2((CELLNUM + NCELL_kernel2 – 1) /
NCELL_kernel2)

 kernel2(…){
 CellIdx = blockIdx.x * blockDim.y + threadIdx.y
 ……
 for(L = 0;L < NTAB ; L += blockDim.x) {
 ……
 TM[CellIdx * ntab + L] = ……
 TA[CellIdx * ntab + L] = ……
 ……
 }
 }

Fig. 6. Threads organization and pseudocode of kernel2

kernel3： In this kernel, every 32 CUDA threads calculate all the final image results
of one CELL. There is an inner loop just like the one in the kernel2 in which each
thread fetches a point every other 32 points. The structure of kernel3 is similar with
the one of kernel2, except replacing the TM and TA calculation with the image results
calculation. We don’t show the pseudocode here.

After all input traces have been processed, the imaging result will be copied from
the GPU memory to the host memory for the later processing.

3.4 Optimizing Strategy

Although the preceding parallel program has gained better runtime performance than
the serial program, it has not yet taken full advantage of the GPUs’ compute capabil-
ity. So a series of appropriate optimizing methods are necessary to get further im-
provement.

Based on the GPU architecture and CUDA technology, there are 4 main methods
in our optimizing strategy: processor occupancy, branch divergence, memory access,
and data transmission.

3.4.1 Processor Occupancy
The general NVIDIA GPU architecture is built around a scalable array of multi-
threaded Streaming Multiprocessors (SMs). Each SM contains several Streaming
Processors (SPs). The multiprocessor creates, manages, schedules, and executes

 A Parallel Algorithm of Kirchhoff Pre-stack Depth Migration Based on GPU 213

threads in groups of 32 parallel threads called warps. When a multiprocessor is given
one or more thread blocks to execute, it partitions them into warps and the warp is the
unit of thread scheduling in SMs. Yet there can be more resident warps than SPs in an
SM so the CUDA processors could efficiently execute long-latency operations such as
global memory accesses. When an instruction executed by the threads in a warp must
wait for the result of a previously initiated long-latency operation, the warp is not
selected for execution. Another resident warp that is no longer waiting for results is
selected for execution. If more than one warp is ready for execution, a priority mech-
anism is used to select one for execution. With enough warps around, the hardware
will likely find a warp to execute at any point in time, thus making full use of the
execution hardware in spite of these long-latency operations.

Each CUDA device offers a limited amount of CUDA memory, which limits the
number of threads that can simultaneously reside in the streaming multiprocessors for
a given application. In general, the more memory locations each thread requires, the
fewer the number of threads that can reside in each SM and thus the fewer number of
threads that can reside in the entire processor. So it is very important to reduce the use
of memory units to improve the processor occupancy.

In our GKPSDM parallel program, the main pullback is the number of registers.
The 3 kernels consume more than 60 registers, and consequently, only 30 percent
of the threads can reside in the processors. Then we found that the actual parameters
including many pointers in the parameter list take up a considerable number of
registers.

In this paper, the optimizing method is transmitting these parameters to the con-
stant memory before the kernel invocation. As the constant memory can also be
accessed fast, the accessing delay will not increase much. After this, the number of
registers used by the 3 kernels all decrease to less than 40, causing more than 60 per-
cent of the threads to reside in the processors, and an improvement of performance
can be achieved accordingly.

3.4.2 Branch Divergence
In the CUDA architecture, the hardware executes an instruction for all threads in the
same warp, before moving to the next instruction. It works well when all threads
within a warp follow the same control flow path when working their data. For exam-
ple, for an if–then–else construct, the execution works well when either all threads
execute the then part or all execute the else part. When threads within a warp take
different control flow paths, the simple execution style no longer works well. In our
if–then–else example, when some threads execute the then part and others execute the
else part, the SIMT execution style no longer works well. In these situations, the exe-
cution of the warp will require multiple passes through these divergent paths. One
pass will be needed for those threads that follow the then part and another pass for
those that follow the else part. These passes are sequential to each other, thus adding
to the execution time.

Fig.7 demonstrates some codes in the GKPSDM parallel program. There are two
if-then-else constructs in which a branch divergence will cause considerable perfor-
mance degradation.

214 Y. Wang et al.

if (TTS >= -8.888f && TTR >= -8.888f) {
 TM1 = … + TTS;
 RTMP1 = … + TTR;
 TM = TM1 + RTMP1 + …;
}
else {

TM = 0;
}
……
if (TM > RKP1) {……}
else {……}

Fig. 7. Code with branch divergence

In this paper, as shown in Fig.8, we remove the if-then-else construct by setting a
special value at the invalid position (in our program, -99999 is appropriate), which
will make TM an invalid value accordingly. So after analyzing the second if-then-else
construct, we will get the same result as the original program. Although the calcula-
tion increases, the overall performance of the program benefits from the reduction of
branch divergence.

Set -99999 at the invalid position of TTS and TTR;
TM1 = … + TTS; //TM1 is invalid because of TTS
RTMP1 = … + TTR;
TM = TM1 + RTMP1 + …;
……
if (TM > RKP1) {……}
else {……}

Fig. 8. Code after optimizing

3.4.3 Memory Access
Although GPUs have strong computing power, the memory access, especially the
global memory access, is not fast enough to match up with the computation and often
becomes the bottleneck of a CUDA program. Therefore, making memory optimiza-
tion has always been the most important portion of the optimizing process.

In the GKPSDM program we mainly focus on the global memory access. Perhaps
the single most important performance consideration in programming for the CUDA
architecture is coalescing global memory accesses. Global memory loads and stores
by threads of a half warp (for devices of compute capability 1.x) or of a warp (for
devices of compute capability 2.x) are coalesced by the device into as few as one
transaction when certain access requirements are met.

Global memory should be viewed in terms of aligned segments of 16 and 32
words. If the addresses fall within a 128-byte segment, then a single 128-byte transac-
tion is performed. Otherwise, if a half warp accesses memory split across two 128-
byte segments, then two transactions are performed and access time is doubled as a
result.

 A Parallel Algorithm of Kirchhoff Pre-stack Depth Migration Based on GPU 215

In our early program version, in kernel2 and kernel3, every one thread is in charge
of one CELL. The pseudocode of kernel2_old is present in Fig.9. As the number of
CELLs is big enough so the occupancy of GPU processors are not decreased and the
program structure is simplified. But the travel time table is organized with the CELLs
index, none of the threads’ memory access fall within a 128-byte segment, as shown
in Fig.10. Then we modified the program and used 32 threads to manage a CELL
(Fig.6), so that threads in a warp could fetch the data in the global memory in an effi-
cient way. Fig.11 demonstrates the coalescing memory access after the optimization.

 dim3 dimBlock_kernel2(NCELL_kernel2)
 dim3 dimGrid_kernel2((CELLNUM + NCELL_kernel2 – 1) /
NCELL_kernel2)

 kernel2_old(…){
 CellIdx = blockIdx.x * blockDim.x + threadIdx.x
 ……
 for(L = 0;L < NTAB ; L ++) {
 ……
 TM[CellIdx * ntab + L] = ……
 TA[CellIdx * ntab + L] = ……
 ……
 }
 }

Fig. 9. Threads organization and pseudocode of kernel2_old

Fig. 10. No coalescing memory access

Fig. 11. Coalescing memory access after the optimization

216 Y. Wang et al.

3.4.4 Data Transmission
We use CUDA release 4.2 in our program, so before invoking the kernels on GPUs,
data needed for the computation should be transmitted from the host memory to the
device memory. Because of the limited PCIe bandwidth, the transmission may cost
much time in a job with a huge amount of data.

The method we use in this paper to handle this pullback includes two aspects: us-
ing the CUDA stream and using the pinned memory. A stream is a sequence of com-
mands that execute in order. Different streams, on the other hand, may execute their
commands out of order with respect to one another or concurrently. Using the CUDA
stream with the asynchronous transmitting functions enables the overlap of data trans-
fers with computation.

Using pinned memory, we could attain the highest bandwidth between the host and
the device. But pinned memory should not be overused. Excessive use can reduce
overall system performance because pinned memory is a scarce resource.

4 Experiments Result and Analysis

We implemented the practical GKPSDM program on NVIDIA Tesla C2050 GPUs,
which have more than 2G GPU memory and 448 cores. The host has an Intel’s i7 3G
CPU with 12G host memory. We have two kinds of contrast experiment to measure
the optimizing effectiveness and the speedup of the GKPSDM to the serial KPSDM
respectively.

In the first contrast experiment, we use four optimizing methods mentioned above
in sequence. Each optimizing method is on the basis of the previous one. For a practi-
cal job with 10000 traces and 500 CELLs, the results are demonstrated in Fig. 12. The
original GKPSDM program has a speedup of about 6 times. After a series of optimiz-
ing, the final GKPSDM program is 14 times faster than the serial KPSDM program.

Fig. 12. Performance with different optimizing methods

In the second experiment, we use four different practical jobs with 1000 CELLs
and different number of trace to measure the performance with a variety of data vol-
ume. Fig.13 demonstrates the speedup times to the serial program. The speedup seems

72.201

10.228 9.613 6.353 5.668 4.743
0

20
40
60
80

Ti
m

e(
s)

Optimizing method

 A Parallel Algorithm of Kirchhoff Pre-stack Depth Migration Based on GPU 217

to be limited before the number of trace has come to a high level. That is because with
less data, the data transmission and kernel invocation take up a large percentage of the
executing time. But when sufficient data is available, these problems seem to be neg-
ligible. The speedup could come to and remain stable at high level. As in practical
jobs, there can be billions of traces, the performance is acceptable. For different
jobs, the speedup can be 8~15 times.

Fig. 13. Performance of GKPSDM program with 4 jobs

5 Conclusion and Future Work

In this paper, we introduce a GPGPU solution for a practical KPSDM algorithm. We
present a parallel algorithm and optimizing strategy. Experiments have shown that with
GPGPU and CUDA technology we can achieve an acceptable speedup (8 ~15 times).
Moreover, the GPUs have several features that we should pay attention to when opti-
mizing a CUDA program, including processor occupancy, branch divergence, memory
access, and data transmission.

Although our GKPSDM program has increased the speed of KPSDM, much work
remains to be done.

• There are still some optimizing methods that haven’t been used in our program,
like shared memory, texture memory, etc.

• Some practical jobs have too much data in the travel time table, causing the data
transmission to GPU memory to become the bottleneck of the program. An effi-
cient compressing algorithm is imperative.

• Much work can be done by integrating multi-cores CPU and GPUs to avoid
wasting any computation resource.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

10 100 500 1000 10000 50000

sp
ee

du
p(

ti
m

es
)

Traces

Performance of GKPSDM program

Job 1

Job 2

Job 3

Job 4

218 Y. Wang et al.

References

1. Deschizeaux, B., Blanc, J.Y.: Imaging Earth’s Subsurface Using CUDA,
http://developer.download.nvidia.com/books/gpu_gems_3/
samples/gems3_ch38.pdf

2. Sun, Y., Qin, F., Checkles, S., Leveille, J.P.: 3-D prestack Kirchhoff beam migration for
depth imaging. Geophysics 65, 1592–1603 (2000)

3. Li, J.J., Dan, H., Lin, Y.: Partitioning Algorithm of 3-D Prestack Parallel Kirchhoff Depth
Migration for Imaging Spaces. In: Eighth International Conference on Grid and Coopera-
tive Computing 2009. IEEE (2009)

4. Xu, S., Lambar, G.: True amplitude Kirchhoff pre-stack depth migration in complex me-
dia. Chinese J. Geophys. 49(5), 1434–1444 (2006)

5. NVIDIA CUDA C Programming Guide,
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

6. Sui, H.G., Peng, F.F., Xu, C., et al.: GPU-accelerated MRF segmentation algorithm for
SAR images. Computers & Geosciences 43, 159–166 (2012)

7. Shi, X.H., Li, C., Wang, S.H., et al.: Computing prestack Kirchhoff time migration on
general purpose GPU. Computers & Geosciences 37(10), 1702–1710 (2011)

8. Huang, T., Li, X., Zhang, T., et al.: GPU-accelerated Direct Sampling method for multiple-
point statistical simulation. Computers & Geosciences 57, 13–23 (2013)

9. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose GPU
Programming (2010)

10. Kirk, D.B., Hwu, W.: Programming Massively Parallel Processors: A Hands-on Approach
(2010)

An Algorithm to Embed a Family

of Node-Disjoint 3D Meshes
into Locally Twisted Cubes

Lantao You1 and Yuejuan Han2

1 Suzhou Industrial Park Institute Of Services Outsourcing,
2 Center of Information Development and Management, Soochow University,

Suzhou 215000, China
yoult@siso.edu.cn

Abstract. In this paper, embeddings of a family of 3D meshes in locally
twisted cubes are studied. Let LTQn(V,E) denotes the n-dimensional
locally twisted cube. We find two major results in this paper:(1) For any
integer n ≥ 4, two node-disjoint 3D meshes of size 2 × 2 × 2n−3 can be
embedded into LTQn with dilation 1 and expansion 2. (2) For any integer
n ≥ 6, four node-disjoint 4×2×2n−5 meshes can be embedded into LTQn

with dilation 1 and expansion 4. Further, an embedding algorithm can
be constructed based on our embedding method.The obtained results are
optimal in the sense that the dilations of the embeddings are 1.

Keywords: Interconnection networks, locally twisted cube, 3D mesh,
embedding, parallel computing.

1 Introduction

An interconnection network can be represented by a graph G = (V,E), where V
represents the node set and E represents the edge set. One of the important prop-
erties of interconnection networks is graph embedding ability. Graph embedding
problem is to embed a gust graph G1 to a host graph G2. Two common measures
of effectiveness of an embedding are the dilation and expansion. The dilation of
embedding ψ is defined as dil(G1, G2, ψ) = max{dist(G2, ψ(u), ψ(v))|(u, v) ∈
E1}, where dist(G2, ψ(u), ψ(v)) denotes the distance between the two nodes
ψ(u) and ψ(v) in G2. The smaller the dilation of an embedding is, the shorter
the communication delay that the graph G2 simulates the graph G1. The ex-
pansion of embedding is defined as exp(G1, G2, ψ) = |V (G2)|/|V (G1)|, which
measures the processor utilization. The smaller the expansion of an embedding
is, the more efficient the processor utilization that the graph G2 simulates the
graph G1. Graph embedding has good applications in transplanting parallel al-
gorithms developed for one network to a different one, and allocating concurrent
processes to processors in the network. Paths[5],[6],[7] and cycles[1],[2],[21] are
two common fundamental guest graphs used in interconnection network.

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 219–230, 2014.
c© Springer International Publishing Switzerland 2014

220 L. You and Y. Han

Meshes are common interconnection structures used in parallel computing.
Many parallel algorithms with mesh-structured task graphs have been devel-
oped. Therefore, it is important to study the problem of how to embed different
kinds of meshes into a host graph. Recently, many mesh embedding problems
[3],[4],[12],[13],[15],[17] have been studied.

The locally twisted cube LTQn is a variant of hypercube, proposed by Yang
et al. [16]. It has many attractive features superior to those of the hypercube,
such as the diameter is only about half of that of Qn. Recently, locally twisted
cubes were discussed widely [8],[9],[10],[11],[14],[18],[19],[20].

In this paper, embeddings of node-disjoint 3D meshes in locally twisted cubes
are studied. We find two major results in this paper: (1) For any integer n ≥ 4,
two node-disjoint 3D meshes of size 2 × 2 × 2n−3 can be embedded in LTQn

with dilation 1 and expansion 2. (2) For any integer n ≥ 6, four node-disjoint
4 × 2 × 2n−5 meshes can be embedded in LTQn with dilation 1 and expansion
4.

This paper is organized as follows. Section 2 gives some definitions and nota-
tions. We provide constructing proofs of the results in Section 3 and Section 4.
At last, we conclude the paper in Section 5.

2 Preliminaries

Notation 1. An r × s mesh M can be denoted by an r × s matrix⎛
⎜⎜⎝

α11 α12 ... α1s

α21 α22 ... α2s

...
αr1 αr2 ... αrs

⎞
⎟⎟⎠

where V (M) = {αij |1 ≤ i ≤ r, and 1 ≤ j ≤ s}, (αij , αi,j+1) ∈ E(M) for
1 ≤ i ≤ r and 1 ≤ j ≤ s − 1, and (αkl, αk+1,l) ∈ E(M) for 1 ≤ k ≤ r − 1 and
1 ≤ l ≤ s. 〈α11, α12, ...α1s〉 and 〈αr1, αr1, ..., αrs〉 are called the row-borders.

If M can be embedded into LTQn and (α11, αr1), (α12, αr2), ..., (α1s, αrs) ∈
E(LTQn), we call the row-borders of M are edge-connected.

Notation 2[3]. A 2D mesh M = (ai,j)m×n of size m × n is defined as a graph
G, where

V (G) = {ai,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n},
E(G) = {(ai,j , ai+1,j) : 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n}⋃{(ai,j , ai,j+1) : 1 ≤ i ≤

m, 1 ≤ j ≤ n− 1}.
A 3D mesh Mk = (ai,j,k)m×n of size m×n× p is defined as a graph G, where
V (G) = {ai,j,k : 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p}
E(G) = {(ai,j,k, ai+1,j,k) : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n, 1 ≤ k ≤ p}⋃{(ai,j,k, ai,j+1,k) : 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1, 1 ≤ k ≤ p}⋃{(ai,j,k, ai,j,k+1) : 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p− 1}.
For any integer k with 1 ≤ k ≤ p, let Gk denote a 2D mesh of size m × n

defined as
V (Gk) = {ai,j,k : 1 ≤ i ≤ m, 1 ≤ j ≤ n},
E(Gk) = {(ai,j,k, ai+1,j,k) : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n}

An Algorithm to Embed a Family of Node-Disjoint 3D Meshes 221

⋃{(ai,j,k, ai,j+1,k) : 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1},
Thus, the 3D mesh can be denoted by the blocked matrix M =

(M1 M2 ... Mp).

Notation 3. A binary string x of length n is denoted by x1x2...xn−1xn, where
x1 is the most significant bit and xn is the least significant bit. The ith bit xi of
x can also be written as bit(x,i). Suppose that z is a binary string. zi denotes the
new binary string by repeating z string i times. If i = 0, zi denotes the empty
set. For a binary string s and a matrix Z = (zi,j)m×n with binary-string entries,
let sZ denote the matrix (szi,j)m×n , where szi,j is the concatenation of s and
zi,j .

Notation 4. For any blocked matrix M = (M1 M2 ... Mn), we use
←→
M to

denote (Mn Mn−1 ... M1).
Similar to the n-dimensional hypercube, the n-dimensional locally twisted

cube LTQn is an n-regular graph of 2n nodes. Every node of LTQn is identified
by a unique binary string of length n. LTQn can be recursively defined as follows.

Definition 1 [16]. Let n ≥ 2. The n-dimensional locally twisted cube, LTQn,
is defined recursively as follows.

(1) LTQ2 is a graph consisting of four nodes labeled with 00, 01, 10, and 11,
respectively, connected by four edges (00, 01), (00, 10), (01, 11) and (10, 11).

(2) For n ≥ 3, LTQn is built from two disjoint copies LTQn−1 according to the
following steps. Let LTQ0

n−1 denote the graph obtained by prefixing the label of
each node of one copy of LTQn−1 with 0, let LTQ1

n−1 denote the graph obtained
by prefixing the label of each node of the other copy of LTQn−1 with 1, and
connect each node x = 0x2x3...xn of LTQ0

n−1 with the node 1(x2 + xn)x3...xn

of LTQ1
n−1 by an edge, where ′+′ represents the modulo 2 addition.

Figure 1 and Figure 2 demonstrate LTQ3, LTQ4 and LTQ5, respectively.

Fig. 1. (a) LTQ3; (b) LTQ4

3 Embedding Two Node-Disjoint 2 × 2 × 2n−3 Meshes
into the n-Dimensional Locally Twisted Cubes

In this section, we discuss the 2×2×2n−3 mesh embedding in the n-dimensional
locally twisted cubes by induction on the dimensional n. We use Mn

1 ,M
n
2 to

222 L. You and Y. Han

Fig. 2. 5-dimensional locally twisted cube LTQ5

denote the two node-disjoint meshes of size 2 × 2 × 2n−3 in LTQn. For any
integer n ∈ {4, 5}, by Definition 1, we can easily verify lemmas 1, 2 as follows.
To express clearly, we let

A =

(
0000 1000
0100 1100

)
B =

(
0010 1010
0110 1110

)

C =

(
0001 1101
0111 1011

)
D =

(
0011 1111
0101 1001

)

C′ =
(
1011 0111
1101 0001

)
D′ =

(
1001 0101
1111 0011

)
.

C′ is another expression of C, while D′ is another expression of D.
Let M τ−1 be the mesh which can be embedded into LTQτ−1, if

0M τ−1 =

((
α11 α12

α21 α22

)
...

(
β11 β12

β21 β22

))

1M τ−1 =

((
γ11 γ12
γ21 γ22

)
...

(
δ11 δ12
δ21 δ22

))
,

and if

(β11, γ11), (β12, γ12), (β21, γ21), (β22, γ22) ∈ E(LTQτ),

then we say

(
β11 β12

β21 β22

)
,

(
γ11 γ12
γ21 γ22

)
are edge-connected and

An Algorithm to Embed a Family of Node-Disjoint 3D Meshes 223

M τ = 0M τ−1 + 1M τ−1=

((
α11 α12

α21 α22

)
...

(
β11 β12

β21 β22

)(
γ11 γ12
γ21 γ22

)
...

(
δ11 δ12
δ21 δ22

))
,

which can be embedded into LTQτ .

Lemma 1. There are two node-disjoint 3D meshes of size 2× 2× 2 in LTQ4.

Proof. Obviously,
M4

1 =
(
A B

)
and M4

2 =
(
C D

)
are two 2× 2× 2 meshes in LTQ4 (See Fig. 3). �

Fig. 3. (a) 3D mesh M4
1 ; (b) 3D mesh M4

2

Lemma 2. There are two node-disjoint 3D meshes of size 2× 2× 4 in LTQ5.

Proof. Obviously,
M5

1 =
(
0A 0B 1B 1A

)
and M5

2 =
(
0C 0D 1C′ 1D′)

are two node-disjoint 2×2×4 meshes in LTQ5(See Fig. 4, Fig. 5). By Definition
1, 1D′ and 0C are edge-connected. Thus, (0D′ 1C 1D 0C′) can also be
embedded into LTQ5, whose node set is the same of that of M5

2 (See Fig. 5) . �

Fig. 4. 3D mesh M5
1 of size 2× 2× 4 in LTQ5

Lemma 3. There are two node-disjoint 3D meshes of size 2× 2× 8 in LTQ6.

Proof. By Lemma 2, LTQ5 admits as subgraph the 3D mesh M5
1 = (0A 0B

1B 1A). Thus, LTQ0
5 admits as a subgraph the 3D mesh (00A 00B 01B 01A),

224 L. You and Y. Han

Fig. 5. 3D mesh M5
2 of size 2× 2× 4 in LTQ5

and LTQ1
5 admits as a subgraph the 3D mesh (10A 10B 11B 11A). By

Definition 1, it is easy to verify that 01A, 11A are edge-connected. Thus, M6
1 =

(00A 00B 01B 01A 11A 11B 10B 10A) is a 2 × 2 × 8 mesh which can be
embedded into LTQ6.

Similarly, by the proof of Lemma 2, LTQ5 admits as subgraph the 3D mesh
(0C 0D 1C′ 1D′) and (0D′ 1C 1D 0C′). Thus, LTQ0

5 admits as a subgraph
the 3D mesh (00C 00D 01C′ 01D′), and LTQ1

5 admits as a subgraph the 3D
mesh (10D′ 11C 11D 10C′). By Definition 1, it is easy to verify that 01D′, 10D′

are edge-connected. Thus, M6
2 = (00C 00D 01C′ 01D′ 10D′ 11C 11D 10C′)

is a 2× 2× 8 mesh which can be embedded into LTQ6.
Therefore, M6

1 and M6
2 are two 2 × 2 × 8 meshes in LTQ6. It can be easily

verified they are node-disjoint. �
Then, we will prove two main lemmas in the following.

Lemma 4. For any integer n with n ≥ 7, the meshes of size 2 × 2 × 2n−3 can
be embedded into LTQn with dilation 1. Mn

1 = (M1,M2,M3, ...M2n−3), where
the least significant bits of all nodes are 0. M1 = 0n−4A, M2n−3 = 10n−5A.

Proof. We prove this lemma by induction on the dimension n. By Lemmas 1,
2 and 3, this lemma holds when n=4, 5 and 6. Supposing that the lemma holds
for n = τ − 1 (τ ≥ 7), we will prove that the lemma holds for n = τ .

According to the induction hypothesis. For any integer n ≥ 6, in LTQτ−1, we
have

M τ−1
1 = (M1 M2 M3 ... M2τ−4) of size 2 × 2 × 2τ−4 such that the least

significant bits of all nodes are 0. M1 = 0τ−5A, M2τ−4 = 10τ−6A.
In LTQ0

τ−1, we have (0M1 0M2 0M3 ... 0M2τ−4). In LTQ1
τ−1, we

have (1M2τ−4 , ..., 1M2, 1M1). Note that the least significant bits are 0, by Def-
inition 1, 0M2τ−4, 1M2τ−4 are edge-connected. Therefore, we have M τ

1 =
(0M1 0M2 0M3 ... 0M2τ−4 1M2τ−4 ... 1M2 1M1) of size 2× 2× 2τ−3 can
be embedded into LTQτ , where 0M1 = 0τ−4A and 1M1 = 10τ−5A. Thus, the
lemma holds for n = τ . �
Lemma 5. For n ≥ 7, meshes of size 2× 2× 2n−3 can be embedded into LTQn.
Mn

2 = (M1 M2 M3 ... M2n−3), Nn
2 = (N1 N2 N3 ... N2n−3), where the

An Algorithm to Embed a Family of Node-Disjoint 3D Meshes 225

least significant bits of all nodes are 1. And Nn
2 uses exactly the same nodes of

Mn
2 . M1 = 0n−4C, M2n−3 = 110n−6C, N1 = 010n−6C, N2n−3 = 100n−6C.

Proof. We prove this lemma by induction on the dimensional n. By Lemma 3,
M6

2 = (00C 00D 01C′ 01D′ 10D′ 11C 11D 10C′) is a 3D mesh which can be
embedded into LTQ6. We can easily verify that (M6

2)
′ = (00C′ 00D′ 01C 01D

10D 11C′ 11D′ 10C) is another expression of M6
2 . And by Definition 1, 010C′,

100C′ are edge-connected, and 000C′, 110C′ are edge-connected. Thus,
M7

2 = 0M6
2+1(M6

2)
′ = (000C 000D 001C′ 001D′ 010D′ 011C 011D 010C′

100C′ 100D′ 101C 101D 110D 111C′ 111D′ 110C)

N7
2 = 0(

←−→
M6

2)
′+1

←→
M6

2 = (010C 011D′ 011C′ 010D 001D 001C 000D′ 000C′

110C′ 111D 111C 110D′ 101D′ 101C′ 100D 100C)
are two 2× 2× 24 meshes which can be embedded into LTQ7 using the same

nodes.
By Definition 1, 0110C, 1010C are edge-connected and 0010C, 1110C are also

edge-connected. Thus,
M8

2 = 0M7
2 + 1N7

2 = (0000C 0000D 0001C′ 0001D′ ... 1101D′ 1101C′

1100D 1100C)

N8
2 = 0

←→
N7

2 + 1
←→
M7

2 = (0100C 0100D 0101C′ 0101D′ ... 1001D′ 1001C′

1000D 1000C) are two 2× 2× 25 meshes which can be embedded into LTQ8.
Thus, the lemma holds for n=7, 8.
Supposing that the lemma holds for n = τ − 1 (τ ≥ 8), we will prove that the

lemma holds for n = τ .
According to the induction of hypothesis. For any integer n ≥ 6, for LTQτ−1,

we have
M τ−1

2 = (M1 M2 M3 ...M2τ−4), N τ−1
2 = (N1 N2 N3 ...N2τ−4), where the

least significant bits of all nodes are 1. And N τ−1
2 uses exactly the same nodes

in M τ−1
2 . M1 = 0τ−5C, M2τ−4 = 110τ−7C, N1 = 010τ−7C, N2τ−4 = 100τ−7C.

For LTQ0
τ−1, we have 0M τ−1

2 = (00τ−5C ... 0110τ−7C), 0N τ−1
2 =

(0010τ−7C ... 0100τ−7C), where the least significant bits of all nodes are 1.
For LTQ1

τ−1, we have 1M
τ−1
2 = (10τ−5C ... 1110τ−7C), 1N τ−1

2 = (1010τ−7C
... 1100τ−7C), where the least significant bits of all nodes are 1.

By Definition 1, 0110τ−7C,1010τ−7C are edge-connected. Therefore, we have
M τ

2 = 0M τ−1
2 +1N τ−1

2 = (0τ−4C ... 0110τ−7C 1010τ−7C ... 110τ−6C) can be
embedded into LTQτ . Similarly, by Definition 1, 0010τ−7C,1110τ−7C are edge-

connected. Thus, we have N τ
2 = 0

←→
N τ−1

2 + 1
←→
M τ−1

2 = (010τ−6C ... 0010τ−7C
1110τ−7C ... 10τ−5C) can be embedded into LTQτ .

Therefore, Mn
2 = (M1 M2 M3 ...M2n−3) = (0n−4C ... 110n−6C) is a

2× 2× 2n−3 mesh in LTQn, where the significant bits of all nodes are 1. �
Based on these lemmas, we prove one result in this paper as follows.

Theorem 1. For any integer n ≥ 4, there is two node-disjoint 3D meshes of size
2× 2× 2n−3 in LTQn.

Proof. By Lemma 1, 2, 3, 4, 5, there are two 2× 2× 2n−3 meshes Mn
1 and Mn

2

in LTQn for any n ≥ 4, such that bit(x,n)=0 for all x ∈ V (Mn
1) and bit(y,n)=1

226 L. You and Y. Han

for all y ∈ V (Mn
2). As a result, V (Mn

1)
⋂
V (Mn

2) = ∅. Therefore, the theorem
holds. �

According to Theorem 1, we have the following corollary.

Corollary 1. For any integer n ≥ 4, two node-disjoint 2 × 2 × 2n−3 meshes
can be embedded with dilation 1 and expansion 2 in LTQn, such that these two
meshes cover all nodes of LTQn.

4 Embedding Four 4 × 2 × 2n−5 Meshes into the
n-Dimensional Locally Twisted Cubes

In this section, the 4 × 2 × 2n−5 mesh embedding in the n-dimensional locally
twisted cube is studied. Similar to the 2× 2× 2n−3 mesh embedding in the last
section, the method adopted is still by induction on n. We use Mn

1 ,M
n
2 ,M

n
3 ,M

n
4

to denote the four node-disjoint meshes of size 4× 2× 2n−5 in LTQn.
To express clearly, we let

A =

⎛
⎜⎜⎝

000100 000000
010100 010000
110100 110000
100100 100000

⎞
⎟⎟⎠ B =

⎛
⎜⎜⎝

000110 000010
010110 010010
110110 110010
100110 100010

⎞
⎟⎟⎠

C =

⎛
⎜⎜⎝

001110 001010
011110 011010
111110 111010
101110 101010

⎞
⎟⎟⎠ D =

⎛
⎜⎜⎝

001100 001000
011100 011000
111100 111000
101100 101000

⎞
⎟⎟⎠

E =

⎛
⎜⎜⎝

000111 000001
011111 011001
101111 101001
110111 110001

⎞
⎟⎟⎠ F =

⎛
⎜⎜⎝

000101 000011
011101 011011
101101 101011
110101 110011

⎞
⎟⎟⎠

G =

⎛
⎜⎜⎝

100101 100011
111101 111011
001101 001011
010101 010011

⎞
⎟⎟⎠ H =

⎛
⎜⎜⎝

100111 100001
111111 111001
001111 001001
010111 010001

⎞
⎟⎟⎠,

where A,B,C,D use the nodes labeled by strings ended with 0 and E,F,G,H
use the nodes labeled by strings ended with 1. And we can easily verify that
A,B,C,D,E, F,G,H use exactly all the 64 nodes in LTQ6.

Let M τ−1 be the mesh which can be embedded into LTQτ−1, if 0M
τ−1 =⎛

⎜⎜⎝
⎛
⎜⎜⎝

α11 α12

α21 α22

α31 α32

α41 α42

⎞
⎟⎟⎠ ...

⎛
⎜⎜⎝

α13 α14

α23 α24

α33 α34

α43 α44

⎞
⎟⎟⎠
⎞
⎟⎟⎠ , 1M τ−1 =

⎛
⎜⎜⎝
⎛
⎜⎜⎝

β11 β12

β21 β22

β31 β32

β41 β42

⎞
⎟⎟⎠ ...

⎛
⎜⎜⎝

β13 β14

β23 β24

β33 β34

β43 β44

⎞
⎟⎟⎠
⎞
⎟⎟⎠,

and (α13, β11), (α23, β21), (α33, β31), (α43, β41), (α14, β12), (α24, β22), (α34, β32),

(α44, β42) ∈ LTQτ , we say

⎛
⎜⎜⎝

α13 α14

α23 α24

α33 α34

α43 α44

⎞
⎟⎟⎠
⎛
⎜⎜⎝

β11 β12

β21 β22

β31 β32

β41 β42

⎞
⎟⎟⎠ are edge-connected. Thus,

An Algorithm to Embed a Family of Node-Disjoint 3D Meshes 227

Mτ =0Mτ−1+1Mτ−1 =

⎛
⎜⎜⎝
⎛
⎜⎜⎝

α11 α12

α21 α22

α31 α32

α41 α42

⎞
⎟⎟⎠ ...

⎛
⎜⎜⎝

α13 α14

α23 α24

α33 α34

α43 α44

⎞
⎟⎟⎠

⎛
⎜⎜⎝

β11 β12

β21 β22

β31 β32

β41 β42

⎞
⎟⎟⎠ ...

⎛
⎜⎜⎝

β13 β14

β23 β24

β33 β34

β43 β44

⎞
⎟⎟⎠
⎞
⎟⎟⎠,

which can be embedded into LTQτ .
According to Definition 1, we can easily verify the following lemmas.

Lemma 6
M6

1 =
(
A B

)
, M6

2 =
(
C D

)
, M6

3 =
(
E F

)
and M6

4 =
(
G H

)
are four 4× 2× 2 meshes in LTQ6 using different nodes(See Fig. 6).

Lemma 7. By Definition 1, we can easily verify that
M7

1 =
(
0A 0B 1B 1A

)
M7

2 =
(
0C 0D 1D 1C

)
M7

3 =
(
0E 0F 1G 1H

)
M7

4 =
(
1E 1F 0G 0H

)
are four 4× 2× 4 meshes in LTQ7 using different nodes (See Fig. 7).

Fig. 6. 3D mesh M6
1 of size 4× 2× 2 in LTQ6

Lemma 8. For n ≥ 8, meshes of size 4× 2× 2n−5 can be embedded into LTQn.
Mn

1 = (00n−7A ... 10n−7A) = (M1 M2 M3 ... M2n−5), where the least
significant bits of all nodes are 0.

Proof. We prove this lemma by induction on the dimensional n. By Lemma 7,
we know that M7

1 =
(
0A 0B 1B 1A

)
is a 3D mesh of size 4 × 2 × 22 in LTQ7.

By Definition 1, 01A, 11A are edge-connected, so M8
1 = (00A 00B 01B 01A

11A 11B 10B 10A) = 0M7
1 + 1

←→
M7

1 is a 3D mesh of size 4× 2× 23 in LTQ8.
Supposing that the lemma holds for n = τ − 1 (τ ≥ 8), we will prove that the

lemma holds for n = τ .

228 L. You and Y. Han

According to the induction of hypothesis. For LTQτ−1(τ ≥ 8), we have
M τ−1

1 =
(
00τ−8A ... 10τ−8A

)
. By Definition 1, 010τ−8A, 110τ−8A are edge-

connected. Thus, M τ
1 = 0M τ−1

1 +1
←−−→
M τ−1

1 = {000τ−8A ... 100τ−8A} = {00τ−7A
... 10τ−7A} is a 4× 2× 2τ−5 mesh which can be embedded into LTQτ . �
Lemma 9. For n ≥ 8, meshes of size 4× 2× 2n−5 can be embedded into LTQn.
Mn

2 = (M1 M2 M3 ... M2n−5) = (00n−7C ... 10n−7C), where the least
significant bits of all nodes are 0.

Proof. Beginning with the 4× 2× 4 mesh M7
2 in LTQ7 in Lemma 7, the proof

is similar to Lemma 8, so omitted here. �

Fig. 7. (a)3D meshes M7
1 of size 4× 2× 4 in LTQ7; (b) 3D mesh M7

3 of size 4× 2× 4
in LTQ7

For M6
1 ,M

6
2 use different nodes in LTQ6, by Lemma 8, 9, we can easily verify

that Mn
1 ,M

n
2 are node-disjoint.

Lemma 10. For n ≥ 8, meshes of size 4×2×2n−5 can be embedded into LTQn.
Mn

3 = (M1 M2 M3 ... M2n−5) =
(
0n−6E 0n−6F ... 110n−8F 110n−8E

)
Mn

4 = (M1 M2 M3 ... M2n−5) =
(
10n−7E 10n−7F ... 010n−8F 010n−8E

)
,

where the least significant bits of all nodes are 1.

Proof. By Lemma 7, we know that M7
3 = (0E 0F 1G 1H), M7

4 = (1E 1F
0G 0H).

And, by Definition 1, 01H, 10H are edge-connected. Thus, we can get:

M8
3 = 0M7

3 + 1
←→
M7

4 = (00E 00F 01G 01H 10H 10G 11F 11E).
Still, by Definition 1, 11H, 00H are edge-connected. Thus, we can get:

M8
4 = 1M7

3 + 0
←→
M7

4 = (10E 10F 11G 11H 00H 00G 01F 01E).
M8

3 and M8
4 are two 4 × 2 × 28−5 meshes in LTQ8. Thus, the lemma holds

for n=8.

An Algorithm to Embed a Family of Node-Disjoint 3D Meshes 229

Supposing that the lemma holds for n = τ − 1 (τ ≥ 9), we will prove that the
lemma holds for n = τ .

According to the induction of hypothesis. For LTQτ−1(τ ≥ 8), we have two
meshes M τ−1

3 and M τ−1
4 of size 4 × 2 × 2τ−6, which can be embedded into

LTQτ−1, where
M τ−1

3 =
(
0τ−7E 0τ−7F ... 110τ−9F 110τ−9E

)
M τ−1

4 =
(
10τ−8E 10τ−8F ... 010τ−9F 010τ−9E

)
Because 0110τ−9E and 1010τ−9E are edge-connected, respectively, we can

get:

M τ
3 = 0M τ−1

3 + 1
←−−→
M τ−1

4

=(0τ−6E 0τ−6F ... 0110τ−9F 0110τ−9E 1010τ−9E 1010τ−9F ...
110τ−8F 110τ−8E)

M τ
4 = 1M τ−1

3 + 0
←−−→
M τ−1

4

=(10τ−7E 10τ−7F ... 1110τ−9F 1110τ−9E 0010τ−9E 0010τ−9F ...
010τ−8F 010τ−8E)

Therefore, M τ
3 and M τ

4 are two node-disjoint meshes of size 4 × 2 × 2τ−5,
which can be embedded into LTQτ . Thus, the lemma holds.

With these lemmas we have the following theorem.

Theorem 2. For any integer n ≥ 6, there are four node-disjoint meshes of size
4× 2× 2n−5 in LTQn.

Proof. By Lemma 6, 7, 8, 9, 10, there are four 4 × 2 × 2n−5 meshes
Mn

1 ,M
n
2 ,M

n
3 and Mn

4 in LTQn for any n ≥ 6, such that bit(x,n)=0 for all
x ∈ V (Mn

1)
⋃

V (Mn
2) and bit(y,n)=1 for all y ∈ V (Mn

3)
⋃
V (Mn

4). As a result,
(V (Mn

1)
⋃
V (Mn

2))
⋂

(V (Mn
3)
⋃
V (Mn

4)) = ∅. �
According to the Theorem 2, we have the following corollary.

Corollary 2. For any integer n ≥ 6, four 4 × 2 × 2n−5 meshes can be em-
bedded with dilation 1 and expansion 4 into LTQn, such that there is no
node-overlapping between the four embedded meshes(subgraphs) and these four
4× 2× 2n−5 meshes cover all nodes of LTQn.

Corollary 2 shows that four embedded meshes can work independently in the
n-dimensional locally twisted cube without interference to each other, which is
a desirable feature in parallel computing.

5 Conclusions

This paper provides embeddings of two kinds of special meshes in locally twisted
cubes. Two major results are gained: (1) For any integer n ≥ 4, two node-disjoint
3D meshes of size 2 × 2 × 2n−3 can be embedded in LTQn with dilation 1 and
expansion 2. (2) For any integer n ≥ 6, four node-disjoint 4×2×2n−5 meshes can
be embedded in LTQn with dilation 1 and expansion 4. An embedding algorithm
can be constructed based on our embedding method. The result are optimal in
the sense that the dilations of all embeddings are 1.

230 L. You and Y. Han

References

1. Bae, M.M., Bose, B.: Edge disjoint hamiltonian cycles in k-ary n-cubes and hyper-
cubes. IEEE Trans. Computers 52, 1271–1284 (2003)

2. Chang, J.M., Yang, J.S.: Fault-tolerant cycle-embedding in alternating group
graphs. Applied Mathematics and Computation 197, 760–767 (2008)

3. Dong, Q., Yang, X., Zhao, J., Tang, Y.: Embedding a family of disjoint 3D meshes
into a crossed cube. Information Science 178, 2396–2405 (2008)

4. Fan, J., Jia, X.: Embedding meshes into crossed cubes. Information Sciences 177,
3151–3160 (2007)

5. Fan, J., Lin, X., Jia, X.: Optimal path embedding in crossed cubes. IEEE Trans.
Parallel and Distributed Systems 16, 1190–1200 (2005)

6. Fan, J., Jia, X., Lin, X.: Optimal embeddings of paths with various lengths in
twisted cubes. IEEE Trans. Parallel and Distributed Systems 18, 511–521 (2007)

7. Fan, J., Jia, X.: Edge-pancyclicity and path-embeddability of bijective connection
graphs. Information Sciences 178, 341–351 (2008)

8. Han, Y., Fan, J., Zhang, S., Yang, J., Qian, P.: Embedding meshes into locally
twisted cubes. Information Sciences 180, 3794–3805 (2010)

9. Han, Y., Fan, J., Zhang, S.: Changing the diameter of the locally twisted cube.
International Journal of Computer Mathematics 90, 497–510 (2013)

10. Hsieh, S.Y., Tu, C.J.: Constructing edge-disjoint spanning trees in locally twisted
cubes. Theoretical Computer Science 410, 926–932 (2009)

11. Kung, T.: Flexible cycle embedding in the locally twisted cube with nodes posi-
tioned at any prescribed distance. Information Sciences 242, 92–102 (2013)

12. Lai, C.J., Tsai, C.H.: Embedding a family of meshes into twisted cubes. Information
Processing Letters 108, 326–330 (2008)

13. Li, T.K., Lai, C.J., Tsai, C.H.: A novel algorithm to embed a multi-dimensional torus
into a locally twisted cube. Theoretical Computer Science 412, 2418–2424 (2011)

14. Ma, M., Xu, J.: Panconnectivity of locally twisted cubes. Applied Mathematics
Letters 19, 681–685 (2006)

15. Tsai, C.H.: Embedding of meshes in Möbius cubes. Theoretical Computer Sci-
ence 401, 181–190 (2008)

16. Yang, X., Evans, D.J., Megson, G.M.: The locally twisted cubes. International
Journal of Computer Mathematics 82, 401–413 (2005)

17. Yang, P.J., Tien, S.B., Raghavendra, C.S.: Embedding of rings and meshes onto
faulty hypercubes using free dimensions. IEEE Trans. Comput. 43, 608–613 (1994)

18. Yang, X., Wang, L., Yang, L.: Optimal broadcasting for locally twisted cubes.
Information Processing Letters 112, 129–134 (2012)

19. Yang, H., Yang, X.: A fast diagnosis algorithm for locally twisted cube multipro-
cessor systems under the MM* model. Computers and Mathematics with Applica-
tions 53, 918–926 (2007)

20. Zhang, J., Yang, X., Li, X.: Wavelength assignment for locally twisted cube com-
munication pattern on optical bus network-on-chip. Optical Fiber Technology 20,
228–234 (2014)

21. Hsieh, S.Y., Yu, P.Y.: Cycle embedding on twisted cubes. In: International Con-
ference on Parallel and Distributed Computing Applications and Technologies,
pp. 102–104 (2006)

GPU Acceleration of Finding Maximum

Eigenvalue of Positive Matrices

Ning Tian1, Longjiang Guo1,2,�, Chunyu Ai3, Meirui Ren1,2, and Jinbao Li1,2

1 School of Computer Science and Technology, Heilongjiang University, China
2 Key Laboratory of Database and Parallel Computing, Heilongjiang, China

longjiang guo@yeah.net
3 Division of Math & Computer Science, University of South Carolina Upstate, USA

Abstract. Matrix eigenvalue theory has become an important analysis
tool in scientific computing. Sometimes, people do not need to find all
eigenvalues but only themaximum eigenvalue. Existing algorithms of find-
ing the maximum eigenvalue of matrices are implemented sequentially.
With the increasing of the orders of matrices, the workload of calculation
is getting heavier. Therefore, traditional sequential methods are unable to
meet the need of fast calculation for large matrices. This paper proposes a
parallel algorithm named PA-ST to find the maximum eigenvalue of posi-
tive matrices by using similarity transformation which is implemented by
CUDA (Computer Unified Device Architecture) on GPU (Graphic Pro-
cess Unit). To the best of our knowledge, this is the first CUDA based
parallel algorithm of calculatingmaximum eigenvalue of matrices. In order
to improve the performance, optimization techniques are applied in this
paper such as using the shared memory rather than the global memory
to improve the speed of computation, avoiding bank conflicts by setting
the span index, satisfying the principle of coalesced memory access, and
by using single-precision floating-point arithmetic and the pinnedmemory
to reduce the copy operation and obtain higher data transfer bandwidth
between the host and the GPU device. The experimental results show that
the similarity transformation technique can significantly shorten the run-
ning time compared to the sequential algorithm and the speedup ratio is
nearly stable when the number of iterations increases. As the matrix or-
der increases, the running time of the sequential algorithm and PA-ST in-
creases correspondingly. Experiments also show that the speedup ratio of
the PA-ST is between 2.85 and 35.028.

Keywords: Maximum Eigenvalue, Positive Matrix, Similarity Transfor-
mation, GPU, CUDA.

1 Introduction

Matrix computing plays key roles in vibration problems, control systems, and de-
termination of certain critical value in physics. Especially, solving matrix eigen-
values is one common and important calculation in matrix computing [1]. For

� Corresponding author.

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 231–244, 2014.
c© Springer International Publishing Switzerland 2014

232 N. Tian et al.

a lot of applications, it is not necessary to find all the eigenvalues but only the
maximum eigenvalue. The maximum eigenvalue has a crucial role in displaying
the nature feature of the matrix, specifically in the digital signal processing. For
example, given a particularly large graph, how can we know how many trian-
gles in it [2]? To answer this question, we just need to find out the maximum
eigenvalue of the adjacency matrix of the large graph. Some specific processing
in radar, sonar, communications, image processing, and other systems often re-
quires real-time calculation of the maximum positive eigenvalue of the positive
matrix [3][4]. Therefore, the problem of maximum eigenvalue of positive matrices
is an important part of matrix computing.

Nowadays, the size of matrices which people deal with has been increased dra-
matically inmany application fields. The orders of matrices often reach thousands,
tens of thousands, or even millions [5]. Thereby, solving maximum eigenvalue of
positive matrices becomes one of the most significant computational tasks in high-
performance computing [6][7]. However, almost all existing algorithms for solving
the maximum eigenvalue are implemented sequentially such as power[8], QR[9],
and Oepomo’s iteration algorithm [10]. These are some parallel algorithms of QR,
but as we know QR is suitable for solving all the eigenvalues of matrix. The speed
of these sequential solutions is undoubtedly very slow for large matrices. Some re-
searchers use SMP (Symmetric Multi-Processing) cluster systems or parallel ma-
chine systems to accelerate the computing. The computing speed of cluster systems
ismuch faster than the sequentialmethods.Nevertheless, using cluster systemswill
cause high costs in equipments and power consumptions.

In recent years, GPU became a famous programming scheme for the large-
scale fast calculations. GPU is the abbreviation of Graphic Process Unit[11].
Nvidia and AMD launched its own GPU computing technology–CUDA and ATI
Stream. The CUDA technology is an outstanding representative in this area
[12]. Researchers regard the GPU and CUDA as a united hardware and software
system of data parallel computing. CUDA programming provides us a new way
to solve the linear problem [13]. Because GPU has small calculate volume, cheap
cost, simple structure, and powerful floating point capability. CUDA implements
CPU and GPU hybrid computing scheme. CPU is responsible for performing
complex logic processing and transaction management that is not suitable for
data-parallel computing, whereas GPU is responsible for large-scale data parallel
computing of compute-intensive. Rational use of CPU and GPU resources can
achieve the goal of not wasting computing resources.

This paper proposes a parallel algorithm named PA-ST for using GPU accel-
eration to find maximum eigenvalue of positive matrices. PA-ST is implemented
by CUDA (Computer Unified Device Architecture). To the best of our knowl-
edge, this is the first CUDA-based parallel algorithm which is implemented on
GPU to solve the maximum eigenvalue of positive matrices by using similarity
transformation. The implementation details are shown in Section 3. Compared
to the best sequential algorithm which we know, the proposed algorithm has ob-
vious better running time performance. In order to achieve the best performance,
we parallelize core operations, design new performance optimization methods,

GPU Acceleration of Finding Maximum Eigenvalue of Positive Matrices 233

use the division of tasks to solve the sum of every row, adopt single-precision
floating-point arithmetic, and call the GPU’s cudaHostAlloc() function to al-
locate pinned memory to reduce the copy operation and obtain higher data
transfer bandwidth between CPU and GPU devices. Then we use synchronizing
function across all thread blocks to ensure that each thread of thread-block per-
forms all operations before the synchronizing function is called. Also, the shared
memory is used rather than the global memory to improve the performance and
avoid the bank conflict by setting the span index. The algorithm also utilizes
the mechanism of coalesced memory access to improve performance.

In experiments, the speedup ratio of the proposed algorithm is between 2.85
and 35.028. As the order of a matrix increases, the running time of sequential
algorithms and parallel algorithms increases correspondingly. The experimental
results show that the proposed algorithm can save more running time than the
sequential algorithm and the speedup ratio is nearly stable while the number of
iterations increases.

The paper is organized as follows: Section 2 introduces fundamental knowl-
edge about CUDA. The sequential similarity transformation algorithm and the
parallel similarity transformation algorithm are addressed in Section 3. Section
4 studies complexity analysis. Section 5 shows experimental results. Finally, Sec-
tion 6 concludes the paper.

2 An Overview of CUDA

Traditionally, GPU is only responsible for graphic rendering, and most of other
processing tasks are handled by CPU. It is such a waste of GPU’s computing
resources since GPU has obvious advantages over CPU in processing ability and
memory bandwidth. For the same amount of workload, the computation cost
and power consumption of GPU is lower. Currently, the single precision floating
point processing capacity of mainstream GPUs has reached about 10 times of
the same period CPU.

Fig. 1. CUDA Thread Structure

234 N. Tian et al.

NVIDIA had officially released CUDA in 2007. It is the first developing en-
vironment and software system using C-like language instead of graphic API.
Compared to the traditional GPU general computing development, CUDA had
made a very significant improvement. Moreover, since CUDA uses C-like lan-
guage, it can be quickly accepted and mastered by programmers. After several
years of development, CUDA and CUDA-enabled GPU performance have been
significantly improved, as well as functions.

Program code developed on CUDA can be divided into two parts in actual
execution. One part is the host code which runs on CPU, and the other part is
the device code which runs on GPU. A parallel program that runs on GPU is
called a kernel. The CUDA thread structure is shown in Figure 1. Threads of
an executing kernel are organized as blocks, and blocks are organized as grids.
A block is the execution unit of a kernel. A grid is a collection of blocks which
can be executed in parallel. All blocks are executed in parallel. There is no
communication and execution order among blocks. Within a block, all threads
are also executed in parallel. The same kernel program can be executed in parallel
by all the threads of the blocks which are contained in the same grid. Threads in
the same block communicate with each other by using the shared memory and
are synchronized by calling the syncthreads() function. This is the two-level
block-thread parallel execution model of CUDA.

The memory space of CUDA is divided into register, local memory, shared
memory, global memory, constant memory, and texture memory. It is shown in
Figure 2. Each thread has its own memory, i.e., registers and local memory,
which can be read and written directly. Each block has a shared memory, which
can be read and written by the threads in the same block. All the threads in the
same grid can access the same global memory. In addition, ROM is accessible
by all threads, i.e., constant memory and texture memory, which can help to do
the optimization for different applications.

Here we must introduce the NVIDIA Parallel Nsight software, it is the first
develop environment which is integrated in the Visual Studio aimed at large-scale
parallel computing. It can make programmers finish development in the Visual
Studio aimed at both CPU and GPU. Combined Visual Studio and NVIDIA
Parallel Nsight make it easier than anytime that GPU application programm
development which is suitable for large-scale parallel computing. Through the
native GPU debug and analysis, Parallel Nsight can provide the most efficient
methods to debug analysis and optimize GPU code. Moreover , Parallel Nsight
admit programmers to observe heterogeneous executive condition of application
programm by analysis trace function, and improve the utilization of multi-core
CPU, the speedup scope of the multi-GPU and multi-API. No matter you want
the algorithm speedup ratio or the processing of the graphs,Parallel Nsight can
make it come true, and with the most efficient.

Since our method need the iteration among solving the matrix computing,
when the number of iteration reach extremely large,the kernel function will have
the overtime problem. So we relieve the limitation of kernel function by closing
the TDR with Nsight software.

GPU Acceleration of Finding Maximum Eigenvalue of Positive Matrices 235

Fig. 2. CUDA Memory Model

3 The Parallel Algorithm of Similarity Transformation
(PA-ST)

3.1 Similarity Transformation and Theoretical Foundation

Mathematical Basis. If λ is an eigenvalue of an n × n matrix A, with the
corresponding eigenvector X , then from (A − λIn)X = 0, where X �= 0, and
det(A− λIn) = 0, we know that there are at most n distinct eigenvalues of A.

If there is a eigenvalue λ∗, such that λ∗=max{|λ|}, then we call λ∗ the max-
imum eigenvalue of the matrix A, we denote λ∗ as λ∗(A). The eigenvector cor-
responding to the eigenvalue λ∗(A) is denoted by X∗(A). For any real matrix
A = {ai,j}n×n, if every element ai,j in A, ai,j > 0, then A is called a positive
matrix.

Key Idea of Sequential Algorithm. Here, we show the key idea of sequential
algorithm by using similarity transformation.

For any positive matrix A=A(0) = {a(0)i,j }n×n, where a
(0)
i,j > 0, R

(0)
i is the sum

of ith row of A(0), i.e. R
(0)
i =

n∑
j=1

a
(0)
ij , R(0) and r(0) are maximum and minimum

sum of rows respectively, i.e. R(0) = max
1≤i≤n

{R(0)
i }, r(0) = min

1≤i≤n
{R(0)

i }.

Let Γ (0) =

⎡
⎢⎢⎢⎢⎣
R

(0)
1

R
(0)
2

. . .

R
(0)
n

⎤
⎥⎥⎥⎥⎦, then Γ (0)−1

=

⎡
⎢⎢⎢⎢⎢⎣

1

R
(0)
1

1

R
(0)
2

. . .
1

R
(0)
n

⎤
⎥⎥⎥⎥⎥⎦.

To make a similarity transformation for A(0):

236 N. Tian et al.

A(1)=Γ (0)−1
A(0)Γ (0)={a(1)i,j }n×n={a(0)i,j ∗ R

(0)
j

R
(0)
i

}n×n.

For A(1), R
(1)
i =

n∑
j=1

a
(1)
ij , R(1) and r(1) are maximum and minimum sum of

rows respectively in the matrix A(1), i.e. R(1) = max
1≤i≤n

{R(1)
i }, r(1) = min

1≤i≤n
{R(1)

i }.

R
(1)
i =

n∑
j=1

a
(1)
ij =

n∑
j=1

(a
(0)
i,j ∗ R

(0)
j

R
(0)
i

)= 1

R
(0)
i

∗
n∑

j=1

(a
(0)
i,j ∗R(0)

j)≤ 1

R
(0)
i

∗
n∑

j=1

(a
(0)
i,j ∗R(0))=R(0).

R
(1)
i =

n∑
j=1

a
(1)
ij =

n∑
j=1

(a
(0)
i,j ∗ R

(0)
j

R
(0)
i

)= 1

R
(0)
i

∗
n∑

j=1

(a
(0)
i,j ∗R(0)

j)≥ 1

R
(0)
i

∗
n∑

j=1

(a
(0)
i,j ∗ r(0))=r(0).

Thus, we have the following observation:

Observation 1: r(0)≤r(1)≤R(1)≤R(0).
Do iterations continually. For kth iteration for the matrix A(k), we have the

following equations:

R
(k)
i =

n∑
j=1

a
(k)
ij ;

R(k) = max
1≤i≤n

{R(k)
i };

r(k) = min
1≤i≤n

{R(k)
i };

Γ (k) =diag(R
(k)
1 , R

(k)
2 ,

. . . , R
(k)
n).

The iteration process is given as follows:

A(k+1)={a(k+1)
i,j }n×n=Γ (k)−1

A(k)Γ (k)={a(k)i,j ∗ R
(k)
j

R
(k)
i

}n×n

According to observation 1, we have a further observation:

Observation 2

r(0)≤r(1)≤r(2)· · · ≤r(k)≤ R(k)≤R(k−1)· · ·≤R(1)≤R(0).

Therefore, we have a result of convergence of iterations due to the fact that
the sequence of r(k) is monotonically increasing and the sequence of R(k) is
monotonically decreasing, and they both have bounds of r(0) and R(0).

Theoretical Foundation. Some theorems are given as follows.

Theorem 1. [14]: For a positive matrix A(0) = {a(0)i,j }n×n, in kth iteration,

R(k) = max
1≤i≤n

{R(k)
i }, r(k) = min

1≤i≤n
{R(k)

i }, there exists a real number q (0 < q <

R(0)), where q = min{
1≤i≤n

ai,i,min
i
=j

{2√ai,jaj,i}}, such that

GPU Acceleration of Finding Maximum Eigenvalue of Positive Matrices 237

R(k) − r(k) ≤ (R(0) − r(0)) ∗ [(1− q/R(0))]k, k = (1, 2 · · ·).
Theorem 2. [14]: For a positive matrix A(0) = {a(0)i,j }n×n, in kth iteration,

R(k) = max
1≤i≤n

{R(k)
i }, r(k) = min

1≤i≤n
{R(k)

i }, then lim
k→∞

R(k) = lim
k→∞

r(k) = λ∗(A(0)),

where λ∗(A(0)) is the maximum eigenvalue of the matrix A(0).

Theorem 3. [14] For a positive matrix A(0) = {a(0)i,j }n×n, the eigenvector of

λ∗(A(0)) is X∗(A)= (P1, P2, · · · , Pn)
T , where Pi=

∞∏
j=0

R
(j)
i

R(j) , (i=1, 2, 3, · · · , n).
According to Theorem 1, the termination condition of iterations can be in-

duced as follows. For a given accuracy ε, if R(N) − r(N) ≤ (R(0) − r(0)) ∗
[(1 − q/R(0))]N< ε, then the number of iterations is N =

⌈
log

ε

R(0)−r(0)

2

log
1−

q
R(0)

2

⌉
. That

is if R(N) − r(N)< ε, then R(N) − λ∗(A(0))< ε because the sequence r(k) is
monotonically increasing, it is obvious that r(N)≤ λ∗(A(0)), therefore R(N) −
λ∗(A(0)) ≤R(N) − r(N)< ε. Furthermore, according to Theorem 2, λ∗(A(0)) ≈
R(N). The approximate eigenvector of λ∗(A(0)) is X∗(A)= (P1, P2, · · · , Pn)

T ,

where Pi=
N∏
j=0

R
(j)
i

R(j) , (i=1, 2, 3, · · · , n).

An Example of Sequential Algorithm. The following is an example to show

the above iterations. Given a positive matrix A(0) =
4
6
10

⎛
⎝1

2
2

1
1
3

2
3
5

⎞
⎟⎟⎠ . We compute

the sum of each row, and put them on the left of the matrix.

ThenR(0)=10, r(0)=4, q=1, Γ (0)=diag(4, 6, 10), Γ (0)−1
=diag(1/4, 1/6, 1/10),

A(1)=
7.5
7.33
7.6

⎛
⎝ 1

1.33
0.8

1.5
1
1.8

5
5
5

⎞
⎟⎟⎠ .

After five iterations:A(5)=
7.5311
7.5311
7.5311

⎛
⎝ 1

1.36159
0.79017

1.46890
1

1.74097

5.06223
5.16955

5

⎞
⎟⎟⎠ , λ∗(A)=7.53.

Then, we compute the corresponding eigenvectors, Pi (i=1, 2, 3),

P1 =
∏
(R

(k)
1 /R(k)) =(4/10)∗(7.5/7.6)∗(7.53334/7.54545) ∗(7.53097/7.53147)

∗(7.53118/7.53120)∗(7.53113/7.53114)=0.3941, (k=0, 1, 2, 3, 4, 5).

P2 =
∏
(R

(k)
2 /R(k)) =(6/10)∗(7.333/7.6)∗(7.54545/7.54545) ∗(7.53012/7.53147)∗

(7.53120/7.53120)∗(7.53114/7.53114)=0.5788, (k=0, 1, 2, 3, 4, 5).

P3 =
∏
(R

(k)
3 /R(k)) =(10/10)∗(7.6/7.6)∗(7.52631/7.54545) ∗(7.53147/7.53147)∗

238 N. Tian et al.

(7.53111/7.53120)∗(7.53114/7.53114)=0.9975, (k=0, 1, 2, 3, 4, 5).

Thus, X∗(A)= (P1, P2, P3)=(0.3941, 0.5788, 0.9975).

3.2 Parallel Algorithm Using Similarity Transformation (PA-ST)

We use one-dimensional array to store our elements. Because of GPU’s better
single-precision computing performance compared to double-precision comput-
ing performance, we adopt single-precision floating-point arithmetic to obtain
better performance.

We call the GPU’s function to allocate memory for array ginput and array
goutput. Array ginput includes the input elements, and array goutput stores the
results. Allocate memory for array ainput, binput and deva to implement the
whole algorithm. As we know, GPU’s basic cudamalloc() function allocates page-
able memory. A large number of copy operations between the host and the de-
vice make us use another method, cudaHostAlloc() function, to allocate pinned
memory. It implemented the copy between the host and GPU by direct memory
accessing technology. By calling the cudamemcpy() function, original elements
in the host memory are transferred to the device memory. The transmission
direction is assigned by the parameter cudamemcpyHosttoDevice. After com-
puting, the results are returned with the parameter cudamemcpyDevicetoHost
to the host.

In the first step, we need compute the sum of all the elements in every row.
To improve the performance, the parallel reduction algorithm is adopted. Due
to the large size of arrays, we need to be able to use multiple thread blocks
to keep all multiprocessors on the GPU busy, and each thread block reduces
a portion of the array. Each thread performs a summation operation to deal
with two elements. Every thread processes the reduction in parallel. How to
implement communication of partial results among thread blocks is an issue.
We use synchronization function syncthreads() across all thread blocks to easily
reduce large arrays, and it can ensure that each thread of each block performs
all the statements while calling the synchronization function, then go to the next
step. Since it is expensive to build GPUs with high processor count, CUDA has
no global synchronization. syncthreads() enforces instruction synchronization
and ensures memory visibility, but only within a block, not across blocks. In
the case of reductions, code for all levels for kernel invocation is the same. The
related detail of structure is shown in Figure 2.

In our algorithm, we are sticking to power-of-2 matrix orders. Assume that
each block has n threads, so finishing the reduction of a block needs log(2n)
iterations. In each iteration, thread i reads two elements in the array, then adds
them together and stores the result to the ith index. In each iteration, only
halve threads participate in the computing, but a synchronization is required,
and thread 0 records the final result. Because of the shared memory’s higher
access speed than the global memory, it is the best choice to store the elements.
We use the optimization strategy proposed by Mark Harris [15], such that the
algorithm follows the principle of coalesced memory access and we use the span

GPU Acceleration of Finding Maximum Eigenvalue of Positive Matrices 239

index to eliminate the shared memory bank conflicts. In order to eliminate the
situation that half of the threads are idle on the first loop iteration, we set
sdata[tid] = gidata[i] + gidata[i+ blockDim.x]. CUDA supports C++ template
parameters on device and host functions to unroll for a fixed block size, therefore,
we are sticking to power-of-2 block sizes.

It is notable that each block only can be allocated to the limited number of
threads. So when the maximum number of matrix order is over a block’s capacity
of elements, it needs to be completed by more than one block. Thus, the result
of each block needs to be re-combined. For instance, the order of the matrix is
1024× 1024. Assume that each block has 64 threads, as each thread deals with
two elements, namely a block can process up to 128 elements, then the reduction
needs (1024∗1024)/128 =8192 blocks.

In summary, we adopt single-precision floating-point arithmetic to obtain bet-
ter performance and call the GPU’s cudaHostAlloc() function to allocate pinned
memory to reduce the copy operations. Then we use synchronize function across
all thread blocks to ensure that each thread of thread block performs all the
operations before the synchronization function is called. Also, we use the shared
memory instead of the global memory and eliminate the shared memory bank
conflicts by setting the span index. Figure 3 shows the example. The kernel
function is described in Algorithm 1. The Parallel Similarity Transformation
Algorithm is shown in Algorithm 2.

0,1 0,3...a a

0,0a 0,1a 0,63a 0,64a 0,65a 0,127a

0,0 0,63a a
0,1 0,65a a 0,63 0,127a a

0,0 0,2...a a

0,0a

Fig. 3. Parallel Reduction Model

240 N. Tian et al.

Algorithm 1. Parallel Statute Summation on GPU(ginput[], goutput[], n)
Input: The array ginput[] is used to stored the matrix elements, the matrix order is n:
Output: The array goutput[] is used to stored the sum of all the elements in every row:
1: template < unsignedintblocksize >
2: externsharedints[]
3: unsignedinttid ← threadidx.x
4: unsignedinti ← blockidx.x ∗ (blocksize ∗ 2) + tid
5: unsignedintgridsize ← blocksize ∗ 2 ∗ griddim.x
6: s[] ← 0.0
7: while i < n do
8: s[tid] ← s[tid] + ginput[i] + ginput[i + blocksize]
9: i ← i+ gridsize
10: call the syncthreads() function.
11: if (blocksize ≥ 512) then
12: if tid < 256 then
13: s[tid] ← s[tid] + s[tid + 256]
14: call the syncthreads() function.
15: if (blocksize ≥ 256) then
16: if tid < 128 then
17: s[tid] ← s[tid] + s[tid + 128]
18: call the syncthreads() function.
19: if (blocksize ≥ 128) then
20: if tid < 64 then
21: s[tid] ← s[tid] + s[tid + 64]
22: call the syncthreads() function.
23: if (tid < 32) then
24: if blocksize ≥ 64 then
25: s[tid] ← s[tid] + s[tid + 32]
26: if blocksize ≥ 32 then
27: s[tid] ← s[tid] + s[tid + 16]
28: if blocksize ≥ 16 then
29: s[tid] ← s[tid] + s[tid + 8]
30: if blocksize ≥ 8 then
31: s[tid] ← s[tid] + s[tid + 4]
32: if blocksize ≥ 4 then
33: s[tid] ← s[tid] + s[tid + 2]
34: if blocksize ≥ 2 then
35: s[tid] ← s[tid] + s[tid + 1]
36: if (tid == 0) then
37: g output[blockidx.x] ← s[0]

Algorithm 2. PA ST GPU(ainput[], boutput[], deva[], n, it)
Input: The array ainput[] is used to stored the matrix elements in the host, array deva[] is used

to stored the matrix elements which is transferred into the device, the matrix order is n, the
maximum iteration parameter is it,the iteration parameter is l:

Output: The maximum eigenvalue of the positive matrix A is put in the parameter sum, and the
corresponding eigenvectors is in the array boutput[]:

1: ThreadID ← blockidx.x ∗ BLOCKSIZE + threadidx.x
2: l ← 1
3: for l = 0 to it do
4: if (ThreadID < n) then
5: Call kernel function: Parallel Statute Summation(ginput[], goutput[], n)
6: for j = 0 to n do
7: sum ← 0.0
8: sum ← b[j ∗ n + j] + b[ThreadID ∗ n + i]
9: a[ThreadID ∗ n + j] ← a[ThreadID ∗ n + j] ∗ sum
10: call the syncthreads() function.
11: Call kernel function: Parallel Statute Summation(ginput[], goutput[], n, i)

GPU Acceleration of Finding Maximum Eigenvalue of Positive Matrices 241

4 Complexity Analysis

4.1 The Time Complexity of Sequential Algorithm

Firstly, we need to compute the sum of every row, it needs O(n). Since a
(k+1)
i,j

represents the element in the row i and column j of the (k + 1)th iteration

matrix, according to the previous related conclusion, a
(k+1)
i,j = a

(k)
i,j ∗(T (k)

j /T
(k)
i),

where T
(k)
i is the sum of elements in row ith of the kth iteration matrix, T

(k)
j

is the elements of diagonal matrix, so we just need to solve each element in
the (k+ 1)th iteration from the kth iteration to the (k +1)th iteration, the time
complexity is O(n2). Thus, the total time complexity of the sequential algorithm
is k ∗ O(n2) when the number of iterations is k. The iteration parameter is
confirmed as follows: according to Theorem 1, we can obtain the number of
iterations k meet (R(0) − r(0)) ∗ [(1 − q/R(0))]k < ε, where ε is the precision

parameter. And the number of iterations is k =

⌈
log

ε

R(0)−r(0)

2

log
1−

q
R(0)

2

⌉
, and where q =

min{
1≤i≤n

ai,i,min
i
=j

{2√ai,jaj,i}}.

4.2 The Time Complexity of Parallel Algorithm

For one iteration, computing the sum of n rows can be finished in parallel.
Suppose there are S SM(Streaming Multiprocessors). Each SM has 8 stream-
ing processors. Each row of a positive matrix has n elements. For one sum in
each row, the parallel complexity is derived by: n

8S·21+
n

8S·22+...+ n
8S·2y =

n
8S − 1,

where y = log
(n
8S)

2 . For n rows, the time complexity of each iteration of the
parallel algorithm is n ∗ (n

8S − 1). According to Theorem 1, we can obtain the

number of iterations k meet (R(0) − r(0)) ∗ [(1 − q/R(0))]k < ε, where ε is the

precision parameter. And the number of iterations is k =

⌈
log

ε

R(0)−r(0)

2

log
1−

q
R(0)

2

⌉
, and

q = min{
1≤i≤n

ai,i,min
i
=j

{2√ai,jaj,i}}. Thus, the total time complexity of the parallel

algorithm is O(

⌈
log

ε

R(0)−r(0)

2

log
1−

q
R(0)

2

⌉
∗n∗(n

8S −1)), and q = min{
1≤i≤n

ai,i,min
i
=j

{2√ai,jaj,i}}.

5 Experimental Results

In our experimental environment, we use Intel Core i5-760 quad-core CPU,
NVIDIA GeForce GTX460 card, and Win7 64-bit operating system.In order
to use Nsight software to close the TDR, avoiding the kernel function overtime
phenomenon, we install another display card in main-card, which is connected
into the computer monitor to display, then NVIDIA GeForce GTX460 card is
completely for computing. Here the called overtime problem is referred to that

242 N. Tian et al.

kernel function has some time limitation, kernel function will maybe occur the
overtime when the iteration numbers reach certain quantity . Nsight software is
just to solve the problem. The data of the matrix are randomly generated with
a random function. Our environment of compiling and running is Visual Studio
2010 and CUDA 4.0 and Nsight 2.0.

Fig. 4. The Number of Matrix Order and Running Time

Firstly, the number of iterations is set by 1000, we test the running time
of the sequential algorithm and parallel algorithm when the order of matrix is
1024×1024, 2048×2048, 4096×4096, 6144×6144, and 8192×8192, respectively.
The results are shown in Figure 4. It can be seen that the running time of
the sequential algorithm increases with the order of the matrix; however, the
running time of parallel algorithm do not increase obviously when the order
of matrix increases. Overall, the parallel algorithm has obvious shorter running
time compared with the sequential algorithm. So the running time performance
of the parallel version is very satisfactory due to the fact that we implement the
most part of computation in parallel.

Fig. 5. The Number of Matrix Order and Speedup Ratio

GPU Acceleration of Finding Maximum Eigenvalue of Positive Matrices 243

Fig. 6. The Iteration Numbers and Speedup Ratio (The Number Of Matrix Order
:1024 and 2048)

Figure 5 shows the speedup ratio according to the running time of the Figure
4. It can be seen that as the order of matrix increases, the speedup ratio increases
quickly, the speedup ratio of our algorithm also goes up. The maximum speedup
ratio can reach 35.028 when we adopt our compute version is Lenovo M730E ,our
display card for computing is NVIDIA GeForce GTX460 card, and the computer
memory is four GB, quad-core processor,

Then, we tested the speedup radio with the increasing number of iterations
when the orders of matrix are 1024 and 2048 respectively. Figure 6 shows the
result. It indicates that our algorithm can obtain very stable speedup when
the number of iterations is very large. So our algorithm obtains an impressive
speedup ratio, and does not add much computational costs obviously. Our pro-
posed algorithm overcomes this problem as well.

6 Conclusion

This paper proposes a parallel algorithm named PA-ST which is implemented
by CUDA (Computer Unified Device Architecture) on GPU (Graphic Process
Unit) to solve the maximum eigenvalue of positive matrices. Compared to the
best sequential algorithm which we know, the proposed algorithm has obvious
better running time performance. The proposed algorithm solves the problem
without high computational costs of using cluster systems and save more time
than the sequential algorithm. The new algorithm also provides a new way to
solve the maximum eigenvalue of a positive matrix. In addition, the experimental
results show that the Similarity Transformation algorithm can save more running
time than traditional sequential algorithms, and the speedup ratio of the PA-
ST is 2.85∼35.028. The speedup ratio increases when the order of the matrix
increases, but it is nearly stable when the number of iterations increases.

244 N. Tian et al.

Acknowledgement. This work is supported by Program for New Century Ex-
cellent Talents in University under grant No.NCET-11-0955,Programs Founda-
tion of Heilongjiang Educational Committee for New Century Excellent Talents
in University under grant No.1252-NCET-011, Program for Group of Science
and Technology Innovation of Heilongjiang Educational Committee under grant
No.2013TD012, the Science and Technology Research of Heilongjiang Educa-
tional Committee under grant No.12511395.

References

1. Wang, T., Guo, L., Li, G., Li, J., Wang, R., Ren, M., He, J.S.: Implementing the
jacobi algorithm for solving eigenvalues of symmetric matrices with cuda. In: NAS,
pp. 69–78 (2012)

2. Tsourakakis, C.E.: Fast counting of triangles in large real networks without count-
ing: Algorithms and laws. In: ICDM, pp. 608–617 (2008)

3. Gaidhane, V.H., Hote, Y.V., Singh, V.: Article: A new approach for estimation of
eigenvalues of images. International Journal of Computer Applications 26(9), 1–6
(2011)

4. Griffiths, J.W.R.: Adaptive array processing: A tutorial. IEE Proceedings F Com-
munications, Radar and Signal Processing 130(1), 3–10 (1983)

5. Luo, X., Lin, J., Wu, W.: A prediction-correction dynamic method for large-
scale generalized eigenvalue problems. Abstract and Applied Analysis 2013(SI),
1–8 (2013)

6. Hall, C., Porsching, T.: Computing the maximal eigenvalue and eigenvector of a
positive matrix. SIAM J. Numer. Anal. 5(2), 269–274 (1968)

7. Oepomo, T.: Survey of power, qr, and oepomos iterative methods for solution of
largest eigenvalue of essentially positive matrices. International Journal of Man-
agement Science and Engineering Management 4(1), 3–19 (2009)

8. Faddeev, D., Faddeeva, V.: Computational Methods of Linear Algebra. W. H.
Freeman and Company (1973)

9. Wilkinson, J.: Convergence of lr, qr and related algorithms. Comp. Jour. 8(1),
77–84 (1966)

10. Oepomo, T.: A contribution to collatzs eigenvalue inclusion theorem for nonnega-
tive irreducible matrices. ELA 10(1), 31–45 (2003)

11. NVIDIA Corporation: NVIDIA CUDA Programming Guide version 4.2 (2012),
http://developer.download.nvidia.com/compute/DevZone/docs/

12. Garland, M., Grand, S.L., Nickolls, J., Anderson, J., Hardwick, J., Morton, S.,
Phillips, E., Zhang, Y., Volkov, V.: Parallel computing experiences with cuda.
IEEE Micro 28(4), 13–27 (2008)

13. Spampinato, D.G., Elster, A.C.: Linear optimization on modern gpus. In: IPDPS,
pp. 1–8 (2009)

14. Yeh, L.: Inequalities for the maximal eigenvalue of a nonnegative matrix. Glasgow
Mathematical Journal 39(3), 276–284 (1997)

15. Harris, M.: Optimizing parallel reduction in cuda. Technical report, NVIDIA De-
veloper Technology Website/projects/reduction/doc/reduction.pdf (2007),
http://developer.download.nvidia.com/compute/cuda/1_1/

http://developer.download.nvidia.com/compute/DevZone/docs/
http://developer.download.nvidia.com/compute/cuda/1_1/

Improving Speculation Accuracy

with Inter-thread Fetching Value Prediction

Fan Xu, Li Shen, Zhiying Wang, Hui Guo, Bo Su, and Wei Chen

State Key Lab of High Performance Computing, College of Computer,
National University of Defense Technology,
Dongfeng RD. 190, 410073 Changsha, China

{xufan,lishen,zhywang,guohui,subo,chenwei}@nudt.edu.cn

Abstract. Conventional software speculative parallel models are facing
challenges due to the increasing number of the processor core and the
diversification of the application. The speculation accuracy is one of the
key factors to the performance of software speculative parallel model.
In this paper, we proposed a novel value prediction mechanism named
Inter-thread Fetching Value Prediction(IFVP). It supports a speculative
thread to read the values of conflict variables speculatively from another
speculative thread. This method can remarkably reduce the miss spec-
ulation rate in a loop to be parallelized with cross-iter dependencies.
We have proved that the IFVP can improve the speculation accuracy by
about 19.1% on the average, and can improve the performance by about
37.1% on the average, compared with the conventional models without
value prediction.

Keywords: computer architecture, thread level speculation, parallel
computing.

1 Introduction

Exploiting potential thread-level parallelism(TLP) is becoming the key factor
to improving performance of programs on multi-core systems. A series of par-
allelization tools are developed to make parallel programming more simple and
effective. For a single loop without cross-iter dependency(DOALL loop), conven-
tional parallel tools can divide it into several parts, and assign each part to a
single worker thread. However, a loop with cross-iter dependencies(DOACROSS
or PIPELINE loop) cannot be parallelized simply and smoothly by conventional
tools. Most of the conventional models require programmers to do explicitly
synchronization between threads, which enlarges the programmer’s burden, and
makes the performance rely on the programmer’s individual skills.

The speculative parallel model provides a new solution to the problem. It
offers simpler programming interfaces, and underlying hardware or software for
correctness checking. Programmers using Transactional Memory(TM)[1][2][3] or
Thread Level Speculation (TLS)[4][5][6] models do not have to know the details
about the dependencies between threads. They can neglect the dependencies

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 245–258, 2014.
c© Springer International Publishing Switzerland 2014

246 F. Xu et al.

while they are parallelizing the program, and focus on the algorithm optimiza-
tion or task partition. The underlying hardware or runtime system will help
them to insure the program against errors. Speculative parallel model can dras-
tically exploit parallelism in the program and reach a high performance, without
increasing burden of programmers.

However, speculative parallel model has its own defects. For hardware based
speculative models, the changes in micro-architecture are costly and less scalable.
Software speculative parallel models usually can overcome these defects, but
bring more global overhead. Especially for the program with lots of cross-iter
dependencies, the paralleled speculative task may rollback frequently due to mis-
speculation, producing large global overhead and impacting the performance.
Generally speaking, the global overhead of a software speculative parallel model
in a period can be present as follows.

Oglobal = task number × (Ocontrol +Orollback ×miss rate)

In the equation above, task number stands for the total number of the specu-
lative task executed in the period, the Ocontrol andOrollback stand for the average
control and rollback overhead of a single task. miss rate stands for the rate of
mis-speculation happened in the period. This equation indicates that the miss
rate has great impact on the performance of the speculative parallel model.

To reduce the mis-speculation rate, value prediction schemes are introduced
in many software speculative parallel models. The basic idea of value predic-
tion is to generate the values of the conflict variables(CVARs), which cause
the cross-iter dependencies, before they are committed. The Figure 1 shows a
value prediction scheme applied in a software speculative parallel model. Al-
though value prediction scheme may increase the time cost by the speculative
read(SRD) operation more or less, proper value prediction scheme can increase
the speculative accuracy, and reduce the speculative task rollbacks remarkably,
bringing much benefit to the overall performance.

Based on this indication, several value prediction schemes are applied in dif-
ferent software speculative parallel models. Though these schemes can improve
the speculative accuracy, they have their own defects, such as large hardware
resource consumption, complex compiling support, or additional execution for
learning process.

This paper proposed a novel value prediction scheme: Inter-thread Fetching
Value Prediction(IFVP). In this mechanism, a speculative thread can fetch a
CVAR’s value produced by approximate speculative thread while doing SRD
operation. This mechanism has 3 advantages.

– IFVP can improve the speculation accuracy remarkably without any addi-
tional compiling technology support.

– IFVP has more adaptability for different type of CVAR, not only the CVAR
with a regular value changing trace, but also for the CVAR with randomly
changing trace.

Improving Speculation Accuracy with Inter-thread Fetching Value Prediction 247

Task 1 Task 2

Spawn 1,2

Check 2
failed

SRD A
SWR A

Rollback 2

Task 2
SRD A

Check 2
succeeded

Spawn 1,2

Check 2
succeeded

Task 2

Rollback 2 If failed

Check 2
succeeded

(a) speculation without value prediction (b) speculation with value prediction

Task 1 Task 2
Predict A

SWR A

If succeeded

Fig. 1. speculation with/without value prediction.(SRD/SWR means speculative
read/write in the task).

– IFVP is a single prediction mechanism. That means a speculative task won’t
be duplicated and executed for multiple times. Therefore, it won’t cost lots
of hardware thread.

The rest of the paper is organized as follows: Section 2 introduced some related
works of value prediction scheme used in others’ software speculative parallel
model. Section 3 introduced the stimulation, basic concept, and work flow of the
IFVP. Section 4 described the implementation of IFVP on the HEUSPEC. The
experiment and result evaluation are shown in Section 5. At last, the conclusions
are made in Section 6.

2 Related Works

With the support of GPU’s many core architecture, Liu et al from University
of California, Irvine were able to apply their Multiple Random Value Predic-
tion(MRVP) scheme on a CPU-GPU platform[8]. In this model, a single task
may have several copies executed in different threads with different sets of pre-
dicted CVAR values. For each task and its copies, the earliest finished one which
passed the correctness checking can submit, while others are discarded. This
scheme can improve the speculation accuracy remarkably with a large hardware
thread consumption(An task with n CVARs and m possible values for each
CVARs may have mn copies and need the same number of hardware threads
to executed them in parallel). Therefore the support from GPU’s many-core
architecture is necessary.

Tian et al from University of California, Riverside developed their own soft-
ware speculative parallel model named CorD[7]. The Cord also applied MRVP
scheme. Besides, the Pre-computing Value Prediction(PCVP) scheme is also ap-
plied on the CorD. Under PCVP, the serial binary code of each code section
to be parallelized is executed with Pin in order to analyze the information of

248 F. Xu et al.

CVARs at runtime. The runtime profiling process identifies the related sentence
or operations of each CVAR to be predicted. This information is used to create
predictors for the CVARs. Usually, A predictor includes several related sentence
abstracted from the runtime information, which are used to do value prediction
when the code section is executed in parallel. The most advantage of PCVP is
that the predictors are customized based on the information gathered from a
learning process. That means the prediction is not ”blind”. However, additional
time cost for the learning process and some compiling support for creating the
predictors are necessary.

The above two schemes are typical. The MRVP is a scheme with simple-
but-many predictors. The predictors in MRVP use low cost value prediction
function(random prediction). For each CVAR to be predicted, there are many
predicted values come from many MRVP predictors. These values overlap a large
proportion of the CVAR’s possible value space. Thus increase the speculation
accuracy. The PCVP is a scheme with complex-but-few predictors. For each
CVAR, there is only one predictor which created with the information from
learning process. The predictor is hard to create, but powerful for prediction.

As a new prediction scheme, Heuristic Value Prediction(HVP) is applied in
the HEUSPEC speculative parallel model, which we have proposed in 2013[9].
This scheme is a compromise between the MRVP and PCVP. This prediction
scheme aims at the CVARs which has regular value changing traces. For a single
CVAR to be predicted, HVP uses multiple predictors to generate a group of
predicted values based on the history values of the CVAR. A credit system is
applied to evaluate all the prediction results of the predictors in the commit
process. A predictor gains one credit if it has done a correct prediction. The
prediction result from the predictor with the highest credit is always selected
to be the result of an SRD operation. Without learning process and compiling
support, the predictors in the HVP is not as ”clever” as those in the PCVP,
but also not as ”blind” as those in the MRVP. Therefore, it has a compromised
complexity, and time/space overhead.

3 Inter-thread Fetching Value Prediction

Above 3 typical prediction schemes shows that there is a tradeoff between the
complexity of the predictor and the hardware consumption inside the prediction
scheme. To insure the level of speculative accuracy, MRVP has to increase the
number of predictors. Thus cost lots of processor cores and memory space. The
availability of the PCVP is limited by its complexity of the predictor creation.
We try to find a novel prediction scheme, with high accuracy, but less complexity
and space/hardware consumption. Therefore, we proposed Inter-thread Fetching
Value Prediction.

3.1 Thread Isolation

Many software speculative parallel models keep the speculative thread relatively
isolated. With the thread isolation mechanism, each speculative thread has its

Improving Speculation Accuracy with Inter-thread Fetching Value Prediction 249

own private space, storing CVARs’ copies which are necessary to its own com-
putation work. The CVARs are copied into the private space of each speculative
thread via SRD operations, and copied out to the shared memory space via
speculative write(SWR) operations. The shared memory space is maintained by
the main thread, storing the committed CVARs. This mechanism has the ad-
vantage that it keeps the simplicity of the speculative task code, without many
communication or synchronization methods.

a b

Shared Space

Private Space
(task commit)

SRDSRD

Private Space
(task rollback)

Private space
(New task begin)

SWR SWR

a b

a b

a b
a b

Private space
(doing task computation)

Speculative thread 4

Speculative thread 3

Speculative thread 2

Speculative thread 1

Main thread

Fig. 2. The thread isolation mechanism

The Figure 2 shows the basic idea of the thread isolation. In the figure, the
speculative task in each speculative thread has 4 states. At the beginning of the
task, the threads get the values of CVARs through SRD operation and copy
them into their private spaces. In the middle of the computation, the threads
use the CVARs’ copy in their own private spaces. If the speculative task passed
the correctness checking, it can submit the CVARs to the shared memory space
via SWR operation. But if the task failed, it will go to the rollback routine, and
all the CVARs in the thread will be discarded.

Under the thread isolation mechanism, all the speculative threads only need
to synchronize with the main thread while its current speculative task is begin-
ning or in the correctness checking. They do not contact with other speculative
threads. Most value prediction schemes won’t break the thread isolation. The
speculative threads generate the CVARs’ predicted value by themselves. The
prediction schemes such as MRVP, PCVP or HVP are of this kind.

250 F. Xu et al.

The thread isolation mechanism builds communication walls between the spec-
ulative threads. However, it also builds a wall to the performance of the specu-
lative parallel model. Here we use a case-study to explain. The Figure 3 shows a
code section to be parallelized under a software speculative parallel model with
thread isolation. We assume that speculative task 1 and 2 are spawned almost at
the same time, and doing approximate 2 iterations in the loop. Task 1 is executed
in speculative thread 1 while task 2 is executed in speculative thread 2. In this
case, the speculative thread 1 is the producer, and speculative thread 2 is the
consumer. Therefore, if task 2’s SRD operation does not happen in the safe time
zone(colored zone after Task 1’s SWR done), it has a very large probability to
rollback. The value prediction scheme can, more or less, enlarge the possibility
of making correct speculation of Task 2’s SRD, but the effect is unreliable.

To increase the probability of making correct SRD in task 2, we must know
that at which time point the dep(v1) has been generated. In fact the dep(v1)
has existed in the private space of the speculative thread 1 since task 1 finished
L1 in the code seciton. However, the speculative thread 2 can’t see it until task
1 submits it to the shared memory, because of the thread isolation mechanism.

Safe time zone for Task
2's SRD, because Task

1's dep has been
submitted

SWR dep

dep(v0)
dep(v0)

dep(v1)

SRD dep

SWR dep
dep(v1)

dep(v0)

dep(v1)
succeeded

failed

SRD dep

SWR dep

dep(v1)

dep(v2)

Main thread
Task 1 Task 2

Task 2 rollback

Predictor
(if value

prediction
applied)

Predictor
(if value

prediction
applied)

dep(v2)

Spec thread 1 Spec thread 2

for(i=1;i<MAX;i++) { // code section example
L1: dep=calculateRandom(dep, v[i]); // cross-iter dependency
L2: lotsOfComputation(dep); // parallelism }

SRD dep

Fig. 3. Speculation under the thread isolation mechanism(in the code section, L1 is
a sentence including a cross-iter dependency. L2 is a function call, which is time con-
sumption but can be parallelized. the darken SWR in task 1 and SRD in task 2 have
a cross-iter dependency.)

3.2 Fetching CVAR from Another Speculative Thread

We try to break the wall of thread isolation, allowing the speculative thread 2
to fetch the correct value of dep as earlier as possible. Therefore, we proposed

Improving Speculation Accuracy with Inter-thread Fetching Value Prediction 251

the Inter-thread Fetching Value Prediction(IFVP) scheme. The IFVP scheme
is based on this idea: There is a probability that the consumer thread can get
the correct version of CVAR in the producer thread’s private space before the
CVAR is submitted to the shared memory space.

dep(v2) succeeded

Safe time zone enlarged to
the time point which dep(v1)

is stored, including above
time zone with darker color

SRD dep

SWR dep

dep(v0)
dep(v0)

dep(v1)

SRD dep

SWR dep

dep(v1)
dep(v1)

dep(v2)

succeeded

Main thread
Task 1

Task 2

Spec thread 1

Spec thread 2
IFVP

Predictor

Fig. 4. Speculation with IFVP(the safe time zone enlarged due to the application of
IFVP predictor)

The Figure 4 shows the speculative parallel under the model with IFVP
scheme, using same code case as the Figure 3 shows. Instead of directly ac-
cessing the private space of speculative thread 1, we use an IFVP predictor to
be the agent of inter-thread fetching. When thread 2 doing SRD, it calls IFVP
predictor to access the private space of thread 1. The IFVP predictor will check
if there is a new version of dep is stored in the private space of thread 1, then
return it to the thread 2. The Figure 4 shows that the safe time zone of the
SRD in the task 2 has been enlarged due to the IFVP predictor. That means
the probability of making right speculation is increased. While doing SRD un-
der IFVP scheme, there are 3 different scenes at runtime, which are shown in
figure 5.

The cases shown in Figure 5(b) and 5(c) are safe, which means the SRD in
task 2 can get the right value. However, in the case in Figure 5(a), the IFVP
predictor has to make choice: to return immediately or wait until the new version
of dep is created. If the predictor returns the value immediately, no matter if it
gets the right value, it is Relaxed IFVP. Or else if the predictor waits until a
new version is stored, it is Forced IFVP. The Forced IFVP is actually a implicit
synchronization between the two threads. However, the Forced IFVP has a fatal
defect. The predictor does not know how many times the producer thread will
write the CVAR in the task, until the task is finished. Therefore, the Forced IFVP
still can’t ensure the result of SRD always correct. In our implementation, we
chose Relaxed IFVP scheme.

The IFVP has several advantages. First, it is a lightweight prediction scheme,
which won’t bring much cost of time or space. Second, it does not create addi-
tional copies of speculative tasks, which means it does not need lots of additional

252 F. Xu et al.

Cannot get the right
value immediately,

unless IFVP
predictor waits

Safe time zone

SRD dep

SWR dep

dep(v0)

dep(v1)

SRD dep

SWR dep

dep(v1)

dep(v2)

Task 1
Task 2

Spec thread 1 Spec thread 2

IFVP
Predictor

Safe time zone

SRD dep

dep(v0)

dep(v1)
SRD dep

SWR dep

dep(v1)

dep(v2)

Task 1

Task 2

Spec thread 1 Spec thread 2

IFVP
Predictor

Get the right value.
Benefit from safe

time zone expansion

Safe time zone

SRD dep

SWR dep

dep(v0)

dep(v1)

SRD dep

SWR dep

dep(v1)

dep(v2)

Task 1

Task 2

Spec thread 1 Spec thread 2
Get value failed

because the Task 1
finished. Ask main
thread and get the
right value from the

shared memory
space

dep(v1)

Main thread

dep(v0) IFVP
Predictor

(a) fetch before new version of CVAR stored. (b) fetch after new version of CVAR stored, before
task 1 commit

(c) fetch after task 1 finished

SWR dep

Fig. 5. 3 different scenes of IFVP

resource of processor cores. Third, it provides same prediction effects to the
CVARs with random value traces as those with regular value traces. The value
traces of the CVARs won’t affect the speculative accuracy of IFVP. Finally, it
does not need additional compiling supports or learning process.

IFVP scheme uses special IFVP predictor to do indirect accessing to the pro-
ducer thread’s private space. This way of implementation also has several ad-
vantages. The IFVP predictor does not destroy the thread isolation mechanism.
It just provides a channel between the private space of the producer thread and
the consumer thread, but also keeps 0-synchronization between the consumer
and producer. Besides, the IFVP predictor can work just like other predictors.
Therefore it’s easy to be integrated into a software speculative parallel model
with another prediction scheme.

4 Implementation of IFVP

We have integrated the IFVP predictor into our HEUSPEC model. It works well
with the mechanisms in the model.

4.1 Overview of HEUSPEC

HEUSPEC is a software speculative parallel model. It consists with a source-to-
source compiler and a runtime library. The source-to-source compiler can trans-
form the labeled code into HEUSPEC style code, which has one main thread and
several speculative threads. The main thread offers all kinds of essential supports
for the speculative parallelization, such as task creating, task assignment, value
prediction, correctness checking, and result submitting. The speculative threads
handle the computation activities of each speculative task. To ensure the correct-
ness of speculative parallel execution, and improve the performance, HEUSPEC
adopts three mechanisms. They are Thread Isolation(TI), Heuristic Value Pre-
diction(HVP) and Dynamic Task Granularity Resizing(DTGR). The TI and the

Improving Speculation Accuracy with Inter-thread Fetching Value Prediction 253

HVP have been mentioned in the former parts of this paper. The DTGR is a
mechanism which can adjust the size of the speculative tasks dynamically, in
order to control the overhead in a low level.

4.2 Integrating IFVP Predictor with HEUSPEC

As a lightweight prediction scheme, IFVP is easy to be integrated to any soft-
ware speculative parallel model with value prediction. We implemented IFVP
predictor in our HEUSPEC model. When IFVP mode is activated, the model
uses IFVP predictor in the SRD operations.

The Figure 6 shows how we integrated IFVP predictor into HEUSPEC. When
the IFVP prediction is activated, the HEUSPEC will use IFVP predictor instead
of HVP predictors. The IFVP prediction in the HEUSPEC works as follows:

The prediction begins with a function call from the consumer thread while
doing SRD. It calls the IFVP predictor to search the object CVAR of the SRD
in the private space of the producer thread. The IFVP predictor firstly look up
the WR MAP, which is a table stores all the addresses of the CVARs written by
the producer thread while executing current task. If there is a matched address
in the WR MAP, it is surely that the CVAR’s value has been updated by the
producer thread and stored in the private space. In this case, the IFVP predictor
will get the value by the address, and return it to the consumer thread. However,
if there is no matched address, there are two possible status. First, the new value
has been committed and stored in the shared memory space. Second, the new
value has not been generated by the speculative task running in the producer
thread because the calculation is not done. In this case, the predictor searches
the CVAR Table, which stores the information of committed CVARs, to see if
the new value has been committed. If it is committed, the predictor will get the
CVAR from the shared memory space. Or else, the predictor will still get the
CVAR from the private space of the producer thread(Relaxed IFVP) or wait
until the WR MAP has an matched address.(Forced IFVP).

HVP prediction mode IFVP prediction mode

SRD dep

SWR dep

Task n

Spec thread 1

HVP
Predictor

HVP
Predictor

HVP
Predictor

Main thread

dep depdep

Credit system

dep

dep

SRD dep

SWR dep

Task n-1

Spec thread 2

dep

IFVP
Predictor

WR_MAP

dep

dep_history1

dep_history2

dep_history3

Fig. 6. Integrate IFVP scheme into HEUSPEC model

254 F. Xu et al.

5 Experiment and Evaluation

We did 3 parts of experiments to test mis-speculation rate, speedup and
time/space overhead of HEUSPEC model with IFVP scheme. We chose the
conventional model without prediction scheme and HEUSPEC model with HVP
scheme as comparisons. The experiments has been done on a platform with 4
Xeon E5-4620 processors(8 cores per processor, 2 way SMT per core). The ca-
pacity of the memory is 512GB. The software environment includes a Linux OS
(kernel version 2.6.32) and a gcc/g++ compiler (version 4.4). Table 1 lists the
benchmarks we used in our experiments. The number of code lines the PCVP
scheme will take to the predictor(for highest accuracy) in each benchmark is also
listed in the table.

Table 1. The benchmarks used in the experiment

Name Package
CVAR

Number

Total
iterations in
the loop

Total lines in
the loop

Lines need
to be

identified in
PCVP

Favorite
Predictor in

HVP

Badloop Self coded 1 620 5 1 Linear

Kmeans Rodinia 2.1 8 494020 13 4 Constant

Fluidanimate Parsec 2.1 1 31 53 42 Constant

183.equake SPEC 2000 5 30169 50 13 Constant

179.art SPEC 2000 13 180 281 195 Constant

456.hmmer SPEC 2006 7 5000 29 10 Linear

5.1 Experiment Results

First, we tested the mis-speculation rate. Because the hardware platform has 32
processor cores, we set the speculative depth(max number of speculative thread
at the same period) to 4 different levels: 3, 7, 15 and 31. On the average, the IFVP
shows 19.1% better on the speculation accuracy against conventional model, and
11.9% better than the HVP scheme. The experiment result is shown in Figure 7.

0

0.2

0.4

0.6

0.8

1

1.2
Conv3 HVP3 IFVP3

(a) miss rate(depth=3)

0

0.2

0.4

0.6

0.8

1

1.2
Conv7 HVP7 IFVP7

(b) miss rate(depth=7)

0

0.2

0.4

0.6

0.8

1

1.2
Conv15 HVP15 IFVP15

(c) miss rate(depth=15)

0

0.2

0.4

0.6

0.8

1

1.2
Conv31 HVP31 IFVP31

(d) miss rate(depth=31)

Fig. 7. The mis-speculation rates. ((a) for speculative depth equaling 3, (b) for 7, (c)
for 15 and (d) for 31).

Improving Speculation Accuracy with Inter-thread Fetching Value Prediction 255

Among the 6 benchmarks, the badloop shows the largest improvement. Its
miss speculation rates under IFVP are much lower than other two schemes on
all the speculation depth levels. The section to be parallelized in badloop is with
a determined dependency, which means the code of the dependency always be
executed in each iteration, and cause a conflict. The dependency distance, which
means the difference between the consumer and the producer iteration, is 1. The
section also includes a lots of computation() function to offer a large quantity
of potential parallelism. The IFVP handles this kind of dependency very well.
Compared with the conventional model, the reduction of miss speculation rate
can reach 99% while speculation depth level equals 3. It also has remarkable
miss speculation rate reduction while depth level equals to 31, about 61%.

Besides badloop, kmeans and fluidanimate also shows well about the miss
speculation rate reduction. The kmeans has a undetermined dependency in the
section to be parallelized. And the dependency distance is 1. During the exe-
cution, the section to be parallelized is executed for multiple times. Each time
the possibility that conflict happens is different from others. Compared with
the conventional model, the IFVP reduced the miss speculation rate by about

0

0.5

1

1.5

2

2.5

3

3.5
Conv3 HVP3 IFVP3

(a) speedup(depth=3)

0

1

2

3

4

5

6
Conv7 HVP7 IFVP7

(b) speedup(depth=7)

0

1

2

3

4

5

6

7

8

9
Conv15 HVP15 IFVP15

(c) speedup(depth=15)

0

1

2

3

4

5

6

7

8
Conv31 HVP31 IFVP31

(d) speedup(depth=31)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

CONV HVP IFVP

3 7 15 31

(e) speedup of fluidanimate

Speedup improvement

Fig. 8. The speedups.(The speedup of fluidanimate is shown separately in the subgraph
(e). The table shows the average speedup improvement against the other two schemes).

256 F. Xu et al.

25%, 2% lower than HVP. fluidanimate has a cross-iter dependency inside 6
nested loops. It is a undetermined dependency, whose dependency distance is
also undetermined. Because loops are nested, this section has a very high aver-
age rollback overhead. The IFVP can reduce the miss speculation rate by about
38%, compared with conventional model, and 17%, compared with HVP.

183.equake has a undetermined dependency. However, we have proved that it
is a fake dependency, because it does not cause any conflict during the whole
execution of the code section. But at the compiling process, this dependency was
still treated as a real dependency. Therefore, the miss speculation rate under all
conditions equal zero. For 179.art, the average miss speculation rate of IFVP is
about 2% higher than conventional model, but 5% lower than HVP. For 456.hm-
mer, the miss speculation rate of IFVP is higher than conventional model at all
the conditions. That’s because the conventional model can’t increase the size of
the speculation task. Therefore it can only handle a single iteration of the loop
per task. This is not good for the overall performance.

Second, we tested the speedup of all the benchmarks on different level of
speculation depth with the 3 different schemes. The result is shown in Figure 8.

In this experiment, the IFVP shows better speedups on badloop, kmeans flu-
idanimate, 179.art and 456.hmmer. However, because of the extremely high
rollback overhead of single task, fluidanimate shows no speedup larger than 1
on all the conditions. Therefore we even can’t see the bars of fluidanimate on
the Figure 8. But the IFVP still shows better speedup compared with other two
schemes. We drew Figure 8(e) to show the speedup of fluidanimate separately.

In the third experiment, we have tested the space/time overhead of the IFVP
prediction scheme. Figure 9(a) shows the space overhead grows up as the spec-
ulation depth increases. We closed Dynamic Task Granularity Resizing option
to make the benchmarks run with task size equal to 1. Thus will keep the miss
speculation rate on each level of speculation depth at its lowest level.

All the benchmarks show very low additional memory cost, except fluidan-
imate. This is because the one of the CVARs to be handled in fluidanimate

0

200

400

600

800

1000

serial 3 7 15 31

badloop kmeans
fluidanimate 183.equake
179.art 456.hmmer

(a) space overhead increased as the speculation depth increase.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

calculate time(IFVP) calculate time(Conv.)
control time(IFVP) control time(Conv.)

(b) time overhead under speculation depth equal to 31, vs.
Conventional model

Fig. 9. Space/time overhead

Improving Speculation Accuracy with Inter-thread Fetching Value Prediction 257

is a large vector. Each vector element takes 832 bytes. And in each iteration,
there are multiple vector elements copied to the private space of each speculative
thread. Thus cause the memory cost exploded.

Figure 9(b) shows the percentage of the time overhead introduced by
HEUSPEC model with IFVP prediction scheme under speculative depth equal
to 31. The time overhead introduced on the average is lower than 10% of the
whole execution time. It proved that IFVP is a low-cost prediction scheme.

6 Conclusion

In this paper, we have proposed a value prediction scheme for the software spec-
ulative parallel model: the Inter-thread Fetching Value Prediction. Compared
with other prediction scheme, this prediction scheme has 3 advantages. First, it
can improve the speculation accuracy remarkably without any additional com-
piling technology support. Second, it has more adaptability for different type of
CVAR, not only the CVAR with a regular value changing trace, but also for
the CVAR with randomly changing trace. Third, it can reach a high specula-
tive accuracy with little processor-core consumption. The IFVP shows better
on speculation accuracy and speedup than conventional model and HVP in our
experiment. Besides, it has low time and space overhead for most benchmarks.

Acknowledgments. This work is partially supported by the China National
863 Program (No.2012AA010905), the National Natural Science Foundation of
China (No.61070037, 61272143, 61103016, 61202121), the NUDT Innovation
Foundation for Excellent Postgraduate (No.B120604) and the Hunan Provin-
cial Innovation Foundation For Postgraduate (No.CX2012B209), and the Young
Teachers Foundation Project supported by the Doctorate in Higher Education
Institutions of Ministry of Education (No.20114307120013).

References

1. Feng, M., Gupta, R., Hu, Y.: SpiceC: Scalable parallelism via implicit copying and
explicit Commit. In: 16th ACM SIGPLAN symposium on Principles and practice
of parallel programming(PPoPP’11), pp. 69-79, ACM, New York (2011).

2. Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D., Wood, D.A.: LogTM: log-based
transactional memory. In: 12th International Symposium on High-Performance
Computer Architecture(HPCA’06), pp. 254-265, IEEE, Piscataway (2006).

3. Saha, B., Adl-Tabatabai, A.-R., Jacobson, Q.: Architectural Support for Software
Transactional Memory. In: 39th Annual IEEE/ACM International Symposium on
Microarchitecture(MICRO’06), pp. 185-196, IEEE, Piscataway (2006).

4. Prabhu, M.K., Olukotun, K.: Using thread-level speculation to simplify manual
parallelization. In: 9th ACM SIGPLAN symposium on Principles and practice of
parallel programming(PPoPP’03), pp. 1-12, ACM, New York (2003).

5. Ioannou, N., Cintra, M.: Complementing User-Level Coarse-Grain Parallelism with
Implicit Speculative Parallelism. In: 44th Annual IEEE/ACM International Sym-
posium on Microarchitecture(MICRO’11), pp. 284-295, ACM, New York (2011).

258 F. Xu et al.

6. Ding, C., Shen, X., Kelsey, K., Tice, C., Huang, R., Zhang, C.: Software behavior
oriented parallelization. In: 28th ACM SIGPLAN conference on Programming lan-
guage design and implementation(PLDI’07), pp. 223-234, ACM, New York (2007).

7. Tian, C., Feng, M., Nagarajan, V., Gupta, R.: Copy or Discard execution model
for speculative parallelization on multicores. In 41st annual IEEE/ACM Interna-
tional Symposium on Microarchitecture(MICRO’08), pp. 330-341, IEEE, Piscat-
away (2008).

8. Liu, S., Eisenbeis, C., Gaudiot, J.-L.: Speculative Execution on GPU: An Ex-
ploratory Study. In: 39th International Conference on Parallel Processing(ICPP’10),
pp. 453-461, IEEE, Piscataway (2010).

9. Xu, F., Shen, L., Wang, Z., Guo, H., Su, B., Chen, W.: HEUSPEC: A Software
Speculation Parallel Model. In: 42nd International Conference on Parallel Processing
(ICPP’13), pp.621-630, IEEE, Piscataway (2013).

Towards Efficient Distributed SPARQL Queries

on Linked Data

Xuejin Li1, Zhendong Niu1, and Chunxia Zhang2

1 School of Computer Science, Beijing Institute of Technology
xuejinli7@gmail.com, zniu@bit.edu.cn

2 School of Software, Beijing Institute of Technology
cxzhang@bit.edu.cn

Abstract. The fast growth of the web of linked data raises new chal-
lenges for distributed query processing. Different from traditional feder-
ated databases, linked data sources cannot cooperate with each other.
Hence, sophisticated optimization techniques are necessary for efficient
query processing. Source selection and distributed join operations are
key factors concerning performance of linked data query engines. In this
paper, we propose identifier graph based source selection taking into ac-
count the logical relationship between triple patterns, and develop effec-
tive solutions for distributed join operations to avoid program errors and
to minimize network traffic. In experiments, we demonstrate the prac-
ticability and efficiency of our approaches on a set of real-world queries
and data sources from the Linked Open Data cloud. With the imple-
mented prototype system, we achieve a significant improvement in the
accuracy of source selection and query performance over state-of-the-art
federated query engines.

Keywords: Linked Data, Semantic Web, Query Federation.

1 Introduction

In recent years, the World Wide Web has evolved from a global information
space of linked documents to one where both documents and data are linked
[3]. The linked data adopt the general data format (RDF), are described by pre-
defined vocabularies which make them have restrict semantics, and then can be
understood by computers. This kind of Web of Data opens up possibilities for
new types of applications which can aggregate data from different data sources
and integrate fragmentary information from multiple sources to achieve a more
complete view. Transparently querying distributed RDF data sources is a key
challenge for these possibilities.

With the ever-increasing amount of data sources accessible via SPARQL end-
points, federated query approach has attracted more and more attentions. How-
ever, federated query systems for Linked Data are still in their infancy. Improving
the query performance of these systems is always in the center of their work. We
outline two key factors concerning the performance of federated query systems:

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 259–272, 2014.
c© Springer International Publishing Switzerland 2014

260 X. Li, Z. Niu, and C. Zhang

Firstly, the decomposition of original queries must be accurate as far as possible;
Secondly, distributed join operations should be effectively executed.

In this paper we concentrate on improving performance of federated SPARQL
queries over the Web of Linked Data. To provide users with a transparent view
for this Web of Data, the only available information for query decomposition is
the user query strings. Hence, we argue that the more clues (presented or implied
in query strings) are contributed to source selection, the better accuracy of query
decomposition will be. Due to the network latency, distributed join operations
may lead to poor query performance. Our goal is to provide optimizations for
minimizing the number of remote requests and the amount of network traffic.
Thus, sophisticated optimization strategies are needed for efficiently executing
distributed join operations. Our main contributions are:

– We utilize a novel approach to make the query decomposition to be conve-
nient and accurate.

– We propose optimization strategies for distributed join operations, mainly
including join ordering and join execution.

– We implement the presented optimization techniques in our prototype sys-
tem and perform experiments on a set of real-world queries and data sources.

The remainder of this paper is structured as follows. In Section 2 we review
related work. Details of evaluating distributed SPARQL queries are discussed in
Section 3. An evaluation of our prototype system is given in Section 4. Finally,
we conclude and discuss future directions in Section 5.

2 Related Work

Related work can be divided into two main categories: (a) query decomposition
(b) query optimization.

2.1 Query Decomposition

DARQ [17] extends the popular query processor Jena ARQ to an engine for fed-
erated SPARQL queries. It requires users to explicitly supply a configuration file
which enables the query engine to decompose a query into sub-queries and opti-
mize joins based on predicate selectivity. Stuckenschmidt [20] presents an index
structure called source index hierarchy which is used to determine information
sources that contain instances of a particular schema path. Given a predicate
path in a dataset, an index hierarchy is constructed, where the source index of
the indexed path is the root element. Both two approaches require predicates of
triple patterns contained in the query string to be bound. SemWIQ [11] requires
all subjects must be variables and for each subject variable its type must be
explicitly or implicitly defined. Additional information (another triple pattern
or DL constraints) is needed to tell the type for the subject of a triple pattern.
It uses these additional information and extensive RDF statistics to decompose
the original user query. These requirements limit the variety of user queries.

Towards Efficient Distributed SPARQL Queries on Linked Data 261

In other cases, users are required to provide additional information to de-
termine the relevant data sources. For instance, [21] theoretically describes a
solution called Distributed SPARQL for distributed SPARQL query on the top
of the Sesame RDF repository. Users are required to determine which SPARQL
endpoint the sub-queries should be sent to by the GRAPH graph pattern. The
association between graph names and respective SPARQL endpoints at which
they reside is explicitly described in a configuration file. The W3C SPARQL
working group has defined a federation extension for SPARQL 1.1 [5]. However,
remote SPARQL queries require the explicit notion of endpoint URIs. The re-
quirement of additional information imposes further burden on the user. On
the other hand, the proposed approach hardly imposes any restrictions on user
queries.

Recently, several attempts have been made to do source selection without local
statistics. FedX [19] asks all known data sources by SPARQL ASK query form
whether they contain matched data for each triple pattern presented in a user
query. FedSearch[14] is based on FedX and extends it with sophisticated static
optimization strategies. If the amount of known data sources is very large(it
is common in an open setting), the query performance may leave much to be
desired. SPLENDID [6] relies on the VOID descriptions existed in remote data
sources. However, a VOID description is not an integral part of Linked Data
principles. [1].

2.2 Query Optimization

Research on query optimization has a long history in the area of database sys-
tems. Concepts in these research areas have been adopted to optimize queries
on local RDF stores. OptARQ [2] reorders triple patterns in SPARQL queries
based on their selectivity. Hartig [9] adapted the query graph model (QGM) for
SQL queries to represent SPARQL queries. Based on SQGMs, SPARQL queries
are rewritten for optimization purpose. Due to the triple nature of RDF data,
optimization for queries on local repositories has also focused on the use of spe-
cialized indices to accelerate the join operations, e.g. [7].

In [17] Quilitz et.al have adopted some of existing techniques from relational
systems to federated SPARQL queries. They present a cost based optimization
for join ordering. However, their estimation on the result size of joins is inaccu-
rate by simply setting the selectivity factor for the join attributes to a constant.
Because unbound queries generally returning a large result set, other join imple-
mentations are proposed as an alternative to local nested-loop implementation
of joins, such as pipeline join [8] and semijoin [21]. Due to the variety of the
Web, none of these approaches can effectively process all user queries. The rea-
sons are discussed in Section 3.3. In this paper, we propose a novel way, called
groupjoin, to execute join operations. The size of group can be modified flexibly
for enhancing performance of the system in different situations.

262 X. Li, Z. Niu, and C. Zhang

3 Federated SPARQL Query

A federated query system has the similar architecture shown in Figure 1. A
mediator(also called query federator) analyzes and decomposes the user query
into several sub-queries and distributes them to autonomous data sources which
execute these sub-queries and return the results, and then integrates intermedi-
ate results into query answers. This section describes in detail how to evaluate
distributed SPARQL queries.

RDF

Repository

User Interface

RDF

Repository

RDF

Repository

SPARQL

Endpoint

SPARQL

Endpoint

SPARQL

Endpoint

Query Decompostion

Query Optimization
Results Integration

M
ed

ia
to

r

Statistical

Models

Monitor

Service

Register

Service

Fig. 1. A common architecture of federated query systems

3.1 Query Decomposition

RDF data is a kind of graph-structured data, and the Web of Linked Data can
be seen as a huge distributed RDF graph. SPARQL is a query language for RDF,
based on graph patterns and subgraph matching. The simplest graph pattern
defined for SPARQL is the triple pattern which is like the RDF triple except
that each of the subject, predicate and object may be a variable. The basic
graph pattern(BGP) consists of a set of triple patterns which are conjunctive
relationship, and also has a graph structure. Other complex graph patterns can
be constructed by BGP using SPARQL logical operators(UNION, OPTIONAL).
Solutions of a SPARQL query are decided by non-variable parts of triple patterns
and the logical relationship between graph patterns. Hence, the decision of query
decomposition should be made not only by non-variable parts of triple patterns
but also by the logical relationship between graph patterns.

Formal Definitions. Before discussing our approaches, we give formal defini-
tions of concepts used in this section.

Definition 1 (Triple). Assume that I(IRIs), B(Blank nodes) and L(RDF lit-
erals) are pairwise disjoint infinite sets. An RDF statement can be represented

Towards Efficient Distributed SPARQL Queries on Linked Data 263

as a tuple: (s, p, o) ∈ (I ∪B)× I × (I ∪B ∪ L). In this tuple, s is the subject, p
is the predicate and o is the object. The tuple representing an RDF statement is
called a RDF triple, simply called triple.

A group of resources with similar characteristics is called a class. The members
of a class are instances of the class. In RDF, the predicate rdf:type1 generally is
used to express a source being an instance of a class. For example, P rdf:type C,
denotes that P is an instance of C. In the context of this paper, we divide RDF
triples into instance triples and class triples. Formally, they are defined as:

Definition 2 (Class Triple). A RDF class triple (C,p,D) is a RDF triple, both
C and D are instances of the rdfs:Class. If c is an instance of C and d is an
instance of D, then the triple (c,p,d) is called an instance triple of (C,p,D) and
(C,p,D) is called a class triple of (c,p,d).

Definition 3 (Triple Pattern). Assume that I(IRIs),B(Blank nodes),L(
RDF literals) and V(variables) are pairwise disjoint infinite sets. A triple
pattern tp satisfies: tp ∈ (I ∪B ∪ V)× (I ∪ V)× (I ∪B ∪ L ∪ V).

Similarly, we divide RDF triple patterns into RDF class triple patterns and
RDF instance triple patterns. Following the definition above, we give the formal-
ized definitions of RDF class triple patterns and RDF instance triple patterns:

Definition 4 (Class Triple Pattern). Assume that V is a infinite set of vari-
ables, for a given triple pattern (v1, v2, v3), if v1 �∈ V and v1 is a instance of the
class C, then s = C, else s = v1; if v3 �∈ V and v3 is a instance of the class
D, then o = D, else o = v3. The triple pattern (s, v2, o) is called a class triple
pattern of the triple pattern (v1, v2, v3) and (v1, v2, v3) is called an instance triple
pattern of (s, v2, o).

Source Selection. Before source selection, we previously extract class triples
from all known data sources. The RDF graph consisting of all class triples from
one data source is named by the URI of the SPARQL endpoint of this data source
and stored into a local RDF dataset. A RDF dataset represents a collection of
RDF graphs. It comprises one default graph and none or more named graphs,
where each named graph is identified by an IRI [16]. Besides, we also compute the
total number of instance triples and the number of distinct subjects associated
with each class triple. The object values domain for predicates is represented by
histograms[15]. Consequently, a Web of Linked Class is built on top of the Web
of Linked Data. The former is much smaller than the latter, and can be loaded
into memory during the system running.

If all triple patterns contained in a SPARQL query are class triple patterns,
then this query is called a class query. If all class triple patterns in a class query

1 In this paper we use the following prefixes: rdf:
http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#

264 X. Li, Z. Niu, and C. Zhang

are respectively replaced with an instance triple pattern of them, then the new
query is called an instance query of the class query. Before a SPARQL query
being evaluated, it is transformed into class queries. Graph patterns containing
in class queries are used as identifier graph for source selection.

SPARQL provides the mechanism accessing names of named graphs in a
dataset. By using the keyword of GRAPH, a query engine can access the name
of a named graph from which the matched data of one or a group of triple pat-
terns come. Our main idea for query decomposition is that firstly translating
the original query into class queries; then adding the GRAPH keyword for each
class triple pattern; finally evaluating each class query on the statistical model
dataset. Classes of an IRI resource can be obtained by dereferencing this IRI.
Non-IRI resources are assigned with a common class of rdfs:Literal. SPARQL
GRAPH keywords do not change the logical relationships between SPARQL
graph patterns. Hence, the result of query decomposition is a comprehensive
action of the information of classes, predicates and logical relationships between
graph patterns in a query. To the best of our knowledge, there are not any ex-
isting approaches considering all these three factors. Hence, we can expect that
the presented approach is more accurate than others.

3.2 Cardinality Estimation

Single Triple Pattern. Estimating the cardinality of one single triple pattern
tp = (s, p, o) on a data source d includes two steps: Firstly transforming tp into
its class triple pattern ctp and evaluating ctp on the class graph dm of d, then a
subset d

′
of d can be decided; the cardinality of tp is estimated on d

′
.

The cardinality of tp can be estimated by the following function:

cardd(tp) = cardd′ (tp) = |T ′ |×seld′ (tp) = |T ′ |×seld′ (s)×seld′ (p)×seld′ (o) (1)

Where |T ′ | is the total number of triples in d
′
. seld′ (s), seld′ (p) and seld′ (o)

respectively are the selectivity of s, p and o on d
′
. For s, p and o, if it is a vari-

able, then its selectivity is set to 1. Otherwise, their selectivity are respectively
computed by the following functions:

seld′ (s) =
1

|I ′ | (2) seld′ (p) =
|T ′

p|
|T ′ | (3)

seld′ (o) =

⎧⎪⎪⎨
⎪⎪⎩

∑
si∈S

∑
pj∈Psi

c(si, pj, oc) if both s and p are not bound∑
si∈S c(si, p, oc) if s is not bound and p is bound∑
pj∈Psi

c(s, pj , oc) if s is bound and p is not bound

c(s, p, oc) if both s and p are bound
(4)

where |I ′ | is the total number of URIs in d
′
, c(s, p, oc) = hc(s,p,oc)

|T ′
(s,p)

| , i.e., the

frequency of oc normalized by the number of triples matching s and p, and oc
is the histogram class in which the object o falls into, |T ′

p| corresponds to the

number of triples matching predicate p in d
′
. If p is bound, then |T ′

p| = |T ′ |.
Hence, seld′ (p) ≡ 1.

