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Abstract. Directed evidential networks with conditional belief func-
tions are one of the most commonly used graphical models for analyzing
complex systems and handling different types of uncertainty. A crucial
step to benefit from the reasoning process in these models is to quantify
them. So, we address, in this paper, the issue of estimating parameters in
evidential networks from evidential databases, by applying the maximum
likelihood estimation generalized to the evidence theory framework.
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1 Introduction

Evidential graphical models have gained, in recent years, an expanding interest
as a powerful tool for modeling and analyzing complex systems and reasoning
under different types of uncertainty based on the belief functions theory.

One of the most commonly applied models in the evidential framework are
the Directed EVidential Networks with conditional belief functions (DEVNs) [3].
On one hand, these models generalize the evidential networks with conditional
belief functions [18] by handling n-ary relations between variables, on the other
hand, unlike probabilistic models such as Bayesian networks [10], they are able
to handle different levels of uncertainty in data.

A DEVN is based on two parts: the graphical part that consists on a directed
acyclic graph with a set of nodes and a set of edges and the numeric parameters
represented by conditional belief functions. Another point of interest of these
networks is their flexibility in representing beliefs. In fact, conditional beliefs in
these models can be expressed according to two different manners: for each node
in the context of its parents (per child node) or for each dependency relation
between a parent node an a child node (per edge).

The majority of works concerning DEVNs address inference algorithms and
reasoning in these networks [3,2,8]. Nevertheless, an essential step before being
able to reason with evidential networks is to quantify them. The data needed
in the quantification process are generally derived from expert opinions or from
data stored in databases.
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Thus, we address in this paper the problem of learning parameters in DEVNs
from uncertain data stored in Evidential DataBases (EDB) [1], and this, by
applying the maximum likelihood principle, one of the most statistical methods
generally used in learning BNs [6,7,12].

The paper is organized as follow: In Section 2, we remaind briefly the most im-
portant background notions regarding the belief functions theory. The evidential
data bases are recalled in Section 3. We recall the basic concepts related to the
directed evidential networks with conditional belief functions in section 4. Sec-
tion 5 concerns the maximum likelihood and its use in learning BNs. In Section
6, we present the main purpose of the paper which is the algorithm of learning
parameters in DEVNs with its two variants, per child node and per edge. In the
last Section, we explain the proposed approach through an illustrative example.

2 Belief Functions Theory: Basic Concepts

The belief functions theory, also known as evidence theory or Dempster-Shafer
theory is a general and flexible framework for handling and modeling different
types of uncertainty [13]. In the following, we remind some basic concepts of this
theory, more details can be found in [13,15].

Let Ω be a finite set of exclusive and exhaustive elements called the frame of
discernment and 2Ω its power set.

The portion of belief supporting exactly a proposition A is called the basic
belief assignment (bba), which is a function from 2Ω to [0, 1] such that:

∑

A⊆Ω

mΩ(A) = 1 (1)

Any subset A ∈ Ω with mΩ(A) > 0 is called a focal element, and the set of all
these elements is denoted by �(mΩ).

With each mass functionmΩ is associated a belief (belΩ) and plausibility (plΩ)
functions from 2Ω to [0, 1], which give the minimum and maximum amount of
support attributed to A, respectively. These functions are defined as follows:

belΩ(A) =
∑

∅�=B⊆A

mΩ(B) (2)

plΩ(A) =
∑

∅�=B∩A

mΩ(B) (3)

Let mΩ[B](A) denote the conditional basic belief assignment of A given B, it is
defined by Dempster’s rule of conditioning as:

mΩ[B](A) =
∑

C⊆B

mΩ(A ∩ C), (4)

where B̄ is the complement of the proposition B. More details about the rules
of conditioning in the belief functions theory can be found in [14,16].
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3 Evidential DataBases

An Evidential DataBase (EDB) or a Dempster-Shafer (DS) database is a
database storing certain or/and uncertain data modeled using the belief func-
tions framework [1].

In an EDB with L lines and C columns (attributes), each attribute c ∈ [1, C]
has a frame of discernment Ωc including its possible values.

Let Vlc be the value of cell in the lth line and cth column, Vlc is an evidential
value defined by a mass function mlc from 2Ωc to [0, 1] such as:

mlc(∅) = 0 and
∑

A⊆Ωc

mlc(A) = 1 (5)

Data in an EDB, can take different levels of imperfection:

– Certain data: when the focal element is a singleton with a mass equal to one.
– Probabilistic data: when all focal elements are singletons.
– Possibilistic data: when focal elements are nested.
– Missing data: when the total amount of evidence is affected to one focal

element which is the frame of discernment.
– Evidential data: including any other type of information.

