
New Distance Measures of Evidence

Based on Belief Intervals

Deqiang Han1, Jean Dezert2, and Yi Yang3

1 Center for Information Engineering Science Research, Xi’an Jiaotong University,
No. 28 West XianNing Road, Xi’an, China 710049

deqhan@gmail.com
2 The French Aerospace Lab, Chemin de la Hunière, F-91761 Palaiseau, France

jean.dezert@onera.fr
3 SKLSVMS, School of Aerospace, Xi’an Jiaotong University, No. 28 West XianNing

Road, Xi’an, China 710049
jiafeiyy@mail.xjtu.edu.cn

Abstract. A distance or dissimilarity of evidence represents the degree
of dissimilarity between bodies of evidence, which has been widely used
in the applications based on belief functions theory. In this paper, new
distance measures are proposed based on belief intervals [Bel, P l]. For
a basic belief assignment (BBA), the belief intervals of different focal
elements are first calculated, respectively, which can be considered as
interval numbers. Then, according to the distance of interval numbers,
we can calculate the distance values between the corresponding belief
intervals of the same focal elements in two given BBAs. Based on these
distance values of belief intervals, new distance measures of evidence can
be obtained using Euclidean and Chebyshev approaches, respectively.
Some experiments and related analyses are provided to show the ratio-
nality and efficiency of the proposed measures.

Keywords: distance of evidence, dissimilarity, belief function theory,
evidence theory.

1 Introduction

The theory of belief functions [1], also called Dempster-Shafer evidence theory
(DST), proposes a mathematical model to represent sources of evidences and to
deal with uncertainty reasoning. DST has been used with some success in differ-
ent civilian and military applications, especially in information fusion, pattern
recognition and decision making. However, some limitations and flaws have been
put in light by different researchers, see for example [2,3], and references therein.
With the development of DST, some refined or extended evidence theories have
emerged, e.g., the transferable belief model (TBM) [4] and DSmT [5].

A distance or dissimilarity measure of evidence [6] can describe the degree
of dissimilarity or similarity between bodies of evidence (BOEs), which has at-
tracted more and more research interest recently and has been widely used in
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applications such as algorithm evaluation [7,8] or optimization, clustering anal-
ysis, etc. Among the different measures proposed in the literature, Jousselme’s
distance of evidence [9] and Tessem’s distance [10] (also called the betting com-
mitment distance or the pignistic probability distance) are most frequently used.
The conflict coefficient in Dempster’s rule can also be considered as a generalized
dissimilarity (not so strict). In our previous work [11], we have also proposed the
dissimilarity of evidence based on fuzzy sets theory. Most available definitions
on distance or dissimilarity measures of evidence can be found in an excellent
and detailed survey [6].

In this paper, we propose new ways to define distances of evidence. For each
piece of evidence, we calculate the belief interval of each focal element, respec-
tively. Then, a basic belief assignment (BBA) is represented by a set of belief
intervals, which can also be considered as a set of interval numbers or data. For
two different BBAs, we calculate the distance between their corresponding focal
element’s belief intervals using the distance of interval numbers [12]. Based on
the interval distance values corresponding to different focal elements, we propose
an Euclidean-family distance based on sum of squares, and a Chebyshev-family
distance based on the maximum selection, respectively. Actually, the distance
between BBAs is represented by the combination or selection of the distance
values between belief intervals corresponding to different focal elements. Some
experiments and related analyses are provided to show the effectiveness and
rationality of these new distances of evidence.

2 Basics of Belief Function Theory

In Dempster-Shafer evidence theory (DST) [1], the elements in frame of discern-
ment (FOD) Θ are mutually exclusive and exhaustive. Define m : 2Θ → [0, 1] as
a basic belief assignment (BBA, also called mass function) which satisfies:

∑
A⊆Θ

m(A) = 1, m(∅) = 0 (1)

When m(A) > 0, A is called a focal element. The belief function and plausibility
function are defined respectively as follows.

Bel(A) =
∑

B⊆A
m(B); P l(A) =

∑
A∩B �=∅

m(B) (2)

The belief interval [Bel(A), P l(A)] represents the imprecision or uncertainty de-
gree of the proposition or focal element A.