Towards Efficient Distributed SPARQL Queries on Linked Data 265

Pattern Groups. The function estimating the cardinality of a group of triple
patterns TP = (tp1, tp2, ..., tpn) is:

card(TP) = min(m1,m2, ...,mn)

n∏
i=1

card(tpi)

mi
(5)

Where mi is the number of different values of tpi in the joint position. If the joint
variable is in subject position, then mi = |R′ |. If the joint variable is in predicate
position, then mi is the number of different predicates. If the joint variable is in
object position, then mi is the number of different values of all predicates.

Join Cardinality. We compute the join cardinality as

card(q1 �� q2) = |R1||R2|sel��(q1, q2) (6)

Where |R1| and |R2| are respective the cardinality of q1 and q2; sel��(q1, q2) is
the join selectivity of q1 and q2. It is a reduction factor which depends on the
selectivity of the join variable in both datasets. We use the maximum selectivity
of the join variable as the join selectivity.

3.3 Join Reordering

The join order determines the number of intermediate results and is thus one
of key factor for query performance. For the federated setup, we propose a rule-
based join optimizer, which orders a list of subqueries according to a heuristics-
based cost estimation. Our algorithm uses a variation of technique proposed in
[19] and is depicted in Algorithm 1. Firstly, It selects the subquery with minimum
cardinality(line 3) and append it to the result list(line 4). Then, it selects the
subquery from remaining subqueries which has minimum join cardinality with
the last subquery in the result list (line 7-8) and append it to the end of the
result list(line 9).

Algorithm 1. Join Order Optimization
1: order(sqs : list of n joint subqueries)
2: result ← ∅

3: mincard ← min(card(sqs[1 − n]))
4: result ← result + {sqs[j]}//j is the index of subquery with minimum cardinality
5: sqs ← sqs\sqs[j]
6: while sq
= ∅ do
7: q ← result[result.len − 1]
8: mincost ← card(q �� sqs[i])//i is the index of subquery which has the minimum join cardi-

nality with q
9: result ← result + {sqs[i]}

10: sqs ← sqs\sqs[i]
11: end while
12: return result

266 X. Li, Z. Niu, and C. Zhang

3.4 Join Execution

While pipeline join(PJ) directly passes each solution produced by one operation
to the operation that uses it, semijoin(SJ) buffers the obtained variable binding
sets and sends them in a batch as conditions in a SPARQL FILTER expression
to remote SPARQL endpoints. The former may produce too many concurrent
access to remote data sources, and the latter may lead to program errors due to
long query strings.

We propose groupjoin(GJ) which restrains the number of the cached solutions
in the mediator. In contrast to caching all solutions of the prior sub-query in
semijoin, these solutions are divided into some groups, each group contains n
solutions. Assume that, q1 and q2 are two join query and are respectively eval-
uated on dataset D1 and D2; the cardinality of q1 is N1 and the times which
D2 allows one client to access in a period of time is NC . Then, the size of each
group should be n ≥ N1

NC
. Again, the maximum length of query string evaluated

on D2 is NF . Hence,
N1

NC
≤ n ≤ NF

NT
, where NT is the average length of RDF

terms in D2. In practice, n is firstly set to an experimental value between N1

Nc

and NF

NT
. When errors occurred due to too many remote connections, the query

engine increases the group size, and thus decreases the number of concurrent
threads. When errors occurred due to too many value constraints, the query
engine decreases the group size.

The difference between PJ, SJ and GJ lies in the different number of concur-
rent threads during executing join operations. However, in case of distributed
query processing the amount of transferred data has the highest influence on
query execution time. Essentially, PJ, SJ and GJ need equal network traffic. For
simplicity, we consider the transfer cost of SJ. The cost of a semijoin is estimated
as

costsj(q1 �� q2) = |R1||V1|ct + |ΠV (R1)||V |ct + |R′
2||V2|ct + 2cq (7)

Where ct and cq are the respective transfer costs for one result tuple2 and one

query; R1 is the result set of q1; R
′
2 is the result set of q

′
2 which is the query

with variables bound with values of a result tuple from q1; V1 and V2 are the
respective variable set of q1 and q2; V is the intersection of V1 and V2, ΠV (R1)
is the projection of R1 on V .

While semijoin projects R1 on V in the mediator, double semijoin(DSJ)[12]
executes this operation in D1. The cost of a double semijoin is estimated as

costdsj(q1 �� q2) = (2|ΠV (R1)|+ |ΠV (R
′
2)|)|V |ct+ |R′

2||V2|ct+ |R′
1||V1\V |ct+3cq

(8)
Where |R′

1| is the result set of q
′
1 which is the query with variables bound with

values of R
′
2.

Distributed join operations are parallel executed in GJ. In each thread, we
select the optimal way according to function (7-8).

2 For simplicity, we currently disregard the specific tuple size.

Towards Efficient Distributed SPARQL Queries on Linked Data 267

4 Evaluations

We have developed a prototype system(LDMS3) implementing the proposed ap-
proaches and conducted an experimental study to empirically analyze the effec-
tiveness of it compared with several existing federated SPARQL query systems.

Our evaluation is based on FedBench4[18]. In contrast to other SPARQL
benchmarks[4,13], FedBench focus on testing and analyzing the performance
of federated query processing strategies on semantic data. It includes two sub-
sets of data sources in the Linked Data cloud: Cross Domain(DBpedia, NY-
Times, LinkedMDB, Jamendo, GeoNames) and Life Sciences(KEGG, Drugbank,
ChEBI, DBpedia). For each data set, it defines seven queries. In this paper, we
discuss the evaluation of graph pattern containing BGP and UNION, omitting
other kinds of graph patterns. Hence, thirteen out of fourteen queries are adopted
in our experiments. The overview of the data sets is shown in Table 1(a) in terms
of number of triples(#Triples), size of statistical models and time taken to create
them in hh:mm:ss. Queries are shown in Table 1(b) in terms of number of BGPs
and patterns in the WHERE clause and size of results.

Table 1. FedBench datasets and queries used for the evaluation

(a)

Dataset #Triples SM Size SM Time

DBpedia 43.6M 12.8MB 03:55:18
NYTimes 335k 103KB 00:01:27
LinkedMDB 6.15M 368KB 00:27:36
Jamendo 1.05M 33KB 00:5:12
Geo Names 108M 68KB 08:43:47
SW DogFood 104k 646KB 00:00:30
KEGG 1.09M 42KB 00:05:30
Drugbank 767k 195KB 00:02:12
ChEBI 7.33M 23KB 00:25:12

(b)
Query #BGPs #Patterns #Results

CD1 2 3 90
CD2 1 3 1
CD3 1 5 2
CD4 1 5 1
CD5 1 4 2
CD6 1 4 11
CD7 1 4 1
LS1 2 2 1159
LS2 2 3 333
LS3 1 5 9054
LS4 1 7 3
LS5 1 7 393
LS6 1 5 28

The data server was set up using OpenRDF Sesame framework which provides
a query service (SPRAQL endpoint) for each data source. Benchmark datasets
simulated on the same physical host and were respectively loaded as a single
repository with the type of Sesame Native Store. The prototype system(i.e. test
client) was on a Windows XP with two Dual-Core Intel Xeon processors (2.8
GHz) and 3GB memory. The server was running a 64 Bit Debian Linux Opera-
tion System with two Intel Xeon CPU E7530 processors (each with twelve cores
at 2 GHz), 32 GB main memory. The statistical models for data sources were
loaded into memory when starting the system.

3 LDMS is available as Java source code(eclipse project) from the SVN repository:
https://svn.code.sf.net/p/semwldms/code/LDMS/trunk

4 FedBench can be downloaded at http://code.google.com/p/fbench/

https://svn.code.sf.net/p/semwldms/code/LDMS/trunk
http://code.google.com/p/fbench/

268 X. Li, Z. Niu, and C. Zhang

4.1 Evaluation of Join Execution

Based on LDMS, benchmark queries were respectively evaluated by four ways of
execution of join operations: pipeline join(LDMS-PJ), nested loops join(LDMS-
NLJ), semijoin(LDMS-SJ) and groupjoin(LDMS-GJ). We measured the query
evaluation time to see how different ways of join execution affects the overall
performance of the query system. For group-join, the size of group was set to
100. All queries were evaluated five times with the five minutes timeout. Figure
2 shows the average time of returning completed answers.

Fig. 2. The Comparison of Time Performance for Different Ways to Execute Join
Operations(not including the time for query decomposition)

Due to all intermediate results being transferred over network, the time per-
formance of nested loops join is in the worst situation. However, if all sub-queries
have small result sets, it still can be comparable to other ways, i.e. CD2. While
pipeline join needing too many remote requests, semijoin suffers from too many
intermediate results. When the amount of intermediate results being attached
to a sub-query is very large, the internal performance of the remote data sources
may become very low, i.e. CD6 and LS5. For LS3 LDMS-SJ sends too long query
strings to KEGG data source and encounters program errors. No distributed join
operations are concerned in CD1, LS1 and LS2. Hence, LDMS-PJ, LDMS-SJ and
LDMS-GJ evaluate these three queries in the same way, and are similar in time
performance. For queries that the group size is larger than the size of intermedi-
ate result sets, LDMS-SJ is equal to LDMS-GJ, i.e. CD3, CD4, CD5 ,CD7 and
LS6. For CD6 and LS4-5, LDMS-GJ is faster than LDMS-SJ.

4.2 Comparison with Other Federated SPARQL Query Systems

Some other state-of-the-art federated SPARQL query systems were deployed in
our experimental environments, namely SPLENDID and FedX to which LDMS
was compared. Every system evaluates all benchmark queries and returns com-
pleted answers. We test the accuracy of query decomposition and time perfor-
mance for these three systems.

Towards Efficient Distributed SPARQL Queries on Linked Data 269

Evaluation of Query Decomposition. We define R = Ne

NE
and P = Ne

N to
measure the quality of query decomposition, where Ne is the number of effective
query plans generated by query systems and NE is the number of all effective
query plans that a original query should have, N is the number of all query plans
generated by query systems. An effective query plan means that it can produce
query answers. A poor recall will produces incomplete query answers and a poor
precision means unnecessary access to the remote data resources which leads to
poor time performance. Therefore, we investigated how different strategies affect
the accuracy of the source selection. For each query, we look at the recall and
the precision of query plans. We test approaches used in LDMS, SPLENDID
and FedX respectively. While the recall of these three systems in term of query
decomposition is 100%, the precision is different.

(a) (b)

Fig. 3. The Precision(a) and Time Performance(b) of Query Decomposition

As shown in Figure 3(a), both LDMS and SPLENDID have 100% preci-
sion for CD2-5, LS3-4. The query decomposition strategies of SPLENDID can
be approximately seen as the integration of approaches used by DARQ and
SemWIQ(reviewed in Section 2.1). For queries with unbound predicates, SPLEN-
DID have to use additional SPARQL ASK queries to refine selected data sources.
Nevertheless, for six queries LDMS is better than SPLENDID, i.e. CD1, CD6-7,
LS2 and LS5-6. SPLENDID misses consideration of the path information which
is common in conjunctive queries. The similar shortcoming is happened to FedX.
For example, FedX decides that (?x <owl:sameAs> ?present) and (?present
<rdf:type> <dbpedia-owl:President>) in CD3 are relevant to DBpedia which
can not give any answers for the conjunctive query comprising these two triple
pattern. FedX has 100% precision for only three out of thirteen queries, i.e. CD2,
LS1 and LS4.

FedX directly asks all known data sources whether they contain matched data
for each triple pattern in a query. On the other hand, LDMS accesses remote
data sources when getting types of IRIs in the position of subject and object. As
shown in Figure 3(b), for all queries LDMS is better than FedX in terms of query
decomposition time. SPLENDID hardly needs remote requests, hence takes just
a little time for query decomposition. For CD1 and LS2, FedX is comparable
to SPLENDID. The reason is that these two queries contains triple patterns
comprising three variables and SPLENDID needs accessing to all remote data

270 X. Li, Z. Niu, and C. Zhang

sources for their source selection. For CD4, CD6 and CD7, all predicates are
bound and no IRIs presented in the position of subject or object, hence, LDMS
needs no remote requests, and then is comparable to SPLENDID in term of
decomposition time.

Time Performance. We measure the overall time performance for LDMS,
SPLENDID and FedX. Again, all queries were evaluated five times and the av-
erage time is used for comparisons. Besides of query decomposition, these three
systems are different in join optimization strategies. FedX uses heuristics to
reordering join operations whereas SPLENDID and LDMS use statistical infor-
mation to optimize query plans based on dynamic programming. While FedX
uses bound join to optimize traditional implementation of semi-join, SPLEN-
DID adopt nested loops join and pipeline join. LDMS reorders joins based on
the result of cardinality estimation of sub-queries and executes join operations
in the way of groupjoin.

Fig. 4. The Comparison of Time Performance with other state-of-the-art Federated
SPARQL Query Systems

The result of the experiment is encouraging, shown in Figure 4. For all queries
LDMS is faster than other two systems. However, FedX is comparable to LDMS
for queries with a large amount of results, i.e. LS3. It is because that the cost of
query decomposition is insignificant for the overall time performance. SPLEN-
DID fails to return results for CD6, LS3 and LS5. The reason is that SPLENDID
opens too many connections to data sources and encounters connection errors.
For six queries FedX is faster than SPLENDID, i.e. CD1-5, CD7, LS1-2, LS4.
For LS6, FedX generates many ineffective query plans and the first sub-query
evaluated in some of query plans has non-empty result set. It means that many
intermediate results need to be transferred to local federator, but produce no
results when join with the next sub-query.

Towards Efficient Distributed SPARQL Queries on Linked Data 271

5 Conclusions

We have presented an approach for evaluating SPARQL queries over the Web
of Linked Data, based on general statistical models which form a local web of
linked classes. We have shown how the statistical model can be used to select
relevant sources, and how to optimize distributed join. As revealed by our bench-
marks, source selection approaches are effective in terms of accuracy and time
performance. We use almost all clues presented or implied in the original user
queries to make query decompositions. By decreasing the number of classes of
entities, the precision of query decompositions is satisfactory. Compare with the
traditional ways of executing join operations, groupjoin makes a compromise be-
tween pipeline join and semijoin. By setting an appropriate group size, LDMS is
better than or at least comparable to the state-of-art federated SPARQL query
systems.

The approach presented in this paper can be seen as a very first step towards
a solution for the problems of federated query processing on Linked Data. A
number of limitations exist in the current proposal with respect to the generality
of the approach and assumptions made. In federation query, query service is
necessary for relevant data sources. However, providing a SPARQL endpoint is
not required in the Linked Data principles. Both traditional federation query
and our approach just omit those datasets not providing query services. For a
more general query interface, additional technologies should be considered. The
link traversal based query execution [10] is a possible solution.

Though the network communication is the main factor influencing the time
performance of systems, the internal efficiency of remote data sources is also
important. We aim at providing an infrastructure for developing semantic ap-
plications. In a future release, we propose to combine these technologies into a
hybrid one.

Acknowledgments. This work is supported by the National Natural Science
Foundation of China (No 61272361) and the National Basic Research Program
of China (No 2012CB7207002).

References

1. Berners-Lee, T.: Design issues: Linked data (2006),
http://www.w3.org/DesignIssues/LinkedData.html (2011)

2. Bernstein, A., Kiefer, C., Stocker, M.: OptARQ: A SPARQL optimization approach
based on triple pattern selectivity estimation. Citeseer (2007)

3. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. International
Journal on Semantic Web and Information Systems (IJSWIS) 5(3), 1–22 (2009)

4. Bizer, C., Schultz, A.: The berlin sparql benchmark. International Journal on Se-
mantic Web and Information Systems (IJSWIS) 5(2), 1–24 (2009)

5. Garlik, S.H., Seaborne, A., Prudhommeaux, E.: Sparql 1.1 query language. In:
World Wide Web Consortium (2013)

http://www.w3.org/DesignIssues/LinkedData.html

272 X. Li, Z. Niu, and C. Zhang

6. Görlitz, O., Staab, S.: Splendid: Sparql endpoint federation exploiting void descrip-
tions. In: COLD (2011)

7. Harth, A., Decker, S.: Optimized index structures for querying rdf from the web.
In: Third Latin American Web Congress, LA-WEB 2005, p. 10. IEEE (2005)

8. Hartig, O., Bizer, C., Freytag, J.-C.: Executing sparql queries over the web of
linked data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,
D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 293–309.
Springer, Heidelberg (2009)

9. Hartig, O., Heese, R.: The sparql query graph model for query optimization. In:
Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 564–578.
Springer, Heidelberg (2007)

10. Ladwig, G., Tran, T.: Linked data query processing strategies. In: Patel-Schneider,
P.F., Pan,Y., Hitzler, P.,Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm,B. (eds.)
ISWC 2010, Part I. LNCS, vol. 6496, pp. 453–469. Springer, Heidelberg (2010)

11. Langegger, A., Wöß, W., Blöchl, M.: A semantic web middleware for virtual data
integration on the web. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis,
M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 493–507. Springer, Heidelberg (2008)

12. Mokadem, R., Hameurlain, A., Morvan, F.: Performance improving of semi-join
based join operation through algebraic signatures. In: International Symposium on
Parallel and Distributed Processing with Applications, ISPA 2008, pp. 431–438.
IEEE (2008)

13. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: Dbpedia sparql
benchmark–performance assessment with real queries on real data. In: Aroyo, L.,
Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy,N., Blomqvist, E. (eds.)
ISWC 2011, Part I. LNCS, vol. 7031, pp. 454–469. Springer, Heidelberg (2011)

14. Nikolov, A., et al.: Fedsearch: Efficiently combining structured queries and full-
text search in a sparql federation. In: Alani, H., Kagal, L., Fokoue, A., Groth, P.,
Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.)
ISWC 2013, Part I. LNCS, vol. 8218, pp. 427–443. Springer, Heidelberg (2013)

15. Piatetsky-Shapiro, G., Connell, C.: Accurate estimation of the number of tuples
satisfying a condition. In: ACM SIGMOD Record, vol. 14, pp. 256–276. ACM
(1984)

16. Prud’hommeaux, E., Seaborne, A., Laboratories, H.P.: Sparql query language for
rdf. W3C Recommendation 15 (January 2008)

17. Quilitz, B., Leser, U.: Querying distributed rdf data sources with sparql. In: Bech-
hofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS,
vol. 5021, pp. 524–538. Springer, Heidelberg (2008)

18. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: Optimization
techniques for federated query processing on linked data. In: Aroyo, L., Welty, C.,
Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC
2011, Part I. LNCS, vol. 7031, pp. 585–600. Springer, Heidelberg (2011)

19. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: Fedx: Optimization
techniques for federated query processing on linked data. In: Aroyo, L., Welty, C.,
Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC
2011, Part I. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011)

20. Stuckenschmidt, H., Vdovjak, R., Houben, G.J., Broekstra, J.: Index structures
and algorithms for querying distributed rdf repositories. In: Proceedings of the
13th International Conference on World Wide Web, pp. 631–639. ACM (2004)

21. Zemánek, J., Schenk, S., Svatek, V.: Optimizing sparql queries over disparate rdf
data sources through distributed semi-joins. In: International Semantic Web Con-
ference, Posters & Demos (2008)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 273–285, 2014.
© Springer International Publishing Switzerland 2014

MRFS: A Distributed Files System
with Geo-replicated Metadata

Jiongyu Yu, Weigang Wu, Di Yang, and Ning Huang

Department of Computer Science, Sun Yat-sen University, Guangzhou 510006, China
{yujiongy,yangdi5}@mail2.sysu.edu.cn, wuweig@mail.sysu.edu.cn

Abstract. Distributed file system is one of the key blocks of data centers. With
the advance in geo-replicated storage systems across data centers, both system
scale and user scale are becoming larger and larger. Then, a single metadata
server in distributed file system may lead to capacity bottleneck and high
latency without considering locality. In this paper, we present the design and
implementation of MRFS (Metadata Replication File System), a distributed file
system with hierarchical and efficient distributed metadata management, which
introduces multiple metadata servers (MDS) and an additional namespace
server (NS). Metadata is divided into non-overlapping parts and stored on MDS
in which the creation operation is raised, while namespace and directory
information is maintained in NS. Such a hierarchical design not only achieves
high scalability but also provides low-latency because it satisfies a majority of
requests in local MDS. To address hotspot issues and flash crowds, the system
supports flexible and configurable metadata replication among MDSs.
Evaluation results show that our system MRFS is effective and efficient, and
the replication mechanism brings substantial local visit at the cost of affordable
memory overhead under various scenarios.

Keywords: Distributed file system, Metadata management, data replication.

1 Introduction

With the emergence and development of large-scale geo-replicated application,
distributed file system, as a general storage infrastructure, has attracted more and
more attentions in the past years. One of the key challenges in distributed file system
lies in big data processing. Data has become of greater importance, and storage
demand also has an explosive growth, which has increased exponentially exceeding
petabytes and getting close to exabytes in certain applications [1].

Consequently, high scalability and providing low-latency response have been two
critical factors in the design of distributed file system for geo-replicated applications.
Since metadata transactions account for over 50% of all file system operations [2],
most modern distributed file systems decouple the metadata transactions from actual
data accesses so as to achieve scalability and availability. Dedicated metadata server
(MDS) is deployed to process metadata transactions while storage nodes are to store
actual data. Metadata management then becomes a critical issue in file systems.

274 J. Yu et al.

However, in most of existing distributed file systems, there is usually only single
MDS node, which is prone to be a bottleneck if the number of files is very large [3].
Though a few designs introduce distributed metadata model, it is costly to maintain a
global and consistent namespace. Besides, these works consider only single
datacenter, which are not suitable for systems that spread across multi-datacenters, i.e.
geo-replicated systems.

To solve the issues discussed above, this paper presents a two-tiered metadata
management scheme with metadata across multiple metadata servers (MDSs). We
separate the file metadata and namespace information and store them in MDS
(metadata server) and NS (namespace server), respectively. File metadata is initially
stored in the MDS where the creation operation is raised. We call such MDS as
primary MDS of the metadata in the rest of the paper. Based on the rule of locality
and visit pattern of applications, we assume that a majority of client requests are
satisfied in the primary MDS and therefore will not cost high network latency among
different datacenters. In addition, multiple MDSs can serve requests simultaneously
and potentially improve the performance and concurrency. Moreover, NS maintains a
global and consistent namespace which supports fast response for directory lookup
and modification requests from clients. Such operation is supposed to cause high
delay in other designs since the namespace is scattered among different MDSs and
involved entries should be located and merged upon each query.

We propose to extend MooseFS, a well-known open source distributed file system,
by modifying the entire metadata module and introducing a new role, namespace
server. More precisely, we refer to the basic blocks of MooseFS, like communication
mechanism and client module, but recode the whole metadata service module, i.e.,
redesign the data structure of file metadata and namespace information and implement
the replication mechanism. The metadata of the file system is dynamically partitioned
into non-overlapping parts upon clients’ creation request. Namely, each metadata
node is in charge of one subset of the whole metadata in file system. It should be
clarified that, in the context of MRFS, clients are applications or front-end servers that
issue read/write operations on behalf of real world users. All processes and interaction
with NS hiding behind the primary MDS are transparent to clients.

On the other hand, to alleviate flash crowds and hotspot issues, we implement a
flexible and configurable replication mechanism. Popular metadata entries are
replicated to other MDSs that query them frequently during a pre-defined period. The
replication threshold and time interval are both configurable to meet diverse
requirements. With replication, high-latency access across MDSs is reduced and load
balance among the overall system is enhanced.

MRFS is tested in real deployment. Experiments have been conducted under
several scenarios to validate our design and evaluate the performance of the new file
system. The results show that our design is effective and efficient. Besides, the newly-
added replication mechanism largely reduces the across-datacenter communication at
the cost of affordable memory overhead.

The rest of the paper is organized as follows. We briefly review existing works on
metadata management for distributed file systems in Section 2. Section 3 describes
the design and implementation of MRFS. The experiments and results are reported in
Section 4. In the last section, we conclude the paper and discuss about future works.

 MRFS: A Distributed Files System with Geo-replicated Metadata 275

2 Related Work

According to the metadata server type, we categorize existing works on metadata
management into three classes, i.e., centralized metadata management, distributed
metadata management, and implicit metadata management.

Most of popular and famous distributed file systems, i.e., HDFS [4], GoogleFS [5]
and MooseFS [6], use a centralized metadata server. The advantage of such design
lies in easy implementation and management. However, the drawback is also obvious.
Since metadata is maintained in main memory, as the scale of file count increases to
extremely large, it may become a bottleneck and limit the scalability of overall
system.

Quite a number of distributed metadata management schemes have been
introduced to solve the problems of centralized ones. With static subtree partitioning,
metadata is divided in to non-overlapped parts and distributed into individual MDSs
by system administrator. This approach is simple and relatively efficient and used by
many famous implementations like Coda [7] and Sprite [8]. However, it may face
workload imbalance among MDSs. Besides, when namespace need to be re-divided,
system administrator is involved again.

Hashing-based namespace partitioning removes the issue of unbalanced workloads
in static partitioning. In general, path name of file and directory is hashed and then
assigned to corresponding servers, i.e., Lazy Hybrid [9]. System can quickly locate
the requested metadata utilizing the path name and hashing function. This approach
causes tremendous overhead when node is added to or deleted since system should re-
calculate the hashing-function and relocate most of the metadata. Traversal of a
directory is also inefficient in such design.

Dynamic subtree partitioning [10] is proposed to address the load imbalance
problem in static partitioning, i.e., Ceph [11]. The metadata of the whole file system is
partitioned by hashing directories near the root of the directory hierarchy, each of
which is undertaken by a node in a MDS cluster. By migrating heavily loaded
metadata automatically and overlapping popular parts, the load among different
MDSs can be balanced dynamically. However, because of the existence of overlapped
metadata, the maintenance of the consistency between different MDSs becomes more
significant and critical, and consequently, the system becomes very complex and
costly to realize and execute. Moreover, balancing load will cause metadata
redistribution when the user access pattern or the MDS set changes. This results in
additional overhead.

Hierarchical Bloom-filter Array (HBA) is an approach based on bloom filter [12].
In HBA, each metadata server constructs a bloom filter to store the path name of
metadata that it hosts. Exploiting the temporal access locality, HBA uses another
bloom filter to store some frequently accessed path. Although bloom filter is space-
efficient, it returns a probabilistic answer and cannot guarantee the location of a file.

276 J. Yu et al.

In the third class of metadata management, there is no dedicated metadata sever at
all. GlusterFS [13] is a representative of this class, which replaces the metadata
module, i.e. MDS, with an elastic hash algorithm. That is, there is in fact no explicit
MDS, and client is in charge of locating data according to file’s absolute path.
Therefore, the bottleneck and single point of failure issues in server side is eliminated
too, and high scalability and parallelism is simply achieved. However, such approach
also has trouble when traversing a directory and maintaining the consistency of
namespace. Additionally, lack of specialized MDS causes more workloads and
responsibility at client nodes.

As for the replication of metadata, the Hadoop extension by MapR Inc. [14] is the
only existing work to the best of our knowledge. In this system, metadata is replicated
like common data to achieve for high availability and better performance. Our work
differs from the work of MapR Inc. in the overall system architecture and the
management method of replication management.

3 The Design and Implementation of MRFS

3.1 Overview of MRFS

MRFS (Metadata Replication File system) is mainly composed of four components:
Metadata Server (MDS), Namespace Server (NS), Client and Chunk Server (CS).
Several MDSs distribute in different geography locations, and store actual file
metadata. On the other side, there is only one single NS maintaining a global
namespace and managing the whole file system. Clients connect and conduct
operations to their primary MDSs. Chunk servers are nodes that provide storage for
file data.

MRFS aims to provide low latency for a majority of client requests of metadata
under different scenarios. It is assumed that clients have higher interest in metadata
that they created, which means that requests are more probably satisfied in clients’
primary MDS. A small portion of requests cannot be handled locally and therefore
primary MDS inquires NS for the location of that metadata and then forward the
request to corresponding MDS containing the requested metadata. In case of special
states, like hotspots or flash crowds, replication is used to reduce such across-MDS
interactions noticeably, and in consequence, improve the overall performance and
load balance.

Taking advantage of the locality of metadata and client behavior, such design
avoids the inherently existing drawbacks of other methods like static subtree
partitioning and hashing design, and provides low-latency access for clients in most
situations. Moreover, by means of replication, MRFS addresses the work balance
issue.

In the rest of this section, we present the details of the design and implementation
of MRFS. The architecture of MRFS is shown in Fig 1, which is the basis of the
following description.

 MRFS: A Distributed Files System with Geo-replicated Metadata 277

Fig. 1. The architecture of MRFS

3.2 The Client Module of MRFS

The client of MRFS is built on FUSE [15], a loadable kernel module that provides
library API to create a file system in user space. We implement interfaces that are
essential to build a practical file system. These interfaces are listed in table 1.

Table 1. Implemented interfaces in MRFS

Name Description
fsinit initiating process for file system
getattr retrieve attributes of file or directory
create create a file
unlink remove a file
mkdir create a directory
rmdir remove a directory
read read a file
write write a file
readdir read a directory, i.e., ls operation
chmod change modes of file or directory

When initiated, client connects and registers with its primary MDS, which has a

lowest latency for client requests. Client communicates with its primary MDS through
a long-lived TCP connection. Such design eliminates the process of figuring out the

278 J. Yu et al.

closest MDS and initializing a connection, like looking up the routing table and then
connecting to that MDS, upon receiving any request from FUSE.

After client process is mounted on a certain directory, all operations conducted in
this directory are transmitted to the client process through FUSE module. Client
identifies the type of command and then sends a corresponding message directly to
the primary MDS via the connection already established. It should be noted that
FUSE automatically call getattr function to acquire the file attribute for existence and
access privilege check. Only when it returns with a success code, actual operation can
be executed onwards.

Two types of operations should be considered individually. First type is only-
metadata-involved operations like create and unlink. The primary MDS is in charge of
handling the whole workflow. Such operations come to an end when client receives
the execution result and/or the requested metadata information.

The second type is operation that involves actual data of files. Client retrieves the
storage location of data blocks from MDS at first, and then interacts with
corresponding storage nodes for real data read/write.

3.3 The Namespace Server of MRFS

The namespace server (NS) maintains a global and consistent directory tree in main
memory. All metadata servers connect to NS when starting up, and forward all
namespace-related operations, i.e., creating or removing a file, to NS. Since NS uses a
single-thread model, we don’t need to worry about the annoying consistency issues.
By novelly separating the namespace from traditional metadata service, unlike other
distributed metadata management, MRFS is able to provide much more efficient and
straightforward response for directory query, i.e., ls operation.

Additionally, NS stores the mapping between metadata entry of each file and its
primary MDS, identified by the absolute path name of files. Therefore, MDS can
acquire the location of every metadata entry along with its path name. Though
absolute path may cause extra memory overhead, the overall system is benefited from
its faster locating and traversal of the directory. As a workaround, we can use the
prefix-compression algorithm on path name to reduce memory usage, at the cost of
longer delay of processing.

To realize replication mechanism, NS also records the replicas information. With
this, NS provides more flexibility and useful functionalities, like restricting the total
number of replicas and computing the popularity of entries.

3.4 The Metadata Server of MRFS

The MDS module in MooseFS is originally designed as a central node that bundles
metadata and namespace service together. So we extend it to support distributed
metadata model. There are multiple metadata servers in system and each of them is in
charge of managing a part of the metadata. The metadata of the whole file system is
divided into non-overlapping parts in accordance with the client’s creation operation.
Fig 2 and Fig 3 illustrate the creation process and the consequent namespace.

 MRFS: A Distributed Files System with Geo-replicated Metadata 279

Fig. 2. Clients create different files

/

/path1 /path2

/path2/file3 /path2/file4/path1/file1 /path1/file2

MDS1 MDS2

NS: Global Namespace
And the Mapping

Metadata Metadata

Fig. 3. Metadata construction in server side

Client1 and client2 create files respectively and send command to their own
primary MDSs. MDS stores that metadata entry is called Host MDS, i.e., MDS1 is the
Host MDS of /path/file1. To complete the command, MDS should inform NS of the
creation operation, so that new files are added into the namespace. As a result,
namespace and file metadata are stored in NS and MDS separately. For MDS, it
constructs a hash table in memory to store all local file metadata, so as to accelerate
the query speed.

Each MDS serves multiple clients simultaneously. When a request from client is
coming, primary MDS scans the hash table to check whether the requested entry
exists locally. If so, MDS returns directly; or else, it should forward the query to NS
for a global query. If the path exists in other MDS, NS will return its location. Then
primary MDS connects to the Host MDS (for the first time of connection) and queries
for the actual metadata. This procedure introduces an extra RTT, but such situation is
supposed to be rare.

In case that there are hotspot issues or flash crowds, we implement the replication
mechanism among MDSs. It uses a server-initiated model. Host MDS pushes the
copy of popular metadata entries to other MDSs that have queried the metadata
beyond a configurable threshold in a specific time interval. Replicas are distributed in
different MDSs to improve the workload balance for servers and a low latency for

280 J. Yu et al.

clients. When creating a new replica, Host MDS keeps track of the replica MDS for
subsequent updates. To simplify the design, metadata updates can only be executed in
the Host MDS. Whenever the metadata is modified, the updates will be pushed to all
available replicas by Host MDS.

MRFS removes the stale replicas automatically to avoid unlimited increase of
replicas. Each MDS maintains the visit information for replicas. At intervals of a
configurable period, each MDS scans all existing replicas and removes those that are
old enough and under the deletion threshold. To guarantee the fairness and decrease
the impact of history information, the concept of decay is applied in our design. Each
decay period the history visit count is decayed at a rate, whose value can be set
according to different requirements.

At last, all processes in server side are transparent to client. The only thing clients
concern about is the execution result or the returned metadata information.

4 Experiments and Results

4.1 Experiment Setup

We deploy four machines as MDSs, each of which is with 1G main memory and
running Ubuntu 12.04 Server. Along with each MDS, there is a client running at the
same node and connecting to the MDS process. Besides, the NS is deployed at
another node with 8G main memory and running Ubuntu 12.10 Server. The local-disk
file system at each node is ext4.

4.2 Experiment Results

We use four different metrics to measure the performance of metadata service. Firstly,
we measure the memory overhead of MDS and NS without replicas. Then we create
replicas in one MDS on purpose to measure the replica’s impact on memory usage.
Secondly, the execution time of creation in different situation is measured. At last, we
use NumPy [16] and Python to simulate the visit pattern of web applications. By this,
we can measure the efficiency of replicas and the performance enhancement it brings.

Fig. 4. Memory usage of NS and MDS process changes as the number of created files increases

 MRFS: A Distributed Files System with Geo-replicated Metadata 281

Fig. 5. Increment of memory usage of NS and MDS process in each creation operation

Fig 4 and Fig 5 show the memory usage and increment in NS and MDS along with
the increasing of the number of created files. Obviously, the memory usage increase
linearly with the file count. Each entry in MDS costs about 110 bytes, while that of
NS is about 30% less. This can be explained because NS doesn’t store the file
information but the directory tree and mapping. Although MDS may take up more
memory, in real environment, there are multiple MDS in different locations, workload
will be distributed among them and MDS is unlikely to have a bottleneck in memory.
It should be clarified that the reason why MDS takes much more memory than NS is
that process allocates the memory to hash table in advance.

We run another experiment with two MDS and a NS to demonstrate the impact of
replicas. Initially, we create 100K files in MDS2, and then make MDS1 create all files’
replica locally. The dmap command is used to monitor the memory usage of each process
in different stages. Fig 6 shows some features of MRFS. The creation in one MDS won’t
affect other MDS, which means MDS is able to work individually. The replica creation
will introduce extra memory overhead in all three machines. NS increases a tiny amount
of memory as it only keeps track of the replica MDS’s ip for further use. As the Replica
MDS, MDS1 increases about 85% of the primary metadata copy in MDS2. This is
because Replica MDS doesn’t store the information of remote visit but local visit. As the
Primary MDS, MDS2 need to record the replica MDS’s information, and therefore its
memory usage increases about 20% compared to the original.

Fig. 6. Comparison of memory usage before and after creating replicas

282 J. Yu et al.

Fig. 7. Total execution time of creating 100K files in four MDS

Each MDS applies the creation of 100K files for three times. More precisely, creation
is firstly operated in parallel and then individually and lastly executed in local file
system. Fig 7 shows that local file system provides the best performance with the total
execution time of 80 seconds. For MRFS, due to the network latency, the elapsed time
is about 5 times slower than local file system. Averagely, each creation operation costs
about 5ms. When executed in parallel, the average execution time is a little longer, for
the reason that each MDS should interchange with NS to finish the operation and the
single-thread design of NS limits the throughput. Fortunately, all metadata and
namespace information are stored in main memory and this inherent advantage leads to
a fast processing. Therefore, network latency takes up most of the elapsed time, and
even in parallel mode, the average time of 8ms for each creation is efficient enough for
a distributed file system. This result meets our design expectation.

To measure the effectiveness of replication, we firstly create 500 disjoint files in
each MDS, and then use Python script and the NumPy library to simulate the access
pattern of metadata. Each Client executes 40K access operations through their
Primary MDS, and every operation is carried out at a time interval of 10ms.

The local/remote access ratio is set in the script, i.e., ratio=0.2 means that local
access takes up 20% of all access while remote access of other MDS takes up 80%.
All accesses conform to the Pareto Distribution, which is a power-like distribution
and can be used as a model for many read-world problems [17][18]. For MRFS, that
means only a small part of metadata is involved with a majority of accesses. Another
parameter is the threshold of replica creation which can be configured in MDS
module. In our experiment, threshold parameter is set as 5, 10 and 20. We also count
the number of created replicas, and calculate the average hit number of all replicas.
This metric can show the overall efficiency of the metadata replication.

We can calculate the hit ratio of generated replicas among all accesses that could
not be satisfied by local metadata. The hit rates and the number of created replicas are
plotted in Fig 8 and Fig 9 respectively. Firstly, we can see obviously the hit ratio is
decreasing as the threshold number increases. This is simply because fewer replicas
are generated and more requests are forward to remote MDS. In the worst case
(ratio=0.8 and threshold=20), the hit ratio drops to 48.44%. However, since the total
remote accesses account for 20% of all accesses, the actual forward operations take
up only 10.29%. Secondly, with the value of ratio increases, which reflects more

 MRFS: A Distributed Files System with Geo-replicated Metadata 283

requests are handled locally, the percentage of replica hit falls on the contrary. The
reason is that with the same value of threshold, fewer remote accesses will lead to
fewer replicas according to the feature of Pareto distribution, and consequently a
greater number of requests will be forward to other MDS.

Fig. 8. Hit rate of replicas with various parameters

Fig. 9. Number of generated replicas with various parameters

Fig. 10. Average hit count of replicas with various parameters

284 J. Yu et al.

Besides the hit ratio of replicas, we use the average hit count to measure the
efficiency of replicas. As can be observed in Fig 10, one replica serves more visit
requests while the total number of replicas declines. This can be explained by the
basic properties of Pareto distribution, that is a majority of access only involve with a
small amount of metadata. Therefore, the most popular part of replicas will take over
more requests than others.

From the discussions and comparisons above, we can see that MRFS performs
efficiently and effectively in metadata service in various scenarios. And the
replication mechanism largely reduces the cross-MDS visit at the cost of affordable
memory overhead. Besides, we can take advantage of the flexible configuration to
achieve the balance between the overall performance and memory usage.

5 Conclusion and Future Work

Distributed file system plays a key role in distributed computing, especially in cloud
computing systems with high requirement of storage volumes and performance. High
scalable and effective metadata service is still a challenging issue in the design and
implementation of distributed file systems. We design and implement a real
distributed file system MRFS with novel metadata management, which takes
advantage of two-tiered architecture and separates the metadata and namespace
service. To reduce the latency and alleviate the hotspot issues and flash crowds, an
efficient and flexible replication mechanism is implemented as well. Experiments
show that the file system can process a majority of file operations with low latency.
Moreover, the distribution of metadata service provides a higher scalability and
efficiently serves clients scattered at different places. Last but not least, replicas bring
substantial performance improvement at little expense of memory loads.

In future, we will improve our system in several ways. First, high availability of
metadata will be introduced and implemented, which will make the system more
robust. Second, we will consider new approach like prefix-compression algorithm to
reduce the memory overhead in namespace server. Third, new replica placement
strategies will be considered to improve the overall efficiency while cutting down
more memory usage.

Acknowledgement. This research is partially supported by National Natural Science
Foundation of China (No. 61379157), Guangdong Natural Science Foundation (No.
S2012010010670), and Pearl River Nova Program of Guangzhou (No.
2011J2200088)

References

1. Leung, A.W., Shao, M., Bisson, T., Pasupathy, S., Miller, E.L.: Spyglass: Fast, Scalable
Metadata Search for Large-Scale Storage Systems. In: FAST, vol. 9, pp. 153–166 (2009)

2. Roselli, D.S., Lorch, J.R., Anderson, T.E.: A Comparison of File System Workloads. In:
USENIX Annual Technical Conference, General Track, pp. 41–54 (2000)

 MRFS: A Distributed Files System with Geo-replicated Metadata 285

3. Traeger, A., Zadok, E., Joukov, N., Wright, C.P.: A nine year study of file system and
storage benchmarking. ACM Transactions on Storage (TOS) 4(2), 5 (2008)

4. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In:
2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–10.
IEEE (2010)

5. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. In: ACM SIGOPS
Operating Systems Review, vol. 37(5), pp. 29–43. ACM (2003)

6. MooseFS, http://www.moosefs.org
7. Satyanarayanan, M., Kistler, J.J., Kumar, P., Okasaki, M.E., Siegel, E.H., Steere, D.C.:

Coda: A highly available file system for a distributed workstation environment. IEEE
Transactions on Computers 39(4), 447–459 (1990)

8. Rosenblum, M., Ousterhout, J.K.: The design and implementation of a log-structured file
system. ACM Transactions on Computer Systems (TOCS) 10(1), 26–52 (1992)

9. Brandt, S.A., Miller, E.L., Long, D.D., Xue, L.: Efficient metadata management in large
distributed storage systems. In: 2013 IEEE 10th International Conference on Mobile Ad-
Hoc and Sensor Systems, pp. 290–290 (2003)

10. Weil, S.A., Brandt, S.A., Miller, E.L., Maltzahn, C.: CRUSH: Controlled, scalable,
decentralized placement of replicated data. In: Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, p. 122. ACM (2006)

11. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D., Maltzahn, C.,, C.: A scalable, high-
performance distributed file system. In: Proceedings of the 7th Symposium on Operating
Systems Design and Implementation. USENIX Association (2006)

12. Zhu, Y., Jiang, H., Wang, J.: Hierarchical bloom filter arrays (hba): A novel, scalable
metadata management system for large cluster-based storage. In: 2004 IEEE International
Conference on Cluster Computing, pp. 165–174 (2004)

13. GlusterFS, http://www.gluster.org
14. MapR, http://www.mapr.com
15. FUSE, http://fuse.sourceforge.net
16. NumPy, http://www.numpy.org
17. Arnold, B.C.: Pareto distribution. John Wiley & Sons, Inc. (1985)
18. Reed, W.J.: The Pareto, Zipf and other power laws. Economics Letters 74(1) (2001)

An Advanced Data Redistribution Approach to

Accelerate the Scale-Down Process of RAID-6

Congjin Du, Chentao Wu, and Jie Li

Shanghai Key Laboratory of Scalable Computing and Systems,
Department of Computer Science and Engineering, Shanghai Jiao Tong University,

Shanghai, China 200240
ducongjin@gmail.com, {wuct,lijie}@cs.sjtu.edu.cn

Abstract. Nowadays RAID is widely used with the increasing require-
ments of the reliability in storage systems and the fast development of
cloud computing. Among various levels and implementations of RAID
systems, RAID-6 is one of the most significant category with the ability
to tolerate concurrent failures of any two disks. However, the scalability
of RAID-6 is a big challenge. Although many approaches are proposed to
accelerate the scaling process and reduce the overhead, how to efficiently
remove disks (refers to scale-down process) from existing array is still an
open problem.

To address the scalability problem, we propose an Advanced Data
Redistribution (ADR) approach. The basic idea of ADR is to reorganize
previous stripes in RAID-6 systems to achieve higher scalability. ADR
is a stripe-level scheme and can be combined with other approaches as
SDM and MDS-Frame. It can minimize the overhead of data migration
and parity modification. We have conducted mathematical analysis by
comparing ADR to various popular RAID-6 codes. The results show
that, compared to typical approach (Round-Robin), ADR decreases more
than 52.1% migration I/O operations, saves the migration time by up to
63.5%, and speeds up of the scaling process by up to 1.91.

Keywords: RAID-6, MDS Code, Performance Evaluation, Scalability,
Scale-Down, Reliability.

1 Introduction

With the increasing requirements for storage systems and the fast development
of cloud computing, Redundant Arrays of Inexpensive (or Independent) Disks
(RAID) [15] [5] becomes popular due to its ability to provide both high perfor-
mance and high reliability for cloud computing services. In recent years, scala-
bility, especially scale-down (removing disks), becomes an important issue [1] in
RAID systems because of the following reasons.

• By removing some inefficient disks from a disk array, the power consumption
can be reduced, and the system can be more power-efficient.

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 286–299, 2014.
c© Springer International Publishing Switzerland 2014

An Advanced Data Redistribution Approach 287

• Removing disks from a disk array can shorten parity chains, and the relia-
bility and the speed of recovery can be improved.

• Typically, RAID is widely used in various online services such as cloud com-
puting [1]. High scalability can avoid the extremely high downtime cost [14].

• Bidirectional scaling is critical in data centers. RAID-based architectures are
widely used for clusters and large scale storage systems, where scalability
plays an important role [11] [19].

RAID-6 has received more attention than ever, with higher possibility of dou-
ble disk failures [20] [16]. There are many implementations of RAID-6 based
on various erasure code technologies, of which Maximum Distance Separable
(MDS) codes are the most popular. MDS codes can be categorized into hori-
zontal codes [18] [2] [6] [3] [17] and vertical codes [4] [25] [26] [12] [24] [22].

However, existing solutions in disk arrays scaling [29] [28] are insufficient for
RAID-6 scaling under scale-down condition. There are two reasons as follows,

• Most scaling approaches [8] [23] are designed for scale-up (extending disks),
while scale-down (removing disks) is significant as well. Removing inefficient
disks can save energy consumption.

• Typical scaling approaches under scale-down condition are based on Round-
Robin (RR) approach, which is insufficient to provide efficient scaling [29]
[21]. It is because RR approach has extremely high overhead in terms of
migration I/O, computation cost and migration time.

To solve the above problems, we propose a novel scaling approach named
Advanced Data Redistribution approach (ADR) to accelerate RAID-6 scaling.
ADR is an advanced approach to reorganize previous stripes in RAID-6 systems
to achieve higher scalability. We make the following contributions in this work:

• We propose a scaling (ADR) approach to address RAID-6 scalability prob-
lems under scale-down condition, which is a significant issue in large scale
data storage systems.

• ADR accelerates RAID-6 scaling process, in terms of the number of modi-
fied parities, the total number of XOR operations, the total number of I/O
operations and the migration time.

• ADR provides fast data addressing algorithm.

The rest of this paper continues as follows: Section 2 discusses the motivation
of this paper and details the background of existing scaling methods. ADR is
described in detail in Section 3. Section 4 gives the quantitative analysis on
scalability. Finally we conclude the paper in Section 5.

2 Background and Motivation

In this section we discuss the background of our work, problems in existing
RAID-6 scaling schemes and our motivation. To facilitate our discussion, we
summarize symbols used in this paper in Table 1.

288 C. Du, C. Wu, and J. Li

2.1 Desired Scaling Features in RAID-6

To scale a disk array, some data need to be migrated to achieve a balanced data
distribution. During data migration, we prefer to keep an evenly distributed
workload and minimize the data/parity movement. Combined with existing scal-
ing approaches [29] and the real cases in RAID-6, the following four features are
typically desired,

Feature 1 (Uniform Data Distribution): Each disk should have the same
amount of data blocks to maintain an even workload.

Feature 2 (Minimal Data & Parity Migration): By removing m disks
from a RAID-6 system with nd data disks storing B data blocks, the expected
total number of data movements is m×B/nd [23].

Feature 3 (Fast Data Addressing): The locations of blocks in the array
should be efficiently computed.

Feature 4 (Minimal Parity Computation & Modification): A move-
ment on data block could bring modification cost on its corresponding original
parities and computation cost on new parities, so movements on data blocks
should be limited in the original parity chain and thus parity blocks should be
retained without any change.

Table 1. A List of Symbols in This Paper

Symbols Description
n, n′ number of disks in a disk array before/after scaling
m number of removed disk(s)
B total number of data blocks (data elements)
p a prime number
P,Q parity blocks before scaling
P ′, Q′ parity blocks after scaling
S,S′ total number of stripes before/after scaling
nd, nd′ number of data disks before/after scaling
Sid, S

′
id stripe ID before/after scaling

i, i′ row ID in a stripe before/after scaling
j, j′ column ID (disk ID) in a stripe before/after scaling
Rd data migration ratio
Rp parity modification ratio
nio total number of I/O operations
Tb access time of a read/write request to a block
Tm migration time

2.2 Existing Fast Scaling Approaches

Existing approaches to improve the scalability of RAID systems include Round-
Robin (RR) [9] [13] [27], Semi-RR [8], ALV [28], MDM [10], FastScale [29], etc.

To clearly illustrate various strategies in RAID-6, we use P/Q (e.g., P1 and
Q1) to delegate various parity blocks before scaling and P ′/Q′ (e.g., P ′

1 and Q′
1)

for the parity blocks after scaling. If the parity block is still presented by P/Q
after scaling, it means that parity is retained.

Traditional RR and Semi-RR approaches are used in RAID-6 under two re-
strictions. First, all data blocks are migrated based on round-robin order in the
scaling process. Second, all parity blocks are retained without any movement.

An Advanced Data Redistribution Approach 289

For a traditional RR scaling approach (as shown in Figure 1), obviously, all
parities need to be modified and recalculated after data migration. Although RR
is a simple approach to implement on RAID-6, it brings high overhead.

Based on RR approach, Brown [13] designed a reshape toolkit in the Linux
kernel (MD-Reshape), which writes mapped metadata with a fixed-size window.
Due to the limitation of RR approach, metadata are frequently updated by
calling MD-Reshape function, which is inefficient.

Disk2 Disk3 Disk4 Disk5 Disk6 Disk7 Disk0 Disk1 Disk2 Disk3 Disk4 Disk5Disk0 Disk1

removed

Fig. 1. RAID-6 scaling in RDP from 8 to 6 disks using RR approach (all data blocks
are migrated)

Semi-RR [8] is proposed to decrease high migration cost in RR scaling. Unfor-
tunately, by extending multiple disks, the data distribution is not uniform after
scaling, which causes unbalanced workload and decrease the performance. SDM
[23] can provide high scalability by extending specific number of disks. However,
SDM cannot be applied under scale-down condition. MDS-Frame [30] approach
has the ability of bidirectional scaling, but the scaling is limited to the same p
among different erasure codes. Scaling on several levels of RAID can be achieved
by CRAID [31], but this method cannot be used in scale-down scenario.

McPod [32] is used in RAID-4 scaling, ALV [28], MDM [10] and GSR [21]
are RAID-5 scaling approaches, Fastscale [29] accelerates the scaling process
of RAID-0. They take advantages of both RR and Semi-RR approaches, and
improve the migration efficiency. However, they cannot be applied in RAID-6.

2.3 The Motivation

We summarize the existing fast scaling approaches in Table 2. It shows that
existing scaling approaches are difficult to conduct scaled-down process in RAID-
6 systems, which is caused by the complex layout of RAID-6 codes. Therefore,
existing scaling approaches are insufficient to satisfy the desired features listed
in Section 2.1, which motivates us to propose a new approach for RAID-6 scaling
under scale-down condition.

290 C. Du, C. Wu, and J. Li

Table 2. Summary on Various Fast Scaling Approaches

Name
Features Support Scale-down
1 2 3 4 in RAID-6?

RR
√ × √ × conditionally

Semi-RR × × √ × ×
ALV

√ × √ × ×
MDM × √ √ √ ×

FastScale
√ √ √ √ ×

GSR
√ √ √ √ ×

SDM
√ √ √ √ ×

MDS-Frame
√ √ √ √

conditionally
CRAID

√ √ √ √ ×
ADR

√ √ √ √ √

3 The ADR Approach

In this section, the advanced data redistribution (ADR) approach is designed to
accelerate the RAID-6 scaling under scale-down condition. The purpose of ADR
is to minimize the parity migration, modification and recalculation according
with a global view on the two types of parities and single/multiple stripe(s).

The corresponding stripes during scaling process can be categorized into two
types, old stripe and new stripe, which are defined as follows,

Old Stripe: A used stripe before scaling.
New Stripe: A new stripe generated in the scaling process.
There are several critical steps for ADR approach, disk labeling, stripe gen-

eration and scaling, and they are shown as follows,
1. Disk Labeling: According to the layouts before and after scaling, a cost-

effective way can be find to handle the scaling process in an old stripe, and the
disks should be labeled before the following steps.

2. Stripe Generation New stripes are generated in this step to place data
blocks in removed disks before scaling.

3. Scaling: Based on the scaling approach in Step 1, migrate data blocks for
each stripe and update parities in every parity chains.

Typically, without any special instructions, a data/parity block (in logical
address view) corresponds to a data/parity element (in parity layout view) in a
stripe. In this section, we use RDP [6], a typical MDS code, as an example to
show how ADR works in RAID-6, scaling from 8 to 6 disks. The corresponding
parity layouts are shown in Figure 2.

3.1 Disk Labeling

For RAID-6 scaling under scale-down condition, there are four rules compared
to the current and future parity layouts. We propose different rules for a RAID-6
scaling under scale-down condition.

An Advanced Data Redistribution Approach 291

(a) Horizontal parity coding of
RDP (p = 5).

(b) Diagonal parity coding of RDP
(p = 5).

(c) Horizontal parity coding of RDP
(p = 7).

(d) Diagonal parity coding of RDP
(p = 7).

Fig. 2. RDP Code (for p+ 1 disks)

• (Disk Labeling) There are always two parity disks, so the parity disks are
retained and removed disks are all data disks. They are labelled based on
the number of the removed disks.

• (Row Process) If an Old Stripe contains nr rows, the first nr−m rows are
retained in the corresponding stripe after scaling.

For example, if we want to scale a RAID-6 array using RDP from 8 to 6 disks,
compared to the layouts in Figure 2, we have the following strategies according
to the above rules (shown in Figure 3, assume disks 4 and 5 are removed).

• (Disks Labeling) Label the parity disks as disks 4 and 5 and data disks as
their original labels.

• (Row Process) The first 4 rows are retained after scaling.

3.2 Stripe Generation

Although we retain the original parity chains as much as possible, there are
still several parity chains and rows need to be removed to adapt the new lay-
out after scaling. The data blocks in these chains should be handled according
to the two different cases as follows, and new stripes are generated to store them.

Case 1: In the removed disk(s), these data blocks are migrated to the retained
disks;

292 C. Du, C. Wu, and J. Li

Before Scaling

After Scaling

removed

(a) Horizontal parity point of view.

Before Scaling

After Scaling

removed

(b) Diagonal parity point of view.

Fig. 3. RAID-6 scaling in RDP from 8 to 6 disks using ADR approach

Case 2: In the retained disk(s), these data blocks need to be remapped to
new stripes.

According to the layouts of the disk array before and after scaling, a part of
data blocks migrated and remapped in this step are used to generate new stripes,
and the others remain in the old stripe. To ensure that there are as many parity
chains retained as possible, the data blocks migrated and remapped in the first
n−m rows are limited to the least. Therefore, the modification of the old stripe
can be minimized. In addition, data blocks used to form new stripes also need
to retain as many parity chains as possible to take advantage of the original
parities.

An Advanced Data Redistribution Approach 293

For example, as shown in Figure 3, blocks 9, 14, 15 are remapped to generate
new stripes.

3.3 Scaling

In ADR, the scaling is the process of data migration, which is based on retaining
the original parity chains as many as possible, with the following rules.

Rule 1: In the retained parity chain(s), these blocks are migrated to the old
stripes.

Rule 2: Not in the retained parity chain(s), these blocks are migrated to
generate new stripes.

For example, as shown in Figure 3, blocks 11, 16 and 17 are migrated to the
old stripes, and blocks 29, 34 and 35 are migrated to the new stripes.

After data migration, stale parities should be updated.
According to the migration process shown in Figure 3,we can calculate the

total number of migrated data blocks. In the figure, 12 blocks are needed to be
migrated and the total number of migrated blocks is 12 × B/36 = B/3, which
is the same results as presented in Feature 2 in Section 2.1 (2B/6 = B/3).
It demonstrates that ADR can minimize the data migration in the scale-down
process.

3.4 Data Addressing

From Figure 3, the data addressing is easily calculated as previous literatures
[29] [21] [23], which satisfies fast addressing feature in Section 2.1. According to
the discuss in Section 3.2 and 3.3, the data addressing algorithm in RDP code
can be generated in Algorithm 1, and the algorithm for other erasure codes can
be generated in this way. In addition, for a continuous scaling process on a disk
array, for example, a disk array scaling from 12 to 8 then to 6 disks by using
RDP code, our algorithms can be used multiple times by saving the initialization
information.

3.5 Properties of ADR

The desired features on RAID-6 scaling-down are listed in Section 2 and Table 2,
and all of them can be satisfied by our ADR approach. From the discussions in
Section 3.2 to 3.4, it is clear that ADR satisfies the features 1-3, which guarantees
uniform data and parity distribution, minimal migration of data and parity
elements and fast data addressing, of RAID-6 scaling defined in Section 2.1.
ADR also satisfies Feature 4: minimal modification and computation cost of the
parity elements, which is discussed in detail in Sections 4.

4 Scalability Analysis

In this section, we evaluate the scalability of various MDS codes by using different
approaches.

294 C. Du, C. Wu, and J. Li

Algorithm 1. Data Addressing Algorithm in RDP code

Set n and m from the number of disks in RAID systems before and after scaling.
n′ = n−m.
if (i+ j ≤ n′ − 3) or ((i > n′ − 3) and (j < n′ − 2)) then

j′ = j.
if i+ j ≤ n′ − 3 then

Conserve this block on the same place during scaling.
i′ = i.

end
else

Migrate this block to a new stripe.
i′ = i+m(n− 2)/(n′ − 2) mod (n′ − 2).

end

end
else

if i+ j > n′ − 1 then
Migrate this block on the same row in the old stripe.
i′ = i.
j′ = j − 2.

end
else

Migrate these blocks to form new stripes.
end

end

4.1 Evaluation Methodology

We compare the ADR approach to the RR [9] [13] [27] approach. Note that
Semi-RR[8], ALV [28], MDM [10], FastScale [29], GSR [21], SDM [23], MacPod
[32] and CRAID [31] cannot be used in RAID-6 scaling-down , so they are not
evaluated.

We also propose an ideal fast scaling method as a baseline. The ideal case is
based on Feature 2 (Section 2.1) with minimal data movements to maintain a
uniform workload in the enlarged new used stripe. We assume this case doesn’t
involve any parity migration, modification and computation as in RAID-0. Be-
cause no movement in dedicate parity disks (e.g., for RDP code), actually the
number of ideal movements is m×B/nd, where nd is the number of data disks.

Several popular MDS codes in RAID-6 are selected for comparison,

1) Codes for p− 1 disks: HDP [22];
2) Codes for p disks: X-Code [26];
3) Codes for p+ 1 disks: RDP code [6] and H-Code [24];
4) Codes for p+ 2 disks: EVENODD code [2].

Suppose the total number of data blocks in a disk array is B, the total number
of stripes in a disk array before scaling is S, we can derive the relationship
between these two parameters. For example, for RDP code when p = 5, B = 16S;
when p = 7, B = 36S.

An Advanced Data Redistribution Approach 295

We define Data Migration Ratio (Rd) as the ratio between the number
of migrated data/parity blocks and the total number of data blocks. Parity
Modification Ratio (Rp) delegates the ratio between the number of modified
parity blocks (including the number of new generated parity blocks) and the
total number of data blocks. For the example of RDP and P-Code shown in
Section 3, Rd = 12S

36S = 33.3% and Rp = 21S
36S = 58.3%.

In RAID-6 scaling, each data or parity migration only costs two I/O oper-
ations, and the modification of each parity also has two I/Os. Based on the
data migration ratio (Rd) and parity modification ratio (Rp), the total num-
ber of I/O operations is nio = 2 × Rd × B + 2 × Rp × B. According to this
equation, the total number of I/O operations for RDP example in Section 3 is
2×B × 33.3%+ 2×B × 58.3% = 1.83B.

If we ignore the computation time and assume the same time on a read or write
request to a block (denoted byTb), and suppose themigration I/O can be processed
in parallel on each disk. From the example, we can see that the diagonal parity disks
have the largest number of I/Os, which indicates the longestmigration time. So the
migration time Tm for RDP example is Tm = 12STb = BTb/3.

4.2 Numerical Results

In this section, we give the numerical results of scalability using different scal-
ing approaches and various erasure codes. In the following Figures 4 to 8, a
two-integer tuple (n, m) denotes the original number of disks and the removed
number of disks. For example, RDP (8, 2) means a RAID-6 scaling from 8 to
8− 2 = 6 disks using RDP code.

Data Migration Ratio. First, we calculate the data migration ratio (Rd)
among various fast scaling approaches under different cases as shown in Figure
4. Our ADR approach has the approximate migration ratio compared to Semi-
RR and the ideal case in RAID-0.

RDP(8,2)
RDP(12,4)

HDP(6,2)
HDP(10,4)

H-Code(8,2)

H-Code(12,4)

X-Code(7,2)

X-Code(11,4)

EVENODD(9,2)

EVENODD(13,4)

0

30

60

90

120

150

D
a
ta

 M
ig

ra
ti
o
n
 R

a
ti
o
 (

%
)

 RR

 ADR

 Ideal (RAID-0)

Fig. 4. Comparison on data migration ratio under various RAID-6 scaling approaches

Parity Modification Ratio. Second, parity modification ratio (Rp) among
various RAID-6 scaling approaches under different cases is presented in Figure
5. Compared to other schemes with the same p and m, ADR sharply decreases
the number of modified parities by up to 48.0%.

296 C. Du, C. Wu, and J. Li

RDP(8,2)
RDP(12,4)

HDP(6,2)
HDP(10,4)

H-Code(8,2)

H-Code(12,4)

X-Code(7,2)

X-Code(11,4)

EVENODD(9,2)

EVENODD(13,4)

0

200

400

600

800

1000

1200

P
a
ri

ty
 M

o
d
if
ic

a
ti
o
n
 R

a
ti
o
 (

%
)

 RR

 ADR

 Ideal (RAID-0)

Fig. 5. Comparison on parity modification ratio under various RAID-6 scaling
approaches

Total Number of I/O Operations. Next, total number of I/O operations
are calculated in these cases. If we use B as the baseline, the results of total
I/Os are shown in Figure 6. By using ADR approach, 33.3%− 52.1% I/Os are
reduced.

RDP(8,2)
RDP(12,4)

HDP(6,2)
HDP(10,4)

H-Code(8,2)

H-Code(12,4)

X-Code(7,2)

X-Code(11,4)

EVENODD(9,2)

EVENODD(13,4)

0

400

800

1200

1600

2000

2400

T
o
ta

l
N

u
m

b
e
r

o
f

I/
O

 O
p
e
ra

ti
o
n
s
 (

%
)

 RR

 ADR

 Ideal (RAID-0)

Fig. 6. Comparison on total I/Os under various RAID-6 scaling approaches (The num-
ber of B I/O operations is normalized to 100%)

Computation Cost. The total number of XOR operations are calculated as
shown in Figure 7. Compared to other approaches, ADR can decreases the com-
putation cost by up to 52%.

RDP(8,2)
RDP(12,4)

HDP(6,2)
HDP(10,4)

H-Code(8,2)

H-Code(12,4)

X-Code(7,2)

X-Code(11,4)

EVENODD(9,2)

EVENODD(13,4)

0

500

1000

1500

2000

T
o
ta

l
N

u
m

b
e
r

o
f

X
O

R
 O

p
e
ra

ti
o
n
s
 (

%
)

 RR

 ADR

 Ideal (RAID-0)

Fig. 7. Comparison on total number of XOR operations under various RAID-6 scaling
approaches (The number of B XOR operations is normalized to 100%)

An Advanced Data Redistribution Approach 297

RDP(8,2)
RDP(12,4)

HDP(6,2)
HDP(10,4)

H-Code(8,2)

H-Code(12,4)

X-Code(7,2)

X-Code(11,4)

EVENODD(9,2)

EVENODD(13,4)

0

100

200

300

400

500

600

M
ig

ra
ti
o
n
 T

im
e
 (

%
)

 RR

 ADR

 Ideal (RAID-0)

Fig. 8. Comparison on migration time under various RAID-6 scaling approaches (The
time B × Tb is normalized to 100%)

Migration Time. Migration time is evaluated as shown in Figure 8. Compared
to other approaches, ADR performs well in multiple disks extension, decreases
the migration time by up to 63.5%, and speeds up the scaling process by up to
1.91.

4.3 Analysis

From the results in Section 4.2, compared to RR, ADR has great advantages.
There are several reasons to achieve these gains. First, ADR takes advantages
of GSR and SDM approaches, which are global management on multiple stripes
according to the priorities of data movements. They can reduce the parity modifi-
cation cost, computation cost, total I/Os. Second, compared to other approaches,
ADR scheme distributes the migration I/Os more evenly among data and parity
disks, which accelerates the scaling process in parallel.

5 Conclusions

In this paper, we have proposed a novel Advanced Data Redistribution (ADR)
approach to achieve high scalability for RAID-6. Our comprehensive mathe-
matic analysis shows that ADR achieves better scalability compared to other
approaches in the following aspects: less I/O operations by 33.3%− 52.1% and
shorter migration time and faster scaling process by up to 1.91.

Acknowledgements. We thank anonymous reviewers for their insightful com-
ments. This work is partially sponsored by the National Natural Science Foun-
dation of China (NSFC) (No. 61332001, No. 61303012, No. 61272099, and No.
61261160502), the Program for Changjiang Scholars and Innovative Research
Team in University (IRT1158, PCSIRT), the Shanghai Innovative Action Plan
(No. 13511504200), the ShanghaiNatural Science Foundation (No. 13ZR1421900),
the Scientific Research Foundation for the Returned Overseas Chinese Scholars,
and the EU FP7 CLIMBER project (No. PIRSES-GA-2012-318939).

298 C. Du, C. Wu, and J. Li

References

1. Armbrust, M., Fox, A., et al.: Above the Clouds: A Berkeley View of Cloud Com-
puting. Technical Report, UCB/EECS-2009-28 (2009)

2. Blaum, M., Brady, J., et al.: EVENODD: An Efficient Scheme for Tolerating Dou-
ble Disk Failures in RAID Architectures. IEEE Trans. Computers 44, 192–202
(1995)

3. Blaum, M., Roth, R.: On Lowest Density MDS Codes. IEEE Trans. Information
Theory 45, 46–59 (1999)

4. Cassuto, Y., Bruck, J.: Cyclic Lowest Density MDS Array Codes. IEEE Trans.
Information Theory 55, 1721–1729 (2009)

5. Chen, P., Lee, E., et al.: RAID: High-Performance, Reliable Secondary Storage.
ACM Computing Surveys 26, 145–185 (1994)

6. Corbett, P., English, B., et al.: Row-Diagonal Parity for Double Disk Failure Cor-
rection. In: 3rd USENIX Conference on File and Storage Technologies, pp. 1–14.
USENIX Press, San Francisco (2004)

7. Ghandeharizadeh, S., Kim, D.: On-line Reorganization of Data in Scalable Con-
tinuous Media Servers. In: Thoma, H., Wagner, R.R. (eds.) DEXA 1996. LNCS,
vol. 1134, pp. 751–768. Springer, Heidelberg (1996)

8. Goel, A., Shahabi, C., et al.: SCADDAR: An Efficient Randomized Technique to
Reorganize Continuous Media Blocks. In: 18th International Conference on Data
Engineering, pp. 478–482. IEEE Press, San Jose (2002)

9. Gonzalez, J., Cortes, T.: Increasing the Capacity of RAID5 by Online Gradual
Assimilation. In: 2004 International Workshop on Storage Network Architecture
and Parallel I/O, Antibes, Juan-les-pins, pp. 17–24 (2004)

10. Hetzler, S.: Storage Array Scaling Method and System with Minimal Data Move-
ment. US Patent 20080276057 (2008)

11. Hwang, K., Jin, H., Ho, R.: RAID-x: A New Distributed Disk Array for I/O-Centric
Cluster Computing. In: 9th IEEE International Symposium on High Performance
Distributed Computing, pp. 279–286. IEEE Press, Pittsburgh (2000)

12. Jin, C., Jiang, H., et al.: P-Code: A New RAID-6 Code with Optimal Properties.
In: 23rd International Conference on Supercomputing, pp. 360–369. ACM Press,
New York (2009)

13. Brown, N.: Online RAID-5 Resizing. drivers/md/raid5.c in the Source Code of
Linux Kernel 2.6.18, http://www.kernel.org/

14. Patterson, D.: A Simple Way to Estimate the Cost of Downtime. In: 16th USENIX
Conference on Systems Administration, pp. 185–188. USENIX Press, Philadelphia
(2002)

15. Patterson, D., Gibson, G., Katz, R.: A Case for Redundant Arrays of Inexpensive
Disks (RAID). In: 1988 ACM SIGMOD International Conference on Management
of Data, pp. 109–116. ACM Press, Chicago (1988)

16. Pinheiro, E., Weber, W., Barroso, L.: Failure Trends in a Large Disk Drive Pop-
ulation. In: 5th USENIX Conference on File and Storage Technologies, pp. 17–28.
USENIX Press, San Jose (2007)

17. Plank, J.: The RAID-6 Liberation Codes. In: 6th USENIX Conference on File and
Storage Technologies, pp. 97–110. USENIX Press, San Jose (2008)

18. Reed, I., Solomon, G.: Polynomial Codes over Certain Finite Fields. Journal of the
Society for Industrial and Applied Mathematics 8, 300–304 (1960)

http://www.kernel.org/

An Advanced Data Redistribution Approach 299

19. Saito, Y., Frolund, S., et al.: FAB: Building Distributed Enterprise Disk Arrays
from Commodity Components. In: 11th International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 48–58. ACM
Press, Boston (2004)

20. Schroeder, B., Gibson, G.: Disk Failures in the Real World: What does an MTTF
of 1,000,000 Hours Mean to You? In: 5th USENIX Conference on File and Storage
Technologies, pp. 1–16. USENIX Press, San Jose (2007)

21. Wu, C., He, X.: GSR: A Global Stripe-Based Redistribution Approach to Acceler-
ate RAID-5 Scaling. In: 41st International Conference on Parallel Processing, pp.
460–469. IEEE Press, Pittsburgh (2012)

22. Wu, C., He, X., et al.: HDP code: A Horizontal-Diagonal Parity Code to Optimize
I/O Load Balancing in RAID-6. In: 41st IEEE/IFIP International Conference on
Dependable Systems and Networks, pp. 209–220. IEEE Press, Hong Kong (2011)

23. Wu, C., He, X., et al.: SDM: A Stripe-Based Data Migration Scheme to Improve
the Scalability of RAID-6. In: 2012 IEEE International Conference on Cluster
Computing, pp. 284–292. IEEE Press, Beijing (2012)

24. Wu, C., Wan, S., et al.: H-Code: A Hybrid MDS Array Code to Optimize Partial
Stripe Writes in RAID-6. In: 25th IEEE International Symposium on Parallel and
Distributed Processing, pp. 782–793. IEEE Press, Anchorage (2011)

25. Xu, L., Bohossian, V., et al.: Low-Density MDS Codes and Factors of Complete
Graphs. IEEE Trans. Information Theory 45, 1817–1826 (1999)

26. Xu, L., Bruck, J.: X-Code: MDS Array Codes with Optimal Encoding. IEEE Trans.
Information Theory 45, 272–276 (1999)

27. Zhang, G., Shu, J., et al.: SLAS: An Efficient Approach to Scaling Round-Robin
Striped Volumes. ACM Trans. Storage 3, 1–39 (2007)

28. Zhang, G., Zheng, W., Shu, J.: ALV: A New Data Redistribution Approach to
RAID-5 Scaling. IEEE Trans. Computers 59, 345–357 (2010)

29. Zheng, W., Zhang, G.: FastScale: Accelerate RAID Scaling by Minimizing Data Mi-
gration. In: 9th USENIX Conference on File and Storage Technologies, pp. 149–161.
USENIX Press, San Jose (2011)

30. Wu, C., He, X.: A Flexible Framework to Enhance RAID-6 Scalability via Ex-
ploiting the Similarities among MDS Codes. In: 42nd International Conference on
Parallel Processing, pp. 542–551. IEEE Press, Lyon (2013)

31. Miranda, A., Cortes, T.: CRAID: Online RAID Upgrades Using Dynamic Hot Data
Reorganization. In: 12nd USENIX Conference on File and Storage Technologies,
pp. 133–146. USENIX Press, Santa Clara (2014)

32. Zhang, G., Wang, J., et al.: Redistribute Data to Regain Load Balance during
RAID-4 Scaling. IEEE Trans. Parallel Distrib. Syst. 25 (2014)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 300–311, 2014.
© Springer International Publishing Switzerland 2014

Thread Mapping and Parallel Optimization
for MIC Heterogeneous Parallel Systems

Tao Ju1, Zhengdong Zhu1, Yinfeng Wang2, Liang Li1, and Xiaoshe Dong1

1 School of Electronics and Information Engineering, Xi’an Jiaotong University
710049 Xi’an, China

2 Shenzhen Institute of Information Technology, 518172 Shenzhen, China
immensewaves@163.com, {zdzhu,xsdong}@mail.xjtu.edu.cn,

{wangyinfeng,liliang199}@gmail.com

Abstract. There is no dedicated thread mapping method for Many Integrated
Core (MIC) heterogeneous system in the traditional multithread programming
model. The unreasonable thread mapping will lead the promising computing
power of MIC coprocessor not to be fully exploited. In order to fully exploit the
computing potential of MIC coprocessor, this paper discussed effective multi
threads mapping strategies through comparing the computing performance and
analyzing the performance differences between various mapping methods.
Meanwhile, for the further exploiting the high computing power of MIC heter-
ogeneous system, the specific program porting and performance optimization
strategies were explored by using the k-means application program. Experi-
mental results show that the proposed mapping and parallel optimization strate-
gies are effective, which can be guide the programmer to port and optimize
applications effectively to MIC heterogeneous parallel system.

1 Introduction

The overall system architecture development trend in Top 500 RANK [1] implies that
the heterogeneous system will be the mainstream development direction in future high
performance computer systems. With the emergence of new coprocessor technologies,
the heterogeneous architecture will play important role in the following Petascal and
Exascal super computing systems [2]. Heterogeneous computing has been recognized
as the third era after the single core and multi-core ear. It will break Moore's law, and
can effectively handle the energy consumption, scalability and other related issues [3].

The current two types of mainstream heterogeneous parallel systems, namely
CPU+GPU and CPU+MIC, have different application characteristics. For the
CPU+GPU heterogeneous system, its programing commonality is very limited due to
the CPU and GPU apply the different instruction set system. Though the CUDA proves
the general API and syntax feature for GPU programing, the programmers still need to
clearly understand the characteristics and limitations of various underlying computing
sources, which greatly constricted the GPU commonality. Meanwhile, a lot of research
works have been done to explore how to reduce the difficulty of GPU programming
[4-7], however, which did not fundamentally solve the difficult problem of program-
ming. To address above problem, Intel has announced the Many Integrated Core (MIC)

 Thread Mapping and Parallel Optimization for MIC Heterogeneous Parallel Systems 301

architecture. The most significant merit of this architecture is to run existing X86
application programs, not need to port the program to a completely new programming
environment, which greatly facilitates programmers to develop the heterogeneous
programs [8].

In MIC heterogeneous system, programmers can directly use the common existed
programming model to develop the parallel applications, but they may at the same time
face the dilemma of no dedicated thread mapping strategy for Mangy Integrated Core
in common multi-threaded programming model. The irrational thread mapping will
greatly reduce computing performance, and not beneficial to exploit the high compu-
ting power of Many Integrated Core processor. To fully exploit the computing potential
of Many Integrated Core, the paper studies the performance effect of thread mapping to
different processing cores. Through comparing the computing performance and ana-
lyzing the performance differences between various thread mapping methods, we
obtain the rational multi threads mapping schemes. Meanwhile, for further exploit the
high computing power of MIC heterogeneous system, we explore the effect factors of
performance when the application is ported to the MIC heterogeneous system, as well
as propose the corresponding optimization strategies. Finally, we verify the validity of
the proposed specific optimization strategy using different Benchmarks.

The remainder of this paper is organized as follows. Section 2 provides overview the
MIC architecture and programing method. Section 3 describes thread mapping pattern
to deduce the rational thread mapping scheme on the MIC heterogeneous parallel
system. Section 4 discusses the details of porting and optimizing strategy on MIC
heterogeneous system and evaluates the proposed strategies. Section 5 reviews related
work and Section 6 concludes the paper.

2 Overview of the MIC

2.1 MIC Architecture

MIC (Many Integrated Core), a new type of many-core coprocessor architecture, is
announced by Intel in 2011.This architecture extends the traditional microprocessor
vector, and integrates many microprocessors onto single chip, aiming to compose the
MIC processor for further improving computing power. The Intel®Xeon PhiTM co-
processor, codenamed Knights Corner (KNC), is the first commercial release of the
MIC architecture. Unlike the previous microprocessors from Intel, KNC works on a
PCI-E card with GDDR5 memory and offers extremely high memory bandwidth.
After the MIC card is installed on server, it can combine with Xeon processors on the
server to constitute a parallel computing cluster. The MIC card collaborates compu-
ting with CPU, so as to further improve the computing performance. Fig.1 shows the
architecture of MIC heterogeneous system.

2.2 MIC Programming Pattern

MIC integrates many cores onto the single die, each core can be programed using
standard C, C++, and FORTRAN. MIC architecture has many advantages such as the
compatibility, high parallelism, and programming controllability against the existing

302 T. Ju et al.

Fig. 1. MIC heterogeneous system architecture

heterogeneous many-core architecture. There is no fundamental difference of pro-
gramming methods between MIC and CPU. MIC program only extends the pragma
statement to indicate the specific data transfer operation between device and processor
side. The detailed operation is completely realized by the compiler and transparent to
the users. MIC architecture has a flexible programming pattern, which can be used as a
coprocessor, also can be used a separate computing node. In general, there are three
types of programming patterns in MIC heterogeneous system [8]: (1) the offload pat-
tern; (2) the native pattern; (3) the symmetric pattern.

3 Thread Mapping on MIC

Currently, more than 50 processing cores are integrated on one MIC chip, each of
processing cores supporting 4 hardware threads. Intel®Xeon PhiTM Coprocessor con-
sisting of 61 processing cores supports total 244 hardware threads. How to reasonably
map different computing loads to the hardware thread of processing core to take full
advantage of the MIC high computing power becomes the challenging problem. Two
aspects should be simultaneously considered when mapping computing loads in mul-
tiple threads programming: one aspect is to consider of mapping the computing load to
thread, another aspect is mapping the threads to different processing cores. In this
paper, we mainly focus on the performance effect of different mapping threads onto
processing core in MIC coprocessor.

3.1 Different Thread Mapping Methods

To achieve the high parallel computing capability of many-core processor, the program
must use corresponding parallel programming model. The OpenMP is one of the most
commonly used model, which provides the special environment variables to control
specific thread mapping to different processing cores. There are three mapping meth-
ods as follows:

 Thread Mapping and Parallel Optimization for MIC Heterogeneous Parallel Systems 303

(1) Compact mapping. This method aims to fully utilize each of processing cores.
During mapping, the method first makes one hardware core as much as possible to
obtain adequate threads, and then allocates the remaining threads to the next one, and to
do so until all the threads to be allocated out. Fig.2(a) depicts the detailed schematic
diagram, where the white areas represent idle resources, and the maximum number of
threads is 2n.

(2) Scatter mapping. In this mapping a thread is first allocated to the processing
core which has lightest load. The schematic diagram as shown in Fig.2(b).

(3) Balanced mapping. This method takes into account the load balancing and data
locality simultaneously, to ensure the threads are distributed uniformly to different
processing cores while the adjacent threads are allocated in the same processing core.
The schematic diagram is presented in Fig. 2(c).

(a) Compact mapping

(b) Scatter mapping

 (c) Balanced mapping

Fig. 2. Different thread mapping methods

3.2 Measurement and Findings

3.2.1 Measurement Environment and Schemes
Measurement Environment. The MIC heterogeneous platform consists of two-socket
eight-core E5-2670 CPUs, and two Xeon Phi 7110P MIC coprocessors, a 64G memory,
and a 300G disk. The PCI-E x16 bus connects the main memory and coprocessor. The
OS is Red Hat Enterprise Linux Server release 6.3, the soft development environment
is Intel parallel_studio_xe_2013_update3_intel64.

Measurement Schemes. The offload and native programming pattern are used sep-
arately to measure the computing performance of simulating calculation of linear
equation y = mx + b by different thread mapping methods. For the native pattern,
we measure the performance at different mapping methods (compact, scatter, and

304 T. Ju et al.

balanced), using different numbers of threads: 61, 122, 244, and 305. Since the Xeon
Phi 7110P MIC coprocessor has total 61 processing cores, each can support up to 4
hardware threads, in order to better reflect the actual usage of processing cores when
mapping, the number of threads is set to be of integer multiple of processing cores. For
the offload pattern, the total number of the used computing processing cores is 60, one
of the cores is used to run μOЅ, which is in charge of the control and management the
interaction between CPU and MIC coprocessor. During measurement, the number of
threads is set to be of integer multiple of processing core (60,120, 180,240, and 300).
The computing load is increased along with the increase of the thread number, but the
task for each of threads is fixed.

3.2.2 Measurement Results and Analysis
Fig.3(a) shows the balanced mapping method achieves the better performance in native
pattern, the main cause is that the threads are evenly allocated to all the processing
cores, hence obtains the good load balance. When the number of threads is 244, the best
computing performance is up to 94.6% of the theoretical peak performance
(2.130TFlops) of the MIC coprocessor. As shown in Fig. 3(b), the balanced mapping
also achieves the best computing performance in the offload pattern, and the computing
performance is up to the peak performance of 93.3%.

61 122 183 244 305

compact 523.94 1034.57 1532.00 2014.37 1286.24

scatter 928.06 1758.58 1796.44 2015.00 1705.48

balanced 1052.73 1978.44 2006.22 2013.38 1703.35

0
500

1000
1500
2000
2500

P
er

fo
rm

an
c
e

(G
fl

o
p

s/
se

co
n
d

)

the number of thread and performance

60 120 180 240 300

compact 507.21 1003.18 1488.02 1956.47 1259.70

scatter 896.76 1569.01 1680.76 1959.73 1664.97

balanced 888.13 1989.65 1940.70 1958.90 1666.29

0

500

1000

1500

2000

2500

pe
rf

or
m

an
ce

(G
F

lo
ps

/s
ec

on
d)

the number of thread and performance
(a) Native pattern (b) Offload pattern

Fig. 3. The computing performance on different patterns

As compared to the native pattern, the overall performance of offload pattern is
slightly worse. Because, in offload pattern, the portion of being accelerated program
and data need to be uploaded to the coprocessor before computing and downloaded the
computing results to the CPU side after computing finished, which introduces the
additional transmission overhead.

3.2.3 Scalability Analysis of MIC Performance
To examine the scalability of the MIC coprocessor, we measured the performance of
MIC coprocessor by changing the number of the threads. As shown in Fig.4, when the
number of threads increases to 244 from 61, 122, and 183, the performance of all
methods increases along with the increase of the number of threads, the compact
mapping performance almost increases linearly against with the number of threads.
Overall, the test results demonstrate a good scalability.

 Thread Mapping and Parallel Optimization for MIC Heterogeneous Parallel Systems 305

Compact mapping obtained the worse performance when the number of threads is
less than 244 cases, because the parts of the processing cores are idle. When the number
of the threads is reaching to 244, all processing cores are fully used. Three types of
mapping achieve nearly same computing performance at this time. If the number of
threads is further increased to exceed 244, the computing performance begins to de-
cline. The reason is that when the number of threads exceeding the maximum 244 of
hardware threads, there will be inevitable competition of hardware thread context
among multiple threads.

As the number of thread continues to increase, the overall computing performance of
MIC coprocessor tends to the optimal value. If the number of thread is up to more than
1000, all three mapping methods reach the best performance, where the performance
does not changed obviously, and reaches the stable state.

61 122 183 244 305 366 500 610 700 800 1000 1200 1400

compact 523.94 1034.57 1532.00 2014.37 1286.24 1533.45 1399.92 1694.04 1930.56 1667.50 1846.21 1984.00 1931.83

scatter 928.06 1758.58 1796.44 2015.00 1705.48 2037.46 1670.92 2028.00 1933.69 1892.92 1846.14 1984.92 2000.44

balanced 1052.73 1978.44 2006.22 2013.38 1703.35 2031.52 1669.48 2022.31 1931.04 1894.96 1844.14 1979.20 2001.07

0

500

1000

1500

2000

2500

Pe
rf

or
m

an
ce

(G
flo

ps
/s

ec
on

d)

the number of thread and performance

Fig. 4. The scalability under the native pattern using different mapping

3.2.4 Summary
From the above measurement and analysis, we can obtain the following conclusion.
The load balancing and data locality should be considered simultaneously when map-
ping threads to the processing core: (1) if the application has the strong data depend-
ence among each threads, the compact mapping method should be used to make full use
of the data locality to reduce the additional communication overhead; (2) If the appli-
cation has no obvious data dependence among different threads, and the thread number
is large, the scatter mapping method should be applied to better handle the load balance
between processing cores; (3) If both the data dependency and load balance need to be
considered, the balanced mapping method should be used to obtain better performance.

4 Performance Optimization

In order to further analysis different factors that affect application performance of MIC
heterogeneous system, we exemplified with a specific k-means clustering applications
to explore the porting and optimizing methods on the MIC heterogeneous system.

4.1 Benchmarks

We adopt the k-means program in the Rodinia Benchmark [9] to discuss the detailed
porting and optimizing methods. Meanwhile, we used the same strategy to port and

306 T. Ju et al.

optimize the Matrix Multiplication, Monte Carlo, N-body, FFT, Histogram, SPGEMM
benchmark program [10], measured and compared the performance differences of
those benchmark programs, and verified the effectiveness of porting and optimization
schemes.

4.2 Implementation

4.2.1 Direct Parallelization Using Native Pattern
We firstly evaluated the performance on both the CPU and MIC coprocessor with
different numbers of threads at different dataset size using native pattern. The exper-
imental configuration is as same as the one in Section 3.2.1, and the experimental
results are shown in Fig.5.

4.252

3.444 3.368 3.245 3.217

0

1

2

3

4

5

1 4 8 16 32

ru
nn

in
g

tim
e

/s

the number of thread
(a) Cpu running time

1 4 8 16 32 64 122 128 183 244 256

compact 23.27 11.43 6.86 3.97 2.27 1.09 0.69 0.69 0.62 0.64 0.88

scatter 23.27 10.49 7.7 4.84 2.38 1.04 0.74 0.72 0.65 0.64 0.83

balanced 23.27 10.45 7.68 4.61 2.39 1.03 0.63 0.61 0.59 0.64 0.79

0
5

10
15
20
25

ru
nn

in
g

tim
e

/s

the number of thread and running time on mic
(b) MIC running time

0.32 1.15

3.19

10.45

5.59 6.09
5.03

0

2

4

6

8

10

12

819200 409600 1228800 61440000

sp
ee

du
p

the dataset size

Speedup(cpu) Speedup(mic)

(c) Speedup

Fig. 5. The program running under the native pattern

 Thread Mapping and Parallel Optimization for MIC Heterogeneous Parallel Systems 307

Fig.5(a) and Fig.5(b) show the program running time when using different numbers
of threads at the 819200 dataset on CPU and MIC coprocessor separately. As can be
seen from Fig.5(a), the best performance is obtained when the number of thread is 32,
the reason for which is that the CPU side is two-socket eight-core processor, and the
maximum of the supported hardware threads is 32. For the MIC coprocessor, however,
the program execution time is far greater than the one related to the CPU if the number
of the threads is less than 32. When the number of the threads is more than 32 in MIC
coprocessor, the MIC coprocessor can obtain a better performance. Along with the
increase of the number of the threads, program running time will constantly decrease
until the number of the thread approaches to120. After that, the program execution time
has almost no change if the number of the threads continues to increase, which because
the data scale is limited.

To achieve the better computing performance, we further extend the data scale.
Fig.5(c) shows the maximal speedup at different dataset size on both CPU and MIC
coprocessor compared to the serial program on the CPU side. Overall, the program
speedup of MIC coprocessor is superior to the CPU. It is worth noting that a program
at data scale of 61440000 cannot be directly run on MIC coprocessor due to the
limited MIC memory capacity.

4.2.2 Collaborate Computing CPU and MIC
Due to the limited memory capacity, MIC coprocessor cannot directly deal with the
large-scale data set application in native pattern. On the other hand, the CPU is idle
when the MIC coprocessor is computing in native pattern, leading to not fully take
advantage of the computing resource of the whole heterogeneous computing system.

In order to make full use of the computing resources in the MIC heterogeneous
system, and handle the massive data applications, we use offload pattern to make the
CPU and MIC coprocessor collaboratively deal with the computing tasks.

A two-level parallelization scheme is designed to achieve the above goals. In the
first level parallelism, we employ the MPI between CPU processing cores and MIC
coprocessors to realize the process level parallelism. In the second level parallelism, the
OpenMP is used to realize thread level parallelism inside the MIC processing core. At
the same time, in order to overcome the limit of MIC coprocessor memory capacity, the
task partitioning method has been employed, which divides a large-scale data task into
many data partitions, so that the CPU and the MIC coprocessor handle different parts of
task respectively.

4.3 Comprehensive Performance Optimization

To make full use of the MIC coprocessor computing power to improve computing
performance of the program, combined with the MIC architecture characteristics, we
further comprehensively optimized the program based on the analysis and reference
performance optimization methods in literature [11-13].

1) Memory management optimization. We let the data to be as the shared variables
that can be used by all threads in same MIC coprocessor to effectively use the MIC
memory. It is beneficial for improving the usage efficiency of memory, since each
thread no needs to save independent data copies.

308 T. Ju et al.

2) Data transformation optimization. In the CPU and the MIC coprocessor collab-
orative computing pattern, the data transmission between the two processors will
occupy many part of the additional overhead during the program execution. We use the
statement nocopy(), in(), out() combined with the corresponding control statement
alloc_if(), free_if() to control the data and memory space to be reused in the iterative
part of program. In addition, we use the asynchronous transformation to further reduce
the delay overhead of communication. By designing the pipeline to handle the data
transformation and computing of MIC coprocessor, we realized the data transmission
and computing overlap to make full use of computing resource for improving the
program performance.

3) Vectorization. The MIC vectorization has two main ways: the automatic
vectorization and the SIMD instruction. In order to reduce the programming difficulty,
this work directly inserts the corresponding directive statements into the program to
realize an automatic vectorization.

4) Load balance. We consider the load balance on two levels: the first level load
balance is between CPU and MIC coprocessor, and another level is the one between
processing cores inside MIC coprocessor.

4.4 Experimental Results and Analysis

This section measures the optimized program at different datasets to evaluate the
optimization effects of the proposed specific optimization strategies. The experimental
configuration is presented in section 3.2.1. The measurement results are as follows.

Fig.6 shows the running time and the best speedup compared to the serial program
using the different mapping methods at the 409600 dataset of k-means program. Due
to the data scale is small, the speed efficiency is not ideal, which is only up to 7.4.
Fig.6 (a) shows that the performance of compact mapping is superior to the scatter
and balanced mapping, the computing performance keeps improving along with the
increase of the number of threads. The program performance is nearly stable when the
thread increases to 120. There is almost no improvement on performance when the
number of the threads continues to increase due to be restricted by the size of the data.

Fig.7(a) shows the running time of K-means program on the 61440000 dataset.
With the increase of the number of threads, the program speedup increase obviously.
When the number of the threads exceeds 120, the acceleration effect tends to be sta-
ble. Fig.7(b) shows the best speedup compared to the serial program using the pro-
posed comprehensive optimizing, which is up to 85.56. At the same dataset, the best
speedup of CPU side is only up to 10.45.

Fig.8 shows the best speedup of different Benchmark programs compared to the se-
rial program on CPU platform and MIC heterogeneous platform using the optimizing
scheme proposed previously. The average speedup achieved for six Benchmark pro-
grams is up to 20.66 on the MIC heterogeneous platform, but the average speedup is
only up to 8.47 on the CPU platform. Overall, the Benchmark programs achieve the
better performance on the MIC heterogeneous parallel system.

 Thread Mapping and Parallel Optimization for MIC Heterogeneous Parallel Systems 309

1 4 8 16 32 60 64 120 128 240 244

compact 3.73 1.68 1.35 0.86 0.52 0.50 0.58 0.53 0.58 0.52 0.61

scatter 3.64 2.04 1.50 1.11 0.60 0.58 0.60 0.56 0.59 0.61 0.59

balanced 3.74 2.50 1.34 0.94 0.69 0.60 0.60 0.52 0.57 0.58 0.60

serial 4.467

0.00
1.00
2.00
3.00
4.00
5.00

ru
nn

in
g

tim
e

/s

The number of thread and running time

7.40

6.32

6.65

5.5

6

6.5

7

7.5

compact scatter balanced

sp
ee

du
p

(a) Running time (b) Speedup

Fig. 6. The running time and speedup of 409600 data set of k-means

1 4 8 16 32 60 64 120 128 240 244

compact 917.4 345.7 236.2 144.8 71.0 38.1 16.0 16.0 16.1 14.9 17.1

scatter 964.8 545.4 301.5 204.0 103.8 68.5 21.0 19.3 18.9 17.0 17.9

balanced 917.1 404.6 299.2 216.9 134.9 66.4 17.2 16.0 15.9 15.3 16.6

0.0
200.0
400.0
600.0
800.0

1000.0
1200.0

ru
nn

in
g

tim
e

/s

The number of thread and running time

10.45

85.66

0

20

40

60

80

100

cpu cpu+mic

sp
ee

du
p

(a) Running time (b) speedup

Fig. 7. The running time and speedup of 61440000 dataset of k-means

Matrix
Mul

Monte
Carlo

N-body FFT Histogram SPGEMM
Average
speedup

cpu(speedup) 5.17 15.29 22.40 2.46 2.91 2.55 8.47

mic(speedup) 7.13 39.89 49.94 13.66 9.07 4.28 20.66

0

10

20

30

40

50

60

sp
ee

du
p

Fig. 8. The speedup of different benchmarks

5 Related Work

Due to the tremendous computing power as well as x86 programing compatibility, the
Intel MIC architecture has been attracting the great attention from academia and in-
dustry. S. Saini et al.[17] conducted an early performance evaluation of the Xeon Phi.
Potluri S [15] proposed and evaluated design alternatives for efficient communication
on a node with Xeon Phi coprocessor. Si M.et al. [16] implemented an MPI library to
provide direct Xeon Phi coprocessor to Xeon Phi coprocessor inter-node MPI com-
munication. D. Schmidl et al [18] compared a Xeon-based two-socket compute node
with the Xeon Phi stand-alone in scalability and performance. Liu X et al. [14] de-
scribed an efficient implementation of SpMV on the Intel Xeon PhiTM Coprocessor.

310 T. Ju et al.

Different from these works, our work contributes to exploring the effect of thread
mapping and performance optimizing on MIC heterogeneous system.

6 Conclusions

The objective of this work is to explore how the thread mapping affects performance of
MIC coprocessor, and discuss the program porting and optimization process to MIC
heterogeneous system. We compared the performance effects of different thread
mapping methods to Intel MIC coprocessor, and summarized the factors that should be
considered when mapping thread on MIC heterogeneous system. At the same time,
through analyzing the different factors of performance effect, the specific program
porting and performance optimizing strategies on MIC heterogeneous system are
proposed. These proposed strategies may provide certain guidance and reference to
application programmer when porting and optimizing applications on MIC heteroge-
neous system.

Acknowledgements. This work is supported by the NSF of China (under Grants
61173039, 61202041), the 863 Program of China (under Grants 2012AA010904,
2012AA01A306), the National Key Technology R&D Program of China (under Grant
2011BAH04B03), and the Shenzhen Scientific plan (under Grant No. JCYJ20120
615101127404).

References

1. Top 500 supercomputer sites (June 2013), http://www.top500.org/
2. Brodtkorb, A.R., Dyken, C., Hagen, T.R., Hjelmervik, J.M., Storaasli, O.O.: State-of-the-art

in heterogeneous computing. Scientific Programming 18(1), 1–33 (2010)
3. Gelado, I., Stone, J.E., Cabezas, J., et al.: An asymmetric distributed shared memory model

for heterogeneous parallel systems. In: Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pp. 347–358 (March 2010)

4. Han, T.D., Abdelrahman: hiCUDA: High-Level GPGPU Programming. IEEE Transactions
on Parallel and Distributed Systems 22(1), 78–90 (2011)

5. Brodtkorb, A.R., Hagen, T.R., et al.: Graphics processing unit (GPU) programming strate-
gies and trends in GPU computing. Journal of Parallel and Distributed Computing 73(1),
4–13 (2013)

6. Pusukuri, K.K., Gupta, R., Bhuyan, L.N.: ADAPT: A framework for coscheduling multi-
threaded programs. ACM Transactions on Architecture and Code Optimization 9(4), Article
45 (2013)

7. Jablin, T.B., Prabhu, P., Jablin, J.A., Johnson, N.P., Beard, S.R., August, D.I.: Automatic
CPU-GPU communication management and optimization. In: Proc. ACM Programming
Language Design and Implementation (PLDI), pp. 142–151 (June 2011)

8. Jeffers, J., Reinders, J.: Intel’s Xeon Phi Coprocessor High-Performance Programming.
Elsevier Inc., USA (2013)

9. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaer, J.W., Lee, S.H., Skadron, K.: Rodinia: A
benchmark suite for heterogeneous computing. In: Proceedings of IISWC, pp. 44–54 (2009)

 Thread Mapping and Parallel Optimization for MIC Heterogeneous Parallel Systems 311

10. Stratton, C., Rodrigues, I., et al.: Parboil: A Revised Benchmark Suite for Scientific and
Commercial Throughput Computing. IMPACT Technical Report, University of Illinois at
Urbana-Champaign Center for Reliable and High-Performance Computing (March 2, 2012)

11. Yang, Y., Xiang, P., Mantor, M., Zhou, H.: CPU-Assisted GPGPU on Fused CPU-GPU
Architectures. In: 18th International Symposium on High Performance Computer Archi-
tecture, pp. 1–12 (2012)

12. Lee, J., Lakshminarayana, N.B., Kim, H., et al.: Many-thread aware prefetching mecha-
nisms for gpgpu applications. In: Proceeding of the 43rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 213–224 (2010)

13. Liu, W., Lewis, B., Zhou, X., et al.: A balanced programming model for emerging hetero-
geneous multicore systems. In: Proceedings of the 2nd USENIX Conference on Hot Topics
in Parallelism (2010)

14. Liu, X., Smelyanskiy, M., Chow, E., et al.: Efficient sparse matrix-vector multiplication on
x86-based many-core processors. In: Proceedings of the 27th International ACM Confer-
ence on International Conference on Supercomputing, pp. 273–282 (2013)

15. Potluri, S., Venkatesh, A., Bureddy, D., et al.: Efficient Intra-node Communication on
In-tel-MIC Clusters. In: Proceeding of the 13th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, pp. 128–135 (2013)

16. Si, M., Ishikawa, Y., Tatagi, M.: Direct MPI Library for Intel Xeon Phi Co-Processors. In:
Proceeding of the 27th IEEE International Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), pp. 816–824 (2013)

17. Saini, S., Jin, J., Jespersen, D., et al.: An early performance evaluation of many integrated
core architecture based SGI rackable computing system. In: Proceedings of the ACM In-
ternational Conference for High Performance Computing, Networking, Storage and Anal-
ysis (2013)

18. Schmidl, D., Cramer, T., Wienke, S., Terboven, C., Müller, M.S.: Assessing the perfor-
mance of OpenMP programs on the intel xeon phi. In: Wolf, F., Mohr, B., an Mey, D. (eds.)
Euro-Par 2013. LNCS, vol. 8097, pp. 547–558. Springer, Heidelberg (2013)

Efficient Storage Support for Real-Time

Near-Duplicate Video Retrieval

Zhenhua Nie, Yu Hua, Dan Feng, Qiuyu Li, and Yuanyuan Sun

Wuhan National Lab for Optoelectronics (WNLO),
School of Computer Science and Technology,

Huazhong University of Science and Technology,
Wuhan, Hubei 430074, China

{niezhenhua,csyhua,dfeng,liqiuyu,sunyuanyuan}@hust.edu.cn

Abstract. Near-duplicate video retrieval in a real-time manner is im-
portant to offer efficient storage services, and becomes more challenging
due to dealing with the rapid growth of multimedia videos. Existing work
fails to efficiently address this important problem due to overlooking the
storage property of massive videos. In order to bridge the gap between
storage system organization and application-aware videos, we propose
a cost-effective real-time video retrieval scheme, called FastVR, which
supports fast near-duplicate video retrieval. FastVR has the salient fea-
tures of space- and time-efficiency in large-scale storage systems. The
idea behind FastVR is to leverage space-efficient indexing structure and
compact feature representation to facilitate keyframe based matching.
Moreover, in the compact feature representation, FastVR transforms the
frames into feature vectors in the Hamming space. The indexing structure
in FastVR uses Locality Sensitive Hashing(LSH) to support fast similar
neighboring search by grouping similar videos together. The conventional
LSH unfortunately causes space inefficiency that is well addressed by a
cuckoo hashing scheme. FastVR uses a semi-random choice to improve
the performance in the random selection of the cuckoo hashing scheme.
We implemented FastVR and examined the performance using a real-
world dataset. The experimental results demonstrate the efficiency and
significant performance improvements.

1 Introduction

According to the report of International Data Corporation (IDC) in 2011, the
amount of data in our whole world reaches 1.8 Zettabytes and its growth rate is
about doubling every two years. The amount of data produced will increase to
40ZB by 2020 [5]. The unstructured data, typically represented by videos and
images, is growing faster than structured data. The percentage of unstructured
data is about 90 percent of all data created in the next decade [5].

The number of online videos has experienced an exponential growth in recent
decades, especially when social video sharing sites appear. In YouTube, over 6
billion hours of video are watched each month, and there are 100 hours of video
being uploaded each minute in 2014 [1]. These videos in a variety of formats
contain duplicate copies and exhibit similarity from the content view [20]. Near-
duplicate video retrieval is important in the era of big data.

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 312–324, 2014.
c© Springer International Publishing Switzerland 2014

Efficient Storage Support for Real-Time Near-Duplicate Video Retrieval 313

In order to improve storage performance when handling massive videos,
data centers are utilized by service providers and developers. However, the cen-
tralized data storage model becomes potential performance bottleneck when
dealing with the highly redundant videos. Although the cache techniques on
chip-multiprocessors [25] are used, data centers still consume substantial energy
and system resources to offer storage services. In the meantime, highly redun-
dant videos increase query delay and jeopardize the quality of storage services. In
practice, existing work proposes efficient query schemes to deal with metadata
management in storage systems, such as Spyglass [14], SmartStore [6], flash-
based multiple Bloom filters [19] and BloomStore [16]. These retrieval methods
mainly address the exact-matching query in the metadata search, rather than
the near-duplicate retrieval for videos in a real-time manner.

In general, near-duplicate video retrieval contains the following operations.
First, the extracted keyframes of videos are classified by time sampling, shot
based detection algorithms or sliding window so that every video is represented
by a sequence of keyframes [8]. Second, these keyframes are represented by their
visual features including global features and local features [9,24]. Specifically, a
global feature consists of color and spatial and temporal features extracted from
a keyframe. A local feature is represented by local keypoints extracted from a
keyframe in a high dimensional vector. Third, the system constructs an indexing
structure via organizing extracted visual features (global and local features), like
the prevalent inverted index [22]. Fourth, we compute the similarity between the
queried videos and the video library by using visual features. The whole extracted
visual features are taken as the representation of video library. The final results
include the most similar videos that are compared with the query video. In
this paper, we address two challenges, i.e., inefficient feature representation and
performance bottleneck of indexing, to support real-time near-duplicate video
retrieval.

Inefficient Feature Representation. In order to support real-time video
retrieval, existing work proposes a variety of feature extraction based schemes
for efficient video representation to facilitate the near-duplicate video retrieval.
These approaches can be classified into two categories: global feature based
schemes [21], and local feature based schemes [28]. Specifically, the global feature
schemes can extract color, spatial and temporal signatures to deal with almost
identical videos, while the local feature schemes can extract the local keypoints
to tolerate more photometric and spatial transformations. The global feature
based methods have rapid processing speed but low accuracy, while the local
feature based methods obtain high accuracy by extracting local keypoints. In
practice, these schemes mainly concentrate on improving the retrieval accuracy
via extracting more features from the videos or the keyframes to represent the
features. Due to overlooking the property of storage, these approaches always
consume too much in-memory space, thus failing to support real-time video
retrieval.

Performance Bottleneck of Indexing. To support real-time query per-
formance, it is important to construct an efficient indexing structure, which is

314 Z. Nie et al.

space-efficient and obtains low query latency. Only a few studies focus on the real-
time retrieval in the large scale near-duplicate videos. Many methods are used to
construct the indexing structure in real-time near-duplicate video retrieval, such
as tree-structures [2], cluster, spectral hashing [23], and the variations of the
search engine technology like the inverted table [4]. Locality Sensitive Hashing
(LSH)[3] [10] is often used to implement the fast similarity query by mapping
the approximate points into a same bucket to narrow the query scope. LSH has
the salient features in efficiency of hashing computation and stabilization of data
locality. LSH has the property that the similar items can be hashed into the same
buckets with high probability. Although LSH can be used to maintain the near-
duplicate relationships among keyframes in the indexing structure, performing
real-time LSH-based near-duplicate video retrieval needs to address two main
problems. (1) LSH suffers from low space-efficiency and low-speed I/O access,
(2) LSH has an unbalanced load in the hash table storage.

The conventional LSH unfortunately causes space inefficiency that is well ad-
dressed by a cuckoo hashing scheme. The cuckoo hashing scheme obtains worst-
case constant query time and high utilization of hash tables. Cuckoo hashing
recursively kicks items out of their positions and uses multiple hash functions
for resolving hash collisions during insertion operation. The random selection in
cuckoo hashing incurs a large number of repeated relocations in the kicking-out
processes. The reason of repeated relocations is that the item frequently kicks
similar items, thus incurring repetitions and loops with a high probability.

This paper has made the following contributions.
Compact Feature Representation. In order to obtain the real-time near-

duplicate video retrieval, we propose a compact feature representation. Our fea-
ture representation only extracts the local feature to obtain high accuracy, and
to avoid the complex computation of the extraction operations which combine
the global feature and local feature. By using a feature-aware Bloom filter, we
map the local keypoints (extracted from a keyframe) to a feature vector in the
Hamming space. Hence, this keyframe is represented by a feature vector. The
space of feature vector is much smaller than that of local keypoints.

Semi-random Holistic Hashing. The indexing structure is constructed by
the semi-random holistic hashing, which addresses the space-efficiency and load
imbalance for the LSH-based method in the near-duplicate video retrieval. The
conventional LSH unfortunately causes space inefficiency that is well addressed
by a cuckoo hashing scheme. FastVR uses a semi-random choice to improve the
performance in the random selection of the cuckoo hashing scheme. We show
that the effective combination of LSH and Cuckoo Hashing can accelerate the
near-duplicate video retrieval.

Real Prototype Implementation. We have implemented all the compo-
nents and algorithms of FastVR in our prototype system. We compared it with
state-of-the-art work, including NEST [7], ViDeDup [11] and the baseline ap-
proach. The baseline approach is the traditional LSH without cuckoo hashing.
Furthermore, we use a real and large dataset collected from the popular campus
networks of universities in China to evaluate the performance.

Efficient Storage Support for Real-Time Near-Duplicate Video Retrieval 315

The rest of paper is organized as follows. Section 2 presents the backgrounds
and related work. Section 3 shows our FastVR model. Section 4 shows the per-
formance evaluation. We conclude our paper in Section 5.

2 Backgrounds and Related Work

This section presents the research backgrounds about feature representation in
near-duplicate video retrieval, locality sensitive hashing scheme and cuckoo hash-
ing scheme.

2.1 Feature Representation

In recent decade, various feature extraction methods are proposed by researchers
to represent a keyframe. These features are mainly grouped into two categories,
global feature based schemes and local feature based schemes.

The global feature schemes extract color, spatial and temporal signatures to
represent the keyframes extracted from a video. For example, HSV is extracted
to represent the keyframe, and this method receives fast query performance [24].
The compact spatiotemporal feature can be represented by using relative gray-
level intensity distribution in a frame and temporal structure of videos [21]. The
global feature based methods are less robust in the videos which has spatially
and temporally variation, and the experimental performance of the global feature
based methods is not as good as the local feature based methods.

Because of the shortage of the global feature based methods, the local feature
based methods obtain more attentions [4][13][22]. Some of the popular methods
based on local features are SIFT [15] and PCA-SIFT [12]. In [22], the local
keypoints can be extracted by SIFT to represent keyframes. The visual keywords
are quantized by the local keypoints, then the inverted index is used to index the
visual keywords. The correlated work [4] based on visual keywords and inverted
index presents excellent experimental results.

2.2 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) [10] has the property that the similar items
can be hashed into the same bucket with high probability. Formally, each hash
function h(v): Rθ → Z maps a θ dimensional vector to a real number. The domain
S denotes the point sets, and the distance measure D denotes the distance
between two points, so an LSH family is defined as:

Definition 1. LSH family, H = {h : S → U} is called (r, cr, P1, P2)-sensitive
for distance function D if for any p, q ∈ S

– If D(p, q) ≤ r then PrH [h(p) = h(q)] ≥ P1,

– If D(p, q) > cr then PrH [h(p) = h(q)] ≤ P2.

316 Z. Nie et al.

x y

z x

y

z

m

Fig. 1. An example of cuckoo hashing structure

Due to the use of LSH, the settings should be P1 > P2 and c > 1. We
define a function family Γ={g:S→Uk}. Then we need to illustrate another two
parameters, d, the number of hash tables and k, the number of hash functions
in function family. We have g(v)=(h1(v),. . ., hk(v)), where v is a θ dimensional
vector and hi(v) ∈ H .

LSH uses the hash collisions to support the approximate queries. As a result,
it suffers from low space-efficiency utilization in hash tables and unbalanced
load in the storage of hash tables. The multi-probe LSH [17] is proposed to
illustrate the similarity with adjacent buckets. The last level caches can leverage
the temporal and spatial capacity demands to narrow the gap between processor
cores and main memory [26] [27]. This can partially address the time-inefficiency
in real-time near-duplicate video retrieval.

2.3 Cuckoo Hashing

To address the low space-efficiency utilization and unbalanced load in hash tables
of LSH, the cuckoo hashing scheme can be used to address this problem very well.
Cuckoo hashing [18] is a simple dynamic dictionary for resolving hash collisions
in a hash table, with achieving worst case constant query time by providing
several possible locations in the hash table for each key. Cuckoo hashing can
efficiently support query services and has high utilization of hash tables.

In order to describe the detailed implementation of cuckoo hashing principle,
Figure 1 shows an example of the standard cuckoo hashing. Each item has two
possible positions and it can be inserted directly into the hash table if either
of the candidate positions is empty, as the items x, y shown in Figure 1(a).
Figure 1(b) illustrates the case of inserting a new item m when both of its
candidate positions are occupied(which are filled by “x” and “y”). The item
m will kick either item (“x” and “y” will be selected randomly) for getting a
position, likewise, the repeated kicking-out operations will be accomplished by
addressing an empty bucket. A rehashing operation is required if an endless
loop appears. The case of d = 2 has a low utilization of hash tables, hence we
introduce the case of d > 2 to improve the space utilization to meet the needs
of the real-world near-duplicate video retrieval.

The standard cuckoo-driven locality-sensitive hashing design constructs the
indexing structure [7], called NEST, to support real-time near-duplicate video
retrieval and partially addresses the load imbalance and low space efficiency of
hash tables. NEST leverages the LSH and cuckoo hashing to find similar items

Efficient Storage Support for Real-Time Near-Duplicate Video Retrieval 317

Offline

Video Library

Keyframe
Extraction

Local
Feature

Extraction
Feature-aware

Bloom filter

Feature 1

Feature 4

Feature 3

Feature 2

0101 01

1001 00

0001 11

0011 10

Online

Keyframe
Extraction

Local
Feature

Extraction
Feature

Feature-aware
Bloom filter

1100 01
Indexing Structure

Retrieval

Video
Result

Query
Video

Keyframe

Feature
Vector

Result
Video 1

Result
Video 2

Video 1

Video 4Video 3

Video 2

Keyframe 1

Keyframe 4

Keyframe 3

Keyframe 2

Feature
Vector 1

Feature
Vector 4

Feature
Vector 3

Feature
Vector 2

Fig. 2. The framework of our proposed FastVR

that are placed closely to obtain balanced load in hash tables. NEST uses random
selection in cuckoo hashing among its kicking-out process. The random selection
increases the time overhead, which is unsuitable in real time near-duplicate video
retrieval.

3 The Design of FastVR

Our proposed framework is shown in Figure 2, which consists of two main parts.
The first part depicts our compact feature representation, which includes the
offline and online modules. Using the feature-aware Bloom filter, the local key-
points extracted from a frame are mapped into the feature vectors in Hamming
space. The second part is the indexing structure using the semi-random holis-
tic hashing. It uses the semi-random selection to accelerate the insertion of the
cuckoo hashing.

The important problems to be addressed in this paper are (1)How to construct
the feature representation, (2)How to build an efficient indexing structure to
accelerate query and keyframe matching. In this section, we show the details of
the two problems.

3.1 Compact Feature Representation

Our compact feature representation uses the feature-aware Bloom filter to con-
struct the feature vectors as shown in Figure 3. Unlike the conventional hash
function, the feature-aware Bloom filter is a Bloom filter which using LSH as
hash function. The feature-aware Bloom filter is used to handle the hundreds or
even thousands keypoints in a frame. A feature vector produced by the feature-
aware Bloom filter belongs to one keyframe, not all keyframes. In our work, we
use SIFT to extract local keypoints of 128 dimensions from a keyframe. The
numbers of local keypoints in a keyframe may be hundreds or even thousands,
and the number of local keypoints between keyframes are different.

318 Z. Nie et al.

31 97 56 4 0 107

0 12 146 16 8 97

5 19 69 48 13 172

29 98 55 4 0 109

0 12 144 17 9 100

117 0 21 53 103 9

local keypoints 1

local keypoints 2

1 0 1 0 0 0 0 0 1

1 0 1 0 0 1 0 0 0

feature vector 1

feature vector 2

LSH

LSH

keyframe 1

keyframe 2

Fig. 3. Feature-aware compact representation

In order to adapt to the real-time manner, the feature-aware Bloom filter
uses LSH hash functions that they can map the similar local keypoints to the
same position. In the example denoted in Figure 3, we use the first three local
keypoints to present the problems. The first two local keypoints of the keyframes
are similar, and it is confirmed by the expressions in the local keypoints in
Figure 3. Considering the first three dimensions of the local keypoints, the first
local keypoints in the two keyframes are “31, 97, 56” and “29, 98, 55” and the
corresponding values(“31” and “29”, “97” and “98”, “56” and “55”) are similar
to each other respectively. Hence we use LSH hash functions to get the same hash
values from the similar local keypoints. We introduce the feature vectors, that
all the local keypoints in a frame can be represented by the resulting feature
vectors thus the similarity in videos will be transformed into the same bit in
feature vectors, that the first bit and the third bit in the two feature vectors are
set “1”. However, the third local keypoints in the two keyframes are not similar
so the values obtained by LSH hash functions are different. Hence the feature
vectors hashed by LSH hash functions are efficient to represent the similarity of
the keyframes.

The advantage of compact feature representation is that the local keypoints
of a frame are mapped to a feature vector, and then a keyframe corresponds to
a feature vector. In our FastVR, the indexing structure directly organizes the
feature vectors as items. This indexing structure can significantly reduce the
storage space and can be more suitable in the large scale near-duplicate videos.
Moreover, the keyframe matching in Hamming space is faster than in Euclidean
space, hence the compact feature representation can significantly improve the
performance of keyframe matching.

3.2 The Semi-random Holistic Hashing

Our FastVR combines the LSH and cuckoo hashing to construct the index-
ing structure and we denote MaxLoop as the maximum kicking-out count, and
the kicking-out count is initialized to 0. Then we optimize the efficiency of
kicking-out process in cuckoo hashing. First, when the kicking-out count is un-
der MaxLoop/2, we use the random selection in cuckoo hashing to address the

Efficient Storage Support for Real-Time Near-Duplicate Video Retrieval 319

0

0.5

1

1.5

2

2.5

3

3.5

(I,3) (I,4) (II,4) (II,5) (III,7)
F

re
qu

en
cy

 o
f p

os
iti

on
Position

Fig. 4. The frequency of positions occurrence in a kicking-out path

kicking-out process. Meanwhile, we record the count of position occurrences. Sec-
ond, when the kicking-out count is greater than MaxLoop/2 and under MaxLoop,
we do not use the random selection to select the item to be moved if the poten-
tial positions are all occupied for current item. We pick the minimum frequency
of the potential positions of the current item for the next “kicking out”. Third,
our indexing structure uses a random cuckoo hashing in the last step, i.e. the
MaxLoop step, to jump out the similar group.

For example, we assume that the size of 3 hash tables, I, II and III, is 10, and we
use (II, 7) to represent the 7th position in Table II. TheMaxLoop is 5. The count of
position occurrence is added to 1when the position is one of the candidate positions
in a kicking-out path. Figure 5(a) presents the kicking-out process in the indexing
structure. Suppose item t will be inserted into the indexing structure, and its can-
didate positions are all occupied. Then the kick-out operations have experienced
the path e → c → a, and the candidate positions of e, c, a are [(I,4)(II,5)(III,7)],
[(I,3),(II,5),(III,7)], [(I,3),(II,4),(III,7)] respectively. Hence, the count of position
occurrences has a statistic in Figure 4. Until now, the kicking count is 2, and the
kicking operations use the random selection. The next step’s kicking count is 3 >
MaxLoop/2, and we will select the minimum frequency of the candidate positions
of item a. From Figure 4, the count of position occurrences of a are 2,1 and 3, and
the a will select the position (II,4) as the next position to kick out. Then the item
a will kick the item d in position (II,4), and so on.

t

e LSH 1

LSH 3

LSH 2

I

III

II

1 2 3 4 5 6 7 8 9 10

c

a

d

random
selection

random
selection

select
minimum
frequency

(a) The kicking-out process in the in-
dexing structure.

x

P1

h gm

no f

p ij

LSH 1

LSH 3

LSH 2

Random
Cuckoo Hashing

P2

P3
P4

P6

P5

P7

(b) The random cuckoo hashing in
last step.

Fig. 5. The kicking operations in semi-random selection

320 Z. Nie et al.

Figure 5(b) presents the random cuckoo hashing in the third step. The item
x will be inserted into the hashing structure. We assume that all the items
are similar items. The candidate positions of x and the adjacent positions are
all occupied. Then the position which item h occupied is selected to start the
kicking process in cuckoo hashing schemes. P1 means the first kicking operation
in the procedure of inserting the item x. The kicking path from P1 to P6 has
two circles and the last item may kick another item. The reason is that all the
items are the similar items which calculated through the LSH, and all the items
form a similar group. Then the items will kick each other in the similar group,
and this insert operation will fail. The cuckoo hashing can only partly address
the unbalanced load in the LSH based hash table. As to the problem of circle
kicking in the similar group, we use the random cuckoo hashing to jump out the
similar group to further address this problem.

The semi-random selection is used to optimize the kicking-out path through
the history information of the kicking-out position. The random cuckoo hashing
in the last step is used to jump out the similar group. Our indexing structure
uses LSH to classify the near-duplicate items. Then we use the semi-random
selection and the random cuckoo hashing in last step to accelerate the insertion
process. It can significantly improve the utilization rate of hash tables and speed
up the insertion.

4 Performance Evaluation

This Section presents the experimental results in a real cloud system in terms
of multiple evaluation metrics.

4.1 Experiment Setup

We implemented a FastVR prototype on a 128-node cluster. Each node has a
quad-core CPU running at 2.4GHz, with a 16GB RAM, a 500GB 7200RPM
hard disk and a Gigabit network interface card. To drive the FastVR prototype
evaluation, we use a real and large dataset collected from the cloud. Initially,
the video dataset is randomly distributed among the nodes.

Evaluation Workload: Real Video Datasets. We collect real and openly
assessable videos from the popular campus networks of universities. In order
to faithfully demonstrate the property of real-world video datasets, we set cer-
tain temporal and spatial constraints on the collection. The temporal constraint
defines the uploading interval to be between Sep. 30, 2012 and Oct.7, 2012, a
week-long holiday season.

The spatial constraint confines the locations to the Chinese cities of Wuhan
and Shanghai, with each having its own unique and popular landmarks and
sceneries. While Wuhan has 10 landmarks, Shanghai has 20. We only collect
videos that contain these representative landmarks, which facilitate a meaningful
evaluation. The collected video dataset ultimately contains 50 thousand videos
that amount to more than 2.5TB in storage size. The key characteristics of the
video dataset are summarized in Table 1.