4 Directed Evidential Networks with Conditional Belief
Functions

Directed EVidential Networks with conditional belief functions (DEVNs) are
proposed in [3] to generalize the evidential networks with conditional belief func-
tions (ENCs) [18] that generalize Bayesian Networks (BNs) [10] for handling
different types of uncertainty using evidence theory framework.

As it is derived from ENCs and BNs, a DEVN is based on two principal parts:

The qualitative level which is modeled by a Directed Acyclic Graph (DAG)
G = (N,E), where N = {N1, ..., Nx} is the set of nodes (variables), and E =
{E1, ..., Ey} is the set of edges coding the different conditional dependencies
between variables.

The quantitative level which is represented by a set of parameters θ modeled
by conditional belief functions. Each node in the DEVN is associated with
an a priori mass function. If it is a root node, adding to this function, the
node is associated with a conditional mass function defined per edge or per
child node.

Each node Ni in a DEVN is a representation of a random variable taking its
values on a frame of discernment ΩNi . Let PA(Ni) and CH(Ni) denote the set
of its parent nodes and the set of its child nodes, respectively. Like in BNs, each
root node in a DEVN is associated with an a priori bbm, but unlike in BNs,
child nodes in DEVNs are associated with both an a priori mass function and a
conditional one.
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Conditional belief functions in DEVNs can be defined in two manners:

– Per child node, as in BNs: for each child nodeNc is associated a conditional
belief function given all its parent nodes PA(Nc). This conditional mass is
denoted by mΩNc [PA(Nc)](Nc).

– Per edge, as in ENCs: the conditional relation between a child node Nc

and a parent node Np ∈ PA(Nc), represented by an edge, is weighted with
a conditional mass function mΩNc [Np](Nc).

These to ways of modeling conditional beliefs makes DEVNs more flexible
than BNs and ENCs and make the quantification of the network easier to an
expert.

5 Maximum Likelihood and Learning in BNs

The issue of parameter estimation from data sets remains an important sub-
ject in statistics and knowledge management problems. One of the well known
statistic methods for estimating parameters of a statistical model is the Maxi-
mum Likelihood (ML) principle [11]. This method is the center of the majority
of approaches of learning parameters in probabilistic models from databases
containing both complete and missing data.

When all variables are observed perfectly, the simplest and most used method
for estimating probabilities in BNs is the ML which measure the probability of an
event by its frequency of occurrence in the database. The estimated probability
to a random variable1 Xi conditionally to its parent nodes PA(Xi) is calculated
as follows:

P (Xi = xk|PA(Xi) = xj) =
Ni,j,k∑
k Ni,j,k

, (6)

where Ni,j,k is the number of events for which Xi takes the value xk and its par-
ents takes the configuration of values xj . More details concerning the statistical
learning in BNs can be found in [6,7,12].

Many other learning approaches are developed to estimate parameters from
databases containing missing data, one of the most popular is the Expectation
Maximization (EM) algorithm [4] which is based mainly on the ML estimation.

The likelihood principle and the EM algorithm were generalized, under the
belief functions framework, to the Credal EM [17] and the Evidential EM [5] in
order to handle the imprecision and the uncertainty in data.

The main idea of the extension of the likelihood notion to the evidence frame-
work is to take the classical likelihood, defined originally in the probability frame-
work, weighted by the mass function associated to each variable [5].

Thus, we apply, in the rest of the paper, the maximum likelihood principle
and its generalization in the evidence theory, to develop a new algorithm for
estimating the a priori mass function and the conditional beliefs in a directed
evidential network from data bases storing different types of data: complete,
missing, certain and/or uncertain.

1 Each random variable corresponds to a node in the Bayesian network.
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6 Learning Parameters in DEVNs

We present in this part, the main purpose of the paper which is learning param-
eters in directed evidential networks with conditional belief functions from an
evidential database by applying the maximum likelihood estimation principle.

As mentioned previously, in a DEVN, each node is associated with an a priori
bba and each child node is quantified by a conditional belief function modeled
according to two different approaches: per child node, when the mass function
of each child node is calculated given all its parent nodes, or per edge, when the
relation between a child node and a parent node is evaluated by a conditional
belief.

Let us consider a DEVN with a set of nodes N and a set of edges E and
an EDB with L lines and C columns such that each column corresponds to a
random variable (node) in the DEVN.

Building on the generalization idea of the likelihood principle in the evidence
theory and analogically to the ML in the probability framework expressed by
equation (6), the a priori mass function of a node Ni ∈ N can be calculated as
follows:

mΩNi (Ni = Ak) =

∑|L|
l=1 m

ΩNi

lc (Ni = Ak)
∑|L|

l=1 m
ΩNi

lc (Ni)
, (7)

where Ak is a proposition from 2ΩNi , c denotes the column corresponding to the

node Ni and m
ΩNi

lc is the mass function defining the cell in the lth line and cth

column.
Similarly, we define in equation (8) the conditional mass function of a node

Ni given its parent nodes PA(Ni) = {pa1(Ni), ..., paz(Ni)}:

mΩNi [PA(Ni) = x](Ni = Ak) =

∑|L|
l=1 m

ΩNi
lc (Ni = Ak) ∗

∏
j m

Ωpaj

lcj (paj(Ni) = xj)
∑|L|

l=1

∏
j m

Ωpaj

lcj (paj(Ni) = xj)
,

(8)

where x is a configuration of values in which each parent node takes a possible
proposition from its frame of discernment.