Dempster’s rule of combination is as follows. ∀A ∈ 2Θ :

m(A) =

{
0, if A = ∅
∑

Ai∩Bj=A m1(Ai)m2(Bj)

1−K , if A �= ∅ (3)

where
K =

∑
Ai∩Bj=∅

m1(Ai)m2(Bj) (4)

is the conflict coefficient representing the total degree of conflict between evi-
dence sources. It is widely accepted that the combination should better not be
normalized. Many alternative rules were proposed to redistribute the conflict [5].
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3 Traditional Distances of Evidence

A distance or dissimilarity between BBAs can represent the degree of dissim-
ilarity between different BOEs. As we can find in [6], there are various types
of distance or dissimilarity definitions in evidence theory. Some are defined by
directly using the BBAs under the framework of geometrical interpretation of
evidence theory [13]. Jousselme’s distance dJ is a representative one [9].

1) Jousselme’s Distance

dJ(m1, m2) =

√
0.5 · (m1 −m2)

TJac (m1 −m2) (5)

where the elements Jac(A,B) of Jaccard’s weighting matrix Jac are defined as

Jac(A,B) = |A ∩B|/|A ∪B| (6)

Jousselme’s distance is in fact an L2 Euclidean distance with weighting matrix
Jac. It has been proved to be a strict distance metric in [14]; however, it might
cause some unreasonable results in some cases as shown in Exmaples 2 and 3
listed in section 5 of this paper.

Some other distances are defined using a transformation of BBAs at first, e.g.,
Tessem’s distance and the fuzzy membership function (FMF)-based dissimilarity.

2) Tessem’s Betting Commitment Distance
The pignistic probability corresponding to a BBA m(·) is defined by [4]

BetPm(A) =
∑

B⊆Θ

|A ∩ B|
|B| m(B) (7)

The betting commitment distance (or Tessem’s distance) dT is computed by [10]

dT (m1,m2) = max
A⊆Θ

{|BetP1(A)− BetP2(A)|} (8)

dT is a Chebyshev L∞ alike distance. It is actually not a strict distance metric
[15].

3) FMF-Based Dissimilarity
First transform BBAs m1(·) and m2(·) into FMFs: μ(1) and μ(2) as for i = 1, 2

μ(i) =
[
μ(i)(θ1), μ

(i)(θ2), · · ·μ(i)(θn)
]
=

[
P l(i)(θ1), P l(i)(θ2), · · · , P l(i)(θn)

]
(9)

According to the dissimilarity definition between FMFs, dF is defined as [11]

dF (m1,m2) = 1−
∑n

i=1 (μ
(1)(θi) ∧ μ(2)(θi))∑n

i=1 (μ
(1)(θi) ∨ μ(2)(θi))

(10)

In (10), the operator ∧ represents conjunction (min) and ∨ represents the dis-
junction (max). dF in fact indirectly represents the dissimilarity between two
BBAs using the dissimilarity between their corresponding FMFs.

Since the available definitions have some limitations, we attempt to propose
new distances of evidence with desired properties, which are based on the dis-
tances between belief intervals as described in the next section.
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4 Distance of Evidence Using Belief Intervals

Suppose that two BBAs m1(·) and m2(·) are defined on Θ = {θ1, θ2, ..., θn}. For
each focal element Ai ⊆ Θ (i = 1, ..., 2n−1), we can calculate belief intervals ofAi

for m1(·) and m2(·), respectively, which are denoted by [Bel1(Ai), P l1(Ai)] and
[Bel2(Ai), P l2(Ai)]. A belief interval is nothing but a classical interval number
included in [0, 1]. The strict distance between interval numbers [a1, b1] and [a2, b2]
(bi ≥ ai, i = 1, 2) is defined1 by [12]

dI ([a1, b1], [a2, b2]) =

√[
a1 + b1

2
− a2 + b2

2

]2

+
1

3

[
b1 − a1

2
− b2 − a2

2

]2

(11)

Therefore, we can calculate the distance between BI1(Ai) : [Bel1(Ai), P l1(Ai)]
and BI2(Ai) : [Bel2(Ai), P l2(Ai)] according to Eq. (11). dI (BI1(Ai), BI2(Ai))
can be regarded as the dissimilarity between m1(·) and m2(·) when considering
the focal element Ai. We can obtain totally 2n− 1 belief interval distance values
for all Ai ⊆ Θ. Using all the 2n − 1 distance values, we propose two different
distances of evidence based on two commonly used distance types [6], i.e., the
Euclidean family and the Chebyshev family.