Efficient Storage Support for Real-Time Near-Duplicate Video Retrieval 321

Table 1. The Properties of Collected Video Sets

Dataset Name No. Videos Total Size No. Landmarks

Wuhan 21.2 thousand 1.34 TB 10

Shanghai 28.8 thousand 1.16 TB 20

Evaluation Comparisons and Parameters. To evaluate the efficiency of
our method, we compare the performance of FastVR, ViDeDup, NEST, and
the baseline approach. For meaningful and fair comparisons, we mainly exam-
ine the performance of their query functionality. Since there are no complete
open-source code of ViDeDup, we choose to re-implement it. ViDeDup [11] pro-
poses a framework for video de-duplication based on an application-level view
of redundancy. We implement its main components, including video signature
generation, video segmentation, video sequence comparison, clustering, centroid
selection and video segment indexing and referencing. Moreover, NEST [7] is
the standard cuckoo-driven locality sensitive hashing scheme. The baseline ap-
proach is the traditional LSH without cuckoo hashing. All above functionalities
are implemented in the Linux environment. In addition, we evaluate different
parameter settings to obtain high space- and time-efficiency. By analyzing the
actual experimental results, we use d=10, k=8, ω=4, and Δ=3 to obtain higher
query accuracy and smaller storage space.

4.2 Results and Analysis

The evaluation metrics include the query latency and space overhead.

Query Latency. Figure 6 shows the average query latency. We examine the
query performance as a function of the number of query requests from 1000 to
5000 with an increment of 1000. The latency of Baseline, at 30min on average,
is almost one order of magnitude better than 3.6min in NEST and 5.2min in
ViDeDup. NEST makes use of cuckoo-driven hashing to execute flat addressing
and quickly identify the queried results. ViDeDup reduces the query latency due
to its similarity detection in the application level, and however, its 2-phase video

Number of Query Requests

A
ve

ra
g

e
Q

u
er

y
L

at
en

cy
 (

s)

1000 2000 3000 4000 5000
1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04
Baseline NEST FastVR ViDeDup

(a) Wuhan Dataset.

Number of Query Requests

A
ve

ra
g

e
Q

u
er

y
L

at
en

cy
 (

s)

1000 2000 3000 4000 5000
1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04
Baseline NEST FastVR ViDeDup

(b) Shanghai Dataset.

Fig. 6. The average query latency

322 Z. Nie et al.

comparison exacerbates the query performance due to the increase of operation
complexity.

FastVR requires the smallest latency, around 10 seconds. The advantage of
FastVR is to leverage the cuckoo hashing to obtain the load balance on hash
tables. The hash tables based on FastVR save the storage space and can be
effectively loaded into the high-speed memory, thus alleviating frequent access
to the low-speed hard disks. FastVR hence mitigates the I/O costs to obtain
low the query latency. Moreover, compared with NEST, the kicking-out path of
cuckoo hashing in FastVR is optimized by semi-random selection to accelerate
the insertion in the hash tables. This acceleration can further reduce the query
latency to make FastVR more suitable for the real-time query in near-duplicate
video retrieval.

Space Overhead. Table 2 summarizes the space overheads of Baseline, NEST,
ViDeDup and FastVR, normalized to that of Baseline. By reducing the num-
ber of dimensions to be processed and the use of load-balanced design, NEST
achieves a space saving of about 20% from Baseline. To support application-
aware deduplication, ViDeDup leverages similarity detection and trades CPU
for storage, thus obtaining about 30% space savings.

Table 2. Space Overhead normalized to Baseline

Video Datasets Baseline NEST FastVR ViDeDup

Wuhan 1 0.85 0.11 0.72

Shanghai 1 0.77 0.09 0.67

FastVR makes use of the semi-random selection to significantly improve the
kicking-out path of cuckoo hashing, thus obtaining the space savings. FastVR
requires about 10% space overhead and is able to store more index informa-
tion into the main memory, which is helpful to significantly improve the query
performance.

5 Conclusion

In this paper, we proposed FastVR, a compact feature representation and an
efficient indexing structure, to obtain the real-time query performance. FastVR
can support fast query and consume low storage overhead in near-duplicate
video retrieval. Our compact feature representation uses the feature-aware Bloom
filter, and the local keypoints (extracted from a keyframe) are mapped to a
feature vector in the Hamming space. The storage capacity in the feature vector
is significantly decreased, compared with local keypoints. The optimized indexing
structure that combines LSH and Cuckoo Hashing is more suitable to meet the
needs of the real near-duplicate video retrieval. By using a real-world video
dataset, the experimental results demonstrate the efficiency and efficacy of our
proposed FastVR in terms of query latency and accuracy, and space overhead.

Efficient Storage Support for Real-Time Near-Duplicate Video Retrieval 323

Acknowledgment. This work was supported in part by NSFC 61173043; Na-
tional Basic Research 973 Program of China 2011CB302301; NSFC 61025008,
61232004; The Seed Project of Wuhan National Laboratory for Optoelectronics
(WNLO).

References

1. YouTube Statistics (2014), http://www.youtube.com/yt/press/
2. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: Index

structures for improving the performance of multimedia databases. ACM Comput-
ing Surveys (CSUR) 33(3), 322–373 (2001)

3. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proc. Annual Symposium on Compu-
tational Geometry. ACM (2004)

4. Douze, M., Gaidon, A., Jegou, H., Marsza�lek, M., Schmid, C., et al.: Inria-lears
video copy detection system. In: TREC Video Retrieval Evaluation, TRECVID
Workshop (2008)

5. Gantz, J., Reinsel, D.: The Digital Universe in 2020: Big Data, Bigger Digital
Shadows, and Biggest Growth in the Far East. In: International Data Corporation
(IDC) iView (December 2012)

6. Hua, Y., Jiang, H., Zhu, Y., Feng, D., Tian, L.: Smartstore: A new metadata
organization paradigm with semantic-awareness for next-generation file systems.
In: Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis. IEEE (2009)

7. Hua, Y., Xiao, B., Liu, X.: Nest: Locality-aware approximate query service for
cloud computing. In: Proceedings of IEEE International Conference on Computer
Communications, INFOCOM (2013)

8. Huang, Z., Shen, H.T., Shao, J., Cui, B., Zhou, X.: Practical online near-duplicate
subsequence detection for continuous video streams. IEEE Transactions on Multi-
media 12(5), 386–398 (2010)

9. Huang, Z., Shen, H.T., Shao, J., Zhou, X., Cui, B.: Bounded coordinate system
indexing for real-time video clip search. ACM Transactions on Information Systems
(TOIS) 27(3), 17 (2009)

10. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proc. ACM Symposium on Theory Of computing. ACM
(1998)

11. Katiyar, A., Weissman, J.: ViDeDup: An application-aware framework for video
de-duplication. In: Proceedings of the 3rd USENIX Conference on Hot Topics in
Storage and File Systems, HotStorage (2011)

12. Ke, Y., Sukthankar, R.: Pca-sift: A more distinctive representation for local image
descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, pp. II–506. IEEE
(2004)

13. Law-To, J., Chen, L., Joly, A., Laptev, I., Buisson, O., Gouet-Brunet, V., Boujemaa,
N., Stentiford, F.: Video copy detection: a comparative study. In: Proceedings of the
6th ACMInternational Conference on Image andVideoRetrieval, pp. 371–378. ACM
Press (2007)

14. Leung, A.W., Shao, M., Bisson, T., Pasupathy, S., Miller, E.L.: Spyglass: Fast,
scalable metadata search for large-scale storage systems. In: Proceedings of the
Conference on File and Storage Technologies (FAST), pp. 153–166 (2009)

http://www.youtube.com/yt/press/

324 Z. Nie et al.

15. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision 60(2), 91–110 (2004)

16. Lu, G., Nam, Y.J., Du, D.H.: BloomStore: Bloom-filter based memory-efficient
key-value store for indexing of data deduplication on flash. In: Proc. IEEE 28th
Symposium on Mass Storage Systems and Technologies (MSST). IEEE (2012)

17. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe lsh: Efficient
indexing for high-dimensional similarity search. In: Proceedings of the 33rd Inter-
national Conference on Very Large Data Bases, pp. 950–961. VLDB Endowment
(2007)

18. Pagh, R., Rodler, F.F.: Cuckoo hashing. Journal of Algorithms 51(2), 122–144
(2004)

19. Park, D., Du, D.H.: Hot data identification for flash-based storage systems using
multiple Bloom filters. In: Proc. IEEE 27th Symposium on Mass Storage Systems
and Technologies (MSST). IEEE (2011)

20. Poullot, S., Crucianu, M., Buisson, O.: Scalable mining of large video databases
using copy detection. In: Proceedings of the 16th ACM International Conference
on Multimedia, pp. 61–70. ACM (2008)

21. Shang, L., Yang, L., Wang, F., Chan, K.P., Hua, X.S.: Real-time large scale near-
duplicate web video retrieval. In: Proceedings of the International Conference on
Multimedia, pp. 531–540. ACM (2010)

22. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching
in videos. In: Proceedings of the Ninth IEEE International Conference on Computer
Vision (ICCV), pp. 1470–1477. IEEE (2003)

23. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Advances in Neural In-
formation Processing Systems, pp. 1753–1760 (2008)

24. Wu, X., Hauptmann, A.G., Ngo, C.W.: Practical elimination of near-duplicates
from web video search. In: Proceedings of the 15th International Conference on
Multimedia, pp. 218–227. ACM (2007)

25. Zhan, D., Jiang, H., Seth, S.C.: Exploiting set-level non-uniformity of capacity
demand to enhance cmp cooperative caching. In: Proceedings of the 2010 IEEE
International Symposium on Parallel & Distributed Processing (IPDPS), pp. 1–10.
IEEE (2010)

26. Zhan, D., Jiang, H., Seth, S.C.: Stem: Spatiotemporal management of capacity for
intra-core last level caches. In: Proceedings of the 43rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), pp. 163–174. IEEE (2010)

27. Zhan, D., Jiang, H., Seth, S.C.: Locality & utility co-optimization for practical
capacity management of shared last level caches. In: Proceedings of the 26th ACM
International Conference on Supercomputing, pp. 279–290. ACM (2012)

28. Zhao, W.L., Tan, S., Ngo, C.W.: Large-scale near-duplicate web video search: Chal-
lenge and opportunity. In: Proceedings of the IEEE International Conference on
Multimedia and Expo (ICME), pp. 1624–1627. IEEE (2009)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 325–338, 2014.
© Springer International Publishing Switzerland 2014

Repairing Multiple Data Losses by Parallel
Max-min Trees Based on Regenerating Codes

in Distributed Storage Systems

Pengfei You, Yuxing Peng, Zhen Huang, and Changjian Wang

College of Computer, National University of Defense Technology,
410073 Changsha, China

hbypf@outlook.com, {yooroc,huangzh,wangcj}@gmail.com

Abstract. Due to high storage efficiency, erasure codes are recently used to
provide high data reliability in distributed storage systems. When multiple data
loses in system, regeneration time for them demands to be as short as possible
so as to keep data availbility and reliability. Common way is to repair them one
by one, which prolongs the regeneration time. Tree-structured regeneration may
reduce regeneration time when regenerating one single node failure by relaying
the network traffic, and is also extended to regenerate multiple data losses. In
this paper, based on regenerating codes which achieve minimal network traffic
during the regeneration, we consider reducing regeneration time by using
multiple max-min trees to parallel regenerate multiple data losses. And we pro-
posed an algorithm: bandwidth-sharing max-min algorithm (BSM2RC) to con-
struct multiple parallel max-min trees. It realizes efficient bandwidth utilization
by maximizing the minimal bottleneck edge weight of multiple regeneration
trees, thus improve regeneration efficiency. Our simulation experiment shows
that multiple parallel max-min trees reduce total regeneration time for multiple
data losses significantly, and thus enhance system reliability, compared with
existing regeneration scheme.

Keywords: Distributed storage System, Data regeneration, Regenerating codes,
Regeneration tree, Max-min tree, Maximum spanning tree.

1 Introduction

Distributed storage systems, such as Total Recall [15] and OceanStore [1] etc. have
been becoming very popular since they can provide large-volume storage services for
users. In such systems, due to frequent node departures and failures, data losses are
deemed as normal state. Frequent data losses jeopardize data availbility and reliability
[4], which is usually recovered by data redundancy technology.

Replication is one of the most common redundancy techniques, where each file has
n copies and each copy is placed at an individual node [6]. Another common redun-
dancy technique is a (n, k) erasure code (n>k), where each file is split into k fragments
with equal size and they are encoded into n fragments, each of which is stored at an
individual node. The original file can be reconstructed from any k fragments, which

326 P. You et al.

makes erasure codes be able to provide the same reliability as replication requiring
much less storage space [7]. Therefore, erasure codes become a popular redundancy
solution in distributed storage systems recently.

Data availbility and reliability are achieved by keeping the same redundancy level
of the system. That is, when data losses, the lost data needs to be recovered, which is
called regeneration. In regeneration, a node in the distributed storage system, referred
to as a newcomer, receives coded data from active storage nodes, referred to as provid-
ers, and finally becomes a new storage node, so the lost data are regenerated. Regen-
eration time is expected to be as little as possible, so as to provide high data availbility
and reliability [12]. There are two ways to reduce regeneration time. One is to reduce
the network traffic in the regeneration, such as applying regenerating code [10]. The
other is to take into account heterogeneity of bandwidth capacity between nodes in data
transmission for regeneration [11].

In real systems, there are many common situations for regenerating multiple nodes
failure. On one hand, multiple nodes fail simultaneously and frequently in real storage
systems, such as churn. On the other hand, to reduce the management cost and keep
performance, system prefers to launch a recovery only when the total amount of failed
nodes reaches a given threshold [15]. To cope with multiple nodes failure, the sequen-
tial regeneration schemes are proposed, and the regeneration time is long [14]. To re-
duce regeneration time, MCR [13] regenerates multiple failed nodes in parallel, but the
single node regeneration is still in star-structure. TPR [14] uses tree-structure to regen-
erate multiple failed nodes in parallel, but the structure is based on maximum spanning
tree which greedy selects maximal edges and incurs the minimal bottleneck edge
among all the trees. In addition, the construction for tree is restricted to fixed k provid-
ers for general random linear codes which do not further reduce network traffic.

In this paper, inspired by the case that bottleneck edge weights of multiple trees in-
teract each other and the construction scheme for tree could impact the minimal bottle-
neck edge weight of multiple trees, we consider using multiple max-min trees based on
regenerating codes to parallel regenerate multiple data losses so as to further reduce
total regeneration time. We propose a construction algorithm for parallel max-min
regeneration trees: bandwidth-sharing max-min algorithm based on regenerating codes
(BSM2RC). In the algorithm, multiple parallel regeneration trees based on regenerat-
ing code are constructed, each of which is independently responsible for one data loss.
Due to Minimum-storage regenerating (MSR) code [10, 12], the network traffic on

each link is only
)1(+− krk

M bytes (1−≤≤ nrk), which is the least and less than

M/k bytes in TPR.
The main contribution for BSM2RC is that max-min tree rather than maximum

spanning tree is created, which does not always select maximal edges in construction
and could leave them in the construction for next tree, thus extends space for next tree
to select larger bottleneck edge. Especially, to make minimal bottleneck edge weight of
multiple trees as large as possible, we realize the construction for the max-min tree
whose weight sum of all edges is as small as possible.

In addition, different from [12], when utilizing MSR code in trees, an optimized ad-
justing strategy for in-degree of tree root is adopted to ensure large enough edge could
be further left for next tree so as to achieve maximal bottleneck edge of multiple trees.

BSM2RC enhances selection chance for larger bottleneck edge among all regenera-
tion trees by constructing max-min trees with minimal weight sum of all edges and
reduces network traffic by using MSR code, thus the entire regeneration time is

 Repairing Multiple Data Losses by Parallel Max-min Trees 327

reduced significantly. Our simulation experiment shows that BSM2RC improve the
data availbility and reliability of the system remarkably, compared with some existing
regeneration solutions for multiple nodes failure.

The reminder of the paper is organized as follows. In Section 2 we introduce the
related work. We describe the basic network model for regenerating multiple data
losses in Section 3. In Section 4, we present BSM2RC for constructing multiple paral-
lel regeneration trees. The experiment and analysis of BSM2RC is performed in
Section 5. Finally, we conclude the paper in Section 6.

2 Related Work

Compared with replica, erasure codes provide higher data availability and have been
used in many distributed systems, such as Windows Azure [2], HDFS [3], etc. In order
to maintain data availability and reliability, the system should regenerate lost data as
soon as possible. There are two ways to reduce regeneration time for the lost data. One
is to reduce network traffic, the other is to construct optimal network topology to by-
pass bottleneck link for data transmission.

A common (n, k) erasure code, such as Reed–Solomon codes [7] or random linear
codes [8] etc., stores redundant data for a file sized M bytes in n storage nodes, each
node with M/k bytes data, where n>k. When a node failures, k providers participate in
the regeneration, each of which transmits M/k bytes data to the newcomer. That is, the
network traffic is M/k bytes on each link. Dimakis et al. [9] propose regenerating code,
which reduces the amount of data transmitted in regeneration by accessing more than k
providers [8]. Wu et al. [10] propose minimum-storage regenerating (MSR) codes
which is proved to realize minimal network traffic in the regeneration over all erasure

codes, and the network traffic on each link is
)1(+− krk

M bytes, where r is the num-

ber of providers and satisfies 1−≤≤ nrk .
When transmitting data in regeneration, the conventional scheme is star-structured

network topology, in which the newcomer receives coded blocks directly from each
provider, thus the regeneration time depends on the minimal edge connecting to the
newcomer. As showed in left part of Fig. 1, in star-structured regeneration scheme, the
bandwidth bottleneck link is the edge connecting to the newcomer and provider A, and
the actual transmission rate during the regeneration process is 10KB/s. In order to
quicken data transmission in regeneration, Li et al. propose tree-structured network
topology based on random linear codes in [11] and based on regenerating codes in [12]
respectively. In the tree-structured regeneration scheme, the child node sends data to its
parent node, and the parent node encodes the received data with the data it stores and
then sends the encoded data to its parent node. If the transmission is pipelined, the
bandwidth bottleneck is the edge with the narrowest bandwidth in the tree [12]. As
showed in right part of Fig. 1, by constructing a regeneration tree, bandwidth bottle-
neck link is the edge connecting to the newcomer and provider C, and the actual
transmission rate during the regeneration process is 30KB/s, which reaches higher
speed than that in the left part of Fig. 1. A maximum spanning tree is proved an opti-
mal regeneration tree [11], which achieves maximal bottleneck bandwidth when re-
generating single node. In [11] the network traffic between nodes is still M/k bytes,

328 P. You et al.

while in [12] it is down to
)1(+− krk

M bytes by constructing a regeneration tree for

MSR code whose in-degree of the root must be at least adjusted to r − k + 1, and thus
the regeneration time is further reduced. Because only consider single node failure, in
[12] some edges are randomly removed when adjusting in-degree of the tree root.

Fig. 1. Star-structured network topology & tree-structured network topology

The above regeneration works are for single node failure. For multiple nodes fail-
ure, there are sequential regeneration schemes and parallel regeneration schemes.
Sequential schemes include sequential Star-Structured Regeneration (referred to as
SSR) [11] and sequential Tree-Structured Regeneration (TSR) [11] etc., which regen-
erate multiple newcomers one by one and thus prolong the total regeneration time. To
parallel regenerate multiple failed nodes, Hu et al. [13] propose a Mutually Coopera-
tive Recovery (MCR) mechanism, in which the lost data are regenerated cooperative-
ly and simultaneously by all the newcomers. But in MCR data is still transferred by
the star structure, thus the network bandwidth capacity is not utilized maximally to
speed up regeneration. To increase network bandwidth capacity for regenerating mul-
tiple data losses, Sun et al. [14] proposes Tree-structured Parallel Regeneration (TPR)
mechanism which constructs multiple trees to regenerate parallel. In TPR, each re-
generation tree is rooted by an individual newcomer and responsible for regenerating
its lost data, thus multiple data losses are regenerated in parallel. However, data
transmission scheme for TPR is based on the tree-structured topology in [11] suitable
for random linear codes, in which, the provider number must be k for each newcomer,
thus the network traffic between nodes is actually still M/k bytes and not reduced
further. In addition, TPR applies maximum spanning tree (MST) [11] which greedy
selects maximal edges from available edges set. In fact, one MST achieves maximal
bottleneck edge only when repairing single node. When repairing multiple failed
nodes, the similar greed selection will construct two MSTs, one is with very large
bottleneck edge and the other with very small bottleneck edge, which prolongs the
entire regeneration time.

 Repairing Multiple Data Losses by Parallel Max-min Trees 329

3 Network Model for Regenerating Multiple Data Losses

In a distributed system applying a (n, k) MSR code, an original file sized M bytes is
divided into k blocks and then encoded into n coded blocks, each of which is M/k bytes
in size. All blocks are stored in n storage nodes, each node with one block. When s
nodes failures, s idle nodes are selected as newcomers, each of which downloads one
block from each of r providers and regenerates its lost block, where kns −≤ and

snrk −≤≤ . Each newcomer and all r providers form one regeneration tree rooted
by the newcomer. By the relay of providers, the newcomer will finally get a linear
combination of r coded blocks of r providers to regenerate the lost data [11]. The net-

work traffic on each edge is
)1(+− krk

M bytes in the tree based on MSR code, and

the regeneration time is determined by the edge with bottleneck bandwidth in the tree
[12]. When s regeneration tree are constructed, the entire regeneration can be per-
formed parallel.

Assume that the storage node set for a file is N = { 1N , 2N , . . . , nN }, (iN ,
jN)

is the undirected edge connecting iN and
jN , and),(ji NNω is the weight of

edge (iN ,
jN) which represents the bandwidth capacity between iN and

jN , where

nji ≤≤ ,1 and ji ≠ . We denote the network model for regenerating multiple data
losses as an undirected complete graph G(s; n, k, r |N), in which there is no edge be-
tween any two of s newcomers.

4 Parallel Regeneration for Multiple Data Losses Using
Max-min trees Based on MSR Code

In this section, we present how to construct multiple max-min trees based on MSR
code to parallel regenerate multiple data losses in the network model above. First, we
show parallel regeneration scheme for multiple max-min trees. Second, we analysis the
characteristics for max-min tree as well as maximum spanning tree (MST) and prove
that max-min tree has less regeneration time than MST when parallel regenerating
multiple data losses, then discuss the root feature of max-min tree based on MSR code.
Last we realize construction algorithm for multiple parallel max-min trees based on
regenerating codes: bandwidth-sharing max-min algorithm (BSM2RC).

4.1 Parallel Regeneration Scheme for Multiple Max-min Trees

The bottleneck edge or bandwidth is the minimal weighted edge in a regeneration tree.
The bottleneck edge or bandwidth of multiple trees is the minimal bottleneck edge over
all the trees.

Assume that multiple regeneration trees are iT (si ≤≤1), bottleneck bandwidth

of each iT is iω ; parat and it denote entire regeneration time for parallel multi-

ple trees and each iT respectively.

330 P. You et al.

In construction for multiple trees, they are finished in turn, in which each of them is
assigned some part of bandwidth of all edges in G(s; n, k, r |N) and aims at one data
loss. They share all network edges in G(s; n, k, r |N), that is, for all i and j, where

sji ≤≤ ,1 and ji ≠ , one edge in iT may appear in jT and the two trees could

occupy some part of bandwidth of the edge respectively, which is similar to edge shar-
ing strategy in [14].

In parallel regeneration for multiple data losses, each tree based on MSR code re-

generates one data loss individually, thus si
krk

M
t

i
i ≤≤

+−
= 1,

)1(ω
[12]. Since s

failed nodes are regenerated simultaneously, the total regeneration time of parallel
regeneration trees depends on the minimum bottleneck bandwidth of all regeneration
trees, and then }{max

1
i

si
para tt

≤≤
= .

4.2 Max-min Tree vs. Maximum Spanning Tree

Max-min Tree: we define it as a spanning tree of a graph G whose smallest edge (bot-
tleneck edge) weight is maximum over all spanning trees of G.

Maximum spanning tree (MST) is a spanning tree where the weight sum of all edg-
es is maximal. Because MST must be max-min tree [11], it is used to find bottleneck
edge in existing tree-structured regeneration schemes. However, max-min tree is not
necessary MST. For example, as showed in Fig. 2, tree A and B are Max-min trees
with the same bottleneck edge whose weight is 3. But B is also a MST, while A is not.
Weight sum of all edges of tree A is 20, while that of tree B is 24. Obviously, the
weight sum of all edges of max-min tree is not more than maximum spanning tree.

Fig. 2. tree-structured network topology

Lemma 1: Based on the same network graph model G(s; n, k, r |N) above, when
constructing the same amount of multiple tees respectively, the minimal or final bottle-
neck bandwidth for multiple max-min trees is not less than that for MST.

 Repairing Multiple Data Losses by Parallel Max-min Trees 331

Analysis: According to the regeneration scheme, each tree achieves its maximal
bottleneck edge from the remaining network bandwidth after its previous tree is con-
structed, while the entire regeneration time depends on the tree whose bottleneck edge
weight is minimal over all trees. It shows the bottleneck edge weight for each tree is
interactional, and the minimal bottleneck edge weight of trees is impacted by the con-
struction scheme for trees.

Proof: Based on G(s; n, k, r |N) above, assume s max-min trees iMMT and max-

imum spanning tree iMST are respectively constructed in turn, where si ≤≤1 ; the

weight sum of all edges for iMMT and iMST is iMMTW and iMSTW respec-

tively; the bottleneck edge weight is iMMTB and iMSTB respectively. 1MMTW -

1MMTB ≤ 1MSTW - 1MSTB since 1MMTW ≤ 1MSTW and 1MMTB = 1MSTB . That

is, 1MST selects some unnecessary edges which have larger weights than that of

1MMT . In addition, 1MST uses greedy algorithm to select maximal edges from edge
set of G, which leaves minimal edges into G. Therefore, when constructing the second
tree, 2MMT has space to select larger weighted bottleneck edge from remainder edges

of G than that of 2MST , which incurs 2MMTB ≥ 2MSTB .
For example, in Fig. 2, within the same graph there are two spanning trees repre-

sented by solid lines. The bottleneck edge weight is 3 in the two trees, while MST also
includes the maximal edge whose weight is 8. When constructing the next tree, max-
min tree could select the maximal edge, but MST can not. Similarly, iMMTB ≥

iMSTB , so the minimal or final bottleneck weight of s max-min trees iMMT is not

less than that of iMST , i=0,1,2,…s. ■

Lemma 1 shows the regeneration time for max-min tree is not more than that of
MST when network traffic between nodes is same. In the worst case, the regeneration
time is same.

In addition, in parallel regeneration each max-min tree is built on MSR code which
can reduce the regeneration traffic by increasing provider number. However, in TPR
the network traffic can not be changed since the provider number must be k according
to random linear code. In one max-min tree based on MSR code with r providers,

where 1−≤≤ nrk , each provider sends its parent node
)1(+− krk

M bytes block

generated by encoding M/k bytes block stored in it. Finally the newcomer receives r
encoded blocks, and encodes them into M/k bytes block, thus at least r − k + 1 provid-
ers must be directly linked to the newcomer. That is, the root node in-degree of each
max-min tree based on MSR code must be at least r − k + 1 in regeneration [12].

Based on above analysis, it is concluded that the bottleneck edge weight of a max-
min tree depends on the construction of its previous tree. After excluding the previous
tree, if the bandwidth of remaining edges in original graph is more, the bottleneck edge
weight of current tree could be more. That is, if weight sum of all edges of the max-
min tree is as small as possible, the bottleneck edge weight for next tree could be as
large as possible. The construction for max-min tree with minimal weight sum is intro-
duced in next section.

332 P. You et al.

4.3 Bandwidth-Sharing Max-min Algorithm for Parallel Regenerating
Multiple Data Losses

In this section, aiming at multiple data losses, we introduce the construction algorithm
for multiple parallel max-min trees based on regenerating codes: bandwidth-sharing
max-min algorithm (BSM2RC).

BSM2RC includes a recursive sub-procedure GetMax-minTree (G), which returns
a max-min tree T of graph G. It is showed as follows:

T GetMax-minTree(G)
{
1: E ← list the edges of G in ascending order
2: if (│E│ == 1)
3: return E
4: b ← weight(E( 2/|| E))

5: G’ ← remove all edges whose weight < b from G keeping
vertices
6: F ← get components of G’ by performing depth first
search of G
7: For i = 1 to │F│
8: iTmin ← find minimum spanning tree of F(i)
9: iN ← all nodes of iTmin

10: End for
11: If (│F│ == 1)
12: Return GetMax-minTree(G’)
13: Else
14: G* ← G - edges of G’ keeping vertices
15: G” ← collapse G* into { 1N , 2N ,..., ||FN }

16: Return  ||21 min...minmin FTTT GetMax-minTree(G”)

17: End else
}

The sub-procedure is a modification version for min-max tree construction algo-
rithm in [16]. The new method is that we construct one minimum spanning tree for
each component of G and then add it to edge set of the max-min tree, whose weight
sum could be minimal while bottleneck edge weight remains unchanged. That is, it
makes weight sum of all edges of max-min tree as small as possible, which leaves the
larger edges into construction for next max-min tree as many as possible so as to
make the bottleneck edge for next tree as large as possible. The sub-procedure has 3
steps as followed:

1. sort the edges of G into edge set E in ascending order and remove all edges whose
weight are less than median edge weight b of E to get remaining graph G’ while
keeping all vertices of G (line 1 to line 5)

 Repairing Multiple Data Losses by Parallel Max-min Trees 333

2. get all components of G’ by depth first search algorithm and find one minimum
spanning tree of each component by Prime algorithm (line 5 to line 10)

3. if G’ is connected, recall sub-procedure using G’ as input; else add trees of step 2
into max-min tree and recall sub-procedure using G” which is achieved by collaps-
ing G* (line 11 to line 17)

Note, in collapsing G* of step 3, shrink each connected component of G’ as one
vertex of G”; the edges of G” are the largest weight edge that goes between the corre-
sponding components.

Without loss of generality, we assume the newcomers are jN , and the current

edges set of tree jT is jE , where sj ≤≤1 . The BSM2RC algorithm is described as

follows:

Algorithm for BSM2RC: Construction of multiple max-min trees 1T , 2T ,…, sT for

parallel regeneration. Define jRootE = {(jN , iN) | i = s + 1, s + 2, . . . , n}, j = 1,

2, …s.

1: for j ← 1 to s do
2: jT ← φ

3: jCandE = jRootE

4: jE = GetMax-minTree(G(jCandE))

5: α = │ jRootE jE │

6: for i ← α + 1 to r − k + 1 do

7: me ← select the smallest edge from jRootE − jE which

is larger than min (jE)

8: If (me ==φ)

me ← select the largest edge from jRootE − jE

9: ne ← select the largest edge from jE − jRootE making

jT { me } − { ne } a tree rooted by jN

10: jT ← jT { me } − { ne }

11: end for

12: jω = min (jE)

13: for i ← 1 to r do

14: ibw −= jω

15: end for
16: end for

334 P. You et al.

In BSM2RC, Line 2 to Line 5 firstly constructs a max-min tree jT by calling

GetMax-minTree (), in which G(jCandE) is the graph consisting of candidate edges

set jCandE . Line 6 to Line 11 then adjusts the in-degree of the tree’s root node to

be at least 1+− kr , which satisfies the regeneration demand in regenerating codes.
Especially, to ensure that the bottleneck edge weights for jT and its next tree are

large enough, we select the small enough edge from remaining graph and add it to

jT , then remove the large enough edge in jT to adjust root in-degree. After each con-

struction of single regeneration tree jT , the bandwidth ibw for each edge in jT is

updated by subtracting the minimum bandwidth jω of the edge set jE for jT so

as to make remaining bandwidth be used simultaneously by other trees. The same
process above is repeated until all the s regeneration trees have been constructed. As
analyzed before, the algorithm ensures the larger bottleneck edge weight when repair-
ing multiple data losses in parallel.

There are two main innovations. First, BSM2RC constructs max-min tree whose
weight sum of all edges is as small as possible so as to make bottleneck edge weight
for multiple trees as large as possible. Second, different from the random selection
strategy in [12], when utilizing MSR code to achieve the minimal network traffic
between nodes, an optimized method for adjusting in-degree of tree root is adopted to
ensure maximal bottleneck edge of multiple trees. These two aspects further reduce
regeneration time for multiple data losses.

5 Simulation Experiment

In this section, we compare BSM2RC with TPR, sequential Star-Structured Regenera-
tion (referred to as SSR), sequential Tree-Structured Regeneration (TSR) and Mutually
Cooperative Recovery (MCR) mechanism for multiple data losses in distributed stor-
age systems by an event-driven simulator, which simulates the nodes’ activities based
on an availability trace file of PlanetLab network [17]. In the simulator, we assume that
the weight of the edge in G(s; n, k, r |N) satisfies an uniform distribution U[0.3Mbps,
120Mbps], which reveals the bandwidth between nodes in PlanetLab [9, 12].

We configure 500 nodes for simulation, which lasts for 2000 seconds, and repeats
50 times. The system uses (9 + k, k) MSR coding. In the simulation, when the number
of data loss reaches some value, regeneration will be trigged. Equation

i
i krk

M
t

ω)1(+−
= shows that the provider number r decides the regeneration time

for single failed node. Denote μ= r − k, we measure respective regeneration time for
different number of data loss by increasing k, s andμ, where k is selected as 4,…,10,
12, while s is increased from 2 to 6, andμis increased from 0 to 2. Fig. 3 shows the
average regeneration time when the number of failures varies from 2 to 6 andμ= 0, 1,
2 respectively. In the same simulation conditions, we also measure probability of
successful regeneration and data availability for each regeneration scheme. The

 Repairing Multiple Data Losses by Parallel Max-min Trees 335

probability of successful regeneration is the ratio of finished regeneration number to
total started regeneration number, while data availability is the ratio of data’s available
time to total simulation time. The simulation results are showed as Fig. 4 and Fig. 5
respectively.

Fig. 3 shows that among all regeneration schemes, BSM2RC gets the minimal re-
generation time when repairing the same number of data loss. As the number of fail-
ures increases, the differences between BSM2RC and the others becomes more and
more obvious. When the failure number equals to 6 the reduced time of BSM2RC is up
to about 80%, 70%, 60%, and 30%, compared with SSR, TSR, MCR and TPR. Espe-
cially, whenμ= 0 (namely r = k), BSM2RC has less regeneration time than TPR since
the bottleneck weight found by the former is more than the latter. As μ increases, the
regeneration time decreases since the network traffic decreases. However, the decre-
ment is not proportionate toμand becomes less since node number for each regenera-
tion tree becomes more, which may incur less bandwidth bottleneck.

Fig. 3. Regeneration time for multiple data losses

Fig. 4 shows that the probability of successful regeneration of BSM2RC is obvi-
ously higher than others. It decreases slightly as the number of failed nodes increases,
and is around about 90%. But the others decreases obviously, especially SSR which
reaches the lowest probability.

Fig. 5 shows that BSM2RC reaches about 95% of data availability, which is higher
than the others. Especially, when failed node number is 6, the data availability increas-
es about 60%, 50%, 40% and 15% respectively, compared with SSR, TSR, MCR and
TPR. It does not decrease obviously as the failed node number increases, which reveals
nice stability for maintaining system data.

336 P. You et al.

Fig. 4. Successful regeneration probability for multiple data losse

In general, BSM2RC reduces the total regeneration time for multiple data losses
remarkably, which is identical with our analysis for BSM2RC. Compared with other
regeneration schemes, BSM2RC shows higher probability of successful regeneration
and data availability, thus enhances data availability and reliability for distributed
systems.

Fig. 5. Data availability for multiple data losse

6 Conclusion

In this paper, we discuss how to reduce regeneration time when regenerating multiple
data losses in distributed storage systems using erasure codes; especially analyze the

 Repairing Multiple Data Losses by Parallel Max-min Trees 337

situation that construction scheme for trees would affect final bottleneck bandwidth of
multiple trees. We present a construction algorithm for multiple parallel max-min
trees based on regenerating codes (BSM2RC) for regenerating multiple data losses in
distributed storage systems. We firstly introduce the network model for BSM2RC,
and then describe the algorithm mechanism for BSM2RC. The main innovation is that
BSM2RC increase minimal bottleneck weight by constructing multiple max-min trees
base on regenerating codes, and then speed up parallel regeneration for multiple data
losses. Our simulation results show that BSM2RC reduces regeneration time signifi-
cantly, achieves higher successful regeneration probability and data availability, thus
improve data availability and reliability in distributed storage systems, compared with
existing regeneration schemes.

Acknowledgments. This research work is supported by National Basic Research
Program of China under Grant No.2014CB340303, and National High-Tech R&D
Program of China under Grant No.2013AA01A213.

References

1. Rhea, S., Eaton, P., Geels, D., Weatherspoon, H., Zhao, B., Kubiatowicz, J.: Pond: the
OceanStore Prototype. In: FAST (2003)

2. Huang, C., Simitci, H., Xu, Y., et al.: Erasure Coding in Windows Azure Storage. In: Pro-
ceedings of the 2012 USENIX Conference on Annual Technical Conference. USENIX As-
sociation, Boston (2012)

3. Sathiamoorthy, M., Asteris, M., Papailiopoulos, D., et al.: XORing elephants: Novel eras-
ure codes for big data. In: Proceedings of the 39th International Conference on Very Large
Data Bases, VLDB Endowment, pp. 325–336 (2013)

4. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google File System. In: SOSP (2003)
5. Lee, S.-J., Sharma, P., Banerjee, S., Basu, S., Fonseca, R.: Measuring bandwidth between

planetLab nodes. In: Dovrolis, C. (ed.) PAM 2005. LNCS, vol. 3431, pp. 292–305.
Springer, Heidelberg (2005)

6. Weatherspoon, H., Kubiatowicz, J.D.: Erasure coding vs. replication: A quantitative com-
parison. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS,
vol. 2429, pp. 328–337. Springer, Heidelberg (2002)

7. Rodrigues, R., Zhou, T.H.: High availability in DHTs: Erasure coding vs.replication. In:
van Renesse, R. (ed.) IPTPS 2005. LNCS, vol. 3640, pp. 226–239. Springer, Heidelberg
(2005)

8. Acedanski, S., Deb, S., Medard, M., Koetter, R.: How good is random linear coding based
distributed networked storage? In: Proc. 1st Workshop on Network Coding, Riva del Gar-
da, Italy (April 2005)

9. Dimakis, A., Godfrey, P., Wainwright, M., Ramchandran, K.: Network coding for distrib-
uted storage systems. In: Proc. of INFOCOM, pp. 2000–2008 (May 2007)

10. Wu, Y., Dimakis, R., Ramch, K.: Deterministic regenerating codes for distributed storage.
In: Allerton Conference on Control, Computing, and Communication. Urbana-Champaign,
IL (2007)

11. Li, J., Yang, S., Wang, X., Xue, X., Li, B.: Tree-structured Data Regeneration with Net-
work Coding in Distributed Storage Systems. In: Proc. 17th IEEE International Workshop
on Quality of Service, IWQoS (2009)

338 P. You et al.

12. Li, J., Yang, S., Wang, X., Li, B.: Tree-structured Data Regeneration in Distributed Stor-
age Systems with Regenerating Codes. In: Proc. INFOCOM (2010)

13. Hu, Y., Xu, Y., Wang, X., Zhan, C., Li, P.: Cooperative Recovery of Distributed Storage
Systems from Multiple Losses with Network Coding. IEEE Journal on Selected Areas in
Communications 28, 268–276 (2010)

14. Sun, W., Wang, Y., Pei, X.: Tree-structured parallel regeneration for multiple data losses
in distributed storage systems based on erasure codes. Journal on China Communica-
tions 4, 113–125 (2013)

15. Bhagwan, R., Tati, K., Cheng, Y., Savage, S., Voelker, G.: Total recall: System support for
automated availability management. In: Proc. NSDI 2001 (March 2004)

16. Camerini, P.R.: The min-max spanning tree problem and some extensions. Information
Processing Letters 7, 10–14 (1978)

17. Planetlab, http://www.planet-lab.org/

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 339–351, 2014.
© Springer International Publishing Switzerland 2014

Exploiting Content Locality to Improve the Performance
and Reliability of Phase Change Memory

Suzhen Wu1, Zaifa Xi1, Bo Mao2,*, and Hong Jiang3

1 Computer Science Department, Xiamen University, Fujian China
2 Software School of Xiamen University, Fujian China

3 Department of Computer Science and Engineering, University of Nebraska-Lincoln, USA
maobo@xmu.edu.cn

Abstract. With the explosive growth in data volume, the I/O bottleneck has
become an increasingly daunting challenge for big data analytics. The
outstanding energy efficiency and scalability characteristics of Phase Change
Memory (PCM) make it a potential, attractive alternative to DRAM and
traditional storage devices. However, PCM’s slow write performance and weak
write endurance are the two major weaknesses that prevent its wider
applications. Moreover, the slow processing workflow of write requests also
causes significant contention for and interferes with read requests, thus
affecting the system performance. In this paper, we propose Content Aware
PCM (short for CA-PCM) that employs a lightweight data deduplication
module to exploit the content locality in memory accesses. CA-PCM is able to
effectively reduce write traffic to PCM by removing unnecessary duplicate
writes and also substantially extend the lifespan of the PCM device. Our trace-
driven simulation results show that CA-PCM improves the performance and
reliability significantly.

Keywords: Phase Change Memory, Data Deduplication, Performance,
Reliability.

1 Introduction

The demand for memory capacity is escalating with the emergence and wide spread
of data-intensive and big data applications. While DRAM remains the dominant main
memory technology, its relatively low energy efficiency and low scalability have
made it a severe scalability and energy bottleneck [1,2,3,4]. Therefore, memory
technologies that promise better scalability and energy efficiency than DRAM have
become attractive for designing future memory systems.

The non-volatile memory technologies, such as NAND Flash and PCM, are
becoming increasingly mature. The NAND flash has better performance over
traditional magnetic hard disks and has been widely deployed in practical storage

* Corresponding author.

340 S. Wu et al.

systems. However, the performance of NAND flash (in us) is still significantly lower
than DRAM (in ns). In contrast, PCM is a scalable technology that has read latency
close to that of DRAM, which makes it a promising alternative to the main memory
[5]. A performance comparison among DRAM, NAND flash memory and PCM is
summarized in Table 1, which reveals that PCM has most of the combined advantages
of DRAM and NAND flash.

Table 1. Comparison of DRAM, NAND Flash and PCM [5]

Characteristics DRAM NAND Flash PCM
Cell Size 6-8F2 4-6F2 4-20F2

Read Time ~10ns 5-50μs 10-100ns

Write Time ~10ns 2-3ms 100-1000ns

Standby Power Leakage Zero Zero

Write Endurance 1015 105 108-1012

Non-volatility No Yes Yes

Unfortunately, the PCM devices also have their own shortcomings: the long write

latency, high write energy, and limited write endurance, besides the severely
constrained write bandwidth [10]. First, it takes much more time to program (i.e.,
write) a PCM cell than a DRAM cell. Second, the programming of a PCM cell takes
much more energy than a DRAM write. To provide the same write bandwidth, PCM
may require 5 times more power than that of DRAM. The asymmetrical write/read
latency makes PCM unsuitable for storing frequently modified data.

Data deduplication is a specialized data compression technique [7]. It divides the
data into non-intersecting chunks and employs a cryptographic hash to represent each
chunk. By storing only the unique chunk, identified by the corresponding hash value
also known as fingerprint, duplicate chunks in data are removed from the write
process. Data deduplication has been extensively used in archival and backup systems
and primary storage systems, such as VM and flash-based SSDs [8,9], but its benefits
to PCM have not been fully explored.

To reduce the number of PCM writes, we propose content aware PCM, or CA-
PCM, that employs the data deduplication technology to exploit the content locality in
memory accesses. In order to minimize the computing and memory overhead caused
by data deduplication, we design a lightweight data deduplication module to speed up
fingerprint computing in the hash stores. Moreover, CA-PCM can leverage the
abundance of processing power, such as Graphic Processing Unit (GPU) and multi-
core processors, in computer systems to compute data chunks’ fingerprints in data
deduplication. This enables CA-PCM to accurately and quickly eliminate duplicate
writes to PCM cells to improve the performance and reliability of PCM systems. To
evaluate the efficiency of our proposed CA-PCM scheme, we implement its prototype
by integrating it into an open-source PCM simulator PCMSim [20]. The experimental
results show that CA-PCM improves the performance and reliability significantly.

The rest of this paper is organized as follows. Background and motivation are
presented in Section 2. We describe the design and system architecture of CA-PCM in

 Exploiting Content Locality to Improve the Performance and Reliability of PCM 341

Section 3. The performance evaluation and analysis are presented in Section 4. We
review the related work in Section 5 and conclude this paper in Section 6.

2 Background and Motivation

2.1 PCM Basics

PCM uses the different resistivity between the crystalline (low resistivity) and the
amorphous (high resistivity) phase of the phase change material to store the data. By
dividing the large range of resistance into different levels, a PCM cell can store
several bits of information. The reset operation changes the PCM cell into the
amorphous phase by a large but short-duration current pulse. The set operation
changes the PCM cell into the crystalline phase with a medium but long-duration
current pulse [4]. Figure 1 shows the set and reset processes in the PCM device.

Fig. 1. The set and reset processes of PCM

The read latency of PCM is about 10~100ns, which is close to that of DRAM. The

program codes can be directly executed after reading from PCM without the need to
put them into RAM. Unlike DRAM, PCM is non-violate, allowing data stored in
PCM to be persistent. Moreover, without the frequent fresh operation, the power
consumption, a key criterion in today’s computer design, can be greatly decreased.
Among existing types of random access memory, PCM has obvious advantages over
SRAM and DRAM. With a multi-level cell design (MLC), PCM can achieve even
greater densities by storing multiple bits in one bit cell. Therefore, PCM can provide
much higher capacity than DRAM.

However, PCM also has drawbacks: long write latency, high write energy, and
limited write endurance, relative to DRAM. A PCM device may endure around 100
million write cycles and often fails either stuck open or stuck close for a PCM cell.
After many rewrites, the PCM cell failures become much easier. It is a more serious
problem when applying PCM in applications with frequent writes. Thus, reducing the
write operations is critical to both the performance and reliability of PCM devices.

342 S. Wu et al.

2.2 Data Deduplication

Data deduplication splits files or data blocks into multiple roughly equal-sized data
chunks that are each uniquely identified by a fingerprint that is a hash signature of the
data chunk. The redundant data chunks in a file or data block are replaced by the
pointers that point to their corresponding unique data chunks. When data arrives, it
will be split into multiple data chunks, each of which is associated with a computed
hash value (i.e., fingerprint). Then the index-lookup process tries to find the
redundant data chunks from the index table according to the hash values. When a
redundant data chunk is identified, the logic block address (LBA) value of the data
chunk in the index table will be obtained and kept in the metadata. Then only the
unique data chunks are written and the redundant data chunks are replaced with the
pointers in the metadata.

Data deduplication has been an essential and critical component in backup and
archiving storage systems. It not only reduces the storage space requirements, but also
improves the throughput of the backup and archiving systems by eliminating the
network transmission of redundant data. Recent studies reveal that moderate to high
data redundancy clearly exists in VM (Virtual Machine), enterprise and HPC storage
systems. These studies have shown that by applying the data deduplication
technology to large-scale data sets, an average space saving of 30%, with up to 90%
in VM and 70% in HPC storage systems can be achieved [17,18,19,20]. For example,
data deduplication has been applied in the VM servers and SSDs to save storage space
and reduce write traffic [8,9].

2.3 Motivation

PCM has a comparable read access speed to and better energy efficiency than DRAM.
It relies on analog current and thermal effects and does not require control over
discrete electrons. As technologies scale and heating contact areas shrink,
programming current scales linearly. As a scalable DRAM alternative, PCM has a
great potential for increasing main memory density and capacity. But there are still
some existing disadvantages to overcome before this vision becomes reality. Whether
as a flash replacement currently or as a DRAM replacement in the future, the write
endurance and write latency of the PCM device are the key problems to be solved.
Thus, reducing write traffic to PCM devices is critical for both performance and
reliability.

On the other hand, data deduplication has been demonstrated in the literature and
by commercial products to be an effective technique in backup, archiving, and
primary storage systems such as VM servers and flash-based SSDs. Recent studies
have shown that moderate to high data redundancy clearly exists in primary storage
systems. It can greatly reduce the duplicate writes to the storage devices, thus
reducing the response times and saving storage space. However, directly applying
data deduplication to PCM devices to reduce write traffic will likely cause
computational and memory overhead.

 Exploiting Content Locality to Improve the Performance and Reliability of PCM 343

Based on these important observations, we propose content aware PCM that
employs a lightweight data deduplication module to exploit the content locality in
memory accesses. By exploiting the data redundancy in memory accesses, CA-PCM
is able to greatly reduce the amount of programming in PCM cells to improve both
the performance and reliability of PCM devices.

3 CA-PCM

3.1 Design Objective

CA-PCM aims to improve the performance and reliability of PCM devices. CA-PCM
uses a lightweight data deduplication module to reduce the duplicated data chunks,
thus avoiding the repeated write to the memory. CA-PCM not only improves the write
performance, but also improves the read performance by freeing up more PCM
bandwidth to the read accesses. Moreover, by reducing the write traffic, the PCM cell
programming count is also reduced, which significantly enhances the lifespan of the
PCM cells and thus the reliability of PCM devices.

3.2 System Overview

Figure 2 shows a system overview of our proposed CA-PCM. CA-PCM consists of
two modules: the data deduplicator module and the I/O distributor module. The
former is responsible for computing the fingerprints of the incoming write data
chunks and updating the Index_table that stores the fingerprints and locations of the
data chunks. The latter is responsible for issuing the I/O requests to the corresponding
locations based on the Map_table that keeps the data mapping information.

Data Deduplicator

CA-PCM

PCM Device

I/O Distributor

Write Read

Map_table

Index_table

Fig. 2. System overview of CA-PCM

344 S. Wu et al.

Figure 3 shows the two main data structures and their relationship in CA-PCM:
Index_table and Map_table. In the Index_table, the Key and physical block address
(Pba) values in an entry indicate the fingerprint and physical location information of a
data chunk. The Count value indicates how many times the data chunk is referenced
by other data blocks, i.e., the number of duplicate chunks of the data chunk. The LBA
value in Map_table indicates the logical address of a user request and the Pba value
indicates its physical address in the PCM device. The Map_table maps deduplicated
write data chunks to their unique counterparts stored in PCM by storing the LBAs of
the former and the Pbas of the latter. This also helps incoming user read requests
locate their read data.

Fig. 3. The main data structures and request processing workflow in CA-PCM

Since the incoming data blocks will be split into chunks with their fingerprints
computed based on the SHA1 or MD5 algorithm, the added data deduplication
module will affect the system performance on the I/O path. However, the increasing
abundance of processing power due to the wide deployment of multi-core and GPU
processing units will likely help minimize the performance overhead. Moreover, due
to the relative small size of the PCM device, the memory overhead incurred in storing
the fingerprints is acceptable.

 Exploiting Content Locality to Improve the Performance and Reliability of PCM 345

3.3 Request Processing Workflow

Figure 3 also shows the request processing workflows in CA-PCM. For a read
request, CA-PCM first checks the Map_table. If it hits, the data will be fetched from
the PCM address pointed to by the matched Pba value in the Map_table. Otherwise,
the read request is returned with data stored in the requested address.

When a write request arrives, the data deduplicator module in CA-PCM first splits
the data into multiple data chunks, calculates their fingerprints, and identifies the
redundant data chunks by comparing the fingerprints of these data chunks with those
in the Index_table. For the incoming data chunks whose fingerprints find matches in
the Index_table, they will not be actually written to the PCM device since they are
confirmed redundant. Instead, the Map_table will be updated to record the write data
by adding an LBA-Pba entry, also called a redirected log. For all the other write data,
CA-PCM processes these requests in the free space with the out-of-place update
strategy.

3.4 Data Consistency Issue

Data consistency is critical in the design of new storage systems. Two aspects are
carefully considered in CA-PCM: (1) The Map_table must be reliably stored; (2) the
user read requests must fetch the up-to-date data.

First, to prevent the loss of the Map_table in the event of a power supply failure or
a system crash, CA-PCM stores the contents of the Map_table in a non-volatile
memory, such as a certain reserved space in PCM. Since the size of the Map_table is
general small, a capacitor may delay shutdown until the RAM content is safely saved
to an area of PCM device reserved for the purpose.

Second, since the write data may have been scattered across the PCM from data
deduplication, each incoming read request is first checked in the Map_table to fetch
all the data chunks to keep the fetched data always up-to-date.

4 Performance Evaluation

4.1 Experimental Setup and Methodology

We have implemented a prototype of CA-PCM by incorporating it into the PCMSim
simulator. PCMSim [20] is a block device driver for Linux that simulates the presence
of a PCM device in the system installed in one of the DIMM slots on the
motherboard. It is implemented as a kernel module for Linux that creates /dev/pcm0
when it is loaded. The experiments are conducted on a single system with an Intel
Xeon X3440 CPU. In the system, a Seagate 500GB HDD is used to host the operating
system (Ubuntu Linux 2.6.35) and other software. We use a set of trace-driven
experiments to evaluate the efficiency of CA-PCM and compare it with a system
without any data deduplication (“Native” for short).

The three traces used in our experiments are obtained from the SyLab of FIU [7]
covering a duration of three weeks. They are collected from a virtual machine running

346 S. Wu et al.

a file server (Homes), an email server (Mail) and two web servers (Web-vm),
respectively. Each request in the traces includes the hash value of the requested data.
Because the original request data have been split into several small data chunks with a
fixed size (e.g., 4KB or 512B), the original requests are reconstructed according to
their timestamp, LBA and length. In order to simulate the hash-computing overhead of
each data chunk, we added around 100,000 CPU cycles for fingerprint-computing
delay to each process of writing a 4KB data chunk, which is an overestimation for the
processors in modern computer systems [7]. It is time-consuming to replay the whole
three-week’s trace, so we chose to replay the 8th day’s trace with burst periods. The
three traces are shown in Table 2.

Table 2. The characteristics of the three traces

Traces Write Ratio I/Os Average Request Size
Homes 80.5% 64,819 13.1 KB

Mail 78.5% 328,145 40.8 KB

Web-vm 69.8% 154,105 14.8 KB

4.2 Performance Results and Analysis

Figure 4 shows the normalized average response times of the two schemes driven by
the three traces. CA-PCM speeds up the Native system in the average response-time
performance by a factor of 2.1, 4.8 and 2.5 for the Homes, Mails and Web-vm traces,
respectively. The reason is that the write ratios of all the three traces are very high,
making the write latency the dominant factor in the overall user response time.
Moreover, CA-PCM also improves the read performance indirectly by substantially
reducing the write traffic. That is, the significant number of reduced write requests in
CA-PCM greatly shortens the length of the I/O queue of PCM cells and relieves its
pressure, thus allowing the read requests to be serviced more quickly.

Fig. 4. Average response time driven by the three traces

 Exploiting Content Locality to Improve the Performance and Reliability of PCM 347

Figure 5 shows the average response times of two schemes as the three traces are
being replayed. We can see that CA-PCM outperform the native scheme in terms of
user response times. This is because CA-PCM deduplicates the redundant write data
on the I/O path, which effectively shortens the I/O queues and allows the remaining
write requests to be serviced on the PCM more quickly. The shortened I/O queues
also indirectly improve read performance, especially for the mail trace where the read
burstiness and write burstiness are mixed. Moreover, as write requests are very
expensive for PCM devices due to the long write latency as that elaborated in Section
2.1, reducing write requests has the effect of freeing up more PCM resources to
service the read requests.

0 10 20 30 40 50 60
Trace Replay Time (minute)

0
20
40
60
80

100
120
140
160
180
200

Native
CA-PCM

(a) Homes (b) Mail

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
es

 (u
s)

 (c) Web-vm

Fig. 5. The average response times of two schemes as a function of the replaying time driven
by the three traces: (a) Homes, (b) Mail, and (c) Web-vm.

To better understand the reasons behind the significant performance improvement,
we also plot the percentage of the I/O requests that are performed on the PCM device,
as shown in Figure 6. The actual write requests that are performed on the PCM device
is normalized to the Native system. CA-PCM reduces the number of write requests by
48%, 97% and 73% for the Homes, Mail and Web-vm traces, respectively. The
number of I/O requests that are performed on the PCM device is reduced
significantly, leading to significant reductions in the average response times for the
three traces. Generally, a typical cell of PCM can bear at most 108 writes before
failure strikes, making the lifetime of PCM directly proportional to the number of
writes per cell. Thus, these results suggest that CA-PCM is able to at least double the

348 S. Wu et al.

average lifespan of the PCM device. They also suggest that the higher the write
redundancy in an application, the higher the improvement in performance and
lifespan of the PCM device.

I/O
 R

eq
ue

st
 P

er
ce

nt
ag

e
(%

)

Fig. 6. The I/O requests performed on the device

The reduced write traffic also significantly improves on the user average response
times, thus alleviating the slow write performance problem of the PCM devices.
Moreover, because the write process of PCM consumes a large amount of energy, the
greatly reduced write requests also improve the energy efficiency of the PCM device.

4.3 Overhead Analysis

There are two overhead issues that must be addressed when implementing the data
deduplication module into a PCM system: memory overhead and computational
overhead.

The data deduplication technology requires extra memory space to store the
Index_table and the Map_table. For an 8GB PCM device with a chunk size of 4KB,
the memory overhead is 48MB if each fingerprint consumes 24 bytes. Moreover, with
the rapid increase in the memory size and the scaling potential of PCM, this memory
overhead is arguably reasonable and acceptable to the end users.

The fingerprint computation of data chunks also consumes processing resource. To
reduce the computational overhead, CA-PCM uses the low-overhead fix-size
chunking scheme, rather than the high-overhead variable size and content-defined
chunking schemes, to calculate the fingerprint to identify the redundant data chunks.
Moreover, today’s GPUs and multi-core processors make the computer systems more
powerful, allowing them to extend their capabilities to integrate new techniques, such
as data deduplication.

5 Related Work

The limited write endurance and long write-latency are the two main drawbacks of
the PCM devices. Many studies have been conducted to address the two problems.

 Exploiting Content Locality to Improve the Performance and Reliability of PCM 349

Flip-N-Write [3] uses a simple read-modify-write technique to write either flipped or
un-flipped data by comparing the original data and the newly written data to reduce
the response time. The two-stage-write scheme [4] separates the write process of a
cache line into two different stages: write-1 stage that writes all 1-valued bits of the
target cache line, and write-0 stage that writes all 0-valued bits. By leveraging the
asymmetric properties for writing “1” and “0”, two-stage-write speeds up the write
operations of zeros and increases the degree of parallelism for writing ones. The write
cancellation and write pausing strategy [6] is proposed to avoid the read performance
degradation caused by the slow write process. It services the read request first when a
newly arriving read request falls on the same bank with the ongoing write request in
the PCM device. By logging changed bytes instead of the entire block, Shortcut-JFS
[11] reduces write requests to the PCM device with a Journaling file system. The
PCM-aware swap algorithm [14] uses a new cache replacement policy to avoid the
unnecessary writes and leverages the wear-leveling to extend the lifetime of a PCM
main memory. The start-gap wear-leveling technique [15] uses only two registers to
improve the PCM endurance with negligible overhead.

DRAM-PCM hybrid memory systems have become popular in the research
community [6], [12], [16]. In these studies, the main idea is to exploit the advantages
of both DRAM and PCM and avoid their disadvantages. For example, Qureshiet al.
[5] propose a PCM-based hybrid main memory system that uses a small amount of
DRAM as a write buffer of the PCM memory in order to prolong the lifetime of PCM
and hide the long write latency of PCM. The page-attribute-aware memory allocation
policy [13] tries to place read-only pages in PCM, while loads writable pages into
DRAM in a hybrid PCM-DRAM memory system, thereby reducing the write requests
to the PCM device.

While all these studies on PCM devices address the write endurance and write
performance issues, none has exploited, or adequately exploited the content locality in
memory accesses. Our proposed CA-PCM uses a lightweight data deduplication
module at the system level and leverages the system computing resources to
significantly reduce the write traffic to the PCM devices, thus improving both the
performance and reliability.

6 Conclusion and Future Work

The PCM technology is a prime alternative or complement to DRAM-based main
memory. To address PCM’s inherent problems of write endurance and write latency,
we proposed CA-PCM that employs a lightweight data deduplication to exploit the
content locality in memory accesses to reduce the write traffic. We have implemented
a prototype of CA-PCM by integrating it into an open-source PCM simulator
PCMSim. The trace-driven simulation results show that CA-PCM improves the
performance and reliability significantly.

The CA-PCM study is an ongoing research project in which we are currently
exploring several directions for the future work. First, we will add the similarity
identification module in the CA-PCM system to further reduce the partial redundant

350 S. Wu et al.

write data blocks. Second, we will use more applications and workloads to investigate
the performance and memory overhead of the CA-PCM in our evaluations. Third, we
will build a power measurement module to evaluate the energy efficiency of the
proposed CA-PCM scheme. Because energy efficiency is an increasingly important
system design goal, we believe that CA-PCM will improve the energy efficiency of
PCM devices by reducing the write traffic.

Acknowledgement. We thank the SyLab in FIU for providing us with the I/O traces.
This work is supported by the China National Natural Science Foundation No.
61100033, the US NSF under Grant No. NSF-CNS-1116606, NSF-CNS-1016609,
NSF-IIS-0916859, NSF-CCF-0937993, the Scientific Research Foundation for the
Returned Overseas Chinese Scholars, State Education Ministry, and the Fundamental
Research Funds for the Central Universities. This work is also sponsored by Huawei
Innovation Research Program and the Equipments Donation from Intel Shanghai.

References

1. Schaller, R.: Technological innovation in the semiconductor industry: A case study of the
International Technology Roadmap for Semiconductors (ITRS). George Mason University
(2004)

2. Raoux, S., Burr, G., Breitwisch, M.: Phase-change random access memory: A scalable
technology. IBM Journal of Research and Development 52, 465–479 (2008)

3. Cho, S., Lee, H.: Flip-N-Write: A Simple Deterministic Technique to Improve PRAM
Write Performance, Energy and Endurance. In: Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 347–357. IEEE Press,
New York (2009)

4. Yue, J., Zhu, Y.: Accelerating Write by Exploiting PCM Asymmetries. In: Proceedings of
the IEEE 19th International Symposium on High Performance Computer Architecture,
pp. 282–293. IEEE Press, Shenzhen (2013)

5. Qureshi, M.K., Srinivasan, V., Rivers, J.A.: Scalable high performance main memory
system using phase-change memory technology. In: Proceedings of the 36th International
symposium on Computer Architecture, pp. 24–33. ACM, New York (2009)

6. Moinuddin, M.F., Qureshi, K., Lastras, L.: Improving Read Performance of PCM via
Write Cancellation and Write Pausing. In: Proceedings of IEEE 16th International
Symposium on High Performance Computer Architecture, pp. 1–11. IEEE Press,
Bangalore (2010)

7. Koller, R., Rangaswami, R.: I/O Deduplication: Utilizing Content Similarity to Improve
I/O Performance. In: ACM Transactions on Storage, vol. 6. ACM, New York (2010)

8. Chen, F., Luo, T., Zhang, X.: CAFTL: a Content-aware Flash Translation Layer Enhancing
the Lifespan of Flash Memory based Solid State Drives. In: Proceedings of the 9th
USENIX Conference on File and Storage Technologies, vol. 11. FAST, San Jose (2011)

9. Gupta, A., Pisolkar, R., Urgaonkar, B., Sivasubramaniam, A.: Leveraging Value Locality
in Optimizing NAND Flash-based SSDs. In: Proceedings of the 9th USENIX Conference
on File and Storage Technologies, pp. 91–103. FAST, San Jose (2011)

10. Lee, B., Ipek, E.: Architecting Phase Change Memory as a Scalable DRAM Alternative.
In: Proceedings of the 36th Annual International Symposium on Computer Architecture,
pp. 2–13. ACM, New York (2009)

 Exploiting Content Locality to Improve the Performance and Reliability of PCM 351

11. Lee, E., Yoo, S., Jang, J.: Shortcut-JFS: A Write Efficient Journaling File System for
PCM. In: Proceedings of the 28th IEEE Conference on Massive Data Storage, pp. 1–6.
IEEE Press, San Diego (2012)

12. Ipek, E., Condit, J., Nightingale, E.B., Burger, D., Moscibroda, T.: Dynamically
Replicated Memory: Building Reliable systems from Nanoscale Resistive Memories. In:
Proceedings of the International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 3–14. ACM, New York (2010)

13. Mogul, J.C., Argollo, E., Shah, M., Faraboschi, P.: Operating system support for
NVM+DRAM hybrid main memory. In: Proceedings of the 12th Workshop on Hot Topics
in Operating Systems (2009)

14. Ferreira, A., Zhou, M., Bock, S.: Increasing PCM main memory lifetime. In: Proceedings
of the Conference on Design, Automation and Test in Europe, pp. 914–919. EDAA,
Belgium (2010)

15. Qureshi, M., Karidis, J., Franceschini, M., Srinivasan, V., Lastras, L.: Enhancing Lifetime
and Security of PCM-Based Main Memory with Start-Gap Wear Leveling. In: Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, pp. 14–23.
ACM, New York (2009)

16. Kim, H., Seshadri, S., Dickey, C., Chiu, L.: Evaluating Phase Change Memory for
Enterprise Storage Systems: A Study of Caching and Tiering Approaches. In: Proceedings
of the 12th USENIX Conference on File and Storage Technologies, pp. 33–45. FAST,
Santa Clara (2014)

17. Mao, B., Jiang, H., Wu, S., Fu, Y., Tian, L.: Read Performance Optimization for
Deduplication-based Storage Systems in the Cloud. In: ACM Transactions on Storage,
vol. 10. ACM, New York (2014)

18. Mao, B., Jiang, H., Wu, S., Tian, L.: POD: Performance Oriented I/O Deduplication for
Primary Storage Systems in the Cloud. In: Proceedings of the 28th IEEE International
Parallel & Distributed Processing Symposium (2014)

19. Srinivasan, K., Bisson, T., Goodson, G., Voruganti, K.: iDedup: Latency-aware, Inline
Data Deduplication for Primary Storage. In: Proceedings of the 9th USENIX Conference
on File and Storage Technologies, vol. 12, pp. 1–14. FAST, San Jose (2012)

20. Elshimi, A., Kalach, R., Kumar, A., Oltean, A., Li, J., Sengupta, S.: Primary Data
Deduplication–Large Scale Study and System Design. In: Proceedings of the 2012
USENIX Annual Technical Conference, pp. 285–296. FAST, San Jose (2012)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 352–358, 2014.
© Springer International Publishing Switzerland 2014

Application of Support Vector Machine
in the Decision-Making of Maneuvering

Zhuang Qi1, Zheng Chang2, Hanbang Song1, and Xinyu Zhang1

1 Navigation College, Dalian Maritime University, Dalian 116026, China
{qizhuang,songhanbang,zhangxinyu}@dlmu.edu.cn

2 Transportation Management College, Dalian Maritime University, Dalian 116026, China
changzheng@dlmu.edu.cn

Abstract. To get the best course and speed navigating in stormy waves, estab-
lish the sea-keeping assessment model based on Support Vector Machine meth-
od, verify the accuracy of the model with sea-keeping estimation equation, and
finally apply it in decision making of maneuvering. It turns out that the assess-
ment model works well. The conclusions provide references for maneuvering in
stormy waves.

Keywords: Support Vector Machine, Sea-keeping, Decision-making of
Maneuvering.

1 Introduction

When ships are sailing in the stormy waves, course and speed are the two basic ele-
ments in maneuvering, which are very important for the safety of navigation. There
are a lot of articles researching on decision-making of course and speed navigating in
stormy waves, which analyzed from multiple factors to optimize course and speed,
but we found that, due to some reasons, the analysis and research before are not prac-
tical and difficult to guide practice through the survey, which did not combine with
actual control of the ship well, such as complex calculation process. The author has
used the BP neural network to build seakeeping evaluation model [1], the evaluation
result is ideal, but the actual calculation time is about two hours, which has certain
limitation and it is not suitable for the actual manipulation, so this article is to discuss
on ship maneuvering decision making problems based on support vector mechanism
(SVM) theory. According to the structural risk minimization criterion, Support Vector
Machine theory can improve the ability of learning machine's generalization abil-
ity(forecasting), and it is better to solve practical problems such as the small sample,
nonlinear high dimension, local minimum point and so on[2]. Relevant scholars have
done a lot of comparisons on the BP neural network and SVM [3, 4], and the results
show that compared with the BP neural network, SVM theory has unique advantages.

Based on the theory of SVM, this article is to build the seakeeping evaluation
model, verify the evaluation model with the seakeeping evaluation equation, and
guide the actual manipulation of the ship.

 Application of Support Vector Machine in the Decision-Making of Maneuvering 353

2 Basic Principle of Support Vector Machine

The basic idea of Support Vector Machine is to make the input space map to a high-
dimensional space through nonlinear mapping, put the insensitive function in it, build
the optimal hyperplane, and sum up the algorithm of search for optimal hyperplane to
a solving constrained convex quadratic problem [5].

Assuming that the training set is {(x1,y1), ... , (xn,yn)}, d
ix R∈ , y R∈ ,

{ : }dF f f R R→= , So the Support Vector Machine regression problem is to look

for a linear function f F∈ , minimize the expected risk, which is to fit samples

with the hyperplane function ()f x w x b= × + . Nonlinear regression estimation

function is () (())f x w x bϕ= × + , in which ()xϕ is the nonlinear mapping from

input space to high dimension space, w is weight coefficient, and b is offset.
In the Support Vector Machine regression, the loss function L is defined as insensi-

tive function, which represents the maximum offset is up to ε between function f(x)

and the sample observation value. The iξ and *
iξ are slack variable, so the problem

of looking for optimal hyperplane is converted into the following constrained optimi-
zation problem:

2* *1

min (, , ,) ()
2i i i iw b w cφ ξ ξ ξ ξ= + + (1)

*

*

()

. . ()

0, 0

i i i

i i i

i i

y w x b

s t y w x b

ϕ ε ξ
ϕ ε ξ

ξ ξ

− × − ≤ +
− + × − ≤ +
 ≥ ≥

 (2)

in which c is the penalty function, which is used to adjust the degree of punishment on
ε . The larger the C and the smaller theε , the higher the training precision is, but the
generalization ability is worse.

We can convert the above problem into the dual optimization problem by Lagrange
function:

 * * * *

, 1 1 1

1
min ()()(() ()) () ()

2

n n n

i i j j i j i i i i i
i j i i

a a a a x x a a y a aϕ ϕ ε
= = =

− − + + − −   (3)

*

1

*

() 0
. .

0 ,

n

i i
i

i i

a a
s t

a a c

=

 − =

 ≤ ≤


 (4)

So we can obtain nonlinear regression estimate function:

354 Z. Qi et al.

 * *

1

(, ,) () (,)
n

i i i
i

f x a a a a k x x b
=

= − + (5)

*()i i ia a m− = is Lagrange multiplier, corresponding data point of
 im (non-

zero) is the support vector of model. Kernel function is: (,) () ()i i jk x x x xϕ ϕ= .

Therefore when calculating regression estimation function, we can only calculate
kernel function and do not need to calculate ()ϕ  ，so that the complexity of the

calculation depends on the number of samples, especially the number of support vec-
tor, which avoid the dimension disaster problem of high-dimensional space.

Common functions used to detect the precision of SVM are the relative error func-
tion and the root mean square error function. Relative error function is used to detect
prediction effect for each test sample of model:

(,) (,)

()
(,)

x n true x n pred
Error n

x n true

−
= (6)

Root mean square error function is used to detect overall prediction effect:

 2

1

1
(((,) (,)))

N

n

RMS Sqrt x n true x n pred
N =

= − (7)

3 Seakeeping Evaluation Based on Support Vector Machine

3.1 Model of the Process

Figure 1 is the process of the seakeeping evaluation model based on SVM, including
four steps: The first step is the determination of evaluation index; the second step is to
collect learning samples, including training samples and testing samples. Training
samples are used to establish model. Test samples are used to test model prediction
ability, normalized to process the sample data, and then the index’s linear stretches to
[0, 1]. The third step is to select learning parameters and obtain knowledge of the
SVM, including nuclear parameter, tolerance error ε, penalty parameter c, nuclear
parameter g, and train the selected samples, after adaptive learning, get training sup-
port vector and its coefficient values, build the decision function; The last is the estab-
lishment of seakeeping evaluation model, and using the decision function to identify
the safety status of seakeeping test samples and determine its level.

Fig. 1. Evaluation process based on SVM

 Application of Support Vector Machine in the Decision-Making of Maneuvering 355

3.2 Determine the Seakeeping Evaluation Indicators

There are many wave resistance factors influencing the safe navigation of the ship,
generally ships’ seakeeping indexes contain fore roll, pitch, roll, heave, surge, sway, a
transverse section acceleration, hull deck drown, propeller, lateral acceleration, slam-
ming, deck water waves, stall, longitudinal wave bending moment, stability loss,
seasick rate and control performance deterioration, etc. Regarding the tanker as the
research object and considering the factors offered by the seakeeping criterion of the
China ship scientific research center, this article sums up the most important wave
resistance factors that affect the safe navigation of the tanker in the stormy waves,
respectively: roll, pitch and heave, deck bow wave, propeller water, slamming and
vertical acceleration[1].

3.3 The Pretreatment of the Sample Data

In this paper, a total of 30 samples is designed, sample data is derived by the spectrum
analysis method of ships in irregular waves and seakeeping evaluation equation

[1][7], and regardi 1~25 samples as training samples of support vector machine and
26 ~ 30 samples as test samples to test the model performance.

For the convenience of calculation, first of all, the sample data are normalized pro-
cessing, and observe the various index score as the input variables of the model,
namely P1 ~ P7 (on behalf of all the seakeeping evaluation index), calculate the value
through the evaluation of seakeeping comprehensive evaluation equation and regard it
as the output variable, and the Rx is seakeeping evaluation value under the certain
course and speed. The smaller the value of Rx, the more dangerous the ship. The input
and output vectors constitute model training set, and part of the sample data are
shown in table 1.

Table 1. The sample data of ship seakeeping

SERIAL P1 P2 P3 P4 P5 P6 P7 Rx

1 0 0.79 0.81 0.08 0.2 0.14 0.04 0.6235

2 0.3 0.54 0.65 0.15 0.1 0.14 0.12 0.5878

3 0.94 0.67 0.81 0.46 0.3 0.43 0.24 0.2156

4 0.67 0 0.01 0.15 0 0 0.44 0.6479

5 0.52 0.79 0.87 0.46 0.4 0.57 0.76 0.2578

6 0.34 0.87 0.65 0 0.5 0.71 0.68 0.3602

7 0 0.59 0.76 0.23 0.4 1 0.56 0.4667

… … … … … … … … …

26 0.14 0.78 0.92 0.46 0.9 0.86 0.76 0.27

27 0.89 0.31 0.38 0.23 0 0.29 0.4 0.4263

28 0.89 0.23 0.11 0.31 0.6 0.43 0.28 0.3758

29 0.56 0.69 0.76 0.38 0.3 0.57 0.72 0.3027

30 0.52 0.67 0.87 0.46 0.9 0.71 1 0.1634

356 Z. Qi et al.

3.4 Parameter Selection

Due to the forecast ability of Gaussian radial basis kernel function is not less than
high order polynomial kernel function and type-S kernel function, this article chooses
the kernel function, and tolerance error is set to 1e-5 at the same time. The determina-
tion of penalty parameter and nuclear parameters is using cross-validation, the results
show that when c = 80 and g = 0.8, root mean square error of the model get the small-
est MSE=1.9036e-07, which is the best SVM model at this time.

3.5 Model Training and the Result Analysis

According to the selected model parameters, use Libsvm-3.11 software package in
MATLAB to calculate and the coefficient b = 0.3837, finally get a total of 12 support
vector(the risk of data of the ship), respectively: 1, 2, 4, 7, 8, 9, 11, 15, 18, 20, 21, 27.
So get the seakeeping risk prediction model of SVM:

 * *

1

(, ,) () (,) 0.3837
n

i i i
i

f x a a a a k x x
=

= − + (8)

xi (i=1,2,4,7,8,9,11,15,18,20,21,27) is a support vector of the model, x is a vector
wave resistance index for the evaluation, the value of the Lagrange multiplier is as
follows: m1=0.2398, m2=0.2041, m4=0.2642, m7=0.0830, m8=0.3000, m9=0.1865,
m11=0.1783, m15=0.2563, m18=0.0290, m20=0.0280, m21=0. 3161, m27=0.0426.

Calculate five test samples at the back of all the seakeeping indexes in table 1 and
get risk value in table 2. The results show that when use the SVM model, the relative
error value of the test sample is smaller(within 1%). It can meet the precision re-
quirement of the ship's seakeeping risk assessment model.

Table 2. Compared the SVM evaluation results with the original data

Sample data SVM evaluation result Original data Relative error

26 0.2636 0.27 -0.0064

27 0.4326 0.4263 0.0063

28 0.3801 0.3758 0.0043

29 0.2968 0.3027 -0.0059

30 0.1694 0.1634 0.006

The evaluation results of the support vector machine and the actual value is very

close, and the relative error is within the acceptable range. The result shows that com-
pared with the BP neural network, the generalization ability of SVM theory is strong-
er, the optimal solution is more precise and convergence speed is faster, about 5
minutes. So the model can be applied to the ship's seakeeping evaluation well and
guide practice.

 Application of Support Vector Machine in the Decision-Making of Maneuvering 357

4 Ship Maneuvering Decisions

A 20000-ton ocean liner vessel parameters are: the length over all=170 m, breadth
=25.00 m, moulded depth=12.60m, draft=9.5 m, drainage volume V=31331m3, water-
plane area Aw=3621m2, midship section area Am=235.60m2. The ship sailed on the
north Pacific, at that time the wind force is 7, significant wave height is 7 m, and
wave characteristics of the cycle is 8.7s[1].

Ship's initial speed is 15kn, the initial course is 120°, and the wave to course angle
is 60°. Change the ship's speed and course, and calculate the corresponding
seakeeping factor value through the spectrum analysis method, as shown in table 3.

Table 3. The seakeeping indexes of four kinds of navigation status

SERIAL P1 P2 P3 P4 P5 P6 P7

Course120°
Speed15kn

15.2 1.8 1.5 0.16 0.07 0.08 0.05

Course105°
Speed15kn

2.8 1.5 1 0.1 0.05 0.04 0.03

Course120°
Speed13kn

14.3 2.6 1.6 0.09 0.04 0.04 0.08

Course105°
Speed13kn

4.5 2.1 1.3 0.05 0.02 0.02 0.05

Using evaluation model based on SVM to calculate seakeeping safety evaluation

value, as shown in table 4.

Table 4. The Safety assessment of seakeeping under four kinds of navigation status

Speed (kn) 15 15 13 13

Course (°) 120 105 120 105

Safety assessment of seakeeping 0.1254 0.4512 0.2876 0.3871

In table 4, the seakeeping safety assessment value is greater, the ship is safer. Ac-

cording to the results of calculation, the ship is safer with the speed of 15 kn and
course of 105°.

5 Conclusion

The choice of the course and speed of the ship in the stormy waves is essential to the
safety of navigation, which still mainly depends on experiences judgment at sea. This
paper evaluates the ship's seakeeping based on support vector mechanism theory, and

358 Z. Qi et al.

the evaluation results can provide references for the choice of ship course and speed
and have a certain practicality.

This article is just to put forward a solution to the choice of the course and speed,
further work is still needed, such as ship form refinement, the establishment of the
sample database, the accurate calculation of seakeeping indexes and the determination
of index weight, and so on, and eventually establish an accurate evaluation model and
make evaluation calculation software in order to guide practice.

Acknowledgements. This paper is supported by the Fundamental Research Funds for
the Central Universities (3132013018/3132014083/3132014202), the National Natu-
ral Science Foundation of China (Grant No. 51309043), the Applied Basic Research
of Ministry of Transport (Grant No. 2014329225020), and the natural science founda-
tion of Liaoning Province (Grant No. 2014025005).

References

1. Li, S.Z., Wang, F.W., Liu, Q., Qi, Z.: SeakeepingEvaluation Based on BP Neural Network.
Journal of Dalian Maritime University 38(1), 15–17 (2012) (in Chinese)

2. Wu, Z.Q.: TheResearch on the Evaluation for Investment Risk of Freeway Project Based on
Support Vector Machine. Changsha Technical University (2009) (in Chinese)

3. Ai, N., Wu, Z.W., Ren, J.H.: Support Vector Machine and Artificial Neural Network. Jour-
nal of Shandong University of Technology 19(5), 45–49 (2005) (in Chinese)

4. Pan, X., Yang, R.Y.: The Research on Neural Networks with Enhanced Generalization and
Support Vector Machine. Journal of Anqing Teachers College 13(1), 32–36 (2007) (in Chi-
nese)

5. Bai, P., Zhang, X.B.: Theory of Support Vector Mechanism and the Examples of Engineer-
ing Application. Xi’an Electronic and Technology University Press (2008) (in Chinese)

6. Chang, Z., Lu, J.: Application of Support Vector Machine in the Evaluation of Dry Ports
Investment Risk. Journal of Dalian Maritime University 38(2), 48–51 (2012) (in Chinese)

7. Xiong, W.H., Mao, X.F., Li, Y.J.: Review on Evaluation Methods and Criteria for Sea-
keeping of Ships. Ship & Ocean Engineering 36(4), 43–44 (2007) (in Chinese)

8. Vapnik, V.: An Overview of Statistical Learning Theory. IEEE Transaction on Neural Net-
works 10(5), 988–999 (1999)

Mobile Phone Data Reveal the Spatiotemporal

Regularity of Human Mobility

Zihan Sun, Hanxiao Zhou, Jianfeng Zheng, and Yuhao Qin

School of Traffic and Transportation, Beijing Jiaotong University, Beijing, China
sunzihannuli@163.com

Abstract. Recent advance on human mobility are mainly based on mo-
bile phone data since mobile phone records are the most detailed infor-
mation across a large segment of the population in the modern society.
With the spatiotemporal regularity missing in the individual and group
level, we investigate the statistics of human mobility pattern using the
mobile phone data provided by telecom in Guangdong, finding that the
human activity pattern exhibits a heavy-tailed interval time distribution
and regression property. We further demonstrate that the spatiotempo-
ral characteristics can contribute to real-time travel prediction of human
mobility and be applied in OD survey which is meaningful in traffic
planning and management.

Keywords: spatiotemporal regularity, human mobility, Mobile phone
data, OD research.

1 Introduction

When it comes to human mobility, we are lost in thought whether our activity
pattern is random and unpredictable like the molecule or there exists hidden
regularities? Much effort has been devoted to the study of detecting the human
mobility pattern [1]. However, the traditional method is characterized by small
sample and is hard to represent the group property, so the result is inaccu-
rate and limited. With the inadequate data to quantize the characteristics and
describe the microscopic pattern, the scientists have to turn to describe the sta-
tistical properties of their group [2]. There is an extraordinary need, therefore,
to discover the spatiotemporal characteristics of human mobility.

With the development of the communication technology, we can get magna-
nimity data ranging from the Facebook, the Twitter, the mobile and etc. The
scientists concentrate much on the regularity of human mobility in the individ-
ual level. Previous studies have assumed that human activity was randomly and
well approximated by Poission process. To explore the regularity, the scientists
analyze the distribution of the time intervals. They find that there is increasing
evidence that the timing of many human activities follow non-Poisson statistics,
characterized by bursts of rapidly occurring events separated by long periods of
inactivity [3] The study indicates that there is complex dynamics mechanism in

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 359–365, 2014.
c© Springer International Publishing Switzerland 2014

360 Z. Sun et al.

human mobility. Immediately, the scientists conduct a series of evidential explo-
rations. They exhibit the burst nature of human behavior and the strong evidence
suggests that the human activity pattern exhibits a heavy-tailed interval time
distribution. More specifically, Song [4] finds a remarkable lack of variability in
predictability, which is largely independent of the distance users cover on a reg-
ular basis. These findings contribute to the study on human mobility while the
regularity is more than these.

From another dimension, the scientists focus the mobile records themselves
to explore the application in traffic. The analysis on mobile data can provide
statistic property macroscopically as well as the support to traffic demand pre-
diction. Involved in the characteristic of trip model, path matching and fuzzy
identification, the method is validated that it is effective to take use of mobile
phone data in splitting of OD survey. However, how to combine the effect of
human mobility and the four stages on traffic demand analysis is still a problem
for us to solve.

Our goal here is to detect the spatiotemporal characteristics of human mobil-
ity and apply the property to traffic planning and management. In this work,
we quantify the movement of human mobility information based on the mo-
bile phone data. We investigate the individual spatial distribution, finding that
the individual tends to appear the places where they usually appear. And the
heavy-tail property is revealed to explain the temporal characteristic in both the
individual level and the group. Here we analyze the reason why the burst behav-
ior occurs specifically. These findings are therefore significant to the prediction
of human mobility. We believe that it is useful for OD survey and the result can
be widely applied to traffic demand analysis.

2 Data

Since the most detailed information on human mobility is collected by mobile
phone carriers, we capture part of mobile data collected from the telecom in
Guangdong to discover the spatiotemporal characteristics of human mobility.
Mobile carriers locate the closet mobile tower, as well as the timestamp, each
time the user makes a call or sending a message. The longitude and the latitude
of the mobile tower are recorded, allowing us to locate the accurate place the user
appears. In order to guarantee data the reliability, we merely retain the continu-
ous record of the users transient location at the preparation period. Meanwhile,
we find that a large number of users engaged in infrequent communication and
the record cant reflect the real travel activities. To deal with the problem, we
capture the random mobile phone users and define them for active users with
the criteria [5] that they visit more than two places during the observational
period and that their average call or text message frequency f is ≥ 0.5hour−1.

Mobile Phone Data Reveal the Spatiotemporal Regularity 361

3 Result

3.1 Spatial Properties

To analyze the spatial feature of human mobility, we randomly select a typical
active user and trying to describe his or her movement in August. We create
the Voronoi diagrams based on the signal tower on the map in Guangdong.
With the map is divided into several traffic zone by the Voronoi, we establish
the corresponding relationship between communication network and geographi-
cal location network and the trajectory of the user is shown. (Fig.1a) Thus the
travel chain which is the basis of the analysis on the residents travel is obtained.
Obviously there exists an area in which the records are relatively concentrated.
We capture the concentrated area for detail study. It reflects that the user appear
the places frequently (Fig.1b). To investigate whether the frequent appearance
signifies the recurrent nature of the individual mobility, we assign the user a
mobility network (Fig.1c). From the scaling drawing, we can find that the user
qualitatively tends to be in three places, maybe home or workplace. Quantita-
tively, we calculate the percent of quantities the user make calls or send messages
in the particular zone and the result is visually described with the different node
sizes. The non-uniform node sizes correspond to the preference to certain loca-
tions, indicate the individual mobility has a very significant regularity.

For further study on the distribution of the locations, we make some statistical
analysis on the locations where the user appears in the one-month-long observa-
tional period (Fig.1d). Here we combine the scattered records under the criteria
that the activities occurred within the scope of 4- nearby the respective tower.
And on this basis, we respectively explore the probability the user appear in dif-
ferent places under different time sequences (Fig.1e). By rescaling, we find the
results are highly integrated. In another word, the result reveals that the indi-
vidual activity tends to exhibit the characteristics of regression. To some extent,
this superposition of three lines in Fig.1e reveals the temporal correlation.

3.2 Temporal Properties

The fact that the individual activity has a very significant regularity in a week
suggests us to find the regularity from the time dimension. Here we capture
a-week long records and analyze their time distribution. The sequence obvi-
ously presents such a statement that there is a stateless period after some high-
frequency acuteness activities (Fig.2a). It means the user tends to place most of
his or her calls in short burst (Fig.2b). To detect the property of the burst accu-
rately, we analyze the distribution of the time intervals between the users con-
secutive calls and find that the time intervals approximately follow a power-law.
Then we capture abundant data from 2289 users to test whether the property
fits the group. Finally we find a wide range of human activity patterns follow
non-Poisson statistics. As is shown in Fig.3c, it allow for a long periods without
activities that separate bursts of intensive activity. This behavior is character-
ized by heavy-tailed statistics. And we are amazed to find that there exists an

362 Z. Sun et al.

112.8 113 113.2 113.4 113.6 113.8 114 114.2
22.5

23

23.5

24

longtitude

la
tit

ud
e

(a)

113.33 113.34 113.35 113.36 113.37 113.38 113.39 113.4 113.41 113.42 113.43
22.93

22.94

22.95

22.96

22.97

22.98

22.99

23

23.01

(b)

35%

18%

19%

12%

3%

(c)

10
0

10
1

10
2

10
310

−4

10
−3

10
−2

10
−1

10
0

N

P(
N

)

1 Week

2 Weeks

1 Month

(d)

10
−2

10
−1 10

0 10
110

−4

10
−3

10−2

10−1

10
0

N/<N>

P(
N
/<
N
>
)

1 Week

2 Weeks

1 Month

(e)
Fig. 1. (a) Trajectory diagram of the active user. Each time the user makes a call or send
amessage, the approximate location will be recorded shown as the colored dots. Connect-
ing the dots in chronological order, we can get the trajectory or travel chain shown as the
colored line. (b) Concentration of the active region. The connecting line represents the
movement between two areas, and the different widths of line edges is made to express
the frequency of the movement. (c) The mobility network. The proportion of the nodes
corresponds to the frequency of calls the user made or the messages they sent in the area.
(d) The number distribution of the location the user makes a call or sent a message. The
different polygonal lines represent different time sequences: one week, two weeks and a
month. (e) The rescaling result in the log-log plot.

Mobile Phone Data Reveal the Spatiotemporal Regularity 363

obvious peak turns up at about ten hours, which is relative to the physiological
period of human: the sleeping time are more or less ten hours. In conclusion, the
observed the burst property reflects some fundamental and potentially generic
feature of human dynamics and will serve as the basis of our mobility prediction.

We have investigated the spatiotemporal characteristics of human mobility
both in the individual and the group level. From the space dimension, we find
that human mobility presents the periodic trend. It means the travel places can
be predicted. From the time dimension, we find that there exists a significant
regularity of travel time. On second thoughts, we can obtain a new tool for travel
demand analysis. It is meaningful for future transport planning and management
and worth popularizing.

3.3 Application

Traditionally, to grasp the characteristics of traffic demand, we need to do traf-
fic investigations through a series of steps like preparation, personnel training,
investigation and etc. Since the late 1970s, home visiting and computer aided
telephone interviews have been put into traffic investigations in Shanghai, Bei-
jing and other cities due to the technical maturity. However, they also have some
weakness, such as a lot of human cost, small sampling rate, long update cycle,
the fact that the data accuracy is highly affected by the subjective factor and
etc. Because of the disadvantages, these survey methods has not well adapted
to urban transportation planning and the tube in the new period.

Nowadays, with the widespread popularity of the mobile phone market and
the development of mobile phone positioning technology, it is possible to detect
the characteristic of mobile phone user mobility based on massive amounts of
positioning data analysis. According to our study on the spatiotemporal char-
acteristics of human mobility, the conclusion can be applied in OD survey. We
imagine an algorithm in which we can obtain all the travel data by prediction
based on part of traditional OD data and the human mobility. To prove the ac-
curacy, we can compare it with mobile phone travel data. If the fit is good, the
algorithm can be widely used to obtain the group OD data. It will be another
revolutionary breakthrough on traffic survey. Meanwhile, with the development
of big data, we are provided a new way to correct the predicted result through
massive mobile phone data.

Although taking traffic guidance is beyond our goals here, it is possible to
obtain the certain place where the travel will go at certain time. Based on the
spatiotemporal characteristics of human mobility, we can gain the peoples travel
trend. Thus, the real-time traffic prediction can be realized which is significant
to the road network analysis. Whats more, the transportation department can
guide the traveler a better trip mode and travel rout. It is easy to ease traffic
problems and meaningful in traffic planning and management. Here we give an
example of OD result in Guangdong (Fig.3a-b) inaccurately to demonstrate our
assumption.

364 Z. Sun et al.

Mon Tue Wen Thu Fri Sat Sun

(a)

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

dt(s)

P(
dt
)

(b)

10
2

10
3

10
4

10
5

10
6

10
710

−6

10
−5

10
−4

10
−3

10
−2

10
−1

dt(s)

P(
dt
）

(c)

Fig. 2. (a) The call pattern that captures the time-dependent location in a week.
Each vertical line represents to a call or message. (b)The distribution of the time
intervals between the users consecutive calls during the one-month-long observational
period, dt, documents the nature of the dynamical pattern as coming in bursts. (c)
The distribution of the time intervals among the group, the scatter plot showing the
number of calls made or messages sent during a month interval.

Mobile Phone Data Reveal the Spatiotemporal Regularity 365

112.8 113 113.2 113.4 113.6 113.8 114 114.2 114.4
22.5

23

23.5

24

longitude

La
tit

ud
e

(a)

112.8 113 113.2 113.4 113.6 113.8 114 114.2
22.5

23

23.5

24

longitude

La
tit

ud
e

(b)

Fig. 3. (a) (b) The OD distribution of an special area in Guangzhou

4 Discussion

Taken together, we have studied the spatiotemporal characteristics of human
mobility, and found that the human activity pattern exhibits a heavy-tailed
interval time distribution and regression property in space. In summary, the
empirical evidence indicates that the human mobility is characterized by a deep-
rooted regularity. In the future, we may conduct further study on how to combine
the effect of human mobility and the four stages on traffic demand analysis
accurately and make traffic planning with instant mobile phone data. We believe
the empirical findings in this paper present relevant information that can be used
to explain human mobility, and will play an increasing important role in traffic
planning and management.

Acknowledgments. This paper is partly supported by National Basic Research
Program of China (2012CB725400) and Research Fund for the Doctoral Program
of Higher Education of China (20130009120001). My studies depended on the
contributions of Jianfeng Zheng. I have also bennifited from discussions with
Hanxiao Zhou and Yuhao Qin.

References

1. Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding Individual Human
Mobility Patterns. Nature 453(7196), 779–782 (2008)

2. Brockmann, D., Hufnagel, L., Geisel, T.: The Scaling Laws of Human Travel. Na-
ture 439(7075), 462–465 (2006)

3. Barabasi, A.L.: The Origin of Bursts and Heavy Tails in Human Dynamics. Na-
ture 435(7039), 207–211 (2005)

4. Chaoming, S., Blumm, N.: Limits of predictability in human mobility. Sci-
ence 327(5968), 1018–1021 (2010)

5. Liang, G.: Song Chaoming: Quantifying Information Flow During Emergencies. Sci-
entific Report (2014)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 366–375, 2014.
© Springer International Publishing Switzerland 2014

Research on Large-Scale Vessel Riding Tidal Current
to Promote Efficiency of Fairway

Kang Zhou, Ran Dai, and Xingwang Yue

Navigation College, Dalian Maritime University, Dalian 116026, Liaoning, China
zhoukang@dlmu.edu.cn

Abstract. When a vessel is passing through a shallow part of a fairway (entrance
fairway included), due to insufficient depth of fairway, the vessel usually take
advantage of high tide level to enhance depth of navigable waterway. In normal
situation, we only consider rise of tide and increase of waterway depth, and then
the under keel clearance is consequently increased. But what we ignore is that the
squat would drop due to the diminishment of relative speed between vessel and
sea, when the vessel enters the fairway. Calculation of ship’s squat when she is
riding tidal current in a fairway is a foundation of making sure the under keel
clearance of a vessel, thus to enhance efficiency of fairway and optimal use of
tidal resource.

Keywords: under keel clearance (UKC), ship’s squat, fairway efficiency.

1 Introduce

When a vessel is navigating in shallow water area or anchoring in anchorage,the
shallower the water depth is, the more influence the ship will suffer from the fluid
force. This would not only give rise to the manoeuvring difficulty, but put her into a
dangerous situation when the water is extremely shallow. Hence, to ensure safety
passage of vessel, port must keep a certain UKC when vessel is entering into a shallow
area(including fairway).Yet the port can’t provide the required UKC, vessels need to
ride the tide to utilize the rise of tide level. Major way to improve the efficiency of
water and tidal resource is to depress UKC.

2 Under Keel Clearance and Factors Considered in Determining
UKC

2.1 Under Keel Clearance

For the sake of safety, there exists limitations to depth of shallow water. That is to say,
conditions of fairway must be suitable for maneuvering to keep certain depth below her
keel. This clearance is called under keel clearance.

Research on Large-Scale Vessel Riding Tidal Current to Promote Efficiency of Fairway 367

2.2 Factors Considered in Determining UKC

Supposing ℎ௠௜௡ is the smallest depth for ship to pass. Based on research, it could be

indicated as

 ℎ௠௜௡ = ݀ + ∑ ∆ℎ௜ହଵ + ∆ℎ (1)

where, ݀, the draft when she is motionless; ∆ℎ, the error of draft, including errors
from the change of sea state, meteorological condition and depth marked in chart; ∆ℎଵ,
the change of draft when the vessel is navigating in still water(namely squat); ∆ℎଶ, the
change of draft due to ship’s sway in seawave; ∆ℎଷ, the clearance for ship to maintain
her maneuverability; ∆ℎସ, the change of draft due to unstable manoeuvre load and the
ship’s trim and list; ∆ℎହ, the change of draft due to the difference of densities between
seawater and freshwater.

The formula above is too detailed to put into use. Merge the term related to velocity
in the formula. And we get this:

 ℎ௠௜௡ = ݀ + ∆ℎଵ + ∆ℎଶ + (2) ܪ∆

In this new formula，∆ℎଵand ∆ℎଶ represent the same meanings with the Formula
One.∆ܪ is the mergence of parts of terms in Formula One. Generally speaking, ∆ܪ
have few to do with ship’s speed and form but the fairway circumstance. Concerning in
the field of safety, permanent rectification of water level may be used to provide safety
margin. Some document would take it for 0.3m.

So the key to calculating the formula are ∆ℎଵ and ∆ℎଶ. ∆ℎଶ could be ignored
when the wave and current are not huge. Therefore, the smallest depth of safety passage
is totally depending on ∆ℎଵ. So grasping the squat is the hinge to determine UKC.

3 The Ship’s Squat

It is meaningless to discuss the squat when the depth of fairway is far more deeper than
the ship’s draft, since there must be sufficient UKC. Only when the depth is limited and
even the ship needs to ride tidal current to pass the fairway, Calculating precisely the
UKC shall be of great significant. Particularly when she is navigating in shallow water
area, the squat may become worse than deep water area.

3.1 Quantity of Navigating Squat

When vessel navigating in shallow water area, Shallow water effect exists, which is,
when vessel enters into a shallow water area, the volume of free water under the vessel
bottom is diminished and the water is obstructed. Three-dimensional flow gradually in
deep water gradually turns himself into two-dimensional flow. Flow speed of water
below the keel is relatively increased, water pressure is hence reduced, causing the
sinkage of vessel. Vessel would gain her draft, augmentation of draft is the quantity of
squat in navigation.

368 K. Zhou, R. Dai, and X

3.2 Analysis of Squat B

According to Archimedes
from water pressure. When
sional flow turns into main
hull increases rapidly. Base

where, z, the attitude of ea
sure of each point along the
speed of each point along th
constant of streamline(rema

For the two points alon
written into this form:

 z
As a result of the increase o
decrease. Buoyancy compo
ficient to support the vesse
needs an increase on draft to

Fig. 1. The chart of three-

4 Calculation Met

Simply, we could calculate
conceptively switch the flo
sel’s movement. That is to s
within a certain range from
direction are opposite but eq

As to the calculation me
retical algorithm and the e
ship experiments. The theo
theory and slender body the

∆dA

X. Yue

Based on Hydromechanics

Law, vessel’s gravity is supported by vertical compon
n the ship navigating in shallow water area, three- dim
nly two-dimensional flow. Relative speed around vess
ed on Bernoulli equation: z + ௣ఊ + ௨మଶ௚ = ܥ
ach point along the streamline; ݌, the hydrodynamic pr
e streamline; ߛ, the weight of the fluid each volume; ݑ,
he streamline; ݃, the acceleration due to the gravity; ܥ,
ain constant along the same streamline).
ng the same streamline, the Bernoulli equation could

zଵ + ௣భఊ + ௨భమଶ௚ = zଶ + ௣మఊ + ௨మమଶ௚
of relative speed around hull, pressure to the hull will sur
osed from vertical component from water pressure is ins
el’s gravity, for this reason the vessel sinks. Moreover
o compensate the lack of buoyancy. Please refer to Fig.

-dimensional flow turning into mainly two-dimensional flow

thod for Squat

e squat by using Bernoulli equation. But firstly, we sh
w to a steady state, and attribute all the motion to the v

say, the vessel is taken as in a static condition, while wate
m vessel and doing uniform motion. Water’s velocity
qual to the vessel.

ethods of the squat, theoretically, there are two types, th
experience calculation summarized from models and act
oretical algorithm is mainly deduced from one-dimensio
ory. Ways to calculate squat are many more. Overwhelm

∆d ∆dF

nent
men-

el’s

(3)

res-
, the
 the

d be

(4)

rely
suf-
r, it
1

hall
ves-
er is
and

heo-
tual
onal

ming

Research on Large-Scale Vessel Riding Tidal Current to Promote Efficiency of Fairway 369

majorities are concluded from the result of experiments after taking ship’s particulars in
to consideration.

4.1 Details and Comparisons of Empirical Formula about Squat

In the following empirical formula, L, B, d, ∆ H, V, ܥ௕, t, s, ܨ௥௛ would in the ship
model denote overall length, width, draft, displacement, fairway depth, velocity, the
square coefficient, trim, squat, Froude number, which is defined as:V ⁄ ඥgH.

(a) In the early 1960’s,Tuck used lender body theory to deducted a general algorithm

of squat and trim, which is

௦௅ = ௥௛ଶܨ௦ܥ ඥ1 − ⁄௥௛ଶܨ (5)

௧௅ = ௥௛ଶܨ௧ܥ ඥ1 − ⁄௥௛ଶܨ (6)

(b) Hooft raised a functional relationship between displacement and ship’s LOA
through the result from model experiment and gave the empirical formula as
follows:

௦௅ = ௥௛ଶܨ∆1.46 ଶඥ1ܮ − ⁄௥௛ଶܨ (7)

ݐ = ௥௛ଶܨ∆ ඥ1 − ⁄௥௛ଶܨ (8)

(c) Soukhomel and Zass separated the ratio between depth of water and displace-
ment into two components, and gave the similar formula according to model
experiments as follows:

ݏ = ݀) ଶටௗ௛ݒ12.96݇ ℎൗ > 0.25) (9)

ݏ = ݀) ଶݒ12.96݇ ℎ⁄ ≤ 0.25) (10)

 ݇ = 0.0143(௅஻)ିଵ.ଵଵ (11)

(d) Eyuzlu-Hausser’s empirical formula

௠௔௫ݏ = ܤ0.113 ቀௗ௛ቁ଴.ଶ଻ ݒ) ඥ݃ℎ⁄)ଵ.଼ (12)

370 K. Zhou, R. Dai, and X

(e) Millward’s empirical

(f) Yoshikawa’s empiric

ݐ ⁄ܮ
(g) the UK Teddington c

Fig. 2. UK Teddington

(h) the estimation chart

Specifications

X. Yue

l formula (ௌ௅)௠௜ௗ% = ଷ଼.଴஼್ிೝ೓మ ௗ௅ටଵିிೝ೓మ (

(ௌ௅)௕௠௜ௗ% = (଺ଵ.଻஼್ಳಽି଴.଺)ிೝ೓మටଵିிೝ೓మ (

cal formula ݏ ܮ = 1.5(݀ ⁄ܮ)⁄ ቀ ஼್௅ ஻⁄ ቁ ௥௛ଶܨ ܮ) = 30(݀ ⁄ܮ) ௕ܥ) ܮ) ⁄⁄ܤ))ଷܨ௥௛ଶ (

chart for the fore and astern squat of the puddle estimatio

chart for the fore and astern squat of the puddle estimation

t for squat in the China Harbor Engineering Techn

(13)

(14)

(15)

(16)

on

nical

Research on Large-Scale Vess

Fig. 3. Estimation chart for s

4.2 Squat Difference W

We take the flow as in stea
and doing uniform motion,
the vessel. But this assumpt
when there is rising tidal s
speed and direction of both
form a open area to a relat
flow motion, the flow speed
Therefore, STW(speed thro
when we calculate squat, an
refer to Fig.4.

Fig. 4. The chart of th

When the relative speed
formula would decrease, thu

(m) ݏ

sel Riding Tidal Current to Promote Efficiency of Fairway

squat in the China Harbor Engineering Technical Specification

When the Vessel Is Riding the Tidal Stream

ady state, while water is within a certain range from ve
and water’s velocity and direction are opposite but equa
tion is given without the consideration of flow’s own sp
tream. When the vessel is navigating in entrance fairw
vessel and tidal stream are the same. When the stream flo
tively narrow fairway, according to continuity equation
d would be greater than that before it flows into the fairw
ough water) would be slower than SOG(speed over grou
nd the same thing goes when vessel is in steady water. Ple

he relative motion between the vessel and the tidal current

between the vessel and the water decreases, V in empir
us generating the smaller squat.

DWT (10ସt)

371

ns

ssel
al to
peed
way,
ows
n of
way.
und)
ease

rical

372 K. Zhou, R. Dai, and X. Yue

5 Mathematical Model for Squat

Owing to most of the formulas come from experiments result, and empirical figure
being designed under massive theoretically calculation, actual ship measurement and
analog tests, Conditions differ from each experiment, so we get different result, thus
they generates limitations for using all of these formulas and figures. Different formula
and figure match different vessel types.

As the popularization of computer and development of hydromechanics, theoretical
calculation prediction for squat and trim has become an important method. It is of great
pertinence and is suitable for various type of vessel, all kinds of draft, trim and velocity.
Theoretical calculation is of high quality on accuracy.

5.1 Establishment of Mathematical Model

In this article, the writer appoint the famous Hess-Smith method based on 3D potential
flow theory. It can calculate the distribution of velocity when the fluid flow around the
object. Through Bernoulli equation in hydromechanics, we could get the distribution of
pressure around the body, which lead to the result of dynamic force acting on the
object. While adopting Hess-Smith method in shallow water area, we could give an
assumption, namely “Mirror Effect”. After a special procedure, we could calculate the
fluid dynamic force and trimming moment when the vessel is navigating in shallow
water area by taking the advantage of Hess-Smith method.

The distribution of the fluid pressure can be influenced by the distribution of the
current speed on the surface of the vessel. The sum of the pressure and the sinking force
can be calculated through integration.
Sinking force,

ܨ = ଵଶ ி (17)ܥଶ(௅ଶ)ଶܸߩ

Trimming moment

 ܰ = ଵଶ ே (18)ܥଶ(௅ଶ)ଷܸߩ

Which is:

ிܥ = − ׭ ௉ௌܥ ݊ௌ݀௦ (19)

ேܥ = − ׭ ௉ௌܥ ݔ) − ஼஻)݊ௌ݀௦ (20)ݔ

௉ܥ = ௉ି௉ಮభమఘ௏బమ (21)

Where, ܲ, fluid pressure at vessel’s surface; ஶܲ, Fluid pressure at infinity; ଴ܸ, Orig-
inal flow speed(Relative speed between vessel and fluid); S , Vessel’s merged area
Horizontal distance between vessel’s centre of buoyancy and any point on the vessel’s
surface.

Research on Large-Scale Vessel Riding Tidal Current to Promote Efficiency of Fairway 373

5.2 Analysis on Results from Actual Ship Considering the Tidal Current

In this article, we use empirical formula and mathematical model established to cal-
culate the squat at bow for a 300,000 tons of tanker,and use the mathematical model to
calculate squat considering the tidal current . Supposed tidal speed is 3kn, the calcula-
tion outcome is compared with the outcome of the model test.

(a) Eryuzlu formula（1978）

 ܵ௠௔௫ = ݒ)଴.ଶ଻(ௗ௛)ܤ0.113 ඥ݃ℎൗ)ଵ.଼ (22)

(b) Mill ward formula (1990)

 S = ஻ܥ15.0) ஻௅ − 0.55) × ிೝ೓మଵି଴.ଽிೝ೓ × ௅ଵ଴଴ (23)

(c) Mill ward formula（1992）

 S = (61.7 × ஻ܥ ஻௅ − 0.6) × ிೝ೓మටଵିிೝ೓మ (24)

(d) Yoshikawa’s empirical formula

 ܵ ൗܮ = 1.5(݀ ൗܮ)(஼್௅ ஻ൗ ௥௛ଶ (25)ܨ(

The data used in this calculation is shown as Table 1.

Table 1. The ship’s particulars

Ship type ܮ஻௉ B d ܥ஻

Oil tanker 318 56 20.58 0.8272

The outcomes are shown as Fig.5 and Fig.6.

Fig. 5. Comparison of the calculated squat without considering the tidal current

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10

Eryuzlu formula（1978）
Mill ward formula（1990）
Mill ward formula（1992）
Yoshikawa’s estimate formula
mathematical model
model test

374 K. Zhou, R. Dai, and X. Yue

Fig. 6. Comparison of the calculated squat using the mathematical model and model test

6 Conclusion

From the calculation work we could get that it is better to use the empirical formula and
mathematical model when the vessel is at low speed. But when the vessel is in
fast-speed, those two are no longer agree with each other, and result from mathematical
model is closer than actual ship test. if Concerning the riding speed, normally the vessel
speed is larger than the tidal current speed. When the relative speed is lower, the squat
obviously decreases, which indicates that UKC(under keel clearance)is running down.
For the speed of the vessel is evidently higher than tidal current, the squat is rather
small. Moreover, when vessel is passing through a shallow water area, it would reduce
its speed. At that time, whether taking riding speed into consideration would have
magnificent difference in calculation result. In a word, when calculating squat when the
vessel is in shallow water area, taking riding speed into account would be of great value
as to improve the efficient of the fairway.

Acknowledgements. This work is partially supported by the Fundamental Research
Funds for the Central University (Grant No. 3132013012). The authors would like to
thank anonymous reviewers for their valuable comments to improve the quality of
this note.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

mathematical model(considering tidal current)

model test(considering tidal current)

mathematical model(without considering tidal current)

model test(without considering tidal current)

Research on Large-Scale Vessel Riding Tidal Current to Promote Efficiency of Fairway 375

References

1. Zheng, H.Y., Han, X.G., Wu, X.: The analysis of the shipping navigation ability in shallow
water. Navigation Technology (6), 26–32 (2011)

2. Gu, W.X.: The ship’s UKC when navigating in shallow water. World Shipping (5), 54–56
(1995)

3. Dai, R., Jia, C.Y., Sun, L.C.: The field research on the UKC of the ship(under keel clearance),
pp. 242–246. Dalian Maritime University

4. Sun, L.C., He, Y.P.: The research on the UKC (under keel clearance) of the extra-large-scale
ship in the outter fairway of Xia Zhi Men. Navigation of China,Serial No. 45, 2–5 (1999)

5. Liu, Z.J., Xia, G.Z., Wang, F.C.: The actual empirical calculation of the ship’s squat in the
restricted water. Journal of Dalian Maritime University 21(4), 9–13 (1995)

6. Ye, Z.B.: The research on the numerical calculation method of the squat of the ship navi-
gating in the shallow water. Dalian Maritime University (2009)

7. Hong, B.G.: The ship’s manoeuvring. Dalian Maritime University (2008)
8. Shen, H.: The basic ship dynamics. Dalian Maritime University (2004)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 376–385, 2014.
© Springer International Publishing Switzerland 2014

A Vertex-Clustering Algorithm Based
on the Cluster-Clique

Deqiang Wang1, Bin Zhang1, and Kelun Wang2

1 Institute of Nautical Science and Technology, Dalian Maritime University, Dalian, China
2 Department of Mathematics, Dalian Maritime University, Dalian, China

{dqwang,zhangbin,dmu_wkl}@dlmu.edu.cn

Abstract. The vertex-clustering algorithm based on intra connection ratio (MV-
ICR algorithm) is a graph-clustering algorithm proposed by Moussiades and
Vakali[Clustering dense graph: A web site graph paradigm. Information Pro-
cessing and Management, 2010, 46:247-267]. In this paper, we propose a new
conception called cluster-clique for vertex-clustering of graphs. And based on the
cluster-clique and the intra connection ratio, a new vertex-clustering algorithm is
proposed. This algorithm is more reasonable and effective than MV-ICR algo-
rithm for some clusters which have the same maximum intra connection ratio.

Keywords: graph, clustering algorithm, cluster-clique, intra connection ratio.

1 Introduction

Clustering (or partition) is a hot research issue in mathematics, computer science,
management science and other areas. It is also widely applied in the fields such as
pattern recognition, data analysis, communication, biology and other business: moni-
toring on computer network executive purpose, visualization knowledge based on
support of understanding of complex data structure, measurement data cluster, detec-
tion source code plagiarism, network data cluster and online community identification
[1,3,5,9,10,11]. One of the newly rapidly developed clustering method is the graph-
clustering method, the clustering method based on graph theory [2,4,6,8,12,14].
Graph-clustering is a very widely applied research topic, especially in the network
research, including e-mail network, social network, gene networks and so on[7,13].
Graph-clustering applies graph theory method to graph classification, and it is a very
important variant of data clustering. Unlike ordinary numerical clustering, the cluster-
ing based on graph theory has its own particularity, the similarity among data objects
in data set is often expressed by a graph.

Generally, clusters of graph-clustering are groups with a higher density of edges
within cluster and a lower density of edges between clusters. Moussiades and Vakali
proposed a vertex-clustering algorithm based on intra connection ratio (we call the
algorithm MV-ICR algorithm) in Ref. [9]. It is the core idea of MV-ICR algorithm
that the two clusters with ICR maximum will be merged together. Because the MV-
ICR algorithm exists certain irrationality when the maximum ICR values between
clusters are more than one, this paper proposes the new concept of "cluster-clique",
and gives a vertex-clustering algorithm to solve the merging problem of more than
one maximum ICR values between clusters.

 A Vertex-Clustering Algorithm Based on the Cluster-Clique 377

2 Definitions and Notations

Let G=(V(G),E(G)) be a simple undirected graph, where V(G) is the set of vertices

and E(G) is the set of edges. ()v V G∀ ∈ , the degree of v is denoted as d(v).We de-

note { }1 2() , , , kG C C C= C as a clustering of vertices in G into k clusters with

() (),
iC G iC V G∈ = C ()i jC C i j= ∅ ≠ .

Definition 1[9]. The connection degree between two clusters , ()C S G∈C , denoted by

d(C, S), equals to the number of edges having one endpoint in cluster C and the other
in cluster S.

More specifically, for any ()C G∈ C and ()v V G∈ , the connection degree of C
and v is d(C, {v}), denoted by (,)d C v .

Definition 2[9]. The internal degree of cluster ()C G∈ C , IC, equals to the number of

edges that have both their endpoints in cluster C(internal edges).

Definition 3[9].The external degree of cluster ()C G∈ C , XC, equals to the number of

edges that have only one of their endpoints in cluster C(external edges).

Proposition 1[9]. For any ()C G∈ C ,
1

2
(,)C v C

I d C v
∈

=  .

Proposition 2[9]. , ()C S G∀ ∈ C , (,)C S C SI I I d C S∪ = + + and 2 (,)C S C SX X X d C S∪ = + − .

Definition 4[9]. The intra connection ratio (ICR) of cluster ()C G∈ C , denoted as

icr(C), is defined as (,)
.

()
v C

v C

d C v

d v
∈

∈




Proposition 5[9]. The intra connection ratio value upon merging two clusters ,C S∈
()GC denoted as (,)ICR C SΔ (

ICRΔ for short), is given by

()()
() .

2 , 2 2
2 2 2

C S C S

C S C S C C S S

d C S

X X

I I I I
I I I X I X

+ +
− −

+ + + + +

3 MV-ICR Clustering Approach

In this section, we introduce the MV-ICR clustering approach by clustering the verti-
ces in the graph G of Fig. 1.

First, we get the initial clustering of G: { }1 {0} , {1} , { 2} , , {1 9}= C . Then cal-
culate ({ },{ })(0 19)ICR i j i jΔ ≤ < ≤ , and find the maximum value:

1
({17},{18}) ({18},{19{) ({17},{19}) .

3ICR ICR ICRΔ =Δ =Δ =

Choosing one pair of the clusters, for example, {17} and {18}, merging into one clus-
ter, we get the clustering:

378 D. Wang, B. Zhang,

2 =C

Calculating (,)ICR C SΔ , w
({17,18},{19})ICRΔ . Then we

3C

Calculating (,)ICR C SΔ , whe

({4},ICRΔ

Choosing one pair of the clu

{4 {0},{1},{2}=C

The vertices will be cluste

{5 {0},{1},{2},{3},{=C

{6 {0},{1},{2},{3},{=C

{7 {0,1},{2},{3},{4=C

{8 {0,1, 2},{3},{4, 5=C

{9 {0,1, 2, 3},{4, 5, 6=C

{10 {0,1, 2, 3},{4, 5, 6=C

{11 {0,1, 2, 3},{4, 5, 6=C

{12 {0,1, 2, 3},{4, 5, 6=C

{13 {0,1, 2, 3},{4, 5, 6=C

{14 {0,1, 2, 3},{4, 5, 6=C

{15 {0,1, 2, 3},{4, 5, 6=C

{16 {0,1, 2, 3},{4, 5, 6=C

and K. Wang

{ }{0},{1},{2}, ,{16},{17,18},{19}=  .

where 2, ()C S G∈C , and finding the maximum va

e get the clustering as follows:

{ }{0},{1}, ,{15},{16},{17,18,19}= 

Fig. 1. Graph G

ere 2, ()C S G∈ C , and finding the maximum value:

2
{6}) ({5},{6}) ({6},{7})

7ICR ICR= Δ = Δ = .

usters, for example, {4} and {6}, we get the clustering:

},{3},{4, 6},{5},{7},{8}, ,{15},{16},{17,18,19} .

ered as follows in the same way:

}{4, 5, 6},{7},{8}, ,{15},{16},{17,18,19} ,

}{4, 5, 6, 7},{8},{9}, ,{15},{16},{17,18,19} ,

}4, 5, 6, 7},{8},{9}, ,{15},{16},{17,18,19} ,

}, 6, 7},{8},{9}, ,{15},{16},{17,18,19} ,

}6, 7},{8},{9}, ,{15},{16},{17,18,19} ,

6, 7},{8},{9},{10},{11},{12},{13,14},{15},{16},{17,18,19}

}6, 7},{8},{9},{10},{11},{12},{13,14,15},{16},{17,18,19} ,

}6, 7},{8},{9},{10},{11},{12},{13,14,15,16},{17,18,19} ,

}6, 7},{8, 9},{10},{11},{12},{13,14,15,16},{17,18,19} ,

}6, 7},{8, 9,10},{11},{12},{13,14,15,16},{17,18,19} ,

}6, 7},{8, 9,10,11},{12},{13,14,15,16},{17,18,19} ,

}6, 7},{8, 9,10,11,12},{13,14,15,16},{17,18,19} ,

alue

} ,

,

 A Vertex-Clustering Algorithm Based on the Cluster-Clique 379

{ }17 {0,1, 2, 3},{4, 5, 6, 7},{8, 9,10,11,12,17,18,19},{13,14,15,16}=C ,

{ }18 {0,1, 2, 3,13,14,15,16},{4, 5, 6, 7},{8, 9,10,11,12,17,18,19}=C ,

{ }19 {0,1, 2, 3,13,14,15,16},{4, 5, 6, 7, 8, 9,10,11,12,17,18,19}=C ,

{ }20 {0,1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19} .=C
According to the above of clustering graph G, MV-ICR clustering algorithm begins

from the foundation clustering (i.e. each element as a cluster) with the largest ICRΔ ,

calculates the ICRΔ between this cluster and its adjacency clusters, gradually merge all

vertices into one cluster. This clustering algorithm begins from a small range cluster-
ing, gradually extended to the entire graph. Because the maximum(or greater) ICRΔ

in a graph certainly is not only one, and the clusters merge with maximum value (or
greater) will be more than one. How to choose the first merger is a problem, such as
the 1C in figure 1, the maximum value of ICRΔ is:

1
(17,18) (18,19) (17,19) .

3ICR ICR ICRΔ =Δ = Δ =

Using MV-ICR algorithm, the group randomly selected from {17,18}, {18,19},
{17,18} will be merged. But no matter how to choose, this group will be merged with
the remaining three vertices in the second cycle. For example, the {17,18} is merged
firstly, then it will merge with {19} in the next cycle. The ICRΔ between each pair of

{17,18,19} are greatest and the relations are most closely linked, if we can merge
three points at once in a cycle, it will reduce the clustering step, and the relationships
between clusters will be more clear.

4 Improvement of MV-ICR Clustering Approach

Considering an extreme case now, we cluster the vertices of the complete graph nK

with MV-ICR algorithm. Firstly, every vertex in the graph is the clustering

{ }1 {0},{1} , ,{ 1}n= −C , all ICRΔ between each pair clusters is 1

1n−
. According to the

MV-ICR algorithm, optionally two clusters will be merged, let's just take {0}, {1} for
example. By calculating the ICRΔ of { }2 {0,1},{2},{3}, ,{ 1}n= −C , it will be

found that any ICRΔ between each pair clusters is still 1

1n−
. Also, according to the

MV-ICR algorithm, optionally two clusters in 2C will be mergedas well. However,

intuitively, according to highly symmetry of vertices in complete graph, each vertex
(cluster) has the same status (the same value ICRΔ) at the first clustering, and they

should be clustered as one cluster. Namely, there are just two results of the clustering
of complete graph: all points are a cluster of { }1 {0},{1} , ,{ 1}n= −C , or

{ }2 {0,1, , 1}n= −C . The MV-ICR algorithm will destroy the vertex symmetry of

complete graph by randomly selecting two point to be a cluster. Therefore, it is neces-
sary to improve the clustering strategy of MV-ICR algorithm.