These equations are the core of the learning parameters algorithms in directed
evidential networks.

6.1 Learning Algorithm Per Child Node

The process of estimating parameters per child node in a DEVN is based on
two main steps: the estimation of an a priori mass function for each node and
the estimation of the conditional mass function of each child node given all its
parent nodes. This process is detailed formally by Algorithm 1.

Note that this algorithm can be used for learning parameters in Bayesian
networks from probabilistic data.
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Algorithm 1. Learning parameters per child node

Require: DAG = (N,E), Data
Ensure: DEV N = (N,E, θp, θc)

for each node Ni ∈ N do
1. Calculate the a priori mass function mΩNi (Ni)
c← SelectColumn(Ni,C)

for each proposition Ak in 2ΩNi do
mΩNi (Ak) ←Result of equation(7)

end for
Ni.θp ← mΩNi (A)
2. Calculate the conditional mass function mΩNi [PA](Ni)

if Ni is a child node then
cPA = SelectColumns(PA,C)

for each proposition Ak in 2ΩNi do

for each possible configuration confj do
mΩNi [PA = confj ](Ak) ← Result of equation(8)

end for
end for
Ni.θc ← mΩNi [PA](A)

else
Ni.θc ← ∅

end if
end for

6.2 Learning Algorithm Per Edge

The approach of learning parameters per edge, described in Algorithm 2, aims
to quantify each dependency relation between a parent node and a child node by
a conditional mass function. The step of estimation the a priori mass function
for each node is similar to the first step in Algorithm 1.

Note that this algorithm can be also used for learning parameters in evidential
networks with conditional belief functions from any type of data.

7 Illustrative Example

In order to explain the learning algorithm detailed previously, we present in the
following an illustrative example focusing on a part from ”ASIA” network2 and
a part from a corresponding evidential database modeled in figure 1.

2 The Bayesian network of the classical problem Asia Chest Clinic first described in
[9]
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Algorithm 2. Learning parameters per edge

Require: DAG = (N,E), Data
Ensure: DEV N = (N,E, θp, θc)

for each node Ni ∈ N do
1. Calculate the a priori mass function mΩNi (Ni)
2. Calculate the conditional mass function mΩNi [pa(Ni)](Ni)

if Ni is not a root node then
PA← Parents(Ni)

for each proposition Aj in 2ΩNi do

for each parent node pa ∈ PA do
c← SelectColumn(pa, C)
mΩNi [pa = xq](Aj) ← Result of equation(8)
Ni.pa.θc ← mΩNi [pa](A)

end for
end for

else
Ni.θc ← ∅

end if
end for

All variables in ”ASIA” network are binary, we consider in this example, as
shown in figure 1, four variables {A, T,O, L} having the power sets, respectively:
{a, ā, a ∪ ā}; {t, t̄, t ∪ t̄}; {o, ō, o ∪ ō} and {l, l̄, l ∪ l̄}.

Data used in this example are composed from 20 instances and contain differ-
ent levels of imperfection: uncertain attributes, certain attributes and imprecise
attributes.

The different results of applying the learning process to the selected part of
”ASIA” network are shown in figure 2. For each root node (A and L) is associated
an a priori mass function. The node T is quantified by an a priori mass function
mΩT (T ) and a conditional belief knowing its parent node mΩT [A](T ). Note that
in the case of a node having one parent (such as T ), the result of learning
parameters per child node or per edge is the same. For the node O is associated
an a priori mass function mΩO(O), a conditional mass function given all its
parent nodes mΩO [T, L](O) and a conditional mass function given one parent
node mΩO [T ](O) and mΩO [L](O).
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Fig. 1. The graphical structure and the EDB of the network for the Asia Chest Clinic
problem

In the following we present some examples of calculation details in order to
further clarify equations (7) and (8):

• mΩA(A = a)=
∑20

1 m
ΩA
lc (A=a)

∑
20
1 (m

ΩA
lc (A=a)+m

ΩA
lc (A=ā)+m

ΩA
lc (A=a∪ā))