1) Euclidean-family Belief Interval-Based Distance dEBI

dEBI(m1,m2) =

√
Nc ·

∑2n−1

i=1
[dI(BI1(Ai), BI2(Ai))]

2 (12)

Here Nc = 1/2n−1 is the normalization factor. Eq. (12) can be re-written as

dEBI(m1,m2) =
√

Nc · dI · I(2n−1) · dT
I =

√
Nc · dI · dT

I (13)

where T denotes transpose, I(2
n−1) is an identity matrix with rank 2n − 1, and

dI =
[
dI(BI1(A1), BI2(A1)), · · · , dI(BI1(A2n−1), BI2(A2n−1))

]
. The proof for the

normalization factor Nc is as follows.

Proof. Suppose that the FOD is {θ1, θ2, ..., θn}. m1(·) and m2(·) are two BOEs.
The maximum distance value is reached when

m1({θi}) = 1,m2({θj}) = 1, ∀i �= j. (14)

When the focal element |A| = 1, there are only two belief intervals with
distance value dI of 1 (i.e., dI(BI1(θi), BI2(θi)) = 1 and dI(BI1(θj), BI2(θj)) =
1 ). The other values are 0.

When the focal element |A| > 1, dI values of those focal elements including
θi or θj (but not both including θi and θj) are 1. The other values are 0.

1 It corresponds to Mallows’ distance between two distributions when we assume that
each interval is the support of a uniform distribution. It should be noted that there
are also other types of distance between interval numbers [12]. We use the definition
in (11), because it is a strict distance metric, which is very crucial for defining
distances of evidence.
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To be specific,
when |A| = 2, dI values of 2× C1

n−2 focal elements are 1; 2

when |A| = 3, dI values of 2× C2
n−2 focal elements are 1;

...
when |A| = n− 1, dI values of 2× Cn−2

n−2 focal elements are 1;
when |A| = n, the dI value of unique focal element, i.e., total set (Θ) is 0.

So, the summation Sc of all the (dI)2 value is

Sc = 2× 1 + 2× C1
n−2 + 2× C2

n−2 + ...+ 2× Cn−2
n−2 + 0

= 2× (C0
n−2 + C1

n−2 + C2
n−2 + ...+ Cn−2

n−2 )
= 2× 2n−2

= 2n−1

(15)

So, the normalization factor Nc = 1/Sc = 1/2n−1 ��
2) Chebyshev-family Belief Interval-based Distance dCBI

dCBI (m1,m2) = max
Ai⊆Θ,i=1,...,2n−1

{
dI (BI1(Ai), BI2(Ai))

}
(16)

Actually, we use the distance of belief intervals for focal elements instead of their
mass assignments to define the distances of evidence when compared with the
traditional definitions. A strict distance metric defined on the set ε d : ε×ε → ,
(x, y) �→ d(x, y) should satisfy that [9]

1) Nonnegativity: d(x, y) ≥ 0;
2) Nondegeneracy: d(x, y) = 0 ⇔ x = y;
3) Symmetry: d(x, y) = d(y, x);
4) Triangle inequality: d(x, y) + d(y, z) ≥ d(x, z), ∀z ∈ ε.
It can be proved that our new definitions are strict distance metric. The proof

is as follows.

Proof. dEBI and dCBI are defined over belief intervals. Given a BBA (m(Ai), i =
1, ..., 2n − 1), we can generate a set of belief intervals ([Bel(Ai), P l(Ai)]). On
the other hand, given a set of belief intervals ([Bel(Ai), P l(Ai)]), according
to the Möbius transformation [1], we can generate a unique BBA (m(Ai), i =
1, ..., 2n − 1) from Pl(Ai), i = 1, ..., 2n − 1 or Bel(Ai), i = 1, ..., 2n − 1. So, there
is a one-to-one mapping between a set of belief intervals ([Bel(Ai), P l(Ai)]) and
a BBA (m(Ai), i = 1, ..., 2n − 1).

According to the Eq. (12-13, 16), it is easy to find that dEBI and dCBI satisfy
nonnegativity, nondegeneracy and symmetry of are satisfied. Then we prove the
property of triangle inequality of dEBI .