380 D. Wang, B. Zhang, and K. Wang

In order to merge more clusters with ICRΔ the maximum at once, it is given firstly

including the definition of cluster-clique and the related conclusion of internal degree
Ic and external degree Xc of multiple clusters.

Definition 5. Let ()GC be a clustering of graph G. If 1 2, , , ()nC C C G∈ C and

(,) 0i jd C C > , called{ }1 2, , , nC C C to be a cluster-clique.

Theorem 1. Let ()GC be a clustering of graph G, and 1 2, , , ()nC C C G∈ C . If

1 2 nC C C C=   , the internal degree of cluster Ic is equal to

1

1 1 +1

(,)
i

n n n

C i j
i i j i

I d C C
−

= = =

+   . (1)

Proof. We use mathematics induction on n.
For basis n=1, 1C C= , the equation (1) holds. For n=2, 1 2C C C=  , from Propo-

sition 1, we have

1 2 1 2(,)C C CI I I d C C= + + .
The equation (1) holds.

Assume that the equation (1) holds for n = k –1, that is
1 2 1

1 1 +1

(,)
i

k k k

C C i j
i i j i

I I d C C
− − −

= = =

= +  .

For n=k. Denote *
1 2 1kC C C C −=    , then

* *
*

1 2 1 1

1 1 1 1

1

1 1 1

(,)

(,) (,)

(,).

kk

i k

i

C C kC C C

k k k k

C i j C i k
i i j i i

k k k

C i j
i i j i

I I I I d C C

I d C C I d C C

I d C C

− − − −

= = = + =

−

= = = +

= = + +

= + + +

= +

  

 



So, the equation (1) holds.

Theorem 2. Let ()GC be a clustering of graph G, and 1 2, , , ()nC C C G∈ C . If

1 2 nC C C C=   , the external degree of cluster Xc is equal to

1

1 1 +1

2 (,).
i

n n n

C C i j
i i j i

X X d C C
−

= = =

= −  (2)

Proof. We use mathematics induction on n.
For basis n=1, 1C C= , the equation (1) holds. For n=2, 1 2C C C= ∪ , from Propo-

sition 3, we have

1 2 1 22 (,)C C CX X X d C C= + −
.

The equation (2) holds.

 A Vertex-Clustering Algorithm Based on the Cluster-Clique 381

Assume the conclusion holds for n = k –1, that is
1 2 1

1 1 +1

2 (,)
i

k k k

C C i j
i i j i

X X d C C
− − −

= = =

= −   .

For n=k. Denote *
1 2 1kC C C C −=    , then

* *
*

1 2 1 1

1 1 1 1

1

1 1 1

2 (,)

2 (,) 2 (,)

2 (,).

kk

i k

i

C C kC C C

k k k k

C i j C i k
i i j i i

k k k

C i j
i i j i

X X X X d C C

X d C C X d C C

X d C C

− − − −

= = = + =

−

= = = +

= = + −

= − + −

= −

  

 



So, the equation (2) holds

Let ()GC be a clustering of the graph G. Denote

{ }max_
, ()

() max (,)ICR ICR
C S G

G C S
∈

Δ = Δ
C

C .

In the following, we will propose an algorithm for merging multi-cluster with max-

imum ICR based on Theorem 1 and Theorem 2.

Algorithm 1. A graph-clustering algorithm based on the cluster-clique
Input: Graph G=(V, E)
Output: (0,1,)k k = C
Initialize:

0 0 1 | | 1{ }, { , , , }0, i i VC v C C Ck −= == C
FOR , 1,2, ,| | 1 ()i j V i j= − ≠ DO

{ 2
0, 1, 1, (,) 1; (,) ;

() ()i i jC C C i j ICR i j
i j

I X X d C C C C
d v d v

= = = = Δ =
+

 }

WHILE 1k >C
{ Finding cluster-cliques 1 2, , , l

k k k k⊆C C C C such that

, t
ti tj kS S∀ ∈ C : m ax_(,) ()IC R ti tj IC R kS SΔ = Δ C ;

FOR 1,2, ,t l=  DO

{

,
t

ti k

t ti
S

S S
∈

= 
C

, ()

(,),
t ti

t t
ti k ti tj k

S S ti tj
S S S i j

I I d S S
∈ ∈ <

= + 
C C , ()

2 (,);
t ti

t t
ti k ti tj k

S S ti tj
S S S i j

X X d S S
∈ ∈ <

= − 
C C

}

1 1

 ;{ }
l l

k k t t
t t

S S
= =

   =    
   

−  C C

,i j kC C∀ ∈ C , IF (,) 0i jd C C > THEN

382 D. Wang, B. Zhang, and K. Wang

2((,)) 22
(,) ;

2() 2 2
i j ji

i j i j i i j j

C C i j CC

ICR i j
C C C C C C C C

I I d C C II
C C

I I X X I X I X

+ +
Δ = − −

+ + + + +

k++;

}
END

5 Algorithm Analysis and Examples

5.1 Algorithm Analysis

The original step of this algorithm is to classify the vertex set as meticulous as possi-
ble, namely, each vertex is a cluster. Then, the external degree and the internal degree
of each cluster, the ICRΔ between each other are given. The next step is to find the

cluster-clique with the largest ICRΔ in this clustering to emerge and product a new

cluster, and to calculate the internal degree and the external degree of the new cluster.
According to Theorem 1 (and Theorem 2), the internal degree (and the external de-
gree) of the new cluster is just the algebraic sum of the internal degree (and the exter-
nal degree) of those clusters which emerge to the new cluster. So, it is unnecessary to
recalculate the internal degree (and the external degree) of the new cluster following
the definition of the internal degree (and the external degree), that reduces so much
calculation. The third step is to loop the new cluster through the above method until
all the vertices are merged into one cluster. Thus, the algorithm follows the clustering
principle of "density within clusters and sparsity among clusters", and we can merge
multiple vertices at once in each loop step by the idea of cluster-clique and the calcu-
lating formula of internal degree, external degree, accordingly improve the clustering
efficiency.

5.2 Example

Example 1. We first consider the extreme case of clustering nK :

(1) Initializing a clustering 0C containing one cluster per vertex of nK :

{ }0 {0},{1}, ,{ 1}n= −C .

(2) Calculating ICRΔ of 0C , we get the cluster-cliques { }{0},{1}, ,{ 1}n − (all

ICRΔ of clusters {i} and {j} are equal to 1

1n −
, where , {1, 2, , 1}i j n∈ − and i j≠

). Following Algorithm 1, merging these clusters {0},{1}, ,{ 1}n − into one cluster

{ }1 {0,1, , 1}n= −C .

(3) 1 1=|C | . The end.

Example 2. In the following, we cluster the graph G in Fig.1 with Algorithm 1 (based
on the cluster-clique).

 A V

(1) We first initialize a c

(2) Calculating ICRΔ : th

(17,18)ICRΔ =

We get a cluster-clique C
{19} into one cluster, and w

{(1 0 {1 7 } {1 8 }= − ,C C

(3) Calculating ICRΔ o

{1
1 {0} ,{1} ,{2} ,{3=C

And we get the new clu
the new clustering (see Fig.

{(
{

{

2 1 {0}{1},{2

 {0 1,2,3},{4 5

 {0,1,2,3},{4,5,7

= −

=


,

, ,

C C

Fig. 2. Merging {17}, {18} a
together

(4)Calculating ICRΔ of C
and the new cluster {8,9,10

{(
{

3 2 {8}{9}

 {0,1,2,3},{4,

= −

=

,C C

(5) Calculating ICRΔ of
new cluster {4,5,6,7}. More

{(
{

4 3 {6}{4,5,7

 {0,1,2,3},{4,5,7

= −

=

,C C

ertex-Clustering Algorithm Based on the Cluster-Clique

clustering 0C of G as { }0 {0},{1}, ,{19}= C .

he maximum ICRΔ of 0C is

max_ 0

1
(18,19) (17,19) (.

3
)ICR ICR ICR=Δ =Δ =Δ =C .

1
0 {{17},{18},{19}}=C of 0C . Merging {17}, {18}

we get the new clustering (see Fig.2):

}) { } { }} ,{ 1 9 } 1 7 ,1 8,1 9 {1 } ,{ 2 } { 1 6 } ,{1 7 ,1 8,1 9 ,}=  , , .

of 1C , we get the cluster-cliques as follows:

}3} , { }2
1 {4} ,{5} ,{7}=C , { }3

1 {1 3} ,{1 4} ,{1 5} ,{1 6}=C

usters: {0,1,2,3},{4,5,7},{13,14,15,16}. Moreover, we h
.3):

} { } { })
}

}

},{3} {4}{5},{7} {13}{14},{15},{16}

,7},{1314,15,16}

},{6}{8},{9},{10},{11},{12},{13,14,15,16},{17,18,19} .

 , ,

,

,

and (19) Fig. 3. Merging {0}, {1}, {2} and{3}
gether; {4}, {5} and {7}together; {1
{14}, {15} and{16} together

2C , we get the cluster-clique {1
2 {8},{9},{10},{11},{1=C

0,11,12}. Moreover, we have a new clustering (see Fig.4

}) { }
}

,{10},{11}{12} 8,9,10,11,12

5,7},{6}{8,9,10,11,12},{13,14,15,16},{17,18,19} .

,

,

f 3C , we get the cluster-clique { }1
3 {6},{4, 5, 7}=C and

eover, we have a new clustering (see Fig.5):

}) { }
}

} 6,4,5,7

7,6}{8,9,10,11,12},{13,14,15,16},{17,18,19} .



,

383

and

.

have

.

to-
3},

}2}

4):

the

384 D. Wang, B. Zhang,

(6) Calculating ICRΔ o

}{17,18,19} and the new c
clustering:

{(
{

5 4 {8,9,10

 {0,1,2,3},{4,

= −

=

C C

(7) Calculating ICRΔ
}{13,14,15,16} and the new

clustering:

{(
{

6 4 {0,1

 {0,1,2,3,1

= −

=

C C

Fig. 4. Merging {8}, {9},
and {12} together

(8) Calculating ICRΔ

}{8, 9,10,11,12,17,18,19} a
Moreover, we have a new c

{(
{

7 6 {4,5,6,7},{8

 {0,1,2,3,13,14,15,

= −

=

C C

(9) Calculating ICRΔ of
{4,5,6,7,8,9,10,11,12,17,18,1

Moreover, we have a new c

{(
{

{

8 7 {0,1, 2,

 {0,1,2,3,

 = {0,1,2,3,4,5,

= −



C C

(10) | 8C |=1. The end.

and K. Wang

of 4C , we get the cluster-clique {1
4 {8, 9,10,11,1=C

cluster { }8,9,10,11,12,17,18,19 . Moreover, we have a n

}) { }
}

0,11,12},{17,18,19} 8,9,10,11,12,17,18,19

5,7,6} {8,9,10,11,12,17,18,19},{13,14,15,16} .



,

 of 5C , we get the cluster-cliques {1
5 {0,1,2,=C

w cluster{ }0,1,2,3,13,14,15,16 . Moreover, we have a n

}) { }
}

1,2,3},{13,14,15,16} 0,1,2,3,13,14,15,16

13,14,15,16},{4,5,7,6}{8,9,10,11,12,17,18,19} .



,

{10}, {11} Fig. 5. Merging{4,5,7} and {6} together

of 6C , we get the cluster-clique {1
6 {4, 5, 6,=C

and get the new cluster {4, 5, 6, 7, 8, 9,10,11,12,17,18,1

clustering:

}) {
}

,9,10,11,12,17,18,19} {4,5,6,7,8,9,10,11,12,17,18,19

16},{4,5,6,7,8,9,10,11,12,17,18,19} .



f 7C , we get the cluster-cliques {1
7 {0,1,2,3,13,14,15,1=C

}9} and the new clusters {4,5,6,7,8,9,10,11,12,17,18,1

clustering:

})
}

}

,3,13,14,15,16}, {4,5,6,7,8,9,10,11,12,17,18,19}

,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19}

,6,7,8,9,10,11,12,13,14,15,16,17,18,19} .

2},

new

,3},

new

7},

}9 .

}9}

16},

}9 .

 A Vertex-Clustering Algorithm Based on the Cluster-Clique 385

6 Conclusions

From the above two examples, we can conclude that the vertex clustering in the com-
plete graph and the graph in Fig.1 is more reasonable and more efficient than the MV-
ICR algorithm in accordance with Algorithm 1.For some special classes of graphs
such as regular graphs, the proposed algorithm may be also more reasonable and more
efficient than the MV-ICR algorithm. However, it needs further study.

Acknowledgments. The paper is supported by“the Fundamental Research Funds for
the Central Universities” (3132014309).

References

1. Alexandros, N., Yannis, T., Yannis, M.: C2P: clustering based on closest pairs. In: Pro-
ceedings of the 27th International Conference on Very Large Data Bases, pp. 331–340.
Morgan Kaufmann Publishers, Roma (2001)

2. Bradley, P.S., Mangasarian, L.: k-plane Clustering. Journal of Global Optimization 16(1),
23–32 (2000)

3. Brandes, U., Gaertler, M., Wagner, D.: Engineering graph clustering: Models and experi-
mental evaluation. ACM Journal of Experimental Algorithmics 12(1.1), 1–5 (2007)

4. Eades, P., Huang, M.L.: Navigating clustered graphs using force-directed methods. Journal
of Graph Algorithms and Applications 4(3), 157–181 (2002)

5. Gomory, R., Hu, T.: Multi-terminal network flows. Journal of the Society for Industrial
and Applied Mathematics 9(4), 551–570 (1961)

6. Günter, S., Bunke, H.: Self-organizing map for clustering in the graph domain. Pattern
Recognition Letters 23, 401–417 (2002)

7. Kaburlasos, V.G., Moussiades, L., Vakali, A.: Granular graph clustering in the web. In:
Proceedingsof the 8th International Conference on Natural Computing, pp. 1639–1645.
World Scientific Publishing, Utah (2007)

8. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern Recogni-
tion 36(10), 2213–2223 (2003)

9. Moussiades, L., Vakali, A.: Clustering dense graph: A web site graph paradigm. Infor-
mation Processing and Management 46, 247–267 (2010)

10. Moussiades, L., Vakali, A.: PDetect: A clustering approach for detecting plagiarism in
source code datasets. The Computer Journal 48(6), 651–661 (2005)

11. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Physical
Review E 69(066133), 1–5 (2004)

12. Palla, G., Dernyi, I., Farkas, I.: Uncovering the overlapping community structure of com-
plex networks in nature and society. Nature 435(7043), 814–818 (2005)

13. Saha, B., Mitra, P.: Dynamic algorithm for graph clustering using minimum cut tree. In:
ICDM Workshops, pp. 667–671 (2006)

14. Serratosa, F., Alquezar, R., Sanfeliu, A.: Synthesis of function-described graphs and clus-
tering of attributed graphs. International Journal of Pattern Recognition and Artificial In-
telligence 16(6), 621–655 (2002)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 386–395, 2014.
© Springer International Publishing Switzerland 2014

Designed Slide Mode Controller for Ship Autopilot
with Steering Gear Saturation*

Gao-Xiaori, Hong-Biguang, Xing-Shengwei, and Li-Tieshan

Navigation College, Dalian Maritime University, No.1 Linghai Road, Dalian, China
gxrdlmu@126.com

Abstract. To design ship autopilot with gear constraints is becoming a hot is-
sue. In this paper, a slide mode control scheme for ship autopilot with the satu-
ration of steering gear was proposed. The MMG ship motion mathematical
model was solved for the state of ship nonlinear system. The error between the
designed input and the saturation constraints input was approximated by the
RBFNN. The stability of the system was proved by selecting the Lyapunov
function. The merits of algorithm lie in that the network errors and the external
disturbances can be overcome by the robust item of controller and the introduc-
tion of the MMG ship model make it closer to the actual conditions. The
computer simulation is given by training ship YULONG and validated the
effectiveness of the scheme.

Keywords: Input Saturation, Ship Course Control, Slide Mode Control, SMC,
RBFNN.

1 Introduction

The ship course system is essential nonlinear system[1,2] and susceptible to a variety
of uncertainties and random disturbances. Thus, high-performance autopilot algorithm
has always been a hot issue in ship industry[3,4,5]. Following the PID, various control
techniques, such as adaptive control[6,7],SMC[8],etc., are applied in this field. These
algorithms were validated by the computer simulation and some of them were applied
on vessel [3].

However, the steering gear，which is restricted by the maximum steering angle
and the maximum steering rate [9,10]，is the executing agency of autopilot. Under
certain conditions, the gear limitation not only affect the controller’s performance, but
might weaken the stability of system [1],[11],[12],[13]. Therefore, it is meaningful to
achieve autopilot algorithm effectively under such conditions.

In view of input saturation, a SMC controller with the input constraints was
achieved by defining assistance system that uses input saturation and error dynamic
amplification scheme [14,15]. The constraint of steering gear was considered and
adaptive fuzzy control algorithm was developed based on a dynamic surface control

* Supported by: the Fundamental Research Funds for the Central Universities(3132013005,

3132014027).

 Designed Slide Mode Controller for Ship Autopilot 387

(DSC) and minimal learning parameter (MLP) for the ship autopilot system by T-S
fuzzy system [11]. The algorithm was validated through computer simulation. Stabil-
ity under input saturation constrains is analyzed with the help of an auxiliary system
and training ship simulation demonstrate effectiveness of the proposed scheme [12].
In paper [13], a class strict feedback of ship autopilot was studied by these technolo-
gies according to the former research [11,12]. These theoretical researches and scien-
tific achievements have great potential value.

This paper developed a SMC scheme for the ship autopilot with the saturation of
steering gear. The MMG ship motion mathematical model was solved for the state of
ship nonlinear system. The use of RBFNN makes it possible to approximate the error
between the designed input and the saturation constraints input. The stability of the
system was proved by selecting the Lyapunov function. The network errors and dis-
turbances can be overcome by the robust item of controller and the introduction of the
MMG ship model make it closer to the real world. The computer simulation is given
by training ship Yulong.

The contents of paper are organized as follows. In Section 2, the MMG mathematical
model with wind disturbances and steering gear dynamic were introduced, meanwhile,
the nonlinear ship motion model with input constraints was established. Section 3 brief-
ly described the algorithm of RBFNN and designed controller by SMC method. The
simulation results are given in Section 4. Finally, section 5 provides the conclusions.

2 Problem Formulation

2.1 System Description

The block diagram of the ship course control system is shown in Fig.1. The system
consists of the SMC course controller, nonlinear ship model, desired reference signal,
RBFNN, steering gear saturation and the disturbances.

Fig. 1. Block of ship course control system

2.2 Ship Motion Mathematical Model

The 3-DOF (degree of freedom) of MMG ship mathematical model has been intro-
duced [3],[9]. The mathematical model is expressed in formula (1).

Desired signal

Gear Saturation

SMC controller Ship Model

RBFNN

Disturb-

Deflection

v u

388 Gao-Xiaori et al.









++=+
++=+++

+++=+−+

ARHPZZZZ

ARHPxy

ARPHyx

NNNrJI

YYYurmmvmm

XXXXvrmmumm





)(

)()(

)()(

 (1)

Where m , xm , ym are ship’s mass and added mass, ZZI , ZZJ are moment inertia

and added moment inertia around mass center, u , v are ship’s surge speed and sway

speed respectively, r is yaw rate. X ,Y , N are external forces and external mo-
ment acting on the ship. The variable relevant to hull, propeller, rudder and wind is
denoted by subscripts H , P , R and A respectively. Subscript HP denotes the inter-
action of hydrodynamic force and moment between hull and propeller. The calcula-
tion of those variables can be found in paper [9].

Note: The state of ship course nonlinear system was obtained from a group of the
MMG ship formulas in order to be much closer to the actual conditions.

2.3 Steering Gear Dynamic Model

To reflect the physical limitations of vessel precisely and improve performance of
ship model, the saturation of rudder angle is defined as formula (2).













 ≥⋅

=

−=

else

if
sat

TT E
E

E

δ
δδδδ

δ

δδδ

maxmax)sgn(
)(

11

 (2)

Where, constrained of rudder angle and steering rate is 35≤δ and s 3≤δ respec-

tively,
E

δ is command rudder angle,
ET is gear time constant.

2.4 Wind Forces and Moment

The wind forces and moment are expressed as formula [9],[16] (3).














=

=

=

LAVCN

AVCY

AVCX

LrarNwind

LrarYwind

TrarXwind

2

2

2

)(
2

1

)(
2

1

)(
2

1

ργ

ργ

ργ

 (3)

Where
rγ is the angle of wind relative to ship bow,)(rXC γ and)(rYC γ are the

empirical force coefficients.)(rNC γ is moment coefficient.
aρ is air density ,

TA and

LA are the transverse and lateral projected areas, and L is the overall of ship.

 Designed Slide Mode Controller for Ship Autopilot 389

2.5 Descriptions of Nonlinear Systems

The nonlinear model of ship course system [4],[9] is expressed as formula (4).

 ωϕαϕϕ +⋅=⋅++⋅ uKT 3 (4)

Where ϕ is course, u is constraints rudder angle, T & K are the ship model’s

parameters, their dimensionless formulas are expressed in paper [9], ω is external
disturbance, α is system parameter. Therefore, the group equations of ship course
system can be expressed as formula (5).





+⋅+⋅+⋅=
=

'3
21 ωαα

ϕ
ubrrr

r




 (5)

Where 3
21),(rrtxf ⋅+⋅= αα ,

T

1
1 −=α ,

T

αα −=2 ,
T

K
b = is autopilot

gain,
T

ωω =' , κω ≤' , κ is a positive number.

The reference model with perfect performance can be described as (6).

 rnmnmnm ϕωϕωϕξωϕ 222 =++  (6)

Where mϕ is reference course, rϕ is system’s input, nω is system’s natural

frequency, ξ is system’s relative attenuation coefficient, nω & ξ are chosen by

designers. The goal is to design controller u which realize 0lim →−
∞→ m

t
ϕϕ .

3 Design Ship Nonlinear Systems under Input Constraints

3.1 RBF Neural Network

RBF neural network [17] has been proved to approximate any continuous function
with arbitrary precision. RBF neural network structure diagram is in fig.2.

Fig. 2. RBF neural network structure diagram

390 Gao-Xiaori et al.

According to fig.1, the designed input is v and the saturation constraints input is

u . The error is vu −=ϑ . Set maxu as the maximum input, then controller with

input constraints function)(vsat is expressed as formula (7).







≤

>
=

max

maxmax

,

,
)(

uvv

uvu
vsat (7)

The perfect approximation performance of RBFNN was constructed to approxi-

mate the errorϑ . The estimated network output)(ˆ xϑ is obtained by formula (8).

 
=

=
q

i
i

T
i xhWx

1

)(ˆ)(ϑ̂ (8)

Where x is the network input, T
q xhxhxhxh))(,),(),(()(21 = is radial basis

vector of RBF network,
2

2
)(

exp)(
i

i
i

cx
xh

σ
−−

= is Gaussian function, ic is cen-

ter vector, 2
iσ is the base width vector of the neural network, q is the number of

neural, Ŵ is the estimated weight of W .

Assume 1. If Ŵ
is bounded, there exists a positive numberϖ which satisfy the

mathematical inequality ϖ≤Ŵ .

Assume 2. For any given real continuous function n
x RBf →: and arbitraryε ,

there exists an optimization weight *W which satisfy formula (9).

 εϑϑ ≤−
∈

),(ˆ)(max *Wxx
xBx

 (9)

Set),(ˆ)(*Wxx ϑϑϑ −=Δ , where ϑΔ is the neural network error of)(xϑ .

According to assume 2, εϑ ≤Δ
∈ xBx

max , therefore

 εϑϑ +=),(ˆ)(*Wxx (10)

And the network weight error is expressed by formula (11).

 WWW ˆ~ * −= (11)

3.2 Design SMC Controller for Ship Autopilot

The desired course is mϕ and the goal is mϕϕ → . Define the course error

me ϕϕ −= , then derivative course error is me ϕϕ  −= . Design the slide mode

function eecs +⋅= , where 0>c .

 Designed Slide Mode Controller for Ship Autopilot 391

Then the derivative slide mode function s is expressed as formula (12).

 mvbtxfec

eecs

ϕωϑ 


−++⋅++⋅=
+⋅=

')(),((12)

Design input v

 () ϑηϕ ˆ))sgn(),((
1 −⋅−+−⋅−= stxfec
b

v m (13)

Where, η is a designed controller parameter and its value satisfy the formula (14).

 maxεκη ⋅+≥ b (14)

Substitute (13) into (12), and then obtain (15)

 ')
~

()sgn(

')ˆ()sgn(

ωεη
ωϑϑη
+−⋅⋅−⋅−=

+−⋅+⋅−=

hWbs

bss
T



 (15)

3.3 Stability Analysis

Choose the Lyapunov function candidate (16) for the closed-loop system.

 WWsV T ~~
2

1

2

1 2 ⋅+= γ (16)

Where γ is the coefficient of NN update weights and 0>γ . Combined with the

formula (15), the differentiating the Lyapunov function with respect to time V is

expressed as formula (17).

)ˆ(
~

'

ˆ~
)

~
(')sgn(

~~

WhbsWbsss

WWhWbssss

WWssV

T

TT

T







⋅+⋅⋅−⋅+⋅⋅+⋅+⋅−=

⋅++⋅−⋅⋅+⋅+⋅⋅−=

⋅+⋅=

γεωη

γεωη

γ

 (17)

Update the adaptive rate W
̂

.

 hbsW ⋅⋅⋅=
γ
1̂

 (18)

Substitute (18) into (17), then simplified equation)'(εωη ⋅+⋅+⋅−= bssV . On

the basis of formula (5) and (14), the inequality 0≤V can be analyzed.

4 Simulation Results

In order to validate the performance of the proposed algorithm, the training ship,
Yulong, was involved and simulations were performed by Matlab/Simulink. The

392 Gao-Xiaori et al.

length, breadth and draft of the ship is 126m,20.8m and 8m respectively. The ship’s
model parameters are 9629.7'=K , 88.13'=T , 30=α . The wind direction and wind
speed is 10°and 20 m/s respectively. The initial speed is 7.2 m/s. The controller pa-
rameters are 2.0=c , 05.0=κ , 1.0=η . The RBFNN structure is 1-5-1 and initial

weights are 0. The vector central is]6/112/1012161[−−⋅= πic and the base
width is 1=iσ . The network input is v . The coefficient of NN update weights is

01.0=γ .

4.1 Course-Keep Simulation

The autopilot maintains the ship on a settled course under the external disturbances in
this paper. The initial course is 10°and the desired course is 50°. The simulation re-
sults were plotted from fig.3 to fig.5. These figures demonstrated that ship can keep
the desired course by the proposed algorithm.

0 100 200 300 400 500 600
0

20

40

60

time/s (a)

C
ou

rs
e

tr
ac

ki
ng

ideal course signal

course tracking signal

0 100 200 300 400 500 600
-0.5

0

0.5

1

1.5

time/s (b)

Y
aw

 r
at

e
tr

ac
ki

ng

ideal ROT signal

tracking ROT signal

Fig. 3. The historical data of the course tracking and yaw rate tracking

0 100 200 300 400 500 600
-500

0

500

1000

time/s (a)

C
on

tr
ol

 in
pu

t,
v

0 100 200 300 400 500 600
-20

0

20

40

time/s (b)

C
on

tr
ol

 in
pu

t,
u

Fig. 4. The historical data of the designed input v and the saturation constraints input u

 Designed Slide Mode Controller for Ship Autopilot 393

0 100 200 300 400 500 600
-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

time/s

th
et

a

true theta

theta estimation

Fig. 5. The data of the error ϑ andϑ̂ in course-change

4.2 Course-Change Simulation

The autopilot can alter course in accordance with commanded course under the exter-
nal disturbances. The initial course is 10°. The desired commanded course system is a
two-order settled reference equation and its initial value is 0°.The other parameters of
reference system are as follows. 1=ξ , mϕ is square wave with the amplitude 10°.

nω is 0.05. The simulation results were plotted from fig.6 to fig.8.

0 100 200 300 400 500 600 700 800
-20

-10

0

10

20

time/s (a)

C
ou

rs
e

tr
ac

ki
ng

ideal course signal

course tracking signal

0 100 200 300 400 500 600 700 800
-1

-0.5

0

0.5

time/s (b)

Y
aw

 r
at

e
tr

ac
ki

ng

ideal ROT signal

tracking ROT signal

Fig. 6. The historical data of the course tracking and yaw rate tracking in course-change

These figures demonstrated that ship also can track the settled commanded course
by the proposed algorithm with the same parameters.

394 Gao-Xiaori et al.

0 100 200 300 400 500 600 700 800
-300

-200

-100

0

100

time/s (a)

C
on

tr
ol

 in
pu

t,
v

0 100 200 300 400 500 600 700 800
-40

-20

0

20

40

time/s (b)

C
on

tr
ol

 in
pu

t,
u

Fig. 7. The historical data of the designed input v and the saturation constraints input u

0 100 200 300 400 500 600 700 800
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

time/s

th
et

a

true theta

theta estimation

Fig. 8. The value of the error ϑ andϑ̂ in course-change

5 Conclusion

In this paper, a SMC scheme was proposed for the ship autopilot with the saturation
of steering gear. The state of the ship course nonlinear system was solved by a group
of the MMG ship motion formulas to be much closer to the actual conditions. The
error between the designed input and the saturation constraints input was approximat-
ed by the RBFNN. The network errors and the external disturbances were
overcome by the SMC method. Take training ship, Yulong, for example, simulation
results demonstrate the effectiveness of the proposed scheme.

Although the algorithm can guarantee stability of the system, it is more meaningful
to study algorithm with the time and space constraints. Therefore, terminal sliding
mode or output feedback control will be the further research.

 Designed Slide Mode Controller for Ship Autopilot 395

Acknowledgments. This work is supported by the Fundamental Research Funds for
the Central Universities under grant No.3132013005 and 3132014027.

References

1. Sun, N., Fang, Y.C.: A review for the control of a class of under actuated systems. CAAI
Transactions on Intelligent Systems 6(3), 200–207 (2011) (in Chinese)

2. Liu, W.J., Sui, Q.M., Xiao, H.R., Zhou, F.Y.: Sliding backstepping control for ship course
with nonlinear disturbance observer. Journal of Information & Computational
Science 8(16), 3809–3817 (2011)

3. Thor, I.F.: Guidance and control of Ocean vehicles. of Trondheim. John Wiley & Sons
Ltd., University of Trondheim Norway (1994)

4. Yang, Y.S., Zhou, C.J., Ren, J.S.: Model reference adaptive robust fuzzy control for ship
steering autopilot with uncertain nonlinear systems. Applied Soft Computing 3, 305–316
(2003)

5. Khac, D.D., Pan, J.: Control of ships and underwater vehicles design for underactuated and
nonlinear marine systems. Springer, London (2009)

6. Amerongen, J.V.: Adaptive steering of ships—a model reference approach.
Automatica 20(1), 3–14 (1984)

7. Du, J.L., Guo, C.: Nonlinear adaptive design for course tracking control of ship without a
priori knowledge of control gain. Journal of Control Theory and Applications 22(2),
315–320 (2005) (in Chinese)

8. Bu, R.X.: Nonlinear feedback control of underactuated surface ships. Dalian Maritime
University, Dalian (2008) (in Chinese)

9. Jia, X.L., Yang, Y.S.: Ship motion mathematical model. Dalian Maritime University Press,
Dalian (1999) (in Chinese)

10. Yang, Y.S., Jia, X.L.: Robust adaptive control algorithm applied to ship steering autopilot
with uncertain nonlinear system. Ship Building of China 41(1), 21–25 (2000) (in Chinese)

11. Liu, C., Li, T.S., Chen, N.X.: Dynamic surface control and minimal learning parameter
(DSC-MLP) design of a ship’s autopilot with rudder dynamics. Journal of Harbin
Engineering University 33(1), 1–6 (2012) (in Chinese)

12. Li, J.F., Li, T.S.: Direct adaptive neural network tracking control with input saturation.
Journal of Applied Sciences—Electronics and Information Engineering 31(3), 294–302
(2013) (in Chinese)

13. Wei, E.P.: Design ship autopilot with delays and input saturation. Dalian Maritime
University, Dalian (2013) (in Chinese)

14. Chen, M., Ge, S.Z.S., Ren, B.B.: Adaptive tracking control of uncertain MIMO nonlinear
systems with input constraints. Automatica 47, 452–465 (2011)

15. Liu, J.K.: Sliding mode control design and matlab simulation. Tsinghua University Press,
Beijing (2012) (in Chinese)

16. Thor, I.F.: Marine control systems: guidance, navigation and control of ships, rigs and
underwater vehicles. Norwegian University of science and technology Trondheim, Norway
(2002)

17. Tomaso, P., Federico, G.: A theory of networks for approximation and learning. A.I.
Memo No.1140,C.B.I.P. Paper No.31.Massachusetts institute of technology artificial
intelligence laboratory and center for biological information processing Whitaker college,
Cambridge, Massachusetts (1989)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 396–403, 2014.
© Springer International Publishing Switzerland 2014

Automatic Assessment Model
for Sailing in Narrow Channel*

Wang Delong and Ren Hongxiang

Key Laboratory of Marine Dynamic Simulation & Control for Ministry
of Communications, Dalian Maritime University, Dalian 116026, China

wangdelong1986@sina.com, dmu_rhx@163.com

Abstract. Firstly, analyze the relevant IMO regulations about vessels proceed-
ing along a narrow channel, then establish a evaluation index system combining
with the theory of ship handling; secondly, establish membership functions by
using the membership function evaluation method for every evaluation index;
Thirdly, obtain the weights of evaluation indexes utilizing the expert evaluation
method; At last, establish the evaluation procedure and develop the automatic
evaluation model for vessels proceeding along a narrow channel by using C++
programming language. This system has been tested preliminarily with satisfied
results.

Keywords: narrow channel, automatic assessment model, ship handling, mem-
bership function.

1 Introduction

Ship officers maneuver the vessels sailing all over the world depending on their
knowledge and experiences. Due to the differences of the education background and
the navigating experiences, there are many different method of ship maneuvering, so
it comes to the optimization problem. However, it is difficult to evaluate the ship
maneuvering skill of a navigator in different environments. Considering the safety
issues only, it will be qualified if the ship arrives the designated port with no colli-
sions. But which is the minimum requirements. For in-depth studies, higher request is
required. It is necessary to evaluating mariners’ maneuvering skills in different situa-
tions. For sailing in a narrow channel, firstly consider the restrictions of the channel
(breadth, depth and so on); secondly standard the ship maneuvering method; thirdly
evaluate the skills of the ship officers’ maneuvering; finally, offer the improvement
advices according to the detail results. When it achieves the high degree of standardi-
zation of ship’s maneuvering, the system could apply to the navigating auxiliary sys-
tem, even could realize the auto-navigation.

* Foundation item: Supported by “973 Major State Basic Research Development

Program ”(No. 2009CB320805); “Natural Science Foundation of Liaoning Prov-
ince”(No. 201202018); “The Fundamental Research Funds for the Central Universi-
ties” (No. 01780134).

 Automatic Assessment Model for Sailing in Narrow Channel 397

2 Evaluation Method

There are lots of ways to establish the evaluation model, for instance, Hypothesis
Test[1], Improved TOPSIS[2], Fuzzy comprehensive evaluation method based on
grey correlation degree[3], and using a small function curve model[4]. Every methods
have their advantages and applied ranges.

In this paper, we adopt the key informant and the fuzzy comprehensive evaluation
method.

Because of the uncertainty of some evaluation indexes, apply the fuzzy mathemat-
ics to establish the membership function. Acquire the membership value ߤ௜ of single
evaluation index according to the results of practical operations. Combine ߤ௜ with the
relevant weight value ߱௜ and sum to get the total score (ݏ). This method is compara-
tively simple and also could decrease the uncertainty of evaluation indexes.

ݏ = ∑ ௜ߤ) × ߱௜)௡௜ୀଵ (1)

Where: n stands for the number of evaluation indexes.

3 Evaluation Index System

The establishment of evaluation indexes system is the fundamental work of evaluation
model. There are many factors affecting the ship sailing in the narrow channel, in-
cluding restriction in fair way, weather condition, the ship and so on. After studied the
different factors, this paper get the evaluation indexes system sailing in narrow chan-
nel, see figure 1.

Fig. 1. Evaluation indexes system

398 W. Delong and R. Hongxiang

After the establishment of evaluation indexes system, we need to establish mem-
bership function for each evaluation index. The following are introduced.

3.1 Display of Lights and Shapes

According to the provisions 20-30 of the 1972’ International Regulations for Prevent-
ing Collisions at sea(short for “The Rules” as follows), display different lights and
shapes in different situations. Firstly, get the sailing environment (including day or
night, visibility, fairway, navigational status and so on) and the displacement of the
ship; secondly, analyze the standard displacement of the ship; finally, contrast them to
get the final result.

3.2 Risk of Collision

The minimum distance of the two vessels is the index to judge the risk of collision.
For convenience, use the larger Breadth of the two vessels to represent the standard
distance. If the distance of the two vessels is smaller than the standard one, the risk of
collision exists. We evaluate this index from the action of the ship officer.

3.3 Responsibility

Divide the situations, get the risk of collision, and get the standard responsibility
(give-way vessel or stand-on vessel). If the action of the vessel meets the standards,
the officer gives the correct answer.

3.4 Anti-collision Way

In accordance with collision avoidance habits, if feasible and safe, try to alter course
to avoid collision. But, during the progress of anti-collision, the officer change the
speed of the ship, and no collision happens, we think that the action is also qualified,
just the score is lower.

3.5 Anti-collision Range

In accordance with the Rules, Any alteration of course and/or speed to avoid collision,
shall, if the circumstances of the case admit, be large enough to be readily apparent to
another vessel observing visually or by radar. In open waters, actions should be turned
15 degrees and/or half speed. But in narrow channel, 5 degrees is also feasible. So the
standard is 5 degrees. The membership function is as follows:

ߤ = ൜ 1, ∆≥ ∆௦݁ି(∆ି∆ೞ)మ/௞, ∆< ∆௦ (2)

Where：ߤ is a membership value，∆ is the variable of the course or speed，∆௦
is the standard variable of the course or speed，݇ is the parameter of the mem-
bership function.

 Automatic Assessment Model for Sailing in Narrow Channel 399

3.6 Lookout

In accordance with the rule 5 of the Rules, Every vessel shall at all times maintain a
proper look-out by sight and hearing as well as by all available means appropriate in
the prevailing circumstances and conditions so as to make a full appraisal of the situa-
tion and of the risk of collision. The purpose of Lookout is to ensure the safety of
navigation. If the officer can find the ship around him as soon as possible use differ-
ent means, and give the correct judgment of the encounter situation, take corrective
action, then the officer lookout can be considered to be qualified, otherwise to be
unqualified.

3.7 Re-action Time

After the other vessel is finally past and clear, the vessel taking action should alter
course to its original route. The re-action time is very important, if it is earlier, the two
vessels may have risk of collision again, if it is later, the vessel taken action should
take more time to sailing in the plan route. So, the standard is the time the other vessel
is finally past and clear, in open waters, this time may be the time that there are 1 to 2
nm between the two vessels after they are past and clear. In narrow channel, 1.5-2
times ship length is appropriate. The membership function is as follows:

ߤ = ቊ 1, ݀ ≥ ݀௦݁ି(ௗିௗೞ)మ/௞, ݀ < ݀௦ (3)

Where: ݀ is the distance that the vessel begins to take re-action, ݀௦ is the stand-
ard that the vessel begins to take re-action.

3.8 Safe Speed

In accordance with the rule 6 of the Rules, Every vessel shall at all times proceed at a
safe speed so that she can take proper and effective action to avoid collision and be
stopped within a distance appropriate to the prevailing circumstances and conditions.
In narrow channel, if there is speed restriction, this speed is the standard value. If not,
economic speed is the standard value, by making the appropriate correction according
to the environmental conditions and traffic flow conditions. The membership function
is as follows:

ߤ = ݁ି(௩ି௩ೞ)మ/௞ (4)

Where： ݒ is the average speed，ݒ௦ is the standard safe speed.

3.9 Action Horn

In accordance with the Rules relating to the action horn, when the vessel takes ac-
tion, she needs to use the corresponding action horn. The difficulty is that matching
the sailing environment and the relevant provisions of the Rules. As long as the
action horn meets the Rules, the evaluation result is out, otherwise is zero.

400 W. Delong and R. Hongxiang

3.10 Distance to Channel

In accordance with the rule 9 of the Rules, A vessel proceeding along the course of a
narrow channel or fairway shall keep as near to the outer limit of the channel or fair-
way which lies on her starboard side as is safe and practicable. The key issue is the
critical distance to the right edge of the fairway. We need to consider the quay effect
and the shallow effect, but these two factors are very complex. In assessing, as long as
the vessel sails along the right side of the middle line in the narrow channel without
these two effects, the evaluation result is out, otherwise is zero.

3.11 Cross Channel

In accordance with the rule 9 of the Rules, A vessel shall not cross a narrow chan-
nel or fairway if such crossing impedes the passage of a vessel which can safely
navigate only within such channel or fairway. The latter vessel may use the sound
signal prescribed in Rule 34(d) if in doubt as to the intention of the crossing ves-
sel. The action meets with it, the evaluation result is out, otherwise is zero. When
setting the questions, determine whether the ship should cross the narrow channel,
as a basis for evaluation.

3.12 Action Time

There are two key issues for determining the action time; the first one is TCPA
while taking action, the second one is the distance between two vessels while
taking action. In assessing, consider these two issues separately, then give differ-
ent weight to each other, finally, weight average to get the final results of the as-
sessment. The membership function is as follows:

(ܶ)ߤ =)ߤ ்ܶ஼௉஺) × ωଵ +)ߤ ஽ܶூௌ) × ωଶ (5)

)ߤ ்ܶ஼௉஺) = ݁ି൬்ି೅ೄ∆S൰మ ௞భൗ
 (6)

)ߤ ஽ܶூௌ) = ݁ି(஽ି஽ೄ×∆S)మ ௞మ⁄ (7)

Where：ߤ(்ܶ஼௉஺), ߤ(஽ܶூௌ) is the membership function of ܶܣܲܥ and distance; ܶ is the TCPA while taking action; ܦ is the distance between two vessels while
taking action; ௌܶ is the standard TCPA; ܦௌ is the standard distance; ωଵ is the
weight of TCPA; ωଶ is the weight of distance.

3.13 Anti-collision Result

The basic requirement is that the other vessel is past and clear. The key issue is the
minimum distance between the two vessels. The membership function is as follows:

ߤ = ቊ 1, ܣܲܥܦ ≥ ,௦݁ି(஽஼௉஺ି஽஼௉஺ೞ)మ/௞ܣܲܥܦ݀ ܣܲܥܦ < ௦ܣܲܥܦ (8)

Where： ܣܲܥܦ is the distance at closest point of approach，ܣܲܥܦ௦ is the
standard distance at closest point of approach.

 Automatic Assessment Model for Sailing in Narrow Channel 401

4 Evaluation Model

This article is only evaluated for the case of a ship sailing under good visibility in the
narrow channel and collision avoidance with a single target ship. In assessing, deter-
mine whether the ship sailing in the obscured area, if it is, judge the action horn is
right or not, otherwise, evaluate the sailing in the normal channel. If it comes to ship
collision avoidance, evaluate the action of collision avoidance: specific distinction
overtaking situation, the head-on situation and the crossing situation, thereby deter-
mine the responsibility of the two vessels. According to the responsibility, evaluate
the action to avoid collision. The evaluation progress of the automatic evaluation
model for sailing in narrow channel is shown in figure 2.

Fig. 2. Evaluation progress

402 W. Delong and R. Hongxiang

5 Examples

The automatic evaluation model has been established, and tested on ship handling
simulator. The following is one of the examples. From the results, the automatic eval-
uation results are reasonable, meet the actual ship maneuvering. The maneuvering
track is shown in figure 3. The score details are shown in figure 4.

Fig. 3. Maneuvering trajectory

Fig. 4. Score details

6 Conclusions

This paper established an automatic evaluation model for sailing in narrow channel. The
model has been tested in ship handling simulator, evaluation results are reasonable.
However, the model needs to be further improved, such as this model can be expanded
to consider all visibility conditions, and evaluate multi-ship collision avoidance.

 Automatic Assessment Model for Sailing in Narrow Channel 403

References

1. Tao, J., Yin, Y., Lian, J.J.: Research on Assessment of Ship Entering Port in Navigation
Simulator. J. Ship Electronic Engineering 2, 119–122 (2011)

2. Yang, Y.F., Fang, Q.G.: Assessment of navigation simulation for marine police in narrow
sea-route. J. Journal of Shanghai Maritime University 3, 14–18 (2008)

3. Li, Q.H., Jian, Y.: Evaluation on the Simulator Berthing Training Result Based on Im-
proved TOPSIS. J. Journal of Guangzhou Maritime College 1, 4–7 (2013)

4. Chen, J.B., Wu, G.Y., Ying, S.J.: Evaluation of large-vessel handling simulation based on
synthetic grey-fuzzy method. J. Journal of Shanghai Maritime University 4, 1–5 (2008)

5. Chen, L.N., Ren, H.X., Jin, Y.C.: On Ship Radar/ARPA Intelligent Examination System. J.
Journal of Chong Qing Jiao Tong University (Natural Science) 30, 1049–1053 (2011)

6. Wang, D.L.: Preliminary Study on the Ship Maneuvering Automatic Evaluation System
based on Ship Handling Simulator. Master thesis. Dalian Maritime University (2013)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 404–416, 2014.
© Springer International Publishing Switzerland 2014

Bus Arrival Time Prediction and Release:
System, Database and Android Application Design*

Junhao Fu1, Lei Wang2, Mingyang Pan1, Zhongyi Zuo2, and Qian Yang1

1 Navigation College, Dalian Maritime University, Dalian, China 116026
fujunhao2006@126.com

2 School of Traffic and Transportation Engineering, Dalian Jiaotong University,
Dalian, China 116028

Abstract. The system, facing to passengers, aim to releasing the information of
bus arrival time prediction, sends messages to mobile phone directly, saves the
travel time and decreases the waiting times and also increases the efficiency.
The system runs with the information of bus real-time GPS data, using the
computer languages and technologies of Java EE, JSP, MySQL database and
Android. The author uses FSM (finite state machine) which is part of servers to
handle the bus real-time data, develops a synthetic system centralized, enter-
prise-level, mobile phone platform and based on requests and responses.

Keywords: Urban Transportation, GPS, Arrival Time Prediction, Java EE,
Android.

1 Introduction

With the effect of the reform and opening-up policy, the national economy increasing
constantly and the urbanization process of China deepen unceasingly. The city scale
expanded quickly, the total of vehicle turned to tremendous. Meanwhile, the conflict
between the need of transport, traffic capacity, road using and construction of roads
became highlighted. While, it is a necessary path to build high capacity, high load
carrying capacity and slight polluted public transportation. Urban public transport
systems of China exists some problems of low efficiency of running, low level of
information service and so on. With the arrival of information era, computing indus-
try, Internet and communication technology developed a lot. Intelligent Society is
near, and also the public needs bus information more and more.

The waiting passenger usually faced with a situation that either no bus arrived or a
crowd of buses arrived. The fact could easily causes a series of mental problems such
as dysphoric, meanwhile the situation would impacts the next step's judgment and
plan of passengers. The aim to research Bus Arrival Time Prediction and Release
System is to make travel more convenient and also save passengers' time.

Bring with ITS development, the technologies of bus arrival time prediction and
electronic station board have been researched and used widely. Lin and Zeng used
real-time GPS data to do some statistical analysis [1], then they came up with a bus

* Supported by“ the Fundamental Research Funds for the Central Universities”: No.3132014309.

 Bus Arrival Time Prediction and Release 405

arrival predict algorithm which was based on history data. Chien and his colleagues
built up an artificial neural network algorithm to predicted bus arrival time [2]. Chen
and his colleagues brought APC data to the predict algorithm, in order to increase the
accuracy of prediction [3]. Jeong and his colleagues used AVL data to increase the
accuracy of vehicles location [4]. Zhou and his colleagues used mobile phone to lo-
cated bus, in order to predict bus arrival time [5].

Most research of colleges and universities in China have concentrated on theories
and Algorithms. Yu and his colleagues came up with a bus arrival time prediction
model ,the model, predicting the bus travel time, fully proved that the accurate supe-
riority of optimized Kalman filter which supported vector machine [6][7][8]. Sun and
his colleagues used probe vehicle which treated as samples to collect bus travel time
data [9], in order to do some prediction. The bus arrival prediction algorithms which
is presented by Zuo provided a good thinking in sending bus arrival information to
user's mobile phone [10]. But there is nobody published literatures about the design of
bus arrival time prediction system till now.

For the application, several cities in China like Suzhou and Xiamen have already
covered arrival information prediction of all lines. Such as the crisscrossed traffic
network of Suzhou, its search service relied on the line number and station code
which had a bad experience in the user surface, also, it could only fetch the number of
stations between vehicle and target station and couldn't support the information about
the distance or time.

This paper, based on the foundation of the research about bus arrival time predict
algorithms, has do some design and realization on the bus arrival time prediction and
release system. The article introduced the overall structure of the system in 2, the
prediction and the realization of core service in 3, the design of system database in 4,
the design of the client based on Android in 4, at last this article summarized the work
of design and realization.

2 System Overall Architecture

B/S combined with C/S, application database-middleware-client model, is an architec-
ture which being widely used by information system. The system overall architecture
is shown in Fig.1.

The bus information release system includes four parts which is communication in-
terface, servers, and database.

1. Servers

The server which realized the core algorithm and logical operation is the core device.
The server handles the data which come from kinds of ports and calculates the result
or do some response.

2. Database

The database is used to store a large scale of data which is considered to be a big
mount of history data and their calculating results, related information about bus sys-
tem such as line information and vehicle information.

406 J. Fu et al.

3. Client

The client is a mobile phone application which is used to release messages to the pub-
lic. The client and the server communicates through the Internet, the client shows the
result which handled by the server to the users directly.

4. Communication interface

The interface does the work of communication between vehicles and servers, it real-
ized the collection of the running state of vehicle data. And also, the interface realized
the exchange of information between clients and servers.

Fig. 1. Overall Architecture

3 Server

3.1 Logical Structure

According to the logical structure of the system, which is the process of business logic,
the system service is divided into four function modules named user search function,
data collection function, core calculating function and system maintenance function.
(See Fig.2.).

1. user search function

The user search function provides to users (public, passengers) the running status of
the bus. The system releases the bus running status to the public and response to the
query of target vehicle come from the client.

 Bus Arrival Time Prediction and Release 407

2. data collection function

The data collection function is to collect and store the bus vehicle operating data de-
livered from the data interface, which conveys the vehicle status online. This function
can reserve bus operation history data into the database.

3. Core calculation function

System processes the collected online data and the history data stored in the database
in order to export the result information. Core calculation function is composed by
two aspects: one is to predict the real-time bus vehicle arrival information which is
requested by user query; the other is to collect and store the vehicle online operation
status data, which includes such two parts as collecting and storing online and analyz-
ing and processing offline.

4. Management and maintenance function

This function is designed for managing and maintaining some basic information such
as route and vehicle information which will be useful for prediction.

Fig. 2. The Logical Structure of the Server

3.2 Design and Implementation

Based on the service logic on the server scope, we designed the class diagram as
shown in Fig.3. The description of several core classes is listed as following:

1. Class Bus: defines the properties and the fundamental methods of bus. Each hypo-
static bus vehicle that is operating online will create an instance of class Bus corre-
spondingly, and which will be temporarily stored in an array list called busList in
servlet context that has a lifecycle of application scope.

2. Class DataConn: establish the database connection, and keep the connection into
the database connection pool, which is aimed to reduce the coupling degree be-
tween the server and the database.

3. Class Initialize: response to the initialization operation of the system, then set up the
database connection pool, monitor the bus vehicles status and construct and decon-
struct the bus objects according to the real-time monitoring bus operating status data.

408 J. Fu et al.

4. Class Forecast: implement the prediction function.
5. Class BusInterface: response to the request on updating of bus objects according to

the bus entities.
6. Class UserInterface: response to the request of users to query information then re-

turn the query results.

Fig. 3. Core Class Diagram on Servers

Among these classes, class Bus and class Forecast are the basic and core classes of
system service. The description on the implementation of these two classes is given as
following:

─ Class Bus

The main methods in class Bus includes:

• Method Distance: this is the method to calculate the distance between two points,
and the returned value is a float value which equals to the distance between the two
points those are the parameters of this method.

• Method Location: this is the method to locate a vehicle, i.e., to judge which stop
(point) or which link (path) the vehicle is at or on. The implementation flow dia-
gram is shown in Fig. 4.

 Bus Arrival Time Prediction and Release 409

Fig. 4. The Flow Diagram of the Method Location

410 J. Fu et al.

Fig. 5. The Flow Diagram of the Method Calculate

─ Class Forecast

The Class Forecast, which will be adopted to response the request of prediction, is the
most important class to implement the online bus arrival time prediction algorithm, in
which the main member method is the method Calculate. This method need to read
the time data of every links and points and the distance data of every links circularly
from database, which takes the existence checking of the nearest vehicle as the end
mark of the circular processing. The implementation flow diagram is shown in Fig.5.

4 Database

4.1 Composition of Database

The System will apply the database to process including these three aspects: 1) the
reference tables for online calculation; 2) the massive history data for offline calcula-
tion; 3) management and maintenance data.

 Bus Arrival Time Prediction and Release 411

Because of the continuous do the prediction computing instantly, huge data size
and data processing workload will emerge. Storing the data schema for collecting
data, calculating data and basic information managing in a mixture database instance
will reduce the efficiency both of the data processing and the information manage-
ment. For resolving this problem, three independent data schemas are divided, which
are responsible for data collection, online data processing and information manage-
ment. Fig.6 shows the composition of the database.

Fig. 6. The Composition of the Database

4.2 Database Design

The database design is a practice on bottom-up approach, which is considered to be an
suitable echo to the top-down analyzing approach, i.e., conduct the demand analysis
from top to bottom firstly, then proceed the conceptual structure designing from bot-
tom to top, so that an overall conceptual pattern can be aggregated by integrating the
minimum elements which are impartible at last. The E-R diagram is shown in fig.7.

Fig. 7. The E-R Diagram of the Database

5 Client

This paper developed a system with line and station inquiry, arrival time prediction for
mobile client, basing on Android platform. Functionally, it inquiry the line details and
every probability of this station through the name entering, so as to subjoin the prediction

412 J. Fu et al.

function which can predict the arrival time, distance, remaining station, full load condi-
tions for passengers’ convenient travel on the basis of years simple query functions.

5.1 Software Structure

The client program structure showed in Fig.8, it contains Activity module, Data Pro-
cessing module, Interface control module and Project Configuration module. Fig. 9
shows the operation flowchart of client.

Fig. 8. Client Program Structure

Fig. 9. Operation Flowchart of Client

5.2 Function Implementation

1. Downloading Database

Automatically fulfill and obtain entering contents through autocomplete text view
setting, then search database name table and get its English name, calling
writeToSDFromInputStream method from Downloader Class and downloading the
corresponding database.

2. Record downloading city , urban functions by default

Using ShardPrefercences target to create xml files, saving the corresponding data in
it.

 Bus Arrival Time Prediction and Release 413

3. Bus Searching Function

Set interface controls listen for events, access queries of line or station name. Call
corresponding method of Class DBgetdata, connecting loaded database as well as
searching.

4. Bus Prediction Function

Set interface controls listen for events, access queries of line or station name. Get
contact with service via calling getyubao methods of Class Httpgetpost, setting lines
and stations names to service for later disposition and obtain the response information
through httppost method.

5. Client Local Data Store

This software have three kind of data storage:
1) downloading database files;
2) set record file through software;
3) local database files. Database files located in db file of sd card, set record file

located in the path of "data/data/fjh.work.mian/shard_prefs/".
The main function of local database files is the exchange of Chinese and English,

the initial location is apk packbag, and set to mobile along with software and have its
path of sd/.

6. The Principle of Software and Server Communication

This software communicate with server through Class HttpURLConnection and Class
Httppost, needing the url address of server ,which is the tie of the communication.
Figure 10 shows the client software interface and function implementation effect.

 (a) (b) (c) (d)

Fig. 10. Client Implementation Effect (a) road query interface; (b) returned result of line query;
(c) results prediction and return; (d)station query interface

414 J. Fu et al.

6 System Experiment

We chose the 18 bus of Lushun, Dalian to test the system of bus information, and the
result is showing as following.

6.1 Texting Result

Fig. 11. The Contrast of Prediction Arrival Time and Actual Arrival Time of Key Point

Fig. 12. The Contrast of Prediction Accumulative Time and Actual Accumulative Time of Key
Point

 Bus Arrival Time Prediction and Release 415

6.2 Result Analysis

Due to the limitation of experimental conditions, as we can see from figure 10, we can
achieve better accuracy in 18 bus Lushun, Dalian in less number of sample using this
system with the main prediction error of 22.6s. Experiments results show that the
disturbance between predicted and measured values is large in the subdivision of the
small section of the key points, which due to the data acquisition, the degree of subdi-
vision sections, and also with the number of the relevant sample. If we can accumu-
late more samples in the actual operation will significantly increase its accuracy.

We can see from the figure 11 of accumulative time, the predicted and actual cu-
mulative travel time lines are consistent in the key point. In the condition of longer
distances, interval station is more ,the vehicle arrival time is long, will get a better
prediction accuracy for this bus line. In other words, the system can better reflect the
situation on the bus running the macro and make predictions.

7 Conclusion

This paper started with release bus arrival time prediction information for passengers
and intuitively send predicted vehicle arrival information on the situation of the target
line to passengers mobile client, designed bus arrival time prediction and information
dissemination systems and implement.

This paper precisely expounds the overall system architecture , server design and
implementation, database design, and the design and implementation of mobile client
based on the Android operating system and use the actual Dalian Port Arthur 18 sys-
tem been the object of experiment. The results shows that the system can better reflect
the situation on the bus running the macro and make predictions.

Currently, the design and implementation of bus arrival time prediction and infor-
mation dissemination system function is still relatively simple. In subsequent studies,
on the basis of the accuracy of predictive algorithm we will strengthening the client
application features include electronic map combination, etc., and optimize the user
interface, in order to better provide bus arrival time prediction services for travelers.

References

1. Lin, W.H., Zeng, J.: Experimental study of real-time bus arrival time prediction with GPS
data: Transportation Research Record. Journal of the Transportation Research Board 1666,
101–109 (1999)

2. Chien, S.I.J., Ding, Y., Wei, C.: Dynamic bus arrival time prediction with artificial neural
networks. Journal of Transportation Engineering 128, 429–438 (2002)

3. Chen, M., Liu, X., Xia, J., et al.: A Dynamic Bus-Arrival Time Prediction Model Based on
APC Data. Computer-Aided Civil and Infrastructure Engineering 19, 364–376 (2004)

4. Jeong, R., Rilett, L.R.: Prediction model of bus arrival time for real-time applications:
Transportation Research Record. Journal of the Transportation Research Board 1927,
195–204 (2005)

416 J. Fu et al.

5. Zhou, P., Zheng, Y., Li, M.: How long to wait?: predicting bus arrival time with mobile
phone based participatory sensing. In: Proceedings of the 10th International Conference on
Mobile Systems, Applications, and Services, pp. 379–392. ACM (2002)

6. Bin, Y., Zhongzhen, Y., Baozhen, Y.: Bus arrival time prediction using support vector ma-
chines. Journal of Intelligent Transportation Systems 10, 151–158 (2006)

7. Yu, B., Lam, W.H.K., Tam, M.L.: Bus arrival time prediction at bus stop with multiple
routes: Transportation Research Part C. Emerging Technologies 19, 1157–1170 (2011)

8. Yu, B., Yang, Z.-Z., Zeng, Q.-C.: Bus Arrival Time Prediction Model Based on Support
Vector Machine and Kalman Filter. China Journal of Highway and Transport 21, 89–92
(2008)

9. Sun, D.-H., Lai, Y.-B., Liao, X.-Y., et al.: Real-time prediction model of arrival time for
floating transit vehicle. Journal of Traffic and Transportation Engineering 11, 84–89
(2011)

10. Zuo, Z.-Y., Wang, L.: Bus Arrival Time Forecasting and Real-time Information Publica-
tion Technology. Journal of Transportation Systems Engineering and Information Tech-
nology 13, 63–68 (2013)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 417–424, 2014.
© Springer International Publishing Switzerland 2014

On Key Techniques of a Radar Remote Telemetry
and Monitoring System*

Jiangling Hao, Mingyang Pan, Deqiang Wang, Lining Zhao, and Depeng Zhao

Navigation College, Dalian Maritime Univ. Dalian 116026, China
haojlxn@qq.com

Abstract. In order to monitor those vessels which are not equipped with AIS, a
radar remote telemetry and monitoring system which combines radar and
ECDIS is proposed. This system consists of data collection layer, processing
layer, and presentation layer. Each radar station is installed with MD-
3641/3642 radar. Using the 16-bits SCM PIC24 as CPU, an embedded hard-
ware based on ETX PC is designed for radar telemetry. A logic diagram for the
embedded radar controller is illustrated. Internet communication technology is
adopted to complete the data transmission between center and radar station. A
target echo identifying algorithm is presented to denoise the radar image and
compute the accurate position of the objects overlaid on the electronic charts.
Applied result shows that these techniques and approaches are efficient and
feasible.

Keywords: radar remote telemetry and monitoring, ECDIS, embedded technol-
ogy, target echo identifying algorithm.

1 Introduction

To promote the application of advanced technology in the domestic voyages and to
standardize the usage of ECDIS and AIS for navigation safety, China Maritime Safety
Administration issued a ‘domestic voyages shipboard electronic chart systems and
automatic identification system equipment regulations’. According to the specific
requirements of the International Maritime Organization concerning, all 300 gross
tonnage and above on international voyages and 500 gross tonnage and above and
non-international voyages, and all passenger ships should be equipped with AIS.

Electronic Chart Display and Information System (Electronic Chart Display and
Information System-ECDIS) is an integrated navigation information system which
performs a variety of functions related to the navigation safety in the electronic chart
display. It has great many useful functions such as planned route designing, position
tracking and display, navigational alarm, sailing records, and other assistant operating
decisions. Connecting AIS with ECDIS effectively improves the navigational safety.
Now a great number of ships runs by this means.

* This work is supported by Fundamental Research Funds for the Central Universities of

China (3132014309).

418 J. Hao et al.

Those regulation and requirements above provide possible means for monitoring
the AIS ships. In article [1], AIS stations are set up on the shore to acquire the real-
time information of those AIS ships in the area AIS signal can reach. Article [2] pro-
poses a method that GPRS device is equipped in the ship to transfer the information
of own GPS to the center. By this way the center is able to monitor those ships which
has GPRS device. Apparently, these methods are not feasible for monitoring the ships
un-equipped with AIS or GPRS.

There are over one million and sixty thousands fishing vessels in china, which is
the largest number in the world. The equipments and condition in most fishing vessels
are worn and dangerous. On the other hand, Ocean fishing vessels are few but coast
fishing vessels are many more. Unfortunately, the working area of most vessels are
exactly concentrated in the crowded area where great many merchant ships run.
Apparently, this brings a terrible threat to navigational safety.

This paper designs a radar remote telemetry and monitoring system based on
ECDIS. For promoting vessel traffic management and services, this system fully mon-
itors vessels including those not equipped with AIS and GPRS device. Especially,
when some of them are in danger, this system locates their position for rescuing.
By these way the blind spots of monitoring is eliminated.

2 System Architecture

The system consists of data collection layer, processing layer, and presentation layer.
radar stations is data collection layer. a central monitoring system is processing layer,
a web site and user’s PC, PAD, smart-phone is presentation layer. The system logical
architecture is illustrated in Figure 1.

Fig. 1. The system architecture

 On Key Techniques of a Radar Remote Telemetry and Monitoring System 419

The key part in radar station is a embedded control unit which obtains the radar
video signal via a video capture card and real-timely forms the radar image. Then it
sends the compressed image to the center through Internet with the communication
technologies such as private Line, ADSL, 2G, 3G. Meanwhile, it receives instructions
from the center to control radar[3].

Based on a ECDIS, the central monitoring system is either a data center or a com-
munication control center. It receives the radar images files compressed form the
radar stations, then unzips these files and overlays them on the electronic charts. The
next procedure is to identify the objects and to calculate their accurate position, speed,
course. When these processes are done, the final pictures is published on a web site to
provide information for society. Of course, the center is able to remotely control the
radar stations by sending control instructions to the radar stations.

The basic platform of the monitoring center system is a ECDIS which accords with
international standard. It is able to import the electronic charts of IHO S-57 and dis-
play them by IHO S-52 standard.

Conforming to S-52 presentation library, the central monitoring system has the fol-
lowing functions: zoom out and zoom in, roam, layered display, patching without gap,
temporary plot (including point, line, circle, polygon, text) and so on. In addition, for
improving safety this system completes other functions which are navigational status
monitoring, navigational alarm, measure and calculate, making decision to avoid col-
lision (including calculating DCPA/BCPA/TCPA), typhoon and tide informing,
geography information query, maps updates and so on.

Radar stations send the image files compressed with a certain period to the central
monitoring system. The central monitoring system overlays those image on the elec-
tronic charts matching various radar range, scale, and mode of display. Using a target
echo identifying algorithm, the center system identifies the objects and calculates
their accurate latitude, longitude, speed, course. If some special area need attention,
the central system sends remote control instructions to change radar stations’ range or
frequency of sending images.

3 Embedded Hardware Designed for Remote Telemetry Radar

MD-3641/3642 radar produced by Japan KODEN is chosen in radar station. The radar
embedded control unit adopts a 16-bits SCM PIC24 as CPU produced in American
Microchip. Hardware development platform is ETX (Embedded Technology extend-
ed) PC.

Radar controller is the main component of the radar. The primary function of it is
to transmit various control codes to the every subsystem according to the protocols or
instructions sent by data processing computer. In addition, it coordinates the syn-
chronization of every subsystem with the timer. It automatically arranges the quick
switch of work mode. It implements the monitoring function. It produces the random
frequency-hopping. It generates analog signals[4].

Figure 2 is a logic block diagram of the radar controller consisted of ETX PC,
receiving controller, instruction distributor and so on. Adapting great many digital

420 J. Hao et al.

signal processing and field-programmable gate array to design modules, the radar
controller is a distributed processing system base on a EXT PC.

The descriptions of each module:

(1) Receiving controller: It receives various signals, which are sent by timer, anti-
interference, servo, and data processing computer, and puts them into a queues. Final-
ly these signals are carried into ETX PC and instructions distributer to process.

(2) ETX PC: it is the core of radar controller. It real-timely processes various input
and output signals. According to the requirements of the radar system, various
instructions are assigned to subsystem by distributer. By this way, the processing
information speed, capability, flexibility are improved, and performance of radar
controller is raised.

Fig. 2. The Logical diagram of embedded radar controller

(3) Instructions distributer: It receives various information from ETX PC and con-
troller. By certain sequence it distributes macroinstruction and status instruction to
subsystem.

(4) Objects simulator: In debug it provides several trails on fixed wave-bit for de-
bugging and checking receiver, signal processing, object extraction, computers and
software.

(5)The whole-machine monitoring: All the fault information of each subsystem are
analyzed and summarized. Then these information are displayed in time so that the
operator be able to know the working status and the fault conditions. These fault in-
formation must be real-timely collected and sent to ETX PC where by analyzing them
it is determined whether switch the received channel.

According to the radar controller functional requirements, the network and file
processing functions are added. there are four designed tasks: initialization, instruc-
tions reorganization and distribution, network reception, data dump. With round robin
scheduling mechanism the binary signal lamp is used for synchronization between
tasks as well as between task and interrupt. a shared memory is used between tasks
communication. a "ping-pong" buffer data structure is designed in storage area[4].

 On Key Techniques of a Radar Remote Telemetry and Monitoring System 421

4 A Target Echo Identifying Algorithm

The radar stations sends the zipped image files to monitoring center where these files
are unzipped and loaded into memory. First of all is echo identification. This proce-
dure is very important. It directly effects not only the accurate position of objects echo
overlaid on the chart but also the correct judgment of the alarm situation. For a bitmap
in the memory, the system first filters the radar clutter with a filtering algorithm, then
searches the boundary sequence which consists edge points of the object, finally cal-
culates the center position of the boundary sequence (which is considered as a poly-
gon) . In this way the positions of object echoes are obtained—regards the center of
boundary as the position of object for each object[5].

Radar image is generally a device-independent bitmap (DIB) with 256 colors or
less (including 256 colors). The color value of a pixel is calculated from color palette
array and pixel array with the BITMAPINFO structure of DIB.

The paper proposes a target echo identifying algorithm. Before describing the
algorithm, the symbols used in the algorithm are showed as bellows:

w , h (in pixels): the width and height of the DIB picture;

i jC : color value of a pixel i jP (0 1i h≤ ≤ − , 0 1j w≤ ≤ −);

C , minC : the average and minimal color value of the picture respectively;

IF the color value i jC of a pixel i jP is larger than C , that is i jC C> , then call

the pixel i jP as bright point, otherwise call it as not bright point.

IF the color value i jC of a pixel i jP equals minC , (i jC = minC), then eliminate the

pixel.

L : the current scanning row;

pS : the original point of an echo boundary;

pC , pD : normal point of an echo boundary;

pE : the original point fro next scanning;

listR : the list of boundary point of echo;

N : amount of echoes;

listA : the list of center point of echo (the identifying result)

Algorithm. Target echo identifying algorithm

S1. Let L =0, pE = 0LP , N ＝0, listR =∅, listA =∅;

S2. IF there is nothing found till the last column, then L = L +1, pE = 0LP

IF L is larger than max row, then go to S9 to end;

IF ijP is found, then pS = ijP , listR ⇐ pS

422 J. Hao et al.

S3. Judging in sequence whether , 1 1, 1 1,, , i j i j i jC C C+ + + + , 1, 1i jC + − is larger than C ;

S4. IF not, then N = N +1, listA ⇐ pS , ijC = minC ;

//here, the point of pS (ijP) would be eliminated from image.

pE = 1ijP + , listR =∅, and repeat the processes from S2.

S5. IF yes, mark the bright point as pC , and listR ⇐ pC ;

S6. Search next boundary point pD , in the eight direct of right, right-bottom, bottom,

left-bottom, left, left-top, top and right-top of pC .

IF all neighbors are not boundary point or already contained in listR , then elimi-

nate the pC and pick-up the last point of listR as new pC and repeat S6.

S7. IF pD ＝ pS , then end the searching of the echo boundary;

N = N +1, calculate the average coordinate (,)R Rx y of all point in listR ;

// the center of the echo.

listA ⇐ (,)R Rx y , set the color value of the points in listR to be minC ;

//eliminate all points of listR and the points surrounded by from image.

Clean listR , repeat all processes from S2;

S8. IF pD ≠ pS , then pC = pD , and put pC into listR ;

Repeat the processes from S6.

S9. Return the amount of echo and the center position listA of all echoes.

S10. End

Annotations:
(1) S1 means that the algorithm is performed from first row and column of radar

image.

(2) S2 means that searching rightward from pE to find the first bright point.

(3) S3 means that the searching is along with the four directions of pS : right,

right-bottom, bottom and left-bottom to find another bright point.

(4) S6 includes two judgment conditions: for a point P , if there is at least one
bright point in the top, down, left and right point around it, it would be regarded as a
boundary point; for a point pD , if it isn’t contained in listR , it would be regarded to a

new boundary point.

 On Key Techniques of a Radar Remote Telemetry and Monitoring System 423

5 The Applied Case

The system was applied to monitor fishing vessels in Liaodong bay for protecting
jellyfish resources. Nine radar stations was set up on the shore of Liaodong bay. The
monitor center was located in Yingkou city. Fig 3 is a radar picture within 3nm-
range from Xihekou station overlaid on the electronic chart. Fig 4 is the picture
processed with the proposed method. The cluttered points on it was filtered, and the
accurate center position of the objects echo (plotted with high bright points) was
determined.

Fig. 3. A initial image from Xihekou radar station

Fig. 4. The processed result

6 Conclusions

Based on the embedded chips, this system not only completes the normal monitoring
functions, but also receives the remote instructions, so it extends the ability of remote
control.

424 J. Hao et al.

The approach proposed is different from the general wavelet threshold. It first
denoises, then does boundary detection, finally extracts the center position from the
boundary sequence. By results analysis it showed that the method improves signal to
noise ratio (SNR)of the image.

Combining ECDIS with radar, the whole system founds a distributed radar moni-
toring system to transmit the image files and instructions through Internet. The next
step is to improve the functions and performances of the embedded hardware and
software.

References

1. Liu, C.R., Zhang, L.B.: Analysis of AIS Base Stations Design for the Pearl River Delta. J.
Journal of Dalian Maritime University. 33(1), 64–66 (2007)

2. Zhou, C.Z., Yang, J.: A Real-time Boat Surveillance System Using GPRS. J. Journal of
WUT 28(1), 149–151 (2006)

3. Hao, J.L., Hu, J.F.: Embedded Radar Based Distributed Monitoring System for Inshore
Fishing Vessels. J. Journal of Dalian Maritime University 34(1), 83–86 (2008)

4. Zhang, X.P.: Radar Controller Based on Embedded System. J. Modern Radar 26(4), 58–59
(2004)

5. Zhou, L., Hua, C.X.: The Real-time Matching Algorithm for Radar Image with Electronic
Chart. J. Navigation of China 69(4), 55–56 (2006)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 425–435, 2014.
© Springer International Publishing Switzerland 2014

PSC Ship-Selecting Model Based on Improved Particle
Swarm Optimization and BP Neural Network Algorithm

Tingting Yang1, Zhonghua Sun1, Shouna Wang1, Chengming Yang2, and Bin Lin3

1 College of Navigation, Dalian Maritime University, Dalian China, 116026
2 College of Transportation Equipment and Ocean Engineering, Dalian Maritime University

3 College of Information Science and Technology, Dalian Maritime University
yangtingting820523@163.com

Abstract. PSC targeting model has drew much attention recent years. Based on
the analysis of PSC targeting mechanisms and algorithms of primary MOU or-
ganizations in the maritime society, as 2009/16/EC NIR for instance, a more
scientific mathematical targeting model relying on intelligent optimization algo-
rithms is developed in this paper. This algorithm exploits the improved particle
swarm-BP neural network mechanism, confronting the weakness of neural net-
work which is easy to drop in local minimum. It could adaptively adjust inertia
weights, update speed and position according to premature convergence degree
as well as individual fitness value, by exploring improved PSO algorithm to
train BP network. The effectiveness and reliability of the algorithm applied to
PSC ship-selecting is validated, based on the real cases obtained from the
THETIS Inspection database of Paris-MoU. The testing results demonstrate that
the proposed PSC ship-selecting model could improve the performance not only
on speed of convergence, but also the precision of convergence.

Keywords: Particle Swarm Optimization (PSO), BP Neural Network, PSC
ship-selecting.

1 Introduction

2009/16/EC are the newest European PSC (Port State Control) mechanism published
by European Congress and Committee in May, 2009. It lays emphasis up on an
agreement on ship risk assessment system among Paris MOU Organization, to build
up a scientific check procedure and retention management called NIR（New Inspec-
tion Regime）[1]. And the Paris Memorandum of Understanding on Port State Con-
trol held its 44th Committee meeting in Naples, Italy, May 2011, to discuss its further
implementation. The NIR is a risk based targeting mechanism, which will reward
quality shipping with a reduced inspection burden and concentrate efforts on high-risk
ships. The NIR makes use of company performance and the Voluntary IMO Member
State Audit Scheme (VIMSAS) for identifying the risk profile of ships together with
the performance of flag State and recognized organization. The NIR is supported
by a new information system “THETIS” which is managed and hosted by European

426 T. Yang et al.

Maritime Safety Agency (EMSA)[2].But the ship-selecting algorithms just select
some representative factors, and simply add each risk value which is scored according
to risk factors. They are not comprehensive and scientific, because ship-selecting
model should be a non-linear but not linear one.

The existing researches of PSC selecting algorithms mostly focused on fussy com-
prehensive assessment method and AHP (Analytical Hierarchy Process) method.
Some researchers analyzed the main risk factors of ships and employed BP neural
network to set up the ship selection model for FSC inspection[3]. But BP neural net-
work needs plenty of samples to train, the convergence speed is lower and it’s easy to
fall into local optimum value. Zhou introduced and explained the mathematic back-
ground of ‘Black, Gray and White’ Flag State grading system which has been widely
used in some regional organizations, and suggested using the same mathematic prin-
ciple to solve the periodical Matthew Effect and discontinuity problem, by introduc-
ing Excess Factor(EF) as revision of the targeting system[4]. But they didn’t solve the
problem of selecting scientific target factor. PSO (Particle Swarm Optimization) is a
kind of Swarm Intelligence optimum method. The idea origins from bird flocks’
searching food action, which has applied on optimizing functions and training neural
network already. For the purpose of further improving search performance and indi-
vidual optimizing ability of the basic PSO algorithm, speeding up the convergence
efficiency, some literatures have proposed improved algorithm. For example, Shi Y
proposed linear decrease progressively weight strategy[5];improved adaptive particle
swarm optimization algorithm based on cloud theory[6];cooperative PSO algorithm
based on sharing information[7]; Using the strategy of dynamic and self-adaptive
inertia weight base on different dimensions and different particles introducing chaotic
mutation[8][9].

In this paper, we propose a training BP network by improved PSO algorithm to put
forward an algorithm of PSC ship-selecting, with 2009/16/EC NIR be set as research
object. The algorithm can adaptively adjust Inertia weight and update speed and posi-
tion according to premature convergence degree and individual fitness value.

2 Adaptive Swarm Algorithm

2.1 Standard Algorithm and Former Improved Algorithm

Firstly, we randomly initialize M particles in feasible space. Each particle has N
dimension, which respectively corresponds to one solution of optimum problem. Then
we can determine the fitness value according to the object function. And we can also
get the update speed and position with the iteration of following formulas:

1 1 1 1 1
, , 1 1 , , , 2 2 , , ,() ()t t t t t t

i j i j best i j i j best i j i jV V C r P X C r G X− − − − −= + − + −

1
, , ,
t t t
i j i j i jX X V−= +

 PSC Ship-Selecting Model Based on Improved Particle Swarm Optimization 427

Here, 1, 2, ,i N=  indicates dimension of a swarm; 1,2, ,j M=  is the

number of swarms; ,
t

i jV and 1
,
t

i jV − respectively show the speeds of the t and 1t −

moment of the thi dimension of the thj particle; ,
t
i jX and 1

,
t
i jX − are respectively

the speeds of the thi dimension of the thj particle at the t and 1t − moment;
1
, ,

t
best i jP − and 1

, ,
t
best i jG − are the optimum positions of the thj particle and global parti-

cle; 1C and 2C are acceleration learning factors.

Shi and Eberhart have proposed inertia weight adjustment method to search speed
[10]:

1 1 1 1 1
, , 1 1 , , , 2 2 , , ,() ()t t t t t t t

i j i j best i j i j best i j i jV V C r P X C r G Xω − − − − −= + − + −

And Clere has clarified compressed factor can help PSO algorithm fast convergent
and get qualified solution, the speed updating equation is :

1 1 1 1 1
, , 1 1 , , , 2 2 , , ,(() ())t t t t t t

i j i j best i j i j best i j i jV a V C r P X C r G X− − − − −= + − + −

22 /(2 4)a C C C= − − −

1 2C C C= +

2.2 Improved Adaptive Swarm Algorithm

Improved Inertia Weighω
Swarm algorithm has global and local searching abilities, in order to avoid “early
mature” convergence, we can change the value of ω to alter convergent speed. Most
swarm algorithms proposed linear self-adaptive inertia weight adjustment strategies,
but the whole particle searching is a complex non-linear process. Here, we propose a
Dynamic Adaptive Particle Swarm Optimization Algorithm (DAPSO), in which the

parameter ofω and ,
t

i jV can adaptively adjust according to the Premature Conver-

gence Degree (PCD). We give a definition of PCD, employing the standard difference
of probability and mathematical statistics. Definite σ expresses premature conver-

gence degree or disperse degree, as 2

1

1
(()/)

N

i
i

f f f
N

σ
−

=

= − Δ

The scale of particle swarm is N ,
_

f is current average fitness value of all parti-

cles, as
_

1

1 N

i
i

f f
N =

=  ; if is the fitness value of current iteration number;

428 T. Yang et al.

1
max{ }i

i N
f f f

−

≤ ≤
Δ = − expresses maximum difference of current and average fitness.

So if fΔ lower, the whole swarm can get more premature convergence. We set up a

threshold value of σ in advance, if σ is lower than the threshold value, it’s recog-
nized that the disperse degree is lower. Then it maybe fall into local optimum, so we
should reduce the decrease speed to remain ω a larger value as far as possible; if σ
is greater than the threshold value, it’s recognized that the disperse degree is larger
and its remaining variety to do global research, so should be increase the decrease
speed to ensure being convergence quickly.

To satisfy the requirement of above two situations, referring to concave-convex
function decrease progressively of ω , we propose an improved adaptive inertia
weight according to different PCD.

max

max

max

max

()
min

min
max

()
min

min
max

0.5, (1)

0.5, (1)

k

k

T t

Tt

T t

Tt

ωσ ω ω
ω

ωσ ω ω
ω

−

−


 < = −




≥ = −


2

　　

　 （ ）

Here, maxω and minω respectively indicate the maximum and minimum value of

inertia weight; maxT is maximum iteration number; t is current iteration number, k

values 3, maxω values 0.9 and minω values 0.4.

Adaptive Scaling Term ,
t
i jI

Here, we firstly give a definition of ,
t
i jI , indicating the distance between the thi parti-

cle and global optimum particle. Then also define two associated parameters: the

maximum distance maxI and the minimum distance minI . We can find that the dis-

tance between the particle and the current optimal position is an important evaluation

criterion to PSO, the value of ,
t
i jI has the equal importance to tω .So, it’s necessary

to consider a dynamic algorithm referring to ,
t
i jI . When maxI>t

i , jI , max
tω ω= ;

when min minI tω ω< =t
i , jI ， ; when t

i , jI between maxI and minI , it will introduc-

ing ,
t
i jI . So we can get the following algorithm

 PSC Ship-Selecting Model Based on Improved Particle Swarm Optimization 429

minmax

max max min

max max

min min

()
min

max min
max

max max

min min

(
min

max min
max

I ,

0.5, I

I , (1)

I ,

0.5, I

I , (1)

ij k

t

t

I IT t

T I It

t

t

T

t

ω ω
σ ω ω

ωω ω
ω

ω ω
σ ω ω

ωω ω
ω

−− •
−



 > =


< < =



< < = −


> =

≥ < =

< < = −

t
i , j

t
i , j

t
mi n i , j

t
i , j

t
i , j

t
mi n i , j

I

　　I ，

I I

I

　I ，

I I （

minmax

max max min

)ij kI It

T I I

−− •
−











 
 
 





 

2

　

）

3 PSC Ship-Selecting Model Based on Improved Swarm
Optimization-BP Neural Network Algorithm

3.1 BP Neural Network Evaluation Model

(1) Network Structure

According to Kosmogorov theorem, three-layer BP Neural Network can approximate
any function. Here, Sigmoid Function is selected to be transmission function.

(2) Input Neural Element Number and Sample Pre-coding

According to risk factor of NIR, select conditional attribute 7n = , defined as
{TYPE, MARINER, FLAG, CNSM, DEF, DUR, ROUTE}, and they can be pre-
coded as follows:
TYPE={other type, bulk，tanker, passenger or dangerous goods

{0.82,0.84,0.86}=

MARINER={No points, 1 times，2 times，above 2 times }

{0.72,0.74,0.76,0.78}=

FlAG={flag of convenience, detention rate，flag state approved the convention }

{0.62,0.64,0.66}=

CNSM (Company NSM System)={A class，B class, C class }

{0.52,0.54,0.56}=

430 T. Yang et al.

DEF (Last 36 months defect number)={ defect number less than or equal 5 in last
three inspects，defect number between 5 and 10 in last three inspects，defect num-
ber between 10 and 15 in last three inspects，defect number more than 15 }

{0.42,0.44,0.46,0.48}=

DUR (Last detention interval)={0~6 months，7~12 months，13 months+}

{0.32,0.34,0.36}=

ROUTE={national，international} {0.24,0.26}=

(3) Output Neural Element Number

We choose PSC selecting evaluation result to be network output, so the output layer

number 1m = ；

(4) Output factor coding

Define the risk degree value range：Very high risk： {0.7,1}；High risk：

{0.5,0.7}；General risk：{0.3,0.5}；low risk：{0,0.3}

(5) Hidden Layer Neural Element Number

According to Kosmogorov theorem[11],

20.43 0.12 2.54 0.77 0.35 0.51s nm m n m= + + + + + =5

3.2 Training and Learning Process Ship-Selecting Analysis

The key point of Particle Swarm optimizing BP Neural Network weigh value is:

(1) Due to the learning process of Neural Network is the weigh updating proces-
sion, it can replace the gradient descent method to setup the projection between PSO
dimension space and neural network weight, i.e. the weight number of neural network
is equal to particle dimension of PSO algorithm.

(2) Employing the mean square error of neural network to be the fitness function of
PSO.

Define the thk fitness function to be exponential form 1/ exp()k kEξ = , here

2

1 1

1
()

2

m n
k k

k t t
k t

E y c
m = =

= − ，m is sample number， n is output Neural Element

 PSC Ship-Selecting Model Based on Improved Particle Swarm Optimization 431

number， k
ty is the tht expected output of thk sample， k

tc is the tht actual output of
thk sample.

The flow of training BP network by improved PSO algorithm is:

(1) Setup BP Neural Network structure，define particle 1 2()m m m mNx x x x
→

= 
are respectively indicate the weights of all neural elements. Here 40M = is the

number of particles, and the dimension N can indicated as weight number between

input layer and hidden layer+ weight number between hidden layer and output layer +
threshold number of hidden layer + threshold number of output layer =
7 5 5 1 5 1 46× + × + + = ；

(2) Initialize particle parameter such as position, speed, inertia weight, maximum
iteration number；

(3) Calculate fitness and premature convergence degree σ of each particle σ ；
(4) Calculate inertia weight adjustment, best position of each particle and global

optimum value. Then update position and speed according to above formula；
(5) Output optimum position when precision can satisfy the requirement.

3.3 Selecting Results Analysis

Use Neural Network tool of MATLAB software to provide function and neural class,
the Sigmoid function to be transmitted function, the setup in details are：

Self-learning rate net.trainParam.lr = 0.02；
Marquardt adjust parameter net.trainParam.mu=0；
Learning coefficient decreasing factor net.trainParam.mu_dec= 0.9；
Learning coefficient increasing factor net.trainParam.mu_inc=1.05；
Training steps net.trainParam.epochs = 10000；
Training objection net.trainParam.goal1 = 0.01（BP）；
net.trainParam.goal2 = 0.0001（PSO-BP）；

We choose 10 groups samples to pre-process and simulation. The accuracy is
210−

. When training step is 7419, the accuracy can satisfy the requirement. Figure 2
indicate the Curve of mean squared error in process of training BP network. And Fig-
ure 3 indicate Curve of mean squared error in process of training BP network by im-
proved PSO algorithm When training step is 20, the accuracy can satisfy the require-

ment of
410−

 .

432 T. Yang et al.

Fig. 1. Curve of mean squared error in process of training BP network

Fig. 2. Curve of mean squared error in process of training BP network by improved PSO
algorithm

Table1 are test sample. We can see that the identity errors of the improved PSO-BP
algorithm are tiny, which can satisfy the practice requirement. The algorithm has the
ability of global search, overcoming the weakness of fall into local minimum value.
Test results show that this algorithm improves the speed performance and precision of
convergence. It can apply into PSC ship-selecting to improve efficiency and quality.

 PSC Ship-Selecting Model Based on Improved Particle Swarm Optimization 433

Table 1. Test samples

sample TYPE MARINER FLAG CNSM DEF 2DUR ROUTE BP PSO-BP Absolute
error

1 0.82 0.72 0.62 0.56 0.46 0.32 0.24 0.4362 0.4509 0.0147
2 0.86 0.74 0.64 0.52 0.42 0.34 0.26 0.7035 0.7142 0.0107
3 0.84 0.76 0.66 0.54 0.44 0.36 0.26 0.8164 0.8216 0.0151
4 0.86 0.72 0.64 0.52 0.48 0.34 0.24 0.7120 0.7342 0.0052
5 0.82 0.74 0.62 0.56 0.42 0.32 0.26 0.5287 0.5403 0.0116
6 0.86 0.78 0.66 0.54 0.42 0.36 0.26 0.9041 0.9125 0.0084
7 0.84 0.76 0.62 0.52 0.44 0.32 0.24 0.6713 0.6845 0.0132
8 0.82 0.74 0.64 0.54 0.46 0.34 0.26 0.7369 0.7512 0.0143
9 0.82 0.72 0.62 0.52 0.42 0.32 0.24 0.1382 0.1500 0.0118
10 0.82 0.76 0.66 0.56 0.44 0.32 0.26 0.7824 0.7964 0.0140

Then, we will further validate the performance of the proposed algoithms, based on

the real cases obtained from the THETIS Inspection database of Paris-MoU. The 50
sampled vessels with China flag ships are chosen to implement our proposals. Fig. 3
demonstrates the sampled information of China flag ships in THETIS Inspection
Database.

Fig. 3. Information of China Flag Ships in THETIS Inspection Database

Instance:

IMO Number：XXX

Vessel Name：XXX

Type：Oil tanker

Tonnage： 2776

434 T. Yang et al.

Date of construction：16/9/1994

Mariner: Once

CNSM: C class

Flag： China

Route： International

DEF：6

DUR: 9
Then, we code the input layer of BP network as {TYPE, MARINER, FLAG,

CNSM, DEF, DUR, ROUTE} ={0.84, 0.74, 0.62, 0.56, 0.44, 0.34, 0.26}. Inputting
the above factors coding set to the trained PSO-BP networks, the assessed value is
obtained as 0.7253 which belongs to the range of very high risk that needs extended
inspection. The simulation result is identical with PSC-Expanded inspection conclu-
sion.

4 Conclusion

This paper has researched the latest Paris MOU NIR of PSC rules 2009/16/EC, pro-
posing an improved training BP network algorithm by modified PSO algorithm to put
forward an algorithm of PSC ship-selecting model. The algorithm can adaptively
adjust Inertia weight and update scaling speed and position according to Premature

Convergence Degree σ and Adaptive scaling term ,
t
i jI , which can avoid the weak-

ness of slower convergence speed and easy to fall into local minimum value. This
paper explored the improved PSO algorithm to train BP network and applied to PSC
ship-selecting. Test results show that this algorithm can improve the performance on
speed of convergence and precision of convergence. It can apply to improve efficien-
cy and quality of PSC ship-selecting. Here we only choose fixed attributes to confirm
the algorithm, and then we should consider an adaptive attribute choosing mechanism
in the future research.

Acknowledgements. This work was supported by China Postdoctoral Science Foun-
dation under Grants 2013M530900, China Postdoctoral sending plan, Research Funds
for the Central Universities, China Scholarship Council, and also supported by NSFC.

References

1. Yi, X.: NIR: A new weapon of Paris-MOU. The Waterborne Safety. China Ship Survey
(2009)

2. Fifth IMO Workshop for PSC MoU/Agreement:Update on activities and decisions by the
MoU/agreementOutcome of the 44th Committee meeting Submitted by the Paris MoU
(2011)

 PSC Ship-Selecting Model Based on Improved Particle Swarm Optimization 435

3. Wei, D., Chen, L.L., Zeng, Q.S., Qiu, H.Z.: Research on modeling of ship selection for
FSC inspection based on neural network. China Maritime Safety. Maritime Management
(2010)

4. Zhou, C.: How to avoid Matthew Effect in selecting target vessels for Port State Control.
In: Maritime Workshop on China Maritime Safety, pp. 37–40 (2008)

5. Shi, Y., Eberhart, R.C.: Fuzzy adaptive particle swarm optimization. In: IEEE Congress on
Evolutionary Computation Seoul, Korea (2001)

6. Zhang, Y.Q.: Improved adaptive particle swarm optimization algorithm based on cloud
theory. Application Research of Computer (2010)

7. Zhang, W.J.: The Research on Cooperative Particle Swarm Optimization and Its Applica-
tion on Multi-depot Vehicle Routing Problem. East China Normal University (2010)

8. Wang, H.T.: Particle swarm optimization algorithm based on modified inertia weight.
Computer Applications and Software 28, 116–122 (2011)

9. Gao, B.K., Li, Y., Xu, M.Z.: Application of particle swarm optimization algorithm in the
heating load combination forecasting. Information and Electronic Engineering 9, 58–65
(2011)

10. Eberhart, R.C., Shi, Y.H.: Particle swarm optimization: developments, applications and re-
sources. In: IEEE Congress on Evolutionary Computation, Piscataway, USA, pp. 81–86
(2001)

11. Wikipedia, http://en.wikipedia.org/wiki/Kolmogorov’s_theorem

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 436–446, 2014.
© Springer International Publishing Switzerland 2014

LRPON Based Infrastructure Layout Planning
of Backbone Networks for Mobile Cloud Services

in Transportation

Song Yingge, Dong Jie, Lin Bin, and Ding Ning

1 Linghai Road, Dalian Maritime University,
Dalian, Liaoning Province, China 116026

binlin@dlmu.edu.cn

Abstract. Driven by fast growing ultra-broadband applications and the ad-
vancement of photonic technology, Next Generation Passive Optical Network
(NGPON) is positioned as one of the most promising carriers to enable high-
speed backbone networks for mobile cloud services in transportation. Long-
reach Passive Optical Network (LRPON) is one of the significant directions for
the evolution of NGPON. To establish a low-cost deployment of LRPON and
achieve the long-distance optical transmission, cascaded optical amplifiers
(OAs) are the key to compensate for the optical signals. In this paper, we pro-
pose a novel heuristic algorithm for LRPON infrastructure layout planning
which focuses not only on the splitter placement, but also on the power aware-
ness and network availability, to maintain LRPON cost-effective competitive-
ness and mitigate the impacts of various optical losses by fiber transmission and
network equipments with specified network availability. The problem has joint-
ly considered the largest possible area coverage while consisting of equipment
cost, optical link degradation factors and network stability in a single optimiza-
tion framework. The heuristic is called Fast-Backward-Seeking (FBS), which
can provide deployment solutions for large sized problems fast and effectively.
Numerical scenarios are executed to validate and demonstrate the performance
and effectiveness of the proposed heuristic. The results have verified the cost-
effective performances of the FBS.

Keywords: NGPON, heuristic, network deployment.

1 Introduction

Recently, mobile cloud computing has rapidly emerged as a widely accepted compu-
ting paradigm and information technology services in transportation-related applica-
tions. It is estimated that 80% of software application will be cloud-based services,
and the global cloud-related data traffic will be increased by six times from 2011 to
2016 [1]. Future mobile cloud computing requires stringently on the backbone net-
work infrastructure with ultra-broadband and low latency which can directly affect the
Quality of Experience (QoE) of mobile cloud service customers.

 LRPON Based Infrastructure Layout Planning of Backbone Networks 437

Fig. 1. The LRPON-based backbone network infrastructure for mobile cloud services in trans-
portation

In this paper, we investigate the Infrastructure Layout Planning (ILP) of Long-
reach Passive Optical Network (LR-PON), which is one of the most promising candi-
dates for backbone networks for mobile cloud services in transportation, as shown in
Fig. 1. Different from traditional PONs, LRPONs combines the capacity of metro and
access networks in the last mile of the cloud service provisioning. It can not only
serve larger coverage span but also simplify networks by consolidating Central Offic-
es (COs) and network interfaces, thus can significantly reduce the corresponding op-
erational cost of the backbone network and bring great benefit to the operators.

LRPON's longer reach extension (from 20km to 100km and be-yond) and higher
capacity is at the price of the following complexities: i) extra means of optical ampli-
fication, e.g. active network entities (NEs) using power supply, which will bring extra
network capital expenditure (CapEx) in the long run; ii) exploiting more complicated
technologies/network entities (NEs) and more diverse topologies, such as TDM,
wavelength-division multiplexing (WDM) or hybrid time-division (TDM)/WDM
architecture, etc. ; iii) more stringent requirements on differentiated availability to
avoid network service outages and to satisfy different FTTx customers service level
agreement requirements at the price of extra means of redundancy placements and
more intelligent fault tolerance mechanisms.

The topology of traditional PONs has three major characteristics: an OLT located
in the central office, multiple Optical Network Unit-Base Stations (ONU-BSs) as
mobile user access points, and an optical distributed network (ODN) interconnecting
each ONU-BS with the OLT. A LRPON inherits the conventional PON systems and
also has a significant evolution. Due to the optical power, noise complexity, more
stringent survivability requirements, power awareness and proper availability design

438 S. Yingge et al.

impose a fundamental influence on the performance, stability and coverage of the
LRPON.

Because of the complexity in LRPON (especially the multiple cost-convicting fac-
tors as explained above), poor topological design and dimensioning may potentially
lead to network failure, cloud service interruption, service outage or inefficient capital
expenditure and unnecessary operation expenditure. In reality, the network design and
planning impose fundamental influences on the operators’ long-term profitability,
sustainability and competitiveness. Among all the LRPON related topics, network
planning and optimization is considered a key to further unleash the cost-reduction
potential of LRPONs.

Motivated by the importance of the problem, this research aims to achieve a cost-
effective LRPON network deployment, while employing state-of-the-art LRPONs
technical advances, exploiting various network trade-off design factors including
cost-effectiveness, optical power efficiency, scalability, availability, deployment flex-
ibility, etc.

In this research, a heuristic algorithm called Fast-Backward-Searching (FBS) is
proposed to obtain a near-optimal solution much more efficiently with a small gap
close to the optimum. Case studies are conducted to examine the effectiveness and
efficiency of the proposed FBS algorithm, as well as demonstrate its effectiveness to
achieve cost-effective LRPON infrastructure deployment.

The remainder of the paper is organized as follows. In Section 2, we review the
previous related work. In Section 3, the problem statement is given. The proposed
heuristic is described in Section 4. Computational results and case studies are present-
ed in Section 5, respectively. Finally, we conclude the paper in Section 6.

2 Related Work

LRPON has high splitting ratio and OA on top of the conventional PONs to achieve a
full-service optical access network [2]. The cascaded splitter topology achieved a
cost-effective performance, and an ILP model was proposed to realize the deployment
optimization of cascaded PON but without taking account of optical power and noise
complexity [3]. [4] proposed a WDM PON design optimization with power loss and
splitter selection constraints, but the coverage of PON didn't have a extension. The
use of OAs in PONs is investigated in [5], proposed the OA placement strategy in
LRPON. In [6], we first propose the study on a comprehensive assessment on the
power-aware LRPON ODN topology layout and dimensioning configuration without
accounting for network availability. Three survivability policies are expounded in [7]
for the tree topologies in GPON. And [8] validated that the availability-guaranteed
planning of LRPON directly affects the deployment cost.

Research efforts on PONs have also been extensively reported in deployment heu-
ristic. The planning algorithms proposed in [9] [10] to minimize the total deployment
cost just with based on the conventional PON topology. [11] investigated a heuristic
to address the minimum cost deployment of a multistage-splitter PON topology how-
ever without integrating the power loss concerns. Jaumard and Chowdhury designed a

 LRPON Based Infrastructure Layout Planning of Backbone Networks 439

heuristic to selection and placement the splitters and AWGs with the signal attenua-
tion constraints but didn't consider the power compensation in [4]. Only [12] ex-
plained a genetic algorithm directly related to the deployment of LRPON also without
any power compensation consideration. And all current researches on the ILP or heu-
ristic planning of LRPON infrastructure deployment give no considerations to the
availability at the beginning of the LRPON construction.

3 Problem Statement

LRPON Infrastructure Layout Planning (ILP) problem aims at minimizing the total
deployment cost of the whole network Infrastructure, and focuses not only on the
splitter placement, but also on the power awareness and network availability, as well
as to maintain LRPON cost-effective competitiveness and mitigate the impacts of
various optical losses by fiber transmission and network equipments with a specified
network availability. The ILP problem has jointly considered the largest possible area
coverage while consisting of equipment cost, optical link degradation factors and
network stability in a single optimization framework.

Moreover, the tree-based network topology has to be constructed for LRPON. The
OAs and splitters cannot be deployed anywhere but only some potential sites (PSs)
eligible for cabling, construction, and power supply (for OAs). We assume that the
cost of deploying a fiber segment between any pair of PSs or between a PS and the
OLT (or any ONU-BS) is known in prior. Note that the fibers have to be deployed
along the Right of Ways (ROWs), and the total cost of fiber deployment between
locations i and j depends not only on the length of the ROW, but also a weight on
each unit length denoted asδij.

4 Proposed Fast-Backward-Searching (FBS) Algorithm

Let GሬሬԦ = (Ω, EሬሬԦ) denote a directed graph where Ω is the set of nodes and EሬሬԦ is the set
of directed edges/links. The OLT is denoted as P. Ω is partitioned into four parts:
denoted as ΩONU, ΩPSS, ΩPSA, and node P, i.e.

Ω=ΩONU∪ΩPSS∪ΩPSA∪{P}

M=MA+MS, ΩPS=ΩPSS∪ΩPSA, |ΩPSA|=MA, |ΩPSS|=MS

Given:

• The set of fixed ONUs, which are the customer premises equipment (CPE).
• The set of Potential Sites (PSs) for deploying splitters.
• The set of Potential Sites (PSs) for deploying OAs.
• The location of OLT.
• The cost per unit length of fiber ($/km) Cf, including fiber purchase and deploy-

ment cost (e.g., fiber bury cost), etc. [3]

440 S. Yingge et al.

• The Manhattan distance between locations i and node j,(dij)
• The cost of splitter of type t∈T (Ct

S)
• The cost of an Optical Amplifier (OA), (COA)
• The power attenuation per unit length of fiber (dB/km) [9]
• The gain of each Optical Amplifier (gOA) is a constant, which is independent of

wavelength (e.g., 20dB [5])
• The buried fiber route between any pair of nodes in Ω corresponds to the Manhat-

tan distance.
• The known cost for rights of way (when choosing the route of the fiber network),

which consists of annual fees and costs to get permissions.
• The acceptable ONU availability threshold isζ(e.g. three 9’s).

 The core idea of the FBS is to construct LRPONs from the ONU-BSs as initiating
ends to the OLT, and the FBS quickly provides a LRPON deployment solution in a
short period of time with an acceptable cost result which is close to theoretical opti-
mum.

Before explaining the FBS algorithm in detail, we first give some definitions of
terms as follows:

Definition 1: A cascaded-splitter incidence matrix CS={CSijk}(Ms)(Ms+Mo)(3) , where
CSijk=1, if the PSSi is selected to be the kth-order splitter and connects to the
PSSj/ONU-BSj; otherwise CSijk=0. |ΩONU-BS|=MO;
Definition 2: A cascaded-OA incidence matrix CO={COijk}(Ma)(Ma+1), where
COijk=1, if the PSAi is selected to be the kth-order OA and connects to the
OLT/OAj; otherwise COijk=0.
Definition 3: Ns1: the least number of the child nodes of the CSij1 when there are
several candidate CSij1s nearby (usually in a 10km radius area) and if one is select-
ed, the child-node number should be larger than Ns1, only if there is only one CSij1
near to the ONU-BS, it could be less than Ns1.
Definition 4: Ns2: the least number of the child nodes of the CSij2 when there are
several candidate CSij2s nearby (usually in a 10km radius area) and if one is select-
ed, the child-node number should be larger than Ns2, only if there is only one CSij2
near to the CSij1, it could be less than Ns2.

In addition, we divide a new region called central area as the concentrated area to
gather the whole PON where all candidate CSij2s and CSij3 are located. The central
area is a circular region covering the center of the whole PON area with a diameter of
half side length of the whole area.

The FBS defines a LRPON architecture that all ONU-BSs link to a central point by
third-order-splitters and finally reach to OLT through second-order-OAs, and an OA
will be added between the second-order and the third-order splitters if ONU-BS re-
quires extra power compensation. The special LRPON architecture we propose in the
FBS inherits from the preceding model and is effective to sustain the whole LRPON
considering network survivability. The third-order-splitters can provide an enough
large network scale and the two-order-OAs make sure the long-reach transmission
and a flexible accessible OA effectively provides a power compensation if necessary.

 LRPON Based Infrastructure Layout Planning of Backbone Networks 441

The placement of OA and splitter and path selection of each ONU-BS to OLT is de-
signed based on the analysis of the availability of ILP deployment solutions. The
distributed paths from the center of areas to be covered effectively guarantee similar
distances from OLT to each ONU-BS and greatly avoid too long distances between
OLT and ONU-BSs so that improve the network stability.

Based on the backward searching, three steps will be executed in order as shown in
Algorithm 1. We give detailed descriptions for each step as follows.

Algorithm 1: Fast-Backward-Seeking (FBS) algorithm

Begin

STEP I

Connect each ONU-BS to the nearest PSS as corresponding

CS
ij1
s;

Reset All CS
ij1
s by contrasting to N

S1
and Redistribution

ONU-BSs;

Connect each CS
ij1
 out of the central area to the nearest

PSS as corresponding CS
ij2
;

Reset All CS
ij2
s by contrasting to N

S2
and Redistribution

ONU-BSs;

Connect all CS
ij1
s in the central area to nearest CS

ij2
s;

Calculate the central point(CP) of all CS
ij2
s then find the

nearest PSS to CP as CS
ij3
;

STEP II

Build two-cascaded OAs to achieve the least distance

between OLT and CS
ij3
;

Select CO
ij1
 and CO

ij2
 by |OA

i
, OLT|>=20km && |OA

i
, CO

ij1
|>=20km

&& Min(|OA
i
, CO

ij1
|+ |OA

i
, CO

ij1
|);

STEP III

for each ONU-BS do

 Calculate dline
i
 and loss

i
 of each ONU;

 if loss୧ ≥ θ do
 Add a OA between CS

i j 1
 and CS

i j 2
 associated with

 ONU
i
;

 end if
 Update dline

i
 and loss

i
;

end for

 Calculate the cost for whole LRPON;

Output :

 Output the total cost and executive time;

 for each ONU-BSs

 Output dline
i
 , loss

i
 and the path from

 ONU-BS
i
 to OLT

 end for

end

442 S. Yingge et al.

• Step 1 The three-order-cascaded splitter structure setup

All ONUs are firstly distributed to the nearest candidate splitters then a redistribu-
tion principle will be executed. In this principle, only if a candidate splitter's child-
node number is less than Ns1 and there are other chosen splitters nearby (usually in a
10km radius area) for all ONUs belong to this splitter to choose, all the ONUs should
be redistributed to other nearest chosen splitters. All the final chosen splitters are
called the CSij1s.

All the unselected splitters in the central area are considered to the candidate CSij2s
and the CSij1s out of the central area firstly link to the nearest candidate CSij2s and
then a re-distribution will be executed. Only if the outputs of one chosen candidate
CSij2 is less than Ns2 and there are other chosen candidate CSij2s nearby (also in a
10km radius area), the CSij1s under this CSij2 will be redistributed to other nearest
chosen candidate CSij2s and finally all the CSij2s are located.

We can calculate a geometrical center point for all the CSij2s and select a candidate
splitter which is the nearest to the point as the CSij3. It's obvious that the CSij3 is the
pivot of the LRPON deployment and after that the three-order-cascaded splitter struc-
ture is formed.

• Step 2 the two-order-cascaded OA structure setup

To enlarge the transmission distance, we select an OA which is the nearest and at
least 20km away from OLT to be COij1. After that, an OA should be located between
the COij1 and the CSij3, which can minimize the sum of the distances to the two ends
and set as the COij2. The distance between the COij1 and the COij2 is also at least
20km. Then the fundamental architecture is then setup.

• Step 3 Loss calculation and power compensation

For each ONU-BS, a distance denoted as dline୧ (i ∈ ΩONUିBS) is calculated from
the ONU-BSi to the OLT. Based on the power budget parameters in Table 2, we can
quickly get the loss୧ which is the total power loss from one ONU-BSi to the OLT.

Table 1. LRPON Component Cost and Unavailability

Component/Device Cost ($) Unavailability

ONU-BS 3 gcu 5.12e-7

Fiber (/km) 1 gcu 3.12e-6

Burying Fiber (/km) 50 gcu -

1:8 Splitter 4 gcu 1.0e-7

1:16 Splitter 8 gcu 1.0e-7

1:32 Splitter 16 gcu 1.0e-7

1:64 Splitter 32 gcu 1.0e-7

1:128 Splitter 64 gcu 1.0e-7

Optical Amplifier (OA) 18 gcu 4.0e-7

 LRPON Based Infrastructure Layout Planning of Backbone Networks 443

Table 2. LRPON Power Budget parameters

Parameter Value

σ
 20 km

Θ 20dB

Splitting
loss

1:8 splitter 9 dB

1:16 splitter 12 dB

1:32 splitter 15 dB

1:64 splitter 18 dB

1:128 splitter 21 dB

Then the FBS tell whether loss୧ ≥ θ or not. If Yes, then an extra OA adds to the

LRPON between the corresponding CSij1 and CSij2 in the unimpeded line from ONU − BS୧ to the OLT. After executing the three steps, the complete LRPON has
setup. The FBS finally outputs the total cost of the deployment scheme which in-
cludes each path from ONU − BS୧ to the OLT with the path dline୧ and loss୧.
5 Numerical Results

Without loss of generality, the Manhattan distance of two nodes is used to represent
the corresponding edge length of the fiber deployment route, and δij is set to 1, i.e., all
the fiber segment links have the same weighted deployment costs. The maximum
distance between an ONU-BS and OLT is taken as 130km [3]. L୫ୟ୶ୱି୭୬୳ and L୫ୟ୶AିA are
set to 40km and 70km. We use Gurobi [13] to solve the ILP formulation as compari-
son. The optimization is running on a 32-bit windows based work station with an Intel
Core i3 3.3GHz processor and 16GB of RAM. We define a generic cost unit (gcu) to
evaluate the network costs [14]. The unavailability values of the network components
are taken from [8] and [15]. Tables 1 and 2 show the component/device cost and un-
availability of LRPON as well as the power budget parameters, respectively.

Table 3. Problem Size of Simulated Scenarios

Number of nodes

ONU-BSs PSSs PSAs

Scenario (1) 25 15 6

Scenario (2) 50 20 10

Scenario (3) 100 30 15

Scenario (4) 300 60 30

444 S. Yingge et al.

Fig. 2. Results of ILP solution with FBS heuristic

Table 4. Performance Comparison between FBS and Gurobi

Deployment
Cost (gcu)

Running
Time(s)

Number of
Selected

OAs

Number of
Selected
splitters

Optimization
Gap

Scenario
(1)

Gurobi 16369.1 4.21 2 5
3.21%

FBS 16895.2 0.012 3 5
Scenario

(2)
Gurobi 24380.2 51860.86 3 13

8.5%
FBS 26452.5 0.02 2 14

Scenario
(3)

Gurobi 34574.3 156235.07 2 14
4.12%

FBS 36001.5 0.064 3 17
Scenario

(4)
Gurobi CALCULATION OUT OF MEMORY

FBS 90879.0 0.093 12 30

Fig. 2 shows the ILP solution results of FBS which match the tree-based topology.
Moreover, we investigate some more scenarios with increasing network scale as listed
in Table 4 to prove that our proposed heuristic FBS is superior in performance of
efficiency. Scenarios (1), (2), (3) explain that the problem size grows dramatically
as the network size increase and the cost-effectiveness can be improved through

 LRPON Based Infrastructure Layout Planning of Backbone Networks 445

optimized LRPON ODN topology and dimensioning configuration using power-
aware available LRPON placement. Besides, it indicate that, while achieving the
objective of minimizing cost and high availability, the FBS greatly reduces the com-
puting time and the solution errors is controlled in about 10% which is perfectly
acceptable to employ for the deployment engineering problems.

6 Conclusions

The paper has investigated on the LRPON ILP problem in considerations of mini-
mized cost with proper power budget and network availability constrains simultane-
ously. A heuristic called Fast-Backward-Seeking (FBS) are proposed to optimize the
layout and placement. Numerical scenarios have validated the feasibility and scalabil-
ity of FBS. And the results have verified the proposed FBS performs excellently in
the aspects of the running time and can quickly get an outstanding solution with the
network scale increasing comparing with ILP. A quite small error gap between the
results of FBS and ILP theoretical optimum is controlled in about 10% which is per-
fectly acceptable to employ for the deployment engineering problems.

Acknowledgments. This study is sponsored by National Science Foundation of China
(NSFC) No. 61371091, No. 61171175 and No. 61301228, Liaoning Provincial Natu-
ral Science Foundation of China No.2014025001, the Scientific Research Foundation
for the Returned Overseas Chinese Scholars from Ministry of Human Resources and
Social Security, and Program for Liaoning Excellent Talents in University (LNET)
No. LJQ2013054 and Fundamental Research Funds for Central Universities under
grant No.3132014212.

References

1. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update (2013–2018),
http://www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-
vni/white_paper_c11-520862.html

2. Phillips, A.J., Senior, J.M., Mercinelli, R., Valvo, M., et al.: Strategies for a High Splitting
Optically Amplified Passive Optical Network. Journal of Lightwave Technology 19(2),
137–149 (2001)

3. Lin, B., Lin, L., Ho, P.H.: Cascaded Splitter Topology Optimization in LRPONs. In: IEEE
ICC, Ottawa, Canada, June 10-15 (2012)

4. Jaumard, B., Chowdhury, R.: Selection and placement of switching equipment in a Broad-
band Access Network. In: 2012 International Conference on Computing, Networking and
Communications (ICNC), pp. 297–303 (2012)

5. Sakena, J., Jamro, M.Y., Senior, J.M.: Optical amplifier number and placement in the
superPON architecture. In: The 6th International Conference on Advanced Communication
Technology, vol. 1, pp. 186–191 (2004)

446 S. Yingge et al.

6. Lin, L., Lin, B., Ho, P.-H.: Power-aware optimization modeling for cost-effective LRPON
infrastructure deployment. In: 2013 21st International Conference on Software, Telecom-
munications and Computer Networks (SoftCOM), pp. 1–5, 18–20 (2013)

7. Gigabit-Capable Passive Optical Networks (G-PON): General Characteristics, ITU-T
G.984.1, SG 15 (March 2003)

8. Kantarci, B., Mouftah, H.T.: Availability and Cost-Constrained Long-Reach Passive Opti-
cal Network Planning. IEEE Transactions on Reliability 61(1), 113–124 (2012)

9. Li, J., Shen, G.: Cost Minimization Planning for Greenfield Passive Optical Networks.
IEEE/OSA Journal of Optical Communications and Networking 1(1), 17–29 (2009)

10. Lv, M., Chen, X.: A kind of planning algorithm for PON and WiMAX convergence net-
work. In: 2010 2nd International Conference on Signal Processing Systems (ICSPS), vol.
2, pp. 83–87 (2010)

11. Eira, A., Pedro, J., Pires, J.: Optimized design of multistage passive optical networks.
IEEE/OSA Journal of Optical Communications and Networking 4(5), 402–411 (2012)

12. Liu, X., Gu, R., Ji, Y.: A nested genetic algorithm for topologyoptimization in LRPON. In:
2012 3rd IEEE International Conference on Network Infrastructure and Digital Content
(IC-NIDC), pp. 217–221.

13. “Gurobi Optimizer 4.6”, Gurobi Optimization Inc. (2012)
14. Chaves, D.A.R., Barboza, E.A., Bastos-Filho, C.J.A., Martins-Filho, J.F.: A Multi-

Objective Approach to Design All-Optical and Translucent Optical Networks Considering
CapEx and QoT. In: 14th International Conference on Transparent Optical Networks
(ICTON), pp. 1–4 (2012)

15. Cankaya, H.C., Lardies, A., Ester, G.W.: Network design optimization from an availability
perspective. In: 11th International Telecommunications Network Strategy and Planning
Symposium, pp. 359–364 (2004)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 447–460, 2014.
© Springer International Publishing Switzerland 2014

Infrastructure Deployment and Dimensioning
of Relayed-Based Heterogeneous Wireless Access
Networks for Green Intelligent Transportation

Lin Bin, Guo Jiamei, He Rongxi, and Yang Tingting

1 Linghai Road, Dalian Maritime University,
Dalian, Liaoning Province, China 116026

binlin@dlmu.edu.cn

Abstract. Relayed-based Heterogeneous Wireless Access Networks (RHWAN)
is envisioned as the promising network architecture for the future Intelligent
Transportation (IT) network infrastructure. It is proposed to provide a candidate
infrastructure solution for operators to construct intelligent transportation net-
works in a cost-effective manner. In this paper, we focus on the Infrastructure De-
ployment and Dimensioning (IDD) problem under the RHWAN architecture. The
IDD problem is formulated as a generic integer linear programming (ILP) model
which can optimally: (i) minimize the network deploying cost, (ii) identify the lo-
cations of BSs, (iii) identify the association relations between RSs and MBSs, (iv)
satisfy the mobile coverage requirements so as to allow the mobile IT user access
through BSs. We solve the model using Gurobi, which is the newest ILP solver by
now. A series of case studies are conducted to validate the optimization frame-
work and demonstrate the solvability and scalability of the ILP model. Computa-
tional results show the significant performance benefits of CoMP in RHWAN in
terms of lower cost, larger capacity and higher reliability.

Keywords: Heterogeneous, Deployment, Optimization.

1 Introduction

Recent decades have witnessed an unprecedented growth in the numbers of subscrib-
ers, terminals, services, and applications in mobile communications market and a
more flexible deployment model is needed for operators to improve broadband user
experience in a ubiquitous and cost effective way. A more complex architecture con-
sists of heterogeneous wireless technologies, including microcell, pico cell, coopera-
tive relay, will need to be flexibly co-deployed to most efficiently use the dimensions
of space and frequency [1]–[3]. With explosive growth in information and communi-
cation traffic, the information and communication technology (ICT) industry’s contri-
bution to the global carbon footprint is forecast to double over the next ten years [4].
With greater awareness of the industry’s impact on the environment, the telecommu-
nications industry has been playing an active role in reducing its impact in this field.

448 L. Bin et al.

Apart from the social responsibility aspect, there is also a major economic motiva-
tion to reduce energy consumption. Energy consumption in wireless networks is now
a major concern due to the potential adverse impact upon the environment and the
escalating operating energy costs. ICT is a quickly growing contributor to co2
emissions and energy consumption. One fundamental approach to reduce energy con-
sumption of wireless networks is to adopt new radio access architectures and radio
techniques. Recently, the technology of cooperative relaying is as one of the most
effective solutions. And the corresponding relay based radio access architecture are
recognized as economic, scalable and green network architectures, in which Macro
Base Stations (MBSs) and low-power Base Stations (BSs), such as Pico Base Stations
(PBSs), and Relay Stations(RSs)in a heterogeneous network as shown in Figure 1.

The PBSs serve as main providers when there is an obstacle, such as a skyscraper
hindering the normal service between macro cell and subsequent SSs. The RSs have
many advantages over BSs, such as less power consumption, less co2 emissions, faster
and easier installation, lower installation and maintenance cost, and its function is
extending the coverage scope of the macro cell. More importantly, cooperative BSs
can significantly improve the network throughput and extend the cell coverage. Thus,
the Relay-based Heterogeneous Wireless Access Network (RHWAN) is also appeal-
ing to infrastructure operators. To fully exploit the advantages of adopting low-power
BSs, a foremost critical task is the site planning for low-power BSs, and it has a pre-
dominant influence on the subsequent service provisioning, the operator’s long-term
energy operational cost and even sustainable development.

In the standardization process of the next generation cellular networks, such as
3GPP Long Term Evolution-Advanced (LTE-A), heterogeneous cellular networks are
received significant attention and deemed as a cost-efficient way to satisfy the in-
creasing data demand [5–9]. A variety of BSs may coexist in the same geographical
area, potentially sharing the same spectrum. PBSs are operator-installed BSs with the
same backhaul and access features as MBSs. RSs have the similar sizes of footprints
as PBSs. The backhaul link between an MBS and its RS is wireless, so no landline is
required. Compared to an MBS, the cost of a low-power BS, including installation
cost and maintenance operation cost, is much cheaper. Moreover, due to its lower
transmission power and smaller physical size, low-power BSs can offer flexible site
acquisitions.

In this paper, we study the Infrastructure Deployment and Dimensioning (IDD)
problem in RHWAN, where MBSs, PBSs and RSs are involved. When an MBS is
open, its subsidiary RSs can also be selected. When a RS is selected for opening, it
consumes a part of radio resource of the donor MBS. The cell planning problem is to
select a subset of BSs with minimum cost to supply each demand node the required
capacity. To solve the deployment problem, we develop an optimization framework
for the IDD problem. The optimization framework provides a formulation with a fine
consideration on the affecting factors in the communication environment, such as the
wireless propagation environment, the network layout, the locations and minimal
traffic demands of a set of Subscriber Stations (SSs), and a set of Candidate Positions
(CPs) for deploying BSs. The outputs of interest include the optimal (or near-optimal)
locations of BSs, the association between RSs and MBSs, the corresponding total
cost.

 Infrastructure Deployment and Dimensioning of RHWAN 449

The remainder of the paper is organized as follows. In Section 2, we review the
previous related work. In Section 3, the problem formulation is given, including the
network model, the given inputs, variables, constraints, and objective of the ILP mod-
el. Computational results and case studies are presented in Section 4, respectively.
Finally, we conclude the paper in Section 5.