= 0+0+0.5+...+1
1+1+0.5+0.5+...+1 =

0.2185

mΩA (A)

a 0.2185

ā 0.558

a ∪ ā 0.2235

mΩT [A](T )

mΩT (T ) a ā a ∪ ā

t 0.45 0.736 0.376 0.353

t̄ 0.55 0.264 0.624 0.647

t ∪ t̄ 0 0 0 0

mΩL (L)

l 0.3

l̄ 0.6

l ∪ l̄ 0.1

Per child node Per edge

mΩO [T,L](O)

l l̄ l ∪ l̄

mΩO (O) t t̄ t ∪ t̄ t t̄ t ∪ t̄ t t̄ t ∪ t̄

o 0.5145 1 0.52 0 0.57 0.425 0 0 0 0

ō 0.3555 0 0.48 0 0.2 0.325 0 1 1 0

o ∪ ō 0.13 0 0 1 0.23 0.25 1 0 0 1

mΩO [T ](O) mΩO [L](O)

mΩO (O) t t̄ t ∪ t̄ l l̄ l ∪ l̄

o 0.45 0.554 0.48 0 0.6 0.558 0

ō 0.55 0.267 0.42 0 0.4 0.22 1

t ∪ ō 0 0.18 0.09 1 0 0.216 0

Fig. 2. The result of applying the learning parameters algorithms on a part of ASIA
network
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• mΩT [A = a](T = t̄) =
∑20

1 m
ΩT
lc (T=t̄)∗mΩA

lc (A=a)
∑20

1 m
ΩA
lc

(A=a)
= 1∗0.5+1∗0.2+1∗0.45

0.5+1+0.22+0.2+0.45+1+1 =

0.264

• mΩO [T = t̄, L = l](O = o) =
∑20

1 m
ΩO
lc (O=o)∗mΩT

lc (T=t̄)∗mΩL
lc (L=l)

∑20
1 m

ΩT
lc (T=t̄)∗mΩL

lc (L=l)
=

1∗1∗1+1∗1∗1+1∗1∗0.6
1∗1+1∗1+1∗1+1∗1+1∗1 = 0.52

Note that if we use probabilistic data (as in node T), then these equations give
the same result as equation (6) which explains the fact that applying our first
algorithm (for the case per child node) to learn the parameters of the DEVNs
from a complete database gives the same results as the algorithm based in the
maximum likelihood for learning parameters in Bayesian networks.

It is important to mention that if a configuration value of a parent node does
not exist in the database, then the total amount of belief will be assigned to
the total ignorance. For instance the proposition {t ∪ t̄} does not appear in the
database (the value {0, 1} in T column), this makes mΩO [T = t ∪ t̄, L = l](O =
o ∪ ō) equal to mΩO [T = t ∪ t̄, L = l̄](O = o ∪ ō) equal to mΩO [T = t ∪ t̄, L =
l∪ l̄](O = o∪ ō) equal to 1. This can be a simple solution for the problem of zero
counts in the data.

8 Conclusion

We have proposed, in this paper, new algorithms for learning parameters in
directed evidential networks with conditional belief functions by applying the
generalization of the maximum likelihood estimation in the evidence theory for
handling uncertainty in data, stored in evidential databases.
As a future work, we intend to study the complexity of the proposed algorithm
by applying it to complex systems and big databases. Another center of interest
will be to improve the equation used in the proposed algorithms to deal with
some problems such as zero counts and overfitting.
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Eyrolles (2004)
13. Shafer, G.: A Mathematical Theory of Evidence. Princeton Univ. Press, Princeton

(1976)
14. Smets, P.: Jeffrey’s rule of conditioning generalized to belief functions. In: Proceed-

ings of the Ninth international conference on Uncertainty in artificial intelligence
(UAI 1993), Washington, DC, USA, pp. 500–505 (1993)

15. Smets, P., Kennes, R.: The transferable belief model. Artificial. Intelligence 66,
191–234 (1994)

16. Tang, Y., Zheng, J.: Dempster Conditioning and Conditional Independence in Ev-
idence Theory. In: Zhang, S., Jarvis, R.A. (eds.) AI 2005. LNCS (LNAI), vol. 3809,
pp. 822–825. Springer, Heidelberg (2005)

17. Vannoorenberghe, P., Smets, P.: Partially supervised learning by a credal EM
approach. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 956–
967. Springer, Heidelberg (2005)

18. Xu, H., Smets, P.: Evidential Reasoning with Conditional Belief Functions. In:
Heckerman, D., et al. (eds.) Proceedings of Uncertainty in Artificial Intelligence
(UAI 1994), Seattle, Washington, USA, pp. 598–606 (1994)


	Learning Parameters in Directed EvidentialNetworks with Conditional Belief Functions
	1 Introduction
	2 Belief Functions Theory: Basic Concepts
	3 Evidential DataBases
	4 Directed Evidential Networks with Conditional Belief Functions
	5 Maximum Likelihood and Learning in BNs
	6 Learning Parameters in DEVNs
	6.1 Learning Algorithm Per Child Node
	6.2 Learning Algorithm Per Edge

	7 Illustrative Example
	8 Conclusion
	References