2 Choose 1 element θk out of the Θ′ = Θ−{θi, θj}(|Θ′| = n− 2). Then, together with
θi and θj , respectively, to constitute focal element {θk, θi} and {θk, θj}, respectively.
So, the number of focal elements with dI values of 1 is 2× C1

n−2 It is same way to
obtain the values in other cases for A > 1.
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Suppose that there are 3 BBAs m1(·),m2(·),m3(·) defined over the same FOD
with size of n. Because dI defined in Eq. (11) is a strict distance metric [12], so,
for each Ai (i = 1, ..., s, s = 2n − 1) there exists

dEBI(m1(Ai),m2(Ai)) + dEBI(m2(Ai),m3(Ai)) ≥ dEBI(m1(Ai),m3(Ai)).
Suppose that
dEBI(m1(Ai),m2(Ai)) = ai; d

E
BI(m2(Ai),m3(Ai)) = bi;

dEBI(m1(Ai),m3(Ai)) = ci.
There exists

ai + bi ≥ ci
⇒ (ai + bi)

2 ≥ c2i
⇒ a2i + b2i + 2aibi ≥ c2i

⇒
s∑

i=1

a2i +
s∑

i=1

b2i + 2
s∑

i=1

aibi ≥
s∑

i=1

c2i

(17)

According to the famous Cauchy-Schwarz inequality, there exists√√√√ s∑
i=1

a2i

s∑
i=1

b2i ≥
s∑

i=1

aibi (18)

So,

s∑
i=1

a2i +
s∑

i=1

b2i + 2

√
s∑

i=1

a2i
s∑

i=1

b2i ≥
s∑

i=1

a2i +
s∑

i=1

b2i + 2
s∑

i=1

aibi ≥
s∑

i=1

c2i

⇒
s∑

i=1

a2i +
s∑

i=1

b2i + 2

√
s∑

i=1

a2i
s∑

i=1

b2i ≥
s∑

i=1

c2i

(19)

Then we have

s∑
i=1

a2i +
s∑

i=1

b2i + 2

√
s∑

i=1

a2i
s∑

i=1

b2i

=

(√
s∑

i=1

a2i +

√
s∑

i=1

b2i

)2

=
(
dEBI(m1,m2) + dEBI(m2,m3)

)2
⇒ (

dEBI(m1,m2) + dEBI(m2,m3)
)2 ≥ (

dEBI(m1,m3)
)2

⇒ dEBI(m1,m2) + dEBI(m2,m3) ≥ dEBI(m1,m3)

(20)

So, the triangle inequality of dEBI is satisfied.
For dCBI , we have

dCBI(m1,m2) + dCBI(m2,m3) = max
i=1,...,s

ai + max
i=1,...,s

bi

dCBI(m1,m3) = max
i=1,...,s

ci = ak + bk, k = argmax
i=1,...,s

ci
(21)

There exists

ak + bk ≤ max
i=1,...,s

ai + max
i=1,...,s

bi = dCBI(m1,m2) + dCBI(m2,m3) (22)
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i.e., dCBI(m1,m2)+dCBI(m2,m3) ≥ dCBI(m1,m3). d
C
BI satisfies triangle inequality.

In summary, dEBI and dCBI are strict distance metrics. ��

5 Simulation Results

To verify the rationality of the proposed distances, numerical examples are pro-
vided. In each example, dJ , dT , dF , dC

3, dEBI and dCBI are compared.
1) Example 1. The size of FOD is 3. We calculated the dissimilarities be-

tween m1(·) and mi(·), i = 2, ..., 7 as illustrated in Fig. 1. m1(·) has relatively
large mass assignment value for {θ2}. Therefore, intuitively, for mi(·), i = 2, ..., 7
listed in Table 2, if the mass assignment for {θ2} is relative large, the distance
between m1(·) and mi(·) should be relatively small. As illustrated in Fig. 1, all
the dissimilarities perform similarly in all seven cases, which show that they are
all rational in this example. For m5 and m6, the mass of focal elements contain-
ing θ2 (i.e., θ1 ∪ θ2 and θ2 ∪ θ3) is 0.8, it should be more rational if the distance
values with respect to m5(·) and m6(·) decrease.
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Fig. 1. Dissimilarities between m1 and mi, i = 2, ..., 7

2) Example 2 [16].
Let us define three BBAs on the FOD Θ = {θ1, ..., θn} as follows:

m1({θ1}) = m1({θ2}) = · · · = m1({θn}) = 1/n;

m2(Θ) = 1;

m3({θk}) = 1, for some k ∈ {1, ..., n}.
3 dC corresponds to the conflict coefficient K given by (4).