2 Related Work

We review the recent studies related to network planning and placement. Due to the
increasing complexity of state-of-the-art telecommunication networks, the task of
planning and dimensioning is essential and full of challenge. It becomes even more
sophisticated when the environmental effects are jointly taken into consideration.
Heterogeneous cellular networks are three-tier networks, including Macro Base
Stations, Pico Base Stations and Relay Stations, which is more flexible and cost-
effective. This kind of networks introduces new communication methods into
conventional cellular networks to enhance the coverage of dedicated area and also
environment-friendly, because heterogeneous cellular network not only is able to
significantly improve the system capacity gain and indoor coverage, and lower the
whole network power by taking advantage of the lower power stations and compris-
ing cooperative transmissions. In the standardization process of the next generation
cellular networks, such as 3rd Generation Partnership Project (3GPP) Long Term
Evolution-Advanced (LTE-A), heterogeneous cellular networks are deemed as a cost-
efficient way to satisfy the increasing traffic demand and received extensive attention
from industry and academia. In order to minimize the total cost of cell planning Zhao
introduced an approximation algorithm to tackle the problem in [10]. This approach
can surely reduce energy consumption in low traffic time, while on the other, it work
out the problem by means of spectrum sharing. Meanwhile, both signal interference
statistic characters and network performance analysis methods for dynamic schedul-
ing are presented in [11]. In [12], a GA-Based solution to site planning of relay station
in green wireless access network is proposed. An ILP model is formulated to maxim-
ize the throughput of an LTE network such that the coverage requirement and radia-
tion limitation can be satisfied given a limited capital expenditure on LTE-BS de-
ployment in[13]. An integer linear programming (ILP) model for the cascaded
LRPON topology and network equipment placement, and network dimensioning are
proposed in [14].

3 Problem Formulation

3.1 Network Model

In heterogeneous cellular network deployment model, each cell consists of four net-
work entities: Macro Base Stations (MBSs), Pico Base Stations (PBSs), Relay Sta-
tions (RSs) and Subscriber Stations (SSs), as shown in Fig. 1. The MBS serves as a
central controller in the cell. The PBSs provide service for SSs with a relative small
scope. The RSs are responsible for relaying data between the MBS and the associated

450 L. Bin et al.

SSs through cooperative relaying. The RSs have no direct connections to the wired
backbone and are eligible to be deployed at certain outdoor candidate positions (CPs)
where uninterrupted power supply can be provided. An SS refers to a fixed site in
some densely populated areas such as a hotspot, at which a significant amount of

Fig. 1. Relay-based Heterogeneous Cellular Wireless Network deployment model

traffic load demand is imposed. The BS can be multiple accessed simultaneously by
different SSs at their assigned frequency band with Orthogonal Frequency-Division
Multiple Access (OFDMA) technique. In other words, each transmission between the
BS and an SS is inherently an instance of the basic “MBS-RS-SS” three-node relay
model, where the MBS-SS, MBS-RS and RS-SS links are assigned the common fre-
quency spectrum. Due to the consideration regarding transmission delay, only two-
hop cooperative relaying is assumed. Small scale fading is not explicitly included in
the system model since a long-term planning and design is targeted. To test the mo-
bile coverage, we define Test Points (TPs) within the area. The TPs are also used for
the test of power intensity for MSs from the associated RSs. In Fig.1, the locations of
TPs and MBSs, PBSs, RSs are also illustrated.

3.2 Problem Statement

The Infrastructure Deployment and Dimensioning (IDD) problem can be formulated
as follows. Let GሬሬԦ = ൫Ω, EሬሬԦ൯ denote a directed graph where Ω is the set of nodes and E ሬሬሬԦis the set of directed edges/links.Ω is partitioned into four parts, and denoted as
ΩTP, ΩMBS, ΩPBS and ΩRS, i.e. Ω = ΩTP ∪ ΩMBS ∪ ΩPBS ∪ ΩRS.

Given:
The set of fixed TPs, which are the customer premises.
The set of Candidate Sites (CSs) for deploying MBSs.
The set of Candidate Sites (CSs) for deploying PBSs.
The set of Candidate Sites (CSs) for deploying RSs.
The distance matrix.

 Infrastructure Deployment and Dimensioning of RHWAN 451

The maximal transmit power of an MBS, a PBS and a RS.
The cost of an MBS, a PBS and a RS.
The coverage thermal noise power in AOI.
The path loss exponent.
The minimal signal-to-noise-ratio (SNR) requirement for each TP.
The maximal permitted radiation intensity threshold at each TP.
The average minimum required coverage ratio within the AOI.
The average minimum required radiation ratio within the AOI.
Variable:
Five sets of decision variables are defined for the selected locations for deploying

MBSs, PBSs and RSs, the assignment of MBSs, PBSs and RSs to SSs, the links from
RSs to MBSs, and the directed flow from the MBSs, PBSs and RSs to SSs, respec-
tively. Specifically, we define

The location incidence vector of MBSs A= Mma ×1)(

1, if CS୫ is selected to place a MBS; a୫=

0, otherwise;

The location incidence vector of PBSs B= Ppb ×1)(

1, if CS୮ is selected to place a PBS; bP=

0, otherwise;

The location incidence vector of RSs C= Rrc ×1)(

1, if CS୰ is selected to place a RS; c୰=

0, otherwise;

A TP coverage incidence vector Q= Nnq ×1)(, such that

1, if TP୬ is covered; q୬ =

0, otherwise;

A TP radiation incidence vector F= Nnf ×1)(, such that

1, if the radiation at TP୬ is greater than threshold; f୬ =

0, otherwise;

The MBS-TP association incidence matrix U= NMmnu ×)(

452 L. Bin et al.

1, if the TP୬is associated with the MBS at CS୫; u୫୬=

0, otherwise;

The PBS-TP association incidence matrix V= NPpnv ×)(

 1, if the TP୬is associated with the PBS at CS୮; v୮୬=
0, otherwise;

The RS-TP association incidence matrix W= NRrnw ×)(

1, if the TP୬is associated with the RS at CS୰; w୰୬=

0, otherwise;

The MBS-RS association incidence matrix Z= RMmrz ×)(

1, if the he MBS at CS୫is associated with the RS at CS୰; z୫୰=

0, otherwise;

Constraints:
The mobile coverage requirement should be satisfied, i.e., the coverage ratio

should be larger than a predefined value.
The minimum achievable rate for an SS within the cell should be larger than a rate

threshold.
The radiation intensity received at each TP should be less than a predefined thresh-

old value.

3.3 Problem Formulation

(IDD) Objective: minimize  
= ==

++
pp

p
m

RP

r
rpp

MP

m
mm cCbCaC

1 11

(1)

Subject To:

TP

MP

m

PP

p

RP

r
rnpnmn wvu Ω∈∀>=++  

= = =

n,2
1 1 1

(2)

 Infrastructure Deployment and Dimensioning of RHWAN 453

MP

TP

n

RP

r

mrnmn
mawu Ω∈∀>=+ 

= =

,

1 1

(3)

MP

TP

n

RP

r

mrnmn
maLwu Ω∈∀×<=+ 

= =

,

1 1

(4)

PPp

TP

n

pn
pbv Ω∈∀>=

=

,

1

(5)

PPp

TP

n

pn
pbLv Ω∈∀×<=

=

,

1

(6)

RPr

TP

n

rn
pcw Ω∈∀>=

=

,

1

(7)

PPr

TP

n

rn
pcLw Ω∈∀×<=

=

,

1

(8)

RPr

MP

m

rm
rcz Ω∈∀=

=

,

1

(9)

() () () TP

M

m

P

m

R

m

rn

rrn

pn

pnp

mn

mnm
ns

d

Pw

d

Pv

d

Pu

N
Ω∈∀>=












 ×
+

×
+

×
+   =

=
=

,]
1

1log[
00

1

0

0

ααα

(10)

RPMPrmmrmr rmLdz Ω∈∀Ω∈∀<=× − ,

(11)

TP

M

m

R

r rn

rrn
P

p pn

ppn

mn

mmn

P

p

R

r rn

r

pn

p
M

m mn

m

n ns
d

Pw

d

Pv

d

Pu

N
s

d

P

d

P

d

P

N

q Ω∈∀











−










++

−













++

≥  
 

= ==

= ==

,
1

1

1
0

1 110

0
1 110

ααα

ααα

(12)

454 L. Bin et al.

TP

M

m

R

r rn

rrn
P

p pn

ppn

mn

mmn

P

p

R

r rn

r

pn

p
M

m mn

m

n n
d

Pw

d

Pv

d

Pu

N
s

s
d

P

d

P

d

P

N

q Ω∈∀






















++−

−













++

≥−  
 

= ==

= ==

,
1

1

1
1

1 110
0

0
1 110

ααα

ααα

(13)

%100
1

1
1

×≥
=

η
N

n
nq

N

(14)

T

M

m

R

r rn

rr
P

p pn

pp

mn

mm

P

p

R

r rn

r

pn

p
M

m mn

m

n nr
d

Pc

d

Pb

d

Pa

N
r

d

P

d

P

d

P

N

f Ω∈∀











−










++

−












++

≥  
 

= ==

= ==

,
1

1

1
0

1 110

0
1 110

ααα

ααα

(15)

TP

M

m

R

r rn

rr
P

p pn

pp

mn

mm

P

p

R

r rn

r

pn

p
M

m mn

m

n n
d

Pc

d

Pb

d

Pa

N
r

r
d

P

d

P

d

P

N

f Ω∈∀






















++−

−












++

≥−  
 

= ==

= ==

,
1

1

1
1

1 110
0

0
1 110

ααα

ααα

(16)

%100)1(
1

2
1

×≥−
=

η
N

n
nf

N

(17)

RPPPMPrpm ntmcba Ω∈∀Ω∈∀Ω∈∀∈ },1,0{,,
(18)

TPMPmn nmu Ω∈∀Ω∈∀∈ },1,0{
(19)

RPPPpn npv Ω∈∀Ω∈∀∈ },1,0{
(20)

TPRPrn nrw Ω∈∀Ω∈∀∈ },1,0{
(21)

The objective function in (1) to minimize the total deployment cost of the hetero-

geneous cellular network. Constraint (2) stipulates that each TP is covered by at least
two Stations (including MBSs, PBSs and RSs) which ensure the IDD feature of heter-
ogeneous cellular network. In other words, Constraint (2) ensures the TP has only one
parent node in the ΩMP∪ΩPP∪ΩRP if it is in the tree. Constraint (3)(4) ensure that
the output of each MBS only if am=1, output includes RSs and TPs. Constraint (5)(6)
ensure the output of each PBS only if bp=1. Constraint (7) and (8) ensure the output
of each RS only if cr=1. Constraint (9) stipulates that a RS is selected; it has only one
parental node of an MBS.

 Infrastructure Deployment and Dimensioning of RHWAN 455

Table 1. Definitions of Symbols in the (IDD) Model

Symbol Definition

MPΩ The set of Macro Base Stations ΩMBS = {MP୫ | m = 0,1, … , M − 1}

PPΩ The set of Pico Base Stations ΩPBS = {PP୮ | p = 0,1, … , P − 1}

RPΩ The set of Relay Stations ΩRS = {RP୰ | r = 0,1, … , R − 1}

TPΩ The set of TPs ΩTP = {TP୬ |n = 0,1, … , N − 1}

D
The distance matrix D=(dmn)M×N,where dmn is the distance between node m and
n.

mP The maximal transmit power of an Macro Base Station

pP The maximal transmit power of a Pico Base Station

rP The maximal transmit power of a Relay Station

mC The cost of an Macro Base Station

pC The cost of a Pico Base Station

rC The cost of a Relay Station

0N The coverage thermal noise power in AOI

α The path loss exponent

0s The minimal SNR requirement for each TP

0r The maximal permitted radiation intensity threshold at each TP

1η The average minimum required coverage ratio within the AOI

2η The average minimum required radiation ratio within the AOI

L
The conversion factor which makes the association incidence vector between
Base Station and TP equal 0 if there is the location incidence vector equals 0

rmL −
The largest distance between Relay Station and the Macro Base Station which
provides service to it.

Constraint (10) ensures that the network satisfy the SNR requirements constraints.

Constraint (11) sets an upper bound on the fiber length between MBS and RS in net-
work. Constraints (12) - (14) stipulate the definition of Q. Constraints (15) - (17) stip-
ulate the definition of F. Constraints (18) - (21) state the each entry in A, B, C, U,
V,W and Z is binary.

4 Numerical Analysis

4.1 Simulation Settings

We implement the optimization model of Section 3 and solve the ILP models using
Gurobi Optimizer [13], which is a state-of-the-art ILP solve. Gurobi is designed from

456 L. Bin et al.

the ground up to exploit modern multi-core processors and the performance is proved
to be superior to CPLEX [14].

Table 2 and 3 show the component cost of RHWAN and experimental parameters,
respectively. We define a generic cost unit (gcu) [15] to simplify the evaluation of
deployment costs in the case studies.

4.2 Validation of the ILP Formulation

To examine the ILP formulation, firstly, a relatively small-size network (so-called
Scenario I) is simulated, and the setup of Scenario 0 is show in Fig.2. The coordinates
of all the nodes with the area of interest are normalized. Fig.3 shows the correspond-
ing results of network layout in Scenario I. The problem can be solved successfully by
ILP solver. We observe that the tree structure in Fig.3 are maintained correctly with
the topological features of acyclic, connected and directed. The nodes of MBSs,
PBSs, RSs and TPs serve as the root, internal and leaf nodes, respectively. Thus, we
can conclude that the IDD formulation is validated.

Secondly, to investigate the effect of CoMP in the network planning strategy, we
compare the resulting network layout configuration with and without CoMP technol-
ogy as shown in Fig.3. We can obverse the difference between Fig.3 (a) and Fig.3 (b).
The number of selected MBSs in Fig.3 (a) is more than that in Fig.3 (b).

Table 2. RHWAN Component Cost

Component Cost(gcu)

mC 10

pC 1

rC 0.7

Table 3. Simulation Parameter Settings

Parameter Value

α 2.43

mP 10 W

pP 1W
rP 0.7W

s0 22.8dB

0N 2mW

L 1000

rmL − 9km

Scale 30km

 Infrastructure Deployment and Dimensioning of RHWAN 457

Fig. 2. Experimental Setup of Scenario I before Optimization (Scenario I is set for ILP model
verification.)

In the simulations, we randomly select MBSs, PBSs and RSs in the AOI. The prob-
lem size, the average computation time, the optimization gap, and the objective values
in three scenarios are shown in Table 3. The results verify that the proposed ILP
formulation of IDD is correct and solvable. Table 3 indicates that the problem size
grows dramatically as the network size increases, and the problem can be solved
successfully with Gurobi.

Table 4 show the corresponding computing result of network optimal layout in this
scenario. It compares the objective value with, without CoMP and cooperation with
MBSs only. Obviously, the total cost of network will be increased greatly without
CoMP, and even larger when use MBSs as servers only. In other words, the incorpo-
ration of CoMP technology can lead to a significant cost reduction for RHWAN. Be-
sides, the achievable rate at each TP is increased due to multiple wireless links from
MBSs, PBSs, RSs, and thus the network capacity and link reliability can be enhanced.

Table 4. Comparisons of IDD Results between With and Without CoMP in Scenario 0

Without CoMP
(s0=22.8dB)

With CoMP
(s0=22.8dB)

Cooperation
With MBSs only

Selected number of
MBSs for placement

6MSs 4 MSs 12MSs

Selected number of
PBSs for placement

1PS 1PS 0PS

Selected number of
RSs for placement

0RS 17RSs 0PS

Obj. Value (gcu) 61 52.9 120

Compute time(s) 0.05 0.26 0.01

Optimality Gap 0.0% 0.0% 0.0%

458 L. Bin et al.

(a)Without CoMP

TP Selected MBS Unselected MBS
Selected PBS Unselected PBS Selected RS Unselected RS

(b) With CoMP

Fig. 3. Network Layout Results in Scenario I

4.3 Feasibility and Scalability of IDD Formulation

Considering that the scale and configuration of a network placement may affect the
performance of a network planning, we investigate three scenarios with an increasing
network scale as listed in Table 5. With the three cases, we hope to verify the solva-
bility of our formulation. For research convenience, the area is divided into a set of
rectangular grids with a uniform size according to the desired accuracy. The MBSs,
PBSs, RSs and TPs are defined at rectangular grids in scenario studies.

 Infrastructure Deployment and Dimensioning of RHWAN 459

Table 5. Problem Size of Simulated Scenarios in Scenario I, II, AND III

Table 6. Computation Time, Optimality Gap, Objective Value for Gurobi Solving Problem

Scenario I Scenario II Scenario III
With
CoM
P

Without
CoMP

With
CoMP

Without
CoMP

With
CoMP

Without
CoMP

Time (s) 0.26 0.05 1.06 0.11 86.2 0.08

Cost (gcu) 52.9 61 56.2 111.7 61.4 94.4

Cost (%) 13.28% 49.69% 34.96%

Optimality
Gap

0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

In the simulations, we randomly select MBSs, PBSs, RSs and TPs in the area. The

problem size, the average computation time, the optimization gap, and the objective
values in three scenarios are shown in Table 6. Note that Scenario III may reflect a
practical large-scale network planning task with hundreds of nodes. The results fur-
ther demonstrate that the proposed IDD formulation is solvable and scalable although
the network size increases dramatically.

5 Conclusion

In this paper, we formulate an ILP model to minimize the total deployment cost of the
RHWAN such that the coverage requirement can be satisfied given a limited capital
expenditure on MBSs, PBSs, RSs deployment and the problem of topology layout
with them. We have examined the proposed ILP model via extensive case studies in
terms of its feasibility and scalability. The results have demonstrated the performance
benefits of CoMP with respect to cost reduction, capacity and reliability enhancement
in RHWAN. In the future work, a heuristic algorithm will be proposed to solve the
problem more efficiently for even larger scale network planning tasks. The proposed
optimization frame work is expected to provide a guideline in the future RHWAN
deployment for the operators.

Scenario
Number of nodes

TP MP PP RP

Scenario I 50 11 9 40
Scenario II 102 25 28 32

Scenario III 625 46 33 44

460 L. Bin et al.

Acknowledgments. This study is sponsored by National Science Foundation of China
(NSFC) No. 61371091, No. 61171175 and No. 61301228, Liaoning Provincial Natu-
ral Science Foundation of China No.2014025001, the Scientific Research Foundation
for the Returned Overseas Chinese Scholars from Ministry of Human Resources and
Social Security, and Program for Liaoning Excellent Talents in University (LNET)
No. LJQ2013054 and Fundamental Research Funds for Central Universities under
grant No.3132014212.

References

1. LTE Advanced: Heterogeneous networks. Qualcomm Inc. White Paper (2011)
2. Zhang, J., Andrews, J.G.: Distributed antenna systems with randomness. IEEE Trans.

Wireless Communication 7(9), 3636–3646 (2008)
3. Loa, K., Wu, C.C., Sheu, S.T., Yuan, Y., Chion, M., Huo, D., Xu, L.: IMT-Advanced relay

standards. IEEE Communication. Mag. 48(8), 40–48 (2010)
4. http://www.greentouch.org
5. Sydir, J., Taori, R.: An evolved cellular system architecture incorporating relay Stations.

IEEE Communications Magazine 47(6), 115–121 (2009)
6. Yang, Y., Hu, H., Xu, J., Mao, G.: Relay technologies for WiMax and LTE-advanced mo-

bile systems. IEEE Communications Magazine 47(10), 100–105 (2009)
7. Yeh, S.P., Talwar, S., Wu, G., Himayat, N., Johnsson, K.: Capacity and coverage en-

hancement in heterogeneous networks. IEEE Wireless Communications 18(3), 32–38
(2011)

8. Parkvall, S., Furuskar, A., Dahlman, E.: Evolution of LTE toward IMT-advanced. IEEE
Communications Magazine 49(2), 84–91 (2011)

9. Guvenc, I.: Capacity and fairness analysis of heterogeneous networks with range expan-
sion and interference coordination. IEEE Communications Letters 15(10), 1084–1087
(2011)

10. Zhao, W., Wang, S.: Cell planning for heterogeneous cellular networks. In: 2013 IEEE
Wireless Communications and Networking Conference (WCNC), pp. 1032–1037 (2013)

11. Mukherjee, S.: Distribution of Downlink SINR in Heterogeneous Cellular Networks. IEEE
Journal on Selected Areas in Communications 30(3), 575–585 (2012)

12. Lin, B., Lin, L.: Site Planning of Relay Station in Green Wireless Access Networks: A
Genetic Algorithm Approach. In: Soft Computing and Pattern Recognition (SoCPaR), Da-
lian, China, pp. 167–172 (2011)

13. Lin, B., Ho, P.H., Xie, L., Shen, X., Tapolcai, J.: Optimal Relay Station Placement in
Broadband Wireless Access Networks. IEEE Transaction on Mobile Computing 9(2)
(2010)

14. Lin, L., Lin, B., Ho, P.H.: Power-aware optimization modeling for cost-effective LRPON
infrastructure deployment. In: 21st International Conference on Software, Telecommunica-
tions and Computer Networks (SoftCOM), pp. 1–5 (2013)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 461–469, 2014.
© Springer International Publishing Switzerland 2014

Vessel Motion Pattern Recognition Based on One-Way
Distance and Spectral Clustering Algorithm*

Wenyao Ma1,2, Zhaolin Wu1, Jiaxuan Yang1, and Weifeng Li1,**

1 Navigation College, Dalian Maritime University, Dalian, Liaoning, China
sddmlwf@163.com

2 Navigation College, Guangdong Ocean University, Zhanjiang, Guangdong, China

Abstract. Identification of vessel motion pattern from large amount of maritime
data can help to high level contextual information and improve the effectiveness
of surveillance technologies. Vessel routes belonged to certain motion pattern
can provide useful information on daily patterns and transit duration. Therefore
an approach to identify motion pattern is presented. In paper, the distance sim-
ilarity matrix of the trajectory dataset was constructed by using the measurement
method in trajectory with one-way distance. The regular motion patterns of
vessels were extracted from the trajectories spatial distribution learnt by the
spectral clustering algorithm. Finally motion patterns of vessel traveling in
Qiongzhou strait was extracted using the proposed method. The results showed
that the method has high precision on clustering the vessel trajectories and is
applicable to identify movement patterns of vessels in maritime areas such as
coastal ports, narrow waterway and traffic complex area.

Keywords: Vessel motion pattern, One-way distance, Spectral clustering, Sim-
ilarity measure.

1 Introduction

With the coming of maritime cloud date age, a huge database has been formed based on
AIS stations network all around the world, so more and more people starts to pay
attention on the huge date technology. Use huge marine data to recognize the vessel
motion pattern and find high level of situation awareness and anomaly vessel motion
pattern are useful to enhance the comprehension to the seasonal difference of the vessel
motion pattern [1]. Clustering routes can provide different daily motion pattern and
sailing time of different type ships, which can improve the effectiveness of tracking
the target ship and maritime monitoring and management technology. There are two
important factors which affect the vessel motion pattern recognition, they are high
efficiency modeling method and space-time tracks clustering algorithm.

 *

 This work was supported by the Fundamental Research Funds for the Central Universities
under grant 3132013015 and 3132013006.

** Corresponding author.

462 W. Ma et al.

Some scholars do research on the moving targets of road traffic and propose some
algorithms to get motion pattern from the track of the moving targets, but few does on
the marine traffic. Hu Hongyu[2] uses improved Hausdorff Distance and spectral
clustering algorithm to study the spatial distribution of the vehicles, obtain the classi-
cal motion pattern of moving targets. Wen Jia[3] improved the Hausdorff’s distance
equation with some weighting, which considers the characteristics of the moving
vehicle, and obtains the motion pattern of the vehicle, but it is much more complicat-
ed compare with others because the characteristics of the track should be calculated.
In the reference[4], the author calculates the track similarity of the moving target by
one-way distance method, classifies the track and certifies good. Johnson[5] and
Sumpter[6] modeling for the track spatial pattern study with the method of
self-organized neural network. Hu studies the motion pattern of the moving targets by
fuzzy self-organized neural network[7]. But neural network has her own short coming
when used to build network, such as much more complicated, slowing studying speed,
a lot of settings need to set and it is very complicated to set net weightings.

Non-supervision clustering algorithm is used widely. Atev[8] and Bashir [9] study
the track spatial pattern with the method of average K value clustering. Hu obtains the
target’s motion pattern by average fuzzy value clustering method. But above methods
need to standardize the length of the track, and will have some damage to the origin of
the track. Biliotti classifies the track by hierarchy clustering method, which may lead
unsatisfactory result if one of the hierarchies is broken down [10]. In addition, Junejo
obtains the motion pattern by dividing the track collection into many sub-collection
[11]. Wang studies the target track motion pattern by spectral clustering method [12].

The paper refers to the motion pattern recognition method on the road traffic, con-
sidering the characteristics of ship motion track, provides Vessel Motion Pattern
Recognition Based on One-way Distance and Spectral Clustering Algorithm, calcu-
lates the similarity of ship track by one-way distance method, obtains the space-time
distribution of ship track by spectral clustering algorithm mentioned in reference [12].

2 Similarity of Ship Track

2.1 Pre-processing of Ship Track Data

The ships track are mainly from automatic identification system, which will send own
ship’s position, speed, course, name, call sign, length and breadth, MMSI and IMO
Code information automatically with and interval of 2 or 3 seconds. But sometimes,
the track may be incomplete by any reasons such as the fault of AIS device, or the
information send by the ship exceed the capacity of the land station receiver or other
similar reasons.

All above factors will affect the classification, recognition and analysis of the
track. So, it is necessary to preprocessing the date before clustering.

2.2 Measurement of Ship Track Similarity

Classification of ship track is based on the measurement of similarity of ship track.
There are a lot of methods to measure the similarity of ship track, such as Euclidean

 Vessel Motion Pattern Recognition Based on One-Way Distance 463

Distance(ED), dynamic time warping distance (DTW), the longest common subse-
quence(LCS) and Hausdorff. But ED can only be used to calculate the similarity of
equal time track, LCS, Hausdorff Distance and one-way Distance can be used to cal-
culate uneven time interval ship track. In another aspects, the one-way Distance can
be used to measure the similarity of track spatial shape and has a high efficiency, so
this is the reason to use one-way Distance to measure the similarity of ship track.

2.3 Track Similarity Measurement by One-Way Distance

At first, it is necessary to give a definition of the distance from point P to the track T
as shown in equation(1).

),(min),(qpdTpd
EDTq∈= (1)

In the equation (1), q is a point on track T，dED(p,q) is the Euclidean distance from
point p to point q. if there are two tracks T1 and T2 in track T, the one-way distance from
T1 to T2 is defined as following equation (2).

)),((
1

),(
1

2

1

21  ∈
=

Tp
owd dpTpd

T
TTd (2)

Infect, one-way distance is the distance with direction, here use the average distance
of dowd(T1,T2) and dowd(T2,T1) as the distance from T1 to T2.

2

),(），（
），（ 1221

21

TTdTTd
TTd

owdowd
+

=
 (3)

The one-way distance, considering the minimum distance from all points on one
track to the middle of the other track, has great anti-interference ability to the noise of
the track. Then, change the distance in equation (3) to similarity function as shown in
following.

)])/(2-[d(

2

exp),(
σ

21
,TT

21
TTs = (4)

In function (4), σ is the dimension parameter, shows the attenuation extent following
the increase of the distance. If the distance is bigger, the similarity will be smaller.

3 Ship Track Study Based on Spectral Clustering

After getting the similarity between tracks, the author classifies the high similarity
tracks by spectral clustering algorithm and then obtains the spatial distribution of the
target track. Spectral clustering algorithm, based on the spectrum theory, can cluster
at any shape of the sample and convergence to a best solution overall situation which
is the advantage of it. The algorithm define a matrix to express the similarity of the
data according to the sample, calculates the feature vector and characteristic value of
the matrix, chooses a suitable feature vector to cluster different data, the steps of
spectral clustering algorithm are shown as following.

464 W. Ma et al.

Step 1:express the spatial similarity between tracks by one-way distance for the track
collection which includes n tracks Trajectory={T1,T2,…,Tn}, constructs n×n simi-
larity matrix.





≠
=

=
jiTTs

ji
s

ji

ij
),,(

,0
 (5)

Step 2:from similarity matrix S and matrix D to calculate laplacian matrix L, and do
decomposition.

Step 3:sort the characteristic values from decomposition nλλλ ≤≤≤ ...21 ，if
there is a big difference between the λk and λk+1, choose k to be the number of the
motion pattern.

ii

i

λλ −= + 1maxargk (6)

Step 4:calculate corresponding feature vectors from λ1 to λk, they are x1 ,x2 ,…,xk，

construct n×k matrix X=[x1，x2，…，xk]； normalize X, will get feature vector spatial
matrix Y.

Step 5: each track Ti is corresponding to the ith feature vector in matrix Y, classifies
the tracks into k types by K-means algorithm.

The former algorithm can study the spatial distribution of tracks so that to classify
the track samples in the track collection into corresponding track clusters. In order to
get ship motion pattern, it is necessary to get the central track of each track cluster,
which is use the central track to express the motion pattern. Calculate the average
distance from the track Ti in the kth track to other tracks in this cluster.

1

),(
,1

−
=


≠=

k

n

ijj

ji

i
n

TTd

d

k

 (7)

Choose the smallest average distance in the kth track cluster to be the central track,
which can be used to express the kth moving target’s motion pattern in one traffic
situation.

4 Experiment Analysis

Verify the effectiveness of the algorithm according to the collected ship tracks in the
real traffic situation. The boundary of collection area is (20°01N, 109°55E) and
(20°18N, 110°32E) in Qiongzhou strait, collect AIS information in 2011 to get the
ship traffic in this area. The area and ship motion tracks are shown in figure 1.

 Vessel Motion Pattern Recognition Based on One-Way Distance 465

Fig. 1. The researched area and ship tracks

At first, it is necessary to wash AIS data to eliminate some data with errors or lost
some parts. Select the tracks entering into Haikou port totally 364 tracks. Figure 2-5
shows the effects after clustering by spectral clustering algorithm. Track collection is
divided into 4 types of track clusters according to one-way distance; they are marked
by black, blue, red and green colors. The area of each track cluster coincides with the
traffic separation scheme in Qiongzhou strait. If the ship is entering into Xiuying port,
there are 4 types of classic motion pattern, from new Haian port to Xiuying port pat-
tern (in black), from Haian port to Xiuying port pattern (in blue), from east entrance
to Xiuying port pattern (in green), from west entrance to Xiuying port pattern (in red)
shown in figure 2, figure 3, figure 4 and figure 5, and figure 6 shows all the motion
patterns entering into the Xiuying port.

Fig. 2. Motion pattern from HaiAn port to Xiuying port

466 W. Ma et al.

Fig. 3. Motion pattern from new HaiAn port to Xiuying port

Fig. 4. Motion pattern from west entrance to Xiuying port

Fig. 5. Motion pattern from east entrance to Xiuying port

 Vessel Motion Pattern Recognition Based on One-Way Distance 467

Fig. 6. Motion patterns of vessels entering Xiuying port

It is easy to see that the ship track clustering is reliable from the result of experi-
ment. Table 2 to table5 shows the track clustering statistics of 3 kinds of ship motion
patterns. In the table, d1 is Average distance of inner-class, d2 is maximum distance
of inner-class, d3 is Average distance of between classes, d4 is maximum distance of
between classes.

Table 1. Patterns of vessels entering Xiuying port

NO. Patterns

P1 Haian Port-Xiuying Port

P2 New Haian Port-Xiuying Port

P3 East entrance to strait-Xiuying Port

P4 West entrance to strait-Xiuying Port

Table 2. Average and maximum distance of inner-class

Pattern d1 d2 nm

P1 0.19 nm 0.27 nm

P2 0.24 nm 0.28 nm

P3 0.25 nm 0.38 nm

P4 0.21 nm 0.34 nm

Table 3. Average distances between classes

Pattern P1 P2 P3 P4

P1 0.0 nm 1.36 nm 4.73 nm 4.56 nm

P2 1.36 nm 0.0 nm 4.28 nm 4.45 nm

P3 4.73 nm 4.28 nm 0.0 nm 1.26 nm

P4 4.56 nm 4.45 nm 1.26 nm 0.0 nm

468 W. Ma et al.

Table 4. Minimum distances between classes

Pattern P1 P2 P3 P4

P1 0.0 nm 0.76 nm 4.12 nm 4.27 nm

P2 0.76 nm 0.0 nm 4.16 nm 4.20 nm

P3 4.12 nm 4.16 nm 0.0 nm 4.30 nm

P4 4.27 nm 4.20 nm 4.30 nm 0.0 nm

It is not hard to see from figure 3, that the average distance of inner-class(d1) of this

4 type of patterns is smaller than 0.3 nm, which shows the inner tracks of patterns are
very close to each other, and the biggest maximum distance of inner-class(d2) is
0.38 nm which is smaller than 1/2 width of traffic lane(1.3 nm), which shows most of
ships navigate as close as possible to the center of the traffic lane. Table 4 and table 5
show that the average distance between class(d3) is less than 1.26 nm and the smallest
value(d4) is 0.76 nm, and they are belonged to pattern p1 and pattern p2. In other
words, the patterns from Haian port to Xiuying port and from New Haian port to
Xiuying port, which can be seen easily from figure 2 and figure 3, are similar to each
other, and most of the ship tracks are very close. Other distance between classes is
bigger than 4 nm, so it is easy to separate them.

5 Conclusion

The paper use one-way distance to measure ship track similarity, constructs similarity
matrix between tracks, recognizes ship motion pattern by spectral clustering
algorithm. Finally, the author takes Haikou port as an example, does experiment to
recognize ship motion pattern of entering into Haikou port, obtains 4 kinds of motion
pattern, and statistics the distance between these 4 patterns. The result shows the
method is reliable and has advantage of high currency, less calculation. It can be used
widely in harbor, narrow channel and some other complicated traffic areas for
recognition of ship motion patterns.

References

1. Feixiang, Z., Yingjun, Z., Zongjiang, G.: Research on ship behaviors based on data mining.
J. Journal of Navigation of China 35, 50–54 (2012)

2. Hongyu, H., Qingnian, W., Zhuhui, L.: Spatial pattern recognition and abnormal traffic
behavior detection of moving object. J. Journal of Jilin University 41, 1598–1602 (2011)

3. Jia, W., Wei, C.: Extraction and clustering of vehicle’s trajectories from live vedio. J.
Computer Engineering and Applications 46, 155–157 (2010)

4. Lin, B., Jianwen, S.: One way distance: for shape based similarity search of moving Object
trajectories. J. Journal of GeoInformatica 12, 117–142 (2008)

5. Johnson, N., Hogg, D.: Learning the distribution of object trajectories for event recognition.
J. Image and Vision Computing 14, 609–615 (1996)

 Vessel Motion Pattern Recognition Based on One-Way Distance 469

6. Sumpter, N., Bulpitt, A.J.: Learning spatio-temporal patterns for predicting object behavior.
J. Image and Vision Computing 18, 697–704 (2000)

7. Hu, W., Xie, D., Tan, T.: Learning activity patterns using fuzzy self-organizing neural
network. J. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34,
1618–1626 (2004)

8. Atev, S., Masoud, O., Papanikolopoulos, N.: Learning traffic patterns at intersections by
spectral clustring of motion trajectories. In: IEEE International Conference on Intelligent
Robots and Systems, pp. 4851–4856. IEEE Press, Beijing (2006)

9. Bashir, F.I., Khokhar, A.A., Schonfeld, D.: Object trajectory-based activity classification
and recognition using hidden Markov models. J. IEEE Transactions on Image Pro-
cessing 16, 1912–1919 (2007)

10. Biliotti, D., Antonimi, G., Thiran, J.P.: Multi-layer hierarchical clustering of pedestrian
trajectories for automatic counting of people in video sequences. In: Proceedings-IEEE
Workshop on Motion and Video Computing, pp. 50–57. IEEE Press, Breckenridge (2007)

11. Junejo, N., Javed, O., Shah, M.: Multi-feature path modeling for video surveillance. In: the
17th International Conference on Pattern Recognition, pp. 716–719. IEEE Press, Wash-
ington DC (2004)

12. Wang, L., Hu, W.M., Tan, T.N.: Recent developments in human motion analysis. J. Pattern
Recognition 36, 585–601 (2003)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 470–478, 2014.
© Springer International Publishing Switzerland 2014

Navigation Safety Assessment of Ship in Rough Seas
Based on Bayesian Network

Fengde Qu, Fengwu Wang, Zongmo Yang, and Jian Sun

Navigation College, Dalian Maritime University, Dalian 116026, China
{qufengde,wangfengwu,yangzongmo,sunjian}@dlmu.edu.cn

Abstract. This paper analyzes the rough seas weather which may be encoun-
tered during the voyage and its influences on ship's navigation safety. This pa-
per draws lessons from related both domestic and abroad researches about
ship's navigation safety, according to the accident causes, analyzes the factors
of ship's navigation safety affected by rough seas, determines assessment index
system of ship's navigation safety in rough seas, uses Bayesian Network to real-
ize the assessment, and eventually works out which index contributes the most
to the marine accidents of ship in rough seas.

Keywords: Ship, Rough Seas, Bayesian Network, Safety Assessment.

1 Introduction

According to statistic of the recorded casualties that happened between 1998 and
2003 which I got from the CASUALTY STATISTICS AND INVESTIGATIONS in
the GISIS database of IMO official website, there were totally 2371 marine accidents
happened, in which 370 accidents happened in rough seas, which accounts for
15.64%. Thus it can be seen even though the rapid development of the marine tech-
nology, marine accidents happen occasionally which result from hostile hydro mete-
orology [1].

By now, with regard to the researches of ship's navigation safety assessment in
Rough seas in China, References [2, 3, 4, 5, 6] use Fuzzy Comprehensive Evaluation,
BP Neural Networks, Probabilistic Influence Diagram, Evidence Theory and Rough
Set Theory respectively to discuss the navigation safety assessment of different types
of ships in rough seas. This paper attempts to use another mathematical method to
probe into this issue.

2 Overview of Bayesian Network

Bayesian Network (BN), or Belief Network is a graphical model that describes the
dependency relationship of random variables, and it is a combination of probability
theory and graphic theory, the main core of it is joint probability calculation. Since
late 1980s, Professor Pearl J.[7] from Department of Computer Science, University of

 Navigation Safety Assessment of Ship in Rough Seas Based on Bayesian Network 471

California, USA, gave the strict definition of BN and established its system info, the
effectiveness of BN has been verified in numerous fields including safety manage-
ment, information fusion, medical diagnosis, system control, bioinformation and so
on[8,9].

BN consists of two parts, part one: the structure chart of BN is a Directed Acyclic
Graph (DAG), whose nodes represent random variables and edges represent condi-
tional dependencies. Part two: Conditional Probabilities Table (CPT) between nodes.
If we can get the CPT of relevant nodes of a BN, then we can calculate any given
joint probability, that is to say this BN is inferable. As shown in Fig.1, nodes A, B, C
represent variables, we call nodes A, B parent nodes, also we can call them fringe
nodes, and node C is the child node. L1 and L2 represent the relationship of variables

[10].

Fig. 1. An Example of Bayesian Networks

If X1,X2,…,Xn are a set of exhaustive events that are incompatible mutually,
p（ Xi） >0, and A is any event, then the Bayes formula can be described as:

() () ()
() ()
i i

i n
j j

j 1

P X P A|X
p X |A

P X P A|X
=

=


 (1)

()iXP , the priori, is the initial degree of belief in iX ;

)(i AXP , the posterior, is the degree of belief having accounted for A.

472 F. Qu et al.

According to the Conditional Independence Assumption and d-Separation of BN,

the joint probability of BN ()1 2 np X X X…， ，， can be described as the product of

marginal probability of all the nodes:

() ()()
n

1 2 n i n

i 1

p X X X p X |parent X
=

… =∏， ， ，

 (2)

iX is the ith node of BN;

()nparent X is the nth parent node.

As a matter of fact, the inference of BN is a way to conduct probability calcula-
tion. More specifically, when given the conditions of a BN model, according to the
known conditions, using the methods of calculating conditional probability in Bayes
probability, calculate the probability of the needed nodes.

3 Navigation Safety Assessment of Ship in Rough Seas Based on
Bayesian Network

Navigation safety assessment system of ship in rough seas is a comprehensive as-
sessment system which consists of 3 sub-system, Man-Machine (ship)-Environment.
In the process of assessment, the conditional probabilities of parent nodes should be
given by experts, using BN combination rules to implement data fusion from parent
nodes to child nodes, eventually get safety situation of the whole assessment system.
Specific procedures as follows:

3.1 Determine the Nodes of the Model

Lots of experts and scholars have conducted in-depth discussion and researches on
safety assessment of ship in rough seas in the domestic and overseas, and already got
the causes of accidents by various means. Based on the predecessors' studies and sev-
eral kinds of causes they put forward, this paper removes the factors that have little
impact or correlation is not so strong on safety navigation of ship in rough seas, and
then determines the nodes of the network model.

3.2 Determine the Range of the Nodes

The range of all the determined nodes in step (1) is [0, 1], 0 means “do not happen” or
“have no influence”, 1 means “happen” or “have influence”, the numerical value be-
tween (0, 1) means scope of influence that parent nodes have on the child nodes. Each
node has two states, T means the influence degree of “have influence”, F means the
influence degree of “have no influence”.

 Navigation Safety Assessment of Ship in Rough Seas Based on Bayesian Network 473

3.3 Establish the BN Structure of Safety Assessment

Establishing BN structure mainly can be realized by three means. A) According to the
experts’ knowledge, Establish BN topological structure manually; B) Acquire BN
automatically by means of learning database. C) Combination of the two methods
above to realize the objective. This paper will use A) to establish the BN structure of
navigation safety assessment of ship in rough seas.

3.4 Determine the CPT of Nodes

In the process of modeling of BN, the most difficult job is to determine the CPT of
each node. In allusion to this model, because of the less number of the relevant data in
database, the CPT of the parent nodes are obtained by means of questionnaire survey
from experts. And on the basis of Bayes formula, the CPT of the each child node is
eventually calculated.

3.5 Establish BN Model of Safety Assessment

After achieving the four steps above, in the light of the determined BN nodes, estab-
lish BN model, shape into the BN of ship’s navigation safety assessment in rough
seas. By means of the determined CPT of each node, according to the combination
rules of BN, infer BN from parent nodes to child nodes to achieve the safety situation
of ship’s navigation in rough seas.

On account of the bidirection reasoning ability of BN, that is when given the CPT
of the fringe nodes, the probability of the top node can be obtained; when given the
CPT of the top node, the probability of the fringe nodes can be inferred as well.
Therefore if we know that ship’s navigation in rough seas is not safe, we can infer
from child node to parent nodes, by ways of this kind of backward inference, we can
get the dominant factors that affect the navigation safety of ship in rough seas. And
then come up with more rational suggestion to guarantee the safety of ship’s naviga-
tion in rough seas.

4 Instance Analysis

In this paper, training ship MV “YUKUN” of Dalian Maritime University is selected
as an example, which is put into use in April 2008, and by now it has been in use for
six years, with length over all 116m, breadth 18m, molded depth 8.35m, designed
draft 5.4m and total tonnage 6,106tons. Officers on board are all veteran and qualified
teachers of Dalian Maritime University. MV “YUKUN” has enough safety and navi-
gation performance, the ship is equipped with integrated bridge system (IBS), AUTO-
0 automatic monitoring system in engine control room, retractable fin stabilizers and
bow thruster, etc., which have improved the ship’s performance. In addition the as-
pects of stability, separation, fire-fighting, rescue and so on are far beyond regulation
requirements. In this case, assumption is made under wind and wave grades 7 to 8.

474 F. Qu et al.

This paper uses BN analysis of software package “GeNIe (Graphical Network In-
terface)” to accomplish the navigation safety assessment of MV “YUKUN” in rough
seas. “GeNIe” is a software that builds pattern decision theory model which is devel-
oped by the Decision Systems Laboratory, University of Pittsburgh [11]. And it utiliz-
es the junction tree algorithm to calculate the established BN model. The network
model is shown in Fig.2.

Fig. 2. Bayesian Network of Safety Evaluation of “YUKUN” in Rough seas

According to the relevant data that obtained from the questionnaires that distribut-
ed to experts, scholars and experienced navigators, check consistency and remove
large-error data, and then fill in the attribute table of the nodes with corresponding
conditional probability.

After filling in the CPT into the model, “GeNIe” software can automatically up-
date the network, the results of the navigation safety assessment of MV “YUKUN” in
rough seas is shown in Fig.3.

The assessment results of MV “YUKUN” navigating in rough seas can be seen in-
tuitionally from Fig.3, the probability of “T” of the top node “safety” is 94%, that is to
say, at this stage, the safety probability of MV “YUKUN” navigating in rough seas is
94%.

Because of the bidirection reasoning ability of BN, assume that the accident oc-
curs, which means the probability of “F” of the top node “safety” is 100%, then by
ways of “GeNIe” simulation, we can get the dominant factors that affect the naviga-
tion safety of MV “YUKUN” in rough seas, as shown in Fig.4.

 Navigation Safety Assessm

Fig. 3. Navigation Safety Ass
Network

Fig. 4. The Inference of Caus
work

As can be seen from the
the major factor that induc
increases to 0.69, followed
increases to 0.66. Among t

ment of Ship in Rough Seas Based on Bayesian Network

sessment of MV “YUKUN” in Rough seas Based on Baye

sation of MV “YUKUN” in Rough seas baesd on Bayesian N

e Fig.4, assuming the accident occurs, the human facto
ces the accident, probability changes from previous 0
by the ship factor, probability changes from previous 0

the nodes, “wind area” node contributes the most on M

475

sian

Net-

or is
0.14
0.15
MV

476 F. Qu et al.

“YUKUN”. Thus, superstru
navigating in rough seas.

Assume that the MV “Y
means the probability of “T
NIe” simulation, we can get

Fig. 5. Posterior Probability V
Seas

As discussed above, the
Thus, if the condition of all
to say the human factor is
main unchanged, then we w

As can be seen from Fig
ent nodes of human factor h
tion of MV “YUKUN” in r
from previous 0.94 increas
the assessment result withou

Under normal circumsta
NIe” should theoretically b
deviation. The three main r
priori probability of fringe
perts, even although havin
human factors may be con
checks results in poor equ
knowledge limitation, some
that do not make big influen

ucture is an important factor that affects MV “YUKU

YUKUN” navigating in rough seas completely safe, wh
T” of the top node “safety” is 100%, then by ways of “G
t the level that each node has to be improved as below.

Value of MV “YUKUN” Navigating Completely Safe in Ro

e human factor is the major factor that induces the accid
l the factor in the human factor is beyond compare, tha
 eliminated, while ship factor and environment factor

will get the assessment result as follows.
g.6, if there is no human factor during the voyage, all p
have to be improved, and of course navigation safety sit
rough seas can be improved obviously, probability chan
es to 0.98. In the similar way, this BN model can anal
ut ship factor or environment factor as well.
ances, simulation analysis results given by software “G

be consistent with the practical ones, but here there is li
reasons are: First, when conducting forward reasoning,
e node is obtained via the questionnaire surveys from
ng taken appropriate adjustments, still subjective; Seco
ntained in the ship factors, such as the inadequate regu
uipment performance, etc.; Third, because of the auth
e factors may not be taken into account, while the fact
nces on assessment results are not listed .

UN”

hich
Ge-

ough

ent.
at is

re-

par-
tua-

nges
lyze

Ge-
ittle
the
ex-

ond,
ular

hor's
tors

 Navigation Safety Assessm

Fig. 6. Assessment

The simulation model a
actual situation of a ship, th
changed. For example, assu
7 to 8, if we encounter bigg
priori probability value. In
network, we can increase th
of the assessment results w
that case, the scale of netw
plex, and the calculation wi

5 Conclusion

BN is a technology with hu
paper, BN is adopted as an
safety in rough seas, modeli
provides reference informat
the safety navigation of shi
for captains and ship manag

Acknowledgements. This
for the Central Universities

ment of Ship in Rough Seas Based on Bayesian Network

t Results of Bayesian Network without Human Factors

above has great universality. In practice, in allusion to
he corresponding priori probability of fringe nodes can
umption is made in this paper that wind and wave grad
ger wind and wave, then we can increase the correspond
addition, if we want to obtain a more detailed assessm

he number of nodes or structural level, then the credibi
will be higher and closer to the practice value; howeve
work model will be increased, which makes it more co
ill become relatively difficult.

uge potential for application across numerous fields. In
n approach to carry out the assessment of ship's navigat
ing and system analysis are settled by software “GeNIe”
tion for vessels navigating in rough seass, helps to impr
ip and reduce accidents at sea, and provides decision b
gement sector, which has some practical value.

paper is supported by “the Fundamental Research Fu
” (3132014025).

477

the
n be
de is
ding
ment
ility
r in
om-

this
tion
”. It
rove
asis

unds

478 F. Qu et al.

References

1. Qu, F.D.: Navigation Safety Assessment of Timber Ship in Rough seas. Dalian Maritime
University (2012) (in Chinese)

2. Liu, Q.: Safety evaluation of container ship on China-Japan line in storm wave. Dalian
Maritime University (2008) (in Chinese)

3. Yang, B.C.: Navigation Safety Assessment of Ro-Pax vessel Sea-keeping ability in Storm
wave of Bohai Bay. Dalian Maritime University (2010) (in Chinese)

4. Lu, Q.J.: Navigation safety assessment of Ro-Pax vessel in storm wave based on BP neural
network. Dalian Maritime University (2010) (in Chinese)

5. Sun, J., Wang, F.W., Liu, Q., Qu, F.D.: Safety assessment of ships navigating in heavy sea
based on evidence theory. Journal of Dalian Maritime University 39(1), 53–56 (2013) (in
Chinese)

6. Qi, Z., Wang, F.W., Liu, Q.: Analysis on sea-keeping ability indexes of Ro-Pax vessel
navigation in stormy wave of Bohai Bay. Journal of Dalian Maritime University 39(2), 37–
40 (2013) (in Chinese)

7. Pearl, J.: Fusion: Propagation and structuring in belief networks. Artificial Intelligence
(1986)

8. Maglogiannis, I., Zafiropoulos, E., Platis, A., Lambrinoudakis, C.: Risk analysis of a
patient monitoring system using Bayesian Network modeling. Journal of Biomedical In-
formatics 39(6), 63–64 (2006)

9. Kannan, P.: Bayesian networks: Application in safety instrumentation and risk reduction.
ISA Transactions 46(2), 255–259 (2007)

10. Zhou, J.F., Tang, C.Y., Xu, Z.Y.: Application of Bayesian networks to dam risk analysis.
Journal of Hydroelectric Engineering 29(1), 92–96 (2010) (in Chinese)

11. GeNIe and SMILE, http://genie.sis.pitt.edu/index.php/about

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 479–486, 2014.
© Springer International Publishing Switzerland 2014

Optimization of Ship Scheduling Based
on One-Way Fairway

Jun Lin1, Xin-yu Zhang1,2, Yong Yin1, Jin-tao Wang1, and Shun Yao1

1 Key Laboratory of Maritime Dynamic Simulation and Control of Ministry of Transportation,
Dalian Maritime University, Dalian 116026, China

junerlinly@gmail.com
2 Faculty of Infrastructure Engineering, Dalian University of Technology,

Dalian 116023, China
zhang.xinyu@sohu.com

Abstract. In order to optimize ship scheduling based on One-Way fairway
when numerous ships arrive at the port, this paper develops a mathematical
model. It aims to minimize the weight of ship’s waiting time for the channel in
the consideration of the safe navigation. An optimal solution is obtained by ap-
plying Genetic Algorithm (GA). The chromosomes are represented as integer
permutation, which is applicable for optimizing the ship scheduling. And the
Two-Point Crossover is employed in the algorithm. Results show that the 9
ships’ waiting time for the channel is 38 minutes and the objective value is
7.937. It demonstrates that the proposed solution has an advantage in improving
navigation efficiency and the benefit for the port.

Keywords: One-Way fairway, Optimization priority, Ship scheduling, Genetic
Algorithm.

1 Introduction

It may cause a congested situation in the one-way fairway when numerous ships ar-
rive at the port. While there were many researches on ship scheduling, most of them
focus on the berth allocation and capacity of channel, few researches were conducted
on ship scheduling for the channel. Etsuko (2001) presented a mathematical model to
solve the problem of dynamic berth allocation planning for ships in the public berth
system [1]. Akio (2003, 2005) presented a heuristic algorithm for the berth allocation
with service priority [2] and berth allocation problem in continuous locations [3].
Liang (2009) formulated a multi-objective mathematical model in the consideration of
each berth for container ship with quay crane dynamic assignment (QCDA) and num-
ber of Quay Crane's Move [4]. Song (2010) analysed the traffic capacity of navigation
channel under the influence of navigation duration, and simulated transport ship sail-
ing operation systems by Arena [5]. The results show that the relationship between
single-channel transit capacity and shipping navigation duration is negative exponent
distribution. Wang (2008) presented a mathematical model on the co-scheduling

480 J. Lin et al.

problem to increase the whole passing ability for Three Gorges-Gezhou Dam [6].
However, it is different from ship scheduling on channel without paying attention to
shipping navigation duration, thus making their study inappropriate for one-way fair-
way.

Xu (2008) developed an optimum scheduling model for ships passing through one-
way fairway based on the work sorting theory [7]. Factors for each weight in the
model are selected according to their influence on the safe of navigation in the con-
sideration of practical operation. The obtained results showed obviously the ad-
vantages of improving the navigation efficiency for the channel. The model targets at
minimizing the investment time of total ships (including sailing time and the waiting
time for the channel availability), which is different from us. In this paper, a mathe-
matical model is proposed to the ship scheduling based on one-way fairway. The goal
of the model is to minimize the weight of the ship’s waiting time for a channel availa-
bility. It takes both the navigation efficiency and the benefit of the port into account,
under the premise of navigation safety. To solve the problem above, we employ GA.

2 Description of the Problem

As it is well known, when ships pass through one-way fairway, it is not allowed to
overtake other ships. It is necessary to come up with a solution to schedule ship in-
bound/outbound in the case of numerous ships arriving at the port at a period. It is a
typical non-linear integer programming problem: A ship is allowed to access the
channel only after it has arrived at the port or it has finished loading and discharging.
A distance should be kept to ensure the safety of navigation between two ships
inbound/outbound.

3 Formulation of the Ship Scheduling

3.1 Scheduling Priority

It is significant for a port to develop a solution that makes the whole ships pass
through the channel as soon as possible, so that clearing the navigation area and re-
ducing the waiting time of the ships at a period. VTS usually offers higher priorities
for the ship with well maneuverability in the consideration of safety and navigation
efficiency, when the channel is congested. For example, we assume that two ships
with different size have just arrived simultaneously, the small one has to wait for long
if the large one is scheduled first, while the large waits for a short time if it is sched-
uled second. In general, maneuverability depends on the following factors: the loca-
tion of the berth, the size of ship, the type of ship and the draft [8]. On the other hand,
according to a survey, large ship preferred to be given a higher priority than small
ships when the terminal is busy. In addition, ship with route of international trunk
service always has higher priority to be scheduled.

From the above discussion, it is clear that the scheduling priority is critical for ship
scheduling, especially in a situation where there are numerous ships to be arranged at

 Optimization of Ship Scheduling Based on One-Way Fairway 481

a particularly busy port. This paper proposes a priority function for ship scheduling
with the factors such as the location of berth, the size of ship, the type of ship, the
draft and the route of ship and so on. It is carried out as function (1):

1 2 3 4 5

+
berth size type draft route

p v v v v vμ μ μ μ μ= + + + +  (1)

Where, berth

v , size

v , type

v , draft

v , route

v denote the location of a berth，the size of a

ship, the type of a ship， the draft and the route of a ship;
1 2 3 4 5
, , , ,μ μ μ μ μ are

weights for each factor proposed respectively, which are obtained through calculation.
The proposed function is available for the ship scheduling in every port as long as

it choose the factors according to their practical situation.

3.2 Assumptions of the Model

In order to simplify the mathematical model, we assume that the ships have already
prepared to entry into the channel. That means that they could go on the fairway as
long as the channel is available. Furthermore assumptions are shown in details as
follows:

1. The channel is idle in initial;
2. The water depth of the channel meets the requirement of the ship to pass through

the channel safely;
3. The pilot has boarded if a pilot is needed;
4. There are available berths for ships to call once it has been inbound.

3.3 Formulation of the Ship Scheduling

In formulating the ship scheduling, we define (1, ,)i N V∀ = ∈ as the set of total
inbound/outbound ships at a given period, and the i is the number of the ship; we set

iat as the arrival time of ship i approaching the channel or the bulwark for the de-

parting ship (there is a conflict on the one-way fairway when ships pass); ist is the

time when the ship i start to be scheduled; iwt presents the waiting time for the

channel availability of ship i ; ip is the priority weight of the ship i in the scheduling

model; pt is the completion time of a ship for passing through the channel ; gapt is a

safe interval between two ships sailing in the channel with the same direction, while

0t is a safe interval between two ships sailing in the channel with the different direc-

tion. The objective function of the ship scheduling can therefore be written as:

Minimize * (1, ,)
N

i i
i

MinT wt p i N V= ∀ = ∈  (2)

482 J. Lin et al.

Subject to

 i iat st i V< ∀ ∈ (3)

 1i i gapst st t i V− − ≥ ∀ ∈ (4)

 1 (1) 0()i i p ist st t t i V− −− + ≥ ∀ ∈ (5)

 i i iwt st at i V= − ∀ ∈ (6)

The optimization objective of the ship scheduling is to minimize the weight of
waiting time for the channel availability of the N ships at a given period, which is
shown in equation (2). Constraint (3) is used to ensure that ship i can be allowed to
be scheduled only after it has arrived at the port or it has finished the task in the port

to departure. Constraint (4) explains that the interval of the ist between 1ist − must

be not less than gapt if the two ships access to the channel in the same direction. Con-

straint (5) ensures the safety interval of the two ships in the contrary direction, in the
condition that a ship should not be scheduled to entry into the channel before it has
been clear. Constraint (6) expresses that the waiting time for channel availability of a
ship is the difference between its start time and arrival time.

4 Design of GA

To facilitate the solution procedure, we employ a GA [9], which is a random algo-
rithm based on genetic and nature evolution, with the great ability to provide optimal
or near optimal solutions. It has been widely used for solving non-linear optimization
problem and other complex problems, such as Job-Shop Scheduling problem [10].
This paper designs a Genetic Algorithm, which is applicable for the problem of opti-
mizing ship scheduling.

4.1 Chromosome Representation

We represent the chromosome by using integer permutation in the GA, which represents
a solution to the problem clearly and conveniently. The chromosome is divided into N
segments for N ships to be scheduled, each of which represents the number of a ship,
and the location corresponds to the operation order. They are represented as follows:

 7 3 5 9

1 2 3 4

Chromosome N

Order N

  

  

4.2 Fitness Function

GA searches for the individual with the maximal fitness value for optimizing
problem. As to a minimization problem, the smaller the objective function value, the
higher must be the fitness value. Therefore, we defined fitness function as shown in

 Optimization of Ship Scheduling Based on One-Way Fairway 483

function (7), where ObjV denotes the objective function value, according to [1],
which is found to be better.

 ()()100 1 exp 1000F ObjV= + (7)

4.3 Selection Strategy, Crossover and Mutation

Selection Strategy. In this paper, the criterion used to select individual for reproduc-
tion is Roulette Wheel Selection with probability of GGAP.

Crossover. The Two-Point Crossover is employed in the GA. We divided the chro-
mosomes into groups with pairs. Every group takes the steps as follows:

1. Step 1: Generate two integers between [1, N] randomly as two crossover points;
2. Step 2: Interchange the two crossover points. The middle fragment genes are

exchanged, while the other fragments are reserved and marked as * if they are ex-
amined to be the same with the middle genes;

3. Step 3: Repair mechanism. The unknown numbers (with * position) are processed
by corresponding with the intermediate fragment of another chromosome. Then we
get the feasible children chromosomes. Fig. 1 shows an example how the children
chromosomes are created, where we assumed that there are 10 ships and the two
crossover points are r1=4, r2=7.

Fig. 1. Example of crossover

Mutation. In our procedure, mutation is conducted to select two mutation points be-
tween [1, N] randomly and alter their values by interchanging their positions. An in-
stance is shown in Fig. 2, where N=10, and r1=4, r2=7.

Fig. 2. Example of mutation

484 J. Lin et al.

5 Experiment and Results

In this section, we conducted an experiment with the data from the center of Dalian
VTS. 9 ships inbound/ outbound to Dayao Bay are selected during the time between
18:30-20:30 on July 26 in 2009. Data used in the experiment is shown in Table 1.
Where, st is the start time of a ship to be scheduled with the rules of the first come
first served (FCFS).

Table 1. Ship scheduling solution for channel with FCFS

No. I/O Size Type Route tp(min) at st wt(min)
1 Out 9587 Container Trunk 6 18:52 18:52 0
2 Out 65917 Container Trunk 6 19:29 19:29 0
7 In 9520 Container Trunk 5 19:30 19:40 10
5 Out 6813 Container Trunk 4 19:37 19:50 13
9 In 499 Dry Cargo Feeder 6 19:51 19:59 8
4 In 2997 Container Feeder 7 20:06 20:10 4
6 Out 7350 Container Feeder 5 20:08 20:22 14
8 In 90745 Container Trunk 4 20:12 20:35 23
3 Out 35745 Container Trunk 7 20:17 20:44 27

Notes:

1. Setting 5
gap

t = and
0

5t = according to the practical operation;

2. The completion time for passing through the channel of a ship (tp) is obtained by
dividing the length of the channel and the speed of the ship while passing through
the channel. The length of the Dayao Bay channel is 0.8 nm;

3. Size of ship, type of ship and route of ship are selected as factors of ship schedul-
ing priority, according to the situation of the port.

In this paper, the proposed GA was implemented with Matlab to solve the problem.
The process in the main function is carried out as follows:

1. Step 1. Read the data from the folder;
2. Step 2.Parameters and Initiation. The size of population is NIND=50, the probabil-

ity of selection is GGAP=0.9, the probability of crossover and mutation are Pc =0.9
and Pm=0.01, times of the generation is MAXGEN=200;

3. Step 3. Calculate the fitness values of each chromosome and find the best individu-
al in the population;

4. Step 4. Genetic operators with selection, crossover and mutation to obtain a set of
offspring;

5. Step 5. If it is carried out by the MAXGEN times, then stop. Otherwise, return to
step 3.

We found that it had a satisfactory solution when the weights of the factors for ship
scheduling were

1 2 3
0.4, 0.3, 0.3μ μ μ= = = , according to tests we conducted with

ship scheduling priority function. The scheduling solution is shown in Table 2.

 Optimization of Ship Scheduling Based on One-Way Fairway 485

As it is shown in the Table 2, the total waiting time for the channel availability of
the 9 ships is 38 minutes, which is less than 99 minutes compared with the solution of
FCFS in the Table 1, thus improving the navigation efficiency for the channel obvi-
ously. In addition, while ship 8 comes later than ship 6, ship 8 is scheduled before
ship 6 for its higher priority than ship 6. It improves the effectiveness of the port for
serving an important ship first. The proposed model is proved to be correct by the
results.

Table 2. Ship scheduling solution with priority by GA

No. I/O Size Type Route Priority at st wt(min)

1 Out 9587 Container Trunk 0.2605 18:52 18:52 0
2 Out 65917 Container Trunk 0.4660 19:29 19:29 0
5 Out 6813 Container Trunk 0.2605 19:37 19:37 0
7 In 9520 Container Trunk 0.1416 19:30 19:46 16
9 In 499 Dry Cargo Feeder 0.1405 19:51 19:51 0
4 In 2997 Container Feeder 0.1405 20:06 20:06 0
8 In 90745 Container Trunk 0.4660 20:12 20:12 0
3 Out 35745 Container Trunk 0.3099 20:17 20:21 4
6 Out 7350 Container Feeder 0.1405 20:08 20:26 18

The evolution of the GA is shown in Fig. 3.

Fig. 3. The evolution of the GA

We find that the objective values have been substantially decline from 38.62 to
7.937. The objective value decreases rapidly while searching an optimal solution in
global at early time in the algorithm. It optimizes the solution in the region of local
slowly at the medium time in the algorithm. We finally obtain the optimal solution
with the minimum objective value, since the algorithm has converged when it runs at
70 gens. Based on the above analysis, it is clear that the proposed algorithm is
effective.

486 J. Lin et al.

6 Conclusions

In this paper, the optimization problem for ship scheduling is discussed in the case of
numerous ships arriving at the port. We present a mathematical model for ship sched-
uling with the use of GA. It is proved to be correct and has an advantage in improving
navigation efficiency and the benefit for the port by the experiment. The proposed
model is applicable for a port when it is congested with ships. However, ship schedul-
ing is a difficult problem with a continuous procedure and multi-factors influential in
practice, which deserves some further consideration. Therefore, we are going to do
more researches and present a solution based on further consideration for the
proposed problem.

Acknowledgements. This research was financially supported by National Natural
Science Foundation of China (Grant No.51309043), Applied Basic Research of Min-
istry of Transport (Grant No.2014329225020), Fundamental Research Funds for the
Central Universities (Grant No.3132014202), China Postdoctoral Science Foundation
(Grant No.2014M551095), and Liaoning Provincial Natural Science Foundation of
China (Grant No.2014025005).

References

1. Etsuko, N., Imai, A., Papadimitriou, S.: Berth allocation planning in the public berth sys-
tem by genetic algorithms. European Journal of Operational Research 131, 282–292
(2001)

2. Akio, I., Etsuko, N., Stratos, P.: Berth allocation with service priority. Transportation Re-
search Part B 37, 437–457 (2003)

3. Akio, I., Xin, S., Etsuko, N., Stratos, P.: Berth allocation in a container port: using a con-
tinuous location space approach. Transportation Research Part B 39, 199–221 (2005)

4. Liang, C., Guo, J., Yang, Y.: Multi-objective hybrid genetic algorithm for quay crane dy-
namic assignment in berth allocation planning. J. Intell. Manuf. 22, 471–479 (2009)

5. Song, X., Zhang, J., Guo, Z., Wang, W.: Analysis of Navigation Duration Influence to
Trafficability of Navigation Channel in Coastal Bulk Cargo Port Area. Port Engineering
Technology 2, 18–20 (2010)

6. Wang, X., Qi, H., Xiao, H., Zhang, X., Hu, Y., Feng, X.: Co-scheduling model of Three
Gorges-Gezhou Dam based on series queuing netword. Journal of Traffic and Transporta-
tion Engineering 3, 82–86 (2006)

7. Xu, G., Guo, T., Wu, Z.: Optimum Scheduling Model for Ship in/outbound Harbor in One-
way Traffic Fairway. Journal of Dalian Maritime University 4, 150–153 (2008)

8. Xu, G., Liu, R., Wu, Z.: Analysis of Sequence Arrangement Weight When Ships Entering
or Exiting a Port in One-way Channel. Navigation of China 31, 379–382 (2008)

9. Xi, Y.: The Summary of Genetic Algorithm. Control Theory and Application 13, 697–708
(1996)

10. Fang, H., Ross, P., Corne, D.: A promising Genetic Algorithm Approach to Job-Shop
Scheduling, Rescheduling, and Open-Shop Scheduling Problems. In: Proceeding of the
Fifth International Conference on Genetic Algorithms, pp. 375–382. DAI Research Paper,
Edinburgh (1993)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 487–495, 2014.
© Springer International Publishing Switzerland 2014

Research on Virtual Crew Path Planning Simulator
Based on A* Algorithm

Huilong Hao, Hongxiang Ren*, and Dajun Chen

Key Laboratory of Marine Simulation & Control for Ministry of
Communications, Dalian Maritime University, Dalian, China

dmu_rhx@163.com

Abstract. In order to reasonable planning of the virtual crew’s walking path in
ship-handling simulator, making the virtual crew could walk along a barrier-
free path, used OpenSceneGraph, 3D rendering engine, successfully
implemented that the simulation of planning about the virtual crew’s walking
path. A geometric model of the virtual crew met the reality was set up used
layered geometric modeling, which was necessary to control the virtual crew’s
motion by key frame animations. The A* algorithm was studied at the same
time, which has been applied to the path planning of the virtual crew. Put
forward a method of grid mapping, solved the path planning problem of the
accessible obstacles better such as the cab. Through tested in the ship-handling
simulator, it can be proved that the work have been done realized the path
planning of the virtual crew, and the effect of simulation was good enough.

Keywords: Ship-handling Simulators, Virtual Crew, Path Planning, Geometric
Modeling, Motion Controlling, A* Algorithm.

1 Introduction

Joined the virtual crew in ship-handling simulator’s visual system and made him to
complete a specific action, could meet the demand of authenticity and richness of
crew education and training on the ship-handling simulator’s visual system. For
example, in the training of berthing, if the ship-handling simulator could simulate a
serious of operators to the cable of the crew on ship's deck, there is no doubt that it
could provide more visual information stimulation and the sense of immersion to
users, and increase the effectiveness of the simulator visual system.

In order to accomplish a specific task in ship-handling simulator, virtual crew often
needs to walk, but the ship’s space is narrow, and there are many obstacles, planning
out an barrier-free path which virtual crew can implement a specific task from the
start point to target point is a basic question when researching the virtual crew in ship-
handling simulator.

The theoretical researches about path planning algorithm were much more than the
applications in virtual reality system. Made the geometric modeling, motion control of
virtual crew and A* algorithm as the research objects, established the geometric

* Corresponding author.

488 H. Hao, H. Ren, and D. Chen

model and realized the motion control of virtual crew, at the same time the A*
algorithm was applied to the virtual crew’s path planning simulation. Put forward a
method of grid mapping, solved the path planning problem of the accessible obstacles
better such as the cab.

2 Modeling and Control of Virtual Crew

2.1 Geometry Modeling of Virtual Crew

Geometric modeling of virtual crew is the precondition to realize the virtual crew’s
path planning simulation. The modeling methods of virtual crew are: bar model, body
model, surface model and hierarchical model [1, 2]. The methods of bar model and
body model are simple, but they are low fidelity; The fidelity of surface model is
better, but it contains a large amount of data and models slow; Hierarchical model
expresses human body model in bone layer, muscle layer and skin layer, the method
is simple and it has a good fidelity, so this paper chosen hierarchical model to
geometric modeling of virtual crew.

The specific method of hierarchical geometry modeling of virtual crew using 3ds
Max software is: first of all, established a virtual crew’s skin layer according to the
appearance of virtual crew characteristics, at the same time, made the UVW unfold
for the skin layer and made the corresponding texture map given to the skin layer,
generated a virtual crew surface profile meet reality; then established the
corresponding bone layer for the skin layer and binding them, adjusted the
parameters of bones, so that it could settle a foundation for the motion control of
virtual crew. Geometric model of virtual crew is shown in figure 1.

Fig. 1. Geometric model of virtual crew

2.2 Motion Control of Virtual Crew

Simulation of virtual crew’s walking motions is one of the important contents of
enhancing the reality of the virtual crew’s path planning simulation. The main
methods of virtual crew’s motion control are: key frame animations method,
kinematics method, dynamics method and motion capture method [3]. Key frame

 Research on Virtual Crew Path Planning Simulator Based on A* Algorithm 489

animations method is simple and intuitive, but this method is tedious; The effect of
kinematics method is clear, but this method cannot be used for the simulation of
physical reality; The authenticity of dynamics method is strong, but the amount of
calculation is large, and its equation is hard to solve; Motion capture method is
flexible operated and high efficiency, but there will be a mismatch between the
movement data and bone models. Because of the involved walking motion of virtual
crew is relatively single, therefore, this paper chosen key frame animations method to
realize the virtual crew’s walking motion simulation.

Walking motion is a cycle which left and right leg lifts and downs alternately with
the right and left hand lifts and downs according to the analysis of human’s walking
motion [4], so used key frame animations module in 3ds Max software to make a
cycle process of virtual crew’s walking motion so that it could be called in program.
Virtual crew’s walking motion is shown in figure 2.

Fig. 2. Virtual crew walking motion

2.3 Virtual Crew File Convert

Converted the geometric modeling and motion control of virtual crew to the format of
the file which OSG could recognized after completed, so that OSG could render it. The
virtual crew format files which the OSG could identify were divided into two
categories: the first type is CAL3D format file, this format file respectively stores the
geometric model, skeleton model, texture map, and key frame animations in four
independent format file, they are *.CSF format file, *.CMF format file, *.CRF format
file and *.CSF format file; The second type is *.FBX format file, this format file could
store the geometric model, bone model, texture map, and key frame animations in the
same format file, it is more convenient in practical use. Therefore, the geometric model
of virtual crew was selected convent into *.FBX format file in 3ds Max software.

3 Path Planning

3.1 Research Status of Path Planning Algorithm

Path planning mainly divided into global path planning and local path planning [5].
global path planning was also known as static path planning, it is suitable for the path

490 H. Hao, H. Ren, and D. Chen

planning which the surrounding environment information was known; Local path
planning was also known as dynamic path planning, it is suitable for the path planning
which the surrounding environment information was unknown.

Because of the scene which virtual crew’s path planning studied was the ship
model area, its surrounding environmental information was known, therefore, this
paper chosen the global path planning algorithm to plan the path.

Global path planning algorithm derived a lot of intelligent search algorithms based
on heuristic search algorithm, such as local optimal algorithm, the best priority
algorithm, etc., the most commonly used heuristic search algorithm was the A*
algorithm, it used the evaluation function to reasonably choose the development
direction of path nodes in A* algorithm, which could improve the efficiency of
searching path nodes [6, 7].

3.2 Design and Implementation of A* Algorithm

The evaluation function f(n) of A* algorithm could be represented as:

 () () ()f n g n h n= +
 (1)

The evaluation function f(n) represented the sum costs of a shortest path from the start
node s to the target node t by any intermediate node n, g(n) represented the real costs
from the start node s to the intermediate node n, h(n) represented the estimation costs
of the shortest path from the intermediate node n to the target node t [8, 9].

Designed the following functions according to the above principles:

1

() [(1) ()]
n

i s

g n d i d i
−

=

= + − (2)

d(i+1)-d(i) represented the actual distance between the adjacent nodes. When node i
and node (i+1) were in the diagonal position,

 (1) () 2d i d i+ − = (3)

When the node i and node (i+1) weren’t in the diagonal position,

(1) () 1d i d i+ − = (4)

Estimated costs h(n) selected the Euclidean distance [10, 11]:

2 2() () ()t n t nh n x x y y= − + − (5)

The xt and yt represent the coordinates of the target node t, xn and yn represent the
coordinates of the current node n.

The implementation process of A* algorithm is shown in figure 3.

 Research on Virtual Crew Path Planning Simulator Based on A* Algorithm 491

Fig. 3. The implementation process of A* algorithm

4 Implementation of Simulation

Realized the simulation of the virtual crew’s path planning based on A* algorithm
under the development environment of Microsoft Visual Studio 2010 using the 3d
rendering engine OSG.

4.1 Import of Virtual Crew’s Model File

Called the file read function to read the geometric model file of virtual crew in
program and imported it into the visual system of ship-handling simulator. There
would be an uncoordinated between the imported virtual crew’s model and the ship
model in orientation, location and size, called the matrix transformation function to
adjust it.

492 H. Hao, H. Ren, and D. Chen

4.2 Rasterizing of Ship Model Area

The rasterizing of the ship model area was the precondition to realize A* algorithm.
Took the example in the ship deck area, the specific method of rasterizing was: first
of all, called the bounding box function to obtain the bounding box of the deck model,
obtained the distance of deck model in X axis and Y axis; then set up the distance of
each grid area in X axis and Y axis according to the actual need; finally, obtained the
total number of the grids in X axis and Y axis according to the distance of deck area
and the distance of each grid.

4.3 Gird Mapping of Obstacles

In order to obtain a barrier-free path to walk which A* algorithm searched, needed to
map the obstacle nodes location information to the raster zed grids. The specific method
of mapping was: first of all, added the left key click events response of the mouse in
program, and double clicked the left key of the mouse, the program would determine the
ray which the point of the double-click sent whether intersected with the obstacle nodes,
selected the obstacle nodes if met, called the wireframe display function to present the
selected obstacles node as wireframe display state, called the node traverse class to
traversal and record down the name of the selected obstacle nodes; then obtained the
bounding box of the selected obstacle nodes according to their name, determined the
grids of their boundary location, the grids which obstacle nodes occupied contain their
boundary and internal location; finally, written the grids information of the selected
obstacle nodes in text document for the called when A* algorithm searching the path
nodes. The wire frame display of the selected obstacle nodes is shown in figure 4.

Fig. 4. The wire frame display of the selected obstacle nodes

4.4 Gird Mapping of Accessible Obstacles

There exists accessible obstacles in ship-handling simulator such as cab, the start
point or target point of virtual crew’s walking path may inside the accessible

 Research on Virtual Crew Path Planning Simulator Based on A* Algorithm 493

obstacles, assuming that still uses the grid mapping method of obstacles in section 3.3
at this time, it would lead to fail to plan the walking path of virtual crew. Therefore,
this paper puts forward a grid mapping way to fit the accessible obstacles.

Took the grid mapping of the cab as a case to analysis like this:

(1) Set the internal girds of the cab to be not obstacles girds due to the start point
or target point of the virtual crew’s walking path may be inside the cab.

(2) The path planning method of virtual crew remains the same when the start
point and target point of virtual crew’s walking path were all inside the cab at the
same time.

(3) When the start point and target point of the virtual crew’s walking path were
inside and outside the cab in the same time, the first thing was found the exit location
of the cab if we want to plan the walking path of virtual crew, and then set the girds of
the exit location to be not the obstacle grids, so as to ensure the A* algorithm could
search the walking path successfully.

Found the exit location by line segment intersection method in this paper, the
specific process is shown in figure 5:

Fig. 5. The process of finding the exit location of cab

494 H. Hao, H. Ren, and D. Chen

4.5 Virtual Crew Walking along Path

Before virtual crew walking along the way to perform a specific task, the program needed
to calculate the girds of the start point and target point, and then performed A* algorithm
to search the path nodes according to the saved obstacle girds information, called the path
animation class to create the critical path when the barrier-free path had been searched,
and loop played the key frame animations of the virtual crew’s walking motion along the
path, stopped the animations when virtual crew reached the target point.

Virtual crew walking along the path is shown in figure 6, green square represented
the start point of the walking path, red square represented the target point of the
walking path, white squares represented the path nodes of the walking path, the
virtual crew walking along the direction of the yellow arrow, when reached the target
point virtual crew stopped walking.

Fig. 6. Virtual crew walking along the path

When the start point and target point of the virtual crew’s walking path were inside and
outside the cab at the same time, the walking path of virtual crew is shown in figure 7.

Fig. 7. The path of virtual crew walking out the cab

 Research on Virtual Crew Path Planning Simulator Based on A* Algorithm 495

5 Conclusions

Established the geometric model of virtual crew with the method of hierarchical
geometry modeling, achieved the walking motion control of virtual crew through the
key frame animations, converted the geometry model and walking motion key frame
animations of virtual crew as *.FBX format file and imported it to OSG, at the same
time, combined with the study of A* algorithm implemented the simulation of virtual
crew’s path planning in ship-handing simulator.

The reality of the virtual crew’s geometric model is strong, the walking motion of
virtual crew is lifelike and virtual crew can walk along a barrier-free path from the
start point to target point smoothly. At the same time, founded the exit location girds
of accessible obstacles by line segment intersection method and set them to be not
obstacle girds, solved the problem of virtual crew’s path planning in and out of the
accessible obstacles.

Applied the implemented simulation of virtual crew’s path planning in ship-handling
simulator visual system, enhanced the abundance of the visual system better and settled
the feasible foundation for subsequent virtual crew performed a specific task.

Acknowledgment. This work was Supported by 973 Major State Basic Research
Development Program(No. 2009CB320805), Natural Science Foundation of Liaoning
Province(No. 201202018), The Fundamental Research Funds for the Central
Universities (No. 01780134).

References

1. Yang, X.T., Yang, K.J., Yan, C.X.: Research on Methods Geometry Modeling and Motion
Control for Virtual Human. Computer and Digital Engineering 8, 132–135 (2008)

2. Wang, J.H., Lv, K.Z.: Comparative Study on Virtual Human Techniques for Art and
Design. Computer System and Application 5, 123–127 (2009)

3. Li, S.L., Liang, J.H., Wu, B.: Survey of Virtual Character Motion Generation and Control.
Journal of System Simulation 9, 1758–1771 (2011)

4. Chen, M.Z., Chen, J., Xu, C.Y.: Motion Control for Virtual Human Based on IK by Two
Phases and Key Frames. Computer Engineering and Design 7, 2760–2765 (2012)

5. Liu, H.: Research and Implementation of the Key Technologies of 3D Character
Animation. Central South University (2012)

6. Shi, H., Cao, W., Zhu, S.L.: Application of an Improved A* Algorithm in Shortest Route
Planning. Geomatics and Spatial Information Technology 6, 208–211 (2009)

7. Zeng, C., Zhang, Q., Wei, X.: GA-based Global Path Planning for Mobile Robot
Employing A* Algorithm. Journal of Computers 2, 470–474 (2012)

8. Qi, Y.H., Yang, Z.P., Huang, Q.H.: Improved Path Planning Algorithm Based on A*
Algorithm. Information and Electronic Engineering 4, 326–329 (2009)

9. Wang, H.M., Zhou, X.Z.: Improvement and Realization of Beeline Optimizing A*
Algorithm in Shortest Path Problem. Journal of Engineering Graphics 6, 121–126 (2009)

10. He, G.H., Chen, J.Q.: Research on Algorithm of Intelligent Path Finding in Game
Development. Computer Engineering and Design 13, 2334–2337 (2006)

11. Ren, B., Zhou, T., Yu, L.: Study on Path Planning for Aircraft Based on Improved A*
Algorithm. Systems Engineering and Electronics 2, 324–326 (2010)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 496–506, 2014.
© Springer International Publishing Switzerland 2014

Speech Recognition Applied in VHF Simulation System

Dajun Chen, Hongxiang Ren*, and Huilong Hao

Key Laboratory of Marine Simulation & Control for Ministry of Communications,
Dalian Maritime University, Dalian, China

dmu_rhx@163.com

Abstract. Speech recognition technology can achieve the man-machine
dialogue truly, but it has not been application for Marine Simulator. There has
an example of VHF of GMDSS simulator to be given to do a briefly introduce
from interface, menu design and data input, and then implemented it on the
Visual Studio 2010 platform. Based on researching the key technology about
speech signal and recognition, the speech recognition system developed with
Microsoft Speech SDK, and operated VHF simulator by using this system. It is
the first time to application speech recognition technology on marine simulator,
and achieved a satisfactory results, it has a good reference for the speech
technology used in other marine simulator systems.

Keywords: GMDSS, VHF, Marine Simulation, Speech Recognition, Man-
machine Dialogue.

1 Introduction

Marine simulator as an indispensable part of maritime education, it is an increasingly
prominent role in the crews’ teaching and training. With the rapid development of
computer technology and increasingly of the maritime education requirements, the
marine simulator and its functions are updating constantly[1,2]. The existing marine
simulator includes Ship Handling Simulator, Radar Simulator, Bridge Resource
Management Simulator, Marine Cabin Resource Management Simulator, ECDIS
Simulator, GMDSS Simulator and so on.

Currently, the speech recognition technology in many areas have been broad
applied with several decades of development, such as Mandarin Exams, Automatic
Speech Tickets, Phone Voice Dialing etcetera, it greatly improving the efficiency and
people's live quality. Bill Gates believes that the user interface of generation operation
system and applications will abandon the keyboard and mouse, and instead the man-
machine dialogue[3,4,5]. Although the speech recognition technology has not been
applied in the marine simulator, however, it has an exciting prospect. As we all know,
the GMDSS simulator as an important part of marine simulator, it becomes
increasingly significant in the crews’ GMDSS teaching and training[6,7]. The
VHF(Very High Frequency) is an equipment of the GMDSS system, this paper

* Corresponding author.

 Speech Recognition Applied in VHF Simulation System 497

simulated the VHF which produced by RURUNO, then after studied the key
technologies about speech signal and speech recognition, we developed a speech
recognition system with Microsoft Speech SDK and applied in the VHF simulator.

2 Design and Implementation of the VHF Simulator System

Currently, the VHF 8800S of FURUNO company is widely used in various types of
vessels[8]. In this paper, we have studied this type of VHF, and used Visual Studio 2010
as a development platform to develop the VHF simulator. In order to ensure the simulator
consistent with into VHF real device, our development work was divided three main
modules, include bitmap processing, operation menus and data input to implement.

2.1 Bitmap Resource Processing

In order to make the manipulation interface of VHF simulation device more realistic, the
first step was to take pictures of real device, and using Photoshop or other Image process
tools to landscaping treatment appropriately; then using double buffering technology to
define several canvas, and put the landscaping bitmaps in the corresponding canvas to
display; finally, we have got the simulation interface of VHF (Fig .1).

Fig. 1. Main interface of VHF simulator

Because of the panel of VHF 8800S-type device includes too many buttons and
knobs; we just introduced the processed and implemented of knobs in the follows.

1. Bitmap splicing. Generally, almost every knob includes several scales, so we can
put different scale images together to form one bitmap (Fig.2), and then according to
the scale range to use integer variables mI to mark which bitmap area should be
displayed.

Fig. 2. Bitmap of knobs

2. Determined the direction of rotation. According to judgment the press and
release of mouse position to determine the rotation direction[9] (Fig.3).

498 D. Chen, H. Ren, and H. Hao

Fig. 3. Judgment of rotation direction

Thus we can count the mouse position changes state about clockwise and
counterclockwise in each quadrant. The detailed statistics showed in Tab.1.

Table 1. Judgment of rotation direction

Quadrants Clockwise Counterclockwise
Ⅰ X+, Y- X-, Y+
Ⅱ X+, Y- X-, Y-
Ⅲ X-, Y+ X+, Y-
Ⅳ X-, Y- X+, Y+

3. Calculation of integer variables. In the Fig.3, when the mouse was pressed, its

position is 0 0 0(,)P x y , while released, the position is 1 1 1(,)P x y . By calculating the

length L of 0 1P P , where

2 2
0 1 0 1() ()L x x y y= − + − (1)

Likewise, we can calculate the length 0L of 0OP and length 1L of 1OP . So the

angleθ of 0 1POP∠ can be calculated, where

2 2 2
0 1

0 1

180
arccos

2

L L L

L L
θ

π
+ −= × (2)

Now, we can calculate the integer variable imI with formula (3) which stated in

step 1, and then to show the corresponding bitmap area.

%im stepI Tθ= (3)

Where stepT is a pixel threshold, in this paper, stepT is 17.

 Speech Recognition Applied in VHF Simulation System 499

2.2 Design of Operation Menu

Because of the VHF includes too many operation menus, and the most menus involve
select of options, input of data, enter submenus, exist current menus. We can use a
data structure which called stack to organize these menus. When need to operating
one menu, just to push stack, and if we need to operate a submenu, continue push
stack. However, if we need to quit current menu and comeback to the parent menu,
just pop stack. Fig. 4 represented the push or pop stack of menus, and the top stack is
an operable menus.

3rd Menu
operable

2nd Menu
Un-operable

1st Menu
Un-operable

2nd Menu
operable

1st Menu
Un-operable

1st Menu
Un-operable

Exit
2nd Menu
operable

Submenu

Fig. 4. Push / Pop stack of menus

The main of menus options were shown in Tab.2.

Table 2. Structure of main menus

Main Menus 1st Submenus Submenus’ Number

MENU

ALARM
…
SYSTEM

 4
…
3

LOG

CALL

RCVD ORDINARY
…
TRANSMITTED

COAST CALL
……
DISTRESS

50
…
50

7
…
3

2.3 Data Input

The menus about OPSITION, FILE and CALL in the VHF involve the input of
digitals and letters, when we need to input characters, we should push them stack, and
before this inputting, we can pop the characters stack which locate the top stack, so
implemented the function of storing and deleting characters. For the digitals input, we
can put the numbers into a variable to store directly in the corresponding numeric key
button area. The effect of digitals inputting just as Fig.5(a). Furthermore, for the
letters input, since each numeric key corresponding to several(2, 3 or 4) letters, when
we when we continuously press the same key, the letters can be switched, as for using

500 D. Chen, H. Ren, and H. Hao

a mobile phone to input characters. The first is different uppercases to switch, then
lowercases, and in order to archive this effect, we set a timer to control. When a

numeric key is pressed, the timer is started simultaneously, it record by
1

t , and press

this numeric key continue, it record by
2

t . The interval of twice to press the same

numeric key is tΔ , so we can get a formula as follow:

2 1t t t− ≥ Δ ，Kill the timer and end letters input

2 1t t t− < Δ ，Starting timer continuously and input letters

The effect of letters input as Fig.5 (b).

(a) Digitals input (b) Letters input

Fig. 5. Effect of characters input

3 Speech Signal and Recognition Technology Analysis

Essentially, speech recognition system is a pattern recognition system, it includes
some basic units such as feature extraction, pattern matching and reference pattern
library[10]. The main methods of speech recognition include DTW (Dynamic Time
Warping), HMM (Hidden Markov Models) and ANN (Artificial Neural Network,).
DTW have a very good result for isolated word recognition. ANN on the application
in speech recognition is still in the research stage. And the HMM is widely used in the
field of speech recognition, it have a nice effect in both isolated words and continuous
speech recognition. It is the application of relatively sophisticated algorithms, so this
paper also uses this algorithm.

The speech recognition basing on HMM, is essentially a pattern matching method,
and the speech recognition process of pattern matching method as shown with Fig.6.
This paper analyzed the speech recognition technology from the three aspects of
pre-processing, feature extraction and model matching.

 Speech Recognition Applied in VHF Simulation System 501

Fig. 6. Flowchart of pattern matching for speech recognition

3.1 Time-Domain Analysis of Speech Signal in Pre-processing Stage

The mainly task in pre-processing stage of speech recognition is processes in time-
domain and frequency domain, and one of the most intuitive analysis way is to
observe its time-domain waveform, because the waveform can show the speech signal
changes with time and the ups and downs of speech energy. Fig.7(a) shows the speech
signal original waveform of “Power off” in time-domain.

Through the detection of the speech signal endpoint can determine the start and
end position of an isolated word. Before the endpoint detection, we need to analyze
the energy of the speech signal, however, the change of speech signal energy with
time is very obvious, so we can take short-term energy, short-time average zero-
crossing rate and short-term average to describe the feature changes of speech signal
[11].

1. Short-term Energy

The speech signal{ ()}x n at a time of n , its short-term energy is nE as (4):

 2

(1)

[() ()]
n

n
m n N

E x m n mω
= − −

= − (4)

Where N is window-length, set 2() ()h n nω= , then the formula (4) can be

expressed as (5):

 2 () ()nE x n h n= (5)

It indicates that the short-term energy from the n-th point to add a window-length

function is nE , Fig.7(b) shown the short-term energy waveform of “Power off”.

2. Short-time Average Zero-crossing Rate
The short-time average zero-crossing rate means the times of speech signal is zero

value in each frame. As the speech signal is a short-time stationary signal, to some
extent, the short-time average zero-crossing rate can reflect the nature of the signal
spectrum; it can be expressed by follows:

 sgn[()] sgn[(1)] ()nZ x n x n nω= − − (6)

Where sgn[] is the sign function, and ()nω is a window function. Normally, we

should take a rectangle window function in the actual calculation, set the window

length is N , and then the window function)(nω can be expressed by follows:

502 D. Chen, H. Ren, and H. Hao

1

, 0 1
() 2

0,

n N
n N

else
ω

 ≤ ≤ −= 


 (7)

So the formula (7) can be simplified expressed as follows:

(1)

1
sgn[()] sgn[(1)]

2

n

n
m n N

Z x m x m
N = − −

= − − (8)

As Fig.7(c), it shows the short-time average zero-crossing rate waveform of “Power
off”.

3. Endpoint Detection
To finish the speech signal analysis about short-term energy, short-term average

and short-time average zero-crossing rate, then we should detect the endpoint based
on energy and zero-crossing rate, the steps of this algorithm as follows:

① Separation frames processing of the speech signal { ()}x n , denoted by

(), 1,2,...,iS n n N= , where n stand by discrete time series, N is the length of

frames, i is the numbers of frames;
② Obtained the short frame energy iE and short-time average zero-crossing

rate iZ per frame from the above calculations.

③ To set a high threshold HM and a low threshold LM of the speech signal

average energy, then traversal the energy of per frame between HM and LM

according to time series to determine the current speech endpoint. Fig.7(d) shows the
endpoint detection result of “Power off”.

(a) Speech signal original waveform (b) Short-term energy

(c) Short-time average zero-crossing rate (d) Endpoint detection

Fig. 7. Wave of speech signal

3.2 Frequency-Domain Analysis of Speech Signal in Feature Extraction Stage

In the time-domain analysis can be visually observed changes to the speech
waveform, however, speech signal is a complex signal, in the frequency domain,
and we need a deeper understanding of its characteristics change. During the

 Speech Recognition Applied in VHF Simulation System 503

speech recognition, the speech signal characteristic parameters extraction is a
very important step, we must find a way to make feature extraction as possible to
avoid the effect of noise. Currently, the common feature extraction methods
include LPC (Linear Prediction Coefficient), LPCC (Linear Prediction Cepstrum
Coefficient) and MFCC (Mel Frequency Cepstrum Coefficient). Where LPCC is
the most effective one speech signal analysis technology, it is widely used in
speech areas such as speech synthesis and recognition [12].

LPCC is the Cepstrum of LPC, it can be extracted more thorough excitation
information in the process of generating a speech signal. Cepstrum coefficient is
the inverse z transformation of logarithmic modulus function of signal z
transformation. When calculate it, we need to calculate the Fourier transform of
the signal and calculate logarithm modulo, then calculate the inverse Fourier
transform. In order to simplify the calculation, we can use the recurrence relation
of sequence ()x n and its plural Cepstrum coefficient ()c n , as follows:

'log () ()ˆ ()
()

d X z X z
X z

dz X z
= = (9)

Through the z inverse transform, we can obtain the recursive formula as
follows:

 1

0

0, 0

ˆ() () ()
ˆ() () , 0

(0) (0)

n

k

n

x n x n k x n k
x k n

x n x

−

=

≤
= − − >


 (10)

Scilicet, formula (9) is the recurrence relation of sequence ()x n and its plural

Cepstrum coefficient ()c n .

3.3 HMM Analysis in Speech Recognition Stage

HMM is a speech recognition model which based on statistical model of time series. It
is not observed events correspond with the state, but interconnected each other by a
set of probability distribution. The process of HMM is a doubly stochastic process:
one is describe the transient characteristics of the signal which can be directly
observed, other is describe the dynamic characteristics of short-term statistical
characteristics which implicit in the observation sequence.

To the isolated word recognition, it need to prepare an HMM model for each word
to describe, this procedure uses a method called VQ (Vector Quantization) to design a
series of codebook which the size is M (M is the number of symbols observed), and
takes K times for each word model training or learning, so we can obtain the optimal
model parameters. Then, to the words which wait for recognition take sub-framing

and feature extraction, so we can get a set of random vectors 1 2, ,..., TX X X (T is

the numbers of frames), and process it with VQ to transform into symbol sequence

504 D. Chen, H. Ren, and H. Hao

1 2, ,..., TO o o o= . Finally, to calculate the output probability of this sequence for

each HMM, and the maximum value is the result of recognition. The processing just
as Fig.8 is shown.

Fig. 8. Processing of HMM speech recognition

4 Implementation of Speech Recognition

In order to achieve the speech recognition function with effectively and efficiently,
and reduce the development difficulty, this paper takes Microsoft Speech SDK 5.1 to
develop a speech recognition application program [13]. This SDK development kit
provides speech application resource package which includes a SAPI (Speech
Application Programming Interface), DDI (Device Driver Interface), SR (Speech
Recognition) and SS (Speech Synthesis).

When performing specific word recognition, the speech application program which
based on Speech SDK used to take CFG (context-free grammars) to analysis the
words which need to be identified, that is we should define several waiting for
identified words in a XML file, and the structure form of XML as follows:

<?xml version="1.0" encoding="Unicode">

<GRAMMAR LANGID="409">
 <DEFINE>
 <ID NAME="Power on" VAL="1"/>

</DEFINE>
<RULE ID="Power on" TOPLEVEL="ACTIVE">

 <L> <P>Power on</P> </L>
</RULE>

</GRAMMAR>

In this paper, most operation words of the VHF simulator were defined in a XML
file includes 20 operation commands (such as Power on, Daily Test, Menu etc), 10
numbers and 26 letters. Fig.9 shows the process of operating VHF simulator with
speech recognition.

 Speech Recognition Applied in VHF Simulation System 505

Start

Open the Speech Recognition
System

Detect Speech Commands

Matching
with Specific Words

Perform
Operations

Finish

Y

Y

Y

Manual Control
VHF Simulator

N

Waiting

N

N

Fig. 9. Flow char of voice operating VHF simulator

This system tests on a software platform of Windows 7, Visual Studio 2010,
Microsoft Speech SDK 5.1; the hardware platform includes core-i7 CPU, 4G Memory
and SENNHEISER230 Microphone. In the laboratory environment, 10 different
people to operate the VHF simulator with several times, and the recognition
results were counted in Tab.3.

Table 3. Results of speech operating VHF simulator

Contents Correct Numbers Recognition Rate

20 commands 172 86.0%
10 numbers 98 98.0%
26 letters 243 93.4%

Through this test we can visually see that the recognition rate of numbers and

letters is very high, and the rate of operation commands is slightly lower. However,
with this recognition rate can able to meet the operational requirements of VHF
simulator.

5 Conclusions

This paper simulated the VHF of FURUNO from interface, operation and functions, it
is very similar to a real VHF device, so it can be applied in the teaching and training
of crews. In order to achieve the man-machine dialogue in the marine simulators, this
paper analyzed the speech signal state in both time domain and frequency domain,
and descripted the recognition process of HMM briefly, then we adopted Microsoft
Speech SDK as development kit to develop the speech recognition system of specific
vocabulary, finally, it was applied in the VHF simulator device. Through repeated test
with different people, we got a nice recognition result that realization the purpose of
operating VHF simulator with speech. The works of this paper is the first time used

506 D. Chen, H. Ren, and H. Hao

the speech recognition technology in marine simulator, and achieved relatively
satisfactory results. It lays the foundation of speech technology apply in marine
simulator in the future. And it also has a good reference to speech technology apply in
other marine simulator system.

Acknowledgment. This work was Supported by 973 Major State Basic Research
Development Program(No. 2009CB320805), Natural Science Foundation of Liaoning
Province(No. 201202018), The Fundamental Research Funds for the Central
Universities (No. 01780134).

References

1. Jin, Y.C., Yin, Y.: Maritime Simulators: Convention and Technology. Navigation of
China 1, 1–6 (2010)

2. Jin, Y.C., Yin, Y.: Development Strategy of Maritime Simulator in Light of the Manlia
Amendments to STCW Convention. Navigation of China 3, 5–10 (2012)

3. Juang, B.H.: The Past Present and Future of Speech of Speech Processing. IEEE Signal
Processing Magazine 12, 21–27 (1998)

4. Richard, V.C., Candace, A.K., Rabiner, L.R.: Speech and Language Processing for Next
Millennium Communications Services. Processing of IEEE 88, 1314–1337 (2000)

5. Huang, X.: Research and Development of Continuous Speech Recognition Based on HTK
and Microsoft Speech SDK. Xia Men University (2007)

6. Xiao, F.B., Yin, Y., Jin, Y.C.: Simulation of Maritime Narrow Band Direct Printing
Telegraph System. Navigation of China 3, 10–15 (2009)

7. Wei, W.: Development and Application of Martine VHF Radio Simulator. Navigation of
China 1, 16–19 (2010)

8. Furuno Operator’s Manual - VHF Radio Telephone Model FM-8800D/8800S. Furuno
Electric Co., LTD. Inshinomiya (2004)

9. Yu, J.: Study of GMDSS Equipment Operation Simulation Based on FURUNO Series.
Dalian Maritime University (2013)

10. Liu, X.H., Song, T.X.: Speech Recognition and Control Application. Science Press,
Beijing (2008)

11. Zhang, X.Y.: Digital Speech Processing and Simulate with Matlab. Electronic Industry
Press, Beijing (2010)

12. Han, J.Q., Zhang, L., Zheng, T.R.: Speech Signal Processing. Tsinghua University Press,
Beijing (2013)

13. Microsoft Corporation. Microsoft Speech SDK Version 5.1,
http://www.microsoft.com

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 507–515, 2014.
© Springer International Publishing Switzerland 2014

The Assessment of Risk of Collision between Two Ships
Avoiding Collision by Altering Course*

Weifeng Li1, Wenyao Ma1,**, Jiaxuan Yang1, Guoyou Shi1, and Robert Desrosiers2

1 Navigation College, Dalian Maritime University, Dalian, Liaoning, China
wenyaoma1980@163.com

2 Chevron Shipping, USA

Abstract. Altering course is the most common and effective method employed
by ships to avoid collision. Give-way vessels should take early and substantial
action to avoid collision, the effectiveness of a course change is influenced by
the distance between the two vessels. In some instances involving more than
two vessels are present (special cases), the give-way vessel may not be able to
alter course as early as possible. In other instances, the stand-on vessel may be
required to take action to due to the failure or inability of the give-way vessel to
act. In the event of special cases and action by the stand-on vessel, it is im-
portant for navigating officers to be able to determine when a course change
alone will avert a collision in order to plan for the worst case scenario. Thus, it
is advantageous for navigating officers and masters to quickly and simply mod-
el the amplitude and effectiveness of course changes up to the distance between
the two ships when course changes will no longer avert a collision. By using ex-
isting models of ship movement and maneuvering characteristics, a method will
be presented to calculate the extent of risk of collision through reasoning pro-
cess, provide a quantitative explanation of the effectiveness of course changes
and identify the point at which course changes are no longer effective in colli-
sion avoidance. A worked example will illustrate the need for navigating offic-
ers to make early course changes by demonstrating the decreased effectiveness
of course changes at small distances between ships.

Keywords: Risk of collision, Altering course, collision avoidance, Minimum
angle alteration.

1 Introduction

A ship at sea can alter her course, change her speed, or alter both her course and
change the speed simultaneously to avoid collision. Considering the performance of
the main engine and response times while in transit at sea speed, in many instances
altering course is the only viable option to execute timely action to avoid collision.
The encounter of the ships is a process of approaching and reducing distance from an
area of no or minimal potential risk of collision to an area of high potential risk of

 * This work was supported by the Fundamental Research Funds for the Central Universities

under grant 3132013015, 3132013004 and 3132013006.
** Corresponding author.

508 W. Li et al.

collision. When two vessels are meeting and a risk of collision exists according to the
Rules (COLREGS, 1972), there are actions to be taken by the give-way and stand-on
vessel. The give-way vessel has the responsibility to take early action to keep clear of
the other vessel with a safe distance in an ample time(Zhao Yuelin, 2012). The stand-
on vessel may take action if it becomes apparent that the give-way vessel is not taking
appropriate action. However, the Rules do not give an quantitative explanation when
action should be taken by the give-way (early and substantial action) or stand-on ves-
sel (taking additional action) to avoid a collision.

This paper illustrates two concepts, range of collision avoidance courses θs and the
minimum alteration angle △φ to assess the risk of collision of ships. A step by step
reasoning such as one based on researcher A.S. Lenart’s algorithm of the relationship
between the speed and course of in case of a constant distance between two vessels,
can be applied to the problem(A.S. Lenart, 1983). The result of applying an algorithm
is useful to improving navigating officers’ comprehension of the risk of collision,
while illustrating the need for the give-way vessel need to take early action to avoid
collision.

During the process of calculating and reasoning, the assumptions are:

• Own ship and target ship are thought to be an idealized ships;
• The give-way vessel takes altering course action with no change of speed;
• There is no delay from the rudder order to change of course;
• There is no influence to the speed of the ship from the change of the course.

2 Modeling and Calculation

2.1 Calculation of Action to Avoid Collision

In order to understand the algorithm, it is necessary to consider the coordination sys-
tem to be used. The center of the coordinate system is the ship’s directional axis of
rotation with X axis represents the direction of true east, and the Y axis represents the
direction of true north. The speed of own ship is Vo and course is φ, and the speed of
target ship is Vt, the relative speed of target ship to own ship is Vr. The relationship
between these elements are shown in equation (1) and equation (2).

 tro VVV =+ (1)





=
=

ϕ
ϕ

cos

sino

ooy

ox

VV

VV
 (2)

Here, Vox is the component of own ship speed vector in the X direction, and Voy is
the component of own ship speed vector in the Y direction; Vtx is the component of
target ship speed vector in the X direction, and Vty is the component of target ship speed
vector in the Y direction; Vrx is the component of target ship relative speed vector in the
X direction, and Vry is the component of target ship relative speed vector in the Y direc-
tion. Suppose that （X,Y） is the coordinate of target ship in the coordinate system

 The Assessment of Risk of Collision between Two Ships Avoiding Collision 509

considered in front, and （X0，Y0） is the initial position of target ship, the coordinate
of target ship position（X,Y） following with time t can be got with equation (3).





+=
+=

tVYtY

tVXtX

ry

rx

0

0

)(

)(
 (3)

Assuming D(t) that is the distance between own ship and target ship, the following
relationship should exist as shown in equation (4).

)()()(22 tYtXtD += (4)

Derivate D(t) by t and get the following result:

r

rxry

V

YVXV
D

−
=min

 (5)

Where Dmin is the distance of closest point of approach (short for DCPA or CPA)

between own ship and target ship. In order to keep a safe passing distance (Ds) be-

tween own ship and target ship, it is necessary to let Dmin≥Ds.
Square equation (4), and get equation (6).

 ryrx AVV = (6)

Then get,

min

22

min
222

min

)(

)()()()(

DtX

DtYtXDtYtX
A

−
−+±

=
（

 (7)

Where,

ϕϕ cossino −

−
=

A

VAV
V tytx (8)

Thus, from equation (1), (2) and (7), it can be seen that,

ϕϕ cossino −

−
=

A

VAV
V tytx (9)

Then,

 B
ox

AVV −=
oy

 (10)

Where,

510 W. Li et al.

 tytx VAVB −= (11)

From equation (11), it is the relationship of speeds, and change it into the relation-
ship of distances, multiply both sides by time (△t) :

 tBAx Δ−=y (12)

As it can be seen, the most important factors affecting the risk of collision are dis-
tance of the closest point of approach (DCPA) and the time to closest point of ap-
proach (TCPA). When DCPA＜Ds and TCPA＞0 exist simultaneously, the risk of
collision exists. If TCPA＜0, the two vessels will navigate in opposite directions, thus
there is no risk of collision.

Fig. 1. The relationship between the speed and course (A.S. Lenart)

Equation (12) simply corresponds to the two lines when DCPA=Ds. which will in-
tersect with each other as shown in figure 1. The area on the left side of intersection
represents the situation when TCPA＜0, with no risk of collision to own ship, and the
area on the right side of intersection representing the situation when TCPA＞0, where
there is no guarantee the passage with a safe distance. Thus, if the vector of own ship
is not located in the shaded area, the two ships will pass at a safe distance (Ds).

2.2 Calculation of Range of Collision Avoidance Courses

When an own ship takes action to avoid collision with a target ship by altering course,
all the ends of the own ship course vector will form a circle with the center in the
middle of the ship and with radius Vo△t. This circle will intersect with the shadow
area as shown in figure 1, the figure is shown in figure 2. The shaded area in the circle
indicates the ship’s courses cannot safely navigate with, the angle is θ, the unshaded
portions of the circle indicate safe course options, the angle is (360-θ). Analysis of
figure 2 leads the equation of the circle is:

 The Assessment of Risk of Collision between Two Ships Avoiding Collision 511

 2
o

22)(tVYX Δ=+ (13)

From equation (12) and (13),











+
Δ−Δ−Δ+−Δ±

=

+
Δ−Δ+−Δ±Δ

=

2

22222

2

22222

1

))())((1()(

1

))())((1()()(

A

tBtVtBAtBAA
y

A

tVtBAtBAtBA
x

o

o
 (14)

In the equation (8), there are two solutions for A, so does B. So there are four solu-
tions in equation (14), they are (xi,yi) (i=1,2,3,4), which corresponds to the four inter-
sections points in figure 2 from the lines of equation (11) and the circle of equation
(13). Two of these four points are located in the area corresponding by TCPA＜0,
which means no effect to passage with a safe distance, but the other two points are
located in the area corresponding by TCPA＞0, the arc between them is the range
which own ship course cannot navigate, and the other part of the circle is the courses
that own ship can change to. It is not hard to calculate the length of the arc by
equation (15).

 2
31

2
31)()(yyxxs −+−= (15)

Corresponding degrees is,

)
2

arcsin(114.64
tV

s

oΔ
=θ (16)

Fig. 2. Schematic diagram of θ and △φ

512 W. Li et al.

Where θ is range of courses which own ship cannot alter course to, and the range
which own ship can alter course to θs is easy to get by θs=360°-θ, also called range of
collision avoidance courses. If the range of collision avoidance courses is bigger, it
means that the difficulty to take action to avoid risk of collision by altering course is
small, otherwise, is big.

2.3 Calculation of Minimum Alteration Angle

It is not difficult to get the coordinates of the two intersection points （x1,y1） and
（x3,y3） on the side of TCPA＞0 according to equation (14). In addition, when there
is risk of collision between two vessels in sight of each in a crossing situation, the
give-way vessel shall take action in ample time to avoid collision, and avoid crossing
ahead of the stand-on vessel. So, the minimum alteration angle is from the initial
course of own ship to the vector OB, and the speed vector OB is the new course of the
ship. The minimum alteration angle △φ can be calculated by the following equation
(18).

 ϕϕ −
Δ

=Δ)(arcsin2.357
tV

x

o

i (17)

Here,)(arcsin
tV

x

o

i

Δ represents the new course, corresponding to the vector OB,

changeed degrees; φ is the initial course of own ship.

3 Calculation by an Example

Using researcher S.Lenart’s example, the position of the target ship from own ship is
(5 n mile, 5 n mile) with own ship and target ship speeds as indicated in table 1.

Table 1. Speed vectors of own ship and target ship

ITEM V(kt) X Axis(kt) Y Axis(kt)

OS 20 0 20

TS 14.1 -10 10

Vr 14.1 -10 -10

As two ships approach each other, the range of collision avoidance courses and the
minimum alteration angles are calculated shown in table 2.

 The Assessment of Risk of Collision between Two Ships Avoiding Collision 513

Table 2. Results of θs , △φ and dif

D（n mile） θs (°) △φ(°) dif

7.0 343.57237 8.798550 0.045632

6.5 342.29893 9.528705 0.049170

6.0 340.81045 10.39071 0.053304

5.5 339.04709 11.42373 0.058203

5.0 336.92438 12.68411 0.064099

4.5 334.31893 14.25592 0.071336

4.0 331.04284 16.27037 0.080437

3.5 326.79446 18.94415 0.092238

3.0 321.05469 22.66257 0.108181

2.5 312.84017 28.18370 0.131000

2.0 299.99558 37.24150 0.166679

1.5 276.37321 55.00827 0.232297

1.4 268.82391 60.92789 0.253267

1.3 259.42287 68.42934 0.279389

1.2 247.10641 78.43995 0.313593

1.1 229.23033 93.25132 0.363249

1.0 180 135 0.5

• The relationship between the range of collision avoidance courses and distance
between two ships is shown in figure 3.

Fig. 3. Relationship between θs and D

• The relationship between the minimum alteration angle and the distance between
two ships is shown in figure 4.

150

200

250

300

350

1 1.6 2.2 2.8 3.4 4 4.6 5.2 5.8 6.4 7

θ
s（

°）

D（n mile）

514 W. Li et al.

Fig. 4. Relationship between △φ and D

4 Conclusion

From the results of calculation in table 2 and the curve in figure 3 and figure 4, it can
be seen that:

• When two ships are far away from each other, the range of collision avoidance
courses decrease slowly and the minimum alteration angle increase slowly in a
linear;

• As the two ships approach each other, especially when the distance is less than 2
times of safe passage distance, the range of collision avoidance courses decrease
rapidly and the minimum alteration angle increase rapidly in a exponential way.

When the risk of collision exists when navigating on the sea, if you lost the best
chance to alter course by reason of finding the target or taking action too late, the
difficulty to keep clear of target ship and the minimum alteration course will rapidly
increase, it will give us an explanation why should the give-way vessel need to take
action in such an early time.

References

1. Lenart, A.S.: Collision Threat Parameters for a new Radar Display and Plot Technique. J.
Journal of Navigation 36, 404–410 (1983)

2. Pedersen, E., Inoue, K., Masanori, T.: Simulator Studies on a Collision Avoidance Display
that Facilitates Efficient and Precise Assessment of Evasive Manoeuvres in Congested
Waterways. J. The Royal Institute of Navigation 46, 411–427 (2003)

3. Inoue, K.: Evaluation Method of Ship handling Difficulty for Navigation in Restricted and
Congested Waterways. J. The Royal Institute of Navigation 53, 167–180 (2000)

4. Xiu-ying, B.: Decision-making on Alert Course Opportunity and Action of Ship’s Colli-
sion Avoidance and Error Effects on these Results. J. Journal of Guangzhou Ocean Uni-
versity 4, 39–43 (2010)

5. Ming-Cheng, T., Chao-Kuang, H.: The study of ship collision avoidance route planning by
ant colony algorithm. J. Journal of Marine Science and Technology 18, 746–756 (2010)

0

50

100

150

1 1.6 2.2 2.8 3.4 4 4.6 5.2 5.8 6.4 7

△φ

（
°
）

D（n mile）

 The Assessment of Risk of Collision between Two Ships Avoiding Collision 515

6. Yuelin, Z.: Ships collision avoidance and watch keeping. Dalian Maritime University, Da-
lian (2012)

7. Szlapczynski, R.: A Unified Measure of Collision Risk Derived From The Concept of A
Ship Domain. J. Journal of Navigation 59, 477–490 (2006)

8. Pedersen, E., Inoue, K.: Simulator Studies on a Collision Avoidance Display that Facili-
tates Efficient and Precise Assessment of Evasive Manoeuvres in Congested Waterways. J.
Journal of Navigation 56, 411–427 (2003)

9. Ming-Cheng, T., Sheng-Long, K., Chien-Min, S.: Decision Support from Genetic Algo-
rithms for Ship Collision Avoidance Route Planning and Alerts. J. Journal of Naviga-
tion 63, 167–182 (2010)

10. Bi-guang, H.: Ship handling. Dalian Maritime University, Dalian (2012)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 516–524, 2014.
© Springer International Publishing Switzerland 2014

The Merging Algorithm of Radar Simulation Data
in Navigational Simulator

Shun Yao1, Xin-yu Zhang1,2, Yong Yin1, Xin Xiong1, and Jun Lin1

1 Key Laboratory of Maritime Dynamic Simulation and Control of Ministry of Transportation,
Dalian Maritime University, Dalian 116026, China

yaoshunyaoshun@gmail.com
2 Faculty of Infrastructure Engineering, Dalian University of Technology,

Dalian 116023, China
zhang.xinyu@sohu.com

Abstract. In this paper, a method used to generate continuous and complete ra-
dar simulation data was described. This new method based on previous radar
simulation data, which extracted from different scales S-57 standard electronic
navigation charts in navigational simulator. In this work, the clipping buffer in
per radar simulation data was set and the boundary line was cut off by forward
angle firstly. Then radar simulation data were sort according to scale and area
range after deducting clipping buffer from the original chart. Subsequently the
redundant data were deleted based on the original scale. Finally, the direct con-
nection was proposed to wave the radar simulation data. Taken charts about wa-
ters around Dalian Port as an example, the radar simulation data generated meet
the need in navigational simulator.

Keywords: Merging Algorithm, Radar simulation data, Clipping buffer, For-
ward angle, Direct connection.

1 Introduction

Navigational simulator(certified by Det Norske Veritas, DNV A-class), which re-
searched and developed independently by Dalian Maritime University, generates
radar image based on the radar simulation data of the coast line and navigation aid
extracted from S-57 standard electronic navigation charts. However, the resulted radar
image is inaccuracy or disappears when the position of the simulated ship located the
overlapping portion of two charts or outside of the reading chart, as it can only read
one radar simulation data from a single chart at a time. So it needs a new method to
connect the radar simulation data that extracted from S-57 standard electronic naviga-
tion charts with different scales to satisfy the accuracy requirements of the radar
image.

There are lots of related researches on how to dissolve problems in segment match-
ing and connecting study in the related fields including Geographic Information Sys-
tem (GIS), cartography, transportation, image processing. Xiong (2000) proposed a

 The Merging Algorithm of Radar Simulation Data in Navigational Simulator 517

three-stage algorithm approaching to network matching: node matching, segment
matching and edge matching [1]. Du (2004) connected broken contour lines from
scanned topographic map based on spatial relationships [2]. Zhao (2004) proposed the
trend connection which assigned the connecting error to neighboring points, which
smoothed the line and remained the trend basically. Later she presented an algorithm
of many maps edge auto matching according to graphic constraints and attribute con-
straints [3,4]. Pouderoux (2007) reconstructed the gradient orientation field to match
end-points and connected the contour lines respecting the tangents at the end-points
[5]. Yuan (2007) did research on chart conjoin after coordinate transformation, but it
was not conjoint naturally at the level of the element [6]. Y.Zhou (2009) proposed
straight merging and curve merging to process 13 kinds of situations that may present
according to distance constraints for multi-sheet of digital marine map [7]. Sandhya
(2009) used distance matching contour line end-points in topographic maps, then
waved the contour lines by intersecting tangents at the matching end-points [8].
Zhang (2010) posed an algorithm of virtual stitching based on ID mapping, however,
it did not rebuild the real vector coordinates data, too [9]. Based on the research of
Zhao (2004), S.Zhou (2010) proposed edge attenuation algorithm in accordance with
distance constraints and attribute constraints [10]. According to the above studies,
three common characteristics can be found:

1. The charts have the same scale;
2. The overlapping portion between charts is little or non-existent;
3. The point in the chart contains complete property.

S-57 charts with different scales and navigational applications are selected in different
regions according to the need of specific ship sailings. Moreover, the cartography of
S-57 charts are based on route planning generally which affected by natural circum-
stance of sea area and navigational requirement. So the resulted charts inevitably had
some problems such as subdivide randomly or the range of overlapping portions is
vague. What is more, radar simulation data extracted from S-57 charts are restricted
by the original scale. There are few researches related to mergence following radar
image generation. Therefore, we adopt the knowledge and algorithm about mergence
in GIS, and proposed a procedure to process the radar simulation data, which includ-
ing all of clipping, deletion, combination and connection, so the radar image could be
not only complete but also highly accurate, which was satisfied in navigational
simulator.

2 The Algorithm

Radar simulation data from which generating radar image, are a series of feature
points of the coast line in accordance with the direction of “while people walking
along the coast line, the land is the left-hand side of the people” in S-57 charts. It
describes the model of polyline approximation as the real coast line, and it complies
with the standard of IHO S-57 and ENC (electronic navigation chart). Radar simula-
tion data are manifest as closed polygon composed of feature points actually.

518 S. Yao et al.

In the process of generating radar image, firstly, all boundary lines were clipped
and cut off in every chart. In next step, all of the charts were sorted according to the
scale and the range of the chart. Secondly, the redundant data was deleted and the last
radar simulation data was connected based on the constraint of the original scale of
the coast line and the distance between matching end-points. Finally all radar simula-
tion data was combined into a whole file for generating radar image with highly
accurate.

2.1 Clipping

S-57 charts separates the integrated marine geography based on route planning and
subdivides randomly. As a result, there are existing some physical cracks on the land
in the chart. Thus unnecessary radar simulation data which appears as the boundary
line (the outer solid line in Figure 1) closing to the chart border (the outer dashes in
Figure 1) will be extracted. As a matter of fact, the boundary is very closed to the
chart border, but they do not coincide.

Fig. 1. The chart border, the boundary line and the clipping buffer in C1311310

Fig. 2. C1311310 after clipping

 The Merging Algorithm of Radar Simulation Data in Navigational Simulator 519

In order to quantize the distance between the boundary line and the chart border,
the proportion α is defined: it is the ratio of the distance between the boundary line
and the proximate chart border to the char dimension in the same direction.

For example, the proportion α in four directions of six pieces of charts about the
waters around Dalian Port are in Table 1:

Table 1. The proportion α of charts about Dalian Port

Number Chart Scale αLeft αBottom αRight αUp
1 C1311900 1:250000 - 0.000006 - 0.00091
2 C1311310 1:150000 - 0.000003 - 0000163
3 C1311370 1:150000 - - 0.002259 0
4 C1511381 1:40000 - 0.000374 - 0.000266
5 C1511382 1:12500 - 0.000108 0.000203 0.000229
6 C1511385 1:10000 - 0.000365 0.000023 0.009138

The meaning of “-” in Table 1 is that the boundary line in the corresponding position
is not in existence.

In order to clip the boundary line quickly and avoid deleting normal radar simula-
tion data, the clipping buffer was set, which including the whole boundary lines and
occupied a little space as soon as possible. According to Table 1, it was enough that
the value of proportion α equals 0.01.

What was essential to clip the boundary line was distinguishing between the coast
line and the boundary line effectively (Figure 2). So the forward angle is defined: the
angel between the vector which from the current feature point to next feature point
and the X-axis (0°~180°). All the boundary lines were extracted manually from six
pieces of S-57 charts of the waters around Dalian Port, then every feature point of the
boundary lines was calculated according to the forward angle. It had been drawing a
scatter diagram according to the sorted result (Figure 3).

Fig. 3. The scatter diagram of the forward angles

520 S. Yao et al.

Under statistics, the forward angles of every feature point of the boundary line fo-
cused on three special angles: 0°, 90°, 180°, which deviation was less than 0.1°, This
is consistent with the conclusion of Figure 1.

All the boundary lines could be clipped according to the forward angle in the clip-
ping buffer. Unfortunately it is inevitable to delete a few radar simulation data erro-
neously.

2.2 Sorting

In the process of cartography, sometimes it is less accurate and complicated in the
small-scale map than the large-scale map for the same target. Therefore the radar
simulation data extracted from the large-scale chart should be reserved and the radar
simulation data extracted from the small-scale chart at the relevant position should be
deleted, while combining the radar simulation data. The S-57 charts are sorted based
on two principles:

1. If the scales of S-57 charts are different, the charts are sorted from small to large
scale;

2. If the scales of S-57 charts are equal, the charts are sorted from small to large size
of the range that chart dimension subtracts the area of the clipping buffer.

2.3 Combination and Deletion

The topological relation between S-57 charts could be divided into three types: dis-
joint, in, cross (Figure 4). In GIS, it just has the last one type. Besides, the relation of
the cross could be divided into two kinds: the edge cross and the corner cross. An
irregular multilateral map will be created after the combination of clipped maps.
However, it is unnecessary to consider the shape of the created polygon in the combi-
nation of radar simulation data, as the blank areas could be filled up to be a rectangle
(Figure 5). The process of combination is according to the order declared in Chapter
1.2, if the following radar simulation data is fit to the corresponding position, the
blank areas can be covered by them; if not, the areas keep blank, because it declares

Fig. 4. The topological relation between charts

 The Merging Algorithm of Radar Simulation Data in Navigational Simulator 521

that this position is not related in the voyage. It simplifies the judgement about the
shape of the created chart in the combination of radar simulation data, so the charts
could be combined based on the original scale directly, no matter which topological
relation is between them.

Fig. 5. A new rectangle after filling the blanks

As the accuracy of radar simulation data in the large-scale charts is higher than it in
the small-scale charts, the redundant data extracted from the small-scale chart of the
overlapping portions should be deleted. The property of radar simulation data is insuf-
ficient, so only the original scale could be as the filter.

2.4 Connection

Even though the polygons showed a same land are not total identical in the charts
with different scales, they are considered as the same polygon in cartography, because
it is significant when the geographic information is abstracted properly.

Due to the coast line in S-57 chart is extracted in accordance with the direction of
“while people walking along the coast line, the land are the left-hand side of the peo-
ple”, the terminal point of an unclosed coast line matches the starting point of the
other one in the other chart. Whether a coast line connects other one or not, the dis-
tance between the starting point (the terminal point) of the coast line and the terminal
point (the starting point) of the connected one, is not less than the threshold value,
which is determined by the scale of the large-scale chart. The direction connection is
proposed to connect the filtered coast line which based on the original scale of radar
simulation data in Chapter 1.3 with the connected coastline.

The model of polyline approximation which composed of lots of feature points, is
used to describe the real coast line. If the filtered coast line matches the connected
coast line, it could be considered that the accuracy of them is equivalent and the way
extracting the feature point from S-57 charts is undistinguishable, hence the coast
lines are connected directly. This algorithm is easy to be operated and it can meet the
accuracy requirement of the radar image.

522 S. Yao et al.

3 The Experiment

For example, there are six pieces of S-57 charts about the waters around Dalian Port
(Figure 6), which scales are in Table 1.

Fig. 6. S-57 charts about the waters around Dalian Port

Fig. 7. Dalian Port in the overlapping portion

 The radar simulation data about Dalian Port in the overlapping portion among
C1311310, C1511381 and C1511382 are combined to generate Figure 7. As the chart
above has been displayed, the existence of redundant data are obviously to be detect-
ed, and the restore accuracy of radar simulation data extracted from the large-scale
chart, for the real coast line is high.

Taken α = 0.01, radar simulation data extracted from six pieces of S-57 charts
were clipped, deleted, combined and connected by the turns of the serial number in
Table 1. Finally the radar simulation data connected are in Figure 8.

 The Merging Algorithm of Radar Simulation Data in Navigational Simulator 523

Fig. 8. The waters around Dalian Port after mergence

 Contrasting the radar images about the waters around Dalian Port before and after
mergence, it is obviously that the radar image got after mergence displays the real
coast line accurately.

4 Conclusion and Prospect

Referring to the algorithm of matching maps which scales are equivalent in GIS, the
paper described the procedure for the radar simulation data extracted from multi-sheet
S-57 charts with different scales in a simulated navigation, the process includes four
aspects: clipping, deletion, combination and connection. As a result the radar simula-
tion data became complete and continuous, meanwhile, the radar image was clear and
highly accurate as well as meet the actual needs of simulated voyage in the navigation
simulator.

The merging algorithm proposed in the paper could be applied to the more fields,
like connection of contour lines, generation of three-dimensional visual terrain.

Acknowledgements. This research was financially supported by National Natural
Science Foundation of China (Grant No.51309043), Applied Basic Research of Min-
istry of Transport (Grant No.2014329225020), China Postdoctoral Science Founda-
tion (Grant No.2014M551095), Liaoning Provincial Natural Science Foundation of
China (Grant No.2014025005), and Fundamental Research Funds for the Central
Universities (Grant No.3132014202).

References

1. Xiong, D.: A three-stage computational approach to network matching. Transportation Re-
search Part C 8, 71–89 (2000)

2. Du, J.Y., Zhang, Y.: Automatic extraction of contour lines from scanned topographic map.
In: 2004 IEEE International Geoscience and Remote Sensing Symposium, vol. 5,
pp. 2886–2888. IEEE Press, Anchorage (2004)

524 S. Yao et al.

3. Zhao, J.H.: Arithmetic Design and the Realization of the Function of Trend-edgematching.
Bulletin of Surveying and Mapping 06, 26–27 (2004)

4. Zhao, J.H.: The Realization of Auto Edge Matching of Multi-maps in GIS. Bulletin of
Surveying and Mapping 09, 32–34 (2005)

5. Pouderoux, J., Spinello, S.: Global Contour Lines Reconstruction in Topographic Maps. In:
9th International Conference on Document Analysis and Recognition, vol. 2, pp. 779–783.
IEEE Press, Parana (2007)

6. Yuan, X.Y.: Research on the Technology of Electronic Chart’s Seamless Conjoin Display.
Unpublished master’s thesis, Xidian University (2007)

7. Zhou, Y.W.: Seamless Merging Algorithm for Multi-sheet of Digital Marine Map Data.
Unpublished master’s thesis, Beijing University of Posts and Telecommunications (2009)

8. Sandhya, B., Agarwal, A., Rao, C.R., Wankar, R.: Automatic Gap Identification towards
Efficient Contour Line Reconstruction in Topographic Maps. In: 3th Asia International
Conference on Modelling & Simulation, pp. 309–314. IEEE Press, Bali (2009)

9. Zhang, Y., Wang, R.F., Liao, X.J.: Algorithm of virtual stitching on digital maps edge
matching. Computer Engineering and Design 16, 3640–3643 (2010)

10. Zhou, S.P., Zhang, J.D., Zuo, Z.J., Wang, P.: Design and achievement of edgematching al-
gorithm of line features in arbitrary scope. Science of Surveying and Mapping 05, 20–22
(2012)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 525–532, 2014.
© Springer International Publishing Switzerland 2014

Data Mining Research Based on College Forum

Liming Xue1, Zhihuai Li1, and Weixin Luan2

1 Network and Information Center, Dalian Maritime University,
116026 Dalian China

2 Transportation Management College, Dalian Maritime University,
116026 Dalian China

xuelm@dlmu.edu.cn

Abstract. Forum plays an important role in college information application. As
the data of forum increases every moment, finding the valuable rules of forum
data makes the point of the attention. This paper studies a college forum of chi-
na and combines a data warehouse with data preprocessing, creating time di-
mensions and other methods. This paper also analyses data with programming
mining model. Cluster the forum data with improved Fuzzy C-Means method.

Keywords: forum, cluster, data mining.

1 Introduction

Forum is one of the main applications of Internet, supporting a free exchange plat-
form for the Internet users. Since 1995, there are more than 2,000 online forums
opened in China’s colleges after the first university forum " SMTH" in Tsinghua Uni-
versity. Right now, there are nearly ten million registered users in college forums.
Besides, College Forum has become a useful platform for information releasing, ac-
cessing, and processing. Therefore, it is necessary for the researches to analyze and
manage the data in College Forum by scientific methods and techniques. After that,
the forum will provide reference for the better development and management deci-
sions. On the other hand, Data mining is an effective way to analyze the massive data,
identify appropriate rules, and discovery the new knowledge, which has been widely
applied in various fields in recent years. Given what has discussed above, we will use
the methodologies of data mining to analyze the data of College Forum.

2 Research Object

2.1 Background of Forum

In this paper, we will take an example from a selected college, which includes 20,000
registered students. The forum of this college started form the end of 2001, and accu-
mulated 21,000 users by 2007. There are more than sixty contents in this forum, i.e.,

526 L. Xue, Z. Li, and W. Luan

Political Economic Review, E-Commerce, Technical Discussions, Literary Arts, and
Fashion & Tourism, etc. According to statistics, there are more than 300,000 posts,
with 5,000,000 replies. The forum is designed by the PHP programming language and
operated on the Linux server. Besides that, in the background of this forum, the data-
base is MySQL, with more than 20 tables, and the biggest table includes more than 5
million records.

We will take two examples of tables to show the structure:

Table 1. User: user

Name Type Meaning Remark
Userid Integer The id of user Primary Key
Username String The name of user
Posts Integer The numbers of poster After posting cleaned
Posts-fic Integer The numbers of poster Since register
Lastact Integer Last time for activity Including browse, post,

and view or send mes-
sage.

Lastpost Integer Last time for posting
Lastvisit Integer Last login time
Jointime Integer Time when you register
Goodnees Integer Hot poster How many hot posters

posted by the user
Groupid Integer The group id of users
Birthday Date Birthday
Email String Email

Table 2. Thread: thread

Name Type Meaning Remark
Threadid Integer The id of thread
Title String The name of thread
Lastposttime Integer The last posting time of

this thread
Forumid Integer The topic id of this

thread
Replycount Integer How many replies of

this thread.
Postuser String The user name who

posting this thread
Lastposter String The user who posting

last poster in this
thread.

Dateline Integer Posting time 10 digits
Views Integer How many times of this

thread was reading
Goodnees Integer if hot thread 1-YES，0-NO

 Data Mining Research Based on College Forum 527

2.2 Supplementary Instruction

The users can post in different sectors with two models. The first one is issued a new
poster, and then others can discuss for this topic. The second model is to comment on
a existing poster, commonly known as the thread. If the user posts a theme or send a
message, and then the user 's overall posts (the column of “posts-fic” in “user” table)
will be increased by 1. If the poster was named as hot theme by administrator, and
then the numbers of hot poster of a user will increase (the column of “goodnees” in
“user” table). At the same time, in the “thread” table, if a theme was viewd, the topic
number (“views” in “thread” table) will be increased by 1. If the theme was replied by
someone, the number of replies will increase (“rePlycount” in “thread” table). Only
the column of “goodnees” was rated as 1, when the theme was labeled as hot poster.
In addition, the data type of “time” is a timestamp presented by 10-bit integer, i.e.,
“dateline”, “lastvisit”. In Linux, the timestamp of “1 January 1970 GMT 00:00” is
0000000000, so it will increase after each a second time. Therefore, we can locate the
time of network behavior occurred, according to timestamp.

3 Data Warehouse

3.1 Data Pre-processing

Data mining is not a automated process. So we should pre-process the raw data before
the data mining, and then build a data warehouse according to the data characteristics.
In this paper, we firstly import the data from MySQL to SQLServer. While it repre-
sents incompatible of data types between these two databases, so we should modify
some contents that exported from MySQL in order to meet the requirements of data
formats in SQLServer. Besides that, we also need amend the data types and key-
words, which do not exist in SQLServer, i.e., “unsigned”.

Additionally, we should adjust the raw data tables and the contents in the tables in
order to analyze. For instance, the time field is represented by the integers of linux
timestamp in the original format, while in the new table, the time should be converted
into Beijing time for analysis. While, considering the large amount of data, there will
be a huge project to convert all of timestamps into Beijing time, as well as it is no
practical significance for the analysis if the time accurate to second. So the timestamp
will be simplified when data cleaning and processing, only the foundation of date
information will be leaved. On the other hand, this data source was began from 2002
to November 2006, so the time across more than 50 months. Therefore, we should
insert a “month” row in the original data table for time data field, the relationship
between these two as follows:

In the process of analysis, some other items should be considered, i.e., how long is
the online time of user, how long the theme last. Therefore, two fields were inserted
into the raw table as “user time” and “thread time”. The values of these two rows
were calculated by the raw records. For example, the value of “thread time” is the last
posting time minus the issued posting time. the value of “user time” is equal to the
user last activity time minus user registration time.

528 L. Xue, Z. Li, and W. Luan

Table 3. Relationship of time

Linux timestamp Value of month

<1017590400 1

1017590400——1020182400 2

1020182400——1022860800 3

…… ……

1159632000——1162310400 56

1162310400——1164902400 57

3.2 Create Dimension

Dimension is a measuring unit. The members of dimension can be divided into vari-
ous metrics levels, which is called hierarchy. In this case, we will construct some
dimensions according to the characteristics of users, i.e., user group dimension, user
registration time dimension, user online time dimension, user last post time dimension
and user last activity time dimension. Besides that, we will also create theme topic
dimension, theme issue time dimension and theme duration time dimension, which
corresponding to the user behavior patterns. Fortunately, SQLServer provides the
appropriate tools for quickly and easily building a data warehouse.

4 Data Mining

Data mining is to find rules that can be interpreted from the instance. These rules can
describe and explain the given data, as well as predict trends. There are a variety of
data mining models, the actual operation often choose different models based on the
data instances and the actual problems. Generally, data mining models include clus-
tering, decision trees, factor analysis, correlation rules etc. We can easily display the
data collection by SQLServer tools and analyze the data by conventional models. In
this article, we will not specifically introduce these points. Here the author mainly
uses Fuzzy C-Means algorithm to design the program on the part of data mining[1].

4.1 Algorithm Description

Fuzzy clustering is to solve the problem of clustering that exists in the objective world
without distinct boundaries. Fuzzy C-Means (FCM) algorithm is a commonly used
fuzzy clustering algorithm, which applied fuzzy technology in the traditional C-means
algorithm.

In Fuzzy C-Means (FCM) algorithm, we set },......,2,1|{ nix i = is a collection
with n samples. k is the number of clusters. c1,c2,…ck are cluster centers. The objective
function is:

 Data Mining Research Based on College Forum 529

In where, α>1 is a blur degree constant, uij means the membership grade that xi be-
longs to j.

10 ≤≤ iju
， ki ,......2,1= ; nk ,......2,1=


=

=
n

j
iju

1

1
， hi ,......2,1=

nu
n

i
ij << 

=1

0
， kj ,......2,1=

In the iterative process of the FCM, we also used the following formulas to cal-
culate the cluster center:


 =

=

=
n

i
ij

a
ijn

i

m
ij

j xu
u

c
1

1

][
1

， kj ,......2,1=


=

−

−

−

−
=

k

j
ji

jiij

vx

cx
u

1

1/1
2

1/1
2

]
1

[

]
1

[

α

α

，

ni ,......2,1=
；

kj ,......2,1=

The steps of FCM is showed as follows:

(1) Initializing a random or a similar u(0); initializing u(0) and calculating u(0). So the
iterations is m=1, and then select the number of cluster centers k and the index
weightsα.

(2) Calculating the cluster center. Given c(m), and then calculate the u(m), according to
the formula.

(3) Recalculating the membership grade. Given u(m), and then calculate the c(m), ac-
cording to the formula.

(4) If max|uij

m-uij

m-1|≤З, then stop the iteration, otherwise m=m+1, go to step (2), in
whichЗis pre-given positive decimals [2] [3].


= =

−=
n

i

k

j

iia
ij cxuJ

1 1

2
][

530 L. Xue, Z. Li, and W. Luan

4.2 Algorithm Improved

In FCM algorithm, we found that the cluster center is generated randomly. Actually,
there are lots of methods for initialization of cluster center, i.e., randomly create the
cluster center, manually create the cluster center, as well as some other specific algo-
rithms for setting cluster center. For example, we can use the results of C-means algo-
rithm as the initial cluster centers of FCM algorithm.

Furthermore, the algorithm assumes that the number of clusters, we can quickly ob-
tain the result after input an initial variable, which is the number of customers of class
c. While, the initial variable c is very import to the clustering result. Actually, this is
the problem of clustering validity, means that the different value of c will produce
different clustering results. In this area, we can refer to the literature [4] [5]. Validity
function was established for resolving the problem of clustering, which used to meas-
ure the clustering tightness and separation. We will use fuzzy clustering validity func-
tion in this paper, that the function was proposed by Xie and Beni in 1991.

()
2

wij

1 1

]mind[

||||

n

VXu
S

c

i
ik

mn

k
ik

= =

−
=

In this formula, c is the number of clusters, n is the number of data points, uik repre-

sents the membership grade of the point k belongs to the cluster i. Xk is the value of
the point k, Vi is the cluster center of cluster i. dwij is the weighted Euclidean dis-
tance, means that the average deviation of each point to each cluster center, treated as
a measure of the tightness of each cluster. mindwij means the minimum distance of
two cluster centers between cluster i to cluster j, which is a measure of the degree of
separation. As we know, the best result of clustering is the data points which having
the same characteristics should be in a cluster, while the data points having different
characteristics should be separated into different clusters. Ideally, the clustering result
should be shown as the tightness of the same type of data is smaller, the greater the
degree of separation of different types of data, as well as the value of S should be
smaller. And then, we will calculate the value of c according to function S, and com-
pare the values of S, take the minimum value of S to confirm the corresponding value
of c. Therefore, we can say that the number of clusters c is best clustering result.

Finally, the result of FCM algorithm which discussed above is the membership
grade for each individual to cluster. So, we also need a anti-membership fuzzy
processing to calculate which individual should belong to clusters. In the anti-fuzzy
processing, we will use the median method, the weighted average method, or the
maximum membership degree method.

4.3 Program Design

There are five modules in this program.
Data Loading. This module is responsible for the data loaded from the database or

data file into memory, make the algorithm is ready for data processing.
Cluster center initialization. This module is charging for initializing the cluster cen-

ter. Actually, the user can choose their own methods in the initialization process. The
program will be designed some initialization methods for users.

 Data Mining Research Based on College Forum 531

FCM calculating. This module is responsible for calculating Fuzzy C-Means clus-
tering, and resulting the cluster centers, as well as the membership grade of each indi-
vidual to cluster.

Clustering validity evaluation. This module means calculating the validity value of
different number of clusters according to the user’s need, and then selecting the opti-
mal number of clusters.

Anti-fuzzy processing. This module will ensure that each individual was assigned
to different classes, according to the membership grade and the types of anti-fuzzy
approach.

4.4 Instance

We chose the data set from the database based on the users whose hot poster is more
than 1 and they are not moderators, and then we found there are 273 records of users.
The reason for this group of users is that the moderator is a high-quality user among
all of registered users, whose online time is always longer and the number of hot
posters is bigger than others. Besides that, the users whose hot poster is more than 1
are the potential moderators. As what we have discussed above, we chose this data
source for data mining.

In this case, we selected C-Means method to generate the initial cluster centers
among a variety of ways. According to the actual situation, it is reasonable for the
data were divided into 3-5 categories. And then we calculated the clustering validity
function, and got the result is 47.2 when the number of clusters is 3, 39.6 when the
number of clusters is 4, and 51.4 when the number of clusters is 5. As we know, 39.6
is the minumum value amount these results, so we chose the number of clusters is 4.
After that, we computed cluster centers and the number of samples, and found out that
the characteristics of the first sample are closer to moderators. There are 26 users in
the first cluster, the hot poster number of this cluster center is 4.45, the online time is
42.16 months. The results were shown in the following figure.

Fig. 1. Computing cluster validity

532 L. Xue, Z. Li, and W. Luan

In determining individual category, we chose the method of maximum degree for
the anti-fuzzy processing, the result was shown in the following figure.

Fig. 2. Determine the user groups

5 Conclusion

This paper described the status of a college student forum, and then combined the data
warehouse with data mining technologies to create a time dimension and data ware-
house by data preprocessing. After that, we analyzed the users’ group by Fuzzy
C-Means method. In practical applications, we can analyze data or display data by the
tools of data mining software, as well as design their own tools for processing in
accordance with the actual situation.

References

1. Liang, J.-G., Zhang, Y.-G., Ge, H.: Research on fuzzy C-means cus-tomer clustering algo-
rithm (FCM) in CRM. Journal of Harbin Engineering University 25(2), 257–260 (2004)

2. Decision Making Using Fuzzy C-means and Inductive Machine Learning for Man-aging
Bank Branches Performance, http://citeseer.nj.nec.com/458829.html

3. Xiex, B.: Validity Measure for Fuzzy Clustering. IEEE Transactions on Pattern Analysis
and Machine Intelligence 13(8), 841–847 (1991)

4. Bezdek, J.C., Hathaway, R.J., Sabin, M.J., Tucker, W.T.: Convergence theory for fuzzy c-
means: Counterexamples and repairs. IEEE Transactions on Systems, Man and Cybernet-
ics 17(5), 873–877 (2013)

5. Cannon, R.L., Dave, J.V., Bezdek, J.C.: Efficient Implementation of the Fuzzy c-Means
Clustering Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (2), 248–255 (2009)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 533–542, 2014.
© Springer International Publishing Switzerland 2014

Simulation of Maritime Joint Sea-Air Search Trend
Using 3D GIS*

Xing Shengwei, Wang Renda, Yang Xuefeng, and Liu Jiandao

Navigation College, Dalian Maritime University, 1 Linghai Road, Dalian, China
navgis@sina.com, wang.renda@gmail.com

Abstract. Joint sea-air search at sea is the search operations which aircrafts and
vessels are coordinated, is the most effective way to find maritime targets in
distress. Present search and rescue decision-making systems based on 2D GIS
(such as ECS, Electronic Chart System) are not intuitive to show three-
dimensional search activity, affecting the effectiveness of decision-making. 3D
GIS is an intuitive and accurate way to express realistic geographic information,
it supports three-dimensional spatial analysis and visualization, so it’s suitable
for joint sea-air search operations simulation. This paper introduces simulation
process of sea-air search trend at sea using 3D GIS, which helps search com-
mander to judge search trend (including search efforts' dynamic and degree of
area coverage), improving their capabilities to command search operations.

Keywords: 3D GIS, joint sea-air search, search coverage, search effort, trend
simulation.

1 Introduction

Joint sea-air search at sea is the search action coordinated by both sea-surface efforts
(vessels) and aeronautical efforts (aircrafts), which is the most effective pattern to find
targets in distress at sea[1]. Taking advantage of the naval and air forces at the same
time can complete the rapid coverage of sea area and effectively shorten the time to
find distress target[2], see Figure 1. It is of great significance for search commander
to master all of the search efforts dynamic as well as the extent of coverage in sea area
to be searched in real time. However, the traditional search command system based on
2D GIS (such as ECS, Electronic Chart System) can not intuitively demonstrate the
search efforts dynamic, especially the aeronautical efforts. In this paper, the process
of simulating joint sea-air search using 3D GIS is researched, including: ①creating
three dimensional scene of sea area to be searched by geographical data; ②
determining the search sub-area according to the searching ability of each search ef-
fort; ③calculating search path corresponding to the shape of search sub-area; ④

*
 Supported by the Fundamental Research Funds for the Central Universities (3132014027,
3132013017).

534 X. Shengwei et al.

generating animation tracks through search paths; ⑤ running animation tracks to
complete simulation. It can help search and rescue commander to judge the search
trend intuitively, as well as to improve their effectiveness of decision-making.

Fig. 1. Quick search coverage by joint sea-air search efforts

2 Creation of 3D Scene

A maritime search action is naturally an activity carried out in a specific geographical
space, therefore there needs a 3D scene for visualization and simulation of search
process. As shown in figure 2, the 3D scene can be created by overlaying six distinct
types of layers, which are search effort 3D model layer, associated important build-
ings (harbor, airports, etc.) layer, sea area being searched feature layer, navigation
aids layer, remote sensing (RS) image layer and terrain model layer. Each layer cor-
responding related geographic datasets as follows.

1. Raster dataset - Storing remote sensing image data, including sea area remote
sensing images as well as flight base remote sensing images onshore;

2. Terrain dataset - Storing terrain data, including the TIN (Triangulated Irregular
Network model) and Raster (regular grid model) data. Terrain models can be
created using bathymetric data extracted from the electronic chart (e.g. ENC -
Electronic Nautical Chart)[3];

3. Important buildings feature dataset - Storing important buildings’ spatial data (such
as airports, harbors, etc.);

4. Maritime navigation aids feature dataset - Storing navigation aids spatial data of
the sea area to be searched;

5. Extent of sea area feature dataset - Storing search area and sub-area's spatial data;
6. Search efforts' initial position dataset - Storing the search efforts' initial position,

i.e. the vessel's standby point and aircraft flight base location.

 Simulation of Maritime Joint Sea-Air Search Trend Using 3D GIS 535

All layers should have the same spatial reference, in order to be overlaid correctly.
The accuracy of objects positioning in 3D scene is determined by the quality of
spatial data.

Fig. 2. Composition of 3D scene

Remote sensing image
raster dataset

Important buildings feature
dataset

Navigation aids feature
dataset

Sea area to be searched
feature dataset

Search Efforts' initial posi-
tion feature dataset

Terrain dataset

overlay

Geographic Dataset

3D scene
Sea area to be searching

3D Scene Database for
Joint Sea-air Search at

Sea

Geodatabase

Thematic layers

536 X. Shengwei et al.

a. Georeferencing remote sensing image
If there is no spatial reference information with RS image, it can not be overlaid

directly with other layers. Specifying image’s spatial reference information (also
known as georeferencing), can be done by using Spatial Reference tool, which
specifying some well-known vertices of the image with corresponding coordinates, as
shown in Figure 3.
b. Terrain Data Modeling

In order to support the overlay between RS image layer and terrain layer, two kinds
of terrain data model (TIN, Triangular Irregular Networks model and Raster model)
are created from contour data, as shown in Figure 4.

Fig. 3. Georeferencing RS image Fig. 4. Creating terrain models

3 Calculation of Search Effort Moving Path

To simulate the search trend, the search effort's moving paths must be explicitly
calculated at any time. According to the search effort's initial position (IP) and
commence search point (CSP), search path can be divided into two parts, one is used
to describe search efforts rushing to search area (rush path), the other is used to
describe search efforts doing searching job within search area (search path).
a. Rush path calculation

The search effort's rush path calculation is relatively simple. Once the search area
is defined, in order to carry out searching operations as soon as possible, each search
effort should take the shortest path rushing at full speed to the search area. Therefore
the rush path is normally the shortest distance path between the initial position and
commence search position, usually straight line paths as shown in Figure 5.

37°35′39.951″N
122°24′31.468″E

37°35′39.951″N
120°46′3.83″E

38°59′6.922″N
122°24′31.468″E

38°59′0.623″N
120°46′3.83″E

TIN model

Raster Model

Contour Model

 Simulation of Maritime Joint Sea-Air Search Trend Using 3D GIS 537

Fig. 5. Search efforts’ rush paths and search paths

b. Search path calculation
Each search effort's path within search area depends on the shapes of the search

sub-areas assigned. When the search area is very large and many search efforts are
available, the whole area should be divided into search sub-areas, and then be as-
signed among available search facilities to work together in close co-ordination, so as
to quickly complete the whole region coverage. Paper[4] present a polygon decompo-
sition algorithm which can be used to divide the whole search area into search sub-
areas, according to each search effort's ability of coverage as well as its CSP on the
boundary of sub-areas, so as to achieve full coverage of the entire search area. As
shown in Figure 6, a search area of 2000 square nautical mile was divided into four
non-overlapping sub-areas of 734, 197,184 and 885 square nautical mile.

Fig. 6. Search area decomposition

538 X. Shengwei et al.

When the location of distress target is very uncertain and needs a uniformly cover-
age for a wide area, the most effective search pattern is parallel sweep search (PS). PS
should also be used when a large search area is divided into several sub-areas and
each of them is assigned to a specific search facility. If the shape of sub-area is rec-
tangular, the search path is creeping line as shown in Figure 7. Through making the
search line parallel to the longer edge of the rectangle can reduce the number of turn
of vessel or aircraft; thereby the search efficiency is improving[5].

Fig. 7. Search path within rectangular area

4 Search Trend Simulation

While mastering all action paths of search efforts through the entire search process,
the search operations can be simulated by demonstrating every search effort's dynam-
ic in 3D environment. Paper[6] provides a means of simulating vessel's dynamic by
using animation technology from ESRI ArcGIS GIS platform. The aircraft's dynamic
can also be simulated by using that technology, which needs to modify the target's
(aircraft) elevation parameter to its flight altitude. In this paper, the 3D scene of sea
area near Bohai Strait is created, and a search plan with two aircrafts (a fixed-wing
aircraft and a helicopter) and two vessels (a professional SAR vessel and a passing
vessel) is simulated in the three-dimensional environment, as shown in Figure 9. The
sea region is a rectangular area which has a long edge of 50 n mile and a wide edge of
40 n mile, therefore its area equals 2000 (n mile)2 . In order to make every search
effort carried out search operation coordinately, this rectangular area has been parti-
tioned into four search partition (i.e. partition1 to partition 4), which area is 734,
885, 184 and 197 (n mile)2. On the start time of searching, a helicopter is located in
Penglai ShaHeKou airport; A fixed-wing aircraft, is located in the Dalian ZhouShuiZi
airport; A passing vessel is in the north of the scene and a professional search and
rescue vessel is located in the east of the scene. In the above search efforts, the heli-
copter is responsible for the task of searching partition 1, the fixed-wing aircraft is
responsible for the task of searching partition 4, the passing vessel is responsible for

C

Turn 8 times Turn 12 times

 Simulation of Maritime Joint Sea-Air Search Trend Using 3D GIS 539

the task of searching partition 3 and the professional search and rescue vessel is re-
sponsible for the task of searching partition 2. In order to facilitate the observation of
the dynamics of the search efforts, every 3D model of search effort is enlarged appro-
priately.

During the entire joint sea-air search process, the search and rescue command staff
must ensure that all search vessels and aircraft to keep a safe distance with each other
and to strictly comply with the search pattern have been determined in advance. For
aircraft, the search command staff should first consider its safety, by simulating the
search efforts' dynamic in search operation before take action, can help the search
command staff to judge the aircrafts’ safe isolation distance when they meet at the
nearest location. If the separation distance can not satisfy the safety requirement,
some adjustment could be done (by adjusting the flight altitude and flight path manu-
ally) to ensure the safety, as shown in Figure 10.

Fig. 8. 3D scene for joint sea-air search simulation

540 X. Shengwei et al.

The search trend simulation results are shown in Figure 9.

Fig. 9. The figure of search facilities’ dynamics simulation in 3D scene

Helicopter rushing search partition Helicopter performing Parallel Search

Fixed-wing aircraft rushing search partition Fixed-wing aircraft performing
 Parallel Search

Vessel rushing search partition Vessel performing Parallel Search

 Simulation of Maritime Joint Sea-Air Search Trend Using 3D GIS 541

Fig. 10. Adjusting safe separations between the aircraft three-dimensional simulation

5 Conclusion

3D GIS provides an intuitive way to simulate vessel and aircraft’s dynamic in joint
sea-air search operations at sea. 3D scene for maritime search can be quickly created

542 X. Shengwei et al.

by overlaying geospatial data. By calculating the paths of search efforts in the entire
search procedure, and using these paths to generate corresponding animation tracks,
the joint sea-air search process can be demonstrated intuitively, which will help
search commander to master the trend of search.

Acknowledgment. Supported by the Fundamental Research Funds for the Central
Universities (3132014027, 3132013017).

References

1. IMO/ICAO.: International aeronautical and maritime search and rescue manual, vol. III,
London/Montreal (1998)

2. Xing, S.W., Zhang, Y.J., Li, Y.K., Gao, Z.J.: An optimal model for search effort selection at
sea. Journal of Dalian Maritime University 38(2), 15–18 (2008) (in Chinese)

3. Li, H., Xing, S.W., Zhang, Y.J.: Inland Waterway Three-Dimensional Visualization Based
on 3D-GIS Technology. In: International Conference on Service Operations and Logistics,
and Informatics, pp. 564–568. IEEE Press, Beijing (2008)

4. Hert, S., Lumelsky, V.: Polygon area decomposition for multiple-robot workspace division.
International Journal of Computational Geometry & Application 8(4), 437–466 (1998)

5. Wesley, H.H.: Optimal Line-sweep-based decompostions for coverage algorithms. In: In-
ternational Conference on Robotics and Automation, pp. 27–32. IEEE Press, Seoul (2001)

6. Xing, S.W., Zhang, Y.J., Li, Y.K.: Three dimensional real-time method of ships dynamic
monitoring based on ArcGIS Platform. In: 2nd International Workshop on Intelligent Sys-
tems and Applications, pp. 1340–1344. IEEE Press, Wuhan (2010)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 543–552, 2014.
© Springer International Publishing Switzerland 2014

Quantitative Analysis for the Development
of Maritime Transport Efficiency

Wenbo Zhang, Zhaolin Wu, Yong Liu, and Zebing Li

Navigation College, Dalian Maritime University, Dalian 116026, China
{zhangwenbo,wuzhaolin,liuyong,lizebing}@dlmu.edu.cn

Abstract. This paper analyzes the maritime transport efficiency which include
ships’ quantitative analysis of four main kinds. Nearly 90 percent of the world
total trade of goods measured in tons are moved by sea. And vessel’s transport
efficiency is higher than the other vehicles, so ship is regarded as an epitome of
science and technology. The development of ships is achieved by technological
innovation, the innovation is the fundament, Now using the principle of
transport efficiency to analyze the historical development of transport vehicles
is needed .Transport efficiency is the energy efficiency used for transport facili-
ties, which is expressed as η= . In the historical time, ship’s size,
speed and engine output power have changed largely. And this paper will dis-
cuss base on the basic formulas and statistics of four kinds of ships: bulk
carriers , LNG carriers ,oil tankers and container ships.

Keywords: Ship, developing tendency, quantitative analysis, transport efficiency.

1 Introduction

According to different supporting systems, the transport vehicles can be categorized
as three types, namely, buoyancy support vehicle, land support vehicle and lift sup-
port vehicle. Among them, the buoyancy support vehicle, i.e., ship, has many domi-
nated advantages to transfer large amount cargo over a long distance, because it has
much larger capacity and lower transport cost. In another word, vessel’s transport
efficiency is higher than the other two kinds of vehicles.

With the fast development of high technology and innovation in maritime sector,
shipping market is becoming more and more specialized and matured [1]. Within the
past several decades, ship’s size, speed and engine output power have changed large-
ly. But considering four different types of ships, there are lots of differences of the
above items among them [2]. What causes this phenomenon? In this paper, I will use
the principle of transport efficiency to analyze the historical development of the four
types of ships.

w

w

p

wv

sh

p

focf
⋅⋅1

544 W. Zhang et al.

2 Overview of Principles

Transport efficiency is the energy efficiency used for transport facilities. If we
compare two different ships and consider their work necessary for a given transport
performance, for example the transportation of 1000 tons of grain from shanghai to
Tokyo, this work (fuel consumption) is directly proportional to each ship’s specific
power output P/(WV). Normally, the higher the value of P/(MV), the lower the

transport efficiency TPη will be[3].

Transport efficiency can be expressed as the following formulae:

Payload × Distance
Transport efficiency = (1)
 Energy used for transport

 Payload (W p)× Distance (L)

 = (2)

 Heat Value of Fuel (H F) ×Fuel consumption

That is:
 (3)

 (4)

From formula (4), we can find the relationship between transport efficiency TPη
and the specific power output p/wv which is just opposite to each other. When one is
high, the other must be low.

In practice, there are many factors that may influence a ship’s transport efficiency,
such as the ship type, ship particulars, ship engine condition and ship age, etc[4]. In
the following part, the historical developing trend of the specific power output of each
kind of ship will be list in a table, as well as shown in the K-G diagrams, then the
reasons causing the change will be analyzed[5].

3 Instance Analysis

3.1 Bulk Carrier

Bulkers’ average engine power increased greatly from 1970s to 1980s, then it dropped
a little in 1990s and increased again in 2000s; the average dwt kept continually in-
creasing during this period, and in 2000s, the number was more than 3 times as it was
in 1970s, which means the ships’ size increased a lot; comparing with this, the speed
did not change very much, almost keep stable at around 14 knots. As showing in the

)/(VLPSH

LW

focf

p
TP =η

W

W

P

WV

SHP

VW

SH
p

focf

p

focf

⋅⋅=⋅= 11

 Quantitative Analysis for the Development of Maritime Transport Efficiency 545

right column, the average p/wv of bulk vessels decreased all through this period, es-
pecially from 1970s to 1990s, it dropped very quickly. This changing tendency of
P/(WV) implies that bulkers’ transport efficiency was enhanced a lot from 1970s to
2000s.

The following two charts are about the specific output. Fig.1 includes all bulkers’
data, and Fig.2 only shows the average data of four decades.

Fig. 1. Data of all bulkers

Fig. 2. The average data of four decades

transport efficiency of bulker

0.001

0.01

0.1

10 100

v(km/h)

p
/
w
v
(
p
s
/
t
k
m
/
h
)

66-75

76-85

86-95

96-2005

K-G line

average transport efficiency of bulker

0.001

0.01

0.1

10 100

v(km/h)

p
/
(
w
v
)
[
p
s
/
(
t
k
m
/
h
)
]

66-75

76-85

86-95

96-2005

K-G line

546 W. Zhang et al.

Fig.1 gives us an overall idea that the specific power output became smaller and
smaller from 1970s to 2000s. But since there are too many points showed in this same
diagram, so the information we get is not very clear and accurate.

Fig.2 reveals the average specific output of each decade. The tendency arrow line
dropped continually through this period, which means bulkers’ specific power output
decreased, and the transport efficiency became higher and higher. In addition, the two
points of 1970s and 1980s are above the K-G line, while the other two are below the
line. This implies that bulkers’ transport efficiency is not very good at the beginning,
but it improves a lot finally.

Result Analysis

Bulk carriers were developed in the 1950s to carry large quantities of nonpacked
commodities such as ore, coal, grain etc., in order to reduce transportation costs. At
the beginning, this market is not well developed, and everything is in trial. People did
not have enough experience to build competitive bulkers with optimal size, optimal
engine power and reasonable speed, so the transport efficiency is very low. But on
and on, people got some lessons and the ship is designed more reasonably, as a result,
the transport efficiency is also enhanced largely.

Another reason is that bulkers’ speed is fairly low, which benefits the transport ef-
ficiency greatly. Bulk cargo normally are not very valuable and not time sensitive.
When the demand of the raw materials became urgent since the fast development of
some large countries, people must build more large bulkers to carry large amount of
cargo. But they prefer to change the beam much larger than ship length, because this

will not increase the total resistance greatly. According to the formulae R=C 1 V 2

and P=RV= C 1 V 3 [6], the engine power will also not change much. So the bulkers’

transport efficiency became better and better with the ship size increasing.

3.2 LNG Carrier

LNG vessels’ average engine power increased a lot from 1970s to 1980s, then it de-
creased greatly in 1990s and saw a slight rise in 2000; the average dead weight went
up all through this period except a little decline in 1990s; the tendency of average
speed is similar to engine power, but did not change as much as the latter. The aver-
age specific output dropped remarkably before 1990s, and then it went up a little in
2000s [2].

From fig.3 we find the specific output of LNG vessels declined in general. There
is a gap between 1980s and 1990s, which means the specific output decrease greatly
between these two decades.

Fig.4 shows the changing tendency of average specific output data. Similar to
bulkers, the first two points are above the K-G line, and the other two is below it. The
most striking character of this diagram is that the line dropped from 1970s to 1990s,
and then it went up a little in 2000s. Another important Information hidden in this
diagram is that from 1980s to 1990s [7], the line dropped deeply, which implies there
must be some new technology or innovation applied on LNG vessels.

 Quantitative Analysis for the Development of Maritime Transport Efficiency 547

Fig. 3. Data of LNG

Fig. 4. The average data of LNG

Result Analysis

We all know that LNG vessel is designed to carry liquefied natural gas which is liquid
cooled and condensed by natural gas. Due to the large refrigeration system which is

transport efficiency of LNG

0.001

0.01

0.1

10 100

V(KM/H)

P
/
(
W
V
)
[
p
s
/
(
t
k
m
/
h
)
]

66-75

76-85

86-95

96-2005

K-G line

average transport efficiency of LNG

0.001

0.01

0.1

10 100

V(km/h)

p
/
(
w
v
)
[
p
s
/
(
t
k
m
/
h
)
]

66-75

76-85

86-95

96-2005

K-G line

548 W. Zhang et al.

installed on board and occupied a large space, the space using for loading cargo turns
much smaller. And comparing with other kind of ships, more energy is used for LNG
vessels to carry a certain amount of cargo, because some energy is used for cooling
purpose. Therefore the transport efficiency is fairly lower [8].

Another reason lies in the propulsion system. Before 1980s, most LNG vessels use
steam turbine plants which have lower efficiency comparing with diesel engine. But
with the development of technology, some LNG vessels began to choose other pro-
pulsion systems [9]. Alternative propulsion concepts based on low speed diesel en-
gines with electronic control is installed in some modern LNG tankers. HFO burning
fuel efficient Low Speed two stroke diesel engines in single or twin propeller configu-
ration, in combination with the reliquefaction of the Boil Off Gas (BOG), offer eco-
nomic benefits for those trades where loss, i.e. consumption of cargo, is not accepted
and the supply of the full amount of cargo is honoured. With the market launch of
electronically controlled low speed diesels and reliable independent reliquefaction
technology, all the traditional reasons not to leave the steam turbine on LNG vessels
have become invalid. This increased LNG vessels’ transport efficiency dramatically
since 1980s.

3.3 Tanker

The average engine power of oil tankers continually increased with the time going on,
as well as the dead weight, which also increased very fast; oil tankers’ speed nearly
kept stable within these 40 years, just a slight rise from 13.9 knots to 15.1 knots[10].
As for the specific output p/(wv), it dropped sharply from 1970 to 1990, and then
changed a little from 1990 to 2000.

Fig. 5. Data of all tankers

transport efficiency of tanker

0.001

0.01

0.1

10 100

v(km/h)

p
/
(
w
v
)
[
p
s
/
(
t
k
m
/
h
)
]

70

80

90

2000

K-G line

 Quantitative Analysis for the Development of Maritime Transport Efficiency 549

Fig. 6.The average data of tankers

The information we can get from Fig.5 is that the specific power output decreased
to a certain degree during this period.

From Fig.6, we can find that the specific output declined quickly from 1970 to
1990, and then it almost kept stable until 2000. The point of 1970 is above the K-G
line, in 1980 it is nearly on this line, and the other two is far below the line.

These two figures indicates that tankers transport efficiency became higher and
higher.

Result Analysis

The first reason is the large demand of oil production. The tanker market is an in-
creasingly important and attractive transport segment, which, due to the ever increas-
ing global market economy, could be expected to become of even greater importance
in the future. Fluctuations in oil production within the OPEC countries and in the
world market economy might, of course, in the short term, influence the demand for
tanker deadweight tonnage and also the type of tankers being ordered. Because this
high demands, oil tanker became larger and larger, especially from 1970 to 1990. This
dramatically change in size while speed almost keeping stable result in the steep in-
crease of transport efficiency, just as the bulkers.

Another reason is the development of tanker market. In 1970, large oil tanker is
still in trial stage, and people did not know how to build a tanker with optimal size,
speed and engine power. But after they got the experience, the transport efficiency
became better.

Some other factors, such as double-hull, oil crisis may also affect the specific out-
put to a certain degree.

average transport efficiency of tanker

0.001

0.01

0.1

10 100

v(km/h)

p
/
(
w
v
)
[
p
s
/
(
t
k
m
/
h
)
]

70

80

90

2000

K-G line

550 W. Zhang et al.

3.4 Container Ship

The average engine power of container ships increased all through this period, espe-
cially from 1990s to 2000s, it increased dramatically; similarly to this, the dwt also
raised continually; from 1970s to 1980s, containers’ speed almost kept at the same
level, then it increased a little until to 21.0 knots in 2000s. The average specific output
p/(wv) decreased to a certain degree from 1970s to 1990s, and then it went up slightly
in 2000s [11].

Fig. 7. Data of all containers

Fig. 8. The average data of containers

transport efficiency of container

0.001

0.01

0.1

10 100

v(km/h)

p
/
(
w
v
)
[
p
s
/
(
t
k
m
/
h
)
]

66-75

76-85

86-95

96-2005

K-G line

average transport efficiency of container

0.001

0.01

0.1

10 100

v(km/h)

p
/
(
w
v
)
[
p
s
/
(
t
k
m
/
h
)
]

66-75

76-85

86-95

96-2005

K-G line

 Quantitative Analysis for the Development of Maritime Transport Efficiency 551

From fig.7, we find that most of points are above the K-G line; this implies that
container ships’ transport efficiency is higher than other kinds of vessel.

Fig.8 also reveals the above information and all the four points are far away from
the K-G line. From 1970s to 1990s, the line continually decreased, while it saw a
slight rise in 2000s.

Result Analysis

Firstly, the cargo that container vessels carried is more valuable than other cargos like
bulk cargo or crude oil, so container ships would like to sail at a high speed. Accord-

ing to the formulae R=C 1 V 2 and P=RV= C1 V 3 , we can find that the high speed of

container ships will results in a large increase of the ship’s engine power, therefore
the transport efficiency become lower than other kinds of ships.

Secondly, since container vessels went into the market from 1960s, which is much
later than bulkers and tankers. In 1970s this market was still in trial and shaping stage,
and this kind of ships did not find the optimal size, speed, power etc, so the transport
efficiency starts from a high position. After several years, the ship owners have accu-
mulated some experience and they begin to build some more utilized vessels, so the
transport efficiency dropped until to 1990s. In 2000s, the shipping market became
prosperous, since large trade business between the east and west, the south and north.
To carry more cargo and earn more money, ship owners prefer to increase their con-
tainer vessels’ power and speed exceeding the reasonable level, and definitely, the
transport efficiency decreased a little.

4 Conclusion

In a word, transport efficiency is always a very important issue for shipping industry
to take into considerations. The General tendency of the transport efficiency in the
past decades is improved but not in same level for different types of ship. The
transport efficiency of bulk carriers and oil tankers is better than that of container
ships and LNG vessels owing to the characteristics of the cargo. Anyway, the im-
provement of transport efficiency has close relationship with economical issues and
technical innovations. Although the transport efficiency is an important issue, the
market (or the law of supply and demand) is the decisive factor for marine transport.
Economical, political and environmental issues must be considered simultaneously in
shipping industry.

Acknowledgements. This paper is supported by “the Fundamental Research Funds
for the Central Universities ”(3132014032)&(017072) for Ph.D.

References

1. Curt, http://www.intertanko.com/pubupload/curt.pdf
2. Bob, C.: Marine Transportation of LNG (March 29, 2004) (retrieved August)

552 W. Zhang et al.

3. Nakazawa, T.: Impact of maritime Innovation and Technology. Unpublished lecture
handout. Dalian Maritime University, Dalian (2005)

4. Wu, Y.: The forever Enchantment of Mechanics and Contribution. Advances in Mechan-
ics 33(1), 41–55 (2003)

5. Ma, S.: Maritime Economics. Unpublished lecture handout. Dalian Maritime University,
Dalian (2005)

6. Zhu, R.: Ship-an Epitome of Science and Technology (2005),
http://www.tongji.edu.cn/~yangdy/ship/paper9.htm (retrieved August
14, 2005)

7. Liu, H.: Industry Technological and Economical Information of Ships. Development of
World LNG Carriers 5, 6 (2000)

8. Morita, K.: Study of Changes in Patterns of LNG Tanker Operation (2003), the World
Wide Web: tenth I, http://eneken.ieej.or.jp/en/data/pdf/225.pdf (re-
trieved August 13, 2005)

9. Lloyd’s Register.: The tenth Issue of Lloyd’s Register’s Marine-focused Technical Publi-
cation, Horizons (December 2004), the World Wide Web,
http://www.lr.org/image_library/Downloads/Marine/
horizons_04dec.pdf (retrieved August 12, 2005)

10. Pan, H.T., Fu, R.H.: Development of world large tankers and scale of China crude oil ter-
minals. Port & Waterway Engineering 375(4), 42–47 (2005),
http://www.sspa.se/shipdesign/lng.html

11. Liu, Y.: The Designing Parameter of large Container Ship. The Technology of Port Engi-
neering 1995(2), 42 (1995)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 553–559, 2014.
© Springer International Publishing Switzerland 2014

Image Compression Based on Time-Domain Lapped
Transform and Quadtree Partition

Xiuhua Ma, Jiwen Dong*, and Lei Wang

School of Information Science and Engineering, Shandong Provincial Key Laboratory
of Network based Intelligent Computing, University of Jinan, Jinan, 250022, China

maxiuhua.qd@163.com

Abstract. We proposed a new image compression system based on quadtree
partition and time-domain lapped transform (TDLT) as core transform technol-
ogy. The system obtained transformation region of different sizes through
quadtree partition. And it removed the correlation by utilizing pixel similarity in
image regions. The performance of discrete cosine transform (DCT) was im-
proved with the method of pre-filter and post-filter. Superior performance can be
achieved in most cases than the fixed block TDLT and DWT about the
rate-distortion and subjective visual quality.

Keywords: quadtree partition, DCT, time-domain lapped transform, image
compression.

1 Introduction

In two-dimensional image compression, image compression standard JPEG based on
DCT is used widely owing to its excellent properties. In order to eliminate the blocking
artifacts of compression algorithm based on DCT in the case of low bit rate, research-
ers designed a variety of filters. Among them, the lapped transform can achieve good
result. Usually, in image coding algorithm based on DCT [1], a complete image is first
divided into 8x8 pieces, then, DCT transform coefficients are obtained and we achieve
the ultimate purpose by quantizing DCT coefficients combined with other related
image compression technology. The common feature of such algorithm is that, re-
gardless of the specific content of the image, block size is fixed. Indeed, the main
purpose of DCT transform is to remove the correlation between pixels in the image
block, which depends on image regional feature and pixel distance. If the image con-
tent in a certain region is very similar, the pixels in this region will have strong corre-
lation; on the contrary, if the content of an image area is complicated, the correlation
between pixels is relatively weak. Meanwhile, the distance of the pixel will affect the
correlation. Typically, the strongest correlation appears around adjacent pixels. As
the distance increases, the similarity will be reduced main depending on the extent of
the characteristics of the area.

* Corresponding author.

554 X. Ma, J. Dong, and L. Wang

Thus it can be seen, the use of a fixed block size coding algorithm mainly considers
the influence of the pixel distance. If the texture of the region is not complicated, the
DCT coefficients can be still more concentrated, even if the block size is 16x16 or
larger.

To improve the algorithm with fixed image block, we proposed quadtree partition
transform by taking the characteristics of the image area into consideration to remove
the inter-pixel correlation. The basic idea of the algorithm is a kind of top-down re-
cursive quadtree partition segmentation according to the correlation of the original
image adjacent pixels, until the consistency of each region to meet the criteria. Each
region conducts time-domain lapped transform, then, the coefficients obtained by
TDLT are reconstructed in accordance with sub band structure like wavelet. Lastly, it
adopts embed bit-plane encoding method for encoding. Experimental results demon-
strate the effectiveness of the proposed algorithm.

2 Quadtree Partition

From the view of image features, there are some regions in the image where pixel
value is same or similar, which may lead to a lot of spatial redundancy exists. There-
fore, the use of block processing of the image is able to make pixel values meet certain
conditions and the adjacent pixels appear in the same sub-image block, so that the
image block may be handled as a whole.

Quadtree decomposition is an image segmentation method based on the uniformity
of detection [2], [3] and [4], and the image size is generally required to be N = 2n.

Quadtree decomposition is to meet the compatibility criterion of the image pixel
values for sub-block image. The basic process of image quadtree decomposition is as
follows. Firstly, the original image is divided into four regions of equal size, then each
region is judged whether it satisfy the compatibility criterion. If every region could
meet the criteria, image dividing will be end, otherwise, image segment will continue.
And each of the divided regions will be judged again until all of the divided regions are
met compatibility criterion. The result may contain blocks of different sizes.

Fig. 1(b) shows the processed result of image lena in accordance with the quad-tree
decomposition of a certain threshold.

(a) (b)

Fig. 1. (a) Original image (b) Result of quadtree decomposition

Image Compression Based on Time-Domain Lapped Transform and Quadtree Partition 555

3 Compatibility Criterion

Compatibility criterion is pixel classification standard, and different standards lead to
different quadtree segmentations and the compression performance. Through experi-
ments, the paper selected Roberts edge detection method as a criterion [5].

Roberts edge detection operator is the classic image edge detection and image
segmentation algorithm. Differential operators for image edge detection can be used as
the criteria of quadtree segmentation which can take full advantage of the pixel simi-
larities to achieve better segmentation aim.

For digital images, the first order difference of image is a kind of alternative re-
placeable means of partial derivatives. Roberts edge detection operator calculate the
approximate partial derivatives of image functions f (x, y) for x and y, as shown in (1)
and Table 1.

2]11[2]11[,y)f(x)f(x,y),yf(xf(x,y)g(x,y) +−++++−≈ (1)

Table 1. 3x3 Templet

)1,1(−− yxf)1,(−yxf)1,1(−+ yxf

),1(yxf −),(yxf),1(yxf +

)1,1(+− yxf)1,(+yxf)1,1(++ yxf

In practice, we calculate the image function (,)f x y by equation as shown in (2).

 |),1()1,(||)1,1(),(|),(),(yxfyxfyxfyxfyxRyxg +−++++−=≈ (2)

The quadtree decomposition result will vary from the segmentation threshold. Fig. 3
shows that when the segmentation threshold Q = 7, blocks of the decomposed signif-
icantly are more than Q = 10. However, there still exists several blocks, which ensures
partial redundancy may be eliminated.

 (a) (b)

Fig. 2. (a) Quadtree decomposition (Q = 10) (b) Quadtree decomposition (Q = 7)

556 X. Ma, J. Dong, and L. Wang

4 Time Domain Overlap Transformation Based on Quadtree
Partition

Recalling domestic image compression method, transform coding technique is cur-
rently the most widely used image compression methods on account of its high com-
pression ratio and easily implementation.

Due to its favorable decorrelation and energy concentration, Discrete Cosine
Transform (DCT) has a good application value in image compression. While the
two-dimensional image just get locally stationary rather than global stationary, so the
DCT is adapted to blocked images. What’s more, owing to block transform coding,
the blocking artifact often occurs at low bit rates. A variety of filters are designed to
remove the block effect based on DCT. The scheme with better performance is pro-
posed by Tran et al [6]. Their time-domain lapped transform algorithm, can effectively
eliminate the blocking effect, and can achieve the equivalent performance of
JPEG2000 lossy compression.

Overlapped transform can decrease the blocking effect by using overlapping filter in
the process of decomposition and reconstruction. Meanwhile, its low complexity
compared with the wavelet transform is one of the merits. This paper puts forward the
TDLT adapting to quadtree partition.

In short, TDLT consisting of pre-filter and post-filter act before and after the DCT
transform [7]. The role of the pre-filter is reduced the correlation between the adjacent
blocks to improve the correlation between pixels within the block. Post-filter is a
completely inverse transform of pre-filter. Its role is to improve the correlation between
the adjacent blocks, thereby eliminating blocking effect between adjacent blocks.

Pre-filter is equivalent to a smoothing unit, which is defined as the formula (3):

1

2

     
=      

     

I J I 0 I J
F

J -I 0 V J -I
 (3)

where I and J are identity matrix and reversal identity matrix, respectively. V is the free
control matrix. There are two types of V:

 /2 /2()II T IV
LOT M M=V J C C J

 (4)

 /2 /2()II T IV
LBT M S M=V J C D C J (5)

where /2
IV
MC and /2

II
MC stand for / 2M point type-II and type-IV DCT matrix, re-

spectively; { ,1,...,1}DS diag s= is a diagonal matrix where 2=s is a scaling

factor.
Compression algorithm steps:

1) The input image is divided into blocks according to the appropriate gradient de-
tection threshold, to get the block image smoothing after filter.

Image Compression Based on Time-Domain Lapped Transform and Quadtree Partition 557

2) We conduct DCT transform of different points for the smoothing block image to
obtain the transform coefficients, direct current (DC) coefficient and AC (AC) coeffi-
cients;
3) Massive distributional transform coefficients are reorganized as wavelet sub-band
structure, where DC coefficient interwoven in the low-frequency sub-band and AC
coefficients in the high-frequency ones;
4) SPECK coding [8];
5) The output of bit stream file.

(a) (b) (c)

(d) (e)

Fig. 3. Test images. (a) pentagon1024x1024. (b) lena512x512. (c) cafe2048x2048. (d)
bike2048x2048. (e) woman2048x2048.

5 Results and Analysis

To verify the performance of the algorithm, we tested the images shown in Fig.4
compared with fixed block DCT and DWT. JPEG2000 standard is conducted on Ka-
kadu V6.0 with 9/7FDWT. Experimental images include multiple target characters,
scenes, still life, etc. [9]. There are both image with complex texture and single char-
acter image. Image size cover three different sizes 512x512, 1024x1024, 2048x2048.
Bit per Pixel (BPP) and Peak Signal to Noise Ratio (PSNR) are selected as measure of
compression performance.

The compression properties of proposed algorithm are contrasted with the results of
fixed block DCT and DWT, and the outcome is shown in Table2:

9/7FDWT adopted by JPEG2000 and algorithm used fixed block DCT belong to
floating point type transformation. However, different point affects DCT algorithm’s
performance in ours algorithm. Experimental data show that in most cases the pro-
posed algorithm outperforms fixed block DCT and DWT performance and fairly, at

558 X. Ma, J. Dong, and L. Wang

low bit rates, even better than DWT. In particular, advantages is obvious when comes
to the image woman_2048X2048 with single target. Of course, 9/7 FDWT is superior
than proposed algorithm in individual cases. However, because the performance of
algorithm used quadtree segmentation algorithm is related to the taken threshold
which is difficult to determine, the proposed algorithm will be better than 9/7 FDWT
once the optimal threshold is fond. There is every reason to believe the optimal per-
formance of the algorithm will be better than the test measured.

Table 2. Compression performance comparison

bpp
9/7FDWT+
SPECK

Fixed block
DCT

+SPECK
Ours

 lena

1 40.18385 39.7646 40.13016

0.75 38.72594 38.18862 38.75845
0.5 36.88482 36.21085 37.02296

0.25 33.50219 32.6725 33.84382

pentagon1024x1024

1 34.01062 33.61861 33.8103

0.75 32.76068 32.18192 32.49976
0.5 30.98082 30.52891 30.9243

0.25 28.51326 28.17598 28.71929

cafe_2048X2048

1 30.38291 29.89533 30.20505

0.75 28.08072 27.52518 28.03781
0.5 25.31767 24.96934 25.42456

0.25 21.91303 21.66586 22.16425

woman_2048X2048

1 37.90846 37.90242 38.30017

0.75 35.72063 35.76577 36.15495
0.5 32.95311 32.98756 33.47795

0.25 29.14338 29.37586 29.7957

bike_2048x2048

1 38.11787 38.05349 38.2547

0.75 36.08386 36.01494 36.21811
0.5 33.09741 33.13494 33.5181

0.25 28.3971 28.70597 29.22445

Image Compression Based on Time-Domain Lapped Transform and Quadtree Partition 559

6 Conclusion

We designed a new image compression system at the core of TDLT techniques based
on quadtree partition. The results suggest that our system’s compression performance is
equal to or even better than fixed block DCT and DWT. In addition, the proposed
algorithm has less memory requirements and lower complexity of hard-
ware implementation compared with DWT [10].

On the downside, tests are only carried out on the image that its size is N = 2n at the
present stage [11]. In the meanwhile, there will be more practical significance about
experiment and research on the image of any size and superior partition standard.

References

1. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. on Comput-
ers 23, 90 (1974)

2. Ghadah, A.K.: Image Compression based on Quadtree and Polynomial. International
Journal of Computer Applications 76(3), 31–37 (2013)

3. Chung, K.L., Huang, H.L., Lu, H.I.: Efficient region segmentation on compression gray
images using quadtree and shading representation. Pattern Recongnition 37, 1591–1605
(2004)

4. Neve, W.D., Deursen, D.V., Lancker, W.V., Ro, Y.M., Walle, R.V.: Improved BSDL-based
content adaptation for JPEG2000 and HD Photo (JPEG XR). Signal Processing: Image
Communication 24, 452–467 (2009)

5. Pennebaker, W.B., Mitcell, J.L.: JPEG: Still Standard. Van Nostrand Reinhold, New York
(1993)

6. Tran, T.D., Liang, J., Tu, C.: Lapped transform via time-domain pre-andpost-processing.
IEEE Trans. Signal Process 51(6), 1557–1571 (2003)

7. Wang, L., Wu, J.J., Jiao, L.C., Shi, G.M.: Lossy-to-Lossless Hyperspectral Image Com-
pression Based on Multiplierless Reversible Integer TDLT/KLT. IEEE Geoscience and
Remote Sensing Letters 6(3) (2009)

8. Pearlman, W.A., Islam, A., Nagaraj, N., Said, A.: Efficient, Low-ComplexiImage Coding
with a Set-Partitioning Embedded Block Coder. IEEE Tran. Circuits and Systems for Video
Technology 14, 1219–1235 (2004)

9. http://www.kakadusoftware.com/
10. Antonini, M., Barlaud, M., Mathieu, P., Daubechies, I.: Image coding using wavelet trans-

form. IEEE Transactions on Image Processing 1(2), 205–220 (1992)
11. Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the High Efficiency Video

Coding (HEVC) Standard. IEEE Trans. on Circuits and System for Video Technology
(2012)

The Applicability and Security Analysis

of IPv6 Tunnel Transition Mechanisms

Wei Mi�

Computer Network Information Center, Chinese Academy of Sciences,
Beijing, China

miwei@cstnet.cn

Abstract. Due to the exhaustion of IPv4 address resources, the transi-
tion from IPv4 to IPv6 is inevitable and fairly urgent. Numerous transi-
tion mechanisms have been proposed, especially the tunnel scheme which
is the focus of research efforts in IETF and academia recently. However,
because of the diverse characteristics and transition requirements of prac-
tical networks and the lack of applicability analysis, the selection and
deployment of transition mechanisms are facing with grand challenges.
Targeting at those challenges, this paper investigates the basic issues and
key elements of IPv6 tunnel transition mechanisms, and presents its first
applicability index system. In particular, we analyze the applicability of
existing proposed tunnel techniques based on the presented index sys-
tem, which has significant guidance in the practical deployment of IPv6
transition. Moreover, as the key factors in realistic working environment,
the analysis for the security issues of tunnel transition scheme, which was
seldom taken into account before, is provided in this study.

Keywords: IPv6 transition, tunnel mechanisms, applicability, index
system, security.

1 Introduction

With the rapid growth of Internet scale, the exhaustion of IPv4 addresses is a
significant problem. IPv6 was designed to be an evolutionary step from IPv4,
overcoming the problems of IPv4 and promoting the development of Next Gen-
eration Internet. Due to the incompatibility in nature, IPv6 transition will face
many technical challenges, such as heterogeneous addressing, different semantic,
routing isolation, huge size and the transparent to users and to applications.
IPv6 transition is a world recognized significant technology problem in the de-
velopment of Next Generation Internet.

� Supported by the National Key Technology Research and Development Program of
the Ministry of Science and Technology of China under Grant No.2012BAH01B00;
the National Program on Key Basic Research Project of China (973 Program) under
Grant No. 2012CB315800; the Strategic Priority Research Program of the Chinese
Academy of Sciences under grant No. XDA06010306.

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 560–570, 2014.
c© Springer International Publishing Switzerland 2014

The Applicability and Security Analysis of IPv6 Tunnel Transition 561

Numerous transition mechanisms have been proposed to solve challenging is-
sues of IPv6 transition, which can be divided into dual-stack, translation, and
tunnel mechanisms. During the process of IPv6 transition, no matter which net-
work protocol is used, it must support both IPv4 services and IPv6 services, and
ensure the transparence to the upper layer applications. Dual-stack mechanisms
can support both IPv4 and IPv6, but they bring the high cost on both the hard-
ware upgrading and network operation/management. Translation can be used to
achieve direct communication between IPv4 and IPv6, but their algorithms are
complicated and destroy the end-to-end features. The Behave Working Group of
IETF was focusing on developing and standardizing the translation mechanisms,
and ended in October 2013. Compared with dual-stack and translation, tunnel
mechanisms possess the merits of expansibility, flexibility and simplified achieve-
ment. With the scenarios and requirement of IPv6 transition becoming clearer
gradually, the transition technologies are focusing on the tunneling technologies,
the IPv6 transition mechanisms research of IETF is focusing on developing and
standardizing the tunnel mechanisms in the Softwire Working Group, which
has received extensive support from many network operators and equipment
markers.

In practical deployment, it is important to find feasible transition mechanisms
and make appropriate plan to cover all potential communication scenarios. How-
ever, it brings great challenges to the research community of IPv6 transitions.
With the diverse characteristics and transition requirements of practical net-
works and the lack of overall transition architecture, the selection and deploy-
ment of IPv6 transition mechanisms are very difficult. Thus, there is a strong
need to take the research on the applicability of transition mechanisms. How-
ever, the applicability criterion and applicability analysis are lack in the current
literature review.

In an effort to push forward the IPv6 transition process, this paper deeply
analyzes the basic issues and key elements of IPv6 tunnel transition mechanisms,
and presents the first applicability index system and analyze the applicability
of existing tunneling techniques. In addition, the security has long been thought
to be a key factor impacting the practical deployment, but it was seldom taken
into account during the IPv6 translation. Thus, in this paper, the security anal-
ysis of tunnel mechanisms is emphatically provided. All of these have guiding
significantly in the IPv6 transition process.

The rest of this paper is organized as follows. Section 2 presents the related
work. The applicability index system and the applicability analysis of main-
stream IPv6 tunnel mechanisms are shown in Section 3 and 4. Section 5 gives
the Security analysis of tunnel mechanisms. Finally, Section 6 concludes this
study.

2 Related Work

Numerous studies on the evaluation of IPv6 transition mechanisms have been
reported in the current literature. Shin et al.[1] showed the impact of IPv6 transi-
tion mechanisms on user applications. Law et al. in[2] focused on the performance

562 W. Mi

of dual-stack technologies in terms of various network metrics including net-
work connectivity, hop-count, RTT, throughput, operating systems dependencies
and the address configuration latency. The authors in[3, 4] provided the evalu-
ation of tunnel mechanisms with the key performance-related metrics including
throughput, delay, jitter, and the CPU usage of transition nodes. AlJa’afreh,
Mellor, Awan[5] gave the comparison between the tunneling process and map-
ping schemes for IPv4/IPv6 transition using end-to-end delay and throughput as
the key performance metrics. Guerin and Hosanagar[6] adopted a simple model
to illustrate how the connectivity quality affects both IPv6 adoption and the vol-
ume of translation traffic, and summarize their implications for IPv6 adoption.
The authors in[7] evaluated the dual-stack protocol and tunneling transition
based on the metrics of throughput and round-trip delay. Several studies[8–11]
presented the comparisons of translation mechanisms with the aspects of opera-
tion complexity and scalability, real-time communications, field device, multicast
address, and application-layer protocol. The authors in[8] proposed the evalu-
ation of the transition mechanisms including the estimation on the scalability,
heterogeneous addressing and application-layer translation, hardware cost, per-
formance and capacity of the equipment, security, end-to-end property, and the
influence for developing applications.

Compared with existing studies, in[12], we also provided unified assessment
criterion in terms of functionality, applications, performance, development and
security to evaluate the mainstream transition mechanisms. The unified evalua-
tion criterion is shown in table 1.

Table 1. The evaluation criterion of IPv6 transition mechanisms

3 The Applicability Index System

3.1 Basic Problems

Using encapsulation mechanism, tunneling is actually a generic technology. IPv6
tunnel transition mechanisms can achieve communications between IPv6 net-
works/hosts across an IPv4 network (IPv6-over-IPv4), and communications be-
tween IPv4 networks/hosts across an IPv6 network (IPv4-over-IPv6). Its basic
operations include encapsulation/de-encapsulation and route discovery between
tunnel endpoints. Tunneling operation only affect the network layer.

The Applicability and Security Analysis of IPv6 Tunnel Transition 563

(1) The basic data operation
Encapsulation/de-encapsulation is the basic data plane operation. For IPv6

transition usage, the encapsulation manners such as IP-IP, GRE (Generic Rout-
ing Encapsulation) L2TP (Layer Two Tunneling Protocol), MPLS (Multiple pro-
tocol Label Switching), IPsec (Internet Protocol Security) can all be adopted.
For a wide selection, network operator can make the decision to select suitable
transition mechanism.

(2) The basic control operation
The basic control plane operations include the routing interaction across het-

erogeneous network, the route discovery between tunnel endpoints, and the en-
capsulation address mapping by a particular address scheme or address/prefix
binding.

(3) The tunnel model
According to the structure of network, the models of IPv6 tunnel transition

mechanisms are divided into Hub and Spokes and Mesh[13]. The primary dif-
ference between them lies in the number of connections and associated routing
between the tunnel ingress endpoint and egress endpoint. Hub and Spokes is
composed mainly of multiple tunnel ingress endpoints and a single tunnel egress
point. And in Mesh model, there are multiple tunnel endpoints.

3.2 Key Elements

(1) Transition equipment
In tunneling technologies, the tunnel endpoints are the transition equipments.

They need to support dual-stack which can be an AFBR (Address Family
Border Router) or host equipments. They should support encapsulation/de-
encapsulation and routing forward across heterogeneous network and the route
discovery between tunnel endpoints. They also maintain the encapsulation ad-
dress mapping by a particular address scheme or address/prefix binding. Thus,
the tunnel transition equipment has requirements in the use of bandwidth, com-
puting and finding, storage.

(2) Encapsulation/de-encapsulation
Encapsulation makes the IPv4/IPv6 packet as a payload of the other IP pro-

tocol. It retains the integrity of IP packet information. But it adds the size of
packet and may create the fragment reassembly problem.

(3) The routing across heterogeneous networks
Tunnel mechanisms need to support the routing forward across heterogeneous

networks. And the border routers should maintain the binding and realizes the
transparent data transmission. Thus, tunneling is stateless and lightweight.

(4) The routing discovery between tunnel endpoints
In tunnel mechanisms, the tunnel endpoints need to discover each other. And

it involves some problems, such as the selection and dynamic or static configu-
ration of tunnel endpoint, state maintenance.

564 W. Mi

3.3 Applicability Index System

Based on the analysis of basic problems and key elements, we built the first
applicability index system in terms of sustainable, applications, performance
and development to evaluate the mainstream tunnel transition mechanisms. The
applicability index system is shown in table 2.

Table 2. The applicability index system of IPv6 tunnel transition mechanisms

4 The Applicability Analysis

In the early stages of transition from IPv4 to IPv6, IPv4 network has been in the
overwhelming dominance. For the operators, supporting IPv6 in the present IPv4
network infrastructure is more attractive than building the IPv6 infrastructure
directly. IPv6-over-IPv4 tunnel mechanisms emerged as required.

With the IPv6 development, IPv4 Internet has been gradually replaced. For
the low cost, network operators tend to build IPv6 network rather than dual-
stack network. In order to ensure the compatibility of legacy IPv4 application,
IPv4-over-IPv6 tunnel scheme is provided.

According to the different transition stages, this paper will analyze the appli-
cability of IPv6-over-IPv4 tunnel mechanisms in the early stage and IPv4-over-
IPv6 tunnel mechanisms in the middle- to-late-stage.

The Applicability and Security Analysis of IPv6 Tunnel Transition 565

4.1 The Applicability Analysis of IPv6-over-IPv4 Tunnel
Mechanisms

IETF has developed and standardized many IPv4-over-IPv6 tunnel transition
mechanisms, such as 6to4[14], 6rd[15], 6over4[16], ISATAP[17], Teredo[18] and
6PE[19]. In this section, we will analyze the applicability of these mechanisms,
which is summarized in table 3.

Table 3. The applicability analysis of IPv4-over-IPv6 tunnel mechanisms

In 6to4, IPv4 address embedded in IPv6 makes a high coupling degree, which
against the network address plan and the deployment of IPv6. The use of a fixed
IPv6 prefix and broadcast brings a routing scalability problem. Thus, 6to4 apply
to the early-stage of IPv6 transition and will not be a continuable IPv6-over-IPv4
mesh solution.

In 6rd, the use of the network specific IPv6 prefix makes a higher routing
scalability. No impact on the IPv4 network and end users layer leads a low
deployment cost. Because of its statelessness and simplicity, 6rd apply to the
early-stage of IPv6 transition by providing a rapid end site IPv6 deployment in
the IPv4 environment. 6rd plays an active role in IPv6 adoption.

The idea of 6over4 is using IPv4 multicast to build the tunneling between
IPv6-capable hosts. Therefore, the host and the network infrastructure have to
fully support IPv4 multicast, which makes the control plane and data plane are

566 W. Mi

quite complexity. Due to the limited multicast support in todays network, 6over4
does not seem to have much application prospect. ISATAP uses non-multicast
router discovery. It is more used in the current deployment. However, both 6over4
and ISATAP can not traverse NAT. The host has to own public IPv4 address
when the tunneling endpoint uses public IPv4 address. It failed to ease the IPv4
addresses consumption, and can’t promote IPv6 adoption.

Teredo uses IPv6-in-UDP encapsulation. And the encapsulated packets can
traverse NAT, which increase the reuse rate of IPv4 addresses resource. Teredo
is so far the only IPv6-over-IPv4 solution that survives IPv4 NAT well. But the
end-to-end transparency cant ensure. In addition, the control plane functions for
traversing NAT brings too much complexity. Therefore, it has less deployment
than 6to4 and ISATAP.

6PE can solve the problem of IPv6 networks traversing IPv4 MPLS transit. It
needs to upgrade a small amount of equipments. So the cost is small. 6PE uses
MP-BGP and IPv6-in-MPLS tunnel for forwarding, which increases the reuse
rate of IPv4 network infrastructure and reduces the transition cost. However,
6PE is only applicable to IPv4 MPLS backbone.

4.2 The Applicability Analysis of IPv4-over-IPv6 Tunnel
Mechanisms

At present, IETF has been developing and standardizing IPv4-over-IPv6 tun-
nel transition mechanisms. The mainstream mechanisms include Mesh-based
4over6[20] and Hub and Spokes-based DS-Lite[21], Public 4over6[22], Lightweight
4over6[23] and MAP-E[24]. The applicability analysis of these mechanisms is
provided and summarized in table 4.

By extending the MP-BGP protocol, Mesh-based 4over6 mechanism discover
the routes between tunnel endpoints. These routes turn into the address bindings
between E-IP prefixes and I-IP AFBR addresses on the recipient AFBR, which
is per-prefix stateful. So, the size of the binding table will be no larger. And the
cost of the binding lookup during encapsulation is acceptable. The encapsulation
only involves the outermost layer of IPv4 packets head, which makes 4over6 can
be used in NAT scenario. Because of the smaller modify of network, simpler
configuration of equipments, higher Sustainable, low cost of maintenance and
stronger robustness, 4over6 mechanism has good performance and scalability.

DS-Lite takes the CGN(Carrier-Grade NAT) manner and stateful encapsula-
tion. It only needs to update the CPE equipment (Address Family Transition
Router, AFTR). So, the cost of modify is small. But AFTR is required to func-
tion as a CGN and perform unified IPv4 private-public translation. The gain is
a high multiplexing rate of the address resource. But it also destroys the end-
to-end feature which makes the un-support of IPv4 business application, and
increases the load of AFTR which affect the performance.

Compared with DS-Lite, Public 4over6 unload CGN from BR, and transfer
NAT into CE. The state table of BR is per-user stateful, and the performance
would be much better. However, DS-Lite can only assign the full public IPv4
addresses to users. Thus, it does not support the reuse of IPv4 addresses and

The Applicability and Security Analysis of IPv6 Tunnel Transition 567

Table 4. The applicability analysis of IPv6-over-IPv4 tunnel mechanisms

resolve the shortage of IPv4 addresses. By using port-set provision, Lightweight
4over6 extends Public 4over6 to serve the case of address sharing. The amount
of port for each user is limited, and the multiplexing rate will not be as high as
that in DS-Lite, but 4over6 does not have the ALG issue.

MAP-E takes port-set provision and stateless encapsulation. Compared to
DS-Lite and 4over6, MAP-E achieves the great benefit of statelessness, such as
better communication efficiency and stability. However, since the higher coupling
degree of IPv4 and IPv6 address, the deployment has to be entire-network style
rather than on demand style, otherwise some of the coupled IPv4 addresses will
be wasted.

5 The Security Analysis

5.1 The Security Analysis of Encapsulation/De-encapsulation

In the tunnel transition mechanism, encapsulated data packets may be needed to
some security protection, such as authentication, integrity assurance, encryption
or recovery. However, the security requirement of data packet has no relationship
with tunnel mechanisms. Therefore, the security of tunnel is the overhead of
packet not the payload. And the security consideration of packet overhead mainly
reflected in the security of tunnel endpoints.

568 W. Mi

5.2 The Security Analysis of Transition Equipments

Generally, attacks on equipment mainly have two kinds: attacks on data trans-
mission and routing. And the security of routing relies on the routing infor-
mation exchange protocol used between tunnel endpoints. Therefore, the secu-
rity of tunnel transition equipments is mainly focus on data encapsulation. The
main attacks include spoofing attack, fake as an endpoint and man-in-the-middle
attack.

For example, the IPv6-over-IPv4 tunneling endpoint equipments open a hole
for spoofing attack on IPv6 from IPv4, which exists in most tunnel mechanisms.
In 6over4, attackers from IPv4 may fake as a 6over4 endpoint. Similarly, a mali-
cious IPv4 host can pretend to be part of the ISATAP link and launch attacks.
It also introduces various failure modes and several security risks including man
in the-middle attacks at the tunnel equipments.

5.3 The Security Analysis of Routing Or Discovery

The security risk of routing and discovery is mainly from the tunnel model
and route discovery mechanism. In Mesh model, the edge routers function as
tunnel endpoint and using MP-BGP protocol. Since iBGP has mature security
solutions, the control plane of this mechanism is secure. In Hub and Spokes
model, due to the tunnel endpoint in the user side is probably the user terminal
or CPE, DoS attack and packet amplification attack may be happened.

In 6over4, the main security risk is the attack on the ND protocol. Attackers
from IPv4 may inject unicast ND messages to break the ND process. In 6rd,
packet amplification attack may arise, which generates traffic of endless loop
inside a 6RD domain. The solution is ingress filtering based on the 6RD address
scheme. In DS-Lite, the main security issue is DoS attack on CGN. In 4over6, the
main security issue is man-in-the-middle attack on DHCP. As a result, ingress
filtering and DHCP security solutions should be applied. In MAP-E, Traffic hi-
jacking could happen by man-in-the-middle attack on DHCPv6 which provisions
the rules. DHCP Security solution should be deployed.

6 Conclusion

For the consideration of deployment scenarios and address format, numerous
tunnel transition mechanisms have been proposed in the past ten years. However,
due to a wide range of mechanisms and a lot of overlap and similar functions,
no one tunnel mechanism can be used in all transition scenarios. This paper has
provided the first applicability index system, and highlighted the applicability
and security of all tunnel transition mechanisms to help the operators decide on
the development scheme for their IPv6 transition.

We can observe from the applicability and security analysis that Mesh-based
4over6, 6RD, DS-Lite, Lightweight 4over6 and MAP-E are able to cover most
cases of the heterogeneous traversing problem and together fulfill different de-
mands under the heterogeneous traversing scenarios in the backbone and access
networks.

The Applicability and Security Analysis of IPv6 Tunnel Transition 569

References

1. AlJa’afreh, R., Mellor, J., Awan, I.: A Comparison between the Tunneling process
and Mapping schemes for IPv4/IPv6 Transition. In: International Conference on
WAINA 2009, pp. 601–606. IEEE Press, Bradford (2009)

2. Law, Y.N., Lai, M.C., Tan, W.L., Lau, W.C.: Empirical Performance of IPv6 vs.
IPv4 under a Dual-Stack Environment. In: IEEE International Conference on ICC
2008, pp. 5924–5929. IEEE Press, Beijing (2008)

3. Aazam, M., Syed, A.M., Khan, I., Alam, M.: Evaluation of 6to4 and ISATAP on a
Test LAN. In: IEEE Symposium on ISCI, pp. 46–50. IEEE Press, Kuala Lumpur
(2011)

4. Gilligan, R., Nordmark, E.: Transition Mechanisms for IPv6 Hosts and Routers.
IETF RFC 1933 (1996)

5. Guerin, R., Hosanagar, K.: Fostering IPv6 Migration Through Network Quality
Differentials. ACM SIGCOMM Computer Communication Review 40(3), 17–25
(2010)

6. Wu, Y., Zhou, X.: Research on the IPv6 Performance Analysis Based on Dual-
Protocol Stack and Tunnel Transition. In: 6th International Conference on ICCSE,
pp. 1091–1093. IEEE Press, Singapore (2011)

7. Jayanthi, J.G., Rabara, S.A.: Transition and Mobility Management in the Inte-
grated IPv4 and IPv6 Network-a systematic review. In: International Conference
on ICEIE, vol. 1, pp. 15–162. IEEE, Kyoto (2010)

8. Wu, P., Cui, Y., Wu, J.P., Liu, J., Metz, C.: Transition from IPv4 to IPv6: A
State-of-the-Art Survey. IEEE Communications Surveys and Tutorials 99, 1–18
(2012)

9. Wu, P., Cui, Y., Xu, M., Wu, J., Li, X., Metz, C., Wang, S.: PET: Prefixing,
Encapsulation and Translation for IPv4-IPv6 Coexistence. In: GLOBECOM 2010,
pp. 1–5. IEEE Press, Miami (2010)

10. Miyata, H., Endo, M.: Design and Evaluation of IPv4/IPv6 Translator for IP Based
Industrial Network Protocol. In: 8th IEEE International Conference on INDIN,
pp. 142–147. IEEE Press, Osaka (2010)

11. Govil, J., Kaur, N., Kaur, H.: An examination of IPv4 and IPv6 networks: Con-
straints and various transition mechanisms. In: IEEE Southeastcon, pp. 178–185.
IEEE Press, Huntsville (2008)

12. Ge, J.G., Mi, W., Wu, Y.L.: The IPv6 Transition Mechanisms: Survey, Evaluation
Criteria and Deployment Considerations. Journal of Software 4, 896–912 (2014)
(in Chinese)

13. Li, X., Dawkins, R., Ward, D., et al.: Softwire Problem Statement. IETF RFC
4925 (2007)

14. Carpenter, B., Moore, K.: Connection of IPv6 Domains via IPv4 Clouds. IETF
RFC 3056 (2001)

15. Despres, R.: IPv6 Rapid Deployment on IPv4 Infrastructures (6rd). IETF RFC
5569 (2010)

16. Carpenter, B., Jung, C.: Transmission of IPv6 over IPv4 Domains without Explicit
Tunnels. IETF RFC 2529 (1999)

17. Templin, F., Gleeson, T., Thaler, D.: Intra-Site Automatic Tunnel Addressing Pro-
tocol (ISATAP). IETF RFC 5214 (2008)

18. Huitema, C.: Teredo: Tunneling IPv6 over UDP through Network Address Trans-
lations (NATs). IETF RFC 4380 (2006)

570 W. Mi

19. De Clercq, J., Ooms, D., Carugi, M.: BGP-MPLS IP Virtual Private Network
(VPN) Extension for IPv6 VPN. IETF RFC 4659 (2006)

20. Wu, J., Cui, Y., Metz, C.: 4over6 transit solution using IP encapsulation and
MP-BGP Extensions. IETF RFC 5747 (2010)

21. Durand, A., Droms, R., Woodyatt, J.: Dual-Stack Lite Broadband Deployments
Following IPv4 Exhaustion. IETF RFC 6333 (2011)

22. Cui, Y., Wu, J., Wu, P., Metz, C., et al.: Public IPv4 over Access IPv6 Network.
IETF RFC 7040 (2013)

23. Cui, Y., Wu, J., Wu, P., et al.: Lightweight 4over6 in access network. IETF draft
(2013)

24. Troan, O., Dec, W., Li, X., et al.: Mapping of Address and Port with Encapsulation
(MAP). IETF draft (2013)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 571–580, 2014.
© Springer International Publishing Switzerland 2014

QOS Performance Analysis for Flexible Workflow
Supporting Exception Handling

Xiaoyan Zhu1, Jingle Zhang2, and Bo Wang3

1 Software College of Henan University, Kaifeng 475001, China
sfzyan@henu.edu.cn

2 School of Information Engineering, University of Science and Technology of Beijing,
Beijing 100083, China
Zhangle80@126.com

3 School of Mathematics and Information Science of Henan University, Kaifeng 457001, China
wangbo@henu.edu.cn

Abstract. The flexible workflow technology is important to workflow
management, and Qos performance of network system has become more and
more important. One factor that has impacts on flexible workflow performance
is exception, which in turn has negative effects on Qos performance of network.
Based on the Stochastic Petri Net and the comparison between the old e-
commerce systems and the new one, we propose a flexible workflow model in
this paper which supports exception handling, and the corresponding Qos
performance analysis method. Moreover, we analyze the flexible system's
reliability performance parameters. The test results indicate that the method
supporting exception is effective.

Keywords: Qos, Flexible Workflow, SPN, Exception process.

1 Introduction

Network Quality of Service (QoS) guarantee is the basic requirement of network and
how to provide QoS on the qualitative and quantitative evaluation studies is of great
significance[1]. With the maturity and development of Workflow Management
research, workflow technology in the manufacturing sector has been widely applied in
many fields, which allows companies to achieve business process integration,
business process automation and business process management. In response to the
development process in many new emerging needs, current workflow technology is
experiencing changes from rigid to flexible, and the flexible workflow is
characterized by responding to the largest business process that can not be pre-
determined by semi-structured and unstructured business processes, for instance, a
task change and processes exception. In this premise, it has become one of the main
issues of concern whether flexible workflow system can complete the assigned task in
a correct, safe, efficient manner, or whether the system can provide reliable services.
Based on the analysis of the characteristics of flexible workflow, this paper presents
the Flexible Workflow quality of service analysis supporting exception handling and

572 X. Zhu, J. Zhang, and B. Wang

presents an ELMS (E-Business Logistics Management System) logistics distribution
network system modeling and performance analysis on reliability, availability.

Stochastic Petri net, as a result of a more ideal system modeling and performance
analysis tool in many areas, has been widely used[2], therefore, this paper will focus
on the modeling and performance analysis with stochastic Petri net.

2 Performance Evaluation of QoS

With the development of networks, Web Qos is getting higher and higher quality
requirements, so, evaluating the performance of quality of services provided by a
network system itself seems even more important. In addition to the quality of service
network system performance evaluation done in general, capabilities of providing
consecutive services and resuming the services in specified time should be analyzed
when the system is suffered from external attack, or misoperation, environmental
impact, as well as hardware failure and software bug. This paper will evaluate the
quality of service with reliability, maintainability and availability.

Reliability: the continuity of service provided by system, it can be measured by
R(t), which means the probability of the normal service in the time interval of
[0,t],supposing the system works at the point of 0[3].

Maintainability: a system′s capability to adjust, repair, and to tolerate faults which
means the probability of resuming in the time interval t after the failure of system.

Availability: the capability of offering right services by system, it is proposed for
the repairable system, is a general description of reliability and maintainability[4].

3 Flexible Workflow Exception Handling

Some existed work[5] believes that the business workflow and its implementation
process are not static mainly from internal and external causes. External cause means
environmental change in commercial, legal, science and technology. Internal cause
means the demand which comes from workflow process itself and unforeseen
circumstances of process. Both internal and external factors may cause the deviation
of the process execution from the original process definition[6], often referred to as
the workflow changes or exception. The ability to deal with change and exception
flexibly and dynamically is embodied in the flexible workflow system. This paper
focuses on the flexible workflow exception handling.

3.1 Flexible Workflow System Supporting Exception Handling

Exception is the main reason that causes the complexity and limitations of industrial
process automation. According to its impact on the scope and the degree of workflow
system and whether it can be predicted and so on, exception can be divided into the
following types.

The scope of influence: the individual level, group level and organization [7].

 QOS Performance Analysis for Flexible Workflow Supporting Exception Handling 573

The degree of impact: noise, idiosyncratic exceptions and evolutionary exceptions
[7].

Whether it can be expected: expected and unexpected[8]. In accordance with the
incident arising from the exception, [9] divides the expected exception into
exceptional workflow, exceptional data, exceptional timing and external exception.

Excluding the above types, there are other classifications in accordance with the
methods, such as: the abstraction levels affected by exception.

3.2 Handling Approach

For exception, [8] thinks the handling of exceptions can be divided into three stages:
Detection, Diagnosis and Resolution. Detection is responsible for identifying the
trigger conditions which cause exceptional events. Addional, accordance with the
trigger conditions, diagnosis process decides some exception handler. Finally,
resolution design appropriate processes to implement the exception handler.

4 Exception Handling Flexible Workflow Modeling

In the development process of Web Qos, various analytical techniques and modeling
tools are presented in order to improve the quality of service performance, and some
mathematical models are established by these tools, which can reflect the system′s
behavior and nature. Among them, the Stochastic Petri Net has a strong dynamic
analysis capabilities of system′s concurrency, asynchronism and uncertainty. At the
same time, it has advantage of less modeling original language, being in line with
intuitive graphical representation. It can describe the system state, also represent the
system behavior. Therefore, Petri Net can be applied to evaluate the network Qos.
Petri Net can be used to reflect the dynamic nature and service behavior, and can be
applied to system modeling and qualitative evaluation of network Qos.

As a powerful tool to analyze discrete event dynamic system, Stochastic Petri Net
(SPN) is widely used in computer networks[9], resource-sharing systems, as well as
parallel and concurrent computing [10] and other fields (Please refer to the relevant
literature in detail[11]).

Definition 1. Stochastic Petri Net can be described as a four-tuple SPN = (P, T, F, λ),
of which:

P=(p1, p2, ..., pm), is a finite place set;
T = (t1, t2, ..., tm), is a finite transition set;
(P ∩ T ≠ Φ), (P ∪ T ≠ Φ); F (P × T) ∪ (T × P), is an arc set;
λ = (λ1, λ2, ..., λn), is a set of transition average firing rate.

574 X. Zhu, J. Zhang, and B. Wang

4.1 Flexible Workflow Model for Exception Handling

As for flexible workflow system supporting exception handling, the basic process
includes exceptional Edit, exceptional Diagnosis, exceptional Resolution. The model
structure is as follows:

prepair

tdiagonse
pedit

presolution

tedit

tresolution

pedit-ok

presolution-ok

tre-back

pformer

Fig. 1. Exception handling model

In the above figure, symbols are defined as follows:
tedit: the operation of editing and preservation of exception. The operation is to

preserve system′s exception to analyze easily. When the system experiences the same
exception, similar process can be done again.

tdiagnosis : the operation of diagnosing exception and analyzing the exceptional
causes and the treatment methods.

tresolution: the exceptional processing operation accordingly.
tre-back: the operation of process back to the state before the exception handling.
After simplifying the Exception Handling model above, the simplified model is

found:

Fig. 2. Simplified exception handling model

According to the existed works, above graph can also be used in simplifying
parallel structure model. In this case, using trepair to replace parallel part of original
model, the simplified exception handling model is found.

4.1.1 Exception Handling Model of Simple Structure
When exceptions appear in the serial structure, and when there is only one
exceptional component, the structure is:

Fig. 3. Exception handling model of Simple structure

 QOS Performance Analysis for Flexible Workflow Supporting Exception Handling 575

In the above graph, pkey is on behalf of components in which exception may occur.
When exception occurs in system, that is, when texception is triggered with certain
probability, pkey will be transferred to exception handling prepair.

4.1.2 Exception Handling Model of Series Structure
When the exception appears in two or more exceptional components, and only when
these exceptional components passed the only repairing parts successfully, the system
can restore normal exception handling model.

Fig. 4. Exception handling model of series structure

In the above graph, pkey-1，pkey-n are all palaces in which exception may occurs.
When the system is exceptional ,that is,texception-1, texception-n trigger with certain
probability, pkey-1， pkey-n will be transferred to exception handling prepair.

4.1.3 Exception Handling Model of Parallel Structure
When the exception appears in two or more exceptional components ,and each
exceptional part has its own repairing part, the system can restore normal exception
handling model after all exceptional parts repairing successfully.

...

Fig. 5. Exception handling model of parallel structure

576 X. Zhu, J. Zhang, and B. Wang

In the above graph, pkey-1 and pkey-n are all palaces in which exception may occur.
When the system is exceptional, that is, texception-1 and texception-n trigger with certain
probability, pkey-1 and pkey-n will be transferred to respective part of exception
handling prepair-1 and prepair-n.

5 An Example

ELMS (E-Business Logistics Management System) is a new type of e-commerce
model. This model makes the logistics system between suppliers and stores no longer
establish a direct connection, but achieve a variety need of logistics and distribution
system through the network services provided by ELMS. In this new model, ELMS
provides a service platform, which provides information flow, capital flow, logistics
and other safeguards for all service providers, and stores to ensure security and a
high-performance run of logistics system. Suppliers will be able to release a variety of
services provided to the ELMS system for unified management, and stores would no
longer request for service to a specific service providers and obtain a complete
logistics and distribution services through the ELMS system. ELMS will ensure that
the stores service requests and service requests of all suppliers can obtain the best
service.

Taking replenishment activities in ELMS as an example, we model the
replenishment process with SPN, then introduce exception handling to model. Finally
we compare and analyze the service quality performance parameters of model before
and after the introduction of exception handling.

Fig. 6. Replenishment task flow chart

 QOS Performance Analysis for Flexible Workflow Supporting Exception Handling 577

5.1 Process Modeling

Referring to the above flow chart, this paper gives the basic model with SPN firstly,
and there are not exceptional handling operations in basic model:

Fig. 7. Simple model of replenishment task

In the above graph, because the exceptional handling operations are not introduced
,the process will re-run when exceptions occur. Then ,this paper gives the process
model with introduction of exceptional handling operations. The model as follows:

Fig. 8. Exceptional handling model of replenishment task

In the above graph, the model with introduction of exceptional handling units is
found in several key palaces.

5.2 Solving of Service Quality Performance Parameters

After modeling of the system′s quality of service performance modeling with
Stochastic Petri net, the MC can be obtained which is isomorphic with SPN model.
Assuming that the steady-states probability of n-state in MC (Markov chain) is a row
vector Π = (π1, π2, …, πn), and each delay of transition subject to exponential

578 X. Zhu, J. Zhang, and B. Wang

distribution function. In accordance with Markov process, the following linear
equations can be found:









=

=×Π


=

n

i
i

Q

0

1

0

π (5.1)

After solution of this linear equations, every stable probability of reachable
marking is found, Pi(t=∞)=πi)1(ni ≤≤ .

On the other hand, as for any marking Mi∈[M0 >， all the Mj，Mk ∈ [M0> and
Mi ∈ [tj > Mj，Mk ∈ [tk > Mi， then:

 =
k

kki
j

j πλπλ)((5.2)

It is clear that n-1 balanced state equation can be listed with above formula,
together with the equation 1= jλ , the stability probability of each reachable mark

can be solved. Based on the above Markov chain and the state transition rate, state
transition matrix can be produced and all the steady-state probability of state can be
obtained. Then the performance parameters of quality of service further can be
analyzed, which are concerned by people.

Next, taking replenishment system as example, the paper will introduce the
solution of system′s reliability, availability, MTTR, MTBF and maintenance.

Reliability: When solving the reliability, assuming the system has n states, among
which, the first t consecutive states are non-absorbing states, the latter a states are
absorbing states (fault state). The reliability is considered only when system is in
absorbing states, that is:

)exp()exp()()(
1

0 tttPtR
n

i
i

=

−=== λλ (5.3)

MTTF：When the parts are failure to obey exponential distribution， 
=

=
n

i
i

1

λλ ,

then:

1

0
1

0
)exp()(−

∞

=

∞

=−==   λλ dttdttRMTTF
n

i

i

 (5.4)

Maintainability: In order to achieve system maintainability of M(t), the system′s
repairing rate μ(t) should defined firstly, which means the probability of repairing
resources completely in unit time after the resource has not been repaired in time.
This can be expressed with a mathematical formula:

dt

tdM

tM
t

)(

)(1

1
)(

−
=μ

(5.5)

 QOS Performance Analysis for Flexible Workflow Supporting Exception Handling 579

then by5.5we can obtain：

))(exp(1)(
1

0
dtttM −−= μ (5.6)

when μ(t) is constant，formula 5.6 is：

()ttM μ−−= exp1)((5.7)

MTTR：Means time to repair of the system can be expressed ：

()
==

==
n

i
ii

n

i
iMTTR

11

μλλρλ （ 5.8）

Among them, 
=

=
n

i
i

1

ρρ is the system′s maintenance coefficient, iii μλρ = is i

component′s maintenance factor.
MTBF：Means time between failures of system is equal to the ratio of normal

working hours and the number of failures during this time approximately:

()tNtMTBF f= (5.9)

Availability: System′s availability is the steady probability of M0 state:

() 1

1

1

1

1
0 111 −

−

=

−

=

+=









+=










+==  ρρ

μ
λπ

n

i
i

n

i i

t
sA

(5.10)

Fig. 9. Comparation of reliability

6 Conclusion

This paper introduced the flexible work flow supporting exception handling
operations and its characteristics. Taking the ELMS replenishment process as an

pa
ra

m
et

er
s

of
 r

el
ia

bi
lit

y

rate of order inflow(numbers/second)

580 X. Zhu, J. Zhang, and B. Wang

example, the paper gave a simple process model and a flexible process model which
support exception handling with SPN modeling. When exception′s causes increasing
speed, by comparing the services quality of the above models, it is found that with our
increasing exception, the performance of the flexible workflow supporting exception
handling is superior to common workflow system.

References

[1] Lin, C.: QoS Control of Multimedia Information Networks. J. Journal of Software 10(10),
1016–1024 (1999)

[2] Lin, C., Wang, Y.Z., Yang, Y., Qu, Y.: Research on Network Dependability Analysis
Methods Based on Stochastic Petri Net. J. Acta Electronica Sinica 34(2), 322–332 (2006)

[3] Avizienis, A., Laprie, J., Randell, B.: Fundamental Concepts of Dependability.
LAAS2CNRS (2001)

[4] Chen, K.W.: Reliability Modeling Method for Network System Using Generalized
Stochastic Petri Net. In: The Proceedings of 2012 International Conference on Quality,
Reliability, Risk, Maintenance, and Safety Engineering and The 3rd International
Conference on Maintenance Engineering (2012)

[5] Han, Y., Sheth, A., Bussl, E.C.: A taxonomy of adaptive workflow management. In:
Workshop in Conference on Computer Supported Cooperative Work: Towards Adaptive
Workflow Systems. ACM Press, Seattle (1998)

[6] Kammer, P.J., Bolcer, G.A.: Techniques for supporting dynamic and adaptive workflow.
J. Computer Supported Cooperative Work 9(3 -4), 269–292 (2000)

[7] Sadiq, S.: On capturing exceptions in workflow process models. In: Proceedings of the
4th International Conference on Business Information Systems, Poznan, Poland. Springer
(2000)

[8] Casati, F.: A discussion on approaches to handling exceptions in workflows. In:
Proceedings of the International Conference on Computer - Supported Cooperative Work,
Workshop on Adaptive Workflow Systems. ACM Press, Seattle (1998)

[9] Lin, C., Sheng, L.J., Wu, J.P., Xu, M.W.: An integrative scheme of differentiated service:
modeling and performance analysis. In: Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (2000)

[10] Workflow Management Coalition:The workflow reference model. WFMC - TC00 - 1003
(1995)

[11] Ciaodo, G., Muppala, J., Trivedi, K.S.: SPNP: Stochastic Petri Net Package. In: Proc.
Petri Nets and Performance Models (1989)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 581–589, 2014.
© Springer International Publishing Switzerland 2014

Analysis of Propagation Characteristics
of Variant Worms

Tao Liu1, Can Zhang1,2, Mingjing Cao1,2, and Ruping Wu1,2

1 North China Electric Power University, Baoding 071000, China
2 National Engineering Laboratory for Information Security Technologies,

Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China

Abstract. The large-scale spread of Internet worm will stimulate users’
awareness of security to deploy defense strategy against worms. The game
between users’ response time and worms’ propagation speed affects the range
of infection. The paper provides a new kind of worm called “variant worm”
which can mutate itself into new forms to implement a secondary propagation.
We analyze the necessary conditions of secondary propagation and the
propagation characteristics of variant worm in theory.

Keywords: worm, variant worm, response time, variant time, propagation
characteristic.

1 Introduction

Internet worm is a kind of malicious program that can propagate in the Internet
exploiting system vulnerabilities [1]. The wreak havoc of worms cause large
economic losses. Moorish worm breaking out in 1988 infected 6000 university and
military computers during several days, which caused in tens of millions of dollars in
losses [2]. In 2001, a kind of worm named Code Red worm exploited the Windows
IIS vulnerability emerged. It infected 250,000 computers in 9 hours after its outbreak,
and resulted in 200 million dollars in losses [3]. In 2010, the famous Stuxnet worm
incident occurred. The Stuxnet exploited Microsoft ‘0 day’ vulnerability and spread
by USB devices [4]. According to Symantec’s statistics, there had been 45,000
networks being infected by the Stuxnet worm until September, 2010. About 60% of
infected hosts located in Iran. Bushehr nuclear power plant was attacked by Stuxnet
worm, delaying Iran’s nuclear program [5]. On June 28, 2011, Sina micro-blog was
attacked by Cross-Site attack worm. The whole process lasted about one hour. The
worm had significantly strong media attribute and social attribute characteristics of
mixed, resulting in a suddenly and rapidly attack. Within ten minutes, hundreds of
thousands of garbage consulting messages flood on the Sina micro-blog, "brush
screen" appearing [6].

Worm propagates on the Internet in a high speed by replicating itself and infecting
specific files [7]. The rapid spread of worm stimulates user’s security awareness.
Users may take countermeasures against worms, such as anti-virus software, patches,
filters or firewalls [8].

582 T. Liu et al.

Microsoft has announced that, on April 8, 2014, they will officially end support for
Windows XP [9]. Microsoft had stopped providing any services for security patches
XP since April 8. XP occupies the market share of approximately 25% in the
worldwide, even up to 70% in our country. According to CNCERT/CC reported that
Windows XP has nearly 500 million users in the world, the risk of being attacked is
increased [10].

This paper studies that variant worm mutates itself into a new kind of worm during
the time user deploying defense measures. Through theoretical analysis, the new kind
of variant worm can implement a secondary propagation on the Internet, and its
propagation model is based on the classical worm propagation model.

The contribution of this paper is as follows：
 Providing a kind of variant worm on the base of classic worm propagation

model and modeling its propagation characteristics in theory and mathematic.
 Analyzing the variant worm’s propagation characteristics by comparing users’

response time and worms’ mutating time.
The rest of this paper is organized as follows. Section 2 is related work, in this

section we introduce several typical worm propagation models and analysis the
advantages and disadvantages of these models. Section 3 describes the mathematical
principle of variant worm. Section 4 proposes simulation experiment to verify the
correctness of mathematical analysis of variant worm. We draw conclusion in
Section 5.

2 Related Work

In this section we analyze and summarize the Internet worm propagation models.
 classic epidemic propagation model
The classic epidemic model is the basic Internet worm propagation model [11].The

model assumes that the system is “uniform system”. Hosts in the system are in one of
two states: susceptible and infectious. The mathematical formula for classic epidemic
propagation model is as follows:

()

()[()]
dI t

pI t N I t
dt

= − (1)

where ()I t is the number of infectious hosts at time t, p is the infection probability, N

is the total number of hosts on the Internet.
This model doesn’t take any other factors such as patches, power off and so on that

may affect worm propagation. However, the classic model makes a foundation for
analyzing complicated scenario.
 KM model
Based on the classic epidemic model, KM model takes the removal process of

infectious hosts into consideration [12].This model assumes that the recovered hosts
from infectious are immune to the worm forever. The status is named removed. Hosts
in this model stay in one of the three states at any time: susceptible, infectious and

 Analysis of Propagation Characteristics of Variant Worms 583

removed. The mathematical formula for classic epidemic propagation model is as
follows:

()
()[()]

()
()

() () ()

dJ t
pJ t N J t

dt
dR t

I t
dt

J t I t R t

γ

 = −

 =


= +


 (2)

where ()J t is the number of infected host, ()I t is the number of infectious

host, ()R t is the number of removed host from infectious host, () () ()J t I t R t= − ,

γ is the remove probability.

The disadvantage of this model is that it doesn’t take the mutative infectious rate
caused by network congestion into consideration.
 Two-factor model
Based on the analysis of KM model, Zou et al [13] analyzed the Code Red worm in

detail, taking human countermeasures and the reduced infection rate into
consideration. Those two factors affect worm propagation dynamically. The two-
factor model can better match the observed data collected the day on which the Code
Red broke out. The mathematical formula for classic epidemic propagation model is
as follows:

0

0

0

() ()
() () ()

()
()

()
() ()

() [1 () /]

() () () ()

(0)

(0) ;

(0) (0) 0

dS t dQ t
p t S t I t

dt dt
dR t

I t
dt

dQ t
S t J t

dt

p t p I t N

N S t I t R t Q t

I I N

S N I

R Q

η

γ

μ

 = − −

 =

 =


= −
 = + + +
 =


= −
 = =



 (3)

These types of typical worm propagation model are aiming at describing a certain
type of worm propagate process. The worm propagation characteristic in our study is
to describe worm propagation characteristics of "variant worm" before and after the
variation. The original worms spread at the beginning of the outbreak in conformity
with the general rule. With the massive worm outbreak, it would inevitably cause
network congesting, induce security awareness of users. User would adopt security
policies to prevent the host from infecting, such as killing the worms, patching

584 T. Liu et al.

vulnerabilities, etc. Worms will mutate during the time of user deploy security
strategy, adding new modules, and it will become into a brand-new worms to bypass
antivirus software, in order to achieve a secondary propagation.

3 Theory Analysis of Variant Worm Propagation Model

The focus of this paper is to verify the propagation characteristics of variant worm,
without considering other factors. The model of variant worm propagation is based on
the classic epidemic worm propagation model. All notations used in this paper are
listed in Table 1.

Table 1. All Notations Used in This Paper

Notation Explanation
N the total number of hosts on the Internet
P Infection probability

I(t) The number of Infectious hosts at time t
C Initially infected, I(0)=C

Tp Users response time
Tv Worms variant time

3.1 Worm Modeling Background

The infected rate of classic susceptible – infectious model is as follows:

()

()[()]
dI t

pI t N I t
dt

= − (4)

We solve equation (1) for the number of hosts infected at time t with the initially
infected host number C as:

()
()

1 Npt

N
I t

C N
e

C
−

=
−−

 (5)

Because of the existence of vulnerability host, when a new worm was first released
to the Internet, it will experience a phase of rapid spread. With the employing of
human defense strategies and the reduction of vulnerability host, the worm
propagation rate will decrease. We define the time that rate start to decreases as
critical point Tp , that is to say users’ response time. After the users’ response time,

the infected rate began to decrease as shown in Fig.1.

 Analysis of Propagation Characteristics of Variant Worms 585

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Classical Internet worm propagation model

t

I(
t)

Tp

Fig. 1. Classical Internet worm propagation model

3.2 Mathematical Modeling of Variation Worm Propagation Characteristics

The mutated time of variant worm is defined as variant time Tv , meaning that the
worm propagation before the variant time worm propagated in accordance with the
classic worm propagation model. When Tv Tp< , the time of defense strategy

deploying is longer than the time of worms mutating, in which case the defense
deployment becomes invalid. The variant worm will achieve a secondary propagate.
Based on the above analysis, we can derive a formula of relationship between infected
worm hosts and t, as shown in equation (3).

()

()
1

()
()

1

() ()
1 1

NpTv

Npt

Npt

Np t Tv

N
t Tv

C N
e

C
N

I t t TvandTv Tp
C N

e
N

N N
t TvandTv Tp

C N C N
e e

C C

−

−

−

− −




< − −

= > > − −


 + > <

− − − −

 (6)

Adjusting equation (3), we can derive the mathematical model of worm

propagation as follows:

586 T. Liu et al.

()

()
1

()

() ()
1 1

Npt

NpTv Np t Tv

N
Tv Tp

C N
e

CI t
N N

Tv Tp
C N C N

e e
C C

−

− − −

 > −−
= 
 + <

− − − −

 (7)

From equation (4), we can know that in the assumption that there are only

susceptible and infected hosts on the Internet, the number of infected hosts of variant
worm just depend on variant time Tv and users’ response time Tp .

4 Analysis of Simulation Results

We simulate classic epidemic model and the secondary propagation of variant worm
for contradistinction.

To observe the influence of the variant time and user response time to worm
propagation, we take different Tv for simulation. The value of the notations used in
the simulation is shown in Table. 2.

Table 2. The value of notations used in the simulation

notations value

N 20000
p 1
C 10

Tp 0.4
Tv 0.2, 0.4 , 0.6

Variant worm finish mutation at 0.2Tv = , when the defense strategy has not been

deployed. The defense strategy is deployed at 0.4Tp = , at which time the strategy is

not effective to variant worm and the worm can propagate at a second time.
While the propagation speed of traditional worm reduced because of the deployment
of defense strategy. The time that variant worm exists on the Internet is extended by
mutating, which can infect more hosts and cause more serious attack, as shown in
Fig.2

Variant worm finish mutation at 0.4Tv = , when the defense strategy has just been
deployed. The propagation of traditional worm is containment by the defense strategy
and the propagation speed decreases gradually. While the defense strategy has no
influence on the variant worm, the variant worm can propagate at a second time even
infect more hosts. The time that variant worm exist on the Internet is extended by
mutating as well, as shown in Fig.3.

 Analysis of Propagation Characteristics of Variant Worms 587

Fig. 2. The curve of variant worm propagation characteristic when Tv=0.2, Tp=0.4

Fig. 3. The curve of variant worm propagation characteristic when Tv=0.4, Tp=0.4.

Variant worm finish mutation at 0.6Tv = , while the defense strategy has been
deployed at 0.4Tp = , which means the variant worm is contained before mutating,

and the curve of its propagation is consistent with the traditional worm propagation.as
shown in Fig.4.

588 T. Liu et al.

Fig. 4. The curve of variant worm propagation characteristic when Tv=0.6, Tp=0.4

5 Conclusion

Theoretical analysis and simulation show that, the worm attack and defense
deployment belong to a dynamic game process. Once the variant code is inserted into
the worm code, the original virus defense will be invalid. Analysis in this paper shows
that the faster users deploy defense strategies in time, the more effectively containing
to worms’ secondary propagation.

References

1. Mackie, A., Roculan, J., Russel, R.: Nimda Worm Analysis. J. Incident Analysis Report,
Version. 2 (2001)

2. McGraw, G., Morrisett, G.: Attacking Malicious Code. J. IEEE Software 5, 33–41 (2000)
3. Moore, D., Shannon, C.: Code-Red: A Case Study on the Spread and Victims of an Internet

Worm. In: 2nd ACM SIGCOMM Workshop on Internet Measurement, pp. 273–284. ACM,
New York (2002)

4. Langner, R.: Stuxnet: Dissecting a Cyber-Warfare Weapon. J. Security & Privacy 9(3),
49–51 (2011)

5. Yang, Y., Littler, T., Sezer, S.: Impact of Cyber-Security Issues on Smart Grid. In: 2nd
IEEE PES International Conference and Exhibition on Innovative Smart Grid
Technologies (ISGT Europe), pp. 1–7 (2011)

6. Sina Micro-blog Encounter XSS Worm Invasion,
http://news.xinhuanet.com/2011-06/28/c_121597389.htm

7. Hansman, S., Hunt, R.: A Taxonomy of Network and Computer Attacks. J. Computers &
Security 24, 31–43 (2005)

 Analysis of Propagation Characteristics of Variant Worms 589

8. Zou, C.C., Gong, W., Towsley, D.: Code Red Worm Propagation Modeling and Analysis.
In: 9th ACM Conference on Computer and Communications Security, pp. 138–147. ACM,
Washington, DC (2002)

9. Experts on XP Retirement: China Is Heavily Dependent on Foreign Technology, While the
Information Security Situation is Grim,
http://it.people.com.cn/n/2014/0408/c1009-24847531.html

10. Microsoft, X.P.: System Officially Retired, the World’s 500 Million Internet Users at Risk
of Attack Large, http://www.cert.org.cn/publish/main/98/2014/
20140429140223521706476/20140429140223521706476_.html

11. Grasman, J.: Epidemic modelling: An Introduction (2000)
12. Andersson, H., Britton, T.: Stochastic Epidemic Models and Their Statistical Analysis.

Springer, New York (2000)
13. Zou, C.C., Towsley, D., Gong, W.: On the Performance of Internet Worm Scanning

Strategies. J. Performance Evaluation 63(7), 700–723 (2006)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 590–600, 2014.
© Springer International Publishing Switzerland 2014

A Design of Network Behavior-Based Malware Detection
System for Android

Yincheng Qi1, Mingjing Cao1,2, Can Zhang1,2, and Ruping Wu1,2

1 North China Electric Power University,071003 Baoding,China
2 Institute of Information Engineering,Chinese Academy of Sciences, 100093 Beijing, China

Abstract. In recent years, the number of mobile terminals is increasing sharply.
Due to Android’s open nature and convenience for surfing, many invaders
target on Android. In this paper, we propose a network behavior-based malware
detection system for Android which is composed of network behavior
monitoring module, anomaly network behavior analyzing module and storage
module. We collect the network behavior features of applications, classify them
via Bayes algorithm and diagnose whether it is malicious. The priority of the
system is that it’s aimed the internet characteristics of malware and using
network behavior as object of analysis. In theory, the system can detect
malware effectively.

Keywords: Android, Network Behavior, Malware, Bayes.

1 Introduction

With the boom of Android, a number of malwares targeted on Android emerged. The
Net Qin "Cloud Security" Monitoring Platform diagnosed 134790 malwares, the
growth is 106.6% compared with that in 2012. 56,560,000 smartphones have been
infected, which increased 76.8% compared with the same period of 2012[1].
Specially, the mobile games and apps that acted as tools were accounting for the
major. For instance，in 2013, a malicious app out broke which led signature holes of
Android operating system to be implanted Skullkey chargeback Trojan. According to
the CNCERT monitoring data, only in An Feng Market, games and tools account for
over 60% of the applications infected by Skullkey chargeback Trojan.

Besides, as BYOD spreading, most companies allow their staffs to bring with their
mobile devices. However, the WIFI and 3G may bring challenges to the companies '
safety, so the issue has been on the agenda [2].

As the APT (Advanced Persistent Threat) appears, intelligent mobile phone are
more likely to be used by the APT attack [3]. The core target of APT attack is human
beings. Attackers conduct industrial control or mobile Internet penetration attack by
invading the human contact equipment like Android smartphones. The objects of APT
attacks can be divided into information theft and behavior disturbance [4].

The malwares on Android platform include virus, worm, Trojans, botnets and
spyware [5] which are mainly spread by brush and application market. Almost all the

 A Design of Network Behavior-Based Malware Detection System for Android 591

popular applications would be packaged again by attackers. The attackers can gain
permissions by controlling the mobile phone and even get the contact list, account
number, password, photos, text messages and all other information.

There are two kinds of detection methods against malware. One is static signature-
based method which is usually used by security software developers. Its weakness is
that it can't effectively detect the variants and obfuscation techniques. And it takes a
long time to detect if the malware is previously unknown [6]. The other is dynamic
behavior-based method which runs programs in an isolated and controlled
environment for capturing the traces. It can resolve the former problem.

In this paper, a network behavior-based malware detection system for Android is
proposed. The system can monitor network behaviors in real time and classify them
by network-based approaches, this system need not to parse the content of data
packages. Thus it can protect users' privacy. Also, it makes detecting more efficient.
The method has been widely used in software analyzing on PC, but rarely used on
Android in domestic.

The work is organized as follows. Section 2 introduces the framework of the
detecting system. Section 3 explains the experiment arrange. In section 4 we will
conclude our work.

2 Related Work

In order to solve the problems, many researchers have made great efforts. They
proposed some detection technologies for Android through a large scale of
experiments and researches. These work laid a solid foundation for later research.

Shuaifu Dai et al. [7] proposed a detecting system for Windows Phone which
obtains applications' running information by parsing API. According to the Malicious
Behavior Feature Library, the system can distinguish the abnormal malware.

Iker Burguera [8] presented a framework to dynamically analyze applications’
behavior to detect malware on Android. An application client, Crowdroid, monitors
Linux system calls and, after preprocessing, sends them to a central server, which
then parses data and creates a system call vector. Finally, each dataset is clustered
through a respective clustering algorithm, namely 2-means. These efforts have
profound influence for malware detecting study.

Zhenfei Tong and Geng Yang et al.[9] proposed a detection framework for
Android malwares. The framework classified behavior features using Nearest
Neighbor, Native Bayes and SM0. But the objects of this detection system are static
behaviors like ELF files, whose detection ability is weak once variants and fuzzy
technology appear.

Wei Zhong [10] proposed a Native Bayes detection model of intrusion based on
kernel density, which improved the effectiveness and accuracy of the Bayesian
algorithm. This provides new ideas for the future of Bayesian classification algorithm.

Zeting Cai and Mei Jiang [11] proposed an Android malware detection system
using Naive Bayes based on permissions. It has achieved a good result by using the
similarity between Bayes model characteristics and Android permissions.

592 Y. Qi et al.

Mahinthan Chandramohan [12] has made a survey about mobile malwares. The
survey provided a better understanding of the motivations behind mobile malware “in
the wild” —the malicious applications available in mobile app markets. Then the
survey describes the existing malware detection techniques in detail, including static
analysis, dynamic analysis, application permission analysis and cloud-based
detection. And, it demonstrated the advantages and disadvantages of each technology,
which helps us quickly understand the malware detection technologies.

We have achieved the preliminary research of Android characteristics, summarized
the characteristics and harm of smartphone malwares, understood the current situation
of the development of anti-malware, and finally found that most of the malicious
software harm had a relationship with network behaviors. Besides, we deeply
researched the Bayes classification technology and made it suitable for analysis of the
mobile terminal data through improving partial parameters.

3 Network Behavior-Based Malware Detection System

3.1 The Framework of Network Behavior-Based Malware Detection System

The architecture of Android includes four layers: Applications, Application Framework,
GNU Library and Linux Kernel [13]. Though Android has its own security mechanism,
facing more complicated security threat, the mechanism is not enough.

Fig. 1. The Framework of the Network Behavior-Based Malware Detection System.

 A Design of Network Behavior-Based Malware Detection System for Android 593

To make Android phones safe, we design the Network Behavior-Based Malware
Detection System which detects malware by analyzing network behaviors. As shown
in Figure 1, the system is composed of network behavior monitoring module,
abnormal network behavior analyzing module and storage module. The monitoring
module is for extracting the features of network behaviors. The analyzing module is
for diagnosing the anomaly which includes data preprocessing, anomaly detection
engine and report generator. The storage module is for storing the related data such as
features and results.

3.2 Network Behavior Monitoring Module

Under normal circumstances, The network information about Android system is
stable. But when there is a malicious behavior, the information will be abnormal. To
track the anomaly timely, we need to extract valid features. The monitoring module
can gain valid network information by analyzing packets.

The main purpose of monitoring module is to obtain network behavior data. We
create a feature vector for implying the network behavior characteristics based on
both Android's nature and impact on Android phone by malware. As shown in Table
1, the vector contains process ID, the start and end time of the network connection,
up/down flow, source/destination IP address, protocol type, source/destination port
number. Usually user’s information is collected by virus or Trojan and then sent to a
specific address. Therefore, the up flow is much more than down flow. So we should
monitor the up/down flow. The mobile phones infected by botnet are often connected
to the network at a fixed period of time every day, so we need to monitor the start and
end time. In particular, the malware usually connects with external via port, so
monitoring the port and IP address is also a part of the module.

Data obtaining is divided into two stages. At first, we collect the training data and
push them to Cloud storage by tagging with 0(normal) or 1(abnormal). Next, we input
the testing data without tag which is directly sent to analyzing module for judgment.

Table 1. The features and the description

Feature Description

N_PID Process ID
N_StTime Start time
N_EdTime End time
N_UpFlow Up flow

N_DnFlow Down flow

N_SIP Source IP address

N_DIP Destination IP address
N_Type Protocol type
N_SPort Source port number
N_DPort Destination port number

594 Y. Qi et al.

3.3 Anomaly Analyzing Module

The module includes data preprocessing, anomaly detection engine and report
generator.

Data Preprocessing. Preprocessing is mainly about data clearing, transforming and
pressing [14]. The validity of data must be ensured before using Bayes classifier for
judging. In this system, data clearing and Standardization should be down.

Anomaly Detection Engine. The engine includes two patterns: training pattern and
testing pattern. Figure 2 is schematic diagram of this engine. In training pattern, train
data is used to train the engine for classifying model with specific parameters. In
testing pattern, test data is directly analyzed by the engine.

Fig. 2. Principle of Anomaly Detection Engine

The system chooses Bayes classifier in which all the attributes play the potential
role, improving the accuracy of the classifier [15]. The principle of Bayes classifier is
using the Bayes formula to calculate the posterior probability through prior
probability of an object. Then choose the class with maximum posterior probability as
the class it belongs to. In this project, we use Naive Bayes.

The classifying process is shown as follows:

(1) Each sample is represented by an n-dimensional vector { }
1 2

X , , ,
n

x x x= … ,

describing the n attributes.
(2) Supposing there are m classes. Given an unknown sample data, Naive Bayes

distributes the sample to the class with the highest posterior probability. Only if

P P ,1 , .
ji

CC
j m j i

X X
> ≤ ≤ ≠

  
      

 (1)

(3) The Bayes theorem:

()
()

P P ii

i

P CC X

X C P X
=

  
      

 , (2)

 A Design of Network Behavior-Based Malware Detection System for Android 595

In particular, Naive Bayes has an assumption that each attribute has no relation

with each other. Besides, ()P X is a constant for all classes.