Table 1. BBA m1(·)

Focal element θ1 θ2 θ3 θ1 ∪ θ2 θ2 ∪ θ3 θ1 ∪ θ3 θ1 ∪ θ2 ∪ θ3
Mass assignment 0.1 0.8 0.1 0 0 0 0
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Table 2. BBAs mi(·), i = 2, . . . , 7

Focal el.\ BBAs m2(·) m3(·) m4(·) m5(·) m6(·) m7(·)
θ1 0.8 0 0 0 0 0
θ2 0 0.8 0 0 0 0
θ3 0 0 0.8 0 0 0
θ1 ∪ θ2 0 0 0 0.8 0 0
θ2 ∪ θ3 0 0 0 0 0.8 0
θ1 ∪ θ3 0 0 0 0 0 0.8
θ1 ∪ θ2 ∪ θ3 0.2 0.2 0.2 0.2 0.2 0.2

In this example, m3(·) is absolutely confident in θk and it is significantly dif-
ferent from both m1(·) and m2(·). m1(·) is rather different from m2(·) even if
they represent both two different uncertain sources. m2(·) is actually a vacu-
ous belief assignment representing the full ignorance. m1(·) is much more spe-
cific than m2(·) since it is a Bayesian belief assignment. As one sees in Fig 2,
Jousselme’s distance cannot discriminate well the difference between these two
very different cases for dealing efficiently with the specificity of the informa-

tion because dJ(m1,m2) = dJ (m1,m3) =
√

1
2 (1− 1

n ). For dF , dF (m1,m2) =

dF (m2,m3). The discriminating ability is not so well. For Tessem’s distance,
one gets dT (m1,m2) = 0 thus it cannot discriminate m1(·) and m2(·). dC can-
not discriminate m1(·) and m2(·), and also m2(·) and m3(·). For the new defined
belief intervals-based distance of evidences can discriminate all the three BOE’s
pretty well as shown in Fig. 2.

3) Example 3 [16].
Let us define three BBAs on the FOD Θ = {θ1, ..., θn} as follows:

m1({θ1}) = m1({θ2}) = m1({θ3}) = 1/3;

m2({θ1}) = m2({θ2}) = m2({θ3}) = 0.1,m2(Θ) = 0.7;

m3({θ1}) = m3({θ2}) = 0.1,m2(θ3) = 0.8.

The values of the different dissimilarities between m1(·) and m2(·), and be-
tween m1(·) and m3(·) are given in Table 3.

Table 3. Example 3: Results based on different distances of evidence

Distance types dJ dT dF dC dEBI dCBI

d(m1,m2) 0.4041 0 0.5833 0.2000 0.2858 0.2333
d(m1,m3) 0.4041 0.4667 0.6364 0.6667 0.4041 0.4667

m1(·) and m2(·) correspond to two very different situations in term of the
specificity of their informational content. m3(·) assigns its largest mass assign-
ment to θ3. Intuitively, it seems reasonable to consider that m1(·) and m2(·)
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Fig. 2. Dissimilarities between m1(·), m2(·) and m3(·) for Example 2

are closer than m1(·) and m3(·) since m1(·) and m2(·) yield the same indeter-
minate choice in decision-making because of the ambiguity in choice among the
singletons in the FOD. Using Jousselme’s distance, one obtains dJ (m1,m2) =
dJ(m1,m3) = 0.4041 which is not very satisfactory for such a case. Based on
the results of Table 3, one sees that when using dT , dF , d

E
BI and dCBI , one gets

d(m1,m2) < d(m1,m3) which is more reasonable. However, for Tessem’s dis-
tance, one gets dT (m1,m2) = 0 which is not rational (intuitively acceptable) or
at least very questionable.

According to the above simple examples, we can see that the new defined
belief intervals-based distances present an acceptable behavior with respect to
other classical distances presented in this paper.

6 Conclusions

In this paper, two novel distances of evidence are proposed based on the dis-
tances between belief intervals. It is experimentally shown that our proposed
distances can well describe the degree of dissimilarity between different BOEs.
In future work, besides the simple examples in this paper, we will try to use a
general formal property to show that our measures can satisfy a reasonable set
of properties. Furthermore, we will use these new distances in different applica-
tions, like data clustering, target recognition, etc, to evaluate how they perform
with respect to classical distances used so far.
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