(4) Get the maximum:

()max=P P i

i

X
C

C

 
 
 

. (3)

Given the conditions:

n

1i

X
P = ()

C
j

j i

x
P

C=
∏（ ） (4)

and

1
()=j ij

i i

x n
P

C V n

+

+
 (5)

 ijn refers to the occurrence number of features . V refers to the feature dimens -

ion of samples.

Analysis Process of network behavior features by Anomaly Detection Engine.
The anomaly detection engine is divided into training and testing stages. The steps are
as follows:

(1) Extract network behavior vectors. We extract network behavior data is by the

monitoring module which is following extracting vectors automatically. The vector
contains ten features such as x = (N_PID, N_StTime, N_EdTime, N_UpFlow,
N_DnFlow, N_SIP, N_DIP, N_Type ,N_SPort, N_DPort).

(2) Mark the candidate samples. Each sample is marked by
1 2

1 or 0m m= = . So

they are composed of the feature vectors and class variables, just like
1

(,)X m and

2(,)X m .

(3) Construct the training sample set. We randomly select the normal and
abnormal sample to construct data set

as following:

1 1 2 2 1 1 2 1 2
{(,), (,), ..., (,), (,)}, 1, 0.

m m
D x m x m x m x m m m

−
= = =
   

(4) Build the classify model through training, namely, to determine the model
parameters.

(5) Extract feature vectors from testing data.
(6) Judge the abnormal network behavior through the classify model (=1M means

abnormal and =0M means normal).
We now can decide whether the behavior is abnormal using this model. In

addition, a monitor report may be generated for further protection of users’ mobile
security.

596 Y. Qi et al.

3.4 The Storage Module

In this module, we consider what information should be stored and the storage means.

Cloud Storage. Because of the limitation of mobile terminals and the large number of
data, the Cloud Storage Server is necessary. It stores the previous or current training
data for next training process. As we all know, the storage capacity of cloud is very
strong, so that we do not have to worry about the problem of storage. Also, the
information in server can be used by other Android mobile phones which have
installed in our system.

Local Storage. The Local Network Information Database stores the data recently
used in order to promote the efficiency. Local storage has many advantages. The
biggest one is for post analysis based on which we can conduct a better texting
operation. Compared with the cloud storage, local storage is built on the host being
detected. So the data acquisition time is shorter and obviously has a higher efficiency.
Similarly, the concerned problem is what information should be storage. Here, we had
better choose the information related to testing below, The benefits of doing this is to
save local resources.

4 The Experimental and Result

Because of smartphones’ mobile nature and the convenient Internet environment,
malware is more inclined to attack through network partly. At this point, the network
behavior-based detection method highlights its advantages. We create a vector to
accurately reflect the network behavior while software is running. What's next, an
experiment will be carried out to verify the system's efficiency and accuracy.

4.1 The Experimental Platform

This experimental chooses Samsung I9100G mobile phone as the test platform, which
mainly test the monitoring system. The configuration parameters are as shown in
Table 2.

Table 2. The configuration parameters of Samsung I9100G mobile phone

Content Parameter
Hardware Mali-400MP，

1G Memory
OS Android 2.3.5

Kernel
version

kernel 2.6.35

Network
Model

GSM，WCDMA

 A Design of Network Behavior-Based Malware Detection System for Android 597

4.2 Result and Analysis

Firstly, we need to construct a test data set. Zhou Yajin and Jiang Xuxian [16] et al.
have done some work. They collected 1260 malwares and divided them into 49
families. We selected 25 families from them (the ones need to connect network) and
25 normal software (shown in Table 3) in Android Market.

The experiments were divided into 5 groups. Each group has 5 normal and 5
malicious applications. Then the system is installed on the testing mobile phone. Once
there is a network connection, the system automatically starts the monitoring module
and extracts the features vector in real time.

Table 3. The List of Normal Software

ID Name Class
1 QQ Communication
2 WeiXin Communication
3 WeiBo Social
4 BaiDu Map Travel & Local
5 ZhiFuBao Shopping
6 MoJi Weather Weather
7 Fruit Slice Arcade and Action
8 BaiduInput Tools
9 Google Translate Tools

10 Chrome Browser Communication
11 YouDao Dictionary Books & Reference
12 TTPod Music & Audio
13 Adobe Reader Productivity
14 Instagram Social
15 WanDouJia Tools
16 BaiDu Cloud Productivity
17 Google Search Tools
18 GongShangYinHang for Mobile Finance
19 Youku-Movie,TV,cartoon,Music Media & Video
20 YiXin Social
21 KINGSOFT Tools
22 TED Education
23 Netease News News & Magazines
24 UC Browser Tools
25 Maps Travel & Local

Next, we analyze and evaluate the experimental result according to the false

negative rate (FNR) , false positive rate (FPR) and accuracy rate (ACC). Besides, we
need another four merits, namely, true positive (TP, the number of malware samples
detected correctly), false negative (FN, the number of malware samples detected
incorrectly), false positive (FP, the number of benign samples detected incorrectly)

598 Y. Qi et al.

and true negative (TN, the number of benign samples detected correctly). And, the
calculation formula is as follows:

FP

FPR
FP TN

=
+

 (6)

FN
FNR

TP FN
=

+
 (7)

TP TN
ACC

TP FN FP TN

+
=

+ + +
 (8)

The experiment results are shown in Table 4.

Table 4. The Test Results of Experimental Samples

Group
Number

TP FN FP TN ACC FPR FNR

1 3 2 0 5 80% 0 40%
2 4 1 2 3 70% 40% 20%
3 3 2 1 4 70% 20% 40%
4 5 0 1 4 90% 20% 0
5 4 1 1 4 80% 20% 20%

The experimental results show that the detection system can detect the malwares to

a certain extent, but it is not particularly desirable.We provide some possible reasons
through analyzing. The reason for false negatives is that the server linked by
malwares may be invalid, so the malwares cannot conduct network communication.
And the reason for false positives is that the training data set is too small, which needs
upgrade and expansion in order to reduce the false positive rate. After all, the
assumption of Naive Bayes that each attribute has no relation to each other also
affects the accuracy.

Performances are analized after the experiment, including cpu usage, free memory
and battery power. The Figure 3 shows the comparation of the mobile phone
performance before and after the framework. Cpu usage is the average cpu usage
without user operation. Free memory means the amount of free memory under the
same condition. Battery power means the average power consumption in each hour
under the same condition.

The blue bars represent resources before the experiment, and the red bars represent
resources after the experiment. We can see from the figure that effects of this system
on consumption of resources and the user experience is not so serious. And from this
point of view, the system is feasible.

For the further work, we will improve the system. Due to the complexity of
malware behaviors, we should collect more network features from emerging
malwares to enrich the data set, which aims at optimizing FNR and FPR. Besides, we
will adjust the Bayes classifier parameters through repeating tests to achieve the best
classification results.

 A Design of Network Behavior-Based Malware Detection System for Android 599

Fig. 3. Resources of the Testing Phone

5 Conclusions

Attacks aimed at Android systems become more sophisticated. The emergence of
APT has intensified the threat of the smartphone. More and more convenient Internet
environment leaves gaps for attackers. Based on an in-depth analysis of the
characteristics of malware, we proposed the network behavior-based detection system
which can effectively detect malwares. The work may be a good guide for malware
detecting study on Android.

References

1. Net Qin released the 2013 global mobile phone safety report,
http://finance.chinanews.com/it/2014/02-26/5885596.shtml

2. 2013ISC Experts Detailed: current status and future of network security,
http://soft.yesky.com/398/35354398.shtml

3. Li, Y., Zhai, L., Wang, Z., Ren, Y.: Control Method of Twitter-and SMS-Based Mobile
Botnet. In: Yuan, Y., Wu, X., Lu, Y. (eds.) ISCTCS 2012. CCIS, vol. 320, pp. 644–650.
Springer, Heidelberg (2013)

4. Zhai, L.D., Li, Y.: APT Threat Detection and Protection of Network Space. J. Netinfo
Security (3), 56–60 (2013)

5. Yi, L.L., Zhang, N., Liu, D.: Current Situation and Development Trend of Mobile
Malware. J. Information and Communications Technologies (2), 75–79 (2013)

6. Liu, J.R., Wang, W.J., Liu, B.X.: A Trojan horse detection model based on network
behavior analysis. In: The 16th National Conference on Nuclear Electronics and Nuclear
Detection Technology Academic Annual Meeting, Mianyang, Sichuan (2012)

7. Dai, S., Liu, Y., Wang, T.: Behavior-based malware detection on mobile phone. In: 2010
6th International Conference on Wireless Communications Networking and Mobile
Computing (WiCOM), pp. 1–4. IEEE (2010)

600 Y. Qi et al.

8. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based malware
detection system for android. In: Proceedings of the 1st ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, pp. 15–26. ACM (2011)

9. Tong, Z.F., Yang, G.: The Detection of Malware Static Behaviors for Android. J. Jiangsu
Communication (1), 39–47 (2011)

10. Zhong, W.: Research on Bayes Classification and its Application in Intrusion Detection.
Central South University of Forestory and Technology (2008)

11. Cai, Z.T., Jiang, M.: Android Malware Detection of Using Naive Bayes Based on
Permissions. J. Computer Knowledge and Technology (14), 3288–3291 (2013)

12. Chandramohan, M., Tan, H.B.K.: Detection of Mobile Malware in the Wild.
Computer 45(9), 65–71 (2012)

13. Google. Android Home Page, http://www.android.com
14. Jia, W., Han, M.K.: Data Mining Concepts and Technique, 2nd edn. China Machine Press

(2006)
15. Li, W.: The advantages and disadvantages of the commonly used classifiers. J. Technology

Trend. (3), 59 (2009)
16. Zhou, Y.J., Jiang, X.X.: Dissecting Android Malware: Characterization and Evolution. In:

2012 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, May 20-23
(2012)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 601–610, 2014.
© Springer International Publishing Switzerland 2014

Detection and Defense Technology
of Blackhole Attacks in Wireless Sensor Network

Huisheng Gao1, Ruping Wu1,2, Mingjing Cao1,2, and Can Zhang1,2

1 North China Electric Power University, Baoding 071000, China
2 National Engineering Laboratory for Information Security Technologies,

Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China

Abstract. The blackhole attack is a typical kind of attack in wireless sensor
network (WSN), consisting two types, namely passive attacks and active attacks,
of which the latter can cause greater threat. In this paper, considering the
principles and characteristics of the active blackhole attacks, an effective
approach that can detect and defense active blackhole attacks is presented by
improving the AODV routing protocol combining flow analysis. NS2 simulation
results confirm the effectiveness of this method.

Keywords: WSN, Blackhole Attack, AODV Protocol, Flow Analysis, NS2
Simulation.

1 Introduction

Wireless sensor network（WSN）which is a new form of wireless network has a quick
development and bright look in many application scenarios [1]. WSN technology is the
combination of sensor technology, embedded computing technology, distributed
processing and communication technologies. It is capable of real-time monitoring and
percepting the targets and collecting the information of the environment through the
collaboration of a variety of integrated micro-sensors, then processing and transmitting
the information to the destination node. WSN can be widely used in many fields,
including national defense, national security, environmental monitoring, traffic
management, health care, manufacturing, mining, anti-terrorism disaster field and so
on. WSN has become the primary means of obtaining information for Internet of
things.

Although WSN brought a lot of convenience to people around the world, the
characteristics of WSN can't be ignored. The major characteristics consist of the
limited processing power, storage capacity, communication bandwidth, and energy of
nodes, concentrated and random distribution of nodes, the openness of deployment
environment and propagation medium, and so on. The above characteristics of WSN
make it vulnerable to a variety of attacks, including the physical layer, data link layer,
network layer, transport layer attacks. Among them, the network layer attacks are
typical, which is mainly against the network layer routing. This is because the
network routing protocol is quite simple and sensitive to attack. AODV (Ad hoc

602 H. Gao et al.

on-demand distance vector routing) [2] protocol which is a source-driven routing
protocol is commonly used in WSN. When a node needs to transmit information to
other nodes in the network, it must first issue a RREQ (Route Request) packet in the
form of multicast if there is no route to the destination node. When the neighboring
node receives RREQ packet, it will first figure out whether itself is the target node or
not. If yes, then the neighboring node sends a RREP (Route response) packet to the
originating node; If not, it will first search the routing table to determine if there is a
route to the destination node or not. If yes, it will unicast a RREP packet to the source
node, otherwise continue forwarding the RREQ packet to find out. Once the source
node receives the RREP packet, will immediately send the data packet along the
opposite path of the RREP packet, abandoning all the other RREP packets behind the
first arrived RREP packet.

Routing attacks in WSN usually include selective forwarding attacks, blackhole
attacks, sybil attacks, wormhole attacks, flooding attacks [3]. Among them, blackhole
attacks are serious attacks, belonging to a denial of service attack. Usually, there are
two kinds of blackhole attacks: passive blackhole attacks and active blackhole attacks
[4]. The later are more damaging to the network than the former. We will detail these
two attacks in Section 3.1. The active blackhole attacks can get control of network
packets by deceiving the routing protocols, and then discard all the packets, thus
accomplishing damage to the WSN. It is hard to avoid the active blackhole attacks in
AOVD protocol.

For current WSN is vulnerable to blackhole attacks and its effects are harmful, this
paper proposes a method to detect blackhole attacks based on the improved AODV
protocol and traffic analysis. This method is mainly for the active blackhole attacks,
but also can detect the passive blackhole attacks to a certain extent. The remainder of
the paper is organized as follows. Section 2 describes blackhole attacks. Section 3
discusses some of the related works. Section 4 describes the proposed scheme.
Section 5 presents the simulation results. Finally, Section 6 concludes our work.

2 Related Work

The different detection methods for the blackhole attack have been proposed. The

following are some commonly used detection methods.

SAODV proposed by Zapata M G. [5], ad hoc routing protocol security extensions
proposed by Papadimitratos P et al. [6], SEAD proposed by Hu et al. [7], SAR
proposed by Yi et al. [8], all these secure routing protocols can provide better routing
security, including the resolution of the blackhole problem. The above strategies can
be formulated into a kind of security strategy based on the encryption algorithm.
However, this kind of algorithm need to add complex encryption / decryption
algorithm and corresponding protocols in routing protocols, and a strong collaborative
relationship between nodes, which will cost too much.

Shurman M et al. [9] proposed a redundant routing method. The source node must
find at least three different routes to the destination, and then unicast ping through
these three routes. Malicious node and the destination node reply the ping request to

 Detection and Defense Technology of Blackhole Attacks in Wireless Sensor Network 603

the source node which will check these replies, verify whether the node is safe or
malicious nodes. This method can be found a safe route reaching the destination, but
the delay is high, and there is no corresponding processing on possible malicious
node.

Aad I et al. [10] presented a credit node measurement approach. Each node which
saves a credit rating of all the nodes in the network will integrate the information and
connection reliability of the non-standard node to select out malicious nodes. If a
packet successfully propagated through a path, then the credit of all nodes on this path
will increase; otherwise reduce the credibility of all the nodes on this path. The
credit of the nodes which are not used will do not change. This approach does not
consider a situation that malicious nodes may cooperate to improve the credit, and the
initial value of credit and the threshold have no reasonable metrics.

Marti et al. [11] presented two new concepts: Watchdog and Pathrater. This
method assumes that the network has a symmetrical bidirectional connectivity. In the
network, each node is a watchdog of other nodes. When a node forwards the packet,
the watchdog will monitor whether the next node forwards this packet. If the next
node does not forward the packet, then it will be considered abnormal nodes.
Meanwhile, the watchdog compares each packet with the packets in the buffer. If they
match, the packet is considered normal transmission, the corresponding data in the
cache will be cleared; otherwise keep the data in the cache until the timeout, and then
add the sign of packet abnormal forwarding to the node. If the time exceeds a
threshold, the node is considered to be malicious too. This method cannot find
intentional misstatements of malicious or abnormal circumstances of normal nodes.

Other methods including downstream neighbor node validation method [12],
encryption and hops [13], Replying directly to confirm and heuristics method [14]
have their flaws, such as high cost with encryption algorithm and wasting a large
amount of network link bandwidth.

Blackhole attack prevention and detection method proposed in this paper is mainly
for active black hole attacks, aiming at detecting the blackhole attack before it
occurred, thus avoiding the destruction caused by the blackhole node. This method
also has some effect for passive black hole attack detection. The following describes
the specific method.

3 Black Hole Detection Method

3.1 Blackhole Attack

Blackhole attacker claims itself to be the destination node or the nearest path to the
destination node in order to attract traffic. When receiving the coming data packets
from other nodes, the blackhole attacker will discard all the packets. A black hole that
can absorb packets is then formed, and thus the name: blackhole. As mentioned before
, there are two kinds of blackhole attacks: passive blackhole attacks and active
blackhole attacks [4].

604 H. Gao et al.

The passive blackhole attack is that a black hole exists in the network, when all the
data packets enter into the black hole, they would not come out. This is because that
the blackhole node will discard all the packets passing through it. The attacker
forward the routing packets passing through itself while drop all the data packets. The
passive blackhole attack only attack the network topology without injection of false
messages to the network, so it is a passive routing disruptive attack. Fig. 1 (a) shows a
schematic diagram of a passive blackhole attack.

The active blackhole attack is a more devastating attack than the passive blackhole
attack. After receiving RREQ (Route Request Packet), the malicious node directly
replies RREP (Route Reply Packet) to the source node with claiming that “I have a
path with only one jump that can make you reach the destination node”. By doing like
this, the malicious node can attract more data packets sent from other nodes. The
source node is likely to receive the false RREP packet from the active blackhole node
earlier than the correct RREP packet. According to the AODV protocol, the source

Source node

Destination node

Blackhole node

Normal relay node

Send RREQ packet

Reply RREP packet

Send data packet

False RREP

(a)passive blackhole attack

(b)active blackhole attack

Fig. 1. Diagram of blackhole attacks

 Detection and Defense Technology of Blackhole Attacks in Wireless Sensor Network 605

node will sent data packets after receiving the first RREP packet, dropping the rest of
RREP packets. It is observed that the active blackhole node tampers with the routing
information, which disrupts the normal communication and the acquisition of the
entire network information, seriously affects the network load. Fig. 1 (b) shows a
schematic diagram of an active blackhole attack.

3.2 Blackhole Attack Detection Algorithm

Based on the AODV protocol, we make some improvements. AODV protocol
specified, the source node will begin to establish routes and transmit data packets to the
destination node after receiving the first RREP packet, the following arrived RREP
packets will be abandoned. In this paper, we make some changes to this strategy. By
doing some improvement on the AODV protocol, the probability of selecting a route
with a blackhole node will be greater reduced. In addition to the above improvement,
this paper also introduces the concept of flow analysis. We choose the name
mAODV-TA (the modified AODV protocol and Traffic Analysis) for the proposed
method, specific information as follows.

When the source node receives the first RREP packet (RREP1), it does not send
the packet immediately instead of saving the first received RREP packet. When the
second RREP (RREP2) packet arrives, the source node will drop the RREP packets
after the second RREP. The two RREP packets both contain information relevant to
the neighbor nodes of destination node. As the active black hole attack nodes will
falsely claim itself to be the next hop to the destination node in a reply RREP packet
to the source node, what's worse, the false RREP sending by malicious node may
reach the source node earlier than other nodes, so we cannot directly confirm whether
the neighbor nodes are the true and friendly neighbors .It means that the node with
next hop to the destination node may be a malicious node. In order to test whether the
route contains a black hole or not, this paper will flag the nodes with only one hop to
the destination node recording in RREP1 and RREP2 as suspicious. Then the source
node will reply a false data packet along the opposite path of RREP1 and RREP2. The
false data packet is referred to herein as a probe packet.

Taking into account the characteristics of the blackhole attack, blackhole nodes
will directly drop all the data packets sent by source node. Therefore, by sending
probe packets, we can discover suspicious nodes whether only have flow input
without flow output. If it is, then we can say the suspicious node is a blackhole node.
The detection method also has some effect for the passive blackhole detection which
is normal in routing process while abnormal in the data transfer process.

The specific process of blackhole detection algorithm is shown in Fig. 2.

606 H. Gao et al.

Fig. 2. Flowchart of a blackhole attack detection algorithm

4 Simulation

4.1 Simulation Environment

In order to verify the effectiveness of the proposed scheme, we simulated our proposal
using NS2 simulation platform. Our simulation was conducted over a 800m×800m
rectangular flat space with randomly distributed sensor nodes. We used constant bit rate
(referred to as CBR) traffic source as a communication model. Table 1 presents the
simulation environment. The network topology is shown in Fig. 3.

 Detection and Defense Technology of Blackhole Attacks in Wireless Sensor Network 607

Table 1. Simulation Parameters.

Parameter Value

Network Area 800m x800m

Number of nodes 50

Node velocity 0

Transmission range 100m

Load size 512Byte

Packet transmission rate 25kbps

The number of Simulation 20

Fig. 3. Network topology

4.2 Simulation Results and Analysis

To compare the performance of mAODV-TA with some related prior work, we chose
SAODV [5] as a comparative object. The following two performance indicators was
selected to evaluate mAODV-TA .

i) positive rate: This indicator reflects the proportion of the blackhole nodes
detected in the all of the blackhole nodes. Fig. 4 shows the positive rate of
mAODV-TA compared to SAODV on the average. As shown in the figure below, we
can see that mAODV-TA shows very close result to SAODV. It proves that our
method is effective. Also, we see that the positive rate increases with the number of

608 H. Gao et al.

blackhole nodes in general. The trends show a decline in a small range. This is
because that the network load distribution changed with the number blackhole nodes,
thus affecting the routing process.

Fig. 4. Comparison of positive rate

ii) false positive rate: This indicator reflects the proportion of the normal nodes
which was wrongly accused of blackhole nodes in the all of the blackhole nodes. Fig.
5 shows the false positive rate of mAODV-TA compared to SAODV on the average.
The false positive rate of both curve has trended down at first and then level off along
with the increasing number of blackhole nodes. The mAODV-TA is a bit lower than
SAODV in the aspect of false positive rate. The blackhole detection rate of 100% is
not realistic. There are many causes. One reason is that CBR data streams are
transmitted in the same frequency in the simulation, thus data congestion tends to
conflict resulting in some errors of the detection algorithm.

iii) control overhead: This indicator is an important index to evaluate whether a
method practical or not in blackhole detection algorithm. The result of the routing
control overhead is shown in Fig.6. The standard AODV is used as a baseline to
compare with mAODV-TA and SAODV. As we see, mAODV-TA doesn’t change
much comparing with the original AODV protocol, while the SAODV shows larger
control overhead. So in comparison with SAODV, our method mAODV-TA is more
applicable in WSN network with limited energy.

 Detection and Defense Technology of Blackhole Attacks in Wireless Sensor Network 609

Fig. 5. Comparison of false positive rate

Fig. 6. Comparison of control overhead

610 H. Gao et al.

5 Conclusion

By improving AODV security protocols, we propose a method for the prevention and
detection of active black hole attack in order to reduce the probability of selecting a
path containing blackhole nodes in the route discovery process. Simulation results
show that the improved AODV protocol combining with flow analysis for detection
and defense blackhole attacks is effective. Given the limitations of the network node
resources and processing power, limited node energy, as well as the uncertainty of the
network topology, there is still room for further optimization for the proposed solution.

References

1. Yick, J., Mukherjee, B., Ghosal, D.: Wireless Sensor Network Survey. J. Computer
Networks 52(12), 2292–2330 (2008)

2. Perkins, C., Belding-Royer, E., Das, S.: Ad hoc on Demand Distance Vector (AODV)
Routing (RFC 3561). J. IETF MANET Working Group (2003)

3. Karlof, C., Wagner, D.: Secure Routing in Wireless Sensor Networks: Attacks and
Countermeasures. J. Ad hoc Networks. 1(2), 293–315 (2003)

4. Dokurer, S., Erten, Y.M., Acar, C.E.: Performance Analysis of Ad-hoc Networks under
Black hole Attacks. In: Proceedings of the IEEE SoutheastCon, pp. 148–153 (2007)

5. Zapata, M.G.: Secure Ad hoc on-demand Distance Vector Routing. J. ACM SIGMOBILE
Mobile Computing and Communications Review 6(3), 106–107 (2002)

6. Papadimitratos, P., Haas, Z.J.: Secure Routing for Mobile Ad hoc Networks. In: Proceedings
of the SCS Commnication Networks and Distributed Systems Modeling and Simulation
Conference (CNDS), pp. 193–204 (2002)

7. Hu, Y.C., Johnson, D.B., Perrig, A.: SEAD: Secure Efficient Distance Vector Routing for
Nobile Wireless Ad hoc Networks. J. Ad Hoc Networks. 1(1), 175–192 (2003)

8. Yi, S., Naldurg, P., Kravets, R.: A Security-aware Routing Protocol for Wireless Ad hoc
Networks. J. Urbana. 51, 61801 (2002)

9. Shurman, M., Yoo, S.M., Park, S.: Black hole Attack in Mobile Ad hoc Networks. In:
Proceedings of the 42nd Annual Southeast Regional Conference, pp. 96–97. ACM (2004)

10. Aad, I., Hubaux, J.P., Knightly, E.W.: Denial of Service Resilience in Ad hoc Networks. In:
Proceedings of the 10th Annual International Conference on Mobile Computing and
Networking, pp. 202–215. ACM (2004)

11. Marti, S., Giuli, T.J., Lai, K., Baker, M.: Mitigating Routing Misbehavior in Mobile Ad hoc
Networks. In: Proceedings of the 6th Annual International Conference on Mobile
Computing and Networking, pp. 255–265. ACM (2000)

12. Bollacker, K.D., Lawrence, S., Giles, C.L.: Discovering Relevant Scientific Literature on
the Web. J. Intelligent Systems and their Applications 15(2), 42–47 (2000)

13. Lieberman, H.: Letizia: An Agent that Assists Web Browsing. J. IJCAI (1), 924–929 (1995)
14. Sun, B., Guan, Y., Chen, J., Pooch, U.W.: Detecting Black-hole Attack in Mobile Ad hoc

Networks. In: Personal Mobile Communications Conference, pp. 490–495. IET, European
(2003)

An Improved Remote Data Possession Checking

Protocol in Cloud Storage

Enguang Zhou and Zhoujun Li

State Key Laboratory of Software Development Environment, Beihang University,
Beijing 100191, China
zhoujun.li@263.net

Abstract. In cloud computing, clients put the large data files on the
untrusted cloud storage server, how to ensure the integrity of the out-
sourced data becomes a big problem.To address this issue, Hao et al.
proposed a protocol which supports public verifiability and data dynam-
ics. However, Hao et al.’s protocol suffers from two drawbacks. First,
Hao et al.’s protocol is insecure and cannot resist the active adversary.
Second, Hao et al.’s protocol only supports fixed-sized blocks as basic
unit. As a result, the insertion of short message will cause a considerable
waste of storage space. In this paper, we propose an improved remote
data integrity checking protocol that can support variable-sized blocks.
Besides, the improved protocol can resist the attack of the active adver-
sary, and it is obvious to verify that the improved protocol still preserves
the properties of Hao et al.’s protocol such as public verifiability and
privacy preserving auditing.

Keywords: cloud storage, data integrity, data security.

1 Introduction

In cloud computing, clients outsource the large data files to the untrusted cloud
storage server. As clients no longer possess the local copy of their data, protecting
the integrity of outsourced data is important in cloud computing.

Provable data possession (PDP) is a technique for ensuring the integrity of
data in outsourced storage services. Ateniese et al. [1] firstly proposed a prov-
able data possession (PDP) model for ensuring possession of files in untrusted
remote servers. In their scheme, they utilize RSA-based homomorphic tags for
auditing outsourced data without having to download the actual data file. They
also presented a dynamic PDP scheme [2] based on symmetric key encryption,
however, their scheme does not support block insertions. Hence their scheme
does not support fully dynamic data operations. Juels et al. [3] presented proofs
of retrievability (POR) model to ensure not only data possession but also re-
trievability. After that, Sebe et al. [4] proposed a remote data integrity checking
protocol. Later, Hao et al. [5] proposed a privacy-preserving remote data in-
tegrity checking protocol with data dynamics and public verifiability, which can
be considered as an adaptation of Sebe et al.’s protocol.

Erway et al. [6] were the first to propose a dynamic PDP scheme based on
the rank-based authenticated skip list (RASL). This scheme was the first PDP

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 611–617, 2014.
c© Springer International Publishing Switzerland 2014

612 E. Zhou and Z. Li

scheme that can support fully dynamic data operations. Wang et al. [7] pro-
posed a POR scheme based on the Merkle Hash Tree (MHT) [8] that can sup-
port public auditing and fully dynamic data operations. Zhu et al. [9] proposed
a cooperative Provable data possession (CPDP) scheme which is suitable for a
multi-cloud environment. They indicated that CPDP scheme held completeness,
knowledge soundness, and zero-knowledge properties. Unfortunately, Wang et
al. [10] pointed out that the property of knowledge soundness was not satisfied
in Zhu et al.s CPDP scheme, i.e., malicious cloud service provider (CSP) or the
malicious organizer can deceive the verifier even if they do not possess clients
data. Recently, an efficient dynamic auditing protocol [11] was proposed to sup-
port data dynamic operations. Ni et al. [12] pointed out that the protocol in
[11] is vulnerable to the attack from the active adversary, i.e., the active adver-
sary can arbitrarily alter the data in the cloud and then is able to generate a
valid auditing proof in the auditing process. Liu et al. [13] proposed an autho-
rized dynamic scheme based on BLS signature [14] and ranked Merkle hash tree
(RMHT), which can support fine-grained update requests.

Hao et al.’s protocol in [5] supports public verifiability and data dynamics.
However, Hao et al.’s protocol suffers from two drawbacks. First, Hao et al.’s
protocol in [5] cannot resist the attack launched by an active adversary. Second,
in Hao et al.’s protocol, the recommended data block size is 32k bytes. If the
client inserts a 140-byte Twitter message, more than 99% of allocated storage is
wasted. After many short messages are inserted, huge storage will be wasted. We
propose an improved remote data integrity checking protocol that can support
variable-sized blocks to resolve above two problems. It is obvious to verify that
the improved protocol still preserves the properties of Hao et al.’s protocol such
as public verifiability and privacy preserving auditing.

2 Technical Preliminaries

The cloud data storage system involves three different entities: the client, the
cloud server, and the third party auditor. The clients store the large data files
in the untrusted server. As losing the control over data files, the client needs to
verify the integrity of outsourced cloud data without the local copy of data files.
The integrity of the data which are stored in the cloud can also be checked by
the third party auditor.

Problem Statement. The file F is denoted as m, which is stored in the un-
trusted server and divided into n blocks of equal lengths. A pseudo-random
function fK(·) is defined as

f : {0, 1}k × {0, 1}log2(n) → {0, 1}d,
in which k and d are two security parameters.

Homomorphic Verifiable Tags. We explore the concept of a RSA-based homo-
morphic verifiable tag which is used in Hao et al.’s protocol. N = pq is a public
RSA modulus, p and q are two primes. {e : e ∈ Zn and gcd(e,N) = 1} forms a
multiplicative group which is denoted by Z∗

N , Let g be a generator of Z∗
N . Given

a message mi, its RSA-based homomorphic verifiable tag is Tm = gmi mod N .
Given tags of mi and mj denoted by Tmi = gmi and Tmj = gmj respectively,

An Improved Remote Data Possession Checking Protocol in Cloud Storage 613

anyone can compute a value Tmi+mj = Tmi · Tmj = gmi+mj mod N , which is
corresponding to the messages mi +mj .

3 On the Security of Hao et al.’s Protocol

In Hao et al.’s protocol, the file m is divided into n blocks m1,m2, . . . ,mn. The
pseudo-random function fK(·) is defined as f : {0, 1}k × {0, 1}log2(n) → {0, 1}d,
in which k and d are two security parameters. Hao et al.’s remote data integrity
checking protocol includes the following five functions: SetUp, TagGen, Chal-
lenge, GenProof, and CheckProof.

SetUp(1k → (pk, sk)). Let p = 2p′+1 and q = 2q′ +1 be safe primes, p′ and
q′ are also two primes. Let N = pq be a public RSA modulus. The multiplicative
cyclic group QRN is all the quadratic residues Modulo N . Let g be a generator
of QRN . The public key is pk = (N, g) and the secret key is sk = (p, q).

TagGen(pk, sk,m) → Dm. For each file block mi, i ∈ [1, n], the block tag
Di = (gmi) mod N is calculated by the client. Let Dm = {D1, D2, . . . , Dn}, and
Dm is public. After that, the file m is send to the server.

Challenge(pk,Dm) →chal. The verifier picks a random group element s ∈
Zn\{0} and calculates gs = gs mod N . The verifier chooses a random number
r ∈ [1, 2k − 1] and then sends chal=< r, gs > to the server.

GenProof(pk,Dm,m, chal) → R. After receiving chal=< r, gs >, the server
generates a sequence of block indexes a1, a2, . . . , an by calling fr(i) for i ∈ [1, n]
iteratively. Then, the server calculates R = (gs)

∑n
i=1 aimi mod N , and sends

the proof R to the verifier.
CheckProof(pk,Dm, R, chal) → {success, failure}. After receiving R , the

verifier generates the block indexes a1, a2, . . . , an by calling fr(i) for i ∈ [1, n]
, which is the same as the server does in the GenProof function. Then the

verifier calculates P =
n∏

i=1

(Dai

i mod N) mod N and R′ = P s mod N . After

that the verifier checks whether R = R′ is satisfied. If R = R′, the verifier
outputs “success”, otherwise the verifier outputs “failure”.

Attack 1: In the Challenge step, the client sends a challenge chal=< r, gs >
to the server. An active adversary intercepts the message chal=< r, gs >, and
computes a sequence of block indexes a1, a2, . . . , an by calling fr(i) for i ∈ [1, n]
iteratively. Then, the active adversary challenges the server for n times, i.e., the
active adversary sends < ri, gs > (i ∈ [1, n]) to the server, and receives n valid

proofs Ri = (gs)
∑n

j=1 aijmj mod N (i ∈ [1, n]) from the server, where the block
indexes ai1, ai2, . . . , ain are computed by calling fri(j) for j ∈ [1, n] iteratively.
Let det[·] be the determinant of a matrix. If

det

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

...
an1 an2 . . . ann

⎤
⎥⎥⎥⎦ �= 0

614 E. Zhou and Z. Li

there exists n integer {k1, k2, . . . , kn}, which are not all zero, such that the equa-

tion

⎛
⎜⎜⎜⎝

a1
a2
...
an

⎞
⎟⎟⎟⎠ = k1

⎛
⎜⎜⎜⎝

a11
a12
...
a1n

⎞
⎟⎟⎟⎠ + · · · + kn

⎛
⎜⎜⎜⎝

an1
an2
...
ann

⎞
⎟⎟⎟⎠ is satisfied. The active adversary

can compute R = Rk1
1 · Rk2

2 · · ·Rkn
n and R is the valid proof for the challenge

chal=< r, gs >. At last, the active adversary forges a valid proof without pos-
sessing the data.

Attack 2: Assume the active adversary modifies data block m∗
i = mi + li

for i ∈ [1, n] and saves the values li. In the auditing process, the veri-
fier sends a challenge chal=< r, gs > to the server. Then the server calcu-
lates R∗ = (gs)

∑n
i=1 ai(mi+li) mod N = ((gs)

∑n
i=1 aimi · (gs)

∑n
i=1 aili) mod N =

(R ·(gs)
∑n

i=1 aili) mod N and sends R∗ to the verifier. The adversary replaces R∗

with R = (R∗/(gs)
∑n

i=1 aili) mod N = (gs)
∑n

i=1 aimi mod N . Since R is a valid
proof, the adversary successfully deceives the verifier and the data owner. This
attack is similar to the one in [12]. Ni et al. employed a digital signature scheme
to resist the attack of the active adversary, however, we use cryptographic hash
function to remedy the weakness, which is more efficient.

4 The Improved Protocol

We improve Hao et al.’s dynamic auditing protocol in this section. We apply
the strategy in [13] to support variable-sized blocks. The file m is segmented
into m = {mij}, i ∈ [1, n], j ∈ [1, li], li ∈ [1, lmax]. Specifically, the number of
segments per block will not be more than lmax. In other words, the filem includes
n data blocks, where the i-th block owns li segments. For a block, every segment
has the same size.

SetUp(1k → (pk, sk)). Let p = 2p′ + 1 and q = 2q′ + 1 be safe primes,
p′ and q′ are also two primes. Let N = pq be a public RSA modulus. The
multiplicative cyclic group QRN is all the quadratic residues Modulo N . Let H
be a cryptographic hash function. Let g1, g2, . . . , glmax be generators of QRN .
The public key is pk = (N, g1, g2, . . . , glmax) and the secret key is sk = (p, q).

TagGen(pk, sk,m) → Dm. For each file block mi, i ∈ [1, n], the block tag
Di = (gmi1

1 · gmi2
2 · · · gmili

li
) mod N is calculated by the client, in which li is the

number of segments of block mi. Let Dm = {D1, D2, . . . , Dn}, and Dm is public.
After that, the file m is sent to the server.

Challenge(pk,Dm) →chal. The verifier picks a random group element s ∈
Zn\{0} and calculates {λ1 = gs1, λ2 = gs2, . . . , λlmax = gslmax

}. The verifier chooses
a random number r ∈ [1, 2k − 1] and then sends chal=< r, λ1, λ2, . . . , λlmax > to
the server.

GenProof(pk,Dm,m, chal) → R. After receiving chal=<
r, λ1, λ2, . . . , λlmax >, the server computes a sequence of block indexes
a1, a2, . . . , an by calling fr(i) for i ∈ [1, n] iteratively. Then, the server calculates

R = H(λ1

∑n
i=1 ai·mi1 · λ2

∑n
i=1 ai·mi2 · · ·λlmax

∑n
i=1 ai·miλmax mod N). If k > li, let

mik = 0 . Finally, the server sends the proof R to the verifier.

An Improved Remote Data Possession Checking Protocol in Cloud Storage 615

CheckProof(pk,Dm, R, chal) → {success, failure}. After receiving R, the
verifier generates the block indexes a1, a2, . . . , an by calling fr(i) for i ∈ [1, n],
which is the same as the server does in the GenProof function. Then the verifier
calculates P and R′ as follows:

P =
n∏

i=1

(Dai

i mod N) mod N,R′ = H(P s mod N).

After that the verifier checks whether R = R′ is satisfied. If R = R′, the
verifier outputs “success”, otherwise the verifier outputs “failure”.

In the improved protocol, the adversary cannot forge a valid proof due to the
properties of the cryptography hash functions, thus, the improved protocol can
resist the attack of the active adversary. Besides, all the merits of the original
protocol are still preserved.

Data Dynamics. Dynamic data operations (including block modification,
block insertion and block deletion) are the same as those of Hao et al.’s dynamic
auditing protocol. Therefore, due to space limitation, the detailed description is
omitted here.

Correctness. In the improved protocol, as long as both the client and the
server honestly execute the protocol, the server can pass the auditing verification.
The correctness analysis of the improved protocol can be given by the following
theorem:

Theorem 1.If the client and the server honestly execute the protocol, then the
server can pass the auditing verification successfully.

If all the data blocks are being correctly stored at the server, we can prove
that R = R′.

R = H(λ1

∑n
i=1 ai·mi1 · λ2

∑n
i=1 ai·mi2 · · ·λlmax

∑n
i=1 ai·miλmax mod N)

= H((g1
∑n

i=1 ai·mi1 · g2
∑n

i=1 ai·mi2 · · · glmax

∑n
i=1 ai·miλmax)s mod N)

= H((
∏n

i=1 g1
mi1g2

mi2 , . . . glmax
milmax)ai·s mod N)

= H((
∏n

i=1 D
ai

i mod N)s mod N)
= H(P s mod N)
= R′

5 Performance and Security Analysis

5.1 Security Analysis

We need to prove that the server cannot generate valid proof unless the server
possesses the data. In the improved protocol, the security model is the same as
those in [5], the details of security proof are highly similar to [5]. Therefore, the
detailed security proof is omitted here.

5.2 Communication and Computation

In this section, we analyze the computation and communication costs of the
improved scheme. Because algebraic operations and simple modular arithmetic

616 E. Zhou and Z. Li

operations run fast enough [15], the computation cost of those two operations is
neglected. The computation cost of an exponent operation is denoted by ‖E‖.
Table 1 presents the comparisons of computation overhead between the improved
protocol and Hao et al.’s protocol.

We use |N | to denote the length of N in bits. In Hao et al.’s protocol, the
total communication cost (in the Challenge and GenProof steps) is k+2|N | bits.
In the improved protocol, the verifier sends {r, λ1, λ2, . . . , λlmax} to the server,
then the server sends the proof R to the verifier, the total communication cost
is 2k + λlmax |N | bits.

Table 1. Comparisons between the improved protocol and Hao et al.’s protocol

The improved protocol Hao et al.’s protocol

TagGen
n∑

i=1

li ‖E‖ n ‖E‖
Challenge lmax ‖E‖ ‖E‖
GenProof lmax ‖E‖ ‖E‖
CheckProof (n+ 1) ‖E‖ (n+ 1) ‖E‖

6 Conclusion

In this paper, we pointed out the security flaw of Hao et al.s protocol. We propose
an improved remote data integrity checking protocol that can support variable-
sized blocks. The improved protocol still preserves the properties of the original
protocol.

Acknowledgments. This work was supported by the Specialized Research
Fund for the Doctoral Program of Higher Education of China (20111102130003).

References

1. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable Data Possession at Untrusted Stores. In: 14th ACM Conference Com-
puter and Communications Security, pp. 598–609. ACM Press, Alexandria (2007)

2. Ateniese, G., Pietro, R.D., Mancini, L.V., Tsudik, G.: Scalable and efficient prov-
able data possession. In: 4th International Conference on Security and Privacy
in Communication Networks, SecureComm 2008, pp. 1–10. ACM Press, Istanbul
(2008)

3. Juels, A., Burton, J., Kaliski, S.: PORs: Proofs of retrievability for large files.
In: 14th ACM Conference Computer and Communications Security, pp. 584–597.
ACM Press, Alexandria (2007)

4. Sebe, F., Domingo-Ferrer, J., Martinez-Balleste, A., Deswarte, Y., Quisquater, J.-
J.: Efficient Remote Data Possession Checking in Critical Information Infrastruc-
tures. IEEE Transactions on Knowledge and Data Engineering 20(8), 1034–1038
(2008)

An Improved Remote Data Possession Checking Protocol in Cloud Storage 617

5. Zhuo, H., Sheng, Z., Nenghai, Y.: A Privacy-Preserving Remote Data Integrity
Checking Protocol with Data Dynamics and Public Verifiability. IEEE Transac-
tions on Knowledge and Data Engineering 23(9), 1432–1437 (2011)

6. Erway, C.C., Kupcu, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. In: 16th ACM Conference Computer and Communications Security,
CCS 2009, pp. 213–222. ACM Press, Chicago (2009)

7. Wang, Q., Wang, C., Ren, K., Lou, W., Li, J.: Enabling public auditability and data
dynamics for storage security in cloud computing. IEEE Transactions on Parallel
and Distributed Systems 22(5), 847–859 (2011)

8. Merkle, R.C.: A Digital Signature Based on a Conventional Encryption Function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988)

9. Zhu, Y., Hu, H., Ahn, G.J., Yu, M.: Cooperative Provable Data Possession for
Integrity Verification in MultiCloud Storage. IEEE Transactions Parallel and Dis-
tributed Systems 23(12), 2231–2244 (2012)

10. Wang, H., Zhang, Y.: On the Knowledge Soundness of a Cooperative Provable
Data Possession Scheme in Multicloud Storage. IEEE Transactions Parallel and
Distributed Systems 25(1), 264–267 (2014)

11. Yang, K., Jia, X.: An efficient and secure dynamic auditing protocol for data storage
in cloud computing. IEEE Transactions on Parallel and Distributed Systems 24(9),
1717–1726 (2013)

12. Ni, J., Yu, Y., Mu, Y., Xia, Q.: On the Security of an Efficient Dynamic Auditing
Protocol in Cloud Storage. IEEE Transactions on Parallel and Distributed Systems,
doi:10.1109/TPDS.2013.199

13. Liu, C., Chen, J., Yang, L., Zhang, X., Yang, C., Ranjan, R., Ramamohanarao, K.:
Authorized Public Auditing of Dynamic Big Data Storage on Cloud with Efficient
Verifiable Fine-grained Updates. IEEE Transactions on Parallel and Distributed
Systems, doi:10.1109/TPDS.2013.191

14. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing.
In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer,
Heidelberg (2001)

15. Barreto, P.S.L.M., Galbraith, S.D., O’ hEigeartaigh, C., Scott, M.: Efficient pair-
ing computation on supersingular abelian varieties. Designs, Codes and Cryptog-
raphy 42(3), 239–271 (2007)

Fault Localization of Concurrency Bugs
and Its Application in Web Security

Zhenyuan Jiang1,2

1 State Key Laboratory of Software Development Environment,
Beihang University, Beijing, China

2 School of Computer Science and Engineering, Beihang University, Beijing, China
jiangzy@nlsde.buaa.edu.cn

Abstract. Concurrent testing is of great importance to web security. This pa-
per presents a new automated edge-labeled communication graph based locat-
ing technique, called LUCON, to find buggy memory access pair and to present
buggy pattern and to build bug triggering scenario. In LUCON, the buggy pat-
tern gives the essence of the bug and the bug triggering scenario shows how the
bug happens. LUCON can discover significant types of concurrency bugs, includ-
ing order violations and both single-variable and multi-variable atomicity viola-
tions. Experimental results prove that LUCON can locate concurrency bugs in
real client/server applications such as Mysql and Apache accurately and provide
bug reports to help programmer understand the bug.

Keywords: Concurrency Bug, Order Violation, Atomicity Violation.

1 Introduction

As more and more vital data is stored in web applications and the number of transactions
on the web increases, web security testing is becoming very important. On the other
hand, Concurrency is the main feature of the network environment, its widely used in
web applications, real client/server applications, web security protocols, etc. Naturally
concurrency bugs have caused many web security issues, such that concurrent testing is
an important aspect of web security testing.

Concurrency bugs are difficult to expose and locate because they only occur in rare
particular interleavings of memory-access sequences. The non-deterministic behavior
of concurrent programs makes it hard to find these particular interleavings [1]. To mon-
itor and investigate all memory accesses is practically impossible since concurrent pro-
grams can have potentially astronomically large number of thread interleavings, and
since there exists complicated interactions among multiple threads in the manifestation
of concurrency bugs, its also hard to understand concurrency bugs.

A variety of fault locating techniques for concurrent programs have been proposed.
In early work researchers have focused on finding those involving a single shared vari-
able, these techniques detects data races [2,3], order violations [4] and single variable
atomicity violations [5,6]. Although these techniques can successfully find bugs, they
can only locate concurrency bugs involving a single variable. Some techniques find
multi-variable atomicity violations [7,8], but cannot find some important classes of

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 618–630, 2014.
c© Springer International Publishing Switzerland 2014

Fault Localization of Concurrency Bugs 619

single-variable concurrency bugs, such as order violations. Other techniques report the
existence of concurrency bugs involving both single variable and multiple variables
[9,10]. However, these techniques cannot provide enough information for programmers
to well understand and fix the bug.

Besides the above mentioned techniques, we are particularly interested in Recon,
which can locate concurrency bugs involving both single and multiple variables and
presents the short fragments of buggy execution schedules that illustrate how and why
bugs happened [11]. However, the results provided by Recon are still not enough for
programmers to well understand the bugs. For example, for atomicity violation, which
usually involves three or more statements, Recon could only give two of them. Actually,
the missing statements are also necessary to understand the bugs. In addition, due to
the difference of execution contexts, a concurrency bug may be represented by several
different edges in different communication graphs. Recon may rank the buggy edges
low, which means programmers have to waste time to check useless information.

In this paper we propose LUCON, our approach is based on communication graph
technique to locate and understand concurrency bugs. Specifically, by adding two labels
for each edge, we extend a communication graph to an edge-labeled communication
graph. One label represents whether the edge is relevant with buggy behavior and the
other records the edges runtime information. Based on the edge-labeled communication
graph, after given some buggy and non-buggy executions, LUCON proceeds in three
steps: locate and rank the buggy memory access pair, find bug patterns that contain the
buggy memory access pair, build a bug triggering scenario. The buggy pattern gives
the essence of the bug and the bug triggering scenario shows how the bug happens
which can help programmers well understand the bugs. We have implemented LUCON
based on the Recon tool and Pin [12] for testing C/C++ programs. LUCON can deal
with significant types of concurrency bugs, including order violation and both single
and multiple variable atomicity violation. We provide some case studies to illustrate the
utility of our approach such as the real client/server applications Mysql and Apache.
The paper makes the following contributions: (1) The presentation of a new technique
that handles important classes of concurrency bugs. (2) Implement LUCON for C/C++
programs, and the result of empirical studies show the effectiveness of LUCON.

2 Background

This section elaborates the background knowledge for our technique. We first introduce
the notation we use, and then provide the definitions of the concurrency bug types [13]
that we address. The execution result of Recon is illustrated at last.

2.1 Notation

For representation, we denote a memory access [14] to a shared variable by bt,s(x):
b is the memory access type, either read(R) or write(W); t is the thread that executes
the access; s is the corresponding program statement containing the access; x is the
shared variable. For example, R1,s1(x) represents a read access to shared variable x
in statement s1 of thread 1. And when t1 is different from t2, memory access pair
(b1t1,s1 , b2t2,s2) is usually denoted as (s1, s2) in brief.

620 Z. Jiang

Table 1 lists problematic memory access patterns [14] that represent the concurrency
bugs which are considered in LUCON. For example, the pattern R1,s1(x)-W2,s2 (x)
means the read access R1,s1(x) wrongly occurs before the write access W2,s2(x).
Pattern R1,s1(x)-W2,s2 (x)-R1,s3(x) means two memory read accesses R1,s1(x) and
R1,s3(x) which should be executed atomically, but are wrongly interrupted by the write
access W2,s2 (x). Note that one memory access pattern can always be decomposed into
one or two memory access pairs. We will introduce how the pairs are used in bug locat-
ing and the usage of patterns in Section 3.

Table 1. Memory access patterns considered in LUCON

PID Memory Access Pattern PID Memory Access Pattern
P1 R1,s1(x)-W2,s2(x) P9 W1,s1(x)-W2,s2(y)-W2,s3(x)-W1,s4(y)

P2 W1,s1(x)-R2,s2(x) P10 W1,s1(x)-W2,s2(y)-W1,s3(y)-W2,s4(x)

P3 W1,s1(x)-W2,s2(x) P11 W1,s1(x)-R2,s2(x)-R2,s3(y)-W1,s4(y)

P4 R1,s1(x)-W2,s2(x)-R1,s3(x) P12 W1,s1(x)-R2,s2(y)-R2,s3(x)-W1,s4(y)

P5 W1,s1(x)-W2,s2(x)-R1,s3(x) P13 R1,s1(x)-W2,s2(x)-W2,s3(y)-R1,s4(y)

P6 W1,s1(x)-R2,s2(x)-W1,s3(x) P14 R1,s1(x)-W2,s2(y)-W2,s3(x)-R1,s4(y)

P7 R1,s1(x)-W2,s2(x)-W1,s3(x) P15 R1,s1(x)-W2,s2(y)-R1,s3(y)-W2,s4(x)

P8 W1,s1(x)-W2,s2(x)-W2,s3(y)-W1,s4(y) P16 W1,s1(x)-R2,s2(y)-W1,s3(y)-R2,s4(x)

2.2 Concurrency Bug Type

An order violation happens when two memory accesses in different threads execute
in an unexpected order and then leads to unintended program behavior. Patterns for
order violation (Patterns P1 to P3) consist of two sequential thread accesses to a shared
memory location where at least one of the accesses is a write. For example, Figure
1(a) shows an order violation in Transmission, the read access to shared variable
bandwidth in thread 2 is expected to be executed later than the write access in thread 1,
but actually the read access executes firstly, then the program reads an uninitialized null
pointer and crashes later. Here the interleaving R1,s1(bandwidth)-W2,s2(bandwidth)
(Pattern P1) belongs to an order violation.

A single variable atomicity violation happens when two memory accesses involv-
ing a single variable which supposed to be executed atomically are interrupted by one
memory access in other different threads. Figure 2(a) shows an example of a single
variable atomicity violation in Mysql. There are two threads in the program. Thread 1
creates a new file, during which log type is temporarily set to CLOSED at s1 and is
set to the original status at s3. Thread 2 records a transaction into a log if log type is
not a CLOSED status at s2. The two write accesses to the shared variable log type
in thread 1 are expected to be executed atomically, but actually the read access in
thread 2 occurs between the two write accesses. s2 reads a CLOSED status and thread
2 mistakenly misses recording a transaction. Here the interleaving W1,s1(log type)-
R2,s2(log type)-W1,s3(log type) (Pattern P6) is a single variable atomicity violation.

A multi-variable atomicity violation is defined as the desired atomicity among sev-
eral memory accesses involving multiple variables is violated. Atomicity is often re-
ferred to as serializability [8], which is satisfied if the result of a concurrent execution

Fault Localization of Concurrency Bugs 621

(a) Order violation in Transmission (b) Bug triggering scenario

Fig. 1. An order violation example

(a) Single-variable involved (b) Multi-variable involved

Fig. 2. Atomicity violation examples

is the same as that of a serialized execution. Patterns P9 to P16 are unserializable inter-
leaving patterns involving multiple variables. Figure 2(b) shows an example of a multi-
variable atomicity violation extracted from simplified version of jsStringLength.
There are two shared variables str and len in program. The two write accesses should
be execute atomically to keep the value of str and len synchronized. For instance, if
the value of str changed, the program should immediately record the latest length of
str in len. But actually two read accesses to the shared variables occur between the
two write accesses. Consequently, the interleaving W1,s1(str)-R2,s2 (str)-R2,s3 (len)-
W1,s4(len) (Pattern P11) causes str1 and len1 to become out of sync.

622 Z. Jiang

2.3 A Motivating Example

Figure 3 shows the execution result of Recon, which is called aggregated reconstruc-
tion, for the bug in Figure 2(a). A node in the reconstruction is an memory access
statement represented by its position in source file. For example, the top left node
myopen.c97 means the statement which executes the memory access in line 97, file
myopen.cc. The two nodes log.cc1495 and sqlclass.h150 which are con-
nected by the black bold line constitute the buggy edge. The nodes in the red, blue
and purple circles are some memory accesses that happen around the buggy edge. The
buggy edge is provided in the aggregated reconstruction indeed. However, its still hard
to understand the bug with the result of Recon due to the following reasons: (1) Since
there are only two memory accesses (log.cc1495, sqlclass.h150) provided in
the reconstruction. We cannot determine the bug type. Even if we suppose the bug
as a single variable atomicity violation, it is very difficult to find the remainder part
which is the node log.cc138 indeed. (2) The aggregated reconstruction mixes the
information of several executions without making a distinction. Extracting one concrete
execution information from the aggregated reconstruction is impossible. The nodes in
reconstruction cannot show useful information about the bug. The programmer cant see
the macroscopical bug trigger process from these results of Recon.

Fig. 3. The result of Recon

3 Methodology

Our method which we call LUCON, is based on communication graph that represents
concurrent program execution. LUCON consists of three steps. In Step 1, LUCON in-
puts a concurrent program P and a test suite T, executes P with T multiple times, and
collects some buggy and nonbuggy executions. Calculate the suspiciousness for each
memory access pair that appears in the buggy executions. Then rank these pairs by sus-
piciousness for fault localization. In Step 2, for the top-ranking pairs, LUCON searches

Fault Localization of Concurrency Bugs 623

for the memory patterns that contain them. In Step 3, by using the information of call
stack and thread creation collected during the construction of communication graphs,
build bug triggering scenario based on the memory access pattern.

3.1 Locating Buggy Memory Access Pair

In communication graph, nodes represent the memory accesses and edges represent
the communications between nodes via shared memory. Edges in the buggy graphs
are strongly correlated with the occurrence of buggy behavior. But the lack of runtime
information about edges makes it difficult for understanding the bug. Thus we extend
the communication graph to an edge-labeled communication graph, which characterizes
more properties of communication as follows:

Definition 1. (Edge-labeled communication graph) An edge-labeled communication
graph is a system G = (V,E, I, F), where
(1) V is a set of nodes and each node v ∈ V is a tuple (s, ctx), where s is the statement
that executes the access and ctx is the execution context of this memory access;
(2) E ⊆ V × V is a set of edges, each edge e = (u, v) ∈E is a communication via a
shared memory;
(3) F : E → {True, False} associates with each edge a truth value to indicate
whether its relevant with buggy behavior;
(4) I : E → TS × T × B × TS × T × B × M × P associates with each edge e a
tuple, where M is the shared memory, P indicates process pid. For an edge e, I(e) =
(ts1, t1, b1, ts2, t2, b2,m, pid) is the runtime information of e, where (ts1, t1, b1) is the
execution time, thread id and access type of the source node, (ts2, t2, b2) is the similar
information of sink node.

After collecting the buggy and nonbuggy graphs, for each edge e that appears in the
buggy executions, we use the method proposed in [11] to counts the edges frequency
in the buggy and nonbuggy executions, i.e. buggyCount[e] and nonbuggyCount[e] re-
spectively. These edges compose a set called edgesInBuggyExecution. Due to slight
difference of the context ctx, there may appear the following situation: One edge is
(s1, ctx1, s2, ctx2) and the other is (s1, ctx3, s2, ctx4). They appears in different buggy
graphs, but correspond to the same buggy behavior, i.e. the buggy communication be-
tween memory access s1 and s2. Separately calculate their frequency will low their
rank, LUCON integrates their frequency to the frequency of their common pair (s1, s2).
For each edge e = (s1, ctx1, s2, ctx2) ∈ edgesInBuggyEexecution, the frequency
of memory access pair (s1, s2) mp is calculated by:

freq(mp) =

{
freq(mp) + buggycount[e], if nonbuggycount[e] = 0,

freq(mp), if nonbuggycount[e] �= 0.
(1)

During the integrating process of each mp, when it is updated by an edge e, we
associate it with the runtime information I(e) at the same time. At last, for each memory
access pair mp LUCON computes the suspiciousness by the following equation:

suspiciousness(mp) =
√

freq(mp)2 + C(mp)2 (2)

624 Z. Jiang

C(mp) proposed in [9] is a disparity in communication behavior between buggy and
nonbuggy graphs, and then LUCON ranks these memory access pairs in decreasing
orderby their suspiciousness.

3.2 Searching Buggy Memory Access Pattern

Concurrency bugs are always depicted in the form of interleaved sequences of oper-
ations, i.e. memory access pattern [14] which is called pattern for simplicity in this
section. Patterns are important for programmers to well understand concurrency bugs,
since they contain all the memory accesses involved and the interleaving orders among
these accesses. For the memory access pairs which ranked top, LUCON will search for
the possible memory access patterns that contain the pairs.

The problematic memory access patterns that represent the concurrency bugs which
are considered in LUCON are listed in Table 1. Given a memory access pair (s1, s2) and
its runtime information I(e), extracting the access type of (s1, s2), LUCON searches
the potential patterns that contain (s1, s2) in one concrete execution indicated by I(e)
by the following steps.

For some memory access pairs, whose one node occurs before main thread creates
the first thread, will not cause concurrency bug. These nodes are regarded as deadbeef.
In the case of a single shared variable, suppose that the extracted access type is W-R.
Firstly we will check whether it is a single variable atomicity violation. If the node
contains s1 is not a deadbeef, the type W-R will be assumed to be a single variable
atomicity violation first. Since the type W-R involves in three single variable atomicity
violation patterns, LUCON successively searches each of them. For pattern R1,s1(x)-
W2,s2(x)-R1,s3(x), LUCON tries to find the remainder memory access R1,s1(x) in
the following ways: Search from back to front for the latest node occurs before the
W2,s2(x) within the same thread of R1,s3(x) in one concrete execution, it should be
a read access to the shared memory x, and the distance between the two read is in a
reasonable range. For the remaining two patterns, LUCON deals with them similarly.
After the above searching process, if the remainder memory access cannot be found,
the type W-R will be judged as an order violation. And the memory access pattern is
just W1,s1(x)-R2,s2(x).

If the node contains s1 is a deadbeef, the write access in type W-R is useless. Type
W-R will be judged as an order violation with the pattern R1,s1(x)-W2,s2 (x), then
LUCON will search for the remainder memory access W2,s2(x). Nonbuggy executions
are used to search for this pattern. Since the read access R1,s1(x) will cause the program
to crash, therefore W2,s2(x) cannot be found in the buggy executions. Conversely, the
nonbuggy edge W2,s2(x)-R1,s1 (x) usually appears in the nonbuggy executions. Then
we can search for W2,s2(x) in the nonbuggy execution with the similar method used
while searching atomicity violation patterns.

In the case of multiple variable atomicity violations, suppose that the extracted access
type is W1,s1(x)-R2,s2 (x). Since the type W-R involves in six multiple variable atomic-
ity violation patterns, LUCON successively searches each of them. For the first pattern
W1,s1(x)-R2,s2(x)-R2,s3 (y)-W1,s4(y), LUCON searches for the access R2,s3(y) first,
according to the following constraints: (1) it should be a read access; (2) it occurs af-
ter R2,s2(x) which can be checked by the timestamp ts; (3) it should belong to the

Fault Localization of Concurrency Bugs 625

same thread as R2,s2(x); (4) it should not be too far from R2,s2(x); After that, LUCON
searches for the access W1,s4(y) according to the following constraints: it should be
a write access to the shared memory y, occurs after the R2,s3(y), belongs to the same
thread as W1,s1(x), it should not be too far from W1,s1(x). The distance constraints are
define as follows: (1) If the two access are in the same function, the distance of code
lines should be less than 10; (2) when in different functions, we find the latest function
which contains them two, if the max depth of the two nodes from the found function
is less than 4, we think this distance is ok. For the remaining five patterns, LUCON
searches them in the same way.

3.3 Constructing Bug Triggering Scenario

Memory access pattern gives the essence of the concurrency bug, but it cannot show the
detailed bug triggering process. For example, given the memory access pattern in Figure
1(a), it is still difficult for programmers to know how the execution process of thread
reaches to the memory access. The thread creation relationship remains unknown either.
These two points are important for understanding how the bug happens. For this case,
LUCON constructs a bug triggering scenario to help programmers better understand
the bugs.

The bug triggering scenario provides call stack information of each memory access
in pattern and the creation relationship between threads. The call stack gives the de-
tailed function invoke process from thread start function to the memory access. The
thread creation relationship shows whether threads are independent and when the cre-
ation happens. LUCON collects these information during the construction of commu-
nication graphs. For each thread, every function call and return event is recorded with
the timestamp that indicates when the event occurs. According to the timestamp of the
memory access, all alive functions from thread start to the current memory access can be
found. Simultaneously, the parent thread and the parent threads call stack information
when thread creation happens are stored. By recursively searching the parent thread,
the relationship between threads can be determined.

From the simplified bug triggering scenario in Figure 1(b), programmers can get
the following information. Thread 1 executes to function tr sessionInitFull(),
then creates thread 2 by invoking the functiontr eventInit() in tr sessionIni
tFull(). Thread 2 executes to the read access R2,s2 through several function in-
vokes started from ThreadFunc(). After tr eventInit() returns, thread 1 will
sequentially execute the write access W1,s1 in function tr sessionInitFull().
But since R2,s2 in the created thread 2 happens before W1,s1 in thread 1, an order viola-
tion happened. With the information above, programmers can roughly understand most
important events during the bug triggering process.

4 Experiments

There are two components of our evaluation. We show that our ranking technique is
effective in finding bugs compared with Recon, the buggy patterns and bug triggering
scenario LUCON produces are useful for bug understanding. We implemented LU-
CON based on Pin [12] and evaluated its ability to detect concurrency bugs using the

626 Z. Jiang

buggy programs described in Table 2. The first column shows the type of programs in
two categories: the bug kernel which are extracted from full versions of Mozilla, the
real client/server applications including Transmission, Pbzip2, two versions of
Mysql and Apache, which are full applications without any simplification. The sec-
ond column shows the name of the subject program. The third column lists the size of
the program in lines of code. The fourth column shows the type of the concurrency bug.

For the C/C++ extracted programs, we insert sleep primitive into programs to in-
crease the frequency of the bug appearance. For the real client/server programs, we
provided inputs to the subjects that can trigger concurrency bugs. Pbzip2 is a com-
pressing tool using bzip2 algorithm with parallel threads. We tested Pbzip2 to com-
press a large text file with a number of threads. Mysql is the most widely used database
application, we concurrently call several queries that can trigger bugs in the database
server. We ran all experiments on an 8-core 2.27GHz Intel Xeon with 16GB of memory
and Linux 2.6.32. We report results averaged over 10 runs of each experiment.

Table 2. The buggy programs used to evaluate LUCON

Category Program LOC Bug Type
httpconnectionw 63 Order Violation

Bug Kernel readwriteproc 60 Order Violation
BankAcount 136 Single-Variable Atomicity Violation
jsStringLength 69 Multi-Variable Atomicity Violation
Transmission 139k Order Violation

Client/server Pbzip2 2k Order Violation
Application Mysql-3596 415k Single-Variable Atomicity Violation

Mysql-791 372k Single-Variable Atomicity Violation
Apache 188k Single-Variable Atomicity Violation

4.1 Effectiveness

Table 3 shows the fault locating result of LUCON and Recon. Experiments of Recon are
conducted on the prototype tool provided by the author. For fair comparison to Recon,
LUCON collects 25 buggy runs and 25 nonbuggy runs. For all tested programs, LU-
CON can handle both single and multiple variable concurrency bugs. LUCON locates
the buggy patterns which provide the essence of bugs accurately and ranks all these
patterns top.

In contrast, Recon performs not well in some real applications. In some tested pro-
grams like Mysql and Apache, the real bugs ranked outside of the top twenty which
means that programmers need to check multiple irrelative reconstructions before the
real bug. Column 5 and column 7 show the number of edges used in bug locating of
LUCON and Recon respectively. The result shows that the number of edges in Recon
irrelevant to buggy behavior is rather high in most cases.

Fault Localization of Concurrency Bugs 627

Table 3. Results of evaluated programs comparing with Recon

Program Bug Type
LUCON Recon

Rank Edges Rank Edges
httpconnectionw R1,s1(x)-W2,s2(x) 1 1 2 25
readwriteproc W1,s1(x)-W2,s2(x) 1 1 2 31
Bankaccount R1,s1(x)-W2,s2(x)-W1,s3(x) 1 3 24 46
jsStringLength W1,s1(x)-R2,s2(x)-R2,s3(y)-W1,s4(y) 1 2 1 7
Transmission R1,s1(x)-W2,s2(x) 1 2124 2 4386
Pbzip2 W1,s1(x)-R2,s2(x) 1 175 2 484
Mysql-3596 R1,s1(x)-W2,s2(x)-R1,s3(x) 1 4013 26 5062
Mysql-791 W1,s1(x)-R2,s2(x)-W1,s3(x) 1 3984 34 5142
Apache W1,s1(x)-W2,s2(x)-R1,s3(x) 1 2314 23 3864

4.2 Bug Report

Figure 4 provides the bug report of the bug in Figure 3. There are two components
composed the bug report: a summary description of the bug and the bug triggering
scenario. The first part (lines 1-6) is the summary description. Line 1 shows that this
may be a multi-variable atomicity violation. From line 2 we can get the memory ac-
cess pattern of the bug is P11: W1,s1(x)-R2,s2(x)-R2,s3 (y)-W1,s4(y). The two shared
memories are str and len which we can know from figure 3. The following four
lines give the information about the four accesses contained in this atomicity viola-
tion. For example, for the first write access, the position of this access is in line 52 at
file httpconnection.cpp. The name of the function which executes the access is
Activate.

The bug triggering scenario provides call stack information of each memory access
in pattern and the creation relationship between threads. The second part (lines 7-9) is
the call stack information for the first write access to str. It shows that the write access

Fig. 4. The bug report for simplified jsStringLength

628 Z. Jiang

is executed in function Activate() by thread 0. Since it is in thread 0 without parent
thread, it has no thread creation information.

The third and fourth parts (lines 10-25) are the information of call stack and thread
creation for the first and second read access to str and len respectively. These two
parts are the same since they are executed in the same thread and function. For these
two parts, lines 10-12 and lines 18-20 are the call stack information in the read ac-
cesss thread, we should check them from bottom to top. The function invoke process
shows how the execution of thread 1 reaches to the read access from the start function
thread(). Lines 13-17 and lines 21-25 provided the thread relationship. It shows that
the parent thread of thread 1 is thread 0. The thread creation process is as follows: In
thread 0, main()→ Activate()→AsyncRead()→pthread create().

The fifth part (Lines 26-28) provides the call stack information for the second write
access to len, which is the same to that of the first write access since they are executed
in the same thread and function.

From the call stack information(part2) of the first write access and the thread cre-
ation information of thread 1(part3 and part4), we can see that thread 0 created an
asynchronous thread(i.e. thread 1) by invoking the function AsyncRead() in func-
tion Activate() of thread 0. After function AsyncRead() returns, thread 0 will
sequentially execute the second write access in function Activate(). But since the
two read access in the created thread 1 happen before the second write access in thread
0, the atomicity of the two write accesses is destroyed. This leads to the value of str
and len become out of sync.

As to this bug, Recon only provides the first write and the first read access. It is
hard for programmer to find the remaining two memory accesses. Even if all the four
accesses are provided, it is hard to get the triggering process of the bug. Since the com-
plicated function invoking and thread creation relationship in the source code makes
it hard to understand where the thread is created and how the program executes to the
corresponding access. The above bug report shows that LUCON provides the memory
access pattern, and further gives a bug triggering scenario to show how the bug happens.

5 Related Work

There is much research on fault analysis and detection for concurrency bugs. In this sec-
tion, we discuss the most relevant work to our own and compare the LUCON approach
with these existing methods.

Falcon [4] collects memory access patterns dynamically and ranks patterns to iden-
tify potential concurrency bugs. However, Falcon is limited to concurrency bugs in-
volving a single variable and cannot provide any information about the bug triggering
process. DefUse [10] uses communication based strategy to monitor the memory ac-
cess pairs between threads and report the most suspicious pairs as possible concurrency
bugs. Bugaboo [9] collects context-aware communication graphs that contain a list of
memory locations between threads and reports the graph with suspiciousness ranking.
Recon [11] extends Bugaboo to reconstruct the buggy source and sink locations of two
different threads from the communication graphs which aims to help understand the
bug. Compared to these approaches, our method can deal with concurrency bugs in-

Fault Localization of Concurrency Bugs 629

volving multiple variable and construct bug triggering scenarios to help programmers
better understand the bugs.

Among other existing concurrent testing techniques, we are particularly interested
in bug eliciting and active testing method which can improve LUCON in terms of
concurrency bug detection ability. Since program failures occur infrequently in test-
ing based approaches, bug eliciting techniques can increase the frequency of the bug
appearance. Utilizing random delays can increase the possibility of a buggy interleav-
ing [15]. Also, there are some other methods like schemes that control the scheduler to
elicit specific interleavings [16], runtime monitoring and synchronization control [17],
and some analysis based methods [6]. In LUCON we inject artificial delays into the
programs to increase the frequency of the bug appearance. But we have not evaluated
it experimentally. An active testing scheduler would try to exercise a suspicious buggy
interleaving in a real execution to verify whether it is really a bug or merely a false pos-
itive. There are two common ways to perform the validation. One way is to precisely
compute an alternate schedule and enforce it to expose the bug [18]. The other way is
using heuristics methods to expose predicted buggy interleavings [17].

6 Conclusion and Future Work

Compared with other fault localization techniques, LUCON has two main advantages:
(1) Extending detection ability from single variable concurrency bugs to both single
and multiple variable concurrency bugs; (2) Presenting buggy patterns and building
bug triggering scenarios to help programmers understand the bug. Experimental results
show that LUCON is effective for a suite of real client/server programs.

However, there are several areas of future work that will improve it. First, program
failures occur infrequently in LUOCN. Thus we need to develop a scheme to increase
the frequency of the bug appearance by using bug eliciting technique. Second, by com-
bining active testing technique, we can verify whether the searched patterns are real
bugs or merely false positive. In general, we believe these two techniques will enhance
the efficiency and accuracy of LUCON.

Acknowledgements. We sincerely thank the anonymous reviewers for their patient
review and valuable comments which significantly improve the quality of this paper.
Special thanks to He Li for early work on the LUCON infrastructure.

References

1. McDowell, C.E., Helmbold, D.P.: Debugging concurrent programs. ACM Computing Sur-
veys (CSUR) 21(4), 593–622 (1989)

2. Flanagan, C., Freund, S.N.: Fasttrack: efficient and precise dynamic race detection. ACM
Sigplan Notices 44, 121–133 (2009)

3. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A dynamic
data race detector for multithreaded programs. ACM Transactions on Computer Systems
(TOCS) 15(4), 391–411 (1997)

630 Z. Jiang

4. Park, S., Vuduc, R.W., Harrold, M.J.: Falcon: fault localization in concurrent programs. In:
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering,
vol. 1, pp. 245–254. ACM (2010)

5. Lu, S., Tucek, J., Qin, F., Zhou, Y.: Avio: detecting atomicity violations via access inter-
leaving invariants. In: ACM SIGOPS Operating Systems Review, vol. 40, pp. 37–48. ACM
(2006)

6. Park, S., Lu, S., Zhou, Y.: Ctrigger: exposing atomicity violation bugs from their hiding
places. ACM Sigplan Notices 44(3), 25–36 (2009)

7. Lucia, B., Ceze, L., Strauss, K.: Colorsafe: architectural support for debugging and dynami-
cally avoiding multi-variable atomicity violations. In: ACM SIGARCH Computer Architec-
ture News, vol. 38, pp. 222–233. ACM (2010)

8. Vaziri, M., Tip, F., Dolby, J.: Associating synchronization constraints with data in an object-
oriented language. ACM SIGPLAN Notices 41, 334–345 (2006)

9. Lucia, B., Ceze, L.: Finding concurrency bugs with context-aware communication graphs. In:
Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 553–563 (2009)

10. Shi, Y., Park, S., Yin, Z., Lu, S., Zhou, Y., Chen, W., Zheng, W.: Do i use the wrong defini-
tion?: Defuse: definition-use invariants for detecting concurrency and sequential bugs. ACM
Sigplan Notices 45, 160–174 (2010)

11. Lucia, B., Wood, B.P., Ceze, L.: Isolating and understanding concurrency errors using recon-
structed execution fragments. ACM SIGPLAN Notices 46, 378–388 (2011)

12. Pintool, http://www.pintool.org/
13. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study on real

world concurrency bug characteristics. ACM Sigplan Notices 43, 329–339 (2008)
14. Park, S., Vuduc, R., Harrold, M.J.: A unified approach for localizing non-deadlock concur-

rency bugs. In: 2012 IEEE Fifth International Conference on Software Testing, Verification
and Validation (ICST), pp. 51–60. IEEE (2012)

15. Edelstein, O., Farchi, E., Nir, Y., Ratsaby, G., Ur, S.: Multithreaded java program test gener-
ation. IBM Systems Journal 41(1), 111–125 (2002)

16. Sen, K.: Race directed random testing of concurrent programs. ACM SIGPLAN Notices 43,
11–21 (2008)

17. Park, C.S., Sen, K.: Randomized active atomicity violation detection in concurrent programs.
In: Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 135–145. ACM (2008)

18. Sorrentino, F., Farzan, A., Madhusudan, P.: Penelope: weaving threads to expose atomicity
violations. In: Proceedings of the Eighteenth ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 37–46. ACM (2010)

http://www.pintool.org/

Feature Selection Toward Optimizing Internet

Traffic Behavior Identification

Zhenxiang Chen, Lizhi Peng, Shupeng Zhao, Lei Zhang, and Shan Jing

Shandong Provincial Key Laboratory of Network Based Intelligent Computing,
University of Jinan

{czx,plz,nic zhaosp,nicop8,jingshan}@ujn.edu.cn

Abstract. P2P and multimedia similar applications are seemed as pri-
mary bandwidth consume network behaviors. Accurate network traffic
behavior identification supports numerous network activities from net-
work management, monitoring and Quality-of-Service(QoS), to forecast
and application-specific investigations. Accuracy and performance are
the two most important metrics for traffic identification especially for
online implementation. In this paper, the optimization of feature selec-
tion to traffic identification is demonstrated in two traces which are cap-
tured from different time and location. Moreover, this optimization to
traffic identification toward various applications are compared and ana-
lyzed in online and offline status with C4.5 decision tree algorithm. Our
research demonstrated that the optimal features for traffic identification
are mainly sensitive to application, time and location. Identifying for
the same application behavior on different network location are sensitive
to different features. Experiment result shows that the selected optimal
feature subset can greatly improve the performance for both online and
offline identification. Furthermore, it can improve the online traffic iden-
tification implementability in real network condition.

Keywords: Internet traffic, feature selection, behavior identification,
online classification.

1 Introduction

Network security, accounting, traffic engineering and Quality of Service(QoS) are
network-service facilities which rely on accurate identification of network traf-
fic. Online traffic identification is a potential technique to solve difficult network
management problems fundamentally for Internet service providers[1]. Although
many research proposed, traffic identification remains a fundamental problem in
the network community. Some proposed traffic identification technics include
port numbers, application payload, statistical features and host behaviors based
methods. Recent years, a lot of attention has been paid on the application of ma-
chine learning techniques to traffic identification,which can automatically learn
and build a classifier from the given samples and feature set. Then the learned
classifier can be used to identify the new captured traffic.

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 631–644, 2014.
c© Springer International Publishing Switzerland 2014

632 Z. Chen et al.

The machine learning techniques applied in traffic identification, generally can
be categorized into supervised ,unsupervised (or clustering) and semi-supervised.
The supervised methods[2,3] train a classifier from a set of pre-labeled training
samples to classify new traffic flows, while the unsupervised methods[4,5] poly-
merize the traffic flows that have similar characteristics into clusters. The Traffic
clustering does not need any supervised training samples and has the potential
of identifying unknown applications, while supervised methods can only classify
traffic flows of known applications. Semi-supervised[6] adequately use unlabeled
data to train classifier and attract a mess of internet from research communities.

Many research showed that reasonable behavior features are important for
accuracy of traffic identification. For online traffic identification, due to rigorous
real-time requirement, it is necessary to reduce the number of used features[7,8]
for decreasing computational cost and delay. Simply and timely gotten features
are also helpful for identification performance. More importantly, identify the
same application behavior on different network location are sensitive to selected
features. Effectively feature selection can greatly optimize performance of clas-
sifier,especially for online traffic identification. For offline identification, in or-
der to search available communication pattern, it is also necessary to cut down
irrelevant and redundancy features to improve the performance.

In this paper, the optimization of feature selection to traffic identification is
demonstrated in two traces which are captured from the diverse time and loca-
tion. Moreover, this optimization to traffic identification are compared by online
and offline condition. It verified that the optimal features for traffic identifica-
tion are mainly sensitive to application, time and network location. Experiment
result shows that the selected optimal feature subset can greatly improve the
performance for both online and offline identification.

The rest of the paper is organized as follows. Section II highlights related
work in this field. Section III proposed the foundation of online traffic identi-
fication. Section IV focuses on adaptive feature selection toward time, location
and applications approaches. In section V, experiment result was compared and
analysed. Finally, chapter VI makes some final conclusion on feature selection
for traffic identification.

2 Related Work

A feature is a descriptive statistic to characterize an object, and ideally, each
object exhibits different feature values depending on the category to which it
belongs. Based on the features, models can be established by using machine
learning techniques.For Internet traffic, each flow is characterized by a number
of features, such as packet size which can describe its behavior. Usually, a flow
can be considered as a sequence of share five-tuples source IP address, source
Port, destination IP address, destination Port, protocol of transport layer with
a timeout of 64 seconds[9].Moore et al investigated 248 traffic features[10] for
traffic classification.

Generally, the feature selection techniques share a similar process(as shown
in Fig.1) to select a best subset[12], in which the selection process of the best

Feature Selection Toward Optimizing Internet Traffic Behavior Identification 633

subset has four steps which include: subset generation, subset evaluation, stop-
ping criterion, and final subset validation. Consequently, a feature is selected
if additional information is gained when it is added to the previously selected
feature set, and discarded in the opposite case since the information obtained is
already contained (redundant) in the previous set.

Fig. 1. The generally feature selection process

As the pointed process scheme,Chi-Ho et al[11] present a novel intrusion de-
tection approach to extract both accurate and interpretable fuzzy rules from
network traffic data for identification. In addition, the proposed system can also
act as a genetic feature selection wrapper to search for an optimal feature subset
for dimensionality reduction. Xiaochun et al [13]proposed a hybrid feature se-
lection method for flow identification. It demonstrated that their approach can
greatly improve computational performance without negative impact on identifi-
cation accuracy. Yishi Zhang et al[14] investigated the relation between features
and the separate classes instead of only handling the relevance and redundancy
analysis from the point of view of the whole class.

Feature selection can improve the performance of identification system on ma-
jority classes, but as a cost, it will decrease the accuracy in minority classes. As
a result, it brings about the multi-class imbalance problem. To multi-class im-
balance problem in Internet traffic identification and applications identification,
Zhen LIU et al[15] research the class-dependent misidentification cost to improve
the identification performance on the minority class, however, some classes are
still hard to be classified.

3 The Foundation of Online Traffic Identification

3.1 Precondition for Online Identification

Due to real-time, fugitiveness, polytrope and nonreversible of Internet traffic,
it is difficult to search optimal feature for online traffic identification. A lot
of researchers have investigated it deeply[16,17]. It can conclude that online
traffic identification need a classifier of low latency(real-time reaction), low cost
(computation and storing) and easily be retrained.

634 Z. Chen et al.

Low Latency. For online identification, it is necessary to reduce latency as low
as possible, at least, the flows should be classified before it passed away. In other
word, it need extract feature information from the first few packets as fewer as
possible to obtain enough identification information. Some features such as flow
duration and flow length are not suitable for online traffic identification, since
they can’t be gotten until a complete flow passed away.

Low Cost. As online identification requirement, the traffic feature should meet
the requirement of low cost of computation and store. Due to traffic ratio be-
comes higher and higher,some computation such as Fourier transform and appli-
cation payload signature matching are not suitable for online traffic identification
because of their large cost of computation and storage.

Easily Retrained. Face the dynamic network condition, it is very important
to retrain classifier when network environment changed. Xu Tian et al [18]have
proved that concept shift exist in dynamic Internet traffic because of various
kinds of version in application software and protocol. This situation will badly
influence the performance and accuracy of classifier. Therefore, it is necessary
to retrain classifier completely or partly in time.

3.2 Online Identification Features Analysis

In the area of traffic identification, various kinds of feature are used to charac-
terize traffic. Moore feature set is seen as origin features and been widely used in
recent research. It includes of 248 kinds of flow features, which with application
class label. However, not all features are suitable to online traffic identification.
If all the 248 statistical features are used for characterize network traffic flows,
the computation cost will be a big issue.

For online identification, traffic features should be simple enough for calcula-
tion and storing. Some features such as duration of a flow, the length of a flow,
and the total number of a flow, which need observing a complete flow to got the
effective information, are rejected in this work. More than 100 features such as
fast Fourier transform and effective bandwidth based upon entropy that need
complex computation are also exclude. Finally, we can get 28 kind of features,
which are fit for online traffic identification. TABLE 1 shows a feature subset of
Moore feature set[10],which can be calculated on few packets of a flow.

4 Feature Selection toward Time, Location and
Applications

4.1 Traces

In this paper, two network datasets are used for validating our methods. One
is captured from the real network of Shandong Provincial Key Laboratory of
Network Based Intelligent Computing, which is called UJN dataset. The other
public one captured from the border router of the University of Auckland, which
is called Auckland dataset.

Feature Selection Toward Optimizing Internet Traffic Behavior Identification 635

Table 1. The Characters of online traffic identification features

No. Feature Abbreviation Feature Description

1 pkt size max The maximum of packet size
2 pkt size min The minimum of packet size
3 pkt size mean The mean of packet size
4 pkt size std dev The standard deviation of packet size
5 pkt IAT max The maximum of inter-arrival time
6 pkt IAT min The minimum of inter-arrival time
7 pkt IAT mean The mean of inter-arrival time
8 pkt IAT std dev The standard deviation of inter-arrival time
9 IP payload size max The maximum of payload size on packet
10 IP payload size min The minimum of payload size on packet
11 IP payload size mean The mean of payload size on packet
12 IP payload size std dev The standard deviation of payload size on packet
13 TCP payload size max The maximum of payload size of TCP segments
14 TCP payload size min The minimum of payload size of TCP segments
15 TCP payload size mean The mean of payload size of TCP segments
16 TCP payload size std dev The standard deviation of payload size of TCP segments
17 window size max The maximum of window size
18 window size min The minimum of window size
19 window size mean The mean of window size
20 window size std dev The standard deviation of window size
21 TCP header size max The maximum of head size of TCP segments
22 TCP header size min The minimum of head size of TCP segments
23 TCP header size mean The mean of head size of TCP segments
24 TCP header size std dev The standard deviation of head size of TCP segments
25 num URG The number of packets with URG flag
26 num ACK The number of packets with ACK flag
27 num PSH The number of packets with PSH flag
28 num RST The number of packets with RST flag

UJN Trace. The UJN dataset (TABLE 2) is captured on an all-purpose PC
(more than 50) in the LAN of the laboratory which comprises several 1000Base-
TX segments routed through a Linux-based server. Each kind of traffic is respec-
tively captured, when the special application separately run in a period of time.
Therefore, each flow is labeled with corresponding application ground truth.

The Window system offers a lot of application interfaces for a third part
to develop its own driver program, which can capture all user socket calls us-
ing winsock interface and make processing at the socket calls before forwarding
packets.In order to label packet with applications ground truth, we achieved
a labeling platform through Socket Hook and NDIS (Network Driver Interface
Specification) Hook on the user hosts (Fig.2)[19].This technology is more effec-
tive than that labeling traffic based on port numbers or application payloads.

Auckland Trace. Auckland datasets [20] is captured from Jul. 3, 2000 to Nov.
29, 2001, which are almost 24 hours multiply by 7 days. The volume of total
traffic is nearly 359 GB which consist of more than 996 million packets in all.
The volume of source dataset size is too large to analyze. For decreasing the
size of dataset, two parts of Auckland dataset 20000214-185536-0 and 20000214-
185536-1 are selected. In order to get ground truth, each flow is labeled through
matching server port to default port in IANA. The statistic information of these
traces is represented in TABLE 3.

636 Z. Chen et al.

Table 2. Composition of UJN Dataset

Category Application Byte Packet Flow

WEB Web applications 29779475 68746 1126
BULK FTP 41342040 43678 15
MAIL IMAP, POP2/3 3220 74 15
ATTACK Worms, viruses 3632 78 17
CHAT QQ, MSN 1729268 11319 998
P2P XunleieDonkey 33341617 46956 3012
MULTIMEDIA Windows Media Player 2662954 3322 40
VOIP QQvoice, Ali 22420 478 107
NEWS NNTP 104 79406 4
GAEMS Angry birds 15440829 18186 76
DATABASE MySQL, Oracle 92 2 1
INTERACTIVE SSH, telnet 76161 720 3
OTHER 875624 13160 427

Fig. 2. Architecture of labeling packets with truth ground platform

Table 3. Composition of Auckland Dataset

Traces Protocol Packets Flows Bytes

20000214-185536-0 TCP 1629765 114085 835.0MB
20000214-185536-0 UDP 201502 - 23.6MB
20000214-185536-1 TCP 1541358 115549 637.4MB
20000214-185536-1 UDP 214371 - 17.3MB

Feature Selection Toward Optimizing Internet Traffic Behavior Identification 637

4.2 Computational Platform and Tools

WEKA [21]is a famous experiment toolkit of machine learning, which contains a
serial of algorithms for data analysis and predictive modeling. C4.5 algorithm and
some feature selection algorithms are selected to build feature selection and iden-
tification model in this work. The experiment platform is all-purpose PC which
carries on Windows XP operating system, whose CPU is Intel Core(TM) 2-6300,
dominant frequency is 1.88 GHz, and Physical memory is DDR-667 2GBytes.

4.3 Feature Selection Algorithm

In this paper, feature selection method is implemented in WEKA, which in-
cludes attribute evaluator and search method. The evaluator determines what
method is used to assign a worth to each subset of attributes. The search method
determines what style of search is performed.

Feature selection is aim to improve the identification performance of the clas-
sifier. The feature selection algorithm on WEKA is used to validate our method-
ology, which is fast correlation-based filter algorithm. This algorithm uses sym-
metrical uncertainty as the goodness measure whether a feature is relevant to
the class. the symmetrical uncertainty can be defined as follows.

SU(X,Y) = [
IG(X |Y)

H(X) +H(Y)
] (1)

The SU (X, Y) is the symmetrical uncertainty of variance X and Y in this
formula 1. The is the information gain that can be calculated as follows.

IG(X |Y) = H(X)−H(X |Y) (2)

H(X) = −
∑

P (xi)log2(P (xi)) (3)

H(X) = −
∑

P (yi)
∑

xi|yj log2(P (xi)|yj) (4)

It compensates for information gain’s bias toward features with more values
and normalizes its values to the range [0;1] with the value 1 indicating that
knowledge of the value of either one completely predicts the value of the other
and the value 0 indicating that X and Y are independent.

4.4 Identification Algorithms

For demonstrating the effectiveness of the methods, C4.5 algorithm is used as
a identification model.A test node in the tree represent feature, with branches
linked to a sub-tree. A leaf representing the class constitutes the output. To
classify real-time using C4.5, the leaf node is searched begin from the tree root
to the leaves(the regulation modes). This process will go iteratively into a sub-
tree, until it reaches a leaf node with the predicted class. On the other hand,

638 Z. Chen et al.

predicting the class of an instance is the key point of tracing the path of nodes
and branches to the leaf node.

When building a model, the training set S is consisted of a set of instances
which have a fixed set of features (A1, , Ak)T and a class C. The class C rep-
resents the application of the network traffic and has the values (c1, c2, , cm
). Each feature Aq represents the flow statistics and has the values (a1, a2, , an
).The information gain ratio is used to decide which feature should be chosen as
a test node. It reflects the correlation between a feature Aq and a class label C,
which is calculated by the equation (1). The entropy reflects the impurity of the
feature, which is calculated by the equation (3).

Ggainratio(C|Aq) =
H(C)−H(C|Aq)

H(C)
(5)

Where

H(C|Aq) = −
n∑

j=1

p(aj)
m∑
i=1

p(
ci
ai
)log2p(

ci
ai
) (6)

And

H(C) = −
m∑
i=1

p(ci)log2p(ci) (7)

Where

p(ci) = P [C = ci] = P [Aq = aj]andp(
ci
aj

) = P (C = ci|Aq = aj)

In principle, the process of building model iteratively looks for the best feature
to partition the data. The one with highest information gain ratio will be chose
as the test node, until the node becomes a leaf node. To classify the instance
using C4.5, it just needs to compare the features of the test instance to the node
of the tree. Identifying traffic by C4.5 has a low computational cost and can be
realized easily for implantation.

4.5 Experiment

In this paper, we want to validate these assumptions as follow:
1) Feature selection can optimize traffic identification by cut redundancy fea-

tures and irrelevant features. Not only accuracy, precision and recall will be
improved, the cost and latency of classifier will be decreased. This kind of opti-
mization is effectual to both online and offline traffic identification.

2) Different applications will produce different traffic, so the feature subset
toward various applications will be different. This kind of feature subset will be
the fittest one to achieve the optimization.

3) Traffic will change over time in the same network location. For example,
the P2P behavior traffic in the day is totaly different from what in the night.

Grasping this discipline will be helpful to optimize classifier with pertinence
in special period. A set of experiments are designed to validate above assump-
tions in Auckland and UJN trace, which are captured from different time and

Feature Selection Toward Optimizing Internet Traffic Behavior Identification 639

locations. In order to simulate online traffic identification, feature information is
extracted from the first few packets of a flow named CFFP[22]. On the contrary,
as offline traffic identification, feature information is extracted from entire pack-
ets of a flow named CEP in traditional process. On these feature information,
features are calculated to form a feature vector that describes a flow.

First of all, fast correlation-based filter algorithm is used to obtain optimal
feature subset in Auckland dataset and UJN dataset. Classifier build by online
traffic identification feature is compared with classifier build by feature subset.
Performance of classifier such as build time, classifier size and any other index
are compared in order to illustrate the optimization to traffic identification in
different network.

Secondly, feature selection toward various applications is analyzed for iden-
tifying single applications category such as P2P. To each application category,
traffic identification is considered to identify and classify specific application.
Performance of classifier is also compared and analyzed like.

Lastly, in consideration that traffic change over time. The Auckland trace and
UJN trace are divided into a series of traces that only includes traffic captured
during one hour. That is to say, we observe traffic in each hours. Moreover, we
want to know how the feature subset will change when the time passed from one
hour to the next. Furthermore, different time granularity should be considered
in this observation.

5 Experiment Analysis

5.1 Optimization to Offline and Online Traffic Identification

Duo to various kinds of application categories in our experiment, the identifica-
tion task is multi-classification. It can analyze and compare experiment result
from three points: accuracy, size of identification model and time for building
model.

In this part, we adopt symmetrical uncertain attribute set evaluation as at-
tribute evaluator to evaluate which feature subset is best, and use FCBF Search
as fast correlation-based filter algorithm to search candidate feature in feature
space.It is significant that number of feature after feature selection is less than
before in online and offline condition, which is 1 and 4 respectively. Moreover,
number of leaves and size of the tree has similar result than number of features,
which decrease more than 50% off. It shows that feature selection can retain
main structure of identification model and cut down secondary structure.

In same condition, the building model time after feature selection is much less
than before. The latter is almost 20 times larger than the former. This character
is more important to online traffic identification which need quickly process a
great deal of data. From the comparison of accuracy, it can safely conclude that
feature selection will not deeply deteriorate the accuracy. It is noting that feature
selection also reduce the cost and processing time in extracting feature informa-
tion. To offline traffic identification, feature selection decreases the volume of
storrage. Moreover, it is helpful to find key point to Internet traffic for better

640 Z. Chen et al.

network plan and design. Similar with identification result on Auckland dataset,
feature selection on UJN dataset also significantly improve the performance of
identification system in the number of feature, number of leaves, and the size of
the tree, time taken to build model, accuracy and feature number.

Table 4. Identification result on Auckland dataset

Online traffic identification Offline traffic identification

based on
unselected feature

based on
selected feature

based on
unselected feature

based on
selected feature

number of features 28 1 28 4
number of tree leaves 145 62 77 47
size of the tree 289 123 153 93
time to build model 4.92s 0.22s 5.73s 0.34s
accuracy 97.8623% 91.9674% 98.7498% 97.1823%
number in feature list 1-28 9 1-28 1,25.26

Table 5. Identification result on UJN dataset

Online traffic identification Offline traffic identification

based on
unselected feature

based on
selected feature

based on
unselected feature

based on
selected feature

number of features 28 3 28 4
number of tree leaves 173 181 177 101
size of the tree 345 361 353 201
time to build model 1.66s 0.36s 2.19s 0.33s
accuracy 92.4847% 93.7009% 91.2196% 89.7642%
number in feature list 1-28 3,4,17 1-28 20, 25, 18, 19, 28

Comparing with above two experiments result on Auckland dataset and UJN
dataset, it has demonstrates that the optimization to traffic identification is
very effectual in different dataset, which were captured from different time and
location. It means that feature selection could work well in different network
environments and it also has the ability of adapting the great change in network
environment. In addition to this, new fact attracts our interesting that there are
some features in the feature subset no matter in online or offline. It suggests
that these features maybe not sensitive to network environment.

It is noting that the FCBF algorithm ranks all feature with corresponding a
value. The feature standard deviation of packet size is 0.488 in UJN dataset to of-
fline traffic identification. And the feature maximin of window size is 0.157,which
are selected as feature subset. Similarly, the feature minimum of windows size is
0.397 in UJN dataset to online traffic identification. The feature mean of win-
dows size is 0.38 and the number of packets with RST flags is 0.153,which are
selected as optimal feature subset. Feature subset to online identification is dif-
ferent from feature subset to offline because sampled packet policies are used in
online to implement real time identification. It will lose some information such
as feature which is relative with packet size information. To offline traffic identi-
fication, all packets of a flow are used to extract feature information. The feature

Feature Selection Toward Optimizing Internet Traffic Behavior Identification 641

standard deviation of packet size has highest ranked value to demonstrate that
this feature is the most valuable to classify traffic. However, it is sensitive to
packet sampled to online traffic.

5.2 Feature Selection toward Various Application Categories

Different application category has different feature subset by using same feature
selection algorithm in traffic identification for identifying specific applications
category. It is effective to research the difference of feature selection toward var-
ious application categories. A few feature subsets are selected on Auckland and
UJN datasets, which are facing specific application category respectively. Like
previous analysis, traffic identification for classify various traffic in mixed traffic
in online and offline condition, we deeply analyze performance of identification
system from follow metrics: the number of feature, number of tree leaves, size
of the tree, time taken to build model, accuracy and feature number. There are
some analyses on traffic generated by P2P applications and WWW applications
as that are not belong to any applications categories.

No matter offline or online identification, feature selection can significantly
decreases the number of selected features as a rate more than 85% off. It will
signally cut down the processing delay and storage cost, which is useful to online
traffic identification. It is also effective to offline traffic identification for analyz-
ing network tendency. Moreover, the time for building model is also decreased
78% off at least. It can lead to retraining and update classifier timely in order to
fit network environment. In additional to above optimization to traffic identifica-
tion, number of leaves in classifier built by using C4.5 decision tree algorithm, the
size of classifier is reduces in different extent. However, the accuracy is reduced
little after feature selection as a cost.

Table 6. P2P traffic behavior identification result on Auckland dataset

Online traffic identification Offline traffic identification

based on
unselected feature

based on
selected feature

based on
unselected feature

based on
selected feature

number of features 28 5 28 2
number of tree leaves 53 41 15 11
size of the tree 105 81 29 21
time to build model 3.19s 0.78s 2.56s 0.34s
accuracy 99.3911% 97.2663% 99.8373% 99.7733%
number in feature list 1-28 12, 16, 9, 5, 8 1-28 1, 12, 16, 8, 26

Different application categories are sensitive to different feature subset. It is
contrasting that traffic identification toward specific application category has
less cost and latency. It is noting that there are more features which are maybe
relative with environment. It implies that feature selection toward specific be-
havior categories are much effectual, which can effectively acquire key feature in
different network environments under various requirements.

642 Z. Chen et al.

Table 7. P2P traffic behavior identification result on UJN dataset

Online traffic identification Offline traffic identification

based on
unselected feature

based on
selected feature

based on
unselected feature

based on
selected feature

number of feature 28 2 28 2
number of tree leaves 108 9 4 1
size of the tree 215 17 7 1
time to build model 1.59s 0.08s 0.88s 0.05s
accuracy 97.8384% 79.476% 99.6306% 99.674%
number in feature list 1-28 17,22 1-28 17,24

Table 8. WWW traffic behavior identification result on Auckland dataset

Online traffic identification Offline traffic identification

based on
unselected feature

based on
selected feature

based on
unselected feature

based on
selected feature

number of feature 28 4 28 3
number of tree leaves 117 92 59 40
size of the tree 233 183 117 79
time to build model 4.19s 0.81s 2.78s 0.22s
accuracy 98.6785% 96.6509% 99.1255% 97.4284%
number in feature list 1-28 13,20,7,9 1-28 1,13,26

Table 9. WWW traffic behavior identification result on UJN dataset

Online traffic identification Offline traffic identification

based on
unselected feature

based on
selected feature

based on
unselected feature

based on
selected feature

number of feature 28 5 28 3
number of tree leaves 98 134 81 46
size of the tree 195 267 161 91
time to build model 1.53s 0.28s 1.39s 0.17s
accuracy 98.9626% 96.3428% 97.0444% 88.9275%
number in feature list 1-28 12,21,11,15,17 1-28 15,16,18

6 Conclusion

Motivated by the optimization of feature selection toward traffic behavior identi-
fication,our research demonstrated that the optimal features for traffic behavior
identification are mainly sensitive to application, time and location. Identify-
ing for the same application behavior on different network location are sensitive
to different features. Experiment result shows that the selected optimal feature
subset can greatly improve the performance for both online and offline identifi-
cation, but cost for little accuracy. Furthermore, it can improve the online traffic
identification implementability in real network condition.

Acknowledgment. This work was supported by the National Natural Science
Foundation of China under Grants No.60903176,the Natural Science Foundation
of Shandong Province under Grants No.ZR2010FQ028 and No.ZR2011FL021,

Feature Selection Toward Optimizing Internet Traffic Behavior Identification 643

and the Program for Youth Science and Technology Star Foundation of Jinan
under Grants No.TNK1108.

References

1. Nguyen, T.T.T., Armitage, G.: A survey of techniques for internet traffic classifi-
cation using machine learning. Communications Surveys and Tutorials 10, 56–76
(2008)

2. Moore, A.W., Zuev, D.: Internet traffic classification using bayesian analysis tech-
niques. ACM SIGMETRICS Performance Evaluation Review 33, 50–60 (2005)

3. Nguyen, T.T.T., Armitage, G.: Training on multiple sub-flows to optimize the use
of machine learning classifiers in real-world ip networks. In: 31st Local Computer
Networks, pp. 369–376. IEEE Press, New York (2006)

4. McGregor, A., Hall, M., Lorier, P., Brunskill, J.: Flow Clustering Using Machine
Learning Techniques. In: Barakat, C., Pratt, I. (eds.) PAM 2004. LNCS, vol. 3015,
pp. 205–214. Springer, Heidelberg (2004)

5. Zander, S., Nguyen, T.: ArmitageG.: Automated Traffic Classification and Appli-
cation Identification using Machine Learning. In: 30th Anniversary of the IEEE
Conference on Local Computer Networks 2005, pp. 250–257. IEEE Press, New
York (2005)

6. Erman, J., Mahanti, A., Arlitt, M., Cohen, I., Williamson, C.: Offline/realtime
traffic classification using semi-supervised learning. Performance Evaluation 64,
1194–1213 (2007)

7. Zhao, J.J., Huang, X.H., Sun, Q., Ma, Y.: Real-time feature selection in traffic clas-
sification. The Journal of China Universities of Posts and Telecommunications 15,
68–72 (2008)

8. Zhang, H., Lu, G., Qassrawi, M.T., Zhang, Y., Yu, X.: Feature selection for opti-
mizing traffic classification. Computer Communications 35, 1457–1471 (2012)

9. Callado, A., Kamienski, C., Szab, G., Gero, B., Kelner, J., Fernandes, S., Sadok,
D.: A survey on internet traffic identification. IEEE Communications Surveys and
Tutorials 11, 37–52 (2009)

10. Moore, A., Zuev, D., Crogan, M.: Discriminators for use in flow-based classification.
Queen Mary and Westfield College, Department of Computer Science (2005)

11. Tsang, C.H., Kwong, S., Wang, H.: Genetic-fuzzy rule mining approach and eval-
uation of feature selection techniques for anomaly intrusion detection. Pattern
Recognition 40, 2373–2391 (2007)

12. Liu, H., Yu, L.: Toward integrating feature selection algorithms for classifica-
tion and clustering. IEEE Transactions on Knowledge and Data Engineering 17,
491–502 (2005)

13. Lei, D., Xiaochun, Y., Jun, X.: Optimizing traffic classification using hybrid fea-
ture selection. In: The Ninth International Conference on Web-Age Information
Management, pp. 520–525. IEEE Press, New York (2008)

14. Zhang, Y., Li, S., Wang, T., Zhang, Z.: Divergence-based feature selection for
separate classes. Neurocomputing 101, 32–42 (2013)

15. Liu, Z., Liu, Q.: Studying cost-sensitive learning for multi-class imbalance in Inter-
net traffic classification. The Journal of China Universities of Posts and Telecom-
munications 19, 63–72 (2012)

644 Z. Chen et al.

16. Zhang, G., Xie, G., Yang, J., Min, Y., Zhou, Z., Duan, X.: Accurate online traffic
classification with multi-phases identification methodology. In: 5th IEEE Consumer
Communications and Networking Conference, pp. 141–146. IEEE Press, New York
(2008)

17. Che, X., Ip, B.: Packet-level traffic analysis of online games from the genre charac-
teristics perspective. Journal of Network and Computer Applications 35, 240–252
(2012)

18. Tian, X., Sun, Q., Huang, X., Ma, Y.: A dynamic online traffic classification
methodology based on data stream mining. In: 2009 WRI World Congress on
Computer Science and Information Engineering, pp. 298–302. IEEE Press, New
York (2009)

19. Lizhi, P., Hongli, Z., Bo, Y., Yuehui, C., Tong, W.: Traffic Labeller: Collecting
Internet traffic samples with accurate application information. Communications,
China 11, 69–78 (2014)

20. Micheel, J., Graham, I., Brownlee, N.: The Auckland data set: an access link ob-
served. In: Proceedings of the 14th ITC Specialists Seminar on Access Networks
and Systems, pp. 19–30 (2001)

21. Witten, I.H., Frank, E., Kaufmann, E.M.: Data Mining: Practical Machine Learn-
ing Tools and Techniques. Morgan Kaufmann series in data management systems,
pp. 1046–1698 (2005) ISSN 1046-1698

22. Zhao, S., Yu, X., Chen, Z., Jing, S., Peng, L., Liu, K.: A Novel Online Traffic
Classification Method Based on Few Packets. In: 8th International Conference on
Wireless Communications, Networking and Mobile Computing (WiCOM), pp. 1–4.
IEEE Press, New York (2012)

ID-Based Anonymous Multi-receiver Key

Encapsulation Mechanism with Sender
Authentication�

Bo Zhang, Tao Sun, and Dairong Yu

School of Information Science and Engineering
University of Jinan, Jinan, P.R. China

zhangbosdu@gmail.com

Abstract. Identity based (ID-based) key encapsulation mechanism
(KEM) is used to encapsulate a symmetric key during the construction
of hybrid encryption in the identity based setting. In many situations,
the receiver does not want to reveal identity information. So anonymous
multi-receiver KEM is needed to solve the problem. In this paper, we
present the first ID-based anonymous multi-receiver KEM with sender
authentication. We formulate its security model and define the security
notions. We present an concrete construction from pairings and the con-
struction is provably secure in the random oracle model.

Keywords: key encapsulation mechanism, identity based cryptography,
multi-receiver, sender authentication.

1 Introduction

The concept of ID-based cryptosystem were introduced by Shamir [10] in 1984
to remove the extra burden of digital certificates and key management. Its main
idea is that the public key of a user can be publicly computed from arbitrary
strings corresponding to his identity information such as IP address, social secu-
rity number, name, telephone number or email address etc while corresponding
private key can only be generated by a trusted Private Key Generator (PKG).

In some network applications, we have to distribute same message to sev-
eral different members. A simple approach for achieving this goal is that the
sender encrypts or signcrypts the message for each member of the receiver group
respectively (Multiple Single-receiver Encryptions). Obviously, the cost of using
the approach in large group is very high. Broadcast encryption and multi-receiver
consider this problem of broadcasting digital contents to a large set of authorized
users. Such applications include paid-TV systems, copyrighted CD/DVD distri-
butions, and fee-based online databases. The multi-receiver setting for public
key cryptography is that there are n receivers. A sender encrypts a message to
them at the same time in one logic step. The concept of multi-receiver setting
was formalized by Bellare et al [1].

� This work is supported by a Project of Shandong Province Higher Educational Sci-
ence and Technology Program under Grant No.J13LN21.

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 645–658, 2014.
c© Springer International Publishing Switzerland 2014

646 B. Zhang, Tao Sun, and D. Yu

Receiver anonymity or privacy protection means that one can examine
whether herself/himself is one of the selected receivers, and nobody in the re-
ceiver set knows who the other selected receivers are. For example, in paid-TV
systems the privileged set is the set of all users who have paid a subscription to
a certain channel. Each customer should have access to that channel using his
private key. The problem is that, using the traditional solve method, he has to
know who else has paid for the specific subscription which causes serious pri-
vacy issues. In recent years, many anonymous MIBE scheme [2], [3], [4], [5]were
proposed.

The KEM/DEM hybrid encryption paradigm [6,7]combines the efficiency and
large message space of secret key encryption with the advantages of public key
cryptography, a natural question is how to design an ID-based anonymous multi-
receiver key encapsulation mechanism with sender authentication. In this paper,
we answer this question by making the following contributions:

– We specify a security model based on the selective identity attack model in
which the adversary commits ahead of time to identities which it intends to
attack and formalize three security notions.

– We present a concrete scheme based on some efficient primitives to send a
message to multi receivers in a anonymous way.

– We prove that our scheme satisfies the above security notions in the random
oracle model.

2 Preliminaries

2.1 Security Problems and Complexity Assumptions

• Computation Diffie-Hellman (CDH) Problem. Given P, aP, bP ∈ G1 for un-
known a, b ∈ Z

∗
q , computing abP ∈ G1.

Definition 1. (CDH assumption). Given P, aP, bP ∈ G1 for unknown a, b ∈
Z
∗
q, the successful advantage of any probabilistic polynomial time adversary A

is presented as AdvCDH = Pr[A(P, aP, bP = abP)|a, b ∈ Z
∗
q]. We say that

the (t, ε)-CDH assumption holds if there exists no PPT adversary A with non-
negligible advantage ε within running time t in solving the CDH problem.

• Bilinear Diffie-Hellman (BDH) Problem. Given P, aP, bP, cP ∈ G1 for un-
known a, b, c ∈ Z

∗
q , computing e(P, P)abc ∈ G2.

Definition 2. (BDH assumption). Given P, aP, bP, cP ∈ G1 for unknown
a, b, c ∈ Z

∗
q , the successful advantage of any probabilistic polynomial time ad-

versary A is presented as AdvBDH = Pr[A(P, aP, bP, cP = e(P, P)abc)|a, b, c ∈
Z
∗
q]. We say that the (t, ε)-BDH assumption holds if there exists no PPT ad-

versary A with non-negligible advantage ε within running time t in solving the
BDH problem.

• Decision Bilinear Diffie-Hellman (DBDH) Problem. Given P, aP, bP, cP ∈
G1 for unknown a, b, c ∈ Z

∗
q , and R ∈ G2, deciding whether e(P, P)abc = R.

ID-Based Anonymous Multi-receiver Key Encapsulation Mechanism 647

Definition 3. (DBDH assumption). Given P, aP, bP, cP ∈ G1 for unknown
a, b, c ∈ Z

∗
q, and R ∈ G2, the successful advantage of any probabilistic polynomial

time adversary A is presented as AdvDBDH = |Pr[A(P, aP, bP, cP, e(P, P)abc =
1)]−Pr[A(P, aP, bP, cP,R) = 1]|. We say that the (t, ε)-DBDH assumption holds
if there exists no PPT adversary A with non-negligible advantage ε within run-
ning time t in solving the DBDH problem.

• Gap-BDH problem. Given P, aP, bP, cP ∈ G1 for unknown a, b, c ∈ Z
∗
q ,

computing e(P, P)abc ∈ G2 with the help of the DBDH oracle.

Definition 4. (Gap-BDH assumption). Given P, aP, bP, cP ∈ G1 for un-
known a, b, c ∈ Z

∗
q , the DBDH oracle means that given (P, aP, bP, cP,R), out-

puts 1 if e(P, P)abc = R and 0 otherwise. The successful advantage of any
probabilistic polynomial time adversary A is presented as AdvGap−BDH =
Pr[A(P, aP, bP, cP
= e(P, P)abc|a, b, c ∈ Z

∗
q]. We say that the (t, qg, ε)-Gap-BDH assumption holds if

there exists no PPT adversary A with non-negligible advantage ε within running
time t by making qg DBDH-oracle queries in solving the Gap-BDH problem.

3 ID-Based Anonymous Multi-receiver Key
Encapsulation Mechanism with Sender Authentication

3.1 Framework

A generic ID-based anonymous multi-receiver key encapsulation mechanism with
sender authentication consists of following probabilistic polynomial time algo-
rithms.

Setup: Given a security parameter l, the Private Key Generator (PKG) gen-
erates a master key S and common parameters Params. Params is made public
while S is kept secret.

Extract: Given an identity IDu ∈ {0, 1}∗, the PKG runs this algorithm
Extract(S, Params, IDu) to generate the private key du associated with IDu

and transmits it to the user via a secure channel.
Encap: Given multiple receivers choose by the signer with identities R =

{ID1, ..., IDn} and the private key ds, the sender with identity IDs runs this
algorithm Encap(ds, R) to generates a pair (K,C),where K is a session key, C
is an authenticable encapsulation of K for IDi ∈ R.

Decap: Given the sender’s identity IDs, the private key dr for IDi ∈ R and
the ciphertext C, this algorithm output K or an error symbol ⊥ indicating that
the ciphertext is invalid.

For consistency, we require that if (K,C) = Encap(ds, R), then K =
Decap(C, IDs, dr) for all 1 ≤ r ≤ n.

3.2 Security Model

Definition 5. (IND-sMID-CCA) An ID-based anonymous multi-receiver key
encapsulation mechanism with sender authentication is said to have the

648 B. Zhang, Tao Sun, and D. Yu

indistinguishability against adaptive chosen ciphertext attacks property if no poly-
nomially bounded adversary has a non-negligible advantage in the following game
played between a challenger C and the adversary A .

1. (params, S) ← C Setup(l): C runs the Setup algorithm with a security pa-
rameter l and obtains common parameters Params and a master key S. He
sends Params to A and keeps S to itself.

2. R∗ ← A (params): After receiving the system parameters, A outputs target
multiple identities R∗ = (ID∗

1 , ID
∗
2 , ..., ID

∗
n), where n is a positive integer.

3. A O(params).
4. (K1,K0, C

∗) ← C Encap(params, ID∗
s , R

∗): ID∗
s is an arbitrary signer iden-

tity whose private key is ds,(Kγ , C) = Encap(ds, R), γ ∈ {0, 1}, Kβ, β ∈
{0, 1}, β �= γ is randomly chosen by the challenger from the key space.

5. γ′ ∈ {0, 1} ← A O(params,m∗,K0,K1, C
∗, ID∗

s , R
∗): A produces a bit γ′

and wins the game if γ′ = γ.

In stage 3 and 5, the adversary A can make queries to the key extraction
oracle O(Extract), the encapsulation oracle O(Encap) and the decapsulation
oracle O(Decap) as described below, but subject to the restrictions that A
cannot make queries to O(Decap) under any identity in the receiver list R∗, nor
to O(Extract) with an identity in R∗.

O(Extract) : dID ← Extract(ID)
O(Encap) : (K,C) ← Encap(IDs, ID1, ..., IDn)
O(Decap) : K/⊥ ← Decap(C, IDs, ID1, ..., IDn)
The advantage of the adversary A is defined as:

AdvIND−sMID−CCA(A) = |Pr[γ′ = γ]− 1/2|
Definition 6. (EUF-sID-CMA) An ID-based anonymous multi-receiver key en-
capsulation mechanism with sender authentication is said to be existential un-
forgeability against adaptive chosen message attacks if no polynomially bounded
adversary has a non-negligible advantage in the following game played between
a challenger C and the adversary A .

1. (params, S) ← C Setup(l): C runs the Setup algorithm with a security pa-
rameter l and obtains common parameters Params and a master key S. He
sends Params to the adversary and keeps S secret.

2. ID∗
s ← A :A outputs the target identity ID∗

s on which he would like to
challenge.

3. (K,C, ID∗
s , R = (ID1, ..., IDn)) ← A O(params), R∗ = (ID∗

i , ..., ID
∗
n): A

produces a encapsulation ciphertext C of the keyK and n arbitrary receivers’
identities (ID1, ..., IDn).

In stage 3, the adversary A has access to the same oracles as in the definition
3.1. ID∗

s should be never submitted to O(Extract), and C∗ should be different
from any output of O(Encap).

A wins the game if the result of Decap(C, ID∗
s , di) for some i ∈ [1, n] results

in a valid key K and the private key of ID∗
s was not queried. The advantage

ID-Based Anonymous Multi-receiver Key Encapsulation Mechanism 649

of the adversary Adv(A) is defined as the probability Pr[win] that it wins this
game.

Definition 7. (ANON-IND-sID-CCA) An ID-based anonymous multi-receiver
key encapsulation mechanism with sender authentication is said to be anonymous
indistinguishability against adaptive chosen ciphertext attacks if no polynomially
bounded adversary has a non-negligible advantage in the following game played
between a challenger C and the adversary A .

1. (params, S) ← C Setup(l): C runs the Setup algorithm with a security pa-
rameter l and obtains common parameters Params and a master key S. He
sends Params to the adversary and keeps S secret.

2. (ID∗
1 , ID

∗
2) ← A : A outputs output a target identity pair (ID∗

1 , ID
∗
2) on

which he would like to challenge.
3. A O(params).
4. (IDs, ID3, ..., IDn) ← A : A outputs a sender IDs and a set of identities

ID3, ..., IDn, where n � 3.
5. (K,C) ← CEncap(IDs, (ID

∗
γ , ID3, ..., IDn)): C generates a target ciphertext

by chooses randomly a bit γ ∈ {1, 2}, ds = Extract(S, Params, IDS) and
(K,C) = Encap(ds, (ID

∗
γ , ID3, ..., IDn)).

6. γ′ ∈ {0, 1} ← A O(params,K,C, IDs, ID
∗
1 , ID

∗
2 , ID3, ..., IDn): A produces

a bit γ′ and wins the game if γ′ = γ.

In stage 3 and 6, the adversary A has access to the same oracles as in the
definition 3.1 but subject to the restrictions that ID∗

1 , ID
∗
2 should be never

submitted to O(Extract) and it is not allowed to make an Decap query for C
under any identity in (ID∗

1 , ID
∗
2).

The advantage of the adversary A is defined as:

AdvANON−IND−sID−CCA(A) = |Pr[γ′ = γ]− 1/2|

4 The Concrete Scheme

In this section, we propose a concrete ID-based anonymous multi-receiver key en-
capsulation mechanism with sender authentication based on Tseng et al.’s multi-
ple receiver encryption scheme [5] and Cha et al.’s ID-based signature scheme [8].
The algorithms are as following:

Setup. Given a security parameter l, PKG generates two groupsG1 and G2 of
prime order q > 2l such that an admissible bilinear map e : G1×G1 → G2 can be
constructed and pick a generator P of G1. The PKG randomly chooses a system
secret key S ∈ Z

∗
q and computes Ppub = S · P ∈ G1 as the system public key.

Let H0, H1, H2, H3 be cryptography hash functions where H0 : {0, 1}∗ → G1,
H1 : G2 → Z

∗
q , H2 : Z

∗
q → {0, 1}w where w is the plaintext block length,

H3 : {0, 1∗×Z
∗
q × ...×Z

∗
q ×G1×G1 → Z

∗
q . The public parameters and functions

are presented as Params = {G1, G2, e, P, Ppub, H0, H1, H2, H3}.
Extract. For a given identity ID ∈ {0, 1}∗, the PKG computes QID =

H0(ID) and the secret key d = S ·QID ∈ G1. Then, d is transmitted to the user

650 B. Zhang, Tao Sun, and D. Yu

via a secure channel. Without loss of generality,the sender and the receivers’ pri-
vate keys can be expressed as (IDs, ds) and ((ID1, d1), (ID2, d2), ..., (IDn, dn)).

Encap. To generate a encapsulation key k to n receivers with identities R =
{ID1, ID2, ..., IDn}, the sender performs the following tasks:

1. Choose random r1, r2 ∈ Z
∗
q , and compute U = r1 · P , T = r1 · Ppub and

vs = r2 ·QIDs = r2 ·H0(IDs).
2. Compute QIDi = H0(IDi) and vi = H1(e(QIDi, T)), for i = 1, ..., n.
3. Choose a random k ∈ Z

∗
q and construct a polynomial f(x) with degree t as

below: f(x) =
∏

i=1,...n(x− vi) + k(modq) = c0 + c1x+ ...+ cn−1x
n−1 + xn,

where ci ∈ Z
∗
q .

4. Compute σ = (r2 + h) · ds, where h = H3(IDs, c0, c1, ..., cn−1, U, vs). Set the
result ciphertext to be C =< IDs, (c0, c1, ..., cn−1), U, vs, σ >.

Decap. After receive the ciphertext as C =< IDs, (c0, c1, ..., cn−1), U, vs, σ >,
the receiver with index j in R decrypts the ciphertext as follows:

1. Compute h = H3(IDs, c0, c1, ..., cn−1, U, vs).
2. Test whether e(P, σ) = e(Ppub, vs + h · QIDs) or not. If it does not hold,

output ’reject’.
3. Compute vj = H1(e(dj , U)).
4. Set the polynomial f(x) with degree t as f(x) = c0+c1x+...+cn−1x

n−1+xn

and compute k = f(vj).

Correctness of Our Scheme. If C =< IDs, (c0, c1, ..., cn−1), U, vs, σ >
is a valid ciphertext from a message sender to the receivers list R =
{ID1, ID2, ..., IDn}, then the receiver in receiver list with identity IDj ’s De-
capsulation is correct because

e(P, σ) = e(P, (r2 + h) · ds)
= e(P, (r2 + h) · S ·QIDs)

= e(S · P, r2 ·H0(IDs) + h ·QIDs)

= e(Ppub, vs + h ·QIDs)

and

H1(e(dj , U)) = H1(e(S ·QIDj, r1 · P))

= H1(e(QIDj, r1 · S · P))

= H1(e(QIDj, T))

= vj

We have

k = f(vj)

= c0 + c1vj + ...+ cn−1v
n−1
j + vnj

=
∏

i=1,...,n

(vj − vi) + k

= k(modq)

ID-Based Anonymous Multi-receiver Key Encapsulation Mechanism 651

5 Security Analysis

Theorem 1. In the random oracle, if an adversary A has non-negligible ad-
vantage ε against the IND-sMID-CCA security of our scheme when running in
time t and performing qe extraction oracle, qEncap Encap queries, qDecap Decap
queries and qi queries to oracles Hi(i = 0, 1, 2, 3), then there is an algorithm B
that solves the Gap-BDH problem with probability ε′ > ε− qDecap/q and within
running time t′ ≤ t+(qEncap+2qDecap)O(te)+(q0+ qe)O(tm)+nq1O(t1) where
te denotes the time required for one pairing evaluation, tm denotes the time re-
quired for one scalar multiplication in G1, t1 denotes the time required for one
DBDH oracle and n is the number of multiple identities.

Proof. Suppose there exists an IND-sMID-CCA adversary A for our proposed
scheme. We show how to build an algorithm B that solve the Gap-BDH problem
by running the adversary A as a subroutine. B plays the role of A ’s challenge
and works by interaction with A in the game defined in section 3.

The challenger C receives an instance (P, aP, bP, cP) of the Gap-BDH prob-
lem, in which P, aP, bP, cP ∈ G1 for unknown a, b, c ∈ Z

∗
q . His goal is to compute

e(P, P)abc and he may make at most qg queries to the DBDH oracle of the Gap-
BDH problem.

The challenger C sets Q = aP and Ppub = bP . Then C gives A the system
parameters Params = {G1, G2, e, P, Ppub, H0, H1, H2, H3}. After receive the sys-
tem parameters, A outputs target multiple identities R∗ = (ID∗

1 , ID
∗
2 , ..., ID

∗
n),

where n is a positive integer. The hash functions are random oracles controlled by
C and for the adversary A ’s queries, C will maintain four lists Li(i = 0, 1, 2, 3)
to record the results of the hash function Hi(i = 0, 1, 2, 3) respectively.

C can answer A ’s queries as following: • Query on H0 for IDj . When an
element IDj ∈ {0, 1}∗ is submitted to the H0 oracle for some j ∈ [1, q0], C
checks if there exists a tuple (IDj , uj, QIDj) in L0. If such a tuple exists, C
answers with QIDj. Otherwise, C does the following:

1. Select a random value uj ∈ Z
∗
q .

2. If IDj ∈ R∗, then compute QIDj = uj · Q ∈ G1; Otherwise, compute
QIDj = uj · P ∈ G1.

3. Insert the tuple (IDj , uj , QIDj) into the list L0. Then, C return QIDj to
the adversary.

• Query on H1 for Xj ∈ G2. When an elementXj ∈ G2 is submitted to theH1

oracle for some j ∈ [1, q1], C checks if there exists a tuple (Xj , xj) in L1. If such a
tuple exists, C answers with xj . C checks whether (P,QID∗

i , Ppub, cP,Xj) using
the DBDH oracle for i = 1, 2, ..., n, in which QID∗

i = ui ·Q ∈ G1 is obtained by

issuing H0 query. If it is, C return (Xj)
u−1
i and terminates the game because

C has obtained the value e(P, P)abc. Otherwise, C selects a value xj ∈ Z
∗
q and

inserts the tuple (Xj , xj) into the list L1. Then, C returns xj to the adversary
A .

• Query on H2 for kj ∈ Z
∗
q . When an element kj ∈ Z

∗
q is submitted to the H2

oracle for some j ∈ [1, q2], C first scan the list L2 to check whether the input

652 B. Zhang, Tao Sun, and D. Yu

was already defined in L2. If it was, the previously defined value is returned to
A . Otherwise, C randomly picks a bit string wj ∈ {0, 1}w and inserts the tuple
(kj , wj) into the list L2. Then C returns wj to the adversary A .

• Query on H3 for a tuple (ID, (c0, c1, ..., cn−1), U, vs). When a tuple (ID, (c0,
c1, ..., cn−1), U, vs) is submitted to the H3 oracle for some j ∈ [1, q3], C first scan
the list L3 to check whether the input was already defined in L3. If it was, the
previously defined value is returned to A . Otherwise, C randomly picks a value
λj ∈ Z

∗
q at random and inserts the tuple (ID, (c0, c1, ..., cn−1), U, vs, λj) into the

list L3. Then, C returns λj to the adversary A .
• Extraction queries. Upon receiving this query with IDj /∈ R∗, the challenger

C first scans the list L0 to check whether the tuple (IDj , uj, QIDj) was already
defined in L0. If it was, C computes dj = uj ·Ppub. Otherwise. C randomly selects
a value uj ∈ Z

∗
q , and computes QIDj = uj ·P and dj = uj ·Ppub. Meanwhile, C

inserts the tuple (IDj , uj, QIDj) into the list L0. Finally, C returns dj to the
adversary A .

• Encap queries. The adversary A issues Encap queries for target identi-
ties, denoted by (m, IDs, R

∗). C computes the secret key us corresponding
to IDs by making a extractionquery and then can simply run the algorithm
Encap(m, ds, R

∗). Finally, C returns the result C to the adversary A .
• Decap queries. A can perform an Decap query for a ciphertext C for a sender

IDs and a receiver ID∗
i ∈ R∗ where C =< IDs, (c0, c1, ..., cn−1), U, vs, σ >. Note

that the return values of the used hash functions here are obtained from hash
queries in the previous phase. C performs the following tasks:

1. Use (IDs, (c0, c1, ..., cn−1), U, vs) to scan the list L3. If it was not found, C
returns ’failure’ and halts. Otherwise, C may get h = λ from L3.

2. Test whether e(P, σ) = e(Ppub, (vs + h · QIDs)) or not. If it does not hold,
output ’reject’ indicated that the ciphertext is not valid.

3. Set the polynomial f(x) with degree n as f(x) = c0+c1x+...+cn−1x
n−1+xn.

4. Use ID∗
i to pick the tuple (ID∗

i , u
∗
i , QID∗

i) from the list L0 to get u∗
i and

QID∗
i .

5. For j = 1, ..., q1, do the following:

(a) Pick the tuple (Xj , xj) from the list L1.

(b) Check whether (P,QID∗
i , Ppub, U,Xj) using the DBDH oracle.

6. If some j of the checks above is true, compute kj = f(xj), return kj to A .
Otherwise, return ⊥ indicating that the ciphertext is invalid.

C randomly chooses IDs, and performs the following tasks.

1. Scan the list L0 to check whether the tuple (IDs, us, QIDs) was already
defined in L0. If it was, C computes ds = us · Ppub. Otherwise. C randomly
selects a value us ∈ Z

∗
q , and computes QIDs = us · P and ds = us · Ppub.

Meanwhile, C inserts the tuple (IDs, us, QIDs) into the list L0.

2. Choose r2 ∈ Z
∗
q , set U = cP , compute vs = r2 ·QIDs = r2 ·H0(IDs).

3. Choose zi ∈ Z
∗
q , for i = 1, ..., n.

ID-Based Anonymous Multi-receiver Key Encapsulation Mechanism 653

4. Choose a random k ∈ Z
∗
q and construct a polynomial f(x) with degree n as

below: f(x) =
∏

i=1,...n(x− zi) + k(modq) = c0 + c1x+ ...+ cn−1x
n−1 + xn,

where ci ∈ Z
∗
q .

5. Compute σ = (r2 + h) · ds, where h = H3(IDs, c0, c1, ..., cn−1, U, vs). Set the
result ciphertext to be C =< IDs, (c0, c1, ..., cn−1), U, vs, σ >.

A makes a number of extraction queries, Encap queries and Decap queries.
A restriction here is that A is not allowed to issue the target ciphertext with
one of the target identity as Decap query. A output a guess γ′ ∈ {0, 1} and wins
the game if γ′ = γ.

As the simulation above, C successfully simulates the hash function Hi(i =
0, 1, 2, 3) by random oracles. Meanwhile, the secret key du associated to each
IDu /∈ R∗ created in the key extract query is identically distributed as the key
in the real attack environment because of dj = uj ·Ppub = uj ·S ·P = S ·uj ·P =
S ·H0(IDj). Thus, it is obvious that C perfectly simulates the key extract query.

In the following, we assess that C ’s advantage. For handling the Decap query,
if (c0, c1, ..., cn−1), U, vs) cannot be found in L3, C returns ’failure’ and halts.
Thus, it means that A can guess a right output value of hash function H3. In
this case, there are qDecap queries to the Decap oracle, so the failure probability
of is at most qDecap/q. If A with a non-negligible advantage win the IND-sMID-
CCA game, it denotes that C with a non-negligible advantage has received
H1 queries with some Xj as input, in which one of the DBDH oracle queries
with (P,QID∗

i , Ppub, cP,Xj) for i = 1, ..., n, will return 1. As in H1 queries, C

may obtain (Xj)
u∗
i
−1

= e(P, P)abc, in which (ID∗
i , u

∗
i , QID∗

i) is obtained from
L0. Hence, assume that the IND-sMID-CCA adversary A has a non-negligible
advantage ε against the proposed scheme. Then, the Gap-BDH problem can be
solved with a non-negligible advantage ε′ > ε− (qDecap/q).

Finally, for answering queries in the simulation game above, the required
computation time is t′ ≤ t+(qEncap+2qDecap)O(te)+(q0+qe)O(tm)+nq1O(t1)
where te denotes the time required for one pairing evaluation, tm denotes the
time required for one scalar multiplication in G1, t1 denotes the time required
for one DBDH oracle and n is the number of multiple identities.

Theorem 2. In the random oracle, if an adversary A has non-negligible advan-
tage ε ≥ 10(qEncap + 1)(qEncap + q3)/2

l against the EUF-sID-CMA security of
our scheme when running in time t and performing qe extraction oracle, qEncap

Encap queries, qDecap Decap queries and qi queries to oracles Hi(i = 0, 1, 2, 3),
then there exists an algorithm B that solves the CDH problem in expected time
t′ ≤ 120686q3t/ε.

Proof. Suppose there exists an EUF-sID-CMA adversary A for our proposed
scheme. We show how to build an algorithm B that solve the CDH problem by
running the adversary A as a subroutine. B plays the role of A ’s challenger
and works by interaction with A in the game defined in section 3.

The challenger C receives an instance (P, aP, bP) of the CDH problem, in
which P, aP, bP ∈ G1 for unknown a, b ∈ Z

∗
q . His goal is to compute the value of

abP .

654 B. Zhang, Tao Sun, and D. Yu

The challenger C sets Ppub = aP . Then C gives A the system parameters
Params = {G1, G2, e, P, Ppub, H0, H1, H2, H3}. After receive the system param-
eters, A outputs a target identity ID∗

s . The hash functions are random oracles
controlled by C and for the adversary A ’s queries, C will maintain four lists
Li(i = 0, 1, 2, 3) to record the results of the hash function Hi(i = 0, 1, 2, 3)
respectively.

C can answer A ’s queries as following:
• Query on H0 for IDj. When an element IDj ∈ {0, 1}∗ is submitted to the

H0 oracle for some j ∈ [1, q0], C checks if IDj = ID∗
s , if it is, C answers with

QIDj = bP ∈ G1. Otherwise, C checks if there exists a tuple (IDj , uj, QIDj)
in L0. If such a tuple exists, C answers with QIDj . Otherwise, C does the
following:

1. Select a random value uj ∈ Z
∗
q , compute QIDj = uj · P ∈ G1.

2. Insert the tuple (IDj , uj , QIDj) into the list L0. Then, C return QIDj to
the adversary.

• Query on Hi(i = 1, 2, 3). C produce a random element from the appropriate
range, and add both query and answer to the corresponding list.

A performs a polynomially bounded number of queries adaptively just like
in the previous definition.

• Extraction queries. Upon receiving this query with IDj �= ID∗
s , the chal-

lenger C first scans the list L0 to check whether the tuple (IDj , uj , QIDj) was
already defined in L0. If it was, C computes dj = uj · Ppub. Otherwise. C ran-
domly selects a value uj ∈ Z

∗
q , and computes QIDj = uj · P and dj = uj · Ppub.

Meanwhile, C inserts the tuple (IDj , uj, QIDj) into the list L0. Finally, C re-
turns dj to the adversary A .

• Encap queries. The adversary A issues Encap queries for
(m, IDj , (ID1, ID2,
..., IDn)) and C checks if IDj = ID∗

s . IF not, then it computes the private
key uj corresponding to IDj by running a key extraction query algorithm and
then can simply run the algorithm Encap(m, dj , (ID1, ID2, ..., IDn)). Finally,
C returns the result C to the adversary A . In the case when IDj = ID∗

s , it
chooses r, y, h ∈ Z

∗
q randomly and performs the following tasks:

1. Compute U = r1 · P , T = r1 · Ppub and vs = y · P − h ·H0(ID
∗
s).

2. Compute QIDi = H0(IDi) and vi = H1(e(QIDi, T)), for i = 1, ..., n.
3. Choose a random k ∈ Z

∗
q and construct a polynomial f(x) with degree n as

below: f(x) =
∏

i=1,...n(x− vi) + k(modq) = c0 + c1x+ ...+ cn−1x
n−1 + xn,

where ci ∈ Z
∗
q .

4. Compute V = m⊕H2(k), σ = y · Ppub and returns the result ciphertext as
C =< ID∗

s , (c0, c1, ..., cn−1), U, vs, σ >.
5. Inserts the tuple (ID∗

s , (c0, c1, ..., cn−1), U, vs, h) into the list L3.

• Decap queries. A can perform an Decap query for a ciphertext
C for a sender IDj and a receiver IDi(i ∈ 1, 2, ..., n) where C =<
IDj , (c0, c1, ..., cn−1), U, vs, σ >. it computes the private key ui corresponding

ID-Based Anonymous Multi-receiver Key Encapsulation Mechanism 655

to IDi by making a extraction query algorithm and then can simply run the
algorithm Decap((C, IDj , di). Finally, C returns the result m or ⊥ to the ad-
versary A .

Finally, A produces a ciphertext C∗ = (ID∗
s , (c

∗
0, c

∗
1, ..., c

∗
t−1), U

∗, v∗s , σ
∗)

where t is a position integer. A wins the game if the result of
Decap(C∗, ID∗

s , ID
∗
i) for some i ∈ [1, t] results in a valid message m and the

private key of ID∗
s was not queried.

It follows from the forking lemma [9] that if A is a sufficiently efficient
forger in the above interaction, then we can construct another probabilis-
tic polynomial time Turing machine A ′ that outputs two ciphertext C′ =<
ID∗

s , (c0, c1, ..., cn−1),
U, vs, σ

′ > and C′′ =< ID∗
s , (c0, c1, ..., cn−1), U, vs, σ

′′ > on same message m
from the sender with identity ID∗

s . C decap C′ and C′′ to obtain the ’signa-
tures’ σ′ = (r2 + h′) · d∗s and σ′′ = (r2 + h′′) · d∗s . Now we can apply standard
arguments for the outputs of the forking lemma since both σ′ and σ′′ are valid
signatures for the same message m and same random tape of the adversary. Fi-
nally, C obtains the solution to the CDH instance as (σ′′ − σ′)(h′′ − h′)−1. We
have (σ′′ − σ′)(h′′ − h′)−1 = (h′′ − h′)d∗s(h

′′ − h′)−1 = d∗s = abP .
So, we can see that C has the same advantage in solving the CDH problem

as the adversary A has in forging a valid ciphertext. Based on the bound from
the forking lemma and the above probability of success, if an adversary A has
non-negligible advantage ε ≥ 10(qEncap + 1)(qEncap + q3)/2

l against the EUF-
sID-CMA security of our scheme when running in time t, then C can solve the
CDH problem in expected time t′ ≤ 120686q3t/ε.

Theorem 3. In the random oracle, if an adversary A has non-negligible advan-
tage ε against the ANON-IND-sID-CCA security of our scheme when running in
time t and performing qe extraction oracle, qEncap Encap queries, qDecap Decap
queries and qi queries to oracles Hi(i = 0, 1, 2, 3), then there is an algorithm B
that solves the Gap-BDH problem with probability ε′ > ε− qDecap/q and within
running time t′ ≤ t+(qEncap+2qDecap)O(te)+(q0+ qe)O(tm)+nq1O(t1) where
te denotes the time required for one pairing evaluation, tm denotes the time re-
quired for one scalar multiplication in G1, t1 denotes the time required for one
DBDH oracle and n is the number of multiple identities.

Proof. Suppose there exists an ANON-IND-sID-CCA adversary A for our pro-
posed scheme. We show how to build an algorithm B that solve the Gap-BDH
problem by running the adversary A as a subroutine. B plays the role of A ’s
challenge and works by interaction with A in the game defined in section 3.

The challenger C receives an instance (P, aP, bP, cP) of the Gap-BDH prob-
lem, in which P, aP, bP, cP ∈ G1 for unknown a, b, c ∈ Z

∗
q . His goal is to compute

e(P, P)abc and he may make at most qg queries to the DBDH oracle of the Gap-
BDH problem.

C sets Q = aP and Ppub = bP . Then C gives A the system parameters
Params = {G1, G2, e, P, Ppub, H0, H1, H2, H3}. The hash functions are random
oracles controlled by C and for the adversary A ’s queries, C will maintain four

656 B. Zhang, Tao Sun, and D. Yu

lists Li(i = 0, 1, 2, 3) to record the results of the hash function Hi(i = 0, 1, 2, 3)
respectively. After receive the system parameters, A outputs target identity
pair (ID∗

1 , ID
∗
2). Upon receiving the target identity pair, C randomly chooses

γ ∈ {1, 2}.
C can answer A ’s queries as following:
• Query on H0 for IDj. When an element IDj ∈ {0, 1}∗ is submitted to the

H0 oracle for some j ∈ [1, q0], C checks if there exists a tuple (IDj , uj, QIDj)
in L0. If such a tuple exists, C answers with QIDj . Otherwise, C does the
following:

1. Select a random value uj ∈ Z
∗
q .

2. If IDj = ID∗
i for some i ∈ {1, 2}, then compute QIDj = uj · Q ∈ G1;

Otherwise, compute QIDj = uj · P ∈ G1.
3. Insert the tuple (IDj , uj , QIDj) into the list L0. Then, C return QIDj to

the adversary.

• Query on H1 for a Xj ∈ G2. When an element Xj ∈ G2 is submitted to the
H1 oracle for some j ∈ [1, q1], C checks if there exists a tuple (Xj , xj) in L1. If
such a tuple exists, C answers with xj . C checks whether (P,QID∗

i , Ppub, cP,Xj)
using the DBDH oracle for i = 1, 2, in which QID∗

i = ui · Q ∈ G1 is obtained

by issuing H0 query. If it is, C return (Xj)
u−1
i and terminates the game because

C has obtained the value e(P, P)abc. Otherwise, C selects a value xj ∈ Z
∗
q and

inserts the tuple (Xj , xj) into the list L1. Then, C returns xj to the adversary
A .

• Query on H2 for a kj ∈ Z
∗
q . When an element kj ∈ Z

∗
q is submitted to the

H2 oracle for some j ∈ [1, q2], C first scan the list L2 to check whether the input
was already defined in L2. If it was, the previously defined value is returned to
A . Otherwise, C randomly picks a bit string wj ∈ {0, 1}w and inserts the tuple
(kj , wj) into the list L2. Then C returns wj to the adversary A .

• Query on H3 for a tuple (ID, (c0, c1, ..., cn−1), U, vs). When a tuple (ID, (c0,
c1, ..., cn−1), U, vs) is submitted to the H3 oracle for some j ∈ [1, q3], C first scan
the list L3 to check whether the input was already defined in L3. If it was, the
previously defined value is returned to A . Otherwise, C randomly picks a value
λj ∈ Z

∗
q at random and inserts the tuple (ID, (c0, c1, ..., cn−1), U, vs, λj) into the

list L3. Then, C returns λj to the adversary A .
• Extraction queries. Upon receiving this query with IDj �= ID∗

i for i ∈ {1, 2},
the challenger C first scans the list L0 to check whether the tuple IDj , uj,
QIDj was already defined in L0. If it was, C computes dj = uj ·Ppub. Otherwise.
C randomly selects a value uj ∈ Z

∗
q , and computes QIDj = uj · P and dj =

uj ·Ppub. Meanwhile, C inserts the tuple (IDj , uj, QIDj) into the list L0. Finally,
C returns dj to the adversary A .

• Encap queries. The adversary A issues Encap queries for target identities,
denoted by (m, IDs, (ID1, ID2, ..., IDn)). C computes the private key us cor-
responding to IDs by running a key extraction query algorithm and then can
simply run the algorithm Encap(m, ds, (ID1, ID2, ..., IDn)). Finally, C returns
the result C to the adversary A .

ID-Based Anonymous Multi-receiver Key Encapsulation Mechanism 657

• Decap queries. A can perform an Decap query for a ciphertext C for a
sender IDs and a receiver ID∗

i (i ∈ {1, 2}) where C =< IDs, (c0, c1, ..., cn−1), U,
vs, σ >. Note that the return values of the used hash functions here are obtained
from hash queries in the previous phase. C performs the following tasks:

1. Use (IDs, (c0, c1, ..., cn−1), U, vs) to scan the list L3. If it was not found, C
returns ’failure’ and halts. Otherwise, C may get h = λ from L3.

2. Test whether e(P, σ) = e(Ppub, (vs + h · QIDs)) or not. If it does not hold,
output ’reject’ indicated that the ciphertext is not valid.

3. Set the polynomial f(x) with degree n as f(x) = c0+c1x+...+cn−1x
n−1+xn.

4. Use ID∗
i to pick the tuple (ID∗

i , u
∗
i , QID∗

i) from the list L0 to get u∗
i and

QID∗
i .

5. For j = 1, ..., q1, do the following:

(a) Pick the tuple (Xj , xj) from the list L1.
(b) Check whether (P,QID∗

i , Ppub, U,Xj) using the DBDH oracle.

6. If some j of the checks above is true, compute kj = f(xj) to A . Otherwise,
return ⊥ indicating that the ciphertext is invalid.

A outputs a sender and a set of identities IDs, ID3, ..., IDn, where n ≥ 3. C
performs the following tasks:

1. Choose r2 ∈ Z
∗
q , set U = cP , compute vs = r2 ·QIDs = r2 ·H0(IDs).

2. For i = 3, ..., n, get ui from the tuples (IDi, ui, QIDi) of list L0 and compute
vi = H1(e(U, ui · Ppub)).

3. Choose random v, k ∈ Z
∗
q and construct a polynomial f(x) with degree n as

below: f(x) = (x−v)
∏

i=3,...n(x−vi)+k(modq) = c0+c1x+...+cn−2x
n−2+

xn−1, where ci ∈ Z
∗
q .

4. Compute σ = (r2 + h) · ds, where h = H3(IDs, c0, c1, ..., cn−2, U, vs). Set the
result ciphertext to be C =< IDs, (c0, c1, ..., cn−2), U, vs, σ >.

A makes a number of Extraction queries, Encap queries and Decap queries
as in stage 1. A restriction here is that A is not allowed to issue the target
ciphertext with one of the target identity as Decap query. A output a guess
γ′ ∈ {1, 2} and wins the game if γ′ = γ.

In the following, we assess that C ’s advantage. For handling the Decap query,
if (IDs, (c0, c1, ..., ct−1), U, vs) cannot be found in L3, C returns ’failure’ and
halts. Thus, it means that A can guess a right output value of hash function
H3. In this case, there are qDecap queries to the Decap oracle, so the failure
probability of is at most qDecap/q. If A with a non-negligible advantage win the
ANON-IND-sID-CCA game, it denotes that C with a non-negligible advantage
has received H1 queries with some Xj as input, in which one of the DBDH
oracle queries with (P,QID∗

i , Ppub, cP,Xj) for i = 1, 2, will return 1. As in

H1 queries, C may obtain (Xj)
u∗
i
−1

= e(P, P)abc, in which (ID∗
i , u

∗
i , QID∗

i) is
obtained from L0. Hence, assume that the ANON-IND-sID-CCA adversary A
has a non-negligible advantage ε against the proposed scheme. Then, the Gap-
BDH problem can be solved with a non-negligible advantage ε′ > ε− (qDecap/q).

658 B. Zhang, Tao Sun, and D. Yu

Finally, for answering queries in the simulation game above, the required
computation time is t′ ≤ t+(qEncap+2qDecap)O(te)+(q0+qe)O(tm)+nq1O(t1)
where te denotes the time required for one pairing evaluation, tm denotes the
time required for one scalar multiplication in G1, t1 denotes the time required
for one DBDH oracle and n is the number of multiple identities.

6 Conclusion

In this paper, we defined the security notions of ID-based anonymous multi-
receiver key encapsulation mechanism with sender authentication to simulate
attackers’ abilities in the real attacking environment. We proposed a concrete
scheme based on some efficient primitives and the proposed scheme is secure
against the IND-sMID-CCA, EUF-sID-CMA and ANON-IND-sID-CCA attack
under several hard problem assumptions.

References

1. Bellare, M., Boldyreva, A., Micali, S.: Public-key Encryption in a Multi-user Set-
ting: Security Proofs and Improvements. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

2. Fan, C.I., Huang, L.Y., Ho, P.H.: Anonymous Multireceiver Identity-based Encryp-
tion. IEEE T. Comput. 9, 1239–1249 (2010)

3. Chien, H.Y.: Improved Anonymous Multi-receiver Identity-based Encryption. The
Comput. J. 4, 439–446 (2012)

4. Hur, J., Park, C., Hwang, S.O.: Privacy-preserving Identity-based Broadcast En-
cryption. Inform. Fusion. 4, 296–303 (2012)

5. Tseng, Y.M., Huang, Y.H., Chang, H.J.: Privacy-preserving Multireceiver
ID-based Encryption with Provable Security. Int. J. Commun. Syst., 12 (2012),
doi:10.1002/dac.2395 (Online Version)

6. Shoup, V.: A Proposal for an ISO Standard for Public Key Encryption (version
2.1), http://shoup.net/papers

7. Cramer, R., Shoup, V.: Design and Analysis of Practical Public-key Encryption
Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM J. Comput. 1,
167–226 (2003)

8. Cha, J.C., Cheon, J.H.: An identity-based Signature from Gap Diffie-Hellman
Groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer,
Heidelberg (2002)

9. David, P., Jacques, S.: Security Arguments for Digital Signatures and Blind Sig-
natures. J. Cryptol. 3, 361–396 (2000)

10. Shamir, A.: Identity-based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

11. Boneh, D., Franklin, M.: Identity-based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

http://shoup.net/papers

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 659–670, 2014.
© Springer International Publishing Switzerland 2014

Energy Efficient Routing with a Tree-Based Particle
Swarm Optimization Approach

Guodong Wang, Hua Wang*, and Lei Liu

School of Computer Science and Technology Shandong University,
Jinan, Shandong Province, China

wangguodong2008@mail.sdu.edu.cn,
{wanghua,l.liu}@sdu.edu.cn

Abstract. In contemporary, the energy waste caused by an un-optimized design
of network consumed a large part of limited resource. Reduction of unnecessary
energy consumption in wired networks has attracted the public’s attention. To
save energy without affecting performance, many existing studies classified the
problem as Mixed Integer Linear Programming problem, which is NP-complete.
Following this idea, we propose a novel energy efficient routing algorithm with
tree-based particle swarm optimization (EERTPSO) to get a solution covering all
the idle-period communication nodes and minimize the number of nodes or links,
considering the constraints of bandwidth, delay and link cost, in order to awake
the necessary nodes meanwhile get the idles to sleep. By the above sleep-awake
mechanism, algorithm obtains an accepted result satisfied the quality of service
requirement. Simulation and analytical results show that our algorithm performs
efficiently and effectively.

Keywords: Green networking, energy efficiency, intelligence optimization,
particle swarm optimization.

1 Introduction

The current global computer network infrastructures make a surprising amount of en-
ergy consumption. Statistics show that according to current growth, by 2025, the aver-
age energy consumption in network field of IT industry will reach 13 times of that in
2006[1]. An explosive growth shows up in the energy consumption of Information and
Communication Technology (ICT) equipment. For a long period, energy consumption
of network equipments is considered to be negligible compared to industry, so
few design concepts of network are concerned about power efficiency. Moreover, in
order to enhance the robustness or meet the Quality of Service (QoS) require-
ments, some topological redundancy is designed purposely. These structures consume
amount of energy even in idle state, providing opportunity for us to implement some
energy saving operations.

* Corresponding author.

660 G. Wang, H. Wang, and L. Liu

In a wired network, links and devices can be shut down independently. Consequently
many previous studies concentrate the main idea on switching off the idle parts among
that, which is the most straightforward method to reduce power consumption. From this
we get a power saving approach that turns off the unnecessary links and nodes, in other
words, transferring data with the selected minimum routing nodes while ensuring the
QoS request.

Fig. 1. Optimize the devices and links occupancy

As is simply depicted in Fig.1, N1 N2 N3 are communication members in network
idle periods. N1, like some servers, needs rapidly communicating with the others. It is
obviously that the devices and links occupancy of the optimized routing is much fewer
than that of the original method. In this way, more devices and links will have the op-
portunity to be turned into sleep mode for energy saving.

So the key idea of energy-efficient routing is to provide routing service which re-
stricts network traffic to fewer nodes and links in periods of low network utilization,
getting high bandwidth utilization and saving energy while meeting network perform-
ance. Unused network elements will be shut down or switched into sleep mode. Many
scholars have summarized this issue to Mixed Integer Linear Programming (MILP)
problem, which proved to be an NP-complete problem[2]. Particle swarm optimization
(PSO) is a comprehensive useful swarm intelligent algorithm to solve the NP-complete
problem. We adapted a new PSO algorithm based on the tree growth (TPSO) for energy
efficient routing problem.

The remaining part of this paper is organized as follows: The section 2 elaborates
some related works of similar areas. In Section 3 we formulate network model and
problem description. The Section 4 explains and demonstrates energy efficient TPSO
algorithm in detail. Then simulation results are depicted and discussed in Section 5.
Finally, we provide concluding remarks in Section 6.

2 Related Work

In the research area of energy-efficient networking, several recent novel technologies
were summarized by survey[3]. To cope with this problem, two types of approaches
have been proposed, what classified as system level and network level. The problem of

 Energy Efficient Routing with a Tree-Based Particle Swarm Optimization Approach 661

saving energy consumption in the Internet was earliest proposed by Gupta and Singh[4].
In the follow-on work, some researchers focused on devices and components power
management[5], sleeping and rate-adaptation modes were realized on network equip-
ments to reduce the power consumption when network was idle or in lightly loaded
state. On network level, energy aware traffic engineering is a common way. Article
author in the[6] proposed a method of turning off nodes and links according to a traffic
matrix and considering a fully connected network with the traffic constraint. Same on
the network level, energy aware routing is another way to save energy. Several heuristic
algorithms were modified to solve the energy-saving problem. Author in [7]
re-formulated the problem of network energy consumption minimization with the cen-
trality conception and presented an ant colony-based routing scheme to achieve the
target. Energy-aware method proposed in [8] saves energy by examining the utilization
of switch ports and idles network elements. Heller et al. [9] designed a novel method that
chooses the nodes which mustn’t to be shut down, then it powers down as many un-
necessary links and nodes as possible. Topology-aware heuristic algorithm was used to
determine which subset of network elements to be use. In this researching trends, pro-
posing a more effective and efficient routing algorithm is our best orientation.

3 Problem Formulation

Assuming a physical network topology consisting of nodes wired by cable links, the
power consumption of each node or link is given. In this architecture we research the
energy efficient routing based on sleep-awake mechanism[10]. Our algorithm finds the
set of nodes and links that should be powered on, after that, the other nodes and links
which not in the solution set will be switched to sleep mode for saving power. Consid-
ering that links in a tree structure will be used frequently and so the fixed power con-
sumption of each node or link can be amortized over more communication sessions, our
algorithm uses a tree to route all the communication nodes[11]. If new sessions that not
in the current routing tree come up, the necessary nodes in sleep state will be waked up
to join in the new tree establishing progress. By this thought, we formulate our scheme
to a math model which finds a routing tree for all the communication members while
minimizes the number of nodes and links on the routing tree and guarantees the QoS
requirements.

Definition: Construct a directed graph G= (V, E), where V denotes the set of nodes
and E denotes the set of links, while N=|V| and L=|E| are the total number of nodes and
links respectively. Let tsd be the bandwidth requirement (traffic demand) from node s=1,
… N to node d=1, … N, and bij represents the bandwidth from node i to j. Let fij

sd∈[0 , tsd]
denote the amount of flow which is routed through the link from i to j between s to d. Let
binary variable xij i=1, … N, j=1, … N, take the value of 1or 0 depending on whether
link from node i to j is power-on state, the same principle applies to binary variable yi for
nodes. Finally, the power consumption of link from node i to j, and of node i are denoted
by PL and PN respectively.

662 G. Wang, H. Wang, and L. Liu

Based on above definitions, the problem could be formulated as:
Min:

1 1 1

N N N

ij L i N
i j i

x P y P
= = =

+  (1)

Subject to:

1 1

, ,

, ,

0 , , ,

sd

N N
sd sd sd

ij ji
j j

t s d i s

f f t s d i d

s d i s d
= =

 ∀ =
− = − ∀ =
 ∀ ≠

  (2)

1 1

,
N N

sd
ij ij ij

s d

f b x i j
= =

≤ ∀ (3)

In this formulation, the objective function (1) is to minimize the total power con-
sumption of network. Constraint (2) ensures the conservation of flow. Constraint (3)
ensures the total flow (sum bandwidth required) on each active link to be less than the
provided bandwidth. Especially, since LP and NP are depended on the actual condi-
tions, in order to facilitate research, we assume LP is far less than NP [12], so that the
objective for our heuristic algorithm could be converted into finding a solution tree
containing as fewer nodes as possible while meeting other conditions.

4 A Tree Based PSO Energy Efficient Algorithm

The PSO algorithm imitates the behaviour of swarm creatures in the real world, which
has good performance in NP-c problem optimization[13]. In PSO algorithm, every
particle flies to better solution positions by the experience of the individual and its
neighbours. This mechanism can be depicted by the formulas below:

 1 2() () () ()id id id id gd idv w v c rand p x c Rand p x= × + × × − + × × − (4)

 id id idx x v= + (5)

Table 1. Parameters of Formula

parameter meaning

w inertia weight

vid particle speed

xid particle current position

pid particle historical best position

pgd global best position

rand() Rand() mutually independent random function

c1 c2 study factors

 Energy Efficient Routing with a Tree-Based Particle Swarm Optimization Approach 663

According to each particle’s previous speed, historically best position, and overall
best position, formula (4) calculates the current particle’s velocity. The position of every
particle in multi-dimensional space is updated by formula(5).

In accordance with the procedure, algorithm initializes n particles randomly. For
each particle a source root tree contained. Particle with the best fitness will be consid-
ered as the current global best solution pg. Then get each particle into the iterative pro-
cess, in which the step of merging, circle eliminating and edge pruning will be executed.
In every loop, QoS constraints are taken into consideration, and a fitness value of each
optimized particle is assessed to decide whether to update the global best solution pg. If
the algorithm converges or is beyond the maximum iteration, solution will be obtained.
EERTPSO algorithm pseudo code is given as follow:

Algorithm 1. EERTPSO
procedure EERTPSO

input m
 convergestate = FALSE
 for i=0 to n do
 Init_Particle (src, edge)
 end_for

pg=Calculate_FitnessofTree (p_tree)
 for i=0 to m do
 k = 0;
 while (k<n) do
 temptree = MergingOfTree (pg, pld, particle[k])
 RemoveCircles(temptree, src)

Prune_IndegreeExcessiveNode (temptree)
Prune_UselessEdge (temptree)
if solution tree satistices QoS constraints
then continue; otherwise repeat
totalnodes = Count_Nodes (temptree)
if totalnodes<EERTPSO_SolutionNodes(pg)
 fitness = FitnessofTree (temptree)

if fitness > FitnessofTree (pg)
pg = temptree
end_if
k++;

end_if
end_while
convergestate = IsConverge (pg)
if convergestate = TRUE

break
print no solution message
end_if

end_for

664 G. Wang, H. Wang, and L. Liu

print bestsolution
print i

end_procedure

After the algorithm executes some generations, the solution with minimum amount of
nodes and satisfying QoS constraints will be found. PSO Initialization has the advantage
of random feature, which ensures good search range. In iterations, each particle is lead
by the neighborhood into the favorable direction, by which the algorithm takes a good
performance. In the following sections the steps including initialization, tree merging,
circle elimination, edge pruning and fitness assessing will be introduced.

4.1 Initialization of PSO Particles

The particle in this paper abandons the traditional way preserving path between source
and destination node, maintains a source root tree in n×n matrix instead. In this n-node
matrix x, x[i][j]=1 indicates link between node i and j is in the source root tree.

At the beginning of process, algorithm constructs a random tree in the following
method:

Assuming that all the communication nodes are in the tree members set S, at first
there is only the source node s in the set. Construct an array currentdelay recording the
delay between source and the other nodes. Randomly search the nodes that are not in S
but have edge (assumed emi) connecting to nodes in S, if the sum of delay on edge emi

(depicted as Del(m,i)) and currentdelay[m] is lower than communication tree delay
constraint, and the edge emi has the available bandwidth larger than requirement of
communication in tree, then add node i into S while update currentdelay[i] as the sum of
currentdelay[m] and Del(m,i). The above random selection will be repeated, if the delay
and bandwidth demand are not satisfied, until all the communication nodes are added
into S.

After all the communication member nodes are added into the source root tree, the
process of pruning leaf nodes not belonging to communication members will be exe-
cuted. Check each leaf node, if it is not the member and possesses an edge emi (node m is
the parent of i) , then eliminate edge emi from the tree. Similar inspection will be done on
the parent node until a node that is the communication member or its out-degree is
bigger than 0. A communication tree that satisfied the delay and bandwidth constraints
will be found through the initialization above.

Algorithm 2. Particle Initialization
Procedure Init_Particle (src, edge)

Init Set S =[src]
Init currentdelay[n]
currentdelay[src]=0
do

i=0
while (i<n) do

 Energy Efficient Routing with a Tree-Based Particle Swarm Optimization Approach 665

m=0
while (m<n) do

if node i is adjacent to node m, and node m is in Set S, and node i is not in
if (currentdelay[m] + Del(m, i) ≤ Δd and B(m, i) ≥ Bd)

add node i to Set Candidate
end_if

end_if
end_while

end_while
i = RandOpt(Candidate)
add node i to Set S
currentdelay[node i]= currentdelay[node m]+ Del(m, i)
while not all of the member nodes contained in set S
Prune_UselessEdge ()

End Procedure

4.2 Merging and Optimizing the Tree

Algorithm in this paper optimizes the source root tree with tree shape based method
directly instead of the conventional procedure. The main stages are described as follow:

Tree Merging. The source root tree is stored in the form of n×n adjacent matrix. As-
suming two trees T1 T2 , their merging can be simply treated as T = T1 + T2 , i.e. T[i][j] =
T1[i][j]∨T2[i][j] , but this is an intermediate results waiting modification.

Circle Eliminating. It is probable that the result drew from previous stage contains
circles or nested loop. We use depth first search(DFS) to eliminate circles. DFS algo-
rithm begins from source node s, DFS(s, deep), in which the depth of node is denoted as
deep. Three major arrays, including the node in deep array of tree (deep[]), the
whether-visited array (visited[]), and the finish-searched array(finished[]), are kept by
the algorithm. By means of these arrays, if algorithm discovers one node i which has
been searched but searching procedure is unfinished, it indicated that the graph includes
directed circles. In such circumstances, we adopt the approach of deleting the edge
returning to node i to solve the problem. After tree merging operation, the nodes on
circles or nested loops can be divided into two types: If the edge emi belongs to both of
the two trees, the in-degree of a node i is 1, otherwise the in-degree of node i is more
than 1. Circle eliminating does not delete edges shared by two trees but the edges with
nodes whose in-degree more than 1, ensuring the connectivity between communication
members. Therefore, after the circle eliminating operation, the largest branch of the
graph contains all the communication members inevitably.

Eliminating Useless Edges. After the operation of above stages, algorithm could
obtain a tree containing all the communication members, but maybe leaves nodes

666 G. Wang, H. Wang, and L. Liu

which not belong to the member group are also mixed in, thereupon an operation of
eliminating useless nodes and connected edges is necessary. It is the same as the
pruning in the initialization section.

4.3 Fitness Evaluating

There are two kinds of fitness evaluations in our algorithm, including edge fitness and
the tree fitness. The former aims to eliminate the substandard edges in the stage of circle
trimming and over-degree nodes pruning. So the bandwidth and delay constraints are the
emphasis of edge fitness evaluation.

 ()/ ()/
1 2

0 () _
()

e e otherwisecost e avgcost delay e avgdelay

bandwidth e bw req
fitness e

a a− −

<
=  × + ×

 (6)

The edge bandwidth, cost and delay are denoted by bandwidth(e), cost(e) and de-
lay(e) respectively. The bw_req is the bandwidth constraint of an edge, avgcost and
avgdelay represent the average cost and delay of the network edge set. The a1 a2 are
weight value.

In another aspect, the tree fitness evaluation is a compound function related to total
cost and delay in the tree. This method of searching optimized solutions is beneficial to
seeking a compromise between network performance and energy consumption. We
should consider the fitness updating in the meanwhile of nodes minimizing process.

 () / ()/
1 2() e ecost cbcost del cbdelayfitness Tree a a− −= × + × (7)

In the above formulas, cost(), del() stand for the values of the tree’s cost and delay,
cbcost and cbdelay denote the cost and delay in the current best solution tree. The e is the
base of natural logarithm. The a1 a2 represent weight variables which can be set to
different values according to the requirements, and meet the constraints that a1 + a2 = 1,
a1, a2≥0. In this paper we assign them to 0.85 and 0.15, respectively.

5 Experiment Results And Analysis

We evaluate the performance of this algorithm in the following section. In our study we
adopted MRSIM[14] which is developed by Salama et al. of North Carolina University.
The network topology used in the experiment was randomly generated according to the
approach of Waxman. The generator randomly distributes nodes over a rectangle area
and then creates links between these nodes at random. The edge cost，delay and jitter is
set to the distance between its corresponding nodes. This algorithm was programmed
with VC6.0 and run on the machine Intel Core2® Duo E7500 2.93GHz, 4GB memories
in the operating system of Windows 7.

We have examined the efficacy of our proposed EERTPSO through extensive sim-
ulation experiments. The maximum cycling time of our algorithm is set as 30 and the
initialization particles number is 30 considering the solution and convergence time. The
circulation will be stopped when no evolution occurs in 4 consecutive cycles. When the
network is in a low utilization state which provides opportunity for us to exert energy

 Energy Efficient Routing with a Tree-Based Particle Swarm Optimization Approach 667

efficient routing algorithm, communication members usually account for 10% to 20% of
all the nodes in topology. In order to simulate the real situation, the power consumption
of nodes in active and sleep mode are assumed to be 200W and 100W[15] respectively.

To evaluate the performance of our algorithm, we run other two algorithms and rec-
ord data for comparison. The two algorithms added into comparison are modified
Dijkstra least delay algorithm (MDLD) adapted from [16] and ant colony-based
self-adaptive energy saving routing algorithm[7] (A-ESR) respectively. We obtained the
average solution by running the algorithm 100 times on every testing topology, the data
of solution nodes number, power consumption and the convergence time are depicted in
the following figures.

0 20 40 60 80 100
0

20

40

N
od

es
 n

um
be

r
in

 s
ol

ut
io

n

Topology nodes number

 EERTPSO
 A-ESR
 MDLD

Fig. 2. Comparison of the nodes number of the algorithms

The comparison of nodes number results in solution tree with different algorithms
are shown in Fig.2. It can be seen that, taking a better heuristic strategy, our EERTPSO
has a good performance slightly better than A-ESR and much better than MDLD. When
the communication members are not enough, A-ESR algorithm performs satisfying
because of its good unicast feature, but as the members growing, EERTPSO improves
quickly. On the contrary, just considering the delay minimization, regardless of the
energy efficient, MDLD cannot guarantee the number of nodes in the results.

Fig.3 describes the energy consumption of solutions obtained by different algo-
rithms. As we can see, the energy consumption of each kind of algorithm increases with
the network scale increasing. Contrasting the results on each scale level alone, it is
shown that, with the network scale increasing, EERTPSO algorithm performs from
unsatisfied to the best in energy saving effectiveness. However, the MDLD algorithm,
which puts emphasis on low-delay solutions, cannot ensure the nodes number minimi-
zation, so it shows worse than the other algorithms.

668 G. Wang, H. Wang, and L. Liu

20 40 60 80 100
0

5000

10000

15000

P
ow

er
 c

on
su

m
pt

io
n

(W
)

Topology nodes number

 EERTPSO
 A-ESR
 MDLD

Fig. 3. Comparison of the power consumption of the algorithms

0 20 40 60 80 100

0

500

1000

1500

2000

2500

3000

co
nv

er
ge

nc
e

tim
e

(m
s)

Topology nodes number

 EERTPSO
 A-ESR
 MDLD

Fig. 4. Comparison of convergence time of the algorithms

As is demonstrated in Fig.4, the convergence time of each algorithm increases with
the expanding of network scale. The time consumption speed of A-ESR grows faster
than EERTPSO, and when the number of nodes increases over 60, a significant gap of
convergence time appears. As the number of communication members becomes larger,
EERTPSO is still able to maintain a relatively low convergence time with its tree-based
feature, while the A-ESR increase rapidly.

 Energy Efficient Routing with a Tree-Based Particle Swarm Optimization Approach 669

6 Conclusion

In this paper we investigated the power consumption minimizing problem in wired
network and proposed an energy-efficient routing derived form tree shape transforma-
tion based PSO algorithm. Our method could find an optimized solution containing all
the demanding communication sessions with a minimal subset of network nodes while
guarantee the bandwidth and other QoS requirements. The idea of tree re-shaping op-
timized the solution and improved algorithm performance. Through sleep-awake
mechanism, fewer necessary network components would be left in awake-state
to forward the data flow, and the unnecessary components would be shutdown for
energy saving. Experimental results show that the algorithm performs rapidly and ef-
fectively.

Acknowledgment. The study is supported by the Natural Science Foundation of
Shandong Province (No. ZR2011FM021; ZR2013FM029; ZR2013FQ013), the Sci-
ence and Technology Development Program of Jinan (No.201303010), the National
Natural Science Foundation of China(NSFC No. 60773101), and the Fundamental
Research Funds of Shandong University (No. 2014JC037).

References

1. Yun, D., Lee, J.: Research in green network for future internet. Journal of KIISE 28(1),
41–51 (2010)

2. Chiaraviglio, L., Mellia, M., Neri, F.: Minimizing isp network energy cost: Formulation and
solutions. IEEE/ACM Transactions on Networking (TON) 20(2), 463–476 (2012)

3. Bolla, R., et al.: Energy efficiency in the future internet: a survey of existing approaches and
trends in energy-aware fixed network infrastructures. IEEE Communications Surveys &
Tutorials 13(2), 223–244 (2011)

4. Gupta, M., Singh, S.: Greening of the Internet. In: Proceedings of the 2003 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communications
(2003)

5. Nedevschi, S., et al.: Reducing Network Energy Consumption via Sleeping and
Rate-Adaptation. In: NSDI (2008)

6. Chiaraviglio, L., Mellia, M., Neri, F.: Reducing power consumption in backbone networks.
In: IEEE International Conference on Communications, ICC 2009 (2009)

7. Kim, Y.-M., et al.: Ant colony based self-adaptive energy saving routing for energy efficient
Internet. Computer Networks 56(10), 2343–2354 (2012)

8. Si, W., Taheri, J., Zomaya, A.: A distributed energy saving approach for Ethernet switches
in data centers. In: 2012 IEEE 37th Conference on Local Computer Networks (LCN) (2012)

9. Heller, B., et al.: ElasticTree: Saving Energy in Data Center Networks. In: NSDI (2010)
10. Awerbuch, B., Holmer, D., Rubens, H.: The pulse protocol: Energy efficient infrastructure

access. In: Twenty-third Annual Joint Conference of the IEEE Computer and Communica-
tions Societies, INFOCOM 2004 (2004)

11. Mumey, B., Tang, J., Hashimoto, S.: Enabling green networking with a power down ap-
proach. In: 2012 IEEE International Conference on Communications (ICC) (2012)

670 G. Wang, H. Wang, and L. Liu

12. Gunaratne, C., Christensen, K., Nordman, B.: Managing energy consumption costs in
desktop PCs and LAN switches with proxying, split TCP connections, and scaling of link
speed. International Journal of Network Management 15(5), 297–310 (2005)

13. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE Interna-
tional Conference on Neural Networks (1995)

14. Salama, H.F., Reeves, D.S., Viniotis, Y.: Evaluation of multicast routing algorithms for
real-time communication on high-speed networks. IEEE Journal on Selected Areas in
Communications 15(3), 332–345 (1997)

15. Niewiadomska-Szynkiewicz, E., et al.: Control system for reducing energy consumption in
backbone computer network. Concurrency and Computation: Practice and Experi-
ence 25(12), 1738–1754 (2013)

16. Jain, S., Fall, K., Patra, R.: Routing in a delay tolerant network, vol. 34. ACM (2004)

X.-h. Sun et al. (Eds.): ICA3PP 2014, Part II, LNCS 8631, pp. 671–684, 2014.
© Springer International Publishing Switzerland 2014

A Context-Aware Framework for SaaS Service Dynamic
Discovery in Clouds

Shaochong Li1,* and Hao-peng Chen2

1 China UnionPay, Shanghai, China
lee.shaochong@gmail.com

2 School of Software, Shanghai Jiao Tong University, Shanghai, China
chen-hp@sjtu.edfu.cn

Abstract. As Cloud computing and Mobile Computing become more and more
prevalent, most of service consumers expect discovery suitable SaaS service in
mobile environment. At the same time, in order to economize SaaS service ad-
vertisement cost, service provider need recommend SaaS service accurately
based on consumer’s behavior. Therefore, how to determine a suitable policy of
service discovery in mobile environment has become a challenging issue. It is
considered that service in mobile environment need involve such contexts: Do-
main, QoS and Spatial. In this paper, we propose a context-aware framework
that benefit for SaaS service discovery and recommend based on service
consumer’s behavior habit and their context environment. In order to reach this
target, we also present a model to describe SaaS service based on context
Ontology.

Keywords: Cloud computing, Mobile Computing, Domain, QoS, Spatial,
context-aware, Ontology.

1 Introduction

Recently, cloud computing has enough ability to deal with complex and Parallel problems.
It virtualized all the resource for everyone who wants to get the suitable service. On the
other hand, cloud service identification and discovery remains a tough issue due to differ-
ent service descriptions, non-standardized naming conventions and diverse features of
cloud services [1, 2]. Under such situation, it is hard for consumer to make decision to
select service from different service providers due to non-uniform description.

Software as a Service (SaaS) is a software delivery model, which provides custom-
ers the functionality of a service that is completely deployed in the cloud environ-
ment. It also is a delivery mechanism to provide consumers with the functionality of
an application that is deployed in the cloud environment. It is a problem for consumer
to choose suitable SaaS from the services with similar functionality. Traditional SaaS
service recommended method is based on the service access sequence. It is considered
that the more frequent the service is accessed the more chance to recommend. How-
ever, it may not be the suitable service for consumer due to consumer’s surroundings.

* Corresponding author.

672 S. Li and H.-p. Chen

Current personal service recommended mechanism could not consider the factor of
context environment. Such as the consumers’ habit, information of QoS, their envi-
ronment and so on.

SaaS service as a resource of cloud, most service providers recommend their ser-
vices using advertisement or message. In most cases, such method is not effect to
attract consumer to use their service and many services they recommend may not
suitable for consumer’s needs.

In order to address the above limitations, we propose a semantic-based framework
that contains cloud SaaS services dynamic recommend based on the context environ-
ment achieving the following objectives:

 To provide SaaS service description method based on context-aware ontol-
ogies for service consumers and providers.

 To introduce a context-aware framework of service recommend based on
the proposed context-aware ontologies.

 To propose a service recommend algorithm to push suitable service for
consumer based on consumer behavior.

The remaining paper is structured as follows. In the next section, we discuss related
work. Section 3 introduces the SaaS service description based on context ontology.
Section 4 introduces our context-aware framework in detail. Section 5 presents the
algorithm of service recommend based on consumer’s behavior. The simulation de-
tails are presented in section 6. Finally, the conclusion and future work are presented
in section 7.

2 Related Work

In recent years, the problem of service selection based on cloud computing has re-
ceived a lot of attention from many researchers. Some researchers describe cloud
services with Web Services description language (WSDL), such as paper [3], the
authors use BPEL to orchestrate SaaS services which are described as Web Services.
But in cloud computing era, the traditional WSDL could not fully meet the require-
ment of cloud computing services description. Consequently, most researchers expect
to describe cloud services based-sematic.

Semantic Web technologies include languages such as RDF [4] and OWL [5] for
defining ontologies and describing metadata using these ontologies as well as tools or
reasoning over these descriptions. OWL is based on Description Logic (DL) [6] with
a representation in RDF. In paper [7] , the authors describe the cloud service based on
Ontology. But the authors only give a abstract model which is not describe SaaS ser-
vice in detail. In [8] sematic matchmaking approach for virtual application deploy-
ment in IaaS is proposed with WSML as a language for specifying search requests
and service descriptions. However the author only focuses on IaaS service providers.
Paper [9] addresses a method of matchmaking for Cloud services and resources. The
authors propose a model for reflecting dynamic information in service descriptions. In
paper [10], the authors use agent to manage cloud resource. An OWL-S based seman-
tic cloud service discovery and selection system is proposed in [11]. These authors all
don’t consider the QoS as the factor of service selection.

 A Context-Aware Framework for SaaS Service Dynamic Discovery in Clouds 673

Based on the semantic web technologies, researchers could build framework for cloud
service selection. Paper [12] provides a CloudCmp framework for comparison. The
SMICloud framework proposed an Analytical Hierarchy Processing (AHP) ranking
mechanism for cloud services selection in paper [13]. But these frameworks could not
consider the mobile environment and could not detect context environment.

From the above description, it is noted that current research work exist the follow-

ing questions：

 SaaS services are not described precisely to satisfy consumer’s require-
ment.

 Service selection Framework doesn’t pay attention to the context envi-
ronment.

 The recommend mechanism is not based on the consumer behavior habit
enough.

Consequently, in this paper, we expect to provide a context-ware SaaS service dy-
namic selection and recommendation framework to benefit for consumer in the mo-
bile environment.

3 Context-Aware SaaS Service Model

Software as a service (SaaS) is a model of software deployment by software vendors
(servers) in which their clients use applications through a time subscription or a pay-
as-you-go scheme. Most of SaaS services contain the information about function,
platform, price, available time and so on. If we consider the context environment,
service should include more information about context. In this paragraph, we expect
to propose a context ontology model for consumer and provider to describe SaaS
service.

The classification method of context is the basis of context ontology. Researchers
have proposed various classifications [14 ,15,16,17]. The authors in paper [15] divide
the context into Computing Context, User Context and Physical Context. Based on
this classification, the author Chen adds Time Context. Dix and Rodden propose a
hierarchical classification that contains Infrastructure Context, System Context, Do-
main Context and Physical Context. For the context, the researchers have different
views about the classified method. However, for the SaaS consumer and provider,
they pay more attention to the Domain (What the service could do), QoS(How about
the service) and Spatial (Which location we can get service).

Considering the characteristic of SaaS service, in this paper, we propose a SaaS
service model that contains the three contexts: Domain Context, QoS context, Spatial
Context.

3.1 Domain Context

Domain context provides standard ontology for the standard SaaS service. It needs
contain various elements related to SaaS service processes of function. The domain
context describes SaaS service related field attributes. In this paper, Services domain

674 S. Li and H.-p. Chen

knowledge was collected from the following resources: the industry ontology stand-
ard from FIPA (The Foundation for Intelligent Physical Agents), Business Function
Ontology (BFO) framework [18], cloud ontologies [19-20] and industry classification
standards. One domain context contains many attributes that need us to record. Here
we couldn’t describe a complete domain context. The following figure shows a part of
domain description based on OWL language:

Fig. 1. A portion of domain description based on OWL language

3.2 QoS Context

Quality of Service (QoS) serves as a benchmark to differentiate service providers and
comprises of techniques that aim to bring a balance between the needs of the service
consumers and those of the service providers while being constrained by the limited
network and server resources. At the same time, QoS should describe consumer and
provider extremely concerned attributes, such as price, response time and so on. As an
important indication standard for the SaaS service, there are many attributes for it to
define the relate standard.

QoS description contains many metrics, such as response time, availability, in-
teroperability, reliability, connection time. There are many QoS semantic models to
describe QoS. In this paper, we could build QoS model refers to paper [21]. The Qos
model contains five parts. The first one relates to various roles in specifying QoS
information, QoS description, QoS level, and QoS group. The second one describes
main characteristics of QoS properties. The third one defines relationships between
and among QoS properties. The fourth one describes QoS metrics. And the last one
defines

Fig. 2. QoS ontology model based on OWL language

<owl:Class rdf:ID=”QoS”>

 <rdfs:subClassOf rdf:resource="#Role"/>

 <rdfs:subClassOf rdf:resource="#QoSDescription"/>

 <rdfs:subClassOf rdf:resource="#QoSLevel"/>

 <rdfs:subClassOf rdf:resource="#QoSGroup"/>

 <rdfs:subClassOf rdf:resource="#QoSProperty"/>
</owl:Class>

<owl:Class rdf:ID="Restaurant">

 <rdfs:label> Restaurant </rdfs:label>
</owl:Class>

<owl:ObjectProperty rdf:ID="hasClient">

<rdfs:label> hasClient </rdfs:label>

<rdfs:domain rdf:resource="#Client"/>

<rdfs:range rdf:resource="# Restaurant "/>

</owl:ObjectProperty>

 A Context-Aware Framework for SaaS Service Dynamic Discovery in Clouds 675

a set of core QoS properties. The Fig 2 shows such QoS model based on OWL lan-
guage.

3.3 Spatial Context

Spatial context is one kind of the earliest context which researchers paid attention to.
Context-aware computing was also originated from LBS (Location Based Services).
Consequently, it is no doubt that spatial information such as consumer location and the
topological relationship of building is the most important context information. Espe-
cially, in the mobile environment, location is the most significant information for SaaS
service. Geographic Information Systems and other related domains have proposed
many spatial models.

The most representative models are RCC (Regional Connection Calculus)[22], n-
intersection model and so on. According to RCC theory, Region is the metadata. It
could have any dimension as long as the number of dimension is same as the one of
the model based on RCC. Suppose we have two regions x and y. RCC define the con-
nection relationship as C(x,y) which represents the intersection of topological closure
between region x and y is not empty. It means that they at least share a same point for
these two regions.

The other relationship definitions are based on connection relationship C(x,y). The-
se relationships are always divided into some relationship set in order to form the
subset of RCC model. The most common used relationship sets are RCC-5, RCC-8,
RCC-15 and so on. In this paper, we put RCC-5 as the spatial information model.
RCC-5 includes five topologic relationships between regions: DR (discrete), PO (par-
tially overlapping), PP (proper part), EQ (equal), PPI (proper part inverse). We use
RCC-5 to build a spatial context set which contains information of geographical envi-
ronment. Each service could find their suitable position. The Fig 3 describes an ex-
ample model that has DR and PP relationships based on OWL language

Fig. 3. DR and PP relationships based on OWL language

<owl:ObjectProperty rdf:ID=”DR”>

 <rdfs:domain rdf:resource=”#Region”/>

 <rdfs:range rdf:resource=”#Region” />

 <rdf:type rdf:resource=&owl;SymmetricProperty />

</owl: ObjectProperty >

<owl:ObjectProperty rdf:ID=”PP”>

 <rdfs:domain rdf:resource=”#Region”/>

 <rdfs:range rdf:resource=”#Region”/>

 <rdf:type rdf:resource=&owl;TransitiveProperty />

</owl: ObjectProperty >

676 S. Li and H.-p. Chen

3.4 SaaS Service Model

Based on the above context description, SaaS service could be described as
multipleconcepts. One concept contains context information (Domain Context, QoS
Context, Spatial Context). We could define ܿݐ݌݁ܿ݊݋௜ as the following style: ܿݐ݌݁ܿ݊݋௜ = {ܦ)ߔ஼, ܳ஼ , ܵ஼), ,஼ܦ ܳ஼ , ܵ஼} (i=0,1,2,3……) (1)

According to the above formula, ܦ஼ ={ ଵܦ , … … ௡ܦ }, ܳ஼ = { ଵܳ, … … ܳ௡}, ܵ஼ ={ ଵܵ, … … ܵ௡} represent series sets of elements from Domain context, QoS context and
Spatial Context respectively. ܦ)ߔ஼, ܳ஼ , ܵ஼) is the semantic relationship holding
among ܦ஼ , ܳ஼, ܵ஼ variables, and is represented in the form of OWL triples.

Consequently, one SaaS service could be described as the following style: ݁ܿ݅ݒݎ݁ݏ௜ = Set{ܿݐ݌݁ܿ݊݋஼} (i=0,1,2,3………) (2)

Where ܿݐ݌݁ܿ݊݋஼ ,ଵݐ݌݁ܿ݊݋ܿ}= … … {௡ݐ݌݁ܿ݊݋ܿ represent service contain many con-
cepts come from the context-ontology.

In the next paragraph, we propose a context-aware SaaS service discovery and rec-
ommend framework that could benefit for consumer to get service and convenient for
provider to push their service based on consumer’s behavior.

4 Context-Aware SaaS Service Discovery and Recommend
Framework

In this paragraph, in order to utilizing the context information, we put a context-aware
framework for service discovery and recommend. Our framework consists of three
modules: SFM (Service foundation module), SLM (Service Library Module) and
SPM (Service Push Module). These modules and their relationships are depicted in
Fig 4. SFM provide the basic function for SaaS such as LBS and message push based
on BaaS [23] and it also could collect the SaaS service description. SLM offer a SaaS
service library that contains services described by semantic based on context ontolo-
gy. SPM designs a semantic matching mechanism to recommend suitable SaaS ser-
vice for consumer.

4.1 Service Foundation Module (SFM)

SFM is a module to conduct basic functions that are consist of two sub-modules:
BaaS and Cloud Foundation. Backend as a service (BaaS) provides SaaS service
backend cloud storage, pushing service, LBS service and other backend services. This
module provides base function for SaaS service, SLM and SPM. BaaS module also
could record the relate information of SaaS service such as domain, location, price
and other attributes. Such information is quite important for SLM to describe a SaaS
in its context-aware service library. All SaaS services descriptions are stored as se-
mantic style in SLM. At the same time, BaaS also provide storage function for SPM
to storage consumer information and consumer semantic tag. SPM uses push function

 A Context-Aware Fram

based on BaaS to recomme
module in SFM, it provide
This module also could coll

When a Service Provide
such as domain and price c
SLM. In the next part, we
into sematic-information.

4.2 Service Library Mo

In the SFM, it collects Sa
service name, description,
the SaaS features to ontolo
QoS Context, Spatial Cont
the processing of the servi
vices descriptions. This mo
tered services due to most f

This module is respon
matching service accurately
following style:

Sc =Se

mework for SaaS Service Dynamic Discovery in Clouds

end user suitable service. Cloud Foundation is another
e the basic cloud functions for BaaS such as IaaS or Pa
lect QoS information from SaaS service.

Fig. 4. Context-aware Framework

er proposes a new SaaS service, some related informat
could be dispatched instantly. All of the result will send
will describe how the SLM transfer the SaaS informat

odule (SLM)

aaS service related characteristics such as provider na
features, application domain, price, SLA. Then SLM m
ogical concepts retrieved from context (Domain Conte
text). The context-aware service library is responsible
ice semantic-description. It aims at the unification of
odule is also responsible for accepting updates of the reg
features of SaaS services are changing in a certain period
nsible for storing SaaS based on semantic in order
y. It contains a set of SaaS services that are described as

et { ݁ܿ݅ݒݎ݁ݏ௜} (i=0,1,2,3………)

677

sub
aaS.

tion
d to
tion

me,
map
text,

for
ser-
gis-
d.
r to
the

(3)

678 S. Li and H.-p. Chen

Sc represents a set of SaaS service and ݁ܿ݅ݒݎ݁ݏ௜ represents one specific SaaS service.
The service definition had been described in formula (1). All concepts are stored in
service library based on three context ontologies (Domain Context, QoS Context,
Spatial Context).

4.3 Service Push Module (SPM)

In this module, we expect to build an intelligent service push mechanism based on
consumer context-aware behavior. Consumer mobile equipment could receive seman-
tic tags pushed by SPM. The semantic tags contain context information from Domain
Context, QoS Context and Spatial Context. SPM sends semantic tags to consumer by
choosing random domain when no consumer’s behavior information is available.
After the consumer receives tags, they could choose what they like and the equipment
could send back tags to SPM. SPM utilizes the received semantic tags, consumer info
and SaaS service info from SLM to implement service matchmaking. With consum-
er’s fed back semantic tags, SPM could push the suitable service to consumer equip-
ment based on consumer’s context environment.

This module is consisted of three sub-modules: Service match module, User tag li-
brary module and Service push module. Service push module pushes tag and SaaS
service which consumer interests in to consumer mobile equipment. It may send tag
random if it is not perceive the consumer behavior at first time. User tag module
stores consumer information and interested tags. Such relationship is represented as a
pair: ܴ௖={ ܷ௖, Set{ܥ௜ }} (i=0,1,2,3………) (4)

Where Uୡ represents the consumer unique identification and Set{C୧ } represents a
series of semantic-tags. User tag library store a large number of pairs to record the
consumer’s interests.

Service match module discovery SaaS service in SLM based on consumer interest
semantic tags from User tag library module. At first, it needs match semantic-tags in
context-aware ontology and find the similar semantic concepts. It needs matchmaking
concept in SLM that we define above and contain three context sets: DC, QC and SC
Context matchmaking method is based on ontology sematic similar computing. In this
paper, we use GCSM [24] to compute semantic similarity between two concepts. The
formula is defined as the following: ܯܵܥܩ(ܿଵ, ܿଶ) = ௗ௘௣௧௛(௖భ)ାௗ௘௣௧௛(௖మ)ଶ∗ௗ௘௣௧௛(௅஼஺(௖భ,௖మ)) (5)

Where depth(c) represents the concept c depth in ontology and LCA(cଵ, cଶ) repre-
sents the lowest same ancestor. Based on the method from paper [25], it could use
function Prop(cଵ, cଶ) which represents a set of nodes from concept cଵ to cଶ. Conse-
quently, it could define the matchmaking function as the following: ܿݐܽܯℎ(ܿଵ, ܿଶ) = ଶ∗|௉௥௢௣(௖భ,௅஼஺)∩௉௥௢௣(௖భ,௅஼஺)||௉௥௢௣(௖భ,௅஼஺)∩௉௥௢௣(௖భ,௅஼஺)|ା|௉௥௢௣(௖భ,௅஼஺)∪௉௥௢௣(௖భ,௅஼஺)| (6)

 A Context-Aware Framework for SaaS Service Dynamic Discovery in Clouds 679

Then, we could define the context similar function defined as the following formula.
w represents as weights.

Sim(ܿଵ, ܿଶ) = ݓ ∗ ,ଵܿ)ܯܵܥܩ ܿଶ) + (1 − ,ℎ(ܿଵܿݐܽܯ(ݓ ܿଶ) (7)

In this paper, we use the above formula to compute similarity between two services. Based
on formula (2), we could use the following formula to compute similarity: Sim(service1, service2) = ∑ ௦௜௠(௖௢௡௖௘௣௧ଵ೔,௖௢௡௖௘௣௧ଶ೔)೙೔సబ ௡ (8) Base on this similarity compute formula, consumer analysis module provides a SaaS service matchmaking mechanism that is described in the following para-graph in detail. Consumer uses their mobile equipment connects to our frame-work. Their equipment could feedback the QoS of SaaS service to SLM.

As we have described above, our context-aware framework could push consumer inter-
ested BaaS services to consumer mobile equipment based on analyzing data. Our frame-
work would accommodate the customer’s preference automatically based on context-
aware framework. This paper provides a service recommend mechanism based on cluster-
ing concepts from consumer selected. In the next paragraph, we will describe it in detail.

5 Service Recommend Algorithm Based on Context

When consumer’s interest tags are sent to context-aware framework, the framework
would store the semantic description in cloud storage. For the sake of finding con-
sumer interest SaaS services, we focus on how to cluster these services and analyze
such data. From what we have described above, our context-aware ontology contains
three dimensions: Domain, QoS and Spatial. Since the high-dimension data cluster-
ing is a quite complex problem, we use multiple k-means clustering instead. Suppose
the number of services we focus on is n. We use k-mean clustering to divide ࢎ࢚࢏ ser-
vices into ࢏ࡷ ranges, thus, the whole data space is divide into ∏ ୀଵ࢏࢔୧ࡷ subspaces.

Our service matchmaking algorithm is divided into two steps: at fist, we use k-mean
clustering to cluster the service based on context-aware ontology. Consequently, the Ser-
vices are clustered into ∏ ୀଵ࢏࢔୧ࡷ groups. The similarity algorithm use formula (8). The
clustering algorithm would be written in the code similar to the Fig 5 pseudo-code. As is
described in the Fig 5 algorithm, it iterates each service and each concept in service. All
services could be clustered by concepts using k-means algorithm.

function clustering(Set services)
 // services:result of all SaaS service
 Set <Set> groups ={};
 // groups: the result of clustering
 for each ࢏࢚࢖ࢋࢉ࢔࢕ࢉ in services

680 S. Li and H.-p. Chen

Fig. 5. Cluster Algorithm

The second step uses consumer interest semantic tags to find consumer interest
SaaS services. It will find the max similarity cluster for calculating the similarity be-
tween sematic tag and centroid from each cluster. And then, we could get a set of
concepts that have same similarity from centroid like sematic tags. It is considered
that SaaS services contain such concepts in this cluster are the consumer interest ser-
vices. This algorithm would be written in the code similar to pseudo-code in Fig 6.

Based on the above algorithm, we could get a set of services that are considered re-
lated to consumer’s behavior. These services are the most suitable for consumer’s
context environment.

add(groups,{k-mean(࢏࢚࢖ࢋࢉ࢔࢕ࢉ)});
//k-mean(࢏࢚࢖ࢋࢉ࢔࢕ࢉ):clustering

end for
groups = orthogonalize(groups)

 // the final result comes from the groups orthogonalizing
 Map centroidsMap={}；
 // a map store the relationship between centroid and group
for each group in groups
 for each ࢙࢏ࢋࢉ࢏࢜࢘ࢋ in group // ࢏࢚࢖ࢋࢉ࢔࢕ࢉ is a concept of service
 range = mergeRange(࢙࢏ࢋࢉ࢏࢜࢘ࢋ);

// range: the merged range of ࢙࢏ࢋࢉ࢏࢜࢘ࢋ
 p = centroid (range);
// p: the centroid of range,

 // iterate each service in group to get the centroid of range
 end for
 centroidsMap.push(p,group.id)
 // push the relationship between p and group into map

 end for
end function

function getServices(Set tags)
 // tags: consumer mark tags based on semantic
 for each tag in tags
 for each group in groups
 //groups: the cluster service set, the style is Set <Set>

p= centroidsMap .get(group.id)
//p is the centroid in this group
similarity = Sim(tag,p)
 //compute similarity between tag and p
if (similarity >simMax){
 simMax =similarity

 A Context-Aware Framework for SaaS Service Dynamic Discovery in Clouds 681

Fig. 6. Get Service Algorithm

6 Simulation In order to implement our simulation, we use BaaS service from StackMob[26] and simulate nealy 1000 SaaS services belong to three domains : travel, sport and accounting. StackMob is a platform that could provide SaaS service conven-iently. We use StackMob to simulate our SFM. We use Ontology Lookup Service [27] from web and SaaS service semantic description store in Cloud to imple-ment our SLM. Based on BaaS and ontology lookup service, we build SPM that implement semantic matchmaking and consumer behavior analysis task. As we have described in the above paragraph, we cluster the concepts of service. The following figure shows clustering data based on k-means:
In our simulation, as SaaS service provider, Table 1 shows register simulation SaaS

services. Here we only describe SaaS services important elements in these three con-
texts. Take the first service as example, it shows one SaaS service about restaurant.
Consequently, the domain context shows information “{restaurant}”. QoS context
contains five parts as we have described above: role is “provider”, description is
“response time”, quality level is“Service”, group is “QoSUserSystemGroup”, QoS
Property is “QosMetric”. Service 1 Spatial Context information is “{indoor},
{building},{PP}” which means the region is indoor and building. The spatial context
relationship is “PP”.

 //iterate each tag and store max similarity as simMax
 simGroup = group
 //iterate each tag and store max similarity cluster as
 //simGroup
}

 end for
end for
for each ܿݐ݌݁ܿ݊݋௜ in simGroup //iterate each concept in cluster
 (௜,pݐ݌݁ܿ݊݋ܿ) Sim=ߤ
 //compute each concept similarity from concert point

if(ߤ ≥ (ݔܽܯ݉݅ݏ
 // if the similarity larger or equal to simMax, it is target
 services = services getServices(ܿݐ݌݁ܿ݊݋௜,simGroup)
 // get service by concept and union all services

 end for
end function

682 S. Li and H.-p. Chen

Fig. 7. Three Clusters based on k-means

Table 1. SaaS Service List

 SaaS service Domain cont ect QoS Context Spatial Context

After that, we send to consumer several semantic tags that contain different contexts:

restaurant, response time, golf, outdoor, income, connection time and so on. Then the
consumer selects the “{restaurant, outdoor, response time}” and “{income, connection
time}”. The table 2 shows the similarity of semantic tags and centroid of each clustering.

Table 2. Similarity

Service 1 {restaurant } {provider, responsetime, Service, QoSUserSystemGroup,QosMetric} {indoor}, {building}, {PP} Service 2 {income) {provier, responsetime, interface, QoSUserGroup,QosWeight} {indoor} {school} {PO} Service 2 {basketball} (provider, responsetime, interface, QoSUserGroup,QosWeight}

{outdoor} {ground} {EQ} ……. ……. ……. …….

Semantic Tag Travel cluster Sport cluster Accounting cluster

{restaurant,outdoor,
response time}

0.8522 0.3321 0.1122

{income, connection
time}

0.3567 0.2239 0.6898

 A Context-Aware Framework for SaaS Service Dynamic Discovery in Clouds 683

Apparently, the max number is the similarity between first semantic tag and travel
cluster. At the end, our framework recommends SaaS services that are in travel cluster
and the similarity from such cluster centroid is more than 0.8522.

We simulate some consumers connect to our framework and feedback their interest
tag. After accumulating more than 100,000 feedback and use service, we find that the
most of SaaS service our framework recommend are related to consumer’s behavior.

7 Conclusion and Future Work

In this paper, we propose a SaaS service model for consumer and provider to describe
their requirement based on context ontology in mobile environment. This model con-
tains three contexts: Domain context, QoS context, Spatial context. And then, we
design a context-aware framework for pushing service to consumer and collecting
consumer’s feedback using semantic tags. Our framework could register SaaS service
semantic description and analyzes the consumer behavior to push consumer interest
services to them. In our framework, we use k-means algorithm to cluster SaaS ser-
vices and compute the similarity to recommend suitable services.

In the next work, we expect to cluster consumers based on their interest concepts.
This could accelerate the service match rate and make service match more accurately.

References

1. Zhang, M., et al.: Investigating decision support techniques for automating cloud service
selection. In: IEEE 4th International Conference on Cloud Computing Technology and
Science (CloudCom), pp.759–764 (2012)

2. Höfer, C.N., Karagiannis, G.: Cloud computing services: taxonomy and comparison. Jour-
nal of Internet Service Applications (2), 81–94 (2011)

3. Kim, J., Hong, J.E., Choi, J.Y., Cho, J.H.: Dynamic Service Orchestration for SaaS Appli-
cation in Web Environment. In: Proceedings of the 6th International Conference on Ubiq-
uitous Information Management and Communication (2012)

4. Lassila, O., et al.: Resource Description Framework (RDF) Model and Syntax Specifica-
tion, W3C recommendation (1999)

5. McGuinness, D., et al.: OWL Web Ontology Language Overview, W3C recommendation
(2004)

6. Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, P., Nardi, D.: The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications. Cambridge Univ. Press
(2003)

7. Fortis, T.-F., Munteanu, V.I., Negru, V.: Towards an Ontology for Cloud Services (2012)
8. Dastjerdi, A.V., Tabatabaei, S.G.H., Buyya, R.: An effective architecture for automated

appliance management system applying ontology-based cloud discovery. In: IEEE Interna-
tional Symposium on Cluster Computing and the Grid, pp.104–112 (2010)

9. Goscinski, A., Brock, M.: Toward dynamic and attribute based publication, discovery and
selection for cloud computing. Future Generation Comp. Syst. 26(7) (2010)

10. Sim, K.M.: Agent-based Cloud computing. IEEE Transaction on Service Computing 5(4)
(2012)

684 S. Li and H.-p. Chen

11. Kanagasabai, R., et al.: OWL-S based semantic cloud service broker. In: Proceedings of
the 19th International Conference on Web Services (ICWS), pp. 560–567 (2012)

12. Li, A., Yang, X., Kandula, S., Zhang, M.: CloudCmp: comparing public cloud providers.
In: The 10th Annual Conference on Internet Measurement, pp. 1–14. ACM, New York
(2010)

13. Garg, S.K., et al.: A Framework for ranking of cloud computing services. Future Genera-
tion Computer Systems (2012)

14. Chen, G., Kotz, D.: A survey of Context-Aware Mobile Computing Research. Technical
Report TR2000-381,Hanover: Department of Computer Science, Dartmouth College
(2000)

15. Abowd, G.D., Dey, A.K.: Towards a Better Understanding of Context and Context-
Awareness. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307. Spring-
er, Heidelberg (1999)

16. Dix, A., Rodden, T., Davies, N., et al.: Exploiting Space and Location as a Design Frame-
work for Interactive Mobile Systems. ACM Transactions on Human Computer Interaction,
285–321 (2000)

17. Krogstie, J.: Requirement Engineering for Mobile Information Systems. In: Proceeding of
the Seventh International Workshop on Requirements Engineering: Foundations for Soft-
ware Quality, Interlaken, Switzerland (2001)

18. Born, M., et al.: Business functions ontology and its application in semantic business pro-
cess modeling. In: Proceedings of the 19th Australasian Conference on Information Sys-
tems, ACIS (2008)

19. Joshi, K., Yesha, Y., Finin, T.: Automating Cloud services lifecycle through semantic
technologies. IEEE Transactions on Services Computing (99), 1–14 (2012)

20. Hepp, M.: Eclassowl. The Products and Services Ontology (2013),
http://www.heppnetz.de/eclassowl/

21. Tran, V.X.: WS-QoSOnto: A QoS Ontology for Web Services. In: IEEE International
Symposium on Digital Object Identifier: Service-Oriented System Engineering, SOSE
2008, pp. 233–238 (2008), doi:10.1109/SOSE.2008.17

22. Randell, C.Z., Cohn, A.: A spatial logic based on regions and connection. In: Nebel, B.,
Rich, C., Swartout, W. (eds.) Proceedings of the Knowledge Representation and Reason-
ing, pp. 165–176. Morgan Kaufmann, San Mateo (1992)

23. http://en.wikipedia.org/wiki/Backend_as_a_service
24. Kocaballi, A.B., Kocyigit, A.: Granular Best Match Algorithm for Context-Aware Compu-

ting System. In: Proceedings of ACS/IEEE International Conference on Pervasive Ser-
vices, pp. 143–149 (2006)

25. Ganjisaffar, Y., Abolhassani, H., Neshati, M., et al.: A Similarity Measure for OWL-S An-
notated Web Services. In: Proceedings of the 2006 IEEE/WIC/ACM International Confer-
ence on Web Intelligence (WI 2006), pp. 621–624 (2006)

26. https://www.stackmob.com/
27. http://www.ebi.ac.uk/ontology-lookup/

Author Index

Abdallah, Walid I-138
Ai, Chunyu II-231
Alamri, Atif I-352
Al-Qurishi, Muhammad I-352
An, Hong I-42

Bai, Yang II-150
Bi, Kaiyuan I-720
Bin, Lin II-436, II-447
Boudriga, Noureddine I-138
Bressan, Graça I-364

Cai, Fengling I-204
Cai, Xiaoqiang I-596
Cai, Xing II-68
Cao, Mingjing II-581, II-590, II-601
Cao, Wenjie I-299
Chai, Jun II-68
Chang, Zheng II-352
Chen, Chyouhwa I-127
Chen, Dajun II-487, II-496
Chen, Danjiang I-691
Chen, Hao-peng II-671
Chen, Jungan I-691
Chen, Lei I-655
Chen, Rui-dong II-150
Chen, Ting II-150
Chen, Wei II-245
Chen, Xiang II-164
Chen, Xiaoguang II-136
Chen, Yi I-229
Chen, Yuehui I-511
Chen, Zhaoyun II-68
Chen, Zhenxiang II-631
Chen, Zhigang I-619
Chen, Zhitao I-42
Cheng, Yichao I-42
Chu, Yan I-114

Dai, Dong I-310
Dai, Jian I-632
Dai, Ran II-366
Delong, Wang II-396
de Macedo Mourelle, Luiza I-794
Deng, Yuhui I-549, II-136

de Sá, Alan Oliveira I-794
Desrosiers, Robert II-507
Dong, Jiwen II-553
Dong, Mianxiong I-255
Dong, Xiaoshe II-300
Dong, Xinnan II-68
Du, Congjin II-286
Du, Huisen I-644
Du, Yong I-242
Duan, Guihua I-587
Duan, Zhemin I-712

Fan, Jianxi I-114
Fedak, Gilles II-1
Feng, Bo I-563
Feng, Dan I-457, II-312
Feng, Kun I-563
Feng, Qingqing I-415
Fu, Haohuan I-1
Fu, Junhao II-404
Fu, Min I-457

Gan, Yanglan II-54
Gao, Huisheng II-601
Gao, Wenwen II-43
Gao, Yiyi I-100
Gao-Xiaori II-386
Gitlin, Richard D. I-809
Guo, Hui II-245
Guo, Longjiang I-166, II-231
Guo, Yaling I-152

Han, Jizhong I-415
Han, Yuejuan II-219
Hao, Huilong II-487, II-496
Hao, Jiangling II-417
Hassan, Mohammad Mehedi I-352
He, Chao I-809
He, Haiwu II-1
He, Kai I-400, I-429
He, Shuibing I-563
He, Wenfeng I-152
Honda, Takumi I-483
Hong-Biguang II-386
Hongxiang, Ren II-396

686 Author Index

Hsu, Yarsun I-71
Hu, Wenbin I-270
Hu, Yong I-1
Hua, Yu I-457, II-312
Huang, Chuanhe I-400, I-429
Huang, Hao I-391
Huang, Ning II-273
Huang, Xiaomeng I-1
Huang, Yongfeng II-54
Huang, Zhen II-325

Ikenaga, Takeshi I-755, I-781
Ito, Yasuaki I-57, I-483, II-178

Ji, Changqing II-15
Ji, Li II-29
Jia, Gangyong I-310
Jia, Xiaohua I-400
Jia, Zhiping I-192, I-323
Jiamei, Guo II-447
Jiandao, Liu II-533
Jiang, Bo I-378
Jiang, Congfeng I-310
Jiang, Guiyuan I-100, I-285, I-497
Jiang, Hong II-339
Jiang, Xia I-42
Jiang, Zhenyuan II-618
Jie, Dong II-436
Jin, Hai I-214
Jin, Hu I-166
Jin, Xiang I-443
Jin, Xin II-96
Jin, Xue-bo I-836
Jing, Shan II-631
Ju, Lei I-192, I-323
Ju, Rui I-587
Ju, Tao II-300

Kim, Hwagnam I-138
Kim, J.S. I-526
Koge, Hiroaki I-57
Kong, Qian I-204

Lai, Rongyu I-457
Lee, Suk kyu I-138
Li, Bo I-15, I-728
Li, Changlong II-82
Li, Chao II-207
Li, Feng I-42, I-192
Li, Hongyu I-655

Li, Huaguan I-338
Li, Jie II-286
Li, Jinbao I-166, II-231
Li, Keqin I-152
Li, Keqiu I-85
Li, Liang II-300
Li, Meirong II-192
Li, Meng I-179
Li, Peng I-400
Li, Qiuyu II-312
Li, Shaochong II-671
Li, Shoupeng I-577
Li, Tie II-54
Li, Weifeng II-461, II-507
Li, Xi I-310
Li, Xin I-323
Li, Xuejin II-259
Li, Yibin I-323
Li, Yuanyuan II-15
Li, Yuelei II-164
Li, Yuxiang II-108
Li, Zebing II-543
Li, Zhihuai I-684, I-720, II-525
Li, Zhiyang II-15, II-43
Li, Zhoujun II-611
Liao, Xiaofei I-214
Liao, Yu-Cheng I-71
Lin, Bin II-425
Lin, Cheng-Kuan I-114
Lin, Jinzhi I-669
Lin, Jun II-479, II-516
Lin, Shang-Chieh I-71
Lin, Shiping I-700
Ling, Lee Luan I-822
Li-Tieshan II-386
Liu, Anfeng I-619
Liu, Bin II-108
Liu, Dandan I-700, I-768
Liu, Fangfang I-28
Liu, Haixia I-728
Liu, Hongyang I-166
Liu, Junpei I-684
Liu, Lei I-299, II-659
Liu, Qin I-400
Liu, Tao II-581
Liu, Weijiang II-43
Liu, Wenjun I-114
Liu, Xiulong I-85
Liu, Yao I-204
Liu, Yiqun I-28

Author Index 687

Liu, Yong II-543
Liu, Zhaobin I-229
Liu, Zhi I-728
Lu, Feng I-214
Lu, Gang I-204
Lu, Kun II-82
Lu, Sanglu I-255
Lu, Siyu I-535
Lu, Yutong I-28
Luan, Weixin II-525
Luo, Gangyi I-255
Luo, Juan I-152, II-96
Lyu, Lijun I-549

Ma, Jianchu I-720
Ma, Wenyao II-461, II-507
Ma, Xiuhua II-553
Mao, Bo II-339
Mi, Wei II-560
Miao, Bei-bei I-836
Min, Geyong I-85
Mu, Bin I-655

Nakano, Koji I-57, I-483, II-178
Nedjah, Nadia I-794
Nie, Zhenhua II-312
Ning, Ding II-436
Niu, Zhendong II-259
Nobayashi, Daiki I-755, I-781

Ös, Marcelo Dutra I-364
Ota, Kaoru I-255

Pan, Mingyang II-404, II-417
Pei, Yijian I-728
Peng, Lizhi I-511, II-631
Peng, Yi I-42
Peng, Yuxing II-325

Qi, Heng I-85
Qi, Yincheng II-590
Qi, Zhuang II-352
Qian, Zhuzhong I-255
Qin, Yuhao II-359
Qiu, K. I-526
Qu, Fengde II-470
Qu, Wenyu II-15

Ran, Shiwei I-669
Ren, Hongxiang II-487, II-496

Ren, Meirui II-231
Ren, Qianqian I-166
Renda, Wang II-533
Rongxi, He II-447
Ruan, Li I-472

Shan, Nana I-712
Shen, Li II-245
Shengwei, Xing II-533
Shi, Guoyou II-507
Shi, Jiaoli I-429
Shi, Wenze I-755, I-781
Shi, Yuan I-378
Shi, Zhicai I-632
Song, Biao I-352
Song, Chengjie I-166
Song, Hanbang II-352
Song, Hong I-587, I-596, I-619
Su, Bo II-245
Sun, Haining I-684
Sun, Jian II-470
Sun, Jizhou I-100, I-285, I-497, II-29
Sun, Mingming II-82
Sun, Tao II-645
Sun, Xian-He I-563
Sun, Yuanyuan II-312
Sun, Zhonghua II-425
Sun, Zihan II-359

Takafuji, Daisuke II-178
Tang, Bing II-1
Tang, Wenqi I-472
Tang, Xuehai I-415
Tao, You II-192
Teng, Wei-Chung I-127
Tian, Ning II-231
Tian, Yang II-207
Tingting, Yang II-447

Wan, Jian I-310
Wan, XueJin I-242
Wang, Bo II-571
Wang, Changhai I-179
Wang, Changjian II-325
Wang, Cheng I-768
Wang, Chunyu II-164
Wang, Denghui I-391
Wang, Deqiang II-376, II-417
Wang, Fengwu II-470
Wang, Guodong II-659

688 Author Index

Wang, Hongwei I-535
Wang, Hua I-299, II-659
Wang, Huan I-270
Wang, Hui I-100
Wang, Jianpeng I-443
Wang, Jie I-607
Wang, Jing I-400, I-429
Wang, Jinhai I-400, I-429
Wang, Jin-tao II-479
Wang, Jiong I-242
Wang, Kelun II-376
Wang, Lei II-404, II-553
Wang, Lijuan I-378
Wang, Lu I-229
Wang, Min I-415
Wang, Nan I-166
Wang, Renfeng I-684
Wang, Shouna II-425
Wang, Tingting I-229
Wang, Xinsheng I-720
Wang, Yida II-207
Wang, Yifang I-415
Wang, Yihan I-632
Wang, Yinfeng II-300
Wang, Zhaohui I-42
Wang, Zhiying II-245
Wei, Bo I-644
Wei, Qi I-378
Wen, Mei II-68
Wen, Shicheng I-655
Wu, Chentao II-286
Wu, Feng II-96
Wu, Hao I-728
Wu, Hutong II-164
Wu, Jie I-85
Wu, Jigang I-285, I-497
Wu, Nan II-68
Wu, Ruping II-581, II-590, II-601
Wu, Suzhen II-339
Wu, Weigang I-338, II-273
Wu, Yinan II-15
Wu, Ying I-669
Wu, Yu-Ren I-127
Wu, Zhaolin II-461, II-543

Xi, Zaifa II-339
Xia, Libo II-122
Xia, Wen I-457
Xia, Yongxiang I-632
Xiang, Xiaobao I-214

Xiao, Bin I-85
Xiao, Jian I-100, II-29
Xiao, Limin I-472
Xiao, Yun I-587
Xie, Changsheng I-391
Xie, Junjie I-549, II-136
Xie, Mieyi II-122
Xing-Shengwei II-386
Xiong, Xin II-516
Xu, Fan II-245
Xu, Hui I-166, I-781
Xu, Jialong I-596, I-619
Xu, Junfeng I-577
Xu, Shizhen I-1
Xu, Xingyu II-29
Xu, Yebin I-755
Xu, Yujie II-15
Xu, Yuwei I-179, I-669
Xue, Liming II-525
Xue, Weilian I-85
Xuefeng, Yang II-533

Yan, Cairong II-54
Yan, Haihua II-207
Yan, Ke II-122
Yang, Bo I-511, II-150
Yang, Chao I-28
Yang, Chengming II-425
Yang, Di II-273
Yang, Guangwen I-1, I-535
Yang, Jiaxuan II-461, II-507
Yang, Jing II-68
Yang, Lili I-607
Yang, Qian II-404
Yang, Tingting II-425
Yang, Yifan I-457
Yang, Zongmo II-470
Yao, Shun II-479, II-516
Yin, Xinchun I-755, I-781
Yin, Yong II-479, II-516
Yingge, Song II-436
You, Lantao II-219
You, Pengfei II-325
Yu, Ce I-100, II-164
Yu, Dairong II-645
Yu, Jiongyu II-273
Yuan, Shijin I-655
Yuan, Youwei I-310
Yuan, Yuan I-179
Yue, Xingwang II-366

Author Index 689

Zhang, Bin II-376
Zhang, Bo II-645
Zhang, Can II-581, II-590, II-601
Zhang, Chunxia II-259
Zhang, Chunyuan II-68
Zhang, Dalu I-443
Zhang, F. I-526
Zhang, Hongli I-511
Zhang, Jian I-700
Zhang, Jianlei II-207
Zhang, Jianzhong I-179, I-669
Zhang, Jingle II-571
Zhang, Lei II-631
Zhang, Lichen I-740
Zhang, Qun I-192
Zhang, ShaoZhong I-691
Zhang, Tao I-577
Zhang, Wancai I-15
Zhang, Wei I-204, I-214
Zhang, Weixiang I-644
Zhang, Wenbo II-543
Zhang, Xianyi I-28
Zhang, Xiao-song II-150
Zhang, Xiaotao II-164
Zhang, Xin-yu II-479, II-516
Zhang, Xinyu II-352
Zhang, Yan I-1
Zhang, Youhui I-535
Zhang, Yu I-632
Zhang, Zhang I-415

Zhang, Zhaopeng I-192
Zhao, Changhai II-207
Zhao, Depeng II-417
Zhao, Lining II-417
Zhao, Shupeng II-631
Zhao, Yanheng I-323
Zhao, Yinliang II-108, II-192
Zheng, Jianfeng II-359
Zheng, Weimin I-535
Zheng, Yao I-472
Zhong, Ping I-607
Zhou, Chao I-15
Zhou, Dejiang I-443
Zhou, Enguang II-611
Zhou, Hanxiao II-359
Zhou, Kang II-366
Zhou, Wei I-712
Zhou, Xin II-29
Zhou, Xuefei II-43
Zhou, Xuehai II-82
Zhou, Yongtao I-549, II-136
Zhou, Yu I-338
Zhu, Hong II-122
Zhu, Jiaqi I-443
Zhu, Longting I-285, I-497
Zhu, Tieying I-768
Zhu, Xiaoyan II-571
Zhu, Zhengdong II-300
Zhuang, Hang II-82
Zuo, Zhongyi II-404

	Preface
	Organization
	Table of Contents – Part II
	Parallel Data Processing in Dynamic Hybrid
Computing Environment Using MapReduce

	1 Introduction
	2 Background and Related Work
	2.1 MapReduce
	2.2 MapReduce on Non-dedicated Computing Resources

	3 System Architecture
	3.1 General Overview
	3.2 Design Overview of HybridDFS
	3.3 MapReduce Algorithm and Implementation

	4 Performance Evaluation
	4.1 Platform Description
	4.2 Throughput of HybridDFS I/O
	4.3 MapReduce Job Completion Time
	4.4 Scheduler Optimization
	4.5 Fault-Tolerance

	5 Conclusion
	References

	Fast Scalable k-means++ Algorithm
with MapReduce

	1 Introduction
	2 Preliminaries
	3 Our Method

	3.1 Parallel Scalable k-means++ with MapReduce

	3.2 Oversampling and Refining
	3.3 Discussion

	4 Experiments
	4.1 Running Time
	4.2 Clustering Cost
	4.3 I/O Cost and Network Cost
	4.4 Running Time and Clustering Cost with Different o

	5 Conclusion
	References

	Acceleration of Solving Non-Equilibrium
Ionization via Tracer Particles and MapReduce
on Eulerian Mesh

	1 Introduction
	2 Background and Related Works
	2.1 MapReduce Model for Reconstructing and Analyzing Particle Trajectories

	2.2 Space-Partition Method for IO Acceleration and in Situ Analysis

	3 Method
	3.1 Architecture
	3.2 Post-processing Scheme
	3.3 In Situ Scheme
	3.4 Implementation

	4 Evaluation
	4.1 Performance Analysis
	4.2 Overhead Introduced by Tracer Particles
	4.3 Overhead Introduced by Post-processing

	5 Conclusion and Future Work
	References

	A Continuous Virtual Vector-Based Algorithm
for Measuring Cardinality Distribution

	1 Introduction
	2 Related Work
	2.1 Bitmap
	2.2 Virtual Vector

	3 Our Algorithm
	3.1 Online Processing
	3.2 Offline Processing
	3.3 Performance Analysis

	4 Experiment
	4.1 Data Source
	4.2 Parameter Analysis and Setting
	4.3 Experiment Results

	5 Conclusion
	References

	Hmfs: Efficient Support of Small Files Processing over HDFS
	1 Introduction
	2 Related Work
	3 Small Files Problem in HDFS
	4 The Design of Hmfs
	4.1 File Operation Interface
	4.2 File Tasks
	4.3 Buffer Structure

	5 Optimization Strategy
	5.1 File Prefetching and Caching
	5.2 Buffer Replacement Mechanism

	6 Experimental Evaluation
	6.1 Experimental Environment
	6.2 Memory Usage Analysis
	6.3 Upload Efficiency Analysis
	6.4 Download Efficiency Analysis

	7 Conclusion
	References

	Utilizing Multiple Xeon Phi Coprocessors
on One Compute Node

	1 Introduction
	2 Background
	2.1 Xeon Phi Coprocessor
	2.2 Pragma-Based Offloading
	2.3 COI and SCIF
	2.4 Coprocessor-Only Usage Mode

	3 Related Work
	4 Two Implementations of a Simple 3D Stencil
	4.1 Implementation Based on Pragmas
	4.2 Implementation Based on COI and SCIF

	5 Experiments and Results
	5.1 Hardware Platform
	5.2 Bandwidth Tests
	5.3 Performance of a Real-World 3D Application

	6 Conclusions
	References

	HPSO: Prefetching Based Scheduling to Improve
Data Locality for MapReduce Clusters

	1 Introduction
	2 Background and Motivation
	2.1 MapReduce Programming Framework
	2.2 Hadoop Scheduler
	2.3 Motivation

	3 Prefetching
	3.1 Buffer Management

	4 HPSO Design and Implementation
	4.1 Framework
	4.2 Node Prediction
	4.3 Scheduling Policy
	4.4 Prefetching Module

	5 Evaluation
	5.1 Performance of HPSO
	5.2 Scaling Performance

	6 Related Work
	7 Conclusion
	References

	Service Scheduling Algorithm
in Vehicle Embedded Middleware

	1 Introduction
	2 Related Work
	3 Architecture of Service-Oriented Vehicular Middleware
	4 Service Scheduling Algorithm
	4.1 Basic Concepts and Definitions
	4.2 Priority Allocation Algorithm Based on Criticality Level

	5 Experimental Analysis
	5.1 Experiment Parameter
	5.2 Experimental Analysis

	6 Conclusion
	References

	Similar Samples Cleaning in Speculative Multithreading*
	1 Introduction
	2 Characterizing the PROG
	2.1 Extracting Feature Vectors
	2.2 Presenting the Solving Scheme

	3 Assessing the Overall Similarity
	3.1 Mechanism of Similarity Calculation
	3.2 Model of Respective Similarity Assessment
	3.3 Similarity Measurement Using Fuzzy Function
	3.4 Cleaning of Similar Samples

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Static Features Extraction
	4.3 Similarity Calculation
	4.4 Similarity Assessment
	4.5 Similar Samples Cleaning and Evaluation
	4.6 Analysis of the Models

	5 Related Work
	6 Conclusions and Future Work
	References

	Equi-join for Multiple Datasets
Based on Time Cost Evaluation Model

	1 Introduction
	2 Related Work
	2.1 Equi-join on Single Attribute
	2.2 Equi-join on Multiple Attributes

	3 The Extended Time Cost Model for Equi-join
	3.1 The Time Cost Model for Single MRJ
	3.2 The Time Cost of an Equi-join for Single MRJ on Single Attribute

	3.3 The Time Cost of an Equi-join for Single MRJ on Multiple Attributes

	4 The Optimization Methods for an Equi-join
	4.1 Optimization Methods for Star Pattern Sub-joins and Chain Pattern Sub-joins
	4.2 The Optimization Method by Dynamic Programming

	5 Experiments
	5.1 The Environment in Experiments
	5.2 The Experiments for a Hybrid Equi-join with Star Pattern Sub-joins

	5.3 Experiments for Hybrid Equi-joins without Star Pattern Sub-joins

	5.4 Experiments for Chain Pattern Joins

	6 Conclusion
	References

	Identifying File Similarity in Large Data Sets
by Modulo File Length

	1 Introduction
	2 Related Work
	3 Background
	3.1 Simhash Algorithm

	4 Position-Aware Similarity Algorithm
	4.1 Traditional Sampling Algorithm
	4.2 PAS Algorithm

	5 Evaluation
	5.1 Evaluation Environment
	5.2 Parameters Selection
	5.3 PAS Algorithm Evaluation

	6 Conclusion
	References

	Conpy: Concolic Execution Engine
for Python Applications

	1 Introduction
	2 Related Work
	3 Design
	3.1 Principles
	3.2 Scheme

	4 Implementation
	4.1 Manipulation of int

	4.2 Manipulation of str

	4.3 Symbol Propagation between str and int

	5 Experiments
	5.1 Setup
	5.2 Results

	6 Conclusion
	References

	A Platform for Stock Market Simulation
with Distributed Agent-Based Modeling

	1 Introduction
	2 Related Works
	3 PSSPAM Platform for Distributed Environments
	3.1 Logical Architecture of PSSPAM
	3.2 Communication System
	3.3 Agents Module
	3.4 Market Module

	4 Experiments
	5 Summary and Future Work
	References

	C2CU : A CUDA C Program Generator
for Bulk Execution of a Sequential Algorithm

	1 Introduction
	2 The Bulk Execution of Sequential Algorithms on the UMM
	3 Our C2CU Converter
	4 Experiment Results
	5 Conclusion
	References

	Dynamically Spawning Speculative Threads
to Improve Speculative Path Execution

	1 Introduction
	2 Overview of Dynamic Speculative Path Scheme
	3 Compiler Phase
	3.1 Frequent Path Selection
	3.2 Path-Based Thread Partitioning
	3.3 Thread Creation and TLS-Enhancing Optimization

	4 Runtime Phase

	4.1 TLS Execution Model
	4.2 Construction of Dynamic Speculative Path
	4.3 Speculative Path Prediction and Thread Scheduling

	5 Experimental Results
	5.1 Subpath Candidates and Pre-computation
	5.2 Performance of Dynamic Speculative Path Selection

	6 Related Work
	7 Conclusions
	References

	A Parallel Algorithm of Kirchhoff Pre-stack Depth Migration Based on GPU
	1 Introduction
	2 Overview of CUDA
	3 KPSDM Parallel Algorithm

	3.1 KPSDM Theory
	3.2 Serial Algorithm
	3.3 CUDA Parallel Algorithm
	3.4 Optimizing Strategy

	4 Experiments Result and Analysis
	5 Conclusion and Future Work
	References

	An Algorithm to Embed a Family
of Node-Disjoint 3D Meshes
into Locally Twisted Cubes

	1 Introduction
	2 Preliminaries
	3 Embedding Two Node-Disjoint 2 × 2 × 2n−3 Meshes
into the n-Dimensional Locally Twisted Cubes

	4 Embedding Four 4 × 2 × 2n−5 Meshes into the
n-Dimensional Locally Twisted Cubes

	5 Conclusions
	References

	GPU Acceleration of Finding Maximum
Eigenvalue of Positive Matrices

	1 Introduction
	2 An Overview of CUDA
	3 The Parallel Algorithm of Similarity Transformation (PA-ST)
	3.1 Similarity Transformation and Theoretical Foundation
	3.2 Parallel Algorithm Using Similarity Transformation (PA-ST)

	4 Complexity Analysis
	4.1 The Time Complexity of Sequential Algorithm
	4.2 The Time Complexity of Parallel Algorithm

	5 Experimental Results
	6 Conclusion
	References

	Improving Speculation Accuracy
with Inter-thread Fetching Value Prediction

	1 Introduction
	2 Related Works
	3 Inter-thread Fetching Value Prediction
	3.1 Thread Isolation
	3.2 Fetching CVAR from Another Speculative Thread

	4 Implementation of IFVP
	4.1 Overview of HEUSPEC
	4.2 Integrating IFVP Predictor with HEUSPEC

	5 Experiment and Evaluation
	5.1 Experiment Results

	6 Conclusion
	References

	Towards Efficient Distributed SPARQL Queries
on Linked Data

	1 Introduction
	2 Related Work
	2.1 Query Decomposition
	2.2 Query Optimization

	3 Federated SPARQL Query
	3.1 Query Decomposition
	3.2 Cardinality Estimation
	3.3 Join Reordering
	3.4 Join Execution

	4 Evaluations
	4.1 Evaluation of Join Execution
	4.2 Comparison with Other Federated SPARQL Query Systems

	5 Conclusions
	References

	MRFS: A Distributed Files System with Geo-replicated Metadata
	1 Introduction
	2 Related Work
	3 The Design and Implementation of MRFS
	3.1 Overview of MRFS
	3.2 The Client Module of MRFS
	3.3 The Namespace Server of MRFS
	3.4 The Metadata Server of MRFS

	4 Experiments and Results
	4.1 Experiment Setup
	4.2 Experiment Results

	5 Conclusion and Future Work
	References

	An Advanced Data Redistribution Approach to
Accelerate the Scale-Down Process of RAID-6

	1 Introduction
	2 Background and Motivation
	2.1 Desired Scaling Features in RAID-6
	2.2 Existing Fast Scaling Approaches
	2.3 The Motivation

	3 The ADR Approach
	3.1 Disk Labeling
	3.2 Stripe Generation
	3.4 Data Addressing
	3.5 Properties of ADR

	4 Scalability Analysis
	4.1 Evaluation Methodology
	4.2 Numerical Results
	4.3 Analysis

	5 Conclusions
	References

	Thread Mapping and Parallel Optimization for MIC Heterogeneous Parallel Systems
	1 Introduction
	2 Overview of the MIC
	2.1 MIC Architecture
	2.2 MIC Programming Pattern

	3 Thread Mapping on MIC
	3.1 Different Thread Mapping Methods
	3.2 Measurement and Findings

	4 Performance Optimization
	4.1 Benchmarks
	4.2 Implementation
	4.3 Comprehensive Performance Optimization
	4.4 Experimental Results and Analysis

	5 Related Work
	6 Conclusions
	References

	Efficient Storage Support for Real-Time
Near-Duplicate Video Retrieval

	1 Introduction
	2 Backgrounds and Related Work
	2.1 Feature Representation
	2.2 Locality Sensitive Hashing
	2.3 Cuckoo Hashing

	3 The Design of FastVR
	3.1 Compact Feature Representation
	3.2 The Semi-random Holistic Hashing

	4 Performance Evaluation
	4.1 Experiment Setup
	4.2 Results and Analysis

	5 Conclusion
	References

	Repairing Multiple Data Losses by Parallel Max-min Trees Based on Regenerating Codes in Distributed Storage Systems
	1 Introduction
	2 Related Work
	3 Network Model for Regenerating Multiple Data Losses
	4 Parallel Regeneration for Multiple Data Losses Using Max-min trees Based on MSR Code
	4.1 Parallel Regeneration Scheme for Multiple Max-min Trees
	4.2 Max-min Tree vs. Maximum Spanning Tree
	4.3 Bandwidth-Sharing Max-min Algorithm for Parallel Regenerating Multiple Data Losses

	5 Simulation Experiment
	6 Conclusion
	References

	Exploiting Content Locality to Improve the Performance and Reliability of Phase Change Memory
	1 Introduction
	2 Background and Motivation
	2.1 PCM Basics
	2.2 Data Deduplication
	2.3 Motivation

	3 CA-PCM
	3.1 Design Objective
	3.2 System Overview
	3.3 Request Processing Workflow
	3.4 Data Consistency Issue

	4 Performance Evaluation
	4.1 Experimental Setup and Methodology
	4.2 Performance Results and Analysis
	4.3 Overhead Analysis

	5 Related Work
	6 Conclusion and Future Work
	References

	Computing, Communication and ControlTechnologies in Intelligent Transportation System(3C in ITS 2014)

	Application of Support Vector Machine in the Decision-Making of Maneuvering
	1 Introduction
	2 Basic Principle of Support Vector Machine
	3 Seakeeping Evaluation Based on Support Vector Machine
	3.1 Model of the Process
	3.2 Determine the Seakeeping Evaluation Indicators
	3.3 The Pretreatment of the Sample Data
	3.4 Parameter Selection
	3.5 Model Training and the Result Analysis

	4 Ship Maneuvering Decisions
	5 Conclusion
	References

	Mobile Phone Data Reveal the Spatiotemporal
Regularity of Human Mobility

	1 Introduction
	2 Data
	3 Result
	3.1 Spatial Properties
	3.2 Temporal Properties
	3.3 Application

	4 Discussion
	References

	Research on Large-Scale Vessel Riding Tidal Current to Promote Efficiency of Fairway
	1 Introduce
	2 Under Keel Clearance and Factors Considered in Determining UKC
	2.1 Under Keel Clearance
	2.2 Factors Considered in Determining UKC

	3 The Ship’s Squat
	3.1 Quantity of Navigating Squat
	3.2 Analysis of Squat Based on Hydromechanics

	4 Calculation Method for Squat

	4.1 Details and Comparisons of Empirical Formula about Squat
	4.2 Squat Difference When the Vessel Is Riding the Tidal Stream

	5 Mathematical Model for Squat
	5.1 Establishment of Mathematical Model
	5.2 Analysis on Results from Actual Ship Considering the Tidal Current

	6 Conclusion
	References

	A Vertex-Clustering Algorithm Based on the Cluster-Clique
	1 Introduction
	2 Definitions and Notations
	3 MV-ICR Clustering Approach
	4 Improvement of MV-ICR Clustering Approach
	5 Algorithm Analysis and Examples
	5.1 Algorithm Analysis
	5.2 Example

	6 Conclusions
	References

	Designed Slide Mode Controller for Ship Autopilot with Steering Gear Saturation*
	1 Introduction
	2 Problem Formulation
	2.1 System Description
	2.2 Ship Motion Mathematical Model
	2.3 Steering Gear Dynamic Model
	2.4 Wind Forces and Moment
	2.5 Descriptions of Nonlinear Systems

	3 Design Ship Nonlinear Systems under Input Constraints
	3.1 RBF Neural Network
	3.2 Design SMC Controller for Ship Autopilot
	3.3 Stability Analysis

	4 Simulation Results
	4.1 Course-Keep Simulation
	4.2 Course-Change Simulation

	5 Conclusion
	References

	Automatic Assessment Model for Sailing in Narrow Channel
	1 Introduction
	2 Evaluation Method
	3 Evaluation Index System
	3.1 Display of Lights and Shapes
	3.2 Risk of Collision
	3.3 Responsibility
	3.4 Anti-collision Way
	3.5 Anti-collision Range
	3.6 Lookout
	3.7 Re-action Time
	3.8 Safe Speed
	3.9 Action Horn
	3.10 Distance to Channel
	3.11 Cross Channel
	3.12 Action Time
	3.13 Anti-collision Result

	4 Evaluation Model
	5 Examples
	6 Conclusions
	References

	Bus Arrival Time Prediction and Release: System, Database and Android Application Design*
	1 Introduction
	2 System Overall Architecture
	3 Server
	3.1 Logical Structure
	3.2 Design and Implementation

	4 Database
	4.1 Composition of Database
	4.2 Database Design

	5 Client
	5.1 Software Structure
	5.2 Function Implementation

	6 System Experiment
	6.1 Texting Result
	6.2 Result Analysis

	7 Conclusion
	References

	On Key Techniques of a Radar Remote Telemetry and Monitoring System*
	1 Introduction
	2 System Architecture
	3 Embedded Hardware Designed for Remote Telemetry Radar
	4 A Target Echo Identifying Algorithm
	5 The Applied Case
	6 Conclusions
	References

	PSC Ship-Selecting Model Based on Improved Particle Swarm Optimization and BP Neural Network Algorithm
	1 Introduction
	2 Adaptive Swarm Algorithm
	2.1 Standard Algorithm and Former Improved Algorithm
	2.2 Improved Adaptive Swarm Algorithm

	3 PSC Ship-Selecting Model Based on Improved Swarm Optimization-BP Neural Network Algorithm
	3.1 BP Neural Network Evaluation Model
	3.2 Training and Learning Process Ship-Selecting Analysis
	3.3 Selecting Results Analysis

	4 Conclusion
	References

	LRPON Based Infrastructure Layout Planning of Backbone Networks for Mobile Cloud Services in Transportation
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Proposed Fast-Backward-Searching (FBS) Algorithm
	5 Numerical Results
	6 Conclusions
	References

	Infrastructure Deployment and Dimensioning of Relayed-Based Heterogeneous Wireless Access Networks for Green Intelligent Transportation
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Network Model
	3.2 Problem Statement
	3.3 Problem Formulation

	4 Numerical Analysis
	4.1 Simulation Settings
	4.2 Validation of the ILP Formulation
	4.3 Feasibility and Scalability of IDD Formulation

	5 Conclusion
	References

	Vessel Motion Pattern Recognition Based on One-Way Distance and Spectral Clustering Algorithm*
	1 Introduction
	2 Similarity of Ship Track
	2.1 Pre-processing of Ship Track Data
	2.2 Measurement of Ship Track Similarity
	2.3 Track Similarity Measurement by One-Way Distance

	3 Ship Track Study Based on Spectral Clustering
	4 Experiment Analysis
	5 Conclusion
	References

	Navigation Safety Assessment of Ship in Rough Seas Based on Bayesian Network
	1 Introduction
	2 Overview of Bayesian Network
	3 Navigation Safety Assessment of Ship in Rough Seas Based on Bayesian Network
	3.1 Determine the Nodes of the Model
	3.2 Determine the Range of the Nodes
	3.3 Establish the BN Structure of Safety Assessment
	3.4 Determine the CPT of Nodes
	3.5 Establish BN Model of Safety Assessment

	4 Instance Analysis
	5 Conclusion
	References

	Optimization of Ship Scheduling Based on One-Way Fairway
	1 Introduction
	2 Description of the Problem
	3 Formulation of the Ship Scheduling
	3.1 Scheduling Priority
	3.2 Assumptions of the Model
	3.3 Formulation of the Ship Scheduling

	4 Design of GA
	4.1 Chromosome Representation
	4.2 Fitness Function
	4.3 Selection Strategy, Crossover and Mutation

	5 Experiment and Results
	6 Conclusions
	References

	Research on Virtual Crew Path Planning Simulator Based on A* Algorithm
	1 Introduction
	2 Modeling and Control of Virtual Crew
	2.1 Geometry Modeling of Virtual Crew
	2.2 Motion Control of Virtual Crew
	2.3 Virtual Crew File Convert

	3 Path Planning
	3.1 Research Status of Path Planning Algorithm
	3.2 Design and Implementation of A* Algorithm

	4 Implementation of Simulation
	4.1 Import of Virtual Crew’s Model File
	4.2 Rasterizing of Ship Model Area
	4.3 Gird Mapping of Obstacles
	4.4 Gird Mapping of Accessible Obstacles
	4.5 Virtual Crew Walking along Path

	5 Conclusions
	References

	Speech Recognition Applied in VHF Simulation System
	1 Introduction
	2 Design and Implementation of the VHF Simulator System
	2.1 Bitmap Resource Processing
	2.2 Design of Operation Menu
	2.3 Data Input

	3 Speech Signal and Recognition Technology Analysis
	3.1 Time-Domain Analysis of Speech Signal in Pre-processing Stage
	3.2 Frequency-Domain Analysis of Speech Signal in Feature Extraction Stage
	3.3 HMM Analysis in Speech Recognition Stage

	4 Implementation of Speech Recognition
	5 Conclusions
	References

	The Assessment of Risk of Collision between Two Ships Avoiding Collision by Altering Course*
	1 Introduction
	2 Modeling and Calculation
	2.1 Calculation of Action to Avoid Collision
	2.2 Calculation of Range of Collision Avoidance Courses
	2.3 Calculation of Minimum Alteration Angle

	3 Calculation by an Example
	4 Conclusion
	References

	The Merging Algorithm of Radar Simulation Data in Navigational Simulator
	1 Introduction
	2 The Algorithm
	2.1 Clipping
	2.2 Sorting
	2.3 Combination and Deletion
	2.4 Connection

	3 The Experiment
	4 Conclusion and Prospect
	References

	Data Mining Research Based on College Forum
	1 Introduction
	2 Research Object
	2.1 Background of Forum
	2.2 Supplementary Instruction

	3 Data Warehouse
	3.1 Data Pre-processing
	3.2 Create Dimension

	4 Data Mining
	4.1 Algorithm Description
	4.2 Algorithm Improved
	4.3 Program Design
	4.4 Instance

	5 Conclusion
	References

	Simulation of Maritime Joint Sea-Air Search Trend Using 3D GIS*
	1 Introduction
	2 Creation of 3D Scene
	3 Calculation of Search Effort Moving Path
	4 Search Trend Simulation
	5 Conclusion
	References

	Quantitative Analysis for the Development of Maritime Transport Efficiency
	1 Introduction
	2 Overview of Principles
	3 Instance Analysis
	3.1 Bulk Carrier
	3.2 LNG Carrier
	3.3 Tanker
	3.4 Container Ship

	4 Conclusion
	References

	Security and Privacy in Computer and Network Systems (SPCNS 2014)

	Image Compression Based on Time-Domain Lapped Transform and Quadtree Partition
	1 Introduction
	2 Quadtree Partition
	3 Compatibility Criterion
	4 Time Domain Overlap Transformation Based on Quadtree Partition
	5 Results and Analysis
	6 Conclusion
	References

	The Applicability and Security Analysis
of IPv6 Tunnel Transition Mechanisms

	1 Introduction
	2 Related Work
	3 The Applicability Index System
	3.1 Basic Problems
	3.2 Key Elements
	3.3 Applicability Index System

	4 The Applicability Analysis
	4.1 The Applicability Analysis of IPv6-over-IPv4 Tunnel Mechanisms

	4.2 The Applicability Analysis of IPv4-over-IPv6 Tunnel Mechanisms

	5 The Security Analysis
	5.1 The Security Analysis of Encapsulation/De-encapsulation
	5.2 The Security Analysis of Transition Equipments
	5.3 The Security Analysis of Routing Or Discovery

	6 Conclusion
	References

	QOS Performance Analysis for Flexible Workflow Supporting Exception Handling
	1 Introduction
	2 Performance Evaluation of QoS
	3 Flexible Workflow Exception Handling
	3.1 Flexible Workflow System Supporting Exception Handling
	3.2 Handling Approach

	4 Exception Handling Flexible Workflow Modeling
	4.1 Flexible Workflow Model for Exception Handling

	5 An Example
	5.1 Process Modeling
	5.2 Solving of Service Quality Performance Parameters

	6 Conclusion
	References

	Analysis of Propagation Characteristics of Variant Worms
	1 Introduction
	2 Related Work
	3 Theory Analysis of Variant Worm Propagation Model
	3.1 Worm Modeling Background
	3.2 Mathematical Modeling of Variation Worm Propagation Characteristics

	4 Analysis of Simulation Results
	5 Conclusion
	References

	A Design of Network Behavior-Based Malware Detection System for Android
	1 Introduction
	2 Related Work
	3 Network Behavior-Based Malware Detection System
	3.1 The Framework of Network Behavior-Based Malware Detection System
	3.2 Network Behavior Monitoring Module
	3.3 Anomaly Analyzing Module
	3.4 The Storage Module

	4 The Experimental and Result
	4.1 The Experimental Platform
	4.2 Result and Analysis

	5 Conclusions
	References

	Detection and Defense Technology of Blackhole Attacks in Wireless Sensor Network
	1 Introduction
	2 Related Work
	3 Black Hole Detection Method
	3.1 Blackhole Attack
	3.2 Blackhole Attack Detection Algorithm

	4 Simulation
	4.1 Simulation Environment
	4.2 Simulation Results and Analysis

	5 Conclusion
	References

	An Improved Remote Data Possession Checking
Protocol in Cloud Storage

	1 Introduction
	2 Technical Preliminaries
	3 On the Security of Hao et al.’s Protocol
	4 The Improved Protocol
	5 Performance and Security Analysis
	5.1 Security Analysis
	5.2 Communication and Computation

	6 Conclusion
	References

	Fault Localization of Concurrency Bugs and Its Application in Web Security
	1 Introduction
	2 Background
	2.1 Notation
	2.2 Concurrency Bug Type
	2.3 A Motivating Example

	3 Methodology
	3.1 Locating Buggy Memory Access Pair
	3.2 Searching Buggy Memory Access Pattern
	3.3 Constructing Bug Triggering Scenario

	4 Experiments
	4.1 Effectiveness
	4.2 Bug Report

	5 Related Work
	6 Conclusion and Future Work
	References

	Feature Selection Toward Optimizing Internet
Traffic Behavior Identification

	1 Introduction
	2 Related Work
	3 The Foundation of Online Traffic Identification
	3.1 Precondition for Online Identification
	3.2 Online Identification Features Analysis

	4 Feature Selection toward Time, Location and Applications
	4.1 Traces
	4.2 Computational Platform and Tools
	4.3 Feature Selection Algorithm
	4.4 Identification Algorithms
	4.5 Experiment

	5 Experiment Analysis
	5.1 Optimization to Offline and Online Traffic Identification
	5.2 Feature Selection toward Various Application Categories

	6 Conclusion
	References

	ID-Based Anonymous Multi-receiver Key
Encapsulation Mechanism with Sender
Authentication

	1 Introduction
	2 Preliminaries
	2.1 Security Problems and Complexity Assumptions

	3 ID-Based Anonymous Multi-receiver Key Encapsulation Mechanism with Sender Authentication
	3.1 Framework
	3.2 Security Model

	4 The Concrete Scheme
	5 Security Analysis
	6 Conclusion
	References

	Energy Efficient Routing with a Tree-Based Particle Swarm Optimization Approach
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 A Tree Based PSO Energy Efficient Algorithm
	4.1 Initialization of PSO Particles
	4.2 Merging and Optimizing the Tree
	4.3 Fitness Evaluating

	5 Experiment Results And Analysis
	6 Conclusion
	References

	A Context-Aware Framework for SaaS Service Dynamic Discovery in Clouds
	1 Introduction
	2 Related Work
	3 Context-Aware SaaS Service Model
	3.1 Domain Context
	3.2 QoS Context
	3.3 Spatial Context
	3.4 SaaS Service Model

	4 Context-Aware SaaS Service Discovery and Recommend Framework
	4.1 Service Foundation Module (SFM)
	4.2 Service Library Module (SLM)

	4.3 Service Push Module (SPM)

	5 Service Recommend Algorithm Based on Context
	6 Simulation
	7 Conclusion and Future Work
	References

	Author Index

